DATA DRIVEN DOGUMENTS

03.J5

TIPS AND TRICKS

1111111

MALCOLM MACLEAN

https://www.dbooks.org/

D3 Tips and Tricks v3.x

Interactive Data Visualization in a Web Browser

Malcolm Maclean
This book is for sale at http://leanpub.com/D3-Tips-and-Tricks

This version was published on 2019-12-24

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build

traction once you do.

© 2013 - 2019 Malcolm Maclean

http://leanpub.com/D3-Tips-and-Tricks
http://leanpub.com/
http://leanpub.com/manifesto

Also By Malcolm Maclean

Leaflet Tips and Tricks

Raspberry Pi: Measure, Record, Explore.
Just Enough Linux

Just Enough Co-Authoring in Leanpub
Just Enough ownCloud on a Raspberry Pi
Just Enough Raspberry Pi

Just Enough Ghost on a Raspberry Pi
Just Enough Nagios on a Raspberry Pi

D3 Tips and Tricks v4.x

Never Enough Ice Cream

Raspberry Pi Computing: Temperature Measurement

Simply Leadership

Raspberry Pi Computing: Ultrasonic Distance Measurement

Raspberry Pi Computing: Analog Measurement
PiMetric: Monitoring using a Raspberry Pi
Raspberry Pi Computing: Gas Sensors

www. dbooks. or g

http://leanpub.com/u/d3noob
http://leanpub.com/leaflet-tips-and-tricks
http://leanpub.com/RPiMRE
http://leanpub.com/jelinux
http://leanpub.com/jeco-authoring
http://leanpub.com/jeocrpi
http://leanpub.com/jerpi
http://leanpub.com/jeghost
http://leanpub.com/jenagios
http://leanpub.com/d3-t-and-t-v4
http://leanpub.com/neverenoughicecream
http://leanpub.com/rpctemp
http://leanpub.com/simplyleadership
http://leanpub.com/rpcultra
http://leanpub.com/rpcanalog
http://leanpub.com/pimetric
http://leanpub.com/rpcgas
https://www.dbooks.org/

Contents

Acknowledgements
Mike
Partners, Supporters and Contributors.
Proof Reading

The

d3js Community

Coverart o e e
Leanpub

Mak

e sure you get the most up to date copy of D3 Tips and Tricks

What is d3.js?

Introduction e,

What do you need to get started?
HTML . .
JavaScript
Cascading Style Sheets (CSS)

Web
PHP

SEIVEIS . o o o e e

Other Useful Stuff

Text Editor o
Getting D3 e
Where to get informationond3.js L.
d3js.0rg . ..
Google Groups o o
Stack Overflow

HTML .

CSS

D3 JavaScript

Setting up the margins and the grapharea.
Gettingthe Data
Formatting the Date / Time.,

| NCHN \CHIN \C S U WU HN

w

o~

[o-lNeRNe TN e e NN HNE) BN,

10

CONTENTS

Setting Scales Domainsand Ranges 30
Settingupthe Axes 34
Adding data to the line function oL 38
Adding the SVG Canvas. 38
Actually Drawing Something! L. 40
Wrap Up . . . 41
Things you can do with the basicgraph 43
Adding Axis Labels 43
How toadd atitletoyourgraph 51
Smoothing out graph lines 53
Adding grid linestoagraph 61
The grid line CSS 61
Define the grid line functions 63
Draw thelines 64
Makeadashedline L 66
Filling an area under the graph 68
CSSforanareafill 68
Define the area function L 69
Drawthearea e 70
Filling an area above theline 71
Adding a drop shadow to allow text to stand out on graphics. 73
CSS for white shadowy background 74
Drawing the white shadowy background. 74
Adding more than one linetoagraph 76
Labelling multiple linesonagraph 81
Multiple axes foragraph 83
How to rotate the text labels forthe x Axis. 87
Format a date / time axis with specified values 89
Update data dynamically -On Click 91
AddingaButton 91
Updating thedata 93
Changes to the d3.jscode layout 93
What’s happening inthecode?. o oo oL 94
Update data dynamically — Automatically. 98
Elements, Attributesand Styles o 100
The Framework 100
Elements 105
Circle 106
Ellipse . . . o o o 107
Rectangle L 108
Line e 110
Polyline 111
Polygon 112
Path 113
Clipped Path (AKA clipPath) 114

www. dbooks. or g

https://www.dbooks.org/

CONTENTS

TexXt . . e 117
Anchor at the bottom, middle of thetext: 117

Anchor at the bottom, right of thetext: 119

Anchor at the middle, left of thetext: 119

Anchor in the middle, centre of the text: 120

Anchor in the middle, right of the text: 120

Anchor at the top, left of the text: 121

Anchor at the top, middle of the text: 121

Anchor at the top, right of the text: 122
Attributes L e 123
- A 123

XL, X2, YL, V2 o i e 124
points 125

CXy OV e 126

T e 127
TX,TY o o e 128
transform (translate(x,y), scale(k), rotate(a)) 129
transform (translate(X,y)) . . . o o i i i i i i i e e e e 129
transform (scale(k)) . . . o o i i i i i i e e e e e 130
transform (rotate(a)) i i i i e e 131

width, height e e 135
text-anchor e e e e e e e e e 136

AX, AY . L e e e e e e e e e e e e e e e e e e 137
textlength L e e e e e e e 139
lengthAdjust e e e e e e e e e e e e 140
Styles . . o o 142
50 143
SErOKE . . . L e e e e e e e e e 144
OPaCItY . o e e e e e e e e e e e e e e e 145
fill-opacity e e e e e e 146
stroke-opacity L e e e e e e 147
stroke-width L e e e e e 148
stroke-dasharray i i i e e e e e e e e e e 149
stroke-linecap i i i e e e e e e e e e e e e 150
stroke-1linejoin e e e e e e e e e e e 152
writing-mode e e e e e e e e 153
glyph-orientation-vertical e 154
Using styles in Cascading Style Sheets 155
Assorted Tipsand Tricks 158
Change a line chart into a scatterplot 158
Adding tooltips. 161
Transitions e 161
Events e 162
Gettipping 162

OILITIOUSEOVET . . v v o ot v e 165

CONTENTS

ONMLMOUSEOUL e 165
Including an HTML link inatool tip 165
Moar Links!. 167

What are the predefined, named colours? 170
Selecting / filtering a subset of objects L 174
Select items with an IF statement. L. 176
Applying a colour gradient to a line based onvalue. 178
Applying a colour gradienttoanareafill. L o oL 182
Show / hide an element by clicking on another element 184
Thecode 184

Export an image from a d3.js page asa SVGor bitmap 186
Bitmaps 186
Vector Graphics (Specifically SVG) 188
Let’s get exporting! 189
Copying the image off the webpage 190

Open the SVGImageand Edit 190
Savingasabitmap 191

Using HTML inputs with d3.js o . 194
Whatisan HTML input? 194
Using arange input with d3.js 196
Thecode 196

The explanation 197

Using more than oneinput 201
Thecode 201

The explanation 203

Rotate text withaninput 205
The explanation 205

Use anumber input withd3.js. L L 207
Change more than one element withaninput 208
Thecode 208

The explanation 210

Add an HTML table toyour graph 212
HTML Tables e e e 213
Firstthe CSS 214
Nowthed3.jscode 214

A small but cunning change... o L o oL 217
Explaining the d3.js code (reloaded)., 217
Wrapup 219
More table madness: sorting, prettifying and adding columns 220
Add another column of information: 220
Sortingonacolumn 222
Prettifying (actually just capitalising the header for each column) 222
Addborders 223
Adding web links to d3.jsobjects 225
It’s all about the ‘a’ and the xlink® 226
Addinginthelinks 226

www. dbooks. or g

https://www.dbooks.org/

CONTENTS

Making the mouse pointer ignore an object 227
Understanding JavaScript Object Notation (JSON) 229
Using the Yahoo Query Language (YQL) togetdata. 233

YOLbyexample. 233
Using Plunker for development and hosting your D3 creations. 236

Bar Charts 241
Thedata 241
Thecode 242
The bar chart explained 244

Tree Diagrams 249
What is a Tree Diagram? 249
A simple Tree Diagram explained 251
Styling nodesin atree diagram 260

Changing the nodes to different shapes 263

Using imagesasnodes 264
Making a vertical tree diagram o 266
Generating a tree diagram from ‘flat’data 268
Generating a tree diagram from externaldata 271
Generating a tree diagram froma CSVfile. 273
An interactive tree diagram 274

Force Layout Diagrams 276
What is a Force Layout Diagram? 276
Force directed graph examples. 279

Basic force directed graph showing directionality 281

Directional Force Layout Diagram (Node Highlighting) 292

Directional Force Layout Diagram (varying link opacity) 295

Directional Force Layout Diagram (Unique Node Colour) 297

Bullet Charts 298
Introduction to bullet chart structure Lo L 298
D3.jscode for bulletcharts 299
Adapting and changing bullet chart components. 306

Understand yourdata 306

Add as many individual chartsasyouwant. 307

Add more ranges and measures 307

Updating a bullet chart automatically 309

Mapping withd3.js 312
Examples 312
GeoJSON and TopoJSON 317
Starting withasimplemap 318

CeNter e 322

scale ... 323

rotate e 324

Zooming and panning amap. e 326

CONTENTS

Displaying pointsonamap.o 327
Making maps with d3.js and leaflet.js combined 332
leaflet.js Overviewo 332
Leaflet map with d3.js objects that scale withthemap 333
Leaflet map with d3.js elements that are overlaidonamap 340
D3.js Examples Explained 347
Dynamically retrieve historical stock records via YQL 348
Purpose 348
Thecode 348

The description e 353
Linux Processes via Interactive Tree diagram 357
Purpose 357

The Code 357
Description e 363
Multi-line graph with automatic legend and toggling show / hide lines. 367
Purpose 367

The Code 368
Description 370
Nestingthedata 370
Applyingthecolours L 372

Adding thelegend. 373

Making it interactive 376

My Favourite tooltip method for aline graph. 378
Purpose 378

The Code 379
Description 382
Adding the circletothegraph 383

Set the area to capture the mouse movements 384
Determining which date will be highlighted 385

Move the circle to the appropriate position 386
Complex VErsiont e 387
Code /Explanation 388
Exploring Event Data by Combination Scatter Plot and Interactive Line Graphs . .. 391
Purpose 391

The Code 392
Wrangling thedata 392

Sizing Everything Up 394

The Scatter Plot 394

Date and Time Graphs 396

Mouse Movement Information Display 396
Labelling 397
Difference Chart: Science vs Style. 398
Purpose 399
The Code 400
Description 403

www. dbooks. or g

https://www.dbooks.org/

CONTENTS

Nestingthedata 404
Wranglethedata 405
Cheating withthedomain. 406
datavsdatum 407

Setting uptheclipPaths 407
Clipping and adding theareas 409

Draw the linesand theaxes 411

Adding a bit more to our difference chart. o L. 412
AddaYaxislabel 412
Addatitle 413

Adding thelegend. 413
Linktheareas 415

The finalresult. 415
Crossfilter, dc.js and d3.js for Data Discovery 417
Introduction to Crossfilter 417
Map-reduce 417
What can crossfilterdo? L 419
Introduction todc.js L 421
Bar Chart 422

Pie Chart e 422
Row Chart 423
Line Chart 423
Bubble Chart. 423
Geo Choropleth Chart 424
DataTable 424
Bare bones structure for dc.js and crossfilterpage L 426
AddaBarChart. 435
Positionthe barchart 435
Assign the bar charttype L 436
Dimension and group the bar chartdata 436
Configure the bar chart parameters 437
Justone more thing... 441
Just yet another thing... 441
Positionthechart 442
Assigntype e 442
Dimension and Group 442
Configure chart parameters 442
AddalLine Chart. 444
Position the linechart 444
Assign the line charttype L 445
Dimension and group the line chartdata. 445
Configure the line chart parameters. 446
Adding tooltipstoalinechart L 449
AddaRow Chart. 452

Position the row chart 453

CONTENTS

Assigntherow charttype 454
Dimension and group the row chartdata 454
Configure the row chart parameters 455
AddaPieChart. 459
Positionthe piechart. 460
Assign the pie charttype 461
Dimension and group the pie chartdata 461
Configure the pie chart parameters 462
Resetting filters 465
Making the reset label a little bit better behaved. 466
Resetall thecharts 468
Using Bootstrap withd3.js 472
What is Bootstrap? 472
Layout grid o e 473
Interface components 474
Incorporating Bootstrap into your htmlcode. 476
Arranging more than one graphonawebpage. 478
First make a page withtwo graphs 478
Arrange the graphs with the same anchor 480
Arrange the graphs with separateanchors 481
How does Bootstrap’s grid layout work 483
Arrange more than one d3.js graph with Bootstrap 485

A more complicated Bootstrap layout example L. 487
Working with GitHub, Gist and bl.ocks.org 495
General stuff about bl.ocks.org. 495
Installing the plug-in for bl.ocks.org for easy block viewing 496
Loading a thumbnail into Gist for bl.ocks.org d3 graphs 497
Setting the scene: 497
Enough of the scene setting. Let’s git going :-). 499
Wrap up. 501
Appendices 503
Simple Line Graph 503
Graph with Many Features 506
Graph with Area Gradient 511
BarChart. 514
Linking Objects 517
PHP with MySQL Access oo oo 519
Simple Sankey Graph 520
Simple Tree Diagram 523
Interactive Tree Diagram 526
Force Layout Diagram 531
Bullet Chart 536
Map with zoom / panandcities 539

www. dbooks. or g

https://www.dbooks.org/

Acknowledgements

Mike

First and foremost I would like to express my thanks to Mike Bostock, the driving force behind
d3.js. His efforts are tireless and his altruism in making his work open and available to the masses
is inspiring.

Partners, Supporters and Contributors.

Mike has worked with a crew of like-minded individuals in bringing D3 to the World. Vadim
Ogievetsky and Jeffrey Heer share honours for the work on D3: Data-Driven Documents' and
while there has been a cast of over 40 people contributing to the D3 code base, Jason Davies
stands out as the man who has provided a generous portion especially in the area of mapping.

Nick Zhu has created a fantastic resource in dc.js* (which is built on top of d3.js and crossfilter)
and has been kind enough to provide good advice and permission to include some of his work
in the dc.js section.

Advice given by Christophe Viau has been a great help in getting me settled into the on-line
world and his energy in managing and directing the D3 community is amazing.

Proof Reading

[am particularly grateful for the assistance given by Filiep Spyckerelle and Robin Bennett who
selflessly donated their time and expertise in proofreading above and beyond the call of duty
(where this document contains any errors, they are most certainly mine).

The d3.js Community

Big thanks go out to the D3 community. Whether providing advice on Google Groups or Stack
Overflow, contributing examples on bl.ocks.org or just giving back in the form of time and effort
to similar work. Well done all.

'http://vis.stanford.edu/papers/d3
*https://github.com/NickQiZhu/dc.js/wiki

http://vis.stanford.edu/papers/d3
https://github.com/NickQiZhu/dc.js/wiki
http://vis.stanford.edu/papers/d3
https://github.com/NickQiZhu/dc.js/wiki

Acknowledgements 2

Cover art

Out of the blue and in yet another example of the friendly and giving nature of people involved
in this community I was contacted by Jose (‘Tactician Jenro’) who offered to use his skills to
design a cover for the book. I think he did a great job and was super helpful. If you think that he
could help you out with a project, you can get in touch with him at jenrothetactician@gmail.com
or (@tacticianjenro.

DON'T BE AFR

A sampling of works by Tactician Jenro

Leanpub

Lastly, I want to pay homage to Leanpub® who have made the publishing of this document
possible. They offer an outstanding service for self-publishing and have made the task of
providing and distributing content achievable.

Make sure you get the most up to date copy of D3
Tips and Tricks

If you’ve received a copy of this book from any location other than Leanpub* then it’s possible
that you haven’t got the latest version. Go to https://leanpub.com/D3-Tips-and-Tricks and
download the most recent version. After all, it won’t cost you anything :-). If you find some value
in the work, please consider contributing when you download it so that Leanpub get something
for hosting the book (and I'll think of you fondly). Please also be aware that this book is for
version 3 of d3.js. If you are considering writing code for version 4 you will want the new edition
here®. Version 5 of the book is here®.

*https://leanpub.com/
“https://leanpub.com/D3- Tips-and- Tricks
*https://leanpub.com/d3-t-and-t-v4
°https://leanpub.com/d3-t-and-t-v5

www. dbooks. or g

https://leanpub.com/
https://leanpub.com/D3-Tips-and-Tricks
https://leanpub.com/d3-t-and-t-v4
https://leanpub.com/d3-t-and-t-v5
https://leanpub.com/
https://leanpub.com/D3-Tips-and-Tricks
https://leanpub.com/d3-t-and-t-v4
https://leanpub.com/d3-t-and-t-v5
https://www.dbooks.org/

What is d3.js?

d3.js” (hereafter abridged as D3) is “a JavaScript library for manipulating documents based on
data”.

But that description doesn’t do it justice.

D3 is all about helping you to take information and make it more accessible to others via a web
browser.

It’s a JavaScript library. That means that it’s a tool that can be used in conjunction with other
tools to get a job done. Those other tools are mainly HTML and CSS (amongst others) but you
don’t need to know too much about either to use D3 (although it will help :-)).

It’s an open framework, which means that there are no hidden mysteries about how it does its
magic and it allows others to contribute to a constant cycle of improvement.

It’s built to leverage web standards which means that modern browsers don’t have to do anything
special to use D3, they just have to support the framework that the Internet has adopted for ease
of use.

The beauty of D3 is that it allows you to associate data and what appears on the screen in a way
that directly links the two. Change the data and you change the object on the screen. D3’s trick
is to let you set what appears on the screen. A circle, a line, a point on a map, a graph, a bouncing
ball, a gradient (and way, way more). Once the data and the object are linked the possibilities
are endless.

It won't do everything for you in your quest to create the perfect visualization, but it does give
you the ability to achieve that goal.

It bridges the gap between the static display of data and the desire of people to mess about with
it. That applies equally to the developer who wants to show something cool and to the end user
who wants to be able to explore information interactively.

It was (and still is being) developed by Mike Bostock® who has not just spent time writing
the code, but writing the documentation® for D3 as well. There is an extensive community of
supporters who also contribute to the code, provide technical support'® online'! and generally
have fun creating amazing visualizations'*. Their contributions are extraordinary (you only have
to look at the work of Jason Davies to be amazed).

"http://d3js.org/

*http://bost.ocks.org/mike/
*https://github.com/mbostock/d3/wiki
"%https://groups.google.com/forum/?fromgroups#!forum/d3-js
http://stackoverflow.com/questions/tagged/d3.js
?https://github.com/mbostock/d3/wiki/Gallery

http://d3js.org/
http://bost.ocks.org/mike/
https://github.com/mbostock/d3/wiki
https://groups.google.com/forum/?fromgroups#!forum/d3-js
http://stackoverflow.com/questions/tagged/d3.js
https://github.com/mbostock/d3/wiki/Gallery
http://d3js.org/
http://bost.ocks.org/mike/
https://github.com/mbostock/d3/wiki
https://groups.google.com/forum/?fromgroups#!forum/d3-js
http://stackoverflow.com/questions/tagged/d3.js
https://github.com/mbostock/d3/wiki/Gallery

Introduction

I never set out to write treatise on D3...

[am a simple user of this extraordinary framework and when I say simple, I really mean I
had no idea how to get it to do anything when I started; I needed to do a lot of searching and
learned by trial-and-error (emphasis on the errors which were entirely mine). The one thing that
I did know was that the example graphics shown by Mike Bostock and others were the sort of
graphical goodness that I wanted to play with.

So to get from the point of having no skills whatsoever to the point where I could begin to code
up something to display data in a way I wanted, I had to capture the information as I went. The
really cool thing about this sort of process is that it doesn’t need to occur all at once. You can
start with no knowledge whatsoever (or pretty close) and by standing on the shoulders of other’s
work, you can add building blocks to improve what you’re seeing and then change the blocks to
adapt and improve.

For example (and this is pretty much how it started). I wanted to draw a line graph, so I imported
an example and then got it running locally on my computer. Then I worked out how to change
the example data for my data. Then I worked out how to move the Y axis from the right to the
left. Then how to make the axis labels larger, change the tick size, make the lines fatter, change
the colour, add a label, fill the area under the graph, put the graph in the centre of the page, add a
glow to the text to help it stand out, put it in a framework (bootstrap), add buttons to change data
sets, animate the transitions between data sets, update the data automatically when it changed,
add a pan and zoom feature, turn parts of the graph into hyperlinks to move to other graphs...
And then I started on bar graphs :-).

The point to take away from all of this is that any one graph is just a collection of lots of blocks
of code, each block designed to carry out a specific function. Pick the blocks you want and
implement them.

I found it was much simpler to work on one thing (block) at a time, and this helped greatly to
reduce the uncertainty factor when things didn’t work as anticipated. I'm not going to pretend
that everything I've done while trying to build graphs employs the most elegant or efficient
mechanism, but in the end, if it all works on the screen, I walk away happy :-). That’s not to
say I have deliberately ignored any best practices — I just never knew what they were. Likewise,
wherever possible, I have tried to make things as extensible as possible.

You will find that I have typically eschewed a simple “Do this approach” for more of a story
telling exercise. This means that some explanations are longer and more flowery than might be
to everyone’s liking, but there you go, try to be brave :-)

I’'m sure most authors try to be as accessible as possible. I'd like to do the same, but be warned...
There’s a good chance that if you ask me a technical question I may not know the answer. So
please be gentle with your emails :-).

Email: d3noobmail+contact@gmail.com

www. dbooks. or g

https://www.dbooks.org/

What do you need to get started?

Let’s be frank. Not everyone will be inclined to develop a graphic using D3.

However, that doesn’t mean that it’s beyond those with a little computer savy and a willingness
to have a play. Remember failure is your friend (I am fairly sure that I am also related by blood).
Just learn from your mistakes and it’ll all work out.

So, here in no particular order is a list of good things to know. None of which are essential, but
any one (or more) of which will make your life slightly easier.

« HyperText Markup Language (HTML)
» JavaScript

« Cascading Style Sheets (CSS)

« Web Servers

- PHP

DON'T FREAK OUT!

First things first. This isn’t rocket science. It’s just teh interwebs. We’ll take it gently, and
I’ll be a little more specific in the following sections.

HTML

This stands for HyperText Markup Language and is the stuff that web pages are made of. Check
out the definition and other information on Wikipedia® for a great overview. Just remember
that all you're going to use HTML for is to hold the code that you will use to present your
information. This will be as a .html (or .htm) file and they can be pretty simple (we’ll look at
some in a moment).

JavaScript

JavaScript'* is what’s called a ‘scripting language’. It is the code that will be contained inside the
HTML file that will make D3 do all its fanciness. In fact, D3 is a JavaScript Library, it’s the native
language for using D3.

Knowing a little bit about this would be really good, but to be perfectly honest, I didn’t know
anything about it before I started. I read a book along the way (JavaScript: The Missing Manual*

Phttp://en.wikipedia.org/wiki/HTML
"*http://en.wikipedia.org/wiki/JavaScript
Phttp://shop.oreilly.com/product/9780596515898.do

http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/JavaScript
http://shop.oreilly.com/product/9780596515898.do
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/JavaScript
http://shop.oreilly.com/product/9780596515898.do

What do you need to get started? 6

from O’Reilly) and that helped with context, but the examples that are available for D3 graphics
are understandable, and with a bit of trial and error, you can figure out what’s going on.

In fact, most of what this collection of information’s about is providing examples and explana-
tions for the JavaScript components of D3.

Cascading Style Sheets (CSS)

Cascading Style Sheets'® (everyone appears to call them ‘Style Sheets’ or ‘CSS’) is a language
used to describe the formatting (or “look and feel”) of a document written in a markup language.
The job of CSS is to make the presentation of the components you will draw with D3 simpler
by assigning specific styles to specific objects. One of the cool things about CSS is that it is
an enormously flexible and efficient method for making everything on the screen look more
consistent and when you want to change the format of something you can just change the CSS
component and the whole look and feel of your graphics will change.

The wonderful World of Cascading Style Sheets

o Full disclosure

I know CSS is a ridiculously powerful tool that would make my life easier, but I use it in
a very basic (and probably painful) way. Don’t judge me, just accept that the way I've
learnt was what I needed to get the job done (this probably means that noobs like myself
will find it easier, but where possible try and use examples that include what look like
logical CSS structures)

Web Servers

Ok, this can go one of two ways. If you have access to a web server and know where to put the
files so that you can access them with your browser, you’re on fire. If you’re not quite sure, read
on...

“http://en.wikipedia.org/wiki/Css

www. dbooks

.org

http://en.wikipedia.org/wiki/Css
http://en.wikipedia.org/wiki/Css
https://www.dbooks.org/

What do you need to get started? 7

A web server will allow you to access your HTML files and will provide the structure that allows
it to be displayed on a web browser. There are some simple instructions on the main D3 wiki
page'” for setting up a local server. Or you might have access to a remote one and be able to
upload your files. However, for a little more functionality and a whole lot of ease of use, I can
thoroughly recommend WampServer as a free and simple way to set up a local web server that
includes PHP and a MySQL database (more on those later). Go to the WampServer web page
(http://www.wampserver.com/en/) and see if it suits you.

Throughout this document I will be describing the files and how they’re laid out in a way that
has suited my efforts while using WAMP, but they will work equally well on a remote server. I
will explain a little more about how I arrange the files later in the ‘Getting D3’ section.

WAMP = Windows + Apache + MySQL + PHP

There are other options of course. You could host code on GitHub'® and present the resulting
graphics on bl.ocks.org®. This is a great way to make sure that your code is available for peer
review and sharing with the wider community.

One such alternative option that I have recently started playing with is Plunker (http://plnkr.co/)
This is a lightweight collaborative online editing tool. It’s so cool I wrote a special section for
it which you can find later in this document. This is definitely worth trying if you want to use
something simple without a great deal of overhead. If you like what you see, perhaps consider
an alternative that provides a greater degree of capability if you go on to greater d3.js things.

PHP

PHP is a scripting language for the web. That is to say that it is a programming language which
is executed when you load web pages and it helps web pages do dynamic things.

You might think that this sounds familiar and that JavaScript does the same thing. But not quite.

JavaScript is designed so that it travels with the web page when it is downloaded by a browser
(the client). However, PHP is executed remotely on the server that supplies the web page. This
might sound a bit redundant, but it’s a big deal. This means that the PHP which is executed
doesn’t form part of the web page, but it can form the web page. The implication here is that the
web page you are viewing can be altered by the PHP code that runs on a remote server. This is
the dynamic aspect of it.

https://github.com/mbostock/d3/wiki
“*https://github.com/about
“http://bl.ocks.org/

https://github.com/mbostock/d3/wiki
https://github.com/mbostock/d3/wiki
https://github.com/about
http://bl.ocks.org/
https://github.com/mbostock/d3/wiki
https://github.com/about
http://bl.ocks.org/

What do you need to get started? 8

In practice, PHP could be analogous to the glue that binds web pages together. Allowing different
portions of the web page to respond to directions from the end user.

It is widely recognised not only as a relatively simple language to learn, but also as a fairly
powerful one. At the same time it comes into criticism for being somewhat fragmented and
sometimes contradictory or confusing. But in spite of any perceived shortcomings, it is a very
widely used and implemented language and one for which there is no obvious better option.

Other Useful Stuff

Text Editor

A good text editor for writing up your code will be a real boost. Don’t make the fatal mistake
of using an office word processor or similar. THEY WILL DOOM YOU TO A LIFE OF MISERY.
They add in crazy stuff that you can’t even see and never save the files in a way that can be used

properly.
Preferably, you should get an editor that will provide some assistance in the form of syntax
highlighting which is where the editor knows what language you are writing in (JavaScript for

example) and highlights the text in a way that helps you read it. For example, it will change text
that might appear as this;

// Get the data
d3.tsv("data/data.tsv", function(error, data) {
data. forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});
Into something like this;

// Get the data
d3.tsv("data/data.tsv", function(error, data) {
data. forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

Infinitely easier to use. Trust me.

There are plenty of editors that will do the trick. I have a preference for Geany*’, mainly because
it’s what I started with and it grew on me :-).

Getting D3

Luckily this is pretty easy.
Go to the D3 repository on github®** and download the entire repository by clicking on the “ZIP’

*http://www.geany.org/
*'https://github.com/mbostock/d3

www. dbooks. or g

http://www.geany.org/
https://github.com/mbostock/d3
http://www.geany.org/
https://github.com/mbostock/d3
https://www.dbooks.org/

What do you need to get started? 9

button.

HTEP 55H Git Read-Only

! Download this repository as a zip file ‘
T T T DT T T e

Files

Download the repository as a zip file

What you do with it from here depends on how you’re hosting your graphs. If you’re working
on them on your local PC, then you will want to have the d3.js file in the path that can be seen by
the browser. Again, I would recommend WAMP (a local web server) to access your files locally.
If you’re using WAMP, then you just have to make sure that it knows to use a directory that will
contain the d3 directory and you will be away:.

The following image is intended to provide a very crude overview of how you can set up the
directories.

Tell your WAMP Server to

use this as an alias.
/ Put the files you create here.

4 || webserver Put the d3 folder (with the d3.js file and
43 «— the examples) here

/data - Put the data folder (with the data.tsv file and
| s any others) here

\ If you use any extra JavaScript files
you can put them here

A potential directory structure for your files

« webserver: Use this as your ‘base’ directory where you put your files that you create. That
way when you open your browser you point to this directory and it allows you to access
the files like a normal web site.

« d3: This would be your unzipped d3 directory. It contains all the examples and more
importantly the d3.v3.js file that you need to get things going. You will notice in the code
examples that follow there is a line like the following;
<script type="text/javascript" src="d3/d3.v3.js"></script>.

This tells your browser that from the file it is running (one of the graph html files) if it goes
into the ‘d3’ folder it will find the d3.v3. js file that it can load.

« data: I use this directory to hold any data files that I would use for processing. For example,
you will see the following line in the code examples that follow d3.tsv("data/data.tsv",
function(error, data) {. Again, that’s telling the browser to go into the ‘data’ directory
and to load the ‘data.tsv’ file.

« js: Often you will find that you will want to include other JavaScript libraries to load. This
is a good place to put them.

What do you need to get started? 10

Where to get information on d3.js

D3 has made huge advances in providing an extensible and practical framework for manipulating
data as web objects. At the same time there has been significant increase in information available
for people to use it. The following is a far from exhaustive list of sources, but from my own
experience it represents a useful subset of knowledge.

d3js.org

d3js.org would be the first port of call for people wanting to know something about d3.js.

From the overview on the main page you can access a dizzying array of examples®” that have
been provided by the founder of d3 (Mike Bostock) and a host of additional developers, artists,
coders and anyone who has something to add to the sum knowledge of cool things that can be
done with d3.

There is a link to a documentation page®’ that serves as a portal to the ever important API
reference, contributed tutorials and other valuable links (some of which I will mention in
paragraphs ahead).

The last major link is to the Github repository** where you can download d3.js itself.

It is difficult to overstate the volume of available information that can be accessed from d3js.org.
It stands alone as the one location that anyone interested in D3 should visit.

Google Groups

There is a Google Group dedicated to discussions on d3.js*.

In theory this forum is for discussions on topics including visualization design, API design,
requesting new features, etc. With a specific direction made in the main header that “If you
want help using D3, please use the d3.js tag on Stack Overflow!”.

In practice however, it would appear that a sizeable proportion of the posts there are technical
assistance requests of one type or another. Having said that this means that if you’re having a
problem, there could already be a solution posted there. However, if at all possible the intention
is certainly that people use Stack Overflow, so this should be the first port of call for those types
of inquiry.

