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Preface
Machine learning has great potential for improving products, processes and research.
But computers usually do not explain their predictions which is a barrier to the
adoption of machine learning. This book is about making machine learning models
and their decisions interpretable.

After exploring the concepts of interpretability, you will learn about simple, in-
terpretable models such as decision trees, decision rules and linear regression.
Later chapters focus on general model-agnostic methods for interpreting black
box models like feature importance and accumulated local effects and explaining
individual predictions with Shapley values and LIME.

All interpretation methods are explained in depth and discussed critically. How do
they work under the hood? What are their strengths and weaknesses? How can their
outputs be interpreted? This book will enable you to select and correctly apply the
interpretation method that is most suitable for your machine learning project.

The book focuses on machine learning models for tabular data (also called relational
or structured data) and less on computer vision and natural language processing
tasks. Reading the book is recommended for machine learning practitioners, data
scientists, statisticians, and anyone else interested in making machine learning
models interpretable.

About me: My name is Christoph Molnar, I’m a statistician and a machine learner.
My goal is to make machine learning interpretable. If you are interested in improving
the interpretability of your machine learning models, do not hesitate to contact me!

Mail: christoph.molnar.ai@gmail.com

Website: https://christophm.github.io/¹

Follow me on Twitter! @ChristophMolnar²

Cover by @YvonneDoinel³

¹https://christophm.github.io/
²https://twitter.com/ChristophMolnar
³https://twitter.com/YvonneDoinel

www.dbooks.org

https://christophm.github.io/
https://twitter.com/ChristophMolnar
https://twitter.com/YvonneDoinel
https://christophm.github.io/
https://twitter.com/ChristophMolnar
https://twitter.com/YvonneDoinel
https://www.dbooks.org/


Introduction
This book explains to you how to make (supervised) machine learning models
interpretable. The chapters contain some mathematical formulas, but you should be
able to understand the ideas behind the methods even without the formulas. This
book is not for people trying to learn machine learning from scratch. If you are new
to machine learning, there are a lot of books and other resources to learn the basics.
I recommend the book “The Elements of Statistical Learning” by Hastie, Tibshirani,
and Friedman (2009) ⁴ and Andrew Ng’s “Machine Learning” online course⁵ on the
online learning platform coursera.com to start with machine learning. Both the book
and the course are available free of charge!

New methods for the interpretation of machine learning models are published at
breakneck speed. To keep up with everything that is published would be madness
and simply impossible. That is why you will not find the most novel and fancy
methods in this book, but established methods and basic concepts of machine
learning interpretability. These basics prepare you for making machine learning
models interpretable. Internalizing the basic concepts also empowers you to better
understand and evaluate any new paper on interpretability published on arxiv.org⁶
in the last 5 minutes since you began reading this book (I might be exaggerating the
publication rate).

This book starts with some (dystopian) short stories that are not needed to understand
the book, but hopefullywill entertain andmake you think. Then the book explores the
concepts of machine learning interpretability. We will discuss when interpretability
is important and what different types of explanations there are. Terms used through-
out the book can be looked up in the Terminology chapter. Most of the models and
methods explained are presented using real data examples which are described in the
Data chapter. One way to makemachine learning interpretable is to use interpretable
models, such as linear models or decision trees. The other option is the use of model-
agnostic interpretation tools that can be applied to any supervised machine learning

⁴Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. “The elements of statistical learning”.
www.web.stanford.edu/∼hastie/ElemStatLearn/ (2009).

⁵https://www.coursera.org/learn/machine-learning
⁶https://arxiv.org/

https://www.coursera.org/learn/machine-learning
https://arxiv.org/
https://www.coursera.org/learn/machine-learning
https://arxiv.org/
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model. The Model-Agnostic Methods chapter deals with methods such as partial
dependence plots and permutation feature importance. Model-agnostic methods
work by changing the input of the machine learning model and measuring changes
in the prediction output. Model-agnostic methods that return data instances as expla-
nations are discussed in the chapter Example Based Explanations. All model-agnostic
methods can be further differentiated based on whether they explain global model
behavior across all data instances or individual predictions. The following methods
explain the overall behavior of the model: Partial Dependence Plots, Accumulated
Local Effects, Feature Interaction, Feature Importance, Global Surrogate Models
and Prototypes and Criticisms. To explain individual predictions we have Local
Surrogate Models, Shapley Value Explanations, Counterfactual Explanations (and
closely related: Adversarial Examples). Some methods can be used to explain both
aspects of global model behavior and individual predictions: Individual Conditional
Expectation and Influential Instances.

The book endswith an optimistic outlook onwhat the future of interpretablemachine
learning might look like.

You can either read the book from beginning to end or jump directly to the methods
that interest you.

I hope you will enjoy the read!
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Story Time

We will start with some short stories. Each story is an admittedly exaggerated call
for interpretable machine learning. If you are in a hurry, you can skip the stories. If
you want to be entertained and (de-)motivated, read on!

The format is inspired by Jack Clark’s Tech Tales in his Import AI Newsletter⁷. If you
like this kind of stories or if you are interested in AI, I recommend that you sign up.

Lightning Never Strikes Twice

2030: A medical lab in Switzerland

“It’s definitely not the worst way to die!” Tom summarised, trying to find something
positive in the tragedy. He removed the pump from the intravenous pole.
“He just died for the wrong reasons,” Lena added.
“And certainly with the wrong morphine pump! Just creating more work for us!”
Tom complained while unscrewing the back plate of the pump. After removing all
the screws, he lifted the plate and put it aside. He plugged a cable into the diagnostic
port.
“You didn’t just complain about having a job, did you?” Lena gave him a mocking
smile.
“Of course not. Never!” he exclaimed with a sarcastic undertone.

⁷https://jack-clark.net/
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He booted the pump’s computer.
Lena plugged the other end of the cable into her tablet. “All right, diagnostics are
running,” she announced. “I am really curious about what went wrong.”
“It certainly shot our John Doe into Nirvana. That high concentration of this
morphine stuff. Man. I mean … that’s a first, right? Normally a broken pump gives
off too little of the sweet stuff or nothing at all. But never, you know, like that crazy
shot,” Tom explained.
“I know. You don’t have to convince me … Hey, look at that.” Lena held up her tablet.
“Do you see this peak here? That’s the potency of the painkillers mix. Look! This line
shows the reference level. The poor guy had a mixture of painkillers in his blood
system that could kill him 17 times over. Injected by our pump here. And here …”
she swiped, “here you can see the moment of the patient’s demise.”
“So, any idea what happened, boss?” Tom asked his supervisor.
“Hm … The sensors seem to be fine. Heart rate, oxygen levels, glucose, … The data
were collected as expected. Some missing values in the blood oxygen data, but that’s
not unusual. Look here. The sensors have also detected the patient’s slowing heart
rate and extremely low cortisol levels caused by the morphine derivate and other
pain blocking agents.” She continued to swipe through the diagnostics report.
Tom stared captivated at the screen. It was his first investigation of a real device
failure.

“Ok, here is our first piece of the puzzle. The system failed to send a warning to
the hospital’s communication channel. The warning was triggered, but rejected at
protocol level. It could be our fault, but it could also be the fault of the hospital.
Please send the logs over to the IT team,” Lena told Tom.
Tom nodded with his eyes still fixed on the screen.
Lena continued: “It’s odd. The warning should also have caused the pump to shut
down. But it obviously failed to do so. That must be a bug. Something the quality
team missed. Something really bad. Maybe it’s related to the protocol issue.”
“So, the emergency system of the pump somehow broke down, but why did the pump
go full bananas and inject so much painkiller into John Doe?” Tom wondered.
“Good question. You are right. Protocol emergency failure aside, the pump shouldn’t
have administered that amount of medication at all. The algorithm should have
stopped much earlier on its own, given the low level of cortisol and other warning
signs,” Lena explained.
“Maybe some bad luck, like a one in a million thing, like being hit by a lightning?”
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Tom asked her.
“No, Tom. If you had read the documentation I sent you, you would have known that
the pump was first trained in animal experiments, then later on humans, to learn to
inject the perfect amount of painkillers based on the sensory input. The algorithm
of the pump might be opaque and complex, but it’s not random. That means that in
the same situation the pump would behave exactly the same way again. Our patient
would die again. A combination or undesired interaction of the sensory inputs must
have triggered the erroneous behavior of the pump. That is why we have to dig
deeper and find out what happened here,” Lena explained.

“I see …,” Tom replied, lost in thought. “Wasn’t the patient going to die soon anyway?
Because of cancer or something?”
Lena nodded while she read the analysis report.
Tom got up and went to the window. He looked outside, his eyes fixed on a point in
the distance. “Maybe the machine did him a favor, you know, in freeing him from
the pain. No more suffering. Maybe it just did the right thing. Like a lightning, but,
you know, a good one. I mean like the lottery, but not random. But for a reason. If I
were the pump, I would have done the same.”
She finally lifted her head and looked at him.
He kept looking at something outside.
Both were silent for a few moments.
Lena lowered her head again and continued the analysis. “No, Tom. It’s a bug… Just
a damn bug.”

Trust Fall

2050: A subway station in Singapore



Introduction 7

She rushed to the Bishan subway station. With her thoughts she was already at
work. The tests for the new neural architecture should be completed by now. She
led the redesign of the government’s “Tax Affinity Prediction System for Individual
Entities”, which predicts whether a person will hide money from the tax office.
Her team has come up with an elegant piece of engineering. If successful, the
system would not only serve the tax office, but also feed into other systems such
as the counter-terrorism alarm system and the commercial registry. One day, the
government could even integrate the predictions into the Civic Trust Score. The Civic
Trust Score estimates how trustworthy a person is. The estimate affects every part
of your daily life, such as getting a loan or how long you have to wait for a new
passport. As she descended the escalator, she imagined how an integration of her
team’s system into the Civic Trust Score System might look like.

She routinely wiped her hand over the RFID reader without reducing her walking
speed. Her mind was occupied, but a dissonance of sensory expectations and reality
rang alarm bells in her brain.

Too late.

Nose first she ran into the subway entrance gate and fell with her butt first to the
ground. The door was supposed to open, … but it did not. Dumbfounded, she stood
up and looked at the screen next to the gate. “Please try another time,” suggested a
friendly looking smiley on the screen. A person passed by and, ignoring her, wiped
his hand over the reader. The door opened and he went through. The door closed
again. She wiped her nose. It hurt, but at least it did not bleed. She tried to open
the door, but was rejected again. It was strange. Maybe her public transport account
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did not have sufficient tokens. She looked at her smartwatch to check the account
balance.

“Login denied. Please contact your Citizens Advice Bureau!” her watch informed her.

A feeling of nausea hit her like a fist to the stomach. She suspected what had
happened. To confirm her theory, she started the mobile game “Sniper Guild”, an
ego shooter. The app was directly closed again automatically, which confirmed her
theory. She became dizzy and sat down on the floor again.

There was only one possible explanation: Her Civic Trust Score had dropped.
Substantially. A small drop meant minor inconveniences, such as not getting first
class flights or having to wait a little longer for official documents. A low trust score
was rare and meant that you were classified as a threat to society. One measure
in dealing with these people was to keep them away from public places such as
the subway. The government restricted the financial transactions of subjects with
low Civic Trust Scores. They also began to actively monitor your behavior on social
media and even went as far as to restrict certain content, such as violent games. It
became exponentially more difficult to increase your Civic Trust Score the lower it
was. People with a very low score usually never recovered.

She could not think of any reason why her score should have fallen. The score was
based on machine learning. The Civic Trust Score System worked like a well-oiled
engine that ran society. The performance of the Trust Score System was always
closely monitored. Machine learning had become much better since the beginning of
the century. It had become so efficient that decisions made by the Trust Score System
could no longer be disputed. An infallible system.

She laughed in despair. Infallible system. If only. The system has rarely failed. But
it failed. She must be one of those special cases; an error of the system; from now
on an outcast. Nobody dared to question the system. It was too integrated into the
government, into society itself, to be questioned. In the few remaining democratic
countries it was forbidden to form anti-democratic movements, not because they
where inherently malicious, but because they would destabilize the current system.
The same logic applied to the now more common algocraties. Critique in the
algorithms was forbidden because of the danger to the status quo.

Algorithmic trust was the fabric of the social order. For the common good, rare
false trust scorings were tacitly accepted. Hundreds of other prediction systems and
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databases fed into the score, making it impossible to know what caused the drop in
her score. She felt like a big dark hole was opening in and under her. With horror
she looked into the void.

Her tax affinity system was eventually integrated into the Civic Trust Score System,
but she never got to know it.

Fermi’s Paperclips

Year 612 AMS (after Mars settlement): A museum on Mars

“History is boring,” Xola whispered to her friend. Xola, a blue-haired girl, was lazily
chasing one of the projector drones humming in the roomwith her left hand. “History
is important,” the teacher said with an upset voice, looking at the girls. Xola blushed.
She did not expect her teacher to overhear her.

“Xola, what did you just learn?” the teacher asked her. “That the ancient people used
up all resources from Earther Planet and then died?” she asked carefully. “No. They
made the climate hot and it wasn’t people, it was computers and machines. And
it’s Planet Earth, not Earther Planet,” added another girl named Lin. Xola nodded in
agreement.With a touch of pride, the teacher smiled and nodded. “You are both right.
Do you know why it happened?” “Because people were short-sighted and greedy?”
Xola asked. “People could not stop their machines!” Lin blurted out.

“Again, you are both right,” the teacher decided, “but it’s much more complicated
than that. Most people at the time were not aware of what was happening. Some
saw the drastic changes, but could not reverse them. The most famous piece from
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this period is a poem by an anonymous author. It best captures what happened at
that time. Listen carefully!”

The teacher started the poem. A dozen of the small drones repositioned themselves in
front of the children and began to project the video directly into their eyes. It showed
a person in a suit standing in a forest with only tree stumps left. He began to talk:

The machines compute; the machines predict.

We march on as we are part of it.

We chase an optimum as trained.

The optimum is one-dimensional, local and unconstrained.

Silicon and flesh, chasing exponentiality.

Growth is our mentality.

When all rewards are collected,

and side-effects neglected;

When all the coins are mined,

and nature has fallen behind;

We will be in trouble,

After all, exponential growth is a bubble.

The tragedy of the commons unfolding,

Exploding,

Before our eyes.

Cold calculations and icy greed,

Fill the earth with heat.

Everything is dying,

And we are complying.

Like horses with blinders we race the race of our own creation,

Towards the Great Filter of civilization.
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And so we march on relentlessly.

As we are part of the machine.

Embracing entropy.

“A dark memory,” the teacher said to break the silence in the room. “It will be
uploaded to your library. Your homework is to memorise it until next week.” Xola
sighed. She managed to catch one of the little drones. The drone was warm from the
CPU and the engines. Xola liked how it warmed her hands.

www.dbooks.org
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What Is Machine Learning?

Machine learning is a set of methods that computers use to make and improve
predictions or behaviors based on data.

For example, to predict the value of a house, the computer would learn patterns from
past house sales. The book focuses on supervised machine learning, which covers
all prediction problems where we have a dataset for which we already know the
outcome of interest (e.g. past house prices) and want to learn to predict the outcome
for new data. Excluded from supervised learning are for example clustering tasks (=
unsupervised learning) where we do not have a specific outcome of interest, but want
to find clusters of data points. Also excluded are things like reinforcement learning,
where an agent learns to optimize a certain reward by acting in an environment (e.g.
a computer playing Tetris). The goal of supervised learning is to learn a predictive
model that maps features of the data (e.g. house size, location, floor type, …) to an
output (e.g. house price). If the output is categorical, the task is called classification,
and if it is numerical, it is called regression. The machine learning algorithm learns
a model by estimating parameters (like weights) or learning structures (like trees).
The algorithm is guided by a score or loss function that is minimized. In the house
value example, the machine minimizes the difference between the estimated house
price and the predicted price. A fully trained machine learning model can then be
used to make predictions for new instances.

Estimation of house prices, product recommendations, street sign detection, credit
default prediction and fraud detection: All these examples have in common that they
can be solved by machine learning. The tasks are different, but the approach is the
same:
Step 1: Data collection. The more, the better. The data must contain the outcome
you want to predict and additional information from which to make the prediction.
For a street sign detector (“Is there a street sign in the image?”), you would collect
street images and label whether a street sign is visible or not. For a credit default
predictor, you need past data on actual loans, information on whether the customers
were in default with their loans, and data that will help you make predictions, such
as income, past credit defaults, and so on. For an automatic house value estimator
program, you could collect data from past house sales and information about the real
estate such as size, location, and so on.
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Step 2: Enter this information into a machine learning algorithm that generates a
sign detector model, a credit rating model or a house value estimator.
Step 3: Use model with new data. Integrate the model into a product or process, such
as a self-driving car, a credit application process or a real estate marketplace website.

Machines surpass humans in many tasks, such as playing chess (or more recently Go)
or predicting the weather. Even if the machine is as good as a human or a bit worse at
a task, there remain great advantages in terms of speed, reproducibility and scaling.
A once implemented machine learning model can complete a task much faster than
humans, reliably delivers consistent results and can be copied infinitely. Replicating
a machine learning model on another machine is fast and cheap. The training of
a human for a task can take decades (especially when they are young) and is very
costly. A major disadvantage of using machine learning is that insights about the
data and the task the machine solves is hidden in increasingly complex models. You
need millions of numbers to describe a deep neural network, and there is no way
to understand the model in its entirety. Other models, such as the random forest,
consist of hundreds of decision trees that “vote” for predictions. To understand how
the decision was made, you would have to look into the votes and structures of each
of the hundreds of trees. That just does not work no matter how clever you are or
how good your working memory is. The best performing models are often blends of
several models (also called ensembles) that cannot be interpreted, even if each single
model could be interpreted. If you focus only on performance, you will automatically
get more and more opaque models. Just take a look at interviews with winners on
the kaggle.com machine learning competition platform⁸: The winning models were
mostly ensembles of models or very complex models such as boosted trees or deep
neural networks.

⁸http://blog.kaggle.com/
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Terminology

To avoid confusion due to ambiguity, here are some definitions of terms used in this
book:

An Algorithm is a set of rules that a machine follows to achieve a particular goal⁹.
An algorithm can be considered as a recipe that defines the inputs, the output
and all the steps needed to get from the inputs to the output. Cooking recipes are
algorithms where the ingredients are the inputs, the cooked food is the output, and
the preparation and cooking steps are the algorithm instructions.

Machine Learning is a set of methods that allow computers to learn from data to
make and improve predictions (for example cancer, weekly sales, credit default). Ma-
chine learning is a paradigm shift from “normal programming” where all instructions
must be explicitly given to the computer to “indirect programming” that takes place
through providing data.

A Learner orMachine Learning Algorithm is the program used to learn a machine
learning model from data. Another name is “inducer” (e.g. “tree inducer”).

AMachine Learning Model is the learned program that maps inputs to predictions.

⁹“Definition of Algorithm.” https://www.merriam-webster.com/dictionary/algorithm. (2017).
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This can be a set of weights for a linear model or for a neural network. Other names
for the rather unspecific word “model” are “predictor” or - depending on the task -
“classifier” or “regression model”. In formulas, the trained machine learning model
is called f̂ or f̂(x).

A learner learns a model from labeled training data. The model is used to make predictions.

A Black Box Model is a system that does not reveal its internal mechanisms. In
machine learning, “black box” describesmodels that cannot be understood by looking
at their parameters (e.g. a neural network). The opposite of a black box is sometimes
referred to as White Box, and is referred to in this book as interpretable model.
Model-agnostic methods for interpretability treat machine learning models as black
boxes, even if they are not.
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Interpretable Machine Learning refers to methods and models that make the
behavior and predictions of machine learning systems understandable to humans.

A Dataset is a table with the data from which the machine learns. The dataset
contains the features and the target to predict. When used to induce a model, the
dataset is called training data.

An Instance is a row in the dataset. Other names for ‘instance’ are: (data) point,
example, observation. An instance consists of the feature values x(i) and, if known,
the target outcome yi.

The Features are the inputs used for prediction or classification. A feature is a
column in the dataset. Throughout the book, features are assumed to be interpretable,
meaning it is easy to understand what they mean, like the temperature on a given
day or the height of a person. The interpretability of the features is a big assumption.
But if it is hard to understand the input features, it is even harder to understand what
the model does. The matrix with all features is called X and x(i) for a single instance.
The vector of a single feature for all instances is xj and the value for the feature j and
instance i is x(i)

j .

The Target is the information the machine learns to predict. In mathematical
formulas, the target is usually called y or yi for a single instance.
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A Machine Learning Task is the combination of a dataset with features and a
target. Depending on the type of the target, the task can be for example classification,
regression, survival analysis, clustering, or outlier detection.

The Prediction is what the machine learning model “guesses” what the target value
should be based on the given features. In this book, the model prediction is denoted
by f̂(x(i)) or ŷ.
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Interpretability
There is no mathematical definition of interpretability. A (non-mathematical) def-
inition I like by Miller (2017)¹⁰ is: Interpretability is the degree to which a
human can understand the cause of a decision. Another one is: Interpretability
is the degree to which a human can consistently predict the model’s result
¹¹. The higher the interpretability of a machine learning model, the easier it is for
someone to comprehend why certain decisions or predictions have been made. A
model is better interpretable than another model if its decisions are easier for a
human to comprehend than decisions from the other model. I will use both the
terms interpretable and explainable interchangeably. Like Miller (2017), I think it
makes sense to distinguish between the terms interpretability/explainability and
explanation. I will use “explanation” for explanations of individual predictions. See
the section about explanations to learn what we humans see as a good explanation.

Importance of Interpretability

If a machine learning model performs well, why do not we just trust the model
and ignore why it made a certain decision? “The problem is that a single metric,
such as classification accuracy, is an incomplete description of most real-world tasks.”
(Doshi-Velez and Kim 2017 ¹²)

Let us dive deeper into the reasons why interpretability is so important. When it
comes to predictive modeling, you have to make a trade-off: Do you just want to
know what is predicted? For example, the probability that a customer will churn
or how effective some drug will be for a patient. Or do you want to know why
the prediction was made and possibly pay for the interpretability with a drop in

¹⁰Miller, Tim. “Explanation in artificial intelligence: Insights from the social sciences.” arXiv Preprint arXiv:1706.07269.
(2017).

¹¹Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. “Examples are not enough, learn to criticize! Criticism for
interpretability.” Advances in Neural Information Processing Systems (2016).

¹²Doshi-Velez, Finale, and Been Kim. “Towards a rigorous science of interpretable machine learning,” no. Ml: 1–13.
http://arxiv.org/abs/1702.08608 ( 2017).
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predictive performance? In some cases, you do not care why a decision was made, it
is enough to know that the predictive performance on a test dataset was good. But in
other cases, knowing the ‘why’ can help you learn more about the problem, the data
and the reason why a model might fail. Some models may not require explanations
because they are used in a low-risk environment, meaning a mistake will not have
serious consequences, (e.g. a movie recommender system) or the method has already
been extensively studied and evaluated (e.g. optical character recognition). The need
for interpretability arises from an incompleteness in problem formalization (Doshi-
Velez and Kim 2017), which means that for certain problems or tasks it is not enough
to get the prediction (the what). The model must also explain how it came to
the prediction (the why), because a correct prediction only partially solves your
original problem. The following reasons drive the demand for interpretability and
explanations (Doshi-Velez and Kim 2017 and Miller 2017).

Human curiosity and learning: Humans have a mental model of their environment
that is updated when something unexpected happens. This update is performed
by finding an explanation for the unexpected event. For example, a human feels
unexpectedly sick and asks, “Why do I feel so sick?”. He learns that he gets sick every
time he eats those red berries. He updates his mental model and decides that the
berries caused the sickness and should therefore be avoided. When opaque machine
learning models are used in research, scientific findings remain completely hidden
if the model only gives predictions without explanations. To facilitate learning
and satisfy curiosity as to why certain predictions or behaviors are created by
machines, interpretability and explanations are crucial. Of course, humans do not
need explanations for everything that happens. For most people it is okay that they
do not understand how a computer works. Unexpected events makes us curious. For
example: Why is my computer shutting down unexpectedly?

Closely related to learning is the human desire to find meaning in the world.
We want to harmonize contradictions or inconsistencies between elements of our
knowledge structures. “Why did my dog bite me even though it has never done
so before?” a human might ask. There is a contradiction between the knowledge
of the dog’s past behavior and the newly made, unpleasant experience of the bite.
The vet’s explanation reconciles the dog owner’s contradiction: “The dog was under
stress and bit.” The more a machine’s decision affects a person’s life, the more
important it is for the machine to explain its behavior. If a machine learning model
rejects a loan application, this may be completely unexpected for the applicants.
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They can only reconcile this inconsistency between expectation and reality with
some kind of explanation. The explanations do not actually have to fully explain the
situation, but should address a main cause. Another example is algorithmic product
recommendation. Personally, I always think about why certain products or movies
have been algorithmically recommended to me. Often it is quite clear: Advertising
follows me on the Internet because I recently bought a washing machine, and I know
that in the next days I will be followed by advertisements for washing machines. Yes,
it makes sense to suggest gloves if I already have a winter hat in my shopping cart.
The algorithm recommends this movie, because users who liked other movies I liked
also enjoyed the recommended movie. Increasingly, Internet companies are adding
explanations to their recommendations. A good example is the Amazon product
recommendation, which is based on frequently purchased product combinations:

Recommended products when buying some paint from Amazon.

In many scientific disciplines there is a change from qualitative to quantitative
methods (e.g. sociology, psychology), and also towards machine learning (biology,
genomics). The goal of science is to gain knowledge, but many problems are solved
with big datasets and black box machine learning models. The model itself becomes
the source of knowledge instead of the data. Interpretability makes it possible to
extract this additional knowledge captured by the model.

Machine learning models take on real-world tasks that require safety measures and
testing. Imagine a self-driving car automatically detects cyclists based on a deep
learning system. Youwant to be 100% sure that the abstraction the system has learned
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is error-free, because running over cyclists is quite bad. An explanation might reveal
that the most important learned feature is to recognize the two wheels of a bicycle,
and this explanation helps you think about edge cases like bicycles with side bags
that partially cover the wheels.

By default, machine learning models pick up biases from the training data. This can
turn your machine learning models into racists that discriminate against protected
groups. Interpretability is a useful debugging tool for detecting bias in machine
learning models. It might happen that the machine learning model you have trained
for automatic approval or rejection of credit applications discriminates against a
minority. Your main goal is to grant loans only to people who will eventually repay
them. The incompleteness of the problem formulation in this case lies in the fact that
you not only want to minimize loan defaults, but are also obliged not to discriminate
on the basis of certain demographics. This is an additional constraint that is part of
your problem formulation (granting loans in a low-risk and compliant way) that is
not covered by the loss function the machine learning model was optimized for.

The process of integrating machines and algorithms into our daily lives requires
interpretability to increase social acceptance. People attribute beliefs, desires, in-
tentions and so on to objects. In a famous experiment, Heider and Simmel (1944) ¹³
showed participants videos of shapes in which a circle opened a “door” to enter a
“room” (which was simply a rectangle). The participants described the actions of the
shapes as they would describe the actions of a human agent, assigning intentions
and even emotions and personality traits to the shapes. Robots are a good example,
like my vacuum cleaner, which I named “Doge”. If Doge gets stuck, I think: “Doge
wants to keep cleaning, but asks me for help because it got stuck.” Later, when Doge
finishes cleaning and searches the home base to recharge, I think: “Doge has a desire
to recharge and intends to find the home base.” I also attribute personality traits:
“Doge is a bit dumb, but in a cute way.” These are my thoughts, especially when I
find out that Doge has knocked over a plant while dutifully vacuuming the house.
A machine or algorithm that explains its predictions will find more acceptance. See
also the chapter on explanations, which argues that explanations are a social process.

Explanations are used tomanage social interactions. By creating a shared meaning
of something, the explainer influences the actions, emotions and beliefs of the
recipient of the explanation. For a machine to interact with us, it may need to shape

¹³Heider, Fritz, and Marianne Simmel. “An experimental study of apparent behavior.” The American Journal of
Psychology 57 (2). JSTOR: 243–59. (1944).
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our emotions and beliefs. Machines have to “persuade” us, so that they can achieve
their intended goal. I would not fully accept my robot vacuum cleaner if it did not
explain its behavior to some degree. The vacuum cleaner creates a shared meaning
of, for example, an “accident” (like getting stuck on the bathroom carpet … again) by
explaining that it got stuck instead of simply stopping to work without comment.
Interestingly, there may be a misalignment between the goal of the explaining
machine (create trust) and the goal of the recipient (understand the prediction or
behavior). Perhaps the full explanation for why Doge got stuck could be that the
battery was very low, that one of the wheels is not working properly and that there
is a bug that makes the robot go to the same spot over and over again even though
there was an obstacle. These reasons (and a few more) caused the robot to get stuck,
but it only explained that something was in the way, and that was enough for me to
trust its behavior and get a shared meaning of that accident. By the way, Doge got
stuck in the bathroom again. We have to remove the carpets each time before we let
Doge vacuum.

Doge, our vacuum cleaner, got stuck. As an explanation for the accident, Doge told us that it needs
to be on an even surface.

Machine learning models can only be debugged and audited when they can be
interpreted. Even in low risk environments, such as movie recommendations, the
ability to interpret is valuable in the research and development phase as well as after
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deployment. Later, when a model is used in a product, things can go wrong. An
interpretation for an erroneous prediction helps to understand the cause of the error.
It delivers a direction for how to fix the system. Consider an example of a husky
versus wolf classifier that misclassifies some huskies as wolves. Using interpretable
machine learning methods, you would find that the misclassification was due to
the snow on the image. The classifier learned to use snow as a feature for classifying
images as “wolf”, whichmightmake sense in terms of separatingwolves fromhuskies
in the training dataset, but not in real-world use.

If you can ensure that the machine learning model can explain decisions, you can
also check the following traits more easily (Doshi-Velez and Kim 2017):

• Fairness: Ensuring that predictions are unbiased and do not implicitly or
explicitly discriminate against protected groups. An interpretable model can
tell you why it has decided that a certain person should not get a loan, and it
becomes easier for a human to judge whether the decision is based on a learned
demographic (e.g. racial) bias.

• Privacy: Ensuring that sensitive information in the data is protected.
• Reliability or Robustness: Ensuring that small changes in the input do not lead
to large changes in the prediction.

• Causality: Check that only causal relationships are picked up.
• Trust: It is easier for humans to trust a system that explains its decisions
compared to a black box.

When we do not need interpretability.

The following scenarios illustrate when we do not need or even do not want
interpretability of machine learning models.

Interpretability is not required if the model has no significant impact. Imagine
someone named Mike working on a machine learning side project to predict where
his friends will go for their next holidays based on Facebook data. Mike just likes
to surprise his friends with educated guesses where they will be going on holidays.
There is no real problem if the model is wrong (at worst just a little embarrassment
for Mike), nor is there a problem if Mike cannot explain the output of his model. It is
perfectly fine not to have interpretability in this case. The situation would change if
Mike started building a business around these holiday destination predictions. If the
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model is wrong, the business could lose money, or the model may work worse for
some people because of learned racial bias. As soon as the model has a significant
impact, be it financial or social, interpretability becomes relevant.

Interpretability is not required when the problem is well studied. Some applications
have been sufficiently well studied so that there is enough practical experience
with the model and problems with the model have been solved over time. A good
example is a machine learning model for optical character recognition that processes
images from envelopes and extracts addresses. There is years of experience with
these systems and it is clear that they work. In addition, we are not really interested
in gaining additional insights about the task at hand.

Interpretability might enable people or programs to manipulate the system. Prob-
lems with users who deceive a system result from a mismatch between the goals of
the creator and the user of a model. Credit scoring is such a system because banks
want to ensure that loans are only given to applicants who are likely to return them,
and applicants aim to get the loan even if the bank does not want to give them
one. This mismatch between the goals introduces incentives for applicants to game
the system to increase their chances of getting a loan. If an applicant knows that
having more than two credit cards negatively affects his score, he simply returns his
third credit card to improve his score, and organizes a new card after the loan has
been approved. While his score improved, the actual probability of repaying the loan
remained unchanged. The system can only be gamed if the inputs are proxies for
a causal feature, but do not actually cause the outcome. Whenever possible, proxy
features should be avoided as they make models gameable. For example, Google
developed a system called Google Flu Trends to predict flu outbreaks. The system
correlated Google searches with flu outbreaks – and it has performed poorly. The
distribution of search queries changed and Google Flu Trends missed many flu
outbreaks. Google searches do not cause the flu. When people search for symptoms
like “fever” it is merely a correlation with actual flu outbreaks. Ideally, models would
only use causal features because they would not be gameable.
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Taxonomy of Interpretability Methods

Methods for machine learning interpretability can be classified according to various
criteria.

Intrinsic or post hoc? This criteria distinguishes whether interpretability is achieved
by restricting the complexity of themachine learningmodel (intrinsic) or by applying
methods that analyze the model after training (post hoc). Intrinsic interpretability
refers to machine learning models that are considered interpretable due to their
simple structure, such as short decision trees or sparse linear models. Post hoc
interpretability refers to the application of interpretation methods after model
training. Permutation feature importance is, for example, a post hoc interpretation
method. Post hoc methods can also be applied to intrinsically interpretable models.
For example, permutation feature importance can be computed for decision trees. The
organization of the chapters in this book is determined by the distinction between
intrinsically interpretable models and post hoc (and model-agnostic) interpretation
methods.

Result of the interpretation method The various interpretation methods can be
roughly differentiated according to their results.

• Feature summary statistic: Many interpretation methods provide summary
statistics for each feature. Some methods return a single number per feature,
such as feature importance, or a more complex result, such as the pairwise
feature interaction strengths, which consist of a number for each feature pair.

• Feature summary visualization: Most of the feature summary statistics can
also be visualized. Some feature summaries are actually only meaningful if they
are visualized and a table would be a wrong choice. The partial dependence of
a feature is such a case. Partial dependence plots are curves that show a feature
and the average predicted outcome. The best way to present partial dependences
is to actually draw the curve instead of printing the coordinates.

• Model internals (e.g. learned weights): The interpretation of intrinsically
interpretable models falls into this category. Examples are the weights in linear
models or the learned tree structure (the features and thresholds used for the
splits) of decision trees. The lines are blurred between model internals and
feature summary statistic in, for example, linear models, because the weights
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are both model internals and summary statistics for the features at the same
time. Another method that outputs model internals is the visualization of
feature detectors learned in convolutional neural networks. Interpretability
methods that output model internals are by definition model-specific (see next
criterion).

• Data point: This category includes all methods that return data points (already
existent or newly created) to make a model interpretable. One method is called
counterfactual explanations. To explain the prediction of a data instance, the
method finds a similar data point by changing some of the features for which
the predicted outcome changes in a relevant way (e.g. a flip in the predicted
class). Another example is the identification of prototypes of predicted classes.
To be useful, interpretation methods that output new data points require that
the data points themselves can be interpreted. This works well for images and
texts, but is less useful for tabular data with hundreds of features.

• Intrinsically interpretable model: One solution to interpreting black box
models is to approximate them (either globally or locally) with an interpretable
model. The interpretable model itself is interpreted by looking at internal model
parameters or feature summary statistics.

Model-specific or model-agnostic? Model-specific interpretation tools are limited
to specific model classes. The interpretation of regression weights in a linear model
is a model-specific interpretation, since – by definition – the interpretation of
intrinsically interpretable models is always model-specific. Tools that only work for
the interpretation of e.g. neural networks are model-specific. Model-agnostic tools
can be used on any machine learning model and are applied after the model has
been trained (post hoc). These agnostic methods usually work by analyzing feature
input and output pairs. By definition, these methods cannot have access to model
internals such as weights or structural information.

Local or global? Does the interpretation method explain an individual prediction or
the entire model behavior? Or is the scope somewhere in between? Read more about
the scope criterion in the next section.
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Scope of Interpretability

An algorithm trains amodel that produces the predictions. Each step can be evaluated
in terms of transparency or interpretability.

Algorithm Transparency

How does the algorithm create the model?

Algorithm transparency is about how the algorithm learns a model from the data and
what kind of relationships it can learn. If you use convolutional neural networks to
classify images, you can explain that the algorithm learns edge detectors and filters
on the lowest layers. This is an understanding of how the algorithmworks, but not for
the specific model that is learned in the end, and not for how individual predictions
are made. Algorithm transparency only requires knowledge of the algorithm and
not of the data or learned model. This book focuses on model interpretability
and not algorithm transparency. Algorithms such as the least squares method for
linear models are well studied and understood. They are characterized by a high
transparency. Deep learning approaches (pushing a gradient through a network with
millions of weights) are less well understood and the inner workings are the focus of
ongoing research. They are considered less transparent.

Global, Holistic Model Interpretability

How does the trained model make predictions?

You could describe a model as interpretable if you can comprehend the entire model
at once (Lipton 2016¹⁴). To explain the global model output, you need the trained
model, knowledge of the algorithm and the data. This level of interpretability is
about understanding how the model makes decisions, based on a holistic view of
its features and each of the learned components such as weights, other parameters,
and structures. Which features are important and what kind of interactions between
them take place? Global model interpretability helps to understand the distribution
of your target outcome based on the features. Global model interpretability is very

¹⁴Lipton, Zachary C. “The mythos of model interpretability.” arXiv preprint arXiv:1606.03490, (2016).
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difficult to achieve in practice. Any model that exceeds a handful of parameters or
weights is unlikely to fit into the short-term memory of the average human. I argue
that you cannot really imagine a linear model with 5 features, because it would mean
drawing the estimated hyperplane mentally in a 5-dimensional space. Any feature
space with more than 3 dimensions is simply inconceivable for humans. Usually,
when people try to comprehend a model, they consider only parts of it, such as the
weights in linear models.

Global Model Interpretability on a Modular Level

How do parts of the model affect predictions?

A Naive Bayes model with many hundreds of features would be too big for me
and you to keep in our working memory. And even if we manage to memorize
all the weights, we would not be able to quickly make predictions for new data
points. In addition, you need to have the joint distribution of all features in your
head to estimate the importance of each feature and how the features affect the
predictions on average. An impossible task. But you can easily understand a single
weight. While global model interpretability is usually out of reach, there is a good
chance of understanding at least some models on a modular level. Not all models are
interpretable at a parameter level. For linear models, the interpretable parts are the
weights, for trees it would be the splits (selected features plus cut-off points) and leaf
node predictions. Linear models, for example, look like as if they could be perfectly
interpreted on a modular level, but the interpretation of a single weight is interlocked
with all other weights. The interpretation of a single weight always comes with the
footnote that the other input features remain at the same value, which is not the case
with many real applications. A linear model that predicts the value of a house, that
takes into account both the size of the house and the number of rooms, can have
a negative weight for the room feature. It can happen because there is already the
highly correlated house size feature. In a market where people prefer larger rooms, a
house with fewer rooms could be worth more than a house with more rooms if both
have the same size. The weights only make sense in the context of the other features
in the model. But the weights in a linear model can still be interpreted better than
the weights of a deep neural network.
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Local Interpretability for a Single Prediction

Why did the model make a certain prediction for an instance?

You can zoom in on a single instance and examine what the model predicts for
this input, and explain why. If you look at an individual prediction, the behavior of
the otherwise complex model might behave more pleasantly. Locally, the prediction
might only depend linearly or monotonously on some features, rather than having
a complex dependence on them. For example, the value of a house may depend
nonlinearly on its size. But if you are looking at only one particular 100 square
meters house, there is a possibility that for that data subset, your model prediction
depends linearly on the size. You can find this out by simulating how the predicted
price changes when you increase or decrease the size by 10 square meters. Local
explanations can therefore be more accurate than global explanations. This book
presents methods that can make individual predictions more interpretable in the
section on model-agnostic methods.

Local Interpretability for a Group of Predictions

Why did the model make specific predictions for a group of instances?

Model predictions for multiple instances can be explained either with global model
interpretation methods (on a modular level) or with explanations of individual
instances. The global methods can be applied by taking the group of instances,
treating them as if the groupwere the complete dataset, and using the global methods
with this subset. The individual explanation methods can be used on each instance
and then listed or aggregated for the entire group.
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Evaluation of Interpretability

There is no real consensus about what interpretability is in machine learning. Nor is
it clear how to measure it. But there is some initial research on this and an attempt
to formulate some approaches for evaluation, as described in the following section.

Doshi-Velez and Kim (2017) propose three main levels for the evaluation of inter-
pretability:

Application level evaluation (real task): Put the explanation into the product and
have it tested by the end user. Imagine fracture detection software with a machine
learning component that locates and marks fractures in X-rays. At the application
level, radiologists would test the fracture detection software directly to evaluate the
model. This requires a good experimental setup and an understanding of how to
assess quality. A good baseline for this is always how good a human would be at
explaining the same decision.

Human level evaluation (simple task) is a simplified application level evaluation.
The difference is that these experiments are not carried out with the domain experts,
but with laypersons. This makes experiments cheaper (especially if the domain
experts are radiologists) and it is easier to find more testers. An example would be
to show a user different explanations and the user would choose the best one.

Function level evaluation (proxy task) does not require humans. This works best
when the class of model used has already been evaluated by someone else in a human
level evaluation. For example, it might be known that the end users understand
decision trees. In this case, a proxy for explanation quality may be the depth of the
tree. Shorter trees would get a better explainability score. It would make sense to add
the constraint that the predictive performance of the tree remains good and does not
decrease too much compared to a larger tree.

The next chapter focuses on the evaluation of explanations for individual predictions
on the function level. What are the relevant properties of explanations that we would
consider for their evaluation?
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Properties of Explanations

We want to explain the predictions of a machine learning model. To achieve this, we
rely on some explanation method, which is an algorithm that generates explanations.
An explanation usually relates the feature values of an instance to its model
prediction in a humanly understandable way. Other types of explanations consist
of a set of data instances (e.g in the case of the k-nearest neighbor model). For
example, we could predict cancer risk using a support vector machine and explain
predictions using the local surrogate method, which generates decision trees as
explanations. Or we could use a linear regression model instead of a support vector
machine. The linear regression model is already equipped with an explanation
method (interpretation of the weights).

We take a closer look at the properties of explanation methods and explanations
(Robnik-Sikonja and Bohanec, 2018¹⁵). These properties can be used to judge how
good an explanation method or explanation is. It is not clear for all these properties
how to measure them correctly, so one of the challenges is to formalize how they
could be calculated.

Properties of Explanation Methods

• Expressive Power is the “language” or structure of the explanations themethod
is able to generate. An explanation method could generate IF-THEN rules,
decision trees, a weighted sum, natural language or something else.

• Translucency describes how much the explanation method relies on looking
into the machine learning model, like its parameters. For example, explanation
methods relying on intrinsically interpretable models like the linear regres-
sion model (model-specific) are highly translucent. Methods only relying on
manipulating inputs and observing the predictions have zero translucency.
Depending on the scenario, different levels of translucency might be desirable.
The advantage of high translucency is that the method can rely on more
information to generate explanations. The advantage of low translucency is
that the explanation method is more portable.

• Portability describes the range of machine learning models with which the
explanation method can be used. Methods with a low translucency have a

¹⁵Robnik-Sikonja, Marko, and Marko Bohanec. “Perturbation-based explanations of prediction models.” Human and
Machine Learning. Springer, Cham. 159-175. (2018).
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higher portability because they treat the machine learningmodel as a black box.
Surrogate models might be the explanation method with the highest portability.
Methods that only work for e.g. recurrent neural networks have low portability.

• AlgorithmicComplexity describes the computational complexity of themethod
that generates the explanation. This property is important to consider when
computation time is a bottleneck in generating explanations.

Properties of Individual Explanations

• Accuracy: How well does an explanation predict unseen data? High accuracy
is especially important if the explanation is used for predictions in place of
the machine learning model. Low accuracy can be fine if the accuracy of the
machine learning model is also low, and if the goal is to explain what the black
box model does. In this case, only fidelity is important.

• Fidelity: How well does the explanation approximate the prediction of the
black box model? High fidelity is one of the most important properties of an
explanation, because an explanation with low fidelity is useless to explain
the machine learning model. Accuracy and fidelity are closely related. If the
black box model has high accuracy and the explanation has high fidelity, the
explanation also has high accuracy. Some explanations offer only local fidelity,
meaning the explanation only approximates well to the model prediction for a
subset of the data (e.g. local surrogate models) or even for only an individual
data instance (e.g. Shapley Values).

• Consistency: How much does an explanation differ between models that
have been trained on the same task and that produce similar predictions? For
example, I train a support vector machine and a linear regression model on the
same task and both produce very similar predictions. I compute explanations
using a method of my choice and analyze how different the explanations are.
If the explanations are very similar, the explanations are highly consistent. I
find this property somewhat tricky, since the two models could use different
features, but get similar predictions (also called “Rashomon Effect”¹⁶). In this
case a high consistency is not desirable because the explanations have to be
very different. High consistency is desirable if the models really rely on similar
relationships.

¹⁶https://en.wikipedia.org/wiki/Rashomon_effect
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• Stability: How similar are the explanations for similar instances? While consis-
tency compares explanations between models, stability compares explanations
between similar instances for a fixed model. High stability means that slight
variations in the features of an instance do not substantially change the
explanation (unless these slight variations also strongly change the prediction).
A lack of stability can be the result of a high variance of the explanationmethod.
In other words, the explanation method is strongly affected by slight changes
of the feature values of the instance to be explained. A lack of stability can also
be caused by non-deterministic components of the explanation method, such
as a data sampling step, like the local surrogate method uses. High stability is
always desirable.

• Comprehensibility: How well do humans understand the explanations? This
looks just like one more property among many, but it is the elephant in the
room. Difficult to define and measure, but extremely important to get right.
Many people agree that comprehensibility depends on the audience. Ideas for
measuring comprehensibility include measuring the size of the explanation
(number of features with a non-zero weight in a linear model, number of
decision rules, …) or testing how well people can predict the behavior of
the machine learning model from the explanations. The comprehensibility of
the features used in the explanation should also be considered. A complex
transformation of features might be less comprehensible than the original
features.

• Certainty: Does the explanation reflect the certainty of the machine learning
model? Many machine learning models only give predictions without a state-
ment about the models confidence that the prediction is correct. If the model
predicts a 4% probability of cancer for one patient, is it as certain as the 4%
probability that another patient, with different feature values, received? An
explanation that includes the model’s certainty is very useful.

