
www.dbooks.org

https://www.dbooks.org/

3D	Game	Development	with	LWJGL	3
*	IMPORTANT	NOTICE	*:	The	online	book	is	being	migrated	to	new	gitbook	space:
https://ahbejarano.gitbook.io/lwjglgamedev/

This	online	book	will	introduce	the	main	concepts	required	to	write	a	3D	game	using	the
LWJGL	3	library.

LWJGL	is	a	Java	library	that	provides	access	to	native	APIs	used	in	the	development	of
graphics	(OpenGL),	audio	(OpenAL)	and	parallel	computing	(OpenCL)	applications.This
library	leverages	the	high	performance	of	native	OpenGL	applications	while	using	the	Java
language.

My	initial	goal	was	to	learn	the	techniques	involved	in	writing	a	3D	game	using	OpenGL.	All
the	information	required	was	there	in	the	internet	but	it	was	not	organized	and	sometimes	it
was	very	hard	to	find	and	even	incomplete	or	misleading.

I	started	to	collect	some	materials,	develop	some	examples	and	decided	to	organize	that
information	in	the	form	of	a	book.

Source	Code
The	source	code	of	the	samples	of	this	book	are	in	GitHub.

The	source	code	for	the	book	itself	is	also	published	in	GitHub.

License
The	book	is	licensed	under	Attribution-ShareAlike	4.0	International	(CC	BY-SA	4.0)

The	source	code	for	the	book	is	licensed	under	Apache	v2.0

Support
If	you	like	the	book	please	rate	it	with	a	start	and	share	it.	If	you	want	to	contribute	with	a
donation	you	can	do	a	donation:

Or	if	you	prefer	Bitcoin:	1Kwe78faWarzGTsWXtdGvjjbS9RmW1j3nb.

Introduction

4

https://ahbejarano.gitbook.io/lwjglgamedev/
http://www.lwjgl.org/
https://github.com/lwjglgamedev/lwjglbook
https://github.com/lwjglgamedev/lwjglbook-bookcontents
http://creativecommons.org/licenses/by-sa/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=5MH9AA9TPQQBN

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

1.30

Table	of	Contents
Introduction

First	steps

The	Game	Loop

A	brief	about	coordinates

Rendering

More	on	Rendering

Transformations

Textures

Camera

Loading	more	complex	models

Let	there	be	light

Let	there	be	even	more	light

HUD

Sky	Box	and	some	optimizations

Height	Maps

Terrain	Collisions

Fog

Normal	Mapping

Shadows

Animations

Particles

Instanced	Rendering

Audio

3D	Object	picking

Hud	revisited	-	NanoVG

Optimizations

Cascaded	Shadow	Maps

Assimp

Deferred	Shading

Appendix	A	-	OpenGL	Debugging

2

Comments	are	welcome
Suggestions	and	corrections	are	more	than	welcome	(and	if	you	do	like	it	please	rate	it	with
a	star).	Please	send	them	using	the	discussion	forum	and	make	the	corrections	you	consider
in	order	to	improve	the	book.

Author
Antonio	Hernández	Bejarano

Special	Thanks
To	all	the	readers	that	have	contributed	with	corrections,	improvements	and	ideas.

Introduction

5
www.dbooks.org

https://www.dbooks.org/

First	steps
In	this	book	we	will	learn	the	principal	techniques	involved	in	developing	3D	games.	We	will
develop	our	samples	in	Java	and	we	will	use	the	Lightweight	Java	Game	Library	(LWJGL).
The	LWJGL	library	enables	the	access	to	low-level	APIs	(Application	Programming
Interface)	such	as	OpenGL.

LWJGL	is	a	low	level	API	that	acts	like	a	wrapper	around	OpenGL.	If	your	idea	is	to	start
creating	3D	games	in	a	short	period	of	time	maybe	you	should	consider	other	alternatives
like	[JmonkeyEngine].	By	using	this	low	level	API	you	will	have	to	go	through	many	concepts
and	write	lots	of	lines	of	code	before	you	see	the	results.	The	benefit	of	doing	it	this	way	is
that	you	will	get	a	much	better	understanding	of	3D	graphics	and	also	you	can	get	better
control.

As	said	in	the	previous	paragraphs	we	will	be	using	Java	for	this	book.	We	will	be	using	Java
10,	so	you	need	to	download	the	Java	SDK	from	Oracle’s	pages.	Just	choose	the	installer
that	suits	your	Operating	System	and	install	it.	This	book	assumes	that	you	have	a	moderate
understanding	of	the	Java	language.

You	may	use	the	Java	IDE	you	want	in	order	to	run	the	samples.	You	can	download	IntelliJ
IDEA	which	has	good	support	for	Java	10.	Since	Java	10	is	only	available,	by	now,	for	64
bits	platforms,	remeber	to	download	the	64	bits	version	of	IntelliJ.	IntelliJ	provides	a	free
open	source	version,	the	Community	version,	which	you	can	download	from	here:
https://www.jetbrains.com/idea/download/.

First	steps

6

http://www.lwjgl.org/
https://www.jetbrains.com/idea/download/

For	building	our	samples	we	will	be	using	Maven.	Maven	is	already	integrated	in	most	IDEs
and	you	can	directly	open	the	different	samples	inside	them.	Just	open	the	folder	that
contains	the	chapter	sample	and	IntelliJ	will	detect	that	it	is	a	maven	project.

Maven	builds	projects	based	on	an	XML	file	named		pom.xml		(Project	Object	Model)	which
manages	project	dependencies	(the	libraries	you	need	to	use)	and	the	steps	to	be
performed	during	the	build	process.	Maven	follows	the	principle	of	convention	over
configuration,	that	is,	if	you	stick	to	the	standard	project	structure	and	naming	conventions
the	configuration	file	does	not	need	to	explicitly	say	where	source	files	are	or	where
compiled	classes	should	be	located.

This	book	does	not	intend	to	be	a	maven	tutorial,	so	please	find	the	information	about	it	in
the	web	in	case	you	need	it.	The	source	code	folder	defines	a	parent	project	which	defines
the	plugins	to	be	used	and	collects	the	versions	of	the	libraries	employed.

LWJGL	3.1	introduced	some	changes	in	the	way	that	the	project	is	built.	Now	the	base	code
is	much	more	modular,	and	we	can	be	more	selective	in	the	packages	that	we	want	to	use
instead	of	using	a	giant	monolithic	jar	file.	This	comes	at	a	cost:	You	now	need	to	carefully
specify	the	dependencies	one	by	one.	But	the	download	page	includes	a	fancy	script	that
generates	the	pom	file	for	you.	In	our	case,	we	will	just	be	using	GLFW	and	OpenGL
bindings.	You	can	check	what	the	pom	file	looks	like	in	the	source	code.

The	LWJGL	platform	dependency	already	takes	care	of	unpacking	native	libraries	for	your
platform,	so	there's	no	need	to	use	other	plugins	(such	as		mavennatives).	We	just	need	to
set	up	three	profiles	to	set	a	property	that	will	configure	the	LWJGL	platform.	The	profiles	will
set	up	the	correct	values	of	that	property	for	Windows,	Linux	and	Mac	OS	families.

First	steps

7
www.dbooks.org

https://maven.apache.org/
https://www.lwjgl.org/download
https://www.dbooks.org/

				<profiles>

								<profile>

												<id>windows-profile</id>

												<activation>

																<os>

																				<family>Windows</family>

																</os>

												</activation>

												<properties>

																<native.target>natives-windows</native.target>

												</properties>																

								</profile>

								<profile>

												<id>linux-profile</id>

												<activation>

																<os>

																				<family>Linux</family>

																</os>

												</activation>

												<properties>

																<native.target>natives-linux</native.target>

												</properties>																

								</profile>

								<profile>

												<id>OSX-profile</id>

												<activation>

																<os>

																				<family>mac</family>

																</os>

												</activation>

												<properties>

																<native.target>natives-osx</native.target>

												</properties>

								</profile>

				</profiles>

Inside	each	project,	the	LWJGL	platform	dependency	will	use	the	correct	property
established	in	the	profile	for	the	current	platform.

								<dependency>

												<groupId>org.lwjgl</groupId>

												<artifactId>lwjgl-platform</artifactId>

												<version>${lwjgl.version}</version>

												<classifier>${native.target}</classifier>

								</dependency>

Besides	that,	every	project	generates	a	runnable	jar	(one	that	can	be	executed	by	typing
java	-jar	name_of_the_jar.jar).	This	is	achieved	by	using	the	maven-jar-plugin	which	creates
a	jar	with	a		MANIFEST.MF		file	with	the	correct	values.	The	most	important	attribute	for	that	file

First	steps

8

is		Main-Class	,	which	sets	the	entry	point	for	the	program.	In	addition,	all	the	dependencies
are	set	as	entries	in	the		Class-Path		attribute	for	that	file.	In	order	to	execute	it	on	another
computer,	you	just	need	to	copy	the	main	jar	file	and	the	lib	directory	(with	all	the	jars
included	there)	which	are	located	under	the	target	directory.

The	jars	that	contain	LWJGL	classes,	also	contain	the	native	libraries.	LWJGL	will	also	take
care	of	extracting	them	and	adding	them	to	the	path	where	the	JVM	will	look	for	libraries.

Chapter	1	source	code	is	taken	directly	from	the	getting	started	sample	in	the	LWJGL	site
(http://www.lwjgl.org/guide).	You	will	see	that	we	are	not	using	Swing	or	JavaFX	as	our	GUI
library.	Instead	of	that	we	are	using	GLFW	which	is	a	library	to	handle	GUI	components
(Windows,	etc.)	and	events	(key	presses,	mouse	movements,	etc.)	with	an	OpenGL	context
attached	in	a	straightforward	way.	Previous	versions	of	LWJGL	provided	a	custom	GUI	API
but,	for	LWJGL	3,	GLFW	is	the	preferred	windowing	API.

The	samples	source	code	is	very	well	documented	and	straightforward	so	we	won’t	repeat
the	comments	here.

If	you	have	your	environment	correctly	set	up	you	should	be	able	to	execute	it	and	see	a
window	with	a	red	background.

The	source	code	of	this	book	is	published	in	GitHub.

First	steps

9
www.dbooks.org

http://www.lwjgl.org/guide
https://github.com/lwjglgamedev/lwjglbook
https://www.dbooks.org/

The	Game	Loop
In	this	chapter	we	will	start	developing	our	game	engine	by	creating	our	game	loop.	The
game	loop	is	the	core	component	of	every	game.	It	is	basically	an	endless	loop	which	is
responsible	for	periodically	handling	user	input,	updating	game	state	and	rendering	to	the
screen.

The	following	snippet	shows	the	structure	of	a	game	loop:

while	(keepOnRunning)	{

				handleInput();

				updateGameState();

				render();

}

So,	is	that	all?	Are	we	finished	with	game	loops?	Well,	not	yet.	The	above	snippet	has	many
pitfalls.	First	of	all	the	speed	that	the	game	loop	runs	at	will	be	different	depending	on	the
machine	it	runs	on.	If	the	machine	is	fast	enough	the	user	will	not	even	be	able	to	see	what
is	happening	in	the	game.	Moreover,	that	game	loop	will	consume	all	the	machine
resources.

Thus,	we	need	the	game	loop	to	try	running	at	a	constant	rate	independently	of	the	machine
it	runs	on.	Let	us	suppose	that	we	want	our	game	to	run	at	a	constant	rate	of	50	Frames	Per
Second	(FPS).	Our	game	loop	could	be	something	like	this:

double	secsPerFrame	=	1.0d	/	50.0d;

while	(keepOnRunning)	{

				double	now	=	getTime();

				handleInput();

				updateGameState();

				render();

				sleep(now	+	secsPerFrame	–	getTime());

}

This	game	loop	is	simple	and	could	be	used	for	some	games	but	it	also	presents	some
problems.	First	of	all,	it	assumes	that	our	update	and	render	methods	fit	in	the	available	time
we	have	in	order	to	render	at	a	constant	rate	of	50	FPS	(that	is,		secsPerFrame		which	is
equal	to	20	ms.).

The	Game	Loop

10

Besides	that,	our	computer	may	be	prioritizing	other	tasks	that	prevent	our	game	loop	from
executing	for	a	certain	period	of	time.	So,	we	may	end	up	updating	our	game	state	at	very
variable	time	steps	which	are	not	suitable	for	game	physics.

Finally,	sleep	accuracy	may	range	to	tenth	of	a	second,	so	we	are	not	even	updating	at	a
constant	frame	rate	even	if	our	update	and	render	methods	take	no	time.	So,	as	you	see	the
problem	is	not	so	simple.

On	the	Internet	you	can	find	tons	of	variants	for	game	loops.	In	this	book	we	will	use	a	not
too	complex	approach	that	can	work	well	in	many	situations.	So	let	us	move	on	and	explain
the	basis	for	our	game	loop.	The	pattern	used	here	is	usually	called	Fixed	Step	Game	Loop.

First	of	all	we	may	want	to	control	separately	the	period	at	which	the	game	state	is	updated
and	the	period	at	which	the	game	is	rendered	to	the	screen.	Why	do	we	do	this?	Well,
updating	our	game	state	at	a	constant	rate	is	more	important,	especially	if	we	use	some
physics	engine.	On	the	contrary,	if	our	rendering	is	not	done	in	time	it	makes	no	sense	to
render	old	frames	while	processing	our	game	loop.	We	have	the	flexibility	to	skip	some
frames.

Let	us	have	a	look	at	how	our	game	loop	looks	like:

double	secsPerUpdate	=	1.0d	/	30.0d;

double	previous	=	getTime();

double	steps	=	0.0;

while	(true)	{

		double	loopStartTime	=	getTime();

		double	elapsed	=	loopStartTime	-	previous;

		previous	=	current;

		steps	+=	elapsed;

		handleInput();

		while	(steps	>=	secsPerUpdate)	{

				updateGameState();

				steps	-=	secsPerUpdate;

		}

		render();

		sync(current);

}

With	this	game	loop	we	update	our	game	state	at	fixed	steps.	But	how	do	we	control	that	we
do	not	exhaust	the	computer's	resources	by	rendering	continuously?	This	is	done	in	the
sync	method:

The	Game	Loop

11
www.dbooks.org

https://www.dbooks.org/

private	void	sync(double	loopStartTime)	{

			float	loopSlot	=	1f	/	50;

			double	endTime	=	loopStartTime	+	loopSlot;	

			while(getTime()	<	endTime)	{

							try	{

											Thread.sleep(1);

							}	catch	(InterruptedException	ie)	{}

			}

}

So	what	are	we	doing	in	the	above	method?	In	summary	we	calculate	how	many	seconds
our	game	loop	iteration	should	last	(which	is	stored	in	the		loopSlot		variable)	and	we	wait
for	that	amount	of	time	taking	into	consideration	the	time	we	spent	in	our	loop.	But	instead	of
doing	a	single	wait	for	the	whole	available	time	period	we	do	small	waits.	This	will	allow
other	tasks	to	run	and	will	avoid	the	sleep	accuracy	problems	we	mentioned	before.	Then,
what	we	do	is:

1.	 Calculate	the	time	at	which	we	should	exit	this	wait	method	and	start	another	iteration	of
our	game	loop	(which	is	the	variable		endTime).

2.	 Compare	the	current	time	with	that	end	time	and	wait	just	one	millisecond	if	we	have	not
reached	that	time	yet.

Now	it	is	time	to	structure	our	code	base	in	order	to	start	writing	our	first	version	of	our	Game
Engine.	But	before	doing	that	we	will	talk	about	another	way	of	controlling	the	rendering	rate.
In	the	code	presented	above,	we	are	doing	micro-sleeps	in	order	to	control	how	much	time
we	need	to	wait.	But	we	can	choose	another	approach	in	order	to	limit	the	frame	rate.	We
can	use	v-sync	(vertical	synchronization).	The	main	purpose	of	v-sync	is	to	avoid	screen
tearing.	What	is	screen	tearing?	It’s	a	visual	effect	that	is	produced	when	we	update	the
video	memory	while	it’s	being	rendered.	The	result	will	be	that	part	of	the	image	will
represent	the	previous	image	and	the	other	part	will	represent	the	updated	one.	If	we	enable
v-sync	we	won’t	send	an	image	to	the	GPU	while	it	is	being	rendered	onto	the	screen.

When	we	enable	v-sync	we	are	synchronizing	to	the	refresh	rate	of	the	video	card,	which	at
the	end	will	result	in	a	constant	frame	rate.	This	is	done	with	the	following	line:

glfwSwapInterval(1);

With	that	line	we	are	specifying	that	we	must	wait,	at	least,	one	screen	update	before
drawing	to	the	screen.	In	fact,	we	are	not	directly	drawing	to	the	screen.	We	instead	store
the	information	to	a	buffer	and	we	swap	it	with	this	method:

glfwSwapBuffers(windowHandle);

The	Game	Loop

12

So,	if	we	enable	v-sync	we	achieve	a	constant	frame	rate	without	performing	the	micro-
sleeps	to	check	the	available	time.	Besides	that,	the	frame	rate	will	match	the	refresh	rate	of
our	graphics	card.	That	is,	if	it’s	set	to	60Hz	(60	times	per	second),	we	will	have	60	Frames
Per	Second.	We	can	scale	down	that	rate	by	setting	a	number	higher	than	1	in	the
	glfwSwapInterval		method	(if	we	set	it	to	2,	we	would	get	30	FPS).

Let’s	get	back	to	reorganize	the	source	code.	First	of	all	we	will	encapsulate	all	the	GLFW
Window	initialization	code	in	a	class	named		Window		allowing	some	basic	parameterization
of	its	characteristics	(such	as	title	and	size).	That		Window		class	will	also	provide	a	method	to
detect	key	presses	which	will	be	used	in	our	game	loop:

public	boolean	isKeyPressed(int	keyCode)	{

				return	glfwGetKey(windowHandle,	keyCode)	==	GLFW_PRESS;

}

The		Window		class	besides	providing	the	initialization	code	also	needs	to	be	aware	of
resizing.	So	it	needs	to	setup	a	callback	that	will	be	invoked	whenever	the	window	is	resized.
The	callback	will	receive	the	width	and	height,	in	pixels,	of	the	framebuffer	(the	rendering
area,	in	this	sample,	the	display	area).	If	you	want	the	width,	height	of	the	framebuffer	in
screen	coordinates	you	may	use	the	the		glfwSetWindowSizeCallback	method.	Screen
coordinates	don't	necessarilly	correspond	to	pixels	(for	instance,	on	a	Mac	with	Retina
display.	Since	we	are	going	to	use	that	information	when	performing	some	OpenGL	calls,	we
are	interested	in	pixels	not	in	screen	coordinates.	You	can	get	more	infomation	in	the	GLFW
documentation.

//	Setup	resize	callback

glfwSetFramebufferSizeCallback(windowHandle,	(window,	width,	height)	->	{

				Window.this.width	=	width;

				Window.this.height	=	height;

				Window.this.setResized(true);

});

We	will	also	create	a		Renderer		class	which	will	handle	our	game	render	logic.	By	now,	it	will
just	have	an	empty		init		method	and	another	method	to	clear	the	screen	with	the
configured	clear	color:

public	void	init()	throws	Exception	{

}

public	void	clear()	{

				glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);

}

The	Game	Loop

13
www.dbooks.org

https://www.dbooks.org/

Then	we	will	create	an	interface	named		IGameLogic		which	will	encapsulate	our	game	logic.
By	doing	this	we	will	make	our	game	engine	reusable	across	different	titles.	This	interface
will	have	methods	to	get	the	input,	to	update	the	game	state	and	to	render	game-specific
data.

public	interface	IGameLogic	{

				void	init()	throws	Exception;

				void	input(Window	window);

				void	update(float	interval);

				void	render(Window	window);

}

Then	we	will	create	a	class	named		GameEngine		which	will	contain	our	game	loop	code.	This
class	will	implement	the		Runnable		interface	since	the	game	loop	will	be	run	inside	a
separate	thread:

public	class	GameEngine	implements	Runnable	{

				//..[Removed	code]..

				private	final	Thread	gameLoopThread;

				public	GameEngine(String	windowTitle,	int	width,	int	height,	boolean	vsSync,	IGame

Logic	gameLogic)	throws	Exception	{

								gameLoopThread	=	new	Thread(this,	"GAME_LOOP_THREAD");

								window	=	new	Window(windowTitle,	width,	height,	vsSync);

								this.gameLogic	=	gameLogic;

								//..[Removed	code]..

				}

The		vSync		parameter	allows	us	to	select	if	we	want	to	use	v-sync	or	not.	You	can	see	we
create	a	new	Thread	which	will	execute	the	run	method	of	our		GameEngine		class	which	will
contain	our	game	loop:

The	Game	Loop

14

public	void	start()	{

				gameLoopThread.start();

}

@Override

public	void	run()	{

				try	{

								init();

								gameLoop();

				}	catch	(Exception	excp)	{

								excp.printStackTrace();

				}

}

Our		GameEngine		class	provides	a	start	method	which	just	starts	our	Thread	so	the	run
method	will	be	executed	asynchronously.	That	method	will	perform	the	initialization	tasks
and	will	run	the	game	loop	until	our	window	is	closed.	It	is	very	important	to	initialize	GLFW
inside	the	thread	that	is	going	to	update	it	later.	Thus,	in	that		init		method	our	Window	and
	Renderer		instances	are	initialized.

In	the	source	code	you	will	see	that	we	created	other	auxiliary	classes	such	as	Timer	(which
will	provide	utility	methods	for	calculating	elapsed	time)	and	will	be	used	by	our	game	loop
logic.

Our		GameEngine		class	just	delegates	the	input	and	update	methods	to	the		IGameLogic	
instance.	In	the	render	method	it	delegates	also	to	the		IGameLogic		instance	and	updates	the
window.

protected	void	input()	{

				gameLogic.input(window);

}

protected	void	update(float	interval)	{

				gameLogic.update(interval);

}

protected	void	render()	{

				gameLogic.render(window);

				window.update();

}

Our	starting	point,	our	class	that	contains	the	main	method	will	just	only	create	a
	GameEngine		instance	and	start	it.

The	Game	Loop

15
www.dbooks.org

https://www.dbooks.org/

public	class	Main	{

				public	static	void	main(String[]	args)	{

								try	{

												boolean	vSync	=	true;

												IGameLogic	gameLogic	=	new	DummyGame();

												GameEngine	gameEng	=	new	GameEngine("GAME",

																600,	480,	vSync,	gameLogic);

												gameEng.start();

								}	catch	(Exception	excp)	{

												excp.printStackTrace();

												System.exit(-1);

								}

				}

}

At	the	end	we	only	need	to	create	or	game	logic	class,	which	for	this	chapter	will	be	a
simpler	one.	It	will	just	increase	/	decrease	the	clear	color	of	the	window	whenever	the	user
presses	the	up	/	down	key.	The	render	method	will	just	clear	the	window	with	that	color.

The	Game	Loop

16

public	class	DummyGame	implements	IGameLogic	{

				private	int	direction	=	0;

				private	float	color	=	0.0f;

				private	final	Renderer	renderer;

				public	DummyGame()	{

								renderer	=	new	Renderer();

				}

				@Override

				public	void	init()	throws	Exception	{

								renderer.init();

				}

				@Override

				public	void	input(Window	window)	{

								if	(window.isKeyPressed(GLFW_KEY_UP))	{

												direction	=	1;

								}	else	if	(window.isKeyPressed(GLFW_KEY_DOWN))	{

												direction	=	-1;

								}	else	{

												direction	=	0;

								}

				}

				@Override

				public	void	update(float	interval)	{

								color	+=	direction	*	0.01f;

								if	(color	>	1)	{

												color	=	1.0f;

								}	else	if	(color	<	0)	{

												color	=	0.0f;

								}

				}

				@Override

				public	void	render(Window	window)	{

								if	(window.isResized())	{

												glViewport(0,	0,	window.getWidth(),	window.getHeight());

												window.setResized(false);

								}

								window.setClearColor(color,	color,	color,	0.0f);

								renderer.clear();

				}				

}

In	the		render		method	we	get	notified	when	the	window	has	been	resized	in	order	to	update
the	viewport	to	locate	the	center	of	the	coordinates	to	the	center	of	the	window.

The	Game	Loop

17
www.dbooks.org

https://www.dbooks.org/

The	class	hierarchy	that	we	have	created	will	help	us	to	separate	our	game	engine	code
from	the	code	of	a	specific	game.	Although	it	may	seem	unnecessary	at	this	moment,	we
need	to	isolate	generic	tasks	that	every	game	will	use	from	the	state	logic,	artwork	and
resources	of	a	specific	game	in	order	to	reuse	our	game	engine.	In	later	chapters	we	will
need	to	restructure	this	class	hierarchy	as	our	game	engine	gets	more	complex.

Threading	issues
If	you	try	to	run	the	source	code	provided	above	in	OSX	you	will	get	an	error	like	this:

Exception	in	thread	"GAME_LOOP_THREAD"	java.lang.ExceptionInInitializerError

What	does	this	mean?	The	answer	is	that	some	functions	of	the	GLFW	library	cannot	be
called	in	a		Thread		which	is	not	the	main		Thread	.	We	are	doing	the	initializing	stuff,
including	window	creation	in	the		init		method	of	the		GameEngine	class	.	That	method	gets
called	in	the		run		method	of	the	same	class,	which	is	invoked	by	a	new		Thread		instead	of
the	one	that's	used	to	launch	the	program.

This	is	a	constraint	of	the	GLFW	library	and	basically	it	implies	that	we	should	avoid	the
creation	of	new	Threads	for	the	game	loop.	We	could	try	to	create	all	the	Windows	related
stuff	in	the	main	thread	but	we	will	not	be	able	to	render	anything.	The	problem	is	that,
OpenGL	calls	need	to	be	performed	in	the	same		Thread		that	its	context	was	created.

On	Windows	and	Linux	platforms,	although	we	are	not	using	the	main	thread	to	initialize	the
GLFW	stuff	the	samples	will	work.	The	problem	is	with	OSX,	so	we	need	to	change	the
source	code	of	the		run		method	of	the		GameEngine		class	to	support	that	platform	like	this:

public	void	start()	{

				String	osName	=	System.getProperty("os.name");

				if	(osName.contains("Mac"))	{

								gameLoopThread.run();

				}	else	{

								gameLoopThread.start();

				}

}

What	we	are	doing	is	just	ignoring	the	game	loop	thread	when	we	are	in	OSX	and	execute
the	game	loop	code	directly	in	the	main	Thread.	This	is	not	a	perfect	solution	but	it	will	allow
you	to	run	the	samples	on	Mac.	Other	solutions	found	in	the	forums	(such	as	executing	the
JVM	with	the		-XstartOnFirstThread		flag	seem	to	not	work).

The	Game	Loop

18

In	the	future	it	may	be	interesting	to	explore	if	LWJGL	provides	other	GUI	libraries	to	check	if
this	restriction	applies	to	them.	(Many	thanks	to	Timo	Bühlmann	for	pointing	out	this	issue).

Platform	Differences	(OSX)
You	will	be	able	to	run	the	code	described	above	on	Windows	or	Linux,	but	we	still	need	to
do	some	modifications	for	OSX.	As	it's	stated	in	th	GLFW	documentation:

The	only	OpenGL	3.x	and	4.x	contexts	currently	supported	by	OS	X	are	forward-
compatible,	core	profile	contexts.	The	supported	versions	are	3.2	on	10.7	Lion	and	3.3
and	4.1	on	10.9	Mavericks.	In	all	cases,	your	GPU	needs	to	support	the	specified
OpenGL	version	for	context	creation	to	succeed.

So,	in	order	to	support	features	explained	in	later	chapters	we	need	to	add	these	lines	to	the
	Window		class	before	the	window	is	created:

								glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR,	3);

								glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR,	2);

								glfwWindowHint(GLFW_OPENGL_PROFILE,	GLFW_OPENGL_CORE_PROFILE);

								glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT,	GL_TRUE);

This	will	make	the	program	use	the	highest	OpenGL	version	possible	between	3.2	and	4.1.	If
those	lines	are	not	included,	a	Legacy	version	of	OpenGL	is	used.

The	Game	Loop

19
www.dbooks.org

https://www.dbooks.org/

A	brief	about	coordinates
In	this	chapter	we	will	talk	a	little	bit	about	coordinates	and	coordinate	systems	trying	to
introduce	some	fundamental	mathematical	concepts	in	a	simple	way	to	support	the
techniques	and	topics	that	we	will	address	in	subsequent	chapters.	We	will	assume	some
simplifications	which	may	sacrifice	preciseness	for	the	sake	of	legibility.

We	locate	objects	in	space	by	specifying	its	coordinates.	Think	about	a	map.	You	specify	a
point	on	a	map	by	stating	its	latitude	or	longitude.	With	just	a	pair	of	numbers	a	point	is
precisely	identified.	That	pair	of	numbers	are	the	point	coordinates	(things	are	a	little	bit
more	complex	in	reality,	since	a	map	is	a	projection	of	a	non	perfect	ellipsoid,	the	earth,	so
more	data	is	needed	but	it’s	a	good	analogy).

A	coordinate	system	is	a	system	which	employs	one	or	more	numbers,	that	is,	one	or	more
coordinates	to	uniquely	specify	the	position	of	a	point.	There	are	different	coordinate
systems	(Cartesian,	polar,	etc.)	and	you	can	transform	coordinates	from	one	system	to
another.	We	will	use	the	Cartesian	coordinate	system.

In	the	Cartesian	coordinate	system,	for	two	dimensions,	a	coordinate	is	defined	by	two
numbers	that	measure	the	signed	distance	to	two	perpendicular	axes,	x	and	y.

Continuing	with	the	map	analogy,	coordinate	systems	define	an	origin.	For	geographic
coordinates	the	origin	is	set	to	the	point	where	the	equator	and	the	zero	meridian	cross.
Depending	on	where	we	set	the	origin,	coordinates	for	a	specific	point	are	different.	A
coordinate	system	may	also	define	the	orientation	of	the	axis.	In	the	previous	figure,	the	x

A	brief	about	coordinates

20

coordinate	increases	as	long	as	we	move	to	the	right	and	the	y	coordinate	increases	as	we
move	upwards.	But,	we	could	also	define	an	alternative	Cartesian	coordinate	system	with
different	axis	orientation	in	which	we	would	obtain	different	coordinates.

As	you	can	see	we	need	to	define	some	arbitrary	parameters,	such	as	the	origin	and	the
axis	orientation	in	order	to	give	the	appropriate	meaning	to	the	pair	of	numbers	that
constitute	a	coordinate.	We	will	refer	to	that	coordinate	system	with	the	set	of	arbitrary
parameters	as	the	coordinate	space.	In	order	to	work	with	a	set	of	coordinates	we	must	use
the	same	coordinate	space.	The	good	news	is	that	we	can	transforms	coordinates	from	one
space	to	another	just	by	performing	translations	and	rotations.

If	we	are	dealing	with	3D	coordinates	we	need	an	additional	axis,	the	z	axis.	3D	coordinates
will	be	formed	by	a	set	of	three	numbers	(x,	y,	z).

A	brief	about	coordinates

21
www.dbooks.org

https://www.dbooks.org/

As	in	2D	Cartesian	coordinate	spaces	we	can	change	the	orientation	of	the	axes	in	3D
coordinate	spaces	as	long	as	the	axes	are	perpendicular.	The	next	figure	shows	another	3D
coordinate	space.

3D	coordinates	can	be	classified	in	two	types:	left	handed	and	right	handed.	How	do	you
know	which	type	it	is?	Take	your	hand	and	form	a	“L”	between	your	thumb	and	your	index
fingers,	the	middle	finger	should	point	in	a	direction	perpendicular	to	the	other	two.	The
thumb	should	point	to	the	direction	where	the	x	axis	increases,	the	index	finger	should	point
where	the	y	axis	increases	and	the	middle	finger	should	point	where	the	z	axis	increases.	If
you	are	able	to	do	that	with	your	left	hand,	then	its	left	handed,	if	you	need	to	use	your	right
hand	is	right-handed.

A	brief	about	coordinates

22

2D	coordinate	spaces	are	all	equivalent	since	by	applying	rotation	we	can	transform	from
one	to	another.	3D	coordinate	spaces,	on	the	contrary,	are	not	all	equal.	You	can	only
transform	from	one	to	another	by	applying	rotation	if	they	both	have	the	same	handedness,
that	is,	if	both	are	left	handed	or	right	handed.

Now	that	we	have	defined	some	basic	topics	let’s	talk	about	some	commonly	used	terms
when	dealing	with	3D	graphics.	When	we	explain	in	later	chapters	how	to	render	3D	models
we	will	see	that	we	use	different	3D	coordinate	spaces,	that	is	because	each	of	those
coordinate	spaces	has	a	context,	a	purpose.	A	set	of	coordinates	is	meaningless	unless	it
refers	to	something.	When	you	examine	this	coordinates	(40.438031,	-3.676626)	they	may
say	something	to	you	or	not.	But	if	I	say	that	they	are	geometric	coordinates	(latitude	and
longitude)	you	will	see	that	they	are	the	coordinates	of	a	place	in	Madrid.

When	we	will	load	3D	objects	we	will	get	a	set	of	3D	coordinates.	Those	coordinates	are
expressed	in	a	3D	coordinate	space	which	is	called	object	coordinate	space.	When	the
graphics	designers	are	creating	those	3D	models	they	don’t	know	anything	about	the	3D
scene	that	this	model	will	be	displayed	in,	so	they	can	only	define	the	coordinates	using	a
coordinate	space	that	is	only	relevant	for	the	model.

When	we	will	be	drawing	a	3D	scene	all	of	our	3D	objects	will	be	relative	to	the	so	called
world	space	coordinate	space.	We	will	need	to	transform	from	3D	object	space	to	world
space	coordinates.	Some	objects	will	need	to	be	rotated,	stretched	or	enlarged	and
translated	in	order	to	be	displayed	properly	in	a	3D	scene.

We	will	also	need	to	restrict	the	range	of	the	3D	space	that	is	shown,	which	is	like	moving	a
camera	through	our	3D	space.	Then	we	will	need	to	transform	world	space	coordinates	to
camera	or	view	space	coordinates.	Finally	these	coordinates	need	to	be	transformed	to
screen	coordinates,	which	are	2D,	so	we	need	to	project	3D	view	coordinates	to	a	2D	screen
coordinate	space.

A	brief	about	coordinates

23
www.dbooks.org

https://www.dbooks.org/

The	following	picture	shows	OpenGL	coordinates,	(the	z	axis	is	perpendicular	to	the	screen)
and	coordinates	are	between	-1	and	+1.

Don’t	worry	if	you	don’t	have	a	clear	understanding	of	all	these	concepts.	They	will	be
revisited	during	next	chapters	with	practical	examples.

A	brief	about	coordinates

24

Rendering
In	this	chapter	we	will	learn	the	processes	that	takes	place	while	rendering	a	scene	using
OpenGL.	If	you	are	used	to	older	versions	of	OpenGL,	that	is	fixed-function	pipeline,	you
may	end	this	chapter	wondering	why	it	needs	to	be	so	complex.	You	may	end	up	thinking
that	drawing	a	simple	shape	to	the	screen	should	not	require	so	many	concepts	and	lines	of
code.	Let	me	give	you	an	advice	for	those	of	you	that	think	that	way.	It	is	actually	simpler
and	much	more	flexible.	You	only	need	to	give	it	a	chance.	Modern	OpenGL	lets	you	think	in
one	problem	at	a	time	and	it	lets	you	organize	your	code	and	processes	in	a	more	logical
way.

The	sequence	of	steps	that	ends	up	drawing	a	3D	representation	into	your	2D	screen	is
called	the	graphics	pipeline.	First	versions	of	OpenGL	employed	a	model	which	was	called
fixed-function	pipeline.	This	model	employed	a	set	of	steps	in	the	rendering	process	which
defined	a	fixed	set	of	operations.	The	programmer	was	constrained	to	the	set	of	functions
available	for	each	step.	Thus,	the	effects	and	operations	that	could	be	applied	were	limited
by	the	API	itself	(for	instance,	“set	fog”	or	“add	light”,	but	the	implementation	of	those
functions	were	fixed	and	could	not	be	changed).

The	graphics	pipeline	was	composed	of	these	steps:

Rendering

25
www.dbooks.org

https://www.dbooks.org/

OpenGL	2.0	introduced	the	concept	of	programmable	pipeline.	In	this	model,	the	different
steps	that	compose	the	graphics	pipeline	can	be	controlled	or	programmed	by	using	a	set	of
specific	programs	called	shaders.	The	following	picture	depicts	a	simplified	version	of	the
OpenGL	programmable	pipeline:

The	rendering	starts	taking	as	its	input	a	list	of	vertices	in	the	form	of	Vertex	Buffers.	But,
what	is	a	vertex?	A	vertex	is	a	data	structure	that	describes	a	point	in	2D	or	3D	space.	And
how	do	you	describe	a	point	in	a	3D	space?	By	specifying	its	x,	y	and	z	coordinates.	And
what	is	a	Vertex	Buffer?	A	Vertex	Buffer	is	another	data	structure	that	packs	all	the	vertices
that	need	to	be	rendered,	by	using	vertex	arrays,	and	makes	that	information	available	to	the
shaders	in	the	graphics	pipeline.

Those	vertices	are	processed	by	the	vertex	shader	whose	main	purpose	is	to	calculate	the
projected	position	of	each	vertex	into	the	screen	space.	This	shader	can	generate	also	other
outputs	related	to	colour	or	texture,	but	its	main	goal	is	to	project	the	vertices	into	the	screen
space,	that	is,	to	generate	dots.

The	geometry	processing	stage	connects	the	vertices	that	are	transformed	by	the	vertex
shader	to	form	triangles.	It	does	so	by	taking	into	consideration	the	order	in	which	the
vertices	were	stored	and	grouping	them	using	different	models.	Why	triangles?	A	triangle	is
like	the	basic	work	unit	for	graphic	cards.	It’s	a	simple	geometric	shape	that	can	be
combined	and	transformed	to	construct	complex	3D	scenes.	This	stage	can	also	use	a
specific	shader	to	group	the	vertices.

Rendering

26

The	rasterization	stage	takes	the	triangles	generated	in	the	previous	stages,	clips	them	and
transforms	them	into	pixel-sized	fragments.

Those	fragments	are	used	during	the	fragment	processing	stage	by	the	fragment	shader	to
generate	pixels	assigning	them	the	final	color	that	gets	written	into	the	framebuffer.	The
framebuffer	is	the	final	result	of	the	graphics	pipeline.	It	holds	the	value	of	each	pixel	that
should	be	drawn	to	the	screen.

Keep	in	mind	that	3D	cards	are	designed	to	parallelize	all	the	operations	described	above.
The	input	data	can	be	processes	in	parallel	in	order	to	generate	the	final	scene.

So	let's	start	writing	our	first	shader	program.	Shaders	are	written	by	using	the	GLSL
language	(OpenGL	Shading	Language)	which	is	based	on	ANSI	C.	First	we	will	create	a	file
named	“	vertex.vs	”	(The	extension	is	for	Vertex	Shader)	under	the	resources	directory	with
the	following	content:

#version	330

layout	(location=0)	in	vec3	position;

void	main()

{

				gl_Position	=	vec4(position,	1.0);

}

The	first	line	is	a	directive	that	states	the	version	of	the	GLSL	language	we	are	using.	The
following	table	relates	the	GLSL	version,	the	OpenGL	that	matches	that	version	and	the
directive	to	use	(Wikipedia:
https://en.wikipedia.org/wiki/OpenGL_Shading_Language#Versions).

Rendering

27
www.dbooks.org

https://en.wikipedia.org/wiki/OpenGL_Shading_Language#Versions
https://www.dbooks.org/

GLS	Version OpenGL	Version Shader	Preprocessor

1.10.59 2.0 #version	110

1.20.8 2.1 #version	120

1.30.10 3.0 #version	130

1.40.08 3.1 #version	140

1.50.11 3.2 #version	150

3.30.6 3.3 #version	330

4.00.9 4.0 #version	400

4.10.6 4.1 #version	410

4.20.11 4.2 #version	420

4.30.8 4.3 #version	430

4.40 4.4 #version	440

4.50 4.5 #version	450

The	second	line	specifies	the	input	format	for	this	shader.	Data	in	an	OpenGL	buffer	can	be
whatever	we	want,	that	is,	the	language	does	not	force	you	to	pass	a	specific	data	structure
with	a	predefined	semantic.	From	the	point	of	view	of	the	shader	it	is	expecting	to	receive	a
buffer	with	data.	It	can	be	a	position,	a	position	with	some	additional	information	or	whatever
we	want.	The	vertex	shader	is	just	receiving	an	array	of	floats.	When	we	fill	the	buffer,	we
define	the	buffer	chunks	that	are	going	to	be	processed	by	the	shader.

So,	first	we	need	to	get	that	chunk	into	something	that’s	meaningful	to	us.	In	this	case	we
are	saying	that,	starting	from	the	position	0,	we	are	expecting	to	receive	a	vector	composed
of	3	attributes	(x,	y,	z).

The	shader	has	a	main	block	like	any	other	C	program	which	in	this	case	is	very	simple.	It	is
just	returning	the	received	position	in	the	output	variable		gl_Position		without	applying	any
transformation.	You	now	may	be	wondering	why	the	vector	of	three	attributes	has	been
converted	into	a	vector	of	four	attributes	(vec4).	This	is	because		gl_Position		is	expecting
the	result	in	vec4	format	since	it	is	using	homogeneous	coordinates.	That	is,	it’s	expecting
something	in	the	form	(x,	y,	z,	w),	where	w	represents	an	extra	dimension.	Why	add	another
dimension?	In	later	chapters	you	will	see	that	most	of	the	operations	we	need	to	do	are
based	on	vectors	and	matrices.	Some	of	those	operations	cannot	be	combined	if	we	do	not
have	that	extra	dimension.	For	instance	we	could	not	combine	rotation	and	translation
operations.	(If	you	want	to	learn	more	on	this,	this	extra	dimension	allow	us	to	combine
affine	and	linear	transformations.	You	can	learn	more	about	this	by	reading	the	excellent
book	“3D	Math	Primer	for	Graphics	and	Game	development,	by	Fletcher	Dunn	and	Ian
Parberry).

Rendering

28

Let	us	now	have	a	look	at	our	first	fragment	shader.	We	will	create	a	file	named
“	fragment.fs	”	(The	extension	is	for	Fragment	Shader)	under	the	resources	directory	with
the	following	content:

#version	330

out	vec4	fragColor;

void	main()

{

				fragColor	=	vec4(0.0,	0.5,	0.5,	1.0);

}

The	structure	is	quite	similar	to	our	vertex	shader.	In	this	case	we	will	set	a	fixed	colour	for
each	fragment.	The	output	variable	is	defined	in	the	second	line	and	set	as	a	vec4	fragColor.
Now	that	we	have	our	shaders	created,	how	do	we	use	them?	This	is	the	sequence	of	steps
we	need	to	follow:

1.	 Create	a	OpenGL	Program
2.	 Load	the	vertex	and	fragment	shader	code	files.
3.	 For	each	shader,	create	a	new	shader	program	and	specify	its	type	(vertex,	fragment).
4.	 Compile	the	shader.
5.	 Attach	the	shader	to	the	program.
6.	 Link	the	program.

At	the	end	the	shader	will	be	loaded	in	the	graphics	card	and	we	can	use	it	by	referencing	an
identifier,	the	program	identifier.

package	org.lwjglb.engine.graph;

import	static	org.lwjgl.opengl.GL20.*;

public	class	ShaderProgram	{

				private	final	int	programId;

				private	int	vertexShaderId;

				private	int	fragmentShaderId;

				public	ShaderProgram()	throws	Exception	{

								programId	=	glCreateProgram();

								if	(programId	==	0)	{

												throw	new	Exception("Could	not	create	Shader");

								}

				}

Rendering

29
www.dbooks.org

https://www.dbooks.org/

				public	void	createVertexShader(String	shaderCode)	throws	Exception	{

								vertexShaderId	=	createShader(shaderCode,	GL_VERTEX_SHADER);

				}

				public	void	createFragmentShader(String	shaderCode)	throws	Exception	{

								fragmentShaderId	=	createShader(shaderCode,	GL_FRAGMENT_SHADER);

				}

				protected	int	createShader(String	shaderCode,	int	shaderType)	throws	Exception	{

								int	shaderId	=	glCreateShader(shaderType);

								if	(shaderId	==	0)	{

												throw	new	Exception("Error	creating	shader.	Type:	"	+	shaderType);

								}

								glShaderSource(shaderId,	shaderCode);

								glCompileShader(shaderId);

								if	(glGetShaderi(shaderId,	GL_COMPILE_STATUS)	==	0)	{

												throw	new	Exception("Error	compiling	Shader	code:	"	+	glGetShaderInfoLog(s

haderId,	1024));

								}

								glAttachShader(programId,	shaderId);

								return	shaderId;

				}

				public	void	link()	throws	Exception	{

								glLinkProgram(programId);

								if	(glGetProgrami(programId,	GL_LINK_STATUS)	==	0)	{

												throw	new	Exception("Error	linking	Shader	code:	"	+	glGetProgramInfoLog(pr

ogramId,	1024));

								}

								if	(vertexShaderId	!=	0)	{

												glDetachShader(programId,	vertexShaderId);

								}

								if	(fragmentShaderId	!=	0)	{

												glDetachShader(programId,	fragmentShaderId);

								}

								glValidateProgram(programId);

								if	(glGetProgrami(programId,	GL_VALIDATE_STATUS)	==	0)	{

												System.err.println("Warning	validating	Shader	code:	"	+	glGetProgramInfoLo

g(programId,	1024));

								}

				}

				public	void	bind()	{

								glUseProgram(programId);

				}

Rendering

30

				public	void	unbind()	{

								glUseProgram(0);

				}

				public	void	cleanup()	{

								unbind();

								if	(programId	!=	0)	{

												glDeleteProgram(programId);

								}

				}

}

The	constructor	of	the		ShaderProgram		creates	a	new	program	in	OpenGL	and	provides
methods	to	add	vertex	and	fragment	shaders.	Those	shaders	are	compiled	and	attached	to
the	OpenGL	program.	When	all	shaders	are	attached	the	link	method	should	be	invoked
which	links	all	the	code	and	verifies	that	everything	has	been	done	correctly.

Once	the	shader	program	has	been	linked,	the	compiled	vertex	and	fragment	shaders	can
be	freed	up	(by	calling		glDetachShader)

Regarding	verification,	this	is	done	through	the		glValidateProgram		call.	This	method	is	used
mainly	for	debugging	purposes,	and	it	should	be	removed	when	your	game	reaches
production	stage.	This	method	tries	to	validate	if	the	shader	is	correct	given	the	current
OpenGL	state.	This	means,	that	validation	may	fail	in	some	cases	even	if	the	shader	is
correct,	due	to	the	fact	that	the	current	state	is	not	complete	enough	to	run	the	shader	(some
data	may	have	not	been	uploaded	yet).	So,	instead	of	failing,	we	just	print	an	error	message
to	the	standard	error	output.

	ShaderProgram		also	provides	methods	to	activate	this	program	for	rendering	(bind)	and	to
stop	using	it	(unbind).	Finally	it	provides	a	cleanup	method	to	free	all	the	resources	when
they	are	no	longer	needed.

Since	we	have	a	cleanup	method,	let	us	change	our		IGameLogic		interface	class	to	add	a
cleanup	method:

void	cleanup();

This	method	will	be	invoked	when	the	game	loop	finishes,	so	we	need	to	modify	the	run
method	of	the		GameEngine		class:

Rendering

31
www.dbooks.org

https://www.dbooks.org/

@Override

public	void	run()	{

				try	{

								init();

								gameLoop();

				}	catch	(Exception	excp)	{

								excp.printStackTrace();

				}	finally	{

								cleanup();

				}

}

Now	we	can	use	our	shaders	in	order	to	display	a	triangle.	We	will	do	this	in	the		init	
method	of	our		Renderer		class.	First	of	all,	we	create	the	shader	program:

public	void	init()	throws	Exception	{

				shaderProgram	=	new	ShaderProgram();

				shaderProgram.createVertexShader(Utils.loadResource("/vertex.vs"));

				shaderProgram.createFragmentShader(Utils.loadResource("/fragment.fs"));

				shaderProgram.link();

}

We	have	created	a	utility	class	which	by	now	provides	a	method	to	retrieve	the	contents	of	a
file	from	the	class	path.	This	method	is	used	to	retrieve	the	contents	of	our	shaders.

Now	we	can	define	our	triangle	as	an	array	of	floats.	We	create	a	single	float	array	which	will
define	the	vertices	of	the	triangle.	As	you	can	see	there’s	no	structure	in	that	array.	As	it	is
right	now,	OpenGL	cannot	know	the	structure	of	that	data.	It’s	just	a	sequence	of	floats:

float[]	vertices	=	new	float[]{

					0.0f,		0.5f,	0.0f,

				-0.5f,	-0.5f,	0.0f,

					0.5f,	-0.5f,	0.0f

};

The	following	picture	depicts	the	triangle	in	our	coordinates	system.

Rendering

32

Now	that	we	have	our	coordinates,	we	need	to	store	them	into	our	graphics	card	and	tell
OpenGL	about	the	structure.	We	will	introduce	now	two	important	concepts,	Vertex	Array
Objects	(VAOs)	and	Vertex	Buffer	Object	(VBOs).	If	you	get	lost	in	the	next	code	fragments
remember	that	at	the	end	what	we	are	doing	is	sending	the	data	that	models	the	objects	we
want	to	draw	to	the	graphics	card	memory.	When	we	store	it	we	get	an	identifier	that	serves
us	later	to	refer	to	it	while	drawing.

Let	us	first	start	with	Vertex	Buffer	Object	(VBOs).	A	VBO	is	just	a	memory	buffer	stored	in
the	graphics	card	memory	that	stores	vertices.	This	is	where	we	will	transfer	our	array	of
floats	that	model	a	triangle.	As	we	said	before,	OpenGL	does	not	know	anything	about	our
data	structure.	In	fact	it	can	hold	not	just	coordinates	but	other	information,	such	as	textures,
colour,	etc.
A	Vertex	Array	Objects	(VAOs)	is	an	object	that	contains	one	or	more	VBOs	which	are
usually	called	attribute	lists.	Each	attribute	list	can	hold	one	type	of	data:	position,	colour,
texture,	etc.	You	are	free	to	store	whichever	you	want	in	each	slot.

A	VAO	is	like	a	wrapper	that	groups	a	set	of	definitions	for	the	data	that	is	going	to	be	stored
in	the	graphics	card.	When	we	create	a	VAO	we	get	an	identifier.	We	use	that	identifier	to
render	it	and	the	elements	it	contains	using	the	definitions	we	specified	during	its	creation.

So	let	us	continue	coding	our	example.	The	first	thing	that	we	must	do	is	to	store	our	array	of
floats	into	a		FloatBuffer	.	This	is	mainly	due	to	the	fact	that	we	must	interface	with	the
OpenGL	library,	which	is	C-based,	so	we	must	transform	our	array	of	floats	into	something
that	can	be	managed	by	the	library.

FloatBuffer	verticesBuffer	=	MemoryUtil.memAllocFloat(vertices.length);

verticesBuffer.put(vertices).flip();

Rendering

33
www.dbooks.org

https://www.dbooks.org/

We	use	the		MemoryUtil		class	to	create	the	buffer	in	off-heap	memory	so	that	it's	accessible
by	the	OpenGL	library.	After	we	have	stored	the	data	(with	the	put	method)	we	need	to	reset
the	position	of	the	buffer	to	the	0	position	with	the	flip	method	(that	is,	we	say	that	we’ve
finishing	writing	to	it).	Remember,	that	Java	objects,	are	allocated	in	a	space	called	the
heap.	The	heap	is	a	large	bunch	of	memory	reserved	in	the	JVM's	process	memory.
Memory	stored	in	the	heap	cannot	be	accessed	by	native	code	(JNI,	the	mechanism	that
allows	calling	native	code	from	Java	does	not	allow	that).	The	only	way	of	sharing	memory
data	between	Java	and	native	code	is	by	directly	allocating	memory	in	Java.

If	you	come	from	previous	versions	of	LWJGL	it's	important	to	stress	out	a	few	topics.	You
may	have	noticed	that	we	do	not	use	the	utility	class		BufferUtils		to	create	the	buffers.
Instead	we	use	the		MemoryUtil		class.	This	is	due	to	the	fact	that		BufferUtils		was	not	very
efficient,	and	has	been	mantained	only	for	backwards	compatibility.	Instead,	LWJGL	3
proposes	two	methods	for	buffer	management:

Auto-managed	buffers,	that	is,	buffers	that	are	automatically	collected	by	the	Garbage
Collector.	These	buffers	are	mainly	used	for	short	lived	operations,	or	for	data	that	is
transferred	to	the	GPU	and	does	not	need	to	be	present	in	the	process	memory.	This	is
achieved	by	using	the		org.lwjgl.system.MemoryStack		class.
Manually	managed	buffers.	In	this	case	we	need	to	carefulley	free	them	once	we	are
finished.	These	buffers	are	intended	for	long	time	operations	or	for	large	amounts	of
data.	This	is	achieved	by	using	the		MemoryUtil		class.

You	can	consult	the	details	here:	https://blog.lwjgl.org/memory-management-in-lwjgl-3/.

In	this	case,	our	data	is	sent	to	the	GPU	so	we	could	use	auto-managed	buffers.	But	since,
later	on,	we	will	use	them	to	hold	potentially	large	volumes	of	data	we	will	need	to	manually
manage	them.	This	is	the	reason	why	we	are	using	the		MemoryUtil		class	and	thus,	why	we
are	freeing	the	buffer	in	a	finally	block.	In	next	chapters	we	will	learn	how	to	use	auto-
managed	buffers.

Now	we	need	to	create	the	VAO	and	bind	it.

vaoId	=	glGenVertexArrays();

glBindVertexArray(vaoId);

Then	we	need	to	create	the	VBO,	bind	it	and	put	the	data	into	it.

vboId	=	glGenBuffers();

glBindBuffer(GL_ARRAY_BUFFER,	vboId);

glBufferData(GL_ARRAY_BUFFER,	verticesBuffer,	GL_STATIC_DRAW);

memFree(verticesBuffer);

Rendering

34

https://blog.lwjgl.org/memory-management-in-lwjgl-3/

Now	comes	the	most	important	part.	We	need	to	define	the	structure	of	our	data	and	store	it
in	one	of	the	attribute	lists	of	the	VAO.	This	is	done	with	the	following	line.

glVertexAttribPointer(0,	3,	GL_FLOAT,	false,	0,	0);

The	parameters	are:

index:	Specifies	the	location	where	the	shader	expects	this	data.
size:	Specifies	the	number	of	components	per	vertex	attribute	(from	1	to	4).	In	this	case,
we	are	passing	3D	coordinates,	so	it	should	be	3.
type:	Specifies	the	type	of	each	component	in	the	array,	in	this	case	a	float.
normalized:	Specifies	if	the	values	should	be	normalized	or	not.
stride:	Specifies	the	byte	offset	between	consecutive	generic	vertex	attributes.	(We	will
explain	it	later).
offset:	Specifies	an	offset	to	the	first	component	in	the	buffer.

After	we	are	finished	with	our	VBO	we	can	unbind	it	and	the	VAO	(bind	them	to	0)

//	Unbind	the	VBO

glBindBuffer(GL_ARRAY_BUFFER,	0);

//	Unbind	the	VAO

glBindVertexArray(0);

Once	this	has	been	completed	we	must	free	the	off-heap	memory	that	was	allocated	by	the
FloatBuffer.	This	is	done	by	manually	calling	memFree,	as	Java	garbage	collection	will	not
clean	up	off-heap	allocations.

if	(verticesBuffer	!=	null)	{

				MemoryUtil.memFree(verticesBuffer);

}

That’s	all	the	code	that	should	be	in	our		init		method.	Our	data	is	already	in	the	graphics
card,	ready	to	be	used.	We	only	need	to	modify	our		render		method	to	use	it	each	render
step	during	our	game	loop.

Rendering

35
www.dbooks.org

https://www.dbooks.org/

public	void	render(Window	window)	{

				clear();

				if	(window.isResized())	{

								glViewport(0,	0,	window.getWidth(),	window.getHeight());

								window.setResized(false);

				}

				shaderProgram.bind();

				//	Bind	to	the	VAO

				glBindVertexArray(vaoId);

				glEnableVertexAttribArray(0);

				//	Draw	the	vertices

				glDrawArrays(GL_TRIANGLES,	0,	3);

				//	Restore	state

				glDisableVertexAttribArray(0);

				glBindVertexArray(0);

				shaderProgram.unbind();

}

As	you	can	see	we	just	clear	the	window,	bind	the	shader	program,	bind	the	VAO,	draw	the
vertices	stored	in	the	VBO	associated	to	the	VAO	and	restore	the	state.	That’s	it.

We	also	added	a	cleanup	method	to	our		Renderer		class	which	frees	acquired	resources.

public	void	cleanup()	{

				if	(shaderProgram	!=	null)	{

								shaderProgram.cleanup();

				}

				glDisableVertexAttribArray(0);

				//	Delete	the	VBO

				glBindBuffer(GL_ARRAY_BUFFER,	0);

				glDeleteBuffers(vboId);

				//	Delete	the	VAO

				glBindVertexArray(0);

				glDeleteVertexArrays(vaoId);

}

And,	that’s	all!	If	you	followed	the	steps	carefully	you	will	see	something	like	this.

Rendering

36

Our	first	triangle!	You	may	think	that	this	will	not	make	it	into	the	top	ten	game	list,	and	you
will	be	totally	right.	You	may	also	think	that	this	has	been	too	much	work	for	drawing	a	boring
triangle.	But	keep	in	mind	that	we	are	introducing	key	concepts	and	preparing	the	base
infrastructure	to	do	more	complex	things.	Please	be	patient	and	continue	reading.

Rendering

37
www.dbooks.org

https://www.dbooks.org/

More	on	Rendering
In	this	chapter	we	will	continue	talking	about	how	OpenGL	renders	things.	In	order	to	tidy	up
our	code	a	little	bit	let’s	create	a	new	class	called	Mesh	which,	taking	as	an	input	an	array	of
positions,	creates	the	VBO	and	VAO	objects	needed	to	load	that	model	into	the	graphics
card.

package	org.lwjglb.engine.graph;

import	java.nio.FloatBuffer;

import	static	org.lwjgl.opengl.GL11.*;

import	static	org.lwjgl.opengl.GL15.*;

import	static	org.lwjgl.opengl.GL20.*;

import	static	org.lwjgl.opengl.GL30.*;

import	org.lwjgl.system.MemoryUtil;

public	class	Mesh	{

				private	final	int	vaoId;

				private	final	int	vboId;

				private	final	int	vertexCount;

				public	Mesh(float[]	positions)	{

								FloatBuffer	verticesBuffer	=	null;

								try	{

												verticesBuffer	=	MemoryUtil.memAllocFloat(positions.length);

												vertexCount	=	positions.length	/	3;

												verticesBuffer.put(positions).flip();

												vaoId	=	glGenVertexArrays();

												glBindVertexArray(vaoId);

												vboId	=	glGenBuffers();

												glBindBuffer(GL_ARRAY_BUFFER,	vboId);

												glBufferData(GL_ARRAY_BUFFER,	verticesBuffer,	GL_STATIC_DRAW);												

												glVertexAttribPointer(0,	3,	GL_FLOAT,	false,	0,	0);

												glBindBuffer(GL_ARRAY_BUFFER,	0);

												glBindVertexArray(0);									

								}	finally	{

												if	(verticesBuffer		!=	null)	{

																MemoryUtil.memFree(verticesBuffer);

												}

								}

				}

More	on	Rendering

38

				public	int	getVaoId()	{

								return	vaoId;

				}

				public	int	getVertexCount()	{

								return	vertexCount;

				}

				public	void	cleanUp()	{

								glDisableVertexAttribArray(0);

								//	Delete	the	VBO

								glBindBuffer(GL_ARRAY_BUFFER,	0);

								glDeleteBuffers(vboId);

								//	Delete	the	VAO

								glBindVertexArray(0);

								glDeleteVertexArrays(vaoId);

				}

}

We	will	create	our		Mesh		instance	in	our		DummyGame		class,	removing	the	VAO	and	VBO	code
from		Renderer			init		method.	Our	render	method	in	the		Renderer		class	will	accept	also	a
Mesh	instance	to	render.	The		cleanup		method	will	also	be	simplified	since	the		Mesh		class
already	provides	one	for	freeing	VAO	and	VBO	resources.

More	on	Rendering

39
www.dbooks.org

https://www.dbooks.org/

public	void	render(Mesh	mesh)	{

				clear();

				if	(window.isResized())	{

								glViewport(0,	0,	window.getWidth(),	window.getHeight());

								window.setResized(false);

				}

				shaderProgram.bind();

				//	Draw	the	mesh

				glBindVertexArray(mesh.getVaoId());

				glEnableVertexAttribArray(0);

				glDrawArrays(GL_TRIANGLES,	0,	mesh.getVertexCount());

				//	Restore	state

				glDisableVertexAttribArray(0);

				glBindVertexArray(0);

				shaderProgram.unbind();

}

public	void	cleanup()	{

				if	(shaderProgram	!=	null)	{

								shaderProgram.cleanup();

				}

}

One	important	thing	to	note	is	this	line:

glDrawArrays(GL_TRIANGLES,	0,	mesh.getVertexCount());

Our		Mesh		counts	the	number	of	vertices	by	dividing	the	position	array	by	3	(since	we	are
passing	X,	Y	and	Z	coordinates)).	Now	that	we	can	render	more	complex	shapes,	let	us	try
to	render	a	more	complex	shape.	Let	us	render	a	quad.	A	quad	can	be	constructed	by	using
two	triangles	as	shown	in	the	next	figure.

More	on	Rendering

40

As	you	can	see	each	of	the	two	triangles	is	composed	of	three	vertices.	The	first	one	formed
by	the	vertices	V1,	V2	and	V4	(the	orange	one)	and	the	second	one	formed	by	the	vertices
V4,	V2	and	V3	(the	green	one).	Vertices	are	specified	in	a	counter-clockwise	order,	so	the
float	array	to	be	passed	will	be	[V1,	V2,	V4,	V4,	V2,	V3].	Thus,	the	init	method	in	our
	DummyGame		class	will	be:

@Override

public	void	init()	throws	Exception	{

				renderer.init();

				float[]	positions	=	new	float[]{

								-0.5f,		0.5f,	0.0f,

								-0.5f,	-0.5f,	0.0f,

									0.5f,		0.5f,	0.0f,

									0.5f,		0.5f,	0.0f,

								-0.5f,	-0.5f,	0.0f,

									0.5f,	-0.5f,	0.0f,

				};

				mesh	=	new	Mesh(positions);

}

Now	you	should	see	a	quad	rendered	like	this:

More	on	Rendering

41
www.dbooks.org

https://www.dbooks.org/

Are	we	done	yet?	Unfortunately	not.	The	code	above	still	presents	some	issues.	We	are
repeating	coordinates	to	represent	the	quad.	We	are	passing	twice	V2	and	V4	coordinates.
With	this	small	shape	it	may	not	seem	a	big	deal,	but	imagine	a	much	more	complex	3D
model.	We	would	be	repeating	the	coordinates	many	times.	Keep	in	mind	also	that	now	we
are	just	using	three	floats	for	representing	the	position	of	a	vertex.	But	later	on	we	will	need
more	data	to	represent	the	texture,	etc.	Also	take	into	consideration	that	in	more	complex
shapes	the	number	of	vertices	shared	between	triangles	can	be	even	higher	like	in	the	figure
below	(where	a	vertex	can	be	shared	between	six	triangles).

At	the	end	we	would	need	much	more	memory	because	of	that	duplicate	information	and
this	is	where	Index	Buffers	come	to	the	rescue.	For	drawing	the	quad	we	only	need	to
specify	each	vertex	once	this	way:	V1,	V2,	V3,	V4).	Each	vertex	has	a	position	in	the	array.
V1	has	position	0,	V2	has	position	1,	etc:

V1 V2 V3 V4

0 1 2 3

Then	we	specify	the	order	in	which	those	vertices	should	be	drawn	by	referring	to	their
position:

0 1 3 3 1 2

V1 V2 V4 V4 V2 V3

So	we	need	to	modify	our		Mesh		class	to	accept	another	parameter,	an	array	of	indices,	and
now	the	number	of	vertices	to	draw	will	be	the	length	of	that	indices	array.

More	on	Rendering

42

public	Mesh(float[]	positions,	int[]	indices)	{

				vertexCount	=	indices.length;

After	we	have	created	our	VBO	that	stores	the	positions,	we	need	to	create	another	VBO
which	will	hold	the	indices.	So	we	rename	the	identifier	that	holds	the	identifier	for	the
positions	VBO	and	create	a	new	one	for	the	index	VBO	(idxVboId).	The	process	of	creating
that	VBO	is	similar	but	the	type	is	now		GL_ELEMENT_ARRAY_BUFFER	.

idxVboId	=	glGenBuffers();

indicesBuffer	=	MemoryUtil.memAllocInt(indices.length);

indicesBuffer.put(indices).flip();

glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,	idxVboId);

glBufferData(GL_ELEMENT_ARRAY_BUFFER,	indicesBuffer,	GL_STATIC_DRAW);

memFree(indicesBuffer);

Since	we	are	dealing	with	integers	we	need	to	create	an		IntBuffer		instead	of	a
	FloatBuffer	.

And	that’s	it.	The	VAO	will	contain	now	two	VBOs,	one	for	positions	and	another	one	that	will
hold	the	indices	and	that	will	be	used	for	rendering.	Our	cleanup	method	in	our		Mesh		class
must	take	into	consideration	that	there	is	another	VBO	to	free.

public	void	cleanUp()	{

				glDisableVertexAttribArray(0);

				//	Delete	the	VBOs

				glBindBuffer(GL_ARRAY_BUFFER,	0);

				glDeleteBuffers(posVboId);

				glDeleteBuffers(idxVboId);

				//	Delete	the	VAO

				glBindVertexArray(0);

				glDeleteVertexArrays(vaoId);

}

Finally,	we	need	to	modify	our	drawing	call	that	used	the		glDrawArrays		method:

glDrawArrays(GL_TRIANGLES,	0,	mesh.	getVertexCount());

To	another	call	that	uses	the	method		glDrawElements	:

glDrawElements(GL_TRIANGLES,	mesh.getVertexCount(),	GL_UNSIGNED_INT,	0);

The	parameters	of	that	method	are:

More	on	Rendering

43
www.dbooks.org

https://www.dbooks.org/

mode:	Specifies	the	primitives	for	rendering,	triangles	in	this	case.	No	changes	here.
count:	Specifies	the	number	of	elements	to	be	rendered.
type:	Specifies	the	type	of	value	in	the	indices	data.	In	this	case	we	are	using	integers.
indices:	Specifies	the	offset	to	apply	to	the	indices	data	to	start	rendering.

And	now	we	can	use	our	newer	and	much	more	efficient	method	of	drawing	complex	models
by	just	specifying	the	indices.

public	void	init()	throws	Exception	{

				renderer.init();

				float[]	positions	=	new	float[]{

								-0.5f,		0.5f,	0.0f,

								-0.5f,	-0.5f,	0.0f,

									0.5f,	-0.5f,	0.0f,

									0.5f,		0.5f,	0.0f,

				};

				int[]	indices	=	new	int[]{

								0,	1,	3,	3,	1,	2,

				};

				mesh	=	new	Mesh(positions,	indices);

}

Now	let’s	add	some	colour	to	our	example.	We	will	pass	another	array	of	floats	to	our		Mesh	
class	which	holds	the	colour	for	each	coordinate	in	the	quad.

public	Mesh(float[]	positions,	float[]	colours,	int[]	indices)	{

With	that	array,	we	will	create	another	VBO	which	will	be	associated	to	our	VAO.

//	Colour	VBO

colourVboId	=	glGenBuffers();

FloatBuffer	colourBuffer	=	memAllocFloat(colours.length);

colourBuffer.put(colours).flip();

glBindBuffer(GL_ARRAY_BUFFER,	colourVboId);

glBufferData(GL_ARRAY_BUFFER,	colourBuffer,	GL_STATIC_DRAW);

memFree(colourBuffer);

glVertexAttribPointer(1,	3,	GL_FLOAT,	false,	0,	0);

Please	notice	that	in	the		glVertexAttribPointer		call,	the	first	parameter	is	now	a		“1”	.	This
is	the	location	where	our	shader	will	be	expecting	that	data.	(Of	course,	since	we	have
another	VBO	we	need	to	free	it	in	the		cleanup		method).

The	next	step	is	to	modify	the	shaders.	The	vertex	shader	is	now	expecting	two	parameters,
the	coordinates	(in	location	0)	and	the	colour	(in	location	1).	The	vertex	shader	will	just
output	the	received	colour	so	it	can	be	processed	by	the	fragment	shader.

More	on	Rendering

44

#version	330

layout	(location	=0)	in	vec3	position;

layout	(location	=1)	in	vec3	inColour;

out	vec3	exColour;

void	main()

{

				gl_Position	=	vec4(position,	1.0);

						exColour	=	inColour;

}

And	now	our	fragment	shader	receives	as	an	input	the	colour	processed	by	our	vertex
shader	and	uses	it	to	generate	the	colour.

#version	330

in		vec3	exColour;

out	vec4	fragColor;

void	main()

{

				fragColor	=	vec4(exColour,	1.0);

}

The	last	important	thing	to	do	is	to	modify	our	rendering	code	to	use	that	second	array	of
data:

public	void	render(Window	window,	Mesh	mesh)	{

				clear();

				if	(window.isResized())	{

								glViewport(0,	0,	window.getWidth(),	window.getHeight());

								window.setResized(false);

				}

				shaderProgram.bind();

				//	Draw	the	mesh

				glBindVertexArray(mesh.getVaoId());

				glEnableVertexAttribArray(0);

				glEnableVertexAttribArray(1);

				glDrawElements(GL_TRIANGLES,	mesh.getVertexCount(),	GL_UNSIGNED_INT,	0);

				//	...

More	on	Rendering

45
www.dbooks.org

https://www.dbooks.org/

You	can	see	that	we	need	to	enable	the	VAO	attribute	at	position	1	to	be	used	during
rendering.	We	can	now	pass	an	array	of	colours	like	this	to	our		Mesh		class	in	order	to	add
some	colour	to	our	quad.

float[]	colours	=	new	float[]{

				0.5f,	0.0f,	0.0f,

				0.0f,	0.5f,	0.0f,

				0.0f,	0.0f,	0.5f,

				0.0f,	0.5f,	0.5f,

};

And	we	will	get	a	fancy	coloured	quad	like	this.

More	on	Rendering

46

Transformations

Projecting
Let’s	get	back	to	our	nice	coloured	quad	we	created	in	the	previous	chapter.	If	you	look
carefully	at	it,	it	more	resembles	a	rectangle.	You	can	even	change	the	width	of	the	window
from	600	pixels	to	900	and	the	distortion	will	be	more	evident.	What’s	happening	here?

If	you	revisit	our	vertex	shader	code	we	are	just	passing	our	coordinates	directly.	That	is,
when	we	say	that	a	vertex	has	a	value	for	coordinate	x	of	0.5	we	are	saying	to	OpenGL	to
draw	it	at	x	position	0.5	on	our	screen.	The	following	figure	shows	the	OpenGL	coordinates
(just	for	x	and	y	axis).

Those	coordinates	are	mapped,	considering	our	window	size,	to	window	coordinates	(which
have	the	origin	at	the	top-left	corner	of	the	previous	figure).	So,	if	our	window	has	a	size	of
900x480,	OpenGL	coordinates	(1,0)	will	be	mapped	to	coordinates	(900,	0)	creating	a
rectangle	instead	of	a	quad.

Transformations

47
www.dbooks.org

https://www.dbooks.org/

But,	the	problem	is	more	serious	than	that.	Modify	the	z	coordinate	of	our	quad	from	0.0	to
1.0	and	to	-1.0.	What	do	you	see?	The	quad	is	exactly	drawn	in	the	same	place	no	matter	if
it’s	displaced	along	the	z	axis.	Why	is	this	happening?	Objects	that	are	further	away	should
be	drawn	smaller	than	objects	that	are	closer.	But	we	are	drawing	them	with	the	same	x	and
y	coordinates.

But,	wait.	Should	this	not	be	handled	by	the	z	coordinate?	The	answer	is	yes	and	no.	The	z
coordinate	tells	OpenGL	that	an	object	is	closer	or	farther	away,	but	OpenGL	does	not	know
anything	about	the	size	of	your	object.	You	could	have	two	objects	of	different	sizes,	one
closer	and	smaller	and	one	bigger	and	further	that	could	be	projected	correctly	onto	the
screen	with	the	same	size	(those	would	have	same	x	and	y	coordinates	but	different	z).
OpenGL	just	uses	the	coordinates	we	are	passing,	so	we	must	take	care	of	this.	We	need	to
correctly	project	our	coordinates.

Now	that	we	have	diagnosed	the	problem,	how	do	we	do	this?	The	answer	is	using	a
projection	matrix	or	frustum.	The	projection	matrix	will	take	care	of	the	aspect	ratio	(the
relation	between	size	and	height)	of	our	drawing	area	so	objects	won’t	be	distorted.	It	also
will	handle	the	distance	so	objects	far	away	from	us	will	be	drawn	smaller.	The	projection
matrix	will	also	consider	our	field	of	view	and	how	far	the	maximum	distance	is	that	should
be	displayed.

For	those	not	familiar	with	matrices,	a	matrix	is	a	bi-dimensional	array	of	numbers	arranged
in	columns	and	rows.	Each	number	inside	a	matrix	is	called	an	element.	A	matrix	order	is	the
number	of	rows	and	columns.	For	instance,	here	you	can	see	a	2x2	matrix	(2	rows	and	2
columns).

Matrices	have	a	number	of	basic	operations	that	can	be	applied	to	them	(such	as	addition,
multiplication,	etc.)	that	you	can	consult	in	any	maths	book.	The	main	characteristics	of
matrices,	related	to	3D	graphics,	is	that	they	are	very	useful	to	transform	points	in	the	space.

You	can	think	about	the	projection	matrix	as	a	camera,	which	has	a	field	of	view	and	a
minimum	and	maximum	distance.	The	vision	area	of	that	camera	will	be	a	truncated
pyramid.	The	following	picture	shows	a	top	view	of	that	area.

Transformations

48

A	projection	matrix	will	correctly	map	3D	coordinates	so	they	can	be	correctly	represented
on	a	2D	screen.	The	mathematical	representation	of	that	matrix	is	as	follows	(don’t	be
scared).

Where	aspect	ratio	is	the	relation	between	our	screen	width	and	our	screen	height	(
a = width/height).	In	order	to	obtain	the	projected	coordinates	of	a	given	point	we	just	need
to	multiply	the	projection	matrix	by	the	original	coordinates.	The	result	will	be	another	vector
that	will	contain	the	projected	version.

So	we	need	to	handle	a	set	of	mathematical	entities	such	as	vectors,	matrices	and	include
the	operations	that	can	be	done	on	them.	We	could	choose	to	write	all	that	code	by	our	own
from	scratch	or	use	an	already	existing	library.	We	will	choose	the	easy	path	and	use	a
specific	library	for	dealing	with	math	operations	in	LWJGL	which	is	called	JOML	(Java
OpenGL	Math	Library).	In	order	to	use	that	library	we	just	need	to	add	another	dependency
to	our		pom.xml		file.

								<dependency>

												<groupId>org.joml</groupId>

												<artifactId>joml</artifactId>

												<version>${joml.version}</version>

								</dependency>

And	define	the	version	of	the	library	to	use.

Transformations

49
www.dbooks.org

https://www.dbooks.org/

				<properties>

								[...]

								<joml.version>1.9.6</joml.version>

								[...]

				</properties>

Now	that	everything	has	been	set	up	let’s	define	our	projection	matrix.	We	will	create	an
instance	of	the	class		Matrix4f		(provided	by	the	JOML	library)	in	our		Renderer		class.	The
	Matrix4f		class	provides	a	method	to	set	up	a	projection	matrix	named		perspective	.	This
method	needs	the	following	parameters:

Field	of	View:	The	Field	of	View	angle	in	radians.	We	will	define	a	constant	that	holds
that	value
Aspect	Ratio.
Distance	to	the	near	plane	(z-near)
Distance	to	the	far	plane	(z-far).