So, by all means add this group as a favourite and this will provide you with the opportunity to

receive emailed summaries of postings or just an opportunity to easily browse recent goings-on.

Stack Overflow

Stack Overflow is a question and answer site whose stated desire is “to build a library of detailed
answers to every question about programming”. Ambitious. So how are they doing? Actually

*https://github.com/mbostock/d3/wiki/Gallery
“https://github.com/mbostock/d3/wiki
**https://github.com/mbostock/d3
*https://groups.google.com/forum/?fromgroups#!forum/d3-js

www. dbooks. or g

https://github.com/mbostock/d3/wiki/Gallery
https://github.com/mbostock/d3/wiki
https://github.com/mbostock/d3
https://groups.google.com/forum/?fromgroups#!forum/d3-js
https://github.com/mbostock/d3/wiki/Gallery
https://github.com/mbostock/d3/wiki
https://github.com/mbostock/d3
https://groups.google.com/forum/?fromgroups#!forum/d3-js
https://www.dbooks.org/

What do you need to get started? 11

really well. Stack overflow is a fantastic place to get help and information. It’s also a great place
to help people out if you have some knowledge on a topic.

They have a funny scheme for rewarding users that encourages providing good answers based
on readers voting. It’s a great example of gamification working well. If you want to know a little
more about how it works, check out this page; http://stackoverflow.com/about.

They have a d3.js tag (http://stackoverflow.com/questions/tagged/d3.js) and like Google Groups
there is a running list of different topics that are an excellent source of information.

Github

Github*® is predominantly a code repository and version control site. It is highly regarded for its
technical acumen and provides a fantastic service that is broadly used for many purposes. Not
the least of which is hosting the code (and the wiki) for d3.js.

Whilst not strictly a site that specialises in providing a Q & A function, there is a significant
number of repositories (825 at last count) which mention d3.js. With the help from an astute
search phrase, there is potentially a solution to be found there.

The other associated feature of Github is Gist. Gist is a pastebin service (a place where you can
copy and past code) that can provide a ‘wiki like’ feature for individual repositories and web
pages that can be edited through a Git repository. Gist plays a role in providing the hub for the
bl.ocks.org example hosting service set up by Mike Bostock.

For a new user, Github / Gist can be slightly daunting. It’s an area where you almost need to
know what’s going on to know before you dive in. This is certainly true if you want to make
use of its incredible features that are available for hosting code. However, if you want to browse
other peoples code it’s an easier introduction. Have a look through what’s available and if you
feel so inclined, I recommend that you learn enough to use their service. It’s time well spent.

bl.ocks.org

bl.ocks.org? is a viewer for code examples which are hosted on Gist. You are able to load your
code into Gist, and then from bl.ocks.org you can view them.

This is a really great way for people to provide examples of their work and there are many
who do. However, it’s slightly tricky to know what is there. There is a current project®®
being championed by Christophe Viau and others to provide better access to a range of D3
documentation. The early indications are that it will provide a fantastic method of accessing
examples and information. Watch that space.

I would describe the process of getting your own code hosted and displaying as something that
will be slightly challenging for people who are not familiar with Github / Gist, but again, in
terms of visibility of the code and providing an external hosting solution, it is excellent and well
worth the time to get to grips with.

*https://github.com/
*"http://bl.ocks.org/
*https://groups.google.com/forum/?fromgroups=#!topic/d3-js/g7BxBMUZP80

https://github.com/
http://bl.ocks.org/
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/g7BxBMUZP8o
https://github.com/
http://bl.ocks.org/
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/g7BxBMUZP8o

What do you need to get started? 12

Twitter

Twitter provides a great alerting service to inform a large disparate group of people about stuff.

It’s certainly a great way to keep in touch on an hour by hour basis with people who are involved
with d3.js and this can be accomplished in a couple of ways. First, find as many people from the
various D3 sites around the web who you consider to be influential in areas you want to follow
(different aspects such as development, practical output, educational etc) and follow them. Even
better, I found it useful to find a small subset who I considered to be influential people and I
noted who they followed. It’s a bit “stalky’ if you’re unfamiliar with it, but the end result should
be a useful collection of people with something useful to say.

Books

There are only a couple of books that have been released so far on d3.js.

There is “Getting Started with D3**” by Mike Dewar (O’Reilly Media, June 2012). This will
take you through a good set of exercises to develop your D3 skills and is accompanied by
downloadable examples.

There is “Interactive Data Visualization for the Web**” by Scott Murray, (O'Reilly Media,
November 2012). Currently this has only been released as an ebook, but is scheduled to
be released in print form in 2013. The book is based on his great set of on-line tutorials
(http://alignedleft.com/tutorials/).

Of course, there is the original paper that launched D3 “D3: Data-Driven Documents” by Michael
Bostock, Vadim Ogievetsky and Jeffrey Heer (IEEE Trans. Visualization & Comp. Graphics (Proc.
InfoVis), 2011)

*http://shop.oreilly.com/product/0636920025429.do
*°http://ofps.oreilly.com/titles/9781449339739/

www. dbooks. or g

http://shop.oreilly.com/product/0636920025429.do
http://ofps.oreilly.com/titles/9781449339739/
http://shop.oreilly.com/product/0636920025429.do
http://ofps.oreilly.com/titles/9781449339739/
https://www.dbooks.org/

Starting with a basic graph

I'll start by providing the full code for a simple graph and then we can go through it piece by
piece (The full code for this example is also in the appendices as ‘Simple Graph’.).

Here’s what the basic graph looks like;

500
500
400-]
300
200-]
100

0

T T T T T 1
April Aprosg Apr 15 Apr 22 Apr 29

Basic Graph

And here’s the code that makes it happen;

<IDOCTYPE html>
<meta charset="utf-8">
<style> /* set the CSS */

body { font: 12px Arial;}

path {
stroke: steelblue;
stroke-width: 2;
fill: none;

.axis path,

.axis line {
fill: none;
stroke: grey;
stroke-width: 1;

shape-rendering: crispEdges;

</style>
<body>

Starting with a basic graph

<I-- load the d3.js library -->
<script src="http://d3js.org/d3.v3.min. js"></script>

<script>

// Set the dimensions of the canvas / graph

var margin = {top: 30, right: 20, bottom: 30, left: 50},
width = 600 - margin.left - margin.right,
height = 270 - margin.top - margin.bottom;

// Parse the date / time
var parseDate = d3.time.format("%d-%b-%y").parse;

// Set the ranges
var x = d3.time.scale().range([0, width]);
var y = d3.scale.linear().range([height, 0]);

// Define the axes
var xAxis = d3.svg.axis().scale(x)
.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)
.orient("left").ticks(5);

// Define the line

var valueline = d3.svg.line()
.x(function(d) { return x(d.date); })
.y(function(d) { return y(d.close); });

// Adds the svg canvas
var svg = d3.select("body")
.append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform",
"translate(" + margin.left + "," + margin.top + ")");

// Get the data
d3.csv("data/data.csv", function(error, data) {
data. forEach(function(d) {
d.date = parseDate(d.date);
d.close = +d.close;

),

// Scale the range of the data

14

www. dbooks. or g

https://www.dbooks.org/

Starting with a basic graph 15

x.domain(d3.extent(data, function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.close; })]);

// Add the valueline path.

svg.append("path")
.attr("class", "line")
.attr("d", valueline(data));

// Add the X Axis

svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.call(xAxis);

// Add the Y Axis
svg.append("g")

.attr("class", "y axis")
.call(yAxis);

1)

</script>

</body>

The full code for this example can be found on github®, in the appendices of this book or in the
code samples bundled with this book (simple-graph.html and data.csv). A live example can be
found on bl.ocks.org*. Please note that the <head> </head> tags are omitted which is a common
thing for d3 examples (I don’t know why). This can cause problems for some browsers in certain
conditions.

Once we’ve finished explaining these parts, we’ll start looking at what we need to add in and
adjust so that we can incorporate other useful functions that are completely reusable in other
diagrams as well.

The end point being something hideous like the following;

*'https://gist.github.com/d3noob/b3ff6ae1c120eeat54b5
*?http://bl.ocks.org/d3noob/b3ff6ae1c120eea654b5

https://gist.github.com/d3noob/b3ff6ae1c120eea654b5
http://bl.ocks.org/d3noob/b3ff6ae1c120eea654b5
https://gist.github.com/d3noob/b3ff6ae1c120eea654b5
http://bl.ocks.org/d3noob/b3ff6ae1c120eea654b5

Starting with a basic graph 16

Price vs Date Graph

500

400 -

300

Frice (F

200~

100

T T T T T 1
April Apr 03 Apr 15 Apr 22 Apr 29

Graph with lots of ‘tricks’ incorperated

I say hideous since the graph is not intended to win any beauty prizes, but there are several
components to it which some people may find useful (gridlines, area fill, axis label, drop shadow
for text, title, text formatting).

So, we can break the file down into component parts. I'm going to play kind of fast and loose
here, but never fear, it’ll all make sense.

www. dbooks. or g

https://www.dbooks.org/

Starting with a basic graph 17

HTML

Here’s the HTML portions of the code;

<IDOCTYPE html>
<meta charset="utf-8">
<style>

The CSS is in here

</style>
<body>
<script src="http://d3js.org/d3.v3.min. js"></secript>

<script>
The D3 JavaScript code is here

</script>
</body>

Compare it with the full code. It kind of looks like a wrapping for the CSS and JavaScript. You
can see that it really doesn’t boil down to much at all (that doesn’t mean it’s not important).

There are plenty of good options for adding additional HTML stuff into this very basic part for
the file, but for what we’re going to be doing, we really don’t need to bother too much.

One thing probably worth mentioning is the line;
<script src="http://d3js.org/d3.v3.min. js"></secript>

That’s the line that identifies the file that needs to be loaded to get D3 up and running. In this
case the file is sourced from the official d3.js repository on the internet (that way we are using
the most up to date version). The D3 file is actually called d3.v3.min. js which may come as
a bit of a surprise. That tells us that this is version 3 of the d3.js file (the v3 part) which is an
indication that it is separate from the v2 release, which was superseded in late 2012. The other
point to note is that this version of d3.js is the minimised version (hence min). This means that
any extraneous information has been removed from the file to make it quicker to load.

Later when doing things like implementing integration with bootstrap (a pretty layout frame-
work) we will be doing a great deal more, but for now, that’s the basics done.

The two parts that we left out are the CSS and the D3 JavaScript.

Starting with a basic graph 18

CSS

The CSS is as follows;

body { font: 12px Arial;}

path {
stroke: steelblue;
stroke-width: 2;
fill: none;

.axis path,
.axis line ({
fill: none;
stroke: grey;
stroke-width: 1;
shape-rendering: crispEdges;

Cascading Style Sheets give you control over the look / feel / presentation of web content. The
idea is to define a set of properties to objects in the web page.

They are made up of ‘rules’. Each rule has a ‘selector’ and a ‘declaration’ and each declaration
has a property and a value (or a group of properties and values).

For instance in the example code for this web page we have the following rule;
body { font: 12px Arial;}

body is the selector. This tells you that on the web page, this rule will apply to the ‘body’ of the
page. This actually applies to all the portions of the web page that are contained in the ‘body’
portion of the HTML code (everything between <body> and </body> in the HTML bit). { font:
12px Arial;} is the declaration portion of the rule. It only has the one declaration which is the
bit that is in between the curly braces. So font: 12px Arial; is the declaration. The property
is font: and the value is 12px Arial;. This tells the web page that the font that appears in the
body of the web page will be in 12 px Arial.

Sure enough if we look at the axes of the graph...

D ! T T T T T 1
April Apr 08 Apr 15 Apr 22 Apr 29

x Axis with 12px Arial

We see that the font might actually be 12px Arial!

Let’s try a test. I will change the Rule to the following;

www. dbooks. or g

https://www.dbooks.org/

Starting with a basic graph 19

body { font: 16px Arial;}

and the result is...

0

April Apr 08 Apr 15 Apr 22 Apr 29

x Axis with 16px Arial

Ahh.... 16px of goodness!

And now we change it to...
body { font: 16px times;}
and we get...

U ! T T T T T 1
April Apr 08 Apr 15 Apr 12 Apr 29

x Axis with Times font

Hmm... Times font.... I think we can safely say that this has had the desired effect.
So what else is there?

What about the bit that’s like;

path {
stroke: steelblue;
stroke-width: 2;
fill: none;

Well, the whole thing is one rule, ‘path’ is the selector. In this case, ‘path’ is referring to a line in
the D3 drawing nomenclature.

For that selector there are three declarations. They give values for the properties of ‘stroke’ (in
this case colour), ‘stroke-width’ (the width of the line) and ‘fill’ (we can fill a path with a block
of colour).

So let’s change things :-)

path {
stroke: red;
stroke-width: 5;
fill: yes;

Starting with a basic graph 20

500
500 -
400
300
200
100-

0

T T T T T
April Apr 08 Apr 15 Apr 22 Apr 29
Filling of a path

Wow! The line is now red, it looks about 5 pixels wide and it’s tried to fill the area (roughly
defined by the curve) with a black colour.

It ain’t pretty, but it certainly did change. In fact if we go;
fill: blue;

We'll get...

500
500
400+
300+
200+

100+

T T T T T
April Apr0s Apr 15 Apr 22 Apr 29

Filling of a path with added blue!

So the ‘fill” property looks pretty flexible. And so does CSS.

D3 JavaScript

The D3 JavaScript part of the code is as follows;

www. dbooks. or g

https://www.dbooks.org/

Starting with a basic graph

var margin = {top: 30, right: 20, bottom: 30, left: 50},
width = 600 - margin.left - margin.right,
height = 270 - margin.top - margin.bottom;

var parseDate = d3.time.format("%d-%b-%y").parse;

var x = d3.time.scale().range([0, width]);
var y = d3.scale.linear().range([height, 0]);

var xAxis = d3.svg.axis().scale(x)
.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)
.orient("left").ticks(5);

var valueline = d3.svg.line()
.x(function(d) { return x(d.date); })
.y(function(d) { return y(d.close); });

var svg = d3.select("body")
.append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform",
"translate(" + margin.left + "," + margin.top + ")");

// Get the data
d3.csv("data.csv", function(error, data) {
data. forEach(function(d) {
d.date = parseDate(d.date);
d.close = +d.close;

),

// Scale the range of the data
x.domain(d3.extent(data, function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.close; })]);

svg.append("path") // Add the valueline path.
.attr("class", "line")
.attr("d", valueline(data));

svg.append("g") // Add the X Axis
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.call(xAxis);

21

Starting with a basic graph 22

svg.append("g") // Add the Y Axis
.attr("class", "y axis")

.call(yAxis);

1

Again there’s quite a bit of detail in the code, but it’s not so long that you can’t work out what’s
doing what.

Let’s examine the blocks bit by bit to get a feel for it.

Setting up the margins and the graph area.

The part of the code responsible for defining the canvas (or the area where the graph and
associated bits and pieces is placed) is this part.

var margin = {top: 30, right: 20, bottom: 30, left: 50},
width = 600 - margin.left - margin.right,
height = 270 - margin.top - margin.bottom;

This is really (really) well explained on Mike Bostock’s page on margin conventions here
http://bl.ocks.org/3019563%, but at the risk of confusing you here’s my crude take on it.

The first line defines the four margins which surround the block where the graph (as an object)
is positioned.

var margin = {top: 30, right: 20, bottom: 30, left: 50},

So there will be a border of 30 pixels at the top, 20 at the right and 30 and 50 at the bottom and left
respectively. Now the cool thing about how these are set up is that they use an object to define
everything. That means if you want to do calculations in the JavaScript later, you don’t need to
put the numbers in, you just use the variable that has been set up. In this case margin.right = 20!

So when we go to the next line;
width = 600 - margin.left - margin.right,

the width of the inner block of the canvas where the graph will be drawn is 600 pixels -
margin.left — margin.right or 600-50-20 or 530 pixels wide. Of course now you have another
variable ‘width’ that we can use later in the code.

Obviously the same treatment is given to height.

Another cool thing about all of this is that just because you appear to have defined separate
areas for the graph and the margins, the whole area in there is available for use. It just makes
it really useful to have areas designated for the axis labels and graph labels without having to
juggle them and the graph proper at the same time.

So, let’s have a play and change some values.

**http://bl.ocks.org/3019563

www. dbooks. or g

http://bl.ocks.org/3019563
http://bl.ocks.org/3019563
https://www.dbooks.org/

Starting with a basic graph 23

var margin = {top: 80, right: 20, bottom: 80, left: 50},
width = 400 - margin.left - margin.right,
height = 270 - margin.top - margin.bottom;

600
500
400
300
200
100

0

T T T T 1
April Apr 08 Apr 15 Apr 22 Apr 29

The effect of changing the margins

Here we’ve made the graph narrower (400 pixels) but retained the left / right margins and
increased the top bottom margins while maintaining the overall height of the canvas. The really
cool thing that you can tell from this is that while we shrank the dimensions of the area that we
had to draw the graph in, it was still able to dynamically adapt the axes and line to fit properly.
That is the really cool part of this whole business. D3 is running in the background looking after
the drawing of the objects, while you get to concentrate on how the data looks without too much
maths!

Getting the Data

We’re going to jump forward a little bit here to the bit of the JavaScript code that loads the data
for the graph.

I’'m going to go out of the sequence of the code here, because if you know what the data is that
you’re using, it will make explaining some of the other functions that are coming up much easier.

The section that grabs the data is this bit.

d3.csv("data.csv", function(error, data) {
data. forEach(function(d) {
d.date = parseDate(d.date);
d.close = +d.close;

1)
In fact it’s a combination of a few bits and another piece that isn’t shown!, But let’s take it one
step at a time :-)

There’s lots of different ways that we can get data into our web page to turn into graphics. And
the method that you’ll want to use will probably depend more on the format that the data is in
than the mechanism you want to use for importing.

For instance, if it’s only a few points of data we could include the information directly in the
JavaScript.

That would make it look something like;

Starting with a basic graph

var data =

1;

{date:
{date:
{date:
{date:
{date:

[

24

"1-May-12",close:"58.13"},

"30-Apr-12" ,close:
"27-Apr-12",close:
"26-Apr-12",close:
"25-Apr-12",close:

"53.98"},
"67.00"},
"89.70"},
"99.00"}

The format of the data shown above is called JSON (JavaScript Object Notation) and it’s a great
way to include data since it’s easy for humans to read what’s in there and it’s easy for computers
to parse the data out. For a brief overview of JSON there is a separate section in the “Assorted
Tips and Tricks Chapter” that may assist.

But if you’ve got a fair bit of data or if the data you want to include is dynamic and could be
changing from one moment to the next, you’ll want to load it from an external source. That’s
when we call on D3’s ‘Request’ functions.

Request Functions

A "Request’ is a function that instructs the browser to reach out and grab some data

from somewhere. It could be stored locally (on the web server) or somewhere out in the
Internet. There are different types of requests depending on the type of data you want
to ingest. Each type of data is formatted with different rules, so the different requests
interpret those rules to make sure that the data is returned to the D3 processing in
a format that it understands. You could therefore think of the different ‘Requests’ as
translators and the different data formats as being foreign languages.

The different types of data that can be requested by D3 are;

text: A plain old piece of text that has options to be encoded in a particular way (see the
D3 API*).
« json: This is the afore mentioned JavaScript Object Notation.

xml: Extensible Markup Language is a language that is widely used for encoding documents
in a human readable forrm.

html: HyperText Markup Language is the language used for displaying web pages.

csv: Comma Separated Values is a widely used format for storing data where plain text
information is separated by (wait for it) commas.

tsv: Tab Separated Values is a widely used format for storing data where plain text
information is separated by a tab-stop character.

Details on these ingestion methods and the formats for the requests are well explained on the
D3 Wiki* page. In this particular script we will look at the csv request method.

**https://github.com/mbostock/d3/wiki/Requests
**https://github.com/mbostock/d3/wiki/Requests

www. dbooks. or g

https://github.com/mbostock/d3/wiki/Requests
https://github.com/mbostock/d3/wiki/Requests
https://github.com/mbostock/d3/wiki/Requests
https://github.com/mbostock/d3/wiki/Requests
https://www.dbooks.org/

Starting with a basic graph 25

Now, it’s important to note that this is not an exclusive list of what can be ingested. If
you’ve got some funky data in a weird format, you can still get it in, but you will most
likely need to stand up a small amount of code somewhere else in your page to do the
conversion (we will look at this process when describing getting data from a MySQL
database).

Back to our request...

d3.csv("data.csv", function(error, data) {
data. forEach(function(d) ({
d.date = parseDate(d.date);
d.close = +d.close;

});

The first line of that piece of code invokes the d3.csv request (d3.csv) and then the function is
pointed to the data file that should be loaded (data.csv). This is referred to as the “url’ (unique
resource locator) of the file. In this case the file is stored locally (in the same directory as the
simple-graph.html file), but the url could just as easily point to a file somewhere on the Internet.

The format of the data in the data.csv file looks a bit like this;

date,close
1-May-12,58.183
30-Apr-12,53.98
2T7-Apr-12,67.00
26-Apr-12,89.70
25-Apr-12,99.00

(although the file is longer (about 26 data points)). The ‘date’ and the ‘close’ heading labels are
separated by a comma as are each subsequent date and number. Hence the ‘comma separated
values’ :-).

The next part is part of the coolness of JavaScript. With the request made and the file requested,
the script is told to carry out a function on the data (which will now be called ‘data’).

function(error, data) {

There are actually more things that get acted on as part of the function call, but the one we will
consider here is contained in the following lines;

data. forEach(function(d) {
d.date = parseDate(d.date);
d.close = +d.close;

});

This block of code simply ensures that all the numeric values that are pulled out of the csv file
are set and formatted correctly. The first line sets the data variable that is being dealt with (called
slightly confusingly ‘data’) and tells the block of code that, for each group within the ‘data’ array
it should carry out a function on it. That function is designated ‘d’.

Starting with a basic graph 26

data. forEach(function(d) {

The information in the array can be considered as being stored in rows. Each row consists of
two values: one value for ‘date’ and another value for ‘close’.

The function is pulling out values of ‘date’ and ‘close’ one row at a time.

Each time it gets a value of ‘date’ and ‘close’ it carries out the following operations;
d.date = parseDate(d.date);

For this specific value of date being looked at (d.date), d3.js changes it into a date format that is
processed via a separate function ‘parseDate’. (The ‘parseDate’ function is defined in a separate
part of the script, and we will examine that later.) For the moment, be satisfied that it takes the
raw date information from the csv file in a specific row and converts it into a format that D3 can
then process. That value is then re-saved in the same variable space.

The next line then sets the ‘close’ variable to a numeric value (if it isn’t already) using the ‘+
operator.

d.close = +d.close;

This appears to be good practice when the format of the number being pulled out of the
data may not mean that it is automagically recognised as a number. This line will ensure
that it is.

So, at the end of that section of code, we have gone out and picked up a file with data in it of a
particular type (comma separated values) and ensured that it is formatted in a way that the rest
of the script can use correctly.

Now, the astute amongst you will have noticed that in the first line of that block of code
(d3.csv("data.csv", function(error, data) {) we opened a normal bracket (() and a curly
bracket ({), but we never closed them. That’s because they stay open until the very end of the
file. That means that all those blocks that occur after the d3.csv bit are referenced to the ‘data’
array. Or put another way, it uses ‘data’ to draw stuff!

But anyway, let’s get back to figuring what the code is doing by jumping back to the end of the
margins block.

Formatting the Date / Time.

One of the glorious things about the World is that we all do things a bit differently. One of those
things is how we refer to dates and time**.

In my neck of the woods, it’s customary to write the date as day - month - year. E.g 23-12-2012.
But in the United States the more common format would be 12-23-2012. Likewise, the data may
be in formats that name the months or weekdays (E.g. January, Tuesday) or combine dates and

*http://en.wikipedia.org/wiki/Date_format_by_country

www. dbooks. or g

http://en.wikipedia.org/wiki/Date_format_by_country
http://en.wikipedia.org/wiki/Date_format_by_country
https://www.dbooks.org/

Starting with a basic graph 27

time together (E.g. 2012-12-23 15:45:32). So, if we were to attempt to try to load in some data and
to try and get D3 to recognise it as date / time information, we really need to tell it what format
the date / time is in.

9 Does Time Matter?

You might be asking yourself “What’s the point?” All you want to do is give it a number
and it can sort it out somehow. Well, that is true, but if you want to really bring out the
best in your data and to keep maximum flexibility in representing it on the screen, you
will want D3 to play to its strengths. And one of those is being able to adjust dynamically
with variable time values.

Time for a little demonstration (see what I did there).

We will change our data.csv file so that it only includes two points. The first one and the last
one with a separation of a month and a bit.

date,close
1-May-12,58.13
26-Mar-12,606.98

The graph now looks like this;

600 =
500+
400 —
300+
200+

100+

D T T T T T
April Apr 08 Apr15 Apr 22 Apr 29

Simple line graph
Nothing too surprising here, a very simple graph (note the time scale on the x axis).

Now we will change the later date in the data.csv file so that it is a lot closer to the starting date;

date,close
29-Mar-12,58.13
26-Mar-12,606.98

So, just a three day difference. Let’s see what happens.

Starting with a basic graph 28

600 =
500 |
400
300
200 -

100

D T T T T T 1
Ion 26 12 PM Tue 27 12PM Wed 28 12 PM Thu 29

Simple line graph over three days

Ahh.... Not only did we not have to make any changes to our JavaScript code, but it was able
to recognise the dates were closer and fill in the intervening gaps with appropriate time / day
values. Now, one more time for giggles.

This time we’ll stretch the interval out by a few years.

date,close
29-Mar-21,58.13
26-Mar-12,606.98

and the result is...
G600 =
500
400
300
200
100

]

T T T T
2014 2016 2018 2020

Simple line graph over several years

Hopefully that’s enough encouragement to impress upon you that formatting the time is a
REALLY good thing to get right. Trust me, it will never fail to impress :-).

Back to formatting.

The line in the JavaScript that parses the time is the following;
var parseDate = d3.time.format("%d-%b-%y").parse;

This line is used when the data. forEach(function(d) portion of the code (that we looked at a
couple of pages back) used d.date = parseDate(d.date) as a way to take a date in a specific
format and to get it recognised by D3. In effect it said “take this value that is supposedly a date
and make it into a value I can work with”.

www. dbooks.

org

https://www.dbooks.org/

Starting with a basic graph 29

The function used is the d3.time. format(specifier) function where the specifier in this case
is the mysterious combination of characters %d-%b-%y. The good news is that these are just a
combination of directives specific for the type of date we are presenting.

The % signs are used as prefixes to each separate format type and the ‘-’ (minus) signs are literals
for the actual ‘-’ (minus) signs that appear in the date to be parsed.

The d refers to a zero-padded day of the month as a decimal number [01,31].
The b refers to an abbreviated month name.
And the y refers to the year (without the centuries) as a decimal number.

If we look at a subset of the data from the data.csv file we see that indeed, the dates therein are
formatted in this way.

1-May-12,58.13

30-Apr-12,53.98
27-Apr-12,67.00
26-Apr-12,89.70
25-Apr-12,99.00

That’s all well and good, but what if your data isn’t formatted exactly like that?

Good news. There are multiple different formatters for different ways of telling time and you get
to pick and choose which one you want. Check out the Time Formatting page on the D3 Wiki for
a the authoritative list and some great detail, but the following is the list of currently available
formatters (from the d3 wiki);

+ %a - abbreviated weekday name.

« %A - full weekday name.

« %b - abbreviated month name.

« %B - full month name.

« %c - date and time, as “%a %b %e %H:%M:%S %Y.

« %d - zero-padded day of the month as a decimal number [01,31].

« %e - space-padded day of the month as a decimal number [1,31].

« %H - hour (24-hour clock) as a decimal number [00,23].

« %I - hour (12-hour clock) as a decimal number [01,12].

* %j - day of the year as a decimal number [001,366].

« %m - month as a decimal number [01,12].

« %M - minute as a decimal number [00,59].

* %p - either AM or PM.

« %S - second as a decimal number [00,61].

« %U - week number of the year (Sunday as the first day of the week) as a decimal number
[00,53].

« %w - weekday as a decimal number [0(Sunday),6].

« %W - week number of the year (Monday as the first day of the week) as a decimal number
[00,53].

« %x - date, as “%m/%d/%y’.

Starting with a basic graph 30

« %X - time, as “%H:%M:%S”.

« %y - year without century as a decimal number [00,99].

« %Y - year with century as a decimal number.

« %Z - time zone offset, such as “-0700”.

« There is also a a literal “%” character that can be presented by using double % signs.

As an example, if you wanted to input date / time formatted as a generic MySQL YYYY-MM-DD
HH:MM:SS’ TIMESTAMP format the D3 parse script would look like;

parseDate = d3.time. format("%Y-%m-%d %H:%M:%S").parse;

Setting Scales Domains and Ranges

This is another example where, if you set it up right, D3 will look after you forever.

p Scales, Ranges and the Ah Ha!” moment.

The “Ah Ha!” moment for me in understanding ranges and scales was after reading
Jerome Cukier’s great page on ‘d3:scales and color®”. I thoroughly recommend you read
it (and plenty more of the great work by Jerome) as he really does nail the description
in my humble opinion. I will put my own description down here, but if it doesn’t seem
clear, head on over to Jerome’s page.

From our basic web page we have now moved to the section that includes the following lines;

var x = d3.time.scale().range([0, width]);

var y = d3.scale.linear().range([height, 0]);

The purpose of these portions of the script is to ensure that the data we ingest fits onto our
graph correctly. Since we have two different types of data (date/time and numeric values) they
need to be treated separately (but they do essentially the same job). To examine this whole
concept of scales, domains and ranges properly, we will also move slightly out of sequence and
(in conjunction with the earlier scale statements) take a look at the lines of script that occur later
and set the domain. They are as follows;

x.domain(d3.extent(data, function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.close; })]);

The idea of scaling is to take the values of data that we have and to fit them into the space we
have available.

If we have data that goes from 53.98 to 636.23 (as the data we have for ‘close’ in our csv file
does), but we have a graph that is 210 pixels high (height = 270 - margin.top — margin.bottom;)
we clearly need to make an adjustment.

*"http://www.jeromecukier.net/blog/2011/08/11/d3-scales-and-color/

www. dbooks. or g

http://www.jeromecukier.net/blog/2011/08/11/d3-scales-and-color/
http://www.jeromecukier.net/blog/2011/08/11/d3-scales-and-color/
https://www.dbooks.org/

Starting with a basic graph 31

Not only that. Even though our data goes from 53.98 to 636.23, that would look slightly misleading
on the graph and it should really go from 0 to a bit over 636.23. It sound’s really complicated,
but let’s simple it up a bit.

First we make sure that any quantity we specify on the x axis fits onto our graph.
var x = d3.time.scale().range([0, width]);

Here we set our variable that will tell D3 where to draw something on the x axis. By using the
d3.time.scale() function we make sure that D3 knows to treat the values as date / time entities
(with all their ingrained peculiarities). Then we specify the range that those values will cover
(.range) and we specify the range as being from 0 to the width of our graphing area (See! Setting
those variables for margins and widths are starting to pay off now!).

Then we do the same for the Y axis.
var y = d3.scale.linear().range([height, 0]);

There’s a different function call (d3.scale.linear()) but the .range setting is still there. In the
interests of drawing a (semi) pretty picture to try and explain, hopefully this will assist;

B3623-
2101
Scale the data to the
graph size
£3.98- —-['J'
0 530
26-MAR-12 1-MAY-12

Scaling the data to the graph size

I know, I know, it’s a little misleading because nowhere have we actually said to D3 this is our
data from 53.98 to 636.23. All we’ve said is when we get the data, we’ll be scaling it into this
space.