• Degree of Importance: How well does the explanation reflect the importance
of features or parts of the explanation? For example, if a decision rule is
generated as an explanation for an individual prediction, is it clear which of
the conditions of the rule was the most important?

• Novelty: Does the explanation reflect whether a data instance to be explained
comes from a “new” region far removed from the distribution of training data?
In such cases, the model may be inaccurate and the explanation may be useless.
The concept of novelty is related to the concept of certainty. The higher the
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novelty, the more likely it is that the model will have low certainty due to lack
of data.

• Representativeness: How many instances does an explanation cover? Expla-
nations can cover the entire model (e.g. interpretation of weights in a linear
regression model) or represent only an individual prediction (e.g. Shapley
Values).
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Human-friendly Explanations

Let us dig deeper and discover what we humans see as “good” explanations and
what the implications are for interpretable machine learning. Humanities research
can help us find out. Miller (2017) has conducted a huge survey of publications on
explanations, and this chapter builds on his summary.

In this chapter, I want to convince you of the following: As an explanation for an
event, humans prefer short explanations (only 1 or 2 causes) that contrast the current
situation with a situation in which the event would not have occurred. Especially
abnormal causes provide good explanations. Explanations are social interactions
between the explainer and the explainee (recipient of the explanation) and therefore
the social context has a great influence on the actual content of the explanation.

When you need explanations with ALL factors for a particular prediction or behavior,
you do not want a human-friendly explanation, but a complete causal attribution.
You probably want a causal attribution if you are legally required to specify all
influencing features or if you debug the machine learning model. In this case, ignore
the following points. In all other cases, where lay people or people with little time
are the recipients of the explanation, the following sections should be interesting to
you.

What Is an Explanation?

An explanation is the answer to a why-question (Miller 2017).

• Why did not the treatment work on the patient?
• Why was my loan rejected?
• Why have we not been contacted by alien life yet?

The first two questions can be answered with an “everyday”-explanation, while
the third one comes from the category “More general scientific phenomena and
philosophical questions”. We focus on the “everyday”-type explanations, because
those are relevant to interpretable machine learning. Questions that start with “how”
can usually be rephrased as “why” questions: “How was my loan rejected?” can be
turned into “Why was my loan rejected?”.
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In the following, the term “explanation” refers to the social and cognitive process of
explaining, but also to the product of these processes. The explainer can be a human
being or a machine.

What Is a Good Explanation?

This section further condenses Miller’s summary on “good” explanations and adds
concrete implications for interpretable machine learning.

Explanations are contrastive (Lipton 1990¹⁷). Humans usually do not ask why a
certain prediction was made, but why this prediction was made instead of another
prediction. We tend to think in counterfactual cases, i.e. “How would the prediction
have been if input X had been different?”. For a house price prediction, the house
owner might be interested in why the predicted price was high compared to the
lower price they had expected. If my loan application is rejected, I do not care to
hear all the factors that generally speak for or against a rejection. I am interested
in the factors in my application that would need to change to get the loan. I want
to know the contrast between my application and the would-be-accepted version of
my application. The recognition that contrasting explanations matter is an important
finding for explainable machine learning. From most interpretable models, you can
extract an explanation that implicitly contrasts a prediction of an instance with
the prediction of an artificial data instance or an average of instances. Physicians
might ask: “Why did the drug not work for my patient?”. And they might want an
explanation that contrasts their patient with a patient for whom the drug worked and
who is similar to the non-responding patient. Contrastive explanations are easier to
understand than complete explanations. A complete explanation of the physician’s
question why the drug does not work might include: The patient has had the disease
for 10 years, 11 genes are over-expressed, the patients body is very quick in breaking
the drug down into ineffective chemicals, … A contrastive explanation might be
much simpler: In contrast to the responding patient, the non-responding patient has
a certain combination of genes that make the drug less effective. The best explanation
is the one that highlights the greatest difference between the object of interest and
the reference object.
What it means for interpretable machine learning: Humans do not want a
complete explanation for a prediction, but want to compare what the differences

¹⁷Lipton, Peter. “Contrastive explanation.” Royal Institute of Philosophy Supplements 27 (1990): 247-266.
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were to another instance’s prediction (can be an artificial one). Creating contrastive
explanations is application-dependent because it requires a point of reference for
comparison. And this may depend on the data point to be explained, but also on
the user receiving the explanation. A user of a house price prediction website might
want to have an explanation of a house price prediction contrastive to their own
house or maybe to another house on the website or maybe to an average house in the
neighborhood. The solution for the automated creation of contrastive explanations
might also involve finding prototypes or archetypes in the data.

Explanations are selected. People do not expect explanations that cover the actual
and complete list of causes of an event. We are used to selecting one or two causes
from a variety of possible causes as THE explanation. As proof, turn on the TV news:
“The decline in stock prices is blamed on a growing backlash against the company’s
product due to problems with the latest software update.”
“Tsubasa and his team lost the match because of a weak defense: they gave their
opponents too much room to play out their strategy.”
“The increasing distrust of established institutions and our government are the main
factors that have reduced voter turnout.”
The fact that an event can be explained by various causes is called the Rashomon
Effect. Rashomon is a Japanese movie that tells alternative, contradictory stories
(explanations) about the death of a samurai. For machine learning models, it is
advantageous if a good prediction can be made from different features. Ensemble
methods that combine multiple models with different features (different expla-
nations) usually perform well because averaging over those “stories” makes the
predictions more robust and accurate. But it also means that there is more than one
selective explanation why a certain prediction was made.
What it means for interpretable machine learning: Make the explanation very
short, give only 1 to 3 reasons, even if the world is more complex. The LIME method
does a good job with this.

Explanations are social. They are part of a conversation or interaction between
the explainer and the receiver of the explanation. The social context determines
the content and nature of the explanations. If I wanted to explain to a technical
person why digital cryptocurrencies are worth so much, I would say things like: “The
decentralized, distributed, blockchain-based ledger, which cannot be controlled by a
central entity, resonates with people whowant to secure their wealth, which explains
the high demand and price.” But to my grandmother I would say: “Look, Grandma:
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Cryptocurrencies are a bit like computer gold. People like and pay a lot for gold, and
young people like and pay a lot for computer gold.”
What it means for interpretable machine learning: Pay attention to the social
environment of your machine learning application and the target audience. Getting
the social part of the machine learning model right depends entirely on your specific
application. Find experts from the humanities (e.g. psychologists and sociologists) to
help you.

Explanations focus on the abnormal. People focus more on abnormal causes to
explain events (Kahnemann and Tversky, 1981¹⁸). These are causes that had a small
probability but nevertheless happened. The elimination of these abnormal causes
would have greatly changed the outcome (counterfactual explanation). Humans
consider these kinds of “abnormal” causes as good explanations. An example from
Štrumbelj and Kononenko (2011)¹⁹ is: Assume we have a dataset of test situations
between teachers and students. Students attend a course and pass the course directly
after successfully giving a presentation. The teacher has the option to additionally
ask the student questions to test their knowledge. Students who cannot answer these
questions will fail the course. Students can have different levels of preparation, which
translates into different probabilities for correctly answering the teacher’s questions
(if they decide to test the student). We want to predict whether a student will pass
the course and explain our prediction. The chance of passing is 100% if the teacher
does not ask any additional questions, otherwise the probability of passing depends
on the student’s level of preparation and the resulting probability of answering the
questions correctly.
Scenario 1: The teacher usually asks the students additional questions (e.g. 95 out
of 100 times). A student who did not study (10% chance to pass the question part)
was not one of the lucky ones and gets additional questions that he fails to answer
correctly. Why did the student fail the course? I would say that it was the student’s
fault to not study.
Scenario 2: The teacher rarely asks additional questions (e.g. 2 out of 100 times). For a
student who has not studied for the questions, we would predict a high probability of
passing the course because questions are unlikely. Of course, one of the students did
not prepare for the questions, which gives him a 10% chance of passing the questions.
He is unlucky and the teacher asks additional questions that the student cannot

¹⁸Kahneman, Daniel, and Amos Tversky. “The Simulation Heuristic.” Stanford Univ CA Dept of Psychology. (1981).
¹⁹Štrumbelj, Erik, and Igor Kononenko. “A general method for visualizing and explaining black-box regression

models.” In International Conference on Adaptive and Natural Computing Algorithms, 21–30. Springer. (2011).



Interpretability 39

answer and he fails the course. What is the reason for the failure? I would argue
that now, the better explanation is “because the teacher tested the student”. It was
unlikely that the teacher would test, so the teacher behaved abnormally.
What it means for interpretable machine learning: If one of the input features for
a prediction was abnormal in any sense (like a rare category of a categorical feature)
and the feature influenced the prediction, it should be included in an explanation,
even if other ‘normal’ features have the same influence on the prediction as the
abnormal one. An abnormal feature in our house price prediction example might be
that a rather expensive house has two balconies. Even if some attribution method
finds that the two balconies contribute as much to the price difference as the above
average house size, the good neighborhood or the recent renovation, the abnormal
feature “two balconies” might be the best explanation for why the house is so
expensive.

Explanations are truthful. Good explanations prove to be true in reality (i.e.
in other situations). But disturbingly, this is not the most important factor for a
“good” explanation. For example, selectiveness seems to be more important than
truthfulness. An explanation that selects only one or two possible causes rarely
covers the entire list of relevant causes. Selectivity omits part of the truth. It is not
true that only one or two factors, for example, have caused a stock market crash, but
the truth is that there are millions of causes that influence millions of people to act
in such a way that in the end a crash was caused.
What it means for interpretablemachine learning: The explanation should predict
the event as truthfully as possible, which in machine learning is sometimes called
fidelity. So if we say that a second balcony increases the price of a house, then that
also should apply to other houses (or at least to similar houses). For humans, fidelity
of an explanation is not as important as its selectivity, its contrast and its social
aspect.

Good explanations are consistent with prior beliefs of the explainee. Humans
tend to ignore information that is inconsistent with their prior beliefs. This effect
is called confirmation bias (Nickerson 1998²⁰). Explanations are not spared by this
kind of bias. People will tend to devalue or ignore explanations that do not agree
with their beliefs. The set of beliefs varies from person to person, but there are also
group-based prior beliefs such as political worldviews.

²⁰Nickerson, Raymond S. “Confirmation Bias: A ubiquitous phenomenon in many guises.” Review of General
Psychology 2 (2). Educational Publishing Foundation: 175. (1998).
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What it means for interpretable machine learning: Good explanations are con-
sistent with prior beliefs. This is difficult to integrate into machine learning and
would probably drastically compromise predictive performance. Our prior belief
for the effect of house size on predicted price is that the larger the house, the
higher the price. Let us assume that a model also shows a negative effect of
house size on the predicted price for a few houses. The model has learned this
because it improves predictive performance (due to some complex interactions), but
this behavior strongly contradicts our prior beliefs. You can enforce monotonicity
constraints (a feature can only affect the prediction in one direction) or use something
like a linear model that has this property.

Good explanations are general and probable. A cause that can explain many
events is very general and could be considered a good explanation. Note that this
contradicts the claim that abnormal causes make good explanations. As I see it,
abnormal causes beat general causes. Abnormal causes are by definition rare in
the given scenario. In the absence of an abnormal event, a general explanation
is considered a good explanation. Also remember that people tend to misjudge
probabilities of joint events. (Joe is a librarian. Is he more likely to be a shy person
or to be a shy person who likes to read books?) A good example is “The house is
expensive because it is big”, which is a very general, good explanation of why houses
are expensive or cheap.
What it means for interpretable machine learning: Generality can easily be
measured by the feature’s support, which is the number of instances to which the
explanation applies divided by the total number of instances.



Datasets
Throughout the book, all models and techniques are applied to real datasets that are
freely available online. We will use different datasets for different tasks: Classifica-
tion, regression and text classification.

Bike Rentals (Regression)

This dataset contains daily counts of rented bicycles from the bicycle rental company
Capital-Bikeshare²¹ in Washington D.C., along with weather and seasonal informa-
tion. The data was kindly made openly available by Capital-Bikeshare. Fanaee-T and
Gama (2013)²² addedweather data and season information. The goal is to predict how
many bikes will be rented depending on the weather and the day. The data can be
downloaded from the UCI Machine Learning Repository²³.

New features were added to the dataset and not all original features were used for
the examples in this book. Here is the list of features that were used:

• Count of bicycles including both casual and registered users. The count is used
as the target in the regression task.

• The season, either spring, summer, fall or winter.
• Indicator whether the day was a holiday or not.
• The year, either 2011 or 2012.
• Number of days since the 01.01.2011 (the first day in the dataset). This feature
was introduced to take account of the trend over time.

• Indicator whether the day was a working day or weekend.
• The weather situation on that day. One of:

– clear, few clouds, partly cloudy, cloudy

²¹https://www.capitalbikeshare.com/
²²Fanaee-T, Hadi, and Joao Gama. “Event labeling combining ensemble detectors and background knowledge.”

Progress in Artificial Intelligence. Springer Berlin Heidelberg, 1–15. doi:10.1007/s13748-013-0040-3. (2013).
²³http://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset
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– mist + clouds, mist + broken clouds, mist + few clouds, mist
– light snow, light rain + thunderstorm + scattered clouds, light rain +
scattered clouds

– heavy rain + ice pallets + thunderstorm + mist, snow + mist
• Temperature in degrees Celsius.
• Relative humidity in percent (0 to 100).
• Wind speed in km per hour.

For the examples in this book, the data has been slightly processed. You can find the
processing R-script in the book’s Github repository²⁴ together with the final RData
file²⁵.

²⁴https://github.com/christophM/interpretable-ml-book/blob/master/R/get-bike-sharing-dataset.R
²⁵https://github.com/christophM/interpretable-ml-book/blob/master/data/bike.RData
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YouTube Spam Comments (Text Classification)

As an example for text classification we work with 1956 comments from 5 different
YouTube videos. Thankfully, the authors who used this dataset in an article on
spam classification made the data freely available²⁶ (Alberto, Lochter, and Almeida
(2015)²⁷).

The comments were collected via the YouTube API from five of the ten most viewed
videos on YouTube in the first half of 2015. All 5 are music videos. One of them is
“Gangnam Style” by Korean artist Psy. The other artists were Katy Perry, LMFAO,
Eminem, and Shakira.

Checkout some of the comments. The comments were manually labeled as spam or
legitimate. Spam was coded with a “1” and legitimate comments with a “0”.

CONTENT CLASS
Huh, anyway check out this you[tube] channel: kobyoshi02 1
Hey guys check out my new channel and our first vid THIS
IS US THE MONKEYS!!! I’m the monkey in the white
shirt,please leave a like comment and please subscribe!!!!

1

just for test I have to say murdev.com 1
me shaking my sexy ass on my channel enjoy _ 1
watch?v=vtaRGgvGtWQ Check this out . 1
Hey, check out my new website!! This site is about kids stuff.
kidsmediausa . com

1

Subscribe to my channel 1
i turned it on mute as soon is i came on i just wanted to
check the views…

0

You should check my channel for Funny VIDEOS!! 1
and u should.d check my channel and tell me what I should
do next!

1

You can also go to YouTube and take a look at the comment section. But please do
not get caught in YouTube hell and end up watching videos of monkeys stealing and
drinking cocktails from tourists on the beach. The Google Spam detector has also
probably changed a lot since 2015.

²⁶http://dcomp.sor.ufscar.br/talmeida/youtubespamcollection/
²⁷Alberto, Túlio C, Johannes V Lochter, and Tiago A Almeida. “Tubespam: comment spam filtering on YouTube.” In

Machine Learning and Applications (Icmla), Ieee 14th International Conference on, 138–43. IEEE. (2015).
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Watch the view-record breaking video “Gangnam Style” here²⁸.

If you want to play around with the data, you can find the RData file²⁹ along with
the R-script³⁰ with some convenience functions in the book’s Github repository.

²⁸https://www.youtube.com/watch?v=9bZkp7q19f0&feature=player_embedded
²⁹https://github.com/christophM/interpretable-ml-book/blob/master/data/ycomments.RData
³⁰https://github.com/christophM/interpretable-ml-book/blob/master/R/get-SpamTube-dataset.R
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Risk Factors for Cervical Cancer
(Classification)

The cervical cancer dataset contains indicators and risk factors for predicting
whether a woman will get cervical cancer. The features include demographic data
(such as age), lifestyle, and medical history. The data can be downloaded from the
UCI Machine Learning repository³¹ and is described by Fernandes, Cardoso, and
Fernandes (2017)³².

The subset of data features used in the book’s examples are:

• Age in years
• Number of sexual partners
• First sexual intercourse (age in years)
• Number of pregnancies
• Smoking yes or no
• Smoking (in years)
• Hormonal contraceptives yes or no
• Hormonal contraceptives (in years)
• Intrauterine device yes or no (IUD)
• Number of years with an intrauterine device (IUD)
• Has patient ever had a sexually transmitted disease (STD) yes or no
• Number of STD diagnoses
• Time since first STD diagnosis
• Time since last STD diagnosis
• The biopsy results “Healthy” or “Cancer”. Target outcome.

The biopsy serves as the gold standard for diagnosing cervical cancer. For the
examples in this book, the biopsy outcome was used as the target. Missing values for
each column were imputed by the mode (most frequent value), which is probably a
bad solution, since the true answer could be correlated with the probability that a
value is missing. There is probably a bias because the questions are of a very private

³¹https://archive.ics.uci.edu/ml/datasets/Cervical+cancer+%28Risk+Factors%29
³²Fernandes, Kelwin, Jaime S Cardoso, and Jessica Fernandes. “Transfer learning with partial observability applied to

cervical cancer screening.” In Iberian Conference on Pattern Recognition and Image Analysis, 243–50. Springer. (2017).
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nature. But this is not a book about missing data imputation, so the mode imputation
will have to suffice for the examples.

To reproduce the examples of this book with this dataset, find the preprocessing R-
script³³ and the final RData file³⁴ in the book’s Github repository.

³³https://github.com/christophM/interpretable-ml-book/blob/master/R/get-cervical-cancer-dataset.R
³⁴https://github.com/christophM/interpretable-ml-book/blob/master/data/cervical.RData
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Interpretable Models
The easiest way to achieve interpretability is to use only a subset of algorithms that
create interpretable models. Linear regression, logistic regression and the decision
tree are commonly used interpretable models.

In the following chapters we will talk about these models. Not in detail, only the
basics, because there is already a ton of books, videos, tutorials, papers and more
material available. We will focus on how to interpret the models. The book discusses
linear regression, logistic regression, other linear regression extensions, decision
trees, decision rules and the RuleFit algorithm in more detail. It also lists other
interpretable models.

All interpretable models explained in this book are interpretable on a modular level,
with the exception of the k-nearest neighbors method. The following table gives an
overview of the interpretable model types and their properties. A model is linear
if the association between features and target is modelled linearly. A model with
monotonicity constraints ensures that the relationship between a feature and the
target outcome always goes in the same direction over the entire range of the feature:
An increase in the feature value either always leads to an increase or always to
a decrease in the target outcome. Monotonicity is useful for the interpretation of
a model because it makes it easier to understand a relationship. Some models can
automatically include interactions between features to predict the target outcome.
You can include interactions in any type of model by manually creating interaction
features. Interactions can improve predictive performance, but too many or too
complex interactions can hurt interpretability. Some models handle only regression,
some only classification, and still others both.

From this table, you can select a suitable interpretable model for your task, either
regression (regr) or classification (class):
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Algorithm Linear Monotone Interaction Task
Linear regression Yes Yes No regr
Logistic regression No Yes No class
Decision trees No Some Yes class,regr
RuleFit Yes No Yes class,regr
Naive Bayes No Yes No class
k-nearest neighbors No No No class,regr
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Linear Regression

A linear regression model predicts the target as a weighted sum of the feature
inputs. The linearity of the learned relationship makes the interpretation easy. Linear
regression models have long been used by statisticians, computer scientists and other
people who tackle quantitative problems.

Linear models can be used to model the dependence of a regression target y on
some features x. The learned relationships are linear and can be written for a single
instance i as follows:

y = β0 + β1x1 + . . .+ βpxp + ϵ

The predicted outcome of an instance is a weighted sum of its p features. The betas
(βj) represent the learned feature weights or coefficients. The first weight in the sum
(β0) is called the intercept and is not multiplied with a feature. The epsilon (ϵ) is the
error we still make, i.e. the difference between the prediction and the actual outcome.
These errors are assumed to follow a Gaussian distribution, which means that we
make errors in both negative and positive directions and make many small errors
and few large errors.

Various methods can be used to estimate the optimal weight. The ordinary least
squares method is usually used to find the weights that minimize the squared
differences between the actual and the estimated outcomes:

β̂ = arg min
β0,...,βp

n∑
i=1

y(i) −

β0 +

p∑
j=1

βjx
(i)
j

2

We will not discuss in detail how the optimal weights can be found, but if you are
interested, you can read chapter 3.2 of the book “The Elements of Statistical Learning”
(Friedman, Hastie and Tibshirani 2009)³⁵ or one of the other online resources on linear
regression models.

The biggest advantage of linear regressionmodels is linearity: It makes the estimation

³⁵Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. “The elements of statistical learning”.
www.web.stanford.edu/∼hastie/ElemStatLearn/ (2009).
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procedure simple and, most importantly, these linear equations have an easy to
understand interpretation on amodular level (i.e. theweights). This is one of themain
reasons why the linear model and all similar models are so widespread in academic
fields such as medicine, sociology, psychology, and many other quantitative research
fields. For example, in the medical field, it is not only important to predict the clinical
outcome of a patient, but also to quantify the influence of the drug and at the same
time take sex, age, and other features into account in an interpretable way.

Estimated weights come with confidence intervals. A confidence interval is a range
for the weight estimate that covers the “true” weight with a certain confidence. For
example, a 95% confidence interval for a weight of 2 could range from 1 to 3. The
interpretation of this interval would be: If we repeated the estimation 100 times with
newly sampled data, the confidence interval would include the true weight in 95 out
of 100 cases, given that the linear regression model is the correct model for the data.

Whether the model is the “correct” model depends on whether the relationships in
the data meet certain assumptions, which are linearity, normality, homoscedasticity,
independence, fixed features, and absence of multicollinearity.

Linearity
The linear regression model forces the prediction to be a linear combination of
features, which is both its greatest strength and its greatest limitation. Linearity leads
to interpretable models. Linear effects are easy to quantify and describe. They are
additive, so it is easy to separate the effects. If you suspect feature interactions or
a nonlinear association of a feature with the target value, you can add interaction
terms or use regression splines.

Normality
It is assumed that the target outcome given the features follows a normal distribution.
If this assumption is violated, the estimated confidence intervals of the feature
weights are invalid.

Homoscedasticity (constant variance)
The variance of the error terms is assumed to be constant over the entire feature
space. Suppose you want to predict the value of a house given the living area in
square meters. You estimate a linear model that assumes that, regardless of the size
of the house, the error around the predicted response has the same variance. This
assumption is often violated in reality. In the house example, it is plausible that the
variance of error terms around the predicted price is higher for larger houses, since
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prices are higher and there is more room for price fluctuations. Suppose the average
error (difference between predicted and actual price) in your linear regression model
is 50,000 Euros. If you assume homoscedasticity, you assume that the average error of
50,000 is the same for houses that cost 1 million and for houses that cost only 40,000.
This is unreasonable because it wouldmean that we can expect negative house prices.

Independence
It is assumed that each instance is independent of any other instance. If you perform
repeated measurements, such as multiple blood tests per patient, the data points are
not independent. For dependent data you need special linear regression models, such
as mixed effect models or GEEs. If you use the “normal” linear regression model, you
might draw wrong conclusions from the model.

Fixed features
The input features are considered “fixed”. Fixed means that they are treated as
“given constants” and not as statistical variables. This implies that they are free of
measurement errors. This is a rather unrealistic assumption. Without that assump-
tion, however, you would have to fit very complex measurement error models that
account for the measurement errors of your input features. And usually you do not
want to do that.

Absence of multicollinearity
You do not want strongly correlated features, because this messes up the estimation
of the weights. In a situation where two features are strongly correlated, it becomes
problematic to estimate the weights because the feature effects are additive and it
becomes indeterminable to which of the correlated features to attribute the effects.

Interpretation

The interpretation of a weight in the linear regression model depends on the type of
the corresponding feature.

• Numerical feature: Increasing the numerical feature by one unit changes the
estimated outcome by its weight. An example of a numerical feature is the size
of a house.

• Binary feature: A feature that takes one of two possible values for each instance.
An example is the feature “House comes with a garden”. One of the values
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counts as the reference category (in some programming languages encodedwith
0), such as “No garden”. Changing the feature from the reference category to
the other category changes the estimated outcome by the feature’s weight.

• Categorical feature with multiple categories: A feature with a fixed number of
possible values. An example is the feature “floor type”, with possible categories
“carpet”, “laminate” and “parquet”. A solution to deal with many categories is
the one-hot-encoding, meaning that each category has its own binary column.
For a categorical feature with L categories, you only need L-1 columns, because
the L-th column would have redundant information (e.g. when columns 1 to
L-1 all have value 0 for one instance, we know that the categorical feature of
this instance takes on category L). The interpretation for each category is then
the same as the interpretation for binary features. Some languages, such as R,
allow you to encode categorical features in various ways, as described later in
this chapter.

• Intercept β0: The intercept is the feature weight for the “constant feature”,
which is always 1 for all instances. Most software packages automatically add
this “1”-feature to estimate the intercept. The interpretation is: For an instance
with all numerical feature values at zero and the categorical feature values
at the reference categories, the model prediction is the intercept weight. The
interpretation of the intercept is usually not relevant because instances with
all features values at zero often make no sense. The interpretation is only
meaningful when the features have been standardised (mean of zero, standard
deviation of one). Then the intercept reflects the predicted outcome of an
instance where all features are at their mean value.

The interpretation of the features in the linear regression model can be automated
by using following text templates.

Interpretation of a Numerical Feature

An increase of feature xk by one unit increases the prediction for y by βk units when
all other feature values remain fixed.

Interpretation of a Categorical Feature

Changing feature xk from the reference category to the other category increases the
prediction for y by βk when all other features remain fixed.
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Another important measurement for interpreting linear models is the R-squared
measurement. R-squared tells you how much of the total variance of your target
outcome is explained by the model. The higher R-squared, the better your model
explains the data. The formula for calculating R-squared is:

R2 = 1− SSE/SST

SSE is the squared sum of the error terms:

SSE =

n∑
i=1

(y(i) − ŷ(i))2

SST is the squared sum of the data variance:

SST =

n∑
i=1

(y(i) − ȳ)2

The SSE tells you howmuch variance remains after fitting the linear model, which is
measured by the squared differences between the predicted and actual target values.
SST is the total variance of the target outcome. R-squared tells you how much of
your variance can be explained by the linear model. R-squared ranges between 0 for
models where the model does not explain the data at all and 1 for models that explain
all of the variance in your data.

There is a catch, because R-squared increases with the number of features in the
model, even if they do not contain any information about the target value at all.
Therefore, it is better to use the adjusted R-squared, which accounts for the number
of features used in the model. Its calculation is:

R̄2 = 1− (1−R2)
n− 1

n− p− 1

where p is the number of features and n the number of instances.

It is not meaningful to interpret a model with very low (adjusted) R-squared, because
such a model basically does not explain much of the variance. Any interpretation of
the weights would not be meaningful.

www.dbooks.org

https://www.dbooks.org/


Interpretable Models 54

Feature Importance

The importance of a feature in a linear regression model can be measured by the
absolute value of its t-statistic. The t-statistic is the estimated weight scaled with its
standard error.

tβ̂j
=

β̂j

SE(β̂j)

Let us examine what this formula tells us: The importance of a feature increases with
increasing weight. This makes sense. The more variance the estimated weight has (=
the less certain we are about the correct value), the less important the feature is. This
also makes sense.

Example

In this example, we use the linear regression model to predict the number of
rented bikes on a particular day, given weather and calendar information. For the
interpretation, we examine the estimated regression weights. The features consist of
numerical and categorical features. For each feature, the table shows the estimated
weight, the standard error of the estimate (SE), and the absolute value of the t-statistic
(|t|).

Weight SE t
(Intercept) 2399.4 238.3 10.1
seasonSUMMER 899.3 122.3 7.4
seasonFALL 138.2 161.7 0.9
seasonWINTER 425.6 110.8 3.8
holidayHOLIDAY -686.1 203.3 3.4
workingdayWORKING DAY 124.9 73.3 1.7
weathersitMISTY -379.4 87.6 4.3
weathersitRAIN/SNOW/STORM -1901.5 223.6 8.5
temp 110.7 7.0 15.7
hum -17.4 3.2 5.5
windspeed -42.5 6.9 6.2
days_since_2011 4.9 0.2 28.5
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Interpretation of a numerical feature (temperature): An increase of the temperature
by 1 degree Celsius increases the predicted number of bicycles by 110.7, when all
other features remain fixed.

Interpretation of a categorical feature (“weathersit”): The estimated number of
bicycles is -1901.5 lower when it is raining, snowing or stormy, compared to good
weather – again assuming that all other features do not change. When the weather
is misty, the predicted number of bicycles is -379.4 lower compared to good weather,
given all other features remain the same.

All the interpretations always come with the footnote that “all other features remain
the same”. This is because of the nature of linear regression models. The predicted
target is a linear combination of the weighted features. The estimated linear equation
is a hyperplane in the feature/target space (a simple line in the case of a single
feature). The weights specify the slope (gradient) of the hyperplane in each direction.
The good side is that the additivity isolates the interpretation of an individual feature
effect from all other features. That is possible because all the feature effects (= weight
times feature value) in the equation are combined with a plus. On the bad side of
things, the interpretation ignores the joint distribution of the features. Increasing one
feature, but not changing another, can lead to unrealistic or at least unlikely data
points. For example increasing the number of rooms might be unrealistic without
also increasing the size of a house.

Visual Interpretation

Various visualizations make the linear regression model easy and quick to grasp for
humans.

Weight Plot

The information of theweight table (weight and variance estimates) can be visualized
in a weight plot. The following plot shows the results from the previous linear
regression model.
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Weights are displayed as points and the 95% confidence intervals as lines.

The weight plot shows that rainy/snowy/stormyweather has a strong negative effect
on the predicted number of bikes. The weight of the working day feature is close to
zero and zero is included in the 95% interval, which means that the effect is not
statistically significant. Some confidence intervals are very short and the estimates
are close to zero, yet the feature effects were statistically significant. Temperature
is one such candidate. The problem with the weight plot is that the features are
measured on different scales. While for the weather the estimated weight reflects
the difference between good and rainy/stormy/snowy weather, for temperature it
only reflects an increase of 1 degree Celsius. You can make the estimated weights
more comparable by scaling the features (zero mean and standard deviation of one)
before fitting the linear model.
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Effect Plot

The weights of the linear regression model can be more meaningfully analyzed when
they are multiplied by the actual feature values. The weights depend on the scale of
the features and will be different if you have a feature that measures e.g. a person’s
height and you switch from meter to centimeter. The weight will change, but the
actual effects in your data will not. It is also important to know the distribution of
your feature in the data, because if you have a very low variance, it means that
almost all instances have similar contribution from this feature. The effect plot can
help you understand how much the combination of weight and feature contributes
to the predictions in your data. Start by calculating the effects, which is the weight
per feature times the feature value of an instance:

effect(i)j = wjx
(i)
j

The effects can be visualized with boxplots. A box in a boxplot contains the effect
range for half of your data (25% to 75% effect quantiles). The vertical line in the box
is the median effect, i.e. 50% of the instances have a lower and the other half a higher
effect on the prediction. The horizontal lines extend to ±1.5IQR/

√
n, with IQR being

the inter quartile range (75% quantile minus 25% quantile). The dots are outliers. The
categorical feature effects can be summarized in a single boxplot, compared to the
weight plot, where each category has its own row.
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The feature effect plot shows the distribution of effects (= feature value times feature weight) across
the data per feature.

The largest contributions to the expected number of rented bicycles comes from the
temperature feature and the days feature, which captures the trend of bike rentals
over time. The temperature has a broad range of how much it contributes to the
prediction. The day trend feature goes from zero to large positive contributions,
because the first day in the dataset (01.01.2011) has a very small trend effect and
the estimated weight for this feature is positive (4.93). This means that the effect
increases with each day and is highest for the last day in the dataset (31.12.2012).
Note that for effects with a negative weight, the instances with a positive effect are
those that have a negative feature value. For example, days with a high negative
effect of windspeed are the ones with high wind speeds.
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Explain Individual Predictions

Howmuch has each feature of an instance contributed to the prediction? This can be
answered by computing the effects for this instance. An interpretation of instance-
specific effects only makes sense in comparison to the distribution of the effect for
each feature. We want to explain the prediction of the linear model for the 6-th
instance from the bicycle dataset. The instance has the following feature values.

Feature Value
season SPRING
yr 2011
mnth JAN
holiday NO HOLIDAY
weekday THU
workingday WORKING DAY
weathersit GOOD
temp 1.604356
hum 51.8261
windspeed 6.000868
cnt 1606
days_since_2011 5

To obtain the feature effects of this instance, we have to multiply its feature values
by the corresponding weights from the linear regression model. For the value
“WORKING DAY” of feature “workingday”, the effect is, 124.9. For a temperature
of 1.6 degrees Celsius, the effect is 177.6. We add these individual effects as crosses to
the effect plot, which shows us the distribution of the effects in the data. This allows
us to compare the individual effects with the distribution of effects in the data.
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The effect plot for one instance shows the effect distribution and highlights the effects of the
instance of interest.

If we average the predictions for the training data instances, we get an average of
4504. In comparison, the prediction of the 6-th instance is small, since only 1571
bicycle rents are predicted. The effect plot reveals the reason why. The boxplots show
the distributions of the effects for all instances of the dataset, the crosses show the
effects for the 6-th instance. The 6-th instance has a low temperature effect because
on this day the temperature was 2 degrees, which is low compared to most other
days (and remember that the weight of the temperature feature is positive). Also,
the effect of the trend feature “days_since_2011” is small compared to the other data
instances because this instance is from early 2011 (5 days) and the trend feature also
has a positive weight.
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Encoding of Categorical Features

There are several ways to encode a categorical feature, and the choice influences the
interpretation of the weights.

The standard in linear regression models is treatment coding, which is sufficient
in most cases. Using different encodings boils down to creating different (design)
matrices from a single column with the categorical feature. This section presents
three different encodings, but there are many more. The example used has six
instances and a categorical feature with three categories. For the first two instances,
the feature takes category A; for instances three and four, category B; and for the last
two instances, category C.

Treatment coding

In treatment coding, the weight per category is the estimated difference in the
prediction between the corresponding category and the reference category. The
intercept of the linear model is the mean of the reference category (when all other
features remain the same). The first column of the design matrix is the intercept,
which is always 1. Column two indicates whether instance i is in category B, column
three indicates whether it is in category C. There is no need for a column for category
A, because then the linear equation would be overspecified and no unique solution
for the weights can be found. It is sufficient to know that an instance is neither in
category B or C.

Feature matrix:



1 0 0

1 0 0

1 1 0

1 1 0

1 0 1

1 0 1


Effect coding

The weight per category is the estimated y-difference from the corresponding
category to the overall mean (given all other features are zero or the reference
category). The first column is used to estimate the intercept. The weight β0 associated
with the intercept represents the overall mean and β1, the weight for column two, is
the difference between the overall mean and category B. The total effect of category

www.dbooks.org

https://www.dbooks.org/


Interpretable Models 62

B is β0+β1. The interpretation for category C is equivalent. For the reference category
A, −(β1+β2) is the difference to the overall mean and β0− (β1+β2) the overall effect.

Feature matrix:



1 −1 −1

1 −1 −1

1 1 0

1 1 0

1 0 1

1 0 1


Dummy coding

The β per category is the estimated mean value of y for each category (given all other
feature values are zero or the reference category). Note that the intercept has been
omitted here so that a unique solution can be found for the linear model weights.

Feature matrix:



1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1


If you want to dive a little deeper into the different encodings of categorical features,
checkout this overview webpage³⁶ and this blog post³⁷.

Do Linear Models Create Good Explanations?

Judging by the attributes that constitute a good explanation, as presented in the
Human-Friendly Explanations chapter, linear models do not create the best ex-
planations. They are contrastive, but the reference instance is a data point where
all numerical features are zero and the categorical features are at their reference
categories. This is usually an artificial, meaningless instance that is unlikely to
occur in your data or reality. There is an exception: If all numerical features are
mean centered (feature minus mean of feature) and all categorical features are effect
coded, the reference instance is the data point where all the features take on the
mean feature value. This might also be a non-existent data point, but it might at

³⁶http://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
³⁷http://heidiseibold.github.io/page7/

http://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
http://heidiseibold.github.io/page7/
http://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
http://heidiseibold.github.io/page7/
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least be more likely or more meaningful. In this case, the weights times the feature
values (feature effects) explain the contribution to the predicted outcome contrastive
to the “mean-instance”. Another aspect of a good explanation is selectivity, which
can be achieved in linear models by using less features or by training sparse linear
models. But by default, linear models do not create selective explanations. Linear
models create truthful explanations, as long as the linear equation is an appropriate
model for the relationship between features and outcome. The more non-linearities
and interactions there are, the less accurate the linear model will be and the less
truthful the explanations become. Linearity makes the explanations more general
and simpler. The linear nature of the model, I believe, is the main factor why people
use linear models for explaining relationships.

Sparse Linear Models

The examples of the linear models that I have chosen all look nice and neat, do they
not? But in reality you might not have just a handful of features, but hundreds or
thousands. And your linear regression models? Interpretability goes downhill. You
might even find yourself in a situation where there are more features than instances,
and you cannot fit a standard linear model at all. The good news is that there are
ways to introduce sparsity (= few features) into linear models.

Lasso

Lasso is an automatic and convenient way to introduce sparsity into the linear
regression model. Lasso stands for “least absolute shrinkage and selection operator”
and, when applied in a linear regression model, performs feature selection and
regularization of the selected feature weights. Let us consider the minimization
problem that the weights optimize:

minβ

(
1

n

n∑
i=1

(y(i) − xT
i β)

2

)

Lasso adds a term to this optimization problem.

minβ

(
1

n

n∑
i=1

(y(i) − xT
i β)

2 + λ||β||1

)
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The term ||β||1, the L1-norm of the feature vector, leads to a penalization of large
weights. Since the L1-norm is used, many of the weights receive an estimate of 0
and the others are shrunk. The parameter lambda (λ) controls the strength of the
regularizing effect and is usually tuned by cross-validation. Especially when lambda
is large, many weights become 0. The feature weights can be visualized as a function
of the penalty term lambda. Each feature weight is represented by a curve in the
following figure.

With increasing penalty of the weights, fewer and fewer features receive a non-zero weight
estimate. These curves are also called regularization paths. The number above the plot is the number
of non-zero weights.

What value shouldwe choose for lambda? If you see the penalization term as a tuning
parameter, then you can find the lambda that minimizes the model error with cross-
validation. You can also consider lambda as a parameter to control the interpretability
of the model. The larger the penalization, the fewer features are present in the model
(because their weights are zero) and the better the model can be interpreted.
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Example with Lasso

We will predict bicycle rentals using Lasso. We set the number of features we want
to have in the model beforehand. Let us first set the number to 2 features:

Weight
seasonSPRING 0.00
seasonSUMMER 0.00
seasonFALL 0.00
seasonWINTER 0.00
holidayHOLIDAY 0.00
workingdayWORKING DAY 0.00
weathersitMISTY 0.00
weathersitRAIN/SNOW/STORM 0.00
temp 52.33
hum 0.00
windspeed 0.00
days_since_2011 2.15

The first two features with non-zero weights in the Lasso path are temperature
(“temp”) and the time trend (“days_since_2011”).

Now, let us select 5 features:

Weight
seasonSPRING -389.99
seasonSUMMER 0.00
seasonFALL 0.00
seasonWINTER 0.00
holidayHOLIDAY 0.00
workingdayWORKING DAY 0.00
weathersitMISTY 0.00
weathersitRAIN/SNOW/STORM -862.27
temp 85.58
hum -3.04
windspeed 0.00
days_since_2011 3.82

Note that the weights for “temp” and “days_since_2011” differ from the model with
two features. The reason for this is that by decreasing lambda even features that are
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already “in” the model are penalized less and may get a larger absolute weight. The
interpretation of the Lasso weights corresponds to the interpretation of the weights
in the linear regressionmodel. You only need to pay attention to whether the features
are standardized or not, because this affects the weights. In this example, the features
were standardized by the software, but the weights were automatically transformed
back for us to match the original feature scales.

Other methods for sparsity in linear models

Awide spectrum of methods can be used to reduce the number of features in a linear
model.

Pre-processing methods:

• Manually selected features: You can always use expert knowledge to select or
discard some features. The big drawback is that it cannot be automated and you
need to have access to someone who understands the data.

• Univariate selection: An example is the correlation coefficient. You only con-
sider features that exceed a certain threshold of correlation between the
feature and the target. The disadvantage is that it only considers the features
individually. Some features might not show a correlation until the linear model
has accounted for some other features. Those ones youwill miss with univariate
selection methods.

Step-wise methods:

• Forward selection: Fit the linear model with one feature. Do this with each
feature. Select the model that works best (e.g. highest R-squared). Now again,
for the remaining features, fit different versions of your model by adding each
feature to your current best model. Select the one that performs best. Continue
until some criterion is reached, such as the maximum number of features in the
model.

• Backward selection: Similar to forward selection. But instead of adding features,
start with the model that contains all features and try out which feature you
have to remove to get the highest performance increase. Repeat this until some
stopping criterion is reached.
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I recommend using Lasso, because it can be automated, considers all features
simultaneously, and can be controlled via lambda. It also works for the logistic
regression model for classification.

Advantages

The modeling of the predictions as a weighted sum makes it transparent how
predictions are produced. And with Lasso we can ensure that the number of features
used remains small.

Many people use linear regression models. This means that in many places it
is accepted for predictive modeling and doing inference. There is a high level
of collective experience and expertise, including teaching materials on linear
regression models and software implementations. Linear regression can be found
in R, Python, Java, Julia, Scala, Javascript, …

Mathematically, it is straightforward to estimate the weights and you have a
guarantee to find optimal weights (given all assumptions of the linear regression
model are met by the data).

Together with the weights you get confidence intervals, tests, and solid statistical
theory. There are also many extensions of the linear regression model (see chapter
on GLM, GAM and more).

Disadvantages

Linear regression models can only represent linear relationships, i.e. a weighted sum
of the input features. Each nonlinearity or interaction has to be hand-crafted and
explicitly given to the model as an input feature.

Linear models are also often not that good regarding predictive performance, be-
cause the relationships that can be learned are so restricted and usually oversimplify
how complex reality is.

The interpretation of a weight can be unintuitive because it depends on all other
features. A feature with high positive correlation with the outcome y and another
feature might get a negative weight in the linear model, because, given the other
correlated feature, it is negatively correlated with y in the high-dimensional space.
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Completely correlated features make it even impossible to find a unique solution for
the linear equation. An example: You have amodel to predict the value of a house and
have features like number of rooms and size of the house. House size and number of
rooms are highly correlated: the bigger a house is, the more rooms it has. If you take
both features into a linear model, it might happen, that the size of the house is the
better predictor and gets a large positive weight. The number of rooms might end up
getting a negative weight, because, given that a house has the same size, increasing
the number of rooms could make it less valuable or the linear equation becomes less
stable, when the correlation is too strong.
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Logistic Regression

Logistic regression models the probabilities for classification problems with two
possible outcomes. It’s an extension of the linear regression model for classification
problems.

What is Wrong with Linear Regression for
Classification?

The linear regression model can work well for regression, but fails for classification.
Why is that? In case of two classes, you could label one of the classes with 0 and
the other with 1 and use linear regression. Technically it works and most linear
model programs will spit out weights for you. But there are a few problems with
this approach:

A linear model does not output probabilities, but it treats the classes as numbers (0
and 1) and fits the best hyperplane (for a single feature, it is a line) that minimizes the
distances between the points and the hyperplane. So it simply interpolates between
the points, and you cannot interpret it as probabilities.

A linear model also extrapolates and gives you values below zero and above one.
This is a good sign that there might be a smarter approach to classification.

Since the predicted outcome is not a probability, but a linear interpolation between
points, there is no meaningful threshold at which you can distinguish one class from
the other. A good illustration of this issue has been given on Stackoverflow³⁸.

Linear models do not extend to classification problems with multiple classes. You
would have to start labeling the next class with 2, then 3, and so on. The classes might
not have any meaningful order, but the linear model would force a weird structure
on the relationship between the features and your class predictions. The higher the
value of a feature with a positive weight, the more it contributes to the prediction of
a class with a higher number, even if classes that happen to get a similar number are
not closer than other classes.

³⁸https://stats.stackexchange.com/questions/22381/why-not-approach-classification-through-regression
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A linear model classifies tumors as malignant (1) or benign (0) given their size. The lines show the
prediction of the linear model. For the data on the left, we can use 0.5 as classification threshold.
After introducing a few more malignant tumor cases, the regression line shifts and a threshold of
0.5 no longer separates the classes. Points are slightly jittered to reduce over-plotting.

Theory

A solution for classification is logistic regression. Instead of fitting a straight line or
hyperplane, the logistic regression model uses the logistic function to squeeze the
output of a linear equation between 0 and 1. The logistic function is defined as:

logistic(η) = 1

1 + exp(−η)

And it looks like this:
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The logistic function. It outputs numbers between 0 and 1. At input 0, it outputs 0.5.

The step from linear regression to logistic regression is kind of straightforward. In
the linear regression model, we have modelled the relationship between outcome
and features with a linear equation:

ŷ(i) = β0 + β1x
(i)
1 + . . .+ βpx

(i)
p

For classification, we prefer probabilities between 0 and 1, so we wrap the right side
of the equation into the logistic function. This forces the output to assume only values
between 0 and 1.

P (y(i) = 1) =
1

1 + exp(−(β0 + β1x
(i)
1 + . . .+ βpx

(i)
p ))

Let us revisit the tumor size example again. But instead of the linear regressionmodel,
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we use the logistic regression model:

The logistic regression model finds the correct decision boundary between malignant and benign
depending on tumor size. The line is the logistic function shifted and squeezed to fit the data.