We	will	instantiate	that	matrix	in	our		init		method	so	we	need	to	pass	a	reference	to	our
	Window		instance	to	get	its	size	(you	can	see	it	in	the	source	code).	The	new	constants	and
variables	are:

				/**

					*	Field	of	View	in	Radians

					*/

				private	static	final	float	FOV	=	(float)	Math.toRadians(60.0f);

				private	static	final	float	Z_NEAR	=	0.01f;

				private	static	final	float	Z_FAR	=	1000.f;

				private	Matrix4f	projectionMatrix;

The	projection	matrix	is	created	as	follows:

float	aspectRatio	=	(float)	window.getWidth()	/	window.getHeight();

projectionMatrix	=	new	Matrix4f().perspective(FOV,	aspectRatio,

				Z_NEAR,	Z_FAR);

At	this	moment	we	will	ignore	that	the	aspect	ratio	can	change	(by	resizing	our	window).	This
could	be	checked	in	the		render		method	to	change	our	projection	matrix	accordingly.

Now	that	we	have	our	matrix,	how	do	we	use	it?	We	need	to	use	it	in	our	shader,	and	it
should	be	applied	to	all	the	vertices.	At	first,	you	could	think	of	bundling	it	in	the	vertex	input
(like	the	coordinates	and	the	colours).	In	this	case	we	would	be	wasting	lots	of	space	since

Transformations

50

the	projection	matrix	should	not	change	even	between	several	render	calls.	You	may	also
think	of	multiplying	the	vertices	by	the	matrix	in	the	java	code.	But	then,	our	VBOs	would	be
useless	and	we	will	not	be	using	the	process	power	available	in	the	graphics	card.

The	answer	is	to	use	“uniforms”.	Uniforms	are	global	GLSL	variables	that	shaders	can	use
and	that	we	will	employ	to	communicate	with	them.

So	we	need	to	modify	our	vertex	shader	code	and	declare	a	new	uniform	called
projectionMatrix	and	use	it	to	calculate	the	projected	position.

#version	330

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec3	inColour;

out	vec3	exColour;

uniform	mat4	projectionMatrix;

void	main()

{

				gl_Position	=	projectionMatrix	*	vec4(position,	1.0);

				exColour	=	inColour;

}

As	you	can	see	we	define	our		projectionMatrix		as	a	4x4	matrix	and	the	position	is
obtained	by	multiplying	it	by	our	original	coordinates.	Now	we	need	to	pass	the	values	of	the
projection	matrix	to	our	shader.	First,	we	need	to	get	a	reference	to	the	place	where	the
uniform	will	hold	its	values.

This	is	done	with	the	method		glGetUniformLocation		which	receives	two	parameters:

The	shader	program	identifier.
The	name	of	the	uniform	(it	should	match	the	once	defined	in	the	shader	code).

This	method	returns	an	identifier	holding	the	uniform	location.	Since	we	may	have	more	than
one	uniform,	we	will	store	those	locations	in	a	Map	indexed	by	the	location's	name	(We	will
need	that	location	number	later).	So	in	the		ShaderProgram		class	we	create	a	new	variable
that	holds	those	identifiers:

private	final	Map<String,	Integer>	uniforms;

This	variable	will	be	initialized	in	our	constructor:

uniforms	=	new	HashMap<>();

Transformations

51
www.dbooks.org

https://www.dbooks.org/

And	finally	we	create	a	method	to	set	up	new	uniforms	and	store	the	obtained	location.

public	void	createUniform(String	uniformName)	throws	Exception	{

				int	uniformLocation	=	glGetUniformLocation(programId,

								uniformName);

				if	(uniformLocation	<	0)	{

								throw	new	Exception("Could	not	find	uniform:"	+

												uniformName);

				}

				uniforms.put(uniformName,	uniformLocation);

}

Now,	in	our		Renderer		class	we	can	invoke	the		createUniform		method	once	the	shader
program	has	been	compiled	(in	this	case,	we	will	do	it	once	the	projection	matrix	has	been
instantiated).

shaderProgram.createUniform("projectionMatrix");

At	this	moment,	we	already	have	a	holder	ready	to	be	set	up	with	data	to	be	used	as	our
projection	matrix.	Since	the	projection	matrix	won’t	change	between	rendering	calls	we	may
set	up	the	values	right	after	the	creation	of	the	uniform.	But	we	will	do	it	in	our	render
method.	You	will	see	later	that	we	may	reuse	that	uniform	to	do	additional	operations	that
need	to	be	done	in	each	render	call.

We	will	create	another	method	in	our		ShaderProgram		class	to	setup	the	data,	named
	setUniform	.	Basically	we	transform	our	matrix	into	a	4x4		FloatBuffer		by	using	the	utility
methods	provided	by	the	JOML	library	and	send	them	to	the	location	we	stored	in	our
locations	map.

public	void	setUniform(String	uniformName,	Matrix4f	value)	{

				//	Dump	the	matrix	into	a	float	buffer

				try	(MemoryStack	stack	=	MemoryStack.stackPush())	{

								FloatBuffer	fb	=	stack.mallocFloat(16);

								value.get(fb);

								glUniformMatrix4fv(uniforms.get(uniformName),	false,	fb);

				}

}

As	you	can	see	we	are	creating	buffers	in	a	different	way	here.	We	are	using	auto-managed
buffers,	and	allocating	them	on	the	stack.	This	is	due	to	the	fact	that	the	size	of	this	buffer	is
small	and	that	it	will	not	be	used	beyond	this	method.	Thus,	we	use	the		MemoryStack	class.

Now	we	can	use	that	method	in	the		Renderer		class	in	the		render		method,	after	the	shader
program	has	been	bound:

Transformations

52

shaderProgram.setUniform("projectionMatrix",	projectionMatrix);

We	are	almost	done.	We	can	now	show	the	quad	correctly	rendered.	So	you	can	now
launch	your	program	and	will	obtain	a....	black	background	without	any	coloured	quad.
What’s	happening?	Did	we	break	something?	Well,	actually	no.	Remember	that	we	are	now
simulating	the	effect	of	a	camera	looking	at	our	scene.	And	we	provided	two	distances,	one
to	the	farthest	plane	(equal	to	1000f)	and	one	to	the	closest	plane	(equal	to	0.01f).	Our
coordinates	are:

float[]	positions	=	new	float[]{

				-0.5f,		0.5f,	0.0f,

				-0.5f,	-0.5f,	0.0f,

					0.5f,	-0.5f,	0.0f,

					0.5f,		0.5f,	0.0f,

};

That	is,	our	z	coordinates	are	outside	the	visible	zone.	Let’s	assign	them	a	value	of		-0.05f	.
Now	you	will	see	a	giant	green	square	like	this:

What	is	happening	now	is	that	we	are	drawing	the	quad	too	close	to	our	camera.	We	are
actually	zooming	into	it.	If	we	assign	now	a	value	of		-1.05f		to	the	z	coordinate	we	can	now
see	our	coloured	quad.

Transformations

53
www.dbooks.org

https://www.dbooks.org/

If	we	continue	pushing	the	quad	backwards	we	will	see	it	becoming	smaller.	Notice	also	that
our	quad	does	not	resemble	a	rectangle	anymore.

Applying	Transformations
Let’s	recall	what	we’ve	done	so	far.	We	have	learned	how	to	pass	data	in	an	efficient	format
to	our	graphics	card,	and	how	to	project	that	data	and	assign	them	colours	using	vertex	and
fragments	shaders.	Now	we	should	start	drawing	more	complex	models	in	our	3D	space.
But	in	order	to	do	that	we	must	be	able	to	load	an	arbitrary	model	and	represent	it	in	our	3D
space	at	a	specific	position,	with	the	appropriate	size	and	the	required	rotation.

So	right	now,	in	order	to	do	that	representation	we	need	to	provide	some	basic	operations	to
act	upon	any	model:

Translation:	Move	an	object	by	some	amount	on	any	of	the	three	axes.
Rotation:	Rotate	an	object	by	some	amount	of	degrees	around	any	of	the	three	axes.
Scale:	Adjust	the	size	of	an	object.

The	operations	described	above	are	known	as	transformations.	And	you	probable	may	be
guessing	that	the	way	we	are	going	to	achieve	that	is	by	multiplying	our	coordinates	by	a	set
of	matrices	(one	for	translation,	one	for	rotation	and	one	for	scaling).	Those	three	matrices
will	be	combined	into	a	single	matrix	called	world	matrix	and	passed	as	a	uniform	to	our
vertex	shader.

The	reason	why	it	is	called	world	matrix	is	because	we	are	transforming	from	model
coordinates	to	world	coordinates.	When	you	will	learn	about	loading	3D	models	you	will	see
that	those	models	are	defined	in	their	own	coordinate	systems.	They	don’t	know	the	size	of
your	3D	space	and	they	need	to	be	placed	in	it.	So	when	we	multiply	our	coordinates	by	our
matrix	what	we	are	doing	is	transforming	from	a	coordinate	system	(the	model	one)	to
another	coordinate	system	(the	one	for	our	3D	world).

That	world	matrix	will	be	calculated	like	this	(the	order	is	important	since	multiplication	using
matrices	is	not	commutative):

Transformations

54

WorldMatrix TranslationMatrix RotationMatrix ScaleMatrix

If	we	include	our	projection	matrix	in	the	transformation	matrix	it	would	be	like	this:

Transf = ProjMatrix TranslationMatrix RotationMatrix ScaleMatrix = ProjMatr

The	translation	matrix	is	defined	like	this:

Translation	Matrix	Parameters:

dx:	Displacement	along	the	x	axis.
dy:	Displacement	along	the	y	axis.
dz:	Displacement	along	the	z	axis.

The	scale	matrix	is	defined	like	this:

Scale	Matrix	Parameters:

sx:	Scaling	along	the	x	axis.
sy:	Scaling	along	the	y	axis.
sz:	Scaling	along	the	z	axis.

The	rotation	matrix	is	much	more	complex.	But	keep	in	mind	that	it	can	be	constructed	by
the	multiplication	of	3	rotation	matrices	for	a	single	axis,	each.

Now,	in	order	to	apply	those	concepts	we	need	to	refactor	our	code	a	little	bit.	In	our	game
we	will	be	loading	a	set	of	models	which	can	be	used	to	render	many	objects	at	different
positions	according	to	our	game	logic	(imagine	a	FPS	game	which	loads	three	models	for
different	enemies.	There	are	only	three	models	but	using	these	models	we	can	draw	as
many	enemies	as	we	want).	Do	we	need	to	create	a	VAO	and	the	set	of	VBOs	for	each	of
those	objects?	The	answer	is	no.	We	only	need	to	load	it	once	per	model.	What	we	need	to
do	is	to	draw	it	independently	according	to	its	position,	size	and	rotation.	We	need	to
transform	those	models	when	we	are	rendering	them.

So	we	will	create	a	new	class	named		GameItem		that	will	hold	a	reference	to	a	model,	to	a
	Mesh		instance.	A		GameItem		instance	will	have	variables	for	storing	its	position,	its	rotation
state	and	its	scale.	This	is	the	definition	of	that	class.

[] [] []

[] [] [] [] [

⎣⎢
⎢⎡
1
0
0
0

0
1
0
0

0
0
1
0

dx

dy

dz

1 ⎦⎥
⎥⎤

⎣⎢
⎢⎡
sx

0
0
0

0
sy

0
0

0
0
sz

0

0
0
0
1⎦⎥
⎥⎤

Transformations

55
www.dbooks.org

https://www.dbooks.org/

package	org.lwjglb.engine;

import	org.joml.Vector3f;

import	org.lwjglb.engine.graph.Mesh;

public	class	GameItem	{

				private	final	Mesh	mesh;

				private	final	Vector3f	position;

				private	float	scale;

				private	final	Vector3f	rotation;

				public	GameItem(Mesh	mesh)	{

								this.mesh	=	mesh;

								position	=	new	Vector3f(0,	0,	0);

								scale	=	1;

								rotation	=	new	Vector3f(0,	0,	0);

				}

				public	Vector3f	getPosition()	{

								return	position;

				}

				public	void	setPosition(float	x,	float	y,	float	z)	{

								this.position.x	=	x;

								this.position.y	=	y;

								this.position.z	=	z;

				}

				public	float	getScale()	{

								return	scale;

				}

				public	void	setScale(float	scale)	{

								this.scale	=	scale;

				}

				public	Vector3f	getRotation()	{

								return	rotation;

				}

				public	void	setRotation(float	x,	float	y,	float	z)	{

								this.rotation.x	=	x;

								this.rotation.y	=	y;

								this.rotation.z	=	z;

				}

				public	Mesh	getMesh()	{

								return	mesh;

Transformations

56

				}

}

We	will	create	another	class	which	will	deal	with	transformations	named		Transformation	.

package	org.lwjglb.engine.graph;

import	org.joml.Matrix4f;

import	org.joml.Vector3f;

public	class	Transformation	{

				private	final	Matrix4f	projectionMatrix;

				private	final	Matrix4f	worldMatrix;

				public	Transformation()	{

								worldMatrix	=	new	Matrix4f();

								projectionMatrix	=	new	Matrix4f();

				}

				public	final	Matrix4f	getProjectionMatrix(float	fov,	float	width,	float	height,	fl

oat	zNear,	float	zFar)	{

								float	aspectRatio	=	width	/	height;								

								projectionMatrix.identity();

								projectionMatrix.perspective(fov,	aspectRatio,	zNear,	zFar);

								return	projectionMatrix;

				}

				public	Matrix4f	getWorldMatrix(Vector3f	offset,	Vector3f	rotation,	float	scale)	{

								worldMatrix.identity().translate(offset).

																rotateX((float)Math.toRadians(rotation.x)).

																rotateY((float)Math.toRadians(rotation.y)).

																rotateZ((float)Math.toRadians(rotation.z)).

																scale(scale);

								return	worldMatrix;

				}

}

As	you	can	see	this	class	groups	the	projection	and	world	matrices.	Given	a	set	of	vectors
that	model	the	displacement,	rotation	and	scale	it	returns	the	world	matrix.	The	method
	getWorldMatrix		returns	the	matrix	that	will	be	used	to	transform	the	coordinates	for	each
	GameItem		instance.	That	class	also	provides	a	method	that	gets	the	projection	matrix	based
on	the	Field	Of	View,	the	aspect	ratio	and	the	near	and	far	distances.

An	important	thing	to	notice	is	that	the		mul		method	of	the		Matrix4f		class	modifies	the
matrix	instance	which	the	method	is	being	applied	to.	So	if	we	directly	multiply	the	projection
matrix	with	the	transformation	matrix	we	will	modify	the	projection	matrix	itself.	This	is	why

Transformations

57
www.dbooks.org

https://www.dbooks.org/

we	are	always	initializing	each	matrix	to	the	identity	matrix	upon	each	call.

In	the		Renderer		class,	in	the	constructor	method,	we	just	instantiate	the		Transformation	
with	no	arguments	and	in	the		init		method	we	just	create	the	uniform.

public	Renderer()	{

				transformation	=	new	Transformation();

}

public	void	init(Window	window)	throws	Exception	{

				//	Some	code	before	...

				//	Create	uniforms	for	world	and	projection	matrices

				shaderProgram.createUniform("projectionMatrix");

				shaderProgram.createUniform("worldMatrix");

				window.setClearColor(0.0f,	0.0f,	0.0f,	0.0f);

}

In	the	render	method	of	our		Renderer		class	we	now	receive	an	array	of	GameItems:

public	void	render(Window	window,	GameItem[]	gameItems)	{

				clear();

								if	(window.isResized())	{

												glViewport(0,	0,	window.getWidth(),	window.getHeight());

												window.setResized(false);

								}

				shaderProgram.bind();

				//	Update	projection	Matrix

				Matrix4f	projectionMatrix	=	transformation.getProjectionMatrix(FOV,	window.getWidt

h(),	window.getHeight(),	Z_NEAR,	Z_FAR);

				shaderProgram.setUniform("projectionMatrix",	projectionMatrix);								

				//	Render	each	gameItem

				for(GameItem	gameItem	:	gameItems)	{

								//	Set	world	matrix	for	this	item

								Matrix4f	worldMatrix	=

												transformation.getWorldMatrix(

																gameItem.getPosition(),

																gameItem.getRotation(),

																gameItem.getScale());

								shaderProgram.setUniform("worldMatrix",	worldMatrix);

								//	Render	the	mes	for	this	game	item

								gameItem.getMesh().render();

				}

				shaderProgram.unbind();

}

Transformations

58

We	update	the	projection	matrix	once	per		render		call.	By	doing	it	this	way	we	can	deal	with
window	resize	operations.	Then	we	iterate	over	the		GameItem		array	and	create	a
transformation	matrix	according	to	the	position,	rotation	and	scale	of	each	of	them.	This
matrix	is	pushed	to	the	shader	and	the	Mesh	is	drawn.	The	projection	matrix	is	the	same	for
all	the	items	to	be	rendered.	This	is	the	reason	why	it’s	a	separate	variable	in	our
Transformation	class.

We	moved	the	rendering	code	to	draw	a	Mesh	to	this	class:

public	void	render()	{

				//	Draw	the	mesh

				glBindVertexArray(getVaoId());

				glEnableVertexAttribArray(0);

				glEnableVertexAttribArray(1);

				glDrawElements(GL_TRIANGLES,	getVertexCount(),	GL_UNSIGNED_INT,	0);

				//	Restore	state

				glDisableVertexAttribArray(0);

				glDisableVertexAttribArray(1);

				glBindVertexArray(0);

}

Our	vertex	shader	is	modified	by	simply	adding	a	new		worldMatrix		matrix	and	it	uses	it	with
the		projectionMatrix		to	calculate	the	position:

#version	330

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec3	inColour;

out	vec3	exColour;

uniform	mat4	worldMatrix;

uniform	mat4	projectionMatrix;

void	main()

{

				gl_Position	=	projectionMatrix	*	worldMatrix	*	vec4(position,	1.0);

				exColour	=	inColour;

}

As	you	can	see	the	code	is	exactly	the	same.	We	are	using	the	uniform	to	correctly	project
our	coordinates	taking	into	consideration	our	frustum,	position,	scale	and	rotation
information.

Transformations

59
www.dbooks.org

https://www.dbooks.org/

Another	important	thing	to	think	about	is,	why	don’t	we	pass	the	translation,	rotation	and
scale	matrices	instead	of	combining	them	into	a	world	matrix?	The	reason	is	that	we	should
try	to	limit	the	matrices	we	use	in	our	shaders.	Also	keep	in	mind	that	the	matrix
multiplication	that	we	do	in	our	shader	is	done	once	per	each	vertex.	The	projection	matrix
does	not	change	between	render	calls	and	the	world	matrix	does	not	change	per		GameItem	
instance.	If	we	passed	the	translation,	rotation	and	scale	matrices	independently	we	would
be	doing	many	more	matrix	multiplications.	Think	about	a	model	with	tons	of	vertices.	That’s
a	lot	of	extra	operations.

But	you	may	now	think,	that	if	the	world	matrix	does	not	change	per		GameItem		instance,	why
didn't	we	do	the	matrix	multiplication	in	our	Java	class?	We	would	multiply	the	projection
matrix	and	the	world	matrix	just	once	per	GameItem	and	we	send	it	as	a	single	uniform.	In
this	case	we	would	be	saving	many	more	operations.	The	answer	is	that	this	is	a	valid	point
right	now.	But	when	we	add	more	features	to	our	game	engine	we	will	need	to	operate	with
world	coordinates	in	the	shaders	anyway,	so	it’s	better	to	handle	those	two	matrices	in	an
independent	way.

Finally	we	only	need	to	change	the		DummyGame		class	to	create	an	instance	of		GameItem		with
its	associated		Mesh		and	add	some	logic	to	translate,	rotate	and	scale	our	quad.	Since	it’s
only	a	test	example	and	does	not	add	too	much	you	can	find	it	in	the	source	code	that
accompanies	this	book.

Transformations

60

Textures

Create	a	3D	cube
In	this	chapter	we	will	learn	how	to	load	textures	and	use	them	in	the	rendering	process.	In
order	to	show	all	the	concepts	related	to	textures	we	will	transform	the	quad	that	we	have
been	using	in	previous	chapters	into	a	3D	cube.	With	the	code	base	we	have	created,	in
order	to	draw	a	cube	we	just	need	to	correctly	define	the	coordinates	of	a	cube	and	it	should
be	drawn	correctly.

In	order	to	draw	a	cube	we	just	need	to	define	eight	vertices.

So	the	associated	coordinates	array	will	be	like	this:

Textures

61
www.dbooks.org

https://www.dbooks.org/

float[]	positions	=	new	float[]	{

				//	VO

				-0.5f,		0.5f,		0.5f,

				//	V1

				-0.5f,	-0.5f,		0.5f,

				//	V2

				0.5f,	-0.5f,		0.5f,

				//	V3

					0.5f,		0.5f,		0.5f,

				//	V4

				-0.5f,		0.5f,	-0.5f,

				//	V5

					0.5f,		0.5f,	-0.5f,

				//	V6

				-0.5f,	-0.5f,	-0.5f,

				//	V7

					0.5f,	-0.5f,	-0.5f,

};

Of	course,	since	we	have	4	more	vertices	we	need	to	update	the	array	of	colours.	Just
repeat	the	first	four	items	by	now.

float[]	colours	=	new	float[]{

				0.5f,	0.0f,	0.0f,

				0.0f,	0.5f,	0.0f,

				0.0f,	0.0f,	0.5f,

				0.0f,	0.5f,	0.5f,

				0.5f,	0.0f,	0.0f,

				0.0f,	0.5f,	0.0f,

				0.0f,	0.0f,	0.5f,

				0.0f,	0.5f,	0.5f,

};

Finally,	since	a	cube	is	made	of	six	faces	we	need	to	draw	twelve	triangles	(two	per	face),	so
we	need	to	update	the	indices	array.	Remember	that	triangles	must	be	defined	in	counter-
clock	wise	order.	If	you	do	this	by	hand,	is	easy	to	make	mistakes.	Allways	put	the	face	that
you	want	to	define	indices	for	in	front	of	you.	Then,	idenifie	the	vertices	and	draw	the
triangles	in	counter-clock	wise	order.

Textures

62

int[]	indices	=	new	int[]	{

				//	Front	face

				0,	1,	3,	3,	1,	2,

				//	Top	Face

				4,	0,	3,	5,	4,	3,

				//	Right	face

				3,	2,	7,	5,	3,	7,

				//	Left	face

				6,	1,	0,	6,	0,	4,

				//	Bottom	face

				2,	1,	6,	2,	6,	7,

				//	Back	face

				7,	6,	4,	7,	4,	5,

};

In	order	to	better	view	the	cube	we	will	change	code	that	rotates	the	model	in	the		DummyGame	
class	to	rotate	along	the	three	axes.

//	Update	rotation	angle

float	rotation	=	gameItem.getRotation().x	+	1.5f;

if	(rotation	>	360)	{

				rotation	=	0;

}

gameItem.setRotation(rotation,	rotation,	rotation);

And	that’s	all.	We	are	now	able	to	display	a	spinning	3D	cube.	You	can	now	compile	and	run
your	example	and	you	will	obtain	something	like	this.

There	is	something	weird	with	this	cube.	Some	faces	are	not	being	painted	correctly.	What	is
happening?	The	reason	why	the	cube	has	this	aspect	is	that	the	triangles	that	compose	the
cube	are	being	drawn	in	a	sort	of	random	order.	The	pixels	that	are	far	away	should	be
drawn	before	pixels	that	are	closer.	This	is	not	happening	right	now	and	in	order	to	do	that
we	must	enable	depth	testing.

Textures

63
www.dbooks.org

https://www.dbooks.org/

This	can	be	done	in	the		Window		class	at	the	end	of	the		init		method:

glEnable(GL_DEPTH_TEST);

Now	our	cube	is	being	rendered	correctly!

If	you	see	the	code	for	this	part	of	the	chapter	you	may	see	that	we	have	done	a	minor
reorganization	in	the		Mesh		class.	The	identifiers	of	the	VBOs	are	now	stored	in	a	list	to
easily	iterate	over	them.

Adding	texture	to	the	cube
Now	we	are	going	to	apply	a	texture	to	our	cube.	A	texture	is	an	image	which	is	used	to	draw
the	colour	of	the	pixels	of	a	certain	model.	You	can	think	of	a	texture	as	a	skin	that	is
wrapped	around	your	3D	model.	What	you	do	is	assign	points	in	the	image	texture	to	the
vertices	in	your	model.	With	that	information	OpenGL	is	able	to	calculate	the	colour	to	apply
to	the	other	pixels	based	on	the	texture	image.

The	texture	image	does	not	have	to	have	the	same	size	as	the	model.	It	can	be	larger	or

Textures

64

smaller.	OpenGL	will	extrapolate	the	colour	if	the	pixel	to	be	processed	cannot	be	mapped	to
a	specific	point	in	the	texture.	You	can	control	how	this	process	is	done	when	a	specific
texture	is	created.

So	basically	what	we	must	do,	in	order	to	apply	a	texture	to	a	model,	is	assigning	texture
coordinates	to	each	of	our	vertices.	The	texture	coordinate	system	is	a	bit	different	from	the
coordinate	system	of	our	model.	First	of	all,	we	have	a	2D	texture	so	our	coordinates	will
only	have	two	components,	x	and	y.	Besides	that,	the	origin	is	setup	in	the	top	left	corner	of
the	image	and	the	maximum	value	of	the	x	or	y	value	is	1.

How	do	we	relate	texture	coordinates	with	our	position	coordinates?	Easy,	in	the	same	way
we	passed	the	colour	information.	We	set	up	a	VBO	which	will	have	a	texture	coordinate	for
each	vertex	position.

So	let’s	start	modifying	the	code	base	to	use	textures	in	our	3D	cube.	The	first	step	is	to	load
the	image	that	will	be	used	as	a	texture.	For	this	task,	in	previous	versions	of	LWJGL,	the
Slick2D	library	was	commonly	used.	At	the	moment	of	this	writing	it	seems	that	this	library	is
not	compatible	with	LWJGL	3	so	we	will	need	to	follow	a	more	verbose	approach.	We	will
use	a	library	called		pngdecoder	,	thus,	we	need	to	declare	that	dependency	in	our		pom.xml	
file.

<dependency>

				<groupId>org.l33tlabs.twl</groupId>

				<artifactId>pngdecoder</artifactId>

				<version>${pngdecoder.version}</version>

</dependency>

And	define	the	version	of	the	library	to	use.

Textures

65
www.dbooks.org

https://www.dbooks.org/

<properties>

				[...]

				<pngdecoder.version>1.0</pngdecoder.version>

				[...]

</properties>

One	thing	that	you	may	see	in	some	web	pages	is	that	the	first	thing	we	must	do	is	enable
the	textures	in	our	OpenGL	context	by	calling		glEnable(GL_TEXTURE_2D)	.	This	is	true	if	you
are	using	the	fixed-function	pipepline.	Since	we	are	using	GLSL	shaders	it	is	not	required
anymore.

Now	we	will	create	a	new		Texture		class	that	will	perform	all	the	necessary	steps	to	load	a
texture.	Our	texture	image	will	be	located	in	the	resources	folder	and	can	be	accessed	as	a
CLASSPATH	resource	and	passed	as	an	input	stream	to	the		PNGDecoder		class.

PNGDecoder	decoder	=	new	PNGDecoder(

					Texture.class.getResourceAsStream(fileName));

Then	we	need	to	decode	the	PNG	image	and	store	its	content	into	a	buffer	by	using	the
	decode		method	of	the		PNGDecoder		class.	The	PNG	image	will	be	decoded	in	RGBA	format
(RGB	for	Red,	Green,	Blue	and	A	for	Alpha	or	transparency)	which	uses	four	bytes	per	pixel.

The		decode		method	requires	three	parameters:

	buffer	:	The		ByteBuffer		that	will	hold	the	decoded	image	(since	each	pixel	uses	four
bytes	its	size	will	be	4	width	height).
	stride	:	Specifies	the	distance	in	bytes	from	the	start	of	a	line	to	the	start	of	the	next
line.	In	this	case	it	will	be	the	number	of	bytes	per	line.
	format	:	The	target	format	into	which	the	image	should	be	decoded	(RGBA).

ByteBuffer	buf	=	ByteBuffer.allocateDirect(

				4	*	decoder.getWidth()	*	decoder.getHeight());

decoder.decode(buf,	decoder.getWidth()	*	4,	Format.RGBA);

buf.flip();

One	important	thing	to	remember	is	that	OpenGL,	for	historical	reasons,	requires	that	texture
images	have	a	size	(number	of	texels	in	each	dimension)	of	a	power	of	two	(2,	4,	8,	16,).
Some	drivers	remove	that	constraint	but	it’s	better	to	stick	to	it	to	avoid	problems.

The	next	step	is	to	upload	the	texture	into	the	graphics	card	memory.	First	of	all	we	need	to
create	a	new	texture	identifier.	Each	operation	related	to	that	texture	will	use	that	identifier	so
we	need	to	bind	it.

Textures

66

//	Create	a	new	OpenGL	texture	

int	textureId	=	glGenTextures();

//	Bind	the	texture

glBindTexture(GL_TEXTURE_2D,	textureId);

Then	we	need	to	tell	OpenGL	how	to	unpack	our	RGBA	bytes.	Since	each	component	is	one
byte	in	size	we	need	to	add	the	following	line:

glPixelStorei(GL_UNPACK_ALIGNMENT,	1);

And	finally	we	can	upload	our	texture	data:

glTexImage2D(GL_TEXTURE_2D,	0,	GL_RGBA,	decoder.getWidth(),

				decoder.getHeight(),	0,	GL_RGBA,	GL_UNSIGNED_BYTE,	buf);

The		glTextImage2D		method	has	the	following	parameters:

	target	:	Specifies	the	target	texture	(its	type).	In	this	case:		GL_TEXTURE_2D	.
	level	:	Specifies	the	level-of-detail	number.	Level	0	is	the	base	image	level.	Level	n	is
the	nth	mipmap	reduction	image.	More	on	this	later.
	internal	format	:	Specifies	the	number	of	colour	components	in	the	texture.
	width	:	Specifies	the	width	of	the	texture	image.
	height	:	Specifies	the	height	of	the	texture	image.
	border	:	This	value	must	be	zero.
	format	:	Specifies	the	format	of	the	pixel	data:	RGBA	in	this	case.
	type	:	Specifies	the	data	type	of	the	pixel	data.	We	are	using	unsigned	bytes	for	this.
	data	:	The	buffer	that	stores	our	data.

In	some	code	snippets	that	you	may	find	yow	will	probably	see	that	filtering	parameters	are
set	up	before	calling	the		glTextImage2D		method.	Filtering	refers	to	how	the	image	will	be
drawn	when	scaling	and	how	pixels	will	be	interpolated.

If	those	parameters	are	not	set	the	texture	will	not	be	displayed.	So	before	the
	glTextImage2D		method	you	could	see	something	like	this:

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,	GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,	GL_NEAREST);

This	parameter	basically	says	that	when	a	pixel	is	drawn	with	no	direct	one	to	one
association	to	a	texture	coordinate	it	will	pick	the	nearest	texture	coordinate	point.

Textures

67
www.dbooks.org

https://www.dbooks.org/

By	this	moment	we	will	not	set	up	those	parameters.	Instead	we	will	generate	a	mipmap.	A
mipmap	is	a	decreasing	resolution	set	of	images	generated	from	a	high	detailed	texture.
Those	lower	resolution	images	will	be	used	automatically	when	our	object	is	scaled.

In	order	to	generate	mipmaps	we	just	need	to	set	the	following	line	(in	this	case	after	the
glTextImage2D	method:

glGenerateMipmap(GL_TEXTURE_2D);

And	that’s	all,	we	have	successfully	loaded	our	texture.	Now	we	need	to	use	it.	As	we	said
before	we	need	to	pass	texture	coordinates	as	another	VBO.	So	we	will	modify	our	Mesh
class	to	accept	an	array	of	floats,	that	contains	texture	coordinates,	instead	of	the	colour	(we
could	have	colours	and	texture	but	in	order	to	simplify	it	we	will	strip	colours	off).	Our
constructor	will	be	like	this:

public	Mesh(float[]	positions,	float[]	textCoords,	int[]	indices,

				Texture	texture)

The	texture	coordinates	VBO	is	created	in	the	same	way	as	the	colour	one.	The	only
difference	is	that	it	has	two	elements	instead	of	three:

vboId	=	glGenBuffers();

vboIdList.add(vboId);

textCoordsBuffer	=	MemoryUtil.memAllocFloat(textCoords.length);

textCoordsBuffer.put(textCoords).flip();

glBindBuffer(GL_ARRAY_BUFFER,	vboId);

glBufferData(GL_ARRAY_BUFFER,	textCoordsBuffer,	GL_STATIC_DRAW);

glVertexAttribPointer(1,	2,	GL_FLOAT,	false,	0,	0);

Now	we	need	to	use	those	textures	in	our	shader.	In	the	vertex	shader	we	have	changed	the
second	uniform	parameter	because	now	it’s	a		vec2		(we	also	changed	the	uniform	name,	so
remember	to	change	it	in	the		Renderer		class).	The	vertex	shader,	as	in	the	colour	case,	just
passes	the	texture	coordinates	to	be	used	by	the	fragment	shader.

Textures

68

#version	330

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

out	vec2	outTexCoord;

uniform	mat4	worldMatrix;

uniform	mat4	projectionMatrix;

void	main()

{

				gl_Position	=	projectionMatrix	*	worldMatrix	*	vec4(position,	1.0);

				outTexCoord	=	texCoord;

}

In	the	fragment	shader	we	must	use	those	texture	coordinates	in	order	to	set	the	pixel
colours:

#version	330

in		vec2	outTexCoord;

out	vec4	fragColor;

uniform	sampler2D	texture_sampler;

void	main()

{

				fragColor	=	texture(texture_sampler,	outTexCoord);

}

Before	analyzing	the	code	let’s	clarify	some	concepts.	A	graphics	card	has	several	spaces	or
slots	to	store	textures.	Each	of	these	spaces	is	called	a	texture	unit.	When	we	are	working
with	textures	we	must	set	the	texture	unit	that	we	want	to	work	with.	As	you	can	see	we	have
a	new	uniform	named		texture_sampler	.	That	uniform	has	a		sampler2D		type	and	will	hold
the	value	of	the	texture	unit	that	we	want	to	work	with.

In	the	main	function	we	use	the	texture		lookup		function	named		texture	.	This	function
takes	two	arguments:	a	sampler	and	a	texture	coordinate	and	will	return	the	correct	colour.
The	sampler	uniform	allow	us	to	do	multi-texturing.	We	will	not	cover	that	topic	right	now	but
we	will	try	to	prepare	the	code	to	add	it	easily	later	on.

Thus,	in	our		ShaderProgram		class	we	will	create	a	new	method	that	allows	us	to	set	an
integer	value	for	a	uniform:

Textures

69
www.dbooks.org

https://www.dbooks.org/

public	void	setUniform(String	uniformName,	int	value)	{

				glUniform1i(uniforms.get(uniformName),	value);

}

In	the		init		method	of	the		Renderer		class	we	will	create	a	new	uniform:

shaderProgram.createUniform("texture_sampler");

Also,	in	the		render		method	of	our		Renderer		class	we	will	set	the	uniform	value	to	0.	(We
are	not	using	several	textures	right	now	so	we	are	just	using	unit	0).

shaderProgram.setUniform("texture_sampler",	0);

Finally	we	just	need	to	change	the	render	method	of	the		Mesh		class	to	use	the	texture.	At
the	beginning	of	that	method	we	put	the	following	lines:

//	Activate	first	texture	unit

glActiveTexture(GL_TEXTURE0);

//	Bind	the	texture

glBindTexture(GL_TEXTURE_2D,	texture.getId());

We	basically	are	binding	the	texture	identified	by		texture.getId()		to	the	texture	unit	0.

Right	now,	we	have	just	modified	our	code	base	to	support	textures.	Now	we	need	to	setup
texture	coordinates	for	our	3D	cube.	Our	texture	image	file	will	be	something	like	this:

In	our	3D	model	we	have	eight	vertices.	Let’s	see	how	this	can	be	done.	Let’s	first	define	the
front	face	texture	coordinates	for	each	vertex.

Textures

70

Vertex Texture	Coordinate

V0 (0.0,	0.0)

V1 (0.0,	0.5)

V2 (0.5,	0.5)

V3 (0.5,	0.0)

Now,	let’s	define	the	texture	mapping	of	the	top	face.

Vertex Texture	Coordinate

V4 (0.0,	0.5)

V5 (0.5,	0.5)

V0 (0.0,	1.0)

V3 (0.5,	1.0)

As	you	can	see	we	have	a	problem,	we	need	to	setup	different	texture	coordinates	for	the
same	vertices	(V0	and	V3).	How	can	we	solve	this?	The	only	way	to	solve	it	is	to	repeat
some	vertices	and	associate	different	texture	coordinates.	For	the	top	face	we	need	to
repeat	the	four	vertices	and	assign	them	the	correct	texture	coordinates.

Textures

71
www.dbooks.org

https://www.dbooks.org/

Since	the	front,	back	and	lateral	faces	use	the	same	texture	we	will	not	need	to	repeat	all	of
these	vertices.	You	have	the	complete	definition	in	the	source	code,	but	we	needed	to	move
from	8	points	to	20.	The	final	result	is	like	this.

In	the	next	chapters	we	will	learn	how	to	load	models	generated	by	3D	modeling	tools	so	we
won’t	need	to	define	by	hand	the	positions	and	texture	coordinates	(which	by	the	way,	would
be	impractical	for	more	complex	models).

Textures

72

Camera
In	this	chapter	we	will	learn	how	to	move	inside	a	rendered	3D	scene,	this	capability	is	like
having	a	camera	that	can	travel	inside	the	3D	world	and	in	fact	is	the	term	used	to	refer	to	it.

But	if	you	try	to	search	for	specific	camera	functions	in	OpenGL	you	will	discover	that	there
is	no	camera	concept,	or	in	other	words	the	camera	is	always	fixed,	centered	in	the	(0,	0,	0)
position	at	the	center	of	the	screen.

So	what	we	will	do	is	a	simulation	that	gives	us	the	impression	that	we	have	a	camera
capable	of	moving	inside	the	3D	scene.	How	do	we	achieve	this?	Well,	if	we	cannot	move
the	camera	then	we	must	move	all	the	objects	contained	in	our	3D	space	at	once.	In	other
words,	if	we	cannot	move	a	camera	we	will	move	the	whole	world.

So,	suppose	that	we	would	like	to	move	the	camera	position	along	the	z	axis	from	a	starting
position	(Cx,	Cy,	Cz)	to	a	position	(Cx,	Cy,	Cz+dz)	to	get	closer	to	the	object	which	is	placed
at	the	coordinates	(Ox,	Oy,	Oz).

What	we	will	actually	do	is	move	the	object	(all	the	objects	in	our	3D	space	indeed)	in	the
opposite	direction	that	the	camera	should	move.	Think	about	it	like	the	objects	being	placed
in	a	treadmill.

A	camera	can	be	displaced	along	the	three	axis	(x,	y	and	z)	and	also	can	rotate	along	them
(roll,	pitch	and	yaw).

Camera

73
www.dbooks.org

https://www.dbooks.org/

So	basically	what	we	must	do	is	to	be	able	to	move	and	rotate	all	of	the	objects	of	our	3D
world.	How	are	we	going	to	do	this?	The	answer	is	to	apply	another	transformation	that	will
translate	all	of	the	vertices	of	all	of	the	objects	in	the	opposite	direction	of	the	movement	of
the	camera	and	that	will	rotate	them	according	to	the	camera	rotation.	This	will	be	done	of
course	with	another	matrix,	the	so	called	view	matrix.	This	matrix	will	first	perform	the
translation	and	then	the	rotation	along	the	axis.

Let's	see	how	we	can	construct	that	matrix.	If	you	remember	from	the	transformations
chapter	our	transformation	equation	was	like	this:

Transf = [ProjMatrix] ⋅ [TranslationMatrix] ⋅ [RotationMatrix] ⋅ [ScaleMatrix] = [ProjM

The	view	matrix	should	be	applied	before	multiplying	by	the	projection	matrix,	so	our
equation	should	be	now	like	this:

Transf = [ProjMatrix] ⋅ [V iewMatrix] ⋅ [TranslationMatrix] ⋅ [RotationMatrix] ⋅ [ScaleM

Now	we	have	three	matrices,	let's	think	a	little	bit	about	the	life	cycles	of	those	matrices.	The
projection	matrix	should	not	change	very	much	while	our	game	is	running,	in	the	worst	case
it	may	change	once	per	render	call.	The	view	matrix	may	change	once	per	render	call	if	the
camera	moves.	The	world	matrix	changes	once	per		GameItem		instance,	so	it	will	change
several	times	per	render	call.

So,	how	many	matrices	should	we	push	to	or	vertex	shader	?	You	may	see	some	code	that
uses	three	uniforms	for	each	of	those	matrices,	but	in	principle	the	most	efficient	approach
would	be	to	combine	the	projection	and	the	view	matrices,	let’s	call	it		pv		matrix,	and	push
the		world		and	the		pv		matrices	to	our	shader.	With	this	approach	we	would	have	the
possibility	to	work	with	world	coordinates	and	would	be	avoiding	some	extra	multiplications.

Actually,	the	most	convenient	approach	is	to	combine	the	view	and	the	world	matrix.	Why
this?	Because	remember	that	the	whole	camera	concept	is	a	trick,	what	we	are	doing	is
pushing	the	whole	world	to	simulate	world	displacement	and	to	show	only	a	small	portion	of
the	3D	world.	So	if	we	work	directly	with	world	coordinates	we	may	be	working	with	world
coordinates	that	are	far	away	from	the	origin	and	we	may	incur	in	some	precision	problems.

Camera

74

If	we	work	in	what’s	called	the	camera	space	we	will	be	working	with	points	that,	although
are	far	away	from	the	world	origin,	are	closer	to	the	camera.	The	matrix	that	results	of	the
combination	of	the	view	and	the	world	matrix	is	often	called	as	the	model	view	matrix.

So	let’s	start	modifying	our	code	to	support	a	camera.	First	of	all	we	will	create	a	new	class
called		Camera		which	will	hold	the	position	and	rotation	state	of	our	camera.	This	class	will
provide	methods	to	set	the	new	position	or	rotation	state	(setPosition		or		setRotation)	or
to	update	those	values	with	an	offset	upon	the	current	state	(movePosition		and
	moveRotation)

package	org.lwjglb.engine.graph;

import	org.joml.Vector3f;

public	class	Camera	{

				private	final	Vector3f	position;

				private	final	Vector3f	rotation;

				public	Camera()	{

								position	=	new	Vector3f(0,	0,	0);

								rotation	=	new	Vector3f(0,	0,	0);

				}

				public	Camera(Vector3f	position,	Vector3f	rotation)	{

								this.position	=	position;

								this.rotation	=	rotation;

				}

				public	Vector3f	getPosition()	{

								return	position;

				}

				public	void	setPosition(float	x,	float	y,	float	z)	{

								position.x	=	x;

								position.y	=	y;

								position.z	=	z;

				}

				public	void	movePosition(float	offsetX,	float	offsetY,	float	offsetZ)	{

								if	(offsetZ	!=	0)	{

												position.x	+=	(float)Math.sin(Math.toRadians(rotation.y))	*	-1.0f	*	offset

Z;

												position.z	+=	(float)Math.cos(Math.toRadians(rotation.y))	*	offsetZ;

								}

								if	(offsetX	!=	0)	{

												position.x	+=	(float)Math.sin(Math.toRadians(rotation.y	-	90))	*	-1.0f	*	o

ffsetX;

												position.z	+=	(float)Math.cos(Math.toRadians(rotation.y	-	90))	*	offsetX;

Camera

75
www.dbooks.org

https://www.dbooks.org/

								}

								position.y	+=	offsetY;

				}

				public	Vector3f	getRotation()	{

								return	rotation;

				}

				public	void	setRotation(float	x,	float	y,	float	z)	{

								rotation.x	=	x;

								rotation.y	=	y;

								rotation.z	=	z;

				}

				public	void	moveRotation(float	offsetX,	float	offsetY,	float	offsetZ)	{

								rotation.x	+=	offsetX;

								rotation.y	+=	offsetY;

								rotation.z	+=	offsetZ;

				}

}

Next	in	the		Transformation		class	we	will	hold	a	new	matrix	to	hold	the	values	of	the	view
matrix.

private	final	Matrix4f	viewMatrix;

We	will	also	provide	a	method	to	update	its	value.	Like	the	projection	matrix	this	matrix	will
be	the	same	for	all	the	objects	to	be	rendered	in	a	render	cycle.

public	Matrix4f	getViewMatrix(Camera	camera)	{

				Vector3f	cameraPos	=	camera.getPosition();

				Vector3f	rotation	=	camera.getRotation();

				viewMatrix.identity();

				//	First	do	the	rotation	so	camera	rotates	over	its	position

				viewMatrix.rotate((float)Math.toRadians(rotation.x),	new	Vector3f(1,	0,	0))

								.rotate((float)Math.toRadians(rotation.y),	new	Vector3f(0,	1,	0));

				//	Then	do	the	translation

				viewMatrix.translate(-cameraPos.x,	-cameraPos.y,	-cameraPos.z);

				return	viewMatrix;

}

As	you	can	see	we	first	need	to	do	the	rotation	and	then	the	translation.	If	we	do	the
opposite	we	would	not	be	rotating	along	the	camera	position	but	along	the	coordinates
origin.	Please	also	note	that	in	the		movePosition		method	of	the		Camera		class	we	just	not
simply	increase	the	camera	position	by	and	offset.	We	also	take	into	consideration	the

Camera

76

rotation	along	the	y	axis,	the	yaw,	in	order	to	calculate	the	final	position.	If	we	would	just
increase	the	camera	position	by	the	offset	the	camera	will	not	move	in	the	direction	its
facing.

Besides	what	is	mentioned	above,	we	do	not	have	here	a	full	free	fly	camera	(for	instance,	if
we	rotate	along	the	x	axis	the	camera	does	not	move	up	or	down	in	the	space	when	we
move	it	forward).	This	will	be	done	in	later	chapters	since	is	a	little	bit	more	complex.

Finally	we	will	remove	the	previous	method		getWorldMatrix		and	add	a	new	one	called
	getModelViewMatrix	.

public	Matrix4f	getModelViewMatrix(GameItem	gameItem,	Matrix4f	viewMatrix)	{

				Vector3f	rotation	=	gameItem.getRotation();

				modelViewMatrix.identity().translate(gameItem.getPosition()).

								rotateX((float)Math.toRadians(-rotation.x)).

								rotateY((float)Math.toRadians(-rotation.y)).

								rotateZ((float)Math.toRadians(-rotation.z)).

								scale(gameItem.getScale());

				Matrix4f	viewCurr	=	new	Matrix4f(viewMatrix);

				return	viewCurr.mul(modelViewMatrix);

}

The		getModelViewMatrix		method	will	be	called	per	each		GameItem		instance	so	we	must
work	over	a	copy	of	the	view	matrix	so	transformations	do	not	get	accumulated	in	each	call
(Remember	that		Matrix4f		class	is	not	immutable).

In	the		render		method	of	the		Renderer		class	we	just	need	to	update	the	view	matrix
according	to	the	camera	values,	just	after	the	projection	matrix	is	also	updated.

//	Update	projection	Matrix

Matrix4f	projectionMatrix	=	transformation.getProjectionMatrix(FOV,	window.getWidth(),

	window.getHeight(),	Z_NEAR,	Z_FAR);

shaderProgram.setUniform("projectionMatrix",	projectionMatrix);

//	Update	view	Matrix

Matrix4f	viewMatrix	=	transformation.getViewMatrix(camera);

shaderProgram.setUniform("texture_sampler",	0);

//	Render	each	gameItem

for(GameItem	gameItem	:	gameItems)	{

				//	Set	model	view	matrix	for	this	item

				Matrix4f	modelViewMatrix	=	transformation.getModelViewMatrix(gameItem,	viewMatrix)

;

				shaderProgram.setUniform("modelViewMatrix",	modelViewMatrix);

				//	Render	the	mes	for	this	game	item

				gameItem.getMesh().render();

}

Camera

77
www.dbooks.org

https://www.dbooks.org/

And	that’s	all,	our	base	code	supports	the	concept	of	a	camera.	Now	we	need	to	use	it.	We
can	change	the	way	we	handle	the	input	and	update	the	camera.	We	will	set	the	following
controls:

Keys	“A”	and	“D”	to	move	the	camera	to	the	left	and	right	(x	axis)	respectively.
Keys	“W”	and	“S”	to	move	the	camera	forward	and	backwards	(z	axis)	respectively.
Keys	“Z”	and	“X”	to	move	the	camera	up	and	down	(y	axis)	respectively.

We	will	use	the	mouse	position	to	rotate	the	camera	along	the	x	and	y	axis	when	the	right
button	of	the	mouse	is	pressed.
As	you	can	see	we	will	be	using	the	mouse	for	the	first	time.	We	will	create	a	new	class
named		MouseInput		that	will	encapsulate	mouse	access.	Here’s	the	code	for	that	class.

package	org.lwjglb.engine;

import	org.joml.Vector2d;

import	org.joml.Vector2f;

import	static	org.lwjgl.glfw.GLFW.*;

public	class	MouseInput	{

				private	final	Vector2d	previousPos;

				private	final	Vector2d	currentPos;

				private	final	Vector2f	displVec;

				private	boolean	inWindow	=	false;

				private	boolean	leftButtonPressed	=	false;

				private	boolean	rightButtonPressed	=	false;

				public	MouseInput()	{

								previousPos	=	new	Vector2d(-1,	-1);

								currentPos	=	new	Vector2d(0,	0);

								displVec	=	new	Vector2f();

				}

				public	void	init(Window	window)	{

								glfwSetCursorPosCallback(window.getWindowHandle(),	(windowHandle,	xpos,	ypos)	

->	{

												currentPos.x	=	xpos;

												currentPos.y	=	ypos;

								});

								glfwSetCursorEnterCallback(window.getWindowHandle(),	(windowHandle,	entered)	-

>	{

												inWindow	=	entered;

								});

								glfwSetMouseButtonCallback(window.getWindowHandle(),	(windowHandle,	button,	ac

Camera

78

tion,	mode)	->	{

												leftButtonPressed	=	button	==	GLFW_MOUSE_BUTTON_1	&&	action	==	GLFW_PRESS;

												rightButtonPressed	=	button	==	GLFW_MOUSE_BUTTON_2	&&	action	==	GLFW_PRESS

;

								});

				}

				public	Vector2f	getDisplVec()	{

								return	displVec;

				}

				public	void	input(Window	window)	{

								displVec.x	=	0;

								displVec.y	=	0;

								if	(previousPos.x	>	0	&&	previousPos.y	>	0	&&	inWindow)	{

												double	deltax	=	currentPos.x	-	previousPos.x;

												double	deltay	=	currentPos.y	-	previousPos.y;

												boolean	rotateX	=	deltax	!=	0;

												boolean	rotateY	=	deltay	!=	0;

												if	(rotateX)	{

																displVec.y	=	(float)	deltax;

												}

												if	(rotateY)	{

																displVec.x	=	(float)	deltay;

												}

								}

								previousPos.x	=	currentPos.x;

								previousPos.y	=	currentPos.y;

				}

				public	boolean	isLeftButtonPressed()	{

								return	leftButtonPressed;

				}

				public	boolean	isRightButtonPressed()	{

								return	rightButtonPressed;

				}

}

The		MouseInput		class	provides	an		init		method	which	should	be	called	during	the
initialization	phase	and	registers	a	set	of	callbacks	to	process	mouse	events:

	glfwSetCursorPosCallback	:	Registers	a	callback	that	will	be	invoked	when	the	mouse	is
moved.
	glfwSetCursorEnterCallback	:	Registers	a	callback	that	will	be	invoked	when	the	mouse
enters	our	window.	We	will	be	receiving	mouse	events	even	if	the	mouse	is	not	in	our
window.	We	use	this	callback	to	track	when	the	mouse	is	in	our	window.
	glfwSetMouseButtonCallback	:	Registers	a	callback	that	will	be	invoked	when	a	mouse
button	is	pressed.

Camera

79
www.dbooks.org

https://www.dbooks.org/

The		MouseInput		class	provides	an	input	method	which	should	be	called	when	game	input	is
processed.	This	method	calculates	the	mouse	displacement	from	the	previous	position	and
stores	it	into		Vector2f			displVec		variable	so	it	can	be	used	by	our	game.

The		MouseInput		class	will	be	instantiated	in	our		GameEngine		class	and	will	be	passed	as	a
parameter	in	the		init		and		update		methods	of	the	game	implementation	(so	we	need	to
change	the	interface	accordingly).

void	input(Window	window,	MouseInput	mouseInput);

void	update(float	interval,	MouseInput	mouseInput);

The	mouse	input	will	be	processed	in	the	input	method	of	the		GameEngine		class	before
passing	the	control	to	the	game	implementation.

protected	void	input()	{

				mouseInput.input(window);

				gameLogic.input(window,	mouseInput);

}

Now	we	are	ready	to	update	our		DummyGame		class	to	process	the	keyboard	and	mouse	input.
The	input	method	of	that	class	will	be	like	this:

@Override

public	void	input(Window	window,	MouseInput	mouseInput)	{

				cameraInc.set(0,	0,	0);

				if	(window.isKeyPressed(GLFW_KEY_W))	{

								cameraInc.z	=	-1;

				}	else	if	(window.isKeyPressed(GLFW_KEY_S))	{

								cameraInc.z	=	1;

				}

				if	(window.isKeyPressed(GLFW_KEY_A))	{

								cameraInc.x	=	-1;

				}	else	if	(window.isKeyPressed(GLFW_KEY_D))	{

								cameraInc.x	=	1;

				}

				if	(window.isKeyPressed(GLFW_KEY_Z))	{

								cameraInc.y	=	-1;

				}	else	if	(window.isKeyPressed(GLFW_KEY_X))	{

								cameraInc.y	=	1;

				}

}

It	just	updates	a		Vector3f		variable	named		cameraInc		which	holds	the	camera
displacement	that	should	be	applied.
The	update	method	of	the		DummyGame		class	modifies	the	camera	position	and	rotation

Camera

80

according	to	the	processes	key	and	mouse	events.

@Override

public	void	update(float	interval,	MouseInput	mouseInput)	{

				//	Update	camera	position

				camera.movePosition(cameraInc.x	*	CAMERA_POS_STEP,

								cameraInc.y	*	CAMERA_POS_STEP,

								cameraInc.z	*	CAMERA_POS_STEP);

				//	Update	camera	based	on	mouse												

				if	(mouseInput.isRightButtonPressed())	{

								Vector2f	rotVec	=	mouseInput.getDisplVec();

								camera.moveRotation(rotVec.x	*	MOUSE_SENSITIVITY,	rotVec.y	*	MOUSE_SENSITIVITY

,	0);

				}

}

Now	we	can	add	more	cubes	to	our	world,	scale	them	set	them	up	in	a	specific	location	and
play	with	our	new	camera.	As	you	can	see	all	the	cubes	share	the	same	mesh.

GameItem	gameItem1	=	new	GameItem(mesh);

gameItem1.setScale(0.5f);

gameItem1.setPosition(0,	0,	-2);

GameItem	gameItem2	=	new	GameItem(mesh);

gameItem2.setScale(0.5f);

gameItem2.setPosition(0.5f,	0.5f,	-2);

GameItem	gameItem3	=	new	GameItem(mesh);

gameItem3.setScale(0.5f);

gameItem3.setPosition(0,	0,	-2.5f);

GameItem	gameItem4	=	new	GameItem(mesh);

gameItem4.setScale(0.5f);

gameItem4.setPosition(0.5f,	0,	-2.5f);

gameItems	=	new	GameItem[]{gameItem1,	gameItem2,	gameItem3,	gameItem4};

You	will	get	something	like	this.

Camera

81
www.dbooks.org

https://www.dbooks.org/

Camera

82

Loading	more	complex	models
In	this	chapter	we	will	learn	to	load	more	complex	models	defined	in	external	files.	Those
models	will	be	created	by	3D	modelling	tools	(such	as	Blender).	Up	to	now	we	were	creating
our	models	by	hand	directly	coding	the	arrays	that	define	their	geometry,	in	this	chapter	we
will	learn	how	to	load	models	defined	in	OBJ	format.

OBJ	(or	.OBJ)	is	a	geometry	definition	open	file	format	developed	by	Wavefront
Technologies	which	has	been	widely	adopted.	An	OBJ	file	defines	the	vertices,	texture
coordinates	and	polygons	that	compose	a	3D	model.	It’s	a	relative	easy	format	to	parse
since	is	text	based	and	each	line	defines	an	element	(a	vertex,	a	texture	coordinate,	etc.).

In	an	.obj	file	each	line	starts	with	a	token	with	identifies	the	type	of	element:

Comments	are	lines	which	start	with	#.
The	token	“v”	defines	a	geometric	vertex	with	coordinates	(x,	y,	z,	w).	Example:	v	0.155
0.211	0.32	1.0.
The	token	“vn”	defines	a	vertex	normal	with	coordinates	(x,	y,	z).	Example:	vn	0.71	0.21
0.82.	More	on	this	later.
The	token	“vt”	defines	a	texture	coordinate.	Example:	vt	0.500	1.
The	token	“f”	defines	a	face.	With	the	information	contained	in	these	lines	we	will
construct	our	indices	array.	We	will	handle	only	the	case	were	faces	are	exported	as
triangles.	It	can	have	several	variants:

It	can	define	just	vertex	positions	(f	v1	v2	v3).	Example:	f	6	3	1.	In	this	case	this
triangle	is	defined	by	the	geometric	vertices	that	occupy	positions	6,	3	a	and	1.
(Vertex	indices	always	starts	by	1).
It	can	define	vertex	positions,	texture	coordinates	and	normals	(f	v1/t1/n1	v2/t2/n2
V3/t3/n3).	Example:	f	6/4/1	3/5/3	7/6/5.	The	first	block	is	“6/4/1”	and	defines	the
coordinates,	texture	coordinates	and	normal	vertex.	What	you	see	here	is	the
position,	so	we	are	saying:	pick	the	geometric	vertex	number	six,	the	texture
coordinate	number	4	and	the	vertex	normal	number	one.

OBJ	format	has	many	more	entry	types	(like	one	to	group	polygons,	defining	materials,	etc.).
By	now	we	will	stick	to	this	subset,	our	OBJ	loader	will	ignore	other	entry	types.

But	what	is	anormal	?	Let’s	define	it	first.	When	you	have	a	plane	its	normal	is	a	vector
perpendicular	to	that	plane	which	has	a	length	equal	to	one.

Loading	more	complex	models

83
www.dbooks.org

https://www.blender.org/
https://www.dbooks.org/

As	you	can	see	in	the	figure	above	a	plane	can	have	two	normals,	which	one	should	we	use
?	Normals	in	3D	graphics	are	used	for	lightning,	so	we	should	chose	the	normal	which	is
oriented	towards	the	source	of	light.	In	other	words	we	should	choose	the	normal	that	points
out	from	the	external	face	of	our	model.

When	we	have	a	3D	model,	it	is	composed	by	polygons,	triangles	in	our	case.	Each	triangle
is	composed	by	three	vertices.	The	Normal	vector	for	a	triangle	will	be	the	vector
perpendicular	to	the	triangle	surface	which	has	a	length	equal	to	one.

A	vertex	normal	is	associated	to	a	specific	vertex	and	is	the	combination	of	the	normals	of
the	surrounding	triangles	(of	course	its	length	is	equal	to	one).	Here	you	can	see	the	vertex
models	of	a	3D	mesh	(taken	from	Wikipedia)

Normals	will	be	used	for	lighting.

So	let’s	start	creating	our	OBJ	loader.	First	of	all	we	will	modify	our		Mesh		class	since	now
it’s	mandatory	to	use	a	texture.	Some	of	the	obj	files	that	we	may	load	may	not	define
texture	coordinates	and	we	must	be	able	to	render	them	using	a	colour	instead	of	a	texture.
In	this	case	the	face	definition	will	be	like	this:	“f	v//n”.

Our		Mesh		class	will	have	a	new	attribute	named		colour	

private	Vector3f	colour;

Loading	more	complex	models

84

https://en.wikipedia.org/wiki/Vertex_normal#/media/File:Vertex_normals.png

And	the	constructor	will	not	require	a		Texture		instance	any	more.	Instead	we	will	provide
getters	and	setters	for	texture	and	colour	attributes.

public	Mesh(float[]	positions,	float[]	textCoords,	float[]	normals,	int[]	indices)	{

Of	course,	in	the		render		and		cleanup		methods	we	must	check	if	texture	attribute	is	not
null	before	using	it.	As	you	can	see	in	the	constructor	we	pass	now	a	new	array	of	floats
named		normals	.	How	do	we	use	normals	for	rendering	?	The	answer	is	easy	it	will	be	just
another	VBO	inside	our	VAO,	so	we	need	to	add	this	code.

//	Vertex	normals	VBO

vboId	=	glGenBuffers();

vboIdList.add(vboId);

vecNormalsBuffer	=	MemoryUtil.memAllocFloat(normals.length);

vecNormalsBuffer.put(normals).flip();

glBindBuffer(GL_ARRAY_BUFFER,	vboId);

glBufferData(GL_ARRAY_BUFFER,	vecNormalsBuffer,	GL_STATIC_DRAW);

glVertexAttribPointer(2,	3,	GL_FLOAT,	false,	0,	0);

In	our		render		method	we	must	enable	this	VBO	before	rendering	and	disable	it	when	we
have	finished.

	//	Draw	the	mesh

glBindVertexArray(getVaoId());

glEnableVertexAttribArray(0);

glEnableVertexAttribArray(1);

glEnableVertexAttribArray(2);

glDrawElements(GL_TRIANGLES,	getVertexCount(),	GL_UNSIGNED_INT,	0);

//	Restore	state

glDisableVertexAttribArray(0);

glDisableVertexAttribArray(1);

glDisableVertexAttribArray(2);

glBindVertexArray(0);

glBindTexture(GL_TEXTURE_2D,	0);

Now	that	we	have	finished	the	modifications	in	the		Mesh		class	we	can	change	our	code	to
use	either	texture	coordinates	or	a	fixed	colour.	Thus	we	need	to	modify	our	fragment	shader
like	this:

Loading	more	complex	models

85
www.dbooks.org

https://www.dbooks.org/

#version	330

in		vec2	outTexCoord;

out	vec4	fragColor;

uniform	sampler2D	texture_sampler;

uniform	vec3	colour;

uniform	int	useColour;

void	main()

{

				if	(useColour	==	1)

				{

								fragColor	=	vec4(colour,	1);

				}

				else

				{

								fragColor	=	texture(texture_sampler,	outTexCoord);

				}

}

As	you	can	see	we	have	create	two	new	uniforms:

	colour	:	Will	contain	the	base	colour.
	useColour	:	It’s	a	flag	that	we	will	set	to	1	when	we	don’t	want	to	use	textures.

In	the		Renderer		class	we	need	to	create	those	two	uniforms.

//	Create	uniform	for	default	colour	and	the	flag	that	controls	it

shaderProgram.createUniform("colour");

shaderProgram.createUniform("useColour");

And	like	any	other	uniform,	in	the		render		method	of	the		Renderer		class	we	need	to	set	the
values	for	this	uniforms	for	each		gameItem	.

for(GameItem	gameItem	:	gameItems)	{

				Mesh	mesh	=	gameItem.getMesh();

				//	Set	model	view	matrix	for	this	item

				Matrix4f	modelViewMatrix	=	transformation.getModelViewMatrix(gameItem,	viewMatrix)

;

				shaderProgram.setUniform("modelViewMatrix",	modelViewMatrix);

				//	Render	the	mes	for	this	game	item

				shaderProgram.setUniform("colour",	mesh.getColour());

				shaderProgram.setUniform("useColour",	mesh.isTextured()	?	0	:	1);

				mesh.render();

}

Loading	more	complex	models

86

Now	we	can	create	a	new	class	named		OBJLoader		which	parses	OBJ	files	and	will	create	a
	Mesh		instance	with	the	data	contained	in	it.	You	may	find	some	other	implementations	in	the
web	that	may	be	a	bit	more	efficient	than	this	one	but	I	think	this	version	is	simpler	to
understand.	This	will	be	an	utility	class	which	will	have	a	static	method	like	this:

public	static	Mesh	loadMesh(String	fileName)	throws	Exception	{

The	parameter		filename		specifies	the	name	of	the	file,	that	must	be	in	the	CLASSPATH
that	contains	the	OBJ	model.

The	first	thing	that	we	will	do	in	that	method	is	to	read	the	file	contents	and	store	all	the	lines
in	an	array.	Then	we	create	several	lists	that	will	hold	the	vertices,	the	texture	coordinates,
the	normals	and	the	faces.

List<String>	lines	=	Utils.readAllLines(fileName);

List<Vector3f>	vertices	=	new	ArrayList<>();

List<Vector2f>	textures	=	new	ArrayList<>();

List<Vector3f>	normals	=	new	ArrayList<>();

List<Face>	faces	=	new	ArrayList<>();

Then	will	parse	each	line	and	depending	on	the	starting	token	will	get	a	vertex	position,	a
texture	coordinate,	a	vertex	normal	or	a	face	definition.	At	the	end	we	will	need	to	reorder
that	information.

Loading	more	complex	models

87
www.dbooks.org

https://www.dbooks.org/

for	(String	line	:	lines)	{

				String[]	tokens	=	line.split("\\s+");

				switch	(tokens[0])	{

								case	"v":

												//	Geometric	vertex

												Vector3f	vec3f	=	new	Vector3f(

																Float.parseFloat(tokens[1]),

																Float.parseFloat(tokens[2]),

																Float.parseFloat(tokens[3]));

												vertices.add(vec3f);

												break;

								case	"vt":

												//	Texture	coordinate

												Vector2f	vec2f	=	new	Vector2f(

																Float.parseFloat(tokens[1]),

																Float.parseFloat(tokens[2]));

												textures.add(vec2f);

												break;

								case	"vn":

												//	Vertex	normal

												Vector3f	vec3fNorm	=	new	Vector3f(

																Float.parseFloat(tokens[1]),

																Float.parseFloat(tokens[2]),

																Float.parseFloat(tokens[3]));

												normals.add(vec3fNorm);

												break;

								case	"f":

												Face	face	=	new	Face(tokens[1],	tokens[2],	tokens[3]);

												faces.add(face);

												break;

								default:

												//	Ignore	other	lines

												break;

				}

}

return	reorderLists(vertices,	textures,	normals,	faces);

Before	talking	about	reordering	let’s	see	how	face	definitions	are	parsed.	We	have	create	a
class	named		Face		which	parses	the	definition	of	a	face.	A		Face		is	composed	by	a	list	of
indices	groups,	in	this	case	since	we	are	dealing	with	triangles	we	will	have	three	indices
group).

Loading	more	complex	models

88

We	will	create	another	inner	class	named		IndexGroup		that	will	hold	the	information	for	a
group.

protected	static	class	IdxGroup	{

				public	static	final	int	NO_VALUE	=	-1;

				public	int	idxPos;

				public	int	idxTextCoord;

				public	int	idxVecNormal;

				public	IdxGroup()	{

								idxPos	=	NO_VALUE;

								idxTextCoord	=	NO_VALUE;

								idxVecNormal	=	NO_VALUE;

								}

}

Our		Face		class	will	be	like	this.

Loading	more	complex	models

89
www.dbooks.org

https://www.dbooks.org/

protected	static	class	Face	{

				/**

					*	List	of	idxGroup	groups	for	a	face	triangle	(3	vertices	per	face).

				*/

				private	IdxGroup[]	idxGroups	=	new	IdxGroup[3];

				public	Face(String	v1,	String	v2,	String	v3)	{

								idxGroups	=	new	IdxGroup[3];

								//	Parse	the	lines

								idxGroups[0]	=	parseLine(v1);

								idxGroups[1]	=	parseLine(v2);

								idxGroups[2]	=	parseLine(v3);

				}

				private	IdxGroup	parseLine(String	line)	{

								IdxGroup	idxGroup	=	new	IdxGroup();

								String[]	lineTokens	=	line.split("/");

								int	length	=	lineTokens.length;

								idxGroup.idxPos	=	Integer.parseInt(lineTokens[0])	-	1;

								if	(length	>	1)	{

												//	It	can	be	empty	if	the	obj	does	not	define	text	coords

												String	textCoord	=	lineTokens[1];

												idxGroup.idxTextCoord	=	textCoord.length()	>	0	?	Integer.parseInt(textCoor

d)	-	1	:	IdxGroup.NO_VALUE;

												if	(length	>	2)	{

																idxGroup.idxVecNormal	=	Integer.parseInt(lineTokens[2])	-	1;

												}

								}

								return	idxGroup;

				}

				public	IdxGroup[]	getFaceVertexIndices()	{

								return	idxGroups;

				}

}

When	parsing	faces	we	may	see	objects	with	no	textures	but	with	vector	normals,	in	this
case	a	face	line	could	be	like	this		f	11//1	17//1	13//1	,	so	we	need	to	detect	those	cases.

Now	we	can	talk	about	how	to	reorder	the	information	we	have.	Finally	we	need	to	reorder
that	information.	Our		Mesh		class	expects	four	arrays,	one	for	position	coordinates,	other	for
texture	coordinates,	other	for	vector	normals	and	another	one	for	the	indices.	The	first	three
arrays	shall	have	the	same	number	of	elements	since	the	indices	array	is	unique	(note	that
the	same	number	of	elements	does	not	imply	the	same	length.	Position	elements,	vertex
coordinates,	are	3D	and	are	composed	by	three	floats.	Texture	elements,	texture

Loading	more	complex	models

90

coordinates,	are	2D	and	thus	are	composed	by	two	floats).	OpenGL	does	not	allow	us	to
define	different	indices	arrays	per	type	of	element	(if	so,	we	would	not	need	to	repeat
vertices	while	applying	textures).

When	you	open	an	OBJ	line	you	will	first	probably	see	that	the	list	that	holds	the	vertices
positions	has	a	higher	number	of	elements	than	the	lists	that	hold	the	texture	coordinates
and	the	number	of	vertices.	That’s	something	that	we	need	to	solve.	Let’s	use	a	simple
example	which	defines	a	quad	with	a	texture	with	a	pixel	height	(just	for	illustration
purposes).	The	OBJ	file	may	be	like	this	(don’t	pay	too	much	attention	about	the	normals
coordinate	since	it’s	just	for	illustration	purpose).

v	0	0	0

v	1	0	0

v	1	1	0

v	0	1	0

vt	0	1

vt	1	1

vn	0	0	1

f	1/2/1	2/1/1	3/2/1

f	1/2/1	3/2/1	4/1/1

When	we	have	finished	parsing	the	file	we	have	the	following	lists	(the	number	of	each
element	is	its	position	in	the	file	upon	order	of	appearance)

Now	we	will	use	the	face	definitions	to	construct	the	final	arrays	including	the	indices.	A	thing
to	take	into	consideration	is	that	the	order	in	which	textures	coordinates	and	vector	normals
are	defined	does	not	correspond	to	the	orders	in	which	vertices	are	defined.	If	the	size	of	the
lists	would	be	the	same	and	they	were	ordered,	face	definition	lines	would	only	just	need	to
include	a	number	per	vertex.

So	we	need	to	order	the	data	and	setup	accordingly	to	our	needs.	The	first	thing	that	we
must	do	is	create	three	arrays	and	one	list,	one	for	the	vertices,	other	for	the	texture
coordinates,	other	for	the	normals	and	the	list	for	the	indices.	As	we	have	said	before	the
three	arrays	will	have	the	same	number	of	elements	(equal	to	the	number	of	vertices).	The
vertices	array	will	have	a	copy	of	the	list	of	vertices.

Loading	more	complex	models

91
www.dbooks.org

https://www.dbooks.org/

Now	we	start	processing	the	faces.	The	first	index	group	of	the	first	face	is	1/2/1.	We	use	the
first	index	in	the	index	group,	the	one	that	defines	the	geometric	vertex	to	construct	the	index
list.	Let’s	name	it	as		posIndex	.
Our	face	is	specifiying	that	the	we	should	add	the	index	of	the	element	that	occupies	the	first
position	into	our	indices	list.	So	we	put	the	value	of		posIndex		minus	one	into	the
	indicesList		(we	must	substract	1	since	arrays	start	at	0	but	OBJ	file	format	assumes	that
they	start	at	1).

Then	we	use	the	rest	of	the	indices	of	the	index	group	to	set	up	the		texturesArray		and
	normalsArray	.	The	second	index,	in	the	index	group,	is	2,	so	what	we	must	do	is	put	the
second	texture	coordinate	in	the	same	position	as	the	one	that	occupies	the	vertex
designated	posIndex	(V1).

Loading	more	complex	models

92

Then	we	pick	the	third	index,	which	is	1,	so	what	we	must	do	is	put	the	first	vector	normal
coordinate	in	the	same	position	as	the	one	that	occupies	the	vertex	designated		posIndex	
(V1).

After	we	have	processed	the	first	face	the	arrays	and	lists	will	be	like	this.

After	we	have	processed	the	second	face	the	arrays	and	lists	will	be	like	this.

The	second	face	defines	vertices	which	already	have	been	assigned,	but	they	contain	the
same	values,	so	there’s	no	problem	in	reprocessing	this.	I	hope	the	process	has	been
clarified	enough,	it	can	be	some	tricky	until	you	get	it.	The	methods	that	reorder	the	data	are
set	below.	Keep	in	mind	that	what	we	have	are	float	arrays	so	we	must	transform	those

Loading	more	complex	models

93
www.dbooks.org

https://www.dbooks.org/

arrays	of	vertices,	textures	and	normals	into	arrays	of	floats.	So	the	length	of	these	arrays
will	be	the	length	of	the	vertices	list	multiplied	by	the	number	three	in	the	case	of	vertices
and	normals	or	multiplied	by	two	in	the	case	of	texture	coordinates.

Loading	more	complex	models

94

private	static	Mesh	reorderLists(List<Vector3f>	posList,	List<Vector2f>	textCoordList,

				List<Vector3f>	normList,	List<Face>	facesList)	{

				List<Integer>	indices	=	new	ArrayList();

				//	Create	position	array	in	the	order	it	has	been	declared

				float[]	posArr	=	new	float[posList.size()	*	3];

				int	i	=	0;

				for	(Vector3f	pos	:	posList)	{

								posArr[i	*	3]	=	pos.x;

								posArr[i	*	3	+	1]	=	pos.y;

								posArr[i	*	3	+	2]	=	pos.z;

								i++;

				}

				float[]	textCoordArr	=	new	float[posList.size()	*	2];

				float[]	normArr	=	new	float[posList.size()	*	3];

				for	(Face	face	:	facesList)	{

								IdxGroup[]	faceVertexIndices	=	face.getFaceVertexIndices();

								for	(IdxGroup	indValue	:	faceVertexIndices)	{

												processFaceVertex(indValue,	textCoordList,	normList,

																indices,	textCoordArr,	normArr);

								}

				}

				int[]	indicesArr	=	new	int[indices.size()];

				indicesArr	=	indices.stream().mapToInt((Integer	v)	->	v).toArray();

				Mesh	mesh	=	new	Mesh(posArr,	textCoordArr,	normArr,	indicesArr);

				return	mesh;

}

private	static	void	processFaceVertex(IdxGroup	indices,	List<Vector2f>	textCoordList,

				List<Vector3f>	normList,	List<Integer>	indicesList,

				float[]	texCoordArr,	float[]	normArr)	{

				//	Set	index	for	vertex	coordinates

				int	posIndex	=	indices.idxPos;

				indicesList.add(posIndex);

				//	Reorder	texture	coordinates

				if	(indices.idxTextCoord	>=	0)	{

								Vector2f	textCoord	=	textCoordList.get(indices.idxTextCoord);

								texCoordArr[posIndex	*	2]	=	textCoord.x;

								texCoordArr[posIndex	*	2	+	1]	=	1	-	textCoord.y;

				}

				if	(indices.idxVecNormal	>=	0)	{

								//	Reorder	vectornormals

								Vector3f	vecNorm	=	normList.get(indices.idxVecNormal);

								normArr[posIndex	*	3]	=	vecNorm.x;

								normArr[posIndex	*	3	+	1]	=	vecNorm.y;

								normArr[posIndex	*	3	+	2]	=	vecNorm.z;

				}

}

Loading	more	complex	models

95
www.dbooks.org

https://www.dbooks.org/

Another	thing	to	notice	is	that	texture	coordinates	are	in	UV	format	so	y	coordinates	need	to
be	calculated	as	1	minus	the	value	contained	in	the	file.