Now hang on, what’s going on with the [height, @] part in y axis scale statement? The astute
amongst you will note that for the time scale we set the range as [0, width] but for this one
([height, @]) the values look backwards.

Well spotted.

This is all to do with how the screen is laid out and referenced. Take a look at the following
diagram showing how the coordinates for drawing on your screen work;

Starting with a basic graph 32

A

Coordinates that the browser expects

The top left hand of the screen is the origin or 0,0 point and as we go left or down the
corresponding x and y values increase to the full values defined by height and width.

That’s good enough for the time values on the x axis that will start at lower values and increase,
but for the values on the y axis we're trying to go against the flow. We want the low values to
be at the bottom and the high values to be at the top.

No problem. We just tell D3 via the statementy = d3.scale.linear().range([height, 0]);
that the larger values (height) are at the low end of the screen (at the top) and the low values are
at the bottom (as you most probably will have guessed by this stage, the .range statement uses
the format .range([closer_to_the_origin, further_from_the_origin]). So when we put the
height variable first, that is now associated at the top of the screen.

A

Coordinates with adjusted ranges

We’ve scaled our data to the graph size and ensured that the range of values is set appropriately.
What’s with the domain part that was in this section’s title?

Come on, you remember this little piece of script don’t you?

x.domain(d3.extent(data, function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.close; })]);

While it exists in a separate part of the file from the scale / range part, it is certainly linked.

That’s because there’s something missing from what we have been describing so far with the set
up of the data ranges for the graphs. We haven’t actually told D3 what the range of the data is.
That’s also the reason this part of the script occurs where it does. It is within the portion where
the data.csv file has been loaded as ‘data’ and it’s therefore ready to use it.

So, the .domain function is designed to let D3 know what the scope of the data will be. This is
what is then passed to the scale function.

Looking at the first part that is setting up the x axis values, it is saying that the domain for the x
axis values will be determined by the d3.extent function which in turn is acting on a separate
function which looks through all the ‘date’ values that occur in the ‘data’ array. In this case the
.extent function returns the minimum and maximum value in the given array.

« function(d) { return d.date; } returns all the ‘date’ values in ‘data’. This is then passed
to...

« The .extent function that finds the maximum and minimum values in the array and then...

o The .domain function which returns those maximum and minimum values to D3 as the
range for the x axis.

www. dbooks. or g

https://www.dbooks.org/

Starting with a basic graph 33

Pretty neat really. At first you might think it was overly complex, but breaking the function
down into these components allows additional functionality with differing scales, values and
quantities. In short, don’t sweat it. It’s a good thing.

The x axis values are dates; so the domain for them is basically from the 26th of March 2012 till
1st of May 2012. The y axis is done slightly differently

y.domain([0, d3.max(data, function(d) { return d.close; })]);

Because the range of values desired on the y axis goes from 0 to the maximum in the data range,
that’s exactly what we tell D3. The ‘0’ in the .domain function is the starting point and the
finishing point is found by employing a separate function that sorts through all the ‘close’ values
in the ‘data’ array and returns the largest one. Therefore the domain is from 0 to 636.23.

Let’s try a small experiment. Let’s change the y axis domain to use the .extent function (the same
way the x axis does) to see what it produces.

The JavaScript for the y domain will be;
y.domain(d3.extent(data, function(d) { return d.close; }));

You can see apart from a quick copy paste of the internals, all I had to change was the reference
to ‘close’ rather than ‘date’.

And the result is...

500
500
400
300
200

100

T T T T T 1
April Apr 08 Apr 15 Apr 22 Apr 29
Graph using .extent for data values

Look at that! The starting point for the y axis looks like it’s pretty much on the 53.98 mark and
the graph itself certainly touches the x axis where the data would indicate it should.

Now, I'm not really advocating making a graph like this since I think it looks a bit nasty (and a
casual observer might be fooled into thinking that the x axis was at 0). However, this would be a
useful thing to do if the data was concentrated in a narrow range of values that are quite distant
from zero.

For instance, if I change the data.csv file so that the values are represented like the following;

Starting with a basic graph 34

BDD—-"“‘“=-r—*”‘""H'__ﬁ___qh‘_‘_““-h1“___J/fﬂﬂﬂﬂﬂx\“uwj/ﬁ‘iﬁ_-‘

400

200

T T T T T
April Apr 08 Apr 15 Apr 22 Apr 29
Concentrated data range graph

Then it kind of loses the ability to distinguish between values around the median of the data.

But, if I put in our magic .extent function for the y axis and redraw the graph...

560
540
520
500
520

560

April Apr 08 Apr 15 Apr 22 Apr 29
Expanded concentrated data range using .extent
How about that?

The same data as the previous graph, but with one simple piece of the script changed and D3
takes care of the details.

Setting up the Axes
Now we come to our next piece of code;

var xAxis = d3.svg.axis().scale(x)
.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)
.orient("left").ticks(5);

I've included both the x and y axes because they carry out the formatting in very similar ways.
It’s worth noting that this is not the point where the axes get drawn. That occurs later in the
piece where the data.csv file has been loaded as ‘data’.

D3 has it’s own axis component that aims to take the fuss out of setting up and displaying the
axes. So it includes a number of configurable options.

Looking first at the x axis;

www. dbooks. or g

https://www.dbooks.org/

Starting with a basic graph 35

var xAxis = d3.svg.axis().scale(x)
.orient("bottom").ticks(5);

The axis function is called with d3.svg.axis(). Then the scale is set using the x values that we
set up in the scales, ranges and domains section using .scale(x). Then a curious thing happens,
we tell the graph to orientate itself to the bottom of the graph .orient("bottom"). If I tell you
that “bottom” is the default setting, then you could be forgiven for thinking that technically, we
don’t need to specify this since it will go there anyway, but it does give us an opportunity to
change it to "top" to see what happens;

500+
400
300+

200+

100

April Aprog Apr 15 Apr 22 Apr
| | | |

x axis orientated to top

Well, I hope you didn’t see that coming, because I didn’t. It transpires that what we’re talking
about is the orientation of the values and ticks about the axis line itself. Ahh... Ok. Useful if your
x axis is at the top of your graph, but for this one? Not so useful.

The next part (.ticks(5)) sets the number of ticks on the axis. Hopefully you just did a quick
count across the bottom of the previous graph and went “Yep, five ticks. Spot on”. Well done if
you did, but there’s a little bit of a sneaky trick up D3’s sleeve with the number of ticks on a
graph axis.

For instance, here’s what the graph looks like when the . ticks(5) value is changed to . ticks(4).

500
500
400
300
200

100

1]

.-’-‘\pll'il Apl’I 0z A;ZII'I 15 .-’-‘\[:]I'I 22 Apl’I 29
Five ticks on the x axis
Eh? Hang on. Isn’t that some kind of mistake? There are still five ticks. Yep, sure is! But wait...

we can keep dropping the ticks value till we get to two and it will still be the same. At .ticks(2)
though, we finally see a change.

Starting with a basic graph 36

800
500
400
300
200

100

0

T 1
April May
Two ticks on the x axis

How about that? At first glance that just doesn’t seem right, then you have a bit of a think about
it and you go “Hmm... When there were 5 ticks, they were separated by a week each, and that
stayed that way till we got to a point where it could show a separation of a month.”.

D3 is making a command decision for you as to how your ticks should be best displayed. This is
great for simple graphs and indeed for the vast majority of graphs. Like all things related to D3,
if you really need to do something bespoke, it will let you if you understand enough code.

The following is the list®® of time intervals that D3 will consider when setting automatic ticks on
a time based axis;

e 1-, 5-, 15and 30-second.
e 1-, 5-, 15and 30-minute.
e 1-, 3-, 6and 12-hour.

« 1 and 2-day.

o 1-week.

1 and 3-month.

» 1-year.

Just for giggles have a think about what value of ticks you will need to increase to until you get
D3 to show more than five ticks.

Hopefully you won’t sneak a glance at the following graph before you come up with the right
answer.

500 -
500-
400-
300~
200-
100 -

]

Tue Zfhu 2@at AriTue 0By 08at Oan 09ed 1Fri 12pr TEue TPhu 19at Zon 2Fed 266 27pr 20May

Ten ticks on the x axis

**https://github.com/mbostock/d3/wiki/Time-Scales

www. dbooks. or g

https://github.com/mbostock/d3/wiki/Time-Scales
https://github.com/mbostock/d3/wiki/Time-Scales
https://www.dbooks.org/

Starting with a basic graph 37

Yikes! The answer is 10! And then when it does, the number of ticks is so great that they jumble
all over each other. Not looking to good there. However, you could rotate the text (or perhaps
slant it) and it could still fit in (that must be the topic of a future how-to). You could also make the
graph longer if you wanted, but of course that is probably going to create other layout problems.
Try to think about your data and presentation as a single entity.

The code that formats the y axis is pretty similar;

var yAxis = d3.svg.axis().scale(y)
.orient("left").ticks(5);

We can change the orientation to "right" if we want, but it won’t be winning any beauty prizes.

Apri Apr 08 Apr 15 Apr 22 Aprog |
y axis right orientated
Nope. Not a pretty sight.

What about the number of ticks? Well this scale is quite different to the x axis. Formatting the
dates using logical separators (weeks, months) was tricky, but with standard numbers, it should
be a little easier. In fact, there’s a fair chance that you’ve already had a look at the y axis and
seen that there are 6 ticks there when the script is asking for 5 :-)

We can lower the tick number to 4 and we get a logical result.

500
00

200+

T T T T T 1
April Apr 08 Apr 15 Apr 22 Apr 29

Three ticks on the y axis

We need to raise the count to 10 before we get more than 6.

Starting with a basic graph 38

600+
550 4
500+
450+
400+
3504
300+
250+
200+
150+
100+
50

0

T T T T T 1
April Apr 08 Apr 15 Apr 22 Apr 29

Ten ticks on the y axis

Adding data to the line function

We're getting towards the end of our journey through the script now. The next step is to get
the information from the array ‘data’ and to place it in a new array that consists of a set of
coordinates that we are going to plot.

var valueline = d3.svg.line()
.X(function(d) { return x(d.date); })
.y(function(d) { return y(d.close); });

I'm aware that the statement above may be somewhat ambiguous. You would be justified in
thinking that we already had the data stored and ready to go. But that’s not strictly correct.

What we have is data in a raw format, we have added pieces of code that will allow the data to
be adjusted for scale and range to fit in the area that we want to draw, but we haven’t actually
taken our raw data and adjusted it for our desired coordinates. That’s what the code above does.

The main function that gets used here is the d3.svg.1line() function®. This function uses
accessor functions to store the appropriate information in the right area and in the case above
they use the x and y accessors (that would be the bits that are .x and .y). The d3.svg.line()
function is called a ‘path generator’ and this is an indication that it can carry out some pretty
clever things on its own accord. But in essence its job is to assign a set of coordinates in a form
that can be used to draw a line.

Each time this line function is called on, it will go through the data and will assign coordinates
to ‘date’ and ‘close’ pairs using the ‘x” and ‘y’ functions that we set up earlier (which of course
are responsible for scaling and setting the correct range / domain).

Of course, it doesn’t get the data all by itself, we still need to actually call the valueline function
with ‘data’ as the source to act on. But never fear, that’s coming up soon.

Adding the SVG Canvas.

As the title states, the next piece of script forms and adds the canvas that D3 will then use to
draw on.

**https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line

www. dbooks. or g

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line
https://www.dbooks.org/

Starting with a basic graph 39

var svg = d3.select("body")
.append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform",

"translate(" + margin.left + "," + margin.top + ")");

So what exactly does that all mean?

Well D3 needs to be able to have a space defined for it to draw things. When you define the
space it’s going to use, you can also give the space you're going to use an identifying name and
attributes.

In the example we’re using here, we are ‘appending’ an SVG element (a canvas that we are going
to draw things on) to the <body> element of the HTML page.

In human talk that means that on the web page and bounded by the <body> tag that we
saw in the HTML part, we will have an area to draw on. That area will be ‘width’ plus
the left and right margins wide and ‘height’ plus the top and bottom margins wide.

We also add an element ‘g’ that is referenced to the top left corner of the actual graph area on
the canvas. ‘g’ is actually a grouping element in the sense that it is normally used for grouping
together several related elements. So in this case those grouped elements will have a common

reference.

Canvas and margins

(the image above is definitely not to scale, but I hope you get the general idea)

Interesting things to note about the code. The .attr(“stuff in here”) parts are attributes of
the appended elements they are part of.

For instance;

.append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

tells us that the ‘svg’ element has a “width” of width + margin.left + margin.right and the “height”
of height + margin.top + margin.bottom.

Likewise...

Starting with a basic graph 40

.append("g")
.attr("transform",

"translate(" + margin.left + "," + margin.top + ")");

tells us that the element “g” has been transformed by moving(translating) to the point margin.left,
margin.top. Or to the top left of the graph space proper. This way when we tell something to be
drawn on our canvas, we can use the reference point “g” to make sure everything is in the right
place.

Actually Drawing Something!

Up until now we have spent a lot of time defining, loading and setting up. Good news! We’re
about to finally draw something!

We jump lightly over some of the code that we have already explained and land on the part that
draws the line.

svg.append("path") // Add the valueline path.
.attr("d", valueline(data));

This area occurs in the part of the code that has the data loaded and ready for action.

The svg.append("path") portion adds a new path element . A path element represents a shape

that can be manipulated in lots of different ways (see more here: http://www.w3.org/TR/SVG/paths.html*).
In this case it inherits the ‘path’ styles from the CSS section and on the following line (.attr("d",
valueline(data));) we add the attribute “d”.

This is an attributer that stands for ‘path data’ and sure enough the valueline(data) portion of
the script passes the ‘valueline’ array (with its x and y coordinates) to the path element. This then
creates a svg element which is a path going from one set of ‘valueline’ coordinates to another.

Then we get to draw in the axes;

svg.append("g") // Add the X Axis
.attr("class", "x axis")
.attr("transform", "translate(Q," + height + ")")
.call(xAxis);

svg.append("g") // Add the Y Axis
.attr("class", "y axis")
.call(yAxis);

We have covered the formatting of the axis components earlier. So this part is actually just about
getting those components drawn onto our canvas.

So both axes start by being appended to the “g” group. Then each has its own classes applied for
styling via CSS. If you recall from earlier, they look a little like this;

“*http://www.w3.0rg/TR/SVG/paths.html

www. dbooks. or g

http://www.w3.org/TR/SVG/paths.html
http://www.w3.org/TR/SVG/paths.html
https://www.dbooks.org/

Starting with a basic graph 41

.axis path,
.axis line {
fill: none;
stroke: grey;
stroke-width: 1;
shape-rendering: crispEdges;

Feel free to mess about with these to change the appearance of your axes.

On the x axis, we have a transform statement (.attr("transform", "translate(@," + height
+ ")")). If you recall, our point of origin for drawing is in the top left hand corner. Therefore
if we want our x axis to be on the bottom of the graph, we need to move (transform) it to the
bottom by a set amount. The set amount in this case is the height of the graph proper (height).
So, for the point of demonstration we will remove the transform line and see what happens;

T T
B0 ———pAl Aproa@

500+

T T
Apr 22 Apr 29
400
300
200

100

x axis transformed to the top of the graph

Yep, pretty much as anticipated.

The last part of the two sections of script (.call(xAxis); and .call(yAxis);) call the x and y
axis functions and initiate the drawing action.

Wrap Up

Well that’s it. In theory, you should now be a complete D3 ninja.

OK, perhaps a slight exaggeration. In fact there is a strong possibility that the information I
have laid out here is at best borderline useful and at worst laden with evil practices and gross
inaccuracies.

But look on the bright side. Irrespective of the nastiness of the way that any of it was
accomplished or the inelegance of the code, if the picture drawn on the screen is pretty, you
can walk away with a smile. :-)

This section concludes a very basic description of one type of a graphic that can be built with
D3. We will look at adding value to it in subsequent chapters.

Ive said it before and I'll say it again. This is not a how-to for learning D3. This is how I have
managed to muddle through in a bumbling way to try and achieve what I wanted to do. If

Starting with a basic graph 42

some small part of it helps you. All good. Those with a smattering of knowledge of any of the
topics I have butchered above (or below) are fully justified in feeling a large degree of righteous
indignation. To those I say, please feel free to amend where practical and possible, but please
bear in mind this was written from the point of view of someone with no experience in the topic
and therefore try to keep any instructions at a level where a new entrant can step in.

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic
graph

The following headings in this section are intended to be a list of relatively simple ‘block’ type
improvements that you can do to your graph to add functionality. The idea is to be able to use
the simple graph that was used for the explanation of how D3 worked and just slot in code to
add functionality (let’s hope it works for you :-)).

[have included the full code for a graph that includes rotated axis label, title, grid lines and filled
area as an appendix (Graph with Many Features) for those who would prefer to see the code as

a block.

The full code for this example can also be found on github*' or in the code samples bundled
with this book (graph-with-many-features.html and data.csv). A live example can be found on
bl.ocks.org*

Adding Axis Labels

What’s the first thing you get told at school when drawing a graph?
“Always label your axes!”
So, time to add a couple of labels!

First things first (because they’re done slightly differently), the x axis. If we begin by describing
what we want to achieve, it may make the process of implementing a solution a little more
logical.

What we want to do is to add a simple piece of text under the x axis and in the centre of the total
span. Wow, that does sound easy.

And it is, but there are different ways of accomplishing it, and I think I should take an opportunity
to demonstrate them. Especially since one of those ways is a BAD idea. Lets start with the bad
idea first :-).

This is the code we’re going to add to the simple line graph script;

“‘https://gist.github.com/d3noob/e1aa61856118edfa624d
“*http://bl.ocks.org/d3noob/e1aa61856118edfa624d

https://gist.github.com/d3noob/e1aa61856118edfa624d
http://bl.ocks.org/d3noob/e1aa61856118edfa624d
https://gist.github.com/d3noob/e1aa61856118edfa624d
http://bl.ocks.org/d3noob/e1aa61856118edfa624d

Things you can do with the basic graph 44

svg.append("text") // text label for the x axis
.attr("x", 265)
attr('y", 240)
.style("text-anchor", "middle")
text("Date");

We will put it in between the blocks of script that add the x axis and the y axis.

svg.append("g") // Add the X Axis
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.call(xAxis);

/7 PUT THE NEW CODE HERE!
svg.append("g") // Add the Y Axis
.attr("class", "y axis")
.call(yAxis);

Before we describe what’s happening, let’s take a look at the result;

500
500
400
300
200

100

]

T T T T T 1
April Apr 08 Apr 15 Apr 22 Apr 29
Date

Date label on x axis

Well, it certainly did what it was asked to do. There’s a ‘Date’ label as advertised! (Yes, I know
it’s not pretty.) Let’s describe the code and then work out why there’s a better way to do it.

svg.append("text") // text label for the x axis
.attr("x", 265)
attr('y", 240)
.style("text-anchor", "middle")
_text("Date");

The first line appends a “text” element to our canvas. There is a lot more to learn about “text”
elements at the home of the World Wide Web Consortium (W3C)*. The next two lines (
.attr("x", 265) and .attr("y", 240)) set the attributes for the x and y coordinates to
position the text on the canvas.

“http://www.w3.0rg/TR/SVG/text.html#TextElement

www. dbooks.

org

http://www.w3.org/TR/SVG/text.html#TextElement
http://www.w3.org/TR/SVG/text.html#TextElement
https://www.dbooks.org/

Things you can do with the basic graph 45

The second last line (. style("text-anchor", "middle"))ensures that the text ‘style’ is such that
the text is centre aligned and therefore remains nicely centred on the x,y coordinates that we
send it to.

The final line (. text("Date") ;) adds the actual text that we are going to place.

That seems really simple and effective and it is. However, the bad part about it is that we have
hard coded the location for the date into the code. This means if we change any of the physical
aspects of the graph, we will end up having to re-calculate and edit our code. And we don’t want
to do that.

Here’s an example. If I decide that I would prefer to increase the height of the graph by editing
the line here;

height = 270 - margin.top - margin.bottom;
and making the height 350 pixels;

height = 350 - margin.top - margin.bottom;
The result is as follows;

600
500
400
3001
200

1004 Date

T T T T T 1
April Apr 08 Apr 18 Apr 22 Apr 29

Hard coded Date label

EVERYTHING about the graph has adjusted itself, except our nasty, hard coded ‘Date’ label. This
is far from ideal and can be easily fixed by using the variables that we set up ever so carefully
earlier.

So, instead of;

.attr("x", 265)
Lattr("y", 240)

lets let our variables do the walking and use;

Things you can do with the basic graph 46

attr("x", width / 2)
.attr("y", height + margin.bottom)

So with this code we tell the script that the ‘Date’ label will always be halfway across the width of
the graph (no matter how wide it is) and at the bottom of the graph with respect to it’s height and
the bottom margin (remember it uses a coordinates system that increases from the top down).

The end result of using variables is that if I go to an extreme of changing the height and width
of my graph to;

width = 400 - margin.left - margin.right,
height = 200 - margin.top - margin.bottom;

We still finish up with an acceptable result;

600
500
400
300
200
100

0

T T T T T 1
April Apr 03 Apr 15 Apr 22 Apr 29
Date

Auto adjusting Date label

Well, for the label position at least :-).

So the changes to using variables is just a useful lesson that variables rock and mean that you
don’t have to worry about your graph staying in relative shape while you change the dimensions.
The astute readers amongst you will have learned this lesson very early on in your programming
careers, but it’s never a bad idea to make sure that users that are unfamiliar with the concept
have an indicator of why it’s a good idea.

Now the third method that I mentioned at the start of our x axis odyssey. This is not mentioned
because it’s any better or worse way to implement your script (The reason that I say this is
because I’'m not sure if it’s better or worse.) but because it’s sufficiently different to make it look
confusing if you didn’t think of it in the first place.

So, we’ll take our marvellous coordinates code;

.attr("x", width / 2)
.attr("y", height + margin.bottom)

And replace it with a single (longer) line;

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 47

.attr("transform",
"translate(" + (width/2) + " " +
(height+margin.bottom) + ")")

This uses the "transform" attribute to move (translate) the point to place the ‘Date’ label to
exactly the same spot that we’ve been using for the other two examples (using variables of
course).

9 Why does that line look odd?

The "translate” function is done in a ‘translate(x,y)’ style but it is put on the page
in such a way that the verbatim pieces that get passed back are in speech marks and
the variables are in the clear (in a manner of speaking). That’s why the comma is in
speech marks. Additionally, the variables are contained within plus signs. I make the
assumption that this is a designator for ‘areas where there is variable action going on’.
The end result is that if you try to do some maths in that area with a plus sign, it does not
appear to work (or at least it didn’t for me). That’s why I put the variable for (+ (height
+ margin.bottom) +) in parenthesis (then I thought I should make the + (width / 2)
+ part look the same, but actually you can get away without them there).

So, that’s the x axis label. Time to do the y axis. The code we’re going to use looks like this;

svg.append("text")
.attr("transform", "rotate(-90)")
.attr("y", © - margin.left)
attr("x",0 - (height / 2))
.attr("dy", "1em")
.style("text-anchor", "middle")
.text("Value");

For the sake of neatness we will put the piece of code in a nice logical spot and this would be
following the block of code that added the y axis (but before the closing curly bracket)

svg.append("g") // Add the Y Axis
.attr("class", "y axis")
.call(yAxis);

/7 PUT THE NEW CODE HERE'!

});

And the result looks like this;

Things you can do with the basic graph 48

500
500
400

300+

Walue

200+

100

0

T T T T T 1
April Aprog Apr 158 Apr 22 Apr 29
Date

y axis label with rotation!

There we go, a label for the y axis that is nicely centred and (gasp!) rotated by 90 degrees! Woah,
does the leetness never end! (No. No it does not.)

So, how do we get to this incredible result?

The first thing we do is the same as for the x axis and append a text element to our canvas
(svg.append("text")).

Then things get interesting.
.attr("transform", "rotate(-90)")

Because that line rotates everything by -90 degrees. While it’s obvious that the text label ‘Value’
has been rotated by -90 degrees (from the picture), the following lines of code show that we also
rotated our reference point (which can be a little confusing).

.attr("y", © - margin.left)
.attr("x",0 - (height / 2))

Let’s get graphical to illustrate how this works;

margin top
IO,OI
. XY i i
margin_left Emargin_right
| Pre-rotation | |

margin_bottom

Reference point pre-rotation

Here’s our starting position, with x,y in the 0,0 coordinate of the graph drawing area surrounded
by the margins.

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 49

When we apply a -90 degrees transform we get the equivalent of this;

[margin top

. | |
margin.left | | margin.right

- . -90 degrees
i l rotation :

IO.OI |

|

margin_bottom

Reference point after rotation

Here the 0,0 coordinate has been shifted by -90 degrees and the x,y designations are flipped so
that we now need to tell the script that we’re moving a ‘y’ coordinate when we would have
otherwise been moving ‘x’.

Hence, when the script runs...
.attr("y", @ - margin.left)

... we can see that this is moving the x position to the left from the new 0 coordinate by the
margin.left value.

Likewise when the script runs...
.attr("x",0 - (height / 2))

... this is actually moving the y position from the new 0 coordinate halfway up the height of the
graph area.

I will be the first to admit that this does seem a little confusing. But here’s the good part.
You really don’t need to understand it completely. Simply do what I did when I saw the
code. Play with it a bit till you get the result you were looking for. If that means putting
in some hard coded numbers and incrementing them to see which way is the new ‘up’.
Good! Once you work it out, then work out how to get the right variable expression in
there and you’re set.

In the worst case scenario, simply use the code blocks as shown here and leave well
enough alone :-).

Right, we’re not quite done yet. The following line has the effect of shifting the text slightly to
the right.

Things you can do with the basic graph 50
.attr("dy", "lem")

Firstly the reason we do this is that our previous translation of coordinates means that when we
place our text label it sits exactly on the line of 0 — margin.left. But in this case that takes the text
to the other side of the line, so it actually sits just outside the boundary of the overall canvas.

The "dy" attribute is another coordinate adjustment move, but this time a relative adjustment
and the “lem” is a unit of measure that equals exactly one unit of the currently specified text
point size**. So what ends up happening is that the “Value’ label gets shifted to the right by exactly
the height of the text, which neatly places it exactly on the edge of the canvas.

The two final lines of this part of the script are the same as for the x axis. They make sure the
reference point is aligned to the centre of the text (.style("text-anchor", "middle"))and then
it prints the text (. text("Value");). There, that wasn’t too painful.

The astute amongst you (and I'm picking that if you’re reading this far into the book, you will
definitely qualify as astute or at least suckers for punishment) will notice that the example that
I have included in the appendices and online does not have the ‘Value’ label. Instead it has the
text ‘Price ($)’and it appears on the area of the graph itself! Well spotted. The technique used
above is identical to the one used in the description here, but in the example code we have taken
an additional step of demonstrating how to place a white shadowy background under the text
(more of that to come in a couple of sections!).

“*http://en.wikipedia.org/wiki/Em_(typography)

www. dbooks. or g

http://en.wikipedia.org/wiki/Em_(typography)
http://en.wikipedia.org/wiki/Em_(typography)
http://en.wikipedia.org/wiki/Em_(typography)
https://www.dbooks.org/

Things you can do with the basic graph 51

How to add a title to your graph

If you’ve read through the adding the axis labels section most of this will come as no surprise.

What we want to do to add a title to the graph is to add a text element (just a few words) that
will appear above the graph and centred left to right.

The code block we will use will looks like this;

svg.append("text")
attr("x", (width / 2))
.attr("y", © - (margin.top / 2))
.attr("text-anchor", "middle")
.style("font-size", "16px")
.style("text-decoration", "underline")
.text("Value vs Date Graph");

And the end result will look like this;

Value vs Date Graph

500
500 -
400
300
200 -

100

0

T T T T T
April Apr 08 Apr 15 Apr 22 Apr 23
Basic graph with title

A nice logical place to put the block of code would be towards the end of the JavaScript. In fact
[would put it as the last element we add. So here;

svg.append("g") // Add the Y Axis
.attr("class", "y axis")
.call(yAxis);

// PUT THE NEW CODE HERE!

});

Now since the vast majority of the code for this block is a regurgitation of the axis labels code, I
don’t want to revisit that and bloat up this document even more, so I will direct you back to that
section if you need to refresh yourself on any particular line. But..... There are a couple of new
ones in there which could benefit from a little explanation.

Both of them are style descriptors and as such their job is to apply a very specific style to this
element.

Things you can do with the basic graph 52

.style("font-size", "16px")

.style("text-decoration", "underline")

What they do is pretty self explanatory. Make the text a specific size and underline it. But what
is perhaps slightly more interesting is that we have this declaration in the JavaScript code and
not in the CSS portion of the file.

Strictly speaking, this is the sort of thing that would be placed in the <style> section of
the HTML code, but in this case, since it is only going to be used once, we shouldn’t feel
too bad putting it here.

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 53

Smoothing out graph lines

When you draw a line graph, what you’re doing is taking two (or more) sets of coordinates and
connecting them with a line (or lines). I know that sounds simplistic, but bear with me. When
you connect these points, you're telling the viewer of the graph that in between the individual
points, you expect the value to vary in keeping with the points that the line passes through. So
in a way, you're trying to interpret the change in values that are not shown.

Now this is not strictly true for all graph types, but it does hold for a lot of line graphs.

So... when connecting these known coordinates together, you want to make the best estimate of
how the values would be represented. In this respect, sometimes a straight line between points
is not the best representation.

For instance. Earlier, when demonstrating the extent function for graphing we showed a graph
of the varying values with the y axis showing a narrow range.

560
540
620
500
530

560

T T T T T
April Apr 08 Apr 15 Apr 22 Apr 29

Expanded values for a narrow range

The resulting variation of the graph shows a fair amount of extremes and you could be forgiven
for thinking that if this represented a smoothly flowing analog system of some kind then some
of those sharp peaks and troughs would not be a true representation of how the system or figures
varied.

So how should it look? Ahh... The $64,000 question. I don’t know :-). You will have a better idea
since you are the person who will know your data best. However, what I do know is that D3 has
some tricks up its sleeve to help.

We can easily change what we see above into;

A

Smoothing using “basis”

How about that? And the massive amount of code required to carry out what must be a
ridiculously difficult set of calculations?

.interpolate("basis")

Things you can do with the basic graph 54

Now, that is slightly unfair because that’s the code that YOU need to put in your script,
but Mike Bostock probably had to do the mental equivalent of walking across hot coals
to get it to work so nicely.

So where does this neat piece of code go? Here;

var valueline = d3.svg.line()
.interpolate("basis") // <=== THERE IT IS!
.X(function(d) { return x(d.date); })
.y(function(d) { return y(d.close); });

So is that it? Nooooo........ There’s more! This is one form of interpolation effect that can be
applied to your data, but there is a range and depending on your data you can select the one that
is appropriate.

Here’s the list of available options and for more about them head on over to the D3 wiki*> and
look for ‘line.interpolate’.

« linear — Normal line (jagged).

« step-before — a stepping graph alternating between vertical and horizontal segments.

« step-after - a stepping graph alternating between horizontal and vertical segments.

« basis - a B-spline, with control point duplication on the ends (that’s the one above).

« basis-open - an open B-spline; may not intersect the start or end.

« basis-closed - a closed B-spline, with the start and the end closed in a loop.

« bundle - equivalent to basis, except a separate tension parameter is used to straighten the
spline. This could be really cool with varying tension.