Classification works better with logistic regression and we can use 0.5 as a threshold
in both cases. The inclusion of additional points does not really affect the estimated
curve.

Interpretation

The interpretation of the weights in logistic regression differs from the interpretation
of the weights in linear regression, since the outcome in logistic regression is a
probability between 0 and 1. The weights do not influence the probability linearly
any longer. The weighted sum is transformed by the logistic function to a probability.
Therefore we need to reformulate the equation for the interpretation so that only the
linear term is on the right side of the formula.
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log

(
P (y = 1)

1− P (y = 1)

)
= log

(
P (y = 1)

P (y = 0)

)
= β0 + β1x1 + . . .+ βpxp

We call the term in the log() function “odds” (probability of event divided by
probability of no event) and wrapped in the logarithm it is called log odds.

This formula shows that the logistic regression model is a linear model for the log
odds. Great! That does not sound helpful! With a little shuffling of the terms, you
can figure out how the prediction changes when one of the features xj is changed by
1 unit. To do this, we can first apply the exp() function to both sides of the equation:

P (y = 1)

1− P (y = 1)
= odds = exp (β0 + β1x1 + . . .+ βpxp)

Then we compare what happens when we increase one of the feature values by 1.
But instead of looking at the difference, we look at the ratio of the two predictions:

oddsxj+1

odds
=

exp (β0 + β1x1 + . . .+ βj(xj + 1) + . . .+ βpxp)

exp (β0 + β1x1 + . . .+ βjxj + . . .+ βpxp)

We apply the following rule:

exp(a)

exp(b)
= exp(a− b)

And we remove many terms:

oddsxj+1

odds
= exp (βj(xj + 1)− βjxj) = exp (βj)

In the end, we have something as simple as exp() of a feature weight. A change in
a feature by one unit changes the odds ratio (multiplicative) by a factor of exp(βj).
We could also interpret it this way: A change in xj by one unit increases the log
odds ratio by the value of the corresponding weight. Most people interpret the odds
ratio because thinking about the log() of something is known to be hard on the brain.
Interpreting the odds ratio already requires some getting used to. For example, if you
have odds of 2, it means that the probability for y=1 is twice as high as y=0. If you
have a weight (= log odds ratio) of 0.7, then increasing the respective feature by one
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unit multiplies the odds by exp(0.7) (approximately 2) and the odds change to 4. But
usually you do not deal with the odds and interpret the weights only as the odds
ratios. Because for actually calculating the odds you would need to set a value for
each feature, which only makes sense if you want to look at one specific instance of
your dataset.

These are the interpretations for the logistic regression model with different feature
types:

• Numerical feature: If you increase the value of feature xj by one unit, the
estimated odds change by a factor of exp(βj)

• Binary categorical feature: One of the two values of the feature is the reference
category (in some languages, the one encoded in 0). Changing the feature xj

from the reference category to the other category changes the estimated odds
by a factor of exp(βj).

• Categorical feature with more than two categories: One solution to deal with
multiple categories is one-hot-encoding, meaning that each category has its
own column. You only need L-1 columns for a categorical feature with L
categories, otherwise it is over-parameterized. The L-th category is then the
reference category. You can use any other encoding that can be used in linear
regression. The interpretation for each category then is equivalent to the
interpretation of binary features.

• Intercept β0: When all numerical features are zero and the categorical features
are at the reference category, the estimated odds are exp(β0). The interpretation
of the intercept weight is usually not relevant.

Example

We use the logistic regression model to predict cervical cancer based on some risk
factors. The following table shows the estimate weights, the associated odds ratios,
and the standard error of the estimates.
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Weight Odds ratio Std. Error
Intercept -2.91 0.05 0.32
Hormonal contraceptives y/n -0.12 0.89 0.30
Smokes y/n 0.26 1.29 0.37
Num. of pregnancies 0.04 1.04 0.10
Num. of diagnosed STDs 0.82 2.26 0.33
Intrauterine device y/n 0.62 1.85 0.40

Interpretation of a numerical feature (“Num. of diagnosed STDs”): An increase in
the number of diagnosed STDs (sexually transmitted diseases) changes (increases)
the odds of cancer vs. no cancer by a factor of 2.26, when all other features remain
the same. Keep in mind that correlation does not imply causation.

Interpretation of a categorical feature (“Hormonal contraceptives y/n”): For women
using hormonal contraceptives, the odds for cancer vs. no cancer are by a factor of
0.89 lower, compared to women without hormonal contraceptives, given all other
features stay the same.

Like in the linear model, the interpretations always come with the clause that ‘all
other features stay the same’.

Advantages and Disadvantages

Many of the pros and cons of the linear regression model also apply to the logistic
regression model. Logistic regression has been widely used bymany different people,
but it struggles with its restrictive expressiveness (e.g. interactions must be added
manually) and other models may have better predictive performance.

Another disadvantage of the logistic regression model is that the interpretation is
more difficult because the interpretation of the weights is multiplicative and not
additive.

Logistic regression can suffer from complete separation. If there is a feature that
would perfectly separate the two classes, the logistic regression model can no longer
be trained. This is because the weight for that feature would not converge, because
the optimal weight would be infinite. This is really a bit unfortunate, because such a
feature is really useful. But you do not need machine learning if you have a simple
rule that separates both classes. The problem of complete separation can be solved by
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introducing penalization of the weights or defining a prior probability distribution
of weights.

On the good side, the logistic regression model is not only a classification model,
but also gives you probabilities. This is a big advantage over models that can only
provide the final classification. Knowing that an instance has a 99% probability for a
class compared to 51% makes a big difference.

Logistic regression can also be extended from binary classification to multi-class
classification. Then it is called Multinomial Regression.

Software

I used the glm function in R for all examples. You can find logistic regression in
any programming language that can be used for performing data analysis, such as
Python, Java, Stata, Matlab, …
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GLM, GAM and more

The biggest strength but also the biggest weakness of the linear regression model is
that the prediction is modeled as a weighted sum of the features. In addition, the
linear model comes with many other assumptions. The bad news is (well, not really
news) that all those assumptions are often violated in reality: The outcome given
the features might have a non-Gaussian distribution, the features might interact and
the relationship between the features and the outcome might be nonlinear. The good
news is that the statistics community has developed a variety of modifications that
transform the linear regression model from a simple blade into a Swiss knife.

This chapter is definitely not your definite guide to extending linear models. Rather,
it serves as an overview of extensions such as Generalized LinearModels (GLMs) and
Generalized Additive Models (GAMs) and gives you a little intuition. After reading,
you should have a solid overview of how to extend linear models. If you want to
learn more about the linear regression model first, I suggest you read the chapter on
linear regression models, if you have not already.

Let us remember the formula of a linear regression model:

y = β0 + β1x1 + . . .+ βpxp + ϵ

The linear regression model assumes that the outcome y of an instance can be
expressed by a weighted sum of its p features with an individual error ϵ that follows a
Gaussian distribution. By forcing the data into this corset of a formula, we obtain a lot
of model interpretability. The feature effects are additive, meaning no interactions,
and the relationship is linear, meaning an increase of a feature by one unit can be
directly translated into an increase/decrease of the predicted outcome. The linear
model allows us to compress the relationship between a feature and the expected
outcome into a single number, namely the estimated weight.

But a simple weighted sum is too restrictive for many real world prediction problems.
In this chapter we will learn about three problems of the classical linear regression
model and how to solve them. There are many more problems with possibly violated
assumptions, but we will focus on the three shown in the following figure:
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Three assumptions of the linear model (left side): Gaussian distribution of the outcome given the
features, additivity (= no interactions) and linear relationship. Reality usually does not adhere to
those assumptions (right side): Outcomes might have non-Gaussian distributions, features might
interact and the relationship might be nonlinear.

There is a solution to all these problems:

Problem: The target outcome y given the features does not follow a Gaussian
distribution.
Example: Suppose I want to predict howmanyminutes I will ride my bike on a given
day. As features I have the type of day, the weather and so on. If I use a linear model,
it could predict negative minutes because it assumes a Gaussian distribution which
does not stop at 0 minutes. Also if I want to predict probabilities with a linear model,
I can get probabilities that are negative or greater than 1.
Solution: Generalized Linear Models (GLMs).

Problem: The features interact.
Example: On average, light rain has a slight negative effect on my desire to go
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cycling. But in summer, during rush hour, I welcome rain, because then all the fair-
weather cyclists stay at home and I have the bicycle paths for myself! This is an
interaction between time and weather that cannot be captured by a purely additive
model.
Solution: Adding interactions manually.

Problem: The true relationship between the features and y is not linear.
Example: Between 0 and 25 degrees Celsius, the influence of the temperature on my
desire to ride a bike could be linear, which means that an increase from 0 to 1 degree
causes the same increase in cycling desire as an increase from 20 to 21. But at higher
temperatures my motivation to cycle levels off and even decreases - I do not like to
bike when it is too hot.
Solutions: Generalized Additive Models (GAMs); transformation of features.

The solutions to these three problems are presented in this chapter. Many further
extensions of the linear model are omitted. If I attempted to cover everything here,
the chapter would quickly turn into a book within a book about a topic that is already
covered in many other books. But since you are already here, I have made a little
problem plus solution overview for linear model extensions, which you can find at
the end of the chapter. The name of the solution is meant to serve as a starting point
for a search.

Non-Gaussian Outcomes - GLMs

The linear regression model assumes that the outcome given the input features
follows a Gaussian distribution. This assumption excludes many cases: The outcome
can also be a category (cancer vs. healthy), a count (number of children), the time to
the occurrence of an event (time to failure of a machine) or a very skewed outcome
with a few very high values (household income). The linear regression model can be
extended to model all these types of outcomes. This extension is called Generalized
LinearModels orGLMs for short. Throughout this chapter, I will use the name GLM
for both the general framework and for particular models from that framework. The
core concept of any GLM is: Keep the weighted sum of the features, but allow non-
Gaussian outcome distributions and connect the expected mean of this distribution
and the weighted sum through a possibly nonlinear function. For example, the
logistic regression model assumes a Bernoulli distribution for the outcome and links
the expected mean and the weighted sum using the logistic function.
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The GLMmathematically links the weighted sum of the features with themean value
of the assumed distribution using the link function g, which can be chosen flexibly
depending on the type of outcome.

g(EY (y|x)) = β0 + β1x1 + . . . βpxp

GLMs consist of three components: The link function g, the weighted sum XTβ

(sometimes called linear predictor) and a probability distribution from the exponen-
tial family that defines EY .

The exponential family is a set of distributions that can be written with the same
(parameterized) formula that includes an exponent, the mean and variance of the
distribution and some other parameters. I will not go into the mathematical details
because this is a very big universe of its own that I do not want to enter. Wikipedia
has a neat list of distributions from the exponential family³⁹. Any distribution from
this list can be chosen for your GLM. Based on the type of the outcome you want
to predict, choose a suitable distribution. Is the outcome a count of something (e.g.
number of children living in a household)? Then the Poisson distribution could be
a good choice. Is the outcome always positive (e.g. time between two events)? Then
the exponential distribution could be a good choice.

Let us consider the classic linear model as a special case of a GLM. The link function
for the Gaussian distribution in the classic linear model is simply the identity
function. The Gaussian distribution is parameterized by the mean and the variance
parameters. Themean describes the value that we expect on average and the variance
describes how much the values vary around this mean. In the linear model, the
link function links the weighted sum of the features to the mean of the Gaussian
distribution.

Under the GLM framework, this concept generalizes to any distribution (from the
exponential family) and arbitrary link functions. If y is a count of something, such
as the number of coffees someone drinks on a certain day, we could model it with a
GLM with a Poisson distribution and the natural logarithm as the link function:

ln(EY (y|x)) = xTβ

³⁹https://en.wikipedia.org/wiki/Exponential_family#Table_of_distributions

https://en.wikipedia.org/wiki/Exponential_family#Table_of_distributions
https://en.wikipedia.org/wiki/Exponential_family#Table_of_distributions
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The logistic regression model is also a GLM that assumes a Bernoulli distribution and
uses the logit function as the link function. The mean of the binomial distribution
used in logistic regression is the probability that y is 1.

xTβ = ln

(
EY (y|x)

1− EY (y|x)

)
= ln

(
P (y = 1|x)

1− P (y = 1|x)

)
And if we solve this equation to have P(y=1) on one side, we get the logistic regression
formula:

P (y = 1) =
1

1 + exp(−xTβ)

Each distribution from the exponential family has a canonical link function that
can be derived mathematically from the distribution. The GLM framework makes
it possible to choose the link function independently of the distribution. How to
choose the right link function? There is no perfect recipe. You take into account
knowledge about the distribution of your target, but also theoretical considerations
and how well the model fits your actual data. For some distributions the canonical
link function can lead to values that are invalid for that distribution. In the case
of the exponential distribution, the canonical link function is the negative inverse,
which can lead to negative predictions that are outside the domain of the exponential
distribution. Since you can choose any link function, the simple solution is to choose
another function that respects the domain of the distribution.

Examples

I have simulated a dataset on coffee drinking behavior to highlight the need for
GLMs. Suppose you have collected data about your daily coffee drinking behavior. If
you do not like coffee, pretend it is about tea. Along with number of cups, you record
your current stress level on a scale of 1 to 10, how well you slept the night before on
a scale of 1 to 10 and whether you had to work on that day. The goal is to predict the
number of coffees given the features stress, sleep and work. I simulated data for 200
days. Stress and sleep were drawn uniformly between 1 and 10 and work yes/no was
drawn with a 50/50 chance (what a life!). For each day, the number of coffees was
then drawn from a Poisson distribution, modelling the intensity λ (which is also the
expected value of the Poisson distribution) as a function of the features sleep, stress
and work. You can guess where this story will lead: “Hey, let us model this data with
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a linear model … Oh it does not work … Let us try a GLM with Poisson distribution
… SURPRISE! Now it works!”. I hope I did not spoil the story too much for you.

Let us look at the distribution of the target variable, the number of coffees on a given
day:

Simulated distribution of number of daily coffees for 200 days.

On 80 of the 200 days you had no coffee at all and on the most extreme day you
had 7. Let us naively use a linear model to predict the number of coffees using sleep
level, stress level and work yes/no as features. What can go wrong when we falsely
assume a Gaussian distribution? A wrong assumption can invalidate the estimates,
especially the confidence intervals of the weights. Amore obvious problem is that the
predictions do not match the “allowed” domain of the true outcome, as the following
figure shows.
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Predicted number of coffees dependent on stress, sleep andwork. The linearmodel predicts negative
values.

The linear model does not make sense, because it predicts negative number of coffees.
This problem can be solved with Generalized Linear Models (GLMs). We can change
the link function and the assumed distribution. One possibility is to keep theGaussian
distribution and use a link function that always leads to positive predictions such as
the log-link (the inverse is the exp-function) instead of the identity function. Even
better: We choose a distribution that corresponds to the data generating process and
an appropriate link function. Since the outcome is a count, the Poisson distribution
is a natural choice, along with the logarithm as link function. In this case, the data
was even generated with the Poisson distribution, so the Poisson GLM is the perfect
choice. The fitted PoissonGLM leads to the following distribution of predicted values:
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Predicted number of coffees dependent on stress, sleep and work. The GLM with Poisson assump-
tion and log link is an appropriate model for this dataset.

No negative amounts of coffees, looks much better now.

Interpretation of GLM weights

The assumed distribution together with the link function determines how the
estimated feature weights are interpreted. In the coffee count example, I used a
GLMwith Poisson distribution and log link, which implies the following relationship
between the features and the expected outcome.

ln(E(coffees|stress, sleep,work)) = β0 + βstressxstress + βsleepxsleep + βworkxwork

To interpret the weights we invert the link function so that we can interpret the effect
of the features on the expected outcome and not on the logarithm of the expected
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outcome.

E(coffees|stress, sleep,work) = exp(β0 + βstressxstress + βsleepxsleep + βworkxwork)

Since all the weights are in the exponential function, the effect interpretation is
not additive, but multiplicative, because exp(a + b) is exp(a) times exp(b). The
last ingredient for the interpretation is the actual weights of the toy example. The
following table lists the estimated weights and exp(weights) together with the 95%
confidence interval:

weight exp(weight) [2.5%, 97.5%]
(Intercept) -0.12 0.89 [0.56, 1.38]
stress 0.11 1.11 [1.06, 1.17]
sleep -0.16 0.85 [0.81, 0.89]
workYES 0.88 2.42 [1.87, 3.16]

Increasing the stress level by one point multiplies the expected number of coffees
by the factor 1.11. Increasing the sleep quality by one point multiplies the expected
number of coffees by the factor 0.85. The predicted number of coffees on a work day
is on average 2.42 times the number of coffees on a day off. In summary, the more
stress, the less sleep and the more work, the more coffee is consumed.

In this section you learned a little about Generalized Linear Models that are useful
when the target does not follow a Gaussian distribution. Next, we look at how to
integrate interactions between two features into the linear regression model.

Interactions

The linear regression model assumes that the effect of one feature is the same
regardless of the values of the other features (= no interactions). But often there are
interactions in the data. To predict the number of bicycles rented, there may be an
interaction between temperature and whether it is a working day or not. Perhaps,
when people have to work, the temperature does not influence the number of rented
bikes much, because people will ride the rented bike to work nomatter what happens.
On days off, many people ride for pleasure, but only when it is warm enough. When
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it comes to rental bicycles, you might expect an interaction between temperature and
working day.

How can we get the linear model to include interactions? Before you fit the linear
model, add a column to the feature matrix that represents the interaction between the
features and fit the model as usual. The solution is elegant in a way, since it does not
require any change of the linear model, only additional columns in the data. In the
working day and temperature example, we would add a new feature that has zeros
for no-work days, otherwise it has the value of the temperature feature, assuming
that working day is the reference category. Suppose our data looks like this:

work temp
Y 25
N 12
N 30
Y 5

The data matrix used by the linear model looks slightly different. The following
table shows what the data prepared for the model looks like if we do not specify
any interactions. Normally, this transformation is performed automatically by any
statistical software.

Intercept workY temp
1 1 25
1 0 12
1 0 30
1 1 5

The first column is the intercept term. The second column encodes the categorical
feature, with 0 for the reference category and 1 for the other. The third column
contains the temperature.

If we want the linear model to consider the interaction between temperature and the
workingday feature, we have to add a column for the interaction:

Intercept workY temp workY.temp
1 1 25 25
1 0 12 0
1 0 30 0
1 1 5 5
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The new column “workY.temp” captures the interaction between the features work-
ing day (work) and temperature (temp). This new feature column is zero for an
instance if the work feature is at the reference category (“N” for no working day),
otherwise it assumes the values of the instances temperature feature. With this type
of encoding, the linear model can learn a different linear effect of temperature for
both types of days. This is the interaction effect between the two features. Without
an interaction term, the combined effect of a categorical and a numerical feature
can be described by a line that is vertically shifted for the different categories. If we
include the interaction, we allow the effect of the numerical features (the slope) to
have a different value in each category.

The interaction of two categorical features works similarly. We create additional
features which represent combinations of categories. Here is some artificial data
containing working day (work) and a categorical weather feature (wthr):

work wthr
Y 2
N 0
N 1
Y 2

Next, we include interaction terms:

Intercept workY wthr1 wthr2 workY.wthr1 workY.wthr2
1 1 0 1 0 1
1 0 0 0 0 0
1 0 1 0 0 0
1 1 0 1 0 1

The first column serves to estimate the intercept. The second column is the encoded
work feature. Columns three and four are for the weather feature, which requires two
columns because you need two weights to capture the effect for three categories, one
of which is the reference category. The rest of the columns capture the interactions.
For each category of both features (except for the reference categories), we create a
new feature column that is 1 if both features have a certain category, otherwise 0.

For two numerical features, the interaction column is even easier to construct: We
simply multiply both numerical features.
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There are approaches to automatically detect and add interaction terms. One of them
can be found in the RuleFit chapter. The RuleFit algorithm first mines interaction
terms and then estimates a linear regression model including interactions.

Example

Let us return to the bike rental prediction task which we have already modeled in
the linear model chapter. This time, we additionally consider an interaction between
the temperature and the working day feature. This results in the following estimated
weights and confidence intervals.

Weight Std. Error 2.5% 97.5%
(Intercept) 2185.8 250.2 1694.6 2677.1
seasonSUMMER 893.8 121.8 654.7 1132.9
seasonFALL 137.1 161.0 -179.0 453.2
seasonWINTER 426.5 110.3 209.9 643.2
holidayHOLIDAY -674.4 202.5 -

1071.9
-276.9

workingdayWORKING
DAY

451.9 141.7 173.7 730.1

weathersitMISTY -382.1 87.2 -553.3 -211.0
weathersitRAIN/… -1898.2 222.7 -

2335.4
-

1461.0
temp 125.4 8.9 108.0 142.9
hum -17.5 3.2 -23.7 -11.3
windspeed -42.1 6.9 -55.5 -28.6
days_since_2011 4.9 0.2 4.6 5.3
workingdayWORKING
DAY:temp

-21.8 8.1 -37.7 -5.9

The additional interaction effect is negative (-21.8) and differs significantly from
zero, as shown by the 95% confidence interval, which does not include zero. By
the way, the data are not iid, because days that are close to each other are not
independent from each other. Confidence intervals might be misleading, just take
it with a grain of salt. The interaction term changes the interpretation of the weights
of the involved features. Does the temperature have a negative effect given it is
a working day? The answer is no, even if the table suggests it to an untrained
user.We cannot interpret the “workingdayWORKINGDAY:temp” interaction weight
in isolation, since the interpretation would be: “While leaving all other feature
values unchanged, increasing the interaction effect of temperature for working day
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decreases the predicted number of bikes.” But the interaction effect only adds to
the main effect of the temperature. Suppose it is a working day and we want to
know what would happen if the temperature were 1 degree warmer today. Then we
need to sum both the weights for “temp” and “workingdayWORKING DAY:temp” to
determine how much the estimate increases.

It is easier to understand the interaction visually. By introducing an interaction term
between a categorical and a numerical feature, we get two slopes for the temperature
instead of one. The temperature slope for days on which people do not have to work
(‘NO WORKING DAY’) can be read directly from the table (125.4). The temperature
slope for days on which people have to work (‘WORKING DAY’) is the sum of
both temperature weights (125.4 -21.8 = 103.6). The intercept of the ‘NO WORKING
DAY’-line at temperature = 0 is determined by the intercept term of the linear model
(2185.8). The intercept of the ‘WORKINGDAY’-line at temperature = 0 is determined
by the intercept term + the effect of working day (2185.8 + 451.9 = 2637.7).
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The effect (including interaction) of temperature and working day on the predicted number of bikes
for a linear model. Effectively, we get two slopes for the temperature, one for each category of the
working day feature.

Nonlinear Effects - GAMs

The world is not linear. Linearity in linear models means that no matter what value
an instance has in a particular feature, increasing the value by one unit always has the
same effect on the predicted outcome. Is it reasonable to assume that increasing the
temperature by one degree at 10 degrees Celsius has the same effect on the number of
rental bikes as increasing the temperature when it already has 40 degrees? Intuitively,
one expects that increasing the temperature from 10 to 11 degrees Celsius has a
positive effect on bicycle rentals and from 40 to 41 a negative effect, which is also
the case, as you will see, in many examples throughout the book. The temperature
feature has a linear, positive effect on the number of rental bikes, but at some point
it flattens out and even has a negative effect at high temperatures. The linear model
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does not care, it will dutifully find the best linear plane (by minimizing the Euclidean
distance).

You can model nonlinear relationships using one of the following techniques:

• Simple transformation of the feature (e.g. logarithm)
• Categorization of the feature
• Generalized Additive Models (GAMs)

Before I go into the details of eachmethod, let us start with an example that illustrates
all three of them. I took the bike rental dataset and trained a linear model with
only the temperature feature to predict the number of rental bikes. The following
figure shows the estimated slope with: the standard linear model, a linear model
with transformed temperature (logarithm), a linear model with temperature treated
as categorical feature and using regression splines (GAM).
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Predicting the number of rented bicycles using only the temperature feature. A linear model (top
left) does not fit the data well. One solution is to transform the feature with e.g. the logarithm
(top right), categorize it (bottom left), which is usually a bad decision, or use Generalized Additive
Models that can automatically fit a smooth curve for temperature (bottom right).

Feature transformation

Often the logarithm of the feature is used as a transformation. Using the logarithm
indicates that every 10-fold temperature increase has the same linear effect on
the number of bikes, so changing from 1 degree Celsius to 10 degrees Celsius has
the same effect as changing from 0.1 to 1 (sounds wrong). Other examples for
feature transformations are the square root, the square function and the exponential
function. Using a feature transformation means that you replace the column of
this feature in the data with a function of the feature, such as the logarithm, and
fit the linear model as usual. Some statistical programs also allow you to specify
transformations in the call of the linear model. You can be creative when you
transform the feature. The interpretation of the feature changes according to the
selected transformation. If you use a log transformation, the interpretation in a linear
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model becomes: “If the logarithm of the feature is increased by one, the prediction is
increased by the corresponding weight.” When you use a GLM with a link function
that is not the identity function, then the interpretation gets more complicated,
because you have to incorporate both transformations into the interpretation (except
when they cancel each other out, like log and exp, then the interpretation gets easier).

Feature categorization

Another possibility to achieve a nonlinear effect is to discretize the feature; turn it
into a categorical feature. For example, you could cut the temperature feature into 20
intervals with the levels [-10, -5), [-5, 0), … and so on. When you use the categorized
temperature instead of the continuous temperature, the linear model would estimate
a step function because each level gets its own estimate. The problem with this
approach is that it needs more data, it is more likely to overfit and it is unclear how
to discretize the feature meaningfully (equidistant intervals or quantiles? how many
intervals?). I would only use discretization if there is a very strong case for it. For
example, to make the model comparable to another study.

Generalized Additive Models (GAMs)

Why not ‘simply’ allow the (generalized) linear model to learn nonlinear relation-
ships? That is the motivation behind GAMs. GAMs relax the restriction that the
relationship must be a simple weighted sum, and instead assume that the outcome
can be modeled by a sum of arbitrary functions of each feature. Mathematically, the
relationship in a GAM looks like this:

g(EY (y|x)) = β0 + f1(x1) + f2(x2) + . . .+ fp(xp)

The formula is similar to the GLM formula with the difference that the linear term
βjxj is replaced by a more flexible function fj(xj). The core of a GAM is still a sum
of feature effects, but you have the option to allow nonlinear relationships between
some features and the output. Linear effects are also covered by the framework,
because for features to be handled linearly, you can limit their fj(xj) only to take
the form of xjβj .

The big question is how to learn nonlinear functions. The answer is called “splines”
or “spline functions”. Splines are functions that can be combined in order to
approximate arbitrary functions. A bit like stacking Lego bricks to build something
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more complex. There is a confusing number of ways to define these spline functions.
If you are interested in learning more about all the ways to define splines, I wish
you good luck on your journey. I am not going to go into details here, I am just
going to build an intuition. What personally helped me the most for understanding
splines was to visualize the individual spline functions and to look into how the
data matrix is modified. For example, to model the temperature with splines, we
remove the temperature feature from the data and replace it with, say, 4 columns,
each representing a spline function. Usually you would have more spline functions,
I only reduced the number for illustration purposes. The value for each instance of
these new spline features depends on the instances’ temperature values. Together
with all linear effects, the GAM then also estimates these spline weights. GAMs also
introduce a penalty term for the weights to keep them close to zero. This effectively
reduces the flexibility of the splines and reduces overfitting. A smoothness parameter
that is commonly used to control the flexibility of the curve is then tuned via
cross-validation. Ignoring the penalty term, nonlinear modeling with splines is fancy
feature engineering.

In the example where we are predicting the number of bicycles with a GAM using
only the temperature, the model feature matrix looks like this:

(Intercept) s(temp).1 s(temp).2 s(temp).3 s(temp).4
1 0.93 -0.14 0.21 -0.83
1 0.83 -0.27 0.27 -0.72
1 1.32 0.71 -0.39 -1.63
1 1.32 0.70 -0.38 -1.61
1 1.29 0.58 -0.26 -1.47
1 1.32 0.68 -0.36 -1.59

Each row represents an individual instance from the data (one day). Each spline
column contains the value of the spline function at the particular temperature values.
The following figure shows how these spline functions look like:
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To smoothly model the temperature effect, we use 4 spline functions. Each temperature value is
mapped to (here) 4 spline values. If an instance has a temperature of 30 �C, the value for the first
spline feature is -1, for the second 0.7, for the third -0.8 and for the 4th 1.7.

The GAM assigns weights to each temperature spline feature:

weight
(Intercept) 4504.35
s(temp).1 -989.34
s(temp).2 740.08
s(temp).3 2309.84
s(temp).4 558.27

And the actual curve, which results from the sum of the spline functions weighted
with the estimated weights, looks like this:
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GAM feature effect of the temperature for predicting the number of rented bikes (temperature used
as the only feature).

The interpretation of smooth effects requires a visual check of the fitted curve. Splines
are usually centered around the mean prediction, so a point on the curve is the
difference to the mean prediction. For example, at 0 degrees Celsius, the predicted
number of bicycles is 3000 lower than the average prediction.

Advantages

All these extensions of the linear model are a bit of a universe in themselves.
Whatever problems you face with linear models, you will probably find an
extension that fixes it.

Most methods have been used for decades. For example, GAMs are almost 30 years
old. Many researchers and practitioners from industry are very experienced with
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linear models and the methods are accepted in many communities as status quo
for modeling.

In addition to making predictions, you can use the models to do inference, draw
conclusions about the data – given the model assumptions are not violated. You get
confidence intervals for weights, significance tests, prediction intervals and much
more.

Statistical software usually has really good interfaces to fit GLMs, GAMs and more
special linear models.

The opacity of many machine learning models comes from 1) a lack of sparseness,
which means that many features are used, 2) features that are treated in a nonlinear
fashion, which means you need more than a single weight to describe the effect, and
3) the modeling of interactions between the features. Assuming that linear models
are highly interpretable but often underfit reality, the extensions described in this
chapter offer a good way to achieve a smooth transition to more flexible models,
while preserving some of the interpretability.

Disadvantages

As advantage I have said that linear models live in their own universe. The sheer
number of ways you can extend the simple linear model is overwhelming, not
just for beginners. Actually, there are multiple parallel universes, because many
communities of researchers and practitioners have their own names for methods
that do more or less the same thing, which can be very confusing.

Most modifications of the linear model make the model less interpretable. Any link
function (in a GLM) that is not the identity function complicates the interpretation;
interactions also complicate the interpretation; nonlinear feature effects are either
less intuitive (like the log transformation) or can no longer be summarized by a single
number (e.g. spline functions).

GLMs, GAMs and so on rely on assumptions about the data generating process. If
those are violated, the interpretation of the weights is no longer valid.

The performance of tree-based ensembles like the random forest or gradient tree
boosting is in many cases better than the most sophisticated linear models. This
is partly my own experience and partly observations from the winning models on
platforms like kaggle.com.
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Software

All examples in this chapter were created using the R language. For GAMs, the gam
package was used, but there are many others. R has an incredible number of packages
to extend linear regressionmodels. Unsurpassed by any other analytics language, R is
home to every conceivable extension of the linear regression model extension. You
will find implementations of e.g. GAMs in Python (such as pyGAM⁴⁰), but theses
implementation are not as mature.

Further Extensions

As promised, here is a list of problems youmight encounter with linear models, along
with the name of a solution for this problem that you can copy and paste into your
favorite search engine.

My data violates the assumption of being independent and identically distributed
(iid).
For example, repeated measurements on the same patient.
Search for mixed models or generalized estimating equations.

My model has heteroscedastic errors.
For example, when predicting the value of a house, the model errors are usually
higher in expensive houses, which violates the homoscedasticity of the linear model.
Search for robust regression.

I have outliers that strongly influence my model.
Search for robust regression.

I want to predict the time until an event occurs.
Time-to-event data usually comes with censored measurements, which means that
for some instances there was not enough time to observe the event. For example, a
company wants to predict the failure of its ice machines, but only has data for two
years. Some machines are still intact after two years, but might fail later.
Search for parametric survival models, cox regression, survival analysis.

My outcome to predict is a category.
If the outcome has two categories use a logistic regression model, which models the

⁴⁰https://github.com/dswah/pyGAM
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probability for the categories.
If you have more categories, search for multinomial regression.
Logistic regression and multinomial regression are both GLMs.

I want to predict ordered categories.
For example school grades.
Search for proportional odds model.

My outcome is a count (like number of children in a family).
Search for Poisson regression.
The Poisson model is also a GLM. You might also have the problem that the count
value of 0 is very frequent.
Search for zero-inflated Poisson regression, hurdle model.

I am not sure what features need to be included in the model to draw correct causal
conclusions.
For example, I want to know the effect of a drug on the blood pressure. The drug has
a direct effect on some blood value and this blood value affects the outcome. Should
I include the blood value into the regression model?
Search for causal inference, mediation analysis.

I have missing data.
Search for multiple imputation.

I want to integrate prior knowledge into my models.
Search for Bayesian inference.

I am feeling a bit down lately.
Search for “Amazon Alexa Gone Wild!!! Full version from beginning to end”.
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Decision Tree

Linear regression and logistic regression models fail in situations where the relation-
ship between features and outcome is nonlinear or where features interact with each
other. Time to shine for the decision tree! Tree based models split the data multiple
times according to certain cutoff values in the features. Through splitting, different
subsets of the dataset are created, with each instance belonging to one subset. The
final subsets are called terminal or leaf nodes and the intermediate subsets are called
internal nodes or split nodes. To predict the outcome in each leaf node, the average
outcome of the training data in this node is used. Trees can be used for classification
and regression.

There are various algorithms that can grow a tree. They differ in the possible
structure of the tree (e.g. number of splits per node), the criteria how to find the
splits, when to stop splitting and how to estimate the simple models within the leaf
nodes. The classification and regression trees (CART) algorithm is probably the most
popular algorithm for tree induction. We will focus on CART, but the interpretation
is similar for most other tree types. I recommend the book ‘The Elements of Statistical
Learning’ (Friedman, Hastie and Tibshirani 2009)⁴¹ for a more detailed introduction
to CART.

⁴¹Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. “The elements of statistical learning”.
www.web.stanford.edu/∼hastie/ElemStatLearn/ (2009).
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Decision tree with artificial data. Instances with a value greater than 3 for feature x1 end up in node
5. All other instances are assigned to node 3 or node 4, depending on whether values of feature x2
exceed 1.

The following formula describes the relationship between the outcome y and features
x.

ŷ = f̂(x) =

M∑
m=1

cmI{x ∈ Rm}

Each instance falls into exactly one leaf node (=subset Rm). I{x∈Rm} is the identity
function that returns 1 if x is in the subset Rm and 0 otherwise. If an instance falls
into a leaf node Rl, the predicted outcome is ŷ = cl, where cl is the average of all
training instances in leaf node Rl.

But where do the subsets come from? This is quite simple: CART takes a feature and
determines which cut-off point minimizes the variance of y for a regression task or
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the Gini index of the class distribution of y for classification tasks. The variance tells
us how much the y values in a node are spread around their mean value. The Gini
index tells us how “impure” a node is, e.g. if all classes have the same frequency, the
node is impure, if only one class is present, it is maximally pure. Variance and Gini
index are minimized when the data points in the nodes have very similar values
for y. As a consequence, the best cut-off point makes the two resulting subsets as
different as possible with respect to the target outcome. For categorical features, the
algorithm tries to create subsets by trying different groupings of categories. After
the best cutoff per feature has been determined, the algorithm selects the feature
for splitting that would result in the best partition in terms of the variance or Gini
index and adds this split to the tree. The algorithm continues this search-and-split
recursively in both new nodes until a stop criterion is reached. Possible criteria are:
A minimum number of instances that have to be in a node before the split, or the
minimum number of instances that have to be in a terminal node.

Interpretation

The interpretation is simple: Starting from the root node, you go to the next nodes
and the edges tell youwhich subsets you are looking at. Once you reach the leaf node,
the node tells you the predicted outcome. All the edges are connected by ‘AND’.

Template: If feature x is [smaller/bigger] than threshold c AND … then the predicted
outcome is the mean value of y of the instances in that node.

Feature importance

The overall importance of a feature in a decision tree can be computed in the
following way: Go through all the splits for which the feature was used and measure
how much it has reduced the variance or Gini index compared to the parent node.
The sum of all importances is scaled to 100. This means that each importance can be
interpreted as share of the overall model importance.

Tree decomposition

Individual predictions of a decision tree can be explained by decomposing the
decision path into one component per feature. We can track a decision through the
tree and explain a prediction by the contributions added at each decision node.

The root node in a decision tree is our starting point. If we were to use the root node
to make predictions, it would predict the mean of the outcome of the training data.
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With the next split, we either subtract or add a term to this sum, depending on the
next node in the path. To get to the final prediction, we have to follow the path of
the data instance that we want to explain and keep adding to the formula.

f̂(x) = ȳ +

D∑
d=1

split.contrib(d,x) = ȳ +

p∑
j=1

feat.contrib(j,x)

The prediction of an individual instance is the mean of the target outcome plus
the sum of all contributions of the D splits that occur between the root node and
the terminal node where the instance ends up. We are not interested in the split
contributions though, but in the feature contributions. A feature might be used for
more than one split or not at all. We can add the contributions for each of the p
features and get an interpretation of how much each feature has contributed to a
prediction.

Example

Let us have another look at the bike rental data. We want to predict the number of
rented bikes on a certain day with a decision tree. The learned tree looks like this:
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Regression tree fitted on the bike rental data. The maximum allowed depth for the tree was set to
2. The trend feature (days since 2011) and the temperature (temp) have been selected for the splits.
The boxplots show the distribution of bicycle counts in the terminal node.

The feature importance tells us how much a feature helped to improve the purity of
all nodes. Here, the variance was used, since predicting bicycle rentals is a regression
task.

The visualized tree shows that both temperature and time trend were used for the
splits, but does not quantify which feature was more important. The feature impor-
tance measure shows that the time trend is far more important than temperature.
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Importance of the features measured by how much the node purity is improved on average.

Advantages

The tree structure is ideal for capturing interactions between features in the data.

The data ends up in distinct groups that are often easier to understand than points
on a multi-dimensional hyperplane as in linear regression. The interpretation is
arguably pretty simple.

The tree structure also has a natural visualization, with its nodes and edges.

Trees create good explanations as defined in the chapter on “Human-Friendly
Explanations”. The tree structure automatically invites to think about predicted
values for individual instances as counterfactuals: “If a feature had been greater /
smaller than the split point, the prediction would have been y1 instead of y2. The
tree explanations are contrastive, since you can always compare the prediction of an
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instance with relevant “what if”-scenarios (as defined by the tree) that are simply
the other leaf nodes of the tree. If the tree is short, like one to three splits deep, the
resulting explanations are selective. A tree with a depth of three requires a maximum
of three features and split points to create the explanation for the prediction of an
individual instance. The truthfulness of the prediction depends on the predictive
performance of the tree. The explanations for short trees are very simple and general,
because for each split the instance falls into either one or the other leaf, and binary
decisions are easy to understand.

There is no need to transform features. In linear models, it is sometimes necessary
to take the logarithm of a feature. A decision tree works equally well with any
monotonic transformation of a feature.

Disadvantages

Trees fail to deal with linear relationships. Any linear relationship between an
input feature and the outcome has to be approximated by splits, creating a step
function. This is not efficient.

This goes hand in hand with lack of smoothness. Slight changes in the input feature
can have a big impact on the predicted outcome, which is usually not desirable.
Imagine a tree that predicts the value of a house and the tree uses the size of the
house as one of the split feature. The split occurs at 100.5 square meters. Imagine
user of a house price estimator using your decision tree model: They measure their
house, come to the conclusion that the house has 99 square meters, enter it into the
price calculator and get a prediction of 200 000 Euro. The users notice that they have
forgotten to measure a small storage room with 2 square meters. The storage room
has a sloping wall, so they are not sure whether they can count all of the area or only
half of it. So they decide to try both 100.0 and 101.0 square meters. The results: The
price calculator outputs 200 000 Euro and 205 000 Euro, which is rather unintuitive,
because there has been no change from 99 square meters to 100.

Trees are also quite unstable. A few changes in the training dataset can create a
completely different tree. This is because each split depends on the parent split. And
if a different feature is selected as the first split feature, the entire tree structure
changes. It does not create confidence in the model if the structure changes so easily.

Decision trees are very interpretable – as long as they are short. The number of
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terminal nodes increases quickly with depth. The more terminal nodes and the
deeper the tree, the more difficult it becomes to understand the decision rules of a
tree. A depth of 1 means 2 terminal nodes. Depth of 2 means max. 4 nodes. Depth of
3 means max. 8 nodes. The maximum number of terminal nodes in a tree is 2 to the
power of the depth.

Software

For the examples in this chapter, I used the rpart R package that implements CART
(classification and regression trees). CART is implemented in many programming
languages, including Python⁴². Arguably, CART is a pretty old and somewhat
outdated algorithm and there are some interesting new algorithms for fitting trees.
You can find an overview of some R packages for decision trees in the Machine
Learning and Statistical Learning CRAN Task View⁴³ under the keyword “Recursive
Partitioning”.

⁴²https://scikit-learn.org/stable/modules/tree.html
⁴³https://cran.r-project.org/web/views/MachineLearning.html

www.dbooks.org

https://scikit-learn.org/stable/modules/tree.html
https://cran.r-project.org/web/views/MachineLearning.html
https://cran.r-project.org/web/views/MachineLearning.html
https://scikit-learn.org/stable/modules/tree.html
https://cran.r-project.org/web/views/MachineLearning.html
https://www.dbooks.org/


Interpretable Models 108

Decision Rules

A decision rule is a simple IF-THEN statement consisting of a condition (also called
antecedent) and a prediction. For example: IF it rains today AND if it is April
(condition), THEN it will rain tomorrow (prediction). A single decision rule or a
combination of several rules can be used to make predictions.

Decision rules follow a general structure: IF the conditions are met THEN make
a certain prediction. Decision rules are probably the most interpretable prediction
models. Their IF-THEN structure semantically resembles natural language and the
way we think, provided that the condition is built from intelligible features, the
length of the condition is short (small number of feature=value pairs combined
with an AND) and there are not too many rules. In programming, it is very natural to
write IF-THEN rules. New in machine learning is that the decision rules are learned
through an algorithm.

Imagine using an algorithm to learn decision rules for predicting the value of a house
(low, medium or high). One decision rule learned by this model could be: If a house is
bigger than 100 square meters and has a garden, then its value is high. More formally:
IF size>100 AND garden=1 THEN value=high.

Let us break down the decision rule:

• size>100 is the first condition in the IF-part.
• garden=1 is the second condition in the IF-part.
• The two conditions are connected with an ‘AND’ to create a new condition.
Both must be true for the rule to apply.

• The predicted outcome (THEN-part) is value=high.

A decision rule uses at least one feature=value statement in the condition, with no
upper limit on how many more can be added with an ‘AND’. An exception is the
default rule that has no explicit IF-part and that applies when no other rule applies,
but more about this later.

The usefulness of a decision rule is usually summarized in two numbers: Support
and accuracy.
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Support or coverage of a rule: The percentage of instances to which the condition
of a rule applies is called the support. Take for example the rule size=big AND

location=good THEN value=high for predicting house values. Suppose 100 of 1000
houses are big and in a good location, then the support of the rule is 10%. The
prediction (THEN-part) is not important for the calculation of support.

Accuracy or confidence of a rule: The accuracy of a rule is a measure of how
accurate the rule is in predicting the correct class for the instances to which the
condition of the rule applies. For example: Let us say of the 100 houses, where the
rule size=big AND location=good THEN value=high applies, 85 have value=high, 14
have value=medium and 1 has value=low, then the accuracy of the rule is 85%.

Usually there is a trade-off between accuracy and support: By adding more features
to the condition, we can achieve higher accuracy, but lose support.

To create a good classifier for predicting the value of a house you might need to learn
not only one rule, but maybe 10 or 20. Then things can get more complicated and
you can run into one of the following problems:

• Rules can overlap: What if I want to predict the value of a house and two or
more rules apply and they give me contradictory predictions?

• No rule applies: What if I want to predict the value of a house and none of the
rules apply?

There are two main strategies for combining multiple rules: Decision lists (ordered)
and decision sets (unordered). Both strategies imply different solutions to the
problem of overlapping rules.

A decision list introduces an order to the decision rules. If the condition of the first
rule is true for an instance, we use the prediction of the first rule. If not, we go to
the next rule and check if it applies and so on. Decision lists solve the problem of
overlapping rules by only returning the prediction of the first rule in the list that
applies.

A decision set resembles a democracy of the rules, except that some rules might
have a higher voting power. In a set, the rules are either mutually exclusive, or there
is a strategy for resolving conflicts, such as majority voting, which may be weighted
by the individual rule accuracies or other quality measures. Interpretability suffers
potentially when several rules apply.
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Both decision lists and sets can suffer from the problem that no rule applies to an
instance. This can be resolved by introducing a default rule. The default rule is the
rule that applies when no other rule applies. The prediction of the default rule is often
the most frequent class of the data points which are not covered by other rules. If a
set or list of rules covers the entire feature space, we call it exhaustive. By adding a
default rule, a set or list automatically becomes exhaustive.

There are many ways to learn rules from data and this book is far from covering
them all. This chapter shows you three of them. The algorithms are chosen to cover
a wide range of general ideas for learning rules, so all three of them represent very
different approaches.

1. OneR learns rules from a single feature. OneR is characterized by its simplicity,
interpretability and its use as a benchmark.

2. Sequential covering is a general procedure that iteratively learns rules and
removes the data points that are covered by the new rule. This procedure is
used by many rule learning algorithms.

3. Bayesian Rule Lists combine pre-mined frequent patterns into a decision list
using Bayesian statistics. Using pre-mined patterns is a common approach used
by many rule learning algorithms.

Let’s start with the simplest approach: Using the single best feature to learn rules.

Learn Rules from a Single Feature (OneR)

The OneR algorithm suggested by Holte (1993)⁴⁴ is one of the simplest rule induction
algorithms. From all the features, OneR selects the one that carries the most
information about the outcome of interest and creates decision rules from this
feature.

Despite the name OneR, which stands for “One Rule”, the algorithm generates more
than one rule: It is actually one rule per unique feature value of the selected best
feature. A better name would be OneFeatureRules.