Now,	at	last,	we	can	render	obj	models.	I’ve	included	an	OBJ	file	that	contains	the	textured
cube	that	we	have	been	using	in	previous	chapters.	In	order	to	use	it	in	the		init		method	of
our		DummyGame		class	we	just	need	to	construct	a		GameItem		instance	like	this.

Texture	texture	=	new	Texture("/textures/grassblock.png");

mesh.setTexture(texture);

GameItem	gameItem	=	new	GameItem(mesh);

gameItem.setScale(0.5f);

gameItem.setPosition(0,	0,	-2);

gameItems	=	new	GameItem[]{gameItem};

And	we	will	get	our	familiar	textured	cube.

We	can	now	try	with	other	models.	We	can	use	the	famous	Standford	Bunny	(it	can	be	freely
downloaded)	model,	which	is	included	in	the	resources.	This	model	is	not	textured	so	we
can	use	it	this	way:

Mesh	mesh	=	OBJLoader.loadMesh("/models/bunny.obj");

GameItem	gameItem	=	new	GameItem(mesh);

gameItem.setScale(1.5f);

gameItem.setPosition(0,	0,	-2);

gameItems	=	new	GameItem[]{gameItem};

Loading	more	complex	models

96

The	model	looks	a	little	bit	strange	because	we	have	no	textures	and	there’s	no	light	so	we
cannot	appreciate	the	volumes	but	you	can	check	that	the	model	is	correctly	loaded.	In	the
	Window		class	when	we	set	up	the	OpenGL	parameters	add	this	line.

glPolygonMode(GL_FRONT_AND_BACK,	GL_LINE);

You	should	now	see	something	like	this	when	you	zoom	in.

Now	you	can	now	see	all	the	triangles	that	compose	the	model.

With	this	OBJ	loader	class	you	can	now	use	Blender	to	create	your	models.	Blender	is	a
powerful	tool	but	it	can	be	some	bit	of	overwhelming	at	first,	there	are	lots	of	options,	lots	of
key	combinations	and	you	need	to	take	your	time	to	do	the	most	basic	things	by	the	first
time.	When	you	export	the	models	using	blender	please	make	sure	to	include	the	normals
and	export	faces	as	triangles.

Loading	more	complex	models

97
www.dbooks.org

https://www.dbooks.org/

Also	remeber	to	split	edges	when	exporting,	since	we	cannot	assign	several	texture
coordinates	to	the	same	vertex.	Also,	we	need	the	normals	to	be	defined	per	each	triangle,
not	asigned	to	vertices.	If	you	find	light	problems	(next	chapters),	with	some	models,	you
should	verify	the	normals.	You	can	visualize	them	inside	blender.

Loading	more	complex	models

98

Let	there	be	light
In	this	chapter	we	will	learn	how	to	add	light	to	our	3D	game	engine.	We	will	not	implement	a
physical	perfect	light	model	because,	taking	aside	the	complexity,	it	would	require	a
tremendous	amount	of	computer	recourses,	instead	we	will	implement	an	approximation
which	will	provide	decent	results.	We	will	use	an	algorithm	named	Phong	shading
(developed	by	Bui	Tuong	Phong).	Another	important	thing	to	point	is	that	we	will	only	model
lights	but	we	won’t	model	the	shadows	that	should	be	generated	by	those	lights	(this	will	be
done	in	another	chapter).

Before	we	start,	let	us	define	some	light	types:

Point	light:	This	type	of	light	models	a	light	source	that’s	emitted	uniformly	form	a	point
in	space	in	all	directions.
Spot	light:	This	type	of	light	models	a	light	source	that’s	emitted	from	a	point	in	space,
but	instead	of	emitting	in	all	directions	is	restricted	to	a	cone.
Directional	light:	This	type	for	light	models	the	light	that	we	receive	from	the	sun,	all
the	objects	in	the	3D	the	space	are	hit	by	parallel	ray	lights	coming	from	a	specific
direction.	No	matter	if	the	object	is	close	or	of	far	away,	all	the	ray	lights	impact	the
objects	with	the	same	angle.
Ambient	light:	This	type	of	light	comes	from	everywhere	in	the	space	and	illuminates
all	the	objects	in	the	same	way.

Thus,	to	model	light	we	need	to	take	into	consideration	the	type	of	light	plus,	its	position	and
some	other	parameters	like	its	colour.	Of	course,	we	must	also	consider	the	way	that
objects,	impacted	by	ray	lights,	absorb	and	reflect	light.

The	Phong	shading	algorithm	will	model	the	effects	of	light	for	each	point	in	our	model,	that
is	for	every	vertex.	This	is	why	it’s	called	a	local	illumination	simulation,	and	this	is	the
reason	which	this	algorithm	will	not	calculate	shadows,	it	will	just	calculate	the	light	to	be
applied	to	every	vertex	without	taking	into	consideration	if	the	vertex	is	behind	an	object	that

Let	there	be	light

99
www.dbooks.org

https://www.dbooks.org/

blocks	the	light.	We	will	overcome	this	in	later	chapters.	But,	because	of	that,	is	a	very
simple	and	fast	algorithm	that	provides	very	good	effects.	We	will	use	here	a	simplified
version	that	does	not	take	into	account	materials	deeply.

The	Phong	algorithm	considers	three	components	for	lighting:

Ambient	light:	models	light	that	comes	from	everywhere,	this	will	serve	us	to	illuminate
(with	the	require	intensity)	the	areas	that	are	not	hit	by	any	light,	it’s	like	a	background
light.
Diffuse	reflectance:	It	takes	into	consideration	that	surfaces	that	are	facing	the	light
source	are	brighter.
Specular	reflectance:	models	how	light	reflects	in	polished	or	metallic	surfaces

At	the	end	what	we	want	to	obtain	is	a	factor	that,	multiplied	by	colour	assigned	to	a
fragment,	will	set	that	colour	brighter	or	darker	depending	on	the	light	it	receives.	Let’s	name
our	components	as	A	for	ambient,	D	for	diffuse	and	S	for	specular.	That	factor	will	be	the
addition	of	those	components:

L = A+D + S

In	fact,	those	components	are	indeed	colours,	that	is	the	colour	components	that	each	light
component	contributes	to.	This	is	due	to	the	fact	that	light	components	will	not	only	provide	a
degree	of	intensity	but	it	can	modifiy	the	colour	of	model.	In	our	fragment	shader	we	just
need	to	multiply	that	light	colour	by	the	original	fragment	colour	(obtained	from	a	texture	or	a
base	colour).

We	can	assign	also	different	colours,	for	the	same	materials,	that	will	be	used	in	the
ambient,	diffuse	and	specular	components.	Hence,	these	components	will	be	modulated	by
the	colours	associated	to	the	material.	If	the	material	has	a	texture,	we	will	simply	use	a
single	texture	for	each	of	the	components.

So	the	final	colour	for	a	non	textured	material	will	be:	
L = A ∗ ambientColour +D ∗ diffuseColour + S ∗ specularColour.

And	the	final	colour	for	a	textured	material	will	be:

L = A ∗ textureColour +D ∗ textureColour + S ∗ textureColour

Ambient	Light	component
Let’s	view	the	first	component,	the	ambient	light	component	it’s	just	a	constant	factor	that	will
make	all	of	our	objects	brighter	or	darker.	We	can	use	it	to	simulate	light	for	a	specific	period
of	time	(dawn,	dusk,	etc.)	also	it	can	be	used	to	add	some	light	to	points	that	are	not	hit

Let	there	be	light

100

directly	by	ray	lights	but	could	be	lighted	by	indirect	light	(caused	by	reflections)	in	an	easy
way.

Ambient	light	is	the	easiest	component	to	calculate,	we	just	need	to	pass	a	colour,	since	it
will	be	multiplied	by	our	base	colour	it	just	modulates	that	base	colour.	Imagine	that	we	have
determined	that	a	colour	for	a	fragment	is	(1.0, 0.0, 0.0),	that	is	red	colour.	Without	ambient
light	it	will	be	displayed	as	a	fully	red	fragment.	If	we	set	ambient	light	to	(0.5, 0.5, 0.5)	the
final	colour	will	be	(0.5, 0, 0),	that	is	a	darker	version	of	red.	This	light	will	darken	all	the
fragments	in	the	same	way	(it	may	seem	to	be	a	little	strange	to	be	talking	about	light	that
darkens	objects	but	in	fact	that	is	the	effect	that	we	get).	Besides	that,	it	can	add	some
colour	if	the	RGB	components	are	not	the	same,	so	we	just	need	a	vector	to	modulate
ambient	light	intensity	and	colour.

Diffuse	refletance
Let’s	talk	now	about	diffuse	reflectance.	It	models	the	fact	that	surfaces	which	face	in	a
perpendicular	way	to	the	light	source	look	brighter	than	surfaces	where	light	is	received	in	a
more	indirect	angle.	Those	objects	receive	more	light,	the	light	density	(let	me	call	it	this
way)	is	higher.

But,	how	do	we	calculate	this	?	Do	you	remember	from	previous	chapter	that	we	introduced
the	normal	concept	?	The	normal	was	the	vector	perpendicular	to	a	surface	that	had	a	length
equal	to	one.	So,	Let’s	draw	the	normals	for	three	points	in	the	previous	figure,	as	you	can
see,	the	normal	for	each	point	will	be	the	vector	perpendicular	to	the	tangent	plane	for	each
point.	Instead	of	drawing	rays	coming	from	the	source	of	light	we	will	draw	vectors	from	each
point	to	the	point	of	light	(that	is,	in	the	opposite	direction).

Let	there	be	light

101
www.dbooks.org

https://www.dbooks.org/

As	you	can	see,	the	normal	associated	to	P1,	named	N1,	is	parallel	to	the	vector	that	points
to	the	light	source,	which	models	the	opposite	of	the	light	ray	(N1	has	been	sketched
displaced	so	you	can	see	it,	but	it’s	equivalent	mathematically).	P1	has	an	angle	equal	to	0
with	the	vector	that	points	to	the	light	source.	It’s	surface	is	perpendicular	to	the	light	source
and	P1	would	be	the	brightest	point.

The	normal	associated	to	P2,	named	N2,	has	an	angle	of	around	30	degrees	with	the	vector
that	points	the	light	source,	so	it	should	be	darker	tan	P1.	Finally,	the	normal	associated	to	
P3,	named	N3,	is	also	parallel	to	the	vector	that	points	to	the	light	source	but	both	vectors
are	in	the	opposite	direction.	P3	has	an	angle	of	180	degrees	with	the	vector	that	points	the
light	source,	and	should	not	get	any	light	at	all.

So	it	seems	that	we	have	a	good	approach	to	determine	the	light	intensity	that	gets	to	a
point	and	it’s	related	to	the	angle	that	forms	the	normal	with	a	vector	that	points	to	the	light
source.	How	can	we	calculate	this	?

There’s	a	mathematical	operation	that	we	can	use	and	it’s	called	dot	product.	This	operation
takes	two	vectors	and	produces	a	number	(a	scalar),	that	is	positive	if	the	angle	between
them	is	small,	and	produces	a	negative	number	if	the	angle	between	them	is	wide.	If	both
vectors	are	normalized,	that	is	the	both	have	a	length	equal	to	one,	the	dot	product	will	be
between	−1	and	1.	The	dot	product	will	be	one	if	both	vectors	look	in	the	same	direction
(angle	0)	and	it	will	be	0	if	both	vectors	form	a	square	angle	and	will	be	−1	if	both	vectors
face	opposite	direction.

Let’s	define	two	vectors,	v1	and	v2,	and	let	alpha	be	the	angle	between	them.	The	dot
product	is	defined	by	the	following	formula.

Let	there	be	light

102

If	both	vectors	are	normalized,	their	length,	their	module	will	be	equal	to	one,	so	the	dot
product	is	equal	to	the	cosine	if	the	angle	between	them.	We	will	use	that	operation	to
calculate	the	diffuse	reflectance	component.

So	we	need	to	calculate	the	vector	that	points	to	the	source	of	light.	How	we	do	this	?	We
have	the	position	of	each	point	(the	vertex	position)	and	we	have	the	position	of	the	light
source.	First	of	all,	both	coordinates	must	be	in	the	same	coordinate	space.	To	simplify,	let’s
assume	that	they	are	both	in	world	coordinate	space,	then	those	positions	are	the
coordinates	of	the	vectors	that	point	to	the	vertex	position	(V P)	and	to	the	light	source	(V S),
as	shown	in	the	next	figure.

If	we	substract	VS	from	V P 	we	get	the	vector	that	we	are	looking	for	which	it’s	called	L.

Now	we	can	do	the	dot	product	between	the	vector	that	points	to	the	light	source	and	the
normal,	that	product	is	called	the	Lambert	term,	due	to	Johann	Lambert	which	was	the	first
to	propose	that	relation	to	model	the	brightness	of	a	surface.

Let’s	summarize	how	we	can	calculate	it,	we	define	the	following	variables:

vPos:	Position	of	our	vertex	in	model	view	space	coordinates.
lPos:	Position	of	the	light	in	view	space	coordinates.

Let	there	be	light

103
www.dbooks.org

https://www.dbooks.org/

intensity:	Intensity	of	the	light	(from	0	to	1).
lColour:	Colour	of	the	light.
normal:	The	vertex	normal.
First	we	need	to	calculate	the	vector	that	points	to	the	light	source	from	current	position:
toLightDirection = lPos− vPos.	The	result	of	that	operation	needs	to	be	normalized

Then	we	need	to	calculate	the	diffuse	factor	(an	scalar):	
diffuseFactor = normal ⋅ toLightDirection.	It’s	calculated	as	dot	product	between	two
vectors,	since	we	want	it	to	be	between	−1	and	1	both	vectors	need	to	be	normalized.
Colours	need	to	be	between	0	and	1	so	if	a	value	it’s	lower	than	0	we	will	set	it	to	0.

Finally	we	just	need	to	modulate	the	light	colour	by	the	diffuse	factor	and	the	light	intensity:

colour = diffuseColour ∗ lColour ∗ diffuseFactor ∗ intensity

Specular	component
Let’s	view	now	the	specular	component,	but	first	we	need	to	examine	how	light	is	reflected.
When	light	hits	a	surface	some	part	of	it	is	absorbed	and	the	other	part	is	reflected,	if	you
remember	from	your	physics	class,	reflection	is	when	light	bounces	off	an	object.

Of	course,	surfaces	are	not	totally	polished,	and	if	you	look	at	closer	distance	you	will	see	a
lot	of	imperfections.	Besides	that,	you	have	many	ray	lights	(photons	in	fact),	that	impact	that
surface,	and	that	get	reflected	in	a	wide	range	of	angles.	Thus,	what	we	see	is	like	a	beam
of	light	being	reflected	from	the	surface.	That	is,	light	is	diffused	when	impacting	over	a
surface,	and	that’s	the	disuse	component	that	we	have	been	talking	about	previously.

Let	there	be	light

104

But	when	light	impacts	a	polished	surface,	for	instance	a	metal,	the	light	suffers	from	lower
diffusion	and	most	of	it	gets	reflected	in	the	opposite	direction	as	it	hit	that	surface.

This	is	what	the	specular	component	models,	and	it	depends	on	the	material	characteristics.
Regarding	specular	reflectance,	it’s	important	to	note	that	the	reflected	light	will	only	be
visible	if	the	camera	is	in	a	proper	position,	that	is,	if	it's	in	the	area	of	where	the	reflected
light	is	emitted.

Once	the	mechanism	that’s	behind	sepecular	reflection	has	been	explained	we	are	ready	to
calculate	that	component.	First	we	need	a	vector	that	points	from	the	light	source	to	the
vertex	point.	When	we	were	calculating	the	difusse	component	we	calculated	just	the
opposite,	a	vector	that	points	to	the	light	source.	toLightDirection,	so	let’s	calculate	it	as	
fromLightDirection = −(toLightDirection).

Then	we	need	to	calculate	the	reflected	light	that	results	from	the	impact	of	the	
fromLightDirection	into	the	surface	by	taking	into	consideration	its	normal.	There’s	a	GLSL
function	that	does	that	named		reflect	.	So,	

Let	there	be	light

105
www.dbooks.org

https://www.dbooks.org/

reflectedLight = reflect(fromLightSource,normal).

We	also	need	a	vector	that	points	to	the	camera,	let’s	name	it	cameraDirection,	and	it	will
be	calculated	as	the	difference	between	the	camera	position	and	the	vertex	position:	
cameraDirection = cameraPos− vPos.	The	camera	position	vector	and	the	vertex	position
need	to	be	in	the	same	coordinate	system	and	the	resulting	vector	needs	to	be	normalized.
The	following	figure	sketches	the	main	components	we	have	calculated	up	to	now.

Now	we	need	to	calculate	the	light	intensity	that	we	see	which	we	will	call	specularFactor.
This	component	will	be	higher	if	the	cameraDirection	and	the	reflectedLight	vectors	are
parallel	and	point	in	the	same	direction	and	will	take	its	lower	value	if	they	point	in	opposite
directions.	In	order	to	calculate	this	the	dot	product	comes	to	the	rescue	again.	So	
specularFactor = cameraDirection ⋅ reflectedLight.	We	only	want	this	value	to	be	between
0	and	1	so	if	it’s	lower	than	0	it	will	be	set	to	0.

We	also	need	to	take	into	consideration	that	this	light	must	be	more	intense	if	the	camera	is
pointing	to	the	reflected	light	cone.	This	will	be	achieved	by	powering	the	specularFactor	to
a	parameter	named	specularPower.

specularFactor = specularFactor .

Finally	we	need	to	model	the	reflectivity	of	the	material,	which	will	also	modulate	the	intensity
if	the	light	reflected,	this	will	be	done	with	another	parameter	named	reflectance.	So	the
colour	component	of	the	specular	component	will	be:	
specularColour ∗ lColour ∗ reflectance ∗ specularFactor ∗ intensity.

Attenuation

specularPower

Let	there	be	light

106

We	now	know	how	to	calculate	the	three	components	that	will	serve	us	to	model	a	point	light
with	an	ambient	light.	But	our	light	model	is	still	not	complete,	the	light	that	an	object	reflects
is	independent	of	the	distance	that	the	light	is,	we	need	to	simulate	light	attenuation.

Attenuation	is	a	function	of	the	distance	and	light.	The	intensity	of	light	is	inversely
proportional	to	the	square	of	distance.	That	fact	is	easy	to	visualize,	as	light	is	propagating
its	energy	is	distributed	along	the	surface	of	a	sphere	with	a	radius	that’s	equal	to	the
distance	traveled	by	the	light.	The	surface	of	a	sphere	is	proportional	to	the	square	of	its
radius.	We	can	calculate	the	attenuation	factor	with	this	formula:	

1.0/(atConstant+ atLinear ∗ dist+ atExponent ∗ dist).

In	order	to	simulate	attenuation	we	just	need	to	multiply	that	attenuation	factor	by	the	final
colour.

Implementation
Now	we	can	start	coding	all	the	concepts	described	above,	we	will	start	with	our	shaders.
Most	of	the	work	will	be	done	in	the	fragment	shader	but	we	need	to	pass	some	data	from
the	vertex	shader	to	it.	In	previous	chapter	the	fragment	shader	just	received	the	texture
coordinates,	now	we	are	going	to	pass	also	two	more	parameters:

The	vertex	normal	(normalized)	transformed	to	model	view	space	coordinates.
The	vertex	position	transformed	to	model	view	space	coordinates.	This	is	the	code	of
the	vertex	shader.

2

Let	there	be	light

107
www.dbooks.org

https://www.dbooks.org/

#version	330

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

layout	(location=2)	in	vec3	vertexNormal;

out	vec2	outTexCoord;

out	vec3	mvVertexNormal;

out	vec3	mvVertexPos;

uniform	mat4	modelViewMatrix;

uniform	mat4	projectionMatrix;

void	main()

{

				vec4	mvPos	=	modelViewMatrix	*	vec4(position,	1.0);

				gl_Position	=	projectionMatrix	*	mvPos;

				outTexCoord	=	texCoord;

				mvVertexNormal	=	normalize(modelViewMatrix	*	vec4(vertexNormal,	0.0)).xyz;

				mvVertexPos	=	mvPos.xyz;

}

Before	we	continue	with	the	fragment	shader	there’s	a	very	important	concept	that	must	be
highlighted.	From	the	code	above	you	can	see	that		mvVertexNormal	,	the	variable	contains
the	vertex	normal,	is	transformed	into	model	view	space	coordinates.	This	is	done	by
multiplying	the		vertexNormal		by	the		modelViewMatrix		as	with	the	vertex	position.	But
there’s	a	subtle	difference,	the	w	component	of	that	vertex	normal	is	set	to	0	before
multiplying	it	by	the	matrix:		vec4(vertexNormal,	0.0)	.	Why	are	we	doing	this	?	Because	we
do	want	the	normal	to	be	rotated	and	scaled	but	we	do	not	want	it	to	be	translated,	we	are
only	interested	into	its	direction	but	not	in	its	position.	This	is	achieved	by	setting	is	w
component	to	0	and	is	one	of	the	advantages	of	using	homogeneous	coordinates,	by	setting
the	w	component	we	can	control	what	transformations	are	applied.	You	can	do	the	matrix
multiplication	by	hand	and	see	why	this	happens.

Now	we	can	start	to	do	the	real	work	in	our	fragment	shader,	besides	declaring	as	input
parameters	the	values	that	come	from	the	vertex	shader	we	are	going	to	define	some	useful
structures	to	model	light	and	material	characteristic.	First	of	all,	we	will	define	the	structures
that	model	the	light.

Let	there	be	light

108

struct	Attenuation

{

				float	constant;

				float	linear;

				float	exponent;

};

struct	PointLight

{

				vec3	colour;

				//	Light	position	is	assumed	to	be	in	view	coordinates

				vec3	position;

				float	intensity;

				Attenuation	att;

};

A	point	light	is	defined	by	a	colour,	a	position,	a	number	between	0	and	1	which	models	its
intensity	and	a	set	of	parameters	which	will	model	the	attenuation	equation.

The	structure	that	models	a	material	characteristics	is:

struct	Material

{

				vec4	ambient;

				vec4	diffuse;

				vec4	specular;

				int	hasTexture;

				float	reflectance;

};

A	material	is	defined	by	a	a	set	of	colours	(if	we	don’t	use	texture	to	colour	the	fragments):

The	colout	used	for	the	ambient	component.
The	colour	used	for	the	diffuse	component.
The	colour	used	for	the	specular	component.

A	material	also	is	defined	by	a	flag	that	controls	if	it	has	an	associated	texture	or	not	and	a
reflectance	index.	We	will	use	the	following	uniforms	in	our	fragment	shader.

uniform	sampler2D	texture_sampler;

uniform	vec3	ambientLight;

uniform	float	specularPower;

uniform	Material	material;

uniform	PointLight	pointLight;

uniform	vec3	camera_pos;

We	are	creating	new	uniforms	to	set	the	following	variables:

Let	there	be	light

109
www.dbooks.org

https://www.dbooks.org/

The	ambient	light:	which	will	contain	a	colour	that	will	affect	every	fragment	in	the	same
way.
The	specular	power	(the	exponent	used	in	the	equation	that	was	presented	when
talking	about	the	specular	light).
A	point	light.
The	material	characteristics.
The	camera	position	in	view	space	coordinates.

We	will	also	define	some	global	variables	that	will	hold	the	material	colour	components	to	be
used	in	the	ambient,	diffuse	and	specular	components.	We	use	these	variables	since,	if	the
component	has	a	texture,	we	will	use	the	same	colour	for	all	the	components	and	we	do	not
want	to	perform	redundant	texture	lookups.	The	variables	are	defined	like	this:

vec4	ambientC;

vec4	diffuseC;

vec4	speculrC;

We	now	can	define	a	function	that	will	setup	these	variables	accodring	to	the	material
characteristics:

void	setupColours(Material	material,	vec2	textCoord)

{

				if	(material.hasTexture	==	1)

				{

								ambientC	=	texture(texture_sampler,	textCoord);

								diffuseC	=	ambientC;

								speculrC	=	ambientC;

				}

				else

				{

								ambientC	=	material.ambient;

								diffuseC	=	material.diffuse;

								speculrC	=	material.specular;

				}

}

Now	we	are	going	to	define	a	function	that,	taking	as	its	input	a	point	light,	the	vertex
position	and	its	normal	returns	the	colour	contribution	calculated	for	the	diffuse	and	specular
light	components	described	previously.

Let	there	be	light

110

vec4	calcPointLight(PointLight	light,	vec3	position,	vec3	normal)

{

				vec4	diffuseColour	=	vec4(0,	0,	0,	0);

				vec4	specColour	=	vec4(0,	0,	0,	0);

				//	Diffuse	Light

				vec3	light_direction	=	light.position	-	position;

				vec3	to_light_source		=	normalize(light_direction);

				float	diffuseFactor	=	max(dot(normal,	to_light_source),	0.0);

				diffuseColour	=	diffuseC	*	vec4(light.colour,	1.0)	*	light.intensity	*	diffuseFact

or;

				//	Specular	Light

				vec3	camera_direction	=	normalize(-position);

				vec3	from_light_source	=	-to_light_source;

				vec3	reflected_light	=	normalize(reflect(from_light_source,	normal));

				float	specularFactor	=	max(dot(camera_direction,	reflected_light),	0.0);

				specularFactor	=	pow(specularFactor,	specularPower);

				specColour	=	speculrC	*	specularFactor	*	material.reflectance	*	vec4(light.colour,	

1.0);

				//	Attenuation

				float	distance	=	length(light_direction);

				float	attenuationInv	=	light.att.constant	+	light.att.linear	*	distance	+

								light.att.exponent	*	distance	*	distance;

				return	(diffuseColour	+	specColour)	/	attenuationInv;

}

The	previous	code	is	relatively	straight	forward,	it	just	calculates	a	colour	for	the	diffuse
component,	another	one	for	the	specular	component	and	modulates	them	by	the	attenuation
suffered	by	the	light	in	its	travel	to	the	vertex	we	are	processing.

Please	be	aware	that	vertices	coordinates	are	in	view	space.	When	calculating	the	specular
component,	we	must	get	the	directtion	to	the	point	of	view,	that	is	the	camera.	This,	could	be
done	like	this:

	vec3	camera_direction	=	normalize(camera_pos	-	position);

But,	since		position		is	in	view	space,	the	camera	position	is	allways	at	the	origin,	that	is,	
(0, 0, 0),	so	we	calculate	it	like	this:

	vec3	camera_direction	=	normalize(vec3(0,	0,	0)	-	position);

Which	can	be	simplified	like	this:

Let	there	be	light

111
www.dbooks.org

https://www.dbooks.org/

	vec3	camera_direction	=	normalize(-position);

With	the	previous	function,	the	main	function	of	the	vertex	function	is	very	simple.

void	main()

{

				setupColours(material,	outTexCoord);

				vec4	diffuseSpecularComp	=	calcPointLight(pointLight,	mvVertexPos,	mvVertexNormal)

;

				fragColor	=	ambientC	*	vec4(ambientLight,	1)	+	diffuseSpecularComp;

}

The	call	to	the		setupColours	function	will	set	up	the		ambientC	,		diffuseC	and
	speculrC	variables	with	the	appropriate	colours.	Then,	we	calculate	the	diffuse	and	specular
components,	taking	into	consideration	the	attennuation.	We	do	this	using	a	single	function
call	for	convenience,	as	it	has	been	explained	above.	Final	colour	is	calculated	by	adding	the
ambient	component	(multiplying		ambientC	by	the	ambient	light).	As	you	can	see	ambient
light	is	not	affected	by	attenuation.

We	have	introduced	some	new	concepts	into	our	shader	that	require	further	explanation,	we
are	defining	structures	and	using	them	as	uniforms.	How	do	we	pass	those	structures	?	First
of	all	we	will	define	two	new	classes	that	model	the	properties	of	a	point	light	and	a	material,
named	oh	surprise,		PointLight		and		Material	.	They	are	just	plain	POJOs	so	you	can
check	them	in	the	source	code	that	accompanies	this	book.	Then,	we	need	to	create	new
methods	in	the		ShaderProgram		class,	first	to	be	able	to	create	the	uniforms	for	the	point	light
and	material	structures.

public	void	createPointLightUniform(String	uniformName)	throws	Exception	{

				createUniform(uniformName	+	".colour");

				createUniform(uniformName	+	".position");

				createUniform(uniformName	+	".intensity");

				createUniform(uniformName	+	".att.constant");

				createUniform(uniformName	+	".att.linear");

				createUniform(uniformName	+	".att.exponent");

}

public	void	createMaterialUniform(String	uniformName)	throws	Exception	{

				createUniform(uniformName	+	".ambient");

				createUniform(uniformName	+	".diffuse");

				createUniform(uniformName	+	".specular");

				createUniform(uniformName	+	".hasTexture");

				createUniform(uniformName	+	".reflectance");

}

Let	there	be	light

112

As	you	can	see,	it’s	very	simple,	we	just	create	a	separate	uniform	for	all	the	attributes	that
compose	the	structure.	Now	we	need	to	create	another	two	methods	to	set	up	the	values	of
those	uniforms	and	that	will	take	as	parameters		PointLight		and	Material	instances.

public	void	setUniform(String	uniformName,	PointLight	pointLight)	{

				setUniform(uniformName	+	".colour",	pointLight.getColor());

				setUniform(uniformName	+	".position",	pointLight.getPosition());

				setUniform(uniformName	+	".intensity",	pointLight.getIntensity());

				PointLight.Attenuation	att	=	pointLight.getAttenuation();

				setUniform(uniformName	+	".att.constant",	att.getConstant());

				setUniform(uniformName	+	".att.linear",	att.getLinear());

				setUniform(uniformName	+	".att.exponent",	att.getExponent());

}

public	void	setUniform(String	uniformName,	Material	material)	{

				setUniform(uniformName	+	".ambient",	material.getAmbientColour());

				setUniform(uniformName	+	".diffuse",	material.getDiffuseColour());

				setUniform(uniformName	+	".specular",	material.getSpecularColour());

				setUniform(uniformName	+	".hasTexture",	material.isTextured()	?	1	:	0);

				setUniform(uniformName	+	".reflectance",	material.getReflectance());

}

In	this	chapter	source	code	you	will	see	also	that	we	also	have	modified	the		Mesh		class	to
hold	a	material	instance	and	that	we	have	created	a	simple	example	that	creates	a	point
light	that	can	be	moved	by	using	the	“N”	and	“M”	keys	in	order	to	show	how	a	point	light
focusing	over	a	mesh	with	a	reflectance	value	higher	than	0	looks	like.

Let's	get	back	to	our	fragment	shader,	as	we	have	said	we	need	another	uniform	which
contains	the	camera	position,	camera_pos.	These	coordinates	must	be	in	view	space.
Usually	we	will	set	up	light	coordinates	in	world	space	coordinates,	so	we	need	to	multiply
them	by	the	view	matrix	in	order	to	be	able	to	use	them	in	our	shader,	so	we	need	to	create
a	new	method	in	the		Transformation		class	that	returns	the	view	matrix	so	we	transform	light
coordinates.

//	Get	a	copy	of	the	light	object	and	transform	its	position	to	view	coordinates

PointLight	currPointLight	=	new	PointLight(pointLight);

Vector3f	lightPos	=	currPointLight.getPosition();

Vector4f	aux	=	new	Vector4f(lightPos,	1);

aux.mul(viewMatrix);

lightPos.x	=	aux.x;

lightPos.y	=	aux.y;

lightPos.z	=	aux.z;	

shaderProgram.setUniform("pointLight",	currPointLight);

Let	there	be	light

113
www.dbooks.org

https://www.dbooks.org/

We	will	not	include	the	whole	source	code	because	this	chapter	would	be	too	long	and	it
would	not	contribute	too	much	to	clarify	the	concepts	explained	here.	You	can	check	it	in	the
source	code	that	accompanies	this	book.

Let	there	be	light

114

Let	there	be	even	more	light
In	this	chapter	we	are	going	to	implement	other	light	types	that	we	introduced	in	previous
chapter.	We	will	start	with	directional	lightning.

Directional	Light
If	you	recall,	directional	lighting	hits	all	the	objects	by	parallel	rays	all	coming	from	the	same
direction.	It	models	light	sources	that	are	far	away	but	have	a	high	intensity	such	us	the	Sun.

Another	characteristic	of	directional	light	is	that	it	is	not	affected	by	attenuation.	Think	again
about	Sun	light,	all	objects	that	are	hit	by	ray	lights	are	illuminated	with	the	same	intensity,
the	distance	from	the	sun	is	so	huge	that	the	position	of	the	objects	is	irrelevant.	In	fact,
directional	lights	are	modeled	as	light	sources	placed	at	the	infinity,	if	it	was	affected	by
attenuation	it	would	have	no	effect	in	any	object	(it’s	colour	contribution	would	be	equal	to	0).

Besides	that,	directional	light	is	composed	also	by	a	diffuse	and	specular	components,	the
only	differences	with	point	lights	is	that	it	does	not	have	a	position	but	a	direction	and	that	it
is	not	affected	by	attenuation.	Let’s	get	back	to	the	direction	attribute	of	directional	light,	and
imagine	we	are	modeling	the	movement	of	the	sun	across	our	3D	world.	If	we	are	assuming
that	the	north	is	placed	towards	the	increasing	z-axis,	the	following	picture	shows	the
direction	to	the	light	source	at	dawn,	midnight	and	dusk.

Let	there	be	even	more	light

115
www.dbooks.org

https://www.dbooks.org/

Light	directions	for	the	above	positions	are:

Dawn:	(-1,	0,	0)
Mid	day:	(0,	1,	0)
Dusk:	(1,	0,	0)

Side	note:	You	may	think	that	above	coordinates	are	equal	to	position	ones,	but	they	model
a	vector,	a	direction,	not	a	position.	From	the	mathematical	point	of	view	a	vector	and	a
position	are	not	distinguishable	but	they	have	a	totally	different	meaning.

But,	how	do	we	model	the	fact	that	this	light	is	located	at	the	infinity	?	The	answer	is	by
using	the	w	coordinate,	that	is,	by	using	homogeneous	coordinates	and	setting	the	w
coordinate	to	0:

Dawn:	(-1,	0,	0,	0)
Mid	day:	(0,	1,	0,	0)
Dusk:	(1,	0,	0,	0)

This	is	the	same	case	as	when	we	pass	the	normals,	for	normals	we	set	the	w	component	to
0	to	state	that	we	are	not	interested	in	displacements,	just	in	the	direction.	Also,	when	we
deal	with	directional	light	we	need	to	do	the	same,	camera	translations	should	not	affect	the
direction	of	a	directional	light.

So	let’s	start	coding	and	model	our	directional	light.	The	first	thing	that	we	are	going	to	do	is
to	create	a	class	that	models	its	attributes.	It	will	be	another	POJO	with	a	copy	constructor
which	stores	the	direction,	the	colour	and	the	intensity.

Let	there	be	even	more	light

116

package	org.lwjglb.engine.graph;

import	org.joml.Vector3f;

public	class	DirectionalLight	{

				private	Vector3f	color;

				private	Vector3f	direction;

				private	float	intensity;

				public	DirectionalLight(Vector3f	color,	Vector3f	direction,	float	intensity)	{

								this.color	=	color;

								this.direction	=	direction;

								this.intensity	=	intensity;

				}

				public	DirectionalLight(DirectionalLight	light)	{

								this(new	Vector3f(light.getColor()),	new	Vector3f(light.getDirection()),	light

.getIntensity());

				}

				//	Getters	and	settes	beyond	this	point...

As	you	can	see,	we	are	still	using	a		Vector3f		to	model	the	direction.	Keep	calm,	we	will
deal	with	the	w	component	when	we	transfer	the	directional	light	to	the	shader.	And	by	the
way,	the	next	thing	that	we	will	do	is	to	update	the		ShaderProgram		to	create	and	update	the
uniform	that	will	hold	the	directional	light.

In	our	fragment	shader	we	will	define	a	structure	that	models	a	directional	light.

struct	DirectionalLight

{

				vec3	colour;

				vec3	direction;

				float	intensity;

};

With	that	definition	the	new	methods	in	the		ShaderProgram		class	are	straight	forward.

Let	there	be	even	more	light

117
www.dbooks.org

https://www.dbooks.org/

//	...

public	void	createDirectionalLightUniform(String	uniformName)	throws	Exception	{

				createUniform(uniformName	+	".colour");

				createUniform(uniformName	+	".direction");

				createUniform(uniformName	+	".intensity");

}

//	...

public	void	setUniform(String	uniformName,	DirectionalLight	dirLight)	{

				setUniform(uniformName	+	".colour",	dirLight.getColor());

				setUniform(uniformName	+	".direction",	dirLight.getDirection());

				setUniform(uniformName	+	".intensity",	dirLight.getIntensity());

}

Now	we	need	to	use	that	uniform.	We	will	model	how	the	sun	appears	to	move	across	the
sky	by	controlling	its	angle	in	our		DummyGame		class.

We	need	to	update	light	direction	so	when	the	sun	it’s	at	dawn	(-90º)	its	direction	is	(-1,0,0)
and	its	x	coordinate	progressively	increases	from	-1	to	0	and	the	“y”	coordinate	increases	to
1	as	it	approaches	mid	day.	Then	the	“x”	coordinate	increases	to	1	and	the	“y”	coordinates
decreases	to	0	again.	This	can	be	done	by	setting	the	x	coordinate	to	the	sine	of	the	angle
and	y	coordinate	to	the	cosine	of	the	angle.

Let	there	be	even	more	light

118

We	will	also	modulate	light	intensity,	the	intensity	will	be	increasing	when	it’s	getting	away
from	dawn	and	will	decrease	as	it	approaches	to	dusk.	We	will	simulate	the	night	by	setting
the	intensity	to	0.	Besides	that,	we	will	also	modulate	the	colour	so	the	light	gets	more	red	at
dawn	and	at	dusk.	This	will	be	done	in	the	update	method	of	the		DummyGame		class.

//	Update	directional	light	direction,	intensity	and	colour

lightAngle	+=	1.1f;

if	(lightAngle	>	90)	{

				directionalLight.setIntensity(0);

				if	(lightAngle	>=	360)	{

								lightAngle	=	-90;

				}

}	else	if	(lightAngle	<=	-80	||	lightAngle	>=	80)	{

				float	factor	=	1	-	(float)(Math.abs(lightAngle)	-	80)/	10.0f;

				directionalLight.setIntensity(factor);

				directionalLight.getColor().y	=	Math.max(factor,	0.9f);

				directionalLight.getColor().z	=	Math.max(factor,	0.5f);

}	else	{

				directionalLight.setIntensity(1);

				directionalLight.getColor().x	=	1;

				directionalLight.getColor().y	=	1;

				directionalLight.getColor().z	=	1;

}

double	angRad	=	Math.toRadians(lightAngle);

directionalLight.getDirection().x	=	(float)	Math.sin(angRad);

directionalLight.getDirection().y	=	(float)	Math.cos(angRad);

Then	we	need	to	pass	the	directional	light	to	our	shaders	in	the	render	method	of	the
	Renderer		class.

Let	there	be	even	more	light

119
www.dbooks.org

https://www.dbooks.org/

//	Get	a	copy	of	the	directional	light	object	and	transform	its	position	to	view	coord

inates

DirectionalLight	currDirLight	=	new	DirectionalLight(directionalLight);

Vector4f	dir	=	new	Vector4f(currDirLight.getDirection(),	0);

dir.mul(viewMatrix);

currDirLight.setDirection(new	Vector3f(dir.x,	dir.y,	dir.z));

shaderProgram.setUniform("directionalLight",	currDirLight);

As	you	can	see	we	need	to	transform	the	light	direction	coordinates	to	view	space,	but	we
set	the	w	component	to	0	since	we	are	not	interested	in	applying	translations.

Now	we	are	ready	to	do	the	real	work	which	will	be	done	in	the	fragment	shader	since	the
vertex	shader	does	not	be	modified.	We	have	yet	stated	above	that	we	need	to	define	a	new
struct,	named		DirectionalLight	,	to	model	a	directional	light,	and	we	will	need	a	new
uniform	form	that.

uniform	DirectionalLight	directionalLight;

We	need	to	refactor	our	code	a	little	bit,	in	the	previous	chapter	we	had	a	function	called
	calcPointLight		that	calculate	the	diffuse	and	specular	components	and	also	applied	the
attenuation.	As	we	have	explained	directional	light	also	contributes	to	the	diffuse	and
specular	components	but	is	not	affected	by	attenuation,	so	we	will	create	a	new	function
named		calcLightColour		that	just	calculates	those	components.

Let	there	be	even	more	light

120

vec4	calcLightColour(vec3	light_colour,	float	light_intensity,	vec3	position,	vec3	to_

light_dir,	vec3	normal)

{

				vec4	diffuseColour	=	vec4(0,	0,	0,	0);

				vec4	specColour	=	vec4(0,	0,	0,	0);

				//	Diffuse	Light

				float	diffuseFactor	=	max(dot(normal,	to_light_dir),	0.0);

				diffuseColour	=	diffuseC	*	vec4(light_colour,	1.0)	*	light_intensity	*	diffuseFact

or;

				//	Specular	Light

				vec3	camera_direction	=	normalize(camera_pos	-	position);

				vec3	from_light_dir	=	-to_light_dir;

				vec3	reflected_light	=	normalize(reflect(from_light_dir	,	normal));

				float	specularFactor	=	max(dot(camera_direction,	reflected_light),	0.0);

				specularFactor	=	pow(specularFactor,	specularPower);

				specColour	=	speculrC	*	light_intensity		*	specularFactor	*	material.reflectance	*	

vec4(light_colour,	1.0);

				return	(diffuseColour	+	specColour);

}

Then	the	method		calcPointLight		applies	attenuation	factor	to	the	light	colour	calculated	in
the	previous	function.

vec4	calcPointLight(PointLight	light,	vec3	position,	vec3	normal)

{

				vec3	light_direction	=	light.position	-	position;

				vec3	to_light_dir		=	normalize(light_direction);

				vec4	light_colour	=	calcLightColour(light.colour,	light.intensity,	position,	to_li

ght_dir,	normal);

				//	Apply	Attenuation

				float	distance	=	length(light_direction);

				float	attenuationInv	=	light.att.constant	+	light.att.linear	*	distance	+

								light.att.exponent	*	distance	*	distance;

				return	light_colour	/	attenuationInv;

}

We	will	create	also	a	new	function	to	calculate	the	effect	of	a	directional	light	which	just
invokes	the		calcLightColour		function	with	the	light	direction.

Let	there	be	even	more	light

121
www.dbooks.org

https://www.dbooks.org/

vec4	calcDirectionalLight(DirectionalLight	light,	vec3	position,	vec3	normal)

{

				return	calcLightColour(light.colour,	light.intensity,	position,	normalize(light.di

rection),	normal);

}

Finally,	our	main	method	just	aggregates	the	colour	components	of	the	ambient	point	and
directional	lights	to	calculate	the	fragment	colour.

void	main()

{

				setupColours(material,	outTexCoord);

				vec4	diffuseSpecularComp	=	calcDirectionalLight(directionalLight,	mvVertexPos,	mvV

ertexNormal);

				diffuseSpecularComp	+=	calcPointLight(pointLight,	mvVertexPos,	mvVertexNormal);	

				fragColor	=	ambientC	*	vec4(ambientLight,	1)	+	diffuseSpecularComp;

}

And	that’s	it,	we	can	now	simulate	the	movement	of	the,	artificial,	sun	across	the	sky	and	get
something	like	this	(movement	is	accelerated	so	it	can	be	viewed	without	waiting	too	long).

Spot	Light
Now	we	will	implement	spot	lights	which	are	very	similar	to	point	lights	but	the	emitted	light	is
restricted	to	a	3D	cone.	It	models	the	light	that	comes	out	from	focuses	or	any	other	light
source	that	does	not	emit	in	all	directions.	A	spot	light	has	the	same	attributes	as	a	point	light
but	adds	two	new	parameters,	the	cone	angle	and	the	cone	direction.

Let	there	be	even	more	light

122

Spot	light	contribution	is	calculated	in	the	same	way	as	a	point	light	with	some	exceptions.
The	point	which	the	vector	that	points	from	the	vertex	position	to	the	light	source	is	not
contained	inside	the	light	cone	are	not	affected	by	the	point	light.

How	do	we	calculate	if	it’s	inside	the	light	cone	or	not	?	We	need	to	do	a	dot	product	again
between	the	vector	that	points	from	the	light	source	and	the	cone	direction	vector	(both	of
them	normalized).

Let	there	be	even	more	light

123
www.dbooks.org

https://www.dbooks.org/

The	dot	product	between	L	and	C	vectors	is	equal	to:	 ⋅ = ∣ ∣ ⋅ ∣ ∣ ⋅ Cos(α).	If,	in	our	spot
light	definition	we	store	the	cosine	of	the	cutoff	angle,	if	the	dot	product	is	higher	than	that
value	we	will	know	that	it	is	inside	the	light	cone	(recall	the	cosine	graph,	when	α	angle	is	0,
the	cosine	will	be	1,	the	smaller	the	angle	the	higher	the	cosine).

The	second	difference	is	that	the	points	that	are	far	away	from	the	cone	vector	will	receive
less	light,	that	is,	the	attenuation	will	be	higher.	There	are	several	ways	of	calculate	this,	we
will	chose	a	simple	approach	by	multiplying	the	attenuation	by	the	following	factor:

1 − (1 − Cos(α))/(1 − Cos(cutOffAngle)

(In	our	fragment	shaders	we	won’t	have	the	angle	but	the	cosine	of	the	cut	off	angle.	You
can	check	that	the	formula	above	produces	values	from	0	to	1,	0	when	the	angle	is	equal	to
the	cutoff	angle	and	1	when	the	angle	is	0).

The	implementation	will	be	very	similar	to	the	rest	of	lights.	We	need	to	create	a	new	class
named		SpotLight	,	set	up	the	appropriate	uniforms,	pass	it	to	the	shader	and	modify	the
fragment	shader	to	get	it.	You	can	check	the	source	code	for	this	chapter.

Another	important	thing	when	passing	the	uniforms	is	that	translations	should	not	be	applied
to	the	light	cone	direction	since	we	are	only	interested	in	directions.	So	as	in	the	case	of	the
directional	light,	when	transforming	to	view	space	coordinates	we	must	set	w	component	to	
0.

L C L C

Let	there	be	even	more	light

124

Multiple	Lights
So	at	last	we	have	finally	implemented	all	the	four	types	of	light,	but	currently	we	can	only
use	one	instance	for	each	type.	This	is	ok	for	ambient	and	directional	light	but	we	definitively
want	to	use	several	point	and	spot	lights.	We	need	to	set	up	our	fragment	shader	to	receive
a	list	of	lights,	so	we	will	use	arrays	to	store	that	information.	Let’s	see	how	this	can	be	done.

Before	we	start,	it’s	important	to	note	that	in	GLSL	the	length	of	the	array	must	be	set	at
compile	time	so	it	must	be	big	enough	to	accommodate	all	the	objects	we	need	later,	at
runtime.	The	first	thing	that	we	will	do	is	define	some	constants	to	set	up	the	maximum
number	of	point	and	spot	lights	that	we	are	going	to	use.

const	int	MAX_POINT_LIGHTS	=	5;

const	int	MAX_SPOT_LIGHTS	=	5;

Then	we	need	to	modify	the	uniforms	that	previously	store	just	a	single	point	and	spot	light
to	use	an	array.

uniform	PointLight	pointLights[MAX_POINT_LIGHTS];

uniform	SpotLight	spotLights[MAX_SPOT_LIGHTS];

In	the	main	function	we	just	need	to	iterate	over	those	arrays	to	calculate	the	colour
contributions	of	each	instance	using	the	existing	functions.	We	may	not	pass	as	many	lights
as	the	array	length	so	we	need	to	control	it.	There	are	many	possible	ways	to	do	this,	one	is
to	pass	a	uniform	with	the	actual	array	length	but	this	may	not	work	with	older	graphics
cards.	Instead	we	will	check	the	light	intensity	(empty	positions	in	array	will	have	a	light
intensity	equal	to	0).

Let	there	be	even	more	light

125
www.dbooks.org

https://www.dbooks.org/

for	(int	i=0;	i<MAX_POINT_LIGHTS;	i++)

{

				if	(pointLights[i].intensity	>	0)

				{

								diffuseSpecularComp	+=	calcPointLight(pointLights[i],	mvVertexPos,	mvVertexNor

mal);	

				}

}

for	(int	i=0;	i<MAX_SPOT_LIGHTS;	i++)

{

				if	(spotLights[i].pl.intensity	>	0)

				{

								diffuseSpecularComp	+=	calcSpotLight(spotLights[i],	mvVertexPos,	mvVertexNorma

l);

				}

}

Now	we	need	to	create	those	uniforms	in	the		Render		class.	When	we	are	using	arrays	we
need	to	create	a	uniform	for	each	element	of	the	list.	So,	for	instance,	for	the	pointLights

array	we	need	to	create	a	uniform	named		pointLights[0]	,		pointLights[1]	,	etc.	And	of
ocurse,	this	translates	also	to	the	structure	attributes,	so	we	will	have
	pointLights[0].colour	,		pointLights[1],	colour	,	etc.	The	methods	to	create	those	uniforms
are	as	follows.

public	void	createPointLightListUniform(String	uniformName,	int	size)	throws	Exception	

{

				for	(int	i	=	0;	i	<	size;	i++)	{

								createPointLightUniform(uniformName	+	"["	+	i	+	"]");

				}

}

public	void	createSpotLightListUniform(String	uniformName,	int	size)	throws	Exception	

{

				for	(int	i	=	0;	i	<	size;	i++)	{

								createSpotLightUniform(uniformName	+	"["	+	i	+	"]");

				}

}

We	also	need	methods	to	set	up	the	values	of	those	uniforms.

Let	there	be	even	more	light

126

public	void	setUniform(String	uniformName,	PointLight[]	pointLights)	{

				int	numLights	=	pointLights	!=	null	?	pointLights.length	:	0;

				for	(int	i	=	0;	i	<	numLights;	i++)	{

								setUniform(uniformName,	pointLights[i],	i);

				}

}

public	void	setUniform(String	uniformName,	PointLight	pointLight,	int	pos)	{

				setUniform(uniformName	+	"["	+	pos	+	"]",	pointLight);

}

public	void	setUniform(String	uniformName,	SpotLight[]	spotLights)	{

				int	numLights	=	spotLights	!=	null	?	spotLights.length	:	0;

				for	(int	i	=	0;	i	<	numLights;	i++)	{

								setUniform(uniformName,	spotLights[i],	i);

				}

}

public	void	setUniform(String	uniformName,	SpotLight	spotLight,	int	pos)	{

				setUniform(uniformName	+	"["	+	pos	+	"]",	spotLight);

}

Finally	we	just	need	to	update	the		Render		class	to	receive	a	list	of	point	and	spot	lights,	and
modify	accordingly	the		DummyGame		class	to	create	those	list	to	see	something	like	this.

Let	there	be	even	more	light

127
www.dbooks.org

https://www.dbooks.org/

Game	HUD
In	this	chapter	we	will	create	a	HUD	(Heads-Up	Display)	for	our	game.	That	is,	a	set	of	2D
shapes	and	text	that	are	displayed	at	any	time	over	the	3D	scene	to	show	relevant
information.	We	will	create	a	simple	HUD	that	will	serve	us	to	show	some	basic	techniques
for	representing	that	information.

When	you	examine	the	source	code	for	this	chpater,	you	will	see	also	that	some	little
refactoring	has	been	applied	to	the	source	code.	The	changes	affect	especially	the
	Renderer		class	in	order	to	prepare	it	for	the	HUD	rendering.

Text	rendering
The	first	thing	that	we	will	do	to	create	a	HUD	is	render	text.	In	order	to	do	that,	we	are	going
to	map	a	texture	that	contains	alphabet	characters	into	a	quad.	That	quad	will	be	divided	by
a	set	of	tiles	which	will	represent	a	single	letter.	later	on,	we	will	use	that	texture	to	draw	the
text	in	the	screen.	So	the	first	step	is	to	create	the	texture	that	contains	the	alphabet.	You
can	use	many	programs	out	there	that	can	do	this	task,	such	as,	CBG,	F2IBuilder,	etc.	In
this	case,	We	will	use	Codehead’s	Bitmap	Font	Generator	(CBFG).

CBG	lets	you	configure	many	options	such	as	the	texture	size,	the	font	type,	the	anti-aliasing
to	be	applied,	etc.	The	following	figure	depicts	the	configuration	that	we	will	use	to	generate
a	texture	file.	In	this	chapter	we	will	assume	that	we	will	be	rendering	text	encoded	in	ISO-
8859-1	format,	if	you	need	to	deal	with	different	character	sets	you	will	need	to	tweak	a	little
bit	the	code.

HUD

128

http://www.codehead.co.uk/cbfg/
http://sourceforge.net/projects/f2ibuilder/

When	you	have	finished	configuring	all	the	settings	in	CBG	you	can	export	the	result	to
several	image	formats.	In	this	case	we	will	export	it	as	a	BMP	file	and	then	transform	it	to
PNG	so	it	can	be	loaded	as	a	texture.	When	transforming	it	to	PNG	we	will	set	up	also	the
black	background	as	transparent,	that	is,	we	will	set	the	black	colour	to	have	an	alpha	value
equal	to	0	(You	can	use	tools	like	GIMP	to	do	that).	At	the	end	you	will	have	something
similar	as	the	following	picture.

As	you	can	see,	the	image	has	all	the	characters	displayed	in	rows	and	columns.	In	this
case	the	image	is	composed	by	15	columns	and	17	rows.	By	using	the	character	code	of	a
specific	letter	we	can	calculate	the	row	and	the	column	that	is	enclosed	in	the	image.	The

HUD

129
www.dbooks.org

https://www.dbooks.org/

column	can	be	calculated	as	follows:	column = code	mod	numberOfColumns.	Where	mod

is	the	module	operator.	The	row	can	be	calculated	as	follows:	row = code/numberOfCols,
in	this	case	we	will	do	a	integer	by	integer	operation	so	we	can	ignore	the	decimal	part.

We	will	create	a	new	class	named		TextItem		that	will	construct	all	the	graphical	elements
needed	to	render	text.	This	is	a	simplified	version	that	does	not	deal	with	multiline	texts,	etc.
but	it	will	allow	us	to	present	textual	information	in	the	HUD.	Here	you	can	see	the	first	lines
and	the	constructor	of	this	class.

package	org.lwjglb.engine;

import	java.nio.charset.Charset;

import	java.util.ArrayList;

import	java.util.List;

import	org.lwjglb.engine.graph.Material;

import	org.lwjglb.engine.graph.Mesh;

import	org.lwjglb.engine.graph.Texture;

public	class	TextItem	extends	GameItem	{

				private	static	final	float	ZPOS	=	0.0f;

				private	static	final	int	VERTICES_PER_QUAD	=	4;

				private	String	text;

				private	final	int	numCols;

				private	final	int	numRows;

				public	TextItem(String	text,	String	fontFileName,	int	numCols,	int	numRows)	throws

	Exception	{

								super();

								this.text	=	text;

								this.numCols	=	numCols;

								this.numRows	=	numRows;

								Texture	texture	=	new	Texture(fontFileName);

								this.setMesh(buildMesh(texture,	numCols,	numRows));

				}

As	you	can	see	this	class	extends	the		GameItem		class,	this	is	because	we	will	be	interested
in	changing	the	text	position	in	the	screen	and	may	also	need	to	scale	and	rotate	it.	The
constructor	receives	the	text	to	be	displayed	and	the	relevant	data	of	the	texture	file	that	will
be	used	to	render	it	(the	file	that	contains	the	image	and	the	number	of	columns	and	rows).

In	the	constructor	we	load	the	texture	image	file	and	invoke	a	method	that	will	create	a
	Mesh		instance	that	models	our	text.	Let’s	examine	the		buildMesh		method.

HUD

130

private	Mesh	buildMesh(Texture	texture,	int	numCols,	int	numRows)	{

				byte[]	chars	=	text.getBytes(Charset.forName("ISO-8859-1"));

				int	numChars	=	chars.length;

				List<Float>	positions	=	new	ArrayList();

				List<Float>	textCoords	=	new	ArrayList();

				float[]	normals			=	new	float[0];

				List<Integer>	indices			=	new	ArrayList();

				float	tileWidth	=	(float)texture.getWidth()	/	(float)numCols;

				float	tileHeight	=	(float)texture.getHeight()	/	(float)numRows;

The	first	lines	of	code	create	the	data	structures	that	will	be	used	to	store	the	positions,
texture	coordinates,	normals	and	indices	of	the	Mesh.	In	this	case	we	will	not	apply	lighting
so	the	normals	array	will	be	empty.	What	we	are	going	to	do	is	construct	a	quad	composed
by	a	set	of	tiles,	each	of	them	representing	a	single	character.	We	need	to	assign	also	the
appropriate	texture	coordinates	depending	on	the	character	code	associated	to	each	tile.
The	following	picture	shows	the	different	elements	that	compose	the	tiles	and	the	quad.

So,	for	each	character	we	need	to	create	a	tile	which	is	formed	by	two	triangles	which	can
be	defined	by	using	four	vertices	(V1,	V2,	V3	and	V4).	The	indices	will	be	(0,	1,	2)	for	the
first	triangle	(the	lower	one)	and	(3,	0,	2)	for	the	other	triangle	(the	upper	one).	Texture
coordinates	are	calculated	based	on	the	column	and	the	row	associated	to	each	character	in
the	texture	image.	Texture	coordinates	need	to	be	in	the	range	[0,1]	so	we	just	need	to
divide	the	current	row	or	the	current	column	by	the	total	number	of	rows	or	columns	to	get
the	coordinate	associated	to	V1.	For	the	rest	of	vertices	we	just	need	to	increase	the	current
column	or	row	by	one	in	order	to	get	the	appropriate	coordinate.

The	following	loop	creates	all	the	vertex	position,	texture	coordinates	and	indices	associated
to	the	quad	that	contains	the	text.

HUD

131
www.dbooks.org

https://www.dbooks.org/

for(int	i=0;	i<numChars;	i++)	{

				byte	currChar	=	chars[i];

				int	col	=	currChar	%	numCols;

				int	row	=	currChar	/	numCols;

				//	Build	a	character	tile	composed	by	two	triangles

				//	Left	Top	vertex

				positions.add((float)i*tileWidth);	//	x

				positions.add(0.0f);	//y

				positions.add(ZPOS);	//z

				textCoords.add((float)col	/	(float)numCols);

				textCoords.add((float)row	/	(float)numRows);

				indices.add(i*VERTICES_PER_QUAD);

				//	Left	Bottom	vertex

				positions.add((float)i*tileWidth);	//	x

				positions.add(tileHeight);	//y

				positions.add(ZPOS);	//z

				textCoords.add((float)col	/	(float)numCols);

				textCoords.add((float)(row	+	1)	/	(float)numRows);

				indices.add(i*VERTICES_PER_QUAD	+	1);

				//	Right	Bottom	vertex

				positions.add((float)i*tileWidth	+	tileWidth);	//	x

				positions.add(tileHeight);	//y

				positions.add(ZPOS);	//z

				textCoords.add((float)(col	+	1)/	(float)numCols);

				textCoords.add((float)(row	+	1)	/	(float)numRows);

				indices.add(i*VERTICES_PER_QUAD	+	2);

				//	Right	Top	vertex

				positions.add((float)i*tileWidth	+	tileWidth);	//	x

				positions.add(0.0f);	//y

				positions.add(ZPOS);	//z

				textCoords.add((float)(col	+	1)/	(float)numCols);

				textCoords.add((float)row	/	(float)numRows);

				indices.add(i*VERTICES_PER_QUAD	+	3);

				//	Add	indices	por	left	top	and	bottom	right	vertices

				indices.add(i*VERTICES_PER_QUAD);

				indices.add(i*VERTICES_PER_QUAD	+	2);

}

The	are	some	important	things	to	notice	in	the	previous	fragment	of	code:

We	will	represent	the	vertices	using	screen	coordinates	(remember	that	the	origin	of	the
screen	coordinates	is	located	at	the	top	left	corner).	The	y	coordinate	of	the	vertices	on
top	of	the	triangles	is	lower	than	the	y	coordinate	of	the	vertices	on	the	bottom	of	the
triangles.

HUD

132

We	don’t	scale	the	shape,	so	each	tile	is	at	a	x	distance	equal	to	a	character	width.	The
height	of	the	triangles	will	be	the	height	of	each	character.	This	is	because	we	want	to
represent	the	text	as	similar	as	possible	as	the	original	texture.	(Anyway	we	can	later
scale	the	result	since		TextItem		class	inherits	from		GameItem).
We	set	a	fixed	value	for	the	z	coordinate,	since	it	will	be	irrelevant	in	order	to	draw	this
object.

The	next	figure	shows	the	coordinates	of	some	vertices.

Why	do	we	use	screen	coordinates	?	First	of	all,	because	we	will	be	rendering	2D	objects	in
our	HUD	and	often	is	more	handy	to	use	them,	and	secondly	because	we	will	use	an
orthographic	projection	in	order	to	draw	them.	We	will	explain	what	is	an	orthographic
projection	later	on.

The		TextItem		class	is	completed	with	other	methods	to	get	the	text	and	to	change	it	at	run
time.	Whenever	the	text	is	changed,	we	need	to	clean	up	the	previous	VAOs	(stored	in	the
	Mesh		instance)	and	create	a	new	one.	We	do	not	need	to	destroy	the	texture,	so	we	have
created	a	new	method	in	the		Mesh		class	to	just	remove	that	data.

public	String	getText()	{

				return	text;

}

public	void	setText(String	text)	{

				this.text	=	text;

				Texture	texture	=	this.getMesh().getMaterial().getTexture();

				this.getMesh().deleteBuffers();

				this.setMesh(buildMesh(texture,	numCols,	numRows));

}

HUD

133
www.dbooks.org

https://www.dbooks.org/

Now	that	we	have	set	up	the	infrastucture	needed	to	darw	text,	How	do	we	do	it?	The	basis
is	first	to	render	the	3D	scene,	as	in	the	previous	chapters,	and	then	render	the	2D	HUD
over	it.	In	order	to	render	the	HUD	we	will	use	an	orthographic	projection	(also	named
orthogonal	projection).	An	Orthographic	projection	is	a	2D	representation	of	a	3D	object.	You
may	already	have	seen	some	samples	in	blueprints	of	3D	objects	which	show	the
representation	of	those	objects	from	the	top	or	from	some	sides.	The	following	picture	shows
the	orthographic	projection	of	a	cylinder	from	the	top	and	from	the	front.

This	projection	is	very	convenient	in	order	to	draw	2D	objects	because	it	"ignores"	the	values
of	the	z	coordinates,	that	is,	the	distance	to	the	view.	With	this	projection	the	objects	sizes	do
not	decrease	with	the	distance	(as	in	the	perspective	projection).	In	order	to	project	an	object
using	an	ortographic	projection	we	will	need	to	use	another	matrix,	the	orthographic	matrix
which	formula	is	shown	below.

This	matrix	also	corrects	the	distortions	that	otherwise	will	be	generated	due	to	the	fact	that
our	window	is	not	always	a	perfect	square	but	a	rectangle.	The	right	and	bottom	parameters
will	be	the	screen	size,	the	left	and	the	top	ones	will	be	the	origin.	The	orthographic
projection	matrix	is	used	to	transform	screen	coordinates	to	3D	space	coordinates.	The
following	picture	shows	how	this	mapping	is	done.

HUD

134

The	properties	of	this	matrix,	will	allow	us	to	use	screen	coordinates.

We	can	now	continue	with	thee	implementation	of	the	HUD.	The	next	thing	that	we	should
do	is	create	another	set	of	shaders,	a	vertex	and	a	fragment	shaders,	in	order	to	draw	the
objects	of	the	HUD.	The	vertex	shader	is	actually	very	simple.

#version	330

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

layout	(location=2)	in	vec3	vertexNormal;

out	vec2	outTexCoord;

uniform	mat4	projModelMatrix;

void	main()

{

				gl_Position	=	projModelMatrix	*	vec4(position,	1.0);

				outTexCoord	=	texCoord;

}

It	will	just	receive	the	vertices	positions,	the	texture	coordinates,	the	indices	and	the	normals
and	will	transform	them	to	the	3D	space	coordinates	using	a	matrix.	That	matrix	is	the
multiplication	of	the	ortographic	projection	matrix	and	the	model	matrix,	
projModelMatrix = ortographicMatrix ⋅modelMatrix.	Since	we	are	not	doing	anything
with	the	coordinates	in	model	space,	it’s	much	more	efficient	to	multiply	both	matrices	in	java
code	than	in	the	shadere.	By	doing	so	we	will	be	doing	that	multipliaztion	once	per	item
insted	of	doing	it	for	each	vertex.	Remember	that	our	vertices	should	be	expressed	in	screen
coordinates.

The	fragment	shader	is	also	very	simple.

HUD

135
www.dbooks.org

https://www.dbooks.org/

#version	330

in	vec2	outTexCoord;

in	vec3	mvPos;

out	vec4	fragColor;

uniform	sampler2D	texture_sampler;

uniform	vec4	colour;

void	main()

{

				fragColor	=	colour	*	texture(texture_sampler,	outTexCoord);

}

It	just	uses	the	texture	coordinates	and	multiples	that	colour	by	a	base	colour.	This	can	be
used	to	change	the	colour	of	the	text	to	be	rendered	without	the	need	of	creating	several
texture	files.	Now	that	we	have	created	the	new	pair	of	shaders	we	can	use	them	in	the
	Renderer		class.	But,	before	that,	we	will	create	a	new	interface	named		IHud		that	will
contain	all	the	elements	that	are	to	be	displayed	in	the	HUD.	This	interface	will	also	provide
a	default		cleanup		method.

package	org.lwjglb.engine;

public	interface	IHud	{

				GameItem[]	getGameItems();

				default	void	cleanup()	{

								GameItem[]	gameItems	=	getGameItems();

								for	(GameItem	gameItem	:	gameItems)	{

												gameItem.getMesh().cleanUp();

								}

				}

}

By	using	that	interface	our	different	games	can	define	custom	HUDs	but	the	rendering
mechanism	does	not	need	to	be	changed.	Now	we	can	get	back	to	the		Renderer		class,
which	by	the	way	has	been	moved	to	the	engine	graphics	package	because	now	it’s	generic
enough	to	not	be	dependent	on	the	specific	implementation	of	each	game.	In	the		Renderer	
class	we	have	added	a	new	method	to	create,	link	and	set	up	a	new		ShaderProgram		that
uses	the	shaders	described	above.

HUD

136

private	void	setupHudShader()	throws	Exception	{

				hudShaderProgram	=	new	ShaderProgram();

				hudShaderProgram.createVertexShader(Utils.loadResource("/shaders/hud_vertex.vs"));

				hudShaderProgram.createFragmentShader(Utils.loadResource("/shaders/hud_fragment.fs"

));

				hudShaderProgram.link();

				//	Create	uniforms	for	Ortographic-model	projection	matrix	and	base	colour

				hudShaderProgram.createUniform("projModelMatrix");

				hudShaderProgram.createUniform("colour");

}

The		render		method	first	invokes	the	method		renderScene		which	contains	the	code	from
previous	chapter	that	rendered	the	3D	scene,	and	a	new	method,	named		renderHud	,	to
render	the	HUD.

public	void	render(Window	window,	Camera	camera,	GameItem[]	gameItems,

				SceneLight	sceneLight,	IHud	hud)	{

				clear();

				if	(window.isResized())	{

								glViewport(0,	0,	window.getWidth(),	window.getHeight());

								window.setResized(false);

				}

				renderScene(window,	camera,	gameItems,	sceneLight);

				renderHud(window,	hud);

}

The		renderHud		method	is	as	follows:

HUD

137
www.dbooks.org

https://www.dbooks.org/

private	void	renderHud(Window	window,	IHud	hud)	{

				hudShaderProgram.bind();

				Matrix4f	ortho	=	transformation.getOrthoProjectionMatrix(0,	window.getWidth(),	win

dow.getHeight(),	0);

				for	(GameItem	gameItem	:	hud.getGameItems())	{

								Mesh	mesh	=	gameItem.getMesh();

								//	Set	ortohtaphic	and	model	matrix	for	this	HUD	item

								Matrix4f	projModelMatrix	=	transformation.getOrtoProjModelMatrix(gameItem,	ort

ho);

								hudShaderProgram.setUniform("projModelMatrix",	projModelMatrix);

								hudShaderProgram.setUniform("colour",	gameItem.getMesh().getMaterial().getAmbi

entColour());

								//	Render	the	mesh	for	this	HUD	item

								mesh.render();

				}

				hudShaderProgram.unbind();

}

The	previous	fragment	of	code,	iterates	over	the	elements	that	compose	the	HUD	and
multiplies	the	orthographic	projection	matrix	by	the	model	matrix	associated	to	each
element.	The	orthographic	projection	matrix	is	updated	in	each		render		call	(because	the
screen	dimensions	can	change),	and	it’s	calculated	in	the	following	way:

public	final	Matrix4f	getOrthoProjectionMatrix(float	left,	float	right,	float	bottom,	

float	top)	{

				orthoMatrix.identity();

				orthoMatrix.setOrtho2D(left,	right,	bottom,	top);

				return	orthoMatrix;

}

In	our	game	package	we	will	create	a		Hud		class	which	implements	the		IHud		interface	and
receives	a	text	in	the	constructor	creating	internally	a		TexItem		instance.

HUD

138

package	org.lwjglb.game;

import	org.joml.Vector4f;

import	org.lwjglb.engine.GameItem;

import	org.lwjglb.engine.IHud;

import	org.lwjglb.engine.TextItem;

public	class	Hud	implements	IHud	{

				private	static	final	int	FONT_COLS	=	15;

				private	static	final	int	FONT_ROWS	=	17;

				private	static	final	String	FONT_TEXTURE	=	"/textures/font_texture.png";

				private	final	GameItem[]	gameItems;

				private	final	TextItem	statusTextItem;

				public	Hud(String	statusText)	throws	Exception	{

								this.statusTextItem	=	new	TextItem(statusText,	FONT_TEXTURE,	FONT_COLS,	FONT_R

OWS);

								this.statusTextItem.getMesh().getMaterial().setColour(new	Vector4f(1,	1,	1,	1)

);

								gameItems	=	new	GameItem[]{statusTextItem};

				}

				public	void	setStatusText(String	statusText)	{

								this.statusTextItem.setText(statusText);

				}

				@Override

				public	GameItem[]	getGameItems()	{

								return	gameItems;

				}

				public	void	updateSize(Window	window)	{

								this.statusTextItem.setPosition(10f,	window.getHeight()	-	50f,	0);

				}

}

In	the		DummyGame		class	we	create	an	instance	of	that	class	an	initialize	it	with	a	default	text,
and	we	will	get	something	like	this.

HUD

139
www.dbooks.org

https://www.dbooks.org/

In	the		Texture		class	we	need	to	modify	the	way	textures	are	interpolated	to	improve	text
readibility	(you	will	only	notice	if	you	play	with	the	text	scaling).

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,	GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,	GL_NEAREST);

But	the	sample	is	not	fnished	yet.	If	you	play	with	the	zoom	so	the	text	overlaps	with	the
cube	you	will	see	this	effect.

The	text	is	not	drawn	with	a	transparent	background.	In	order	to	achieve	that,	we	must
explicitly	enable	support	for	blending	so	the	alpha	component	can	be	used.	We	will	do	this	in
the		Window		class	when	we	set	up	the	other	initialization	parameters	with	the	following
fragment	of	code.

//	Support	for	transparencies

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA,	GL_ONE_MINUS_SRC_ALPHA);

Now	you	will	see	the	text	drawn	with	a	transparent	background.

HUD

140

Complete	the	HUD
Now	that	we	have	rendered	a	text	we	can	add	more	elements	to	the	HUD.	We	will	add	a
compass	that	rotates	depending	on	the	direction	the	camera	is	facing.	In	this	case,	we	will
add	a	new	GameItem	to	the	Hud	class	that	will	have	a	mesh	that	models	a	compass.

The	compass	will	be	modeled	by	an	.obj	file	but	will	not	have	a	texture	associated,	instead	it
will	have	just	a	background	colour.	So	we	need	to	change	the	fragment	shader	for	the	HUD
a	little	bit	to	detect	if	we	have	a	texture	or	not.	We	will	be	able	to	do	this	by	setting	a	new
uniform	named		hasTexture	.

HUD

141
www.dbooks.org

https://www.dbooks.org/

#version	330

in	vec2	outTexCoord;

in	vec3	mvPos;

out	vec4	fragColor;

uniform	sampler2D	texture_sampler;

uniform	vec4	colour;

uniform	int	hasTexture;

void	main()

{

				if	(hasTexture	==	1)

				{

								fragColor	=	colour	*	texture(texture_sampler,	outTexCoord);

				}

				else

				{

								fragColor	=	colour;

				}

}

To	add	the	compass	the	the	HUD	we	just	need	to	create	a	new		GameItem		instance,	tn	the
	Hud		class,	that	loads	the	compass	model	and	adds	it	to	the	list	of	items.	In	this	case	we	will
need	to	scale	up	the	compass.	Remember	that	it	needs	to	be	expressed	in	screen
coordinates,	so	usually	you	will	need	to	increase	its	size.

//	Create	compass

Mesh	mesh	=	OBJLoader.loadMesh("/models/compass.obj");

Material	material	=	new	Material();

material.setAmbientColour(new	Vector4f(1,	0,	0,	1));

mesh.setMaterial(material);

compassItem	=	new	GameItem(mesh);

compassItem.setScale(40.0f);

//	Rotate	to	transform	it	to	screen	coordinates

compassItem.setRotation(0f,	0f,	180f);

//	Create	list	that	holds	the	items	that	compose	the	HUD

gameItems	=	new	GameItem[]{statusTextItem,	compassItem};

Notice	also	that,	in	order	for	the	compass	to	point	upwards	we	need	to	rotate	180	degrees
since	the	model	will	often	tend	to	use	OpenGL	space	coordinates.	If	we	are	expecting
screen	coordinates	it	would	pointing	downwards.	The		Hud		class	will	also	provide	a	method
to	update	the	angle	of	the	compass	that	must	take	this	also	into	consideration.

HUD

142

public	void	rotateCompass(float	angle)	{

				this.compassItem.setRotation(0,	0,	180	+	angle);

}

In	the		DummyGame		class	we	will	update	the	angle	whenever	the	camera	is	moved.	We	need
to	use	the	y	angle	rotation.

//	Update	camera	based	on	mouse												

if	(mouseInput.isRightButtonPressed())	{

				Vector2f	rotVec	=	mouseInput.getDisplVec();

				camera.moveRotation(rotVec.x	*	MOUSE_SENSITIVITY,	rotVec.y	*	MOUSE_SENSITIVITY,	0)

;

				//	Update	HUD	compass

				hud.rotateCompass(camera.getRotation().y);

}

We	will	get	something	like	this	(remember	that	it	is	only	a	sample,	in	a	real	game	you	may
probably	want	to	use	some	texture	to	give	the	compass	a	different	look).

Text	rendering	revisited
Before	reviewing	other	topics	let’s	go	back	to	the	text	rendering	approach	we	have
presented	here.	The	solution	is	very	simple	and	handy	to	introduce	the	concepts	involved	in
rendering	HUD	elements	but	it	presents	some	problems:

It	does	not	support	non	latin	character	sets.
If	you	want	to	use	several	fonts	you	need	to	create	a	separate	texture	file	for	each	font.
Also,	the	only	way	to	change	the	text	size	is	either	to	scale	it,	which	may	result	in	a	poor
quality	rendered	text,	or	to	generate	another	texture	file.

HUD

143
www.dbooks.org

https://www.dbooks.org/

The	most	important	one,	characters	in	most	of	the	fonts	do	not	occupy	the	same	size
but	we	are	dividing	the	font	texture	in	equally	sized	elements.	We	have	cleverly	used
“Consolas”	font	which	is	monospaced	(that	is,	all	the	characters	occupy	the	same
amount	of	horizontal	space),	but	if	you	use	a	non-monospaced	font	you	will	see
annoying	variable	white	spaces	between	the	characters.