« cardinal - a Cardinal spline, with control point duplication on the ends. It looks slightly
more ‘jagged’ than basis.

« cardinal-open - an open Cardinal spline; may not intersect the start or end, but will intersect
other control points. So kind of shorter than ‘cardinal’.

« cardinal-closed - a closed Cardinal spline, looped back on itself.

« monotone - cubic interpolation that makes the graph only slightly smoother.

Because in the course of writing this I took an opportunity to play with each of them, I was
pleasantly surprised to see some of the effects and it seems like a shame to deprive the reader
of the same joy :-). So at the risk of deforesting the planet (so I hope you are reading this in
electronic format) here is each of the above interpolation types applied to the same data.

This is also an opportunity to add some reader feedback awesomeness. Many thanks to ‘enjalot’
for the great suggestion to plot the points of the data as separate circles on the graphs. Since the
process of interpolation has the effect of ‘interpreting’ the trends of the data to the extent that
in some cases, the lines don’t intersect the actual data much at all.

Each of the following shows the smoothing curve and the data that is used to plot the graph.

“*https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line_interpolate

www. dbooks. or g

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line_interpolate
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-line_interpolate
https://www.dbooks.org/

Things you can do with the basic graph

BED:
540
620
500
580

560

T T T T T
April Apr 08 Apr 15 Apr 22 Apr 29

Smoothing using “linear”

560 | ’

T T T - T T
April Apr0a Apr 15 Apr 22 Apr 29

Smoothing using “step-before”

G50 | i

640

620

600

580]

560

T T T T T
April Apr0g Apr 18 Apr 22 Apr 29

Smoothing using “step-after”

Things you can do with the basic graph

BED:
540
620
500
580

560

T
April

660
540
620
L]
500
580

560

T T T T
Apr 08 Apr1a Apr 22 Apr 29

Smoothing using “basis”

T
April

560 -
540 -
520 -

[1]
500 -
530 -

560

T T T T
Apr 08 Apr 18 Apr 22 Apr 29

Smoothing using “basis-open”

T
April

T T T T
Apr0g Apr 15 Apr 22 Apr 29

Smoothing using “basis-closed”

56

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph

560 -

540

620

600

580

560

T T T T T
April Apr0g Apr 15 Apr 22 Apr 29

Smoothing using “bundle”

560

T T T ‘U'"'\) T T
April Apr 08 Apr 18 Apr 22 Apr 29

Smoothing using “cardinal”

560 - .
540 -
620

L]
500
580 -

560+

T T T ‘U'"'\) T T
April Apr 08 Apr 15 Apr 22 Apr 29

Smoothing using “cardinal-open”

Things you can do with the basic graph

560 -
540 -

620

T T T ‘U""\J T T
April Apr0g Apr 15 Apr 22 Apr 29

Smoothing using “cardinal-closed”

T T T T T
April Apr 08 Apr 15 Apr 22 Apr 29

Smoothing using “monotone”

58

Just in case you’re in the mood for another example, here are voronoi tessellations drawn with
various d3 line interpolators (the original interactive version by ‘shawnbot’ can be found here*).

““http://bl.ocks.org/shawnbot/5970227

www. dbooks. or g

http://bl.ocks.org/shawnbot/5970227
http://bl.ocks.org/shawnbot/5970227
https://www.dbooks.org/

Things you can do with the basic graph 59

First a version using the linear interpolation when each of the points is joined faithfully with a
straight line.

linear |=]

Polygon Smoothing using “linear”

Now a version where the polygons are formed with the ‘basis-closed’ interpolator (note how the
lines don’t go through the points that describe the bounds of the polygons/blobs).

basis-closed

Polygon Smoothing using “basis-closed”

Things you can do with the basic graph 60

And lastly, using the ‘cardinal-closed’ interpolator, while the line travels through each point in

the polygon, they overshoot in an effort to maintain a nice curve and the resulting polygon/blobs
overlap.

cardinal-closed | =/

Polygon Smoothing using “cardinal-closed”

So, over to you to decide which format of interpolation is going to suit your data best:-).

www. dbooks. org

https://www.dbooks.org/

Things you can do with the basic graph 61

Adding grid lines to a graph

Grid lines are an important feature for some graphs as they allow the eye to associate three
analogue scales (the x and y axis and the displayed line).

There is currently a tendency to use graphs without grid lines online as it gives the appearance
of a ‘cleaner’ interface, but they are still widely used and a necessary component for graphing.

This is what we’re going to draw;

500
500
400
300
200

100+

0

T T T T T 1
April Apr 08 Apr15 Apr 22 Apr 29

Basic graph with gridlines

Like pretty much everything in this document, the clever parts of this are not my work.
I’'ve simply used other peoples cleverness to solve my problems. In this case I think
the source of this solution came from the good work of Justin Palmer in his excellent
description of the design of a line graph here*’. However, in retrospect when I've looked
back, 'm not sure if I got this right (as I did this quite a while ago when I was less
fastidious about noting my sources). In any case, Justin’s work is excellent and I heartily
recommend it, and here is my implementation of what I think is his work :-)

How to build grid lines?

We’re going to use the axis function to generate two more axis elements (one for x and one for
y) but for these ones instead of drawing the main lines and the labels, we’re just going to draw
the tick lines. Really long ticklines (I'm considering calling them long cat*® lines).

To create them we have to add in 3 separate blocks of code.

1. One in the CSS section to define what style the grid lines will have.
2. One to define the functions that generate the grid lines. And...
3. One to draw the lines.

The grid line CSS

This is the total styling that we need to add for the tick lines;

“"http://dealloc.me/2011/06/24/d3-is-not-a-graphing-library.html
“*http://knowyourmeme.com/memes/longcat

http://dealloc.me/2011/06/24/d3-is-not-a-graphing-library.html
http://knowyourmeme.com/memes/longcat
http://dealloc.me/2011/06/24/d3-is-not-a-graphing-library.html
http://knowyourmeme.com/memes/longcat

Things you can do with the basic graph 62

.grid .tick {
stroke: lightgrey;
stroke-opacity: 0.7;
shape-rendering: crispEdges;

}
.grid path {
stroke-width: 0;

Just add this block of code at the end of the current CSS that is in the simple graph template (just
before the </style> tag).

The CSS here is done in two parts.

The first portion sets the line colour (stroke), the opacity (transparency) of the lines and make
sure that the lines are narrow (crispEdges).

stroke: lightgrey;
stroke-opacity: 0.7;

shape-rendering: crispEdges;

The colour is pretty standard, but in using the opacity style we give ourselves the opportunity
to use a good shade of colour (if grey actually is a colour) and to juggle the degree to which it
stands out a little better.

The second part is the stroke width.
stroke-width: 9;

Now it might seem a little weird to be setting the stroke width to zero, but if you don’t (and we
remove the style) this is what happens;

500 -
500 -
400-
300-
200-

100

0

April Apr 08 Apr 15 Apr 22 Apr 29
Axis lines made too thick

If you look closely (compare with the previous picture if necessary) the main lines for the axis

have turned thicker. The stroke width style is obviously adding in new (thicker) axis lines and

we’re not interested in them at the moment. Therefore, if we set the stroke width to zero, we get
rid of the problem.

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 63

Define the grid line functions

We will need to define two functions to generate the grid lines and they look a little like this;

function make_x_axis() {
return d3.svg.axis()
.scale(x)
.orient("bottom")
.ticks(5)

function make_y_axis() {

return d3.svg.axis()
.scale(y)

.orient("left")
.ticks(5)

Each function will carry out it’s configuration when called from the later part of the script (the
drawing part).

A good spot to place the code is just before we load the data with the d3.csv

// <== Put the functions here!
// Get the data
d3.csv("data.csv", function(error, data) {
data. forEach(function(d) ({
d.date = parseDate(d.date);

d.close = +d.close;

1),

Both functions are almost identical. They give the function a name (make_x_axis and make_y_-
axis) which will be used later when the piece of code that draws the lines calls out to them.

Both functions also show which parameters will be fed back to the drawing process when called.
Both make sure they use the d3.svg.axis function and then they set individual attributes which
make sense.

They make sure they’ve got the right axis (.scale(x) and .scale(y)). They set the orientation of
the axes to match the incumbent axes (.orient("bottom") and .orient("left")). And they set
the number of ticks to match the number of ticks in the main axis (.ticks(5) and .ticks(5)).
You have the opportunity here to do something slightly different if you want. For instance, think
back to when we were setting up the axis for the basic graph and we messed about, seeing how
many ticks we could get to appear. If we increase the number of ticks that appear in the grid (lets
say to .ticks(30) and .ticks(10))) we get the following;

Things you can do with the basic graph 64

500
500 -
400
300
200 -

100

0

T T T T T
April Apros Apr 15 Apr 22 Apr 29

Grid lines with greater divisions

So the grid lines can now show divisions of 50 on the y axis and per day on the x axis :-)

Draw the lines

The final block of code we need is the bit that draws the lines.

svg.append("g")
.attr("class", "grid")
.attr("transform", "translate(@," + height + ")")
.call(make_x_axis()
.tickSize(-height, 0, 0)
.tickFormat("")

svg.append("g")
.attr("class", "grid")
.call(make_y_axis()
.tickSize(-width, 0, 0)
.tickFormat("")

The first two lines of both the x and y axis grid lines code above should be pretty familiar by now.
The first one appends the element to be drawn to the group “g”. the second line (.attr("class",
"grid")) makes sure that the style information set out in the CSS is applied.

The x axis grid lines portion makes a slight deviation from conformity here to adjust its
positioning to take into account the coordinates system .attr("transform", "translate(@," +
height + ")").

Then both portions call their respective make axis functions (.call(make_x_axis() and .call(make_-
y_axis()).

Now comes the really interesting bit.

What you will see if you go to the D3 API wiki* is that for the .tickSize function, the following
is the format.

“https://github.com/mbostock/d3/wiki/SVG- Axes#wiki-tickSize

www. dbooks. or g

https://github.com/mbostock/d3/wiki/SVG-Axes#wiki-tickSize
https://github.com/mbostock/d3/wiki/SVG-Axes#wiki-tickSize
https://www.dbooks.org/

Things you can do with the basic graph 65

axis.tickSize([major[[, minor], end]])

That tells us that you get to specify the size of the ticks on the axes, by the major ticks, the minor
ticks and the end ticks (that is to say the lines on the very end of the graph which, in the case of
the example we are looking at, aren’t there!).

So in our example we are setting our major ticks to a length that corresponds to the full height
or width of the graph. Which of course means that they extend across the graph and have the
appearance of grid lines! What a neat trick.

Something I haven’t done before is to see what would happen if I included the tick lines for the
minor and end ticks. So here we go :-)

600
500
400
300
200

100

T T T T T
April Apr0g Apr 18 Apr 22 Apr 29

Disappointment! Where did I go wrong?

Darn! Disappointment. We can see a minor tick line for the y axis, but nothing for the x axis and
nothing on the ends. Clearly I will have to run some experiments to see what’s going on there
(later).

The last thing that is included in the code to draw the grid lines is the instruction to suppress
printing any label for the ticks;

.tickFormat("")

After all, that would become a bit confusing to have two sets of labels. Even if one was on top
of the other. They do tend to become obvious if that occurs (they kind of bulk out a bit like bold
text).

And that’s it. Grid lines!

Things you can do with the basic graph 66

Make a dashed line

Dashed lines totally rock!

OK, there may be an element of exaggeration there, but I certainly found it interesting
that there didn’t seem to be a lot of explanation for a simple bloke like myself to make
a dashed line in D3. So for me they rocked :-)

One of the best parts about it is that they’re so simple to do!
Literally one line!!!!

So lets imagine that we want to make the line on our simple graph dashed. All we have to do is
insert the following line in our JavaScript code here;

svg.append("path")
.attr("class", "line")
.style("stroke-dasharray", ("3, 3")) // <== This line here!!
.attr("d", valueline(data));

And our graph ends up like this;

I e
500 -
400
300
200
100

0

Apri Apr 08 Apr 15 Apr 22 Apraa |
Dashed line for the basic graph

Hey! It’s dashtastic!

So how does it work?

Well, obviously "stroke-dasharray" is a style for the path element, but the magic is in the
numbers.

Essentially they describe the on length and off length of the line. So "3, 3" translates to 3 pixels
(or whatever they are) on and 3 pixels off. Then it repeats. Simple eh?

So, experiment time :-)
What would the following represent?
“5 5 5, 5,5, 5, 10, 5, 10, 5, 10, 5

Try not to cheat...

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 67

goo]- -~ =—-- I TSR
500 - \
400-
300 - \

200 -

100 4 Yoo

0

T T T T T
April Apr 08 Apr 15 Apr 22 Apr 29

Dashed lines for fun

Ahh yes, Mr. Morse would be proud.

And you can put them anywhere. Here’s our axes perverted with dashes;

svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.style("stroke-dasharray", ("3, 3"))
.call(xAxis);

svg.append("g")
.attr("class", "y axis")
.style("stroke-dasharray", ("3, 3"))
.call(yAxis);

600 =" T ~—--" TTTh-o
500 - \
400 |

300 - \

When dashed lines go bad

Well... I suppose you can have too much of a good thing. With great power comes great
responsibility. Use your dash skills wisely and only for good.

Things you can do with the basic graph 68

Filling an area under the graph

Lines are all very well and good, but that’s not the whole story for graphs. Sometimes you've
just got to go with a fill.

Filling an area with a solid colour isn’t too hard. I mean we did it by mistake back a few pages
when we were trying to draw a line.

But to do it in a nice coherent way is fairly straight forward.

It takes three sections of code in much the same way that we drew our grid lines earlier;

1. One in the CSS section to define what style the area will have.
2. One to define the functions that generate the area. And...
3. One to draw the area.

The end result will looks a bit like this;

500 -
500
400
300
200

100

0

T T T T T
April Apr0g Apr s Apr 22 Apr 29

Basic graph with an area fill

CSS for an area fill

This is pretty straight forward and only consists of two rules;

.area {
fill: lightsteelblue;
stroke-width: ©;

Put them at the bottom of your <style> section.

The first one (fill: lightsteelblue;) sets the colour of our fill (and in this case we have chosen
a lighter shade of the same colour as our line to match it) and the second one (stroke-width: 0;)
sets the width of the line that surrounds the area to zero. This last rule is kind of important in
making a filled area work well. The whole idea is that the graph is made up of separate elements
that will compliment each other. There’s the axes, the line and the fill. If we don’t tell the code
that there is no line surrounding the filled area, it will assume that there is one and add it in like
this.

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 69

500
500 -
400-
300-
200

100

0

T T T T T
April Aprog Apr 15 Apr 22 Apr 29

Line surrounding filled area

So what has happened here is that the area element has inherited the line property from the path
element and surrounding the area is a 2px wide steelblue line. Not too pretty. Let’s not go there.

Define the area function

We need a function that will tell the area what space to fill. This is accessed from the d3.svg.area
function®

The code that we will use is as follows;

var area = d3.svg.area()
.x(function(d) { return x(d.date); })
.y@(height)
.y1(function(d) { return y(d.close); });

I have placed it in between the axis variable definitions and the line definitions here;

var yAxis = d3.svg.axis().scale(y)
.orient("left").ticks(5);
<==== Put the new code here!
var valueline = d3.svg.line()
.X(function(d) { return x(d.date); })
.y(function(d) { return y(d.close); });

You will notice it looks INCREDIBLY similar to the valueline function definition. That’s
because; while the line definition describes drawing a line that connects a set of
coordinates, I imagine the area definition describes drawing two lines that share the
same x coordinates, but simultaneously draws two y coordinates, y0 and y1. Then when
it’s finished drawing the resultant shape, it fills it with the colour of your choosing.

So the only changes to the code are the addition of the yo line and the renaming of the y line y1.

Here’s a picture that might help explain;

*°https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-area

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-area
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-area
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-area

Things you can do with the basic graph 70

v vl i v1ow

valueline

ot Y Y VvV V¥ J [I ¢
o I Y T I I R I

How the area is defined

As should be apparent, the top line (y1) follows the valueline line and the bottom line is at the
constant ‘height’ value. Everything in between these lines is what gets filled. The function in
this section describes the area.

Draw the area

Now to the money maker.

The final section of code in the area filling odyssey is as follows;

svg.append("path")
.datum(data)
.attr("class", "area"
.attr("d", area);

We should place this block directly after the domain functions but before the drawing of the
valueline path;

x.domain(d3.extent(data, function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.close; })]);
// (== Area drawing code here!
svg.append("path")
.attr("class", "line")
.attr("d", valueline(data));

This is actually a pretty good idea to put it there since the various bits and pieces that are drawn
in the graph are done so one after the other. This means that the filled area comes first, then the
valueline is layered on top and then the axes come last. This is a pretty good sequence since if
there are areas where two or more elements overlap, it might cause the graph to look ‘wrong’.

For instance, here is the graph drawn with the area added last.

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 71
600 T I
500 -
400 -
300 -
200 D

100

T T T T T 1
April Apr 08 Apr 15 Apr 22 Apr 28
Area overlaps and obscures

You should be able to notice that part of the valueline line has been obscured and the line for the
y axis where it coincides with the area is obscured also.

Looking at the code we are adding here, the first line appends a path element (svg.append("path"))
much like the script that draws the line.

The second line (.datum(data)) declares the data we will be utilising for describing the area and
the third line (.attr("class", "area")) makes sure that the style we apply to it is as defined in
the CSS section (under ‘area’).

The final line (.attr("d", area);) declares “d” as the attributer for path data and calls the ‘area’
function to do the drawing.

And that’s it!

Filling an area above the line

Pop Quiz:
How would you go about filling the area ABOVE the graph?

Now it might sound a little trite, but believe it or not, this could come in handy. For
instance, what if you want to highlight an area that was too high and an area that was
too low for a line of data on a graph with an area in the centre where a projected ‘normal’
set of values should be present?

In this instance, you could fill the lower area as has been demonstrated here, and with a small
change you can fill another area with a solid colour above another line.

How is this incredible feat achieved?

Well, remember the code that defined the area?

var area = d3.svg.area()
.x(function(d) { return x(d.date); })
.y@(height)
.y1(function(d) { return y(d.close); });

Things you can do with the basic graph 72

All we have to do is tell it that instead of setting the yo constant value to the height of the graph
(remember, this is the bottom of the graph) we will set it to the constant value that is at the top
of the graph. In other words zero (0).

.y0(9)

That’s it.

500
500
400
300
200

100+

T T T T T
April Aprog Apr 15 Apr 22 Apr 29

Fill an area above a line

Now, 'm not going to go over the process of drawing two lines and filling each in different
directions to demonstrate the example I described, but this provides a germ of an idea that you
might be able to flesh out :-)

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 73

Adding a drop shadow to allow text to stand out on
graphics.

I've deliberately positioned this particular tip to follow the ‘filling an area’ description because
it provides an opportunity to demonstrate the principle to slightly better effect.

There have been several opportunities where I have wanted to place text overlaid on graphs for
convenience sake only to have it look overly messy as the text interferes with the graph.

9 Is this evil?

Now, I'll be the first to say that the principle of overlaying text on a graph is probably not
best practice, but sometimes you’ve got to do what you’ve got to do. Besides. Sometimes
it’s a valid idea. If I remember rightly, the first time I came across this idea, it was being
used to highlight text when positioned on bars of a bar graph. So it’s not always an evil
practice :-).

Anyway, what we’ll do is leave the fill in place and place the title back on the graph, but position
the title so that it lays on top of the fill like so;

800 Value vs Dafe h
500 -
400 -
300
200 -

100

0

T T T T T
April Aproa Apr1s Apr 22 Apr 29

Title lost in the area fill

The additional code for the title is the following and appears just after the drawing of the axes.

svg.append("text")
attr("x", (width / 2))
attr("y", 25)
.attr("text-anchor", "middle")
.style("font-size", "16px")
.style("text-decoration", "underline")
.text("Value vs Date Graph");

(the only change from the previous title example is the ‘y’ attribute which has been hard coded
to 25 to place it inconveniently on the filled area.)

So, what we want to end up with is something like the following...

Things you can do with the basic graph 74

boi] Value vs Date"Graph

500

400

300+

200

100

0

April Apr 08 Apr 15 Apr 22 Apr2o
A nice white drop shadow effect
In my humble opinion, it’s just enough to make the text acceptable :-).

The method that I'll describe to carry this out is designed so that the drop shadow effect can be
applied to any text elements in the graph, not the isolated example that we will use here. In order
to implement this marvel of utility we will need to make changes in two areas. One in the CSS
where we will define a style for white shadowy backgrounds and the second to draw it.

CSS for white shadowy background

The code to add to the CSS section is as follows;

text.shadow {
stroke: white;
stroke-width: 2.5px;
opacity: 0.9;

The first line designates that the style applies to text with a ‘shadow’ label. The stroke is set to
white. the width of the line is set to 2.5px and it is made to be slightly see-through. So by setting
the line that surrounds the text to be thick, white and see-through gives it a slightly ‘cloudy’
effect. If we remove the black text from over the top we get a slightly better look;

A closer look at just the drop shadow

Of course if you want to have a play with any of these settings, you should have a go and see
what works best for your graph.

Drawing the white shadowy background.

Now that we’ve set the style for our background, we need to draw it in.

The code for this should be extremely familiar;

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 75

svg.append("text")
Lattr("x", (width / 2))
.attr("y", 25)
.attr("text-anchor", "middle")
.style("font-size", "16px")
.style("text-decoration", "underline")
.attr("class", "shadow") // <=== Here's the different line

.text("Value vs Date Graph");

That’s because it’s identical to the piece of code that was used to draw the title except for the one
line that is indicated above. The reason that it’s identical is that what we are doing is placing a
white shadow on the graph and then the text on top of it, if it deviated by a significant amount
it will just look silly. Of course a slight amount could look effective, in which case adjust the ‘x’
or ‘y’ attributes.

One of the things I pointed out in the previous paragraph was extremely important. That’s the
bit that tells you that we needed to place the shadow before we placed the black text. For the
same reason that we placed the area fill on first in the area fill example, If black text goes on
before the shadow, it will look pretty silly. So place this block of code just before the block that
draws the title.

So the line that has been added in is the one that tells D3 that the text that is being drawn
will have the white cloudy effect. And at the risk of repeating myself, if you have several text
elements that could benefit from this effect, once you have the CSS code in place, all you need
to do is duplicate the block that adds the text and add in that single line and voila!

Again the astute amongst you will note that in the example code in the appendices and online,
the shadow effect is applied to the Y axis label. Never fear, it’s exactly the same principle :-).

Things you can do with the basic graph 76

Adding more than one line to a graph

All right, we’re starting to get serious now. Two lines on a graph is a bit of a step into a different
world in one respect. I mean that in the sense that there’s more than one way to carry out the
task, and I tend to do it one way and not the other mainly because I don’t fully understand the
other way :~(.

I should stress that that’s not because it’s more complex, or that it’s a bad way, it’s just
that once I started doing things one way, I haven’t come across a need to do things
another way. There’s a good chance I will have to revisit this decision in the future, but
for now I'll keep moving.

So, how are we going to do this? I think that the best way will be to make the executive decision
that we have suddenly come across more data and that it is also in our data.csv file (which we’ll
rename data2.csv just to highlight the difference between the two data sets). In fact it looks a
little like this (apologies in advance for the big ugly block of data);

date,close, open
1-May-12,68.13,34.12
30-Apr-12,63.98,45.56
2T-Apr-12,67.00,67.89
26-Apr-12,89.70,78.54
25-Apr-12,99.00,89.23
24-Apr-12,130.28,99.23
23-Apr-12,166.70,101 .34
20-Apr-12,234.98,122.34
19-Apr-12,345.44,134.56
18-Apr-12,443.34,160.45
17-Apr-12,543.70,180.34
16-Apr-12,580.13,210.23
13-Apr-12,605.23,223.45
12-Apr-12,622.77,201.56
11-Apr-12,626.20,212.67
10-Apr-12,628.44,310.45
9-Apr-12,636.23,350.45
5-Apr-12,633.68,410.23
4-Apr-12,624.31,430.56
3-Apr-12,629.32,460.34
2-Apr-12,618.63,510.34
30-Mar-12,599.55,534.23
29-Mar-12,609.86,578.23
28-Mar-12,617.62,590.12
27-Mar-12,614.48,560.34
26-Mar-12,606.98,580.12

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 77

Three columns, date open and close. The first two are exactly what we have been dealing with
all along and the last (open) is our new made up data. Each column is separated by a comma
(hence .csv (comma separated values)), which is the format we’re currently using to import data.

We should save this as a new file so we don’t mess up our previous data, so (as mentioned earlier)
let’s call it data2.csv.

There is a copy of this file and the sample code at github®* and in the code samples bundled
with this book (dual-line-with-labels.html and data2.csv). A live example can be found on
bl.ocks.org®. The dual-line-with-labels.html file includes the double lines and also a labelling
scheme which we will be describing in a later section.

We will build our new code using our simple graph template to start with, so the immediate
consequence of this is that we need to edit the line that was looking for ‘data.csv’ to reflect the
new name.

d3.csv("data2.csv", function(error, data) {

So when you browse to our new graph’s html file, we don’t see any changes. It still happily loads
the new data, but because it hasn’t been told to do anything with it, nothing new happens.

What we need to do now it to essentially duplicate the code blocks that drew the first line for
the second line.

The good news is that in the simplest way possible that’s just two code blocks. The first sets up
the function that defines the new line;

var valueline2 = d3.svg.line()
.x(function(d) { return x(d.date); })
.y(function(d) { return y(d.open); });

You should notice that this block is identical to the block that sets up the function for the first
line, except this one is called (imaginatively) valueline2. We should put it directly after the block
that sets up the function for valueline.

The second block draws our new line;

svg.append("path") // Add the valuelineZ2 path.
.attr("d", valueline2(data));

Again, this is identical to the block that draws the first line, except this one is called valueline2.
We should put it directly after the block that draws valueline.

After those three small changes, check out your new graph;

**https://gist.github.com/d3noob/8603837
*?http://bl.ocks.org/d3noob/8603837

https://gist.github.com/d3noob/8603837
http://bl.ocks.org/d3noob/8603837
https://gist.github.com/d3noob/8603837
http://bl.ocks.org/d3noob/8603837

Things you can do with the basic graph 78

500
500
400
300
200

100+

]

T T T T T
April Apr 08 Apr 15 Apr 22 Apr 29

Two lines, but the same colour

Hey! Two lines! Hmm.... Both being the same colour is a bit confusing. Good news. We can
change the colour of the second line by inserting a line that adjusts it’s stroke (colour) very
simply.

So here’s what our new drawing block looks like;

svg.append("path") // Add the valueline2 path.
.style("stroke", "red")
.attr("d", valueline2(data));

And as if by magic, here’s our new graph;

600
500
400
300
200

100

0

T T T T T 1
April Apr 08 Apr15 Apr 22 Apr 29

Two lines with two colours

Wow. Right about now, we’re thinking ourselves pretty clever. But there’s two places where we’re
not doing things right. We took a simple way, but we took some short cuts that might bite us in
the posterior.

The first mistake we made was not ensuring that our variable "d.open" is being treated as a
number or a string. We’re fortunate in this case that it is, but this can’t always be assumed. So,
this is an easy fix and we just need to put the following (indicated line) in our code;

www. dbooks.

org

https://www.dbooks.org/

Things you can do with the basic graph 79

// Get the data
d3.csv("data.csv", function(error, data) {
data. forEach(function(d) {
d.date = parseDate(d.date);
d.close = +d.close;
d.open = +d.open; // <=== Add this line in!
1)

The second and potentially more fatal flaw is that nowhere in our code do we make allowance
for our second set of data (the second line’s values) exceeding our first lines values.

That might not sound too normal straight away, but consider this. What if when we made up
our data earlier, some of the new data exceeded our maximum value in our original data? As a
means of demonstration, here’s what happens when our second line of data has values higher
than the first lines;

600
500
400
300
200

100

Apll'il ADI’I 03 AD[I 15 .1‘\|:]I'I 22 ADI’I 29
Two lines but the domain’s not right

Ahh.... We’re not too clever now.

Good news though, we can fix it!

The problem comes about because when we set the domain for the y axis this is what we put in
the code;

y.domain([0,d3.max(data, function(d) {return d.close;})]);

So that only considers d.close when establishing the domain. With d. open exceeding our domain,
it just keeps drawing off the graph!

The good news is that ‘Bill’ has provided a solution for just this problem here>?;

All you need to replace the y.domain line with is this;

y.domain([@, d3.max(data, function(d) {
return Math.max(d.close, d.open); })]);

*http://stackoverflow.com/questions/12732487/d3- js-dataset-array-w-multiple-y-axis-values

http://stackoverflow.com/questions/12732487/d3-js-dataset-array-w-multiple-y-axis-values
http://stackoverflow.com/questions/12732487/d3-js-dataset-array-w-multiple-y-axis-values

Things you can do with the basic graph 80

It does much the same thing, but this time it returns the maximum of d.close and d.open
(whichever is largest). Good work Bill.

If we put that code into the graph with the higher values for our second line we are now presented
with this;
600 —
400+

200

T T T T T
April Apr 08 Apr 15 Apr 22 Apr 29

Two lines with everything fitting onto the canvas

And it doesn’t matter which of the two sets of data is largest, the graph will always adjust :-)

You will also have noticed that our y axis has auto adjusted again to cope. Clever eh?

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 81

Labelling multiple lines on a graph

Our previous example of a graph with multiple lines is a thing of rare beauty, but which line
relates to which set of data? We have data that defines values for open and close, but we don’t
know which line is which.

In this section we will add labels to our lines so that we know what it what.

This section was inspired by a question from a reader (Arun b.s) of the d3noob.org>* blog where
the question was asked “How can we put text at the end of each line on the graph?”.

The question was so good I realised that it had to be part of the book, so here you go :-).

It’s actually not too difficult. What we are trying to achieve is to find the position of the end of
each line and to add a text label at that position so that the association of proximity denotes the
linkage. Of course we’re going to go a little further and colour the text so that it’s really clear
which label belongs with which line, but you get the idea.

Each line requires a single block of script to add the text. The block that adds the open label is as
follows;

svg.append("text")
.attr("transform", "translate("+(width+3)+","+y(data[@].open)+")")
.attr("dy", ".35em")
.attr("text-anchor", "start")
style("fill", "red")
.text("Open");

So firstly it appends a textual element to the svg object;
svg.append("text")
Then it finds the position of the end of the line;
.attr("transform", "translate("+(width+3)+","+y(data[@].open)+")")

To do this we use the transform and translate attribute and find the x position that equates
to the end of the graph plus 3 pixels ((width+3)) (we add in the three pixels to create a small
separation between the end of the line and the label). The y position is far more interesting. We
need to find the position of the last point in our line for the open data. Because the data is in the
form of an indexed array and because the data has the latest date at the start of the array, we
only need to find the point at the @ position of the array. This is data[@] .open. But of course, we
also need to adjust our data for our scale and range, so we transform it using the y function (in
the same way that we do it for the valueline and valueline2 points. So the script to find the
point on the screen in the y direction is y(data[@] .open).

If our data was arranged with the last date at the end of our data we would have to find the final
index point and we would use y(data[data.length-1].open)).

Then it’s just a matter of aligning and justifying our text correctly;

**http://www.d3noob.org/2013/01/adding- more-than-one- line-to- graph-in.html

http://www.d3noob.org/2013/01/adding-more-than-one-line-to-graph-in.html
http://www.d3noob.org/2013/01/adding-more-than-one-line-to-graph-in.html

Things you can do with the basic graph 82

.attr("dy", ".35em")
.attr("text-anchor", "start")

Then colouring it the correct colour;
style("fill", "red")

And adding out text;
.text("Open");

We put this block of code after the blocks that add in the axes so that they make sure they’re on
top of anything else we draw.