The algorithm is simple and fast:

⁴⁴Holte, Robert C. “Very simple classification rules perform well on most commonly used datasets.” Machine learning
11.1 (1993): 63-90.
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1. Discretize the continuous features by choosing appropriate intervals.
2. For each feature:

• Create a cross table between the feature values and the (categorical)
outcome.

• For each value of the feature, create a rule which predicts the most frequent
class of the instances that have this particular feature value (can be read
from the cross table).

• Calculate the total error of the rules for the feature.
3. Select the feature with the smallest total error.

OneR always covers all instances of the dataset, since it uses all levels of the selected
feature. Missing values can be either treated as an additional feature value or be
imputed beforehand.

AOneRmodel is a decision tree with only one split. The split is not necessarily binary
as in CART, but depends on the number of unique feature values.

Let us look at an example how the best feature is chosen byOneR. The following table
shows an artificial dataset about houses with information about its value, location,
size and whether pets are allowed. We are interested in learning a simple model to
predict the value of a house.

location size pets value
good small yes high
good big no high
good big no high
bad medium no medium
good medium only cats medium
good small only cats medium
bad medium yes medium
bad small yes low
bad medium yes low
bad small no low

OneR creates the cross tables between each feature and the outcome:
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value=low value=medium value=high
location=bad 3 2 0
location=good 0 2 3

value=low value=medium value=high
size=big 0 0 2
size=medium 1 3 0
size=small 2 1 1

value=low value=medium value=high
pets=no 1 1 2
pets=only cats 0 2 0
pets=yes 2 1 1

For each feature, we go through the table row by row: Each feature value is the IF-
part of a rule; the most common class for instances with this feature value is the
prediction, the THEN-part of the rule. For example, the size feature with the levels
small, medium and big results in three rules. For each feature we calculate the total
error rate of the generated rules, which is the sum of the errors. The location feature
has the possible values bad and good. The most frequent value for houses in bad
locations is low and when we use low as a prediction, we make two mistakes, because
two houses have a medium value. The predicted value of houses in good locations is
high and again we make two mistakes, because two houses have a medium value. The
error we make by using the location feature is 4/10, for the size feature it is 3/10 and
for the pet feature it is 4/10 . The size feature produces the rules with the lowest error
and will be used for the final OneR model:

IF size=small THEN value=small

IF size=medium THEN value=medium

IF size=big THEN value=high

OneR prefers features with many possible levels, because those features can overfit
the targetmore easily. Imagine a dataset that contains only noise and no signal, which
means that all features take on random values and have no predictive value for the
target. Some features have more levels than others. The features with more levels can
now more easily overfit. A feature that has a separate level for each instance from
the data would perfectly predict the entire training dataset. A solution would be to
split the data into training and validation sets, learn the rules on the training data



Interpretable Models 113

and evaluate the total error for choosing the feature on the validation set.

Ties are another issue, i.e. when two features result in the same total error. OneR
solves ties by either taking the first feature with the lowest error or the one with the
lowest p-value of a chi-squared test.

Example

Let us try OneR with real data. We use the cervical cancer classification task to
test the OneR algorithm. All continuous input features were discretized into their
5 quantiles. The following rules are created:

Age prediction
(12.9,27.2] Healthy
(27.2,41.4] Healthy
(41.4,55.6] Healthy
(55.6,69.8] Healthy
(69.8,84.1] Healthy

The age feature was chosen by OneR as the best predictive feature. Since cancer
is rare, for each rule the majority class and therefore the predicted label is always
Healthy, which is rather unhelpful. It does not make sense to use the label prediction
in this unbalanced case. The cross table between the ‘Age’ intervals and Can-
cer/Healthy together with the percentage of women with cancer is more informative:

# Cancer # Healthy P(Cancer)
Age=(12.9,27.2] 26 477 0.05
Age=(27.2,41.4] 25 290 0.08
Age=(41.4,55.6] 4 31 0.11
Age=(55.6,69.8] 0 1 0.00
Age=(69.8,84.1] 0 4 0.00

But before you start interpreting anything: Since the prediction for every feature
and every value is Healthy, the total error rate is the same for all features. The ties in
the total error are, by default, resolved by using the first feature from the ones with
the lowest error rates (here, all features have 55/858), which happens to be the Age
feature.

OneR does not support regression tasks. But we can turn a regression task into a
classification task by cutting the continuous outcome into intervals. We use this trick
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to predict the number of rented bikes with OneR by cutting the number of bikes into
its four quartiles (0-25%, 25-50%, 50-75% and 75-100%). The following table shows the
selected feature after fitting the OneR model:

mnth prediction
JAN [22,3152]
FEB [22,3152]
MAR [22,3152]
APR (3152,4548]
MAY (5956,8714]
JUN (4548,5956]
JUL (5956,8714]
AUG (5956,8714]
SEP (5956,8714]
OKT (5956,8714]
NOV (3152,4548]
DEZ [22,3152]

The selected feature is the month. The month feature has (surprise!) 12 feature levels,
which is more than most other features have. So there is a danger of overfitting. On
the more optimistic side: the month feature can handle the seasonal trend (e.g. less
rented bikes in winter) and the predictions seem sensible.

Now we move from the simple OneR algorithm to a more complex procedure
using rules with more complex conditions consisting of several features: Sequential
Covering.

Sequential Covering

Sequential covering is a general procedure that repeatedly learns a single rule to
create a decision list (or set) that covers the entire dataset rule by rule. Many rule-
learning algorithms are variants of the sequential covering algorithm. This chapter
introduces the main recipe and uses RIPPER, a variant of the sequential covering
algorithm for the examples.

The idea is simple: First, find a good rule that applies to some of the data points.
Remove all data points which are covered by the rule. A data point is covered when
the conditions apply, regardless of whether the points are classified correctly or not.
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Repeat the rule-learning and removal of covered points with the remaining points
until no more points are left or another stop condition is met. The result is a decision
list. This approach of repeated rule-learning and removal of covered data points is
called “separate-and-conquer”.

Suppose we already have an algorithm that can create a single rule that covers part
of the data. The sequential covering algorithm for two classes (one positive, one
negative) works like this:

• Start with an empty list of rules (rlist).
• Learn a rule r.
• While the list of rules is below a certain quality threshold (or positive examples
are not yet covered):
– Add rule r to rlist.
– Remove all data points covered by rule r.
– Learn another rule on the remaining data.

• Return the decision list.
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The covering algorithm works by sequentially covering the feature space with single rules and
removing the data points that are already covered by those rules. For visualization purposes, the
features x1 and x2 are continuous, but most rule learning algorithms require categorical features.

For example:We have a task and dataset for predicting the values of houses from size,
location and whether pets are allowed. We learn the first rule, which turns out to be:
If size=big and location=good, then value=high. Then we remove all big houses
in good locations from the dataset. With the remaining data we learn the next rule.
Maybe: If location=good, then value=medium. Note that this rule is learned on data
without big houses in good locations, leaving only medium and small houses in good
locations.

For multi-class settings, the approach must be modified. First, the classes are ordered
by increasing prevalence. The sequential covering algorithm starts with the least
common class, learns a rule for it, removes all covered instances, then moves on
to the second least common class and so on. The current class is always treated
as the positive class and all classes with a higher prevalence are combined in the
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negative class. The last class is the default rule. This is also referred to as one-versus-
all strategy in classification.

How do we learn a single rule? The OneR algorithm would be useless here, since it
would always cover the whole feature space. But there are many other possibilities.
One possibility is to learn a single rule from a decision tree with beam search:

• Learn a decision tree (with CART or another tree learning algorithm).
• Start at the root node and recursively select the purest node (e.g. with the lowest
misclassification rate).

• The majority class of the terminal node is used as the rule prediction; the path
leading to that node is used as the rule condition.

The following figure illustrates the beam search in a tree:

Learning a rule by searching a path through a decision tree. A decision tree is grown to predict the
target of interest. We start at the root node, greedily and iteratively follow the path which locally
produces the purest subset (e.g. highest accuracy) and add all the split values to the rule condition.
We end up with: If location=good and size=big, then value=high.

Learning a single rule is a search problem, where the search space is the space of all
possible rules. The goal of the search is to find the best rule according to some criteria.
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There are many different search strategies: hill-climbing, beam search, exhaustive
search, best-first search, ordered search, stochastic search, top-down search, bottom-
up search, …

RIPPER (Repeated Incremental Pruning to Produce Error Reduction) by Cohen
(1995)⁴⁵ is a variant of the Sequential Covering algorithm. RIPPER is a bit more
sophisticated and uses a post-processing phase (rule pruning) to optimize the decision
list (or set). RIPPER can run in ordered or unordered mode and generate either a
decision list or decision set.

Examples

We will use RIPPER for the examples.

The RIPPER algorithm does not find any rule in the classification task for cervical
cancer.

When we use RIPPER on the regression task to predict bike counts some rules
are found. Since RIPPER only works for classification, the bike counts must be
turned into a categorical outcome. I achieved this by cutting the bike counts into
the quartiles. For example (4548, 5956) is the interval covering predicted bike counts
between 4548 and 5956. The following table shows the decision list of learned rules.

rules
(days_since_2011 >= 438) and (temp >= 17) and (temp <= 27) and (hum
<= 67) ⇒ cnt=(5956,8714]
(days_since_2011 >= 443) and (temp >= 12) and (weathersit = GOOD)
and (hum >= 59) ⇒ cnt=(5956,8714]
(days_since_2011 >= 441) and (windspeed <= 10) and (temp >= 13) ⇒
cnt=(5956,8714]
(temp >= 12) and (hum <= 68) and (days_since_2011 >= 551) ⇒
cnt=(5956,8714]
(days_since_2011 >= 100) and (days_since_2011 <= 434) and (hum <=
72) and (workingday = WORKING DAY) ⇒ cnt=(3152,4548]
(days_since_2011 >= 106) and (days_since_2011 <= 323) ⇒
cnt=(3152,4548]
⇒ cnt=[22,3152]

The interpretation is simple: If the conditions apply, we predict the interval on the
right hand side for the number of bikes. The last rule is the default rule that applies

⁴⁵Cohen, William W. “Fast effective rule induction.” Machine Learning Proceedings (1995). 115-123.
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when none of the other rules apply to an instance. To predict a new instance, start
at the top of the list and check whether a rule applies. When a condition matches,
then the right hand side of the rule is the prediction for this instance. The default
rule ensures that there is always a prediction.

Bayesian Rule Lists

In this section, I will show you another approach to learning a decision list, which
follows this rough recipe:

1. Pre-mine frequent patterns from the data that can be used as conditions for the
decision rules.

2. Learn a decision list from a selection of the pre-mined rules.

A specific approach using this recipe is called Bayesian Rule Lists (Letham et. al,
2015)⁴⁶ or BRL for short. BRL uses Bayesian statistics to learn decision lists from
frequent patterns which are pre-mined with the FP-tree algorithm (Borgelt 2005)⁴⁷

But let us start slowly with the first step of BRL.

Pre-mining of frequent patterns

A frequent pattern is the frequent (co-)occurrence of feature values. As a pre-
processing step for the BRL algorithm, we use the features (we do not need the target
outcome in this step) and extract frequently occurring patterns from them. A pattern
can be a single feature value such as size=medium or a combination of feature values
such as size=medium AND location=bad.

The frequency of a pattern is measured with its support in the dataset:

Support(xj = A) =
1

n

n∑
i=1

I(x
(i)
j = A)

⁴⁶Letham, Benjamin, et al. “Interpretable classifiers using rules and Bayesian analysis: Building a better stroke
prediction model.” The Annals of Applied Statistics 9.3 (2015): 1350-1371.

⁴⁷Borgelt, C. “An implementation of the FP-growth algorithm.” Proceedings of the 1st International
Workshop on Open Source Data Mining Frequent Pattern Mining Implementations - OSDM ’05, 1–5.
http://doi.org/10.1145/1133905.1133907 (2005).
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where A is the feature value, n the number of data points in the dataset and I
the indicator function that returns 1 if the feature xj of the instance i has level A
otherwise 0. In a dataset of house values, if 20% of houses have no balcony and 80%
have one or more, then the support for the pattern balcony=0 is 20%. Support can
also be measured for combinations of feature values, for example for balcony=0 AND

pets=allowed.

There are many algorithms to find such frequent patterns, for example Apriori or FP-
Growth. Which you use does not matter much, only the speed at which the patterns
are found is different, but the resulting patterns are always the same.

I will give you a rough idea of how the Apriori algorithm works to find frequent
patterns. Actually the Apriori algorithm consists of two parts, where the first part
finds frequent patterns and the second part builds association rules from them. For
the BRL algorithm, we are only interested in the frequent patterns that are generated
in the first part of Apriori.

In the first step, the Apriori algorithm starts with all feature values that have a
support greater than the minimum support defined by the user. If the user says
that the minimum support should be 10% and only 5% of the houses have size=big,
we would remove that feature value and keep only size=medium and size=small as
patterns. This does not mean that the houses are removed from the data, it just means
that size=big is not returned as frequent pattern. Based on frequent patterns with
a single feature value, the Apriori algorithm iteratively tries to find combinations of
feature values of increasingly higher order. Patterns are constructed by combining
feature=value statements with a logical AND, e.g. size=medium AND location=bad.
Generated patterns with a support below the minimum support are removed. In the
end we have all the frequent patterns. Any subset of a frequent pattern is frequent
again, which is called the Apriori property. It makes sense intuitively: By removing
a condition from a pattern, the reduced pattern can only cover more or the same
number of data points, but not less. For example, if 20% of the houses are size=medium
and location=good, then the support of houses that are only size=medium is 20% or
greater. The Apriori property is used to reduce the number of patterns to be inspected.
Only in the case of frequent patterns we have to check patterns of higher order.

Now we are done with pre-mining conditions for the Bayesian Rule List algorithm.
But before we move on to the second step of BRL, I would like to hint at another way
for rule-learning based on pre-mined patterns. Other approaches suggest including
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the outcome of interest into the frequent pattern mining process and also executing
the second part of the Apriori algorithm that builds IF-THEN rules. Since the
algorithm is unsupervised, the THEN-part also contains feature values we are not
interested in. But we can filter by rules that have only the outcome of interest in the
THEN-part. These rules already form a decision set, but it would also be possible to
arrange, prune, delete or recombine the rules.

In the BRL approach however, we work with the frequent patterns and learn the
THEN-part and how to arrange the patterns into a decision list using Bayesian
statistics.

Learning Bayesian Rule Lists

The goal of the BRL algorithm is to learn an accurate decision list using a selection of
the pre-mined conditions, while prioritizing lists with few rules and short conditions.
BRL addresses this goal by defining a distribution of decision lists with prior
distributions for the length of conditions (preferably shorter rules) and the number
of rules (preferably a shorter list).

The posteriori probability distribution of lists makes it possible to say how likely a
decision list is, given assumptions of shortness and how well the list fits the data.
Our goal is to find the list that maximizes this posterior probability. Since it is not
possible to find the exact best list directly from the distributions of lists, BRL suggests
the following recipe:
1) Generate an initial decision list, which is randomly drawn from the priori
distribution.
2) Iteratively modify the list by adding, switching or removing rules, ensuring that
the resulting lists follow the posterior distribution of lists.
3) Select the decision list from the sampled lists with the highest probability according
to the posteriori distribution.

Let us go over the algorithm more closely: The algorithm starts with pre-mining
feature value patterns with the FP-Growth algorithm. BRL makes a number of
assumptions about the distribution of the target and the distribution of the param-
eters that define the distribution of the target. (That’s Bayesian statistic.) If you
are unfamiliar with Bayesian statistics, do not get too caught up in the following
explanations. It is important to know that the Bayesian approach is a way to combine
existing knowledge or requirements (so-called priori distributions) while also fitting
to the data. In the case of decision lists, the Bayesian approach makes sense, since
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the prior assumptions nudges the decision lists to be short with short rules.

The goal is to sample decision lists d from the posteriori distribution:

p(d|x, y,A, α, λ, η)︸ ︷︷ ︸
posteriori

∝ p(y|x, d, α)︸ ︷︷ ︸
likelihood

· p(d|A, λ, η)︸ ︷︷ ︸
priori

where d is a decision list, x are the features, y is the target, A the set of pre-mined
conditions, λ the prior expected length of the decision lists, η the prior expected
number of conditions in a rule, α the prior pseudo-count for the positive and negative
classes which is best fixed at (1,1).

p(d|x, y,A, α, λ, η)

quantifies how probable a decision list is, given the observed data and the priori
assumptions. This is proportional to the likelihood of the outcome y given the
decision list and the data times the probability of the list given prior assumptions
and the pre-mined conditions.

p(y|x, d, α)

is the likelihood of the observed y, given the decision list and the data. BRL assumes
that y is generated by a Dirichlet-Multinomial distribution. The better the decision
list d explains the data, the higher the likelihood.

p(d|A, λ, η)

is the prior distribution of the decision lists. It multiplicatively combines a truncated
Poisson distribution (parameter λ) for the number of rules in the list and a truncated
Poisson distribution (parameter η) for the number of feature values in the conditions
of the rules.

A decision list has a high posterior probability if it explains the outcome y well and
is also likely according to the prior assumptions.

Estimations in Bayesian statistics are always a bit tricky, because we usually cannot
directly calculate the correct answer, but we have to draw candidates, evaluate them
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and update our posteriori estimates using theMarkov chainMonte Carlomethod. For
decision lists, this is even more tricky, because we have to draw from the distribution
of decision lists. The BRL authors propose to first draw an initial decision list and
then iteratively modify it to generate samples of decision lists from the posterior
distribution of the lists (a Markov chain of decision lists). The results are potentially
dependent on the initial decision list, so it is advisable to repeat this procedure to
ensure a great variety of lists. The default in the software implementation is 10 times.
The following recipe tells us how to draw an initial decision list:

• Pre-mine patterns with FP-Growth.
• Sample the list length parameter m from a truncated Poisson distribution.
• For the default rule: Sample the Dirichlet-Multinomial distribution parameter
θ0 of the target value (i.e. the rule that applies when nothing else applies).

• For decision list rule j=1,…,m, do:
– Sample the rule length parameter l (number of conditions) for rule j.
– Sample a condition of length lj from the pre-mined conditions.
– Sample the Dirichlet-Multinomial distribution parameter for the THEN-
part (i.e. for the distribution of the target outcome given the rule)

• For each observation in the dataset:
– Find the rule from the decision list that applies first (top to bottom).
– Draw the predicted outcome from the probability distribution (Binomial)
suggested by the rule that applies.

The next step is to generate many new lists starting from this initial sample to obtain
many samples from the posterior distribution of decision lists.

The new decision lists are sampled by starting from the initial list and then randomly
either moving a rule to a different position in the list or adding a rule to the current
decision list from the pre-mined conditions or removing a rule from the decision
list. Which of the rules is switched, added or deleted is chosen at random. At each
step, the algorithm evaluates the posteriori probability of the decision list (mixture of
accuracy and shortness). The Metropolis Hastings algorithm ensures that we sample
decision lists that have a high posterior probability. This procedure provides us with
many samples from the distribution of decision lists. The BRL algorithm selects the
decision list of the samples with the highest posterior probability.
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Examples

That is it with the theory, now let’s see the BRL method in action. The examples
use a faster variant of BRL called Scalable Bayesian Rule Lists (SBRL) by Yang et.
al (2017) ⁴⁸. We use the SBRL algorithm to predict the risk for cervical cancer. I first
had to discretize all input features for the SBRL algorithm to work. For this purpose
I binned the continuous features based on the frequency of the values by quantiles.

We get the following rules:

rules
If {STDs=1} (rule[259]) then positive probability = 0.16049383
else if {Hormonal.Contraceptives..years.=[0,10)} (rule[82]) then positive
probability = 0.04685408
else (default rule) then positive probability = 0.27777778

Note that we get sensible rules, since the prediction on the THEN-part is not the class
outcome, but the predicted probability for cancer.

The conditions were selected from patterns that were pre-mined with the FP-Growth
algorithm. The following table displays the pool of conditions the SBRL algorithm
could choose from for building a decision list. The maximum number of feature
values in a condition I allowed as a user was two. Here is a sample of ten patterns:

pre-mined conditions
First.sexual.intercourse=[17.3,24.7),STDs=1
Hormonal.Contraceptives=0,STDs=0
Num.of.pregnancies=[0,3.67),STDs..Number.of.diagnosis=[0,1)
Smokes=1
First.sexual.intercourse=[10,17.3)
Smokes=1,STDs..Number.of.diagnosis=[0,1)
STDs..number.=[1.33,2.67)
Num.of.pregnancies=[3.67,7.33)
Num.of.pregnancies=[3.67,7.33),IUD..years.=[0,6.33)
Age=[13,36.7),STDs..Number.of.diagnosis=[1,2)

Next, we apply the SBRL algorithm to the bike rental prediction task. This only
works if the regression problem of predicting bike counts is converted into a binary

⁴⁸Yang, Hongyu, Cynthia Rudin, and Margo Seltzer. “Scalable Bayesian rule lists.” Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70. JMLR. org, 2017.
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classification task. I have arbitrarily created a classification task by creating a label
that is 1 if the number of bikes exceeds 4000 bikes on a day, else 0.

The following list was learned by SBRL:

rules
If {yr=2011,temp=[-5.22,7.35)} (rule[718]) then positive probability =
0.01041667
else if {yr=2012,temp=[7.35,19.9)} (rule[823]) then positive probability =
0.88125000
else if {yr=2012,temp=[19.9,32.5]} (rule[816]) then positive probability =
0.99253731
else if {season=SPRING} (rule[351]) then positive probability =
0.06410256
else if {yr=2011,temp=[7.35,19.9)} (rule[730]) then positive probability =
0.44444444
else (default rule) then positive probability = 0.79746835

Let us predict the probability that the number of bikes will exceed 4000 for a day in
2012 with a temperature of 17 degrees Celsius. The first rule does not apply, since it
only applies for days in 2011. The second rule applies, because the day is in 2012 and
17 degrees lies in the interval [7.35,19.9). Our prediction for the probability is that
more than 4000 bikes are rented is 88%.

Advantages

This section discusses the benefits of IF-THEN rules in general.

IF-THEN rules are easy to interpret. They are probably the most interpretable of
the interpretable models. This statement only applies if the number of rules is small,
the conditions of the rules are short (maximum 3 I would say) and if the rules are
organized in a decision list or a non-overlapping decision set.

Decision rules can be as expressive as decision trees, while being more compact.
Decision trees often also suffer from replicated sub-trees, that is, when the splits in
a left and a right child node have the same structure.

The prediction with IF-THEN rules is fast, since only a few binary statements need
to be checked to determine which rules apply.

Decision rules are robust against monotonic transformations of the input features,
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because only the threshold in the conditions changes. They are also robust against
outliers, since it only matters if a condition applies or not.

IF-THEN rules usually generate sparse models, which means that not many features
are included. They select only the relevant features for the model. For example,
a linear model assigns a weight to every input feature by default. Features that are
irrelevant can simply be ignored by IF-THEN rules.

Simple rules like from OneR can be used as baseline for more complex algorithms.

Disadvantages

This section deals with the disadvantages of IF-THEN rules in general.

The research and literature for IF-THEN rules focuses on classification and almost
completely neglects regression. While you can always divide a continuous target
into intervals and turn it into a classification problem, you always lose information.
In general, approaches are more attractive if they can be used for both regression and
classification.

Often the features also have to be categorical. That means numeric features must
be categorized if you want to use them. There are many ways to cut a continuous
feature into intervals, but this is not trivial and comes with many questions without
clear answers. How many intervals should the feature be divided into? What is the
splitting criteria: Fixed interval lengths, quantiles or something else? Categorizing
continuous features is a non-trivial issue that is often neglected and people just use
the next best method (like I did in the examples).

Many of the older rule-learning algorithms are prone to overfitting. The algorithms
presented here all have at least some safeguards to prevent overfitting: OneR is
limited because it can only use one feature (only problematic if the feature has too
many levels or if there are many features, which equates to the multiple testing
problem), RIPPER does pruning and Bayesian Rule Lists impose a prior distribution
on the decision lists.

Decision rules are bad in describing linear relationships between features and
output. That is a problem they share with the decision trees. Decision trees and rules
can only produce step-like prediction functions, where changes in the prediction are
always discrete steps and never smooth curves. This is related to the issue that the
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inputs have to be categorical. In decision trees, they are implicitly categorized by
splitting them.

Software and Alternatives

OneR is implemented in the R package OneR⁴⁹, which was used for the examples
in this book. OneR is also implemented in the Weka machine learning library⁵⁰ and
as such available in Java, R and Python. RIPPER is also implemented in Weka. For
the examples, I used the R implementation of JRIP in the RWeka package⁵¹. SBRL
is available as R package⁵² (which I used for the examples), in Python⁵³ or as C
implementation⁵⁴.

I will not even try to list all alternatives for learning decision rule sets and lists, but
will point to some summarizing work. I recommend the book “Foundations of Rule
Learning” by Fuernkranz et. al (2012)⁵⁵. It is an extensive work on learning rules,
for those who want to delve deeper into the topic. It provides a holistic framework
for thinking about learning rules and presents many rule learning algorithms. I
also recommend to checkout the Weka rule learners⁵⁶, which implement RIPPER,
M5Rules, OneR, PART and many more. IF-THEN rules can be used in linear models
as described in this book in the chapter about the RuleFit algorithm.

⁴⁹https://cran.r-project.org/web/packages/OneR/
⁵⁰(https://www.eecs.yorku.ca/tdb/_doc.php/userg/sw/weka/doc/weka/classifiers/rules/package-summary.html)
⁵¹https://cran.r-project.org/web/packages/RWeka/index.html
⁵²https://cran.r-project.org/web/packages/sbrl/index.html
⁵³https://github.com/datascienceinc/Skater
⁵⁴https://github.com/Hongyuy/sbrlmod
⁵⁵Fürnkranz, Johannes, Dragan Gamberger, and Nada Lavrač. “Foundations of rule learning.” Springer Science &

Business Media, (2012).
⁵⁶http://weka.sourceforge.net/doc.dev/weka/classifiers/rules/package-summary.html
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RuleFit

The RuleFit algorithm by Friedman and Popescu (2008)⁵⁷ learns sparse linear models
that include automatically detected interaction effects in the form of decision rules.

The linear regression model does not account for interactions between features.
Would it not be convenient to have a model that is as simple and interpretable as
linear models, but also integrates feature interactions? RuleFit fills this gap. RuleFit
learns a sparse linear model with the original features and also a number of new
features that are decision rules. These new features capture interactions between the
original features. RuleFit automatically generates these features from decision trees.
Each path through a tree can be transformed into a decision rule by combining the
split decisions into a rule. The node predictions are discarded and only the splits are
used in the decision rules:

4 rules can be generated from a tree with 3 terminal nodes.

Where do those decision trees come from? The trees are trained to predict the

⁵⁷Friedman, Jerome H, and Bogdan E Popescu. “Predictive learning via rule ensembles.” The Annals of Applied
Statistics. JSTOR, 916â€“54. (2008).
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outcome of interest. This ensures that the splits are meaningful for the prediction
task. Any algorithm that generates a lot of trees can be used for RuleFit, for example a
random forest. Each tree is decomposed into decision rules that are used as additional
features in a sparse linear regression model (Lasso).

The RuleFit paper uses the Boston housing data to illustrate this: The goal is to predict
the median house value of a Boston neighborhood. One of the rules generated by
RuleFit is: IF number of rooms > 6.64 AND concentration of nitric oxide <0.67

THEN 1 ELSE 0.

RuleFit also comes with a feature importance measure that helps to identify linear
terms and rules that are important for the predictions. Feature importance is
calculated from the weights of the regression model. The importance measure can be
aggregated for the original features (which are used in their “raw” form and possibly
in many decision rules).

RuleFit also introduces partial dependence plots to show the average change in
prediction by changing a feature. The partial dependence plot is a model-agnostic
method that can be used with any model, and is explained in the book chapter on
partial dependence plots.

Interpretation and Example

Since RuleFit estimates a linear model in the end, the interpretation is the same as
for “normal” linear models. The only difference is that the model has new features
derived from decision rules. Decision rules are binary features: A value of 1 means
that all conditions of the rule are met, otherwise the value is 0. For linear terms in
RuleFit, the interpretation is the same as in linear regression models: If the feature
increases by one unit, the predicted outcome changes by the corresponding feature
weight.

In this example, we use RuleFit to predict the number of rented bicycles on a given
day. The table shows five of the rules that were generated by RuleFit, along with their
Lasso weights and importances. The calculation is explained later in the chapter.
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Description Weight Importance
days_since_2011 > 111 & weathersit in
(“GOOD”, “MISTY”)

664 253

37.25 <= hum <= 90 -17 227
days_since_2011 > 428 & temp > 5 460 225
temp > 13 & days_since_2011 > 554 550 194
temp > 8 & weathersit in (“GOOD”, “MISTY”) 409 188

The most important rule was: “days_since_2011 > 111 & weathersit in (“GOOD”,
“MISTY”)” and the corresponding weight is 664. The interpretation is: If days_since_-
2011 > 111 & weathersit in (“GOOD”, “MISTY”), then the predicted number of bikes
increases by 664, when all other feature values remain fixed. In total, 278 such rules
were created from the original 8 features. Quite a lot! But thanks to Lasso, only 39 of
the 278 have a weight different from 0.

Computing the global feature importances reveals that temperature and time trend
are the most important features:
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Feature importance measures for a RuleFit model predicting bike counts. The most important
features for the predictions were temperature and time trend.

The feature importance measurement includes the importance of the raw feature
term and all the decision rules in which the feature appears.

Interpretation template

The interpretation is analogous to linear models: The predicted outcome changes by
βj if feature xj changes by one unit, provided all other features remain unchanged.
The weight interpretation of a decision rule is a special case: If all conditions of a
decision rule rk apply, the predicted outcome changes by αk (the learned weight of
rule rk in the linear model).

For classification (using logistic regression instead of linear regression): If all condi-
tions of the decision rule rk apply, the odds for event vs. no-event changes by a factor
of αk.
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Theory

Let us dive deeper into the technical details of the RuleFit algorithm. RuleFit consists
of two components: The first component creates “rules” from decision trees and the
second component fits a linear model with the original features and the new rules as
input (hence the name “RuleFit”).

Step 1: Rule generation

What does a rule look like? The rules generated by the algorithm have a simple
form. For example: IF x2 < 3 AND x5 < 7 THEN 1 ELSE 0. The rules are constructed
by decomposing decision trees: Any path to a node in a tree can be converted to a
decision rule. The trees used for the rules are fitted to predict the target outcome.
Therefore the splits and resulting rules are optimized to predict the outcome you
are interested in. You simply chain the binary decisions that lead to a certain node
with “AND”, and voilÃ , you have a rule. It is desirable to generate a lot of diverse
and meaningful rules. Gradient boosting is used to fit an ensemble of decision trees
by regressing or classifying y with your original features X. Each resulting tree
is converted into multiple rules. Not only boosted trees, but any tree ensemble
algorithm can be used to generate the trees for RuleFit. A tree ensemble can be
described with this general formula:

f(x) = a0 +

M∑
m=1

amfm(X)

M is the number of trees and fm(x) is the prediction function of the m-th tree. The
α’s are the weights. Bagged ensembles, random forest, AdaBoost and MART produce
tree ensembles and can be used for RuleFit.

We create the rules from all trees of the ensemble. Each rule rm takes the form of:

rm(x) =
∏

j∈Tm

I(xj ∈ sjm)

where Tm is the set of features used in the m-th tree, I is the indicator function that is
1 when feature xj is in the specified subset of values s for the j-th feature (as specified
by the tree splits) and 0 otherwise. For numerical features, sjm is an interval in the
value range of the feature. The interval looks like one of the two cases:
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xsjm,lower < xj

xj < xsjm,upper

Further splits in that feature possibly lead to more complicated intervals. For
categorical features the subset s contains some specific categories of the feature.

A made up example for the bike rental dataset:

r17(x) = I(xtemp < 15) · I(xweather ∈ {good, cloudy}) · I(10 ≤ xwindspeed < 20)

This rule returns 1 if all three conditions are met, otherwise 0. RuleFit extracts all
possible rules from a tree, not only from the leaf nodes. So another rule that would
be created is:

r18(x) = I(xtemp < 15) · I(xweather ∈ {good, cloudy}

Altogether, the number of rules created from an ensemble of M trees with tm terminal
nodes each is:

K =

M∑
m=1

2(tm − 1)

A trick introduced by the RuleFit authors is to learn trees with random depth so that
many diverse rules with different lengths are generated. Note that we discard the
predicted value in each node and only keep the conditions that lead us to a node and
then we create a rule from it. The weighting of the decision rules is done in step 2 of
RuleFit.

Another way to see step 1: RuleFit generates a new set of features from your original
features. These features are binary and can represent quite complex interactions of
your original features. The rules are chosen to maximize the prediction task. The
rules are automatically generated from the covariates matrix X. You can simply see
the rules as new features based on your original features.
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Step 2: Sparse linear model

You get MANY rules in step 1. Since the first step can be seen as only a feature
transformation, you are still not done with fitting a model. Also, you want to reduce
the number of rules. In addition to the rules, all your “raw” features from your
original dataset will also be used in the sparse linear model. Every rule and every
original feature becomes a feature in the linear model and gets a weight estimate.
The original raw features are added because trees fail at representing simple linear
relationships between y and x. Before we train a sparse linear model, we winsorize
the original features so that they are more robust against outliers:

l∗j (xj) = min(δ+j ,max(δ−j , xj))

where δ−j and δ+j are the δ quantiles of the data distribution of feature xj . A choice
of 0.05 for δ means that any value of feature xj that is in the 5% lowest or 5% highest
values will be set to the quantiles at 5% or 95% respectively. As a rule of thumb, you
can choose δ = 0.025. In addition, the linear terms have to be normalized so that they
have the same prior importance as a typical decision rule:

lj(xj) = 0.4 · l∗j (xj)/std(l
∗
j (xj))

The 0.4 is the average standard deviation of rules with a uniform support distribution
of sk ∼ U(0, 1).

We combine both types of features to generate a new feature matrix and train a
sparse linear model with Lasso, with the following structure:

f̂(x) = β̂0 +

K∑
k=1

α̂krk(x) +

p∑
j=1

β̂j lj(xj)

where α̂ is the estimated weight vector for the rule features and β̂ the weight vector
for the original features. Since RuleFit uses Lasso, the loss function gets the additional
constraint that forces some of the weights to get a zero estimate:

({α̂}K1 , {β̂}p0) = argmin{α̂}K
1 ,{β̂}p

0

n∑
i=1

L(y(i), f(x(i))) + λ ·

 K∑
k=1

|αk|+
p∑

j=1

|bj |
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The result is a linear model that has linear effects for all of the original features and
for the rules. The interpretation is the same as for linear models, the only difference
is that some features are now binary rules.

Step 3 (optional): Feature importance

For the linear terms of the original features, the feature importance is measured with
the standardized predictor:

Ij = |β̂j | · std(lj(xj))

where βj is the weight from the Lasso model and std(lj(xj)) is the standard deviation
of the linear term over the data.

For the decision rule terms, the importance is calculated with the following formula:

Ik = |α̂k| ·
√
sk(1− sk)

where α̂k is the associated Lasso weight of the decision rule and sk is the support of
the feature in the data, which is the percentage of data points to which the decision
rule applies (where rk(x) = 0):

sk =
1

n

n∑
i=1

rk(x
(i))

A feature occurs as a linear term and possibly also within many decision rules. How
do we measure the total importance of a feature? The importance Jj(x) of a feature
can be measured for each individual prediction:

Jj(x) = Ij(x) +
∑

xj∈rk

Ik(x)/mk

where Il is the importance of the linear term and Ik the importance of the decision
rules in which xj appears, and mk is the number of features constituting the rule
rk. Adding the feature importance from all instances gives us the global feature
importance:
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Jj(X) =

n∑
i=1

Jj(x
(i))

It is possible to select a subset of instances and calculate the feature importance for
this group.

Advantages

RuleFit automatically adds feature interactions to linear models. Therefore, it solves
the problem of linear models that you have to add interaction terms manually and
it helps a bit with the issue of modeling nonlinear relationships.

RuleFit can handle both classification and regression tasks.

The rules created are easy to interpret, because they are binary decision rules. Either
the rule applies to an instance or not. Good interpretability is only guaranteed if the
number of conditions within a rule is not too large. A rule with 1 to 3 conditions
seems reasonable to me. This means a maximum depth of 3 for the trees in the tree
ensemble.

Even if there are many rules in the model, they do not apply to every instance. For an
individual instance only a handful of rules apply (= have a non-zero weights). This
improves local interpretability.

RuleFit proposes a bunch of useful diagnostic tools. These tools are model-agnostic,
so you can find them in the model-agnostic section of the book: feature importance,
partial dependence plots and feature interactions.

Disadvantages

Sometimes RuleFit creates many rules that get a non-zero weight in the Lasso model.
The interpretability degrades with increasing number of features in the model. A
promising solution is to force feature effects to be monotonic, meaning that an
increase of a feature has to lead to an increase of the prediction.

An anecdotal drawback: The papers claim a good performance of RuleFit – often
close to the predictive performance of random forests! – but in the few cases where
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I tried it personally, the performance was disappointing. Just try it out for your
problem and see how it performs.

The end product of the RuleFit procedure is a linear model with additional fancy
features (the decision rules). But since it is a linear model, the weight interpretation is
still unintuitive. It comes with the same “footnote” as a usual linear regression model:
“… given all features are fixed.” It gets a bit more tricky when you have overlapping
rules. For example, one decision rule (feature) for the bicycle prediction could be:
“temp > 10” and another rule could be “temp > 15 &weather=’GOOD’”. If the weather
is good and the temperature is above 15 degrees, the temperature is automatically
greater then 10. In the cases where the second rule applies, the first rule applies as
well. The interpretation of the estimated weight for the second rule is: “Assuming all
other features remain fixed, the predicted number of bikes increases by β2 when the
weather is good and temperature above 15 degrees.”. But, now it becomes really clear
that the ‘all other feature fixed’ is problematic, because if rule 2 applies, also rule 1
applies and the interpretation is nonsensical.

Software and Alternative

The RuleFit algorithm is implemented in R by Fokkema and Christoffersen (2017)⁵⁸
and you can find a Python version on Github⁵⁹.

A very similar framework is skope-rules⁶⁰, a Python module that also extracts rules
from ensembles. It differs in the way it learns the final rules: First, skope-rules remove
low-performing rules, based on recall and precision thresholds. Then, duplicate and
similar rules are removed by performing a selection based on the diversity of logical
terms (variable + larger/smaller operator) and performance (F1-score) of the rules.
This final step does not rely on using Lasso, but considers only the out-of-bag F1-
score and the logical terms which form the rules.

⁵⁸Fokkema, Marjolein, and Benjamin Christoffersen. “Pre: Prediction rule ensembles”. https://CRAN.R-
project.org/package=pre (2017).

⁵⁹https://github.com/christophM/rulefit
⁶⁰https://github.com/scikit-learn-contrib/skope-rules
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Other Interpretable Models

The list of interpretable models is constantly growing and of unknown size. It
includes simple models such as linear models, decision trees and naive Bayes, but
also more complex ones that combine or modify non-interpretable machine learning
models to make them more interpretable. Especially publications on the latter type
of models are currently being produced at high frequency and it is hard to keep up
with developments. The book teases only the Naive Bayes classifier and k-nearest
neighbors in this chapter.

Naive Bayes Classifier

The Naive Bayes classifier uses the Bayes’ theorem of conditional probabilities. For
each feature, it calculates the probability for a class depending on the value of the
feature. The Naive Bayes classifier calculates the class probabilities for each feature
independently, which is equivalent to a strong (= naive) assumption of independence
of the features. Naive Bayes is a conditional probability model and models the
probability of a class Ck as follows:

P (Ck|x) =
1

Z
P (Ck)

n∏
i=1

P (xi|Ck)

The term Z is a scaling parameter that ensures that the sum of probabilities for all
classes is 1 (otherwise they would not be probabilities). The conditional probability
of a class is the class probability times the probability of each feature given the class,
normalized by Z. This formula can be derived by using the Bayes’ theorem.

Naive Bayes is an interpretable model because of the independence assumption. It
can be interpreted on the modular level. It is very clear for each feature how much it
contributes towards a certain class prediction, since we can interpret the conditional
probability.

K-Nearest Neighbors

The k-nearest neighbor method can be used for regression and classification and
uses the nearest neighbors of a data point for prediction. For classification, the k-
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nearest neighbor method assigns the most common class of the nearest neighbors
of an instance. For regression, it takes the average of the outcome of the neighbors.
The tricky parts are finding the right k and deciding how to measure the distance
between instances, which ultimately defines the neighborhood.

The k-nearest neighbor model differs from the other interpretable models presented
in this book because it is an instance-based learning algorithm. How can k-nearest
neighbors be interpreted? First of all, there are no parameters to learn, so there
is no interpretability on a modular level. Furthermore, there is a lack of global
model interpretability because the model is inherently local and there are no global
weights or structures explicitly learned. Maybe it is interpretable at the local level?
To explain a prediction, you can always retrieve the k neighbors that were used for
the prediction. Whether the model is interpretable depends solely on the question
whether you can ‘interpret’ a single instance in the dataset. If an instance consists
of hundreds or thousands of features, then it is not interpretable, I would argue. But
if you have few features or a way to reduce your instance to the most important
features, presenting the k-nearest neighbors can give you good explanations.
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Model-Agnostic Methods
Separating the explanations from the machine learning model (= model-agnostic
interpretation methods) has some advantages (Ribeiro, Singh, and Guestrin 2016⁶¹).
The great advantage of model-agnostic interpretation methods over model-specific
ones is their flexibility. Machine learning developers are free to use any machine
learning model they like when the interpretation methods can be applied to any
model. Anything that builds on an interpretation of a machine learning model, such
as a graphic or user interface, also becomes independent of the underlying machine
learning model. Typically, not just one, but many types of machine learning models
are evaluated to solve a task, andwhen comparingmodels in terms of interpretability,
it is easier to work with model-agnostic explanations, because the same method can
be used for any type of model.

An alternative to model-agnostic interpretation methods is to use only interpretable
models, which often has the big disadvantage that predictive performance is lost
compared to other machine learning models and you limit yourself to one type of
model. The other alternative is to use model-specific interpretation methods. The
disadvantage of this is that it also binds you to one model type and it will be difficult
to switch to something else.

Desirable aspects of a model-agnostic explanation system are (Ribeiro, Singh, and
Guestrin 2016):

• Model flexibility: The interpretation method can work with any machine
learning model, such as random forests and deep neural networks.

• Explanation flexibility: You are not limited to a certain form of explanation. In
some cases it might be useful to have a linear formula, in other cases a graphic
with feature importances.

• Representation flexibility: The explanation system should be able to use
a different feature representation as the model being explained. For a text

⁶¹Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “Model-agnostic interpretability of machine learning.”
ICML Workshop on Human Interpretability in Machine Learning. (2016).
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classifier that uses abstract word embedding vectors, it might be preferable to
use the presence of individual words for the explanation.

The bigger picture

Let us take a high level look at model-agnostic interpretability. We capture the world
by collecting data, and abstract it further by learning to predict the data (for the task)
with a machine learningmodel. Interpretability is just another layer on top that helps
humans understand.
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The big picture of explainable machine learning. The real world goes through many layers before
it reaches the human in the form of explanations.

The lowest layer is theWorld. This could literally be nature itself, like the biology of
the human body and how it reacts to medication, but also more abstract things like



Model-Agnostic Methods 143

the real estate market. TheWorld layer contains everything that can be observed and
is of interest. Ultimately, we want to learn something about the World and interact
with it.

The second layer is the Data layer. We have to digitize the World in order to make
it processable for computers and also to store information. The Data layer contains
anything from images, texts, tabular data and so on.

By fitting machine learning models based on the Data layer, we get the Black Box
Model layer. Machine learning algorithms learn with data from the real world to
make predictions or find structures.

Above the Black BoxModel layer is the Interpretability Methods layer, which helps
us deal with the opacity of machine learning models. What were the most important
features for a particular diagnosis? Why was a financial transaction classified as
fraud?

The last layer is occupied by aHuman. Look! This one waves to you because you are
reading this book and helping to provide better explanations for black box models!
Humans are ultimately the consumers of the explanations.

This multi-layered abstraction also helps to understand the differences in approaches
between statisticians and machine learning practitioners. Statisticians deal with the
Data layer, such as planning clinical trials or designing surveys. They skip the Black
BoxModel layer and go right to the Interpretability Methods layer. Machine learning
specialists also deal with the Data layer, such as collecting labeled samples of skin
cancer images or crawling Wikipedia. Then they train a black box machine learning
model. The Interpretability Methods layer is skipped and humans directly deal with
the black box model predictions. It’s great that interpretable machine learning fuses
the work of statisticians and machine learning specialists.

Of course this graphic does not capture everything: Data could come from simula-
tions. Black box models also output predictions that might not even reach humans,
but only supply other machines, and so on. But overall it is a useful abstraction to
understand how interpretability becomes this new layer on top of machine learning
models.
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Partial Dependence Plot (PDP)

The partial dependence plot (short PDP or PD plot) shows the marginal effect one
or two features have on the predicted outcome of a machine learning model (J.
H. Friedman 2001⁶²). A partial dependence plot can show whether the relationship
between the target and a feature is linear, monotonous or more complex. For
example, when applied to a linear regression model, partial dependence plots always
show a linear relationship.

The partial dependence function for regression is defined as:

f̂xS
(xS) = ExC

[
f̂(xS , xC)

]
=

∫
f̂(xS , xC)dP(xC)

The xS are the features for which the partial dependence function should be plotted
and xC are the other features used in the machine learning model f̂ . Usually, there
are only one or two features in the set S. The feature(s) in S are those for which we
want to know the effect on the prediction. The feature vectors xS and xC combined
make up the total feature space x. Partial dependence works by marginalizing the
machine learning model output over the distribution of the features in set C, so that
the function shows the relationship between the features in set S we are interested
in and the predicted outcome. By marginalizing over the other features, we get a
function that depends only on features in S, interactions with other features included.