We	need	to	change	our	approach	an	provide	a	more	flexible	way	to	render	text.	If	you	think
about	it,	the	overall	mechanism	is	ok,	that	is,	the	way	of	rendering	text	by	texturing	quads	for
each	character.	The	issue	here	is	how	we	are	generating	the	textures.	We	need	to	be	able	to
generate	those	texture	dynamically	by	using	the	fonts	available	in	the	System.

This	is	where		java.awt.Font		comes	to	the	rescue,	we	will	generate	the	textures	by	drawing
each	letter	for	a	specified	font	family	and	size	dynamically.	That	texture	will	be	used	in	the
same	way	as	described	previously,	but	it	will	solve	perfectly	all	the	issues	mentioned	above.
We	will	create	a	new	class	named		FontTexture		that	will	receive	a	Font	instance	and	a
charset	name	and	will	dynamically	create	a	texture	that	contains	all	the	available	characters.
This	is	the	constructor.

public	FontTexture(Font	font,	String	charSetName)	throws	Exception	{

				this.font	=	font;

				this.charSetName	=	charSetName;

				charMap	=	new	HashMap<>();

				buildTexture();

}

The	first	step	is	to	handle	the	non	latin	issue,	given	a	char	set	and	a	font	we	will	build	a
	String		that	contains	all	the	characters	that	can	be	rendered.

private	String	getAllAvailableChars(String	charsetName)	{

				CharsetEncoder	ce	=	Charset.forName(charsetName).newEncoder();

				StringBuilder	result	=	new	StringBuilder();

				for	(char	c	=	0;	c	<	Character.MAX_VALUE;	c++)	{

								if	(ce.canEncode(c))	{

												result.append(c);

								}

				}

				return	result.toString();

}

Let’s	now	review	the	method	that	actually	creates	the	texture,	named		buildTexture	.

HUD

144

https://en.wikipedia.org/wiki/Monospaced_font

private	void	buildTexture()	throws	Exception	{

				//	Get	the	font	metrics	for	each	character	for	the	selected	font	by	using	image

				BufferedImage	img	=	new	BufferedImage(1,	1,	BufferedImage.TYPE_INT_ARGB);

				Graphics2D	g2D	=	img.createGraphics();

				g2D.setFont(font);

				FontMetrics	fontMetrics	=	g2D.getFontMetrics();

				String	allChars	=	getAllAvailableChars(charSetName);

				this.width	=	0;

				this.height	=	0;

				for	(char	c	:	allChars.toCharArray())	{

								//	Get	the	size	for	each	character	and	update	global	image	size

								CharInfo	charInfo	=	new	CharInfo(width,	fontMetrics.charWidth(c));

								charMap.put(c,	charInfo);

								width	+=	charInfo.getWidth();

								height	=	Math.max(height,	fontMetrics.getHeight());

				}

				g2D.dispose();

We	first	obtain	the	font	metrics	by	creating	a	temporary	image.	Then	we	iterate	over	the
	String		that	contains	all	the	available	characters	and	get	the	width,	with	the	help	of	the	font
metrics,	of	each	of	them.	We	store	that	information	on	a	map,		charMap	,	which	will	use	as	a
key	the	character.	With	that	process	we	determine	the	size	of	the	image	that	will	have	the
texture	(with	a	height	equal	to	the	maximum	size	of	all	the	characters	and	its	with	equal	to
the	sum	of	each	character	width).		CharSet		is	an	inner	class	that	holds	the	information	about
a	character	(its	width	and	where	it	starts,	in	the	x	coordinate,	in	the	texture	image).

				public	static	class	CharInfo	{

								private	final	int	startX;

								private	final	int	width;

								public	CharInfo(int	startX,	int	width)	{

												this.startX	=	startX;

												this.width	=	width;

								}

								public	int	getStartX()	{

												return	startX;

								}

								public	int	getWidth()	{

												return	width;

								}

				}

HUD

145
www.dbooks.org

https://www.dbooks.org/

Then	we	will	create	an	image	that	will	contain	all	the	available	characters.	In	order	to	do	this,
we	just	draw	the	string	over	a		BufferedImage	.

				//	Create	the	image	associated	to	the	charset

				img	=	new	BufferedImage(width,	height,	BufferedImage.TYPE_INT_ARGB);

				g2D	=	img.createGraphics();

				g2D.setRenderingHint(RenderingHints.KEY_ANTIALIASING,	RenderingHints.VALUE_ANTIALI

AS_ON);

				g2D.setFont(font);

				fontMetrics	=	g2D.getFontMetrics();

				g2D.setColor(Color.WHITE);

				g2D.drawString(allChars,	0,	fontMetrics.getAscent());

				g2D.dispose();

We	are	generating	an	image	which	contains	all	the	characters	in	a	single	row	(we	maybe	are
not	fulfilling	the	premise	that	the	texture	should	have	a	size	of	a	power	of	two,	but	it	should
work	on	most	modern	cards.	In	any	caseyou	could	always	achieve	that	by	adding	some
extra	empty	space).	You	can	even	see	the	image	that	we	are	generating,	if	after	that	block	of
code,	you	put	a	line	like	this:

ImageIO.write(img,	IMAGE_FORMAT,	new	java.io.File("Temp.png"));

The	image	will	be	written	to	a	temporary	file.	That	file	will	contain	a	long	strip	with	all	the
available	characters,	drawn	in	white	over	transparent	background	using	anti	aliasing.

Finally,	we	just	need	to	create	a		Texture		instance	from	that	image,	we	just	dump	the	image
bytes	using	a	PNG	format	(which	is	what	the		Texture		class	expects).

				//	Dump	image	to	a	byte	buffer

				InputStream	is;

				try	(

								ByteArrayOutputStream	out	=	new	ByteArrayOutputStream())	{

								ImageIO.write(img,	IMAGE_FORMAT,	out);

								out.flush();

								is	=	new	ByteArrayInputStream(out.toByteArray());

				}

				texture	=	new	Texture(is);

}

HUD

146

You	may	notice	that	we	have	modified	a	little	bit	the		Texture		class	to	have	another
constructor	that	receives	an		InputStream	.	Now	we	just	need	to	change	the		TextItem		class
to	receive	a		FontTexture		instance	in	its	constructor.

public	TextItem(String	text,	FontTexture	fontTexture)	throws	Exception	{

				super();

				this.text	=	text;

				this.fontTexture	=	fontTexture;

				setMesh(buildMesh());

}

The		buildMesh		method	only	needs	to	be	changed	a	little	bit	when	setting	quad	and	texture
coordinates,	this	is	a	sample	for	one	of	the	vertices.

				float	startx	=	0;

				for(int	i=0;	i<numChars;	i++)	{

								FontTexture.CharInfo	charInfo	=	fontTexture.getCharInfo(characters[i]);

								//	Build	a	character	tile	composed	by	two	triangles

								//	Left	Top	vertex

								positions.add(startx);	//	x

								positions.add(0.0f);	//y

								positions.add(ZPOS);	//z

								textCoords.add((float)charInfo.getStartX()	/	(float)fontTexture.getWidth());

								textCoords.add(0.0f);

								indices.add(i*VERTICES_PER_QUAD);

						//	..	More	code

						startx	+=	charInfo.getWidth();

				}

You	can	check	the	rest	of	the	changes	directly	in	the	source	code.	The	following	picture
shows	what	you	will	get	for	an	Arial	font	with	a	size	of	20:

HUD

147
www.dbooks.org

https://www.dbooks.org/

As	you	can	see	the	quality	of	the	rendered	text	has	been	improved	a	lot,	you	can	play	with
different	fonts	and	sizes	and	check	it	by	your	own.	There’s	still	plenty	of	room	for
improvement	(like	supporting	multiline	texts,	effects,	etc.),	but	this	will	be	left	as	an	exercise
for	the	reader.

You	may	also	notice	that	we	are	still	able	to	apply	scaling	to	the	text	(we	pass	a	model	view
matrix	in	the	shader).	This	may	not	be	needed	now	for	text	but	it	may	be	useful	for	other
HUD	elements.

We	have	set	up	all	the	infrastructure	needed	in	order	to	create	a	HUD	for	our	games.	Now	it
is	just	a	matter	of	creating	all	the	elements	that	represent	relevant	information	to	the	user
and	give	them	a	professional	look	and	feel.

OSX
If	you	try	to	run	the	samples	in	this	chapter,	and	the	next	ones	that	render	text,	you	may	find
that	the	application	blocks	and	nothing	is	shown	in	the	screen.	This	is	due	to	the	fact	that
AWT	and	GLFW	do	get	along	very	well	under	OSX.	But,	what	does	it	have	to	do	with	AWT	?
We	are	using	the		Font		class,	which	belongs	to	AWT,	and	just	by	instantiating	it,	AWT	gets
initialized	also.	In	OSX	AWT	tries	to	run	under	the	main	thread,	which	is	also	required	by
GLFW.	This	is	what	causes	this	mess.

In	order	to	be	able	to	use	the		Font		class,	GLFW	must	be	initialized	before	AWT	and	the
samples	need	to	be	run	in	headless	mode.	You	need	to	setup	this	property	before	anything
gets	intialized:

System.setProperty("java.awt.headless",	"true");

You	may	get	a	warning,	but	the	samples	will	run.

A	much	more	clean	approach	would	be	to	use	the	stb	library	to	render	text.

HUD

148

https://github.com/nothings/stb/

Sky	Box	and	some	optimizations

Skybox
A	skybox	will	allow	us	to	set	a	background	to	give	the	illusion	that	our	3D	world	is	bigger.
That	background	is	wrapped	around	the	camera	position	and	covers	the	whole	space.	The
technique	that	we	are	going	to	use	here	is	to	construct	a	big	cube	that	will	be	displayed
around	the	3D	scene,	that	is,	the	centre	of	the	camera	position	will	be	the	centre	of	the	cube.
The	sides	of	that	cube	will	be	wrapped	with	a	texture	with	hills	a	blue	sky	and	clouds	that	will
be	mapped	in	a	way	that	the	image	looks	a	continuous	landscape.

The	following	picture	depicts	the	skybox	concept.

The	process	of	creating	a	sky	box	can	be	summarized	in	the	following	steps:

Create	a	big	cube.
Apply	a	texture	to	it	that	provides	the	illusion	that	we	are	seeing	a	giant	landscape	with
no	edges.
Render	the	cube	so	its	sides	are	at	a	far	distance	and	its	origin	is	located	at	the	centre
of	the	camera.

Then,	let’s	start	with	the	texture.	You	will	find	that	there	are	lots	of	pre-generated	textures	for
you	to	use	in	the	internet.	The	one	used	in	the	sample	for	this	chapter	has	been	downloaded
from	here:	http://www.custommapmakers.org/skyboxes.php.	The	concrete	sample	that	we

Sky	Box	and	some	optimizations

149
www.dbooks.org

http://www.custommapmakers.org/skyboxes.php
https://www.dbooks.org/

have	used	is	this	one:	http://www.custommapmakers.org/skyboxes/zips/ely_hills.zip	and	has
been	created	by	Colin	Lowndes.

The	textures	from	that	site	are	composed	by	separate	TGA	files,	one	for	each	side	of	the
cube.	The	texture	loader	that	we	have	created	expects	a	single	file	in	PNG	format	so	we
need	to	compose	a	single	PNG	image	with	the	images	of	each	face.	We	could	apply	other
techniques,	such	us	cube	mapping,	in	order	to	apply	the	textures	automatically.	But,	in	order
to	keep	this	chapter	as	simple	as	possible,	you	will	have	to	manuallay	arrange	them	into	a
single	file.	The	result	image	will	look	like	this.

After	that,	we	need	to	create	a	.obj	file	which	contains	a	cube	with	the	correct	texture
coordinates	for	each	face.	The	picture	below	shows	the	tiles	associated	to	each	face	(you
can	find	the	.obj	file	used	in	this	chapter	in	the	book’s	source	code).

Sky	Box	and	some	optimizations

150

http://www.custommapmakers.org/skyboxes/zips/ely_hills.zip

Once	the	resoures	have	been	set	up,	we	can	start	coding.	We	will	start	by	creating	a	new
class	named		SkyBox		with	a	constructor	that	receives	the	path	to	the	OBJ	model	that
contains	the	sky	box	cube	and	the	texture	file.	This	class	will	inherit	from		GameItem		as	the
HUD	class	from	the	previous	chapter.	Why	it	should	inherit	from		GameItem		?	First	of	all,	for
convenience,	we	can	reuse	most	of	the	code	that	deals	with	meshes	and	textures.	Secondly,
because,	although	the	skybox	will	not	move	we	will	be	interested	in	applying	rotations	and
scaling	to	it.	If	you	think	about	it	a		SkyBox		is	indeed	a	game	item.	The	definition	of	the
	SkyBox		class	is	as	follows.

package	org.lwjglb.engine;

import	org.lwjglb.engine.graph.Material;

import	org.lwjglb.engine.graph.Mesh;

import	org.lwjglb.engine.graph.OBJLoader;

import	org.lwjglb.engine.graph.Texture;

public	class	SkyBox	extends	GameItem	{

				public	SkyBox(String	objModel,	String	textureFile)	throws	Exception	{

								super();

								Mesh	skyBoxMesh	=	OBJLoader.loadMesh(objModel);

								Texture	skyBoxtexture	=	new	Texture(textureFile);

								skyBoxMesh.setMaterial(new	Material(skyBoxtexture,	0.0f));

								setMesh(skyBoxMesh);

								setPosition(0,	0,	0);

				}

}

If	you	check	the	source	code	for	this	chapter	you	will	see	that	we	have	done	some
refactoring.	We	have	created	a	class	named		Scene		which	groups	all	the	information	related
to	the	3D	world.	This	is	the	definition	and	the	attributes	of	the		Scene		class,	that	contains	an
instance	of	the		SkyBox		class.

Sky	Box	and	some	optimizations

151
www.dbooks.org

https://www.dbooks.org/

package	org.lwjglb.engine;

public	class	Scene	{

				private	GameItem[]	gameItems;

				private	SkyBox	skyBox;

				private	SceneLight	sceneLight;

				public	GameItem[]	getGameItems()	{

								return	gameItems;

				}

				//	More	code	here...

The	next	step	is	to	create	another	set	of	vertex	and	fragment	shaders	for	the	skybox.	But,
why	not	reuse	the	scene	shaders	that	we	already	have?	The	answer	is	that,	actually,	the
shaders	that	we	will	need	are	a	simplified	version	of	those	shaders,	we	will	not	be	applying
lights	to	the	sky	box	(or	to	be	more	precise,	we	won’t	need	point,	spot	or	directional	lights).
Below	you	can	see	the	skybox	vertex	shader.

#version	330

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

layout	(location=2)	in	vec3	vertexNormal;

out	vec2	outTexCoord;

uniform	mat4	modelViewMatrix;

uniform	mat4	projectionMatrix;

void	main()

{

				gl_Position	=	projectionMatrix	*	modelViewMatrix	*	vec4(position,	1.0);

				outTexCoord	=	texCoord;

}

You	can	see	that	we	still	use	the	model	view	matrix.	At	is	has	been	explained	beore	we	will
scale	the	skybox,	so	we	need	that	transformation	matrix.	You	may	see	some	other
implementations	that	increase	the	size	of	the	cube	that	models	the	sky	box	at	start	time	and
do	not	need	to	multiply	the	model	and	the	view	matrix.	We	have	chosen	this	approach
because	it’s	more	flexible	and	it	allows	us	to	change	the	size	of	the	skybox	at	runtime,	but
you	can	easily	switch	to	the	other	approach	if	you	want.

The	fragment	shader	is	also	very	simple.

Sky	Box	and	some	optimizations

152

#version	330

in	vec2	outTexCoord;

in	vec3	mvPos;

out	vec4	fragColor;

uniform	sampler2D	texture_sampler;

uniform	vec3	ambientLight;

void	main()

{

				fragColor	=	vec4(ambientLight,	1)	*	texture(texture_sampler,	outTexCoord);

}

As	you	can	see,	we	added	an	ambient	light	uniform	to	the	shader.	The	purpose	of	this
uniform	is	to	modify	the	colour	of	the	skybox	texture	to	simulate	day	and	night	(If	not,	the
skybox	will	look	like	if	it	was	midday	when	the	rest	of	the	world	is	dark).

In	the		Renderer		class	we	just	have	added	a	new	method	to	use	those	shaders	and	setup
the	uniforms	(nothing	new	here).

private	void	setupSkyBoxShader()	throws	Exception	{

				skyBoxShaderProgram	=	new	ShaderProgram();

				skyBoxShaderProgram.createVertexShader(Utils.loadResource("/shaders/sb_vertex.vs")

);

				skyBoxShaderProgram.createFragmentShader(Utils.loadResource("/shaders/sb_fragment.

fs"));

				skyBoxShaderProgram.link();

				skyBoxShaderProgram.createUniform("projectionMatrix");

				skyBoxShaderProgram.createUniform("modelViewMatrix");

				skyBoxShaderProgram.createUniform("texture_sampler");

				skyBoxShaderProgram.createUniform("ambientLight");

}

And	of	course,	we	need	to	create	a	new	render	method	for	the	skybox	that	will	be	invoked	in
the	global	render	method.

Sky	Box	and	some	optimizations

153
www.dbooks.org

https://www.dbooks.org/

private	void	renderSkyBox(Window	window,	Camera	camera,	Scene	scene)	{

				skyBoxShaderProgram.bind();

				skyBoxShaderProgram.setUniform("texture_sampler",	0);

				//	Update	projection	Matrix

				Matrix4f	projectionMatrix	=	transformation.getProjectionMatrix(FOV,	window.getWidt

h(),	window.getHeight(),	Z_NEAR,	Z_FAR);

				skyBoxShaderProgram.setUniform("projectionMatrix",	projectionMatrix);

				SkyBox	skyBox	=	scene.getSkyBox();

				Matrix4f	viewMatrix	=	transformation.getViewMatrix(camera);

				viewMatrix.m30(0);

				viewMatrix.m31(0);

				viewMatrix.m32(0);

				Matrix4f	modelViewMatrix	=	transformation.getModelViewMatrix(skyBox,	viewMatrix);

				skyBoxShaderProgram.setUniform("modelViewMatrix",	modelViewMatrix);

				skyBoxShaderProgram.setUniform("ambientLight",	scene.getSceneLight().getAmbientLig

ht());

				scene.getSkyBox().getMesh().render();

				skyBoxShaderProgram.unbind();

}

The	method	above	is	quite	similar	to	the	other	render	ones	but	there’s	a	difference	that
needs	to	be	explained.	As	you	can	see,	we	pass	the	projection	matrix	and	the	model	view
matrix	as	usual.	But,	when	we	get	the	view	matrix,	we	set	some	of	the	components	to	0.
Why	we	do	this	?	The	reason	behind	that	is	that	we	do	not	want	translation	to	be	applied	to
the	sky	box.

Remember	that	when	we	move	the	camera,	what	we	are	actually	doing	is	moving	the	whole
world.	So	if	we	just	multiply	the	view	matrix	as	it	is,	the	skybox	will	be	displaced	when	the
camera	movees.	But	we	do	not	want	this,	we	want	to	stick	it	at	the	origin	coordinates	at	(0,
0,	0).	This	is	achieved	by	setting	to	0	the	parts	of	the	view	matrix	that	contain	the	translation
increments	(the		m30	,		m31		and		m32		components).

You	may	think	that	you	could	avoid	using	the	view	matrix	at	all	since	the	sky	box	must	be
fixed	at	the	origin.	In	that	case	what,	you	will	see	is	that	the	skybox	will	not	rotate	with	the
camera,	which	is	not	what	we	want.	We	need	it	to	rotate	but	not	translate.

And	that’s	all,	you	can	check	in	the	source	code	for	this	chapter	that	in	the		DummyGame		class
that	we	have	created	more	block	instances	to	simulate	a	ground	and	the	skybox.	You	can
also	check	that	we	now	change	the	ambient	light	to	simulate	light	and	day.	What	you	will	get
is	something	like	this.

Sky	Box	and	some	optimizations

154

The	sky	box	is	a	small	one	so	you	can	easily	see	the	effect	of	moving	through	the	world	(in	a
real	game	it	should	be	much	bigger).	You	can	see	also	that	the	world	space	objects,	the
blocks	that	form	the	terrain	are	larger	than	the	skybox,	so	as	you	move	through	it	you	will
see	blocks	appearing	through	the	mountains.	This	is	more	evident	because	of	the	relative
small	size	of	the	sky	box	we	have	set.	But	anyway	we	will	need	to	alleviate	that	by	adding	an
effect	that	hides	or	blur	distant	objects	(for	instance	applying	a	fog	effect).

Another	reason	for	not	creating	a	bigger	sky	box	is	because	we	need	to	apply	several
optimizations	in	order	to	be	more	efficient	(they	will	be	explained	later	on).

You	can	play	with	the	render	method	an	comment	the	lines	that	prevent	the	skybox	from
translating.	Then	you	will	be	able	to	get	out	of	the	box	and	see	something	like	this.

Sky	Box	and	some	optimizations

155
www.dbooks.org

https://www.dbooks.org/

Although	it	is	not	what	a	skybox	should	do	it	can	help	you	out	to	understand	the	concept
behind	this	tecnique.	Remember	that	this	is	a	simple	example,	you	could	improve	it	by
adding	other	effects	such	as	the	sun	moving	through	the	sky	or	moving	clouds.	Also,	in	order
to	create	bigger	worlds	you	will	need	to	split	the	world	into	fragments	and	only	load	the	ones
that	are	contiguous	to	the	fragment	where	the	player	is	currently	in.

Another	point	that	is	worth	to	mention	is	when	should	we	render	the	sky	box,	before	the
scene	or	after?	Rendering	after	the	scene	has	been	drawn	is	more	optimal,	since	most	of
the	fragments	will	be	discarded	due	to	depth	testing.	That	is,	non	visible	skybox	fragments,
the	ones,	that	will	be	hidden	by	scene	elements	will	be	discarded.	When	OpenGL	will	try	to
render	them,	and	depth	test	is	enabled,	it	will	discard	the	ones	which	are	behind	some
previously	rendered	fragments,	which	will	have	a	lower	depth	value.	So	the	answer	might	be
obvious,	right?	Just	render	the	skybox	after	the	scene	has	been	rendered.	The	problem	with
this	approach	is	handling	transparent	textures.	If	we	have,	in	the	scene,	objects	with
transparent	textures,	they	will	be	drawn	using	the	"background"	colour,	which	is	now	black.	If
we	render	the	skybox	before,	the	transparent	effect	will	be	applied	correctly.	So,	shall	we
render	it	before	the	scene	then?	Well,	yes	and	no.	If	you	render	before	the	scene	is
rendered	you	will	solve	transparency	issues	but	you	will	impact	performance.	In	fact,	you	still
may	face	transparency	issues	without	a	sky	box.	For	instance,	let's	say	that	you	have	a
transparent	item,	which	overlaps	with	an	object	that	is	far	away.	If	the	transparent	object	is
rendered	first,	you	will	face	also	transperent	issues.	So,	maybe	another	approach	can	be	to

Sky	Box	and	some	optimizations

156

draw	transparent	items,	seperately,	after	all	the	other	items	have	been	rendered.	This	is	the
approach	used	by	some	commercial	games.	So,	by	now,	we	will	render	the	skybox	after	the
scene	has	been	rendered,	trying	to	get	better	performance.

Some	optimizations
From	the	previous	example,	the	fact	that	the	skybox	is	relative	small	makes	the	effect	a	little
bit	weird	(you	can	see	objects	appearing	magically	behind	the	hills).	So,	ok,	let’s	increase
the	skybox	size	and	the	size	of	our	world.	Let’s	scale	the	size	of	the	skybox	by	a	factor	of	50
so	the	world	will	be	composed	by	40,000	GameItem	instances	(cubes).

If	you	change	the	scale	factor	and	rerun	the	example	you	will	see	that	performance	problem
starts	to	arise	and	the	movement	through	the	3D	world	is	not	smooth.	It’s	time	to	put	an	eye
on	performance	(you	may	know	the	old	saying	that	states	that	“premature	optimization	is	the
root	of	all	evil”,	but	since	this	chapter	13,	I	hope	nobody	will	say	that	this	premature).

Let’s	start	with	a	concept	that	will	reduce	the	amount	of	data	that	is	being	rendered,	which	is
named	face	culling.	In	our	examples	we	are	rendering	thousands	of	cubes,	and	a	cube	is
made	of	six	faces.	We	are	rendering	the	six	faces	for	each	cube	even	if	they	are	not	visible.
You	can	check	this	if	you	zoom	inside	a	cube,	you	will	see	its	interior	like	this.

Faces	that	cannot	be	seen	should	be	discarded	immediately	and	this	is	what	face	culling
does.	In	fact,	for	a	cube	you	can	only	see	3	faces	at	the	same	time,	so	we	can	just	discard
half	of	the	faces	(40,000	3	2	triangles)	just	by	applying	face	culling	(this	will	only	be	valid	if
your	game	does	not	require	you	to	dive	into	the	inner	side	of	a	model,	you	can	see	why	later
on).

Face	culling	checks,	for	every	triangle	if	its	facing	towards	us	and	discards	the	ones	that	are
not	facing	that	direction.	But,	how	do	we	know	if	a	triangle	is	facing	towards	us	or	not	?	Well,
the	way	that	OpenGL	does	this	is	by	the	winding	order	of	the	vertices	that	compose	a
triangle.

Sky	Box	and	some	optimizations

157
www.dbooks.org

https://www.dbooks.org/

Remember	from	the	first	chapters	that	we	may	define	the	vertices	of	a	triangle	in	clockwise
or	counter-clockwise	order.	In	OpenGL,	by	default,	triangles	that	are	in	counter-clockwise
order	are	facing	towards	the	viewer	and	triangles	that	are	in	clockwise	order	are	facing
backwards.	The	key	thing	here,	is	that	this	order	is	checked	while	rendering	taking	into
consideration	the	point	of	view.	So	a	triangle	that	has	been	defined	in	counter-clock	wise
order	can	be	interpreted,	at	rendering	time,	as	being	defined	lockwise	because	of	the	point
of	view.

Let’s	put	it	in	practice,	in	the		init		method	of	the		Window		class	add	the	following	lines:

glEnable(GL_CULL_FACE);

glCullFace(GL_BACK);

The	first	line	will	enable	face	culling	and	the	second	line	states	that	faces	that	are	facing
backwards	should	be	culled	(removed).	With	that	line	if	you	look	upwards	you	will	see
something	like	this.

What’s	happening	?	if	you	review	the	vertices	order	for	the	top	face	you	will	see	that	is	has
been	defined	in	counter-clockwise	order.	Well,	it	was,	but	remember	that	the	winding	refers
to	the	point	of	view.	In	fact,	if	you	apply	translation	also	to	the	skybox	so	you	are	able	to	see
it	form	the	upside	you	will	see	that	the	top	face	is	rendered	again	once	you	are	outside	it.

Sky	Box	and	some	optimizations

158

Let’s	sketch	what’s	happening.	The	following	picture	shows	one	of	the	triangles	of	the	top
face	of	the	skybox	cube,	which	is	defined	by	three	vertices	defined	in	counter-clockwise
order.

But	remember	that	we	are	inside	the	skybox,	if	we	look	at	the	cube	form	the	interior,	what	we
will	see	is	that	the	vertices	are	defined	in	clockwise	order.

This	is	because,	the	skybox	was	defined	to	be	looked	from	the	outside.	So	we	need	to	flip
the	definition	of	some	of	the	faces	in	order	to	be	viewed	correctly	when	face	culling	is
enabled.

Sky	Box	and	some	optimizations

159
www.dbooks.org

https://www.dbooks.org/

But	there’s	still	more	room	for	optimization.	Let’s	review	our	rendering	process.	In	the
	render		method	of	the		Renderer		class	what	we	are	doing	is	iterate	over	a		GameItem		array
and	render	the	associated		Mesh	.	For	each		GameItem		we	do	the	following:

1.	 Set	up	the	model	view	matrix	(unique	per		GameItem).
2.	 Get	the		Mesh		associated	to	the		GameItem		and	activate	the	texture,	bind	the	VAO	and

enable	its	attributes.
3.	 Perform	a	call	to	draw	the	triangles.
4.	 Disable	the	texture	and	the	VAO	elements.

But,	in	our	current	game,	we	reuse	the	same		Mesh		for	the	40,000	GameItems,	we	are
repeating	the	operations	from	point	2	to	point	4	again	and	again.	This	is	not	very	efficient,
keep	in	mind	that	each	call	to	an	OpenGL	function	is	a	native	call	that	incurs	in	some
performance	overhead.	Besides	that,	we	should	always	try	to	limit	the	state	changes	in
OpenGL	(activating	and	deactivating	textures,	VAOs	are	state	changes).

We	need	to	change	the	way	we	do	things	and	organize	our	structures	around	Meshes	since
it	will	be	very	frequent	to	have	many	GameItems	with	the	same	Mesh.	Now	we	have	an
array	of	GameItems	each	of	them	pointing	to	the	same	Mesh.	We	have	something	like	this.

Instead,	we	will	create	a	Map	of	Meshes	with	a	list	of	the	GamItems	that	share	that	Mesh.

The	rendering	steps	will	be,	for	each		Mesh	:

1.	 Set	up	the	model	view	matrix	(unique	per		GameItem).
2.	 Get	the		Mesh		associated	to	the		GameItem		and	Activate	the		Mesh		texture,	bind	the

VAO	and	enable	its	attributes.
3.	 For	each		GameItem		associated:	a.	Set	up	the	model	view	matrix	(unique	per	Game

Item).	b.	Perform	a	call	to	draw	the	triangles.

Sky	Box	and	some	optimizations

160

4.	 Disable	the	texture	and	the	VAO	elements.

In	the	Scene	class,	we	will	store	the	following		Map	.

private	Map<Mesh,	List<GameItem>>	meshMap;

We	still	have	the		setGameItems		method,	but	instead	of	just	storing	the	array,	we	construct
the	mesh	map.

public	void	setGameItems(GameItem[]	gameItems)	{

				int	numGameItems	=	gameItems	!=	null	?	gameItems.length	:	0;

				for	(int	i=0;	i<numGameItems;	i++)	{

								GameItem	gameItem	=	gameItems[i];

								Mesh	mesh	=	gameItem.getMesh();

								List<GameItem>	list	=	meshMap.get(mesh);

								if	(list	==	null)	{

												list	=	new	ArrayList<>();

												meshMap.put(mesh,	list);

								}

								list.add(gameItem);

				}

}

The		Mesh		class	now	has	a	method	to	render	a	list	of	the	associated	GameItems	and	we
have	split	the	activating	and	deactivating	code	into	separate	methods.

Sky	Box	and	some	optimizations

161
www.dbooks.org

https://www.dbooks.org/

private	void	initRender()	{

				Texture	texture	=	material.getTexture();

				if	(texture	!=	null)	{

								//	Activate	firs	texture	bank

								glActiveTexture(GL_TEXTURE0);

								//	Bind	the	texture

								glBindTexture(GL_TEXTURE_2D,	texture.getId());

				}

				//	Draw	the	mesh

				glBindVertexArray(getVaoId());

				glEnableVertexAttribArray(0);

				glEnableVertexAttribArray(1);

				glEnableVertexAttribArray(2);

}

private	void	endRender()	{

				//	Restore	state

				glDisableVertexAttribArray(0);

				glDisableVertexAttribArray(1);

				glDisableVertexAttribArray(2);

				glBindVertexArray(0);

				glBindTexture(GL_TEXTURE_2D,	0);

}

public	void	render()	{

				initRender();

				glDrawElements(GL_TRIANGLES,	getVertexCount(),	GL_UNSIGNED_INT,	0);

				endRender();

}

public	void	renderList(List<GameItem>	gameItems,	Consumer<GameItem>	consumer)	{

				initRender();

				for	(GameItem	gameItem	:	gameItems)	{

								//	Set	up	data	requiered	by	gameItem

								consumer.accept(gameItem);

								//	Render	this	game	item

								glDrawElements(GL_TRIANGLES,	getVertexCount(),	GL_UNSIGNED_INT,	0);

				}

				endRender();

}

As	you	can	see	we	still	have	the	old	method	that	renders	the	a		Mesh		taking	into
consideration	that	we	have	only	one	GameItem	(this	may	be	used	in	other	cases,	this	is	why
it	has	not	been	removed).	The	new	method	renders	a	list	of	GameItems	and	receives	as	a

Sky	Box	and	some	optimizations

162

parameter	a		Consumer		(a	function,	that	uses	the	new	functional	programming	paradigms
introduced	in	Java	8),	which	will	be	used	to	setup	what’s	specific	for	each	GameItem	before
drawing	the	triangles.	We	will	use	this	to	set	up	the	model	view	matrix,	since	we	do	not	want
the		Mesh		class	to	be	coupled	with	the	uniforms	names	and	the	parameters	involved	when
setting	these	things	up.

In	the		renderScene		method	of	the		Renderer		class	you	can	see	that	we	just	iterate	over	the
Mesh	map	and	setup	the	model	view	matrix	uniform	via	a	lambda.

for	(Mesh	mesh	:	mapMeshes.keySet())	{

				sceneShaderProgram.setUniform("material",	mesh.getMaterial());

				mesh.renderList(mapMeshes.get(mesh),	(GameItem	gameItem)	->	{

								Matrix4f	modelViewMatrix	=	transformation.buildModelViewMatrix(gameItem,	viewM

atrix);

								sceneShaderProgram.setUniform("modelViewMatrix",	modelViewMatrix);

				}

);

}

Another	set	of	optimizations	that	we	can	do	is	that	we	are	creating	tons	of	objects	in	the
render	cycle.	In	particular,	we	were	creating	too	many		Matrix4f		instances	that	holds	a	copy
a	the	model	view	matrix	for	each		GameItem		instance.	We	will	create	specific	matrices	for
that	in	the	Transformation	class,	and	reuse	the	same	instance.	If	you	check	the	code	you	will
see	also	that	we	have	changed	the	names	of	the	methods,	the		getXX		methods	just	return
the	store	matrix	instance	and	any	method	that	changes	the	value	of	a	matrix	is	called
	buildXX		to	clarify	its	purpose.

We	have	also	avoided	the	construction	of	new		FloatBuffer		instances	each	time	we	set	a
uniform	for	a	Matrix	and	removed	some	other	useless	instantiations.	With	all	that	in	place
you	can	see	now	that	the	rendering	is	smoother	and	more	agile.

You	can	check	all	the	details	in	the	source	code.

Sky	Box	and	some	optimizations

163
www.dbooks.org

https://www.dbooks.org/

Height	Maps
In	this	chapter	we	will	learn	how	to	create	complex	terrains	using	height	maps.	Before	we
start,	you	will	notice	that	some	refactoring	has	been	done.	We	have	created	some	new
packages	and	moved	some	of	the	classes	to	better	organize	them.	You	can	check	the
changes	in	the	source	code.

So	what’s	a	height	map?	A	height	map	is	an	image	which	is	used	to	generate	a	3D	terrain
which	uses	the	pixel	colours	to	get	surface	elevation	data.	Height	maps	images	use	usually
gray	scale	and	can	be	generated	by	programs	like	Terragen.	A	height	map	image	looks	like
this.

The	image	above	it’s	like	if	you	were	looking	at	a	fragment	of	land	from	above.	With	that
image	we	will	build	a	mesh	composed	by	triangles	formed	by	vertices.	The	altitude	of	each
vertex	will	be	calculated	depending	on	the	colour	of	each	of	the	image	pixels.	Black	colour
will	represent	the	lowest	value	and	white	the	highest	one.

We	will	be	creating	a	grid	of	vertices,	one	for	each	pixel	of	the	image.	Those	vertices	will	be
used	to	form	triangles	that	will	compose	the	mesh	as	shown	in	the	next	figure.

Height	Maps

164

http://planetside.co.uk/

That	mesh	will	form	a	giant	quad	that	will	be	rendered	across	x	and	z	axis	using	thepixel
colours	to	change	the	elevation	in	the	y	axis.

The	process	of	creating	a	3D	terrain	from	a	height	map	can	be	summarized	as	follows:

Load	the	image	that	contains	the	height	map.	(We	will	use	a		BufferedImage		instance	to
get	access	to	each	pixel).
For	each	image	pixel	create	a	vertex	with	its	height	is	based	on	the	pixel	colour.
Assign	the	correct	texture	coordinate	to	the	vertex.
Set	up	the	indices	to	draw	the	triangles	associated	to	the	vertex.

Height	Maps

165
www.dbooks.org

https://www.dbooks.org/

We	will	create	a	class	named		HeightMapMesh		that	will	create	a		Mesh		based	on	a	height	map
image	performing	the	steps	described	above.	Let’s	first	review	the	constants	defined	for	that
class:

private	static	final	int	MAX_COLOUR	=	255	*	255	*	255;

As	we	have	explained	above,	we	will	calculate	the	height	of	each	vertex	based	on	the	colour
of	each	pixel	of	the	image	used	as	height	map.	Images	are	usually	greyscale,	for	a	PNG
image	that	means	that	each	RGB	component	for	each	pixel	can	vary	from	0	to	255,	so	we
have	256	discrete	values	to	define	different	heights.	This	may	be	enough	precision	for	you,
but	if	it’s	not	we	can	use	the	three	RGB	components	to	have	more	intermediate	values,	in

this	case	the	height	can	be	calculated	form	a	range	that	gets	from	0	to	255 .	We	will	choose
the	second	approach	so	we	are	not	limited	to	greyscale	images.

The	next	constants	are:

private	static	final	float	STARTX	=	-0.5f;

private	static	final	float	STARTZ	=	-0.5f;

The	mesh	will	be	formed	by	a	set	of	vertices	(one	per	pixel)	whose	x	and	z	coordinates	will
be	in	the	range	following	range:

[-0.5,	0.5],	that	is,	[STARTX	,		-STARTX]	for	the	x	axis.
[-0.5,	0.5],	that	is,	[STARTZ	,		-STARTZ]	for	the	z	axis.

Don't	worry	too	much	about	those	values,	later	on	the	resulting	mesh	can	be	scaled	to
accommodate	its	size	in	the	world.	Regarding	y	axis,	we	will	set	up	two	parameters,		minY	
and		maxY	,	for	setting	the	lowest	and	highest	value	that	the	y	coordinate	can	have.	These
parameters	are	not	constant	because	we	may	want	to	change	them	at	run	time,
independently	of	the	scaling	applied.	At	the	end,	the	terrain	will	be	contained	in	a	cube	in	the
range		[STARTX,	-STARTX]	,		[minY,	maxY]		and		[STARTZ,	-STARTZ]	.

The	mesh	will	be	created	in	the	constructor	of	the		HeightMapMesh		class,	which	is	defined	like
this.

public	HeightMapMesh(float	minY,	float	maxY,	String	heightMapFile,	String	textureFile,	

int	textInc)	throws	Exception	{

3

Height	Maps

166

It	receives	the	minimum	and	maximum	vale	for	the	y	axis,	the	name	of	the	file	that	contains
the	image	to	be	used	as	height	map	and	the	texture	file	to	be	used.	It	also	receives	an
integer	named		textInc		that	we	will	discuss	later	on.

The	first	thing	that	we	do	in	the	constructor	is	to	load	the	height	map	image	into	a
	BufferedImage		instance.

this.minY	=	minY;

this.maxY	=	maxY;

PNGDecoder	decoder	=	new	PNGDecoder(getClass().getResourceAsStream(heightMapFile));

int	height	=	decoder.getHeight();

int	width	=	decoder.getWidth();

ByteBuffer	buf	=	ByteBuffer.allocateDirect(

								4	*	decoder.getWidth()	*	decoder.getHeight());

decoder.decode(buf,	decoder.getWidth()	*	4,	PNGDecoder.Format.RGBA);

buf.flip();

Then,	we	load	the	texture	file	into	a		ByteBuffer		and	setup	the	variables	that	we	will	need	to
construct	the		Mesh	.	The		incx		and		incz		variables	will	have	the	increment	to	be	applied	to
each	vertex	in	the	x	and	z	coordinates	so	the		Mesh		covers	the	range	stated	above.

Texture	texture	=	new	Texture(textureFile);

float	incx	=	getWidth()	/	(width	-	1);

float	incz	=	Math.abs(STARTZ	*	2)	/	(height	-	1);

List<Float>	positions	=	new	ArrayList();

List<Float>	textCoords	=	new	ArrayList();

List<Integer>	indices	=	new	ArrayList();

After	that	we	are	ready	to	iterate	over	the	image,	creating	a	vertex	per	each	pixel,	setting	up
its	texture	coordinates	and	setting	up	the	indices	to	define	correctly	the	triangles	that
compose	the		Mesh	.

Height	Maps

167
www.dbooks.org

https://www.dbooks.org/

for	(int	row	=	0;	row	<	height;	row++)	{

				for	(int	col	=	0;	col	<	width;	col++)	{

								//	Create	vertex	for	current	position

								positions.add(STARTX	+	col	*	incx);	//	x

								positions.add(getHeight(col,	row,	width,	buf));	//y

								positions.add(STARTZ	+	row	*	incz);	//z

								//	Set	texture	coordinates

								textCoords.add((float)	textInc	*	(float)	col	/	(float)	width);

								textCoords.add((float)	textInc	*	(float)	row	/	(float)	height);

								//	Create	indices

								if	(col	<	width	-	1	&&	row	<	height	-	1)	{

												int	leftTop	=	row	*	width	+	col;

												int	leftBottom	=	(row	+	1)	*	width	+	col;

												int	rightBottom	=	(row	+	1)	*	width	+	col	+	1;

												int	rightTop	=	row	*	width	+	col	+	1;

												indices.add(rightTop);

												indices.add(leftBottom);

												indices.add(leftTop);

												indices.add(rightBottom);

												indices.add(leftBottom);

												indices.add(rightTop);

								}

				}

}

The	process	of	creating	the	vertex	coordinates	is	self	explanatory.	Let’s	ignore	at	this
moment	why	we	multiply	the	texture	coordinates	by	a	number	and	how	the	height	is
calculated.	You	can	see	that	for	each	vertex	we	define	the	indices	of	two	triangles	(except	if
we	are	in	the	last	row	or	column).	Let’s	visualize	it	with	a	3 × 3	image	to	visualize	how	they
are	constructed.	A	3 × 3	image	contains	9	vertices,	and	thus	4	quads	formed	by	2 × 4
triangles.	The	following	picture	shows	that	grid,	naming	each	vertex	in	the	form	Vrc	(r:	row,	c:
column).

Height	Maps

168

When	we	are	processing	the	first	vertex	(V00),	we	define	the	indices	of	the	two	triangles
shaded	in	red.

When	we	are	processing	the	second	vertex	(V01),	we	define	the	indices	of	the	two	triangles
shaded	in	red.	But,	when	we	are	processing	the	the	third	vertex	(V02)	we	do	not	need	to
define	more	indices,	the	triangles	for	that	row	have	already	been	defined.

Height	Maps

169
www.dbooks.org

https://www.dbooks.org/

You	can	easily	see	how	the	process	continues	for	the	rest	of	vertices.	Now,	once	we	have
created	all	the	vertices	positions,	the	texture	coordinates	and	the	indices	we	just	need	to
create	a		Mesh		and	the	associated		Material		with	all	that	data.

float[]	posArr	=	Utils.listToArray(positions);

int[]	indicesArr	=	indices.stream().mapToInt(i	->	i).toArray();

float[]	textCoordsArr	=	Utils.listToArray(textCoords);

float[]	normalsArr	=	calcNormals(posArr,	width,	height);

this.mesh	=	new	Mesh(posArr,	textCoordsArr,	normalsArr,	indicesArr);

Material	material	=	new	Material(texture,	0.0f);

mesh.setMaterial(material);

You	can	see	that	we	calculate	the	normals	taking	as	an	input	the	vertex	positions.	Before	we
see	how	normals	can	be	calculated,	let’s	see	how	heights	are	obtained.	We	have	created	a
method	named		getHeight		which	calculates	the	height	for	a	vertex.

private	float	getHeight(int	x,	int	z,	int	width,	ByteBuffer	buffer)	{

				byte	r	=	buffer.get(x	*	4	+	0	+	z	*	4	*	width);

				byte	g	=	buffer.get(x	*	4	+	1	+	z	*	4	*	width);

				byte	b	=	buffer.get(x	*	4	+	2	+	z	*	4	*	width);

				byte	a	=	buffer.get(x	*	4	+	3	+	z	*	4	*	width);

				int	argb	=	((0xFF	&	a)	<<	24)	|	((0xFF	&	r)	<<	16)

												|	((0xFF	&	g)	<<	8)	|	(0xFF	&	b);

				return	this.minY	+	Math.abs(this.maxY	-	this.minY)	*	((float)	argb	/	(float)	MAX_C

OLOUR);

				}

The	method	receives	the	x	an	z	coordinates	for	a	pixel,	the	width	of	the	image	and	the
	ByteBuffer		that	conatins	it	and	returns	the	RGB	colour	(the	sum	of	the	individual	R,	G	and
B	components)	and	assigns	a	value	contained	between		minY		and		maxY		(minY		for	black
colour	and		maxY		for	white	colour).

You	may	develop	asimpler	version	using	a		BufferedImage	which	contains	handy	ethods	dor
getting	RGB	values,	but	we	would	be	using	AWT.	Remember	that	AWT	does	not	mix	well
with	OSX	so	try	to	avoid	using	their	classes.

Let’s	view	now	how	texture	coordinates	are	calculated.	The	first	option	is	to	wrap	the	texture
along	the	whole	mesh,	the	top	left	vertex	would	have	(0,	0)	texture	coordinates	and	the
bottom	right	vertex	would	have	(1,	1)	texture	coordinates.	The	problem	with	this	approach	is
that	the	texture	should	be	huge	in	order	to	provide	good	results,	if	not,	it	would	be	stretched
too	much.

But	we	can	still	use	a	small	texture	with	very	good	results	by	employing	a	very	efficient
technique.	If	we	set	texture	coordinates	that	are	beyond	the	[1, 1]	range,	we	get	back	to
origin	and	start	counting	again	from	the	start.	The	following	picture	shows	this	behavior	tiling

Height	Maps

170

the	same	texture	in	several	quads	that	extend	beyond	the	[1, 1]	range.

This	is	what	we	will	do	when	setting	the	texture	coordinates.	We	will	be	multiplying	the
texture	coordinates	(calculated	as	if	the	texture	just	was	wrapped	covering	the	whole	mesh)
by	a	factor,	the		textInc		parameter,	to	increase	the	number	of	pixels	of	the	texture	to	be
used	between	adjacent	vertices.

The	only	thing	that’s	pending	now	is	normal	calculation.	Remember	that	we	need	normals	so
light	can	be	applied	to	the	terrain	correctly.	Without	normals	our	terrain	will	be	rendered	with
the	same	colour	no	matter	how	light	hits	each	point.	The	method	that	we	will	use	here	may
not	be	the	most	efficient	for	height	maps	but	it	will	help	you	understand	how	normals	can	be
auto-calculated.	If	you	search	for	other	solutions	you	may	find	more	efficient	approaches	that

Height	Maps

171
www.dbooks.org

https://www.dbooks.org/

only	use	the	heights	of	adjacent	points	without	performing	cross	product	operations.
Nevertheless	since	this	will	only	be	done	at	startup,	the	method	presented	here	will	not	hurt
performance	so	much.

Let’s	graphically	explain	how	a	normal	can	be	calculated.	Imagine	that	we	have	a	vertex

named	 .	We	first	calculate,	for	each	of	the	surrounding	vertices	(,	 ,	 	and),	the

vectors	that	are	tangent	to	the	surface	that	connects	these	points.	These	vectors,	(,	 ,	

	and),	are	calculated	by	subtracting	each	adjacent	point	from	 	(= − ,	etc.)

Then,	we	calculate	the	normal	for	each	of	the	planes	that	connects	the	adjacent	points.	This
is	done	by	performing	the	cross	product	between	the	previous	calculated	vectors.	For

instance,	the	normal	of	the	surface	that	connects	 	and	 	(shaded	in	blue)	is	calculated

as	the	cross	product	between	 	and	 ,	 = × .

P0 P1 P02 P3 P4

V 1 V 2

V 3 V 4 P0 V 1 P1 P0

P1 P2

V 1 V 2 V 12 V 1 V 2

Height	Maps

172

If	we	calculate	the	rest	of	the	normals	for	the	rest	of	the	surfaces	(= × ,	

= × 	and	 = ×),	the	normal	for	 	will	be	the	sum	(normalized)	of	all

the	normals	of	the	surrounding	surfaces:	 = + + + .

The	implementation	of	the	method	that	calculates	the	normals	is	as	follows.

private	float[]	calcNormals(float[]	posArr,	int	width,	int	height)	{

				Vector3f	v0	=	new	Vector3f();

				Vector3f	v1	=	new	Vector3f();

				Vector3f	v2	=	new	Vector3f();

				Vector3f	v3	=	new	Vector3f();

				Vector3f	v4	=	new	Vector3f();

				Vector3f	v12	=	new	Vector3f();

				Vector3f	v23	=	new	Vector3f();

V 23 V 2 V 3

V 34 V 3 V 4 V 41 V 4 V 1 P0

N0^ V 12^ V 23^ V 34^ V 41^

Height	Maps

173
www.dbooks.org

https://www.dbooks.org/

				Vector3f	v34	=	new	Vector3f();

				Vector3f	v41	=	new	Vector3f();

				List<Float>	normals	=	new	ArrayList<>();

				Vector3f	normal	=	new	Vector3f();

				for	(int	row	=	0;	row	<	height;	row++)	{

								for	(int	col	=	0;	col	<	width;	col++)	{

												if	(row	>	0	&&	row	<	height	-1	&&	col	>	0	&&	col	<	width	-1)	{

																int	i0	=	row*width*3	+	col*3;

																v0.x	=	posArr[i0];

																v0.y	=	posArr[i0	+	1];

																v0.z	=	posArr[i0	+	2];

																int	i1	=	row*width*3	+	(col-1)*3;

																v1.x	=	posArr[i1];

																v1.y	=	posArr[i1	+	1];

																v1.z	=	posArr[i1	+	2];																				

																v1	=	v1.sub(v0);

																int	i2	=	(row+1)*width*3	+	col*3;

																v2.x	=	posArr[i2];

																v2.y	=	posArr[i2	+	1];

																v2.z	=	posArr[i2	+	2];

																v2	=	v2.sub(v0);

																int	i3	=	(row)*width*3	+	(col+1)*3;

																v3.x	=	posArr[i3];

																v3.y	=	posArr[i3	+	1];

																v3.z	=	posArr[i3	+	2];

																v3	=	v3.sub(v0);

																int	i4	=	(row-1)*width*3	+	col*3;

																v4.x	=	posArr[i4];

																v4.y	=	posArr[i4	+	1];

																v4.z	=	posArr[i4	+	2];

																v4	=	v4.sub(v0);

																v1.cross(v2,	v12);

																v12.normalize();

																v2.cross(v3,	v23);

																v23.normalize();

																v3.cross(v4,	v34);

																v34.normalize();

																v4.cross(v1,	v41);

																v41.normalize();

																normal	=	v12.add(v23).add(v34).add(v41);

																normal.normalize();

												}	else	{

																normal.x	=	0;

																normal.y	=	1;

Height	Maps

174

																normal.z	=	0;

												}

												normal.normalize();

												normals.add(normal.x);

												normals.add(normal.y);

												normals.add(normal.z);

								}

				}

				return	Utils.listToArray(normals);

}

Finally,	in	order	to	build	larger	terrains,	we	have	two	options:

Create	a	larger	height	map.
Reuse	a	height	map	and	tile	it	through	the	3D	space.	The	height	map	will	be	like	a
terrain	block	that	could	be	translated	across	the	world	like	tiles.	In	order	to	do	so,	the
pixels	of	the	edge	of	the	height	map	must	be	the	same	(the	left	edge	must	be	equal	to
the	right	side	and	the	top	edge	must	be	equal	to	the	bottom	one)	to	avoid	gaps	between
the	tiles.

We	will	use	the	second	approach	(and	select	an	appropriate	height	map).	To	support	this,
we	will	create	a	class	named		Terrain		that	will	create	a	square	of	height	map	tiles,	defined
like	this.

Height	Maps

175
www.dbooks.org

https://www.dbooks.org/

package	org.lwjglb.engine.items;

import	org.lwjglb.engine.graph.HeightMapMesh;

public	class	Terrain	{

				private	final	GameItem[]	gameItems;

				public	Terrain(int	blocksPerRow,	float	scale,	float	minY,	float	maxY,	String	heigh

tMap,	String	textureFile,	int	textInc)	throws	Exception	{

								gameItems	=	new	GameItem[blocksPerRow	*	blocksPerRow];

								HeightMapMesh	heightMapMesh	=	new	HeightMapMesh(minY,	maxY,	heightMap,	texture

File,	textInc);

								for	(int	row	=	0;	row	<	blocksPerRow;	row++)	{

												for	(int	col	=	0;	col	<	blocksPerRow;	col++)	{

																float	xDisplacement	=	(col	-	((float)	blocksPerRow	-	1)	/	(float)	2)	*

	scale	*	HeightMapMesh.getXLength();

																float	zDisplacement	=	(row	-	((float)	blocksPerRow	-	1)	/	(float)	2)	*

	scale	*	HeightMapMesh.getZLength();

																GameItem	terrainBlock	=	new	GameItem(heightMapMesh.getMesh());

																terrainBlock.setScale(scale);

																terrainBlock.setPosition(xDisplacement,	0,	zDisplacement);

																gameItems[row	*	blocksPerRow	+	col]	=	terrainBlock;

												}

								}

				}

				public	GameItem[]	getGameItems()	{

								return	gameItems;

				}

}

Let's	explain	the	overall	process,	we	have	blocks	that	have	the	following	coordinates	(for	x
and	z	and	with	the	constants	defined	above).

Height	Maps

176

Let's	suppose	that	we	are	create¡ing	a	terrain	formed	by	a	3x3	blocks	grid.	Let's	assume
also	thatwe	wont'	scale	the	terrain	blocks	(that	is,	the	variable		blocksPerRow		will	be	3	and
the	variable		scale		will	be	1).	We	want	the	grid	to	be	centered	at	(0,	0)	coordinates.

We	need	to	translate	the	blocks	so	the	vertices	will	have	the	following	coordinates.

The	translation	is	achieved	by	calling		setPosition		method,	but	remember	that	what	we	set
is	a	displacement	not	a	position.	If	you	review	the	figure	above	you	will	see	that	the	central
block	does	not	require	any	displacement,	it's	already	positioned	in	the	adequate	coordinates.

Height	Maps

177
www.dbooks.org

https://www.dbooks.org/

The	vertex	drawn	in	green	needs	a	displacement,	for	the	x	coordinate,	of	−1	and	the	vertex
drawn	in	blue	needs	a	displacement	of	+1.	The	formula	to	calculate	the	x	displacement,
taking	into	consideration	the	scale	and	the	block	width,	is	this	one:

xDisplacement = (col − (blocksPerRow − 1)/2) × scale× width

And	the	equivalent	formula	for	z	displacement	is:

zDisplacement = (row − (blocksPerRow − 1)/2) × scale× height

If	we	create	a	Terrain	instance	in	the		DummyGame		class,	we	can	get	something	like	this.

You	can	move	the	camera	around	the	terrain	and	see	how	it’s	rendered.	Since	we	still	do	not
have	implemented	collision	detection	you	can	pass	through	it	and	look	it	from	above.
Because	we	have	face	culling	enabled,	some	parts	of	the	terrain	are	not	rendered	when
looking	from	below.

Height	Maps

178

Terrain	Collisions
Once	we	have	created	a	terrain	the	next	step	is	to	detect	collisions	to	avoid	traversing
through	it.	If	you	recall	from	previous	chapter,	a	terrain	is	composed	by	blocks,	and	each	of
those	blocks	is	constructed	from	a	height	map.	The	height	map	is	used	to	set	the	height	of
the	vertices	that	compose	the	triangles	that	form	the	terrain.

In	order	to	detect	a	collision	we	must	compare	current	position	y	value	with	the	y	value	of	the
point	of	the	terrain	we	are	currently	in.	If	we	are	above	terrain’s	y	value	there’s	no	collision,	if
not,	we	need	to	get	back.	Simple	concept,	does	it	?	Indeed	it	is	but	we	need	to	perform
several	calculations	before	we	are	able	to	do	that	comparison.

The	first	thing	we	need	to	define	is	what	we	understand	for	the	term	"current	position".	Since
we	do	not	have	yet	a	player	concept	the	answer	is	easy,	the	current	position	will	be	the
camera	position.	So	we	already	have	one	of	the	components	of	the	comparison,	thus,	the
next	thing	to	calculate	is	terrain	height	at	current	position.

As	it's	been	said	before,	the	terrain	is	composed	by	a	grid	of	terrain	blocks	as	shown	in	the
next	figure.

Each	terrain	block	is	constructed	from	the	same	height	map	mesh,	but	is	scaled	and
displaced	precisely	to	form	a	terrain	grid	that	looks	like	a	continuous	landscape.

So,	what	we	need	to	do	first	is	determine	in	which	terrain	block	the	current	position,	the
camera,	is	in.	In	order	to	do	that,	we	will	calculate	the	bounding	box	of	each	terrain	block
taking	into	consideration	the	displacement	and	the	scaling.	Since	the	terrain	will	not	be
displaced	or	scaled	at	runtime,	we	can	perform	those	calculations	in	the		Terrain		class
constructor.	By	doing	this	way	we	access	them	later	at	any	time	without	repeating	those
operations	in	each	game	loop	cycle.

We	will	create	a	new	method	that	calculates	the	bounding	box	of	a	terrain	block,	named
	getBoundingBox	.

Terrain	Collisions

179
www.dbooks.org

https://www.dbooks.org/

private	Box2D	getBoundingBox(GameItem	terrainBlock)	{

				float	scale	=	terrainBlock.getScale();

				Vector3f	position	=	terrainBlock.getPosition();

				float	topLeftX	=	HeightMapMesh.STARTX	*	scale	+	position.x;

				float	topLeftZ	=	HeightMapMesh.STARTZ	*	scale	+	position.z;

				float	width	=	Math.abs(HeightMapMesh.STARTX	*	2)	*	scale;

				float	height	=	Math.abs(HeightMapMesh.STARTZ	*	2)	*	scale;

				Box2D	boundingBox	=	new	Box2D(topLeftX,	topLeftZ,	width,	height);

				return	boundingBox;

}

The		Box2D		class	is	a	simplified	version	of	the		java.awt.Rectangle2D.Float		class;	created	to
avoid	using	AWT.

Now	we	need	to	calculate	the	world	coordinates	of	the	terrain	blocks.	In	the	previous	chapter
you	saw	that	all	of	our	terrain	meshes	were	created	inside	a	quad	with	its	origin	set	to
	[STARTX,	STARTZ]	.	Thus,we	need	to	transform	those	coordinates	to	the	world	coordinates
taking	into	consideration	the	scale	and	the	displacement	as	shown	in	the	next	figure.

As	it’s	been	said	above,	this	can	be	done	in	the	Terrain	class	constructor	since	it	won't
change	at	run	time.	So	we	need	to	add	a	new	attribute	which	will	hold	the	bounding	boxes:

private	final	Box2D[][]	boundingBoxes;

In	the		Terrain		constructor,	while	we	are	creating	the	terrain	blocks,	we	just	need	to	invoke
the	method	that	calculates	the	bounding	box.

Terrain	Collisions

180

public	Terrain(int	terrainSize,	float	scale,	float	minY,	float	maxY,	String	heightMapF

ile,	String	textureFile,	int	textInc)	throws	Exception	{

				this.terrainSize	=	terrainSize;

				gameItems	=	new	GameItem[terrainSize	*	terrainSize];

				PNGDecoder	decoder	=	new	PNGDecoder(getClass().getResourceAsStream(heightMapFile))

;

				int	height	=	decoder.getHeight();

				int	width	=	decoder.getWidth();

				ByteBuffer	buf	=	ByteBuffer.allocateDirect(

												4	*	decoder.getWidth()	*	decoder.getHeight());

				decoder.decode(buf,	decoder.getWidth()	*	4,	PNGDecoder.Format.RGBA);

				buf.flip();

				//	The	number	of	vertices	per	column	and	row

				verticesPerCol	=	heightMapImage.getWidth();

				verticesPerRow	=	heightMapImage.getHeight();

				heightMapMesh	=	new	HeightMapMesh(minY,	maxY,	buf,	width,	textureFile,	textInc);

				boundingBoxes	=	new	Box2D[terrainSize][terrainSize];

				for	(int	row	=	0;	row	<	terrainSize;	row++)	{

								for	(int	col	=	0;	col	<	terrainSize;	col++)	{

												float	xDisplacement	=	(col	-	((float)	terrainSize	-	1)	/	(float)	2)	*	scal

e	*	HeightMapMesh.getXLength();

												float	zDisplacement	=	(row	-	((float)	terrainSize	-	1)	/	(float)	2)	*	scal

e	*	HeightMapMesh.getZLength();

												GameItem	terrainBlock	=	new	GameItem(heightMapMesh.getMesh());

												terrainBlock.setScale(scale);

												terrainBlock.setPosition(xDisplacement,	0,	zDisplacement);

												gameItems[row	*	terrainSize	+	col]	=	terrainBlock;

												boundingBoxes[row][col]	=	getBoundingBox(terrainBlock);

								}

				}

}

So,	with	all	the	bounding	boxes	pre-calculated,	we	are	ready	to	create	a	new	method	that
will	return	the	height	of	the	terrain	taking	as	a	parameter	the	current	position.	This	method
will	be	named		getHeightVector		and	its	defined	like	this.

Terrain	Collisions

181
www.dbooks.org

https://www.dbooks.org/

public	float	getHeight(Vector3f	position)	{

				float	result	=	Float.MIN_VALUE;

				//	For	each	terrain	block	we	get	the	bounding	box,	translate	it	to	view	coodinates

				//	and	check	if	the	position	is	contained	in	that	bounding	box

				Box2D	boundingBox	=	null;

				boolean	found	=	false;

				GameItem	terrainBlock	=	null;

				for	(int	row	=	0;	row	<	terrainSize	&&	!found;	row++)	{

								for	(int	col	=	0;	col	<	terrainSize	&&	!found;	col++)	{

												terrainBlock	=	gameItems[row	*	terrainSize	+	col];

												boundingBox	=	boundingBoxes[row][col];

												found	=	boundingBox.contains(position.x,	position.z);

								}

				}

				//	If	we	have	found	a	terrain	block	that	contains	the	position	we	need

				//	to	calculate	the	height	of	the	terrain	on	that	position

				if	(found)	{

								Vector3f[]	triangle	=	getTriangle(position,	boundingBox,	terrainBlock);

								result	=	interpolateHeight(triangle[0],	triangle[1],	triangle[2],	position.x,	

position.z);

				}

				return	result;

}

The	first	thing	that	to	we	do	in	that	method	is	to	determine	the	terrain	block	that	we	are	in.
Since	we	already	have	the	bounding	box	for	each	terrain	block,	the	algorithm	is	simple.	We
just	simply	need	to	iterate	over	the	array	of	bounding	boxes	and	check	if	the	current	position
is	inside	(the	class		Box2D		provides	a	method	for	this).

Once	we	have	found	the	terrain	block,	we	need	to	calculate	the	triangle	which	we	are	in.
This	is	done	in	the		getTriangle		method	that	will	be	described	later	on.	After	that,	we	have
the	coordinates	of	the	triangle	that	we	are	in,	including	its	height.	But,	we	need	the	height	of
a	point	that	is	not	located	at	any	of	those	vertices	but	in	a	place	in	between.	This	is	done	in
the	interpolateHeight	method.	We	will	also	explain	how	this	is	done	later	on.

Let’s	first	start	with	the	process	of	determining	the	triangle	that	we	are	in.	The	quad	that
forms	a	terrain	block	can	be	seen	as	a	grid	in	which	each	cell	is	formed	by	two	triangles
Let’s	define	some	variables	first:

boundingBox.x	is	the	x	coordinate	of	the	origin	of	the	bounding	box	associated	to	the
quad.
boundingBox.y	is	the	z	coordinates	of	the	origin	of	the	bounding	box	associated	to	the
quad	(Although	you	see	a	“y”,	it	models	the	z	axis).
boundingBox.width	is	the	width	of	the	quad
boundingBox.height	is	the	height	of	the	quad.

Terrain	Collisions

182

cellWidth	is	the	width	of	a	cell.
cellHeight	is	the	height	of	a	cell.

All	of	the	variables	defined	above	are	expressed	in	world	coordinates.	To	calculate	the	width
of	a	cell	we	just	need	to	divide	the	bounding	box	width	by	the	number	of	vertices	per	column:

cellWidth =

And	the	variable		cellHeight		is	calculated	analogous

cellHeight =

Once	we	have	those	variables	we	can	calculate	the	row	and	the	column	of	the	cell	we	are
currently	in	width	is	quite	straight	forward:

col =

row =

The	following	picture	shows	all	the	variables	described	above	for	a	sample	terrain	block.

verticesPerCol
boundingBox.width

verticesPerRow
boundingBox.height

boundingBox.width
position.x−boundingBox.x

boundingBox.height
position.z−boundingBox.y

Terrain	Collisions

183
www.dbooks.org

https://www.dbooks.org/

With	all	that	information	we	are	able	to	calculate	the	positions	of	the	vertices	of	the	triangles
contained	in	the	cell.	How	we	can	do	this	?	Let’s	examine	the	triangles	that	form	a	single
cell.

You	can	see	that	the	cell	is	divided	by	a	diagonal	that	separates	the	two	triangles.	The	way
to	determine	the	triangle	associated	to	the	current	position,	is	by	checking	if	the	z	coordinate
is	above	or	below	that	diagonal.	In	our	case,	if	current	position	z	value	is	less	than	the	z

Terrain	Collisions

184

value	of	the	diagonal	setting	the	x	value	to	the	x	value	of	current	position	we	are	in	T1.	If	it's
greater	than	that	we	are	in	T2.

We	can	determine	that	by	calculating	the	line	equation	that	matches	the	diagonal.

If	you	remember	your	school	math	classes,	the	equation	of	a	line	that	passes	from	two
points	(in	2D)	is:

y − y1 = m ⋅ (x− x1)

Where	m	is	the	line	slope,	that	is,	how	much	the	height	changes	when	moving	through	the	x
axis.	Note	that,	in	our	case,	the	y	coordinates	are	the	z	ones.	Also	note,	that	we	are	using
2D	coordinates	because	we	are	not	calculating	heights	here.	We	just	want	to	select	the
proper	triangle	and	to	do	that	x	an	z	coordinates	are	enough.	So,	in	our	case	the	line
equation	should	be	rewritten	like	this.

z − z1 = m ⋅ (z − z1)

The	slope	can	be	calculate	in	the	following	way:

m =

So	the	equation	of	the	diagonal	to	get	the	z	value	given	a	x	position	is	like	this:

z = m ⋅ (xpos− x1) + z1 = ⋅ (zpos− x1) + z1

Where	x1,x2,z1	and	z2	are	the	x	and	z	coordinates	of	the	vertices	V 1	and	V 2	respectively.

So	the	method	to	get	the	triangle	that	the	current	position	is	in,	named		getTriangle	,
applying	all	the	calculations	described	above	can	be	implemented	like	this:

x1−x2
z1−z2

x1−x2
z1−z2

Terrain	Collisions

185
www.dbooks.org

https://www.dbooks.org/

protected	Vector3f[]	getTriangle(Vector3f	position,	Box2D	boundingBox,	GameItem	terrai

nBlock)	{

				//	Get	the	column	and	row	of	the	heightmap	associated	to	the	current	position

				float	cellWidth	=	boundingBox.width	/	(float)	verticesPerCol;

				float	cellHeight	=	boundingBox.height	/	(float)	verticesPerRow;

				int	col	=	(int)	((position.x	-	boundingBox.x)	/	cellWidth);

				int	row	=	(int)	((position.z	-	boundingBox.y)	/	cellHeight);

				Vector3f[]	triangle	=	new	Vector3f[3];

				triangle[1]	=	new	Vector3f(

								boundingBox.x	+	col	*	cellWidth,

								getWorldHeight(row	+	1,	col,	terrainBlock),

								boundingBox.y	+	(row	+	1)	*	cellHeight);

				triangle[2]	=	new	Vector3f(

								boundingBox.x	+	(col	+	1)	*	cellWidth,

								getWorldHeight(row,	col	+	1,	terrainBlock),

								boundingBox.y	+	row	*	cellHeight);

				if	(position.z	<	getDiagonalZCoord(triangle[1].x,	triangle[1].z,	triangle[2].x,	tr

iangle[2].z,	position.x))	{

								triangle[0]	=	new	Vector3f(

												boundingBox.x	+	col	*	cellWidth,

												getWorldHeight(row,	col,	terrainBlock),

												boundingBox.y	+	row	*	cellHeight);

				}	else	{

								triangle[0]	=	new	Vector3f(

												boundingBox.x	+	(col	+	1)	*	cellWidth,

												getWorldHeight(row	+	2,	col	+	1,	terrainBlock),

												boundingBox.y	+	(row	+	1)	*	cellHeight);

				}

				return	triangle;

}

protected	float	getDiagonalZCoord(float	x1,	float	z1,	float	x2,	float	z2,	float	x)	{

				float	z	=	((z1	-	z2)	/	(x1	-	x2))	*	(x	-	x1)	+	z1;

				return	z;

}

protected	float	getWorldHeight(int	row,	int	col,	GameItem	gameItem)	{

				float	y	=	heightMapMesh.getHeight(row,	col);

				return	y	*	gameItem.getScale()	+	gameItem.getPosition().y;

}

You	can	see	that	we	have	two	additional	methods.	The	first	one,	named		getDiagonalZCoord	,
calculates	the	z	coordinate	of	the	diagonal	given	a	x	position	and	two	vertices.	The	other
one,	named		getWorldHeight	,	is	used	to	retrieve	the	height	of	the	triangle	vertices,	the	y
coordinate.	When	the	terrain	mesh	is	constructed	the	height	of	each	vertex	is	pre-calculated
and	stored,	we	only	need	to	translate	it	to	world	coordinates.

Terrain	Collisions

186

Ok,	so	we	have	the	triangle	coordinates	that	the	current	position	is	in.	Finally,	we	are	ready
to	calculate	terrain	height	at	current	position.	How	can	we	do	this	?	Well,	our	triangle	is
contained	in	a	plane,	and	a	plane	can	be	defined	by	three	points,	in	this	case,	the	three
vertices	that	define	a	triangle.

The	plane	equation	is	as	follows:	a ⋅ x+ b ⋅ y + c ⋅ z + d = 0

The	values	of	the	constants	of	the	previous	equation	are:

a = (B −A) ⋅ (C −A) − (C −A) ⋅ (B −A)

b = (B −A) ⋅ (C −A) − (C −A) ⋅ (B −A)

c = (B −A) ⋅ (C −A) − (C −A) ⋅ (B −A)

Where	A,	B	and	C	are	the	three	vertices	needed	to	define	the	plane.

Then,	with	previous	equations	and	the	values	of	the	x	and	z	coordinates	for	the	current
position	we	are	able	to	calculate	the	y	value,	that	is	the	height	of	the	terrain	at	the	current
position:

y = (−d− a ⋅ x− c ⋅ z)/b

The	method	that	performs	the	previous	calculations	is	the	following:

protected	float	interpolateHeight(Vector3f	pA,	Vector3f	pB,	Vector3f	pC,	float	x,	float

	z)	{

				//	Plane	equation	ax+by+cz+d=0

				float	a	=	(pB.y	-	pA.y)	*	(pC.z	-	pA.z)	-	(pC.y	-	pA.y)	*	(pB.z	-	pA.z);

				float	b	=	(pB.z	-	pA.z)	*	(pC.x	-	pA.x)	-	(pC.z	-	pA.z)	*	(pB.x	-	pA.x);

				float	c	=	(pB.x	-	pA.x)	*	(pC.y	-	pA.y)	-	(pC.x	-	pA.x)	*	(pB.y	-	pA.y);

				float	d	=	-(a	*	pA.x	+	b	*	pA.y	+	c	*	pA.z);

				//	y	=	(-d	-ax	-cz)	/	b

				float	y	=	(-d	-	a	*	x	-	c	*	z)	/	b;

				return	y;

}

And	that’s	all	!	we	are	now	able	to	detect	the	collisions,	so	in	the		DummyGame		class	we	can
change	the	following	lines	when	we	update	the	camera	position:

y y z z y y z z

z z x x z z z z

x x y y x x y y

Terrain	Collisions

187
www.dbooks.org

https://www.dbooks.org/

//	Update	camera	position

Vector3f	prevPos	=	new	Vector3f(camera.getPosition());

camera.movePosition(cameraInc.x	*	CAMERA_POS_STEP,	cameraInc.y	*	CAMERA_POS_STEP,	came

raInc.z	*	CAMERA_POS_STEP);								

//	Check	if	there	has	been	a	collision.	If	true,	set	the	y	position	to

//	the	maximum	height

float	height	=	terrain.getHeight(camera.getPosition());

if	(camera.getPosition().y	<=	height)		{

				camera.setPosition(prevPos.x,	prevPos.y,	prevPos.z);

}

As	you	can	see	the	concept	of	detecting	terrain	collisions	is	easy	to	understand	but	we	need
to	carefully	perform	a	set	of	calculations	and	be	aware	of	the	different	coordinate	systems
we	are	dealing	with.

Besides	that,	although	the	algorithm	presented	here	is	valid	in	most	of	the	cases,	there	are
still	situations	that	need	to	be	handled	carefully.	One	effect	that	you	may	observe	is	the	one
called	tunnelling.	Imagine	the	following	situation,	we	are	travelling	at	a	fast	speed	through
our	terrain	and	because	of	that,	the	position	increment	gets	a	high	value.	This	value	can	get
so	high	that,	since	we	are	detecting	collisions	with	the	final	position,	we	may	have	skipped
obstacles	that	lay	in	between.

There	are	many	possible	solutions	to	avoid	that	effect,	the	simplest	one	is	to	split	the
calculation	to	be	performed	in	smaller	increments.

Terrain	Collisions

188

Fog
Before	we	deal	with	more	complex	topics	we	will	review	how	to	create	a	fog	effect	in	our
game	engine.	With	that	effect	we	will	simulate	how	distant	objects	get	dimmed	and	seem	to
vanish	into	a	dense	fog.

Let	us	first	examine	what	are	the	attributes	that	define	fog.	The	first	one	is	the	fog	colour.	In
the	real	world	the	fog	has	a	gray	colour,	but	we	can	use	this	effect	to	simulate	wide	areas
invaded	by	a	fog	with	different	colours.	The	attribute	is	the	fog's	density.

Thus,	in	order	to	apply	the	fog	effect	we	need	to	find	a	way	to	fade	our	3D	scene	objects	into
the	fog	colour	as	long	as	they	get	far	away	from	the	camera.	Objects	that	are	close	to	the
camera	will	not	be	affected	by	the	fog,	but	objects	that	are	far	away	will	not	be
distinguishable.	So	we	need	to	be	able	to	calculate	a	factor	that	can	be	used	to	blend	the	fog
colour	and	each	fragment	colour	in	order	to	simulate	that	effect.	That	factor	will	need	to	be
dependent	on	the	distance	to	the	camera.

Let’s	name	that	factor	as	fogFactor,	and	set	its	range	from	0	to	1.	When	fogFactor	takes
the	1	value,	it	means	that	the	object	will	not	be	affected	by	fog,	that	is,	it’s	a	nearby	object.
When	fogFactor	takes	the	0	value,	it	means	that	the	objects	will	be	completely	hidden	in	the
fog.

Then,	the	equation	needed	to	calculate	the	fog	colour	will	be:

finalColour = (1 − fogFactor) ⋅ fogColour + fogFactor ⋅ framentColour

finalColour	is	the	colour	that	results	from	applying	the	fog	effect.
fogFactor	is	the	parameters	that	controls	how	the	fog	colour	and	the	fragment	colour
are	blended.	It	basically	controls	the	object	visibility.
fogColour	is	the	colour	of	the	fog.
fragmentColour,	is	the	colour	of	the	fragment	without	applying	any	fog	effect	on	it.

Now	we	need	to	find	a	way	to	calculate	fogFactor	depending	on	the	distance.	We	can
chose	different	models,	and	the	first	one	could	be	to	use	a	linear	model.	That	is	a	model
that,	given	a	distance,	changes	the	fogFactor	value	in	a	linear	way.