The only other small change we want to make is to change the right margin for the graph that we
set at the start of our script from 20 to 40 so that there is enough room to add our label without
cutting it off.

After that you have a marvellously labelled multi-line graph!

600 |
500
400
300
200

100+
Close
Cpen

0

T T T T T
April Apr0g Apr1a Apr 22 Apr 29
Multi-line graph with labels

The full code for this example can be found on github® or in the code samples bundled with
this book (dual-line-graph-with-labels.html and data2.csv). A working example can be found on
bl.ocks.org*®.

Now, I’d like to pretend that this is perfection, but it isn’t. If our lines end too close together, the
labels will interfere with each other, so in the ideal world I would include a bit of fanciness to
prevent that, but for the purposes of this exercise we can consider ourselves happy.

*https://gist.github.com/d3noob/8603837
*%http://bl.ocks.org/d3noob/8603837

www. dbooks. or g

https://gist.github.com/d3noob/8603837
http://bl.ocks.org/d3noob/8603837
https://gist.github.com/d3noob/8603837
http://bl.ocks.org/d3noob/8603837
https://www.dbooks.org/

Things you can do with the basic graph 83

Multiple axes for a graph

Alrighty... Let’s imagine that we want to show our wonderful graph with two lines, much like we
already have, but that the data that the lines are made from is significantly different in magnitude
from the original data (in the example below, the data for the second line has been reduced by
approximately a factor of 10 from our original data).

date,close, open
1-May-12,58.13,3.41
30-Apr-12,53.98,4.55
27-Apr-12,67.00,6.78
26-Apr-12,89.70,7.85
25-Apr-12,99.00,8.92
24-Apr-12,130.28,9.92
23-Apr-12,166.70,10.13
20-Apr-12,234.98,12.23
19-Apr-12,345.44,13.45
18-Apr-12,443.34,16.04
17-Apr-12,543.70,18.03
16-Apr-12,580.13,21.02
13-Apr-12,605.23,22.34
12-Apr-12,622.77,20.15
11-Apr-12,626.20,21.26
10-Apr-12,628.44,31.04
9-Apr-12,636.23,35.04
5-Apr-12,633.68,41.02
4-Apr-12,624.31,43.05
3-Apr-12,629.32,46.03
2-Apr-12,618.63,51.03
30-Mar-12,599.55,53.42
29-Mar-12,609.86,57.82
28-Mar-12,617.62,59.01
27-Mar-12,614.48,56.03
26-Mar-12,606.98,58.01

Now this isn’t a problem in itself. D3 will still make a reasonable graph of the data, but because
of the difference in range, the detail of the second line will be lost.

Things you can do with the basic graph 84

600
500
400
300
200

100+

0

T T T T T !
April Apr 08 Apr 15 Apr 22 Apr 29

One line is dominating the other

What I'm proposing is that we have a second y axis on the right hand side of the graph that
relates to the red line.

The mechanism used is based on the great examples put forward by Ben Christensen here®’.

Now... You'll need to concentrate a bit since there are quite a few different bits to change
and adapt, but don’t despair, they’re all quite logical and make sense.

The full code for this example can be found on github®® or in the code samples bundled
with this book (dual-line-dual-axes.html and data2a.csv). A working example can be found on

bl.ocks.org®”.

First things first, there won’t be space on the right hand side of our graph to show the extra axis,
so we should make our right hand margin a little larger.

var margin = {top: 30, right: 40, bottom: 30, left: 50},

[went for 40 and it seems to fit pretty well.

Then (and here’s where the main point of difference for this graph comes in) you want to amend
the code to separate out the two scales for the two lines in the graph. This is actually a lot easier
than it sounds, since it consists mainly of finding anywhere that mentionsy and replacing it with
y0 and then adding in a reciprocal piece of code for y1.

The idea here is that we will be creating two references for the y axis. One for each
column of data. Then when we draw the lines the scales will automatically scale the
data correctly (and separately) to our canvas and we will draw two different y axes with
the different scales. Believe it or not, it’s sounds a lot harder than it is.

Let’s get started.

Firstly, change the variable declaration for y to yo and add in y1.

*"http://benjchristensen.com/2012/05/02/line- graphs-using-d3-js/
*®https://gist.github.com/d3noob/e34791a32a54€015f57d
**http://bl.ocks.org/d3noob/e34791a32a54e015f57d

www. dbooks. or g

http://benjchristensen.com/2012/05/02/line-graphs-using-d3-js/
https://gist.github.com/d3noob/e34791a32a54e015f57d
http://bl.ocks.org/d3noob/e34791a32a54e015f57d
http://benjchristensen.com/2012/05/02/line-graphs-using-d3-js/
https://gist.github.com/d3noob/e34791a32a54e015f57d
http://bl.ocks.org/d3noob/e34791a32a54e015f57d
https://www.dbooks.org/

Things you can do with the basic graph 85

var x = d3.time.scale().range([0, width]);

var y@ = d3.scale.linear().range([height, 0]);
var yl = d3.scale.linear().range([height, 0]);

Then change our yAxis declaration to be specific for yo and specifically 1eft. And add in a
declaration for the right hand axis;

var yAxisleft = d3.svg.axis().scale(yQ) // <== Add in 'Left' and 'yo@'
.orient("left").ticks(5);

var yAxisRight = d3.svg.axis().scale(yl) // new declaration for 'Right', 'yi1'
.orient("right").ticks(5); // and includes orientation .

Note the orientation change for the right hand axis.

Now change our valueline declarations so that they refer to the yo and y1 scales.

var valueline = d3.svg.line()

.x(function(d) { return x(d.date); })

.y(function(d) { return yo@(d.close); }); // == yo
var valueline2 = d3.svg.line()

.x(function(d) { return x(d.date); })

.y(function(d) { return yi(d.open); }); /) <== y1

There are a few different ways for the scaling to work, but we’ll stick with the fancy max method
we used in the dual line example (although technically it’s not required).

y@.domain([0, d3.max(data, function(d) { return Math.max(d.close); })]1);
y1.domain([0, d3.max(data, function(d) { return Math.max(d.open); })]);

Again, here’s the yo and y1 changed and added and the maximums for d.close and d.open are
separated out). The final piece of the puzzle is to draw the new axis, but we also want to make
a slight change to the original y axis. Since we have two lines and two axes, we need to know
which belongs to which, so we can colour code the text in the axes to match the lines;

svg.append("g")

.attr("class", "y axis")
.style("fill", "steelblue")
.call(yAxislLeft);

svg.append("g")
.attr("class", "y axis")
.attr("transform", "translate(" + width + " ,0)")
.style("fill", "red")
.call(yAxisRight);

Things you can do with the basic graph 86

In the above code you can see where we have added in a ‘style’ change for the yAxisLeft to make
it ‘steelblue’ and a complementary change in the new section for yAxisRight to make that text
red.

The yAxisRight section obviously needs to be added in, but the only significant difference is the
transform / translate attribute that moves the axis to the right hand side of the graph.

And after all that, here’s the result...

April Apr 08 Apr 15 Apr 22 Apr 29

Two lines with full range of the domain and two axes

Now, let’s not kid ourselves that it’s a thing of beauty, but we should console our aesthetic
concerns with the warm glow of understanding how the function works :-).

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 87

How to rotate the text labels for the x Axis.

The observant reader will recall the problem we had observed earlier when increasing the
number of ticks on our x axis to 10. The effect had been to produce a large number of x axis
ticks (actually 19) but they had run together and become unreadable.

600
500 -
400 -
300-
200 -

100 -

]

Tue ZMhu 2@at AriTue 0By 08at Oan 0ed 1Fr 12pr TEue 1Fhu 19at Hon 2Fed 266 2Apr 20May
x axis labels crammed together

We postulated at the time that an answer to the problem might be to rotate the text to provide
more space. Well, it’s about time we solved that problem.

The answer I found most usable was provided by Aaron Ward on Google Groups®.

o There might be a better way

Now, I’ll put a bit of a caveat on this solution to the rotating axis label problem. It looks
like it’s worked well, but I’'ve only carried out this investigation to the point where I’'ve
got something that looks like it’s a solution. There may be better or more elegant ways
of carrying out the same task, so let Google be your friend if it doesn’t appear to be
working out for you.

The full code for this example can be found on github®! or in the code samples bundled with
this book (simple-graph-rotated-axis-text.html and data.csv). A working example can be found
on bl.ocks.org®. The example code also includes the formatting of the x axis ticks in a specific
format as described in the next section.

Starting out with our simple graph example, we should increase the number of ticks on the x
axis to 10 to highlight the problem in the previous image.

The first substantive change would be a little housekeeping. Because we are going to be rotating
the text at the bottom of the graph, we are going to need some extra space to fit in our labels. So
we should change our bottom margin appropriately.

var margin = {top: 30, right: 40, bottom: 50, left: 50},

I found that 50 pixels was sufficient.

The remainder of our changes occur in the block that draws the x axis.

*https://groups.google.com/forum/#'msg/d3-js/CRIW0ISbOy4/1sgrE5uS5ys]
“‘https://gist.github.com/d3noob/ccdcb7673cdb3a796e13
“*http://bl.ocks.org/d3noob/ccdcb7673cdb3a796e13

https://groups.google.com/forum/#!msg/d3-js/CRlW0ISbOy4/1sgrE5uS5ysJ
https://gist.github.com/d3noob/ccdcb7673cdb3a796e13
http://bl.ocks.org/d3noob/ccdcb7673cdb3a796e13
https://groups.google.com/forum/#!msg/d3-js/CRlW0ISbOy4/1sgrE5uS5ysJ
https://gist.github.com/d3noob/ccdcb7673cdb3a796e13
http://bl.ocks.org/d3noob/ccdcb7673cdb3a796e13

Things you can do with the basic graph 88

svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.call(xAxis)
.selectAll("text")
.style("text-anchor", "end")
.attr("dx", "-.8em")
.attr("dy", ".15em")
.attr("transform", "rotate(-65)");

It’s pretty standard until the .call(xAxis) portion of the code. Here we remove the semicolon
that was there so that the block continues with its function.

Then we select all the text elements that comprise the x axis with the .selectAl1("text"). From
this point onwards, we are operating on the text elements associated with the x axis. In effect;
the following 4 ‘actions’ are applied to the text labels.

The .style("text-anchor", "end") line ensures that the text label has the end of the label
‘attached’ to the axis tick. This has the effect of making sure that the text rotates about the end
of the date. This makes sure that the text all ends up at a uniform distance from the axis ticks.

The dx and dy attribute lines move the end of the text just far enough away from the axis tick so
that they don’t crowd it and not too far away so that it appears disassociated. This took a little bit
of fiddling to ‘look’ right and you will notice that I've used the ‘em’ units to get an adjustment
if the size of the font differs.

The final action is kind of the money shot.

The transform attribute applies itself to each text label and rotates each line by -65 degrees. I
selected -65 degrees just because it looked OK. There was no deeper reason.

The end result then looks like the following;

600
500 -
400
300
200

100

0

&
o
3
Rotated x axis labels

This was a surprisingly difficult problem to find a solution to that I could easily understand (well
done Aaron). That makes me think that there are some far deeper mysteries to it that I don’t fully
appreciate that could trip this solution up. But in lieu of that, enjoy!

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 89

Format a date / time axis with specified values

OK then. We've been very clever in rotating our text, but you will notice that D3 has used it’s
own good judgement as to what format the days / date will be represented as.

Not that there’s anything wrong with it, but what if we want to put a specific format of date /
time nomenclature as axis labels?

No problem. D3 has your back.

This is actually a pretty easy thing to do, but there are plenty of options for the formatting, so
the only really tricky part is deciding what to put where.

But, before we start doing anything we are going to have to expand our bottom margin even
more than we did with the rotate the axis labels feature.

var margin = {top: 30, right: 40, bottom: 70, left: 50},

That should see us right.

Right, now the simple part :-). Changing the format of the label is as simple as inserting the
tickFormat command into the xAxis declaration a little like this;

var xAxis = d3.svg.axis().scale(x)
.orient("bottom").ticks(10)
.tickFormat(d3.time. format("%Y-%m-%d")); // insert the tickFormat function

An example using this code can be found on github®® or in the code samples bundled with this
book (simple-graph-rotated-axis-text.html and data.csv). A working example can be found on
bl.ocks.org®®. The example code also includes the rotating of the x axis text as described in the
previous section.

What the tickFormat allows is the setting of formatting for the tick labels. The d3.time. format
portion of the code is specifying the exact format of those ticks. This formatting is described
using the same arguments that were explained in the earlier section on formatting date time
values®. That means that the examples we see here (%Y-%m-%d) should display the year as a four
digit number then a hyphen then the month as a two digit number, then another hyphen, then a
two digit number corresponding to the day.

Let’s take a look at the result;

“*https://gist.github.com/d3noob/ccdcb7673cdb3a796e13
**http://bl.ocks.org/d3noob/ccdcb7673cdb3a796e13
“https://github.com/mbostock/d3/wiki/Time-Formatting

https://gist.github.com/d3noob/ccdcb7673cdb3a796e13
http://bl.ocks.org/d3noob/ccdcb7673cdb3a796e13
https://github.com/mbostock/d3/wiki/Time-Formatting
https://github.com/mbostock/d3/wiki/Time-Formatting
https://gist.github.com/d3noob/ccdcb7673cdb3a796e13
http://bl.ocks.org/d3noob/ccdcb7673cdb3a796e13
https://github.com/mbostock/d3/wiki/Time-Formatting

Things you can do with the basic graph 90

600
500 -
400 -
300
200 -

100

=]

FI IR I I I IFIFFFIF TSI
S S S S s sessd
o ooy ooy oy of o of o ooy o oy of o ooy oy ooy of of

Format change for the x axis labels

There we go! You should be able to see this file in the downloads section on d3noob.org with the
general examples as formatted-date-time-axis-labels.html.

So how about we try something a little out of the ordinary (extreme)?

How about the full weekday name (%A), the day (%d), the full month name (%B) and the year (%Y)
as a four digit number?

.tickFormat(d3.time. format("%A %d %B %Y"));
We will also need some extra space for the bottom margin, so how about 140?
var margin = {top: 30, right: 40, bottom: 140, left: 50},

and....

G00

Extreme format change for the x axis labels

Oh yeah... When axis ticks go bad...

But seriously, that does work as a pretty good example of the flexibility available.

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 91

Update data dynamically - On Click

OK, you’re going to enjoy this section. Mainly because it takes the traditional graph that we
know, love and have been familiar with since childhood and adds in an aspect that that has been
missing for most of your life.

Animation!

Graphs are cool. Seeing information represented in a graphical way allows leaps of understand-
ing that are difficult or impossible to achieve from raw data. But in this crazy ever-changing
world, a static image is only as effective as the last update. The ability to being able to have the
most recent data represented in your graph and to have it occur automatically provides a new
dimension to traditional visualizations.

Interestingly enough, part of the reason for moving from D3’s predecessor Protovis®®
was the ability to provide greater control and scope to animating data.

So what are we going to do?

First we’ll spend a bit of time setting the scene. We’ll add a button to our basic graph file so that
we can control when our animation occurs, we’ll generate a new data set so that we can see how
the data changes easily, then we’ll shuffle the code about a bit to make it do its magic. While
we're shuffling the code we’ll take a little bit of time to explain what’s going on with various
parts of it that are different to what we might have seen thus far. Then we’ll change the graph
to update automatically (on a schedule) when the data changes.

One of the problems with writing a manual about a moving object is that it’s difficult
to represent that movement on a written page, so where there is something animated
occurring, I will provide all the code that I’'m using so that you can try it at home and
have an online version as well.

The code for this example can be found on github®” or in the code samples bundled with this
book (data-load-button.html, data.csv and data-alt.csv). A working example can be found on
bl.ocks.org®®.

Adding a Button

It’s all well and good animating your data, but if you don’t know when it’s supposed to happen
or what should happen, it’s a little difficult to evaluate how successful you've been.

To make life easy, we're going to take some of the mystery out of the equation (don’t worry, we’ll
put it back later) and add a button to our graph that will give you control over when your graph
should update it’s data. When complete it should look like this;

“http://mbostock.github.com/d3/tutorial/protovis.html
“https://gist.github.com/d3noob/7030f35b72de721622b8
*http://bl.ocks.org/d3noob/7030f35b72de721622b8

http://mbostock.github.com/d3/tutorial/protovis.html
https://gist.github.com/d3noob/7030f35b72de721622b8
http://bl.ocks.org/d3noob/7030f35b72de721622b8
http://mbostock.github.com/d3/tutorial/protovis.html
https://gist.github.com/d3noob/7030f35b72de721622b8
http://bl.ocks.org/d3noob/7030f35b72de721622b8

Things you can do with the basic graph 92

600 |
500
400
300
200

100

0

T T T T T
April Apr 08 Apr1a Apr 22 Apr 29

A graph with a button!

To add a button, we will take our simple-graph.html example and just after the <body> tag we
add the following code;

<div id="option">
<input name="updateButton"
type="button"
value="Update"
onclick="updateData()"
/>
</div>

The HTML <div> element (or HTML Document Division Element) is used to assign a division
or section in an HTML document. We use it here as it’s good practice to keep sections of your
HTML document distinct so that it’s easier to perform operations them at a later date.

In this case we have given the div the identifier “option” so that we can refer to it later if we
need to (embarrassingly, we won’t be referring to it at all, but it’s good practice none the less).

The following line adds our button using the HTML <input> tag. The <input> tag has a wide
range of attributes (options) for allowing user input. Check out the links to w3schools® and
Mozilla’ for a whole lot of reading.

In our <input> line we have four different attributes;

. name
- type

. value
« onclick

Each of these attributes modifies the <input> function in some way so that our button does what
we want it to do.

**http://www.w3schools.com/tags/tag_input.asp
"https://developer.mozilla.org/en-US/docs/HTML/Element/Input

www. dbooks. or g

http://www.w3schools.com/tags/tag_input.asp
https://developer.mozilla.org/en-US/docs/HTML/Element/Input
http://www.w3schools.com/tags/tag_input.asp
https://developer.mozilla.org/en-US/docs/HTML/Element/Input
https://www.dbooks.org/

Things you can do with the basic graph 93

name:
This is the name of the control (in this case a button) so that we can reference it in other parts
of our HTML script.

type:
Probably the most important attribute for a button, this declares that our type of input will be
a button! There are heaps of other options for type which would form a significant section in
itself.

value:
For a button input type, this is the starting value for our button and forms the label that our
button will have.

onclick:

This is not an attribute that is specific to the <input> function, but it allows the browser to
capture a mouse clicking event when it occurs and in our case we tell it to run the updateData()
function (which we’ll be seeing more of soon).

Updating the data

To make our first start at demonstrating changing the data, we’ll add another data file to our
collection. We’ll name it data-alt.csv (you can find it in the sample code collection that can be
downloaded with the book on Leanpub). This file changes our normal data (only the values, not
the structure) just enough to see a movement of the time period of the graph and the range of
values on the y axis (this will become really obvious in the transition).

o Temporary measure only

We’ll only use this file while we want to demonstrate that dynamic updating really does
work. Ultimately we will just use the one file and rely on an external process updating
that file to provide the changing data.

Changes to the d3.js code layout

While going through the process of working out how to do this, the iterations of my code were
mostly horrifying to behold. However, I think my understanding has improved sufficiently to
allow only a slight amendment to our simple-graph.html JavaScript code to get this going.

What we should do is add the following block of code to our script towards the end of the file
just before the </script> tag;

Things you can do with the basic graph 94

function updateData() {

// Get the data again
d3.csv("data-alt.csv", function(error, data) {
data. forEach(function(d) {
d.date = parseDate(d.date);

d.close = +d.close;

});

// Scale the range of the data again
x.domain(d3.extent(data, function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.close; })]);

// Select the section we want to apply our changes to
var svg = d3.select("body").transition();

// Make the changes

svg.select(".1line") // change the line
.duration(750)
.attr("d", valueline(data));

svg.select(".x.axis") // change the x axis
.duration(750)
.call(xAxis);

svg.select(".y.axis") // change the y axis
.duration(750)
.call(yAxis);

),

What's happening in the code?

There are several new concepts and techniques in this block of code for us to go through but
we’ll start with the overall wrapper for the block which is a function call.

The entirety of our JavaScript code that we’re adding is a function called updateData. This is the
subject of the first line in the code above (and the last closing curly bracket). It is called from
the only other piece of code we’ve added to the file which is the button in the HTML section. So
when that button is clicked, the updateData function is carried out.

p Repeatability

It’s worth noting that while our updateData function only appears to work the once
when you first click the button, in fact every time the button is pushed the updateData
function is carried out. It’s just that since the data doesn’t change after the first click,
you never see any change.

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 95

Then we get our new data with the block that starts with d3.csv("data-alt.csv". This is a
replica of the block in the main part of the code with one glaring exception. It is getting the data
from our new file called data-alt.csv. However, one thing it’s doing that bears explanation is
that it’s loading data into an array that we've already used to generate our line. At a point not
too far from here (probably the next page) we’re going to replace the data that made up our line
on the page with the new data that’s just been loaded.

We then set the scale and the range again using the x.domain and y.domain lines. We do this
because it’s more than possible that our data has exceeded or shrunk with respect to our original
domains so we recalculate them using our new data. The consequence of not doing this would
be a graph that could exceed it’s available space or be cramped up.

Then we assign the variable svg to be our selection of the "body" div (which means the following
actions will only be carried out on objects within the "body" div.

o Selection Study.

Selections are a very important topic and if reading Google Groups and Stack Overflow
are anything to go by they are also a much misunderstood feature of D3. I won’t
claim to be in any better position to describe them, but I would direct readers to a
description of nested selections by Mike Bostock (http://bost.ocks.org/mike/nest/) and
a video tutorial by Ian Johnson (http://blog.visual.ly/using-selections-in-d3-to-make-
data-driven-visualizations/).

The other part of that line is the transition command (.transition()). This command goes to
the heart of animating dynamic data and visualizations and is a real treasure.

o Transition Training

I will just be brushing the surface of the subject of transitions in d3.js, and
I will certainly not do the topic the justice it deserves for in depth an-
imations. I heartily recommend that you take an opportunity to read Mike
Bostock’s “Path Transitions” (http://bost.ocks.org/mike/path/), bar chart tutorial
(http://mbostock.github.com/d3/tutorial/bar-2.html) and Jerome Cukier’s “Creating An-
imations and Transitions with D3” (http://blog.visual ly/creating-animations-and-tran-
sitions-with-d3-js/). Of course, one of the main resources for information on transitions
is also the D3 wiki (https://github.com/mbostock/d3/wiki/Transitions).

As the name suggests, a transition is a method for moving from one state to another. In its
simplest form for a d3.js visualisation, it could mean moving an object from one place to another,
or changing an object’s properties such as opacity or colour. In our case, we will take our data
which is in the form of a line, and change some of that data. And when we change the data we
will get d3 to manage the change via a transition. At the same time (because we’re immensely
clever) we will also make sure we change the axes if they need it.

So in short, we're going to change this...

Things you can do with the basic graph 96

600 |
500
400
300
200

100

0

T T T T T
April Apr 08 Apr1a Apr 22 Apr 29

The initial set of data

.. into this...

| Update

100 -
80 -
60 -
40 -

20 -

T 1 1 T 1
Apr 08 Apr 15 Apr 22 Apr 29 May 06
‘Updated’ data

Obviously the line values have changed, and both axes have changed as well. And using a
properly managed transition, it will all occur in a smooth ballet :-).

So, looking at the short block that manages the line transition;

svg.select(".line") // change the line
.duration(750)
.attr("d", valueline(data));

We select the ".1line" object and since we’ve already told the script that svg is all about the
transition (var svg = d3.select("body").transition();) the attributes that follow specify how
the transition for the line will proceed. In this case, the code describes the length of time that the
transition will take as 750 milliseconds (.duration(750)) and uses the new data as transcribed
by the valueline variable from the original part of the script (.attr("d", valueline(data));).

The same is true for both of the subsequent portions of the code that change the x and y axes.
We’ve set both to a transition time of 750 milliseconds, although feel free to change those values
(make each one different for an interesting effect).

www. dbooks. or g

https://www.dbooks.org/

Things you can do with the basic graph 97

Other attributes for the transition that we could have introduced would be a delay (. delay(500),
perhaps to stagger the movements) and more interestingly an easing attribute (.ease(type[,
arguments..])) which will have the effect of changing how the movement of a transition appears
(kind of like a fast-slow-fast vs linear, but with lots of variations).

But for us we’ll survive with the defaults.

In theory, you've added in your new data file (data-alt.csv) and made the two changes to the
simple graph file (the HTML block for the button and the JavaScript one for the updateData
function). The result has been a new beginning in your wonderful d3 journey!

f’ Revert the data

If you fancy a quick test, consider what you would need to do to add another button
that was labelled ‘Revert’ which, when pressed changed the graph back to the original
data (so that you could merrily press ‘Update’ and ‘Revert’ all day if you wanted).

I have loaded a simplistic version of the graph that will do this as an example can
be found on github” or in the code samples bundled with this book (data-load-
revert-button.html, data.csv and data-alt.csv). A working example can be found on
bl.ocks.org’.. There are more elegant ways to code this, but the example I give is pretty
easy to follow.

"*https://gist.github.com/d3noob/a048edddbf83bffo3a34
"?http://bl.ocks.org/d3noob/a048edddb{83bffo3a34

https://gist.github.com/d3noob/a048edddbf83bff03a34
http://bl.ocks.org/d3noob/a048edddbf83bff03a34
https://gist.github.com/d3noob/a048edddbf83bff03a34
http://bl.ocks.org/d3noob/a048edddbf83bff03a34

Things you can do with the basic graph 98

Update data dynamically - Automatically

I have no doubt that the excitement of updating your data and graph with the magic of buttons
is quite a thrill. But believe it or not, there’s more to come.

In the example we're going to demonstrate now, there are no buttons to click, the graph will
simply update itself when the data changes.

I know, I know. It’s like magic!

So the sort of usage scenario that you would be putting this to is when you had a dashboard
type display or a separate window just for the purposes of showing a changing value like a stock
ticker or number of widgets sold (where the number was changing frequently).

So, how to create the magic?

Starting with the data-load-button.html file, firstly we should remove the button, so go ahead
and delete the button block that we had in the HTML section (the bit that looked like this...).

<div id="option">
<input name="updateButton"
type="button"
value="Update"
onclick="updateData()" />
</div>

Now, we have two references in our JavaScript where we load our data. One loads data.csv
initially, then when the button was pushed, we loaded data-alt.csv. We're going to retain that
arrangement for the moment, because we want to make sure we can see something happening,
but ultimately, we would just have them referencing a single file.

So, the magic piece of script that will do your updating is as follows;

var inter = setlnterval(function() {
updateData();
}, 5000);

And we should put that just above the function updateData() { line in our code.

The key to this piece of code is the setInterval function which will execute specified code (in
this case it’s updateData() ; which will go and read in our new information) over and over again
at a set interval (in this case 5000 milliseconds (}, 5000);)).

I honestly wish it was harder, but sadly it’s that simple. You now have in your possession the
ability to make your visualizations do stuff on a regular basis, all by themselves!

There is a copy of this sample code and the data files at github”® and in the code samples bundled
with this book (data-load-automatic.html, data.csv and data-alt.csv). A live example can be found
on bl.ocks.org’.

"*https://gist.github.com/d3noob/6bd13f974d6516{3e491
"*http://bl.ocks.org/d3noob/6bd13f974d6516f3e491

www. dbooks. or g

https://gist.github.com/d3noob/6bd13f974d6516f3e491
http://bl.ocks.org/d3noob/6bd13f974d6516f3e491
https://gist.github.com/d3noob/6bd13f974d6516f3e491
http://bl.ocks.org/d3noob/6bd13f974d6516f3e491
https://www.dbooks.org/

Things you can do with the basic graph 99

How to test?

Well, just load up your new file in a browsers. After an interval of 5 seconds, you should see the
graph change all by itself. How cool is that?

You know it gets better though...

If you open your data-alt.csv file and change a value (increase one of the close values by a factor
of 10 or something equally noticeable). Then save the file. Keep an eye on your graph. Before 5
seconds is up it should have changed to reflect your new data.

There is a possibility that your browser may have decided to cache the data from the
data-alt.csv file, in which case you can tell it to stop that nonsense by going into the
settings and clearing the cache.

Elements, Attributes and Styles

This chapter is intended to provide an overview of some of the simpler things that d3.js can do,
but in a way that may help some understand a little more about how images can be added to a
web page and how they can be manipulated.

Loosely speaking we will look at how objects (elements (like circles, rectangles, lines and even
text) can be declared and added to a page, how their attributes in relation to the page (position,
size, shape, actions) can be changed and how their style (colour, width, transparency) can be
applied.

As we go through the explanation of different changes that can be applied to different elements
there will be a small amount of repetition where there is cross-over with related drawing features.
Please be patient :-). The aim is to have each section as complete in its own right as practical.

The Framework

To be able to demonstrate how these three related aspects of drawing objects work we will have
to use a small, simple script to draw them in your web browser.

We will just take a moment to explain the script that draws a circle.

Here’s the contents of the file in it’s entirety. I have imaginatively called it circle.html.

<!DOCTYPE html>
<meta charset="utf-8">

<body>

<I-- load the d3.js library -->
<script type="text/javascript" src="d3/d3.v3.js"></script>

<script>

var holder = d3.select("body") // select the 'body' element

.append("svg") // append an SVG element to the body
.attr("width", 449) // make the SVG element 449 pixels wide
.attr("height", 249); // make the SVG element 249 pixels high

// draw a circle

holder.append("circle") // attach a circle
.attr("cx", 200) // position the x-center
.attr("cy", 100) // position the y-center
.attr("r", 50); // set the radius

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 101

</script>
</body>

Please feel free to jump ahead slightly if you understand how a HTML file with JavaScript goes
together :-).

The HTML part of the file can be thought of as a wrapper for the JavaScript that will draw our
circle. These are the HTML parts here...

<!DOCTYPE html>
<meta charset="utf-8">

<body>

<I-- load the d3.js library -->
<script type="text/javascript" src="d3/d3.v3.js"></script>

<script>
</script>
</body>

This portion of the file is built using HTML ‘tags’. These will set up the environment for the
Javascript.

The tags tell the web browser what sort of language is being used and the type of characters used
to write the code...

<!DOCTYPE html>
<meta charset="utf-8">

Areas of the code are labelled.
Like the body...

<body>

In this area we can put the stuff that will be
displayed on our web page.

</body>

And the place where we put the JavaScript...

Elements, Attributes and Styles 102

<script>

Our d3.js code will go here.

</script>

We even load an external file that contains JavaScript that will help run our code.

<I-- load the d3.js library -->
<script type="text/javascript" src="d3/d3.v3.js"></script>

Yes, that’s the line that loads d3.js. Once it’s loaded we can use the instructions that it makes
available to make other JavaScript code (in this case ours) work.

Then we have the JavaScript code that allows us to use the functions made possible by d3.js.

var holder = d3.select("body") // select the 'body' element

.append("svg") // append an SVG element to the body
.attr("width", 449) // make the SVG element 449 pixels wide
.attr("height", 249); // make the SVG element 249 pixels high

// draw a circle

holder .append("circle") // attach a circle
.attr("cx", 200) // position the x-center
.attr("cy", 100) // position the y-center
.attr("r", 50); // set the radius

I’ve broken the code into two separate portions to provide some clarity to their function. We
could make it one block, but that wouldn’t necessarily make it easier to understand.