The partial function f̂xS
is estimated by calculating averages in the training data, also

known as Monte Carlo method:

f̂xS
(xS) =

1
n

∑n
i=1 f̂(xS , x

(i)
C ) The partial function tells us for given value(s) of features

S what the average marginal effect on the prediction is. In this formula, x(i)
C are actual

feature values from the dataset for the features in which we are not interested, and
n is the number of instances in the dataset. An assumption of the PDP is that the
features in C are not correlated with the features in S. If this assumption is violated,
the averages calculated for the partial dependence plot will include data points that
are very unlikely or even impossible (see disadvantages).

For classification where the machine learning model outputs probabilities, the partial

⁶²Friedman, Jerome H. “Greedy function approximation: A gradient boosting machine.” Annals of statistics (2001):
1189-1232.
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dependence plot displays the probability for a certain class given different values for
feature(s) in S. An easy way to deal with multiple classes is to draw one line or plot
per class.

The partial dependence plot is a global method: The method considers all instances
and gives a statement about the global relationship of a feature with the predicted
outcome.

Categorical features

So far, we have only considered numerical features. For categorical features, the
partial dependence is very easy to calculate. For each of the categories, we get a
PDP estimate by forcing all data instances to have the same category. For example,
if we look at the bike rental dataset and are interested in the partial dependence plot
for the season, we get 4 numbers, one for each season. To compute the value for
“summer”, we replace the season of all data instances with “summer” and average
the predictions.

Examples

In practice, the set of features S usually only contains one feature or a maximum
of two, because one feature produces 2D plots and two features produce 3D plots.
Everything beyond that is quite tricky. Even 3D on a 2D paper or monitor is already
challenging.

Let us return to the regression example, in which we predict the number of bikes that
will be rented on a given day. First we fit a machine learning model, then we analyze
the partial dependencies. In this case, we have fitted a random forest to predict the
number of bicycles and use the partial dependence plot to visualize the relationships
the model has learned. The influence of the weather features on the predicted bike
counts is visualized in the following figure.
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PDPs for the bicycle count predictionmodel and temperature, humidity andwind speed. The largest
differences can be seen in the temperature. The hotter, the more bikes are rented. This trend goes
up to 20 degrees Celsius, then flattens and drops slightly at 30. Marks on the x-axis indicate the
data distribution.

For warm but not too hot weather, the model predicts on average a high number
of rented bicycles. Potential bikers are increasingly inhibited in renting a bike when
humidity exceeds 60%. In addition, the more wind the fewer people like to cycle,
which makes sense. Interestingly, the predicted number of bike rentals does not fall
when wind speed increases from 25 to 35 km/h, but there is not much training data,
so the machine learning model could probably not learn a meaningful prediction for
this range. At least intuitively, I would expect the number of bicycles to decrease
with increasing wind speed, especially when the wind speed is very high.

To illustrate a partial dependence plot with a categorical feature, we examine the
effect of the season feature on the predicted bike rentals.
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PDPs for the bike count prediction model and the season. Unexpectedly all seasons show the same
effect, only for spring the model predicts less bicycle rentals.

We also compute the partial dependence for cervical cancer classification. This time
we fit a random forest to predict whether a woman might get cervical cancer based
on risk factors. We compute and visualize the partial dependence of the cancer
probability on different features for the random forest:
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PDPs of cancer probability based on age and years with hormonal contraceptives. For age, the
PDP shows that the probability is low until 40 and increases after. The more years on hormonal
contraceptives the higher the predicted cancer risk, especially after 10 years. For both features not
many data points with large values were available, so the PD estimates are less reliable in those
regions.

We can also visualize the partial dependence of two features at once:
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PDP of cancer probability and the interaction of age and number of pregnancies. The plot shows
the increase in cancer probability at 45. For ages below 25, women who had 1 or 2 pregnancies have
a lower predicted cancer risk, compared with women who had 0 or more than 2 pregnancies. But
be careful when drawing conclusions: This might just be a correlation and not causal!

Advantages

The computation of partial dependence plots is intuitive: The partial dependence
function at a particular feature value represents the average prediction if we force
all data points to assume that feature value. In my experience, lay people usually
understand the idea of PDPs quickly.

If the feature for which you computed the PDP is not correlated with the other
features, then the PDPs perfectly represent how the feature influences the prediction
on average. In the uncorrelated case, the interpretation is clear: The partial
dependence plot shows how the average prediction in your dataset changes when
the j-th feature is changed. It is more complicated when features are correlated, see
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also disadvantages.

Partial dependence plots are easy to implement.

The calculation for the partial dependence plots has a causal interpretation. We
intervene on a feature and measure the changes in the predictions. In doing so,
we analyze the causal relationship between the feature and the prediction.⁶³ The
relationship is causal for the model – because we explicitly model the outcome as a
function of the features – but not necessarily for the real world!

Disadvantages

The realisticmaximum number of features in a partial dependence function is two.
This is not the fault of PDPs, but of the 2-dimensional representation (paper or screen)
and also of our inability to imagine more than 3 dimensions.

Some PD plots do not show the feature distribution. Omitting the distribution can
be misleading, because you might overinterpret regions with almost no data. This
problem is easily solved by showing a rug (indicators for data points on the x-axis)
or a histogram.

The assumption of independence is the biggest issue with PD plots. It is assumed
that the feature(s) for which the partial dependence is computed are not correlated
with other features. For example, suppose you want to predict how fast a person
walks, given the person’s weight and height. For the partial dependence of one of the
features, e.g. height, we assume that the other features (weight) are not correlated
with height, which is obviously a false assumption. For the computation of the PDP
at a certain height (e.g. 200 cm), we average over the marginal distribution of weight,
which might include a weight below 50 kg, which is unrealistic for a 2 meter person.
In other words: When the features are correlated, we create new data points in areas
of the feature distribution where the actual probability is very low (for example it is
unlikely that someone is 2 meters tall but weighs less than 50 kg). One solution to
this problem is Accumulated Local Effect plots or short ALE plots that work with the
conditional instead of the marginal distribution.

Heterogeneous effects might be hidden because PD plots only show the average
marginal effects. Suppose that for a feature half your data points have a positive

⁶³Zhao, Qingyuan, and Trevor Hastie. “Causal interpretations of black-box models.” Journal of Business & Economic
Statistics, to appear. (2017).
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association with the prediction – the larger the feature value the larger the prediction
– and the other half has a negative association – the smaller the feature value the
larger the prediction. The PD curve could be a horizontal line, since the effects of both
halves of the dataset could cancel each other out. You then conclude that the feature
has no effect on the prediction. By plotting the individual conditional expectation
curves instead of the aggregated line, we can uncover heterogeneous effects.

Software and Alternatives

There are a number of R packages that implement PDPs. I used the iml package for
the examples, but there is also pdp or DALEX. In Python you can use Skater.

Alternatives to PDPs presented in this book are ALE plots and ICE curves.
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Individual Conditional Expectation (ICE)

Individual Conditional Expectation (ICE) plots display one line per instance that
shows how the instance’s prediction changes when a feature changes.

The partial dependence plot for the average effect of a feature is a global method
because it does not focus on specific instances, but on an overall average. The
equivalent to a PDP for individual data instances is called individual conditional
expectation (ICE) plot (Goldstein et al. 2017⁶⁴). An ICE plot visualizes the dependence
of the prediction on a feature for each instance separately, resulting in one line per
instance, compared to one line overall in partial dependence plots. A PDP is the
average of the lines of an ICE plot. The values for a line (and one instance) can be
computed by keeping all other features the same, creating variants of this instance
by replacing the feature’s value with values from a grid and making predictions with
the black box model for these newly created instances. The result is a set of points
for an instance with the feature value from the grid and the respective predictions.

What is the point of looking at individual expectations instead of partial dependen-
cies? Partial dependence plots can obscure a heterogeneous relationship created by
interactions. PDPs can show you what the average relationship between a feature
and the prediction looks like. This only works well if the interactions between the
features for which the PDP is calculated and the other features are weak. In case of
interactions, the ICE plot will provide much more insight.

A more formal definition: In ICE plots, for each instance in {(x(i)
S , x

(i)
C )}Ni=1 the curve

f̂
(i)
S is plotted against x(i)

S , while x
(i)
C remains fixed.

Examples

Let’s go back to the cervical cancer dataset and see how the prediction of each
instance is associated with the feature “Age”. We will analyze a random forest that
predicts the probability of cancer for a woman given risk factors. In the partial
dependence plot we have seen that the cancer probability increases around the age
of 50, but is this true for every woman in the dataset? The ICE plot reveals that for
most women the age effect follows the average pattern of an increase at age 50, but

⁶⁴Goldstein, Alex, et al. “Peeking inside the black box: Visualizing statistical learning with plots of individual
conditional expectation.” Journal of Computational and Graphical Statistics 24.1 (2015): 44-65.
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there are some exceptions: For the few women that have a high predicted probability
at a young age, the predicted cancer probability does not change much with age.

ICE plot of cervical cancer probability by age. Each line represents one woman. For most women
there is an increase in predicted cancer probability with increasing age. For some women with a
predicted cancer probability above 0.4, the prediction does not change much at higher age.

The next figure shows ICE plots for the bike rental prediction. The underlying
prediction model is a random forest.
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ICE plots of predicted bicycle rentals by weather conditions. The same effects can be observed as
in the partial dependence plots.

All curves seem to follow the same course, so there are no obvious interactions. That
means that the PDP is already a good summary of the relationships between the
displayed features and the predicted number of bicycles

Centered ICE Plot

There is a problem with ICE plots: Sometimes it can be hard to tell whether the ICE
curves differ between individuals because they start at different predictions. A simple
solution is to center the curves at a certain point in the feature and display only the
difference in the prediction to this point. The resulting plot is called centered ICE
plot (c-ICE). Anchoring the curves at the lower end of the feature is a good choice.
The new curves are defined as:

f̂
(i)
cent = f̂ (i) − 1f̂(xa, x

(i)
C )
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where 1 is a vector of 1’s with the appropriate number of dimensions (usually one or
two), f̂ is the fitted model and x is the anchor point.

Example

For example, take the cervical cancer ICE plot for age and center the lines on the
youngest observed age:

Centered ICE plot for predicted cancer probability by age. Lines are fixed to 0 at age 13. Compared
to age 13, the predictions for most women remain unchanged until the age of 45 where the predicted
probability increases.

The centered ICE plots make it easier to compare the curves of individual instances.
This can be useful if we do not want to see the absolute change of a predicted value,
but the difference in the prediction compared to a fixed point of the feature range.

Let’s have a look at centered ICE plots for the bicycle rental prediction:
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Centered ICE plots of predicted number of bikes byweather condition. The lines show the difference
in prediction compared to the prediction with the respective feature value at its observedminimum.

Derivative ICE Plot

Another way to make it visually easier to spot heterogeneity is to look at the
individual derivatives of the prediction function with respect to a feature. The
resulting plot is called the derivative ICE plot (d-ICE). The derivatives of a function
(or curve) tell you whether changes occur and in which direction they occur. With
the derivative ICE plot, it is easy to spot ranges of feature values where the black box
predictions change for (at least some) instances. If there is no interaction between
the analyzed feature xS and the other features xC , then the prediction function can
be expressed as:

f̂(x) = f̂(xS , xC) = g(xS) + h(xC), with δf̂(x)

δxS
= g′(xS)
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Without interactions, the individual partial derivatives should be the same for all
instances. If they differ, it is due to interactions and it becomes visible in the d-
ICE plot. In addition to displaying the individual curves for the derivative of the
prediction function with respect to the feature in S, showing the standard deviation
of the derivative helps to highlight regions in feature in S with heterogeneity in the
estimated derivatives. The derivative ICE plot takes a long time to compute and is
rather impractical.

Advantages

Individual conditional expectation curves are even more intuitive to understand
than partial dependence plots. One line represents the predictions for one instance if
we vary the feature of interest.

Unlike partial dependence plots, ICE curves can uncover heterogeneous relation-
ships.

Disadvantages

ICE curves can only display one featuremeaningfully, because two features would
require the drawing of several overlaying surfaces and you would not see anything
in the plot.

ICE curves suffer from the same problem as PDPs: If the feature of interest is
correlated with the other features, then some points in the lines might be invalid
data points according to the joint feature distribution.

If many ICE curves are drawn, the plot can become overcrowded and you will not
see anything. The solution: Either add some transparency to the lines or draw only
a sample of the lines.

In ICE plots it might not be easy to see the average. This has a simple solution:
Combine individual conditional expectation curves with the partial dependence plot.

Software and Alternatives

ICE plots are implemented in the R packages iml (used for these examples), ICEbox⁶⁵,
and pdp. Another R package that does something very similar to ICE is condvis.

⁶⁵Goldstein, Alex, et al. “Package â€˜ICEboxâ€™.” (2017).

www.dbooks.org

https://www.dbooks.org/


Model-Agnostic Methods 158

Accumulated Local Effects (ALE) Plot

Accumulated local effects⁶⁶ describe how features influence the prediction of a
machine learning model on average. ALE plots are a faster and unbiased alternative
to partial dependence plots (PDPs).

I recommend reading the chapter on partial dependence plots first, as they are easier
to understand and both methods share the same goal: Both describe how a feature
affects the prediction on average. In the following section, I want to convince you that
partial dependence plots have a serious problem when the features are correlated.

Motivation and Intuition

If features of a machine learning model are correlated, the partial dependence plot
cannot be trusted. The computation of a partial dependence plot for a feature that
is strongly correlated with other features involves averaging predictions of artificial
data instances that are unlikely in reality. This can greatly bias the estimated feature
effect. Imagine calculating partial dependence plots for a machine learning model
that predicts the value of a house depending on the number of rooms and the size
of the living area. We are interested in the effect of the living area on the predicted
value. As a reminder, the recipe for partial dependence plots is: 1) Select feature.
2) Define grid. 3) Per grid value: a) Replace feature with grid value and b) average
predictions. 4) Draw curve. For the calculation of the first grid value of the PDP – say
30 m² – we replace the living area for all instances by 30 m², even for houses with 10
rooms. Sounds to me like a very unusual house. The partial dependence plot includes
these unrealistic houses in the feature effect estimation and pretends that everything
is fine. The following figure illustrates two correlated features and how it comes that
the partial dependence plot method averages predictions of unlikely instances.

⁶⁶Apley, Daniel W. “Visualizing the effects of predictor variables in black box supervised learning models.” arXiv
preprint arXiv:1612.08468 (2016).
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Strongly correlated features x1 and x2. To calculate the feature effect of x1 at 0.75, the PDP replaces
x1 of all instances with 0.75, falsely assuming that the distribution of x2 at x1 = 0.75 is the same as
the marginal distribution of x2 (vertical line). This results in unlikely combinations of x1 and x2
(e.g. x2=0.2 at x1=0.75), which the PDP uses for the calculation of the average effect.

What can we do to get a feature effect estimate that respects the correlation of the
features? We could average over the conditional distribution of the feature, meaning
at a grid value of x1, we average the predictions of instances with a similar x1 value.
The solution for calculating feature effects using the conditional distribution is called
Marginal Plots, or M-Plots (confusing name, since they are based on the conditional,
not the marginal distribution). Wait, did I not promise you to talk about ALE plots?
M-Plots are not the solution we are looking for. Why do M-Plots not solve our
problem? If we average the predictions of all houses of about 30 m², we estimate the
combined effect of living area and of number of rooms, because of their correlation.
Suppose that the living area has no effect on the predicted value of a house, only the
number of rooms has. The M-Plot would still show that the size of the living area
increases the predicted value, since the number of rooms increases with the living
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area. The following plot shows for two correlated features how M-Plots work.

Strongly correlated features x1 and x2. M-Plots average over the conditional distribution. Here the
conditional distribution of x2 at x1 = 0.75. Averaging the local predictions leads to mixing the effects
of both features.

M-Plots avoid averaging predictions of unlikely data instances, but they mix the
effect of a feature with the effects of all correlated features. ALE plots solve this
problem by calculating – also based on the conditional distribution of the features –
differences in predictions instead of averages. For the effect of living area at 30
m², the ALE method uses all houses with about 30 m², gets the model predictions
pretending these houses were 31 m² minus the prediction pretending they were 29
m². This gives us the pure effect of the living area and is not mixing the effect with
the effects of correlated features. The use of differences blocks the effect of other
features. The following graphic provides intuition how ALE plots are calculated.



Model-Agnostic Methods 161

Calculation of ALE for feature x1, which is correlated with x2. First, we divide the feature into
intervals (vertical lines). For the data instances (points) in an interval, we calculate the difference in
the predictionwhenwe replace the featurewith the upper and lower limit of the interval (horizontal
lines). These differences are later accumulated and centered, resulting in the ALE curve.

To summarize how each type of plot (PDP, M, ALE) calculates the effect of a feature
at a certain grid value v:
Partial Dependence Plots: “Let me show you what the model predicts on average
when each data instance has the value v for that feature. I ignore whether the value
v makes sense for all data instances.”
M-Plots: “Let me show you what the model predicts on average for data instances
that have values close to v for that feature. The effect could be due to that feature,
but also due to correlated features.”
ALE plots: “Let me show you how the model predictions change in a small “window”
of the feature around v for data instances in that window.”
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Theory

How do PD, M and ALE plots differ mathematically? Common to all three methods
is that they reduce the complex prediction function f to a function that depends on
only one (or two) features. All three methods reduce the function by averaging the
effects of the other features, but they differ in whether averages of predictions or of
differences in predictions are calculated and whether averaging is done over the
marginal or conditional distribution.

Partial dependence plots average the predictions over the marginal distribution.

f̂xS ,PDP (xS) = EXC

[
f̂(xS , XC)

]
=

∫
xC

f̂(xS , xC)P(xC)dxC

This is the value of the prediction function f, at feature value(s) xS , averaged over
all features in xC . Averaging means calculating the marginal expectation E over
the features in set C, which is the integral over the predictions weighted by the
probability distribution. Sounds fancy, but to calculate the expected value over the
marginal distribution, we simply take all our data instances, force them to have
a certain grid value for the features in set S, and average the predictions for this
manipulated dataset. This procedure ensures that we average over the marginal
distribution of the features.

M-plots average the predictions over the conditional distribution.

f̂xS ,M (xS) = EXC |XS

[
f̂(XS , XC)|XS = xs

]
=

∫
xC

f̂(xS , xC)P(xC |xS)dxC

The only thing that changes compared to PDPs is that we average the predictions
conditional on each grid value of the feature of interest, instead of assuming the
marginal distribution at each grid value. In practice, this means that we have to
define a neighborhood, for example for the calculation of the effect of 30 m² on the
predicted house value, we could average the predictions of all houses between 28 and
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32 m².

ALE plots average the changes in the predictions and accumulate them over the grid
(more on the calculation later).

f̂xS ,ALE(xS) =

∫ xS

z0,1

EXC |XS

[
f̂S(Xs, Xc)|XS = zS

]
dzS − constant

=

∫ xS

z0,1

∫
xC

f̂S(zs, xc)P(xC |zS)dxCdzS − constant

The formula reveals three differences to M-Plots. First, we average the changes of
predictions, not the predictions itself. The change is defined as the gradient (but later,
for the actual computation, replaced by the differences in the predictions over an
interval).

f̂S(xs, xc) =
δf̂(xS , xC)

δxS

The second difference is the additional integral over z. We accumulate the local
gradients over the range of features in set S, which gives us the effect of the feature on
the prediction. For the actual computation, the z’s are replaced by a grid of intervals
over which we compute the changes in the prediction. Instead of directly averaging
the predictions, the ALE method calculates the prediction differences conditional on
features S and integrates the derivative over features S to estimate the effect. Well,
that sounds stupid. Derivation and integration usually cancel each other out, like
first subtracting, then adding the same number. Why does it make sense here? The
derivative (or interval difference) isolates the effect of the feature of interest and
blocks the effect of correlated features.

The third difference of ALE plots to M-plots is that we subtract a constant from the
results. This step centers the ALE plot so that the average effect over the data is zero.

One problem remains: Not all models come with a gradient, for example random
forests have no gradient. But as you will see, the actual computation works without
gradients and uses intervals. Let us delve a little deeper into the estimation of ALE
plots.
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Estimation

First I will describe how ALE plots are estimated for a single numerical feature, later
for two numerical features and for a single categorical feature. To estimate local
effects, we divide the feature into many intervals and compute the differences in the
predictions. This procedure approximates the gradients and also works for models
without gradients.

First we estimate the uncentered effect:

ˆ̃
fj,ALE(x) =

kj(x)∑
k=1

1

nj(k)

∑
i:x

(i)
j ∈Nj(k)

[
f(zk,j , x

(i)
\j )− f(zk−1,j , x

(i)
\j )
]

Let us break this formula down, starting from the right side. The nameAccumulated
Local Effects nicely reflects all the individual components of this formula. At its
core, the ALE method calculates the differences in predictions, whereby we replace
the feature of interest with grid values z. The difference in prediction is the Effect
the feature has for an individual instance in a certain interval. The sum on the right
adds up the effects of all instances within an interval which appears in the formula as
neighborhoodNj(k). We divide this sum by the number of instances in this interval to
obtain the average difference of the predictions for this interval. This average in the
interval is covered by the term Local in the name ALE. The left sum symbol means
that we accumulate the average effects across all intervals. The (uncentered) ALE of
a feature value that lies, for example, in the third interval is the sum of the effects of
the first, second and third intervals. The word Accumulated in ALE reflects this.

This effect is centered so that the mean effect is zero.

f̂j,ALE(x) =
ˆ̃
fj,ALE(x)−

1

n

n∑
i=1

ˆ̃
fj,ALE(x

(i)
j )

The value of the ALE can be interpreted as the main effect of the feature at a certain
value compared to the average prediction of the data. For example, an ALE estimate
of -2 at xj = 3 means that when the j-th feature has value 3, then the prediction is
lower by 2 compared to the average prediction.

The quantiles of the distribution of the feature are used as the grid that defines the
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intervals. Using the quantiles ensures that there is the same number of data instances
in each of the intervals. Quantiles have the disadvantage that the intervals can have
very different lengths. This can lead to some weird ALE plots if the feature of interest
is very skewed, for example many low values and only a few very high values.

ALE plots for the interaction of two features

ALE plots can also show the interaction effect of two features. The calculation
principles are the same as for a single feature, but we work with rectangular cells
instead of intervals, because we have to accumulate the effects in two dimensions. In
addition to adjusting for the overall mean effect, we also adjust for the main effects
of both features. This means that ALE for two features estimate the second-order
effect, which does not include the main effects of the features. In other words, ALE
for two features only shows the additional interaction effect of the two features. I
spare you the formulas for 2D ALE plots because they are long and unpleasant to
read. If you are interested in the calculation, I refer you to the paper, formulas (13)
– (16). I will rely on visualizations to develop intuition about the second-order ALE
calculation.
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Calculation of 2D-ALE. We place a grid over the two features. In each grid cell we calculate the
2nd-order differences for all instance within. We first replace values of x1 and x2 with the values
from the cell corners. If a, b, c and d represent the “corner”-predictions of a manipulated instance
(as labeled in the graphic), then the 2nd-order difference is (d - c) - (b - a). The mean 2nd-order
difference in each cell is accumulated over the grid and centered.

In the previous figure, many cells are empty due to the correlation. In the ALE plot
this can be visualized with a grayed out or darkened box. Alternatively, you can
replace the missing ALE estimate of an empty cell with the ALE estimate of the
nearest non-empty cell.

Since the ALE estimates for two features only show the second-order effect of the
features, the interpretation requires special attention. The second-order effect is the
additional interaction effect of the features after we have accounted for the main
effects of the features. Suppose two features do not interact, but each has a linear
effect on the predicted outcome. In the 1D ALE plot for each feature, we would see
a straight line as the estimated ALE curve. But when we plot the 2D ALE estimates,
they should be close to zero, because the second-order effect is only the additional
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effect of the interaction. ALE plots and PD plots differ in this regard: PDPs always
show the total effect, ALE plots show the first- or second-order effect. These are
design decisions that do not depend on the underlying math. You can subtract the
lower-order effects in a partial dependence plot to get the pure main or second-
order effects or, you can get an estimate of the total ALE plots by refraining from
subtracting the lower-order effects.

The accumulated local effects could also be calculated for arbitrarily higher orders
(interactions of three or more features), but as argued in the PDP chapter, only up to
two features makes sense, because higher interactions cannot be visualized or even
interpreted meaningfully.

ALE for categorical features

The accumulated local effects method needs – by definition – the feature values
to have an order, because the method accumulates effects in a certain direction.
Categorical features do not have any natural order. To compute an ALE plot for
a categorical feature we have to somehow create or find an order. The order of
the categories influences the calculation and interpretation of the accumulated local
effects.

One solution is to order the categories according to their similarity based on the
other features. The distance between two categories is the sum over the distances of
each feature. The feature-wise distance compares either the cumulative distribution
in both categories, also called Kolmogorov-Smirnov distance (for numerical features)
or the relative frequency tables (for categorical features). Once we have the distances
between all categories, we use multi-dimensional scaling to reduce the distance
matrix to a one-dimensional distance measure. This gives us a similarity-based order
of the categories.

To make this a little bit clearer, here is one example: Let us assume we have the two
categorical features “season” and “weather” and a numerical feature “temperature”.
For the first categorical feature (season) we want to calculate the ALEs. The feature
has the categories “spring”, “summer”, “fall”, “winter”. We start to calculate the
distance between categories “spring” and “summer”. The distance is the sum of
distances over the features temperature and weather. For the temperature, we take
all instances with season “spring”, calculate the empirical cumulative distribution
function and do the same for instances with season “summer” and measure their
distancewith the Kolmogorov-Smirnov statistic. For theweather featurewe calculate
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for all “spring” instances the probabilities for each weather type, do the same for the
“summer” instances and sum up the absolute distances in the probability distribution.
If “spring” and “summer” have very different temperatures and weather, the total
category-distance is large. We repeat the procedure with the other seasonal pairs
and reduce the resulting distance matrix to a single dimension by multi-dimensional
scaling.

Examples

Let us see ALE plots in action. I have constructed a scenario in which partial
dependence plots fail. The scenario consists of a prediction model and two strongly
correlated features. The prediction model is mostly a linear regression model, but
does something weird at a combination of the two features for which we have never
observed instances.
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Two features and the predicted outcome. The model predicts the sum of the two features (shaded
background), with the exception that if x1 is greater than 0.7 and x2 less than 0.3, the model
always predicts 2. This area is far from the distribution of data (point cloud) and does not affect
the performance of the model and also should not affect its interpretation.

Is this a realistic, relevant scenario at all? When you train a model, the learning
algorithm minimizes the loss for the existing training data instances. Weird stuff
can happen outside the distribution of training data, because the model is not
penalized for doing weird stuff in these areas. Leaving the data distribution is called
extrapolation, which can also be used to fool machine learning models, described
in the chapter on adversarial examples. See in our little example how the partial
dependence plots behave compared to ALE plots.
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Comparison of the feature effects computed with PDP (upper row) and ALE (lower row). The PDP
estimates are influenced by the odd behavior of the model outside the data distribution (steep
jumps in the plots). The ALE plots correctly identify that the machine learning model has a linear
relationship between features and prediction, ignoring areas without data.

But is it not interesting to see that our model behaves oddly at x1 > 0.7 and x2 < 0.3?
Well, yes and no. Since these are data instances that might be physically impossible or
at least extremely unlikely, it is usually irrelevant to look into these instances. But if
you suspect that your test distribution might be slightly different and some instances
are actually in that range, then it would be interesting to include this area in the
calculation of feature effects. But it has to be a conscious decision to include areas
where we have not observed data yet and it should not be a side-effect of the method
of choice like PDP. If you suspect that the model will later be used with differently
distributed data, I recommend to use ALE plots and simulate the distribution of data
you are expecting.

Turning to a real dataset, let us predict the number of rented bikes based on weather
and day and check if the ALE plots really work as well as promised. We train a
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regression tree to predict the number of rented bicycles on a given day and use ALE
plots to analyze how temperature, relative humidity and wind speed influence the
predictions. Let us look at what the ALE plots say:

ALE plots for the bike prediction model by temperature, humidity and wind speed. The temperature
has a strong effect on the prediction. The average prediction rises with increasing temperature, but
falls again above 25 degrees Celsius. Humidity has a negative effect:When above 60%, the higher the
relative humidity, the lower the prediction. The wind speed does not affect the predictions much.

Let us look at the correlation between temperature, humidity and wind speed and all
other features. Since the data also contains categorical features, we cannot only use
the Pearson correlation coefficient, which only works if both features are numerical.
Instead, I train a linear model to predict, for example, temperature based on one of
the other features as input. Then I measure how much variance the other feature
in the linear model explains and take the square root. If the other feature was
numerical, then the result is equal to the absolute value of the standard Pearson
correlation coefficient. But this model-based approach of “variance-explained” (also
called ANOVA, which stands for ANalysis Of VAriance) works even if the other
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feature is categorical. The “variance-explained” measure lies always between 0 (no
association) and 1 (temperature can be perfectly predicted from the other feature).
We calculate the explained variance of temperature, humidity and wind speed with
all the other features. The higher the explained variance (correlation), the more
(potential) problems with PD plots. The following figure visualizes how strongly
the weather features are correlated with other features.

The strength of the correlation between temperature, humidity and wind speed with all features,
measured as the amount of variance explained, when we train a linear model with e.g. temperature
to predict and season as feature. For temperature we observe – not surprisingly – a high correlation
with season and month. Humidity correlates with weather situation.

This correlation analysis reveals that we may encounter problems with partial
dependence plots, especially for the temperature feature. Well, see for yourself:
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PDPs for temperature, humidity and wind speed. Compared to the ALE plots, the PDPs show a
smaller decrease in predicted number of bikes for high temperature or high humidity. The PDP
uses all data instances to calculate the effect of high temperatures, even if they are, for example,
instances with the season “winter”. The ALE plots are more reliable.

Next, let us see ALE plots in action for a categorical feature. The month is a
categorical feature for which we want to analyze the effect on the predicted number
of bikes. Arguably, the months already have a certain order (January to December),
but let us try to see what happens if we first reorder the categories by similarity and
then compute the effects. The months are ordered by the similarity of days of each
month based on the other features, such as temperature or whether it is a holiday.
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ALE plot for the categorical feature month. The months are ordered by their similarity to each
other, based on the distributions of the other features by month. We observe that January, March
and April, but especially December and November, have a lower effect on the predicted number of
rented bikes compared to the other months.

Since many of the features are related to weather, the order of the months strongly
reflects how similar the weather is between the months. All colder months are on
the left side (February to April) and the warmer months on the right side (October
to August). Keep in mind that non-weather features have also been included in the
similarity calculation, for example relative frequency of holidays has the sameweight
as the temperature for calculating the similarity between the months.

Next, we consider the second-order effect of humidity and temperature on the
predicted number of bikes. Remember that the second-order effect is the additional
interaction effect of the two features and does not include the main effects. This
means that, for example, you will not see the main effect that high humidity leads
to a lower number of predicted bikes on average in the second-order ALE plot.
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ALE plot for the 2nd-order effect of humidity and temperature on the predicted number of rented
bikes. Lighter shade indicates an above average and darker shade a below average prediction when
themain effects are already taken into account. The plot reveals an interaction between temperature
and humidity: Hot and humid weather increases the prediction. In cold and humid weather an
additional negative effect on the number of predicted bikes is shown.

Keep in mind that both main effects of humidity and temperature say that the
predicted number of bikes decreases in very hot and humid weather. In hot and
humid weather, the combined effect of temperature and humidity is therefore not
the sum of the main effects, but larger than the sum. To emphasize the difference
between the pure second-order effect (the 2D ALE plot you just saw) and the total
effect, let us look at the partial dependence plot. The PDP shows the total effect,
which combines the mean prediction, the two main effects and the second-order
effect (the interaction).
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PDP of the total effect of temperature and humidity on the predicted number of bikes. The plot
combines the main effect of each of the features and their interaction effect, as opposed to the
2D-ALE plot which only shows the interaction.

If you are only interested in the interaction, you should look at the second-order
effects, because the total effect mixes the main effects into the plot. But if you want
to know the combined effect of the features, you should look at the total effect (which
the PDP shows). For example, if you want to know the expected number of bikes at
30 degrees Celsius and 80 percent humidity, you can read it directly from the 2D PDP.
If you want to read the same from the ALE plots, you need to look at three plots: The
ALE plot for temperature, for humidity and for temperature + humidity and you also
need to know the overall mean prediction. In a scenario where two features have no
interaction, the total effect plot of the two features could be misleading because it
probably shows a complex landscape, suggesting some interaction, but it is simply the
product of the two main effects. The second-order effect would immediately show
that there is no interaction.
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Enough bicycles for now, let’s turn to a classification task. We train a random forest
to predict the probability of cervical cancer based on risk factors. We visualize the
accumulated local effects for two of the features:

ALE plots for the effect of age and years with hormonal contraceptives on the predicted probability
of cervical cancer. For the age feature, the ALE plot shows that the predicted cancer probability
is low on average up to age 40 and increases after that. The number of years with hormonal
contraceptives is associated with a higher predicted cancer risk after 8 years.

Next, we look at the interaction between number of pregnancies and age.
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ALE plot of the 2nd-order effect of number of pregnancies and age. The interpretation of the plot is
a bit inconclusive, showing what seems like overfitting. For example, the plot shows an odd model
behavior at age of 18-20 and more than 3 pregnancies (up to 5 percentage point increase in cancer
probability). There are not many women in the data with this constellation of age and number of
pregnancies (actual data are displayed as points), so the model is not severely penalized during the
training for making mistakes for those women.

Advantages

ALE plots are unbiased, which means they still work when features are correlated.
Partial dependence plots fail in this scenario because they marginalize over unlikely
or even physically impossible combinations of feature values.

ALE plots are faster to compute than PDPs and scale with O(n), since the largest
possible number of intervals is the number of instances with one interval per
instance. The PDP requires n times the number of grid points estimations. For 20
grid points, PDPs require 20 times more predictions than the worst case ALE plot
where as many intervals as instances are used.
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The interpretation of ALE plots is clear: Conditional on a given value, the relative
effect of changing the feature on the prediction can be read from the ALE plot. ALE
plots are centered at zero. This makes their interpretation nice, because the value
at each point of the ALE curve is the difference to the mean prediction. The 2D ALE
plot only shows the interaction: If two features do not interact, the plot shows
nothing.

All in all, in most situations I would prefer ALE plots over PDPs, because features
are usually correlated to some extent.

Disadvantages

ALE plots can become a bit shaky (many small ups and downs) with a high number
of intervals. In this case, reducing the number of intervals makes the estimates more
stable, but also smoothes out and hides some of the true complexity of the prediction
model. There is no perfect solution for setting the number of intervals. If the
number is too small, the ALE plots might not be very accurate. If the number is too
high, the curve can become shaky.

Unlike PDPs,ALE plots are not accompanied by ICE curves. For PDPs, ICE curves
are great because they can reveal heterogeneity in the feature effect, which means
that the effect of a feature looks different for subsets of the data. For ALE plots you
can only check per interval whether the effect is different between the instances, but
each interval has different instances so it is not the same as ICE curves.

Second-order ALE estimates have a varying stability across the feature space,
which is not visualized in any way. The reason for this is that each estimation
of a local effect in a cell uses a different number of data instances. As a result, all
estimates have a different accuracy (but they are still the best possible estimates).
The problem exists in a less severe version for main effect ALE plots. The number
of instances is the same in all intervals, thanks to the use of quantiles as grid, but
in some areas there will be many short intervals and the ALE curve will consist of
many more estimates. But for long intervals, which can make up a big part of the
entire curve, there are comparatively fewer instances. This happened in the cervical
cancer prediction ALE plot for high age for example.

Second-order effect plots can be a bit annoying to interpret, as you always have
to keep the main effects in mind. It is tempting to read the heat maps as the total
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effect of the two features, but it is only the additional effect of the interaction. The
pure second-order effect is interesting for discovering and exploring interactions, but
for interpreting what the effect looks like, I think it makes more sense to integrate
the main effects into the plot.

The implementation of ALE plots is much more complex and less intuitive
compared to partial dependence plots.

Even though ALE plots are not biased in case of correlated features, interpretation
remains difficult when features are strongly correlated. Because if they have a
very strong correlation, it only makes sense to analyze the effect of changing both
features together and not in isolation. This disadvantage is not specific to ALE plots,
but a general problem of strongly correlated features.

If the features are uncorrelated and computation time is not a problem, PDPs are
slightly preferable because they are easier to understand and can be plotted along
with ICE curves.

The list of disadvantages has become quite long, but do not be fooled by the number
of words I use: As a rule of thumb: Use ALE instead of PDP.

Implementation and Alternatives

Did I mention that partial dependence plots and individual conditional expectation
curves are an alternative? =)

To the best of my knowledge, ALE plots are currently only implemented in R, once
in the ALEPlot R package⁶⁷ by the inventor himself and once in the iml package⁶⁸.

⁶⁷https://cran.r-project.org/web/packages/ALEPlot/index.html
⁶⁸https://cran.r-project.org/web/packages/iml/index.html

https://cran.r-project.org/web/packages/ALEPlot/index.html
https://cran.r-project.org/web/packages/iml/index.html
https://cran.r-project.org/web/packages/ALEPlot/index.html
https://cran.r-project.org/web/packages/iml/index.html
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Feature Interaction

When features interact with each other in a prediction model, the prediction cannot
be expressed as the sum of the feature effects, because the effect of one feature
depends on the value of the other feature. Aristotle’s predicate “The whole is greater
than the sum of its parts” applies in the presence of interactions.

Feature Interaction?

If a machine learning model makes a prediction based on two features, we can
decompose the prediction into four terms: a constant term, a term for the first feature,
a term for the second feature and a term for the interaction between the two features.
The interaction between two features is the change in the prediction that occurs by
varying the features after considering the individual feature effects.

For example, a model predicts the value of a house, using house size (big or small)
and location (good or bad) as features, which yields four possible predictions:

Location Size Prediction
good big 300,000
good small 200,000
bad big 250,000
bad small 150,000

We decompose the model prediction into the following parts: A constant term
(150,000), an effect for the size feature (+100,000 if big; +0 if small) and an effect for
the location (+50,000 if good; +0 if bad). This decomposition fully explains the model
predictions. There is no interaction effect, because the model prediction is a sum of
the single feature effects for size and location. When you make a small house big, the
prediction always increases by 100,000, regardless of location. Also, the difference in
prediction between a good and a bad location is 50,000, regardless of size.

Let’s now look at an example with interaction:
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Location Size Prediction
good big 400,000
good small 200,000
bad big 250,000
bad small 150,000

We decompose the prediction table into the following parts: A constant term
(150,000), an effect for the size feature (+100,000 if big, +0 if small) and an effect
for the location (+50,000 if good, +0 if bad). For this table we need an additional
term for the interaction: +100,000 if the house is big and in a good location. This
is an interaction between size and location, because in this case the difference in
prediction between a big and a small house depends on the location.

Oneway to estimate the interaction strength is to measure howmuch of the variation
of the prediction depends on the interaction of the features. This measurement is
called H-statistic, introduced by Friedman and Popescu (2008)⁶⁹.

Theory: Friedman’s H-statistic

We are going to deal with two cases: First, a two-way interaction measure that
tells us whether and to what extend two features in the model interact with each
other; second, a total interaction measure that tells us whether and to what extend
a feature interacts in the model with all the other features. In theory, arbitrary
interactions between any number of features can be measured, but these two are
the most interesting cases.

If two features do not interact, we can decompose the partial dependence function
as follows (assuming the partial dependence functions are centered at zero):

PDjk(xj , xk) = PDj(xj) + PDk(xk)

where PDjk(xj , xk) is the 2-way partial dependence function of both features and
PDj(xj) and PDk(xk) the partial dependence functions of the single features.

Likewise, if a feature has no interaction with any of the other features, we can express
the prediction function f̂(x) as a sum of partial dependence functions, where the first

⁶⁹Friedman, Jerome H, and Bogdan E Popescu. “Predictive learning via rule ensembles.” The Annals of Applied
Statistics. JSTOR, 916â€“54. (2008).
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summand depends only on j and the second on all other features except j:

f̂(x) = PDj(xj) + PD−j(x−j)

where PD−j(x−j) is the partial dependence function that depends on all features
except the j-th feature.

This decomposition expresses the partial dependence (or full prediction) function
without interactions (between features j and k, or respectively j and all other
features). In a next step, we measure the difference between the observed partial
dependence function and the decomposed one without interactions. We calculate the
variance of the output of the partial dependence (to measure the interaction between
two features) or of the entire function (to measure the interaction between a feature
and all other features). The amount of the variance explained by the interaction
(difference between observed and no-interaction PD) is used as interaction strength
statistic. The statistic is 0 if there is no interaction at all and 1 if all of the variance
of the PDjk or f̂ is explained by the sum of the partial dependence functions. An
interaction statistic of 1 between two features means that each single PD function
is constant and the effect on the prediction only comes through the interaction. The
H-statistic can also be larger than 1, which is more difficult to interpret. This can
happen when the variance of the 2-way interaction is larger than the variance of the
2-dimensional partial dependence plot.

Mathematically, the H-statistic proposed by Friedman and Popescu for the interac-
tion between feature j and k is:

H2
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n∑
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[
PDjk(x

(i)
j , x
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k )− PDj(x

(i)
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(i)
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]2
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The same applies to measuring whether a feature j interacts with any other feature:

H2
j =

n∑
i=1

[
f̂(x(i))− PDj(x

(i)
j )− PD−j(x

(i)
−j)
]2

/

n∑
i=1

f̂2(x(i))

The H-statistic is expensive to evaluate, because it iterates over all data points and
at each point the partial dependence has to be evaluated which in turn is done with
all n data points. In the worst case, we need 2n² calls to the machine learning models
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predict function to compute the two-way H-statistic (j vs. k) and 3n² for the total
H-statistic (j vs. all). To speed up the computation, we can sample from the n data
points. This has the disadvantage of increasing the variance of the partial dependence
estimates, which makes the H-statistic unstable. So if you are using sampling to
reduce the computational burden, make sure to sample enough data points.

Friedman and Popescu also propose a test statistic to evaluate whether the H-statistic
differs significantly from zero. The null hypothesis is the absence of interaction. To
generate the interaction statistic under the null hypothesis, youmust be able to adjust
the model so that it has no interaction between feature j and k or all others. This is
not possible for all types of models. Therefore this test is model-specific, not model-
agnostic, and as such not covered here.

The interaction strength statistic can also be applied in a classification setting if the
prediction is a probability.

Examples

Let us see what feature interactions look like in practice! We measure the interaction
strength of features in a support vector machine that predicts the number of rented
bikes based onweather and calendrical features. The following plot shows the feature
interaction H-statistic:



Model-Agnostic Methods 185

The interaction strength (H-statistic) for each feature with all other features for a support vector
machine predicting bicycle rentals. Overall, the interaction effects between the features are very
weak (below 10% of variance explained per feature).

In the next example, we calculate the interaction statistic for a classification problem.
We analyze the interactions between features in a random forest trained to predict
cervical cancer, given some risk factors.
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The interaction strength (H-statistic) for each feature with all other features for a random forest
predicting the probability of cervical cancer. The years on hormonal contraceptives has the highest
relative interaction effect with all other features, followed by the number of pregnancies.

After looking at the feature interactions of each feature with all other features, we
can select one of the features and dive deeper into all the 2-way interactions between
the selected feature and the other features.
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The 2-way interaction strengths (H-statistic) between number of pregnancies and each other
feature. There is a strong interaction between the number of pregnancies and the age.

Advantages

The interaction H-statistic has an underlying theory through the partial dependence
decomposition.

The H-statistic has a meaningful interpretation: The interaction is defined as the
share of variance that is explained by the interaction.

Since the statistic is dimensionless, it is comparable across features and even across
models.

The statistic detects all kinds of interactions, regardless of their particular form.

With the H-statistic it is also possible to analyze arbitrary higher interactions such
as the interaction strength between 3 or more features.
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Disadvantages

The first thing you will notice: The interaction H-statistic takes a long time to
compute, because it is computationally expensive.

The computation involves estimating marginal distributions. These estimates also
have a certain variance if we do not use all data points. This means that as we
sample points, the estimates also vary from run to run and the results can be
unstable. I recommend repeating the H-statistic computation a few times to see if
you have enough data to get a stable result.

It is unclear whether an interaction is significantly greater than 0. We would need
to conduct a statistical test, but this test is not (yet) available in a model-agnostic
version.

Concerning the test problem, it is difficult to say when the H-statistic is large enough
for us to consider an interaction “strong”.

Also, the H-statistics can be larger than 1, which makes the interpretation difficult.

The H-statistic tells us the strength of interactions, but it does not tell us how the
interactions look like. That is what partial dependence plots are for. A meaningful
workflow is to measure the interaction strengths and then create 2D-partial depen-
dence plots for the interactions you are interested in.

The H-statistic cannot be used meaningfully if the inputs are pixels. So the technique
is not useful for image classifier.

The interaction statistic works under the assumption that we can shuffle features
independently. If the features correlate strongly, the assumption is violated and we
integrate over feature combinations that are very unlikely in reality. That is the
same problem that partial dependence plots have. You cannot say in general if it leads
to overestimation or underestimation.

Sometimes the results are strange and for small simulations do not yield the
expected results. But this is more of an anecdotal observation.
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Implementations

For the examples in this book, I used the R package iml, which is available on CRAN⁷⁰
and the development version on Github⁷¹. There are other implementations, which
focus on specific models: The R package pre⁷² implements RuleFit and H-statistic.
The R package gbm⁷³ implements gradient boosted models and H-statistic.

Alternatives

The H-statistic is not the only way to measure interactions:

Variable Interaction Networks (VIN) by Hooker (2004)⁷⁴ is an approach that de-
composes the prediction function into main effects and feature interactions. The
interactions between features are then visualized as a network. Unfortunately no
software is available yet.

Partial dependence based feature interaction by Greenwell et. al (2018)⁷⁵ measures
the interaction between two features. This approachmeasures the feature importance
(defined as the variance of the partial dependence function) of one feature conditional
on different, fixed points of the other feature. If the variance is high, then the features
interact with each other, if it is zero, they do not interact. The corresponding R
package vip is available on Github⁷⁶. The package also covers partial dependence
plots and feature importance.