The	linear	model	can	be	defined	by	the	following	parameters:

fogStart:	The	distance	at	where	fog	effects	starts	to	be	applied.
fogF inish:	The	distance	at	where	fog	effects	reaches	its	maximum	value.
distance:	Distance	to	the	camera.

With	those	parameters,	the	equation	to	be	applied	would	be:

Fog

189
www.dbooks.org

https://www.dbooks.org/

fogFactor =

For	objects	at	distance	lower	than	fogStart	we	just	simply	set	the	fogFactor	to	1.	The
following	graph	shows	how	the	fogFactor	changes	with	the	distance.

The	linear	model	is	easy	to	calculate	but	it	is	not	very	realistic	and	it	does	not	take	into
consideration	the	fog	density.	In	reality	fog	tends	to	grow	in	a	smoother	way.	So	the	next
suitable	model	is	a	exponential	one.	The	equation	for	that	model	is	as	follows:

focFactor = e =

The	new	variables	that	come	into	play	are:

fogDensity	which	models	the	thickness	or	density	of	the	fog.
exponent	which	is	used	to	control	how	fast	the	fog	increases	with	distance

The	following	picture	shows	two	graphs	for	the	equation	above	for	different	values	of	the
exponent	(2	for	the	blue	line	and	4	for	the	red	one)

(fogF inish− fogStart)
(fogF inish− distance)

−(distance⋅fogDensity)exponent

e(distance⋅fogDensity)exponent
1

Fog

190

In	our	code	we	will	use	a	formula	which	sets	a	value	of	two	for	the	exponent	(you	can	easily
modify	the	example	to	use	different	values).

Now	that	the	theory	has	been	explained	we	can	put	it	into	practice.	We	will	implement	the
effect	in	the	scene	fragment	shader	since	we	have	there	all	the	variables	we	need.	We	will
start	by	defining	a	struct	that	models	the	fog	attributes.

struct	Fog

{

				int	active;

				vec3	colour;

				float	density;

};

The		active		attribute	will	be	used	to	activate	or	deactivate	the	fog	effect.	The	fog	will	be
passed	to	the	shader	through	another	uniform	named		fog	.

uniform	Fog	fog;

We	will	create	also	a	new	class	named		Fog		which	is	another	POJO	(Plain	Old	Java	Object)
which	contains	the	fog	attributes.

Fog

191
www.dbooks.org

https://www.dbooks.org/

package	org.lwjglb.engine.graph.weather;

import	org.joml.Vector3f;

public	class	Fog	{

				private	boolean	active;

				private	Vector3f	colour;

				private	float	density;

				public	static	Fog	NOFOG	=	new	Fog();

				public	Fog()	{

								active	=	false;

								this.colour	=	new	Vector3f(0,	0,	0);

								this.density	=	0;

				}

				public	Fog(boolean	active,	Vector3f	colour,	float	density)	{

								this.colour	=	colour;

								this.density	=	density;

								this.active	=	active;

				}

			//	Getters	and	setters	here….

We	will	add	a		Fog		instance	in	the		Scene		class.	As	a	default,	the		Scene		class	will	initialize
the		Fog		instance	to	the	constant		NOFOG		which	models	a	deactivated	instance.

Since	we	added	a	new	uniform	type	we	need	to	modify	the		ShaderProgram		class	to	create
and	initialize	the	fog	uniform.

public	void	createFogUniform(String	uniformName)	throws	Exception	{

				createUniform(uniformName	+	".active");

				createUniform(uniformName	+	".colour");

				createUniform(uniformName	+	".density");

}

public	void	setUniform(String	uniformName,	Fog	fog)	{

				setUniform(uniformName	+	".activeFog",	fog.isActive()	?	1	:	0);

				setUniform(uniformName	+	".colour",	fog.getColour());

				setUniform(uniformName	+	".density",	fog.getDensity());

}

In	the		Renderer		class	we	just	need	to	create	the	uniform	in	the		setupSceneShader		method:

Fog

192

sceneShaderProgram.createFogUniform("fog");

And	use	it	in	the		renderScene		method:

sceneShaderProgram.setUniform("fog",	scene.getFog());

We	are	now	able	to	define	fog	characteristics	in	our	game,	but	we	need	to	get	back	to	the
fragment	shader	in	order	to	apply	the	fog	effect.	We	will	create	a	function	named		calcFog	
which	is	defined	like	this.

vec4	calcFog(vec3	pos,	vec4	colour,	Fog	fog)

{

				float	distance	=	length(pos);

				float	fogFactor	=	1.0	/	exp((distance	*	fog.density)*	(distance	*	fog.density));

				fogFactor	=	clamp(fogFactor,	0.0,	1.0);

				vec3	resultColour	=	mix(fog.colour,	colour.xyz,	fogFactor);

				return	vec4(resultColour.xyz,	colour.w);

}

As	you	can	see	we	first	calculate	the	distance	to	the	vertex.	The	vertex	coordinates	are
defined	in	the		pos		variable	and	we	just	need	to	calculate	the	length.	Then	we	calculate	the
fog	factor	using	the	exponential	model	with	an	exponent	of	two	(which	is	equivalent	to
multiply	it	twice).	We	clamp	the		fogFactor		to	a	range	between	0	and	1	and	use	the		mix	
function.	In	GLSL,	the		mix		function	is	used	to	blend	the	fog	colour	and	the	fragment	colour
(defined	by	variable	colour).	It's	equivalent	to	apply	this	equation:

resultColour = (1 − fogFactor) ⋅ fog.colour + fogFactor ⋅ colour

We	also	preserve	the	w	componente,	the	transparency,	of	the	original	colour.	We	don't	want
this	component	to	be	affected,	the	fragment	should	mantain	its	transparency	level.

At	the	end	of	the	fragment	shader	after	applying	all	the	light	effects	we	just	simply	assign	the
returned	value	to	the	fragment	colour	if	the	fog	is	active.

if	(fog.activeFog	==	1)	

{

				fragColor	=	calcFog(mvVertexPos,	fragColor,	fog);

}

With	all	that	code	completed,	we	can	set	up	a	Fog	with	the	following	data:

scene.setFog(new	Fog(true,	new	Vector3f(0.5f,	0.5f,	0.5f),	0.15f));

Fog

193
www.dbooks.org

https://www.dbooks.org/

And	we	will	get	an	effect	like	this:

You	will	see	that	distant	objects	get	faded	in	the	distance	and	that	fog	starts	to	disappear
when	you	approach	to	them.	There’s	a	problem,	though	with	the	skybox,	it	looks	a	little	bit
weird	that	the	horizon	is	not	affected	by	the	fog.	There	are	several	ways	to	solve	this:

Use	a	different	skybox	in	which	you	only	see	a	sky.
Remove	the	skybox,	since	you	have	a	dense	fog,	you	should	not	be	able	to	see	a
background.

Maybe	none	of	the	two	solutions	fits	you,	and	you	can	try	to	match	the	fog	colour	to	the
skybox	background	but	you	will	end	up	doing	complex	calculations	and	the	result	will	not	be
much	better.

If	you	let	the	example	run	you	will	see	how	directional	light	gets	dimmed	and	the	scene
darkens,	but	there’s	a	problem	with	the	fog,	it	is	not	affected	by	light	and	you	will	get
something	like	this.

Fog

194

Distant	objects	are	set	to	the	fog	colour	which	is	a	constant	and	not	affected	by	light.	This
fact	produces	like	a	glowing	in	the	dark	effect	(which	may	be	ok	for	you	or	not).	We	need	to
change	the	funcion	that	calculates	the	fog	to	take	into	consideration	the	light.	The	function
will	receive	the	ambient	light	and	the	directional	light	to	modulate	the	fog	colour.

vec4	calcFog(vec3	pos,	vec4	colour,	Fog	fog,	vec3	ambientLight,	DirectionalLight	dirLi

ght)

{

				vec3	fogColor	=	fog.colour	*	(ambientLight	+	dirLight.colour	*	dirLight.intensity)

;

				float	distance	=	length(pos);

				float	fogFactor	=	1.0	/	exp((distance	*	fog.density)*	(distance	*	fog.density));

				fogFactor	=	clamp(fogFactor,	0.0,	1.0);

				vec3	resultColour	=	mix(fogColor,	colour.xyz,	fogFactor);

				return	vec4(resultColour.xyz,	1);

}

As	you	can	see	with	the	directional	light	we	just	use	the	colour	and	the	intensity,	we	are	not
interested	in	the	direction.	With	that	modification	we	just	need	to	slightly	modify	the	call	to
the	function	like	this:

if	(fog.active	==	1)	

{

				fragColor	=	calcFog(mvVertexPos,	fragColor,	fog,	ambientLight,	directionalLight);

}

Fog

195
www.dbooks.org

https://www.dbooks.org/

And	we	will	get	something	like	this	when	the	night	falls.

One	important	thing	to	highlight	is	that	we	must	wisely	choose	the	fog	colour.	This	is	even
more	important	when	we	have	no	skybox	but	a	fixed	colour	background.	We	should	set	up
the	fog	colour	to	be	equal	to	the	clear	colour.	If	you	uncomment	the	code	that	render	the
skybox	and	rerun	the	example	you	will	get	something	like	this.

But	if	we	modify	the	clear	colour	to	be	equal	to		(0.5,	0.5,	0.5)		the	result	will	be	like	this.

Fog

196

Fog

197
www.dbooks.org

https://www.dbooks.org/

Normal	Mapping
In	this	chapter	we	will	explain	a	technique	that	will	dramatically	improve	how	our	3D	models
look	like.	By	now,	we	are	now	able	to	apply	textures	to	complex	3D	models,	but	we	are	still
far	away	from	what	real	objects	look	like.	Surfaces	in	the	real	world	are	not	perfectly	plain,
they	have	imperfections	that	our	3D	models	currently	do	not	have.

In	order	to	render	more	realistic	scenes	we	are	going	to	use	normal	maps.	If	you	look	at	a
flat	surface	in	the	real	word	you	will	see	that	those	imperfections	can	be	seen	even	at
distance	by	the	way	that	the	light	reflects	on	it.	In	a	3D	scene	a	flat	surface	will	have	no
imperfections,	we	can	apply	a	texture	to	it	but	we	won’t	change	the	way	that	light	reflects	on
it.	That’s	the	thing	that	makes	the	difference.

We	may	think	in	increasing	the	detail	of	our	models	by	increasing	the	number	of	triangles
and	reflect	those	imperfections	but	performance	will	degrade.	What	we	need	is	a	way	to
change	the	way	light	reflects	on	surfaces	to	increase	the	realism.	This	is	achieved	with	the
normal	mapping	technique.

Let’s	go	back	to	the	plain	surface	example,	a	plane	cane	be	defined	by	two	triangles	which
form	a	quad.	If	you	remember	form	the	lightning	chapters,	the	element	that	models	how	light
reflects	are	surface	normals.	In	this	case,	we	have	a	single	normal	for	the	whole	surface,
each	fragment	of	the	surface	uses	the	same	normal	when	calculating	how	light	affects	them.
This	is	shown	in	the	next	figure.

If	we	could	change	the	normals	for	each	fragment	of	the	surface	we	could	model	surface
imperfections	to	render	them	in	a	more	realistic	way.	This	is	shown	in	the	next	figure.

Normal	Mapping

198

The	way	we	are	going	to	achieve	this	is	by	loading	another	texture	which	stores	the	normals
for	the	surface.	Each	pixel	of	the	normal	texture	will	contain	the	values	of	the	x,	y	and	z
coordinates	of	the	normal	stored	as	an	RGB	value.

Let’s	use	the	following	texture	to	draw	a	quad.

An	example	of	a	normal	map	texture	for	the	image	above	could	be	the	following.

As	you	can	see	is	if	like	we	had	applied	a	colour	transformation	to	the	original	texture.	Each
pixel	stores	normal	information	using	colour	components.	One	thing	that	you	will	usually	see
when	viewing	normal	maps	is	that	the	dominant	colours	tend	to	blue.	This	is	due	to	the	fact

Normal	Mapping

199
www.dbooks.org

https://www.dbooks.org/

that	normals	point	to	the	positive	z	axis.	The	z	component	will	usually	have	a	much	higher
value	than	the	x	and	y	ones	for	plain	surfaces	as	the	normal	points	out	of	the	surface.	Since	
x,	y,	z	coordinates	are	mapped	to	RGB,	the	blue	component	will	have	also	a	higher	value.

So,	to	render	an	object	using	normal	maps	we	just	need	an	extra	texture	and	use	it	while
rendering	fragments	to	get	the	appropriate	normal	value.

Let’s	start	changing	our	code	in	order	to	support	normal	maps.	We	will	add	a	new	texture
instance	to	the		Material		class	so	we	can	attach	a	normal	map	texture	to	our	game	items.
This	instance	will	have	its	own	getters	and	setters	and	method	to	check	if	the	material	has	a
normal	map	or	not.

public	class	Material	{

				private	static	final	Vector4f	DEFAULT_COLOUR	=	new	Vector3f(1.0f,	1.0f,	1.0f,	10.f

);

				private	Vector3f	ambientColour;

				private	Vector3f	diffuseColour;

				private	Vector3f	specularColour;

				private	float	reflectance;

				private	Texture	texture;

				private	Texture	normalMap;

				//	…	Previous	code	here

				public	boolean	hasNormalMap()	{

								return	this.normalMap	!=	null;

				}

				public	Texture	getNormalMap()	{

								return	normalMap;

				}

				public	void	setNormalMap(Texture	normalMap)	{

								this.normalMap	=	normalMap;

				}

}

We	will	use	the	normal	map	texture	in	the	scene	fragment	shader.	But,	since	we	are	working
in	view	coordinates	space	we	need	to	pass	the	model	view	matrix	in	order	to	do	the	proper
transformation.	Thus,	we	need	to	modify	the	scene	vertex	shader.

Normal	Mapping

200

#version	330

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

layout	(location=2)	in	vec3	vertexNormal;

out	vec2	outTexCoord;

out	vec3	mvVertexNormal;

out	vec3	mvVertexPos;

out	mat4	outModelViewMatrix;

uniform	mat4	modelViewMatrix;

uniform	mat4	projectionMatrix;

void	main()

{

				vec4	mvPos	=	modelViewMatrix	*	vec4(position,	1.0);

				gl_Position	=	projectionMatrix	*	mvPos;

				outTexCoord	=	texCoord;

				mvVertexNormal	=	normalize(modelViewMatrix	*	vec4(vertexNormal,	0.0)).xyz;

				mvVertexPos	=	mvPos.xyz;

				outModelViewMatrix	=	modelViewMatrix;

}

In	the	scene	fragment	shader	we	need	to	add	another	input	parameter.

in	mat4	outModelViewMatrix;

In	the	fragment	shader,	we	will	need	to	pass	a	new	uniform	for	the	normal	map	texture
sampler:

uniform	sampler2D	texture_sampler;

Also,	in	the	fragment	shader,	we	will	create	a	new	function	that	calculates	the	normal	for	the
current	fragment.

vec3	calcNormal(Material	material,	vec3	normal,	vec2	text_coord,	mat4	modelViewMatrix)

{

				vec3	newNormal	=	normal;

				if	(material.hasNormalMap	==	1)

				{

								newNormal	=	texture(normalMap,	text_coord).rgb;

								newNormal	=	normalize(newNormal	*	2	-	1);

								newNormal	=	normalize(modelViewMatrix	*	vec4(newNormal,	0.0)).xyz;

				}

				return	newNormal;

}

Normal	Mapping

201
www.dbooks.org

https://www.dbooks.org/

The	function	takes	the	following	parameters:

The	material	instance.
The	vertex	normal.
The	texture	coordinates.
The	model	view	matrix.

The	first	thing	we	do	in	that	function	is	to	check	if	this	material	has	a	normal	map	associated
or	not.	If	not,	we	just	simply	use	the	vertex	normal	as	usual.	If	it	has	a	normal	map,	we	use
the	normal	data	stored	in	the	normal	texture	map	associated	to	the	current	texture
coordinates.

Remember	that	the	colour	we	get	are	the	normal	coordinates,	but	since	they	are	stored	as
RGB	values	they	are	contained	in	the	range	[0,	1].	We	need	to	transform	them	to	be	in	the
range	[-1,	1],	so	we	just	multiply	by	two	and	subtract	1	.	Then,	we	normalize	that	value	and
transform	it	to	view	model	coordinate	space	(as	with	the	vertex	normal).

And	that’s	all,	we	can	use	the	returned	value	as	the	normal	for	that	fragment	in	all	the
lightning	calculations.

In	the		Renderer		class	we	need	to	create	the	normal	map	uniform,	and	in	the		renderScene	
method	we	need	to	set	it	up	like	this:

...

sceneShaderProgram.setUniform("fog",	scene.getFog());

sceneShaderProgram.setUniform("texture_sampler",	0);

sceneShaderProgram.setUniform("normalMap",	1);

...

You	may	notice	some	interesting	thing	in	the	code	above.	We	are	setting	0	for	the	material
texture	uniform	(texture_sampler)	and	1	for	the	normal	map	texture	(normalMap).	If	you
recall	from	the	texture	chapter.	We	are	using	more	than	one	texture,	so	we	must	set	up	the
texture	unit	for	each	separate	texture.

We	need	to	take	this	also	into	consideration	when	we	are	rendering	a		Mesh	.

Normal	Mapping

202

private	void	initRender()	{

				Texture	texture	=	material.getTexture();

				if	(texture	!=	null)	{

								//	Activate	first	texture	bank

								glActiveTexture(GL_TEXTURE0);

								//	Bind	the	texture

								glBindTexture(GL_TEXTURE_2D,	texture.getId());

				}

				Texture	normalMap	=	material.getNormalMap();

				if	(normalMap	!=	null)	{

								//	Activate	first	texture	bank

								glActiveTexture(GL_TEXTURE1);

								//	Bind	the	texture

								glBindTexture(GL_TEXTURE_2D,	normalMap.getId());

				}

				//	Draw	the	mesh

				glBindVertexArray(getVaoId());

				glEnableVertexAttribArray(0);

				glEnableVertexAttribArray(1);

				glEnableVertexAttribArray(2);

}

As	you	can	see	we	need	to	bind	to	each	of	the	textures	available	and	activate	the	associated
texture	unit	in	order	to	be	able	to	work	with	more	than	one	texture.	In	the		renderScene	
method	in	the		Renderer		class	we	do	not	need	to	explicitly	set	up	the	uniform	of	the	texture
since	it’s	already	contained	in	the		Material	.

In	order	to	show	the	improvements	that	normal	maps	provide,	we	have	created	an	example
that	shows	two	quads	side	by	side.	The	right	quad	has	a	texture	map	applied	and	the	left
one	not.	We	also	have	removed	the	terrain,	the	skybox	and	the	HUD	and	setup	a	directional
light	with	can	be	changed	with	the	left	and	right	cursor	keys	so	you	can	see	the	effect.	We
have	modified	the	base	source	code	a	bit	in	order	to	support	not	having	a	skybox	or	a
terrain.	We	have	also	clamped	the	light	effect	in	the	fragment	shader	in	the	rang	[0,	1]	to
avoid	over	exposing	effect	of	the	image.

The	result	is	shown	in	the	next	figure.

Normal	Mapping

203
www.dbooks.org

https://www.dbooks.org/

As	you	can	see	the	quad	that	has	a	normal	texture	applied	gives	the	impression	of	having
more	volume.	Although	it	is,	in	essence,	a	plain	surface	like	the	other	quad,	you	can	see
how	the	light	reflects.
But,	although	the	code	we	have	set	up,	works	perfectly	with	this	example	you	need	to	be
aware	of	its	limitations.	The	code	only	works	for	normal	map	textures	that	are	created	using
object	space	coordinates.	If	this	is	the	case	we	can	apply	the	model	view	matrix
transformations	to	translate	the	normal	coordinates	to	the	view	space.

But,	usually	normal	maps	are	not	defined	in	that	way.	They	usually	are	defined	in	the	called
tangent	space.	The	tangent	space	is	a	coordinate	system	that	is	local	to	each	triangle	of	the
model.	In	that	coordinate	space	the	z	axis	always	points	out	of	the	surface.	This	is	the
reason	why	when	you	look	at	a	normal	map	its	usually	bluish,	even	for	complex	models	with
opposing	faces.

We	will	stick	with	this	simple	implementation	by	now,	but	keep	in	mind	that	you	must	always
use	normal	maps	defined	in	object	space.	If	you	use	maps	defined	in	tangent	space	you	will
get	weird	results.	In	order	to	be	able	to	work	with	them	we	need	to	setup	specific	matrices	to
transform	coordinates	to	the	tangent	space.

Normal	Mapping

204

Shadows

Shadow	Mapping
Currently	we	are	able	to	represent	how	light	affects	the	objects	in	a	3D	scene.	Objects	that
get	more	light	are	shown	brighter	then	objects	that	do	not	receive	light.	However	we	are	still
not	able	to	cast	shadows.	Shadows	will	increase	the	degree	of	realism	that	3D	scene	would
have	so	we	will	add	support	for	it	in	this	chapter.

We	will	use	a	technique	named	Shadow	mapping	which	is	widely	used	in	games	and	does
not	affect	severely	the	engine	performance.	Shadow	mapping	may	seem	simple	to
understand	but	it’s	somehow	difficult	to	implement	it	right.	Or,	to	be	more	precise,	it’s	very
difficult	to	implement	it	in	a	generic	ways	that	cover	all	the	potential	cases	and	produces
consistent	results.

We	will	explain	here	an	approach	which	will	serve	you	to	add	shadows	for	most	of	the	cases,
but	what	it’s	more	important	it	will	serve	you	to	understand	its	limitations.	The	code
presented	here	is	far	from	being	perfect	but	I	think	it	will	be	easy	to	understand.	It	is	also
designed	to	support	directional	lights	(which	in	my	opinion	is	the	more	complex	case)	but
you	will	learn	how	it	can	be	extended	to	support	other	type	of	lights	(such	us	point	lights).	If
you	want	to	achieve	more	advanced	results	you	should	use	more	advance	techniques	such
as	Cascaded	Shadow	Maps.	In	any	case	the	concepts	explained	here	will	serve	you	as	a
basis.

So	let’s	start	by	thinking	in	how	we	could	check	if	a	specific	area	(indeed	a	fragment)	is	in
shadow	or	not.	While	drawing	that	area	if	we	can	cast	rays	to	the	light	source,	if	we	can
reach	the	light	source	without	any	collision	then	that	pixel	is	in	light.	If	not,	then	the	pixel	is	in
shadow.

The	following	picture	shows	the	case	for	a	point	light,	the	point	PA	can	reach	the	source
light,	but	points	PB	and	PC	can’t	so	they	are	in	shadow.

Shadows

205
www.dbooks.org

https://www.dbooks.org/

So,	how	we	can	check	if	we	can	cast	that	ray	without	collisions	in	an	efficient	manner?	A
light	source	can,	theoretically	cast	infinitely	ray	lights,	so	how	do	we	check	if	a	ray	light	is
blocked	or	not	?
What	we	can	do	instead	of	casting	ray	lights	is	to	look	at	the	3D	scene	from	the	light’s
persèctive	and	render	the	scene	from	that	location.	We	can	set	the	camera	at	the	light
position	and	render	the	scene	so	we	can	store	the	depth	for	each	fragment.	This	is
equivalent	to	calculate	the	distance	of	each	fragment	to	the	light	source.	At	the	end,	what	we
are	doing	is	storing	the	minimum	distance	as	seen	from	the	light	source	as	a	shadow	map.

The	following	picture	shows	a	cube	floating	over	a	plane	and	a	perpendicular	light.

The	scene	as	seen	from	the	light	perspective	would	be	something	like	this	(the	darker	the
colour,	the	closer	to	the	light	source).

Shadows

206

With	that	information	we	can	render	the	3D	scene	as	usual	and	check	the	distance	for	each
fragment	to	the	light	source	with	the	minimum	stored	distance.	If	the	distance	is	less	that	the
value	stored	in	the	shadow	map,	then	the	object	is	in	light,	otherwise	is	in	shadow.	We	can
have	several	objects	that	could	be	hit	by	the	same	ray	light.	But	we	store	the	minimum
distance.

Thus,	shadow	mapping	is	a	two	step	process:

First	we	render	the	scene	from	the	light	space	into	a	shadow	map	to	get	the	minimum
distances.
Second	we	render	the	scene	from	the	camera	point	of	view	and	use	that	depth	map	to
calculate	if	objects	are	in	shadow	or	not.

In	order	to	render	the	depth	map	we	need	to	talk	about	the	depth	buffer.	When	we	render	a
scene	all	the	depth	information	is	stored	in	a	buffer	named,	obviously,	depth-buffer	(also	z-
buffer).	That	depth	information	is	the	z	value	of	each	of	the	fragment	that	is	rendered.	If	you
recall	from	the	first	chapters	what	we	are	doing	while	rendering	a	scene	is	transforming	from
world	coordinates	to	screen	coordinates.	We	are	drawing	to	a	coordinate	space	which
ranges	from	0	to	1	for	x	and	y	axis.	If	an	object	is	more	distant	than	other,	we	must	calculate
how	this	affects	their	x	and	y	coordinates	through	the	perspective	projection	matrix.	This	is
not	calculated	automatically	depending	on	the	z	value,	this	must	be	done	us.	What	is
actually	stored	in	the	z	coordinate	its	the	depth	of	that	fragment,	nothing	less	but	nothing
more.

Besides	that,	in	our	source	code	we	are	enabling	depth	testing.	In	the	Window	class	we
have	set	the	following	line:

glEnable(GL_DEPTH_TEST);

By	setting	this	line	we	prevent	fragments	that	cannot	be	seen,	because	they	are	behind
other	objects,	to	be	drawn.	Before	a	fragment	is	drawn	its	z	value	is	compared	with	the	z
value	of	the	z-buffer.	If	it	has	a	higher	z	value	(it’s	far	away)	than	the	z	value	of	the	buffer	it’s
discarded.	Remember	that	this	is	done	in	screen	space,	so	we	are	comparing	the	z	value	of
a	fragment	given	a	pair	of	x	and	y	coordinates	in	screen	space,	that	is	in	the	range	[0, 1].
Thus,	the	z	value	is	also	in	that	range.

Shadows

207
www.dbooks.org

https://www.dbooks.org/

The	presence	of	the	depth	buffer	is	the	reason	why	we	need	to	clear	the	screen	before
performing	any	render	operation.	We	need	to	clear	not	only	the	colour	but	the	depth
information	also:

public	void	clear()	{

				glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT);

}

In	order	to	start	building	the	depth	map	we	want	to	get	that	depth	information	as	viewed	from
the	light	perspective.	We	need	to	setup	a	camera	in	the	light	position,	render	the	scene	and
store	that	depth	information	into	a	texture	so	we	can	access	to	it	later.

Therefore,	the	first	thing	we	need	to	do	is	add	support	for	creating	those	textures.	We	will
modify	the		Texture		class	to	support	the	creation	of	empty	textures	by	adding	a	new
constructor.	This	constructor	expects	the	dimensions	of	the	texture	and	the	format	of	the
pixels	it	stores.

public	Texture(int	width,	int	height,	int	pixelFormat)	throws	Exception	{

				this.id	=	glGenTextures();

				this.width	=	width;

				this.height	=	height;

				glBindTexture(GL_TEXTURE_2D,	this.id);

				glTexImage2D(GL_TEXTURE_2D,	0,	GL_DEPTH_COMPONENT,	this.width,	this.height,	0,	pix

elFormat,	GL_FLOAT,	(ByteBuffer)	null);

				glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,	GL_NEAREST);

				glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,	GL_NEAREST);

				glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_WRAP_S,	GL_CLAMP_TO_EDGE);

				glTexParameteri(GL_TEXTURE_2D,	GL_TEXTURE_WRAP_T,	GL_CLAMP_TO_EDGE);

}

We	set	the	texture	wrapping	mode	to		GL_CLAMP_TO_EDGE		since	we	do	not	want	the	texture	to
repeat	in	case	we	exceed	the	[0, 1]	range.

So	now	that	we	are	able	to	create	empty	textures,	we	need	to	be	able	to	render	a	scene	into
it.	In	order	to	do	that	we	need	to	use	Frame	Buffers	Objects	(or	FBOs).	A	Frame	Buffer	is	a
collection	of	buffers	that	can	be	used	as	a	destination	for	rendering.	When	we	have	been
rendering	to	the	screen	we	have	using	OpenGL’s	default	buffer.	OpenGL	allows	us	to	render
to	user	defined	buffers	by	using	FBOs.	We	will	isolate	the	rest	of	the	code	of	the	process	of
creating	FBOs	for	shadow	mapping	by	creating	a	new	class	named		ShadowMap	.	This	is	the
definition	of	that	class.

package	org.lwjglb.engine.graph;

import	static	org.lwjgl.opengl.GL11.*;

import	static	org.lwjgl.opengl.GL30.*;

Shadows

208

public	class	ShadowMap	{

				public	static	final	int	SHADOW_MAP_WIDTH	=	1024;

				public	static	final	int	SHADOW_MAP_HEIGHT	=	1024;

				private	final	int	depthMapFBO;

				private	final	Texture	depthMap;

				public	ShadowMap()	throws	Exception	{

								//	Create	a	FBO	to	render	the	depth	map

								depthMapFBO	=	glGenFramebuffers();

								//	Create	the	depth	map	texture

								depthMap	=	new	Texture(SHADOW_MAP_WIDTH,	SHADOW_MAP_HEIGHT,	GL_DEPTH_COMPONENT

);

								//	Attach	the	the	depth	map	texture	to	the	FBO

								glBindFramebuffer(GL_FRAMEBUFFER,	depthMapFBO);

								glFramebufferTexture2D(GL_FRAMEBUFFER,	GL_DEPTH_ATTACHMENT,	GL_TEXTURE_2D,	dep

thMap.getId(),	0);

								//	Set	only	depth

								glDrawBuffer(GL_NONE);

								glReadBuffer(GL_NONE);

								if	(glCheckFramebufferStatus(GL_FRAMEBUFFER)	!=	GL_FRAMEBUFFER_COMPLETE)	{

												throw	new	Exception("Could	not	create	FrameBuffer");

								}

								//	Unbind

								glBindFramebuffer(GL_FRAMEBUFFER,	0);

				}

				public	Texture	getDepthMapTexture()	{

								return	depthMap;

				}

				public	int	getDepthMapFBO()	{

								return	depthMapFBO;

				}

				public	void	cleanup()	{

								glDeleteFramebuffers(depthMapFBO);

								depthMap.cleanup();

				}

}

Shadows

209
www.dbooks.org

https://www.dbooks.org/

The		ShadowMap		class	defines	two	constants	that	determine	the	size	of	the	texture	that	will
hold	the	depth	map.	It	also	defines	two	attributes,	one	for	the	FBO	and	one	for	the	texture.	In
the	constructor,	we	create	a	new	FBO	and	a	new		Texture	.	For	the	FBO	we	will	use	as	the
pixel	format	the	constant		GL_DEPTH_COMPONENT		since	we	are	only	interested	in	storing	depth
values.	Then	we	attach	the	FBO	to	the	texture	instance.

The	following	lines	explicitly	set	the	FBO	to	not	render	any	colour.	A	FBO	needs	a	colour
buffer,	but	we	are	not	going	to	needed.	This	is	why	we	set	the	colour	buffers	to	be	used	as
	GL_NONE	.

glDrawBuffer(GL_NONE);

glReadBuffer(GL_NONE);

Now	we	are	ready	to	render	the	scene	from	the	light	perspective	into	FBO	in	the		Renderer	
class.	In	order	to	do	that,	we	will	create	a	specific	set	of	vertex	and	fragments	shaders.

The	vertex	shader,	named		depth_vertex.fs	,	is	defined	like	this.

#version	330

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

layout	(location=2)	in	vec3	vertexNormal;

uniform	mat4	modelLightViewMatrix;

uniform	mat4	orthoProjectionMatrix;

void	main()

{

				gl_Position	=	orthoProjectionMatrix	*	modelLightViewMatrix	*	vec4(position,	1.0f);

}

We	expect	to	receive	the	same	input	data	as	the	scene	shader.	In	fact,	we	only	need	the
position,	but	to	reuse	as	much	as	code	as	possible	we	will	pass	it	anyway.	We	also	need	a
pair	of	matrices.	Remember	that	we	must	render	the	scene	from	the	light	point	of	view,	so
we	need	to	transform	our	models	to	light's	coordinate	space.	This	is	done	through	the
	modelLightViewMatrix		matrix,	which	is	analogous	to	view	model	matrix	used	for	a	camera.
The	light	is	our	camera	now.

Then	we	need	to	transform	those	coordinates	to	screen	space,	that	is,	we	need	to	project
them.	And	this	is	one	of	the	differences	while	calculating	shadow	maps	for	directional	lights
versus	point	lights.	For	point	lights	we	would	use	a	perspective	projection	matrix	as	if	we
were	rendering	the	scene	normally.	Directional	lights,	instead,	affect	all	objects	in	the	same

Shadows

210

way	independently	of	the	distance.	Directional	lights	are	located	at	an	infinite	point	and	do
not	have	a	position	but	a	direction.	An	orthographic	projection	does	not	render	distant
objects	smaller,	and	because	of	this	characteristic	is	the	most	suitable	for	directional	lights.

The	fragment	shader	is	even	simpler.	It	just	outputs	the	z	coordinate	as	the	depth	value.

#version	330

void	main()

{

				gl_FragDepth	=	gl_FragCoord.z;

}

In	fact,	you	can	remove	that	line,	since	we	are	only	generating	depth	values,	the	depth	value
it	will	be	automatically	returned.

Once	we	have	defined	the	new	shaders	for	depth	rendering	we	can	use	them	in	the
	Renderer		class.	We	define	a	new	method	for	setting	up	those	shaders,	named
	setupDepthShader	,	which	will	be	invoked	where	the	others	shaders	are	initialized.

private	void	setupDepthShader()	throws	Exception	{

				depthShaderProgram	=	new	ShaderProgram();

				depthShaderProgram.createVertexShader(Utils.loadResource("/shaders/depth_vertex.vs"

));

				depthShaderProgram.createFragmentShader(Utils.loadResource("/shaders/depth_fragmen

t.fs"));

				depthShaderProgram.link();

				depthShaderProgram.createUniform("orthoProjectionMatrix");

				depthShaderProgram.createUniform("modelLightViewMatrix");

}

Now	we	need	to	create	a	new	method	that	uses	those	shaders	which	will	be	named
	renderDepthMap	.	This	method	will	be	invoked	in	the	principal	render	method.

public	void	render(Window	window,	Camera	camera,	Scene	scene,	IHud	hud)	{

				clear();

				//	Render	depth	map	before	view	ports	has	been	set	up

				renderDepthMap(window,	camera,	scene);

				glViewport(0,	0,	window.getWidth(),	window.getHeight());

				//	Rest	of	the	code	here

Shadows

211
www.dbooks.org

https://www.dbooks.org/

If	you	look	at	the	above	code	you	will	see	that	the	new	method	is	invoked	at	the	very
beginning,	before	we	have	set	the	view	port.	This	is	due	to	the	fact	that	this	new	method	will
change	the	view	port	to	match	the	dimensions	of	the	texture	that	holds	the	depth	map.
Because	of	that,	we	will	always	need	to	set,	after	the		renderDepthMap		has	been	finished,	the
view	port	to	the	screen	dimensions	(without	checking	if	the	window	has	been	resized).

Let’s	define	now	the		renderDepthMap		method.	The	first	thing	that	we	will	do	is	to	bind	to	the
FBO	we	have	created	in	the		ShadowMap		class	and	set	the	view	port	to	match	the	texture
dimensions.

glBindFramebuffer(GL_FRAMEBUFFER,	shadowMap.getDepthMapFBO());

glViewport(0,	0,	ShadowMap.SHADOW_MAP_WIDTH,	ShadowMap.SHADOW_MAP_HEIGHT);

Then	we	clear	the	depth	buffer	contents	and	bind	the	depth	shaders.	Since	we	are	only
dealing	with	depth	values	we	do	not	need	to	clear	colour	information.

glClear(GL_DEPTH_BUFFER_BIT);

depthShaderProgram.bind();

Now	we	need	to	setup	the	matrices,	and	here	comes	the	tricky	part.	We	use	the	light	as	a
camera	so	we	need	to	create	a	view	matrix	which	needs	a	position	and	three	angles.	As	it
has	been	said	at	the	beginning	of	the	chapter	we	will	support	only	directional	lights,	and	that
type	of	lights	does	not	define	a	position	but	a	direction.	If	we	were	using	point	lights	this
would	be	easy,	the	position	of	the	light	would	be	the	position	of	the	view	matrix,	but	we	do
not	have	that.

We	will	take	a	simple	approach	to	calculate	the	light	position.	Directional	lights	are	defined
by	a	vector,	usually,	normalized,	which	points	to	the	direction	where	the	light	is.	We	will
multiply	that	direction	vector	by	a	configurable	factor	so	it	defines	a	point	at	a	reasonable
distance	for	the	scene	we	want	to	draw.	We	will	use	that	direction	in	order	to	calculate	the
rotation	angle	for	that	view	matrix.

Shadows

212

This	is	the	fragment	that	calculates	the	light	position	and	the	rotation	angles

float	lightAngleX	=	(float)Math.toDegrees(Math.acos(lightDirection.z));

float	lightAngleY	=	(float)Math.toDegrees(Math.asin(lightDirection.x));

float	lightAngleZ	=	0;

Matrix4f	lightViewMatrix	=	transformation.updateLightViewMatrix(new	Vector3f(lightDire

ction).mul(light.getShadowPosMult()),	new	Vector3f(lightAngleX,	lightAngleY,	lightAngl

eZ));

Next	we	need	to	calculate	the	orthographic	projection	matrix.

Matrix4f	orthoProjMatrix	=	transformation.updateOrthoProjectionMatrix(orthCoords.left,

	orthCoords.right,	orthCoords.bottom,	orthCoords.top,	orthCoords.near,	orthCoords.far)

;

We	have	modified	the		Transformation		class	to	include	the	light	view	matrix	and	the
orthographic	projection	matrix.	Previously	we	had	a	orthographic	2D	projection	matrix,	so	we
have	renamed	the	previous	methods	and	attributes.	You	can	check	the	definition	in	the
source	code	which	is	straight	forward.

Then	we	render	the	scene	objects	as	in	the		renderScene		method	but	using	the	previous
matrices	to	work	in	light	space	coordinate	system.

Shadows

213
www.dbooks.org

https://www.dbooks.org/

depthShaderProgram.setUniform("orthoProjectionMatrix",	orthoProjMatrix);

Map<Mesh,	List<GameItem>>	mapMeshes	=	scene.getGameMeshes();

for	(Mesh	mesh	:	mapMeshes.keySet())	{

				mesh.renderList(mapMeshes.get(mesh),	(GameItem	gameItem)	->	{

								Matrix4f	modelLightViewMatrix	=	transformation.buildModelViewMatrix(gameItem,	

lightViewMatrix);

								depthShaderProgram.setUniform("modelLightViewMatrix",	modelLightViewMatrix);

				}

);

}

//	Unbind

depthShaderProgram.unbind();

glBindFramebuffer(GL_FRAMEBUFFER,	0);

The	parameterization	of	the	orthographic	projection	matrix	is	defined	in	the	directional	Light.
Think	of	the	orthographic	projection	matrix	as	a	bounding	box	that	contains	all	the	objects
that	we	want	to	render.	When	projecting	only	the	objects	that	fit	into	that	bounding	box	will
be	be	visible.	That	bounding	box	is	defined	by	6	parameters:	left,	right,	bottom,	top,	near,	far.
Since,	the	light	position	is	now	the	origin,	these	parameters	define	the	distance	from	that
origin	to	the	left	or	right	(x-axis)	up	or	down	(y-axis)	and	to	the	nearest	or	farthest	plane	(z-
axis).

One	of	the	trickiest	points	in	getting	shadows	map	to	work	is	determine	the	light	position	and
the	orthographic	projection	matrix	parameters.	This	is	way	all	these	parameters	are	now
defined	in	the		DirectionalLight		class	so	it	can	be	set	properly	according	to	each	scene.

You	can	implement	a	more	automatic	approach,	by	calculating	the	centre	of	the	camera
frustum,	get	back	in	the	light	direction	and	build	a	orthographic	projection	that	contains	all
the	objects	in	the	scene.	The	following	figure	shows	a	3D	scene	as	looked	form	above,	the
camera	position	and	its	frustum	(in	blue)	and	the	optimal	light	position	and	bounding	box	in
red.

Shadows

214

The	problem	with	the	approach	above	is	that	is	difficult	to	calculate	and	if	you	have	small
objects	and	the	bounding	box	is	big	you	may	get	strange	results.	The	approach	presented
here	is	simpler	for	small	scenes	and	you	can	tweak	it	to	match	your	models	(even	you	can
chose	to	explicitly	set	light’s	position	to	avoid	strange	effects	if	camera	moves	far	away	from
the	origin).	If	you	want	a	more	generic	model	that	can	be	applied	to	any	scene	you	should
extend	it	to	support	cascading	shadow	maps.

Let's	continue.	Before	we	use	the	depth	maps	to	actually	calculate	shadows,	you	could
render	a	quad	with	the	generated	texture	to	see	how	a	real	depth	map	looks	like.	You	could
get	something	like	this	for	a	scene	composed	by	a	rotating	cube	floating	over	a	plane	with	a
perpendicular	directional	light.

Shadows

215
www.dbooks.org

https://www.dbooks.org/

As	it's	been	said	before,	the	darker	the	colour,	the	closer	to	the	light	position.	What’s	the
effect	of	the	light	position	in	the	depth	map?	You	can	play	with	the	multiplication	factor	of	the
directional	light	and	you	will	see	that	the	size	of	the	objects	rendered	in	the	texture	do	not
decrease.	Remember	that	we	are	using	an	orthographic	projection	matrix	and	objects	do	not
get	smaller	with	distance.	What	you	will	see	is	that	all	colours	get	brighter	as	seen	in	the
next	picture.

Does	that	mean	that	we	can	choose	a	high	distance	for	the	light	position	without
consequences?	The	answer	is	no.	If	light	is	too	far	away	from	the	objects	we	want	to	render,
these	objects	can	be	out	of	the	bounding	box	that	defines	the	orthographic	projection	matrix.
In	this	case	you	will	get	a	nice	white	texture	which	would	be	useless	for	shadow	mapping.
Ok,	then	we	simply	increase	the	bounding	box	size	and	everything	will	be	ok,	right?	The
answer	is	again	no.	If	you	chose	huge	dimensions	for	the	orthographic	projection	matrix	your
objects	will	be	drawn	very	small	in	the	texture,	and	the	depth	values	can	even	overlap
leading	to	strange	results.	Ok,	so	you	can	think	in	increasing	the	texture	size,	but,	again	in
this	case	you	are	limited	and	textures	cannot	grow	indefinitely	to	use	huge	bounding	boxes.

So	as	you	can	see	selecting	the	light	position	and	the	orthographic	projection	parameters	is
a	complex	equilibrium	which	makes	difficult	to	get	right	results	using	shadow	mapping.

Let’s	go	back	to	the	rendering	process,	once	we	have	calculated	the	depth	map	we	can	use
it	while	rendering	the	scene.	First	we	need	to	modify	the	scene	vertex	shader.	Up	to	now,	the
vertex	shader	projected	the	vertex	coordinates	from	model	view	space	to	the	screen	space
using	a	perspective	matrix.	Now	we	need	to	project	also	the	vertex	coordinates	from	light
space	coordinates	using	a	projection	matrix	to	be	used	in	the	fragment	shader	to	calculate
the	shadows.

The	vertex	shader	is	modified	like	this.

Shadows

216

#version	330

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

layout	(location=2)	in	vec3	vertexNormal;

out	vec2	outTexCoord;

out	vec3	mvVertexNormal;

out	vec3	mvVertexPos;

out	vec4	mlightviewVertexPos;

out	mat4	outModelViewMatrix;

uniform	mat4	modelViewMatrix;

uniform	mat4	projectionMatrix;

uniform	mat4	modelLightViewMatrix;

uniform	mat4	orthoProjectionMatrix;

void	main()

{

				vec4	mvPos	=	modelViewMatrix	*	vec4(position,	1.0);

				gl_Position	=	projectionMatrix	*	mvPos;

				outTexCoord	=	texCoord;

				mvVertexNormal	=	normalize(modelViewMatrix	*	vec4(vertexNormal,	0.0)).xyz;

				mvVertexPos	=	mvPos.xyz;

				mlightviewVertexPos	=	orthoProjectionMatrix	*	modelLightViewMatrix	*	vec4(position

,	1.0);

				outModelViewMatrix	=	modelViewMatrix;

}

We	use	new	uniforms	for	the	light	view	matrix	and	the	orthographic	projection	matrix.

In	the	fragment	shader	we	will	create	a	new	function	to	calculate	the	shadows	that	is	defined
like	this.

float	calcShadow(vec4	position)

{

				float	shadowFactor	=	1.0;

				vec3	projCoords	=	position.xyz;

				//	Transform	from	screen	coordinates	to	texture	coordinates

				projCoords	=	projCoords	*	0.5	+	0.5;

				if	(projCoords.z	<	texture(shadowMap,	projCoords.xy).r)	

				{

								//	Current	fragment	is	not	in	shade

								shadowFactor	=	0;

				}

				return	1	-	shadowFactor;

}

Shadows

217
www.dbooks.org

https://www.dbooks.org/

The	function	receives	the	position	in	light	view	space	projected	using	the	orthographic
projection	matrix.	It	returns	0	if	the	position	is	in	shadow	and	1	if	it’s	not.	First,	the
coordinates	are	transformed	to	texture	coordinates.	Screen	coordinates	are	in	the	range	
[−1, 1],	but	texture	coordinates	are	in	the	range	[0, 1].	With	that	coordinates	we	get	the	depth
value	from	the	texture	and	compare	it	with	the	z	value	of	the	fragment	coordinates.	If	the	z
value	if	the	fragment	has	a	lower	value	than	the	one	stored	in	the	texture	that	means	that	the
fragment	is	not	in	shade.

In	the	fragment	shader,	the	return	value	from	the		calcShadow		function	to	modulate	the	light
colour	contributions	from	point,	spot	and	directional	lights.	The	ambient	light	is	not	affected
by	the	shadow.

float	shadow	=	calcShadow(mlightviewVertexPos);

fragColor	=	clamp(ambientC	*	vec4(ambientLight,	1)	+	diffuseSpecularComp	*	shadow,	0,	1

);

In	the		renderScene		method	of	the		Renderer		class	we	just	need	to	pass	the	uniform	for	the
orthographic	projection	and	light	view	matrices	(we	need	to	modify	also	the	method	that
initializes	the	shader	to	create	the	new	uniforms).	You	can	consult	this	in	the	book’s	source
code.

If	to	run	the		DummyGame		class,	which	has	been	modified	to	setup	a	floating	cube	over	a	plane
with	a	directional	light	which	angle	can	be	changed	by	using	up	and	down	keys,	you	should
see	something	like	this.

Although	shadows	are	working	(you	can	check	that	by	moving	light	direction),	the
implementation	presents	some	problems.	First	of	all,	there	are	strange	lines	in	the	objects
that	are	lightened	up.	This	effect	is	called	shadow	acne,	and	it’s	produced	by	the	limited

Shadows

218

resolution	of	the	texture	that	stores	the	depth	map.	The	second	problem	is	that	the	borders
of	the	shadow	are	not	smooth	and	look	blocky.	The	cause	is	the	same	again,	the	texture
resolution.	We	will	solve	these	problems	in	order	to	improve	shadow	quality.

Shadow	Mapping	improvements
Now	that	we	have	the	shadow	mapping	mechanism	working,	let’s	solve	the	problems	we
have.	Let’s	first	start	with	the	shadow	acne	problem.	The	depth	map	texture	is	limited	in	size,
and	because	of	that,	several	fragments	can	be	mapped	to	the	same	pixel	in	that	texture
depth.	The	texture	depth	stores	the	minimum	depth,	so	at	the	end,	we	have	several
fragments	that	share	the	same	depth	in	that	texture	although	they	are	at	different	distances.

We	can	solve	this	by	increasing,	by	a	little	bit	the	depth	comparison	in	the	fragment	shader,
we	add	a	bias.

float	bias	=	0.05;

if	(projCoords.z	-	bias	<	texture(shadowMap,	projCoords.xy).r)	

{

				//	Current	fragment	is	not	in	shade

				shadowFactor	=	0;

}

Now,	the	shadow	acne	has	disappeared.

Shadows

219
www.dbooks.org

https://www.dbooks.org/

Now	we	are	going	to	solve	de	shadow	edges	problem,	which	is	also	caused	by	the	texture
resolution.	For	each	fragment	we	are	going	to	sample	the	depth	texture	with	the	fragment’s
position	value	and	the	surrounding	values.	Then	we	will	calculate	the	average	and	assign
that	value	as	the	shadow	value.	In	this	case	his	value	won’t	be	0	or	1	but	can	take	values	in
between	in	order	to	get	smoother	edges.

The	surrounding	values	must	be	at	one	pixel	distance	of	the	current	fragment	position	in
texture	coordinates.	So	we	need	to	calculate	the	increment	of	one	pixel	in	texture
coordinates	which	is	equal	to	1/textureSize.

In	the	fragment	Shader	we	just	need	to	modify	the	shadow	factor	calculation	to	get	an
average	value.

float	shadowFactor	=	0.0;

vec2	inc	=	1.0	/	textureSize(shadowMap,	0);

for(int	row	=	-1;	row	<=	1;	++row)

{

				for(int	col	=	-1;	col	<=	1;	++col)

				{

								float	textDepth	=	texture(shadowMap,	projCoords.xy	+	vec2(row,	col)	*	inc).r;	

								shadowFactor	+=	projCoords.z	-	bias	>	textDepth	?	1.0	:	0.0;								

				}				

}

shadowFactor	/=	9.0;

The	result	looks	now	smoother.

Shadows

220

Now	our	sample	looks	much	better.	Nevertheless,	the	shadow	mapping	technique	presented
here	can	still	be	improved	a	lot.	You	can	check	about	solving	peter	panning	effect	(caused
by	the	bias	factor)	and	other	techniques	to	improve	the	shadow	edges.	In	any	case,	with	the
concepts	explained	here	you	have	a	good	basis	to	start	modifying	the	sample.

In	order	to	render	multiple	lights	you	just	need	to	render	a	separate	depth	map	for	each	light
source.	While	rendering	the	scene	you	will	need	to	sample	all	those	depth	maps	to	calculate
the	appropriate	shadow	factor.

Shadows

221
www.dbooks.org

https://www.dbooks.org/

Animations

Introduction
By	now	we	have	just	loaded	static	3D	models,	in	this	chapter	we	will	learn	how	to	animate
them.	When	thinking	about	animations	the	first	approach	is	to	create	different	meshes	for
each	model	positions,	load	them	up	into	the	GPU	and	draw	them	sequentially	to	create	the
illusion	of	animation.	Although	this	approach	is	perfect	for	some	games	it's	not	very	efficient
(in	terms	of	memory	consumption).

This	where	skeletal	animation	comes	to	play.	In	skeletal	animation	the	way	a	model
animates	is	defined	by	its	underlying	skeleton.	A	skeleton	is	defined	by	a	hierarchy	of	special
points	called	joints.	Those	joints	are	defined	by	their	position	and	rotation.	We	have	said	also
that	it's	a	hierarchy,	this	means	that	the	final	position	for	each	joint	is	affected	by	their
parents.	For	instance,	think	on	a	wrist,	the	position	of	a	wrist	is	modified	if	a	character	moves
the	elbow	and	also	if	it	moves	the	shoulder.

Joints	do	not	need	to	represent	a	physical	bone	or	articulation,	they	are	artifacts	that	allows
the	creatives	to	model	an	animation.	In	addition	to	joints	we	still	have	vertices,	the	points	that
define	the	triangles	that	compose	a	3D	model.	But,	in	skeletal	animation,	vertices	are	drawn
based	on	the	position	of	the	joints	it	is	related	to.

In	this	chapter	we	will	use	MD5	format	to	load	animated	models.	MD5	format	was	create	by
ID	Software,	the	creators	of	Doom,	and	it’s	basically	a	text	based	file	format	which	is	well
understood.	Another	approach	would	be	to	use	the	Collada	format,	which	is	a	public
standard	supported	by	many	tools.	Collada	is	an	XML	based	format	but	as	a	downside	it’s
very	complex	(The	specification	for	the	1.5	version	has	more	than	500	pages).	So,	we	will
stick	to	a	much	more	simple	format,	MD5,	that	will	allow	us	to	focus	in	the	concepts	of	the
skeletal	animation	and	to	create	a	working	sample.

You	can	also	export	some	models	from	Blender	to	MD5	format	via	specific	addons	that	you
can	find	on	the	Internet	(http://www.katsbits.com/tools/#md5)

In	this	chapter	I’ve	consulted	many	different	sources,	but	I	have	found	two	that	provide	a
very	good	explanation	about	how	to	create	an	animated	model	using	MD5	files.	Theses
sources	can	be	consulted	at:

http://www.3dgep.com/gpu-skinning-of-md5-models-in-opengl-and-cg/
http://ogldev.atspace.co.uk/www/tutorial38/tutorial38.html

Animations

222

https://en.wikipedia.org/wiki/COLLADA
http://www.3dgep.com/gpu-skinning-of-md5-models-in-opengl-and-cg/
http://ogldev.atspace.co.uk/www/tutorial38/tutorial38.html

So	let’s	start	by	writing	the	code	that	parses	MD5	files.	The	MD5	format	defines	two	types	of
files:

The	mesh	definition	file:	which	defines	the	joints	and	the	vertices	and	textures	that
compose	the	set	of	meshes	that	form	the	3D	model.	This	file	usually	has	a	extension
named	“.md5mesh”.
The	animation	definition	file:	which	defines	the	animations	that	can	be	applied	to	the
model.	This	file	usually	has	a	extension	named	“.md5anim”.

An	MD5	file	is	composed	by	a	header	an	different	sections	contained	between	braces.	Let’s
start	examining	the	mesh	definition	file.	In	the	resources	folder	you	will	find	several	models
in	MD5	format.	If	you	open	one	of	them	you	can	see	a	structure	similar	like	this.

The	first	structure	that	you	can	find	in	the	mesh	definition	file	is	the	header.	You	can	see
below	header’s	content	from	one	of	the	samples	provided:

Animations

223
www.dbooks.org

https://www.dbooks.org/

MD5Version	10

commandline	""

numJoints	33

numMeshes	6

The	header	defines	the	following	attributes:

The	version	of	the	MD5	specification	that	it	complies	to.
The	command	used	to	generate	this	file	(from	a	3D	modelling	tool).
The	number	of	Joints	that	are	defined	in	the	joints	section
The	number	of	Meshes	(the	number	of	meshes	sections	expected).

The	Joints	sections	defines	the	joints,	as	it	names	states,	their	positions	and	their
relationships.	A	fragment	of	the	joints	section	of	one	of	the	sample	models	is	shown	below.

joints	{

				"origin"				-1	(-0.000000	0.016430	-0.006044)	(0.707107	0.000000	0.707107)				

				//	

				"sheath"				0	(11.004813	-3.177138	31.702473)	(0.307041	-0.578614	0.354181)			

					//	origin

				"sword"				1	(9.809593	-9.361549	40.753730)	(0.305557	-0.578155	0.353505)					

			//	sheath

				"pubis"				0	(0.014076	2.064442	26.144581)	(-0.466932	-0.531013	-0.466932)				

				//	origin

														……

}

A	Joint	is	defined	by	the	following	attributes:

Joint	name,	a	textual	attribute	between	quotes.
Joint	parent,	using	an	index	which	points	to	the	parent	joint	using	its	position	in	the
joints	list.	The	root	joint	has	a	parent	equals	to	-1.
Joint	position,	defined	in	model	space	coordinate	system.
Joint	orientation,	defined	also	in	model	space	coordinate	system.	The	orientation	in	fact
is	a	quaternion	whose	w-component	is	not	included.

Before	continuing	explaining	the	rest	of	the	file	let’s	talk	about	quaternions.	Quaternions	are
four	component	elements	that	are	used	to	represent	rotation.	Up	to	now,	we	have	been
using	Euler	angles	(yaw,	pitch	and	roll)	to	define	rotations,	which	basically	define	rotation
around	the	x,	y	and	z	angles.	But,	Euler	angles	present	some	problems	when	working	with
rotations,	specifically	you	must	be	aware	of	the	correct	order	to	apply	de	rotations	and	some
operations	can	get	very	complex.

Animations

224

This	where	quaternions	come	to	help	in	order	to	solve	this	complexity.	As	it	has	been	said
before	a	quaternion	is	defined	as	a	set	of	4	numbers	(x,	y,	z,	w).	Quaternions	define	a
rotation	axis	and	the	rotation	angle	around	that	axis.

You	can	check	in	the	web	the	mathematical	definition	of	each	of	the	components	but	the
good	news	is	that	JOML,	the	math	library	we	are	using,	provides	support	for	them.	We	can
construct	rotation	matrices	based	on	quaternions	and	perform	some	transformation	to
vectors	with	them.

Let’s	get	back	to	the	joints	definition,	the	w	component	is	missing	but	it	can	be	easily
calculated	with	the	help	of	the	rest	of	the	values.	You	can	check	the	source	code	to	see	how
it's	done.

After	the	joints	definition	you	can	find	the	definition	of	the	different	meshes	that	compose	a
model.	Below	you	can	find	a	fragment	of	a	Mesh	definition	from	one	of	the	samples.

mesh	{

				shader	"/textures/bob/guard1_body.png"

				numverts	494

				vert	0	(0.394531	0.513672)	0	1

				vert	1	(0.447266	0.449219)	1	2

				...

				vert	493	(0.683594	0.455078)	864	3

				numtris	628

				tri	0	0	2	1

				tri	1	0	1	3

				...

				tri	627	471	479	493

				numweights	867

				weight	0	5	1.000000	(6.175774	8.105262	-0.023020)

				weight	1	5	0.500000	(4.880173	12.805251	4.196980)

				...

				weight	866	6	0.333333	(1.266308	-0.302701	8.949338)

}

Animations

225
www.dbooks.org

https://www.dbooks.org/

Let’s	review	the	structure	presented	above:

A	Mesh	starts	by	defining	a	texture	file.	Keep	in	mind	that	the	path	that	you	will	find	here
is	the	one	used	by	the	tool	that	created	that	model.	That	path	may	not	match	the	one
that	is	used	to	load	those	files.	You	have	two	approaches	here,	either	you	change	the
base	path	dynamically	or	either	you	change	that	path	by	hand.	I’ve	chosen	the	latter
one,	the	simpler	one.
Next	you	can	find	the	vertices	definition.	A	vertex	is	defined	by	the	following	attributes:

Vertex	index.

Texture	coordinates.

The	index	of	the	first	weight	definition	that	affects	this	vertex.

The	number	of	weights	to	consider.
After	the	vertices,	the	triangles	that	form	this	mesh	are	defined.	The	triangles	define	the
way	that	vertices	are	organized	using	their	indices.
Finally,	the	weights	are	defined.	A	Weight	definition	is	composed	by:

A	Weight	index.

A	Joint	index,	which	points	to	the	joint	related	to	this	weight.

A	bias	factor,	which	is	used	to	modulate	the	effect	of	this	weight.

A	position	of	this	weight.

The	following	picture	depicts	the	relation	between	the	components	described	above	using
sample	data.

Ok,	so	now	that	we	understand	the	mesh	model	file	we	can	parse	it.	If	you	look	at	the	source
code	you	will	see	that	a	new	package	has	been	created	to	host	parsers	for	model	formats.
There’s	one	for	OBJ	files	under		org.lwjglb.engine.loaders.obj		and	the	code	for	MD5	files

Animations

226

is	under		org.lwjglb.engine.loaders.md5	.

All	the	parsing	code	is	based	on	regular	expressions	to	extract	the	information	from	the	MD5
text	files.	The	parsers	will	create	a	hierarchy	of	objects	that	mimic	the	structure	of	the
information	components	contained	in	the	MD5	files.	It	may	not	be	the	most	efficient	parser	in
the	world	but	I	think	it	will	serve	to	better	understand	the	process.

The	starting	class	to	parse	a	MD5	model	file	is		MD5Model		class.	This	class	receives	as	a
parameter	in	its	parse	method	the	contents	of	a	MD5	file	an	creates	a	hierarchy	that
contains	the	header,	the	list	of	joints	and	the	list	of	meshes	with	all	the	subelements.	The
code	is	very	straightforward	so,	I	won’t	include	it	here.

A	few	comments	about	the	parsing	code:

The	subelements	of	a	Mesh	are	defined	as	inner	classes	inside	the		MD5Mesh		class.
You	can	check	how	the	fourth	component	of	the	joints	orientation	are	calculated	in	the
	calculateQuaternion		method	form	the		MD5Utils		class.

Now	that	we	have	parsed	a	file	we	must	transform	that	object	hierarchy	into	something	that
can	be	processed	by	the	game	Engine,	we	must	create	a		GameItem		instance.	In	order	to	do
that	we	will	create	a	new	class	named		MD5Loader		that	will	take	a		MD5Model		instance	and
will	construct	a		GameItem	.

Before	we	start,	as	you	noticed,	a	MD5	model	has	several	Meshes,	but	our		GameItem		class
only	supports	a	single	Mesh.	We	need	to	change	this	first,	the	class		GameItem		now	looks
like	this.

package	org.lwjglb.engine.items;

import	org.joml.Vector3f;

import	org.lwjglb.engine.graph.Mesh;

public	class	GameItem	{

				private	Mesh[]	meshes;

				private	final	Vector3f	position;

				private	float	scale;

				private	final	Vector3f	rotation;

				public	GameItem()	{

								position	=	new	Vector3f(0,	0,	0);

								scale	=	1;

								rotation	=	new	Vector3f(0,	0,	0);

				}

Animations

227
www.dbooks.org

https://www.dbooks.org/

				public	GameItem(Mesh	mesh)	{

								this();

								this.meshes	=	new	Mesh[]{mesh};

				}

				public	GameItem(Mesh[]	meshes)	{

								this();

								this.meshes	=	meshes;

				}

				public	Vector3f	getPosition()	{

								return	position;

				}

				public	void	setPosition(float	x,	float	y,	float	z)	{

								this.position.x	=	x;

								this.position.y	=	y;

								this.position.z	=	z;

				}

				public	float	getScale()	{

								return	scale;

				}

				public	void	setScale(float	scale)	{

								this.scale	=	scale;

				}

				public	Vector3f	getRotation()	{

								return	rotation;

				}

				public	void	setRotation(float	x,	float	y,	float	z)	{

								this.rotation.x	=	x;

								this.rotation.y	=	y;

								this.rotation.z	=	z;

				}

				public	Mesh	getMesh()	{

								return	meshes[0];

				}

				public	Mesh[]	getMeshes()	{

								return	meshes;

				}

				public	void	setMeshes(Mesh[]	meshes)	{

								this.meshes	=	meshes;

				}

				public	void	setMesh(Mesh	mesh)	{

								if	(this.meshes	!=	null)	{

												for	(Mesh	currMesh	:	meshes)	{

Animations

228

																currMesh.cleanUp();

												}

								}

								this.meshes	=	new	Mesh[]{mesh};

				}

}

With	the	modification	above	we	can	now	define	the	contents	for	the		MD5Loader		class.	This
class	will	have	a	method	named		process		that	will	receive	a		MD5Model		instance	and	a
default	colour	(for	the	meshes	that	do	not	define	a	texture)	and	will	return	a		GameItem	
instance.	The	body	of	that	method	is	shown	below.

public	static	GameItem	process(MD5Model	md5Model,	Vector4f	defaultColour)	throws	Excep

tion	{

				List<MD5Mesh>	md5MeshList	=	md5Model.getMeshes();

				List<Mesh>	list	=	new	ArrayList<>();

				for	(MD5Mesh	md5Mesh	:	md5Model.getMeshes())	{

								Mesh	mesh	=	generateMesh(md5Model,	md5Mesh,	defaultColour);

								handleTexture(mesh,	md5Mesh,	defaultColour);

								list.add(mesh);

				}

				Mesh[]	meshes	=	new	Mesh[list.size()];

				meshes	=	list.toArray(meshes);

				GameItem	gameItem	=	new	GameItem(meshes);

				return	gameItem;

}

As	you	can	see	we	just	iterate	over	the	meshes	defined	into	the		MD5Model		class	and
transform	them	into	instances	of	the	class		org.lwjglb.engine.graph.Mesh		by	using	the
	generateMesh		method	which	is	the	one	that	really	does	the	work.	Before	we	examine	that
method	we	will	create	an	inner	class	that	will	serve	us	to	build	the	positions	and	normals
array.

Animations

229
www.dbooks.org

https://www.dbooks.org/

private	static	class	VertexInfo	{

				public	Vector3f	position;

				public	Vector3f	normal;

				public	VertexInfo(Vector3f	position)	{

								this.position	=	position;

								normal	=	new	Vector3f(0,	0,	0);

				}

				public	VertexInfo()	{

								position	=	new	Vector3f();

								normal	=	new	Vector3f();

				}

				public	static	float[]	toPositionsArr(List<VertexInfo>	list)	{

								int	length	=	list	!=	null	?	list.size()	*	3	:	0;

								float[]	result	=	new	float[length];

								int	i	=	0;

								for	(VertexInfo	v	:	list)	{

												result[i]	=	v.position.x;

												result[i	+	1]	=	v.position.y;

												result[i	+	2]	=	v.position.z;

												i	+=	3;

								}

								return	result;

				}

				public	static	float[]	toNormalArr(List<VertexInfo>	list)	{

								int	length	=	list	!=	null	?	list.size()	*	3	:	0;

								float[]	result	=	new	float[length];

								int	i	=	0;

								for	(VertexInfo	v	:	list)	{

												result[i]	=	v.normal.x;

												result[i	+	1]	=	v.normal.y;

												result[i	+	2]	=	v.normal.z;

												i	+=	3;

								}

								return	result;

				}

}

Let’s	get	back	to	the		generateMesh		method,	the	first	we	do	is	get	the	mesh	vertices
information,	the	weights	and	the	structure	of	the	joints.

Animations

230

private	static	Mesh	generateMesh(MD5Model	md5Model,	MD5Mesh	md5Mesh,	Vector4f	defaultC

olour)	throws	Exception	{

				List<VertexInfo>	vertexInfoList	=	new	ArrayList<>();

				List<Float>	textCoords	=	new	ArrayList<>();

				List<Integer>	indices	=	new	ArrayList<>();

				List<MD5Mesh.MD5Vertex>	vertices	=	md5Mesh.getVertices();

				List<MD5Mesh.MD5Weight>	weights	=	md5Mesh.getWeights();

				List<MD5JointInfo.MD5JointData>	joints	=	md5Model.getJointInfo().getJoints();

Then	we	need	to	calculate	the	vertices	position	based	on	the	information	contained	in	the
weights	and	joints.	This	is	done	in	the	following	block

				for	(MD5Mesh.MD5Vertex	vertex	:	vertices)	{

								Vector3f	vertexPos	=	new	Vector3f();

								Vector2f	vertexTextCoords	=	vertex.getTextCoords();

								textCoords.add(vertexTextCoords.x);

								textCoords.add(vertexTextCoords.y);

								int	startWeight	=	vertex.getStartWeight();

								int	numWeights	=	vertex.getWeightCount();

								for	(int	i	=	startWeight;	i	<	startWeight	+	numWeights;	i++)	{

												MD5Mesh.MD5Weight	weight	=	weights.get(i);

												MD5JointInfo.MD5JointData	joint	=	joints.get(weight.getJointIndex());

												Vector3f	rotatedPos	=	new	Vector3f(weight.getPosition()).rotate(joint.getO

rientation());

												Vector3f	acumPos	=	new	Vector3f(joint.getPosition()).add(rotatedPos);

												acumPos.mul(weight.getBias());

												vertexPos.add(acumPos);

								}

							vertexInfoList.add(new	VertexInfo(vertexPos));

				}

Let’s	examine	what	we	are	doing	here.	We	iterate	over	the	vertices	information	and	store	the
texture	coordinates	in	a	list,	no	need	to	apply	any	transformation	here.	Then	we	get	the
starting	and	total	number	of	weights	to	consider	to	calculate	the	vertex	position.

The	vertex	position	is	calculated	by	using	all	the	weights	that	is	related	to.	Each	weights	has
a	position	and	a	bias.	The	sum	of	all	bias	of	the	weights	associated	to	each	vertex	must	be
equal	to	1.0.	Each	weight	also	has	a	position	which	is	defined	in	joint’s	local	space,	so	we
need	to	transform	it	to	model	space	coordinates	using	the	joint’s	orientation	and	position
(like	if	it	were	a	transformation	matrix)	to	which	it	refers	to.

To	sum	up,	the	vertex	position	can	be	expressed	by	this	formula:

Animations

231
www.dbooks.org

https://www.dbooks.org/

V pos = (Jt ×Wp) b

Where:

The	summation	starts	from	ws	(Weight	start)	up	to	wc	(Weight	count)	weights.

Jt 	is	the	joint’s	transformation	matrix	associated	to	the	weight	W .

Wp 	is	the	weight	position.

Wb 	is	the	weight	bias.

This	equation	is	what	we	implement	in	the	body	of	the	loop	(we	do	not	have	the
transformation	matrix	since	we	have	the	joint	position	and	rotation	separately	but	the	result
is	the	same).

With	the	code	above	we	will	be	able	to	construct	the	positions	and	texture	coordinates	data
but	we	still	need	to	build	up	the	indices	and	the	normals.	Indices	can	be	calculated	by	using
the	triangles	information,	just	by	iterating	through	the	list	that	holds	those	triangles.

Normals	can	be	calculated	also	using	triangles	information.	Let	V ,	V 	and	V 	be	the	triangle
vertices	(in	object’s	model	space).	The	normal	for	the	triangle	can	be	calculate	according	to
this	formula:

N = (V − V) × (V − V)

Where	N	should	be	normalized	after.	The	following	figure	shows	the	geometric	interpretation
of	the	formula	above.

i=ws
∑

ws+wc

i i Ẇ i

i i

i

i

0 1 2

2 0 1 0

Animations

232

For	each	vertex	we	compute	its	normal	by	the	normalized	sum	of	all	the	normals	of	the
triangles	it	belongs	to.	The	code	that	performs	those	calculations	is	shown	below.

				for	(MD5Mesh.MD5Triangle	tri	:	md5Mesh.getTriangles())	{

								indices.add(tri.getVertex0());

								indices.add(tri.getVertex1());

								indices.add(tri.getVertex2());

								//	Normals

								VertexInfo	v0	=	vertexInfoList.get(tri.getVertex0());

								VertexInfo	v1	=	vertexInfoList.get(tri.getVertex1());

								VertexInfo	v2	=	vertexInfoList.get(tri.getVertex2());

								Vector3f	pos0	=	v0.position;

								Vector3f	pos1	=	v1.position;

								Vector3f	pos2	=	v2.position;

								Vector3f	normal	=	(new	Vector3f(pos2).sub(pos0)).cross(new	Vector3f(pos1).sub(

pos0));

								v0.normal.add(normal);

								v1.normal.add(normal);

								v2.normal.add(normal);

					}

					//	Once	the	contributions	have	been	added,	normalize	the	result

					for(VertexInfo	v	:	vertexInfoList)	{

								v.normal.normalize();

				}

Then	we	just	need	to	transform	the	Lists	to	arrays	and	process	the	texture	information.

					float[]	positionsArr	=	VertexInfo.toPositionsArr(vertexInfoList);

					float[]	textCoordsArr	=	Utils.listToArray(textCoords);

					float[]	normalsArr	=	VertexInfo.toNormalArr(vertexInfoList);

					int[]	indicesArr	=	indices.stream().mapToInt(i	->	i).toArray();

					Mesh	mesh	=	new	Mesh(positionsArr,	textCoordsArr,	normalsArr,	indicesArr);

					return	mesh;

}

Going	back	to	the		process		method	you	can	see	that	there's	a	method	named
	handleTexture	,	which	is	responsible	for	loading	textures.	This	is	the	definition	of	that
method:

Animations

233
www.dbooks.org

https://www.dbooks.org/

private	static	void	handleTexture(Mesh	mesh,	MD5Mesh	md5Mesh,	Vector4f	defaultColour)	

throws	Exception	{

				String	texturePath	=	md5Mesh.getTexture();

				if	(texturePath	!=	null	&&	texturePath.length()	>	0)	{

								Texture	texture	=	new	Texture(texturePath);

								Material	material	=	new	Material(texture);

								//	Handle	normal	Maps;

								int	pos	=	texturePath.lastIndexOf(".");

								if	(pos	>	0)	{

												String	basePath	=	texturePath.substring(0,	pos);

												String	extension	=	texturePath.substring(pos,	texturePath.length());

												String	normalMapFileName	=	basePath	+	NORMAL_FILE_SUFFIX	+	extension;

												if	(Utils.existsResourceFile(normalMapFileName))	{

																Texture	normalMap	=	new	Texture(normalMapFileName);

																material.setNormalMap(normalMap);

												}

								}

								mesh.setMaterial(material);

				}	else	{

								mesh.setMaterial(new	Material(defaultColour,	1));

				}

}

The	implementation	is	very	straight	forward.	The	only	peculiarity	is	that	if	a	mesh	defines	a
texture	named	“texture.png”	its	normal	texture	map	will	be	defined	in	a	file
“texture_normal.png”.	We	need	to	check	if	that	file	exists	and	load	it	accordingly.

We	can	now	load	a	MD5	file	and	render	it	as	we	render	other	GameItems,	but	before	doing
that	we	need	to	disable	cull	face	in	order	to	render	it	properly	since	not	all	the	triangles	will
be	drawn	in	the	correct	direction.	We	will	add	support	to	the	Window	class	to	set	these
parameters	at	runtime	(you	can	check	it	in	the	source	code	the	changes).

If	you	load	some	of	the	sample	models	you	will	get	something	like	this.

Animations

234

What	you	see	here	is	the	binding	pose,	it’s	the	static	representation	of	the	MD5	model	used
for	the	animators	to	model	them	easily.	In	order	to	get	animation	to	work	we	must	process
the	animation	definition	file.

Animate	the	model
A	MD5	animation	definition	file,	like	the	model	definition	one,	is	composed	by	a	header	an
different	sections	contained	between	braces.	If	you	open	one	of	those	files	you	can	see	a
structure	similar	like	this.

Animations

235
www.dbooks.org

https://www.dbooks.org/

The	first	structure	that	you	can	find	in	the	animation	file,	as	in	the	case	of	the	mesh	definition
file,	is	the	header.	You	can	see	below	header’s	content	from	one	of	the	samples	provided:

Animations

236

MD5Version	10

commandline	""

numFrames	140

numJoints	33

frameRate	24

numAnimatedComponents	198

The	header	defines	the	following	attributes:

The	version	of	the	MD5	specification	that	it	complies	to.
The	command	used	to	generate	this	file	(from	a	3D	modelling	tool).
The	number	frames	defined	in	the	file.
The	number	of	joints	defined	in	the	hierarchy	section.
The	frame	rate,	frames	per	second,	that	was	used	while	creating	this	animation.	This
parameter	can	be	used	to	calculate	the	time	between	frames.
The	number	of	components	that	each	frame	defines.

The	hierarchy	section	is	the	one	that	comes	first	and	defines	the	joints	for	this	animation.
You	can	see	a	fragment	below:

hierarchy	{

				"origin"				-1	0	0				//

				"body"				0	63	0				//	origin	(Tx	Ty	Tz	Qx	Qy	Qz)

				"body2"				1	0	0				//	body

				"SPINNER"				2	56	6				//	body2	(Qx	Qy	Qz)

			

}

A	joint.	In	the	hierarchy	section,	is	defined	by	the	following	attributes:

Joint	name,	a	textual	attribute	between	quotes.
Joint	parent,	using	an	index	which	points	to	the	parent	joint	using	its	position	in	the
joints	list.	The	root	joint	has	a	parent	equals	to	-1.
Joint	flags,	which	set	how	this	joint's	position	and	orientation	will	be	changed	according
to	the	data	defined	in	each	animation	frame.
The	start	index,	inside	the	animation	data	of	each	frame	that	is	used	when	applying	the
flags.