Firstly we add a ‘holder’ for our graphics on the web page. I've named it holder but we could
just as easily named it anything we wanted.

var holder = d3.select("body") // select the 'body' element

.append("svg") // append an SVG element to the body
.attr("width", 449) // make the SVG element 449 pixels wide
.attr("height", 249); // make the SVG element 249 pixels high

The first thing we do when declaring our holder is to select the body element of our web page
(Remember those <body> tags in the HTML part earlier?).

Then we append a Scalable Vector Graphic (SVG) object to the body and we make it 449 pixels
wide and 249 pixels high.

The width and height are ‘attributes’ of the SVG object. That is to say they describe a property
of the object.

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 103

Believe it or not, I have made the container size unusual (not nice round numbers like
450 x 250) for a good reason. Later I will introduce a grid to our diagram so we can see
where everything is laid out and this size makes the grid look better.

The second block of our JavaScript finally draws our circle.

holder .append("circle") // attach a circle
.attr("ex", 200) // position the x-center
.attr("cy", 100) // position the y-center
.attr("r", 50); // set the radius

The first line appends a new element (a circle) to our SVG ‘holder’.

.append("circle") as being a nice short-hand way of writing the code. We could have
had a much longer line that selected the body, appended the svg element and then
appended our circle in one line, but it’s actually a far better scheme for building multiple
objects to break the sequences up which will allow us to manipulate groupings of objects
in future code.

o If you like, you can think of having the holder declaration in front of the

The second and third lines declare the attribute of our circle that specify where the centre of the
circle is. In this case it’s at the x/y position 200/100 (cx/cy).

The last line adds the radius attribute r. Here it is set to 50 pixels.

The three attributes cx, cy and r are all required when drawing a circle. There are other attributes
we can put in there (and when we look at some of the upcoming elements, you should get a feel
for them), but these are the minimum.

The purpose of describing this block of code that draws a circle isn’t to show you how to draw
a circle. This has only been a way of showing you how the code in the following sections is laid
out and how it works. The elements we are going to generate can be drawn with exactly the
same file but with just the section that adds the circle altered.

For example if you were to change this block of code;

holder .append("circle") // attach a circle
.attr("cx", 200) // position the x-center
.attr("cy", 100) // position the y-center
.attr("r", 50); // set the radius

For this block of code;

Elements, Attributes and Styles 104

holder .append("rect") // attach a circle
.attr("x", 150) // x position of the top-left corner
.attr("y", 50) // y position of the top-left corner
.attr("width", 100) // set the rectangle width
.attr("height", 100); // set the rectangle height

Instead of drawing a circle we would be drawing a rectangle.

So this is what our circle will look like;

Circle

Because it will help a great deal to have a common frame of reference, I'm going to display the
elements on a grid that looks a little like this;

Lad
L
=

0 100 150 200 230 300

L

L
(=]

100

Circle with Grid

The grid won’t form part of the code that gets explained, but I will take the time out to
describe how it’s generated in another section, because it’s quite cool in its own way :-).

With the grid in place it’s far easier to see that the centre of our circle is indeed at the coordinates
X = 200, y = 100 and that the radius is 50.

The circle is still somewhat plain, but bear with me because as we start to explore what we can
do with styles and attributes we can add some variation to our elements.

A

Fancier Circle

With that explanation behind us we should begin our odyssey into the world of d3 elements.

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 105

Elements

We will begin by describing what we mean when we talk about an ‘element’.

There is considerable scope for confusion when talking about elements on a web page. Are we
talking about HTML elements’®, SVG elements’® or something different?

In fact we are going to be describing a subset of SVG elements. Specifically those that are
described in the d3.js API reference’” (since that’s why we’re here right?). These are a collection of
common shapes and objects which include circles, ellipses, rectangles, lines, polylines, polygons,
text and paths.

“Text?” I hear you say. “Doesn’t sound like a shape”” I suppose it depends on how you think of
it. We can use text in different ways in d3, but for this particular exercise we can regard text as
an SVG element.

"http://reference.sitepoint.com/html/page-structure
"*https://developer.mozilla.org/en-US/docs/Web/SVG/Element
""https://github.com/mbostock/d3/wiki/SVG-Shapes#svg-elements

http://reference.sitepoint.com/html/page-structure
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://github.com/mbostock/d3/wiki/SVG-Shapes#svg-elements
http://reference.sitepoint.com/html/page-structure
https://developer.mozilla.org/en-US/docs/Web/SVG/Element
https://github.com/mbostock/d3/wiki/SVG-Shapes#svg-elements

Elements, Attributes and Styles 106

Circle

A circle is a simple SVG shape’® that is described by three required attributes.

« cx: The position of the centre of the circle in the x direction (left / right) measured from the

left side of the screen.
« cy: The position of the centre of the circle in the y direction (up / down) measured from the

top of the screen.
« r: The radius of the circle from the cx, cy position to the perimeter of the circle.

The following is an example of the code section required to draw a circle in conjunction with
the HTML file outlined at the start of this chapter;

holder .append("circle") // attach a circle

.attr("ex", 200) // position the x-center
.attr("cy", 100) // position the y-center
.attr("r", 50); // set the radius

This will produce a circle as follows;

0 100 150 200 250 300 350

L

L
=]

100

Circle

The centre of the circle is at x = 200 and y = 100 and the radius is 50 pixels.

"®https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_circle

www. dbooks. or g

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_circle
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_circle
https://www.dbooks.org/

Elements, Attributes and Styles 107

Ellipse
An ellipse™ is described by four required attributes;

« cx: The position of the centre of the ellipse in the x direction (left / right) measured from
the left side of the screen.

« cy: The position of the centre of the ellipse in the y direction (up / down) measured from
the top of the screen.

« rx: The radius of the ellipse in the x dimension from the cx, cy position to the perimeter of
the ellipse.

« ry: The radius of the ellipse in the y dimension from the cx, cy position to the perimeter of
the ellipse.

The following is an example of the code section required to draw an ellipse in conjunction with
the HTML file outlined at the start of this chapter;

holder .append("ellipse") // attach an ellipse
.attr("cex", 200) // position the x-centre
.attr("cy", 100) // position the y-centre
.attr("rx", 100) // set the x radius
.attr("ry", 50); // set the y radius

This will produce an ellipse as follows;

L
=

100 150 200 250 300

¥
L
=

Lh
(==

100

Ellipse

The centre of the ellipse is at x = 200 and y = 100 and the radius is 50 pixels vertically and 100
pixels horizontally.

"*https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_ellipse

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_ellipse
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_ellipse

Elements, Attributes and Styles 108

Rectangle

A rectangle® is described by four required attributes and two optional ones;

« x: The position on the x axis of the left hand side of the rectangle (required).

« y: The position on the y axis of the top of the rectangle (required).

« width: the width (in pixels) of the rectangle (required).

« height: the height (in pixels) of the rectangle (required).

« rx: The radius curve of the corner of the rectangle in the x dimension (optional).
« ry: The radius curve of the corner of the rectangle in the y dimension (optional).

The following is an example of the code section required to draw a rectangle (using only the
required attributes) in conjunction with the HTML file outlined at the start of this chapter;

holder .append("rect") // attach a rectangle
.attr("x", 100) // position the left of the rectangle
.attr("y", 50) // position the top of the rectangle
.attr("height", 100) // set the height
.attr("width", 200); // set the width

This will produce a rectangle as follows;

0 100 150 200 250 300 330

L

Lh
(==

100

Rectangle

The top left corner of the rectangle is at 100, 50 and the rectangle is 200 pixels wide and 100 pixels
high.

The following code section includes the optional attributes for the curved corners;

#https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_rect

www. dbooks. or g

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_rect
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_rect
https://www.dbooks.org/

Elements, Attributes and Styles

holder .append("rect") // attach a rectangle
.attr("x", 100) // position the left of the rectangle
.attr("y", 50) // position the top of the rectangle
.attr("height", 100) // set the height
.attr("width", 200) // set the width
.attr("rx", 10) // set the x corner curve radius
.attr("ry", 10); // set the y corner curve radius

This will produce a rectangle (with curved corners) as follows;

[}
Lh
(=]

0 100 150 200 250 300

L

L
=]

100

Rectangle with curved corners

The corners are curved with radii in the x and y direction of 10 pixels.

109

Elements, Attributes and Styles 110

Line
A line® is a simple line between two points and is described by four required attributes.

« x1: The x position of the first end of the line as measured from the left of the screen.
« y1: The y position of the first end of the line as measured from the top of the screen.
« x2: The x position of the second end of the line as measured from the left of the screen.
« y2: The y position of the second end of the line as measured from the top of the screen.

The following is an example of the code section required to draw a line in conjunction with
the HTML file outlined at the start of this chapter. A notable addition to this code is the style
declaration. In this case the line has no colour and this can be added with the stroke style which
applies a colour to a line;

holder.append("line") // attach a line
.style("stroke", "black") // colour the line
.attr("x1", 100) // X position of the first end of the line
.attr("y1", 50) // vy position of the first end of the line
.attr("x2", 300) // x position of the second end of the line
.attr("y2", 150); // y position of the second end of the line

This will produce a line as follows;

50 100 150 200 250 300 330

Line

The line extends from the point 100,50 to 300,150.

#https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_line

www. dbooks. or g

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_line
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_line
https://www.dbooks.org/

Elements, Attributes and Styles 111

Polyline

A polyline® is a sequence of connected lines described with a single attribute. The d3.js wiki®’
rightly makes the point that “it is typically more convenient and flexible to use the d3.svg.line path
generator in conjunction with a path element”. So while drawing a polyline using this method
may be possible, bear in mind that depending on your application, there may be a better way.

« points: The points attribute is a list of x,y coordinates that are the locations of the
connecting points of the polyline.

The following is an example of the code section required to draw a polyline in conjunction with
the HTML file outlined at the start of this chapter. A notable addition to this code are the style
declarations. In this case the line of the polyline has no colour and this can be added with the
stroke style which applies the colour black to a line. Likewise the area that is bounded by the
polyline will be automatically filled with black unless we explicitly tell the object not to. This is
achieved in this example by addition of the fil1l style to none.

holder.append("polyline") // attach a polyline
.style("stroke", "black") // colour the line
.style("fill", "none" // remove any fill colour

.attr("points", "100,50, 200,150, 300,50"); // x,y points

This will produce a polyline as follows;

50 100 150 200 250 300 330

100

150

Polyline

The polyline extends from the point 100,50 to 200,150 to 300,50.

#https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polyline
#https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polyline

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polyline
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polyline
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polyline
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polyline

Elements, Attributes and Styles 112

Polygon

A polygon®* is a sequence of connected lines which form a closed shape described with a single
attribute. The d3.js wiki®* rightly makes the point that “it is typically more convenient and flexible
to use the d3.svg.line path generator in conjunction with a path element”. So while drawing a
polygon using this method may be possible, bear in mind that depending on your application,
there may be a better way:.

« points: The points attribute is a list of x,y coordinates that are the locations of the
connecting points of the polygon. The last point is in turn connected to the first point.

The following is an example of the code section required to draw a polygon in conjunction with
the HTML file outlined at the start of this chapter. A notable addition to this code are the style
declarations. In this case the line of the polygon has no colour and this can be added with the
stroke style which applies the colour black to a line. Likewise the area that is bounded by the
polygon will be automatically filled with black unless we explicitly tell the object not to. This is
achieved in this example by addition of the fi11 style to none.

holder .append("polygon™) // attach a polygon
.style("stroke", "black") // colour the line
.style("fill", "none" // remove any fill colour

.attr("points", "100,50, 200,150, 300,50"); // x,y points

This will produce a polygon as follows;

50 100 150 200 250 300 330

Polyline

The polygon extends from the point 100,50 to 200,150 to 300,50 and then back to 100,50.

#https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polygon
#https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polygon

www. dbooks. or g

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polygon
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polygon
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polygon
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polygon
https://www.dbooks.org/

Elements, Attributes and Styles 113

Path

A path® is an outline of an SVG shape which is described with a ‘mini-language’ inside a single
attribute.

« d: This attribute is a list of instructions that allow a shape to be drawn in a complex way
using a ‘mini-language’ of commands®’. These commands are written in a shorthand of
single letters such as M-moveto, Z-closepath, L-lineto, C-curveto. These commands can be
absolute (normally designated by capital letters) or relative (lower case).

The following is an example of the code section required to draw a triangle in conjunction with
the HTML file outlined at the start of this chapter. A notable addition to this code are the style
declarations. In this case the line of the path has no colour and this can be added with the stroke
style which applies the colour black to a line. Likewise the area that is bounded by the path will
be automatically filled with black unless we explicitly tell the object not to. This is achieved in
this example by addition of the fi11 style to none.

holder .append("path") // attach a path
.style("stroke", "black") // colour the line
.style("fill", "none" // remove any fill colour

.attr("d", "M 100,50, L 200,150, L 300,50 Z"); // path commands

This will produce a path as follows;

A

Path

The path mini-language first moves (M) to 100,50 then draws a line (L) to 200,150 then draws
another line (L) to 300,50 then closes the path (2).

#https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_path
*"http://www.w3.0rg/TR/SVG/paths.html#PathData

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_path
http://www.w3.org/TR/SVG/paths.html#PathData
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_path
http://www.w3.org/TR/SVG/paths.html#PathData

Elements, Attributes and Styles 114

Clipped Path (AKA clipPath)

A clipPath®® is the path of a SVG shape that can be used in combination with another shape
to remove any parts of the combined shape that doesn’t fall within the clipPath. That sounds
slightly confusing, so we will break it down a bit to hopefully clarify the explanation.

Let’s imagine that we want to display the intersection of two shapes. What we will do is define
our clipPath which will act as a ‘cookie cutter’ which can cut out the shape we want (we will
choose an ellipse). Then we will draw our base shape (which is analogous to the dough) that we
will use our cookie cutter on (our dough will be shaped as a rectangle). The intersection of the
cookie cutter and the dough is our clipped path.

Our clipPath (cookie cutter) element is an ellipse;
30 100 150 200 250 300 330

30

100

150 U

clipPath (cookie cutter)

Our shape that we will be clipping (the dough) is a rectangle;

50 100 150 200 250 300 350

100

150

Rectangle element (dough)

The intersection of the two is the clipped path (shaded grey);

*https://developer.mozilla.org/en-US/docs/Web/SVG/Element/clipPath

www. dbooks. or g

https://developer.mozilla.org/en-US/docs/Web/SVG/Element/clipPath
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/clipPath
https://www.dbooks.org/

Elements, Attributes and Styles 115

50 100 150 200 250 300 350

100

150

Combination of the ellipse and the rectangle

The graphic examples above are misleading in the sense that the two basic shapes are not actually
displayed. All that results from the use of the clipPath is the region that is the intersection of
the two.

50 100 150 200 230 300 330

100

150

The clipped path

The following is an example of the code section required to draw the clipped path in conjunction
with the HTML file outlined at the start of this chapter. The clipPath element is given the ID
‘ellipse-clip’ and a specified size and location. Then when the rectangle is appended. the c1ipPath
is specified as an attribute (via a URL) using clip-path.

// define the clipPath

holder.append("clipPath") // define a clip path
.attr("id", "ellipse-clip") // give the clipPath an ID
.append("ellipse") // shape it as an ellipse
.attr("cx", 175) // position the x-centre
.attr("cy", 100) // position the y-centre
.attr("rx", 100) // set the x radius
.attr("ry", 50); // set the y radius

// draw clipped path on the screen

holder .append("rect") // attach a rectangle
.attr("x", 125) // position the left of the rectangle
.attr("y", 75) // position the top of the rectangle

.attr("clip-path", "url(*®ellipse-clip)") // clip the rectangle
.style("fill", "lightgrey") // fill the clipped path with grey
.attr("height", 100) // set the height

.attr("width", 200); // set the width

Elements, Attributes and Styles 116

This will produce a path as follows;

50 100 150 200 250 300 330

100

150

The clipped path

An example of this in use can bee seen in the difference chart explanation later in the book.

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 117

Text

A text®” element is an SVG object which is shaped as text. It is described by two required attributes
and three optional ones.

« x: This attribute designates the anchor point location for the text in the x dimension
(required).

« y: This attribute designates the anchor point location for the text in the y dimension
(required).

« dx: This attribute designates the offset of the text from the anchor point in the x dimension
(optional). There are several different sets of units that can be used to designated the offset
of the text from an anchor point. These include em which is a scalable unit (used in these
examples), px (pixels), pt (points (kind of like pixels)) and 5 (percent (scalable and kind of
like em))

« dy: This attribute designates the offset of the text from the anchor point in the y dimension
(optional).

« text-anchor: This attribute controls the horizontal text alignment (optional). It has three
values; start (left aligned), middle (centre aligned) and end (right aligned).

The following is an example of the code section required to draw the text “Hello World” in
conjunction with the HTML file outlined at the start of this chapter. A notable addition to this
code is the style declaration which applies a black fill to the text. Additionally there is the
declaration . text which defines the text that will be displayed.

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.text("Hello World"); // define the text to display

This will produce text as follows;

A

Text

It can be seen from the image that the anchor point for the text is at 200,100 and that the text is
positioned with this anchor point at the bottom, left of the text.

The following examples will demonstrate the various options for positioning and aligning text
so that you can arrange it correctly.

Anchor at the bottom, middle of the text:

#https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_text

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_text
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_text

Elements, Attributes and Styles 118

holder.append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("text-anchor", "middle") // set anchor y justification
.text("Hello World"); // define the text to display

This will produce text as follows;

100 Hello World

Text: Anchored Bottom-middle

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 119

Anchor at the bottom, right of the text:

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("text-anchor", "end") // set anchor y justification
.text("Hello World"); // define the text to display

This will produce text as follows;

100 Hello World

Text: Anchored Bottom-Right

Anchor at the middle, left of the text:

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("dy", ".35em") // set offset y position
.attr("text-anchor", "start") // set anchor y justification
.text("Hello World"); // define the text to display

This will produce text as follows;

100 Hello World

Text: Anchored Middle-Left

Elements, Attributes and Styles 120

Anchor in the middle, centre of the text:

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("dy", ".35em") // set offset y position
.attr("text-anchor", "middle") // set anchor y justification
.text("Hello World"); // define the text to display

This will produce text as follows;

100 Hello World

Text: Anchored Middle-Centre

Anchor in the middle, right of the text:

holder.append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("dy", ".35em") // set offset y position
.attr("text-anchor", "end") // set anchor y justification
.text("Hello World"); // define the text to display

This will produce text as follows;

100 Hello World

Text: Anchored Middle-Right

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles

Anchor at the top, left of the text:

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("dy", ".7lem") // set offset y position
.attr("text-anchor", "start") // set anchor y justification
.text("Hello World"); // define the text to display

This will produce text as follows;

100 Hello World

Text: Anchored Top-Left

Anchor at the top, middle of the text:

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("dy", ".Tilem") // set offset y position
.attr("text-anchor", "middle") // set anchor y justification
.text("Hello World"); // define the text to display

This will produce text as follows;

50 100 150 200 250 300 350

100 Hello World

Text: Anchored Top-Middle

121

Elements, Attributes and Styles 122

Anchor at the top, right of the text:

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("dy", ".7lem") // set offset y position
.attr("text-anchor", "end") // set anchor y justification
.text("Hello World"); // define the text to display

This will produce text as follows;

100 Hello World

Text: Anchored Top-Right

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 123

Attributes

At the start of writing this section I was faced with the question “What’s an attribute?”. But
a reasonable answer has eluded me, so I will make the assumption that the answer will be
something of a compromise :-). I like to think that an attribute of an element is something that
is a characteristic of the object without defining it, and/or it may affect the object’s position
or orientation on the page. There could be a strong argument to say that the following section
on styles could be seen to cross-over into attributes and I agree. However, for the purposes of
providing a description of the syntax and effects, I'm happy with the following list :-).

Because not all attributes are applicable to all elements, there will be a bit of variation in the
type of shapes we deal with in the description below, but there won’t be any that are different
to those that we’ve already looked at. There will be some repetition with recurring information
from the elements section. This is intentional to hopefully allow each section to exist in its own
right.

X,y

The x and y attributes are used to designate a position on the web page that is set from the top,
left hand corner of the web page. Using the x and y attributes places the anchor points for these
elements at a specified location. Of the elements that we have examined thus far, the rectangle
element and the text element have anchor points to allow them to be positioned.

For example the following is a code section required to draw a rectangle (using only the required
attributes) in conjunction with the HTML file outlined at the start of this chapter;

holder.append("rect") // attach a rectangle
.attr("x", 100) // position the left of the rectangle
.attr("y", 50) // position the top of the rectangle
.attr("height", 100) // set the height
.attr("width", 200); // set the width

This will produce a rectangle as follows;

L

0 100 150 200 250 300

¥
L
=

Lh
(==

100

Rectangle with x,y at 100,50

The top left corner of the rectangle is specified using x and y at 100 and 50 respectively.

Elements, Attributes and Styles 124

x1, x2, y1,y2

The x1, x2, y1 and y2 attributes are used to designate the position of two points on a web page
that are set from the top, left hand corner of the web page. These two points are connected with
a line as part of the 1ine element.

The attributes are described as follows;

« x1: The x position of the first end of the line as measured from the left of the screen.
« y1: The y position of the first end of the line as measured from the top of the screen.
« x2: The x position of the second end of the line as measured from the left of the screen.
« y2: The y position of the second end of the line as measured from the top of the screen.

The following is an example of the code section required to draw a line in conjunction with the
HTML file outlined at the start of this chapter. The attributes connect the point 100,50 (x1, y1)
with 300,150 (x2, y2);

holder.append("line") // attach a line
.style("stroke", "black") // colour the line
.attr("x1", 100) // x1 position of the first end of the line
.attr("y1", 50) // y1 position of the first end of the line
.attr("x2", 300) // X2 position of the second end of the line
.attr("y2", 150); // y2 position of the second end of the line

This will produce a line as follows;

50 100 150 200 250 300 330

Line

The line extends from the point 100,50 to 300,150.

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 125

points

The points attribute is used to set a series of points which are subsequently connected with a
line and / or which may form the bounds of a shape. These are specifically associated with the
polyline and polygon elements. Like the x, y and x1, x2, y1, y2 attributes, the coordinates are set
from the top, left hand corner of the web page.

The data for the points is entered as a sequence of x,y points in the following format;
.attr("points", "100,50, 200,150, 300,50");

Where 100,50 is the first x,y point then 200,150 is the second. Now is probably the best time to
mention that the d3.js wiki®® makes the point that “it is typically more convenient and flexible to
use the d3.svg.line path generator in conjunction with a path element” when describing complex
shapes. So while drawing a polyline or polygon using this method may be possible, bear in mind
that depending on your application, there may be a better way.

The following is an example of the code section required to draw a polyline in conjunction with
the HTML file outlined at the start of this chapter. The additional style declarations are included
to illustrate the shape better. The points values can be compared with the subsequent image.

holder .append("polyline") // attach a polyline
.style("stroke", "black") // colour the line
.style("fill", "none" // remove any fill colour
.attr("points", "100,50, 200,150, 300,50"): // x,y points

This will produce a polyline as follows;

50 100 150 200 250 300 350

Polyline using points attribute

The polyline extends from the point 100,50 to 200,150 to 300,50.

*°https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polyline

https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polyline
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-svg_polyline

Elements, Attributes and Styles 126

cx, cy

The cx, cy attributes are associated with the circle and ellipse elements and designate the centre
of each shape. The coordinates are set from the top, left hand corner of the web page.

« cx: The position of the centre of the element in the x axis measured from the left side of the
screen.

« cy: The position of the centre of the element in the y axis measured from the top of the
screen.

The following is an example of the code section required to draw an ellipse in conjunction with
the HTML file outlined at the start of this chapter. In it the centre of the ellipse is set by cx, cy
as 200, 100.

holder .append("ellipse") // attach an ellipse
.attr("cx", 200) // position the x-centre
.attr("cy", 100) // position the y-centre
.attr("rx", 100) // set the x radius
.attr("ry", 50); // set the y radius

This will produce an ellipse as follows;

[}
Lh
(=]

100 150 200 250 300

Lh
[=

L
=

100

Ellipse with Centre at 200, 100

The centre of the ellipse is at x = 200 and y = 100 and the radius is 50 pixels vertically and 100
pixels horizontally.

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 127

r

The r attribute determines the radius of a circle element from the cx, cy position (the centre of
the circle) to the perimeter of the circle.

The following is an example of the code section required to draw a circle in conjunction with
the HTML file outlined at the start of this chapter;

holder .append("circle") // attach a circle
.attr("cx", 200) // position the x-center
.attr("cy", 100) // position the y-center
.attr("r", 50); // set the radius

This will produce a circle with a radius of 50 pixels as follows;

0 100 150 200 230 300 350

L

L
(=]

100

Circle with Radius of 50 Pixels

The centre of the circle is at x = 200 and y = 100 and the radius is 50 pixels.

Elements, Attributes and Styles 128

rx, ry

The rx, ry attributes are associated with the ellipse element and designates the radius in the x
direction (rx) and the radius in the y direction (ry).

« rx: The radius of the ellipse in the x dimension from the cx, cy position to the perimeter of
the ellipse.

« ry: The radius of the ellipse in the y dimension from the cx, cy position to the perimeter of
the ellipse.

The following is an example of the code section required to draw an ellipse in conjunction with
the HTML file outlined at the start of this chapter. In it, the centre of the ellipse is set by cx, cy
as 200, 100 and the radius in the x direction (rx) is 100 pixels and the radius in the y direction
(ry) is 50 pixels.

holder.append("ellipse") // attach an ellipse
.attr("cx", 200) // position the x-centre
.attr("cy", 100) // position the y-centre
.attr("rx", 100) // set the x radius
.attr("ry", 50); // set the y radius

This will produce an ellipse as follows;

Lh
(=]

100 150 200 250 300 3

Lh
[=

L
=

100

Ellipse with x Radius of 100 and y Radius of 50

The centre of the ellipse is at x = 200 and y = 100 and the radius is 50 pixels vertically and 100
pixels horizontally.

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 129

transform (translate(x,y), scale(k), rotate(a))

The transform attribute is a powerful one which allows us to change the properties of an element
in several different ways.

« translate: Where the element is moved by a relative value in the x,y direction.
« scale: Where the element’s attributes are increased or reduced by a specified factor.
« rotate: Where the element is rotated about its reference point by an angular value.

Without a degree of prior understanding, these transforms can appear to behave in unusual ways,
but hopefully we’ll explain it sufficiently here so that you can appreciate the logic in the way
they work.

transform (translate(x,y))

The transform-translate attribute will take an elements position and adjust it based on a specified
value(s) in the x,y directions.

The best way to illustrate this is with an example;

This is the code snippet from the HTML file outlined at the start of this chapter which draws a
circle at the position 200,100 (cx,cy);

holder.append("circle") // attach a circle
.attr("cx", 200) // position the x-center
.attr("cy", 100) // position the y-center
.attr("r", 50); // set the radius

This will produce a circle as follows;

Lid
L
=]

0 100 150 200 250 300

L

L
=]

100

Circle

If we add in a transform (translate(*x*, *y*)) attribute for values of x,y of 50,50 this will shift
our circle by an additional 50 pixels in the x direction and 50 pixels in the y direction.

Here’s the code snippet that will draw our new circle;

Elements, Attributes and Styles 130

holder.append("circle") // attach a circle
.attr("cx", 200) // position the x-center
.attr("cy", 100) // position the y-center
.attr("transform", "translate(50,50)") // translate the circle
.attr("r", 50); // set the radius

And here’s the resulting change;

50 100 150 200 250 300 350

100

150

Circle

The circle was positioned at the point 200,100 and then translated by 50 pixels in both axes to
250,150.

The original code snippet could in fact be written as follows;

holder .append("circle") // attach a circle
.attr("transform", "translate(200,100)") // translate the circle
.attr("r", 50); // set the radius

Since by default our starting position is 0,0 if we apply a translation of 200,100 we will end up at
200,100.

transform (scale(k))

The translate-scale attribute will take an element’s attributes and scale them by a factor k.

Originally I thought that this attribute would affect the size of the element, but it affects more
than that! As with the transform-translate attribute, the best way to illustrate this is with an
example;

The following code snippet (in conjunction with the HTML file outlined at the start of this
chapter) which draws a circle at the position 150,50 with a radius of 25 pixels;

holder .append("circle") // attach a circle
.attr("ex", 150) // position the x-centre
.attr("cy", 50) // position the y-centre
.attr("r", 25); // set the radius

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 131

This will produce a circle as follows;

100 150 200 250 300 350

Lh
[=

L
=

100

Circle

If we now introduce a transform-scale attribute with a scale of 2 we will see all three of the other
attributes (cx, cy and r) scaled by a factor of two to 300, 100 and 50 respectively.

Here is the code;

holder.append("circle") // attach a circle
.attr("cx", 150) // position the x-centre
.attr("cy", 50) // position the y-centre
.attr("r", 25) // set the radius
.attr("transform", "scale(2)"); // scale the circle attributes

Which will produce a circle as follows;

0 100 150 200 250 300 350

L

L
=]

100

Circle

In this example we can see that the position (cx, cy) and the radius (r) have been scaled up by a
factor of 2.

transform (rotate(a))

The translate-rotate attribute will rotate an element and its attributes by a declared angle in
degrees.
The ability to rotate elements is obviously a valuable tool. The transform-rotate attribute does a

great job of it, but the key to making sure that you know exactly what will happen to an object is
to remember where the anchor point is for the object and to ensure that the associated attributes

Elements, Attributes and Styles 132

are set appropriately. As with the transform translate & scale attributes, the best way to illustrate
this is with an example;

The following is the code snippet (in conjunction with the HTML file outlined at the start of this
chapter) which draws the text “Hello World” at the position 200,100 with the anchor point being
the the middle of the text;

holder.append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("dy", ".35em") // set offset y position
.attr("text-anchor", "middle") // set anchor y justification
.text("Hello World"); // define the text to display

This will produce text as follows;

100 Hello World

Text: Anchored Middle-Centre

If we then apply a transform-rotate of 10 degrees as follows;

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("dy", ".35em") // set offset y position
.attr("text-anchor", "middle") // set anchor y justification
.attr("transform", "rotate(10)")
.text("Hello World"); // define the text to display

We will see the following on the screen;

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 133

50 100 150 200 230 300 350

100

Helb Worig
150

Text: Anchored Middle-Centre

Obviously the text has been rotated, but hopefully you’ll have noticed that it’s also been
displaced. This is because the transform-rotate attribute has been applied to both the text element
(which has been rotated by 10 degrees) and the x,y attributes. If you imagine the origin point for
the element being at 0,0, the centre, middle of the text element has been rotated about the point
0,0 by 10 degrees (hopefully slightly better explained in the following picture).

0 100 150 200 250 300 350

5

L

100

Help Vori

Text: All positioning Attributes Rotated

This could be seen as an impediment to getting things to move / change as you want to, but
instead it’s an indication of a different way of doing things. The solution to this particular feature
is to combine the transform-rotate with the transform-translate that we used earlier so that the
code looks like this;

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("dy", ".35em") // set offset y position
.attr("text-anchor", "middle") // set anchor y justification
.attr("transform", "translate(200,100) rotate(10)")
.text("Hello World"); // define the text to display

And the image on the page looks like this;

Elements, Attributes and Styles 134

50 100 150 200 250 300 350

Text: Rotated by 10 Degrees Anchored Middle-Centre

Which leads us to the final example for which is a combination of all three aspects of the
transform attribute.

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("dy", ".35em") // set offset y position
.attr("text-anchor", "middle") // set anchor y justification
.attr("transform", "translate(200,100) scale(2) rotate(10)")
.text("Hello World"); // define the text to display

100 Heﬂo WOI‘]d

150

Text: Translated, Scaled and Rotated

Here we have a text element translated to its position on the page, rotated by 10 degrees about
the centre of the text and scaled by a factor of two.