⁷⁰https://cran.r-project.org/web/packages/iml
⁷¹https://github.com/christophM/iml
⁷²https://cran.r-project.org/web/packages/pre/index.html
⁷³https://github.com/gbm-developers/gbm3
⁷⁴Hooker, Giles. “Discovering additive structure in black box functions.” Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining. (2004).
⁷⁵Greenwell, Brandon M., Bradley C. Boehmke, and Andrew J. McCarthy. “A simple and effective model-based

variable importance measure.” arXiv preprint arXiv:1805.04755 (2018).
⁷⁶https://github.com/koalaverse/vip
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Feature Importance

The importance of a feature is the increase in the prediction error of the model after
we permuted the feature’s values, which breaks the relationship between the feature
and the true outcome.

Theory

The concept is really straightforward: We measure the importance of a feature by
calculating the increase in the model’s prediction error after permuting the feature. A
feature is “important” if shuffling its values increases the model error, because in this
case the model relied on the feature for the prediction. A feature is “unimportant”
if shuffling its values leaves the model error unchanged, because in this case the
model ignored the feature for the prediction. The permutation feature importance
measurement was introduced by Breiman (2001)⁷⁷ for random forests. Based on this
idea, Fisher, Rudin, and Dominici (2018)⁷⁸ proposed a model-agnostic version of the
feature importance and called it model reliance. They also introducedmore advanced
ideas about feature importance, for example a (model-specific) version that takes into
account that many prediction models may predict the data well. Their paper is worth
reading.

The permutation feature importance algorithm based on Fisher, Rudin, and
Dominici (2018):

Input: Trained model f, feature matrix X, target vector y, error measure L(y,f).

1. Estimate the original model error eʳⁱ = L(y, f(X)) (e.g. mean squared error)
2. For each feature j = 1,…,p do:

• Generate feature matrix Xʳ by permuting feature j in the data X. This
breaks the association between feature j and true outcome y.

• Estimate error eʳ = L(Y,f(Xʳ)) based on the predictions of the permuted
data.

⁷⁷Breiman, Leo.“Random Forests.” Machine Learning 45 (1). Springer: 5-32 (2001).
⁷⁸Fisher, Aaron, Cynthia Rudin, and Francesca Dominici. “Model Class Reliance: Variable importance measures for

any machine learning model class, from the ‘Rashomon’ perspective.” http://arxiv.org/abs/1801.01489 (2018).
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• Calculate permutation feature importance FIʲ= eʳ/eʳⁱ. Alternatively, the
difference can be used: FIʲ = eʳ - eʳⁱ

3. Sort features by descending FI.

Fisher, Rudin, and Dominici (2018) suggest in their paper to split the dataset in half
and swap the values of feature j of the two halves instead of permuting feature j. This
is exactly the same as permuting feature j, if you think about it. If you want a more
accurate estimate, you can estimate the error of permuting feature j by pairing each
instance with the value of feature j of each other instance (except with itself). This
gives you a dataset of size n(n-1) to estimate the permutation error, and it takes a
large amount of computation time. I can only recommend using the n(n-1) -method
if you are serious about getting extremely accurate estimates.

Should I Compute Importance on Training or Test Data?

tl;dr: I do not have a definite answer.

Answering the question about training or test data touches the fundamental question
of what feature importance is. The best way to understand the difference between
feature importance based on training vs. based on test data is an “extreme” example.
I trained a support vector machine to predict a continuous, random target outcome
given 50 random features (200 instances). By “random” I mean that the target
outcome is independent of the 50 features. This is like predicting tomorrow’s
temperature given the latest lottery numbers. If the model “learns” any relationships,
then it overfits. And in fact, the SVM did overfit on the training data. The mean
absolute error (short: mae) for the training data is 0.29 and for the test data 0.82,
which is also the error of the best possible model that always predicts the mean
outcome of 0 (mae of 0.78). In other words, the SVM model is garbage. What values
for the feature importance would you expect for the 50 features of this overfitted
SVM? Zero because none of the features contribute to improved performance on
unseen test data? Or should the importances reflect how much the model depends
on each of the features, regardless whether the learned relationships generalize to
unseen data? Let us take a look at how the distributions of feature importances for
training and test data differ.
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Distributions of feature importance values by data type. An SVMwas trained on a regression dataset
with 50 random features and 200 instances. The SVM overfits the data: Feature importance based
on the training data shows many important features. Computed on unseen test data, the feature
importances are close to a ratio of one (=unimportant).

It is unclear to me which of the two results is more desirable. So I will try to make a
case for both versions and let you decide for yourself.

The case for test data

This is a simple case: Model error estimates based on training data are garbage ->
feature importance relies on model error estimates -> feature importance based on
training data is garbage.
Really, it is one of the first things you learn in machine learning: If you measure the
model error (or performance) on the same data on which the model was trained, the
measurement is usually too optimistic, which means that the model seems to work
much better than it does in reality. And since the permutation feature importance
relies on measurements of the model error, we should use unseen test data. The
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feature importance based on training data makes us mistakenly believe that features
are important for the predictions, when in reality the model was just overfitting and
the features were not important at all.

The case for training data

The arguments for using training data are somewhat more difficult to formulate, but
are IMHO just as compelling as the arguments for using test data. We take another
look at our garbage SVM. Based on the training data, the most important feature was
X42. Let us look at a partial dependence plot of feature X42. The partial dependence
plot shows how the model output changes based on changes of the feature and does
not rely on the generalization error. It does not matter whether the PDP is computed
with training or test data.

PDP of feature X42, which is the most important feature according to the feature importance based
on the training data. The plot shows how the SVM depends on this feature to make predictions

The plot clearly shows that the SVM has learned to rely on feature X42 for its
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predictions, but according to the feature importance based on the test data (0.99),
it is not important. Based on the training data, the importance is 1.17, reflecting that
the model has learned to use this feature. Feature importance based on the training
data tells us which features are important for the model in the sense that it depends
on them for making predictions.

As part of the case for using training data, I would like to introduce an argument
against test data. In practice, you want to use all your data to train your model to get
the best possible model in the end. This means no unused test data is left to compute
the feature importance. You have the same problem when you want to estimate the
generalization error of your model. If you would use (nested) cross-validation for
the feature importance estimation, you would have the problem that the feature
importance is not calculated on the final model with all the data, but on models
with subsets of the data that might behave differently.

In the end, you need to decide whether you want to know how much the model
relies on each feature for making predictions (-> training data) or how much the
feature contributes to the performance of the model on unseen data (-> test data). To
the best of my knowledge, there is no research addressing the question of training
vs. test data. It will require more thorough examination than my “garbage-SVM”
example. We need more research and more experience with these tools to gain a
better understanding.

Next, we will look at some examples. I based the importance computation on the
training data, because I had to choose one and using the training data needed a few
lines less code.

Example and Interpretation

I show examples for classification and regression.

Cervical cancer (classification)

We fit a random forest model to predict cervical cancer. We measure the error
increase by 1-AUC (1 minus the area under the ROC curve). Features associated
with a model error increase by a factor of 1 (= no change) were not important for
predicting cervical cancer.
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The importance of each of the features for predicting cervical cancer with a random
forest. The most important feature was Hormonal.Contraceptives..years.. Permuting Hor-
monal.Contraceptives..years. resulted in an increase in 1-AUC by a factor of 5.12

The feature with the highest importance was Hormonal.Contraceptives..years. asso-
ciated with an error increase of 5.12 after permutation.

Bike sharing (regression)

We fit a support vector machine model to predict the number of rented bikes, given
weather conditions and calendar information. As error measurement we use the
mean absolute error.
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The importance for each of the features in predicting bike counts with a support vector machine.
The most important feature was temp, the least important was holiday.

Advantages

Nice interpretation: Feature importance is the increase in model error when the
feature’s information is destroyed.

Feature importance provides a highly compressed, global insight into the model’s
behavior.

A positive aspect of using the error ratio instead of the error difference is that the
feature importance measurements are comparable across different problems.

The importance measure automatically takes into account all interactions with
other features. By permuting the feature you also destroy the interaction effects with
other features. This means that the permutation feature importance takes into ac-
count both the main feature effect and the interaction effects on model performance.
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This is also a disadvantage because the importance of the interaction between two
features is included in the importance measurements of both features. This means
that the feature importances do not add up to the total drop in performance, but
the sum is larger. Only if there is no interaction between the features, as in a linear
model, the importances add up approximately.

Permutation feature importance does not require retraining themodel. Some other
methods suggest deleting a feature, retraining the model and then comparing the
model error. Since the retraining of a machine learning model can take a long time,
“only” permuting a feature can save a lot of time. Importance methods that retrain
the model with a subset of features appear intuitive at first glance, but the model
with the reduced data is meaningless for the feature importance. We are interested
in the feature importance of a fixed model. Retraining with a reduced dataset creates
a different model than the one we are interested in. Suppose you train a sparse linear
model (with Lasso) with a fixed number of features with a non-zero weight. The
dataset has 100 features, you set the number of non-zero weights to 5. You analyze
the importance of one of the features that have a non-zero weight. You remove the
feature and retrain the model. The model performance remains the same because
another equally good feature gets a non-zero weight and your conclusion would be
that the feature was not important. Another example: The model is a decision tree
and we analyze the importance of the feature that was chosen as the first split. You
remove the feature and retrain the model. Since another feature is chosen as the first
split, the whole tree can be very different, which means that we compare the error
rates of (potentially) completely different trees to decide how important that feature
is for one of the trees.

Disadvantages

It is very unclear whether you should use training or test data to compute the
feature importance.

Permutation feature importance is linked to the error of the model. This is not
inherently bad, but in some cases not what you need. In some cases, you might
prefer to know howmuch themodel’s output varies for a feature without considering
what it means for performance. For example, you want to find out how robust your
model’s output is when someone manipulates the features. In this case, you would
not be interested in how much the model performance decreases when a feature is
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permuted, but howmuch of the model’s output variance is explained by each feature.
Model variance (explained by the features) and feature importance correlate strongly
when the model generalizes well (i.e. it does not overfit).

You need access to the true outcome. If someone only provides you with the model
and unlabeled data – but not the true outcome – you cannot compute the permutation
feature importance.

The permutation feature importance depends on shuffling the feature, which adds
randomness to the measurement. When the permutation is repeated, the results
might vary greatly. Repeating the permutation and averaging the importance mea-
sures over repetitions stabilizes the measure, but increases the time of computation.

If features are correlated, the permutation feature importance can be biased by
unrealistic data instances. The problem is the same as with partial dependence
plots: The permutation of features produces unlikely data instances when two or
more features are correlated. When they are positively correlated (like height and
weight of a person) and I shuffle one of the features, I create new instances that are
unlikely or even physically impossible (2 meter person weighing 30 kg for example),
yet I use these new instances to measure the importance. In other words, for the
permutation feature importance of a correlated feature, we consider how much the
model performance decreases when we exchange the feature with values we would
never observe in reality. Check if the features are strongly correlated and be careful
about the interpretation of the feature importance if they are.

Another tricky thing: Adding a correlated feature can decrease the importance
of the associated feature by splitting the importance between both features. Let me
give you an example of what I mean by “splitting” feature importance: We want to
predict the probability of rain and use the temperature at 8:00 AM of the day before
as a feature along with other uncorrelated features. I train a random forest and it
turns out that the temperature is the most important feature and all is well and I
sleep well the next night. Now imagine another scenario in which I additionally
include the temperature at 9:00 AM as a feature that is strongly correlated with
the temperature at 8:00 AM. The temperature at 9:00 AM does not give me much
additional information if I already know the temperature at 8:00 AM. But having
more features is always good, right? I train a random forest with the two temperature
features and the uncorrelated features. Some of the trees in the random forest pick
up the 8:00 AM temperature, others the 9:00 AM temperature, again others both and
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again others none. The two temperature features together have a bit more importance
than the single temperature feature before, but instead of being at the top of the
list of important features, each temperature is now somewhere in the middle. By
introducing a correlated feature, I kicked the most important feature from the top
of the importance ladder to mediocrity. On one hand this is fine, because it simply
reflects the behavior of the underlying machine learning model, here the random
forest. The 8:00 AM temperature has simply become less important because themodel
can now rely on the 9:00 AM measurement as well. On the other hand, it makes
the interpretation of the feature importance considerably more difficult. Imagine
you want to check the features for measurement errors. The check is expensive and
you decide to check only the top 3 of the most important features. In the first case
you would check the temperature, in the second case you would not include any
temperature feature just because they now share the importance. Even though the
importance values might make sense at the level of model behavior, it is confusing
if you have correlated features.

Software and Alternatives

The iml R package was used for the examples. The DALEX R package and the Python
Skater module also implement model-agnostic permutation feature importance.

An algorithm called PIMP⁷⁹ adapts the feature importance algorithm to provide p-
values for the importances.

⁷⁹https://academic.oup.com/bioinformatics/article/26/10/1340/193348
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Global Surrogate

A global surrogate model is an interpretable model that is trained to approximate
the predictions of a black box model. We can draw conclusions about the black box
model by interpreting the surrogate model. Solving machine learning interpretability
by using more machine learning!

Theory

Surrogate models are also used in engineering: If an outcome of interest is expensive,
time-consuming or otherwise difficult to measure (e.g. because it comes from a
complex computer simulation), a cheap and fast surrogate model of the outcome can
be used instead. The difference between the surrogate models used in engineering
and in interpretable machine learning is that the underlying model is a machine
learningmodel (not a simulation) and that the surrogate model must be interpretable.
The purpose of (interpretable) surrogate models is to approximate the predictions
of the underlying model as accurately as possible and to be interpretable at the
same time. The idea of surrogate models can be found under different names:
Approximation model, metamodel, response surface model, emulator, …

About the theory: There is actually not much theory needed to understand surrogate
models. We want to approximate our black box prediction function f as closely as
possible with the surrogate model prediction function g, under the constraint that g
is interpretable. For the function g any interpretable model – for example from the
interpretable models chapter – can be used.

For example a linear model:

g(x) = β0 + β1x1 + . . .+ βpxp

Or a decision tree:

g(x) =

M∑
m=1

cmI{x ∈ Rm}
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Training a surrogate model is a model-agnostic method, since it does not require any
information about the inner workings of the black box model, only access to data
and the prediction function is necessary. If the underlying machine learning model
was replaced with another, you could still use the surrogate method. The choice of
the black box model type and of the surrogate model type is decoupled.

Perform the following steps to obtain a surrogate model:

1. Select a dataset X. This can be the same dataset that was used for training the
black box model or a new dataset from the same distribution. You could even
select a subset of the data or a grid of points, depending on your application.

2. For the selected dataset X, get the predictions of the black box model.
3. Select an interpretable model type (linear model, decision tree, …).
4. Train the interpretable model on the dataset X and its predictions.
5. Congratulations! You now have a surrogate model.
6. Measure how well the surrogate model replicates the predictions of the black

box model.
7. Interpret the surrogate model.

You may find approaches for surrogate models that have some extra steps or differ
a little, but the general idea is usually as described here.

One way to measure how well the surrogate replicates the black box model is the
R-squared measure:

R2 = 1− SSE

SST
= 1−

∑n
i=1(ŷ

(i)
∗ − ŷ(i))2∑n

i=1(ŷ
(i) − ¯̂y)2

where ŷ
(i)
∗ is the prediction for the i-th instance of the surrogate model, ŷ(i) the

prediction of the black box model and ¯̂y the mean of the black box model predictions.
SSE stands for sum of squares error and SST for sum of squares total. The R-squared
measure can be interpreted as the percentage of variance that is captured by the
surrogate model. If R-squared is close to 1 (= low SSE), then the interpretable model
approximates the behavior of the black box model very well. If the interpretable
model is very close, you might want to replace the complex model with the
interpretable model. If the R-squared is close to 0 (= high SSE), then the interpretable
model fails to explain the black box model.
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Note that we have not talked about the model performance of the underlying black
box model, i.e. how good or bad it performs in predicting the actual outcome.
The performance of the black box model does not play a role in training the
surrogate model. The interpretation of the surrogate model is still valid because it
makes statements about the model and not about the real world. But of course the
interpretation of the surrogate model becomes irrelevant if the black box model is
bad, because then the black box model itself is irrelevant.

We could also build a surrogate model based on a subset of the original data or
reweight the instances. In this way, we change the distribution of the surrogate
model’s input, which changes the focus of the interpretation (then it is no longer
really global). If we weight the data locally by a specific instance of the data (the
closer the instances to the selected instance, the higher their weight), we get a local
surrogate model that can explain the individual prediction of the instance. Readmore
about local models in the following chapter.

Example

To demonstrate the surrogate models, we consider a regression and a classification
example.

First, we train a support vector machine to predict the daily number of rented bikes
given weather and calendar information. The support vector machine is not very
interpretable, so we train a surrogate with a CART decision tree as interpretable
model to approximate the behavior of the support vector machine.
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The terminal nodes of a surrogate tree that approximates the predictions of a support vector
machine trained on the bike rental dataset. The distributions in the nodes show that the surrogate
tree predicts a higher number of rented bikes when temperature is above 13 degrees Celsius and
when the day was later in the 2 year period (cut point at 435 days).

The surrogate model has a R-squared (variance explained) of 0.77 which means it
approximates the underlying black box behavior quite well, but not perfectly. If the
fit were perfect, we could throw away the support vector machine and use the tree
instead.

In our second example, we predict the probability of cervical cancer with a random
forest. Againwe train a decision treewith the original dataset, but with the prediction
of the random forest as outcome, instead of the real classes (healthy vs. cancer) from
the data.
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The terminal nodes of a surrogate tree that approximates the predictions of a random forest trained
on the cervical cancer dataset. The counts in the nodes show the frequency of the black box models
classifications in the nodes.

The surrogate model has an R-squared (variance explained) of 0.19, which means it
does not approximate the random forest well and we should not overinterpret the
tree when drawing conclusions about the complex model.

Advantages

The surrogate model method is flexible: Any model from the interpretable models
chapter can be used. This alsomeans that you can exchange not only the interpretable
model, but also the underlying black box model. Suppose you create some complex
model and explain it to different teams in your company. One team is familiar
with linear models, the other team can understand decision trees. You can train two
surrogate models (linear model and decision tree) for the original black box model
and offer two kinds of explanations. If you find a better performing black box model,
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you do not have to change your method of interpretation, because you can use the
same class of surrogate models.

I would argue that the approach is very intuitive and straightforward. This means it
is easy to implement, but also easy to explain to people not familiar with data science
or machine learning.

With theR-squaredmeasure, we can easilymeasure how good our surrogatemodels
are in approximating the black box predictions.

Disadvantages

You have to be aware that you draw conclusions about the model and not about
the data, since the surrogate model never sees the real outcome.

It is not clear what the best cut-off for R-squared is in order to be confident that the
surrogate model is close enough to the black box model. 80% of variance explained?
50%? 99%?

We can measure how close the surrogate model is to the black box model. Let us
assumewe are not very close, but close enough. It could happen that the interpretable
model is very close for one subset of the dataset, butwidely divergent for another
subset. In this case the interpretation for the simple model would not be equally good
for all data points.

The interpretable model you choose as a surrogate comes with all its advantages
and disadvantages.

Some people argue that there are, in general, no intrinsically interpretable models
(including even linearmodels and decision trees) and that it would even be dangerous
to have an illusion of interpretability. If you share this opinion, then of course this
method is not for you.

Software

I used the iml R package for the examples. If you can train a machine learning model,
then you should be able to implement surrogate models yourself. Simply train an
interpretable model to predict the predictions of the black box model.
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Local Surrogate (LIME)

Local surrogate models are interpretable models that are used to explain individ-
ual predictions of black box machine learning models. Local interpretable model-
agnostic explanations (LIME)⁸⁰ is a paper in which the authors propose a concrete
implementation of local surrogate models. Surrogate models are trained to approx-
imate the predictions of the underlying black box model. Instead of training a
global surrogate model, LIME focuses on training local surrogate models to explain
individual predictions.

The idea is quite intuitive. First, forget about the training data and imagine you only
have the black box model where you can input data points and get the predictions of
the model. You can probe the box as often as you want. Your goal is to understand
why themachine learningmodel made a certain prediction. LIME tests what happens
to the predictions when you give variations of your data into the machine learning
model. LIME generates a new dataset consisting of permuted samples and the
corresponding predictions of the black box model. On this new dataset LIME then
trains an interpretable model, which is weighted by the proximity of the sampled
instances to the instance of interest. The interpretable model can be anything from
the interpretable models chapter, for example Lasso or a decision tree. The learned
model should be a good approximation of the machine learning model predictions
locally, but it does not have to be a good global approximation. This kind of accuracy
is also called local fidelity.

Mathematically, local surrogate models with interpretability constraint can be ex-
pressed as follows:

explanation(x) = argmin
g∈G

L(f, g, πx) + Ω(g)

The explanation model for instance x is the model g (e.g. linear regression model)
that minimizes loss L (e.g. mean squared error), which measures how close the
explanation is to the prediction of the original model f (e.g. an xgboost model),
while the model complexity Ω(g) is kept low (e.g. prefer fewer features). G is the

⁸⁰Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “Why should I trust you?: Explaining the predictions
of any classifier.” Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining. ACM (2016).
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family of possible explanations, for example all possible linear regression models.
The proximity measure πx defines how large the neighborhood around instance x is
that we consider for the explanation. In practice, LIME only optimizes the loss part.
The user has to determine the complexity, e.g. by selecting the maximum number of
features that the linear regression model may use.

The recipe for training local surrogate models:

• Select your instance of interest for which you want to have an explanation of
its black box prediction.

• Perturb your dataset and get the black box predictions for these new points.
• Weight the new samples according to their proximity to the instance of interest.
• Train a weighted, interpretable model on the dataset with the variations.
• Explain the prediction by interpreting the local model.

In the current implementations in R⁸¹ and Python⁸², for example, linear regression
can be chosen as interpretable surrogate model. In advance, you have to select K,
the number of features you want to have in your interpretable model. The lower
K, the easier it is to interpret the model. A higher K potentially produces models
with higher fidelity. There are several methods for training models with exactly K
features. A good choice is Lasso. A Lasso model with a high regularization parameter
λ yields a model without any feature. By retraining the Lasso models with slowly
decreasing λ, one after the other, the features get weight estimates that differ from
zero. If there are K features in the model, you have reached the desired number of
features. Other strategies are forward or backward selection of features. This means
you either start with the full model (= containing all features) or with a model with
only the intercept and then test which feature would bring the biggest improvement
when added or removed, until a model with K features is reached.

How do you get the variations of the data? This depends on the type of data, which
can be either text, image or tabular data. For text and images, the solution is to turn
single words or super-pixels on or off. In the case of tabular data, LIME creates new
samples by perturbing each feature individually, drawing from a normal distribution
with mean and standard deviation taken from the feature.

⁸¹https://github.com/thomasp85/lime
⁸²https://github.com/marcotcr/lime
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LIME for Tabular Data

Tabular data is data that comes in tables, with each row representing an instance and
each column a feature. LIME samples are not taken around the instance of interest,
but from the training data’s mass center, which is problematic. But it increases the
probability that the result for some of the sample points predictions differ from the
data point of interest and that LIME can learn at least some explanation.

It is best to visually explain how sampling and local model training works:
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LIME algorithm for tabular data. A) Random forest predictions given features x1 and x2. Predicted
classes: 1 (dark) or 0 (light). B) Instance of interest (big dot) and data sampled from a normal
distribution (small dots). C) Assign higher weight to points near the instance of interest. D) Signs
of the grid show the classifications of the locally learned model from the weighted samples. The
white line marks the decision boundary (P(class=1) = 0.5).

As always, the devil is in the detail. Defining a meaningful neighborhood around
a point is difficult. LIME currently uses an exponential smoothing kernel to define
the neighborhood. A smoothing kernel is a function that takes two data instances
and returns a proximity measure. The kernel width determines how large the
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neighborhood is: A small kernel width means that an instance must be very close to
influence the local model, a larger kernel width means that instances that are farther
away also influence the model. If you look at LIME’s Python implementation (file
lime/lime_tabular.py)⁸³ you will see that it uses an exponential smoothing kernel (on
the normalized data) and the kernel width is 0.75 times the square root of the number
of columns of the training data. It looks like an innocent line of code, but it is like
an elephant sitting in your living room next to the good porcelain you got from your
grandparents. The big problem is that we do not have a good way to find the best
kernel or width. And where does the 0.75 even come from? In certain scenarios, you
can easily turn your explanation around by changing the kernel width, as shown in
the following figure:

⁸³https://github.com/marcotcr/lime/tree/ce2db6f20f47c3330beb107bb17fd25840ca4606

https://github.com/marcotcr/lime/tree/ce2db6f20f47c3330beb107bb17fd25840ca4606
https://github.com/marcotcr/lime/tree/ce2db6f20f47c3330beb107bb17fd25840ca4606
https://github.com/marcotcr/lime/tree/ce2db6f20f47c3330beb107bb17fd25840ca4606
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Explanation of the prediction of instance x = 1.6. The predictions of the black box model depending
on a single feature is shown as a thick line and the distribution of the data is shownwith rugs. Three
local surrogate models with different kernel widths are computed. The resulting linear regression
model depends on the kernel width: Does the feature have a negative, positive or no effect for x =
1.6?

The example shows only one feature. It gets worse in high-dimensional feature
spaces. It is also very unclear whether the distance measure should treat all features
equally. Is a distance unit for feature x1 identical to one unit for feature x2? Distance
measures are quite arbitrary and distances in different dimensions (aka features)
might not be comparable at all.

Example

Let us look at a concrete example. We go back to the bike rental data and turn the
prediction problem into a classification: After taking into account the trend that the
bicycle rental has become more popular over time, we want to know on a certain day
whether the number of bicycles rented will be above or below the trend line. You can

www.dbooks.org

https://www.dbooks.org/


Model-Agnostic Methods 212

also interpret “above” as being above the average number of bicycles, but adjusted
for the trend.

First we train a random forest with 100 trees on the classification task. On what day
will the number of rental bikes be above the trend-free average, based on weather
and calendar information?

The explanations are created with 2 features. The results of the sparse local linear
models trained for two instances with different predicted classes:

LIME explanations for two instances of the bike rental dataset. Warmer temperature and good
weather situation have a positive effect on the prediction. The x-axis shows the feature effect: The
weight times the actual feature value.

From the figure it becomes clear that it is easier to interpret categorical features than
numerical features. One solution is to categorize the numerical features into bins.
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LIME for Text

LIME for text differs from LIME for tabular data. Variations of the data are generated
differently: Starting from the original text, new texts are created by randomly
removing words from the original text. The dataset is represented with binary
features for each word. A feature is 1 if the corresponding word is included and
0 if it has been removed.

Example

In this example we classify YouTube comments as spam or normal.

The black box model is a deep decision tree trained on the document word matrix.
Each comment is one document (= one row) and each column is the number of
occurrences of a given word. Short decision trees are easy to understand, but in this
case the tree is very deep. Also in place of this tree there could have been a recurrent
neural network or a support vector machine trained on word embeddings (abstract
vectors). Let us look at the two comments of this dataset and the corresponding
classes (1 for spam, 0 for normal comment):

CONTENT CLASS
267 PSY is a good guy 0
173 For Christmas Song visit my channel! ;) 1

The next step is to create some variations of the datasets used in a local model. For
example, some variations of one of the comments:

For ChristmasSong visit my channel! ;) prob weight
2 1 0 1 1 0 0 1 0.17 0.57
3 0 1 1 1 1 0 1 0.17 0.71
4 1 0 0 1 1 1 1 0.99 0.71
5 1 0 1 1 1 1 1 0.99 0.86
6 0 1 1 1 0 0 1 0.17 0.57

Each column corresponds to one word in the sentence. Each row is a variation, 1
means that the word is part of this variation and 0 means that the word has been
removed. The corresponding sentence for one of the variations is “Christmas Song

visit my ;)”. The “prob” column shows the predicted probability of spam for each of
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the sentence variations. The “weight” column shows the proximity of the variation
to the original sentence, calculated as 1 minus the proportion of words that were
removed, for example if 1 out of 7 words was removed, the proximity is 1 - 1/7 =
0.86.

Here are the two sentences (one spam, one no spam) with their estimated local
weights found by the LIME algorithm:

case label_prob feature feature_weight
1 0.1701170 is 0.000000
1 0.1701170 PSY 0.000000
1 0.1701170 guy 0.000000
2 0.9939024 channel! 6.180747
2 0.9939024 For 0.000000
2 0.9939024 ;) 0.000000

The word “channel” indicates a high probability of spam. For the non-spam comment
no non-zero weight was estimated, because no matter which word is removed, the
predicted class remains the same.

LIME for Images

This section was written by Verena Haunschmid.

LIME for images works differently than LIME for tabular data and text. Intuitively, it
would not make much sense to perturb individual pixels, since many more than one
pixel contribute to one class. Randomly changing individual pixels would probably
not change the predictions by much. Therefore, variations of the images are created
by segmenting the image into “superpixels” and turning superpixels off or on.
Superpixels are interconnected pixels with similar colors and can be turned off by
replacing each pixel with a user-defined color such as gray. The user can also specify
a probability for turning off a superpixel in each permutation.

Example

Since the computation of image explanations is rather slow, the lime R package⁸⁴
contains a precomputed example which we will also use to show the output of the

⁸⁴https://github.com/thomasp85/lime
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method. The explanations can be displayed directly on the image samples. Since we
can have several predicted labels per image (sorted by probability), we can explain
the top n_labels. For the following image the top 3 predictions were electric guitar;
acoustic guitar; and Labrador.

LIME explanations for the top 3 classes for image classification made by Google’s Inception neural
network. The example is taken from the LIME paper (Ribeiro et. al., 2016).

The prediction and explanation in the first case are very reasonable. The first
prediction of electric guitar is of course wrong, but the explanation shows us that the
neural network still behaved reasonably because the image part identified suggests
that this could be an electric guitar.

Advantages

Even if you replace the underlying machine learning model, you can still use the
same local, interpretable model for explanation. Suppose the people looking at the
explanations understand decision trees best. Because you use local surrogate models,
you use decision trees as explanations without actually having to use a decision tree
to make the predictions. For example, you can use a SVM. And if it turns out that an
xgboost model works better, you can replace the SVM and still use as decision tree
to explain the predictions.

Local surrogate models benefit from the literature and experience of training and
interpreting interpretable models.

When using Lasso or short trees, the resulting explanations are short (= selective)
and possibly contrastive. Therefore, they make human-friendly explanations. This
is why I see LIMEmore in applications where the recipient of the explanation is a lay
person or someone with very little time. It is not sufficient for complete attributions,
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so I do not see LIME in compliance scenarios where you might be legally required to
fully explain a prediction. Also for debugging machine learning models, it is useful
to have all the reasons instead of a few.

LIME is one of the few methods that works for tabular data, text and images.

The fidelity measure (how well the interpretable model approximates the black
box predictions) gives us a good idea of how reliable the interpretable model is in
explaining the black box predictions in the neighborhood of the data instance of
interest.

LIME is implemented in Python (lime⁸⁵ and Skater⁸⁶) and R (lime package⁸⁷ and iml
package⁸⁸) and is very easy to use.

The explanations created with local surrogate models can use other features than
the original model. This can be a big advantage over other methods, especially if
the original features cannot bet interpreted. A text classifier can rely on abstract
word embeddings as features, but the explanation can be based on the presence or
absence of words in a sentence. A regression model can rely on a non-interpretable
transformation of some attributes, but the explanations can be created with the
original attributes.

Disadvantages

The correct definition of the neighborhood is a very big, unsolved problem when
using LIME with tabular data. In my opinion it is the biggest problem with LIME
and the reason why I would recommend to use LIME only with great care. For
each application you have to try different kernel settings and see for yourself if the
explanations make sense. Unfortunately, this is the best advice I can give to find good
kernel widths.

Sampling could be improved in the current implementation of LIME. Data points
are sampled from a Gaussian distribution, ignoring the correlation between features.
This can lead to unlikely data points which can then be used to learn local explanation
models.

⁸⁵https://github.com/marcotcr/lime
⁸⁶https://github.com/datascienceinc/Skater
⁸⁷https://cran.r-project.org/web/packages/lime/index.html
⁸⁸https://cran.r-project.org/web/packages/iml/index.html
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The complexity of the explanation model has to be defined in advance. This is just
a small complaint, because in the end the user always has to define the compromise
between fidelity and sparsity.

Another really big problem is the instability of the explanations. In an article ⁸⁹ the
authors showed that the explanations of two very close points varied greatly in a
simulated setting. Also, in my experience, if you repeat the sampling process, then
the explantions that come out can be different. Instability means that it is difficult to
trust the explanations, and you should be very critical.

Conclusion: Local surrogate models, with LIME as a concrete implementation, are
very promising. But the method is still in development phase and many problems
need to be solved before it can be safely applied.

⁸⁹Alvarez-Melis, David, and Tommi S. Jaakkola. “On the robustness of interpretability methods.” arXiv preprint
arXiv:1806.08049 (2018).
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Shapley Values

A prediction can be explained by assuming that each feature value of the instance is
a “player” in a game where the prediction is the payout. Shapley values – a method
from coalitional game theory – tells us how to fairly distribute the “payout” among
the features.

General Idea

Assume the following scenario:

You have trained a machine learning model to predict apartment prices. For a certain
apartment it predicts €300,000 and you need to explain this prediction. The apartment
has a size of 50 m², is located on the 2nd floor, has a park nearby and cats are banned:

The predicted price for a 50 m² 2nd floor apartment with a nearby park and cat ban is €300,000. Our
goal is to explain how each of these feature values contributed to the prediction.

The average prediction for all apartments is €310,000. How much has each feature
value contributed to the prediction compared to the average prediction?

The answer is simple for linear regression models. The effect of each feature is
the weight of the feature times the feature value. This only works because of the
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linearity of the model. For more complex models, we need a different solution. For
example, LIME suggests local models to estimate effects. Another solution comes
from cooperative game theory: The Shapley value, coined by Shapley (1953)⁹⁰, is
a method for assigning payouts to players depending on their contribution to the
total payout. Players cooperate in a coalition and receive a certain profit from this
cooperation.

Players? Game? Payout?What is the connection to machine learning predictions and
interpretability? The “game” is the prediction task for a single instance of the dataset.
The “gain” is the actual prediction for this instance minus the average prediction for
all instances. The “players” are the feature values of the instance that collaborate
to receive the gain (= predict a certain value). In our apartment example, the feature
values park-nearby, cat-banned, area-50 and floor-2ndworked together to achieve
the prediction of €300,000. Our goal is to explain the difference between the actual
prediction (€300,000) and the average prediction (€310,000): a difference of -€10,000.

The answer could be: The park-nearby contributed €30,000; size-50 contributed
€10,000; floor-2nd contributed €0; cat-banned contributed -€50,000. The contribu-
tions add up to -€10,000, the final prediction minus the average predicted apartment
price.

How do we calculate the Shapley value for one feature?

The Shapley value is the average marginal contribution of a feature value across all
possible coalitions. All clear now?

In the following figure we evaluate the contribution of the cat-banned feature value
when it is added to a coalition of park-nearby and size-50. We simulate that
only park-nearby, cat-banned and size-50 are in a coalition by randomly drawing
another apartment from the data and using its value for the floor feature. The
value floor-2nd was replaced by the randomly drawn floor-1st. Then we predict
the price of the apartment with this combination (€310,000). In a second step, we
remove cat-banned from the coalition by replacing it with a random value of the cat
allowed/banned feature from the randomly drawn apartment. In the example it was
cat-allowed, but it could have been cat-banned again. We predict the apartment
price for the coalition of park-nearby and size-50 (€320,000). The contribution of
cat-bannedwas €310,000 - €320,000 = -€10.000. This estimate depends on the values of
the randomly drawn apartment that served as a “donor” for the cat and floor feature

⁹⁰Shapley, Lloyd S. “A value for n-person games.” Contributions to the Theory of Games 2.28 (1953): 307-317.
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values. We will get better estimates if we repeat this sampling step and average the
contributions.

One sample repetition to estimate the contribution of cat-banned to the prediction when added to
the coalition of park-nearby and area-50.

We repeat this computation for all possible coalitions. The Shapley value is the
average of all the marginal contributions to all possible coalitions. The computation
time increases exponentially with the number of features. One solution to keep the
computation time manageable is to compute contributions for only a few samples of
the possible coalitions.

The following figure shows all coalitions of feature values that are needed to
determine the Shapley value for cat-banned. The first row shows the coalition
without any feature values. The second, third and fourth rows show different
coalitions with increasing coalition size, separated by “|”. All in all, the following
coalitions are possible:
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• No feature values

• park-nearby

• size-50

• floor-2nd

• park-nearby+size-50
• park-nearby+floor-2nd
• size-50+floor-2nd
• park-nearby+size-50+floor-2nd.

For each of these coalitions we compute the predicted apartment price with and
without the feature value cat-banned and take the difference to get the marginal
contribution. The Shapley value is the (weighted) average of marginal contributions.
We replace the feature values of features that are not in a coalition with random
feature values from the apartment dataset to get a prediction from the machine
learning model.
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All 8 coalitions needed for computing the exact Shapley value of the cat-banned feature value.

If we estimate the Shapley values for all feature values, we get the complete
distribution of the prediction (minus the average) among the feature values.

Examples and Interpretation

The interpretation of the Shapley value for feature value j is: The value of the j-th
feature contributed ϕj to the prediction of this particular instance compared to the
average prediction for the dataset.

The Shapley value works for both classification (if we are dealing with probabilities)
and regression.

We use the Shapley value to analyze the predictions of a random forest model
predicting cervical cancer:



Model-Agnostic Methods 223

Shapley values for a woman in the cervical cancer dataset. With a prediction of 0.47, this woman’s
cancer probability is 0.44 above the average prediction of 0.03. The number of diagnosed STDs
increased the probability the most. The sum of contributions yields the difference between actual
and average prediction (0.44).

For the bike rental dataset, we also train a random forest to predict the number of
rented bikes for a day, given weather and calendar information. The explanations
created for the random forest prediction of a particular day:

www.dbooks.org

https://www.dbooks.org/


Model-Agnostic Methods 224

Shapley values for day 285. With a predicted 2398 rental bikes, this day is -2108 below the average
prediction of 4507. The weather situation and humidity and had the largest negative contributions.
The temperature on this day had a positive contribution. The sum of Shapley values yields the
difference of actual and average prediction (-2108).

Be careful to interpret the Shapley value correctly: The Shapley value is the average
contribution of a feature value to the prediction in different coalitions. The Shapley
value is NOT the difference in prediction when we would remove the feature from
the model.

The Shapley Value in Detail

This section goes deeper into the definition and computation of the Shapley value
for the curious reader. Skip this section and go directly to “Advantages and Disad-
vantages” if you are not interested in the technical details.

We are interested in how each feature affects the prediction of a data point. In a
linear model it is easy to calculate the individual effects. Here is what a linear model
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prediction looks like for one data instance:

f̂(x) = β0 + β1x1 + . . .+ βpxp

where x is the instance for which we want to compute the contributions. Each xj is
a feature value, with j = 1,…,p. The βj is the weight corresponding to feature j.

The contribution ϕj of the j-th feature on the prediction f̂(x) is:

ϕj(f̂) = βjxj − E(βjXj) = βjxj − βjE(Xj)

where E(βjXj) is the mean effect estimate for feature j. The contribution is the
difference between the feature effect minus the average effect. Nice! Now we know
how much each feature contributed to the prediction. If we sum all the feature
contributions for one instance, the result is the following:

p∑
j=1

ϕj(f̂) =

p∑
j=1

(βjxj − E(βjXj))

=(β0 +

p∑
j=1

βjxj)− (β0 +

p∑
j=1

E(βjXj))

=f̂(x)− E(f̂(X))

This is the predicted value for the data point x minus the average predicted value.
Feature contributions can be negative.

Can we do the same for any type of model? It would be great to have this as a model-
agnostic tool. Since we usually do not have similar weights in other model types, we
need a different solution.

Help comes from unexpected places: cooperative game theory. The Shapley value is a
solution for computing feature contributions for single predictions for any machine
learning model.

The Shapley Value

The Shapley value is defined via a value function val of players in S.
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The Shapley value of a feature value is its contribution to the payout, weighted and
summed over all possible feature value combinations:

ϕj(val) =
∑

S⊆{x1,...,xp}\{xj}

|S|! (p− |S| − 1)!

p!
(val (S ∪ {xj})− val(S))

where S is a subset of the features used in the model, x is the vector of feature values
of the instance to be explained and p the number of features. valx(S) is the prediction
for feature values in set S that are marginalized over features that are not included
in set S:

valx(S) =

∫
f̂(x1, . . . , xp)dPx/∈S − EX(f̂(X))

You actually perform multiple integrations for each feature that is not contained S.
A concrete example: The machine learning model works with 4 features x1, x2, x3
and x4 and we evaluate the prediction for the coalition S consisting of feature values
x1 and x3:

valx(S) = valx({x1, x3}) =
∫
R

∫
R
f̂(x1, X2, x3, X4)dPX2X4

− EX(f̂(X))

This looks similar to the feature contributions in the linear model!

Do not get confused by the many uses of the word “value”: The feature value is the
numerical or categorical value of a feature and instance; the Shapley value is the
feature contribution to the prediction; the value function is the payout function for
coalitions of players (feature values).

The Shapley value is the only attribution method that satisfies the properties
Efficiency, Symmetry, Dummy and Additivity, which together can be considered
a definition of a fair payout.

Efficiency
The feature contributions must add up to the difference of prediction for x and the
average.

∑p

j=1
ϕj = f̂(x)− EX(f̂(X))
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Symmetry
The contributions of two feature values j and k should be the same if they contribute
equally to all possible coalitions. If

val(S ∪ {xj}) = val(S ∪ {xk})

for all

S ⊆ {x1, . . . , xp} \ {xj , xk}

then

ϕj = ϕk

Dummy
A feature j that does not change the predicted value – regardless of which coalition
of feature values it is added to – should have a Shapley value of 0. If

val(S ∪ {xj}) = val(S)

for all

S ⊆ {x1, . . . , xp}

then

ϕj = 0

Additivity
For a game with combined payouts val+val⁺ the respective Shapley values are as
follows:

ϕj + ϕ+
j
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Suppose you trained a random forest, which means that the prediction is an average
of many decision trees. The Additivity property guarantees that for a feature value,
you can calculate the Shapley value for each tree individually, average them, and get
the Shapley value for the feature value for the random forest.

Intuition

An intuitive way to understand the Shapley value is the following illustration:
The feature values enter a room in random order. All feature values in the room
participate in the game (= contribute to the prediction). The Shapley value of a feature
value is the average change in the prediction that the coalition already in the room
receives when the feature value joins them.

Estimating the Shapley Value

All possible coalitions (sets) of feature values have to be evaluated with and without
the j-th feature to calculate the exact Shapley value. For more than a few features,
the exact solution to this problem becomes problematic as the number of possible
coalitions exponentially increases as more features are added. Strumbelj et al. (2014)⁹¹
propose an approximation with Monte-Carlo sampling:

ϕ̂j =
1

M

M∑
m=1

(
f̂(xm

+j)− f̂(xm
−j)
)

where f̂(xm
+j) is the prediction for x, but with a random number of feature values

replaced by feature values from a random data point z, except for the respective
value of feature j. The x-vector xm

−j is almost identical to xm
+j , but the value xm

j is also
taken from the sampled z. Each of these M new instances is a kind of “Frankenstein
Monster” assembled from two instances.

Approximate Shapley estimation for single feature value:

• Output: Shapley value for the value of the j-th feature

⁹¹Štrumbelj, Erik, and Igor Kononenko. “Explaining prediction models and individual predictions with feature
contributions.” Knowledge and information systems 41.3 (2014): 647-665.
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• Required: Number of iterations M, instance of interest x, feature index j, data
matrix X, and machine learning model f
– For all m = 1,…,M:

* Draw random instance z from the data matrix X
* Choose a random permutation o of the feature values
* Order instance x: xo = (x(1), . . . , x(j), . . . , x(p))

* Order instance z: zo = (z(1), . . . , z(j), . . . , z(p))

* Construct two new instances
· With feature j: x+j = (x(1), . . . , x(j−1), x(j), z(j+1), . . . , z(p))

· Without feature j: x−j = (x(1), . . . , x(j−1), z(j), z(j+1), . . . , z(p))

* Compute marginal contribution: ϕm
j = f̂(x+j)− f̂(x−j)

• Compute Shapley value as the average: ϕj(x) =
1
M

∑M
m=1 ϕ

m
j

First, select an instance of interest x, a feature j and the number of iterations M. For
each iteration, a random instance z is selected from the data and a random order of
the features is generated. Two new instances are created by combining values from
the instance of interest x and the sample z. The first instance x+j is the instance of
interest, but all values in the order before and including value of feature j are replaced
by feature values from the sample z. The second instance x−j is similar, but has all
the values in the order before, but excluding feature j replaced by values of feature j
from the sample z. The difference in the prediction from the black box is computed:

ϕm
j = f̂(xm

+j)− f̂(xm
−j)

All these differences are averaged and result in:

ϕj(x) =
1

M

M∑
m=1

ϕm
j

Averaging implicitly weighs samples by the probability distribution of X.

The procedure has to be repeated for each of the features to get all Shapley values.

Advantages

The difference between the prediction and the average prediction is fairly dis-
tributed among the feature values of the instance – the Efficiency property of
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Shapley values. This property distinguishes the Shapley value from other methods
such as LIME. LIME does not guarantee that the prediction is fairly distributed
among the features. The Shapley value might be the only method to deliver a full
explanation. In situations where the law requires explainability – like EU’s “right
to explanations” – the Shapley value might be the only legally compliant method,
because it is based on a solid theory and distributes the effects fairly. I am not a
lawyer, so this reflects only my intuition about the requirements.

The Shapley value allows contrastive explanations. Instead of comparing a predic-
tion to the average prediction of the entire dataset, you could compare it to a subset or
even to a single data point. This contrastiveness is also something that local models
like LIME do not have.

The Shapley value is the only explanation method with a solid theory. The axioms
– efficiency, symmetry, dummy, additivity – give the explanation a reasonable
foundation. Methods like LIME assume linear behavior of the machine learning
model locally, but there is no theory as to why this should work.

It is mind-blowing to explain a prediction as a game played by the feature values.