The	next	section	is	the	bounds	one.	This	section	defines	a	bounding	box	which	contains	the
model	for	each	animation	frame.	It	will	contain	a	line	for	each	of	the	animation	frames	and	it
look	like	this:

Animations

237
www.dbooks.org

https://www.dbooks.org/

bounds	{

				(-24.3102264404	-44.2608566284	-0.181215778)	(31.0861988068	38.7131576538	117.7

417449951)

				(-24.3102283478	-44.1887664795	-0.1794649214)	(31.1800289154	38.7173080444	117.

7729110718)

				(-24.3102359772	-44.1144447327	-0.1794776917)	(31.2042789459	38.7091217041	117.

8352737427)

			

}

Each	bounding	box	is	defined	by	two	3	component	vectors	in	model	space	coordinates.	The
first	vector	defines	the	minimum	bound	and	the	second	one	the	maximum.

The	next	section	is	the	base	frame	data.	In	this	section,	the	position	and	orientation	of	each
joint	is	set	up	before	the	deformations	of	each	animation	frame	are	applied.	You	can	see	a
fragment	below:

baseframe	{

				(0	0	0)	(-0.5	-0.5	-0.5)

				(-0.8947336078	70.7142486572	-6.5027675629)	(-0.3258574307	-0.0083037354	0.0313

780755)

				(0.0000001462	0.0539700091	-0.0137935728)	(0	0	0)

			

}

Each	line	is	associated	to	a	joint	and	define	the	following	attributes:

Position	of	the	joint,	as	a	three	components	vector.
Orientation	of	the	joint,	as	the	three	components	of	a	quaternion	(as	in	the	model	file).

After	that	you	will	find	several	frame	definitions,	as	many	as	the	value	assigned	to	the
numFrames	header	attribute.	Each	frame	section	is	like	a	huge	array	of	floats	that	will	be
used	by	the	joints	when	applying	the	transformations	for	each	frame.	You	can	see	a
fragment	below.

frame	1	{

					-0.9279100895	70.682762146	-6.3709330559	-0.3259022534	-0.0100501738	0.0320306309

					0.3259022534	0.0100501738	-0.0320306309

					-0.1038384438	-0.1639953405	-0.0152553488	0.0299418624

				

}

The	base	class	that	parses	a	MD5	animation	file	is	named		MD5AnimModel	.	This	class	creates
all	the	objects	hierarchy	that	maps	the	contents	of	that	file	and	you	can	check	the	source
code	for	the	details.	The	structure	is	similar	to	the	MD5	model	definition	file.	Now	that	we	are

Animations

238

able	to	load	that	information	we	will	use	it	to	generate	an	animation.

We	will	generate	the	animation	in	the	shader,	so	instead	of	pre-calculating	all	the	positions
for	each	frame	we	need	to	prepare	the	data	we	need	so	in	the	vertex	shader	we	can
compute	the	final	positions.
Let’s	get	back	to	the	process	method	in	the		MD5Loader		class,	we	need	to	modify	it	to	take
into	consideration	the	animation	information.	The	new	definition	for	that	method	is	shown
below:

public	static	AnimGameItem	process(MD5Model	md5Model,	MD5AnimModel	animModel,	Vector4f

	defaultColour)	throws	Exception	{

				List<Matrix4f>	invJointMatrices	=	calcInJointMatrices(md5Model);

				List<AnimatedFrame>	animatedFrames	=	processAnimationFrames(md5Model,	animModel,	i

nvJointMatrices);

				List<Mesh>	list	=	new	ArrayList<>();

				for	(MD5Mesh	md5Mesh	:	md5Model.getMeshes())	{

								Mesh	mesh	=	generateMesh(md5Model,	md5Mesh);

								handleTexture(mesh,	md5Mesh,	defaultColour);

								list.add(mesh);

				}

				Mesh[]	meshes	=	new	Mesh[list.size()];

				meshes	=	list.toArray(meshes);

				AnimGameItem	result	=	new	AnimGameItem(meshes,	animatedFrames,	invJointMatrices);

				return	result;

}

There	are	some	changes	here,	the	most	obvious	is	that	the	method	now	receives	a
	MD5AnimModel		instance.	The	next	one	is	that	we	do	not	return	a		GameItem		instance	but	and
	AnimGameItem		one.	This	class	inherits	from	the		GameItem		class	but	adds	support	for
animations.	We	will	see	why	this	was	done	this	way	later.

If	we	continue	with	the	process	method,	the	first	thing	we	do	is	call	the		calcInJointMatrices	
method,	which	is	defined	like	this:

Animations

239
www.dbooks.org

https://www.dbooks.org/

private	static	List<Matrix4f>	calcInJointMatrices(MD5Model	md5Model)	{

				List<Matrix4f>	result	=	new	ArrayList<>();

				List<MD5JointInfo.MD5JointData>	joints	=	md5Model.getJointInfo().getJoints();

				for(MD5JointInfo.MD5JointData	joint	:	joints)	{

								Matrix4f	translateMat	=	new	Matrix4f().translate(joint.getPosition());

								Matrix4f	rotationMat	=	new	Matrix4f().rotate(joint.getOrientation());

								Matrix4f	mat	=	translateMat.mul(rotationMat);

								mat.invert();

								result.add(mat);

				}	

				return	result;

}

This	method	iterates	over	the	joints	contained	in	the	MD5	model	definition	file,	calculates	the
transformation	matrix	associated	to	each	joint	and	then	it	gets	the	inverse	of	those	matrices.
This	information	is	used	to	construct	the	AnimationGameItem	instance.

Let’s	continue	with	the		process		method,	the	next	thing	we	do	is	process	the	animation
frames	by	calling	the		processAnimationFrames		method:

private	static	List<AnimatedFrame>	processAnimationFrames(MD5Model	md5Model,	MD5AnimMo

del	animModel,	List<Matrix4f>	invJointMatrices)	{

				List<AnimatedFrame>	animatedFrames	=	new	ArrayList<>();

				List<MD5Frame>	frames	=	animModel.getFrames();

				for(MD5Frame	frame	:	frames)	{

								AnimatedFrame	data	=	processAnimationFrame(md5Model,	animModel,	frame,	invJoin

tMatrices);

								animatedFrames.add(data);

				}

				return	animatedFrames;

}

This	method	process	each	animation	frame,	defined	in	the	MD5	animation	definition	file,	and
returns	a	list	of		AnimatedFrame		instances.	The	real	work	is	done	in	the
	processAnimationFrame		method.	Let’s	explain	what	this	method	will	do.

We	first,	iterate	over	the	joints	defined	in	the	hierarchy	section	in	the	MD5	animaton	file.

Animations

240

private	static	AnimatedFrame	processAnimationFrame(MD5Model	md5Model,	MD5AnimModel	ani

mModel,	MD5Frame	frame,	List<Matrix4f>	invJointMatrices)	{

				AnimatedFrame	result	=	new	AnimatedFrame();

				MD5BaseFrame	baseFrame	=	animModel.getBaseFrame();

				List<MD5Hierarchy.MD5HierarchyData>	hierarchyList	=	animModel.getHierarchy().getHi

erarchyDataList();

				List<MD5JointInfo.MD5JointData>	joints	=	md5Model.getJointInfo().getJoints();

				int	numJoints	=	joints.size();

				float[]	frameData	=	frame.getFrameData();

				for	(int	i	=	0;	i	<	numJoints;	i++)	{

								MD5JointInfo.MD5JointData	joint	=	joints.get(i);

We	get	the	position	and	orientation	of	the	base	frame	element	associated	to	each	joint.

								MD5BaseFrame.MD5BaseFrameData	baseFrameData	=	baseFrame.getFrameDataList().get

(i);

								Vector3f	position	=	baseFrameData.getPosition();

								Quaternionf	orientation	=	baseFrameData.getOrientation();

In	principle,	that	information	should	be	assigned	to	the	the	joint’s	position	and	orientation,
but	it	needs	to	be	transformed	according	to	the	joint’s	flag.	If	you	recall,	when	the	structure	of
the	animation	file	was	presented,	each	joint	in	the	hierarchy	section	defines	a	flag.	That	flag
models	how	the	position	and	orientation	information	should	be	changed	according	to	the
information	defined	in	each	animation	frame.

If	the	first	bit	of	that	flag	field	is	equal	to	1,	we	should	change	the	x	component	of	the	base
frame	position	with	the	data	contained	in	the	animation	frame	we	are	processing.	That
animation	farme	defines	a	bug	afloat	array,	so	which	I	elements	should	we	take.	The	answer
is	also	in	the	joints	definition	which	includes	a	startIndex	attribute.	If	the	second	bit	of	the	gal
is	equal	to	1,	we	should	change	the	y	component	of	the	base	frame	position	with	the	value	at
startIndex	+	1,	and	so	on.	The	next	bits	are	for	the	z	position,	and	the	x,	y	and	z	components
of	the	orientation.

Animations

241
www.dbooks.org

https://www.dbooks.org/

								int	flags	=	hierarchyList.get(i).getFlags();

								int	startIndex	=	hierarchyList.get(i).getStartIndex();

								if	((flags	&	1)	>	0)	{

												position.x	=	frameData[startIndex++];

								}

								if	((flags	&	2)	>	0)	{

												position.y	=	frameData[startIndex++];

								}

								if	((flags	&	4)	>	0)	{

												position.z	=	frameData[startIndex++];

								}

								if	((flags	&	8)	>	0)	{

												orientation.x	=	frameData[startIndex++];

								}

								if	((flags	&	16)	>	0)	{

												orientation.y	=	frameData[startIndex++];

								}

								if	((flags	&	32)	>	0)	{

												orientation.z	=	frameData[startIndex++];

								}

								//	Update	Quaternion's	w	component

								orientation	=	MD5Utils.calculateQuaternion(orientation.x,	orientation.y,	orien

tation.z);

Now	we	have	all	information	needed	to	calculate	the	transformation	matrices	to	get	the	final
position	for	each	joint	for	the	current	animation	frame.	But	there’s	another	thing	that	we	must
consider,	the	position	of	each	joint	is	relative	to	its	parent	position,	so	we	need	to	get	the
transformation	matrix	associated	to	each	parent	and	use	it	in	order	to	get	a	transformation
matrix	that	is	in	model	space	coordinates.

Animations

242

								//	Calculate	translation	and	rotation	matrices	for	this	joint

								Matrix4f	translateMat	=	new	Matrix4f().translate(position);

								Matrix4f	rotationMat	=	new	Matrix4f().rotate(orientation);

								Matrix4f	jointMat	=	translateMat.mul(rotationMat);

								//	Joint	position	is	relative	to	joint's	parent	index	position.	Use	parent	mat

rices

								//	to	transform	it	to	model	space

								if	(joint.getParentIndex()	>	-1)	{

												Matrix4f	parentMatrix	=	result.getLocalJointMatrices()[joint.getParentInde

x()];

												jointMat	=	new	Matrix4f(parentMatrix).mul(jointMat);

								}

								result.setMatrix(i,	jointMat,	invJointMatrices.get(i));

				}

				return	result;

}

You	can	see	that	we	create	an	instance	of	the	AnimatedFrame	class	that	holds	the
information	that	will	be	use	during	animation.	This	class	also	uses	the	inverse	matrices,	we
will	see	later	on	why	this	done	this	way.	An	important	thing	to	note	is	that	the	setMatrix
method	of	the	AnimatedFrame	is	defined	like	this.

public	void	setMatrix(int	pos,	Matrix4f	localJointMatrix,	Matrix4f	invJointMatrix)	{

				localJointMatrices[pos]	=	localJointMatrix;

				Matrix4f	mat	=	new	Matrix4f(localJointMatrix);

				mat.mul(invJointMatrix);

				jointMatrices[pos]	=	mat;

}

The	variable		localJointMatrix		stores	the	transformation	matrix	for	the	joint	that	occupies
the	position	“i”	for	the	current	frame.	The		invJointMatrix		holds	the	inverse	transformation
matrix	for	the	joint	that	occupies	the	position	“i”	for	the	binding	pose.	We	store	the	result	of
multiplying	the		localJointMatrix		by	the	invJointMatrix.	This	result	will	be	used	later	to
compute	the	final	positions.	We	store	also	the	original	joint	transformation	matrix,	the
variable		localJointMatrix	,	so	we	can	use	it	to	calculate	this	joint	childs	transformation
matrices.

Let's	get	back	to	the	MD5Loader	class.	The		generateMesh		method	also	has	changed,	we
calculate	the	positions	of	the	binding	pose	as	it	has	been	explained	before,	but	for	each
vertex	we	store	two	arrays:

An	array	that	holds	the	weight	bias	associated	to	this	vertex.
An	array	that	hold	the	joint	indices	associated	to	this	vertex	(through	the	weights).

Animations

243
www.dbooks.org

https://www.dbooks.org/

We	limit	the	size	of	those	arrays	to	a	value	of	4.	The		Mesh		class	has	also	been	modified	to
receive	those	parameters	and	include	it	in	the	VAO	information	processed	by	the	shaders.
You	can	check	the	details	in	the	source	code,	but	So	let’s	recap	what	we	have	done:

We	are	still	loading	the	binding	pose	with	their	final	positions	calculated	as	the	sum	of
the	joints	positions	and	orientations	through	the	weights	information.
That	information	is	loaded	in	the	shaders	as	VBOs	but	it’s	complemented	by	the	bias	of
the	weights	associated	to	each	vertex	and	the	indices	of	the	joints	that	affect	it.	This
information	is	common	to	all	the	animation	frames,	since	it’s	defined	in	the	MD5
definition	file.	This	is	the	reason	why	we	limit	the	size	of	the	bias	and	joint	indices
arrays,	they	will	be	loaded	as	VBOs	once	when	the	model	is	sent	to	the	GPU.
For	each	animation	frame	we	store	the	transformation	matrices	to	be	applied	to	each
joint	according	to	the	positions	and	orientations	defined	in	the	base	frame.
We	also	have	calculated	the	inverse	matrices	of	the	transformation	matrices	associated
to	the	joints	that	define	the	binding	pose.	That	is,	we	know	how	to	undo	the
transformations	done	in	the	binding	pose.	We	will	see	how	this	will	be	applied	later.

Now	that	we	have	all	the	pieces	to	solve	the	puzzle	we	just	need	to	use	them	in	the	shader.
We	first	need	to	modify	the	input	data	to	receive	the	weights	and	the	joint	indices.

#version	330

const	int	MAX_WEIGHTS	=	4;

const	int	MAX_JOINTS	=	150;

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

layout	(location=2)	in	vec3	vertexNormal;

layout	(location=3)	in	vec4	jointWeights;

layout	(location=4)	in	ivec4	jointIndices;

We	have	defined	two	constants:

	MAX_WEIGHTS	,	defines	the	maximum	number	of	weights	that	come	in	the	weights	VBO

Animations

244

(an	solo	the	joint	indices)
	MAX_JOINTS	,	defines	the	maximum	number	of	joints	we	are	going	to	support	(more	on
this	later).

Then	we	define	the	output	data	and	the	uniforms.

out	vec2	outTexCoord;

out	vec3	mvVertexNormal;

out	vec3	mvVertexPos;

out	vec4	mlightviewVertexPos;

out	mat4	outModelViewMatrix;

uniform	mat4	jointsMatrix[MAX_JOINTS];

uniform	mat4	modelViewMatrix;

uniform	mat4	projectionMatrix;

uniform	mat4	modelLightViewMatrix;

uniform	mat4	orthoProjectionMatrix;

You	can	see	that	we	have	a	new	uniform	named		jointsMatrix		which	is	an	array	of	matrices
(with	a	maximum	length	set	by	the		MAX_JOINTS		constant).	That	array	of	matrices	holds	the
joint	matrices	calculated	for	all	the	joints	in	the	present	frame,	and	was	calculated	in	the
	MD5Loader		class	when	processing	a	frame.	Thus,	that	array	holds	the	transformations	that
need	to	be	applied	to	a	joint	in	the	present	animation	frame	and	will	serve	as	the	basis	for
calculating	the	vertex	final	position.

With	the	new	data	in	the	VBOs	and	this	uniform	we	will	transform	the	binding	pose	position.
This	is	done	in	the	following	block.

				vec4	initPos	=	vec4(0,	0,	0,	0);

				int	count	=	0;

				for(int	i	=	0;	i	<	MAX_WEIGHTS;	i++)

				{

								float	weight	=	jointWeights[i];

								if(weight	>	0)	{

												count++;

												int	jointIndex	=	jointIndices[i];

												vec4	tmpPos	=	jointsMatrix[jointIndex]	*	vec4(position,	1.0);

												initPos	+=	weight	*	tmpPos;

								}

				}

				if	(count	==	0)

				{

								initPos	=	vec4(position,	1.0);

				}

Animations

245
www.dbooks.org

https://www.dbooks.org/

First	of	all,	we	get	the	binding	pose	position,	we	iterate	over	the	weights	associated	to	this
vertex	and	modify	the	position	using	the	weights	and	the	joint	matrices	for	this	frame	(stored
in	the	jointsMatrix	uniform)	by	using	the	index	that	is	stored	in	the	input.

So,	given	a	vertex	position,	we	are	calculating	it’s	frame	position	as

V fp = Wb Jfp × Jt) × V pos

Where:

Wfvp	is	the	vertex	final	position
Wb	is	the	vertex	weight
Jfp	is	the	joint	matrix	transformation	matrix	for	this	frame

Jt 	is	the	inverse	of	the	joint	transformation	matrix	for	the	binding	pose.	The
multiplication	of	this	matrix	and	Jfp	is	what's	contained	in	the		jointsMatrix		uniform.
V pos	is	the	vertex	position	in	the	binding	position.

V pos	is	calcualted	by	usin	the	Jt	matrix,	which	is	the	matrix	of	the	joint	transformation	matrix
for	the	binding	pose.	So,	at	the	end	we	are	somehow	undoing	the	modificications	of	the
binding	pose	to	apply	the	transformations	for	this	frame.	This	is	the	reason	why	we	need	the
inverse	binding	pose	matrix.

The	shader	supports	vertices	with	variable	number	of	weights,	up	to	a	maximum	of	4,	and
also	supports	the	rendering	of	non	animated	items.	In	this	case,	the	weights	will	be	equal	to
0	and	we	will	get	the	original	position.

i=0
∑

MAXWEIGTHS

i (̇ i i
−1

−1

Animations

246

The	rest	of	the	shader	stays	more	or	less	the	same,	we	just	use	the	updated	position	a

nd	pass	the	correct	values	to	be	used	by	the	fragment	shader.

				vec4	mvPos	=	modelViewMatrix	*	initPos;

				gl_Position	=	projectionMatrix	*	mvPos;

				outTexCoord	=	texCoord;

				mvVertexNormal	=	normalize(modelViewMatrix	*	vec4(vertexNormal,	0.0)).xyz;

				mvVertexPos	=	mvPos.xyz;

				mlightviewVertexPos	=	orthoProjectionMatrix	*	modelLightViewMatrix	*	vec4(position

,	1.0);

				outModelViewMatrix	=	modelViewMatrix;

}

So,	in	order	to	test	the	animation	we	just	need	to	pass	the		jointsMatrix		to	the	shader.
Since	this	information	is	stored	only	in	instances	of	the		AnimGameItem		class,	the	code	is	very
simple.	In	the	loop	that	renders	the	Meshes,	we	add	this	fragment.

if	(gameItem	instanceof	AnimGameItem)	{

				AnimGameItem	animGameItem	=	(AnimGameItem)gameItem;

				AnimatedFrame	frame	=	animGameItem.getCurrentFrame();

				sceneShaderProgram.setUniform("jointsMatrix",	frame.getJointMatrices());

}

Of	course,	yo	will	need	to	create	the	uniform	before	using	it,	you	can	check	the	source	code
for	that.	If	you	run	the	example	you	will	be	able	to	see	how	the	model	animates	by	pressing
the	space	bar	(each	time	the	key	is	pressed	a	new	frame	is	set	and	the	jointsMatrix	uniform
changes).

You	will	see	something	like	this.

Animations

247
www.dbooks.org

https://www.dbooks.org/

Although	the	animation	is	smooth,	the	sample	presents	some	problems.	First	of	all,	light	is
not	correctly	applied	and	the	shadow	represents	the	binding	pose	but	not	the	current	frame.
We	will	solve	all	these	problems	now.

Correcting	animation	issues
The	first	issue	that	will	address	is	the	lightning	problem.	You	may	have	already	noticed	the
case,	its	due	to	the	fact	that	we	are	not	transforming	normals.	Thus,	the	normals	that	are
used	in	the	fragment	shader	are	the	ones	that	correspond	to	the	binding	pose.	We	need	to
transform	them	in	the	same	way	as	the	positions.

This	issue	is	easy	to	solve,	we	just	need	to	include	the	normals	in	the	loop	that	iterates	over
the	weights	in	the	vertex	shader.

Animations

248

				vec4	initPos	=	vec4(0,	0,	0,	0);

				vec4	initNormal	=	vec4(0,	0,	0,	0);

				int	count	=	0;

				for(int	i	=	0;	i	<	MAX_WEIGHTS;	i++)

				{

								float	weight	=	jointWeights[i];

								if(weight	>	0)	{

												count++;

												int	jointIndex	=	jointIndices[i];

												vec4	tmpPos	=	jointsMatrix[jointIndex]	*	vec4(position,	1.0);

												initPos	+=	weight	*	tmpPos;

												vec4	tmpNormal	=	jointsMatrix[jointIndex]	*	vec4(vertexNormal,	0.0);

												initNormal	+=	weight	*	tmpNormal;

								}

				}

				if	(count	==	0)

				{

								initPos	=	vec4(position,	1.0);

								initNormal	=	vec4(vertexNormal,	0.0);

				}

Then	we	just	calculate	the	output	vertex	normal	as	always:

mvVertexNormal	=	normalize(modelViewMatrix	*	initNormal).xyz;

The	next	issue	is	the	shadow	problem.	If	you	recall	from	the	shadows	chapter,	we	are	using
shadow	maps	to	draw	shadows.	We	are	rendering	the	scene	from	the	light	perspective	in
order	to	create	a	depth	map	that	tells	us	if	a	point	is	in	shadow	or	not.	But,	as	in	the	case	of
the	normals,	we	are	just	passing	the	binding	pose	coordinates	and	not	changing	them
according	to	the	current	frame.	This	is	the	reason	why	the	shadow	does	not	corresponds	to
the	current	position.

The	solution	is	easy,	we	just	need	to	modify	the	depth	vertex	shader	to	use	the
	jointsMatrix		and	the	weights	and	joint	indices	to	transform	the	position.	This	is	how	the
depth	vertex	shader	looks	like.

Animations

249
www.dbooks.org

https://www.dbooks.org/

#version	330

const	int	MAX_WEIGHTS	=	4;

const	int	MAX_JOINTS	=	150;

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

layout	(location=2)	in	vec3	vertexNormal;

layout	(location=3)	in	vec4	jointWeights;

layout	(location=4)	in	ivec4	jointIndices;

uniform	mat4	jointsMatrix[MAX_JOINTS];

uniform	mat4	modelLightViewMatrix;

uniform	mat4	orthoProjectionMatrix;

void	main()

{

				vec4	initPos	=	vec4(0,	0,	0,	0);

				int	count	=	0;

				for(int	i	=	0;	i	<	MAX_WEIGHTS;	i++)

				{

								float	weight	=	jointWeights[i];

								if(weight	>	0)	{

												count++;

												int	jointIndex	=	jointIndices[i];

												vec4	tmpPos	=	jointsMatrix[jointIndex]	*	vec4(position,	1.0);

												initPos	+=	weight	*	tmpPos;

								}

				}

				if	(count	==	0)

				{

								initPos	=	vec4(position,	1.0);

				}

				gl_Position	=	orthoProjectionMatrix	*	modelLightViewMatrix	*	initPos;

}

You	need	to	modify	the		Renderer		class	to	set	up	the	new	uniforms	for	this	shader,	and	the
final	result	will	be	much	better.	The	light	will	be	applied	correctly	and	the	shadow	will	change
for	each	animation	frame	as	shown	in	the	next	figure.

Animations

250

And	that's	all,	you	have	now	a	working	example	that	animates	MD5	models.	The	source
code	can	still	be	improved	and	you	can	modify	the	matrices	that	are	loaded	in	each	render
cycle	to	interpolate	betweeen	frames	positions.	You	can	check	the	sources	used	for	this
chapter	to	see	how	this	can	be	done.

Animations

251
www.dbooks.org

https://www.dbooks.org/

Particles

The	basics
In	this	chapter	we	will	add	particle	effects	to	the	game	engine.	With	this	effect	we	will	be	able
to	simulate	rays,	fire,	dust	and	clouds.	It’s	a	simple	effect	to	implement	that	will	improve	the
graphical	aspect	of	any	game.

Before	we	start	it's	worth	to	mention	that	there	are	many	ways	to	implement	particle	effects
with	different,	results.	In	this	case	we	will	use	billboard	particles.	This	technique	uses	moving
texture	quads	to	represent	a	particle	with	the	peculiarity	that	they	are	always	always	facing
the	observer,	in	our	case,	the	camera.	You	can	also	use	billboarding	technique	to	show
information	panels	over	game	items	like	a	mini	HUDs.

Let’s	start	by	defining	what	is	a	particle.	A	particle	can	de	defined	by	the	following	attributes:

1.	 A	mesh	that	represents	the	quad	vertices.
2.	 A	texture.
3.	 A	position	at	a	given	instant.
4.	 A	scale	factor.
5.	 Speed.
6.	 A	movement	direction.
7.	 A	life	time	or	time	to	live.	Once	this	time	has	expired	the	particle	ceases	to	exist.

The	first	four	items	are	part	of	the		GameItem		class,	but	the	last	three	are	not.	Thus,	we	will
create	a	new	class	named		Particle		that	extends	a		GameItem		instance	and	that	is	defined
like	this.

package	org.lwjglb.engine.graph.particles;

import	org.joml.Vector3f;

import	org.lwjglb.engine.graph.Mesh;

import	org.lwjglb.engine.items.GameItem;

public	class	Particle	extends	GameItem	{

				private	Vector3f	speed;

				/**

					*	Time	to	live	for	particle	in	milliseconds.

					*/

				private	long	ttl;

Particles

252

				public	Particle(Mesh	mesh,	Vector3f	speed,	long	ttl)	{

								super(mesh);

								this.speed	=	new	Vector3f(speed);

								this.ttl	=	ttl;

				}

				public	Particle(Particle	baseParticle)	{

								super(baseParticle.getMesh());

								Vector3f	aux	=	baseParticle.getPosition();

								setPosition(aux.x,	aux.y,	aux.z);

								aux	=	baseParticle.getRotation();

								setRotation(aux.x,	aux.y,	aux.z);

								setScale(baseParticle.getScale());

								this.speed	=	new	Vector3f(baseParticle.speed);

								this.ttl	=	baseParticle.geTtl();

				}

				public	Vector3f	getSpeed()	{

								return	speed;

				}

				public	void	setSpeed(Vector3f	speed)	{

								this.speed	=	speed;

				}

				public	long	geTtl()	{

								return	ttl;

				}

				public	void	setTtl(long	ttl)	{

								this.ttl	=	ttl;

				}

				/**

					*	Updates	the	Particle's	TTL

					*	@param	elapsedTime	Elapsed	Time	in	milliseconds

					*	@return	The	Particle's	TTL

					*/

				public	long	updateTtl(long	elapsedTime)	{

								this.ttl	-=	elapsedTime;

								return	this.ttl;

				}

}

As	you	can	see	from	the	code	above,	particle's	speed	and	movement	direction	can	be
expressed	as	a	single	vector.	The	direction	of	that	vector	models	the	movement	direction
and	its	module	the	speed.	The	Particle	Time	To	Live	(TTL)	is	modelled	as	milliseconds
counter	that	will	be	decreased	whenever	the	game	state	is	updated.	The	class	has	also	a
copy	constructor,	that	is,	a	constructor	that	takes	an	instance	of	another	Particle	to	make	a
copy.

Particles

253
www.dbooks.org

https://www.dbooks.org/

Now,	we	need	to	create	a	particle	generator	or	particle	emitter,	that	is,	a	class	that	generates
the	particles	dynamically,	controls	their	life	cycle	and	updates	their	position	according	to	a
specific	model.	We	can	create	many	implementations	that	vary	in	how	particles	and	created
and	how	their	positions	are	updated	(for	instance,	taking	into	consideration	the	gravity	or
not).	So,	in	order	to	keep	our	game	engine	generic,	we	will	create	an	interface	that	all	the
Particle	emitters	must	implement.	This	interface,	named		IParticleEmitter	,	is	defined	like
this:

package	org.lwjglb.engine.graph.particles;

import	java.util.List;

import	org.lwjglb.engine.items.GameItem;

public	interface	IParticleEmitter	{

				void	cleanup();

				Particle	getBaseParticle();

				List<GameItem>	getParticles();

}

The		IParticleEmitter		interface	has	a	method	to	clean	up	resources,	named		cleanup	,	and
a	method	to	get	the	list	of	Particles,	named		getParticles	.	It	also	as	a	method	named
	getBaseParticle	,	but	What’s	this	method	for?	A	particle	emitter	will	create	many	particles
dynamically.	Whenever	a	particle	expires,	new	ones	will	be	created.	That	particle	renewal
cycle	will	use	a	base	particle,	like	a	pattern,	to	create	new	instances.	This	is	what	this	base
particle	is	used	for,	This	is	also	the	reason	why	the		Particle		class	defines	a	copy
constructor.

In	the	game	engine	code	we	will	refer	only	to	the		IParticleEmitter		interface	so	the	base
code	will	not	be	dependent	on	the	specific	implementations.	Nevertheless	we	can	create	a
implementation	that	simulates	a	flow	of	particles	that	are	not	affected	by	gravity.	This
implementation	can	be	used	to	simulate	rays	or	fire	and	is	named		FlowParticleEmitter	.

The	behaviour	of	this	class	can	be	tuned	with	the	following	attributes:

A	maximum	number	of	particles	that	can	be	alive	at	a	time.
A	minimum	period	to	create	particles.	Particles	will	be	created	one	by	one	with	a
minimum	period	to	avoid	creating	particles	in	bursts.
A	set	of	ranges	to	randomize	particles	speed	and	starting	position.	New	particles	will
use	base	particle	position	and	speed	which	can	be	randomized	with	values	between
those	ranges	to	spread	the	beam.

The	implementation	of	this	class	is	as	follows:

Particles

254

package	org.lwjglb.engine.graph.particles;

import	java.util.ArrayList;

import	java.util.Iterator;

import	java.util.List;

import	org.joml.Vector3f;

import	org.lwjglb.engine.items.GameItem;

public	class	FlowParticleEmitter	implements	IParticleEmitter	{

				private	int	maxParticles;

				private	boolean	active;

				private	final	List<GameItem>	particles;

				private	final	Particle	baseParticle;

				private	long	creationPeriodMillis;

				private	long	lastCreationTime;

				private	float	speedRndRange;

				private	float	positionRndRange;

				private	float	scaleRndRange;

				public	FlowParticleEmitter(Particle	baseParticle,	int	maxParticles,	long	creationP

eriodMillis)	{

								particles	=	new	ArrayList<>();

								this.baseParticle	=	baseParticle;

								this.maxParticles	=	maxParticles;

								this.active	=	false;

								this.lastCreationTime	=	0;

								this.creationPeriodMillis	=	creationPeriodMillis;

				}

				@Override

				public	Particle	getBaseParticle()	{

								return	baseParticle;

				}

				public	long	getCreationPeriodMillis()	{

								return	creationPeriodMillis;

				}

				public	int	getMaxParticles()	{

								return	maxParticles;

				}

				@Override

Particles

255
www.dbooks.org

https://www.dbooks.org/

				public	List<GameItem>	getParticles()	{

								return	particles;

				}

				public	float	getPositionRndRange()	{

								return	positionRndRange;

				}

				public	float	getScaleRndRange()	{

								return	scaleRndRange;

				}

				public	float	getSpeedRndRange()	{

								return	speedRndRange;

				}

				public	void	setCreationPeriodMillis(long	creationPeriodMillis)	{

								this.creationPeriodMillis	=	creationPeriodMillis;

				}

				public	void	setMaxParticles(int	maxParticles)	{

								this.maxParticles	=	maxParticles;

				}

				public	void	setPositionRndRange(float	positionRndRange)	{

								this.positionRndRange	=	positionRndRange;

				}

				public	void	setScaleRndRange(float	scaleRndRange)	{

								this.scaleRndRange	=	scaleRndRange;

				}

				public	boolean	isActive()	{

								return	active;

				}

				public	void	setActive(boolean	active)	{

								this.active	=	active;

				}

				public	void	setSpeedRndRange(float	speedRndRange)	{

								this.speedRndRange	=	speedRndRange;

				}

				public	void	update(long	ellapsedTime)	{

								long	now	=	System.currentTimeMillis();

								if	(lastCreationTime	==	0)	{

												lastCreationTime	=	now;

								}

								Iterator<?	extends	GameItem>	it	=	particles.iterator();

								while	(it.hasNext())	{

												Particle	particle	=	(Particle)	it.next();

												if	(particle.updateTtl(ellapsedTime)	<	0)	{

Particles

256

																it.remove();

												}	else	{

																updatePosition(particle,	ellapsedTime);

												}

								}

								int	length	=	this.getParticles().size();

								if	(now	-	lastCreationTime	>=	this.creationPeriodMillis	&&	length	<	maxParticl

es)	{

												createParticle();

												this.lastCreationTime	=	now;

								}

				}

				private	void	createParticle()	{

								Particle	particle	=	new	Particle(this.getBaseParticle());

								//	Add	a	little	bit	of	randomness	of	the	parrticle

								float	sign	=	Math.random()	>	0.5d	?	-1.0f	:	1.0f;

								float	speedInc	=	sign	*	(float)Math.random()	*	this.speedRndRange;

								float	posInc	=	sign	*	(float)Math.random()	*	this.positionRndRange;								

								float	scaleInc	=	sign	*	(float)Math.random()	*	this.scaleRndRange;								

								particle.getPosition().add(posInc,	posInc,	posInc);

								particle.getSpeed().add(speedInc,	speedInc,	speedInc);

								particle.setScale(particle.getScale()	+	scaleInc);

								particles.add(particle);

				}

				/**

					*	Updates	a	particle	position

					*	@param	particle	The	particle	to	update

					*	@param	elapsedTime	Elapsed	time	in	milliseconds

					*/

				public	void	updatePosition(Particle	particle,	long	elapsedTime)	{

								Vector3f	speed	=	particle.getSpeed();

								float	delta	=	elapsedTime	/	1000.0f;

								float	dx	=	speed.x	*	delta;

								float	dy	=	speed.y	*	delta;

								float	dz	=	speed.z	*	delta;

								Vector3f	pos	=	particle.getPosition();

								particle.setPosition(pos.x	+	dx,	pos.y	+	dy,	pos.z	+	dz);

				}

				@Override

				public	void	cleanup()	{

								for	(GameItem	particle	:	getParticles())	{

												particle.cleanup();

								}

				}

}

Now	we	can	extend	the	information	that’s	contained	in	the		Scene		class	to	include	an	array
of		ParticleEmitter		instances.

Particles

257
www.dbooks.org

https://www.dbooks.org/

package	org.lwjglb.engine;

//	Imports	here

public	class	Scene	{

				//	More	attributes	here

				private	IParticleEmitter[]	particleEmitters;

At	this	stage	we	can	start	rendering	the	particles.	Particles	will	not	be	affected	by	lights	and
will	not	cast	any	shadow.	They	will	not	have	any	skeletal	animation,	so	it	makes	sense	to
have	specific	shaders	to	render	them.	The	shaders	will	be	very	simple,	they	will	just	render
the	vertices	using	the	projection	and	modelview	matrices	and	use	a	texture	to	set	the
colours.

The	vertex	shader	is	defined	like	this.

#version	330

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

layout	(location=2)	in	vec3	vertexNormal;

out	vec2	outTexCoord;

uniform	mat4	modelViewMatrix;

uniform	mat4	projectionMatrix;

void	main()

{

				gl_Position	=	projectionMatrix	*	modelViewMatrix	*	vec4(position,	1.0);

				outTexCoord	=	texCoord;

}

The	fragment	shader	is	defined	like	this:

Particles

258

#version	330

in	vec2	outTexCoord;

in	vec3	mvPos;

out	vec4	fragColor;

uniform	sampler2D	texture_sampler;

void	main()

{

				fragColor	=	texture(texture_sampler,	outTexCoord);

}

As	you	can	see	they	are	very	simple,	they	resemble	the	pair	of	shaders	used	in	the	first
chapters.	Now,	as	in	other	chapters,	we	need	to	setup	and	use	those	shaders	in	the
	Renderer		class.	The	shaders	setup	will	be	done	in	a	method	named		setupParticlesShader	
which	is	defined	like	this:

private	void	setupParticlesShader()	throws	Exception	{

				particlesShaderProgram	=	new	ShaderProgram();

				particlesShaderProgram.createVertexShader(Utils.loadResource("/shaders/particles_v

ertex.vs"));

				particlesShaderProgram.createFragmentShader(Utils.loadResource("/shaders/particles

_fragment.fs"));

				particlesShaderProgram.link();

				particlesShaderProgram.createUniform("projectionMatrix");

				particlesShaderProgram.createUniform("modelViewMatrix");

				particlesShaderProgram.createUniform("texture_sampler");

}

And	now	we	can	create	the	render	method	named		renderParticles		in	the		Renderer		class
which	is	defined	like	this:

Particles

259
www.dbooks.org

https://www.dbooks.org/

private	void	renderParticles(Window	window,	Camera	camera,	Scene	scene)	{

				particlesShaderProgram.bind();

				particlesShaderProgram.setUniform("texture_sampler",	0);

				Matrix4f	projectionMatrix	=	transformation.getProjectionMatrix();

				particlesShaderProgram.setUniform("projectionMatrix",	projectionMatrix);

				Matrix4f	viewMatrix	=	transformation.getViewMatrix();

				IParticleEmitter[]	emitters	=	scene.getParticleEmitters();

				int	numEmitters	=	emitters	!=	null	?	emitters.length	:	0;

				for	(int	i	=	0;	i	<	numEmitters;	i++)	{

								IParticleEmitter	emitter	=	emitters[i];

								Mesh	mesh	=	emitter.getBaseParticle().getMesh();

								mesh.renderList((emitter.getParticles()),	(GameItem	gameItem)	->	{

												Matrix4f	modelViewMatrix	=	transformation.buildModelViewMatrix(gameItem,	v

iewMatrix);

												particlesShaderProgram.setUniform("modelViewMatrix",	modelViewMatrix);

								}

);

				}

				particlesShaderProgram.unbind();

}

The	fragment	above	should	be	self	explanatory	if	you	managed	to	get	to	this	point,	it	just
renders	each	particle	setting	up	the	required	uniforms.	We	have	now	created	all	the	methods
we	need	to	test	the	implementation	of	the	particle	effect.	We	just	need	to	modify	the
	DummyGame		class	we	can	setup	a	particle	emitter	and	the	characteristics	of	the	base	particle.

Vector3f	particleSpeed	=	new	Vector3f(0,	1,	0);

particleSpeed.mul(2.5f);

long	ttl	=	4000;

int	maxParticles	=	200;

long	creationPeriodMillis	=	300;

float	range	=	0.2f;

float	scale	=	0.5f;

Mesh	partMesh	=	OBJLoader.loadMesh("/models/particle.obj");

Texture	texture	=	new	Texture("/textures/particle_tmp.png");

Material	partMaterial	=	new	Material(texture,	reflectance);

partMesh.setMaterial(partMaterial);

Particle	particle	=	new	Particle(partMesh,	particleSpeed,	ttl);

particle.setScale(scale);

particleEmitter	=	new	FlowParticleEmitter(particle,	maxParticles,	creationPeriodMillis

);

particleEmitter.setActive(true);

particleEmitter.setPositionRndRange(range);

particleEmitter.setSpeedRndRange(range);

this.scene.setParticleEmitters(new	FlowParticleEmitter[]	{particleEmitter});

Particles

260

We	are	using	a	plain	filled	circle	as	the	particle’s	texture	by	now,	to	better	understand	what’s
happening.	If	you	execute	it	you	will	see	something	like	this.

Why	some	particles	seem	to	be	cut	off?	Why	the	transparent	background	does	not	solve
this?	The	reason	for	that	is	depth	testing.	Some	fragments	of	the	particles	get	discarded
because	they	have	a	depth	buffer	value	higher	than	the	current	value	of	the	depth	buffer	for
that	zone.	We	can	solve	this	by	ordering	the	particle	drawings	depending	in	their	distance	to
the	camera	or	we	can	just	disable	the	depth	writing.

Before	we	draw	the	particles	we	just	need	to	insert	this	line:

glDepthMask(false);

And	when	we	are	done	with	rendering	we	restore	the	previous	value:

glDepthMask(true);

Then	we	will	get	something	like	this.

Particles

261
www.dbooks.org

https://www.dbooks.org/

Ok,	problem	solved.	Nevertheless,	we	still	want	another	effect	to	be	applied,	we	would	want
that	colours	get	blended	so	colours	will	be	added	to	create	better	effects.	This	is	achieved
with	by	adding	this	line	before	rendering	to	setup	additive	blending.

glBlendFunc(GL_SRC_ALPHA,	GL_ONE);

As	in	the	depth	case,	after	we	have	rendered	all	the	particles	we	restore	the	blending
function	to:

glBlendFunc(GL_SRC_ALPHA,	GL_ONE_MINUS_SRC_ALPHA);

Now	we	get	something	like	this.

Particles

262

But	we	have	not	finished	yet.	If	you	have	moved	the	camera	over	the	blue	square	looking
down	you	may	have	got	something	like	this.

The	particles	do	not	look	very	good,	they	should	look	round	but	they	resemble	a	sheet	of
paper.	At	this	points	is	where	we	should	be	applying	the	billboard	technique.	The	quad	that
is	used	to	render	the	particle	should	always	be	facing	the	camera,	totally	perpendicular	to	it

Particles

263
www.dbooks.org

https://www.dbooks.org/

as	if	it	there	was	no	rotation	at	all.	The	camera	matrix	applies	translation	and	rotation	to
every	object	in	the	scene,	we	want	to	skip	the	rotation	to	be	applied.

Warning:	Maths	ahead,	you	can	skip	it	if	you	don't	feel	comfortable	with	this.	Let’s	review
that	view	matrix	once	again.	That	matrix	can	be	represented	like	this	(without	any	scale
applied	to	it).

The	red	elements	represent	the	camera	rotation	while	the	blue	ones	represent	the
translation.	We	need	to	cancel	the	effect	of	the	upper	left	3x3	matrix	contained	in	the	view
matrix	so	it	gets	to	something	like	this.

So,	we	have	a	3x3	matrix,	the	upper	left	red	fragment,	let's	name	it	M 	and	we	want	it	to
transform	it	to	the	identify	matrix:	I .	Any	matrix	multiplied	by	its	inverse	will	give	the	identify

matrix:	M ×M = I .	So	we	just	need	to	get	the	upper	left	3x3	matrix	from	the	view	matrix,
and	multiply	it	by	its	inverse,	but	we	can	even	optimize	this.	A	rotation	matrix	has	an
interesting	characteristic,	its	inverse	coincides	with	its	transpose	matrix.	That	is:	

M ×M =M ×M = I.	And	a	transpose	matrix	is	much	more	easier	to	calculate	than
the	inverse.	The	transpose	of	a	matrix	is	like	if	we	flip	it,	we	change	rows	per	columns.

=

Ok,	let's	summarize.	We	have	this	transformation:	V ×M ,	where	V 	is	the	view	matrix	and	
M 	is	the	model	matrix.	We	can	express	that	expression	like	this:

×

We	want	to	cancel	the	rotation	of	the	view	matrix,	to	get	something	like	this:

⎣⎢
⎢⎡
r00
r01
r02
0

r10
r11
r12
0

r20
r21
r22
0

dx

dy

dz

1 ⎦⎥
⎥⎤

⎣⎢
⎢⎡
1
0
0
0

0
1
0
0

0
0
1
0

dx

dy

dz

1 ⎦⎥
⎥⎤

r

r r
−1

r r
−1

r r
T

⎣
⎡r00
r01
r02

r10
r11
r12

r20
r21
r22⎦
⎤T

⎣
⎡r00
r10
r20

r01
r11
r21

r02
r12
r22⎦
⎤

⎣⎢
⎢⎡
v00
v01
v02
v03

v10
v11
v12
v13

v20
v21
v22
v23

v30
v31
v32
v33⎦
⎥⎥
⎤

⎣⎢
⎢⎡
m00
m01
m02
m03

m10
m11
m12
m13

m20
m21
m22
m23

m30
m31
m32
m33⎦

⎥⎥
⎤

⎣⎢
⎢⎡
1
0
0

mv03

0
1
0

mv13

0
0
1

mv23

mv30
mv31
mv32
mv33⎦

⎥⎥
⎤

Particles

264

So	we	just	need	to	set	the	upper	left	3x3	matrix	for	the	model	matrix	as	the	transpose	matrix
of	the	3x3	upper	part	of	the	view	matrix:

×

But,	after	doing	this,	we	have	removed	the	scaling	factor,	indeed	what	we	do	really	whant	to
achieve	is	something	like	this:

Where	sx,	sy	and	sz	are	the	scaling	factor.	Thus,	after	we	have	set	set	the	upper	left	3x3
matrix	for	the	model	matrix	as	the	transpose	matrix	of	the	view	matrix,	we	need	to	apply
scaling	again.

And	that's	all,	we	just	need	to	change	this	in	the		renderParticlesMethod		like	this:

								for	(int	i	=	0;	i	<	numEmitters;	i++)	{

												IParticleEmitter	emitter	=	emitters[i];

												Mesh	mesh	=	emitter.getBaseParticle().getMesh();

												mesh.renderList((emitter.getParticles()),	(GameItem	gameItem)	->	{

																Matrix4f	modelMatrix	=	transformation.buildModelMatrix(gameItem);

																viewMatrix.transpose3x3(modelMatrix);

																Matrix4f	modelViewMatrix	=	transformation.buildModelViewMatrix(modelMa

trix,	viewMatrix);

																modelViewMatrix.scale(gameItem.getScale());

																particlesShaderProgram.setUniform("modelViewMatrix",	modelViewMatrix);

												}

);

								}

We	also	have	added	another	method	to	the		Transformation		class	to	construct	a	model	view
matrix	using	two	matrices	instead	of	a		GameItem		and	the	view	matrix.

With	that	change,	when	we	look	the	particles	from	above	we	get	something	like	this.

⎣ ⎦

⎣⎢
⎢⎡
v00
v01
v02
v03

v10
v11
v12
v13

v20
v21
v22
v23

v30
v31
v32
v33⎦
⎥⎥
⎤

⎣⎢
⎢⎡
v00
v10
v20
m03

v01
v11
v21
m13

v02
v12
v22
m23

m30
m31
m32
m33⎦

⎥⎥
⎤

⎣⎢
⎢⎡

sx

0
0

mv03

0
sy

0
mv13

0
0
sz

mv23

mv30
mv31
mv32
mv33⎦

⎥⎥
⎤

Particles

265
www.dbooks.org

https://www.dbooks.org/

Now	we	have	everything	we	need	to	create	a	more	realistic	particle	effect	so	let's	change	the
texture	to	something	more	elaborated.	We	will	use	this	image	(it	was	created	with	GIMP	with
the	lights	and	shadows	filters).

With	this	texture,	we	will	get	something	like	this.

Particles

266

https://www.gimp.org/

Much	better	!	You	may	notice	that	we	need	to	adjust	the	scale,	since	particles	are	now
always	facing	the	camera	the	displayed	area	is	always	the	maximum.

Finally,	another	conclusion,	to	get	perfect	results	which	can	be	used	in	any	scene	you	will
need	to	implement	particle	ordering	and	activate	depth	buffer.	In	any	case,	you	have	here	a
sample	to	include	this	effect	in	your	games.

Texture	Atlas
Now	that	we	have	set	the	basic	infrastructure	for	particle	effect	we	can	add	some	animation
effects	to	it.	In	order	to	achieve	that,	we	are	going	to	support	texture	atlas.	A	texture	atlas	is
a	large	image	that	contains	all	the	textures	that	will	be	used.	With	a	texture	atlas	we	need
only	to	load	a	large	image	and	then	while	drawing	the	game	items	we	select	the	portions	of
that	image	to	be	used	as	our	texture.	This	technique	can	be	applied	for	instance	when	we
want	to	represent	the	same	model	many	times	with	different	textures	(think	for	instance
about	trees,	or	rocks).	Instead	of	having	many	texture	instances	and	switching	between
them	(remember	that	switching	states	are	always	slow)	we	can	use	the	same	texture	atlas
and	just	select	the	appropriate	coordinates.

In	this	case,	we	are	going	to	use	texture	coordinates	to	animate	particles.	We	will	iterate
over	different	textures	to	model	a	particle	animation.	All	those	textures	will	be	grouped	into	a
texture	atlas	which	looks	like	this.

Particles

267
www.dbooks.org

https://www.dbooks.org/

The	texture	atlas	can	be	divided	into	quad	tiles.	We	will	assign	a	tile	position	to	a	particle
and	will	change	it	over	time	to	represent	animation.	So	let’s	get	on	it.	The	first	thing	that	we
are	going	to	do	is	modifying	the		Texture		class	to	specify	the	number	of	rows	and	columns
that	a	texture	atlas	can	have.

package	org.lwjglb.engine.graph;

//	..	Imports	hera

public	class	Texture	{

				//	More	attributes	here

				private	int	numRows	=	1;

				private	int	numCols	=	1;

			//	More	code	here

				public	Texture(String	fileName,	int	numCols,	int	numRows)	throws	Exception		{

								this(fileName);

								this.numCols	=	numCols;

								this.numRows	=	numRows;

				}

Particles

268

The	default	case	is	to	have	a	texture	with	a	number	of	columns	and	rows	equal	to	1,	that	is,
the	textures	we	have	dealing	with.	We	also	add	another	constructor	to	be	able	to	specify	the
rows	and	columns.

Then	we	need	to	keep	track	the	position	in	the	texture	atlas	for	a		GameItem	,	so	we	just	add
another	attribute	to	that	class	with	a	default	value	equal	to	0.

package	org.lwjglb.engine.items;

import	org.joml.Vector3f;

import	org.lwjglb.engine.graph.Mesh;

public	class	GameItem	{

				//	More	attributes	here

				private	int	textPos;

Then	we	will	modify	the		Particle		class	to	be	able	to	iterate	automatically	through	a	texture
atlas.

package	org.lwjglb.engine.graph.particles;

import	org.joml.Vector3f;

import	org.lwjglb.engine.graph.Mesh;

import	org.lwjglb.engine.graph.Texture;

import	org.lwjglb.engine.items.GameItem;

public	class	Particle	extends	GameItem	{

				private	long	updateTextureMillis;

				private	long	currentAnimTimeMillis;

The		updateTextureMillis		attribute	models	the	period	of	time	(in	milliseconds)	to	move	to	the
next	position	in	the	texture	atlas.	The	lowest	the	value	the	fastest	the	particle	will	roll	over
the	textures.	The		currentAnimTimeMillis		attribute	just	keeps	track	of	the	time	that	the
particle	has	maintained	a	texture	position.

Thus,	we	need	to	modify	the		Particle		class	constructor	to	set	up	those	values.	Also	we
calculate	the	number	of	tiles	of	the	texture	atlas,	which	is	modelled	by	the	attribute
	animFrames	.

Particles

269
www.dbooks.org

https://www.dbooks.org/

public	Particle(Mesh	mesh,	Vector3f	speed,	long	ttl,	long	updateTextureMillis)	{

				super(mesh);

				this.speed	=	new	Vector3f(speed);

				this.ttl	=	ttl;

				this.updateTextureMills	=	updateTextureMills;

				this.currentAnimTimeMillis	=	0;

				Texture	texture	=	this.getMesh().getMaterial().getTexture();

				this.animFrames	=	texture.getNumCols()	*	texture.getNumRows();

}

Now,	we	just	need	to	modify	the	method	that	checks	if	the	particle	has	expired	to	check	also
if	we	need	to	update	the	texture	position.

public	long	updateTtl(long	elapsedTime)	{

				this.ttl	-=	elapsedTime;

				this.currentAnimTimeMillis	+=	elapsedTime;

				if	(this.currentAnimTimeMillis	>=	this.getUpdateTextureMillis()	&&	this.animFrame

s	>	0)	{

								this.currentAnimTimeMillis	=	0;

								int	pos	=	this.getTextPos();

								pos++;

								if	(pos	<	this.animFrames)	{

												this.setTextPos(pos);

								}	else	{

												this.setTextPos(0);

								}

				}

				return	this.ttl;

}

Besides	that,	we	also	have	modified	the		FlowRangeEmitter		class	to	add	some	randomness
to	the	period	of	time	when	we	should	change	the	a	particle’s	texture	position.	You	can	check
it	in	the	source	code.

Now	we	can	use	that	information	to	set	up	appropriate	texture	coordinates.	We	will	do	this	in
the	vertex	fragment	since	it	outputs	those	values	to	be	used	in	the	fragment	shader.	The
new	version	of	that	shader	is	defined	like	this.

Particles

270

#version	330

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

layout	(location=2)	in	vec3	vertexNormal;

out	vec2	outTexCoord;

uniform	mat4	modelViewMatrix;

uniform	mat4	projectionMatrix;

uniform	float	texXOffset;

uniform	float	texYOffset;

uniform	int	numCols;

uniform	int	numRows;

void	main()

{

				gl_Position	=	projectionMatrix	*	modelViewMatrix	*	vec4(position,	1.0);

				//	Support	for	texture	atlas,	update	texture	coordinates

				float	x	=	(texCoord.x	/	numCols	+	texXOffset);

				float	y	=	(texCoord.y	/	numRows	+	texYOffset);

				outTexCoord	=	vec2(x,	y);

}

As	you	can	see	we	have	now	three	new	uniforms.	The	uniforms		numCols		and		numRows		just
contain	the	number	of	columns	and	rows	of	the	texture	atlas.	In	order	to	calculate	the	texture
coordinates,	we	first	must	scale	down	these	parameters.	Each	tile	will	have	a	width	which	is
equal	to	1/numCols	and	a	height	which	is	equal	to	1/numRows	as	shown	in	the	next	figure.

Particles

271
www.dbooks.org

https://www.dbooks.org/

Then	we	just	need	to	apply	and	offset	depending	on	the	row	and	column,	this	is	what	is
modelled	by	the		texXOffset		and		texYOffset		uniforms.

We	will	calculate	these	offsets	in	the		Renderer		class	as	shown	in	the	next	fragment.	We
calculate	the	row	and	column	that	each	particle	is	in	according	to	its	position	and	calculate
the	offset	accordingly	as	a	multiple	of	tile’s	width	and	height.

mesh.renderList((emitter.getParticles()),	(GameItem	gameItem)	->	{

				int	col	=	gameItem.getTextPos()	%	text.getNumCols();

				int	row	=	gameItem.getTextPos()	/	text.getNumCols();

				float	textXOffset	=	(float)	col	/	text.getNumCols();

				float	textYOffset	=	(float)	row	/	text.getNumRows();

				particlesShaderProgram.setUniform("texXOffset",	textXOffset);

				particlesShaderProgram.setUniform("texYOffset",	textYOffset);

Note	that	if	you	only	need	to	support	perfectly	square	texture	atlas,	you	will	only	need	two
uniforms.	The	final	result	looks	like	this.

Particles

272

Now	we	have	animated	particles	working.	In	the	next	chapter	we	will	learn	how	to	optimize
the	rendering	process.	We	are	rendering	multiple	elements	that	have	the	same	mesh	and
we	are	performing	a	drawing	call	for	each	of	them.	In	the	next	chapter	we	will	learn	how	to
do	it	in	a	single	call.	That	technique	is	useful	for	particles	but	also	for	rendering	scenes
where	multiple	elements	share	the	same	model	but	are	placed	in	different	locations	or	have
different	textures.

Particles

273
www.dbooks.org

https://www.dbooks.org/

Instanced	Rendering

Lots	of	Instances
When	drawing	a	3D	scene	is	frequent	to	have	many	models	represented	by	the	same	mesh
but	with	different	transformations.	In	this	case,	although	they	may	be	simple	objects	with	just
a	few	triangles,	performance	can	suffer.	The	cause	behind	this	is	the	way	we	are	rendering
them.

We	are	basically	iterating	through	all	the	game	items	inside	a	loop	and	performing	a	call	to
the	function		glDrawElements	.	As	it	has	been	said	in	previous	chapters,	calls	to	OpenGL
library	should	be	minimized.	Each	call	to	the		glDrawElements		function	imposes	an	overhead
that	is	repeated	again	and	again	for	each		GameItem		instance.

When	dealing	with	lots	of	similar	objects	it	would	be	more	efficient	to	render	all	of	them	using
a	single	call.	This	technique	is	called	instanced	rendering.	In	order	to	acomplish	that
OpenGL	provides	a	set	of	functions	named		glDrawXXXInstanced		to	render	a	set	of	elements
at	once.	In	our	case,	since	we	are	drawing	elements	we	will	use	the	function	named
	glDrawElementsInstanced	.	This	function	receives	the	same	arguments	as	the
	glDrawElements		plus	one	additional	parameter	which	sets	the	number	of	instances	to	be
drawn.

This	is	a	sample	of	how	the	glDrawElements	is	used.

glDrawElements(GL_TRIANGLES,	numVertices,	GL_UNSIGNED_INT,	0)

And	this	is	how	the	instanced	version	can	be	used:

glDrawElementsInstanced(GL_TRIANGLES,	numVertices,	GL_UNSIGNED_INT,	0,	numInstances);

But	you	may	be	wondering	now	how	can	you	set	the	different	transformations	for	each	of
those	instances.	Now,	before	we	draw	each	instance	we	pass	the	different	transformations
and	instance	related	data	using	uniforms.	Before	a	render	call	is	made	we	need	to	setup	the
specific	data	for	each	item.	How	can	we	do	this	when	rendering	all	of	them	at	once?

When	using	instanced	rendering,	in	the	vertex	shader	we	can	use	an	input	variable	that
holds	the	index	of	the	instance	that	is	currently	being	drawn.	With	that	built-in	variable	we
can,	for	instance,	pass	an	array	of	uniforms	containing	the	transformations	to	be	applied	to
each	instance	and	use	a	single	render	call.

Instanced	Rendering

274

The	problem	with	this	approach	is	that	it	still	imposes	too	much	overhead.	In	addition	to	that,
the	number	of	uniforms	that	we	can	pass	is	limited.	Thus,	we	need	to	emply	another
approach,	instead	of	using	lists	of	uniforms	we	will	use	instanced	arrays.

If	you	recall	from	the	first	chapters,	the	data	for	each	Mesh	is	defined	by	a	set	of	arrays	of
data	named	VBOs.	The	data	store	in	those	VBOs	is	unique	per	Mesh	instance.

With	standard	VBOs,	inside	a	shader,	we	can	access	the	data	associated	to	each	vertex	(its
position,	colour,	textue,	etc.).	Whenever	the	shader	is	run,	the	input	variables	are	set	to	point
to	the	specific	data	associated	to	each	vertex.	With	instanced	arrays	we	can	set	up	data	that
is	changed	per	instance	instead	of	per	vertex.	If	we	combine	both	types	we	can	use	regular
VBOs	to	store	per	vertex	information	(position,	texture	coordinates)	and	VBOs	that	contain
per	instance	data	such	as	model	view	matrices.

The	next	figure	shows	a	Mesh	composed	by	three	per	vertex	VBOs	definig	the	positions,
textures	and	normals.	The	first	index	of	each	of	those	elements	is	the	instance	that	it
belongs	to	(in	blue	colour).	The	second	index	represents	the	vertex	position	inside	a
instance.

The	Mesh	is	also	defined	by	two	per	instance	VBOs.	One	for	the	model	view	matrix	and	the
other	one	for	the	light	view	matrix.	When	rendering	the	vertices	for	the	firs	instance	(the	1X,
ones),	the	model	view	and	light	view	matrices	will	be	the	same	(the	1).	When	vertices	of	the
second	instance	are	to	be	rendered	the	second	model	view	and	light	view	matrices	will	be
used.

Instanced	Rendering

275
www.dbooks.org

https://www.dbooks.org/

Thus,	when	rendering	the	first	vertex	of	the	first	instance,	V11,	T11	and	N11	would	be	used
for	position,	texture	and	normal	data	and	MV1	would	be	used	as	a	model	view	matrix.	When
rendering	the	second	vertex	of	the	same	first	instance,	V12,	T12	and	N12	would	be	used	for
position,	texture	and	normal	dara	and	MV1	wouls	still	be	used	as	a	model	view	matrix.	MV2
and	LV2	would	not	be	used	until	second	instance	is	rendered.

In	order	to	define	per	instance	data	we	need	to	call	the	function		glVertexAttribDivisor		after
defining	vertex	attributes.	This	function	receives	two	parameters:

index:	The	index	of	the	vertex	attribute	(as	issued	in	the	glVertexAttribPointer	function).

Divisor:	If	this	vale	contains	zero,	the	data	is	changed	for	each	vertex	while	rendering.	If
it	is	set	to	one,	the	data	changes	once	per	instance.	If	it’s	set	to	two	it	changes	every
two	instances,	etc.

So,	in	order	to	set	data	for	a	instance	we	need	to	perform	this	call	after	every	attribute
definition:

glVertexAttribDivisor(index,	1);

Let’s	start	changing	our	code	base	to	support	instanced	rendering.	The	first	step	is	to	create
a	new	class	named		InstancedMesh		that	inherits	from	the		Mesh		class.	The	constructor	of	this
class	will	be	similar	to	the	similar	to	the		Mesh		one	but	with	an	extra	parameter,	the	number
of	instances.

In	the	constructor,	besides	relying	in	super’s	constructor,	we	will	create	two	new	VBOs,	one
for	the	model	view	matrix	and	another	one	for	the	light	view	matrix.	The	code	for	creating	the
model	view	matrix	is	presented	below.

Instanced	Rendering

276

modelViewVBO	=	glGenBuffers();

vboIdList.add(modelViewVBO);

this.modelViewBuffer	=	MemoryUtil.memAllocFloat(numInstances	*	MATRIX_SIZE_FLOATS);

glBindBuffer(GL_ARRAY_BUFFER,	modelViewVBO);

int	start	=	5;

for	(int	i	=	0;	i	<	4;	i++)	{

				glVertexAttribPointer(start,	4,	GL_FLOAT,	false,	MATRIX_SIZE_BYTES,	i	*	VECTOR4F_S

IZE_BYTES);

				glVertexAttribDivisor(start,	1);

				start++;

}

The	first	thing	that	we	do	is	create	a	new	VBO	and	a	new		FloatBuffer		to	store	the	data	on
it.	The	size	of	that	buffer	is	measured	in	floats,	so	it	will	be	equal	to	the	number	of	instances
multiplied	by	the	size	in	floats	of	a	4x4	matrix,	which	is	equal	to	16.

Once	the	VBO	has	been	bond	we	start	defining	the	attributes	for	it.	You	can	see	that	this	is
done	in	a	for	loop	that	iterates	four	times.	Each	turn	of	the	loop	defines	one	vector	the
matrix.	Why	not	simply	defining	a	single	attribute	for	the	whole	matrix?	The	reason	for	that	is
that	a	vertex	attribute	cannot	contain	more	than	four	floats.	Thus,	we	need	to	split	the	matrix
definition	into	four	pieces.	Let’s	refresh	the	parameters	of	the		glVertexAttribPointer	:

Index:	The	index	of	the	element	to	be	defined.
Size:	The	number	of	components	for	this	attribute.	In	this	case	it’s	4,	4	floats,	which	is
the	maximum	accepted	value.
Type:	The	type	of	data	(floats	in	our	case).
Normalize:	If	fixed-point	data	should	be	normalized	or	not.
Stride:	This	is	important	to	understand	here,	this	sets	the	byte	offsets	between
consecutive	attributes.	In	this	case,	we	need	to	set	it	to	the	whole	size	of	a	matrix	in
bytes.	This	acts	like	a	mark	that	packs	the	data	so	it	can	be	changed	between	vertex	or
instances.
Pointer:	The	offset	that	this	attribute	definition	applies	to.	In	our	case,	we	need	to	split
the	matrix	definition	into	four	calls.	Each	vector	of	the	matrix	increments	the	offset.

After	defining	the	vertex	attribute,	we	need	to	call	the		glVertexAttribDivisor		using	the
same	index.

The	definition	of	the	light	view	matrix	is	similar	to	the	previous	one,	you	can	check	it	in	the
source	code.	Continuing	with	the		InstancedMesh		class	definition	it’s	important	to	override	the
methods	that	enable	the	vertex	attributes	before	rendering	(and	the	one	that	disables	them
after).

Instanced	Rendering

277
www.dbooks.org

https://www.dbooks.org/

@Override

protected	void	initRender()	{

				super.initRender();

				int	start	=	5;

				int	numElements	=	4	*	2;

				for	(int	i	=	0;	i	<	numElements;	i++)	{

								glEnableVertexAttribArray(start	+	i);

				}

}

@Override

protected	void	endRender()	{

				int	start	=	5;

				int	numElements	=	4	*	2;

				for	(int	i	=	0;	i	<	numElements;	i++)	{

								glDisableVertexAttribArray(start	+	i);

				}

				super.endRender();

}

The		InstancedMesh		class	defines	a	public	method,	named		renderListInstanced	,	that
renders	a	list	of	game	items,	this	method	splits	the	list	of	game	items	into	chunks	of	size
equal	to	the	number	of	instances	used	to	create	the		InstancedMesh	.	The	real	rendering
method	is	called		renderChunkInstanced		and	is	defined	like	this.

Instanced	Rendering

278

private	void	renderChunkInstanced(List<GameItem>	gameItems,	boolean	depthMap,	Transfor

mation	transformation,	Matrix4f	viewMatrix,	Matrix4f	lightViewMatrix)	{

				this.modelViewBuffer.clear();

				this.modelLightViewBuffer.clear();

				int	i	=	0;

				for	(GameItem	gameItem	:	gameItems)	{

								Matrix4f	modelMatrix	=	transformation.buildModelMatrix(gameItem);

								if	(!depthMap)	{

												Matrix4f	modelViewMatrix	=	transformation.buildModelViewMatrix(modelMatrix

,	viewMatrix);

												modelViewMatrix.get(MATRIX_SIZE_FLOATS	*	i,	modelViewBuffer);

								}

								Matrix4f	modelLightViewMatrix	=	transformation.buildModelLightViewMatrix(model

Matrix,	lightViewMatrix);

								modelLightViewMatrix.get(MATRIX_SIZE_FLOATS	*	i,	this.modelLightViewBuffer);

								i++;

				}

				glBindBuffer(GL_ARRAY_BUFFER,	modelViewVBO);

				glBufferData(GL_ARRAY_BUFFER,	modelViewBuffer,	GL_DYNAMIC_DRAW);

				glBindBuffer(GL_ARRAY_BUFFER,	modelLightViewVBO);

				glBufferData(GL_ARRAY_BUFFER,	modelLightViewBuffer,	GL_DYNAMIC_DRAW);

				glDrawElementsInstanced(GL_TRIANGLES,	getVertexCount(),	GL_UNSIGNED_INT,	0,	gameIt

ems.size());

				glBindBuffer(GL_ARRAY_BUFFER,	0);

}

The	method	is	quite	simple,	we	basically	iterate	over	the	game	items	and	calculate	the
model	view	and	light	view	matrices.	These	matrices	are	dumped	into	their	respective	buffers.
The	contents	of	those	buffers	are	sent	to	to	the	GPU	and	finally	we	render	all	of	them	with	a
single	call	to	the		glDrawElementsInstanced		method.

Going	back	to	the	shaders,	we	need	to	modify	the	vertex	shader	to	support	instanced
rendering.	We	will	first	add	new	input	parameters	for	the	model	and	view	matrices	that	will
be	passed	when	using	instanced	rendering.

layout	(location=5)	in	mat4	modelViewInstancedMatrix;

layout	(location=9)	in	mat4	modelLightViewInstancedMatrix;

As	you	can	see,	the	model	view	matrix	starts	at	location	5.	Since	a	matrix	is	defined	by	a	set
of	four	attributes	(each	one	containing	a	vector),	the	light	view	matrix	starts	at	location	9.
Since	we	want	to	use	a	single	shader	for	both	non	instanced	and	instanced	rendering,	we
will	maintain	the	uniforms	for	model	and	light	view	matrices.	We	only	need	to	change	their
names.

Instanced	Rendering

279
www.dbooks.org

https://www.dbooks.org/

uniform	int	isInstanced;

uniform	mat4	modelViewNonInstancedMatrix;

…

uniform	mat4	modelLightViewNonInstancedMatrix;

We	have	created	another	uniform	to	specify	if	we	are	using	instanced	rendering	or	not.	In
the	case	we	are	using	instanced	rendering	the	code	is	very	simple,	we	just	use	the	matrices
from	the	input	parameters.

void	main()

{

				vec4	initPos	=	vec4(0,	0,	0,	0);

				vec4	initNormal	=	vec4(0,	0,	0,	0);

				mat4	modelViewMatrix;

				mat4	lightViewMatrix;

				if	(isInstanced	>	0)

				{

								modelViewMatrix	=	modelViewInstancedMatrix;

								lightViewMatrix	=	modelLightViewInstancedMatrix;

								initPos	=	vec4(position,	1.0);

								initNormal	=	vec4(vertexNormal,	0.0);

				}

We	don’t	support	animations	for	instanced	rendering	to	simplify	the	example,	but	this
technique	can	be	perfectly	used	for	this.
Finally,	the	shader	just	set	up	appropriate	values	as	usual.

				vec4	mvPos	=	modelViewMatrix	*	initPos;

				gl_Position	=	projectionMatrix	*	mvPos;

				outTexCoord	=	texCoord;

				mvVertexNormal	=	normalize(modelViewMatrix	*	initNormal).xyz;

				mvVertexPos	=	mvPos.xyz;

				mlightviewVertexPos	=	orthoProjectionMatrix	*	lightViewMatrix	*	initPos;

				outModelViewMatrix	=	modelViewMatrix;

}

Of	course,	the		Renderer		has	been	modified	to	support	the	uniforms	changes	and	to
separate	the	rendering	of	non	instanced	meshes	from	the	instanced	ones.	You	can	check
the	changes	in	the	source	code.

In	addition	to	that,	some	optimizations	have	been	added	to	the	source	code	by	the	JOML
author	Kai	Burjack.	These	optimizations	have	been	applied	to	the		Transformation		class	and
are	summarized	in	the	following	list:

Removed	redundant	calls	to	set	up	matrices	with	identity	values.

Instanced	Rendering

280

https://github.com/httpdigest

Use	quaternions	for	rotations	which	are	more	efficient.
Use	specific	methods	for	rotating	and	translating	matrices	which	are	optimized	for	those
operations.

Particles	revisited
With	the	support	of	instanced	rendering	we	can	also	improve	the	performance	for	the
particles	rendering.	Particles	are	the	best	use	case	for	this.

In	order	to	apply	instance	rendering	to	particles	we	must	provide	support	for	texture	atlas.
This	can	be	achieved	by	adding	a	new	VBO	with	texture	offsets	for	instanced	rendering.	The
texture	offsets	can	be	modeled	by	a	single	vector	of	tow	floats,	so	there's	no	need	to	split	the
definition	as	in	the	matrices	case.

//	Texture	offsets

glVertexAttribPointer(start,	2,	GL_FLOAT,	false,	INSTANCE_SIZE_BYTES,	strideStart);

glVertexAttribDivisor(start,	1);

Instanced	Rendering

281
www.dbooks.org

https://www.dbooks.org/

But,	instead	of	adding	a	new	VBO	we	will	set	all	the	instance	attributes	inside	a	single	VBO.
The	next	figure	shows	the	concept.	We	are	packing	up	all	the	attributes	inside	a	single	VBO.
The	values	will	change	per	each	instance.

In	order	to	use	a	single	VBO	we	need	to	modify	the	attribute	size	for	all	the	attributes	inside
an	instance.	As	you	can	see	from	the	code	above,	the	definition	of	the	texture	offsets	uses	a
constant	named		INSTANCE_SIZE_BYTES	.	This	constant	is	equal	to	the	size	in	bytes	of	two
matrices	(one	for	the	view	model	and	the	other	one	for	the	light	view	model)	plus	two	floats
(texture	offesets),	which	in	total	is	136.	The	stride	also	needs	to	be	modified	properly.

You	can	check	the	modifications	in	the	source	code.

The		Renderer		class	needs	also	to	be	modified	to	use	instanced	rendering	for	particles	and
support	texture	atlas	in	scene	rendering.	In	this	case,	there's	no	sense	in	support	both	types
of	rendering	(non	instance	and	instanced),	so	the	modifications	are	simpler.

The	vertex	shader	for	particles	is	also	straight	froward.

#version	330

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

layout	(location=2)	in	vec3	vertexNormal;

layout	(location=5)	in	mat4	modelViewMatrix;

layout	(location=13)	in	vec2	texOffset;

out	vec2	outTexCoord;

uniform	mat4	projectionMatrix;

uniform	int	numCols;

uniform	int	numRows;

void	main()

{

				gl_Position	=	projectionMatrix	*	modelViewMatrix	*	vec4(position,	1.0);

				//	Support	for	texture	atlas,	update	texture	coordinates

				float	x	=	(texCoord.x	/	numCols	+	texOffset.x);

				float	y	=	(texCoord.y	/	numRows	+	texOffset.y);

				outTexCoord	=	vec2(x,	y);}

The	results	of	this	changes,	look	exactly	the	same	as	when	rendering	non	instanced
particles	but	the	performance	is	much	higher.	A	FPS	counter	has	been	added	to	the	window
title,	as	an	option.	You	can	play	with	instanced	and	non	instanced	rendering	to	see	the
improvements	by	yourself.

Instanced	Rendering

282

Extra	bonus
With	all	the	infrastructure	that	we	have	right	now,	I've	modified	the	rendering	cubes	code	to
use	a	height	map	as	a	base,	using	also	texture	atlas	to	use	different	textures.	It	also
combines	particles	rendering.	It	looks	like	this.

Instanced	Rendering

283
www.dbooks.org

https://www.dbooks.org/

Please	keep	in	mind	that	there's	still	much	room	for	optimization,	but	the	aim	of	the	book	is
guiding	you	in	learning	LWJGL	and	OpenGL	concepts	and	techniques.	The	goal	is	not	to
create	a	full	blown	game	engine	(an	definitely	not	a	voxel	engine,	which	require	a	different
approach	and	more	optimizations).

Instanced	Rendering

284

Audio
Until	this	moment	we	have	been	dealing	with	graphics,	but	another	key	aspect	of	every
game	is	audio.	This	capability	is	going	to	be	addressed	in	this	chapter	with	the	help	of
OpenAL	(Open	Audio	Library).	OpenAL	is	the	OpenGL	counterpart	for	audio,	it	allows	us	to
play	sounds	through	and	abstraction	layer.	That	layer	isolates	us	from	the	underlying
complexities	of	the	audio	subsystem.	Besides	that,	it	allows	us	to	“render”	sounds	in	a	3D
scene,	where	sounds	can	be	set	up	in	specific	locations,	attenuated	with	the	distance	and
modified	according	to	their	velocity	(simulating	Doppler	effect)

LWJGL	supports	OpenAL	without	requiring	any	additional	download,	it’s	just	ready	to	use.
But	before	start	coding	we	need	to	present	the	main	elements	involved	when	dealing	with
OpenAL,	which	are:

Buffers.
Sources.
Listener.

Buffers	store	audio	data,	that	is,	music	or	sound	effects.	They	are	similar	to	the	textures	in
the	OpenGL	domain.	OpenAL	expects	audio	data	to	be	in	PCM	(Pulse	Coded	Modulation)
format	(either	in	mono	or	in	stereo),	so	we	cannot	just	dump	MP3	or	OGG	files	without
converting	them	first	to	PCM.

The	next	element	are	sources,	which	represent	a	location	in	a	3D	space	(a	point)	that	emits
sound.	A	source	is	associated	to	a	buffer	(only	one	at	time)	and	can	be	defined	by	the
following	attributes:

A	position,	the	location	of	the	source	(x,	y	and	z	coordinates).	By	the	way,	OpenAL	uses
a	right	handed	Cartesian	coordinate	system	as	OpenGL,	so	you	can	assume	(to	simplify
things)	that	your	world	coordinates	are	equivalent	to	the	ones	in	the	sound	space
coordinate	system.
A	velocity,	which	specifies	how	fast	the	source	is	moving.	This	is	used	to	simulate
Doppler	effect.
A	gain,	which	is	used	to	modify	the	intensity	of	the	sound	(it’s	like	an	amplifier	factor).