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 135

width, height

width and height are required attributes of the rectangle element. width designates the width
of the rectangle and height designates the height (If you’re wondering, I often struggle defining
the obvious).

The following is an example of the code section required to draw a rectangle (using only the
required attributes) in conjunction with the HTML file outlined at the start of this chapter;

holder .append("rect") // attach a rectangle
.attr("x", 100) // position the left of the rectangle
.attr("y", 50) // position the top of the rectangle
.attr("height", 100) // set the height
.attr("width", 200); // set the width

This will produce a rectangle as follows;

0 100 150 200 250 300

¥
L
=

L

Lh
(==

100

Rectangle

The width of the triangle is 200 pixels and the height is 100 pixels.

Elements, Attributes and Styles 136

text-anchor

The text-anchor attribute determines the justification of a text element

Text can have one of three text-anchor types;

« start where the text is left justified.
+ middle where the text is centre justified.
« end where the text is right justified.

The following is an example of code that will draw three separate lines of text with the three
different text-anchor types in conjunction with the HTML file outlined at the start of this
chapter;

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 50) // set y position of bottom of text
.attr("text-anchor", "start") // set anchor y justification

.text("Hello World - start"); // define the text to display

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("text-anchor", "middle") // set anchor y justification

.text("Hello World - middle"); // define the text to display

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 150) // set y position of bottom of text
.attr("text-anchor", "end") // set anchor y justification

.text("Hello World - end"); // define the text to display

This will produce an output as follows;

50 100 150 200 250 300 330

50 Hello World - start
100 Hello World - middle
150 Hello World - end

Text with Different text-anchor Attributes

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 137

dx, dy

dx and dy are optional attributes that designate an offset of text elements from the anchor point
in the x and y dimension . There are several different sets of units that can be used to designate
the offset of the text from an anchor point. These include em which is a scalable unit, px (pixels),
pt (points (kind of like pixels)) and % (percent (scalable and kind of like em))

We can demonstrate the offset effect by noting the difference in two examples.

The first is a simple projection of SVG text that aligns the text “Hello World” above and to the
right of the anchor point at 200,100 (It does this in conjunction with the HTML file outlined at
the start of this chapter.).

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.text("Hello World"); // define the text to display

Which produces the following on the page;

A

Text with the Anchor at the Bottom Left Corner

The second example introduces the dx attribute setting the offset to 50 pixels. This adds another
50 pixels to the x dimension. We also introduce the dy attribute with an offset of .35em. This
scalable unit allows the text to be set as a factor of the size of the text. In this case . 35em will add
half the height of the text to the y dimension placing the text so that it is exactly in the middle
(vertically) of the 100 pixel line on the y dimension.

holder.append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("dx", "50px") // set offset x position
.attr("dy", ".35em") // set offset y position
.text("Hello World"); // define the text to display

Which produces the following on the page;

Elements, Attributes and Styles 138

50 100 150 200 250 300 350

100 Hello World

Text with 50 Pixel x Offset and Half Height y Offset

The text has been moved 50 pixels to the right and half the height of the text down the page.

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 139

textLength

The textLength attribute adjusts the length of the text to fit a specified value.

The following is a code snippet that prints the text “Hello World” above and to the right of the
anchor point at 200,100 (It does this in conjunction with the HTML file outlined at the start of this
chapter.). The addition of the textLength attribute declaration in the code stretches the “Hello
World” out so that it fills 150 pixels.

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text
.attr("textLength", "150") // set text length
.text("Hello World"); // define the text to display

Which produces the following on the page;

50 100 150 200 250 300 330

100 Hello World

Text Stretched to 150 Pixels Wide

It is worth noting that while the text has been spread out, the individual letters remain un-
stretched. Only the letter and word spacing has been adjusted. However, using the lengthAdjust
attribute can change this.

Elements, Attributes and Styles 140

lengthAdjust

The lengthAdjust attribute allows the textLength attribute to have the spacing of a text element
controlled to be either spacing or spacingAndGlyphs;

« spacing: In this option the letters remain the same size, but the spacing between the letters
and words are adjusted.
« spacingAndGlyphs: In this option the text is stretched or squeezed to fit.

The attribute can be best illustrated via an example. The following code snippet (which works in
conjunction with the HTML file outlined at the start of this chapter) shows three versions of the
text element. The top line is the standard text. The middle line is the textLength set to 150 and
the 1engthAdjust set to spacing (which is the default). The bottom line is the textLength set to
150 and the lengthAdjust set to spacingAndGlyphs.

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 50) // set y position of bottom of text
.text("Hello World"); // define the text to display

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text

.attr("textlLength", "150") // set text length
.attr("lengthAdjust", "spacing")

.text("Hello World"); // define the text to display

holder .append("text") // append text
.style("fill", "black") // fill the text with the colour black
.attr("x", 200) // set x position of left side of text
.attr("y", 150) // set y position of bottom of text

.attr("textlLength", "150") // set text length
.attr("lengthAdjust", "spacingAndGlyphs")
.text("Hello World"); // define the text to display

The image on the screen will look like the following;

www. dbooks. or g

https://www.dbooks.org/

141

250 300

Elements, Attributes and Styles
200 25

L
[=]

Hello World

World

L
=]

100 HEIID
Hello W orld

Text Stretched in Three Ways

The image shows that the top line looks normal, the middle line has had the spaces increased to

increase the length of the text and the bottom line has been stretched.

Elements, Attributes and Styles 142

Styles

What’s a style?

Believe it or not, that’s as difficult a question to answer as “What’s an attribute?”. I like to think
that an element can be selected and arranged on a web page with select and attr, but once
it’s there, changes to how it looks are a matter for style. We will cover a range of qualities
that neatly fit into this definition in the following section (such as fill, opacity and stroke-width)
but there are also a range of unusual style declarations that many may not have come across (I
certainly hadn’t before writing this).

The other important thing to mention about setting styles for elements is that there are different
ways to accomplish the task. We’ll go through the process of describing different styles as they
can be applied to individual elements in isolation, but there is a more powerful way to manage
styles across a range of elements via Cascading Style Sheets (CSS) in the <style> section of a
web page or even via an external style sheet. We will examine these possibilities at the end of
the section.

Full disclosure: I have not figured out how to work some of the styles for d3.js I'm afraid that
clip-path and mask have exceeded my skill-set and I will have to leave them for another day :-(.
I found that there are several good examples that make use of these styles, but I have struggled
(unsuccessfully) to present them in a simple example.

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 143

fill

The £i11 style will fill the element being presented with a specified colour.

By default, most elements will be filled with black (the majority of the examples used in this
chapter make no fill declaration).

The following example (which works in conjunction with the HTML file outlined at the start of
this chapter) shows the syntax for filling a simple circle with the colour red;

holder .append("circle") // attach a circle
.attr("cx", 200) // position the x-centre
.attr("cy", 100) // position the y-centre
.attr("r", 50) // set the radius
.style("fill", "red"); // set the fill colour

Which results in the following image;

50 100 150 200 230 300 350

Circle with Red Fill

As we saw with the polyline and polygon examples earlier in the chapter some shapes may
need to have their fill colour turned off in some circumstances and this can be accomplished
by declaring the colour to be none (.style("fill", "none");).

There are several different ways to define exactly what colour we want as a fill. The example
above uses a ‘named colour code’ to declare the colour as “red” but we could also have defined
itas rgb (.style("fill", "rgb(255,0,0)");) or in hexadecimal (.style("fill", "#f@@");)

Elements, Attributes and Styles

stroke

The stroke style applies a colour to lines.

144

By default many elements do not have a stroke colour set, so it’s a matter of declaring the colour
with either a named colour code (“red”), an rgb value (“rgb(255,0,0)”) or the appropriate hex

(“4£00”).

The following example (which works in conjunction with the HTML file outlined at the start of
this chapter) shows the syntax for applying the colour red to a simple circle. The fill has been set
to none to help the colour stand out.

holder.append("circle")
.attr("cx", 200)
.attr("cy", 100)
Lattr("r", 50)
.style("stroke", "red")
.style("fill", "none");

// attach a circle

// position the x-centre
// position the y-centre
// set the radius

// set the line colour
// set the fill colour

Which results in the following image;

100 150 200 250 300 330

-~ ",
I ™
|IIr -\u
|
|]
! g
\ Y,
s ~
Circle with Red Border

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 145

opacity

The opacity style has the effect of varying an element’s transparency.

The valid range for opacity is from 0 (completely transparent) to 1 (solid colour). We should
make the distinction at this point that opacity affects the entire element, whereas the following
fill-opacity and stroke-opacity affects only the fill and stroke respectively.

The following code snippet (which works in conjunction with the HTML file outlined at the start
of this chapter) creates a green circle with a red border. The opacity value of .2 creates a degree
of transparency which will show the grid lines underneath the element.

holder.append("circle") // attach a circle
.attr("ex", 200) // position the x-centre
.attr("cy", 100) // position the y-centre
.attr("r", 50) // set the radius
.style("opacity", .2) // set the element opacity

.style("stroke", "red") // set the line colour
.style("fill", "green"); // set the fill colour

Which results in the following image;

50 100 150 200 250 300 330

Circle with opacity

Elements, Attributes and Styles

fill-opacity

The fill-opacity style changes the transparency of the fill of an element.

146

The valid range for fil1-opacity is from 0 (completely transparent) to 1 (solid colour). We should
make the distinction at this point that fi11-opacity affects only the fill of an element, whereas
opacity will affect the entire element.

The following code snippet (which works in conjunction with the HTML file outlined at the start
of this chapter) creates a green circle with a red border. The opacity value of .2 creates a degree

of transparency for the fill which will show the grid lines underneath.

holder.append("circle")
.attr("cx", 200)
.attr('cy", 100)
Lattr("r", 50)
.style("fill-opacity",
.style("stroke", "red")
.style("fill", "green");

.2)

// attach a circle

// position the x-centre

// position the y-centre

// set the
// set the
// set the
// set the

Which results in the following image;

50

radius
fill opacity
line colour

fill colour

100 150 200 250 300

Circle with Semi-Transparent Fill

The distinction between this image and the one for the opacity style clearly shows the line

around the outside of the object as still a solid (opaque) colour.

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 147

stroke-opacity

The stroke-opacity style changes the transparency of the stroke (line) of an element.

The valid range for stroke-opacity is from 0 (completely transparent) to 1 (solid colour). We
should make the distinction at this point that stroke-opacity affects only the line or border of
an element, whereas opacity will affect the entire element.

The following code snippet (which works in conjunction with the HTML file outlined at the start
of this chapter) creates an empty circle with a red border. The opacity value of .2 creates a degree
of transparency for the stroke which will show the grid lines underneath (or at least make it
appear more ‘muted’).

holder .append("circle") // attach a circle
.attr("ex", 200) // position the x-centre
.attr("cy", 100) // position the y-centre
.attr("r", 50) // set the radius
.style("stroke-opacity", .2) // set the stroke opacity
.style("stroke", "red") // set the line colour
.style("fill", "none"); // set the fill colour

Which results in the following image;

A

Circle with Red Border and opacity

Although it is not necessarily easy to see in this example because the line is quite thin, the lines
of the grid behind the circle will be showing through the line of the circle.

Elements, Attributes and Styles 148

stroke-width

The stroke-width style adjusts the width of the line of an element.
The value specified when setting stroke-width is in pixels.

The following code snippet (which works in conjunction with the HTML file outlined at the start
of this chapter) creates an empty circle with a red border. The stroke-width is set to 5 which
equates to 5 pixels (it can also be specified as “5px”).

holder .append("circle") // attach a circle
.attr("cx", 200) // position the x-centre
.attr("cy", 100) // position the y-centre
.attr("r", 50) // set the radius
.style("stroke-width", 5) // set the stroke width
.style("stroke", "red") // set the line colour
.style("fill", "none"); // set the fill colour

Which results in the following image;

A

Circle with Thicker Red Border

The width of the line that forms the border of the circle is now 5 pixels wide :-).

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 149

stroke-dasharray

The stroke-dasharray style allows us to form element lines with dashes instead of solid lines.

We have covered dashed lines in practical way in a previous section of the book (‘Make a Dashed
Line’) but for the sake of completeness I will include dashed lines here as well.

We create a dashed line by specifying the length of a dash and then the length of a space. We
can include a long list of dashes and spaces and once complete our line will simply repeat the
pattern we have specified.

For example the following code snippet (which works in conjunction with the HTML file outlined
at the start of this chapter) creates a line with a dash of 10 pixels followed by a space of 2 pixels;

holder.append("circle") // attach a circle
.attr("cx", 200) // position the x-centre
.attr("cy", 100) // position the y-centre
.attr("r", 50) // set the radius

.style("stroke-dasharray", ("10,3")) // make the stroke dashed
.style("stroke", "red") // set the line colour
.style("fill", "none"); // set the fill colour

Which results in the following image;

A

Circle with Dashed Red Border

More complex combinations of dashes and spaces are possible as are complex animation
sequences that leverage the ability to move objects along a path (these are certainly more
advanced examples).

Elements, Attributes and Styles 150

stroke-linecap

The stroke-1inecap style allows control of the shape of the ends of lines in d3.js.

There are three shape options;

« butt where the line simply butts up to the starting or ending position and is cut off squarely.
« round where the line is rounded in proportion to its width.
« square where the line is squared off but extended in proportion to its width.

The following code snippet (which works in conjunction with the HTML file outlined at the
start of this chapter) generates three lines showing each stroke-1inecap style option. The top

line uses butt. The middle line uses round and the bottom line uses square.

holder.append("line")
.style("stroke", "black")
.style("stroke-width", 20)
.style("stroke-linecap", "butt")
Lattr("x1", 100)
Lattr("y1", 50)
.attr("x2", 300)
Lattr("y2", 50);

// x position
// y position
// x position
// y position

holder.append("line")
.style("stroke", "black")
.style("stroke-width", 20)
.style("stroke-linecap", "round")
Lattr("x1", 100)
.attr("y1", 100)
.attr("x2", 300)
Lattr("y2", 100);

// x position
// y position
// x position
// y position

holder .append("line")
.style("stroke", "black")
.style("stroke-width", 20)

.style("stroke-linecap", "square")
.attr("x1", 100) // x position
.attr("y1", 150) // y position
.attr("x2", 300) // X position
.attr("y2", 150); // y position

Which results in the following image;

// attach a line

// colour the line

// adjust line width

// stroke-linecap type

of the first end of the line
of the first end of the line
of the second end of the line
of the second end of the line
// attach a line
/7
//
/7
of
of
of
of

colour the line

adjust line width
stroke-linecap type

the first end of the line
the first end of the line
the second end of the line

the second end of the line

// attach a line

// colour the line

// adjust line width

// stroke-linecap type

of the first end of the line
of the first end of the line
of the second end of the line

of the second end of the line

A

Three Lines with Different End Shapes

www. dbooks.

org

https://www.dbooks.org/

Elements, Attributes and Styles 151

The shapes are quite distinct for each type and it is useful to note the degree to which the lines
extend beyond their start and end points.

Elements, Attributes and Styles 152

stroke-linejoin

The stroke-linejoin style specifies the shape of the join of two lines. This would be used on
path, polyline and polygon elements (and possibly more).

There are three line join options;

« miter where the join is squared off as would be expected at the join of two lines.

« round where the outside portion of the join is rounded in proportion to its width.

« bevel where the join has a straight edged outer portion clipped off to provide a slightly
more contoured effect while still being angular.

The following code snippet (which works in conjunction with the HTML file outlined at the
start of this chapter) generates a poly line where the join has the connection shaped using the
stroke-linejoin round style.

holder .append("polyline") // attach a polyline
.style("stroke", "black") // colour the line
.style("fill", "none" // remove any fill colour
.style("stroke-width", 20) // colour the line
.style("stroke-linejoin", "round") // shape the line join

.attr("points", "100,50, 200,150, 300,50"); // x,y points

Which results in the following image;

A

Polyline with Round Join

Note the curve on the outer of the join.

Changing the shape of the line join to bevel produces the following;

A

Polyline with Bevel Join

Here we can see the clipping of the outer portion of the join.

And using miter produces a standard connection;

A

Polyline with Miter Join

This is the default setting for line joins and does not need to be added unless the line join type
has already been set to a different default.

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 153

writing-mode

The writing-mode style changes the orientation of the text so that it prints out top to bottom. It
has a single option “tb” that accomplishes this. It is relatively limited in scope compared to the
equivalent for CSS, but for the purposes of generating some text it has a definite use.

The following code snippet (hich works in conjunction with the HTML file outlined at the start
of this chapter) creates a line of text that is now printed from top to bottom instead of left to
right.

holder.append("text") // append text
.style("fill", "black") // make the text black
.style("writing-mode", "tb") // set the writing mode
.attr("x", 200) // set x position of left side of text
.attr("y", 100) // set y position of bottom of text

.text("Hello World"); // define the text to display

Which results in the following image;

A

Text rotated using writing-mode

It is significant to note that while it looks like the text has been rotated about it’s anchor
point, this actually isn’t the case since the anchor point should be at 200,100. Also, the
glyph-orientation-vertical style (which follows) will allow the text to be orientated vertically
which will be useful.

Elements, Attributes and Styles 154

glyph-orientation-vertical

The glyph-orientation-vertical style changes the rotation of the individual glyphs (charac-
ters) in text and if used in conjunction with the writing-mode style (and set to 0) will allow the
text to be displayed vertically with the letters orientated vertically as well.

The following code snippet (which works in conjunction with the HTML file outlined at the
start of this chapter) creates a line of text that is now printed from top to bottom with letters
orientated vertically.

holder.append("text") // append text
.style("fill", "black") // make the text black
.style("writing-mode", "tb") // set the writing mode
.style("glyph-orientation-vertical", 0)
.attr("x", 200) // set x position of left side of text
.attr("y", 25) // set y position of bottom of text
.text("Hello World"); // define the text to display

Which results in the following image;

A

Text rotated and orientated

It is worth noting that the text spacing increases dramatically as the spacing for each letter relies
on the normal distance between the bottom and top of a line of text.

www. dbooks. or g

https://www.dbooks.org/

Elements, Attributes and Styles 155

Using styles in Cascading Style Sheets

Declaring styles on an element by element basis is an OK way to apply styles, but when our
visualizations become more complex, this can be an inefficient use of code.

A smarter way to provide a common set of styles to elements is to declare them in the
<style> section of our HTML document using Cascading Style Sheets (CSS). These will then
be automatically applied to our elements.

We start with an example script that draws our three lines that have different styles of linecaps.
Our previous example looked like the following (in conjunction with the HTML file outlined at
the start of this chapter)

holder .append("line") // attach a line
.style("stroke", "black") // colour the line
.style("stroke-width", 20) // adjust line width
.style("stroke-linecap", "butt") // stroke-linecap type
.attr("x1", 100) // X position of the first end of the line
.attr("y1", 50) // vy position of the first end of the line
.attr("x2", 300) // x position of the second end of the line
.attr("y2", 50); // y position of the second end of the line

holder.append("line") // attach a line
.style("stroke", "black") // colour the line
.style("stroke-width", 20) // adjust line width
.style("stroke-linecap", "round") // stroke-linecap type
.attr("x1", 100) // x position of the first end of the line
.attr("y1", 100) // y position of the first end of the line
.attr("x2", 300) // x position of the second end of the line
.attr("y2", 100); // vy position of the second end of the line

holder.append("line") // attach a line
.style("stroke", "black") // colour the line
.style("stroke-width", 20) // adjust line width
.style("stroke-linecap", "square") // stroke-linecap type
.attr("x1", 100) // X position of the first end of the line
.attr("y1", 150) // y position of the first end of the line
.attr("x2", 300) // x position of the second end of the line
.attr("y2", 150); // y position of the second end of the line

Which resulted in the following image;

A

Three Lines with Different End Shapes

The block of code for each of the three lines contains three separate style declarations. Two of
which are identical for all three blocks of code;

Elements, Attributes and Styles 156

.style("stroke", "black") // colour the line
.style("stroke-width", 20) // adjust line width

To make these styles available from a common point, we declare them in the <style> section of
our HTML file as follows;

{style>

line.linecap {
stroke: black;
stroke-width: 20;

}
</style>

The <style> tags simply tell our browser which part of the HTML file we are using to define our
styles.

The 1ine.linecap portion identifies the following styles as belonging to the 1ine elements that
are also identified as belonging to the ‘class’ 1inecap (We have used the linecap name as a
convenience only and it could just as easily been foobar.).

The two styles are enclosed within curly braces and are declared in the form <style-name>:
<style-value>;. So for our example here, the stroke is black and its width is 20 pixels.

Then our example script can have the two styles removed from each of the blocks that draws the
lines and in their place we add a new attribute class that assigns a class to the element (in this
case the class 1inecap). Our new code will look like this;

holder.append("line") // attach a line
.style("stroke-linecap", "butt") // stroke-linecap type
.attr("class", "linecap") // inherits styles from CSS

.attr("x1", 100) // x position of the first end of the line
.attr("y1", 50) // vy position of the first end of the line
.attr("x2", 300) // x position of the second end of the line
.attr("y2", 50); // y position of the second end of the line
holder.append("line") // attach a line

.style("stroke-linecap", "round") // stroke-linecap type
.attr("class", "linecap") // inherits styles from CSS

.attr("x1", 100) // X position of the first end of the line
.attr("y1", 100) // y position of the first end of the line
.attr("x2", 300) // x position of the second end of the line
.attr("y2", 100); // y position of the second end of the line
holder.append("line") // attach a line

.style("stroke-linecap", "square") // stroke-linecap type
.attr("class", "linecap") // Inherits styles from CSS
.attr("x1", 100) // x position of the first end of the line
.attr("y1", 150) // vy position of the first end of the line

www. dbooks.

org

https://www.dbooks.org/

Elements, Attributes and Styles 157

.attr("x2", 300) // x position of the second end of the line
.attr("y2", 150); // y position of the second end of the line

While this has only replaced two lines with one in our code, the potential for use in far more
complex examples should be obvious. There is significantly more detail that can be gone into
with regard to CSS, but that would be beyond my meagre abilities.

Assorted Tips and Tricks

Change a line chart into a scatter plot

Confession time.

I didn’t actually intend to add in a section with a scatter plot in it for its own sake because I
thought it would be;

1. tricky
2. not useful
3. all of the above

I was wrong on all counts.

I did want to have a scatter plot, because I wanted to display tool tips, but this is too
neat to ignore. It was literally a 5 minute job, 3 minutes of which was taken up by going
to the d3 gallery on the wiki’* and ogling at the cool stuff there before snapping out of
it and going to the scatter plot example®.

All you need to do is take the simple graph example file and slot the following block in between
the ‘Add the valueline path’ and the ‘add the x axis’ blocks.

svg.selectAll("dot")
.data(data)
.enter().append("circle")
attr('r", 3.5)
.attr("cx", function(d) { return x(d.date); })
.attr("cy", function(d) { return y(d.close); });

And you will get...

*https://github.com/mbostock/d3/wiki/Gallery
?http://bl.ocks.org/3887118

www. dbooks. or g

https://github.com/mbostock/d3/wiki/Gallery
http://bl.ocks.org/3887118
https://github.com/mbostock/d3/wiki/Gallery
http://bl.ocks.org/3887118
https://www.dbooks.org/

Assorted Tips and Tricks

500 4
500 -
400-
300-
200-

100

0

159

April Apr 08 Apr 15

A scatter plot! (with a line)

Apr 22

Apr 29

The full code for this graph can also be found on github®® or in the code samples bundled with
this book (simple-scatterplot.html and data.csv). A live example can be found on bl.ocks.org”™.

I deliberately put the dots after the line in the drawing section, because I thought they would
look better, but you could put the block of code before the line drawing block to get the following

effect;

500 4
500 -
400-
300-
200-

100 -

0 T T T
April Aprog Apr 15

A scatter plot with the line in front of the dots

T
Apr 22

T
Apr 29

(just trying to reinforce the concept that ‘order’ matters when drawing objects :-)).

You could of course just remove the line block all together...

B0 ®® e,
500
400
300
200
100

0

T T T
April Apr 08 Apris

T
Apr 22

A scatter plot without the line this time

But in my humble opinion it loses something.

So what do the individual lines in the scatter plot block of JavaScript do?

“https://gist.github.com/d3noob/38744a17f9c0141bcd04
**http://bl.ocks.org/d3noob/38744a17f9c0141bcd04

https://gist.github.com/d3noob/38744a17f9c0141bcd04
http://bl.ocks.org/d3noob/38744a17f9c0141bcd04
https://gist.github.com/d3noob/38744a17f9c0141bcd04
http://bl.ocks.org/d3noob/38744a17f9c0141bcd04

Assorted Tips and Tricks 160

The first line (svg.selectAll("dot")) essentially provides a suitable grouping label for the svg
circle elements that will be added. The next line associates the range of data that we have to the
group of elements we are about to add in.

Then we add a circle for each data point (.enter () .append("circle")) with a radius of 3.5 pixels
(.attr("r", 3.5))and appropriate x (.attr("cx", function(d) { return x(d.date); }))and
y (.attr("cy", function(d) { return y(d.close); });) coordinates.

There is lots more that we could be doing with this piece of code (check out the scatter plot
example”®) including varying the colour or size or opacity of the circles depending on the data
and all sorts of really neat things, but for the mean time, there we go. Scatter plot!

>http://bl.ocks.org/3887118

www. dbooks. or g

http://bl.ocks.org/3887118
http://bl.ocks.org/3887118
http://bl.ocks.org/3887118
https://www.dbooks.org/

Assorted Tips and Tricks 161

Adding tooltips.

Tooltips have a marvellous duality. They are on one hand a pretty darned useful thing that aids
in giving context and information where required and on the other hand, if done with a bit of
care, they can look very stylish :-).

Technically, they represent a slight move from what we have been playing with so far into a
mildly more complex arena of ‘transitions’ and ‘events’. You can take this one of two ways.
Either accept that it just works and implement it as shown, or you will know what’s going on
and feel free to deride my efforts as those of a rank amateur :-).

The source for the implementation was taken from Mike Bostock’s example on
bl.ocks.org®. This was combined with a few other bit’s and pieces (the trickiest being
working out how to format the displayed date correctly and inserting a line break in
the tooltip (which I found on Google Groups®; (well done to all those participating
in that discussion)). I make the assumption that any or all errors that occur in the
implementation will be mine, whereas, any successes will be down to the original
contributors.

Just in case there is some confusion, a tooltip (one word or two?) is a discrete piece of information
that will pop into view when the mouse hovers over somewhere specific. Most of us have seen
and used them, but I suppose we all tend to call them different things such as ‘infotip’, ‘hint’ or
‘hover box’ I don’t know if there’s a right name for them, but here’s an example of what we’re

trying to achieve;

A tooltip magically appears over a dot

You can see the mouse has hovered over one of the scatter plot circles and a tip has appeared
that provides the user with the exact date and value for that point.

Now, you may also notice that there’s a certain degree of ‘fancy’ here as the information is bound
by a rectangular shape with rounded corners and a slight opacity. The other piece of ‘fancy’
which you don’t see in a PDF (or whatever format this distinguished tome will be published in
on its 33rd reprint in the year 2034), is that when these tool tips appear and disappear, they do
so in an elegant fade-in, fade-out way. Pretty!

Now, before we get started describing how the code goes together, let’s take a quick look at the
two technique specifics that I mentioned earlier, ‘transitions’ and ‘events’.

Transitions

From the main d3.js web page (d3js.org) transitions are described as gradually interpolating styles
and attributes over time. So what I take that to mean is that if you want to change an object, you

*http://bl.ocks.org/1087001
°"https://groups.google.com/forum/?fromgroups=#'topic/d3-js/GgFTf24ltjc

http://bl.ocks.org/1087001
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/GgFTf24ltjc
http://bl.ocks.org/1087001
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/GgFTf24ltjc

Assorted Tips and Tricks 162

can do so be simply specifying the attribute / style end point that you want it to end up with and
the time you want it to take and go!

Of course, it’s not quite that simple, but luckily, smarter people than I have done some fantastic
work describing different aspects of transitions so please see the following for a more complete
description of the topic;

« Mike Bostock’s Bar chart tutorial®®
« Christophe Viau’s “Try D3 Now! tutorial®®

Hopefully observing the mouseover and mouseout transitions in the tooltips example will whet
your appetite for more!

Events

The other technique is related to mouse ‘events’. This describes the browser watching for when
‘something’ happens with the mouse on the screen and when it does, it takes a specified action.
A (probably non-comprehensive) list of the types of events are the following;

« mousedown: Triggered by an element when a mouse button is pressed down over it
« mouseup: Triggered by an element when a mouse button is released over it

« mouseover: Triggered by an element when the mouse comes over it

« mouseout: Triggered by an element when the mouse goes out of it

« mousemove: Triggered by an element on every mouse move over it.

« click: Triggered by a mouse click: mousedown and then mouseup over an element

« contextmenu: Triggered by a right-button mouse click over an element.

« dblclick: Triggered by two clicks within a short time over an element

How many of these are valid to use within d3 I'm not sure, but I'm willing to bet that there
are probably more than those here as well. Please go to http://javascript.info/tutorial/mouse-
events'® for a far better description of the topic if required.

Get tipping

So, bolstered with a couple of new concepts to consider, let’s see how they are enacted in practice.

The full code for this graph can also be found on github*** or in the code samples bundled with

this book (simple-tooltips.html and data.csv). A live example can be found on bl.ocks.org'**.

If we start with our simple-scatter plot graph there are 4 areas in it that we will want to modify
(it may be easier to check the tooltips.html file in the example files in the downloads section on
d3noob.org).

The first area is the CSS. The following code should be added just before the </style> tag;

*®http://mbostock.github.com/d3/tutorial/bar-2.html
**http://christopheviau.com/d3_tutorial/
1%http://javascript.info/tutorial/mouse-events
19%https://gist.github.com/d3noob/a22c42db65eb00d4e369
19%http://bl.ocks.org/d3noob/a22c42db65eb00d4e369

www. dbooks. or g

http://mbostock.github.com/d3/tutorial/bar-2.html
http://christopheviau.com/d3_tutorial/
http://javascript.info/tutorial/mouse-events
http://javascript.info/tutorial/mouse-events
https://gist.github.com/d3noob/a22c42db65eb00d4e369
http://bl.ocks.org/d3noob/a22c42db65eb00d4e369
http://mbostock.github.com/d3/tutorial/bar-2.html
http://christopheviau.com/d3_tutorial/
http://javascript.info/tutorial/mouse-events
https://gist.github.com/d3noob/a22c42db65eb00d4e369
http://bl.ocks.org/d3noob/a22c42db65eb00d4e369
https://www.dbooks.org/

Assorted Tips and Tricks 163

div.tooltip {
position: absolute;
text-align: center;
width: 60px;
height: 28px;
padding: 2px;
font: 12px sans-serif;
background: lightsteelblue;
border: Opx;
border-radius: 8px;
pointer-events: none;

These styles are defining how our tooltip will appear . Most of them are fairly straight forward.
The position of the tooltip is done in absolute measurements, not relative. The text is centre
aligned, the height, width and colour of the rectangle is 28px, 60px and lightsteelblue respectively.
The ‘padding’ is an interesting feature that provides a neat way to grow a shape by a fixed amount
from a specified size.

We set the border to Opx so that it doesn’t show up and a neat style (attribute?) called border-
radius provides the nice rounded corners on the rectangle.