Disadvantages

The Shapley value requires a lot of computing time. In 99.9% of real-world problems,
only the approximate solution is feasible. An exact computation of the Shapley
value is computationally expensive because there are 2 possible coalitions of the
feature values and the “absence” of a feature has to be simulated by drawing random
instances, which increases the variance for the estimate of the Shapley values estima-
tion. The exponential number of the coalitions is dealt with by sampling coalitions
and limiting the number of iterations M. Decreasing M reduces computation time,
but increases the variance of the Shapley value. There is no good rule of thumb for
the number of iterations M. M should be large enough to accurately estimate the
Shapley values, but small enough to complete the computation in a reasonable time.
It should be possible to choose M based on Chernoff bounds, but I have not seen any
paper on doing this for Shapley values for machine learning predictions.

The Shapley value can be misinterpreted. The Shapley value of a feature value
is not the difference of the predicted value after removing the feature from the
model training. The interpretation of the Shapley value is: Given the current set of
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feature values, the contribution of a feature value to the difference between the actual
prediction and the mean prediction is the estimated Shapley value.

The Shapley value is the wrong explanation method if you seek sparse explanations
(explanations that contain few features). Explanations created with the Shapley value
method always use all the features. Humans prefer selective explanations, such
as those produced by LIME. LIME might be the better choice for explanations lay-
persons have to deal with. Another solution is SHAP⁹² introduced by Lundberg and
Lee (2016)⁹³, which is based on the Shapley value, but can also provide explanations
with few features.

The Shapley value returns a simple value per feature, but no prediction model like
LIME. This means it cannot be used to make statements about changes in prediction
for changes in the input, such as: “If I were to earn €300 more a year, my credit score
would increase by 5 points.”

Another disadvantage is that you need access to the data if you want to calculate
the Shapley value for a new data instance. It is not sufficient to access the prediction
function because you need the data to replace parts of the instance of interest with
values from randomly drawn instances of the data. This can only be avoided if you
can create data instances that look like real data instances but are not actual instances
from the training data.

Like many other permutation-based interpretation methods, the Shapley value
method suffers from inclusion of unrealistic data instances when features are
correlated. To simulate that a feature value is missing from a coalition, we marginal-
ize the feature. This is achieved by sampling values from the feature’s marginal
distribution. This is fine as long as the features are independent. When features are
dependent, then we might sample feature values that do not make sense for this
instance. But we would use those to compute the feature’s Shapley value. To the best
of my knowledge, there is no research on what that means for the Shapley values, nor
a suggestion on how to fix it. One solution might be to permute correlated features
together and get one mutual Shapley value for them. Or the sampling procedure
might have to be adjusted to account for dependence of features.

⁹²https://github.com/slundberg/shap
⁹³Lundberg, Scott, and Su-In Lee. “An unexpected unity among methods for interpreting model predictions.” arXiv

preprint arXiv:1611.07478 (2016).
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Software and Alternatives

Shapley values are implemented in the iml R package.

SHAP, an alternative formulation of the Shapley values, is implemented in the
Python package shap. SHAP turns the Shapley values method into an optimization
problem and uses a special kernel function to measure proximity of data instances.
The results of SHAP are sparse (many Shapley values are estimated to be zero), which
is the biggest difference from the classic Shapley values.

Another approach is called breakDown, which is implemented in the breakDown R
package⁹⁴. BreakDown also shows the contributions of each feature to the prediction,
but computes them step by step. Let us reuse the game analogy: We start with
an empty team, add the feature value that would contribute the most to the
prediction and iterate until all feature values are added. How much each feature
value contributes depends on the respective feature values that are already in the
“team”, which is the big drawback of the breakDown method. It is faster than the
Shapley value method, and for models without interactions, the results are the same.

⁹⁴Staniak, Mateusz, and Przemyslaw Biecek. “Explanations of model predictions with live and breakDown packages.”
arXiv preprint arXiv:1804.01955 (2018).



Example-Based Explanations
Example-based explanation methods select particular instances of the dataset to
explain the behavior of machine learning models or to explain the underlying data
distribution.

Example-based explanations are mostly model-agnostic, because they make any
machine learning model more interpretable. The difference to model-agnostic meth-
ods is that the example-based methods explain a model by selecting instances of
the dataset and not by creating summaries of features (such as feature importance
or partial dependence). Example-based explanations only make sense if we can
represent an instance of the data in a humanly understandable way. This works well
for images, because we can view them directly. In general, example-based methods
work well if the feature values of an instance carry more context, meaning the data
has a structure, like images or texts do. It is more challenging to represent tabular data
in a meaningful way, because an instance can consist of hundreds or thousands of
(less structured) features. Listing all feature values to describe an instance is usually
not useful. It works well if there are only a handful of features or if we have a way
to summarize an instance.

Example-based explanations help humans construct mental models of the machine
learning model and the data the machine learning model has been trained on. It
especially helps to understand complex data distributions. But what do I mean by
example-based explanations? We often use them in our jobs and daily lives. Let us
start with some examples⁹⁵.

A physician sees a patient with an unusual cough and a mild fever. The patient’s
symptoms remind her of another patient she had years ago with similar symptoms.
She suspects that her current patient could have the same disease and she takes a
blood sample to test for this specific disease.

A data scientist works on a new project for one of his clients: Analysis of the risk
factors that lead to the failure of production machines for keyboards. The data

⁹⁵Aamodt, Agnar, and Enric Plaza. “Case-based reasoning: Foundational issues, methodological variations, and
system approaches.” AI communications 7.1 (1994): 39-59.
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scientist remembers a similar project he worked on and reuses parts of the code from
the old project because he thinks the client wants the same analysis.

A kitten sits on the window ledge of a burning and uninhabited house. The fire
department has already arrived and one of the firefighters ponders for a second
whether he can risk going into the building to save the kitten. He remembers similar
cases in his life as a firefighter: Old wooden houses that have been burning slowly for
some time were often unstable and eventually collapsed. Because of the similarity of
this case, he decides not to enter, because the risk of the house collapsing is too great.
Fortunately, the kitty jumps out of the window, lands safely and nobody is harmed
in the fire. Happy end.

These stories illustrate howwe humans think in examples or analogies. The blueprint
of example-based explanations is: Thing B is similar to thing A and A caused Y, so I
predict that B will cause Y as well. Implicitly, some machine learning approaches
work example-based. Decision trees partition the data into nodes based on the
similarities of the data points in the features that are important for predicting the
target. A decision tree gets the prediction for a new data instance by finding the
instances that are similar (= in the same terminal node) and returning the average
of the outcomes of those instances as the prediction. The k-nearest neighbors (knn)
method works explicitly with example-based predictions. For a new instance, a knn
model locates the k-nearest neighbors (e.g. the k=3 closest instances) and returns the
average of the outcomes of those neighbors as a prediction. The prediction of a knn
can be explained by returning the k neighbors, which – again – is only meaningful
if we have a good way to represent a single instance.

The chapters in this part cover the following example-based interpretation methods:

• Counterfactual explanations tell us how an instance has to change to signif-
icantly change its prediction. By creating counterfactual instances, we learn
about how the model makes its predictions and can explain individual predic-
tions.

• Adversarial examples are counterfactuals used to fool machine learningmodels.
The emphasis is on flipping the prediction and not explaining it.

• Prototypes are a selection of representative instances from the data and criti-
cisms are instances that are not well represented by those prototypes. ⁹⁶

⁹⁶Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. “Examples are not enough, learn to criticize! Criticism for
interpretability.” Advances in Neural Information Processing Systems (2016).
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• Influential instances are the training data points that were the most influential
for the parameters of a prediction model or the predictions themselves. Identi-
fying and analysing influential instances helps to find problems with the data,
debug the model and understand the model’s behavior better.

• k-nearest neighbors model: An (interpretable) machine learning model based
on examples.
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Counterfactual Explanations

A counterfactual explanation describes a causal situation in the form: “If X had not
occurred, Y would not have occurred”. For example: “If I hadn’t taken a sip of this
hot coffee, I wouldn’t have burned my tongue”. Event Y is that I burned my tongue;
cause X is that I had a hot coffee. Thinking in counterfactuals requires imagining a
hypothetical reality that contradicts the observed facts (e.g. a world in which I have
not drunk the hot coffee), hence the name “counterfactual”. The ability to think in
counterfactuals makes us humans so smart compared to other animals.

In interpretable machine learning, counterfactual explanations can be used to explain
predictions of individual instances. The “event” is the predicted outcome of an
instance, the “causes” are the particular feature values of this instance that were input
to the model and “caused” a certain prediction. Displayed as a graph, the relationship
between the inputs and the prediction is very simple: The feature values cause the
prediction.

The causal relationships between inputs of a machine learning model and the predictions, when the
model is merely seen as a black box. The inputs cause the prediction (not necessarily reflecting the
real causal relation of the data).

Even if in reality the relationship between the inputs and the outcome to be predicted
might not be causal, we can see the inputs of a model as the cause of the prediction.

Given this simple graph, it is easy to see how we can simulate counterfactuals for
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predictions of machine learning models: We simply change the feature values of an
instance before making the predictions and we analyze how the prediction changes.
We are interested in scenarios in which the prediction changes in a relevant way, like
a flip in predicted class (e.g. credit application accepted or rejected) or in which the
prediction reaches a certain threshold (e.g. the probability for cancer reaches 10%).A
counterfactual explanation of a prediction describes the smallest change to the
feature values that changes the prediction to a predefined output.

The counterfactual explanation method is model-agnostic, since it only works with
the model inputs and output. This method would also feel at home in the model-
agnostic chapter, since the interpretation can be expressed as a summary of the
differences in feature values (“change features A and B to change the prediction”).
But a counterfactual explanation is itself a new instance, so it lives in this chapter
(“starting from instance X, change A and B to get a counterfactual instance”). Unlike
prototypes, counterfactuals do not have to be actual instances from the training data,
but can be a new combination of feature values.

Before discussing how to create counterfactuals, I would like to discuss some use
cases for counterfactuals and how a good counterfactual explanation looks like.

In this first example, Peter applies for a loan and gets rejected by the (machine
learning powered) banking software. He wonders why his application was rejected
and how he might improve his chances to get a loan. The question of “why” can be
formulated as a counterfactual: What is the smallest change to the features (income,
number of credit cards, age, …) that would change the prediction from rejected to
approved? One possible answer could be: If Peter would earn 10,000 Euro more per
year, he would get the loan. Or if Peter had fewer credit cards and had not defaulted
on a loan 5 years ago, he would get the loan. Peter will never know the reasons for
the rejection, as the bank has no interest in transparency, but that is another story.

In our second example we want to explain a model that predicts a continuous
outcome with counterfactual explanations. Anna wants to rent out her apartment,
but she is not sure how much to charge for it, so she decides to train a machine
learning model to predict the rent. Of course, since Anna is a data scientist, that
is how she solves her problems. After entering all the details about size, location,
whether pets are allowed and so on, the model tells her that she can charge 900 Euro.
She expected 1000 Euro or more, but she trusts her model and decides to play with
the feature values of the apartment to see how she can improve the value of the
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apartment. She finds out that the apartment could be rented out for over 1000 Euro,
if it were 15 m² larger. Interesting, but non-actionable knowledge, because she cannot
enlarge her apartment. Finally, by tweaking only the feature values under her control
(built-in kitchen yes/no, pets allowed yes/no, type of floor, etc.), she finds out that
if she allows pets and installs windows with better insulation, she can charge 1000
Euro. Anna had intuitively worked with counterfactuals to change the outcome.

Counterfactuals are human-friendly explanations, because they are contrastive to
the current instance and because they are selective, meaning they usually focus on
a small number of feature changes. But counterfactuals suffer from the ‘Rashomon
effect’. Rashomon is a Japanese movie in which the murder of a Samurai is told
by different people. Each of the stories explains the outcome equally well, but the
stories contradict each other. The same can also happen with counterfactuals, since
there are usually multiple different counterfactual explanations. Each counterfactual
tells a different “story” of how a certain outcome was reached. One counterfactual
might say to change feature A, the other counterfactual might say to leave A the
same but change feature B, which is a contradiction. This issue of multiple truths
can be addressed either by reporting all counterfactual explanations or by having a
criterion to evaluate counterfactuals and select the best one.

Speaking of criteria, how do we define a good counterfactual explanation? First, the
user of a counterfactual explanation defines a relevant change in the prediction of an
instance (= the alternative reality), so an obvious first requirement is that a counter-
factual instance produces the predefined prediction as closely as possible. It is
not always possible to match the predefined output exactly. In a classification setting
with two classes, a rare class and a frequent class, the model could always classify an
instance as the frequent class. Changing the feature values so that the predicted label
would flip from the common class to the rare class might be impossible. We therefore
want to relax the requirement that the predicted output of the counterfactual must
correspond exactly to the defined outcome. In the classification example, we could
look for a counterfactual where the predicted probability of the rare class is increased
to 10% instead of the current 2%. The question then is, what are theminimum changes
to the features so that the predicted probability changes from 2% to 10% (or close
to 10%)? Another quality criterion is that a counterfactual should be as similar as
possible to the instance regarding feature values. This requires a distance measure
between two instances. The counterfactual should not only be close to the original
instance, but should also change as few features as possible. This can be achieved
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by selecting an appropriate distance measure like the Manhattan distance. The last
requirement is that a counterfactual instance should have feature values that
are likely. It would not make sense to generate a counterfactual explanation for the
rent example where the size of an apartment is negative or the number of rooms is
set to 200. It is even better when the counterfactual is likely according to the joint
distribution of the data, e.g. an apartment with 10 rooms and 20 m² should not be
regarded as counterfactual explanation.

Generating Counterfactual Explanations

A simple and naive approach to generating counterfactual explanations is searching
by trial and error. This approach involves randomly changing feature values of the
instance of interest and stopping when the desired output is predicted. Like the
example where Anna tried to find a version of her apartment for which she could
charge more rent. But there are better approaches than trial and error. First, we define
a loss function that takes as input the instance of interest, a counterfactual and the
desired (counterfactual) outcome. The loss measures how far the predicted outcome
of the counterfactual is from the predefined outcome and how far the counterfactual
is from the instance of interest. We can either optimize the loss directly with an
optimization algorithm or by searching around the instance, as suggested in the
“Growing Spheres” method (see Software and Alternatives).

In this section, I will present the approach suggested by Wachter et. al (2017)⁹⁷. They
suggest minimizing the following loss.

L(x, x′, y′, λ) = λ · (f̂(x′)− y′)2 + d(x, x′)

The first term is the quadratic distance between the model prediction for the
counterfactual x’ and the desired outcome y’, which the user must define in advance.
The second term is the distance d between the instance x to be explained and the
counterfactual x’, but more about this later. The parameter λ balances the distance
in prediction (first term) against the distance in feature values (second term). The loss
is solved for a given λ and returns a counterfactual x’. A higher value of λmeans that
we prefer counterfactuals that come close to the desired outcome y’, a lower value

⁹⁷Wachter, Sandra, Brent Mittelstadt, and Chris Russell. “Counterfactual explanations without opening the black box:
Automated decisions and the GDPR.” (2017).
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means that we prefer counterfactuals x’ that are very similar to x in the feature
values. If λ is very large, the instance with the prediction that comes closest to y’ will
be selected, regardless how far it is away from x. Ultimately, the user must decide
how to balance the requirement that the prediction for the counterfactual matches
the desired outcome with the requirement that the counterfactual is similar to x. The
authors of the method suggest instead of selecting a value for λ to select a tolerance ϵ
for how far away the prediction of the counterfactual instance is allowed to be from
y’. This constraint can be written as:

|f̂(x′)− y′| ≤ ϵ

To minimize this loss function, any suitable optimization algorithm can be used, e.g.
Nelder-Mead. If you have access to the gradients of the machine learning model,
you can use gradient-based methods like ADAM. The instance x to be explained,
the desired output y’ and the tolerance parameter ϵ must be set in advance. The
loss function is minimized for x’ and the (locally) optimal counterfactual x’ returned
while increasing λ until a sufficiently close solution is found (= within the tolerance
parameter).

argmin
x′

max
λ

L(x, x′, y′, λ)

The function d for measuring the distance between instance x and counterfactual x’
is the Manhattan distance weighted feature-wise with the inverse median absolute
deviation (MAD).

d(x, x′) =

p∑
j=1

|xj − x′
j |

MADj

The total distance is the sum of all p feature-wise distances, that is, the absolute
differences of feature values between instance x and counterfactual x’. The feature-
wise distances are scaled by the inverse of the median absolute deviation of feature
j over the dataset defined as:

MADj =mediani∈{1,...,n}(|xi,j −medianl∈{1,...,n}(xl,j)|)
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The median of a vector is the value at which half of the vector values are greater
and the other half smaller. The MAD is the equivalent of the variance of a feature,
but instead of using the mean as the center and summing over the square distances,
we use the median as the center and sum over the absolute distances. The proposed
distance function has the advantage over the Euclidean distance that it introduces
sparsity. This means that two points are closer to each other when less features are
different. And it is more robust to outliers. Scaling with the MAD is necessary to
bring all the features to the same scale – it should not matter whether you measure
the size of an apartment in square meters or square feet.

The recipe for producing the counterfactuals is simple:

1. Select an instance x to be explained, the desired outcome y’, a tolerance ϵ and
a (low) initial value for λ.

2. Sample a random instance as initial counterfactual.
3. Optimize the loss with the initially sampled counterfactual as starting point.
4. While |f̂(x′)− y′| > ϵ:

• Increase λ.
• Optimize the loss with the current counterfactual as starting point.
• Return the counterfactual that minimizes the loss.

5. Repeat steps 2-3 and return the list of counterfactuals or the one that minimizes
the loss.

Examples

Both examples are from the work of Wachter et. al (2017).

In the first example, the authors train a three-layer fully-connected neural network to
predict a student’s average grade of the first year at law school, based on grade point
average (GPA) prior to law school, race and law school entrance exam scores. The
goal is to find counterfactual explanations for each student that answer the following
question: How would the input features need to be changed, to get a predicted score
of 0? Since the scores have been normalized before, a student with a score of 0 is as
good as the average of the students. A negative score means a below-average result,
a positive score an above-average result.

The following table shows the learned counterfactuals:
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Score GPA LSAT Race GPA x’ LSAT x’ Race x’
0.17 3.1 39.0 0 3.1 34.0 0
0.54 3.7 48.0 0 3.7 32.4 0
-0.77 3.3 28.0 1 3.3 33.5 0
-0.83 2.4 28.5 1 2.4 35.8 0
-0.57 2.7 18.3 0 2.7 34.9 0

The first column contains the predicted score, the next 3 columns the original feature
values and the last 3 columns the counterfactual feature values that result in a score
close to 0. The first two rows are students with above-average predictions, the other
three rows below-average. The counterfactuals for the first two rows describe how
the student features would have to change to decrease the predicted score and for
the other three cases how they would have to change to increase the score to the
average. The counterfactuals for increasing the score always change the race from
black (coded with 1) to white (coded with 0) which shows a racial bias of the model.
The GPA is not changed in the counterfactuals, but LSAT is.

The second example shows counterfactual explanations for predicted risk of diabetes.
A three-layer fully-connected neural network is trained to predict the risk for
diabetes depending on age, BMI, number of pregnancies and so on for women of
Pima heritage. The counterfactuals answer the question: Which feature values must
be changed to increase or decrease the risk score of diabetes to 0.5? The following
counterfactuals were found:

• Person 1: If your 2-hour serum insulin level was 154.3, you would have a score
of 0.51

• Person 2: If your 2-hour serum insulin level was 169.5, you would have a score
of 0.51

• Person 3: If your Plasma glucose concentrationwas 158.3 and your 2-hour serum
insulin level was 160.5, you would have a score of 0.51

Advantages

The interpretation of counterfactual explanations is very clear. If the feature
values of an instance are changed according to the counterfactual, the prediction
changes to the predefined prediction. There are no additional assumptions and no



Example-Based Explanations 243

magic in the background. This alsomeans it is not as dangerous asmethods like LIME,
where it is unclear how far we can extrapolate the local model for the interpretation.

The counterfactual method creates a new instance, but we can also summarize a
counterfactual by reporting which feature values have changed. This gives us two
options for reporting our results. You can either report the counterfactual instance
or highlight which features have been changed between the instance of interest and
the counterfactual instance.

The counterfactual method does not require access to the data or the model. It
only requires access to the model’s prediction function, which would also work via
a web API, for example. This is attractive for companies which are audited by third
parties or which are offering explanations for users without disclosing the model or
data. A company has an interest in protectingmodel and data because of trade secrets
or data protection reasons. Counterfactual explanations offer a balance between
explaining model predictions and protecting the interests of the model owner.

The method works also with systems that do not use machine learning. We can
create counterfactuals for any system that receives inputs and returns outputs. The
system that predicts apartment rents could also consist of handwritten rules, and
counterfactual explanations would still work.

The counterfactual explanation method is relatively easy to implement, since it
is essentially a loss function that can be optimized with standard optimizer libraries.
Some additional details must be taken into account, such as limiting feature values
to meaningful ranges (e.g. only positive apartment sizes).

Disadvantages

For each instance you will usually find multiple counterfactual explanations
(Rashomon effect). This is inconvenient – most people prefer simple explanations
over the complexity of the real world. It is also a practical challenge. Let us say we
generated 23 counterfactual explanations for one instance. Are we reporting them
all? Only the best? What if they are all relatively “good”, but very different? These
questions must be answered anew for each project. It can also be advantageous to
have multiple counterfactual explanations, because then humans can select the ones
that correspond to their previous knowledge.
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There is no guarantee that for a given tolerance ϵ a counterfactual instance is
found. That is not necessarily the fault of the method, but rather depends on the
data.

The proposed method does not handle categorical features with many different
levels well. The authors of the method suggested running the method separately for
each combination of feature values of the categorical features, but this will lead to a
combinatorial explosion if you have multiple categorical features with many values.
For example, 6 categorical features with 10 unique levels would mean 1 million runs.
A solution for only categorical features was proposed by Martens et. al (2014)⁹⁸.
A good solution would be to use an optimizer that solves problems with a mix of
continuous and discrete inputs.

The counterfactuals method lacks a general software implementation. And a
method is only useful if it is implemented. Fortunately, it should be easy to implement
and hopefully I can remove this statement here soon.

Software and Alternatives

Unfortunately there is currently no software available for counterfactual explana-
tions.

A very similar approach was proposed by Martens et. al (2014) for explaining
document classifications. In their work, they focus on explaining why a document
was or was not classified as a particular class. The difference to the method presented
in this chapter is that Martens et. al (2014) focus on text classifiers, which have word
occurrences as inputs.

An alternative way to search counterfactuals is the Growing Spheres algorithm by
Laugel et. al (2017)⁹⁹. The method first draws a sphere around the point of interest,
samples points within that sphere, checks whether one of the sampled points yields
the desired prediction, contracts or expands the sphere accordingly until a (sparse)
counterfactual is found and finally returned. They do not use theword counterfactual
in their paper, but the method is quite similar. They also define a loss function that
favors counterfactuals with as few changes in the feature values as possible. Instead

⁹⁸Martens, David, and Foster Provost. “Explaining data-driven document classifications.” (2014).
⁹⁹Laugel, Thibault, et al. “Inverse classification for comparison-based interpretability in machine learning.” arXiv

preprint arXiv:1712.08443 (2017).
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of directly optimizing the function, they suggest the above-mentioned search with
spheres.

An illustration of Growing Spheres and selecting sparse counterfactuals by Laugel et. al (2017).

Anchors by Ribeiro et. al (2018)¹⁰⁰ are the opposite of counterfactuals. Anchors
answer the question: Which features are sufficient to anchor a prediction, i.e.
changing the other features cannot change the prediction? Once we have found
features that serve as anchors for a prediction, we will no longer find counterfactual
instances by changing the features not used in the anchor.

¹⁰⁰Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin. “Anchors: High-precision model-agnostic explanations.”
AAAI Conference on Artificial Intelligence (2018).
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Examples for anchors by Ribeiro et. al (2018).
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Adversarial Examples

An adversarial example is an instance with small, intentional feature perturbations
that cause a machine learningmodel to make a false prediction. I recommend reading
the chapter about Counterfactual Explanations first, as the concepts are very similar.
Adversarial examples are counterfactual examples with the aim to deceive themodel,
not interpret it.

Why are we interested in adversarial examples? Are they not just curious by-
products of machine learning models without practical relevance? The answer is
a clear “no”. Adversarial examples make machine learning models vulnerable to
attacks, as in the following scenarios.

A self-driving car crashes into another car because it ignores a stop sign. Someone
had placed a picture over the sign, which looks like a stop sign with a little dirt
for humans, but was designed to look like a parking prohibition sign for the sign
recognition software of the car.

A spam detector fails to classify an email as spam. The spam mail has been designed
to resemble a normal email, but with the intention of cheating the recipient.

A machine-learning powered scanner scans suitcases for weapons at the airport. A
knife was developed to avoid detection by making the system think it is an umbrella.

Let us take a look at some ways to create adversarial examples.

Methods and Examples

There are many techniques to create adversarial examples. Most approaches suggest
minimizing the distance between the adversarial example and the instance to be
manipulated, while shifting the prediction to the desired (adversarial) outcome. Some
methods require access to the gradients of the model, which of course only works
with gradient based models such as neural networks, other methods only require
access to the prediction function, which makes these methods model-agnostic. The
methods in this section focus on image classifiers with deep neural networks, as a
lot of research is done in this area and the visualization of adversarial images is
very educational. Adversarial examples for images are images with intentionally
perturbed pixels with the aim to deceive the model during application time. The
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examples impressively demonstrate how easily deep neural networks for object
recognition can be deceived by images that appear harmless to humans. If you
have not yet seen these examples, you might be surprised, because the changes in
predictions are incomprehensible for a human observer. Adversarial examples are
like optical illusions but for machines.

Something is Wrong With My Dog

Szegedy et. al (2013)¹⁰¹ used a gradient based optimization approach in their work
“Intriguing Properties of Neural Networks” to find adversarial examples for deep
neural networks.

Adversarial examples for AlexNet by Szegedy et. al (2013). All images in the left column are correctly
classified. The middle column shows the (magnified) error added to the images to produce the
images in the right column all categorized (incorrectly) as ‘Ostrich’.

These adversarial examples were generated by minimizing the following function
with respect to r:

¹⁰¹Szegedy, Christian, et al. “Intriguing properties of neural networks.” arXiv preprint arXiv:1312.6199 (2013).
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loss(f̂(x+ r), l) + c · |r|

In this formula, x is an image (represented as a vector of pixels), r is the changes
to the pixels to create an adversarial image (x+r produces a new image), l is the
desired outcome class, and the parameter c is used to balance the distance between
images and the distance between predictions. The first term is the distance between
the predicted outcome of the adversarial example and the desired class l, the second
term measures the distance between the adversarial example and the original image.
This formulation is almost identical to the loss function to generate counterfactual
explanations. There are additional constraints for r so that the pixel values remain
between 0 and 1. The authors suggest to solve this optimization problem with a box-
constrained L-BFGS, an optimization algorithm that works with gradients.

Disturbed panda: Fast gradient sign method

Goodfellow et. al (2014)¹⁰² invented the fast gradient sign method for generating
adversarial images. The gradient sign method uses the gradient of the underlying
model to find adversarial examples. The original image x is manipulated by adding
or subtracting a small error ϵ to each pixel. Whether we add or subtract ϵ depends
on whether the sign of the gradient for a pixel is positive or negative. Adding errors
in the direction of the gradient means that the image is intentionally altered so that
the model classification fails.
¹⁰²Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing adversarial examples.” arXiv

preprint arXiv:1412.6572 (2014).

www.dbooks.org

https://www.dbooks.org/


Example-Based Explanations 250

Goodfellow et. al (2014) make a panda look like a gibbon for a neural network. By adding small
perturbations (middle image) to the original panda pixels (left image), the authors create an
adversarial example that is classified as a gibbon (right image) but looks like a panda to humans.

The following formula describes the core of the fast gradient sign method:

x′ = x+ ϵ · sign(▽xJ(θ, x, y))

where ▽xJ is the gradient of the models loss function with respect to the original
input pixel vector x, y is the true label vector for x and θ is the model parameter
vector. From the gradient vector (which is as long as the vector of the input pixels)
we only need the sign: The sign of the gradient is positive (+1) if an increase in pixel
intensity increases the loss (the error the model makes) and negative (-1) if a decrease
in pixel intensity increases the loss. This vulnerability occurs when a neural network
treats a relationship between an input pixel intensity and the class score linearly. In
particular, neural network architectures that favor linearity, such as LSTMs, maxout
networks, networks with ReLU activation units or other linear machine learning
algorithms such as logistic regression are vulnerable to the gradient sign method.
The attack is carried out by extrapolation. The linearity between the input pixel
intensity and the class scores leads to vulnerability to outliers, i.e. the model can be
deceived by moving pixel values into areas outside the data distribution. I expected
these adversarial examples to be quite specific to a given neural network architecture.
But it turns out that you can reuse adversarial examples to deceive networks with a
different architecture trained on the same task.

Goodfellow et. al (2014) suggested adding adversarial examples to the training data
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to learn robust models.

A jellyfish … No, wait. A bathtub: 1-pixel attacks

The approach presented by Goodfellow and colleagues (2014) requires many pixels
to be changed, if only by a little. But what if you can only change a single pixel?
Would you be able to deceive a machine learning model? Su et. al (2019) ¹⁰³ showed
that it is actually possible to deceive image classifiers by changing a single pixel.

By intentionally changing a single pixel (markedwith circles) a neural network trained on ImageNet
is deceived to predict the wrong class instead of the original class. Work by Su et. al (2019).

Similar to counterfactuals, the 1-pixel attack looks for a modified example x’ which
comes close to the original image x, but changes the prediction to an adversarial
outcome. However, the definition of closeness differs: Only a single pixel may
change. The 1-pixel attack uses differential evolution to find out which pixel is to
be changed and how. Differential evolution is loosely inspired by biological evolu-
tion of species. A population of individuals called candidate solutions recombines

¹⁰³Su, Jiawei, Danilo Vasconcellos Vargas, and Kouichi Sakurai. “One pixel attack for fooling deep neural networks.”
IEEE Transactions on Evolutionary Computation (2019).
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generation by generation until a solution is found. Each candidate solution encodes
a pixel modification and is represented by a vector of five elements: the x- and y-
coordinates and the red, green and blue (RGB) values. The search starts with, for
example, 400 candidate solutions (= pixel modification suggestions) and creates a
new generation of candidate solutions (children) from the parent generation using
the following formula:

xi(g + 1) = xr1(g) + F · (xr2(g) + xr3(g))

where each xi is an element of a candidate solution (either x-coordinate, y-coordi-
nate, red, green or blue), g is the current generation, F is a scaling parameter (set
to 0.5) and r1, r2 and r3 are different random numbers. Each new child candidate
solution is in turn a pixel with the five attributes for location and color and each of
those attributes is a mixture of three random parent pixels.

The creation of children is stopped if one of the candidate solutions is an adversarial
example, meaning it is classified as an incorrect class, or if the number of maximum
iterations specified by the user is reached.

Everything is a toaster: Adversarial patch

One of my favorite methods brings adversarial examples into physical reality. Brown
et. al (2017)¹⁰⁴ designed a printable label that can be stuck next to objects to make
them look like toasters for an image classifier. Brilliant work!

¹⁰⁴Brown, Tom B., et al. “Adversarial patch.” arXiv preprint arXiv:1712.09665 (2017).
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A sticker that makes a VGG16 classifier trained on ImageNet categorize an image of a banana as a
toaster. Work by Brown et. al (2017).

This method differs from the methods presented so far for adversarial examples,
since the restriction that the adversarial image must be very close to the original
image is removed. Instead, the method completely replaces a part of the image with
a patch that can take on any shape. The image of the patch is optimized over different
background images, with different positions of the patch on the images, sometimes
moved, sometimes larger or smaller and rotated, so that the patch works in many
situations. In the end, this optimized image can be printed and used to deceive image
classifiers in the wild.

Never bring a 3D-printed turtle to a gunfight – even if your computer thinks it
is a good idea: Robust adversarial examples

The next method is literally adding another dimension to the toaster: Athalye et. al
(2017)¹⁰⁵ 3D-printed a turtle that was designed to look like a rifle to a deep neural
network from almost all possible angles. Yeah, you read that right. A physical object
that looks like a turtle to humans looks like a rifle to the computer!

¹⁰⁵Athalye, Anish, and Ilya Sutskever. “Synthesizing robust adversarial examples.” arXiv preprint arXiv:1707.07397
(2017).
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A 3D-printed turtle that is recognized as a rifle by TensorFlowâ€™s standard pre-trained Incep-
tionV3 classifier. Work by Athalye et. al (2017)

The authors have found a way to create an adversarial example in 3D for a 2D
classifier that is adversarial over transformations, such as all possibilities to rotate
the turtle, zoom in and so on. Other approaches such as the fast gradient method no
longer work when the image is rotated or viewing angle changes. Athalye et. al (2017)
propose the Expectation Over Transformation (EOT) algorithm, which is a method
for generating adversarial examples that even work when the image is transformed.
The main idea behind EOT is to optimize adversarial examples across many possible
transformations. Instead of minimizing the distance between the adversarial example
and the original image, EOT keeps the expected distance between the two below
a certain threshold, given a selected distribution of possible transformations. The
expected distance under transformation can be written as:

Et∼T [d(t(x
′), t(x))]

where x is the original image, t(x) the transformed image (e.g. rotated), x’ the
adversarial example and t(x’) its transformed version. Apart from working with
a distribution of transformations, the EOT method follows the familiar pattern of
framing the search for adversarial examples as an optimization problem. We try to
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find an adversarial example x’ that maximizes the probability for the selected class
yt (e.g. “rifle”) across the distribution of possible transformations T:

argmax
x′

Et∼T [logP (yt|t(x′))]

With the constraint that the expected distance over all possible transformations
between adversarial example x’ and original image x remains below a certain
threshold:

Et∼T [d(t(x
′), t(x))] < ϵ and x ∈ [0, 1]d

I think we should be concerned about the possibilities this method enables. The
other methods are based on the manipulation of digital images. However, these 3D-
printed, robust adversarial examples can be inserted into any real scene and deceive
a computer to wrongly classify an object. Let us turn it around: What if someone
creates a rifle which looks like a turtle?

The blindfolded adversary: Black box attack

Imagine the following scenario: I give you access to my great image classifier via
Web API. You can get predictions from the model, but you do not have access to
the model parameters. From the convenience of your couch, you can send data and
my service answers with the corresponding classifications. Most adversarial attacks
are not designed to work in this scenario because they require access to the gradient
of the underlying deep neural network to find adversarial examples. Papernot and
colleagues (2017)¹⁰⁶ showed that it is possible to create adversarial examples without
internal model information and without access to the training data. This type of
(almost) zero-knowledge attack is called black box attack.

How it works:

1. Start with a few images that come from the same domain as the training data,
e.g. if the classifier to be attacked is a digit classifier, use images of digits. The
knowledge of the domain is required, but not the access to the training data.

2. Get predictions for the current set of images from the black box.

¹⁰⁶Papernot, Nicolas, et al. “Practical black-box attacks against machine learning.” Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security. ACM (2017).
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3. Train a surrogate model on the current set of images (for example a neural
network).

4. Create a new set of synthetic images using a heuristic that examines for the
current set of images in which direction to manipulate the pixels to make the
model output have more variance.

5. Repeat steps 2 to 4 for a predefined number of epochs.
6. Create adversarial examples for the surrogate model using the fast gradient

method (or similar).
7. Attack the original model with adversarial examples.

The aim of the surrogate model is to approximate the decision boundaries of the
black box model, but not necessarily to achieve the same accuracy.

The authors tested this approach by attacking image classifiers trained on various
cloud machine learning services. These services train image classifiers on user
uploaded images and labels. The software trains the model automatically – some-
times with an algorithm unknown to the user – and deploys it. The classifier then
gives predictions for uploaded images, but the model itself cannot be inspected
or downloaded. The authors were able to find adversarial examples for various
providers, with up to 84% of the adversarial examples being misclassified.

Themethod evenworks if the black boxmodel to be deceived is not a neural network.
This includes machine learning models without gradients such as a decision trees.

The Cybersecurity Perspective

Machine learning deals with known unknowns: predicting unknown data points
from a known distribution. The defense against attacks deals with unknown un-
knowns: robustly predicting unknown data points from an unknown distribution of
adversarial inputs. As machine learning is integrated into more and more systems,
such as autonomous vehicles or medical devices, they are also becoming entry points
for attacks. Even if the predictions of a machine learning model on a test dataset
are 100% correct, adversarial examples can be found to deceive the model. The
defense of machine learning models against cyber attacks is a new part of the field
of cybersecurity.
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Biggio et. al (2018)¹⁰⁷ give a nice review of ten years of research on adversarial
machine learning, on which this section is based. Cybersecurity is an arms-race in
which attackers and defenders outwit each other time and again.

There are three golden rules in cybersecurity: 1) know your adversary 2) be
proactive and 3) protect yourself.

Different applications have different adversaries. People who try to defraud other
people via email for their money are adversary agents of users and providers of email
services. The providers want to protect their users, so that they can continue using
their mail program, the attackers want to get people to give them money. Knowing
your adversaries means knowing their goals. Assuming you do not know that these
spammers exist and the only abuse of the email service is sending pirated copies
of music, then the defense would be different (e.g. scanning the attachments for
copyrighted material instead of analyzing the text for spam indicators).

Being proactive means actively testing and identifying weak points of the system.
You are proactive when you actively try to deceive the model with adversarial
examples and then defend against them. Using interpretation methods to understand
which features are important and how features affect the prediction is also a
proactive step in understanding the weaknesses of a machine learning model. As
the data scientist, do you trust your model in this dangerous world without ever
having looked beyond the predictive power on a test dataset? Have you analyzed
how the model behaves in different scenarios, identified the most important inputs,
checked the prediction explanations for some examples? Have you tried to find
adversarial inputs? The interpretability of machine learning models plays a major
role in cybersecurity. Being reactive, the opposite of proactive, means waiting until
the system has been attacked and only then understanding the problem and installing
some defensive measures.

How can we protect our machine learning systems against adversarial examples? A
proactive approach is the iterative retraining of the classifier with adversarial exam-
ples, also called adversarial training. Other approaches are based on game theory,
such as learning invariant transformations of the features or robust optimization
(regularization). Another proposedmethod is to usemultiple classifiers instead of just
one and have them vote the prediction (ensemble), but that has no guarantee to work,

¹⁰⁷Biggio, Battista, and Fabio Roli. “Wild Patterns: Ten years after the rise of adversarial machine learning.” Pattern
Recognition 84 (2018): 317-331.
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since they could all suffer from similar adversarial examples. Another approach that
does not work well either is gradient masking, which constructs a model without
useful gradients by using a nearest neighbor classifier instead of the original model.

We can distinguish types of attacks by how much an attacker knows about the
system. The attackers may have perfect knowledge (white box attack), meaning they
know everything about the model like the type of model, the parameters and the
training data; the attackers may have partial knowledge (gray box attack), meaning
they might only know the feature representation and the type of model that was
used, but have no access to the training data or the parameters; the attackers may
have zero knowledge (black box attack), meaning they can only query the model in
a black box manner but have no access to the training data or information about
the model parameters. Depending on the level of information, the attackers can use
different techniques to attack the model. As we have seen in the examples, even in
the black box case adversarial examples can be created, so that hiding information
about data and model is not sufficient to protect against attacks.

Given the nature of the cat-and-mouse game between attackers and defenders, we
will see a lot of development and innovation in this area. Just think of the many
different types of spam emails that are constantly evolving. New methods of attacks
against machine learning models are invented and new defensive measures are
proposed against these new attacks. More powerful attacks are developed to evade
the latest defenses and so on, ad infinitum. With this chapter I hope to sensitize you
to the problem of adversarial examples and that only by proactively studying the
machine learning models are we able to discover and remedy weaknesses.
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Prototypes and Criticisms

A prototype is a data instance that is representative of all the data. A criticism is
a data instance that is not well represented by the set of prototypes. The purpose of
criticisms is to provide insights together with prototypes, especially for data points
which the prototypes do not represent well. Prototypes and criticisms can be used
independently from a machine learning model to describe the data, but they can also
be used to create an interpretable model or to make a black box model interpretable.

In this chapter I use the expression “data point” to refer to a single instance, to
emphasize the interpretation that an instance is also a point in a coordinate system
where each feature is a dimension. The following figure shows a simulated data
distribution, with some of the instances chosen as prototypes and some as criticisms.
The small points are the data, the large points the prototypes and the large squares
the criticisms. The prototypes are selected (manually) to cover the centers of the data
distribution and the criticisms are points in a cluster without a prototype. Prototypes
and criticisms are always actual instances from the data.
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Prototypes and criticisms for a data distribution with two features x1 and x2.

I selected the prototypes manually, which does not scale well and probably leads
to poor results. There are many approaches to find prototypes in the data. One of
these is k-medoids, a clustering algorithm related to the k-means algorithm. Any
clustering algorithm that returns actual data points as cluster centers would qualify
for selecting prototypes. But most of these methods find only prototypes, but no
criticisms. This chapter presents MMD-critic by Kim et. al (2016)¹⁰⁸, an approach
that combines prototypes and criticisms in a single framework.

MMD-critic compares the distribution of the data and the distribution of the selected
prototypes. This is the central concept for understanding the MMD-critic method.
MMD-critic selects prototypes that minimize the discrepancy between the two
distributions. Data points in areas with high density are good prototypes, especially
when points are selected from different “data clusters”. Data points from regions that

¹⁰⁸Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. “Examples are not enough, learn to criticize! Criticism for
interpretability.” Advances in Neural Information Processing Systems (2016).
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are not well explained by the prototypes are selected as criticisms.

Let us delve deeper into the theory.

Theory

The MMD-critic procedure on a high-level can be summarized briefly:

1. Select the number of prototypes and criticisms you want to find.
2. Find prototypes with greedy search. Prototypes are selected so that the distri-

bution of the prototypes is close to the data distribution.
3. Find criticisms with greedy search. Points are selected as criticisms where the

distribution of prototypes differs from the distribution of the data.

We need a couple of ingredients to find prototypes and criticisms for a dataset with
MMD-critic. As the most basic ingredient, we need a kernel function to estimate the
data densities. A kernel is a function that weighs two data points according to their
proximity. Based on density estimates, we need a measure that tells us how different
two distributions are so that we can determine whether the distribution of the
prototypes we select is close to the data distribution. This is solved by measuring the
maximum mean discrepancy (MMD). Also based on the kernel function, we need
thewitness function to tell us how different two distributions are at a particular data
point. With the witness function, we can select criticisms, i.e. data points at which
the distribution of prototypes and data diverges and the witness function takes on
large absolute values. The last ingredient is a search strategy for good prototypes and
criticisms, which is solved with a simple greedy search.

Let us start with the maximum mean discrepancy (MMD), which measures the
discrepancy between two distributions. The selection of prototypes creates a density
distribution of prototypes. We want to evaluate whether the prototypes distribution
differs from the data distribution. We estimate both with kernel density functions.
The maximummean discrepancymeasures the difference between two distributions,
which is the supremum over a function space of differences between the expectations
according to the two distributions. All clear? Personally, I understand these concepts
much better when I see how something is calculated with data. The following
formula shows how to calculate the squared MMD measure (MMD2):
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MMD2 =
1

m2

m∑
i,j=1

k(zi, zj)−
2

mn

m,n∑
i,j=1

k(zi, xj) +
1

n2

n∑
i,j=1

k(xi, xj)

k is a kernel function that measures the similarity of two points, but more about
this later. m is the number of prototypes z, and n is the number of data points x in
our original dataset. The prototypes z are a selection of data points x. Each point
is multidimensional, that is it can have multiple features. The goal of MMD-critic
is to minimize MMD2. The closer MMD2 is to zero, the better the distribution of
the prototypes fits the data. The key to bringing MMD2 down to zero is the term in
the middle, which calculates the average proximity between the prototypes and all
other data points (multiplied by 2). If this term adds up to the first term (the average
proximity of the prototypes to each other) plus the last term (the average proximity
of the data points to each other), then the prototypes explain the data perfectly. Try
out what would happen to the formula if you used all n data points as prototypes.

The following graphic illustrates the MMD2 measure. The first plot shows the data
points with two features, whereby the estimation of the data density is displayedwith
a shaded background. Each of the other plots shows different selections of prototypes,
along with the MMD2 measure in the plot titles. The prototypes are the large dots
and their distribution is shown as contour lines. The selection of the prototypes that
best covers the data in these scenarios (bottom left) has the lowest discrepancy value.



Example-Based Explanations 263

The squared maximum mean discrepancy measure (MMD2) for a dataset with two features and
different selections of prototypes.

A choice for the kernel is the radial basis function kernel:

k(x, x′) = exp
(
γ||x− x′||2

)
where ||x-x’||² is the Euclidean distance between two points and γ is a scaling
parameter. The value of the kernel decreases with the distance between the two
points and ranges between zero and one: Zero when the two points are infinitely
far apart; one when the two points are equal.

We combine the MMD2 measure, the kernel and greedy search in an algorithm for
finding prototypes:

• Start with an empty list of prototypes.
• While the number of prototypes is below the chosen number m:
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– For each point in the dataset, check howmuch MMD2 is reduced when the
point is added to the list of prototypes. Add the data point that minimizes
the MMD2 to the list.

• Return the list of prototypes.

The remaining ingredient for finding criticisms is the witness function, which tells
us how much two density estimates differ at a particular point. It can be estimated
using:

witness(x) =
1

n

n∑
i=1

k(x, xi)−
1

m

m∑
j=1

k(x, zj)

For two datasets (with the same features), the witness function gives you the
means of evaluating in which empirical distribution the point x fits better. To find
criticisms, we look for extreme values of the witness function in both negative and
positive directions. The first term in the witness function is the average proximity
between point x and the prototypes, and, respectively, the second term is the average
proximity between point x and the data. If the witness function for a point x is close
to zero, the density function of the data and the prototypes are close together, which
means that the distribution of prototypes resembles the distribution of the data at
point x. A positive witness function at point x means that the prototype distribution
overestimates the data distribution (for example if we select a prototype but there
are only few data points nearby); a negative witness function at point x means that
the prototype distribution underestimates the data distribution (for example if there
are many data points around x but we have not selected any prototypes nearby).