A	source	has	additional	attibutes	which	will	be	shown	later	when	describing	the	source	code.

And	last,	but	no	least,	a	listener	which	is	where	the	generated	sounds	are	supposed	to	be
heard.	The	Listener	represents	were	the	microphone	is	set	in	a	3D	audio	scene	to	receive
the	sounds.	There	is	only	one	listener.	Thus,	it’s	often	said	that	audio	rendering	is	done	form

Audio

285
www.dbooks.org

https://www.openal.org
https://en.wikipedia.org/wiki/Doppler_effect
https://www.dbooks.org/

the	listener’s	perspective.	A	listener	shares	some	the	attributes	but	it	has	some	additional
ones	such	as	the	orientation.	The	orientation	represents	where	the	listener	is	facing.

So	an	audio	3D	scene	is	composed	by	a	set	of	sound	sources	which	emit	sound	and	a
listener	that	receives	them.	The	final	perceived	sound	will	depend	on	the	distance	of	the
listener	to	the	different	sources,	their	relative	speed	and	the	selected	propagation	models.
Sources	can	share	buffers	and	play	the	same	data.	The	following	figure	depicts	a	sample	3D
scene	with	the	different	element	types	involved.

So,	let's	start	coding,	we	will	create	a	new	package	under	the	name
	org.lwjglb.engine.sound		that	will	host	all	the	classes	responsible	for	handling	audio.	We	will
first	start	with	a	class,	named		SoundBuffer		that	will	represent	an	OpenAL	buffer.	A	fragment
of	the	definition	of	that	class	is	shown	below.

Audio

286

package	org.lwjglb.engine.sound;

//	...	Some	inports	here

public	class	SoundBuffer	{

				private	final	int	bufferId;

				public	SoundBuffer(String	file)	throws	Exception	{

								this.bufferId	=	alGenBuffers();

								try	(STBVorbisInfo	info	=	STBVorbisInfo.malloc())	{

												ShortBuffer	pcm	=	readVorbis(file,	32	*	1024,	info);

												//	Copy	to	buffer

												alBufferData(buffer,	info.channels()	==	1	?	AL_FORMAT_MONO16	:	AL_FORMAT_S

TEREO16,	pcm,	info.sample_rate());

								}

				}

				public	int	getBufferId()	{

								return	this.bufferId;

				}

				public	void	cleanup()	{

								alDeleteBuffers(this.bufferId);

				}

				//

}

The	constructor	of	the	class	expects	a	sound	file	(which	may	be	in	the	classpath	as	the	rest
of	resources)	and	creates	a	new	buffer	from	it.	The	first	thing	that	we	do	is	create	an
OpenAL	buffer	with	the	call	to		alGenBuffers	.	At	the	end	our	sound	buffer	will	be	identified	by
an	integer	which	is	like	a	pointer	to	the	data	it	holds.	Once	the	buffer	has	been	created	we
dump	the	audio	data	in	it.	The	constructor	expects	a	file	in	OGG	format,	so	we	need	to
transform	it	to	PCM	format.	You	can	check	how	that's	done	in	te	source	code,	anyway,	the
source	code	has	been	extracted	from	the	LWJGL	OpenAL	tests.

Previous	versions	of	LWJGL	had	a	helper	class	named		WaveData	which	was	used	to	load
audio	files	in	WAV	format.	This	class	is	no	longer	present	in	LWJGL	3.	Nevertheless,	you
may	get	the	source	code	from	that	class	and	use	it	in	your	games	(maybe	without	requiring
any	changes).

The		SoundBuffer		class	also	provides	a		cleanup		method	to	free	the	resources	when	we	are
done	with	it.

Let's	continue	by	modelling	an	OpenAl,	which	will	be	implemented	by	class	named
	SounSource	.	The	class	is	defined	below.

Audio

287
www.dbooks.org

https://www.dbooks.org/

package	org.lwjglb.engine.sound;

import	org.joml.Vector3f;

import	static	org.lwjgl.openal.AL10.*;

public	class	SoundSource	{

				private	final	int	sourceId;

				public	SoundSource(boolean	loop,	boolean	relative)	{

								this.sourceId	=	alGenSources();

								if	(loop)	{

												alSourcei(sourceId,	AL_LOOPING,	AL_TRUE);

								}

								if	(relative)	{

												alSourcei(sourceId,	AL_SOURCE_RELATIVE,	AL_TRUE);

								}

				}

				public	void	setBuffer(int	bufferId)	{

								stop();

								alSourcei(sourceId,	AL_BUFFER,	bufferId);

				}

				public	void	setPosition(Vector3f	position)	{

								alSource3f(sourceId,	AL_POSITION,	position.x,	position.y,	position.z);

				}

				public	void	setSpeed(Vector3f	speed)	{

								alSource3f(sourceId,	AL_VELOCITY,	speed.x,	speed.y,	speed.z);

				}

				public	void	setGain(float	gain)	{

								alSourcef(sourceId,	AL_GAIN,	gain);

				}

				public	void	setProperty(int	param,	float	value)	{

								alSourcef(sourceId,	param,	value);

				}

				public	void	play()	{

								alSourcePlay(sourceId);

				}

				public	boolean	isPlaying()	{

								return	alGetSourcei(sourceId,	AL_SOURCE_STATE)	==	AL_PLAYING;

				}

				public	void	pause()	{

								alSourcePause(sourceId);

				}

Audio

288

				public	void	stop()	{

								alSourceStop(sourceId);

				}

				public	void	cleanup()	{

								stop();

								alDeleteSources(sourceId);

				}

}

The	sound	source	class	provides	some	methods	to	setup	its	position,	the	gain,	and	control
methods	for	playing	stopping	and	pausing	it.	Keep	in	mind	that	sound	control	actions	are
made	over	a	source	(not	over	the	buffer),	remember	that	several	sources	can	share	the
same	buffer.	As	in	the		SoundBuffer		class,	a		SoundSource		is	identified	by	an	identifier,	which
is	used	in	each	operation.	This	class	also	provides	a		cleanup		method	to	free	the	reserved
resources.	But	let’s	examine	the	constructor.	The	first	thing	that	we	do	is	to	create	the
source	with	the		alGenSources		call.	Then,	we	set	up	some	interesting	properties	using	the
constructor	parameters.

The	first	parameter,		loop	,	indicates	if	the	sound	to	be	played	should	be	in	loop	mode	or
not.	By	default,	when	a	play	action	is	invoked	over	a	source	the	playing	stops	when	the
audio	data	is	consumed.	This	is	fine	for	some	sounds,	but	some	others,	like	background
music,	need	to	be	played	over	and	over	again.	Instead	of	manually	controlling	when	the
audio	has	stopped	and	re-launch	the	play	process,	we	just	simply	set	the	looping	property	to
true:	“	alSourcei(sourceId,	AL_LOOPING,	AL_TRUE);	”.

The	other	parameter,		relative	,	controls	if	the	position	of	the	source	is	relative	to	the
listener	or	not.	In	this	case,	when	we	set	the	position	for	a	source,	we	basically	are	defining
the	distance	(with	a	vector)	to	the	listener,	not	the	position	in	the	OpenAL	3D	scene,	not	the
world	position.	This	activated	by	the	“	alSourcei(sourceId,	AL_SOURCE_RELATIVE,	AL_TRUE);”	
call.	But,	What	can	we	use	this	for?	This	property	is	interesting	for	instance	for	background
sounds	that	should	be	affected	(attenuated)	by	the	distance	to	the	listener.	Think,	for
instance,	in	background	music	or	sound	effects	related	to	player	controls.	If	we	set	these
sources	as	relative,	and	set	their	position	to	(0, 0, 0)	they	will	not	be	attenuated.

Now	it’s	turn	for	the	listener	which,	surprise,	is	modelled	by	a	class	named		SoundListener	.
Here’s	the	definition	for	that	class.

Audio

289
www.dbooks.org

https://www.dbooks.org/

package	org.lwjglb.engine.sound;

import	org.joml.Vector3f;

import	static	org.lwjgl.openal.AL10.*;

public	class	SoundListener	{

				public	SoundListener()	{

								this(new	Vector3f(0,	0,	0));

				}

				public	SoundListener(Vector3f	position)	{

								alListener3f(AL_POSITION,	position.x,	position.y,	position.z);

								alListener3f(AL_VELOCITY,	0,	0,	0);

				}

				public	void	setSpeed(Vector3f	speed)	{

								alListener3f(AL_VELOCITY,	speed.x,	speed.y,	speed.z);

				}

				public	void	setPosition(Vector3f	position)	{

								alListener3f(AL_POSITION,	position.x,	position.y,	position.z);

				}

				public	void	setOrientation(Vector3f	at,	Vector3f	up)	{

								float[]	data	=	new	float[6];

								data[0]	=	at.x;

								data[1]	=	at.y;

								data[2]	=	at.z;

								data[3]	=	up.x;

								data[4]	=	up.y;

								data[5]	=	up.z;

								alListenerfv(AL_ORIENTATION,	data);

				}

}

A	difference	you	will	notice	from	the	previous	classes	is	that	there’s	no	need	to	create	a
listener.	There	will	always	be	one	listener,	so	no	need	to	create	one,	it’s	already	there	for	us.
Thus,	in	the	constructor	we	just	simply	set	its	initial	position.	For	the	same	reason	there’s	no
need	for	a		cleanup		method.	The	class	has	methods	also	for	setting	listener	position	and
velocity,	as	in	the		SoundSource		class,	but	we	have	an	extra	method	for	changing	the	listener
orientation.	Let’s	review	what	orientation	is	all	about.	Listener	orientation	is	defined	by	two
vectors,	“at”	vector	and	“up”	one,	which	are	shown	in	the	next	figure.

Audio

290

The	“at”	vector	basically	points	where	the	listener	is	facing,	by	default	its	coordinates	are	
(0, 0,−1).	The	“up”	vector	determines	which	direction	is	up	for	the	listener	and,	by	default	it
points	to	(0, 1, 0).	So	the	tree	components	of	each	of	those	two	vectors	are	what	are	set	in
the		alListenerfv		method	call.	This	method	is	used	to	transfer	a	set	of	floats	(a	variable
number	of	floats)	to	a	property,	in	this	case,	the	orientation.

Before	continuing	it's	necessary	to	stress	out	some	concepts	in	relation	to	source	and
listener	speeds.	The	relative	speed	between	sources	and	listener	will	cause	OpenAL	to
simulate	Doppler	effect.	In	case	you	don’t	know,	Doppler	effect	is	what	causes	that	a	moving
object	that	is	getting	closer	to	you	seems	to	emit	in	a	higher	frequency	than	it	seems	to	emit
when	is	walking	away.	The	thing,	is	that,	simply	by	setting	a	source	or	listener	velocity,
OpenAL	will	not	update	their	position	for	you.	It	will	use	the	relative	velocity	to	calculate	the
Doppler	effect,	but	the	positions	won’t	be	modified.	So,	if	you	want	to	simulate	a	moving
source	or	listener	you	must	take	care	of	updating	their	positions	in	the	game	loop.

Now	that	we	have	modelled	the	key	elements	we	can	set	them	up	to	work,	we	need	to
initialize	OpenAL	library,	so	we	will	create	a	new	class	named		SoundManager		that	will	handle
this.	Here’s	a	fragment	of	the	definition	of	this	class.

Audio

291
www.dbooks.org

https://www.dbooks.org/

package	org.lwjglb.engine.sound;

//	Imports	here

public	class	SoundManager	{

				private	long	device;

				private	long	context;

				private	SoundListener	listener;

				private	final	List<SoundBuffer>	soundBufferList;

				private	final	Map<String,	SoundSource>	soundSourceMap;

				private	final	Matrix4f	cameraMatrix;

				public	SoundManager()	{

								soundBufferList	=	new	ArrayList<>();

								soundSourceMap	=	new	HashMap<>();

								cameraMatrix	=	new	Matrix4f();

				}

				public	void	init()	throws	Exception	{

								this.device	=	alcOpenDevice((ByteBuffer)	null);

								if	(device	==	NULL)	{

												throw	new	IllegalStateException("Failed	to	open	the	default	OpenAL	device."

);

								}

								ALCCapabilities	deviceCaps	=	ALC.createCapabilities(device);

								this.context	=	alcCreateContext(device,	(IntBuffer)	null);

								if	(context	==	NULL)	{

												throw	new	IllegalStateException("Failed	to	create	OpenAL	context.");

								}

								alcMakeContextCurrent(context);

								AL.createCapabilities(deviceCaps);

				}

This	class	holds	references	to	the		SoundBuffer		and		SoundSource		instances	to	track	and
later	cleanup	them	properly.	SoundBuffers	are	stored	in	a	List	but	SoundSources	are	stored
in	in	a		Map		so	they	can	be	retrieved	by	a	name.	The		init		method	initializes	the	OpenAL
subsystem:

Opens	the	default	device.
Create	the	capabilities	for	that	device.
Create	a	sound	context,	like	the	OpenGL	one,	and	set	it	as	the	current	one.

Audio

292

The		SoundManager		class	also	has	a	method	to	update	the	listener	orientation	given	a
camera	position.	In	our	case,	the	listener	will	be	placed	whenever	the	camera	is.	So,	given
camera	position	and	rotation	information,	how	do	we	calculate	the	“at”	and	“up”	vectors?	The
answer	is	by	using	the	view	matrix	associated	to	the	camera.	We	need	to	transform	the	“at”	
(0, 0,−1)	and	“up”	(0, 1, 0)	vectors	taking	into	consideration	camera	rotation.	Let
	cameraMatrix		be	the	view	matrix	associated	to	the	camera.	The	code	to	accomplish	that
would	be:

Matrix4f	invCam	=	new	Matrix4f(cameraMatrix).invert();

Vector3f	at	=	new	Vector3f(0,	0,	-1);

invCam.transformDirection(at);

Vector3f	up	=	new	Vector3f(0,	1,	0);

invCam.transformDirection(up);

The	first	thing	that	we	do	is	invert	the	camera	view	matrix.	Why	we	do	this?	Think	about	it
this	way,	the	view	matrix	transforms	from	world	space	coordinates	to	view	space.	What	we
want	is	just	the	opposite,	we	want	to	transform	from	view	space	coordinates	(the	view
matrix)	to	space	coordinates,	which	is	where	the	listener	should	be	positioned.	With
matrices,	the	opposite	usually	means	the	inverse.	Once	we	have	that	matrix	we	just
transform	the	“default”	“at”	and	“up”	vectors	using	that	matrix	to	calculate	the	new	directions.

But,	if	you	check	the	source	code	you	will	see	that	the	implementation	is	slightly	different,
what	we	do	is	this:

Vector3f	at	=	new	Vector3f();

cameraMatrix.positiveZ(at).negate();

Vector3f	up	=	new	Vector3f();

cameraMatrix.positiveY(up);

listener.setOrientation(at,	up);

The	code	above	is	equivalent	to	the	first	approach,	it’s	just	a	more	efficient	approach.	It	uses
a	faster	method,	available	in	JOML	library,	that	just	does	not	need	to	calculate	the	full
inverse	matrix	but	achieves	the	same	results.	This	method	was	provided	by	the	JOML
author	in	a	LWJGL	forum,	so	you	can	check	more	details	there.	If	you	check	the	source	code
you	will	see	that	the		SoundManager		class	calculates	its	own	copy	of	the	view	matrix.	This	is
already	done	in	the		Renderer		class.	In	order	to	keep	the	code	simple,	and	to	avoid
refactoring,	I’ve	preferred	to	keep	this	that	way.

And	that’s	all.	We	have	all	the	infrastructure	we	need	in	order	to	play	sounds.	You	can	check
in	the	source	code	how	all	the	pieces	are	used.	You	can	see	how	music	is	played	and	the
different	effects	sound	(These	files	were	obtained	from	Freesound,	proper	credits	are	in	a

Audio

293
www.dbooks.org

https://github.com/JOML-CI/JOML
https://github.com/httpdigest
http://forum.lwjgl.org/index.php?topic=6080.0
https://www.freesound.org/
https://www.dbooks.org/

file	name	CREDITS.txt).	If	you	get	some	other	files,	you	may	notice	that	sound	attenuation
with	distance	or	listener	orientation	will	not	work.	Please	check	that	the	files	are	in	mono,	not
in	stereo.	OpenAL	can	only	perform	those	computations	with	mono	sounds.

A	final	note.	OpenAL	also	allows	you	to	change	the	attenuation	model	by	using	the
alDistanceModel	and	passing	the	model	you	want
('``AL11.AL_EXPONENT_DISTANCE	,	AL_EXPONENT_DISTANCE_CLAMP```,	etc.).	You
can	play	with	them	and	check	the	results.

Audio

294

3D	Object	Picking

Camera	Selection
One	of	the	key	aspects	of	every	game	is	the	ability	to	interact	with	the	environment.	This
capability	requires	to	be	able	to	select	objects	in	the	3D	scene.	In	this	chapter	we	will
explore	how	this	can	be	achieved.

But,	before	we	start	talking	about	the	steps	to	be	performed	to	select	objects,	we	need	a	way
to	represent	selected	objects.	Thus,	the	first	thing	that	we	must	do,	is	add	another	attribute
to	the	GameItem	class,	which	will	allow	us	to	tag	selected	objects:

	private	boolean	selected;	

Then,	we	need	to	be	able	to	use	that	value	in	the	scene	shaders.	Let’s	start	with	the
fragment	shader	(scene_fragment.fs).	In	this	case,	we	will	assume	that	we	will	receive	a
flag,	from	the	vertex	shader,	that	will	determine	if	the	fragment	to	be	rendered	belongs	to	a
selected	object	or	not.

	in	float	outSelected;	

Then,	at	the	end	of	the	fragment	shader,	we	will	modify	the	final	fragment	colour,	by	setting
the	blue	component	to	1	if	it’s	selected.

if	(outSelected	>	0)	{

				fragColor	=	vec4(fragColor.x,	fragColor.y,	1,	1);

}

Then,	we	need	to	be	able	to	set	that	value	for	each	.	If	you	recall	from	previous	chapters	we
have	two	scenarios:

Rendering	of	non	instanced	meshes.
Rendering	of	instanced	meshes.

In	the	first	case,	the	data	for	each		GameItem		is	passed	through	uniforms,	so	we	just	need	to
add	a	new	uniform	for	that	in	the	vertex	shader.	In	the	second	case,	we	need	to	create	a
new	instanced	attribute.	You	can	see	bellow	the	additions	that	need	to	be	integrated	into	the
vertex	shader	for	both	cases.

3D	Object	picking

295
www.dbooks.org

https://www.dbooks.org/

layout	(location=14)	in	float	selectedInstanced;

...

uniform	float	selectedNonInstanced;

...

				if	(isInstanced	>	0)

				{

								outSelected	=	selectedInstanced;

...

				}

				else

				{

				outSelected	=	selectedNonInstanced;

...

Now	that	the	infrastructure	has	been	set-up	we	just	need	to	define	how	objects	will	be
selected.	Before	we	continue	you	may	notice,	if	you	look	at	the	source	code,	that	the	View
matrix	is	now	stored	in	the		Camera		class.	This	is	due	to	the	fact	that	we	werrecalculating	the
view	matrix	sin	several	classes	in	the	source	code.	Previously,	it	was	stored	in	the
	Transformation		and	in	the		SoundManager		classes.	In	order	to	calculate	intersections	we
would	need	to	cerate	another	replica.	Instead	of	that,	we	centralize	that	in	the		Camera		class.
This	change	also,	requires	that	the	view	matrix	is	updated	in	our	main	game	loop.

Let’s	continue	with	the	picking	discussion.	In	this	sample,	we	will	follow	a	simple	approach,
selection	will	be	done	automatically	using	the	camera.	The	closest	object	to	where	the
camera	is	facing	will	be	selected.	Let’s	discuss	how	this	can	be	done.

The	following	picture	depicts	the	situation	we	need	to	solve.

3D	Object	picking

296

We	have	the	camera,	placed	in	some	coordinates	in	world-space,	facing	a	specific	direction.
Any	object	that	intersects	with	a	ray	cast	from	camera’s	position	following	camera’s	forward
direction	will	be	a	candidate.	Between	all	the	candidates	we	just	need	to	chose	the	closest
one.

In	our	sample,	game	items	are	cubes,	so	we	need	to	calculate	the	intersection	of	the
camera’s	forward	vector	with	cubes.	It	may	seem	to	be	a	very	specific	case,	but	indeed	is
very	frequent.	In	many	games,	the	game	items	have	associated	what’s	called	a	bounding
box.	A	bounding	box	is	a	rectangle	box,	that	contains	all	the	vertices	for	that	object.	This
bounding	box	is	used	also,	for	instance,	for	collision	detection.	In	fact,	in	the	animation
chapter,	you	saw	that	each	animation	frame	defined	a	bounding	box,	that	helps	to	set	the
boundaries	at	any	given	time.

So,	let’s	start	coding.	We	will	create	a	new	class	named	 	̀ 		CameraBoxSelectionDetector	,
which	will	have	a	method	named	selectGameItem```	which	will	receive	a	list	of	game	items
and	a	reference	to	the	camera.	The	method	is	defined	like	this.

public	void	selectGameItem(GameItem[]	gameItems,	Camera	camera)	{

				GameItem	selectedGameItem	=	null;

				float	closestDistance	=	Float.POSITIVE_INFINITY;

				dir	=	camera.getViewMatrix().positiveZ(dir).negate();

				for	(GameItem	gameItem	:	gameItems)	{

								gameItem.setSelected(false);

								min.set(gameItem.getPosition());

								max.set(gameItem.getPosition());

								min.add(-gameItem.getScale(),	-gameItem.getScale(),	-gameItem.getScale());

								max.add(gameItem.getScale(),	gameItem.getScale(),	gameItem.getScale());

								if	(Intersectionf.intersectRayAab(camera.getPosition(),	dir,	min,	max,	nearFar

)	&&	nearFar.x	<	closestDistance)	{

												closestDistance	=	nearFar.x;

												selectedGameItem	=	gameItem;

								}

				}

				if	(selectedGameItem	!=	null)	{

								selectedGameItem.setSelected(true);

				}

}

The	method,	iterates	over	the	game	items	trying	to	get	the	ones	that	interesect	with	the	ray
cast	form	the	camera.	It	first	defines	a	variable	named		closestDistance	.	This	variable	will
hold	the	closest	distance.	For	game	items	that	intersect,	the	distance	from	the	camera	to	the
intersection	point	will	be	calculated,	If	it’s	lower	than	the	value	stored	in		closestDistance	,
then	this	item	will	be	the	new	candidate.

3D	Object	picking

297
www.dbooks.org

https://www.dbooks.org/

Before	entering	into	the	loop,	we	need	to	get	the	direction	vector	that	points	where	the
camera	is	facing.	This	is	easy,	just	use	the	view	matrix	to	get	the	z	direction	taking	into
consideration	camera’s	rotation.	Remember	that	positive	z	points	out	of	the	screen,	so	we
need	the	opposite	direction	vector,	this	is	why	we	negate	it.

In	the	game	loop	intersection	calculations	are	done	per	each		GameItem	.	But,	how	do	we	do
this?	This	is	where	the	glorious	JOML	library	comes	to	the	rescue.	We	are	using	JOML’s
	Intersectionf		class,	which	provides	several	methods	to	calculate	intersections	in	2D	and
3D.	Specifically,	we	are	using	the		intersectRayAab		method.

This	method	implements	the	algorithm	that	test	intersection	for	Axis	Aligned	Boxes.	You	can
check	the	details,	as	pointed	out	in	the	JOML	documentation,	here.

The	method	tests	if	a	ray,	defined	by	an	origin	and	a	direction,	intersects	a	box,	defined	by
minimum	and	maximum	corner.	This	algorithm	is	valid,	because	our	cubes,	are	aligned	with
the	axis,	if	they	were	rotated,	this	method	would	not	work.	Thus,	the	method	receives	the
following	parameters:

An	origin:	In	our	case,	this	will	be	our	camera	position.
A	direction:	This	is	where	the	camera	is	facing,	the	forward	vector.
The	minimum	corner	of	the	box.	In	our	case,	the	cubes	are	centered	around	the
GameItem	position,	the	minimum	corner	will	be	those	coordinates	minus	the	scale.	(In
its	original	size,	cubes	have	a	length	of	2	and	a	sacle	of	1).
The	maximum	corner.	Self	explanatory.
A	result	vector.	This	will	contain	the	near	and	far	distances	of	the	intersection	points.

The	method	will	return	true	if	there	is	an	intersection.	If	true,	we	check	the	closes	distance
and	update	it	if	needed,	and	store	a	reference	of	the	candidate	selected		GameItem	.	The	next
figure	shows	all	the	elements	involved	in	this	method.

3D	Object	picking

298

https://github.com/JOML-CI/JOML
https://github.com/JOML-CI/JOML
http://people.csail.mit.edu/amy/papers/box-jgt.pdf

Once	the	loop	has	finished,	the	candidate		GameItem		is	marked	as	selected.

And	that’s,	all.	The		selectGameItem		will	be	invoked	in	the	update	method	of	the
DummyGame	class,	along	with	the	view	matrix	update.

//	Update	view	matrix

camera.updateViewMatrix();

//	Update	sound	listener	position;

soundMgr.updateListenerPosition(camera);

this.selectDetector.selectGameItem(gameItems,	camera);

Besides	that,	a	cross-hair	has	been	added	to	the	rendering	process	to	check	that	everything
is	working	properly.	The	result	is	shown	in	the	next	figure.

3D	Object	picking

299
www.dbooks.org

https://www.dbooks.org/

Obviously,	the	method	presented	here	is	far	from	optimal	but	it	will	give	you	the	basics	to
develop	more	sophisticated	methods	on	your	own.	Some	parts	of	the	scene	could	be	easily
discarded,	like	objects	behind	the	camera,	since	they	are	not	going	to	be	intersected.
Besides	that,	you	may	want	to	order	your	items	according	to	the	distance	to	the	camera	to
speed	up	calculations.	In	addition	to	that,	calculations	only	need	to	be	done	if	the	camera
has	moved	or.	rotated	from	previous	update.

Mouse	Selection
Object	picking	with	the	camera	is	great,	but	what	if	we	want	to	be	able	to	freely	select
objects	with	the	mouse?	In	this	case,	we	want	that,	whenever	the	user	clicks	on	the	screen,
the	closest	object	is	automatically	selected.

The	way	to	achieve	this	is	similar	to	the	method	described	above.	In	the	previous	method	we
had	the	camera	position	and	generated	rays	from	it	using	the	“forward”	direction	according
to	camera’s	current	orientation.	In	this	case,	we	still	need	to	cast	rays,	but	the	direction
points	to	a	point	far	away	from	the	camera,	where	the	click	has	been	made.	In	this	case,	we
need	to	calculate	that	direction	vector	using	the	click	coordinates.

But,	how	do	we	pass	from	a	(x, y)	coordinates	in	viewport	space	to	world	space?	Let’s
review	how	we	pass	from	model	space	coordinates	to	view	space.	The	different	coordinate
transformations	that	are	applied	in	order	to	achieve	that	are:

We	pass	from	model	coordinates	to	world	coordinates	using	the	model	matrix.

3D	Object	picking

300

We	pass	from	world	coordinates	to	view	space	coordinates	using	the	view	matrix	(that
provides	the	camera	effect)-
We	pass	from	view	coordinates	to	homogeneous	clip	space	by	applying	the	perspective
projection	matrix.
Final	screen	coordinates	are	calculate	automatically	by	OpenGL	for	us.	Before	doint
that,	it	passes	to	normalized	device	space	(by	dividing	the	x, y, z	coordinates	by	the	w
component)	and	then	to	x, y	screen	coordinates.

So	we	need	just	to	perform	the	traverse	the	inevrse	path	to	get	from	screen	coordinates	
(x, y),	to	world	coordinates.

The	first	step	is	to	transform	from	screen	coordinates	to	normalized	device	space.	The	(x, y)
coordinates	in	the	view	port	space	are	in	the	range	[0, screenwith]	[0, screenheight].	The
upper	left	corner	of	the	screen	has	a	value	of	[0, 0].	We	need	to	transform	that	into
coordinates	in	the	range	[−1, 1].

The	maths	are	simple:

x = 2 ⋅ screen /screenwidth− 1

y = 1 − 2 ∗ screen /screenheight

But,	how	do	we	calculate	the	z	coordinate?	The	answer	is	simple,	we	simply	assign	it	the	−1
value,	so	that	the	ray	points	to	the	farthest	visible	distance	(Remember	that	in	OpenGL,	−1
points	to	the	screen).	Now	we	have	the	coordinates	in	normalised	device	space.

In	order	to	continue	with	the	transformations	we	need	to	convert	them	to	the	homogeneous
clip	space.	We	need	to	have	the	w	component,	that	is	use	homogeneous	coordinates.
Although	this	concept	was	presented	in	the	previous	chapters,	let’s	get	back	to	it.	In	order	to

x

y

3D	Object	picking

301
www.dbooks.org

https://www.dbooks.org/

represent	a	3D	point	we	just	need	the	x, y	and	z	coordinates,	but	we	are	continuously
working	with	an	additional	coordinate,	the	w	component.	We	need	this	extra	component	in
order	to	use	matrices	to	perform	the	different	transformations.	Some	transformations	do	not
need	that	extra	component	but	other	do.	For	instance,	the	translation	matrix	does	not	work	if
we	only	have	x, y	and	z	components.	Thus,	we	have	added	the	w	component	and	assigned
them	a	value	of	1	so	we	can	work	with	4	by	4	matrices.

Besides	that,	most	of	transformations,	or	to	be	more	precise,	most	of	the	transformation
matrices	do	not	alter	the	w	component.	An	exception	to	this	is	the	projection	matrix.	This
matrix	changes	the	w	value	to	be	proportional	to	the	z	component.

Transforming	from	homogeneous	clip	space	to	normalized	device	coordinates	is	achieved
by	dividing	the	x,	y	and	z	coordinates	by	w.	As	this	component	is	proportional	to	the	z
component,	this	implies	that	distant	objects	are	drawn	smaller.	In	our	case	we	need	to	do	the
reverse,	we	need	to	unproject,	but	since	what	we	are	calculating	it’s	a	ray	we	just	simply	can
ignore	that	step,	we	just	set	the	w	component	to	1	and	leave	the	rest	of	the	components	with
their	original	value.

Now	we	need	to	go	back	yo	view	space.	This	is	easy,	we	just	need	to	calculate	the	inverse
of	the	projection	matrix	and	multiply	it	by	our	4	components	vector.	Once	we	have	done	that,
we	need	to	transform	them	to	world	space.	Again,	we	just	need	to	use	the	view	matrix,
calculate	it’s	inverse	and	multiply	it	by	our	vector.

Remember	that	we	are	only	interested	in	directions,	so,	in	this	case	we	set	the	w	component
to	0.	Also	we	can	set	the	z	component	again	to	−1,	since	we	want	it	to	point	towards	the
screen.	Once	we	have	done	that	and	applied	the	inverse	view	matrix	we	have	our	vector	in
world	space.	We	have	our	ray	calculated	and	can	apply	the	same	algorithm	as	in	the	case	of
the	camera	picking.

We	have	created	a	new	class	named		MouseBoxSelectionDetector	that	implements	the	setps
described	above.	Besides	that,	we	have	moved	the	projection	matrix	to	the		Window	class	so
we	can	use	them	in	several	places	of	the	source	code	and	refactroed	a	little	bit	the
	CameraBoxSelectionDetector	so	the		MouseBoxSelectionDetector	can	inheit	from	it	and	use	the
collision	detection	method.	You	can	check	the	source	code	directly,	since	the	implemenattion
it’s	very	simple.

The	result	now	looks	like	this.

3D	Object	picking

302

You	just	need	to	click	over	the	block	with	the	mouse	left	button	to	perform	the	selection.

In	any	case,	if	you	can	consult	the	details	behind	the	steps	explained	here	in	an	excellent
article	with	very	detailed	sketechs	of	the	different	steps	involved.

3D	Object	picking

303
www.dbooks.org

https://capnramses.github.io//opengl/raycasting.html
https://www.dbooks.org/

HUD	Revisited	-	NanoVG
In	previous	chapters	we	explained	how	a	HUD	can	be	created	renderings	shapes	and
textures	over	the	top	of	the	scene	using	an	orthographic	projection.	In	this	chapter	we	will
learn	how	to	use	the	NanoVG	library	to	be	able	to	render	antialiased	vector	graphics	to
construct	more	complex	HUDs	in	an	easy	way.

There	are	many	other	libraries	out	there	that	you	can	use	to	accomplish	this	task,	such	as
Nifty	GUI,	Nuklear,	etc.	In	this	chapter	we	will	focus	on	Nanovg	since	it’s	very	simple	to	use,
but	if	you’re	looking	for	developing	complex	GUI	interactions	with	buttons,	menus	and
windows	you	should	probably	look	for	Nifty	GUI.

The	first	step	in	order	to	start	using	NanoVG	is	adding	the	dependences	in	the		pom.xml		file
(one	for	the	dependencies	required	at	compile	time	and	the	other	one	for	the	natives
required	at	runtime).

...

<dependency>

				<groupId>org.lwjgl</groupId>

				<artifactId>lwjgl-nanovg</artifactId>

				<version>${lwjgl.version}</version>

</dependency>

...

<dependency>

				<groupId>org.lwjgl</groupId>

				<artifactId>lwjgl-nanovg</artifactId>

				<version>${lwjgl.version}</version>

				<classifier>${native.target}</classifier>

				<scope>runtime</scope>

</dependency>

Before	we	start	using	NanoVG	we	must	set	up	some	things	in	the	OpenGL	side	so	the
samples	can	work	correctly.	We	need	to	enable	support	for	stencil	buffer	test.	Until	now	we
have	talked	about	colour	and	depth	buffers,	but	we	have	not	mentioned	the	stencil	buffer.
This	buffer	stores	a	value	(an	integer)	for	every	pixel	which	is	used	to	control	which	pixels
should	be	drawn.	This	buffer	is	used	to	mask	or	discard	drawing	areas	according	to	the
values	it	stores.	It	can	be	used,	for	instance,	to	cut	out	some	parts	of	the	scene	in	an	easy
way.	We	enable	stencil	buffer	test	by	adding	this	line	to	the		Window		class	(after	we	enable
depth	testing):

glEnable(GL_STENCIL_TEST);

Hud	revisited	-	NanoVG

304

https://github.com/memononen/nanovg
https://github.com/nifty-gui/nifty-gui
https://github.com/vurtun/nuklear
https://github.com/nifty-gui/nifty-gui
https://github.com/memononen/nanovg
https://github.com/memononen/nanovg

Since	we	are	using	another	buffer	we	must	take	care	also	of	removing	its	values	before	each
render	call.	Thus,	we	need	to	modify	the	clear	method	of	the		Renderer		class:

public	void	clear()	{

				glClear(GL_COLOR_BUFFER_BIT	|	GL_DEPTH_BUFFER_BIT	|	GL_STENCIL_BUFFER_BIT);

}

We	will	also	add	a	new	window	option	for	activating	antialiasing.	Thus,	in	the	Window	class
we	will	enable	it	by	this	way:

if	(opts.antialiasing)	{

				glfwWindowHint(GLFW_SAMPLES,	4);

}

Now	we	are	ready	to	use	the	NanoVG	library.	The	firs	thing	that	we	will	do	is	get	rid	off	the
HUD	artefacts	we	have	created,	that	is	the	shaders	the		IHud		interface,	the	hud	rendering
methods	in	the		Renderer		class,	etc.	Yo	can	check	this	out	in	the	source	code.

In	this	case,	the	new		Hud		class	will	take	care	of	its	rendering,	so	we	do	not	need	to
delegate	it	to	the		Renderer		class.	Let’s	tart	by	defining	that	class,	It	will	have	an		init	
method	that	sets	up	the	library	and	the	resources	needed	to	build	the	HUD.	The	method	is
defined	like	this:

public	void	init(Window	window)	throws	Exception	{

				this.vg	=	window.getOptions().antialiasing	?	nvgCreate(NVG_ANTIALIAS	|	NVG_STENCIL

_STROKES)	:	nvgCreate(NVG_STENCIL_STROKES);

				if	(this.vg	==	NULL)	{

								throw	new	Exception("Could	not	init	nanovg");

				}

				fontBuffer	=	Utils.ioResourceToByteBuffer("/fonts/OpenSans-Bold.ttf",	150	*	1024);

				int	font	=	nvgCreateFontMem(vg,	FONT_NAME,	fontBuffer,	0);

				if	(font	==	-1)	{

								throw	new	Exception("Could	not	add	font");

				}

				colour	=	NVGColor.create();

				posx	=	MemoryUtil.memAllocDouble(1);

				posy	=	MemoryUtil.memAllocDouble(1);

				counter	=	0;

}

Hud	revisited	-	NanoVG

305
www.dbooks.org

https://github.com/memononen/nanovg
https://www.dbooks.org/

The	first	thing	we	do	is	create	a	NanoVG	context.	In	this	case	we	are	using	an	OpenGL	3.0
backend	since	we	are	referring	to	the		org.lwjgl.nanovg.NanoVGGL3		namespace.	If
antialiasing	is	activated	we	set	up	the	flag		NVG_ANTIALIAS	.

Next,	we	create	a	font	by	using	a	True	Type	font	previously	loaded	into	a		ByteBuffer	.	We
assign	it	a	name	so	we	can	later	on	use	it	while	rendering	text.	One	important	thing	about
this	is	that	the		ByteBuffer		used	to	load	the	font	must	be	kept	in	memory	while	the	font	is
used.	That	is,	it	cannot	be	garbage	collected,	otherwise	you	will	get	a	nice	core	dump.	This
is	why	it	is	stored	as	a	class	attribute.

Then,	we	create	a	colour	instance	and	some	helpful	variables	that	will	be	used	while
rendering.	That	method	is	called	in	the	game	init	method,	just	before	the	rendered	is
initialized:

@Override

public	void	init(Window	window)	throws	Exception	{

				hud.init(window);

				renderer.init(window);

				...

The		Hud		class	also	defines	a	render	method,	which	should	be	called	after	the	scene	has
been	rendered	so	the	HUD	is	drawn	on	top	of	it.

@Override

public	void	render(Window	window)	{

				renderer.render(window,	camera,	scene);

				hud.render(window);

}

The		render		method	of	the	Hud	class	starts	like	this:

public	void	render(Window	window)	{

				nvgBeginFrame(vg,	window.getWidth(),	window.getHeight(),	1);

The	first	thing	that	we	must	do	is	call	the		nvgBeginFrame``	method.	All	the	NanoVG	rendering
operations	must	be	enclosed	between	a	nvgBeginFrame	and	nvgEndFrame	calls.
The	nvgBeginFrame```	accepts	the	following	parameters:

The	NanoVG	context.
The	size	of	the	window	to	render	(width	an	height).
The	pixel	ratio.	If	you	need	to	support	Hi-DPI	you	can	change	this	value.	For	this	sample
we	just	set	it	to	1.

Hud	revisited	-	NanoVG

306

Then	we	create	several	ribbons	that	occupy	the	whole	screen	with.	The	first	one	is	drawn
like	this:

//	Upper	ribbon

nvgBeginPath(vg);

nvgRect(vg,	0,	window.getHeight()	-	100,	window.getWidth(),	50);

nvgFillColor(vg,	rgba(0x23,	0xa1,	0xf1,	200,	colour));

nvgFill(vg);

While	rendering	a	shape,	the	first	method	that	shall	be	invoked	is		nvgBeginPath	,	that
instructs	NanoVG	to	start	drawing	a	new	shape.	Then	we	define	what	to	draw,	a	rect,	the	fill
colour	and	by	invoking	the		nvgFill		we	draw	it.

You	can	check	the	rest	of	the	source	code	to	see	how	the	rest	of	the	shapes	are	drawn.
When	rendering	text	is	not	necessary	to	call	nvgBeginPath	before	rendering	it.

After	we	have	finished	drawing	all	the	shapes,	we	just	call	the		nvgEndFrame		to	end
rendering,	but	there’s	one	important	thing	to	be	done	before	leaving	the	method.	We	must
restore	the	OpenGL	state.	NanoVG	modifies	OpenGL	state	in	order	to	perform	their
operations,	if	the	state	is	not	correctly	restored	you	may	see	that	the	scene	is	not	correctly
rendered	or	even	that	it's	been	wiped	out.	Thus,	we	need	to	restore	the	relevant	OpenGL
status	that	we	need	for	our	rendering.	This	is	delegated	in	the		Window	class:

//	Restore	state

window.restoreState();

The	method	is	defined	like	this:

public	void	restoreState()	{

				glEnable(GL_DEPTH_TEST);

				glEnable(GL_STENCIL_TEST);

				glBlendFunc(GL_SRC_ALPHA,	GL_ONE_MINUS_SRC_ALPHA);

				if	(opts.cullFace)	{

								glEnable(GL_CULL_FACE);

								glCullFace(GL_BACK);

				}

}

And	that’s	all	(besides	some	additional	methods	to	clear	things	up),	the	code	is	completed.
When	you	execute	the	sample	you	will	get	something	like	this:

Hud	revisited	-	NanoVG

307
www.dbooks.org

https://www.dbooks.org/

Hud	revisited	-	NanoVG

308

Optimizations	-	Frustum	Culling	(I)
At	this	moment	we	are	using	many	different	graphic	effects,	such	as	lights,	particles,	etc.	In
addition	to	that,	we	have	learned	how	to	instanced	rendering	to	reduce	the	overhead	of
drawing	many	similar	objects.	However,	we	still	have	plenty	of	room	for	applying	simple
optimization	techniques	that	will	increase	the	Frames	Per	Second	(FPS)	that	we	can
achieve.

You	may	have	wondered	why	are	we	drawing	the	whole	list	of	GameItems	every	frame	even
if	some	of	them	will	not	be	visible	(because	they	are	behind	the	camera	or	too	far	away).	You
may	even	think	that	this	is	handled	automatically	handled	by	OpenGL,	and	some	way	you
are	true.	OpenGL	will	discard	the	rendering	of	vertices	that	fall	off	the	visible	area.	This
called	clipping.	The	issue	with	clipping	is	that	it’s	done	per	vertex,	after	the	vertex	shader
has	been	executed.	Hence,	even	this	operation	saves	resources,	we	can	be	more	efficient
by	not	trying	to	render	objects	that	will	not	be	visible.	We	would	not	be	wasting	resources	by
sending	the	data	to	the	GPU	and	by	performing	transformations	for	every	vertex	that	is	part
of	those	objects.	We	need	to	remove	the	objects	that	do	are	not	contained	into	the	view
frustum,	that	is,	we	need	to	perform	frustum	culling.

But,	first	let’s	review	what	is	the	view	frustum.	The	view	frustum	is	a	volume	that	contains
every	object	that	may	be	visible	taking	into	consideration	the	camera	position	and	rotation
and	the	projection	that	we	are	using.	Typically,	the	view	frustum	is	a	rectangular	pyramid	like
shown	in	the	next	figure.

Optimizations

309
www.dbooks.org

https://www.dbooks.org/

As	you	can	see,	the	view	frustum	is	defined	by	six	planes,	anything	that	lies	outside	the	view
frustum	will	not	be	rendering.	So,	frustum	culling	is	the	process	of	removing	objects	that	are
outside	the	view	frustum.

Thus,	in	order	to	perform	frustum	culling	we	need	to:

Calculate	frustum	planes	using	the	data	contained	in	the	view	and	projection	matrices.

For	every	GameItem,	check	if	its	contained	inside	that	view	frustum,	that	is,	comatined
between	the	size	frustum	planes,	and	eliminate	the	ones	that	lie	outside	from	the
rendering	process.

So	let’s	start	by	calculating	the	frustum	planes.	A	plane,	is	defined	by	a	point	contained	in	it
and	a	vector	orthogonal	to	that	plane,	as	shown	in	the	next	figure:

The	equation	of	a	plane	is	defined	like	this:

Ax+By + Cz +D = 0

Optimizations

310

Hence,	we	need	to	calculate	the	six	plane	equations	for	the	six	sides	of	our	view	frustum.	In
order	to	to	that	you	basically	have	two	options.	You	can	perform	tedious	calculations	that	will
get	you	the	six	plane	equations,	that	this,	the	four	constants	(A,	B,	C	and	D)	from	the
previous	equation.	The	other	option	is	to	let	JOML	library	to	calculate	this	for	you.	In	this
case,	we	will	chose	the	last	option.

So	let’s	start	coding.	We	will	create	a	new	class	named		FrustumCullingFilter		which	will
perform,	as	its	name	states,	filtering	operations	according	to	the	view	frustum.

public	class	FrustumCullingFilter	{

				private	static	final	int	NUM_PLANES	=	6;

				private	final	Matrix4f	prjViewMatrix;

				private	final	Vector4f[]	frustumPlanes;

				public	FrustumCullingFilter()	{

								prjViewMatrix	=	new	Matrix4f();

								frustumPlanes	=	new	Vector4f[NUM_PLANES];

								for	(int	i	=	0;	i	<	NUM_PLANES;	i++)	{

												frustumPlanes[i]	=	new	Vector4f();

								}

				}

				public	void	updateFrustum(Matrix4f	projMatrix,	Matrix4f	viewMatrix)	{

								//	Calculate	projection	view	matrix

								prjViewMatrix.set(projMatrix);

								prjViewMatrix.mul(viewMatrix);

								//	Get	frustum	planes

								for	(int	i	=	0;	i	<	NUM_PLANES;	i++)	{

												prjViewMatrix.frustumPlane(i,	frustumPlanes[i]);

								}

				}

The		FrustumCullingFilter	class	will	also	have	a	method	to	calculate	the	plane	equations
called		updateFrustum	which	will	be	called	before	rendering.	The	method	is	defined	like	this:

public	void	updateFrustum(Matrix4f	projMatrix,	Matrix4f	viewMatrix)	{

				//	Calculate	projection	view	matrix

				prjViewMatrix.set(projMatrix);

				prjViewMatrix.mul(viewMatrix);

				//	Get	frustum	planes

				for	(int	i	=	0;	i	<	NUM_PLANES;	i++)	{

								prjViewMatrix.frustumPlane(i,	frustumPlanes[i]);

				}

}

Optimizations

311
www.dbooks.org

https://github.com/JOML-CI/JOML
https://www.dbooks.org/

First,	we	store	a	copy	of	the	projection	matrix	and	multiply	it	by	the	view	matrix	to	get	the
projection	view	matrix.	Then,	with	that	transformation	matrix	we	just	simply	need	to	invoke
the		frustumPlane	method	for	each	of	the	frustum	planes.	It’s	important	to	note	that	these
plane	equations	are	expressed	in	world	coordinates,	so	all	the	calculations	need	to	be	done
in	that	space.

Now	that	we	have	all	the	planes	calculated	we	just	need	to	check	if	the		GameItem	instances
are	inside	the	frustum	or	not.	How	can	we	do	this	?	Let’s	first	examine	how	we	can	check	if	a
point	is	inside	the	frustum.	We	can	achieve	that	by	calculating	the	signed	distance	of	the
point	to	each	of	the	planes.	If	the	distance	of	the	point	to	the	plane	is	positive,	this	means
that	the	point	is	in	front	of	the	plane	(according	to	its	normal).	If	it’s	negative,	this	means	that
the	point	is	behind	the	plane.

Therefore,	a	point	will	be	inside	the	view	frustum	if	the	distance	to	all	the	planes	of	the
frustum	is	positive.	The	distance	of	a	point	to	the	plane	is	defined	like	this:

dist = Ax +By + Cz +D,	where	x ,	y 	and	z 	are	the	coordinates	of	the	point.

So,	a	point	is	behind	the	plane	if	Ax +By + Cz +D <= 0.

But,	we	do	not	have	points,	we	have	complex	meshes,	we	cannot	just	use	a	point	to	check	if
an	object	is	inside	a	frustum	or	not.	You	may	think	in	checking	every	vertex	of	the
	GameItem	and	see	if	it’s	inside	the	frustum	or	not.	If	any	of	the	points	is	inside,	the	GameItem
should	be	drawn.	But	this	what	OpenGL	does	in	fact	when	clipping,	this	is	what	we	are	tying
to	avoid.	Remember	that	frustum	culling	benefits	will	be	more	noticeable	the	more	complex
the	meshes	to	be	rendered	are.

We	need	to	enclsoe	evey		GameItem	into	a	simple	volume	that	is	easy	to	check.	Here	we
have	basically	two	options:

0 0 0 0 0 0

0 0 0

Optimizations

312

Bounding	boxes.

Bounding	Spheres.

In	this	case,	we	will	use	spheres,	since	is	the	most	simple	approach.	We	will	enclose	every
	GameItems	into	a	sphere	and	will	check	if	the	sphere	is	inside	the	view	frustum	or	not.	In
order	to	do	that,	we	just	need	the	center	and	the	radius	of	the	sphere.	The	checks	are
almost	equal	to	the	point	case,	except	that	we	need	to	take	the	radius	into	consideration.	A
sphere	will	be	outside	the	frustim	if	it	the	following	condition	is	met:	
dist = Ax0 +By0 + Cz0 <= −radius.

So,	we	will	add	a	new	method	to	the		FrustumCullingFilter	class	to	check	if	a	spphere	is
inside	the	frustum	or	not.	The	method	is	defined	like	this.

public	boolean	insideFrustum(float	x0,	float	y0,	float	z0,	float	boundingRadius)	{

				boolean	result	=	true;

				for	(int	i	=	0;	i	<	NUM_PLANES;	i++)	{

								Vector4f	plane	=	frustumPlanes[i];

								if	(plane.x	*	x0	+	plane.y	*	y0	+	plane.z	*	z0	+	plane.w	<=	-boundingRadius)	{

												result	=	false;	return	result;

								}

				}

				return	result;

}

Then,	we	will	add	method	that	filters	the	GameItems	that	outside	the	view	frustum:

Optimizations

313
www.dbooks.org

https://www.dbooks.org/

public	void	filter(List<GameItem>	gameItems,	float	meshBoundingRadius)	{

				float	boundingRadius;

				Vector3f	pos;

				for	(GameItem	gameItem	:	gameItems)	{

								boundingRadius	=	gameItem.getScale()	*	meshBoundingRadius;

								pos	=	gameItem.getPosition();

								gameItem.setInsideFrustum(insideFrustum(pos.x,	pos.y,	pos.z,	boundingRadius));

				}

}

We	have	added	a	new	attribute,	insideFrustum,	to	the		GameItem	class,	to	track	the	visibility.
As	you	can	see,	the	radius	of	the	bounding	sphere	is	passed	as	parameter	This	is	due	to	the
fact	that	the	bounding	sphere	is	associated	to	the		Mesh	,	it’s	not	a	property	of	the		GameItem	.
But,	remember	that	we	must	operate	in	world	coordinates,	and	the	radios	of	the	bounding
sphere	will	be	in	model	space.	We	will	transform	it	to	world	space	by	applying	the	scale	that
has	been	set	up	for	the		GameItem	,	We	are	assumig	also	that	the	position	of	the		GameItem	is
the	centre	of	the	spehere	(in	world	space	coordinates).

The	last	method,	is	just	a	utility	one,	that	accepts	the	map	of	meshes	and	filters	all	the
	GameItem	instances	contained	in	it.

public	void	filter(Map<?	extends	Mesh,	List<GameItem>>	mapMesh)	{

				for	(Map.Entry<?	extends	Mesh,	List<GameItem>>	entry	:	mapMesh.entrySet())	{

								List<GameItem>	gameItems	=	entry.getValue();

								filter(gameItems,	entry.getKey().getBoundingRadius());

				}

}

And	that’s	it.	We	can	use	that	class	inside	the	rendering	process.	We	just	need	to	update	the
frustum	planes,	calculate	which	GameItems	are	visible	and	filter	them	out	when	drawing
instanced	and	non	instanced	meshes.

frustumFilter.updateFrustum(window.getProjectionMatrix(),	camera.getViewMatrix());

frustumFilter.filter(scene.getGameMeshes());

frustumFilter.filter(scene.getGameInstancedMeshes());

You	can	play	with	activating	and	deactivating	the	filtering	and	can	check	the	increase	and
decrease	in	the	FPS	that	you	can	achieve.	Particles	are	not	considered	in	the	filtering,	but	its
trivial	to	add	it.	In	any	case,	for	particles,	it	may	be	better	to	just	check	the	position	of	the
emitter	instead	of	checking	every	particle.

Optimizations	-	Frustum	Culling	(II)

Optimizations

314

Once	the	basis	of	frustum	culling	has	been	explained,	we	can	get	advatange	of	more	refined
methods	that	the	JOMLlibrary	provides.	In	particular,	it	provdies	a	class	named
	FrustumIntersection	which	extracts	the	planes	of	the	veiw	frustum	in	a	more	efficient	way	as
described	in	this	paper.	Besides	that,	this	class	also	provides	methods	for	testing	bounding
boxes,	points	and	spheres.

So,	let's	change	the		FrustumCullingFilter		class.	The	attributes	and	constructor	are
simplified	like	this:

public	class	FrustumCullingFilter	{

				private	final	Matrix4f	prjViewMatrix;

				private	FrustumIntersection	frustumInt;

				public	FrustumCullingFilter()	{

								prjViewMatrix	=	new	Matrix4f();

								frustumInt	=	new	FrustumIntersection();

				}

The	updateFrustum	method	just	delegates	the	plane	extraction	to	the
	FrustumIntersection	instance.

public	void	updateFrustum(Matrix4f	projMatrix,	Matrix4f	viewMatrix)	{

				//	Calculate	projection	view	matrix

				prjViewMatrix.set(projMatrix);

				prjViewMatrix.mul(viewMatrix);

				//	Update	frustum	intersection	class

				frustumInt.set(prjViewMatrix);

}

And	the	method	that		insideFrustum	method	is	vene	more	simple:

public	boolean	insideFrustum(float	x0,	float	y0,	float	z0,	float	boundingRadius)	{

				return	frustumInt.testSphere(x0,	y0,	z0,	boundingRadius);

}

With	this	approach	you	will	be	able	to	vene	get	a	few	more	FPS.	Besides	that,	a	global	flag
has	been	added	to	the		Window	class	to	enable	/	disbale	frustum	culling.	The		GameItem	class
also	has	a	flag	for	enabling	/	disabling	the	filtering,	because	there	may	be	some	items	for
which	frustum	culling	filtering	does	not	make	sense.

Optimizations

315
www.dbooks.org

https://github.com/JOML-CI/JOML
http://gamedevs.org/uploads/fast-extraction-viewing-frustum-planes-from-world-view-projection-matrix.pdf
https://www.dbooks.org/

Cascaded	Shadow	Maps
In	the	shadows	chapter	we	presented	the	shadow	map	technique	to	be	able	to	display
shadows	using	directional	lights	when	rendering	a	3D	scene.	The	solution	presented	there,
required	you	to	manually	tweak	some	of	the	parameters	in	order	to	improve	the	results.	In
this	chapter	we	are	going	to	change	that	technique	to	automate	all	the	process	and	to
improve	the	r	results	for	open	spaces.	In	order	to	achieve	that	goal	we	are	going	to	use	a
technique	called	Cascaded	Shadow	Maps	(CSM).

Let’s	first	start	by	examining	how	we	can	automate	the	construction	of	the	light	view	matrix
and	the	orthographic	projection	matrix	used	to	render	the	shadows.	If	you	recall	from	the
shadows	chapter,	we	need	to	draw	the	scene	form	the	light’s	perspective.	This	implies	the
creation	of	a	light	view	matrix,	which	acts	like	a	camera	for	light	and	a	projection	matrix.
Since	light	is	directional,	and	is	supposed	to	be	located	at	the	infinity,	we	chose	an
orthographic	projection.

We	want	all	the	visible	objects	to	fit	into	the	light	view	projection	matrix.	Hence,	we	need	to
fit	the	view	frustum	into	the	light	frustum.	The	following	picture	depicts	what	we	want	to
achieve.

Cascaded	Shadow	Maps

316

How	can	we	construct	that?	The	first	step	is	to	calculate	the	frustum	corners	of	the	view
projection	matrix.	We	get	the	coordinates	in	world	space.	Then	we	calculate	the	centre	of
that	frustum.	This	can	be	calculating	by	adding	the	coordinates	for	all	the	corners	and
dividing	the	result	by	the	number	of	corners.

With	that	information	we	can	set	the	position	of	the	light.	That	position	and	its	direction	will
be	used	to	construct	the	light	view	matrix.	In	order	to	calculate	the	position,	we	start	form	the
centre	of	the	view	frustum	obtained	before.	We	then	go	back	to	the	direction	of	light	an
amount	equal	to	the	distance	between	the	near	and	far	z	planes	of	the	view	frustum.

Cascaded	Shadow	Maps

317
www.dbooks.org

https://www.dbooks.org/

Once	we	have	constructed	the	light	view	matrix,	we	need	to	setup	the	orthographic
projection	matrix.	In	order	to	calculate	them	we	transform	the	frustum	corners	to	light	view
space,	just	by	multiplying	them	by	the	light	view	matrix	we	have	just	constructed.	The
dimensions	of	that	projection	matrix	will	be	minimum	and	maximum	x	and	y	values.	The	near
z	plane	can	be	set	up	to	the	same	value	used	by	our	standard	projection	matrices	and	the
far	value	will	be	the	distance	between	the	maximum	and	minimum	z	values	of	the	frustum
corners	in	light	view	space.

However,	if	you	implement	the	algorithm	described	above	over	the	shadows	sample,	you
may	be	disappointed	by	the	shadows	quality.

Cascaded	Shadow	Maps

318

The	reason	for	that	is	that	shadows	resolution	is	limited	by	the	texture	size.	We	are	covering
now	a	potentially	huge	area,	and	textures	we	are	using	to	store	depth	information	have	not
enough	resolution	in	order	to	get	good	results.	You	may	think	that	the	solution	is	just	to
increase	texture	resolution,	but	this	is	not	sufficient	to	completely	fix	the	problem.	You	would
need	huge	textures	for	that.

There’s	a	smarter	solution	for	that.	The	key	concept	is	that,	shadows	of	objects	that	are
closer	to	the	camera	need	to	have	a	higher	quality	than	shadows	for	distant	objects.	One
approach	could	be	to	just	render	shadows	for	objects	close	to	the	camera,	but	this	would
cause	shadows	to	appear	/	disappear	as	long	as	we	move	through	the	scene.

The	approach	that	Cascaded	Shadow	Maps	(CSMs)	use	is	to	divide	the	view	frustum	into
several	splits.	Splits	closer	to	the	camera	cover	a	smaller	amount	spaces	whilst	distant
regions	cover	a	much	wider	region	of	space.	The	next	figure	shows	a	view	frustum	divided
into	three	splits.

Cascaded	Shadow	Maps

319
www.dbooks.org

https://www.dbooks.org/

For	each	of	these	splits,	the	depth	map	is	rendered,	adjusting	the	light	view	and	projection
matrices	to	cover	fit	to	each	split.	Thus,	the	texture	that	stores	the	depth	map	covers	a
reduced	area	of	the	view	frustum.	And,	since	the	split	closest	to	the	camera	covers	less
space,	the	depth	resolution	is	increased.

As	it	can	be	deduced	form	explanation	above,	We	will	need	as	many	depth	textures	as
splits,	and	we	will	also	change	the	light	view	and	projection	matrices	for	each	of	the,	Hence,
the	steps	to	be	done	in	order	to	apply	CSMs	are:

Divide	the	view	frustum	into	n	splits.

While	rendering	the	depth	map,	for	each	split:

Calculate	light	view	and	projection	matrices.

Render	the	scene	from	light’s	perspective	into	a	separate	depth	map

While	rendering	the	scene:

Use	the	depths	maps	calculated	above.

Determine	the	split	that	the	fragment	to	be	drawn	belongs	to.

Calculate	shadow	factor	as	in	shadow	maps.

Cascaded	Shadow	Maps

320

As	you	can	see,	the	main	drawback	of	CSMs	is	that	we	need	to	render	the	scene,	from
light’s	perspective,	for	each	split.	This	is	why	is	often	only	used	for	open	spaces.	Anyway,	we
will	see	how	we	can	easily	reduce	that	overhead.

So	let’s	start	examining	the	code,	but	before	we	continue	a	little	warning,	I	will	not	include
the	full	source	code	here	since	it	would	be	very	tedious	to	red.	Instead,	I	will	present	the
main	classes	their	responsibilities	and	the	fragments	that	may	require	further	explanation	in
order	to	get	a	good	understanding.	All	the	shading	related	classes	have	been	moved	to	a
new	package	called	org.lwjglb.engine.graph.shadow	.

The	code	that	renders	shadows,	that	is,	the	scene	from	light’s	perspective	has	been	moved
to	the		ShadowRenderer	class.	(That	code	was	previously	contained	in	the		Renderer	class).

The	class	defines	the	following	constants:

public	static	final	int	NUM_CASCADES	=	3;

public	static	final	float[]	CASCADE_SPLITS	=	new	float[]{Window.Z_FAR	/	20.0f,	Window.

Z_FAR	/	10.0f,	Window.Z_FAR};

The	first	one	is	the	number	of	cascades	or	splits.	The	second	one	defines	where	the	far	z
plane	is	located	for	each	of	these	splits.	As	you	can	see	they	are	not	equally	spaced.	The
split	that	is	closer	to	the	camera	has	the	shortest	distance	in	the	z	plane.

The	class	also	stores	the	reference	to	the	shader	program	used	to	render	the	depth	map,	a
list	with	the	information	associated	to	each	split,	modelled	by	the		ShadowCascade	class,	and	a
reference	to	the	object	that	whill	host	the	depth	mapth	information	(tetxures),	modelled	by
the		ShadowBuffer	class.

The		ShadowRenderer	class	has	methods	for	setting	up	the	shaders	and	the	required
attributes	and	a	render	method	.	The		render	method	is	defined	like	this.

Cascaded	Shadow	Maps

321
www.dbooks.org

https://www.dbooks.org/

public	void	render(Window	window,	Scene	scene,	Camera	camera,	Transformation	transform

ation,	Renderer	renderer)	{

				update(window,	camera.getViewMatrix(),	scene);

				//	Setup	view	port	to	match	the	texture	size

				glBindFramebuffer(GL_FRAMEBUFFER,	shadowBuffer.getDepthMapFBO());

				glViewport(0,	0,	ShadowBuffer.SHADOW_MAP_WIDTH,	ShadowBuffer.SHADOW_MAP_HEIGHT);

				glClear(GL_DEPTH_BUFFER_BIT);

				depthShaderProgram.bind();

				//	Render	scene	for	each	cascade	map

				for	(int	i	=	0;	i	<	NUM_CASCADES;	i++)	{

								ShadowCascade	shadowCascade	=	shadowCascades.get(i);

								depthShaderProgram.setUniform("orthoProjectionMatrix",	shadowCascade.getOrthoP

rojMatrix());

								depthShaderProgram.setUniform("lightViewMatrix",	shadowCascade.getLightViewMat

rix());

								glFramebufferTexture2D(GL_FRAMEBUFFER,	GL_DEPTH_ATTACHMENT,	GL_TEXTURE_2D,	sha

dowBuffer.getDepthMapTexture().getIds()[i],	0);

								glClear(GL_DEPTH_BUFFER_BIT);

								renderNonInstancedMeshes(scene,	transformation);

								renderInstancedMeshes(scene,	transformation);

				}

				//	Unbind

				depthShaderProgram.unbind();

				glBindFramebuffer(GL_FRAMEBUFFER,	0);

}

As	you	can	see,	I	similar	to	the	previous	render	method	for	shadow	maps,	except	that	we
are	performing	several	rendering	passes,	one	per	split.	In	each	pass	we	change	the	light
view	matrix	and	the	orthographic	projection	matrix	with	the	information	contained	in	the
associated		ShadowCascade	instande.

Also,	in	each	pass,	we	need	to	change	the	texture	we	are	using.	Each	pass	will	render	the
depth	information	to	a	different	texture.	This	information	is	stored	in	the		ShadowBuffer	class,
and	is	setup	to	be	used	by	the	FBO	with	this	line:

glFramebufferTexture2D(GL_FRAMEBUFFER,	GL_DEPTH_ATTACHMENT,	GL_TEXTURE_2D,	shadowBuffe

r.getDepthMapTexture().getIds()[i],	0);

Cascaded	Shadow	Maps

322

As	it’s	just	have	been	mentioned,	the		ShadowBuffer	class	stores	the	information	related	to
the	textures	used	to	store	depth	information.	The	code	its	very	similar	to	the	code	used	in
the	shadows	chapter,	excep	t	that	we	are	using	texture	arrays.	Thus,	we	have	created	a	new
class,		ArrTexture	,	that	creates	an	array	of	textures	with	the	same	attributes.	This	class	also
provides	a		bind	method	that	binds	all	the	texture	arrays	for	using	them	in	the	scene	shader.
The	method	receives	a	parameter,	with	the	texture	unit	to	start	with.

public	void	bindTextures(int	start)	{

				for	(int	i	=	0;	i	<	ShadowRenderer.NUM_CASCADES;	i++)	{

								glActiveTexture(start	+	i);

								glBindTexture(GL_TEXTURE_2D,	depthMap.getIds()[i]);

				}

}

	ShadowCascade	class,	stores	the	light	view	and	orthographic	projection	matrices	associated
to	one	split.	Each	split	is	defined	by	a	near	and	a	z	far	plan	distance,	and	with	that
information	the	matrices	are	calculated	accordingly.

The	class	provided	and	update	method	which,	taking	as	an	input	the	view	natrix	and	the	light
direction.	The	method	calculates	the	view	frustum	corners	in	world	space	and	then
calculates	the	light	position.	That	position	is	calculated	going	back,	suing	the	light	direction,
from	the	frustum	centre	to	a	distance	equal	to	the	distance	between	the	far	and	near	z
planes.

Cascaded	Shadow	Maps

323
www.dbooks.org

https://www.dbooks.org/

public	void	update(Window	window,	Matrix4f	viewMatrix,	DirectionalLight	light)	{

				//	Build	projection	view	matrix	for	this	cascade

				float	aspectRatio	=	(float)	window.getWidth()	/	(float)	window.getHeight();

				projViewMatrix.setPerspective(Window.FOV,	aspectRatio,	zNear,	zFar);

				projViewMatrix.mul(viewMatrix);

				//	Calculate	frustum	corners	in	world	space

				float	maxZ	=	-Float.MAX_VALUE;

				float	minZ	=		Float.MAX_VALUE;

				for	(int	i	=	0;	i	<	FRUSTUM_CORNERS;	i++)	{

								Vector3f	corner	=	frustumCorners[i];

								corner.set(0,	0,	0);

								projViewMatrix.frustumCorner(i,	corner);

								centroid.add(corner);

								centroid.div(8.0f);

								minZ	=	Math.min(minZ,	corner.z);

								maxZ	=	Math.max(maxZ,	corner.z);

				}

				//	Go	back	from	the	centroid	up	to	max.z	-	min.z	in	the	direction	of	light

				Vector3f	lightDirection	=	light.getDirection();

				Vector3f	lightPosInc	=	new	Vector3f().set(lightDirection);

				float	distance	=	maxZ	-	minZ;

				lightPosInc.mul(distance);

				Vector3f	lightPosition	=	new	Vector3f();

				lightPosition.set(centroid);

				lightPosition.add(lightPosInc);

				updateLightViewMatrix(lightDirection,	lightPosition);

				updateLightProjectionMatrix();

}

With	the	light	position	and	the	light	direction.	we	can	construct	the	light	view	matrix.	This	is
done	in	the		updateLightViewMatrix	:

private	void	updateLightViewMatrix(Vector3f	lightDirection,	Vector3f	lightPosition)	{

				float	lightAngleX	=	(float)	Math.toDegrees(Math.acos(lightDirection.z));

				float	lightAngleY	=	(float)	Math.toDegrees(Math.asin(lightDirection.x));

				float	lightAngleZ	=	0;

				Transformation.updateGenericViewMatrix(lightPosition,	new	Vector3f(lightAngleX,	li

ghtAngleY,	lightAngleZ),	lightViewMatrix);

}

Finally,	we	need	to	construct	the	orthographic	projection	matrix.	This	is	done	in	the
	updateLightProjectionMatrix	method.	The	method	is	to	transform	the	view	frustum
coordinates	into	light	space.	We	then	get	the	minimum	and	maximum	values	for	the	x,	y

Cascaded	Shadow	Maps

324

coordinates	to	construct	the	bounding	box	that	encloses	the	view	frustum.	Near	z	plane	can
be	set	to	0	and	the	far	z	plane	to	the	distance	between	the	maximum	and	minimum	value	of
the	coordinates.

private	void	updateLightProjectionMatrix()	{

				//	Now	calculate	frustum	dimensions	in	light	space

				float	minX	=		Float.MAX_VALUE;

				float	maxX	=	-Float.MAX_VALUE;

				float	minY	=		Float.MAX_VALUE;

				float	maxY	=	-Float.MAX_VALUE;

				float	minZ	=		Float.MAX_VALUE;

				float	maxZ	=	-Float.MAX_VALUE;

				for	(int	i	=	0;	i	<	FRUSTUM_CORNERS;	i++)	{

								Vector3f	corner	=	frustumCorners[i];

								tmpVec.set(corner,	1);

								tmpVec.mul(lightViewMatrix);

								minX	=	Math.min(tmpVec.x,	minX);

								maxX	=	Math.max(tmpVec.x,	maxX);

								minY	=	Math.min(tmpVec.y,	minY);

								maxY	=	Math.max(tmpVec.y,	maxY);

								minZ	=	Math.min(tmpVec.z,	minZ);

								maxZ	=	Math.max(tmpVec.z,	maxZ);

				}

				float	distz	=	maxZ	-	minZ;

				orthoProjMatrix.setOrtho(minX,	maxX,	minY,	maxY,	0,	distz);

}

Remember	that	the	orthographic	projection	is	like	a	bounding	box	that	should	enclose	all	the
objects	that	will	be	rendered.	That	bounding	box	is	expressed	in	light	view	coordinates
space.	Thus,	what	we	are	doing	is	calculate	the	minimum	bounding	box,	axis	aligned	with
the	light	position	,	hat	encloses	the	view	frustum.

The		Renderer	class	has	been	modified	to	use	the	classes	in	the	view	package	and	also	to
modify	the	information	that	is	passed	to	the	renderers.	In	the	renderer	we	need	to	deal	with
the	model,	the	model	view,	and	the	model	light	matrices.	In	previous	chapters	we	used	the
model–view	/	light–view	matrices,	to	reduce	the	number	of	operations.	In	this	case,	we	opted
to	simplify	the	number	of	elements	to	be	passed	and	now	we	are	passing	just	the	model,
view	and	light	matrices	to	the	shaders.	Also,	for	particles,	we	need	to	preserve	the	scale,
since	we	no	longer	pass	the	model	view	matrix,	that	information	is	lost	now.	We	reuse	the
attribute	used	to	mark	selected	items	to	set	that	scale	information.	In	the	particles	shader	we
will	use	that	value	to	set	the	scaling	again.

In	the	scene	vertex	shader,	we	calculate	model	light	view	matrix	for	each	split,	and	pass	it	as
an	output	to	the	fragment	shader.

Cascaded	Shadow	Maps

325
www.dbooks.org

https://www.dbooks.org/

mvVertexPos	=	mvPos.xyz;

for	(int	i	=	0	;	i	<	NUM_CASCADES	;	i++)	{

				mlightviewVertexPos[i]	=	orthoProjectionMatrix[i]	*	lightViewMatrix[i]	*	modelMatr

ix	*	vec4(position,	1.0);

}

In	the	fragment	shader	we	use	those	values	to	query	the	appropriate	depth	map	depending
on	the	split	that	the	fragment	is.	This	needs	to	be	done	in	the	fragment	shader	since,	for	a
specific	item,	their	fragments	may	reside	in	different	splits.

Also,	in	the	fragment	shader	we	must	decide	which	split	we	are	into.	In	order	to	do	that,	we
use	the	z	value	of	the	fragment	and	compare	it	with	the	maximum	z	value	for	each	split.	That
is,	the	z	far	plane	value.	That	information	is	passed	as	a	new	uniform:

uniform	float	cascadeFarPlanes[NUM_CASCADES];

We	calculate	de	split	like	this.	The	variable		idx	will	have	the	split	to	be	used:

int	idx;

for	(int	i=0;	i<NUM_CASCADES;	i++)

{

				if	(abs(mvVertexPos.z)	<	cascadeFarPlanes[i])

				{

								idx	=	i;

								break;

				}

}

Also,	in	the	scene	shaders	we	need	to	pass	an	array	of	textures,	an	array	of		sampler2D's	,
to	use	the	depth	map,	the	texture,	associated	to	the	split	we	are	into.	The	source	code,
instead	of	using	an	array	uses	a	list	of	uniforms	that	will	hold	the	texture	unit	that	is	used	to
refer	to	the	depth	map	associated	to	each	split.

uniform	sampler2D	normalMap;

uniform	sampler2D	shadowMap_0;

uniform	sampler2D	shadowMap_1;

uniform	sampler2D	shadowMap_2;

Changing	it	to	an	array	of	uniforms	causes	problems	with	other	textures	that	are	difficult	to
track	for	this	sample.	In	any	case,	you	can	try	changing	it	in	your	code.

The	rest	of	the	changes	in	the	source	code,	and	the	shaders	are	just	adaptations	required	by
the	changes	described	above.	You	can	check	it	directly	over	the	source	code.

Cascaded	Shadow	Maps

326

Finally,	when	introducing	these	changes	you	may	see	that	performance	has	dropped.	This	is
due	to	the	fact	that	we	are	rendering	three	times	the	depth	map.	We	can	mitigate	this	effect
by	avoiding	rendering	at	all	when	the	scene	has	not	changed.	If	the	camera	has	not	been
moved	or	the	scene	items	have	not	changed	we	do	not	need	to	render	again	and	again	the
depth	map.	The	depth	maps	are	stored	in	textures,	so	they	are	not	wiped	out	for	each	render
call.	Thus,	we	have	added	a	new	variable	to	the	render	method	that	indicates	if	this	has
changed,	avoiding	updating	the	depth	maps	it	remains	the	same.	This	increases	the	FPS
dramatically.	At	the	end,	you	will	get	something	like	this:

Cascaded	Shadow	Maps

327
www.dbooks.org

https://www.dbooks.org/

Assimp

Static	Meshes
The	capability	of	loading	complex	3d	models	in	different	formats	is	crucial	in	order	to	write	a
game.	The	task	of	writing	parsers	for	some	of	them	would	require	lots	of	work.	Even	just
supporting	a	single	format	can	be	time	consuming.	For	instance,	the	wavefront	loader
described	in	chapter	9,	only	parses	a	small	subset	of	the	specification	(materials	are	not
handled	at	all).

Fortunately,	the	Assimp	library	already	can	be	used	to	parse	many	common	3D	formats.	It’s
a	C++	library	which	can	load	static	and	animated	models	in	a	variety	of	formats.	LWJGL
provides	the	bindings	to	use	them	from	Java	code.	In	this	chapter,	we	will	explain	how	it	can
be	used.

The	first	thing	is	adding	assimp	maven	dependencies	to	the	project	pom.xml.	We	need	to
add	compile	time	and	runtime	dependencies.

<dependency>

				<groupId>org.lwjgl</groupId>

				<artifactId>lwjgl-assimp</artifactId>

				<version>${lwjgl.version}</version>

</dependency>

<dependency>

				<groupId>org.lwjgl</groupId>

				<artifactId>lwjgl-assimp</artifactId>

				<version>${lwjgl.version}</version>

				<classifier>${native.target}</classifier>

				<scope>runtime</scope>

</dependency>

Once	the	dependencies	has	been	set,	we	will	cerate	a	new	class	named
StaticMeshesLoader	that	will	be	used	to	load	meshes	with	no	animations.	The	class	defines
two	static	public	methods:

Assimp

328

http://assimp.sourceforge.net/

public	static	Mesh[]	load(String	resourcePath,	String	texturesDir)	throws	Exception	{

				return	load(resourcePath,	texturesDir,	aiProcess_JoinIdenticalVertices	|	aiProcess

_Triangulate	|	aiProcess_FixInfacingNormals);

}

public	static	Mesh[]	load(String	resourcePath,	String	texturesDir,	int	flags)	throws	E

xception	{

				//

Both	methods	have	the	following	arguments:

	resourcePath	:	The	path	to	the	file	where	the	model	file	is	located.	This	is	an	absolute
path,	because	Assimp	may	need	to	load	additional	files	and	may	use	the	same	base
path	as	the	resource	path	(For	instance,	material	files	for	wavefront,	OBJ,	files).	If	you
embed	your	resources	inside	a	JAR	file,	Assimp	will	not	be	able	to	import	it,	so	uts	must
be	a	file	system	path.

	texturesDir	:	The	path	to	the	directory	that	will	hold	the	textures	for	this	model.	This	a
CLASSPATH	relative	path.	For	instance,	a	wavefront	material	file	may	define	several
texture	files.	The	code,	expect	this	files	to	be	located	in	the		texturesDir	directory.	If	you
find	texture	loading	errors	you	may	need	to	manually	tweak	these	paths	in	the	model
file.