To give you more intuition, let us reuse the prototypes from the plot beforehand
with the lowest MMD2 and display the witness function for a few manually selected
points. The labels in the following plot show the value of the witness function for
various points marked as squares. Only the point in the middle has a high absolute
value and is therefore a good candidate for a criticism.
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Evaluations of the witness function at different points.

The witness function allows us to explicitly search for data instances that are not
well represented by the prototypes. Criticisms are points with high absolute value
in the witness function. Like prototypes, criticisms are also found through greedy
search. But instead of reducing the overall MMD2, we are looking for points that
maximize a cost function that includes the witness function and a regularizer term.
The additional term in the optimization function enforces diversity in the points,
which is needed so that the points come from different clusters.

This second step is independent of how the prototypes are found. I could also
have handpicked some prototypes and used the procedure described here to learn
criticisms. Or the prototypes could come from any clustering procedure, like k-
medoids.

That is it with the important parts of MMD-critic theory. One question remains:How
can MMD-critic be used for interpretable machine learning?
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MMD-critic can add interpretability in three ways: By helping to better understand
the data distribution; by building an interpretable model; by making a black box
model interpretable.

If you apply MMD-critic to your data to find prototypes and criticisms, it will
improve your understanding of the data, especially if you have a complex data
distribution with edge cases. But with MMD-critic you can achieve more!

For example, you can create an interpretable prediction model: a so-called “nearest
prototype model”. The prediction function is defined as:

f̂(x) = argmaxi∈Sk(x, xi)

which means that we select the prototype i from the set of prototypes S that is
closest to the new data point, in the sense that it yields the highest value of the
kernel function. The prototype itself is returned as an explanation for the prediction.
This procedure has three tuning parameters: The type of kernel, the kernel scaling
parameter and the number of prototypes. All parameters can be optimized within a
cross validation loop. The criticisms are not used in this approach.

As a third option, we can use MMD-critic to make any machine learning model
globally explainable by examining prototypes and criticisms along with their model
predictions. The procedure is as follows:

1. Find prototypes and criticisms with MMD-critic.
2. Train a machine learning model as usual.
3. Predict outcomes for the prototypes and criticisms with the machine learning

model.
4. Analyse the predictions: In which cases was the algorithm wrong? Now you

have a number of examples that represent the data well and help you to find
the weaknesses of the machine learning model.

How does that help? Remember when Google’s image classifier identified black
people as gorillas? Perhaps they should have used the procedure described here
before deploying their image recognition model. It is not enough just to check the
performance of themodel, because if it were 99% correct, this issue could still be in the
1%. And labels can also be wrong! Going through all the training data and performing
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a sanity check if the prediction is problematic might have revealed the problem,
but would be infeasible. But the selection of – say a few thousand – prototypes
and criticisms is feasible and could have revealed a problem with the data: It might
have shown that there is a lack of images of people with dark skin, which indicates
a problem with the diversity in the dataset. Or it could have shown one or more
images of a person with dark skin as a prototype or (probably) as a criticism with the
notorious “gorilla” classification. I do not promise that MMD-critic would certainly
intercept these kind of mistakes, but it is a good sanity check.

Examples

I have taken the examples from the MMD-critic paper. Both applications are
based on image datasets. Each image was represented by image embeddings with
2048 dimensions. An image embedding is a vector with numbers which capture
abstract attributes of an image. Embedding vectors are usually extracted from neural
networks which are trained to solve an image recognition task, in this case the
ImageNet challenge. The kernel distances between the images were calculated using
these embedding vectors.

The first dataset contains different dog breeds from the ImageNet dataset. MMD-
critic is applied on data from two dog breed classes. With the dogs on the left, the
prototypes usually show the face of the dog, while the criticisms are images without
the dog faces or in different colors (like black and white). On the right side, the
prototypes contain outdoor images of dogs. The criticisms contain dogs in costumes
and other unusual cases.

Prototypes and criticisms for two types of dog breeds from the ImageNet dataset.
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Another illustration of MMD-critic uses a handwritten digit dataset.

Looking at the actual prototypes and criticisms, you might notice that the number of
images per digit is different. This is because a fixed number of prototypes and criti-
cisms were searched across the entire dataset and not with a fixed number per class.
As expected, the prototypes show different ways of writing the digits. The criticisms
include examples with unusually thick or thin lines, but also unrecognizable digits.

Prototypes and criticisms for a handwritten digits dataset.

Advantages

In a user study the authors of MMD-critic gave images to the participants, which
they had to visually match to one of two sets of images, each representing one of
two classes (e.g. two dog breeds). The participants performed best when the sets
showed prototypes and criticisms instead of random images of a class.

You are free to choose the number of prototypes and criticisms.

MMD-critic works with density estimates of the data. Thisworks with any type of
data and any type of machine learning model.

The algorithm is easy to implement.

MMD-critic is very flexible in the way it is used to increase interpretability. It can be
used to understand complex data distributions. It can be used to build an interpretable
machine learning model. Or it can shed light on the decision making of a black box
machine learning model.
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Finding criticisms is independent of the selection process of the prototypes.
But it makes sense to select prototypes according to MMD-critic, because then both
prototypes and criticisms are created using the samemethod of comparing prototypes
and data densities.

Disadvantages

You have to choose the number of prototypes and criticisms. As much as this can
be nice-to-have, it is also a disadvantage. Howmany prototypes and criticisms do we
actually need? The more the better? The less the better? One solution is to select the
number of prototypes and criticisms by measuring how much time humans have for
the task of looking at the images, which depends on the particular application. Only
when using MMD-critic to build a classifier do we have a way to optimize it directly.
One solution could be a screeplot showing the number of prototypes on the x-axis
and the MMD2 measure on the y-axis. We would choose the number of prototypes
where the MMD2 curve flattens.

The other parameters are the choice of the kernel and the kernel scaling parameter.
We have the same problem as with the number of prototypes and criticisms:How do
we select a kernel and its scaling parameter?Again, when we use MMD-critic as a
nearest prototype classifier, we can tune the kernel parameters. For the unsupervised
use cases of MMD-critic, however, it is unclear. (Maybe I am a bit harsh here, since
all unsupervised methods have this problem.)

It takes all the features as input, disregarding the fact that some features might
not be relevant for predicting the outcome of interest. One solution is to use only
relevant features, for example image embeddings instead of raw pixels. This works
as long as we have a way to project the original instance onto a representation that
contains only relevant information.

There is some code available, but it is not yet implemented as nicely packaged and
documented software.

Code and Alternatives

An implementation ofMMD-critic can be found here: https://github.com/BeenKim/MMD-
critic¹⁰⁹.
¹⁰⁹https://github.com/BeenKim/MMD-critic
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The simplest alternative to finding prototypes is k-medoids¹¹⁰ by Kaufman et. al
(1987).¹¹¹

¹¹⁰https://en.wikipedia.org/wiki/K-medoids
¹¹¹Kaufman, Leonard, and Peter Rousseeuw. “Clustering by means of medoids”. North-Holland (1987).

https://en.wikipedia.org/wiki/K-medoids
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Influential Instances

Machine learning models are ultimately a product of training data and deleting one
of the training instances can affect the resulting model. We call a training instance
“influential” when its deletion from the training data considerably changes the
parameters or predictions of the model. By identifying influential training instances,
we can “debug” machine learning models and better explain their behaviors and
predictions.

This chapter shows you two approaches for identifying influential instances, namely
deletion diagnostics and influence functions. Both approaches are based on robust
statistics, which provides statistical methods that are less affected by outliers or
violations of model assumptions. Robust statistics also provides methods to measure
how robust estimates from data are (such as a mean estimate or the weights of a
prediction model).

Imagine you want to estimate the average income of the people in your city and
ask ten random people on the street how much they earn. Apart from the fact that
your sample is probably really bad, how much can your average income estimate
be influenced by a single person? To answer this question, you can recalculate the
mean value by omitting individual answers or derive mathematically via “influence
functions” how the mean value can be influenced. With the deletion approach, we
recalculate the mean value ten times, omitting one of the income statements each
time, and measure how much the mean estimate changes. A big change means that
an instance was very influential. The second approach upweights one of the persons
by an infinitesimally small weight, which corresponds to the calculation of the first
derivative of a statistic or model. This approach is also known as “infinitesimal
approach” or “influence function”. The answer is, by the way, that your mean
estimate can be very strongly influenced by a single answer, since the mean scales
linearly with single values. A more robust choice is the median (the value at which
one half of people earn more and the other half less), because even if the person with
the highest income in your sample would earn ten times more, the resulting median
would not change.

Deletion diagnostics and influence functions can also be applied to the parameters
or predictions of machine learning models to understand their behavior better or to
explain individual predictions. Before we look at these two approaches for finding
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influential instances, we will examine the difference between an outlier and an
influential instance.

Outlier

An outlier is an instance that is far away from the other instances in the dataset.
“Far away” means that the distance, for example the Euclidean distance, to all the
other instances is very large. In a dataset of newborns, a newborn weighting 6 kg
would be considered an outlier. In a dataset of bank accounts with mostly checking
accounts, a dedicated loan account (large negative balance, few transactions) would
be considered an outlier. The following figure shows an outlier for a 1-dimensional
distribution.

Feature x follows a Gaussian distribution with an outlier at x=8.

Outliers can be interesting data points (e.g. criticisms). When an outlier influences
the model it is also an influential instance.

Influential instance



Example-Based Explanations 273

An influential instance is a data instance whose removal has a strong effect on the
trained model. The more the model parameters or predictions change when the
model is retrained with a particular instance removed from the training data, the
more influential that instance is. Whether an instance is influential for a trained
model also depends on its value for the target y. The following figure shows an
influential instance for a linear regression model.

A linear model with one feature. Trained once on the full data and once without the influential
instance. Removing the influential instance changes the fitted slope (weight/coefficient) drastically.

Why do influential instances help to understand the model?

The key idea behind influential instances for interpretability is to trace model
parameters and predictions back to where it all began: the training data. A learner,
that is, the algorithm that generates the machine learning model, is a function that
takes training data consisting of features X and target y and generates a machine
learning model. For example, the learner of a decision tree is an algorithm that selects
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the split features and the values at which to split. A learner for a neural network uses
backpropagation to find the best weights.

A learner learns a model from training data (features plus target). The model makes predictions for
new data.

We ask how the model parameters or the predictions would change if we removed
instances from the training data in the training process. This is in contrast to
other interpretability approaches that analyze how the prediction changes when we
manipulate the features of the instances to be predicted, such as partial dependence
plots or feature importance. With influential instances, we do not treat the model
as fixed, but as a function of the training data. Influential instances help us answer
questions about global model behavior and about individual predictions.Which were
the most influential instances for the model parameters or the predictions overall?
Which were the most influential instances for a particular prediction? Influential
instances tell us for which instances the model could have problems, which training
instances should be checked for errors and give an impression of the robustness of
the model. We might not trust a model if a single instance has a strong influence
on the model predictions and parameters. At least that would make us investigate
further.

How can we find influential instances? We have two ways of measuring influence:
Our first option is to delete the instance from the training data, retrain the model on
the reduced training dataset and observe the difference in the model parameters or
predictions (either individually or over the complete dataset). The second option is
to upweight a data instance by approximating the parameter changes based on the
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gradients of the model parameters. The deletion approach is easier to understand and
motivates the upweighting approach, so we start with the former.

Deletion Diagnostics

Statisticians have already done a lot of research in the area of influential instances,
especially for (generalized) linear regression models. When you search for “influ-
ential observations”, the first search results are about measures like DFBETA and
Cook’s distance. DFBETA measures the effect of deleting an instance on the model
parameters. Cook’s distance (Cook, 1977¹¹²) measures the effect of deleting an
instance on model predictions. For both measures we have to retrain the model
repeatedly, omitting individual instances each time. The parameters or predictions
of the model with all instances is compared with the parameters or predictions of the
model with one of the instances deleted from the training data.

DFBETA is defined as:

DFBETAi = β − β(−i)

where β is the weight vector when the model is trained on all data instances, and
β(−i) the weight vector when the model is trained without instance i. Quite intuitive
I would say. DFBETA works only for models with weight parameters, such as
logistic regression or neural networks, but not for models such as decision trees,
tree ensembles, some support vector machines and so on.

Cook’s distance was invented for linear regression models and approximations for
generalized linear regression models exist. Cook’s distance for a training instance is
defined as the (scaled) sum of the squared differences in the predicted outcome when
the i-th instance is removed from the model training.

Di =

∑n
j=1(ŷj − ŷ

(−i)
j )2

p ·MSE

where the numerator is the squared difference between prediction of the model with
and without the i-th instance, summed over the dataset. The denominator is the

¹¹²Cook, R. Dennis. “Detection of influential observation in linear regression.” Technometrics 19.1 (1977): 15-18.
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number of features p times the mean squared error. The denominator is the same
for all instances no matter which instance i is removed. Cook’s distance tells us
how much the predicted output of a linear model changes when we remove the i-th
instance from the training.

Can we use Cook’s distance and DFBETA for any machine learning model? DFBETA
requires model parameters, so this measure works only for parameterized models.
Cook’s distance does not require any model parameters. Interestingly, Cook’s dis-
tance is usually not seen outside the context of linear models and generalized linear
models, but the idea of taking the difference between model predictions before and
after removal of a particular instance is very general. A problem with the definition
of Cook’s distance is the MSE, which is not meaningful for all types of prediction
models (e.g. classification).

The simplest influence measure for the effect on the model predictions can be written
as follows:

Influence(−i)
=

1

n

n∑
j=1

∣∣∣ŷj − ŷ
(−i)
j

∣∣∣
This expression is basically the numerator of Cook’s distance, with the difference
that the absolute difference is added up instead of the squared differences. This was
a choice I made, because it makes sense for the examples later. The general form of
deletion diagnostic measures consists of choosing a measure (such as the predicted
outcome) and calculating the difference of the measure for the model trained on all
instances and when the instance is deleted.

We can easily break the influence down to explain for the prediction of instance j
what the influence of the i-th training instance was:

Influence(−i)
j =

∣∣∣ŷj − ŷ
(−i)
j

∣∣∣
This would also work for the difference in model parameters or the difference in the
loss. In the following example we will use these simple influence measures.

Deletion diagnostics example

In the following example, we train a support vector machine to predict cervical
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cancer given risk factors and measure which training instances were most influential
overall and for a particular prediction. Since the prediction of cancer is a classification
problem, we measure the influence as the difference in predicted probability for
cancer. An instance is influential if the predicted probability strongly increases
or decreases on average in the dataset when the instance is removed from model
training. The measurement of the influence for all 858 training instances requires to
train the model once on all data and retrain it 858 times (= size of training data) with
one of the instances removed each time.

Themost influential instance has an influence measure of about 0.01. An influence of
0.01 means that if we remove the 540-th instance, the predicted probability changes
by 1 percentage point on average. This is quite substantial considering the average
predicted probability for cancer is 6.4%. The mean value of influence measures over
all possible deletions is 0.2 percentage points. Now we know which of the data
instances were most influential for the model. This is already useful to know for
debugging the data. Is there a problematic instance? Are there measurement errors?
The influential instances are the first ones that should be checked for errors, because
each error in them strongly influences the model predictions.

Apart from model debugging, can we learn something to better understand the
model? Just printing out the top 10 most influential instances is not very useful,
because it is just a table of instances with many features. All methods that return
instances as output only make sense if we have a good way of representing them.
But we can better understand what kind of instances are influential when we ask:
What distinguishes an influential instance from a non-influential instance? We can
turn this question into a regression problem and model the influence of an instance
as a function of its feature values. We are free to choose any model from the chapter
on Interpretable Machine Learning Models. For this example I chose a decision tree
(following figure) that shows that data from women of age 35 and older were the
most influential for the support vector machine. Of all the women in the dataset 153
out of 858 were older than 35. In the chapter on Partial Dependence Plots we have
seen that after 40 there is a sharp increase in the predicted probability of cancer and
the Feature Importance has also detected age as one of the most important features.
The influence analysis tells us that the model becomes increasingly unstable when
predicting cancer for higher ages. This in itself is valuable information. This means
that errors in these instances can have a strong effect on the model.
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A decision tree that models the relationship between the influence of the instances and their
features. The maximum depth of the tree is set to 2.

This first influence analysis revealed the overall most influential instance. Now we
select one of the instances, namely the 7-th instance, for which we want to explain
the prediction by finding the most influential training data instances. It is like a
counterfactual question: How would the prediction for instance 7 change if we omit
instance i from the training process? We repeat this removal for all instances. Then
we select the training instances that result in the biggest change in the prediction
of instance 7 when they are omitted from the training and use them to explain the
prediction of themodel for that instance. I chose to explain the prediction for instance
7 because it is the instance with the highest predicted probability of cancer (7.35%),
which I thought was an interesting case to analyze more deeply. We could return
the, say, top 10 most influential instances for predicting the 7-th instance printed
as a table. Not very useful, because we could not see much. Again, it makes more
sense to find out what distinguishes the influential instances from the non-influential
instances by analyzing their features. We use a decision tree trained to predict the
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influence given the features, but in reality we misuse it only to find a structure and
not to actually predict something. The following decision tree shows which kind of
training instances where most influential for predicting the 7-th instance.

Decision tree that explains which instances were most influential for predicting the 7-th instance.
Data from women who smoked for 18.5 years or longer had a large influence on the prediction of
the 7-th instance, with an average change in absolute prediction by 11.7 percentage points of cancer
probability.

Data instances of women who smoked or have been smoking for 18.5 years or longer
have a high influence on the prediction of the 7-th instance. The woman behind the
7-th instance smoked for 34 years. In the data, 12 women (1.40%) smoked 18.5 years
or longer. Any mistake made in collecting the number of years of smoking of one of
these women will have a huge impact on the predicted outcome for the 7-th instance.

The most extreme change in the prediction happens when we remove instance
number 663. The patient allegedly smoked for 22 years, aligned with the results from
the decision tree. The predicted probability for the 7-th instance changes from 7.35%
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to 66.60% if we remove the instance 663!

If we take a closer look at the features of the most influential instance, we can see
another possible problem. The data say that the woman is 28 years old and has been
smoking for 22 years. Either it is a really extreme case and she really started smoking
at 6, or this is a data error. I tend to believe the latter. This is certainly a situation in
which we must question the accuracy of the data.

These examples showed how useful it is to identify influential instances to debug
models. One problem with the proposed approach is that the model needs to be
retrained for each training instance. The whole retraining can be quite slow, because
if you have thousands of training instances, you will have to retrain your model
thousands of times. Assuming the model takes one day to train and you have
1000 training instances, then the computation of influential instances – without
parallelization – will take almost 3 years. Nobody has time for this. In the rest of
this chapter, I will show you a method that does not require retraining the model.

Influence Functions

You: I want to know the influence a training instance has on a particular prediction.
Research: You can delete the training instance, retrain the model, and measure the
difference in the prediction.
You: Great! But do you have a method for me that works without retraining? It takes
so much time.
Research: Do you have a model with a loss function that is twice differentiable with
respect to its parameters?
You: I trained a neural network with the logistic loss. So yes.
Research: Then you can approximate the influence of the instance on the model
parameters and on the prediction with influence functions. The influence function
is a measure of how strongly the model parameters or predictions depend on a
training instance. Instead of deleting the instance, the method upweights the instance
in the loss by a very small step. This method involves approximating the loss
around the current model parameters using the gradient and Hessian matrix. Loss
upweighting is similar to deleting the instance.
You: Great, that’s what I’m looking for!
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Koh and Liang (2017)¹¹³ suggested using influence functions, a method of robust
statistics, to measure how an instance influences model parameters or predictions.
As with deletion diagnostics, the influence functions trace the model parameters and
predictions back to the responsible training instance. However, instead of deleting
training instances, the method approximates how much the model changes when
the instance is upweighted in the empirical risk (sum of the loss over the training
data).

The method of influence functions requires access to the loss gradient with respect
to the model parameters, which only works for a subset of machine learning models.
Logistic regression, neural networks and support vector machines qualify, tree-based
methods like random forests do not. Influence functions help to understand themodel
behavior, debug the model and detect errors in the dataset.

The following section explains the intuition and math behind influence functions.

Math behind influence functions

The key idea behind influence functions is to upweight the loss of a training instance
by an infinitesimally small step ϵ, which results in new model parameters:

θ̂ϵ,z = argmin
θ∈Θ

(1− ϵ)
1

n

n∑
i=1

L(zi, θ) + ϵL(z, θ)

where θ is the model parameter vector and θ̂ϵ,z is the parameter vector after
upweighting z by a very small number ϵ. L is the loss function with which the model
was trained, zi is the training data and z is the training instance which we want to
upweight to simulate its removal. The intuition behind this formula is: How much
will the loss change if we upweight a particular instance zi from the training data
by a little (ϵ) and downweight the other data instances accordingly? What would
the parameter vector look like to optimize this new combined loss? The influence
function of the parameters, i.e. the influence of upweighting training instance z on
the parameters, can be calculated as follows.

Iup,params(z) =
dθ̂ϵ,z
dϵ

∣∣∣∣∣
ϵ=0

= −H−1

θ̂
∇θL(z, θ̂)

¹¹³Koh, Pang Wei, and Percy Liang. “Understanding black-box predictions via influence functions.” arXiv preprint
arXiv:1703.04730 (2017).
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The last expression ∇θL(z, θ̂) is the loss gradient with respect to the parameters for
the upweighted training instance. The gradient is the rate of change of the loss of
the training instance. It tells us how much the loss changes when we change the
model parameters θ̂ by a bit. A positive entry in the gradient vector means that a
small increase in the corresponding model parameter increases the loss, a negative
entry means that the increase of the parameter reduces the loss. The first part H−1

θ̂
is

the inverse Hessian matrix (second derivative of the loss with respect to the model
parameters). The Hessian matrix is the rate of change of the gradient, or expressed
as loss, it is the rate of change of the rate of change of the loss. It can be estimated
using:

Hθ =
1

n

n∑
i=1

∇2
θ̂
L(zi, θ̂)

More informally: TheHessianmatrix records how curved the loss is at a certain point.
The Hessian is a matrix and not just a vector, because it describes the curvature of
the loss and the curvature depends on the direction in which we look. The actual
calculation of the Hessian matrix is time-consuming if you have many parameters.
Koh and Liang suggested some tricks to calculate it efficiently, which goes beyond
the scope of this chapter. Updating the model parameters, as described by the above
formula, is equivalent to taking a single Newton step after forming a quadratic
expansion around the estimated model parameters.

What intuition is behind this influence function formula? The formula comes from
forming a quadratic expansion around the parameters θ̂. That means we do not
actually know, or it is too complex to calculate how exactly the loss of instance z
will change when it is removed/upweighted. We approximate the function locally
by using information about the steepness (= gradient) and the curvature (= Hessian
matrix) at the current model parameter setting. With this loss approximation, we can
calculate what the new parameters would approximately look like if we upweighted
instance z:

θ̂−z ≈ θ̂ − 1

n
Iup,params(z)

The approximate parameter vector is basically the original parameter minus the
gradient of the loss of z (because wewant to decrease the loss) scaled by the curvature
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(= multiplied by the inverse Hessian matrix) and scaled by 1 over n, because that is
the weight of a single training instance.

The following figure shows how the upweighting works. The x-axis shows the value
of the θ parameter and the y-axis the corresponding value of the loss with upweighted
instance z. The model parameter here is 1-dimensional for demonstration purposes,
but in reality it is usually high-dimensional. Wemove only 1 over n into the direction
of improvement of the loss for instance z. We do not know how the loss would
really change when we delete z, but with the first and second derivative of the loss,
we create this quadratic approximation around our current model parameter and
pretend that this is how the real loss would behave.

Updating the model parameter (x-axis) by forming a quadratic expansion of the loss around the
current model parameter, and moving 1/n into the direction in which the loss with upweighted
instance z (y-axis) improves most. This upweighting of instance z in the loss approximates the
parameter changes if we delete z and train the model on the reduced data.

Wedo not actually need to calculate the new parameters, but we can use the influence

www.dbooks.org

https://www.dbooks.org/


Example-Based Explanations 284

function as a measure of the influence of z on the parameters.

How do the predictions change when we upweight training instance z? We can
either calculate the new parameters and then make predictions using the newly
parameterized model, or we can also calculate the influence of instance z on the
predictions directly, since we can calculate the influence by using the chain rule:

Iup,loss(z, ztest) =
dL(ztest, θ̂ϵ,z)

dϵ

∣∣∣∣∣
ϵ=0

= ∇θL(ztest, θ̂)
T dθ̂ϵ,z

dϵ

∣∣∣∣∣
ϵ=0

= −∇θL(ztest, θ̂)
TH−1

θ ∇θL(z, θ̂)

The first line of this equation means that we measure the influence of a training
instance on a certain prediction ztest as a change in loss of the test instance when
we upweight the instance z and get new parameters θ̂ϵ,z. For the second line of the
equation, we have applied the chain rule of derivatives and get the derivative of the
loss of the test instance with respect to the parameters times the influence of z on the
parameters. In the third line, we replace the expression with the influence function
for the parameters. The first term in the third line ∇θL(ztest, θ̂)

T is the gradient of the
test instance with respect to the model parameters.

Having a formula is great and the scientific and accurate way of showing things.
But I think it is very important to get some intuition about what the formula means.
The formula for Iup,loss states that the influence function of the training instance z
on the prediction of an instance ztest is “how strongly the instance reacts to a change
of the model parameters” multiplied by “how much the parameters change when
we upweight the instance z”. Another way to read the formula: The influence is
proportional to how large the gradients for the training and test loss are. The higher
the gradient of the training loss, the higher its influence on the parameters and
the higher the influence on the test prediction. The higher the gradient of the test
prediction, the more influenceable the test instance. The entire construct can also be
seen as a measure of the similarity (as learned by the model) between the training
and the test instance.

That is it with theory and intuition. The next section explains how influence
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functions can be applied.

Application of Influence Functions

Influence functions have many applications, some of which have already been
presented in this chapter.

Understanding model behavior

Different machine learning models have different ways of making predictions. Even
if two models have the same performance, the way they make predictions from the
features can be very different and therefore fail in different scenarios. Understanding
the particular weaknesses of a model by identifying influential instances helps to
form a “mental model” of the machine learning model behavior in your mind. The
following figure shows an example where a support vector machine (SVM) and
a neural network were trained to distinguish images of dogs and fish. The most
influential instances of an exemplary image of a fish were very different for both
models. For the SVM, instances were influential if they were similar in color. For the
neural network, instances were influential if they were conceptually similar. For the
neural network, even one image of a dog was among the most influential images,
showing that it learned the concepts and not the Euclidean distance in color space.
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Dog or fish? For the SVM prediction (middle row) images that had similar colors as the test image
were the most influential. For the neural network prediction (bottom row) fish in different setting
were most influential, but also a dog image (top right). Work by Koh and Liang (2017).

Handling domain mismatches / Debugging model errors

Handling domain mismatch is closely related to better understand the model be-
havior. Domain mismatch means that the distribution of training and test data is
different, which can cause the model to perform poorly on the test data. Influence
functions can identify training instances that caused the error. Suppose you have
trained a prediction model for the outcome of patients who have undergone surgery.
All these patients come from the same hospital. Now you use the model in another
hospital and see that it does not work well for many patients. Of course, you assume
that the two hospitals have different patients, and if you look at their data, you can
see that they differ in many features. But what are the features or instances that have
“broken” the model? Here too, influential instances are a good way to answer this
question. You take one of the new patients, for whom the model has made a false
prediction, find and analyze the most influential instances. For example, this could
show that the second hospital has older patients on average and the most influential
instances from the training data are the few older patients from the first hospital
and the model simply lacked the data to learn to predict this subgroup well. The
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conclusion would be that the model needs to be trained on more patients who are
older in order to work well in the second hospital.

Fixing training data

If you have a limit on how many training instances you can check for correctness,
how do you make an efficient selection? The best way is to select the most influential
instances, because – by definition – they have the most influence on the model. Even
if you would have an instance with obviously incorrect values, if the instance is not
influential and you only need the data for the prediction model, it is a better choice
to check the influential instances. For example, you train a model for predicting
whether a patient should remain in hospital or be discharged early. You really want
to make sure that the model is robust and makes correct predictions, because a
wrong release of a patient can have bad consequences. Patient records can be very
messy, so you do not have perfect confidence in the quality of the data. But checking
patient information and correcting it can be very time-consuming, because once you
have reported which patients you need to check, the hospital actually needs to send
someone to look at the records of the selected patients more closely, which might be
handwritten and lying in some archive. Checking data for a patient could take an
hour or more. In view of theses costs, it makes sense to check only a few important
data instances. The best way is to select patients who have had a high influence on
the prediction model. Koh and Liang (2017) showed that this type of selection works
much better than random selection or the selection of those with the highest loss or
wrong classification.

Advantages of Identifying Influential Instances

The approaches of deletion diagnostics and influence functions are very different
from the mostly feature-perturbation based approaches presented in the Model-
Agnostic chapter. A look at influential instances emphasizes the role of training
data in the learning process. This makes influence functions and deletion diagnostics
one of the best debugging tools for machine learning models. Of the techniques
presented in this book, they are the only ones that directly help to identify the
instances which should be checked for errors.

Deletion diagnostics are model-agnostic, meaning the approach can be applied to
any model. Also influence functions based on the derivatives can be applied to a
broad class of models.
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We can use these methods to compare different machine learning models and
better understand their different behaviors, going beyond comparing only the
predictive performance.

We have not talked about this topic in this chapter, but influence functions via
derivatives can also be used to create adversarial training data. These are
instances that are manipulated in such a way that the model cannot predict certain
test instances correctly when the model is trained on those manipulated instances.
The difference to the methods in the Adversarial Examples chapter is that the
attack takes place during training time, also known as poisoning attacks. If you are
interested, read the paper by Koh and Liang (2017).

For deletion diagnostics and influence functions, we considered the difference in the
prediction and for the influence function the increase of the loss. But, really, the
approach is generalizable to any question of the form: “What happens to … when
we delete or upweight instance z?”, where you can fill “…” with any function of your
model of your desire. You can analyze how much a training instance influences the
overall loss of the model. You can analyze how much a training instance influences
the feature importance. You can analyze how much a training instance influences
which feature is selected for the first split when training a decision tree.

Disadvantages of Identifying Influential Instances

Deletion diagnostics are very expensive to calculate because they require retraining.
But history has shown that computer resources are constantly increasing. A calcula-
tion that 20 years ago was unthinkable in terms of resources can easily be performed
with your smartphone. You can train models with thousands of training instances
and hundreds of parameters on a laptop in seconds/minutes. It is therefore not a big
leap to assume that deletion diagnostics will work without problems even with large
neural networks in 10 years.

Influence functions are a good alternative to deletion diagnostics, but only
for models with differentiable parameters, such as neural networks. They do not
work for tree-based methods like random forests, boosted trees or decision trees.
Even if you have models with parameters and a loss function, the loss may not be
differentiable. But for the last problem, there is a trick: Use a differentiable loss as
substitute for calculating the influence when, for example, the underlyingmodel uses
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the Hinge loss instead of some differentiable loss. The loss is replaced by a smoothed
version of the problematic loss for the influence functions, but the model can still be
trained with the non-smooth loss.

Influence functions are only approximate, because the approach forms a quadratic
expansion around the parameters. The approximation can be wrong and the influ-
ence of an instance is actually higher or lower when removed. Koh and Liang (2017)
showed for some examples that the influence calculated by the influence function
was close to the influence measure obtained when the model was actually retrained
after the instance was deleted. But there is no guarantee that the approximation will
always be so close.

There is no clear cutoff of the influence measure at which we call an instance
influential or non-influential. It is useful to sort the instances by influence, but
it would be great to have the means not only to sort the instances, but actually to
distinguish between influential and non-influential. For example, if you identify the
top 10 most influential training instances for a test instance, some of them may not
be influential because, for example, only the top 3 were really influential.

The influence measures only take into account the deletion of individual in-
stances and not the deletion of several instances at once. Larger groups of data
instances may have some interactions that strongly influence model training and
prediction. But the problem lies in combinatorics: There are n possibilities to delete
an individual instance from the data. There are n times (n-1) possibilities to delete
two instances from the training data. There are n times (n-1) times (n-2) possibilities
to delete three … I guess you can see where this is going, there are just too many
combinations.

Software and Alternatives

Deletion diagnostics are very simple to implement. Take a look at the code¹¹⁴ I wrote
for the examples in this chapter.

For linear models and generalized linear models many influence measures like
Cook’s distance are implemented in R in the stats package.

¹¹⁴https://github.com/christophM/interpretable-ml-book/blob/master/manuscript/06.5-example-based-influence-
fct.Rmd
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Koh and Liang published the Python code for influence functions from their paper in
a repository¹¹⁵. That is great! Unfortunately it is “only” the code of the paper and not a
maintained and documented Python module. The code is focused on the Tensorflow
library, so you cannot use it directly for black box models using other frameworks,
like sci-kit learn.

Keita Kurita wrote a great blog post for influence functions¹¹⁶ that helped me
understand Koh and Liang’s paper better. The blog post goes a little deeper into the
mathematics behind influence functions for black box models and also talks about
some of the mathematical ‘tricks’ with which the method is efficiently implemented.

¹¹⁵https://github.com/kohpangwei/influence-release
¹¹⁶http://mlexplained.com/2018/06/01/paper-dissected-understanding-black-box-predictions-via-influence-

functions/#more-641
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A Look into the Crystal Ball

What is the future of interpretable machine learning? This chapter is a speculative
mental exercise and a subjective guess how interpretable machine learning will
develop. I opened the book with rather pessimistic short stories and would like to
conclude with a more optimistic outlook.

I have based my “predictions” on three premises:

1. Digitization: Any (interesting) information will be digitized. Think of
electronic cash and online transactions. Think of e-books, music and videos.
Think of all the sensory data about our environment, our human behavior,
industrial production processes and so on. The drivers of the digitization of
everything are: Cheap computers/sensors/storage, scaling effects (winner takes
it all), new business models, modular value chains, cost pressure and much
more.

2. Automation: When a task can be automated and the cost of automation
is lower than the cost of performing the task over time, the task will be
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automated. Even before the introduction of the computer we had a certain de-
gree of automation. For example, the weaving machine automated weaving or
the steam machine automated horsepower. But computers and digitization take
automation to the next level. Simply the fact that you can program for-loops,
write Excel macros, automate e-mail responses, and so on, show how much
an individual can automate. Ticket machines automate the purchase of train
tickets (no cashier needed any longer), washing machines automate laundry,
standing orders automate payment transactions and so on. Automating tasks
frees up time and money, so there is a huge economic and personal incentive
to automate things. We are currently observing the automation of language
translation, driving and, to a small degree, even scientific discovery.

3. Misspecification: We are not able to perfectly specify a goal with all its
constraints. Think of the genie in a bottle that always takes your wishes
literally: “I want to be the richest person in theworld!” -> You become the richest
person, but as a side effect the currency you hold crashes due to inflation.
“I want to be happy for the rest of my life!” -> The next 5 minutes you feel very
happy, then the genie kills you.
“I wish for world peace!” -> The genie kills all humans.
We specify goals incorrectly, either because we do not know all the constraints
or because we cannot measure them. Let’s look at corporations as an example
of imperfect goal specification. A corporation has the simple goal of earning
money for its shareholders. But this specification does not capture the true
goal with all its constraints that we really strive for: For example, we do
not appreciate a company killing people to make money, poisoning rivers, or
simply printing its own money. We have invented laws, regulations, sanctions,
compliance procedures, labor unions and more to patch up the imperfect
goal specification. Another example that you can experience for yourself is
Paperclips¹¹⁷, a game in which you play a machine with the goal of producing
as many paperclips as possible. WARNING: It is addictive. I do not want to
spoil it too much, but let’s say things get out of control really fast. In machine
learning, the imperfections in the goal specification come from imperfect data
abstractions (biased populations, measurement errors, …), unconstrained loss
functions, lack of knowledge of the constraints, shifting of the distribution
between training and application data and much more.

¹¹⁷http://www.decisionproblem.com/paperclips/index2.html

http://www.decisionproblem.com/paperclips/index2.html
http://www.decisionproblem.com/paperclips/index2.html


A Look into the Crystal Ball 293

Digitization is driving automation. Imperfect goal specification conflicts with au-
tomation. I claim that this conflict is mediated partially by interpretation methods.

The stage for our predictions is set, the crystal ball is ready, now we look at where
the field could go!

The Future of Machine Learning

Without machine learning there can be no interpretable machine learning. Therefore
we have to guess where machine learning is heading before we can talk about
interpretability.

Machine learning (or “AI”) is associated with a lot of promises and expectations. But
let’s start with a less optimistic observation: While science develops a lot of fancy
machine learning tools, in my experience it is quite difficult to integrate them into
existing processes and products. Not because it is not possible, but simply because
it takes time for companies and institutions to catch up. In the gold rush of the
current AI hype, companies open up “AI labs”, “Machine Learning Units” and hire
“Data Scientists”, “Machine Learning Experts”, “AI engineers”, and so on, but the
reality is, in my experience, rather frustrating. Often companies do not even have
data in the required form and the data scientists wait idle for months. Sometimes
companies have such high expectation of AI and Data Science due to the media that
data scientists could never fulfill them. And often nobody knows how to integrate
data scientists into existing structures and many other problems. This leads to my
first prediction.

Machine learning will grow up slowly but steadily.

Digitalization is advancing and the temptation to automate is constantly pulling.
Even if the path of machine learning adoption is slow and stony, machine learning
is constantly moving from science to business processes, products and real world
applications.

I believe we need to better explain to non-experts what types of problems can be
formulated as machine learning problems. I know many highly paid data scientists
who perform Excel calculations or classic business intelligence with reporting and
SQL queries instead of applying machine learning. But a few companies are already
successfully usingmachine learning, with the big Internet companies at the forefront.
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We need to find better ways to integrate machine learning into processes and
products, train people and develop machine learning tools that are easy to use.
I believe that machine learning will become much easier to use: We can already
see that machine learning is becoming more accessible, for example through cloud
services (“Machine Learning as a service” – just to throw a few buzzwords around).
Once machine learning has matured – and this toddler has already taken its first
steps – my next prediction is:

Machine learning will fuel a lot of things.

Based on the principle “Whatever can be automated will be automated”, I conclude
that whenever possible, tasks will be formulated as prediction problems and solved
with machine learning. Machine learning is a form of automation or can at least
be part of it. Many tasks currently performed by humans are replaced by machine
learning. Here are some examples of tasks where machine learning is used to
automate parts of it:

• Sorting / decision-making / completion of documents (e.g. in insurance compa-
nies, the legal sector or consulting firms)

• Data-driven decisions such as credit applications
• Drug discovery
• Quality controls in assembly lines
• Self-driving cars
• Diagnosis of diseases
• Translation. For this book, I used a translation service called (DeepL¹¹⁸) powered
by deep neural networks to improve my sentences by translating them from
English into German and back into English.

• …

The breakthrough for machine learning is not only achieved through better comput-
ers / more data / better software, but also:

Interpretability tools catalyze the adoption of machine learning.

Based on the premise that the goal of a machine learning model can never be
perfectly specified, it follows that interpretable machine learning is necessary to

¹¹⁸https://deepl.com
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close the gap between the misspecified and the actual goal. In many areas and
sectors, interpretability will be the catalyst for the adoption of machine learning.
Some anecdotal evidence: Many people I have spoken to do not use machine learning
because they cannot explain the models to others. I believe that interpretability will
address this issue and make machine learning attractive to organisations and people
who demand some transparency. In addition to the misspecification of the problem,
many industries require interpretability, be it for legal reasons, due to risk aversion
or to gain insight into the underlying task. Machine learning automates the modeling
process and moves the human a bit further away from the data and the underlying
task: This increases the risk of problems with experimental design, choice of training
distribution, sampling, data encoding, feature engineering, and so on. Interpretation
tools make it easier to identify these problems.

The Future of Interpretability

Let us take a look at the possible future of machine learning interpretability.

The focus will be on model-agnostic interpretability tools.

It is much easier to automate interpretability when it is decoupled from the under-
lying machine learning model. The advantage of model-agnostic interpretability lies
in its modularity. We can easily replace the underlying machine learning model.
We can just as easily replace the interpretation method. For these reasons, model-
agnostic methods will scale much better. That is why I believe that model-agnostic
methods will become more dominant in the long term. But intrinsically interpretable
methods will also have a place.

Machine learning will be automated and, with it, interpretability.

An already visible trend is the automation of model training. That includes auto-
mated engineering and selection of features, automated hyperparameter optimiza-
tion, comparison of different models, and ensembling or stacking of the models.
The result is the best possible prediction model. When we use model-agnostic
interpretation methods, we can automatically apply them to any model that emerges
from the automated machine learning process. In a way, we can automate this
second step as well: Automatically compute the feature importance, plot the partial
dependence, train a surrogate model, and so on. Nobody stops you from auto-
matically computing all these model interpretations. The actual interpretation still
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requires people. Imagine: You upload a dataset, specify the prediction goal and at
the push of a button the best prediction model is trained and the program spits
out all interpretations of the model. There are already first products and I argue
that for many applications it will be sufficient to use these automated machine
learning services. Today anyone can build websites without knowing HTML, CSS
and Javascript, but there are still many web developers around. Similarly, I believe
that everyone will be able to train machine learning models without knowing how
to program, and there will still be a need for machine learning experts.

We do not analyze data, we analyze models.

The raw data itself is always useless. (I exaggerate on purpose. The reality is that
you need a deep understanding of the data to conduct a meaningful analysis.) I don’t
care about the data; I care about the knowledge contained in the data. Interpretable
machine learning is a great way to distill knowledge from data. You can probe
the model extensively, the model automatically recognizes if and how features are
relevant for the prediction (many models have built-in feature selection), the model
can automatically detect how relationships are represented, and – if trained correctly
– the final model is a very good approximation of reality.

Many analytical tools are already based on data models (because they are based on
distribution assumptions):

• Simple hypothesis tests like Student’s t-test.
• Hypothesis tests with adjustments for confounders (usually GLMs)
• Analysis of Variance (ANOVA)
• The correlation coefficient (the standardized linear regression coefficient is
related to Pearson’s correlation coefficient)

• …

What I am telling you here is actually nothing new. Sowhy switch from analyzing as-
sumption-based, transparentmodels to analyzing assumption-free black boxmodels?
Because making all these assumptions is problematic: They are usually wrong (unless
you believe that most of the world follows a Gaussian distribution), difficult to check,
very inflexible and hard to automate. In many domains, assumption-based models
typically have a worse predictive performance on untouched test data than black
box machine learning models. This is only true for big datasets, since interpretable
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models with good assumptions often perform better with small datasets than black
box models. The black box machine learning approach requires a lot of data to
work well. With the digitization of everything, we will have ever bigger datasets
and therefore the approach of machine learning becomes more attractive. We do
not make assumptions, we approximate reality as close as possible (while avoiding
overfitting of the training data). I argue that we should develop all the tools that
we have in statistics to answer questions (hypothesis tests, correlation measures,
interaction measures, visualization tools, confidence intervals, p-values, prediction
intervals, probability distributions) and rewrite them for black box models. In a way,
this is already happening:

• Let us take a classical linear model: The standardized regression coefficient is al-
ready a feature importance measure. With the permutation feature importance
measure, we have a tool that works with any model.

• In a linear model, the coefficients measures the effect of a single feature on the
predicted outcome. The generalized version of this is the partial dependence
plot.

• Test whether A or B is better: For this we can also use partial dependence
functions. What we do not have yet (to the best of my best knowledge) are
statistical tests for arbitrary black box models.

The data scientists will automate themselves.

I believe that data scientists will eventually automate themselves out of the job for
many analysis and prediction tasks. For this to happen, the tasksmust bewell-defined
and there must to be some processes and routines around them. Today, these routines
and processes are missing, but data scientists and colleagues are working on them.
As machine learning becomes an integral part of many industries and institutions,
many of the tasks will be automated.

Robots and programs will explain themselves.

We need more intuitive interfaces to machines and programs that make heavy use
of machine learning. Some examples: A self-driving car that reports why it stopped
abruptly (“70% probability that a kid will cross the road”); A credit default program
that explains to a bank employee why a credit application was rejected (“Applicant
has too many credit cards and is employed in an unstable job.”); A robot arm that
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explains why it moved the item from the conveyor belt into the trash bin (“The item
has a craze at the bottom.”).

Interpretability could boost machine intelligence research.

I can imagine that by doing more research on how programs and machines can
explain themselves, we can improve improve our understanding of intelligence and
become better at creating intelligent machines.

In the end, all these predictions are speculations and we have to see what the future
really brings. Form your own opinion and continue learning!



Contribute to the Book
Thank you for reading my book about Interpretable Machine Learning. The book is
under continuous development. It will be improved over time and more chapters will
be added. Very similar to how software is developed.

All text and code for the book is open source and available at github.com¹¹⁹. On
the Github page you can suggest fixes and open issues¹²⁰ if you find a mistake or if
something is missing.

If you want to help out even more, the issues page is also the best place to
find problems to fix and a good way to contribute to the book. If you are inter-
ested in a larger contribution, please send me a message with your concrete idea:
christoph.molnar.ai@gmail.com¹²¹.

¹¹⁹https://github.com/christophM/interpretable-ml-book
¹²⁰https://github.com/christophM/interpretable-ml-book/issues
¹²¹mailto:christoph.molnar.ai@gmail.com
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Citing this Book
If you found this book useful for your blog post, research article or product, I would
be grateful if you would cite this book. You can cite the book like this:

1 Molnar, Christoph. "Interpretable machine learning. A Guide for Making \

2 Black Box Models Explainable", 2019. https://christophm.github.io/inter\

3 pretable-ml-book/.

Or use the following bibtex entry:

1 @book{molnar2019,

2 title = {Interpretable Machine Learning},

3 author = {Christoph Molnar},

4 note = {\url{https://christophm.github.io/interpretable-ml-book\

5 /}},

6 year = {2019},

7 subtitle = {A Guide for Making Black Box Models Explainable}

8 }

I am always curious about where and how interpretation methods are used in
industry and research. If you use the book as a reference, it would be great if you
wrote me a line and told me what for. This is of course optional and only serves
to satisfy my own curiosity and to stimulate interesting exchanges. My mail is
christoph.molnar.ai@gmail.com .
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