The	second	method	has	an	extra	argument	named		flags	.	This	parameter	allows	to	tune
the	loading	process.	The	firstmethodsjust	invokes	the	secondoneand	passes	some	values
that	are	useful	in	most	of	the	situations:

	aiProcess_JoinIdenticalVertices	:	This	flag	reduces	the	number	of	vertices	that	are
used,	identifiying	those	that	can	be	reused	between	faces.

	aiProcess_Triangulate	:	The	model	may	use	quads	or	other	geometries	to	define	their
elements.	Since	we	are	only	dealing	with	triangles,	we	must	use	this	flag	to	split	all	he
faces	into	triangles	(if	needed).

	aiProcess_FixInfacingNormals	:	This	flags	try	to	reverse	normals	that	may	point	inwards.

There	are	many	other	flags	that	can	be	used,	you	chan	check	them	in	the	LWJGL	Javadoc
documentation.

Let’s	go	back	to	the	second	constructor.	The	first	thing	we	do	is	invoke	the
	aiImportFile	method	to	load	the	model	with	the	selectedflags.

Assimp

329
www.dbooks.org

https://www.dbooks.org/

AIScene	aiScene	=	aiImportFile(resourcePath,	flags);

if	(aiScene	==	null)	{

				throw	new	Exception("Error	loading	model");

}

The	rest	of	the	code	for	the	constructor	is	a	as	follows:

int	numMaterials	=	aiScene.mNumMaterials();

PointerBuffer	aiMaterials	=	aiScene.mMaterials();

List<Material>	materials	=	new	ArrayList<>();

for	(int	i	=	0;	i	<	numMaterials;	i++)	{

				AIMaterial	aiMaterial	=	AIMaterial.create(aiMaterials.get(i));

				processMaterial(aiMaterial,	materials,	texturesDir);

}

int	numMeshes	=	aiScene.mNumMeshes();

PointerBuffer	aiMeshes	=	aiScene.mMeshes();

Mesh[]	meshes	=	new	Mesh[numMeshes];

for	(int	i	=	0;	i	<	numMeshes;	i++)	{

				AIMesh	aiMesh	=	AIMesh.create(aiMeshes.get(i));

				Mesh	mesh	=	processMesh(aiMesh,	materials);

				meshes[i]	=	mesh;

}

return	meshes;

We	process	the	materials	contained	in	the	model.	Materials	define	colour	and	textures	to	be
used	by	the	meshes	that	compose	the	model.	Then	we	process	the	different	meshes.	A
model	can	define	several	meshes	and	each	of	them	can	use	one	of	the	materials	defined	for
the	model.

If	you	examine	the	code	above	you	may	see	that	many	of	the	calls	to	the	Assimp	library
return		PointerBuffer	instances.	You	can	think	about	them	like	C	pointers,	they	just	point	to	a
memory	region	which	contain	data.	You	need	to	know	in	advance	the	type	of	data	that	they
hold	in	order	to	process	them.	In	the	case	of	materials,	we	iterate	over	that	buffer	creating
instances	of	theAIMaterialclass.	In	the	second	case,	we	iterate	over	the	buffer	that	holds
mesh	data	creating	instance	of	the		AIMesh	class.

Let’s	examine	the		processMaterial	method.

Assimp

330

private	static	void	processMaterial(AIMaterial	aiMaterial,	List<Material>	materials,	S

tring	texturesDir)	throws	Exception	{

				AIColor4D	colour	=	AIColor4D.create();

				AIString	path	=	AIString.calloc();

				Assimp.aiGetMaterialTexture(aiMaterial,	aiTextureType_DIFFUSE,	0,	path,	(IntBuffer

)	null,	null,	null,	null,	null,	null);

				String	textPath	=	path.dataString();

				Texture	texture	=	null;

				if	(textPath	!=	null	&&	textPath.length()	>	0)	{

								TextureCache	textCache	=	TextureCache.getInstance();

								texture	=	textCache.getTexture(texturesDir	+	"/"	+	textPath);

				}

				Vector4f	ambient	=	Material.DEFAULT_COLOUR;

				int	result	=	aiGetMaterialColor(aiMaterial,	AI_MATKEY_COLOR_AMBIENT,	aiTextureType

_NONE,	0,	colour);

				if	(result	==	0)	{

								ambient	=	new	Vector4f(colour.r(),	colour.g(),	colour.b(),	colour.a());

				}

				Vector4f	diffuse	=	Material.DEFAULT_COLOUR;

				result	=	aiGetMaterialColor(aiMaterial,	AI_MATKEY_COLOR_DIFFUSE,	aiTextureType_NON

E,	0,	colour);

				if	(result	==	0)	{

								diffuse	=	new	Vector4f(colour.r(),	colour.g(),	colour.b(),	colour.a());

				}

				Vector4f	specular	=	Material.DEFAULT_COLOUR;

				result	=	aiGetMaterialColor(aiMaterial,	AI_MATKEY_COLOR_SPECULAR,	aiTextureType_NO

NE,	0,	colour);

				if	(result	==	0)	{

								specular	=	new	Vector4f(colour.r(),	colour.g(),	colour.b(),	colour.a());

				}

				Material	material	=	new	Material(ambient,	diffuse,	specular,	1.0f);

				material.setTexture(texture);

				materials.add(material);

}

We	check	if	the	material	defines	a	texture	or	not.	If	so,	we	load	the	texture.	We	have	created
a	new	class	named		TextureCache	which	caches	textures.	This	is	due	to	the	fact	that	several
meshes	may	share	the	same	texture	and	we	do	not	want	to	waste	space	loading	again	and
again	the	same	data.	Then	we	try	to	get	the	colours	of	the	material	for	the	ambient,	diffuse
and	specular	components.	Fortunately,	the	definition	that	we	had	for	a	material	already
contained	that	information.

Assimp

331
www.dbooks.org

https://www.dbooks.org/

The		TextureCache	definition	is	very	simple	is	just	a	map	that	indexes	the	different	textures	by
the	path	to	the	texture	file	(You	can	check	directly	in	the	source	code).	Due	to	the	fact,	that
now	textures	may	use	different	image	formats	(PNG,	JPEG,	etc.),	we	have	modified	the	way
that	textures	are	loaded.	Instead	of	using	the	PNG	library,	we	now	use	the	STB	library	to	be
able	to	load	more	formats.

Let’s	go	back	to	the		StaticMeshesLoader	class.	The		processMesh	is	defined	like	this.

private	static	Mesh	processMesh(AIMesh	aiMesh,	List<Material>	materials)	{

				List<Float>	vertices	=	new	ArrayList<>();

				List<Float>	textures	=	new	ArrayList<>();

				List<Float>	normals	=	new	ArrayList<>();

				List<Integer>	indices	=	new	ArrayList();

				processVertices(aiMesh,	vertices);

				processNormals(aiMesh,	normals);

				processTextCoords(aiMesh,	textures);

				processIndices(aiMesh,	indices);

				Mesh	mesh	=	new	Mesh(Utils.listToArray(vertices),

								Utils.listToArray(textures),

								Utils.listToArray(normals),

								Utils.listIntToArray(indices)

);

				Material	material;

				int	materialIdx	=	aiMesh.mMaterialIndex();

				if	(materialIdx	>=	0	&&	materialIdx	<	materials.size())	{

								material	=	materials.get(materialIdx);

				}	else	{

								material	=	new	Material();

				}

				mesh.setMaterial(material);

				return	mesh;

}

A		Mesh	is	defined	by	a	set	of	vertices	position,	normals	directions,	texture	coordinates	and
indices.	Each	of	these	elements	are	processed	in	the		processVertices	,		processNormals	,
	processTextCoords	and		processIndices	method.	A	Mesh	also	may	point	to	a	material,	using
its	index.	If	the	index	corresponds	to	the	previously	processed	materials	we	just	simply
associate	them	to	the		Mesh	.

The		processXXX		methods	are	very	simple,	they	just	invoke	the	corresponding	method	over
the		AIMesh	instance	that	returns	the	desired	data.	For	instance,	the	process	processVertices
is	defined	like	this:

Assimp

332

private	static	void	processVertices(AIMesh	aiMesh,	List<Float>	vertices)	{

				AIVector3D.Buffer	aiVertices	=	aiMesh.mVertices();

				while	(aiVertices.remaining()	>	0)	{

								AIVector3D	aiVertex	=	aiVertices.get();

								vertices.add(aiVertex.x());

								vertices.add(aiVertex.y());

								vertices.add(aiVertex.z());

				}

}

You	can	see	that	get	get	a	buffer	to	the	vertices	by	invoking	the		mVertices	method.	We	just
simply	process	them	to	create	a		List	of	floats	that	contain	the	vertices	positions.	Since,	the
method	retyrns	jusst	a	buffer	you	could	pass	that	information	directly	to	the	OpenGL
methods	that	create	vertices.	We	do	not	do	it	that	way	for	two	reasons.	The	first	one	is	try	to
reduce	as	much	as	possible	the	modifications	over	the	code	base.	Second	one	is	that	by
loading	into	an	intermediate	structure	you	may	be	able	to	perform	some	pros-processing
tasks	and	even	debug	the	loading	process.

If	you	want	a	sample	of	the	much	more	efficient	approach,	that	is,	directly	passing	the
buffers	to	OpenGL,	you	can	check	this	sample.

The		StaticMeshesLoader	makes	the		OBJLoader	class	obsolete,	so	it	has	been	removed	form
the	base	source	code.	A	more	complex	OBJ	file	is	provided	as	a	sample,	if	you	run	it	you	will
see	something	like	this:

Animations

Assimp

333
www.dbooks.org

https://github.com/LWJGL/lwjgl3-demos/blob/master/src/org/lwjgl/demo/opengl/assimp/WavefrontObjDemo.java
https://www.dbooks.org/

Now	that	we	have	used	assimp	for	loading	static	meshes	we	can	proceed	with	animations.	If
you	recall	form	the	animations	chapter,	the	VAO	associated	to	a	mesh	contains	the	vertices
positions,	the	texture	coordinates,	the	indices	and	a	list	of	weights	that	should	be	applied	to
joint	positions	to	modulate	final	vertex	position.

Each	vertex	position	has	associated	a	list	of	four	weights	that	change	the	final	position,
referring	the	bones	indices	that	will	be	combined	to	determine	its	final	position.	Each	frame	a
list	of	transformation	matrices	are	loaded,	as	uniforms,	for	each	joint.	With	that	information
the	final	position	is	calculated.

In	the	animation	chapter,	we	developed	a	MD5	parser	to	load	animated	meshes.	In	this
chapter	we	will	use	assimp	library.	This	will	allow	us	to	load	many	more	formats	besides
MD5,	such	as	COLLADA,	FBX,	etc.

Before	we	start	coding	let’s	clarify	some	terminology.	In	this	chapter	we	will	refer	to	bones
and	joints	indistinguishably.	A	joint	/	bone	is	are	just	elements	that	affect	vertices,	and	that
have	a	parent	forming	a	hierarchy.	MD5	format	uses	the	term	joint,	but	assimp	uses	the	term
bone.

Let’s	review	first	the	structures	handled	by	assimp	that	contain	animation	information.	We
will	start	first	with	the	bones	and	weights	information.	For	each	Mesh,	we	can	access	the
vertices	positions,	texture	coordinates	and	indices.	Meshes	store	also	a	list	of	bones.	Each
bone	is	defined	by	the	following	attributes:

A	name.
An	offset	matrix:	This	will	used	later	to	compute	the	final	transformations	that	should	be
used	by	each	bone.

Assimp

334

https://en.wikipedia.org/wiki/COLLADA
https://en.wikipedia.org/wiki/FBX

Bones	also	point	to	a	list	of	weights,	each	weights.	Each	weights	is	defined	by	the	following
attributes:

A	weight	factor,	that	is,	the	number	that	will	be	used	to	modulate	the	influence	of	the
bone’s	transformation	associated	to	each	vertex.
A	vertex	identifier,	that	is,	the	vertex	associated	to	the	current	bone.

The	following	picture	shows	the	relationships	between	all	these	elements.

Hence,	the	first	thing	that	we	must	do	is	to	construct	the	list	of	vertices	positions,	the	bones	/
joints	/	indices	and	the	associated	weights	from	the	structure	above.	Once	we	have	done
that,	we	need	to	pre-calculate	the	transformation	matrices	for	each	bone	/	joint	for	all	the
animation	frames	defined	in	the	model.

Assimp	scene	object	defines	a	Node’s	hierarchy.	Each	Node	is	defined	by	a	name	a	list	of
children	node.	Animations	use	these	nodes	to	define	the	transformations	that	should	be
applied	to.	This	hierarchy	is	defined	indeed	the	bones’	hierarchy.	Every	bone	is	a	node,	and
has	a	parent,	except	the	root	node,	and	possible	a	set	of	children.	There	are	special	nodes
that	are	not	bones,	they	are	used	to	group	transformations,	and	should	be	handled	when
calculating	the	transformations.	Another	issue	is	that	these	Node’s	hierarchy	is	defined	fro
the	whole	model,	we	do	not	have	separate	hierarchies	for	each	mesh.

A	scene	also	defines	a	set	of	animations.	A	single	model	can	have	more	than	one	animation.
You	can	have	animations	for	a	model	to	walk,	run	etc.	Each	of	these	animations	define
different	transformations.	An	animation	has	the	following	attributes:

A	name.
A	duration.	That	is,	the	duration	in	time	of	the	animation.	name	may	seem	confusing

Assimp

335
www.dbooks.org

https://www.dbooks.org/

since	an	animation	is	the	list	of	transformations	that	should	be	applied	to	each	node	for
each	different	frame.
A	list	of	animation	channels.	An	animation	channel,	contains,	for	a	specific	instant	in
time	the	translation,	rotation	and	scaling	informations	that	should	be	applied	to	each
node.	The	class	that	models	the	data	contained	in	the	animation	channels	is	the
AINodeAnim.

The	following	figure	shows	the	relationships	between	all	the	elements	described	above.

For	a	specific	instant	of	time,	for	a	frame,	the	transformation	to	be	applied	to	a	bone	is	the
transformation	defined	in	the	animation	channel	for	that	instant,	multiplied	by	the
transformations	of	all	the	parent	nodes	up	to	the	root	node.	Hence,	we	need	to	reorder	the
information	stored	in	the	scene,	the	process	is	as	follows:

Construct	the	node	hierarchy.
For	each	animation,	iterate	overeach	animation	channel	(for	each	animation	node):
Construct	the	transformation	matrices	for	all	the	frames.	The	transformation	m	matrix	is
the	composition	of	the	translation,	rotation	and	scale	matrix	.
Reorder	that	information	for	each	frame:	Construct	the	final	transformations	to	be
applied	for	each	bone	in	the	Mesh.	This	is	achieved	by	multiplying	the	transformation
matrix	of	the	bone	(of	the	associated	node)	by	the	transformation	matrices	of	all	the
parent	nodes	up	to	the	root	node.

So	let’s	start	coding.	We	will	create	firs	a	class	named		AnimMeshesLoader		which	extends
from		StaticMeshesLoader	,	but	instead	of	returning	an	array	of	Meshes,	it	returns	an
	AnimGameItem		instance.	It	defines	two	public	methods	for	that:

Assimp

336

public	static	AnimGameItem	loadAnimGameItem(String	resourcePath,	String	texturesDir)

								throws	Exception	{

				return	loadAnimGameItem(resourcePath,	texturesDir,

												aiProcess_GenSmoothNormals	|	aiProcess_JoinIdenticalVertices	|	aiProcess_T

riangulate

												|	aiProcess_FixInfacingNormals	|	aiProcess_LimitBoneWeights);

}

public	static	AnimGameItem	loadAnimGameItem(String	resourcePath,	String	texturesDir,	i

nt	flags)

								throws	Exception	{

				AIScene	aiScene	=	aiImportFile(resourcePath,	flags);

				if	(aiScene	==	null)	{

								throw	new	Exception("Error	loading	model");

				}

				int	numMaterials	=	aiScene.mNumMaterials();

				PointerBuffer	aiMaterials	=	aiScene.mMaterials();

				List<Material>	materials	=	new	ArrayList<>();

				for	(int	i	=	0;	i	<	numMaterials;	i++)	{

								AIMaterial	aiMaterial	=	AIMaterial.create(aiMaterials.get(i));

								processMaterial(aiMaterial,	materials,	texturesDir);

				}

				List<Bone>	boneList	=	new	ArrayList<>();

				int	numMeshes	=	aiScene.mNumMeshes();

				PointerBuffer	aiMeshes	=	aiScene.mMeshes();

				Mesh[]	meshes	=	new	Mesh[numMeshes];

				for	(int	i	=	0;	i	<	numMeshes;	i++)	{

								AIMesh	aiMesh	=	AIMesh.create(aiMeshes.get(i));

								Mesh	mesh	=	processMesh(aiMesh,	materials,	boneList);

								meshes[i]	=	mesh;

				}

				AINode	aiRootNode	=	aiScene.mRootNode();

				Matrix4f	rootTransfromation	=	AnimMeshesLoader.toMatrix(aiRootNode.mTransformation

());

				Node	rootNode	=	processNodesHierarchy(aiRootNode,	null);

				Map<String,	Animation>	animations	=	processAnimations(aiScene,	boneList,	rootNode,

	rootTransfromation);

				AnimGameItem	item	=	new	AnimGameItem(meshes,	animations);

				return	item;

}

The	methods	are	quite	similar	to	the	ones	defined	in	the		StaticMeshesLoader		with	the
following	differences:

The	method	that	passes	a	default	set	of	loading	flags,	uses	this	new	parameter:
	aiProcess_LimitBoneWeights	.	This	will	limit	the	maximum	number	of	weights	that	affect	a

Assimp

337
www.dbooks.org

https://www.dbooks.org/

vertex	to	four	(This	is	also	the	maximum	value	that	we	are	currently	supporting	from	the
animations	chapter).
The	method	that	actually	loads	the	model	just	loads	the	different	meshes	but	it	first
calculates	the	node	hierarchy	and	then	calls	to	the		processAnimations		at	the	end	to
build	an		AnimGameItem		instance.

The		processMesh		method	is	quite	similar	to	the	one	in	the		StaticMeshesLoader		with	the
exception	that	it	creates	Meshes	passing	joint	indices	and	weights	as	a	parameter:

processBones(aiMesh,	boneList,	boneIds,	weights);

Mesh	mesh	=	new	Mesh(Utils.listToArray(vertices),	Utils.listToArray(textures),

				Utils.listToArray(normals),	Utils.listIntToArray(indices),

				Utils.listIntToArray(boneIds),	Utils.listToArray(weights));

The	joint	indices	and	weights	are	calculated	in	the		processBones		method:

Assimp

338

private	static	void	processBones(AIMesh	aiMesh,	List<Bone>	boneList,	List<Integer>	bon

eIds,

								List<Float>	weights)	{

				Map<Integer,	List<VertexWeight>>	weightSet	=	new	HashMap<>();

				int	numBones	=	aiMesh.mNumBones();

				PointerBuffer	aiBones	=	aiMesh.mBones();

				for	(int	i	=	0;	i	<	numBones;	i++)	{

								AIBone	aiBone	=	AIBone.create(aiBones.get(i));

								int	id	=	boneList.size();

								Bone	bone	=	new	Bone(id,	aiBone.mName().dataString(),	toMatrix(aiBone.mOffsetM

atrix()));

								boneList.add(bone);

								int	numWeights	=	aiBone.mNumWeights();

								AIVertexWeight.Buffer	aiWeights	=	aiBone.mWeights();

								for	(int	j	=	0;	j	<	numWeights;	j++)	{

												AIVertexWeight	aiWeight	=	aiWeights.get(j);

												VertexWeight	vw	=	new	VertexWeight(bone.getBoneId(),	aiWeight.mVertexId(),

																				aiWeight.mWeight());

												List<VertexWeight>	vertexWeightList	=	weightSet.get(vw.getVertexId());

												if	(vertexWeightList	==	null)	{

																vertexWeightList	=	new	ArrayList<>();

																weightSet.put(vw.getVertexId(),	vertexWeightList);

												}

												vertexWeightList.add(vw);

								}

				}

				int	numVertices	=	aiMesh.mNumVertices();

				for	(int	i	=	0;	i	<	numVertices;	i++)	{

								List<VertexWeight>	vertexWeightList	=	weightSet.get(i);

								int	size	=	vertexWeightList	!=	null	?	vertexWeightList.size()	:	0;

								for	(int	j	=	0;	j	<	Mesh.MAX_WEIGHTS;	j++)	{

												if	(j	<	size)	{

																VertexWeight	vw	=	vertexWeightList.get(j);

																weights.add(vw.getWeight());

																boneIds.add(vw.getBoneId());

												}	else	{

																weights.add(0.0f);

																boneIds.add(0);

												}

								}

				}

}

This	method	traverses	the	bone	definition	for	a	specific	mesh,	getting	their	weights	and
generating	filling	up	three	lists:

	boneList	:	It	contains	a	list	of	nodes,	with	their	offset	matrices.	It	will	uses	later	on	to
calculate	nodes	transformations.	A	new	class	named		Bone		has	been	created	to	hold
that	information.	This	list	will	contain	the	bones	for	all	the	meshes.

Assimp

339
www.dbooks.org

https://www.dbooks.org/

	boneIds	:	It	contains	just	the	identifiers	of	the	bones	for	each	vertex	of	the		Mesh	.
Bones	are	identified	by	its	position	when	rendering.	This	list	only	contains	the	bones	for
a	specific	Mesh.
	weights	:	It	contains	the	weights	for	each	vertex	of	the		Mesh		to	be	applied	for	the
associated	bones.

The	information	contained	in	the		weights		and		boneIds		is	used	to	construct	the		Mesh		data.
The	information	contained	in	the	boneList	will	be	used	later	when	calculating	animation	data.

Let’s	go	back	to	the		loadAnimGameItem		method.	Once	we	have	created	the	Meshes,	we	also
get	the	transformation	which	is	applied	to	the	root	node	which	will	be	used	also	to	calculate
the	final	transformatio.	After	that	,	we	need	to	process	the	hierarchy	of	nodes,	which	is	done
in	the		processNodesHierarchy		method.	This	method	is	quite	simple,	It	just	traverses	the
nodes	hierarchy	starting	from	the	root	node	constructing	a	tree	of	nodes.

private	static	Node	processNodesHierarchy(AINode	aiNode,	Node	parentNode)	{

				String	nodeName	=	aiNode.mName().dataString();

				Node	node	=	new	Node(nodeName,	parentNode);

				int	numChildren	=	aiNode.mNumChildren();

				PointerBuffer	aiChildren	=	aiNode.mChildren();

				for	(int	i	=	0;	i	<	numChildren;	i++)	{

								AINode	aiChildNode	=	AINode.create(aiChildren.get(i));

								Node	childNode	=	processNodesHierarchy(aiChildNode,	node);

								node.addChild(childNode);

				}

				return	node;

}

We	have	created	a	new		Node		class	that	will	contain	the	relevant	information	of		AINode	
instances,	and	provides	find	methods	to	locate	the	nodes	hierarchy	to	find	a	node	by	its
name.	Back	in	the		loadAnimGameItem		method,	we	just	use	that	information	to	calculate	the
animations	in	the		processAnimations		method.	This	method	returns	a		Map		of		Animation	
instances.	Remember	that	a	model	can	have	more	than	one	animation,	so	they	are	stored
indexed	by	their	names.	With	that	information	we	can	finally	construct	an		AnimAgameItem	
instance.

The		processAnimations		method	is	defined	like	this

Assimp

340

private	static	Map<String,	Animation>	processAnimations(AIScene	aiScene,	List<Bone>	bo

neList,

								Node	rootNode,	Matrix4f	rootTransformation)	{

				Map<String,	Animation>	animations	=	new	HashMap<>();

				//	Process	all	animations

				int	numAnimations	=	aiScene.mNumAnimations();

				PointerBuffer	aiAnimations	=	aiScene.mAnimations();

				for	(int	i	=	0;	i	<	numAnimations;	i++)	{

								AIAnimation	aiAnimation	=	AIAnimation.create(aiAnimations.get(i));

								//	Calculate	transformation	matrices	for	each	node

								int	numChanels	=	aiAnimation.mNumChannels();

								PointerBuffer	aiChannels	=	aiAnimation.mChannels();

								for	(int	j	=	0;	j	<	numChanels;	j++)	{

												AINodeAnim	aiNodeAnim	=	AINodeAnim.create(aiChannels.get(j));

												String	nodeName	=	aiNodeAnim.mNodeName().dataString();

												Node	node	=	rootNode.findByName(nodeName);

												buildTransFormationMatrices(aiNodeAnim,	node);

								}

								List<AnimatedFrame>	frames	=	buildAnimationFrames(boneList,	rootNode,	rootTran

sformation);

								Animation	animation	=	new	Animation(aiAnimation.mName().dataString(),	frames,	

aiAnimation.mDuration());

								animations.put(animation.getName(),	animation);

				}

				return	animations;

}

For	each	animation,	animation	channels	are	processed.	Each	channel	defines	the	different
transformations	that	should	be	applied	over	time	for	a	node.	The	transformations	defined	for
each	node	are	defined	in	the		buildTransFormationMatricesmethod	.	These	matrices	are	store
for	each	node.	Once	the	nodes	hierarchy	is	filled	up	with	that	information	we	can	construct
the	animation	frames.

Let’s	first	review	the		buildTransFormationMatrices		method:

Assimp

341
www.dbooks.org

https://www.dbooks.org/

private	static	void	buildTransFormationMatrices(AINodeAnim	aiNodeAnim,	Node	node)	{

				int	numFrames	=	aiNodeAnim.mNumPositionKeys();

				AIVectorKey.Buffer	positionKeys	=	aiNodeAnim.mPositionKeys();

				AIVectorKey.Buffer	scalingKeys	=	aiNodeAnim.mScalingKeys();

				AIQuatKey.Buffer	rotationKeys	=	aiNodeAnim.mRotationKeys();

				for	(int	i	=	0;	i	<	numFrames;	i++)	{

								AIVectorKey	aiVecKey	=	positionKeys.get(i);

								AIVector3D	vec	=	aiVecKey.mValue();

								Matrix4f	transfMat	=	new	Matrix4f().translate(vec.x(),	vec.y(),	vec.z());

								AIQuatKey	quatKey	=	rotationKeys.get(i);

								AIQuaternion	aiQuat	=	quatKey.mValue();

								Quaternionf	quat	=	new	Quaternionf(aiQuat.x(),	aiQuat.y(),	aiQuat.z(),	aiQuat.

w());

								transfMat.rotate(quat);

								if	(i	<	aiNodeAnim.mNumScalingKeys())	{

												aiVecKey	=	scalingKeys.get(i);

												vec	=	aiVecKey.mValue();

												transfMat.scale(vec.x(),	vec.y(),	vec.z());

								}

								node.addTransformation(transfMat);

				}

}

As	you	can	see,	an		AINodeAnim		instance	defines	a	set	of	keys	that	contain	translation,
rotation	and	scaling	information.	These	keys	are	referred	to	specific	instant	of	times.	We
assume	that	information	is	ordered	in	time,	and	construct	a	list	of	matrices	that	contain	the
transformation	to	be	applied	for	each	frame.	That	final	calculation	is	done	in	the
	buildAnimationFrames	method:

Assimp

342

private	static	List<AnimatedFrame>	buildAnimationFrames(List<Bone>	boneList,	Node	root

Node,

								Matrix4f	rootTransformation)	{

				int	numFrames	=	rootNode.getAnimationFrames();

				List<AnimatedFrame>	frameList	=	new	ArrayList<>();

				for	(int	i	=	0;	i	<	numFrames;	i++)	{

								AnimatedFrame	frame	=	new	AnimatedFrame();

								frameList.add(frame);

								int	numBones	=	boneList.size();

								for	(int	j	=	0;	j	<	numBones;	j++)	{

												Bone	bone	=	boneList.get(j);

												Node	node	=	rootNode.findByName(bone.getBoneName());

												Matrix4f	boneMatrix	=	Node.getParentTransforms(node,	i);

												boneMatrix.mul(bone.getOffsetMatrix());

												boneMatrix	=	new	Matrix4f(rootTransformation).mul(boneMatrix);

												frame.setMatrix(j,	boneMatrix);

								}

				}

				return	frameList;

}

This	method	returns	a	list	of		AnimatedFrame		instances.	Each		AnimatedFrame		instance	will
contain	the	list	of	transformations	to	be	applied	for	each	bone	for	a	specific	frame.	This
method	just	iterates	over	the	list	that	contains	all	the	bones.	For	each	bone:

Gets	the	associated	node.
Builds	a	transformation	matrix	by	multiplying	the	transformation	of	the	associated		Node	
with	all	the	transformations	of	their	parents	up	to	the	root	node.	This	is	done	in	the
	Node.getParentTransforms		method.
It	multiplies	that	matrix	with	the	bone’s	offset	matrix.
The	final	transformation	is	calculated	by	multiplying	the	root’s	node	transformation	with
the	matrix	calculated	in	the	step	above.

The	rest	of	the	changes	in	the	source	code	are	minor	changes	to	adapt	some	structures.	At
the	end	you	will	be	able	to	load	animations	like	this	one	(you	need	yo	press	space	par	to
change	the	frame).

Assimp

343
www.dbooks.org

https://www.dbooks.org/

The	complexity	of	this	sample	resides	more	in	the	adaptations	of	the	assimp	structures	to
adapt	it	to	the	engine	used	in	the	book	and	to	pre-calculate	the	data	for	each	frame.	Beyond
that,	the	concepts	are	similar	to	the	ones	presented	in	the	animations	chapter.	You	may	try
also	to	modify	the	source	code	to	interpolate	between	frames	to	get	smoother	animations.

Assimp

344

Deferred	Shading
Up	to	now	the	way	that	we	are	rendering	a	3D	scene	is	called	forward	rendering.	We	first
render	the	3D	objects	and	apply	the	texture	and	lightning	effects	in	a	fragment	shader.	This
method	is	not	very	efficient	if	we	have	a	complex	fragment	shader	pass	with	many	lights	and
complex	effects.	In	addition	to	that	we	may	end	up	applying	these	effects	to	fragments	that
may	be	later	on	discarded	due	to	depth	testing	(although	this	is	not	exactly	true	if	we	enable
early	fragment	testing).

In	order	to	alleviate	the	problems	described	above	we	may	change	thy	way	that	we	render
the	scene	by	using	a	technical	called	deferred	shading.	With	deferred	shading	we	first
render	the	geometry	information	that	is	required	in	later	stages	(in	the	fragment	shader)	to	a
buffer.	The	complex	calculus	required	by	the	fragment	shader	are	postponed,	deferred,	to	a
later	stage	when	using	the	information	stored	in	those	buffers.

Hence,	with	deferred	shading	we	perform	two	rendering	passes.	The	first	one,	is	the
geometry	pass,	where	we	render	the	scene	to	a	buffer	that	will	contain	the	following
information:

The	positions	(in	our	case	in	light	view	coordinate	system,	although	you	may	see	other
samples	where	world	coordinates	are	used).
The	diffuse	colours	for	each	position.
The	specular	component	for	each	position.
The	normals	at	each	position	(also	in	light	view	coordinate	system).
Shadow	map	for	the	directional	light	(you	may	find	that	this	step	is	done	separately	in
other	implementations).

All	that	information	is	stored	in	a	buffer	called	G-Buffer.

The	second	pass,	is	called,	the	lightning	pass.	This	pass	takes	a	quad	that	fills	up	all	the
screen	and	generates	the	colour	information	for	each	fragment	using	the	information
contained	in	the	G-Buffer.	When	we	will	be	performing	the	lightning	pass,	the	depth	test	will
have	already	removed	all	the	scene	data	that	would	not	be	seen.	Hence,	the	number	of
operations	to	be	done	are	restricted	to	what	will	be	displayed	on	the	screen.

Deferred	Shading

345
www.dbooks.org

https://www.khronos.org/opengl/wiki/Early_Fragment_Test
https://www.dbooks.org/

You	may	be	asking	if	performing	additional	rendering	passes	will	result	in	an	increase	of
performance	or	not.	The	answer	is	that	it	depends.	Deferred	shading	is	usually	used	when
you	have	many	different	light	passes.	In	this	case,	the	additional	rendering	steps	are
compensated	by	the	reduction	of	operations	that	will	be	done	in	the	fragment	shader.

So	let’s	start	coding.	The	first	task	that	we	will	be	doing	is	create	a	new	class	for	the	G-
Buffer.	The	class,	named		GBuffer	,	is	defined	like	this:

package	org.lwjglb.engine.graph;

import	org.lwjgl.system.MemoryStack;

import	org.lwjglb.engine.Window;

import	java.nio.ByteBuffer;

import	java.nio.IntBuffer;

import	static	org.lwjgl.opengl.GL11.*;

import	static	org.lwjgl.opengl.GL20.*;

import	static	org.lwjgl.opengl.GL30.*;

public	class	GBuffer	{

				private	static	final	int	TOTAL_TEXTURES	=	6;

				private	int	gBufferId;

				private	int[]	textureIds;

				private	int	width;

				private	int	height;

The	class	defines	a	constant	that	models	the	maximum	number	of	buffers	to	be	used.	The
identifier	associated	to	the	G-Buffer	itself	and	an	array	for	the	individual	buffers.	The	size	of
the	screen	is	also	stored.

Deferred	Shading

346

Let’s	review	the	constructor:

public	GBuffer(Window	window)	throws	Exception	{

				//	Create	G-Buffer

				gBufferId	=	glGenFramebuffers();

				glBindFramebuffer(GL_DRAW_FRAMEBUFFER,	gBufferId);

				textureIds	=	new	int[TOTAL_TEXTURES];

				glGenTextures(textureIds);

				this.width	=	window.getWidth();

				this.height	=	window.getHeight();

				//	Create	textures	for	position,	diffuse	color,	specular	color,	normal,	shadow	fac

tor	and	depth

				//	All	coordinates	are	in	world	coordinates	system

				for(int	i=0;	i<TOTAL_TEXTURES;	i++)	{

								glBindTexture(GL_TEXTURE_2D,	textureIds[i]);

								int	attachmentType;

								switch(i)	{

												case	TOTAL_TEXTURES	-	1:

																//	Depth	component

																glTexImage2D(GL_TEXTURE_2D,	0,	GL_DEPTH_COMPONENT32F,	width,	height,	0

,	GL_DEPTH_COMPONENT,	GL_FLOAT,

																								(ByteBuffer)	null);

																attachmentType	=	GL_DEPTH_ATTACHMENT;

																break;

												default:

																glTexImage2D(GL_TEXTURE_2D,	0,	GL_RGB32F,	width,	height,	0,	GL_RGB,	GL

_FLOAT,	(ByteBuffer)	null);

																attachmentType	=	GL_COLOR_ATTACHMENT0	+	i;

																break;

								}

								//	For	sampling

								glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,	GL_NEAREST);

								glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,	GL_NEAREST);

								//	Attach	the	the	texture	to	the	G-Buffer

								glFramebufferTexture2D(GL_FRAMEBUFFER,	attachmentType,	GL_TEXTURE_2D,	textureI

ds[i],	0);

				}

				try	(MemoryStack	stack	=	MemoryStack.stackPush())	{

								IntBuffer	intBuff	=	stack.mallocInt(TOTAL_TEXTURES);

								int	values[]	=	{GL_COLOR_ATTACHMENT0,	GL_COLOR_ATTACHMENT1,	GL_COLOR_ATTACHMEN

T2,	GL_COLOR_ATTACHMENT3,	GL_COLOR_ATTACHMENT4,	GL_COLOR_ATTACHMENT5};

								for(int	i	=	0;	i	<	values.length;	i++)	{

												intBuff.put(values[i]);

								}

								intBuff.flip();

								glDrawBuffers(intBuff);

				}

Deferred	Shading

347
www.dbooks.org

https://www.dbooks.org/

				//	Unbind

				glBindFramebuffer(GL_FRAMEBUFFER,	0);

}

The	first	thing	that	we	do	is	create	a	frame	buffer.	Remember	that	a	frame	buffer	is	just	an
OpenGL	objects	that	can	be	used	to	render	operations	instead	of	rendering	to	the	screen.
Then	we	generate	a	set	of	textures	(6	textures),	that	will	be	associated	to	the	frame	buffer.

After	that,	we	use	a	foor	loop	to	initialize	the	textures.	We	have	the	following	types:

“Regular	textures”,	that	will	store	positions,	normals,	the	diffuse	component,	etc.
A	texture	for	storing	the	depth	buffer.	This	will	be	our	last	texture.

Once	the	texture	has	been	initialized,	we	enable	sampling	for	them	and	attach	them	to	the
frame	buffer.	Each	texture	is	attached	using	and	identifier	which	starts	at
	GL_COLOR_ATTACHMENT0	.	Each	texture	increments	by	one	that	id,	so	the	positions	are	attached
using		GL_COLOR_ATTACHMENT0	,	the	diffuse	component	uses		GL_COLOR_ATTACHMENT1		(which	is
	GL_COLOR_ATTACHMENT0	+	1),	and	so	on.

After	all	the	textures	have	been	created,	we	need	to	enable	them	to	be	used	by	the	fargment
shader	for	rendering.	This	is	done	with	the		glDrawBuffers	call.	We	just	pass	the	array	with
the	idefintifiers	of	the	colour	attachments	used	(GL_COLOR_	ATTACHMENT0		to
	GL_COLOR_ATTACHMENT5).

The	rest	of	the	class	are	just	getter	methods	and	the	cleanup	one.

Deferred	Shading

348

public	int	getWidth()	{

				return	width;

}

public	int	getHeight()	{

				return	height;

}

public	int	getGBufferId()	{

				return	gBufferId;

}

public	int[]	getTextureIds()	{

				return	textureIds;

}

public	int	getPositionTexture()	{

				return	textureIds[0];

}

public	int	getDepthTexture()	{

				return	textureIds[TOTAL_TEXTURES-1];

}

public	void	cleanUp()	{

				glDeleteFramebuffers(gBufferId);

				if	(textureIds	!=	null)	{

								for	(int	i=0;	i<TOTAL_TEXTURES;	i++)	{

												glDeleteTextures(textureIds[i]);

								}

				}

}

We	will	create	a	new	class	named		SceneBuffer	which	is	just	another	frame	buffer.	We	will
use	it	when	performing	the	light	pass.	Instead	of	rendering	directly	to	the	screen	we	will
render	to	this	frame	buffer.	By	doing	it	this	way,	we	can	apply	the	rest	of	the	effects	(such	us
fog,	skybox,	etc.).	The	class	is	defined	like	this.

package	org.lwjglb.engine.graph;

import	org.lwjglb.engine.Window;

import	java.nio.ByteBuffer;

import	static	org.lwjgl.opengl.GL11.*;

import	static	org.lwjgl.opengl.GL30.*;

public	class	SceneBuffer	{

Deferred	Shading

349
www.dbooks.org

https://www.dbooks.org/

				private	int	bufferId;

				private	int	textureId;

				public	SceneBuffer(Window	window)	throws	Exception	{

								//	Create	the	buffer

								bufferId	=	glGenFramebuffers();

								glBindFramebuffer(GL_DRAW_FRAMEBUFFER,	bufferId);

								//	Create	texture

								int[]	textureIds	=	new	int[1];

								glGenTextures(textureIds);

								textureId	=	textureIds[0];

								glBindTexture(GL_TEXTURE_2D,	textureId);

								glTexImage2D(GL_TEXTURE_2D,	0,	GL_RGB32F,	window.getWidth(),	window.getHeight(

),	0,	GL_RGB,	GL_FLOAT,	(ByteBuffer)	null);

								//	For	sampling

								glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_MIN_FILTER,	GL_NEAREST);

								glTexParameterf(GL_TEXTURE_2D,	GL_TEXTURE_MAG_FILTER,	GL_NEAREST);

								//	Attach	the	the	texture	to	the	G-Buffer

								glFramebufferTexture2D(GL_FRAMEBUFFER,	GL_COLOR_ATTACHMENT0,	GL_TEXTURE_2D,	te

xtureId,	0);

								//	Unbind

								glBindFramebuffer(GL_FRAMEBUFFER,	0);

				}

				public	int	getBufferId()	{

								return	bufferId;

				}

				public	int	getTextureId()	{

								return	textureId;

				}

				public	void	cleanup()	{

								glDeleteFramebuffers(bufferId);

								glDeleteTextures(textureId);

				}

}

As	you	can	see,	is	similar	to	the		GBuffer	class,	but	here	we	will	only	use	a	single	texture	to
store	the	resulting	colours.	Now	that	we	have	created	these	new	classes,	we	can	start	using
them.	In	the		Renderer	class,	we	will	no	longer	be	using	the	forward	rendering	shaders	we
were	using	for	rendering	the	scene	(named		“scene_vertex.vs”		and		“scene_fragment.fs”).

Deferred	Shading

350

In	the		init		method	of	the		Renderer		class	you	may	see	that	a		GBuffer		instance	is	created
and	that	we	initialize	and	another	set	of	shaders	for	the	geometry	pass	(by	calling	the
	setupGeometryShader		method)	and	the	light	pass	(by	calling	the		setupDirLightShader		and
	setupPointLightShader		methods).	You	may	see	also	tha	we	create	a	instance	of	the	class
	SceneBuffer		named		sceneBuffer	.	This	will	be	used	when	rendering	lights	as	explained
before.	An	utility	matrix	named		bufferPassModelMatrix		is	also	instantiated	(it	will	be	used
when	performing	the	geometry	pass).	You	can	see	that	we	create	a	new		Mesh		at	the	end	of
the	init	method.	This	will	be	used	in	the	light	pass.	More	on	this	will	be	explained	later.

public	void	init(Window	window)	throws	Exception	{

				shadowRenderer.init(window);

				gBuffer	=	new	GBuffer(window);

				sceneBuffer	=	new	SceneBuffer(window);

				setupSkyBoxShader();

				setupParticlesShader();

				setupGeometryShader();

				setupDirLightShader();

				setupPointLightShader();

				setupFogShader();

				bufferPassModelMatrix	=		new	Matrix4f();

				bufferPassMesh	=	StaticMeshesLoader.load("src/main/resources/models/buffer_pass_me

ss.obj",	"src/main/resources/models")[0];

}

The	shaders	used	in	the	geometry	and	light	passes	are	defined	like	usual	(you	can	check
the	source	code	directly).	Let’s	focus	in	their	content	instead.	Let’s	focus	in	their	content
instead.	We	will	start	with	the	geomety	pass,	here’s	the	vertex	shader	code
(gbuffer_vertex.vs):

#version	330

const	int	MAX_WEIGHTS	=	4;

const	int	MAX_JOINTS	=	150;

const	int	NUM_CASCADES	=	3;

layout	(location=0)	in	vec3	position;

layout	(location=1)	in	vec2	texCoord;

layout	(location=2)	in	vec3	vertexNormal;

layout	(location=3)	in	vec4	jointWeights;

layout	(location=4)	in	ivec4	jointIndices;

layout	(location=5)	in	mat4	modelInstancedMatrix;

layout	(location=9)	in	vec2	texOffset;

layout	(location=10)	in	float	selectedInstanced;

uniform	int	isInstanced;

uniform	mat4	viewMatrix;

uniform	mat4	projectionMatrix;

Deferred	Shading

351
www.dbooks.org

https://www.dbooks.org/

uniform	mat4	modelNonInstancedMatrix;

uniform	mat4	jointsMatrix[MAX_JOINTS];

uniform	mat4	lightViewMatrix[NUM_CASCADES];

uniform	mat4	orthoProjectionMatrix[NUM_CASCADES];

uniform	int	numCols;

uniform	int	numRows;

uniform	float	selectedNonInstanced;

out	vec2		vs_textcoord;

out	vec3		vs_normal;

out	vec4		vs_mvVertexPos;

out	vec4		vs_mlightviewVertexPos[NUM_CASCADES];

out	mat4		vs_modelMatrix;

out	float	vs_selected;

void	main()

{

				vec4	initPos	=	vec4(0,	0,	0,	0);

				vec4	initNormal	=	vec4(0,	0,	0,	0);

				mat4	modelMatrix;

				if	(isInstanced	>	0)

				{

								vs_selected	=	selectedInstanced;

								modelMatrix	=	modelInstancedMatrix;

								initPos	=	vec4(position,	1.0);

								initNormal	=	vec4(vertexNormal,	0.0);

				}

				else

				{

								vs_selected	=	selectedNonInstanced;

								modelMatrix	=	modelNonInstancedMatrix;

								int	count	=	0;

								for(int	i	=	0;	i	<	MAX_WEIGHTS;	i++)

								{

												float	weight	=	jointWeights[i];

												if(weight	>	0)	{

																count++;

																int	jointIndex	=	jointIndices[i];

																vec4	tmpPos	=	jointsMatrix[jointIndex]	*	vec4(position,	1.0);

																initPos	+=	weight	*	tmpPos;

																vec4	tmpNormal	=	jointsMatrix[jointIndex]	*	vec4(vertexNormal,	0.0);

																initNormal	+=	weight	*	tmpNormal;

												}

								}

								if	(count	==	0)

								{

												initPos	=	vec4(position,	1.0);

												initNormal	=	vec4(vertexNormal,	0.0);

								}

				}

Deferred	Shading

352

				mat4	modelViewMatrix	=	viewMatrix	*	modelMatrix;

				vs_mvVertexPos	=	modelViewMatrix	*	initPos;

				gl_Position	=	projectionMatrix	*	vs_mvVertexPos;

				//	Support	for	texture	atlas,	update	texture	coordinates

				float	x	=	(texCoord.x	/	numCols	+	texOffset.x);

				float	y	=	(texCoord.y	/	numRows	+	texOffset.y);

				vs_textcoord	=	vec2(x,	y);

				vs_normal	=	normalize(modelViewMatrix	*	initNormal).xyz;

				for	(int	i	=	0	;	i	<	NUM_CASCADES	;	i++)	{

								vs_mlightviewVertexPos[i]	=	orthoProjectionMatrix[i]	*	lightViewMatrix[i]	*	mo

delMatrix	*	initPos;

				}

				vs_modelMatrix	=	modelMatrix;

}

This	shader	is	very	similar	to	the	vertex	shader	used	in	previous	chapters	to	render	a	scene.
There	are	some	changes	in	the	name	of	the	output	variables	but	in	essence	is	the	same
shader.	Indeed,	it	should	be	almost	the	same,	the	way	we	render	the	vertices	should	not
change,	the	major	changes	are	done	in	the	fragment	shader,	which	is	defined	like	this
(gbuffer_fragment.fs):

#version	330

const	int	NUM_CASCADES	=	3;

in	vec2		vs_textcoord;

in	vec3		vs_normal;

in	vec4		vs_mvVertexPos;

in	vec4		vs_mlightviewVertexPos[NUM_CASCADES];

in	mat4		vs_modelMatrix;

in	float	vs_selected;

layout	(location	=	0)	out	vec3	fs_worldpos;

layout	(location	=	1)	out	vec3	fs_diffuse;

layout	(location	=	2)	out	vec3	fs_specular;

layout	(location	=	3)	out	vec3	fs_normal;

layout	(location	=	4)	out	vec2	fs_shadow;

uniform	mat4	viewMatrix;

struct	Material

{

				vec4	diffuse;

				vec4	specular;

				int	hasTexture;

				int	hasNormalMap;

Deferred	Shading

353
www.dbooks.org

https://www.dbooks.org/

				float	reflectance;

};

uniform	sampler2D	texture_sampler;

uniform	sampler2D	normalMap;

uniform	Material		material;

uniform	sampler2D	shadowMap_0;

uniform	sampler2D	shadowMap_1;

uniform	sampler2D	shadowMap_2;

uniform	float	cascadeFarPlanes[NUM_CASCADES];

uniform	mat4	orthoProjectionMatrix[NUM_CASCADES];

uniform	int	renderShadow;

vec4	diffuseC;

vec4	speculrC;

void	getColour(Material	material,	vec2	textCoord)

{

				if	(material.hasTexture	==	1)

				{

								diffuseC	=	texture(texture_sampler,	textCoord);

								speculrC	=	diffuseC;

				}

				else

				{

								diffuseC	=	material.diffuse;

								speculrC	=	material.specular;

				}

}

vec3	calcNormal(Material	material,	vec3	normal,	vec2	text_coord,	mat4	modelMatrix)

{

				vec3	newNormal	=	normal;

				if	(material.hasNormalMap	==	1)

				{

								newNormal	=	texture(normalMap,	text_coord).rgb;

								newNormal	=	normalize(newNormal	*	2	-	1);

								newNormal	=	normalize(viewMatrix	*	modelMatrix	*	vec4(newNormal,	0.0)).xyz;

				}

				return	newNormal;

}

float	calcShadow(vec4	position,	int	idx)

{

				if	(renderShadow	==	0)

				{

								return	1.0;

				}

				vec3	projCoords	=	position.xyz;

				//	Transform	from	screen	coordinates	to	texture	coordinates

				projCoords	=	projCoords	*	0.5	+	0.5;

Deferred	Shading

354

				float	bias	=	0.005;

				float	shadowFactor	=	0.0;

				vec2	inc;

				if	(idx	==	0)

				{

								inc	=	1.0	/	textureSize(shadowMap_0,	0);

				}

				else	if	(idx	==	1)

				{

								inc	=	1.0	/	textureSize(shadowMap_1,	0);

				}

				else

				{

								inc	=	1.0	/	textureSize(shadowMap_2,	0);

				}

				for(int	row	=	-1;	row	<=	1;	++row)

				{

								for(int	col	=	-1;	col	<=	1;	++col)

								{

												float	textDepth;

												if	(idx	==	0)

												{

																textDepth	=	texture(shadowMap_0,	projCoords.xy	+	vec2(row,	col)	*	inc)

.r;	

												}

												else	if	(idx	==	1)

												{

																textDepth	=	texture(shadowMap_1,	projCoords.xy	+	vec2(row,	col)	*	inc)

.r;	

												}

												else

												{

																textDepth	=	texture(shadowMap_2,	projCoords.xy	+	vec2(row,	col)	*	inc)

.r;	

												}

												shadowFactor	+=	projCoords.z	-	bias	>	textDepth	?	1.0	:	0.0;								

								}				

				}

				shadowFactor	/=	9.0;

				if(projCoords.z	>	1.0)

				{

								shadowFactor	=	1.0;

				}

				return	1	-	shadowFactor;

}	

void	main()

{

				getColour(material,	vs_textcoord);

Deferred	Shading

355
www.dbooks.org

https://www.dbooks.org/

				fs_worldpos			=	vs_mvVertexPos.xyz;

				fs_diffuse				=	diffuseC.xyz;

				fs_specular			=	speculrC.xyz;

				fs_normal					=	normalize(calcNormal(material,	vs_normal,	vs_textcoord,	vs_modelMa

trix));

				int	idx;

				for	(int	i=0;	i<NUM_CASCADES;	i++)

				{

								if	(abs(vs_mvVertexPos.z)	<	cascadeFarPlanes[i])

								{

												idx	=	i;

												break;

								}

				}

				fs_shadow		=	vec2(calcShadow(vs_mlightviewVertexPos[idx],	idx),	material.reflectan

ce);

				if	(vs_selected	>	0)	{

								fs_diffuse	=	vec3(fs_diffuse.x,	fs_diffuse.y,	1);

				}

}

The	most	relevant	lines	areThe	most	relevant	lines	are:

layout	(location	=	0)	out	vec3	fs_worldpos;

layout	(location	=	1)	out	vec3	fs_diffuse;

layout	(location	=	2)	out	vec3	fs_specular;

layout	(location	=	3)	out	vec3	fs_normal;

layout	(location	=	4)	out	vec2	fs_shadow;

This	is	where	we	are	referring	to	the	textures	that	this	fragment	shader	will	write	to.	As	you
can	see	we	just	dump	the	position	(in	light	view	coordinates),	the	diffuse	colour	(which	can
be	the	colour	of	the	associated	texture	of	a	component	of	the	material),	the	specular
component,	the	normal,	and	the	depth	values	for	the	shadow	map.

SIDE	NOTE:	We	have	simplified	the		Material	class	definition	removing	the	ambient	colour
component.

Going	back	to	the		Renderer		class,	the	render	method	is	defined	like	this:

Deferred	Shading

356

public	void	render(Window	window,	Camera	camera,	Scene	scene,	boolean	sceneChanged)	{

				clear();

				if	(window.getOptions().frustumCulling)	{

								frustumFilter.updateFrustum(window.getProjectionMatrix(),	camera.getViewMatrix

());

								frustumFilter.filter(scene.getGameMeshes());

								frustumFilter.filter(scene.getGameInstancedMeshes());

				}

				//	Render	depth	map	before	view	ports	has	been	set	up

				if	(scene.isRenderShadows()	&&	sceneChanged)	{

								shadowRenderer.render(window,	scene,	camera,	transformation,	this);

				}

				glViewport(0,	0,	window.getWidth(),	window.getHeight());

				//	Update	projection	matrix	once	per	render	cycle

				window.updateProjectionMatrix();

				renderGeometry(window,	camera,	scene);

				initLightRendering();

				renderPointLights(window,	camera,	scene);

				renderDirectionalLight(window,	camera,	scene);

				endLightRendering();

				renderFog(window,	camera,	scene);

				renderSkyBox(window,	camera,	scene);

				renderParticles(window,	camera,	scene);

}

The	geometry	pass	is	done	in	the		renderGeometry		method	(you	can	see	that	we	no	longer
have	a		renderScene).	The	lightning	pass	is	done	in	several	steps,	first	we	setup	the	buffer
and	other	parameters	to	be	used	(initLightRendering),	then	we	render	point	lights
(renderPointLights)	and	the	directional	light	(renderDirectionalLight)and	finally	the	state
is	restored	(endLightRendering).

Let’s	start	with	the	gemeotry	pass.	The		renderGeometry		method	is	almost	equivalent	to	the
	renderScene		method	used	in	previous	chapters:

Deferred	Shading

357
www.dbooks.org

https://www.dbooks.org/

private	void	renderGeometry(Window	window,	Camera	camera,	Scene	scene)	{

				//	Render	G-Buffer	for	writing

				glBindFramebuffer(GL_DRAW_FRAMEBUFFER,	gBuffer.getGBufferId());

				clear();

				glDisable(GL_BLEND);

				gBufferShaderProgram.bind();

				Matrix4f	viewMatrix	=	camera.getViewMatrix();

				Matrix4f	projectionMatrix	=	window.getProjectionMatrix();

				gBufferShaderProgram.setUniform("viewMatrix",	viewMatrix);

				gBufferShaderProgram.setUniform("projectionMatrix",	projectionMatrix);

				gBufferShaderProgram.setUniform("texture_sampler",	0);

				gBufferShaderProgram.setUniform("normalMap",	1);

				List<ShadowCascade>	shadowCascades	=	shadowRenderer.getShadowCascades();

				for	(int	i	=	0;	i	<	ShadowRenderer.NUM_CASCADES;	i++)	{

								ShadowCascade	shadowCascade	=	shadowCascades.get(i);

								gBufferShaderProgram.setUniform("orthoProjectionMatrix",	shadowCascade.getOrth

oProjMatrix(),	i);

								gBufferShaderProgram.setUniform("cascadeFarPlanes",	ShadowRenderer.CASCADE_SPL

ITS[i],	i);

								gBufferShaderProgram.setUniform("lightViewMatrix",	shadowCascade.getLightViewM

atrix(),	i);

				}

				shadowRenderer.bindTextures(GL_TEXTURE2);

				int	start	=	2;

				for	(int	i	=	0;	i	<	ShadowRenderer.NUM_CASCADES;	i++)	{

								gBufferShaderProgram.setUniform("shadowMap_"	+	i,	start	+	i);

				}

				gBufferShaderProgram.setUniform("renderShadow",	scene.isRenderShadows()	?	1	:	0);

				renderNonInstancedMeshes(scene);

				renderInstancedMeshes(scene,	viewMatrix);

				gBufferShaderProgram.unbind();

				glEnable(GL_BLEND);

}

The	only	differences	are:

We	bind	to	the	G-Buffer	instead	of	the	screen.
We	disable	blending.	Since	we	just	want	to	work	with	the	values	that	are	closest	to	the
camera	(the	lowest	depth	values),	we	do	not	need	blending.

Deferred	Shading

358

If	you	debug	the	sample	execution	with	an	OpenGL	debugger	(such	as	RenderDoc),	you
can	view	the	textures	generated	during	the	geometry	pass.	The	positions	texture	will	look
like	this:

The	texture	that	holds	the	values	for	the	diffuse	component	will	look	like	this:

The	texture	that	holds	the	values	for	the	normals	will	look	like	this:

Deferred	Shading

359
www.dbooks.org

https://www.dbooks.org/

Now	it’s	the	turn	of	the	ligh	pass.	We	first	need	to	set	up	a	few	things	before	rendering,	this
is	don	in	the		initLightRendering		method:

private	void	initLightRendering()	{

				//	Bind	scene	buffer

				glBindFramebuffer(GL_FRAMEBUFFER,	sceneBuffer.getBufferId());

				//	Clear	G-Buffer

				clear();

				//	Disable	depth	testing	to	allow	the	drawing	of	multiple	layers	with	the	same	dep

th

				glDisable(GL_DEPTH_TEST);

				glEnable(GL_BLEND);

				glBlendEquation(GL_FUNC_ADD);

				glBlendFunc(GL_ONE,	GL_ONE);

				//	Bind	GBuffer	for	reading

				glBindFramebuffer(GL_READ_FRAMEBUFFER,	gBuffer.getGBufferId());

}

Since	we	won’t	be	rendering	to	the	screen	,we	need	to	first	bind	to	the	texture	that	will	hold
the	results	of	the	lightning	pass.	Then	we	clear	that	buffer	and	disable	depth	testing.	This	is
not	required	any	more,	depth	testing	has	been	already	done	in	the	geometry	pass.	Another
important	step	is	to	enable	blending.	The	last	action	is	to	enable	the	G-Buffer	for	reading,	it
will	be	used	during	the	light	pass.

Deferred	Shading

360

Before	analyzing	the	render	methods	for	the	different	types	of	light,	let’s	think	a	little	bit
about	how	we	will	render	the	lights.	We	need	to	use	the	contents	of	the	G-Buffer,	but	in	order
to	use	them,	we	need	to	first	render	something.	But,	we	have	already	drawn	the	scene,	what
are	we	going	to	render.	now?	The	answer	is	simple,	we	just	need	to	render	a	quad	that	fills
all	the	screen.	For	each	fragment	of	that	quad,	we	will	use	the	data	contained	in	the	G-Buffer
and	generate	the	correct	output	colour.	Do	you	remember	the		Mesh		that	we	loaded	in	the
init	method	of	the		Renderer		class?	It	was	named		bufferPassMesh	,	and	it	just	contains	that,
a	quad	that	fills	up	the	whole	screen.

So,	how	the	vertex	shader	for	the	light	pass	looks	like?

#version	330

layout	(location=0)	in	vec3	position;

uniform	mat4	projectionMatrix;

uniform	mat4	modelMatrix;

void	main()

{

				gl_Position	=	projectionMatrix	*	modelMatrix	*	vec4(position,	1.0);

}

The	code	above	is	the	vertex	shader	used	when	rendering	point	lights	and	directional	light
(light_vertex.vs).	It	just	dumps	the	vertices	using	the	model	matrix	and	a	projection	matrix.
There’s	no	need	to	use	a	view	matrix,	we	don’t	need	a	camera	here.

The	fragment	shader	for	point	lights	(point_light_fragment.fs)	is	defined	like	this:

#version	330

out	vec4	fragColor;

struct	Attenuation

{

				float	constant;

				float	linear;

				float	exponent;

};

struct	PointLight

{

				vec3	colour;

				//	Light	position	is	assumed	to	be	in	view	coordinates

				vec3	position;

				float	intensity;

				Attenuation	att;

};

Deferred	Shading

361
www.dbooks.org

https://www.dbooks.org/

uniform	sampler2D	positionsText;

uniform	sampler2D	diffuseText;

uniform	sampler2D	specularText;

uniform	sampler2D	normalsText;

uniform	sampler2D	shadowText;

uniform	sampler2D	depthText;

uniform	vec2	screenSize;

uniform	float	specularPower;

uniform	PointLight	pointLight;

vec2	getTextCoord()

{

				return	gl_FragCoord.xy	/	screenSize;

}

vec4	calcLightColour(vec4	diffuseC,	vec4	speculrC,	float	reflectance,	vec3	light_colou

r,	float	light_intensity,	vec3	position,	vec3	to_light_dir,	vec3	normal)

{

				vec4	diffuseColour	=	vec4(0,	0,	0,	1);

				vec4	specColour	=	vec4(0,	0,	0,	1);

				//	Diffuse	Light

				float	diffuseFactor	=	max(dot(normal,	to_light_dir),	0.0);

				diffuseColour	=	diffuseC	*	vec4(light_colour,	1.0)	*	light_intensity	*	diffuseFact

or;

				//	Specular	Light

				vec3	camera_direction	=	normalize(-position);

				vec3	from_light_dir	=	-to_light_dir;

				vec3	reflected_light	=	normalize(reflect(from_light_dir	,	normal));

				float	specularFactor	=	max(dot(camera_direction,	reflected_light),	0.0);

				specularFactor	=	pow(specularFactor,	specularPower);

				specColour	=	speculrC	*	light_intensity		*	specularFactor	*	reflectance	*	vec4(lig

ht_colour,	1.0);

				return	(diffuseColour	+	specColour);

}

vec4	calcPointLight(vec4	diffuseC,	vec4	speculrC,	float	reflectance,	PointLight	light,

	vec3	position,	vec3	normal)

{

				vec3	light_direction	=	light.position	-	position;

				vec3	to_light_dir		=	normalize(light_direction);

				vec4	light_colour	=	calcLightColour(diffuseC,	speculrC,	reflectance,	light.colour,

	light.intensity,	position,	to_light_dir,	normal);

				//	Apply	Attenuation

				float	distance	=	length(light_direction);

				float	attenuationInv	=	light.att.constant	+	light.att.linear	*	distance	+

								light.att.exponent	*	distance	*	distance;

				return	light_colour	/	attenuationInv;

Deferred	Shading

362

}

void	main()

{

				vec2	textCoord	=	getTextCoord();

				float	depth	=	texture(depthText,	textCoord).r;

				vec3	worldPos	=	texture(positionsText,	textCoord).xyz;

				vec4	diffuseC	=	texture(diffuseText,	textCoord);

				vec4	speculrC	=	texture(specularText,	textCoord);

				vec3	normal		=	texture(normalsText,	textCoord).xyz;

				float	shadowFactor	=	texture(shadowText,	textCoord).r;

				float	reflectance	=	texture(shadowText,	textCoord).g;

				fragColor	=	calcPointLight(diffuseC,	speculrC,	reflectance,	pointLight,	worldPos.x

yz,	normal.xyz)	*	shadowFactor;

}

As	you	can	see	it	contains	functions	that	sound	familiar	to	you.	They	were	used	in	previous
chapters	in	the	scene	fragment	shader.	The	important	things	here	to	note	are	the	following
lines:

uniform	sampler2D	positionsText;

uniform	sampler2D	diffuseText;

uniform	sampler2D	specularText;

uniform	sampler2D	normalsText;

uniform	sampler2D	shadowText;

uniform	sampler2D	depthText;

These	uniforms	model	the	different	textures	that	compose	the	G-Buffer.	We	will	use	them	to
access	the	data.	You	may	be	asking	now,	how	do	we	know	which	pixel	to	peek	from	those
textures	when	we	are	rendering	a	fragment?	The	answer	is	by	using	the		gl_FragCoord	input
variable.	This	variable	contains	the	windows	relative	coordinates	for	the	current	fragment.	To
transform	from	that	coordinates	system	to	the	textures	one	we	use	this	function:

vec2	getTextCoord()

{

				return	gl_FragCoord.xy	/	screenSize;

}

The	fragment	shader	for	the	directional	light	is	also	quite	similar,	you	can	check	the	source
code.	Now	that	the	shaders	have	been	presented,	let’s	go	back	to	the		Renderer		class.	For
point	lights	we	will	do	as	many	passes	as	lights	are,	we	just	bind	the	shaders	used	for	this
type	of	lights	and	draw	the	quad	for	each	of	them.

Deferred	Shading

363
www.dbooks.org

https://www.dbooks.org/

private	void	renderPointLights(Window	window,	Camera	camera,	Scene	scene)	{

				pointLightShaderProgram.bind();

				Matrix4f	viewMatrix	=	camera.getViewMatrix();

				Matrix4f	projectionMatrix	=	window.getProjectionMatrix();

				pointLightShaderProgram.setUniform("modelMatrix",	bufferPassModelMatrix);

				pointLightShaderProgram.setUniform("projectionMatrix",	projectionMatrix);

				//	Specular	factor

				pointLightShaderProgram.setUniform("specularPower",	specularPower);

				//	Bind	the	G-Buffer	textures

				int[]	textureIds	=	this.gBuffer.getTextureIds();

				int	numTextures	=	textureIds	!=	null	?	textureIds.length	:	0;

				for	(int	i=0;	i<numTextures;	i++)	{

								glActiveTexture(GL_TEXTURE0	+	i);

								glBindTexture(GL_TEXTURE_2D,	textureIds[i]);

				}

				pointLightShaderProgram.setUniform("positionsText",	0);

				pointLightShaderProgram.setUniform("diffuseText",	1);

				pointLightShaderProgram.setUniform("specularText",	2);

				pointLightShaderProgram.setUniform("normalsText",	3);

				pointLightShaderProgram.setUniform("shadowText",	4);

				pointLightShaderProgram.setUniform("screenSize",	(float)	gBuffer.getWidth(),	(float

)gBuffer.getHeight());

				SceneLight	sceneLight	=	scene.getSceneLight();

				PointLight[]	pointLights	=	sceneLight.getPointLightList();

				int	numPointLights	=	pointLights	!=	null	?	pointLights.length	:	0;

				for(int	i=0;	i<numPointLights;	i++)	{

								//	Get	a	copy	of	the	point	light	object	and	transform	its	position	to	view	coo

rdinates

								PointLight	currPointLight	=	new	PointLight(pointLights[i]);

								Vector3f	lightPos	=	currPointLight.getPosition();

								tmpVec.set(lightPos,	1);

								tmpVec.mul(viewMatrix);

								lightPos.x	=	tmpVec.x;

								lightPos.y	=	tmpVec.y;

								lightPos.z	=	tmpVec.z;

								pointLightShaderProgram.setUniform("pointLight",	currPointLight);

								bufferPassMesh.render();

				}

				pointLightShaderProgram.unbind();

}

The	approach	is	quite	similar	for	directional	light.	In	this	case,	we	just	use	do	one	pass:

Deferred	Shading

364

private	void	renderDirectionalLight(Window	window,	Camera	camera,	Scene	scene)	{

				dirLightShaderProgram.bind();

				Matrix4f	viewMatrix	=	camera.getViewMatrix();

				Matrix4f	projectionMatrix	=	window.getProjectionMatrix();

				dirLightShaderProgram.setUniform("modelMatrix",	bufferPassModelMatrix);

				dirLightShaderProgram.setUniform("projectionMatrix",	projectionMatrix);

				//	Specular	factor

				dirLightShaderProgram.setUniform("specularPower",	specularPower);

				//	Bind	the	G-Buffer	textures

				int[]	textureIds	=	this.gBuffer.getTextureIds();

				int	numTextures	=	textureIds	!=	null	?	textureIds.length	:	0;

				for	(int	i=0;	i<numTextures;	i++)	{

								glActiveTexture(GL_TEXTURE0	+	i);

								glBindTexture(GL_TEXTURE_2D,	textureIds[i]);

				}

				dirLightShaderProgram.setUniform("positionsText",	0);

				dirLightShaderProgram.setUniform("diffuseText",	1);

				dirLightShaderProgram.setUniform("specularText",	2);

				dirLightShaderProgram.setUniform("normalsText",	3);

				dirLightShaderProgram.setUniform("shadowText",	4);

				dirLightShaderProgram.setUniform("screenSize",	(float)	gBuffer.getWidth(),	(float)

gBuffer.getHeight());

				//	Ambient	light

				SceneLight	sceneLight	=	scene.getSceneLight();

				dirLightShaderProgram.setUniform("ambientLight",	sceneLight.getAmbientLight());

				//	Directional	light

				//	Get	a	copy	of	the	directional	light	object	and	transform	its	position	to	view	c

oordinates

				DirectionalLight	currDirLight	=	new	DirectionalLight(sceneLight.getDirectionalLigh

t());

				tmpVec.set(currDirLight.getDirection(),	0);

				tmpVec.mul(viewMatrix);

				currDirLight.setDirection(new	Vector3f(tmpVec.x,	tmpVec.y,	tmpVec.z));

				dirLightShaderProgram.setUniform("directionalLight",	currDirLight);

				bufferPassMesh.render();

				dirLightShaderProgram.unbind();

}

The		endLightRendering		simply	retsores	the	state.

Deferred	Shading

365
www.dbooks.org

https://www.dbooks.org/

private	void	endLightRendering()	{

				//	Bind	screen	for	writing

				glBindFramebuffer(GL_FRAMEBUFFER,	0);

				glEnable(GL_DEPTH_TEST);

				glDisable(GL_BLEND);

}

If	you	execute	the	sample	you	will	see	something	like	this:

The	chapter	got	longer	that	expected	but	there	are	a	few	key	points	that	need	to	be	clarified:

Spot	lights	have	been	removed	in	order	to	simplify	this	chapter.
A	common	technique	used	in	deferred	shading,	for	point	lights,	is	just	to	calculate	the
area	of	the	scene	affected	by	that	light.	In	this	case,	instead	of	rendering	a	quad	that	fills
up	the	screen,	you	can	use	a	smaller	quad,	a	sphere,	etc.	Keep	in	mind	that	the	best	is
enemy	of	the	good.	Performing	complex	calculus	to	determine	the	smallest	shape
required	may	be	slower	than	using	other	coarse	approaches.
If	you	do	not	have	many	lights,	this	method	will	be	slower	than	forward	shading.

As	a	final	note,	if	you	want	to	see	how	these	techniques	are	used	in	real	world	games,	you
can	check	this	superb	explanation	about	how	a	GTA	V	frame	gets	rendered.

Deferred	Shading

366

http://www.adriancourreges.com/blog/2015/11/02/gta-v-graphics-study/

Appendix	A	-	OpenGL	Debugging
Debugging	an	OpenGL	program	can	be	a	daunting	task.	Most	of	the	times	you	end	up	with	a
black	screen	and	you	have	no	means	of	knowing	what’s	going	on.	In	order	to	alleviate	this
problem	we	can	use	some	existing	tools	that	will	provide	more	information	about	the
rendering	process.

In	this	annex	we	will	describe	how	to	use	the	RenderDoc	tool	to	debug	our	LWJLG
programs.	RenderDoc	is	a	graphics	debugging	tool	that	can	be	used	with	DIrect3D,	Vulkan
an	OpenGL.	In	the	case	of	OpenGL	it	only	supports	the	core	profile	from	3.2	up	to	4.5.

So	let’s	get	started.	You	need	to	downlaod	and	install	the	RenderDoc	version	for	your	OS.
Once	installed,	when	you	launch	it	you	will	see	something	similar	to	this.

The	first	step	is	to	configure	RenderDoc	to	execute	and	monitor	our	samples.	In	the
“Capture	Executable”	tab	we	need	to	setup	the	following	parameters:

Executable	path:	In	our	case	this	should	point	to	the	JVM	launcher	(For	instance,
“C:\Program	Files\Java\jdk-9\bin\java.exe”).
Working	Directory:	This	is	the	working	directory	that	will	be	setup	for	your	program.	In
our	case	it	should	be	set	to	the	target	directory	where	maven	dumps	the	result.	By
setting	this	way,	the	dependencies	will	be	able	to	be	found.
Command	line	arguments:	This	will	contain	the	arguments	required	by	the	JVM	to
execute	our	sample.	In	our	case,	just	passing	the	jar	to	be	executed	(For	instance,	“-jar
game-c28-1.0.jar”).

Appendix	A	-	OpenGL	Debugging

367
www.dbooks.org

https://renderdoc.org/
https://www.dbooks.org/

You	must	remember	that	3D	models	are	loaded	now	with	Assimp,	and	we	need	real	file	path
(no	more		CLASSPATH	related	paths),	so	you	need	to	check	the	routes	from	the	working
directory	you	have	set	up.	In	this	case,	the	easiest	approach	to	quickly	test	is	to	copy	the	src
folder	into	the	target	directory.

There	are	many	other	options	int	this	tab	to	configure	the	capture	options.	You	can	consult
their	purpose	in	RenderDoc	documentation.	Once	everything	has	been	setup	you	can
execute	your	program	by	clicking	on	the	“Launch”	button.	You	will	see	something	like	this:

You	may	see	a	Warning	since	RenderDoc	can	only	work	with	OpenGL	core	profile.	In	the
sample	we’ve	enabled	compatibiñity	profile,	but	it	should	work	even	with	that	warning.	Once
the	program	is	being	executed	you	can	triigger	snapshots	of	it.	You	will	see	that	a	new	tab
has	been	added	which	is	named	“java	[PID	XXXX]”	(where	the	XXXX	number	represents	the
PID,	the	process	identifier,	of	the	java	process).

Appendix	A	-	OpenGL	Debugging

368

http://assimp.sourceforge.net/
https://renderdoc.org/docs/index.html

From	that	tab	you	can	capture	the	state	of	your	program	by	pressing	the	“Trigger	capture”
button.	Once	a	capture	has	been	generated,	you	will	see	a	little	snapshot	in	that	same	tab.

If	you	double	click	on	that	capture,	all	the	data	collected	will	be	loaded	and	you	can	start
inspecting	it.	The	“Event	Browser”	panel	will	be	populated	will	all	the	relevant	OpenGL	calls
executed	during	one	rendering	cycle.

Appendix	A	-	OpenGL	Debugging

369
www.dbooks.org

https://www.dbooks.org/

You	can	see,	for	the	first	rendering	pass,	how	the	floor	is	drawn	and	later	on	the	mesh	that
models	the	house.	If	you	click	over	a	glDrawELements	event,	and	select	the	“Mesh”	tab	you
can	event	see	the	Mesh	that	was	drawin,	was	the	input	for	the	vertex	shader	and	its	output.

You	can	also	view	the	input	textures	used	for	that	drawing	operation	(by	clicking	the	“Texture
Viewer	Tab”).

In	the	center	panel,	you	can	see	the	output,	and	on	the	right	panel	you	can	see	the	list	of
textures	used	as	an	input.	You	can	also	view	the	output	textures	one	by	one.	This	is	very
illustrative	to	show	how	deferred	shading	works.

Appendix	A	-	OpenGL	Debugging

370

As	you	can	see,	this	tool	provides	valuable	information	about	what’s	happening	when
rendering.	It	can	save	precious	time	while	debugging	rendering	problems.	It	can	even
display	information	about	the	shaders	used	in	the	rendering	pipeline.

Appendix	A	-	OpenGL	Debugging

371
www.dbooks.org

https://www.dbooks.org/

	Introduction
	First steps
	The Game Loop
	A brief about coordinates
	Rendering
	More on Rendering
	Transformations
	Textures
	Camera
	Loading more complex models
	Let there be light
	Let there be even more light
	HUD
	Sky Box and some optimizations
	Height Maps
	Terrain Collisions
	Fog
	Normal Mapping
	Shadows
	Animations
	Particles
	Instanced Rendering
	Audio
	3D Object picking
	Hud revisited - NanoVG
	Optimizations
	Cascaded Shadow Maps
	Assimp
	Deferred Shading
	Appendix A - OpenGL Debugging