Lastly, but by no means least, the ‘pointer-events: none’ line is in place to instruct the mouse
event to go “through” the element and target whatever is “underneath” that element instead
(Read more here'®®). That means that even if the tooltip partly obscures the circle, the code will
still act as if the mouse is over only the circle.

The second addition is a simple one-liner that should (for forms sake) be placed under the
‘parseData’ variable declaration;

var formatTime = d3.time.format("%e %B");

This line formats the date when it appears in our tooltip. Without it, the time would default to
a disturbingly long combination of temporal details. In the case here we have declared that we
want to see the day of the month (%e) and the full month name(%B).

The third block of code is the function declaration for ‘div’.

var div = d3.select("body").append("div")
.attr("class", "tooltip")
.style("opacity", 0);

We can place that just after the ‘valueline’ definition in the JavaScript. Again there’s not too
much here that’s surprising. We tell it to attach ‘div’ to the body element, we set the class to the
tooltip class (from the CSS) and we set the opacity to zero. It might sound strange to have the
opacity set to zero, but remember, that’s the natural state of a tooltip. It will live unseen until it’s
moment of revelation arrives and it pops up!

19https://developer.mozilla.org/en-US/docs/CSS/pointer-events

https://developer.mozilla.org/en-US/docs/CSS/pointer-events
https://developer.mozilla.org/en-US/docs/CSS/pointer-events

Assorted Tips and Tricks 164

The final block of code is slightly more complex and could be described as a mutant version of
the neat little bit of code that we used to do the drawing of the dots for the scatter plot. That’s
because the tooltips are all about the scatter plot circles. Without a circle to ‘mouseover’, the
tooltip never appears :-).

So here’s the code that includes the scatter plot drawing (it’s included since it’s pretty much
integral);

svg.selectAll("dot")
.data(data)

.enter().append("circle")
.attr("r", 5)
.attr("cx", function(d) { return x(d.date); })
.attr("cy", function(d) { return y(d.close); })
.on("mouseover", function(d) {

div.transition()

.duration(200)
.style("opacity", .9);
div .html(formatTime(d.date) + "
" + d.close)

.style("left", (d3.event.pageX) + "px")
.style("top", (d3.event.pageY - 28) + "px");
1)
.on("mouseout", function(d) {
div.transition()
.duration(500)
.style("opacity", 0);
1)

Before we start going through the code, the example file for tooltips that is on d3noob.org
includes a brief series of comments for the lines that are added or changed from the
scatter plot, so if you want to compare what is going on in context, that is an option.

The first six lines of the code are a repeat of the scatter plot drawing script. The only changes are
that we’ve increased the radius of the circle from 3.5 to 5 (just to make it easier to mouse over

the object) and we’ve removed the semicolon from the cy attribute line since the code now has
to carry on.

So the additions are broken into two areas that correspond to the two events. mouseover and
mouseout. When the mouse moves over any of the circles in the scatter plot, the mouseover
code is executed on the div element. When the mouse is moved off the circle a different set of
instructions are executed.

o There is only one!

It would be a mistake to think of tooltips in the plural because there aren’t a whole series
of individual tooltips just waiting to appear for their specific circle. There is only one
tooltip that will appear when the mouse moves over a circle. And depending on what
circle it’s over, the properties of the tooltip will alter slightly (in terms of its position and
contents).

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 165

on.mouseover

The .on("mouseover" line initiates the introduction of the tooltip. Then we declare the element
we will be introducing (‘div’) and that we will be applying a transition to its introduction
(.transition()). The next two lines describe the transition. It will take 200 milliseconds
(.duration(200)) and will result in changing the element’s opacity to .9 (.style("opacity",
.9);). Given that the natural state of our tooltip is an opacity of 0, this make sense for something
appearing, but it doesn’t go all the way to a solid object and it retains a slight transparency just
to make it look less permanent.

The following three lines format our tooltip. The first one adds an html element that contains
our x and y information (the date and the d.close value). Now this is done in a slightly strange
way. Other tooltips that I have seen have used a ‘. text’ element instead of a “.htm1’ one, but I
have used “.html’ in this case because I wanted to include the line break tag
 to separate
the date and value. I'm sure there are other ways to do it, but this worked for me. The other
interesting part of this line is that this is where we call our time formatting function that we
described earlier. The next two lines position the tooltip on the screen and to do this they grab
the x and y coordinates of the mouse when the event takes place (with the d3.event.pageX and
d3.event.pageY snippets) and apply a correction in the case of the y coordinate to raise the
tooltip up by the same amount as its height (28 pixels).

on.mouseout

The .on("mouseout” section is slightly simpler in that it doesn’t have to do any fancy text / html
/ coordinate stuff. All it has to do is to fade out the ‘div’ element. And that is done by simply
reversing the opacity back to 0 and setting the duration for the transition to 500 milliseconds
(being slightly longer than the fade-in makes it look slightly cooler IMHO).

Right, there you go. As a description it’s ended up being a bit of a wall of text I'm afraid. But
hopefully between the explanation and the example code you will get the idea. Please take the
time to fiddle with the settings described here to find the ones that work for you and in the
process you will reinforce some of the principles that help D3 do its thing.

Including an HTML link in a tool tip

There was an interesting question on d3noob.org'* about adding an HTML link to a tooltip.
While the person asking the question had the problem pretty much solved already, I thought it
might be useful for others.

The premise is that you want to add a tool tip to your visualization using the method described
here, but you also want to include an HTML link in the tooltip that will link somewhere else.
This might look a little like the following;

Tool tip with an HTML Link

1%%http://www.d3noob.org/2013/01/adding- tooltips-to-d3js- graph.html

http://www.d3noob.org/2013/01/adding-tooltips-to-d3js-graph.html
http://www.d3noob.org/2013/01/adding-tooltips-to-d3js-graph.html

Assorted Tips and Tricks 166

In the image above the date has been turned into a link. In this case the link goes to google.com,
but that can obviously be configurable.

The full code for this example can be found on github'® or in the code samples bundled with

this book (tooltips-link.html and data.csv). A working example can be found on bl.ocks.org*®.

There are a few changes that we would want to make to our original tooltip code to implement
this feature.

First of all, we’ll add the link to the date element. Adding an HTML link can be as simple as
wrapping the ‘thing’ to be used as a link in <a> tags'®” with an appropriate URL to go to.

The following adaptation of the code that prints the information into our tooltip code does just
that;

div .html(
'' + // The first <a> tag
formatTime(d.date) +
"<Jad" + // closing tag
"
" + d.close)
.style("left", (d3.event.pageX) + "px")
.style("top", (d3.event.pageY - 28) + "px");

 places our first <a> tag and declares the URL and the second
tag follows after the date.

The second change we will want to make is to ensure that the tooltip stays in place long enough
for us to actually click on the link. The problem being solved here is that our original code relies
on the mouse being over the dot on the graph to display the tooltip. if the tooltip is displayed and
the cursor moves to press the link, it will move off the dot on the graph and the tooltip vanishes
(Nice!).

To solve the problem we can leave the tooltip in place adjacent to a dot while the mouse roams
freely over the graph until the next time it reaches a dot and then the previous tooltip vanishes
and a new one appears. The best way to appreciate this difference is to check out the live example

on bl.ocks.org'®.

The code is as follows (you may notice that this also includes the link as described above);

19https://gist.github.com/d3noob/c37cbse630aaef7df30d
1%http://bl.ocks.org/d3noob/c37cb8e630aaef7df30d
http://www.w3schools.com/tags/tag_a.asp
19%http://bl.ocks.org/d3noob/c37cb8e630aaef7df30d

www. dbooks. or g

https://gist.github.com/d3noob/c37cb8e630aaef7df30d
http://bl.ocks.org/d3noob/c37cb8e630aaef7df30d
http://www.w3schools.com/tags/tag_a.asp
http://bl.ocks.org/d3noob/c37cb8e630aaef7df30d
https://gist.github.com/d3noob/c37cb8e630aaef7df30d
http://bl.ocks.org/d3noob/c37cb8e630aaef7df30d
http://www.w3schools.com/tags/tag_a.asp
http://bl.ocks.org/d3noob/c37cb8e630aaef7df30d
https://www.dbooks.org/

Assorted Tips and Tricks 167

.on("mouseover", function(d) {

div.transition()
.duration(500)
.style("opacity", 0);

div.transition()
.duration(200)
.style("opacity", .9);

div .html(
'' + // The first <a> tag
formatTime(d.date) +
"<Ja>x" + // closing tag
"<pbr/>" + d.close)
.style("left", (d3.event.pageX) + "px")
.style("top", (d3.event.pageY - 28) + "px");

1)

We have removed the .on("mouseout" portion and moved the function that it used to carry out
to the start of the .on("mouseover" portion. That way the first thing that occurs when the mouse
cursor moves over a dot is that it removes the previous tooltip and then it places the new one.

The last change we need to make is to remove from the <style> section the line that told the
mouse to ignore the tooltip;

/* pointer-events: none; This line needs to be removed */

In this case I have just commented it out so that it’s a bit more obvious that it gets removed.

Moar Links!

One link is interesting, but let’s face it, we didn’t go to all the trouble of putting a link into a
tool tip to just go to one location. Now we shift it up a gear and start linking to different places
depending on our data. At the same time (and because someone asked) we will make the link
open in a new tab!

The changes to the script are fairly minor, but one fairly large change is the need to have links
to go to. For this example I have added a range of links to visit to our csv file so it now looks like
this;

Assorted Tips and Tricks

date,close, link

1-May-12,58.13,http://bl.ocks.org/d3noob/c37cb8et630aaef7d{f30d

30-Apr-12,53.98,http://bl.ocks.
2T-Apr-12,67.00,http://bl.ocks.
26-Apr-12,89.70,http://bl.ocks.
25-Apr-12,99.00,http://bl.ocks.

24-Apr-12,130.28,http:
23-Apr-12,166.70,http:
20-Apr-12,234.98,http:
19-Apr-12,345.44, http:
18-Apr-12,443.34, http:
17-Apr-12,543.70, http:
16-Apr-12,580.13, http:
13-Apr-12,605.23, http:
12-Apr-12,622.77,http:
11-Apr-12,626.20,http:
10-Apr-12,628.44, http:

//bl
//bl
//bl
//bl
//bl
//bl
//bl
//bl

.ocks
.ocks
.ocks
.ocks
.ocks
.ocks
.ocks
.ocks
//bl.
//bl.
//bl.

ocks
ocks
ocks

9-Apr-12,636.23,http://bl.ocks.
5-Apr-12,633.68,http://bl.
4-Apr-12,624.31,http://bl.
3-Apr-12,629.32,http://bl.
2-Apr-12,618.63,http://bl.

30-Mar-12,599.55,http:
29-Mar-12,609.86,http:
28-Mar-12,617.62,http:
27-Mar-12,614.48,http:
26-Mar-12,606.98,http:

//bl
//bl
//bl
//bl
//bl

ocks.
ocks.
ocks.
ocks.
.ocks
.ocks
.ocks
.ocks
.ocks

org/d3noob/11313583
org/d3noob/11306153
org/d3noob/11137963
org/d3noob /10633856
.0org/d3noob /10633704
.org/d3noob /10633421
.org/d3noob/10633192
.org/d3noob/10632804
.org/d3noob /9692795
.org/d3noob /9267535
.org/d3noob/9211665
.0org/d3noob/9167301

.org/d3noob/8603837
.org/d3noob/8375092
.org/d3noob /8329447
org/d3noob /8329404

org/d3noob /8150631

org/d3noob /8273682

org/d3noob/7845954

org/d3noob /6584483

.org/d3noob /5893649
.0rg/d3noob/6077996
.org/d3noob/5193723
.org/d3noob/5141528
.org/d3noob /5028304

168

The code change is to the piece of JavaScript where we add the HTML. This is what we end up

with;

div .html(

'' + //with a link

formatTime(d.date) +

"<Jax"

"
" + d.close)

.style("left", (d3.event.pageX) + "px")

.style("top", (d3.event.pageY - 28) + "px");

We’ve replaced the URL http://google.com with the variable for our 1ink column d.1ink and

we’ve also added in the target="_blank" statement so that our link opens in a new tab.

A quick word of warning on this piece of code. it can look a little messy because it

A includes nested speech-marks and quotation marks. This makes it a bit confusing if
you’re unused to the idea of nesting this type of information. If things aren’t working
in this part of your code, I recommend going back to basics and adding one piece at a
time, getting it right and then add the next piece. Take it slow :-).

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 169

The full code for this multi link example can be found on github'*® or in the code samples bundled

with this book (tooltips-link-multi.html and datatips.csv). A working example can be found on
bl.ocks.org!*.

Hopefully that helps people with a similar desire to include links in their tooltips. Many thanks
to the reader who suggested it :-).

1%https://gist.github.com/d3noob/2e224baa7472c5e9e0e8
%http://bl.ocks.org/d3noob/2e224baa7472c5e9e0e8

https://gist.github.com/d3noob/2e224baa7472c5e9e0e8
http://bl.ocks.org/d3noob/2e224baa7472c5e9e0e8
https://gist.github.com/d3noob/2e224baa7472c5e9e0e8
http://bl.ocks.org/d3noob/2e224baa7472c5e9e0e8

Assorted Tips and Tricks 170

What are the predefined, named colours?

Throughout this document I generally use colours defined by name. This is mainly because I
can, and not for any other reason. In fact there several different ways to define colours used in
D3 / JavaScript / CSS and HTML. I have no idea what the limitations for use are and / or how
their use in different browsers impacts on correct representation. But I do know that they’re used
widely.

There seems to be several different standards for what constitute an authoritative list of named
colours. After a cursory search I was able to find a great list on about.com''* and there are some
nice representations on Wikipedia''*.

The overriding point of all this is that there’s more than one way to define colours in your graphs.

It means that considering... .style("fill", "steelblue")
and...

.style("fill", "#4682b4")

and...

.style("fill", "rgb(70,130,180)")
All three alternatives result in the same colour being applied.

For a long time I didn’t actually have the images of the colours represented here in D3 Tips and
Tricks, but like all things, one day I thought ‘Hey, I could just write a simple script that placed
them on the screen’. So here they are :-).

I have tried to group them as ‘like’ colours per the entry in Wikipedia.

o

"http://webdesign.about.com/od/colorcharts/l/bl_namedcolors.htm
"2http://en.wikipedia.org/wiki/Web_colors#X11_color_names

www. dbooks. org

http://webdesign.about.com/od/colorcharts/l/bl_namedcolors.htm
http://en.wikipedia.org/wiki/Web_colors#X11_color_names
http://webdesign.about.com/od/colorcharts/l/bl_namedcolors.htm
http://en.wikipedia.org/wiki/Web_colors#X11_color_names
https://www.dbooks.org/

Assorted Tips and Tricks

LightYellow

PapayaWhip

PaleGoldenrod

LemonChiffon

Moccasin

Cornsilk

171

LightGoldenrodYellow

PeachPuff

DarkKhaki

BlanchedAlmond

Wheat

SpringGreen

PaleGreen

GreenYellow

Assorted Tips and Tricks

Cyan LightCyan PaleTurquoise

LightSteelBlue

PowderBlue LightBlue SkyBlue

LightSkyBlue DeepSkyBlue

CornflowerBlue

Thistle Plum Violet

Snow Honeydew MintCream

Azure AliceBlue GhostWhite

172

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 173

WhiteSmoke Seashell Beige
OldLace FloralWhite Ivory
AntiqueWhite Linen LavenderBlush

Silver ﬂrlﬁm

You can also see a live page with the script that produces the rectangles at bl.ocks.org'*>.

http://bl.ocks.org/d3noob/11313583

http://bl.ocks.org/d3noob/11313583
http://bl.ocks.org/d3noob/11313583

Assorted Tips and Tricks 174

Selecting / filtering a subset of objects

OK, Imagine a scenario where you want to select (or should we say filter) a particular range of
objects from a larger set.

For example, what if we wanted to use our scatter plot example to show the line as normal,
but we are particularly interested in the points where the values of the points fall below 400.
And when it does we want them highlighted with a circle as we have done with all the points
previously.

So that we end up with something that looks a little like this...

600
500
400
300
200

100

0

T T T T T 1
April Apr0g8 Apr 15 Apr 22 Apr 29

Only the points below 400 are selected

Err... Yes, for those among you who are of the observant persuasion, I have deliberately coloured
them red as well (red for DANGER!).

This is a fairly simple example, but serves to illustrate the principle adequately. From our simple
scatter plot example we only need to add in two lines to the block of code that draws the circles
as follows;

svg.selectAll("dot")
.data(data)

.enter().append("circle")

.filter(function(d) { return d.close < 400 }) // <== This line
.style("fill", "red") // <== and this one
attr('r", 3.5)

.attr("cx", function(d) { return x(d.date); })
.attr("cy", function(d) { return y(d.close); });

The full code for this example can be found on github'** or in the code samples bundled with
this book (filter-selection.html and data.csv). A working example can be found on bl.ocks.org*”.

The first added line uses the . filter function to act on the data points and according to the
arguments passed to it in this case, only return those where the value of d.close is less than 400
(return d.close < 400).

*https://gist.github.com/d3noob/8dc93bce7e7200ab487d
3http://bl.ocks.org/d3noob/8dc93bce7e7200abs87d

www. dbooks. or g

https://gist.github.com/d3noob/8dc93bce7e7200ab487d
http://bl.ocks.org/d3noob/8dc93bce7e7200ab487d
https://gist.github.com/d3noob/8dc93bce7e7200ab487d
http://bl.ocks.org/d3noob/8dc93bce7e7200ab487d
https://www.dbooks.org/

Assorted Tips and Tricks 175

The second added line is our line that simply colours the circles red (.style("fill", "red")).

That’s all there is to it. Pretty simple, but the filter function can be very powerful when used
wisely.

I've placed a copy of the file for selecting / filtering into the downloads section on d3noob.org
with the general examples as filter-selection.html.

Assorted Tips and Tricks 176

Select items with an IF statement.

The filtering — selection section above is a good way to adapt what you see on a graph, but so is
a more familiar friend... The ‘if” statement.

An if statement will act to carry out a task in a particular way dependant on a condition that
you specify.

Here’s an example, what if we wanted to show our scatter plot as normal, but all those
with a ‘close’ value less than 400 should be coloured red. Sound familiar? Yes, I know
it’s similar to the example above, with the subtle difference that it is leaving the circles
above 400 in place (more on that to follow).

Starting with the simple scatter plot example all we have to do is include the if statement in the
block of code that draws the circles. Here’s the entire block with the additions highlighted;

svg.selectAll("dot")
.data(data)

.enter().append("circle")
attr("r", 3.5)

.style("fill", function(d) { // <== Add these
if (d.close <= 400) {return "red"} // <== Add these
else { return "black" } // <== Add these
) // <== Add these

.attr("cx", function(d) { return x(d.date); })
.attr("cy", function(d) { return y(d.close); });

Our first added line introduces the style modifier and the rest of the code acts to provide a return
for the ‘fill’ attribute.

The second line introduces our if statement. There’s very little difference using i f statements
between languages. Just look out for maintaining the correct syntax and you should be fine. In
this case we're asking if the value of d.close is less than or equal to 400 and if it is it will return
the "red" statement for our fill.

The third line covers our rear and make sure that if the colour isn’t going to be red, it’s going to
be black. The last line just closes the style and function statements.

The result?

www. dbooks.

org

https://www.dbooks.org/

Assorted Tips and Tricks 177

600 4
500 -
400 -
300 -
200

100

0

Aww..... nice.

T T T T T
April Apr0g Apr 15 Apr 22 Apr 29

Points above 400 black and points below 400 red

The full code for this example can be found on github*® or in the code samples bundled with

117

this book (if-selection.html and data.csv). A working example can be found on bl.ocks.org"’.

Could it be any

cooler? I'm glad you asked.

What if we wanted to have all the points where close was less than 400 red and all those where
close was greater than 620 green? Oh yeah! Now we’re talking.

So with one small change to the if statement;

.style("fill", function(d) {
if (d.close <= 400) {return "red"}

el

el

B

Check it out...

500 &
500 -
400-
300-
200 -

100 -

se if (d.close >= 620) {return "lawngreen"} // <== Right here

se { return "black" }

e B e e e

0

Nice.

T T T T T
April Apr 08 Apr 15 Apr 22 Apr 29

Points coloured differently depending on their value

"%https://gist.github.com/d3noob/464c92429ac05c6a19al
http://bl.ocks.org/d3noob/464c92429ac05c6a19al

https://gist.github.com/d3noob/464c92429ac05c6a19a1
http://bl.ocks.org/d3noob/464c92429ac05c6a19a1
https://gist.github.com/d3noob/464c92429ac05c6a19a1
http://bl.ocks.org/d3noob/464c92429ac05c6a19a1

Assorted Tips and Tricks 178

Applying a colour gradient to a line based on value.

I just know that you were impressed with the changing dots in a scatter plot based on the value.
But could we go one better?

How about we try to reproduce the same effect but by varying the colour of the plotted line.
This is a neat feature and a useful example of the flexibility of d3.js and SVG in general. I used
the appropriate bits of code from Mike Bostock’s Threshold Encoding example'*®. And I should
take the opportunity to heartily recommend browsing through his collection of examples on
bl.ocks.org'*®. For those who prefer to see the code in it’s fullest, there is an example as an
appendix (Graph with Area Gradient) that can assist (although it is for a later example that
uses a gradient in a similar way (don’t worry we’ll get to it in a few pages)).

Here then is a plotted line that is red below 400, green above 620 and black in between.

600
500
400
300
200 -

100

0

T T T T T 1
April Apr0a Apr 18 Apr 22 Apr 29

Line colour varied with gradient

How cool is that?
Enough beating around the bush, how is the magic line produced?

Starting with our simple line graph, there are only two blocks of code to go in. One is CSS in the
<style> area and the second is a tricky little piece of code that deals with gradients.

The full code for this example can be found on github'*® or in the code samples bundled with
this book (line-colour-gradient-graph.html and data.csv). A working example can be found on

bl.ocks.org™".
So, first the CSS.

.line {
fill: none;
stroke: url(#line-gradient);
stroke-width: 2px;

"8http://bl.ocks.org/3970883
http://bl.ocks.org/mbostock
2%https://gist.github.com/d3noob/3e72cafd95e1834f599b
1http://bl.ocks.org/d3noob/3e72cafd95e1834f599b

www. dbooks. or g

http://bl.ocks.org/3970883
http://bl.ocks.org/mbostock
https://gist.github.com/d3noob/3e72cafd95e1834f599b
http://bl.ocks.org/d3noob/3e72cafd95e1834f599b
http://bl.ocks.org/3970883
http://bl.ocks.org/mbostock
https://gist.github.com/d3noob/3e72cafd95e1834f599b
http://bl.ocks.org/d3noob/3e72cafd95e1834f599b
https://www.dbooks.org/

Assorted Tips and Tricks 179

This block can go in the <style> area towards the end.

There’s the fairly standard fill of none and a stroke width of 2 pixels, but the stroke:
url(*line-gradient); is something different.

In this case the stroke (the colour of the line) is being determined at a link within the page which
is set by the anchor #1ine-gradient. We will see shortly that this is in our second block of code,
so the colour is being defined in a separate portion of the script.

And now the JavaScript gradient code;

svg.append("linearGradient")
.attr("id", "line-gradient")
.attr("gradientUnits", "userSpaceOnUse")
Lattr("x1", 0).attr("y1", y(0))
Lattr("x2", 0).attr("y2", y(1000))
.selectAll("stop")
.data([
{offset: "0%", color: "red"},
{offset: "40%", color: "red"},
{offset: "40%", color: "black"},
{offset: "62%", color: "black"},
{offset: "62%", color: "lawngreen"},
{offset: "100%", color: "lawngreen"}
1
.enter().append("stop")
.attr("offset", function(d) { return d.offset; })

.attr("stop-color", function(d) { return d.color; });

There’s our anchor on the second line!

But let’s not get ahead of ourselves. This block should be placed after the x and y domains are
set, but before the line is drawn.

o Seems a bit strange doesn’t it? This block is all about defining the actions of an element,

but the element in this case is a gradient and the gradient acts on the line.

So, our first line adds our linear gradient. Gradients consist of continuously smooth colour
transitions along a vector from one colour to another We can have a linear one or a radial one and
depending on which you select, there are a few options to define. There is some great information
on gradients at http://www.w3.org/TR/SVG/pservers.html'** (more than I ever thought existed).

The second line (.attr("id", "line-gradient")) sets our anchor for the CSS that we saw earlier.

The third fourth and fifth lines define the bounds of the area over which the gradient will
act. Since the coordinates x1, y1, x2, y2 will describe an area. The values for y1 (0) and y2
(1000) are used more for convenience to align with our data (which has a maximum value
around 630 or so). For more information on the gradientUnits attribute I found this page useful
https://developer.mozilla.org/en-US/docs/SVG/Attribute/gradientUnits'**. We’ll come back to

?*http://www.w3.0org/TR/SVG/pservers.html
*https://developer.mozilla.org/en-US/docs/SVG/Attribute/gradientUnits

http://www.w3.org/TR/SVG/pservers.html
https://developer.mozilla.org/en-US/docs/SVG/Attribute/gradientUnits
http://www.w3.org/TR/SVG/pservers.html
https://developer.mozilla.org/en-US/docs/SVG/Attribute/gradientUnits

Assorted Tips and Tricks 180

the coordinates in a moment.

The next block selects all the ‘stop’ elements for the gradients. These stop elements define where
on the range covered by our coordinates the colours start and stop. These have to be defined as
either percentages or numbers (where the numbers are really just percentages in disguise (i.e.
45% =0.45)).

The best way to consider the stop elements is in conjunction with the gradientUnits. The image
following may help.

x2,y2 (0,1000) | green

green

620 | Plack
black

400 red

x1,y1(0,0)' red
Varying colours for varying values make a gradient

In this case our coordinates describe a vertical line from 0 to 1000. Our colours transition from
red (0) to red (400) at which point they change to black (400) and this will continue until it gets to
black (620). Then this changes to green (620) and from there, any value above that will be green.

Now, it might seem a little convoluted to be doubling up on the colours and values, but
the reason is that the gradient functions have a lot more to them than we’re using and
we’ll have a look at the possibilities once the explanation of the code is done.

So after defining the stop elements, we enter and append the elements to the gradient (.enter () .append("stop")
with attributes for offset and colour that we defined in the stop elements area.

Now, that IS cool, but by now, I hope that you have picked that a gradient function really does
mean a gradient, and not just a straight change from one colour to another.

So, let’s try changing the stop element offsets to the following (and making the stroke-width
slightly larger to see more clearly what’s going on);

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 181

.data([
{offset: "0%", color: "red"},
{offset: "30%", color: "red"},
{offset: "45%", color: "black"},
{offset: "55%", color: "black"},
{offset: "60%", color: "lawngreen"},

{offset: "100%", color: "lawngreen"}

D

And here we go...

600 |
500 -
400 -
300
200

100 -

0

ﬁ.pll'il .-‘-‘\[;]I'I 08 .-‘3.|:]rI 15 4“.[3|'I 22 a‘\prl 29
Line with a gradually changing gradient
Ahh... A real gradient.

I have tended to find that I need to have a good think about how I set the offsets and bounds
when doing this sort of thing since it can get quite complicated quite quickly :-)

Assorted Tips and Tricks 182

Applying a colour gradient to an area fill.

The previous example of a varying gradient on a line is neat, but hopefully you’re already
thinking “Hang on, can’t that same thing be applied to an area fill?”.

Damn! You’re catching on.
To do this there’s only a few things we need to change;

First of all the CSS for the line needs to be amended to refer to the area. So this...

.line {
fill: none;
stroke: url(#line-gradient);
stroke-width: 2px;

...gets changed to this...

.area {
fill: url(*#*area-gradient);
stroke-width: Opx;

We’ve defined the styles for the area this time, but instead of the stroke being defined by the
separate script, now it’s the area. While we’ve changed the url name, it’s actually the same piece
of code, with a different id (because it seemed wrong to be talking about an area when the label
said line). We’ve also set the stroke width to zero, because we don’t want any lines around our
filled area.

Now we want to take the block of code that defined our line...

var valueline = d3.svg.line()
.X(function(d) { return x(d.date); })
.y(function(d) { return y(d.close); });

... and we need to replace it with the standard block that defined an area fill.

var area = d3.svg.area()
.x(function(d) { return x(d.date); })
.y@(height)

.y1(function(d) { return y(d.close); });

So we’re not going to be drawing a line at all. Just the area fill.

Next, as | mentioned earlier, we change the id for the l1inearGradient block from "1ine-gradient"

to "area-gradient"

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 183
.attr("id", "area-gradient")

And lastly, we remove the block of code that drew the line and replace it with a block that draws
an area. So change this....

svg.append("path")
.attr("class", "line")
.attr("d", valueline(data));

... to this;

svg.append("path")
.datum(data)
.attr("class", "area"
.attr("d", area);

And then sit back and marvel at your creation;

500
500
400
300
200

100

April Apr 08 Apr 18 Apr 22 Apr 29

Area fill with a gradually changing gradient

The full code for this example can be found on github'** or in the code samples bundled with
this book (area-colour-gradient-graph.html and data.csv). A working example can be found on

bl.ocks.org*.

For a slightly ‘nicer’ looking example, you could check out a variation of one of Mike Bostocks
originals here; http://bl.ocks.org/4433087"°.

2*https://gist.github.com/d3noob/9fcf79b76c2643b98dd7
*>http://bl.ocks.org/d3noob/9fcf79b76¢2643b98dd7
2Shttp://bl.ocks.org/4433087

https://gist.github.com/d3noob/9fcf79b76c2643b98dd7
http://bl.ocks.org/d3noob/9fcf79b76c2643b98dd7
http://bl.ocks.org/4433087
https://gist.github.com/d3noob/9fcf79b76c2643b98dd7
http://bl.ocks.org/d3noob/9fcf79b76c2643b98dd7
http://bl.ocks.org/4433087

Assorted Tips and Tricks 184

Show / hide an element by clicking on another
element

This is a trick that I found I wanted to impliment in order to present a graph with a range of
lines and to then provide the reader with the facility to click on the associated legend to toggle
the visibility of the lines oft and on as required.

The example we’ll follow is our friend from earlier, a slightly modified example of the graph

with two lines.

Show / hide lines on a graph

In this example we will be able to click on either of the two titles at the bottom of the graph
(‘Blue Line’ or ‘Red Line’) and have it toggle the respective line and Y axis.

The code

The code for the example is available online at bl.ocks.org'*” or GitHub'?®. It is also available as
the file ‘show-hide.html’ as a separate download with D3 Tips and Tricks. A copy of most the
files that appear in the book can be downloaded (in a zip file) when you download the book from
Leanpub™’.

There are two main parts to implementing this technique. Firstly we have to label the element (or
elements) that we wish to show / hide and then we have to give the object that will get clicked
on the attribute that allows it to recognise a mouse click and the code that it subsequently uses
to show / hide our labelled element.

Labelling the element that is to be switched on and off is dreadfully easy. It simply involves
including an id attribute to an element that identifies it uniquely.

svg.append("path")
.attr("class", "line")
.attr("id", "blueLine")
.attr("d", valueline(data));

In the example above we have applied the id bluelLine to the path that draws the blue line on
our graph.

The second part is a little trickier. The following is the portion of JavaScript that places our text
label under the graph. The only part of it that is unusual is the .on("click", function() section
of the code.

"http://bl.ocks.org/d3noob/5d621a60e2d 1d02086bf
28https://gist.github.com/d3noob/5d621a60e2d1d02086bf
*https://leanpub.com/D3- Tips-and- Tricks

www. dbooks. or g

http://bl.ocks.org/d3noob/5d621a60e2d1d02086bf
https://gist.github.com/d3noob/5d621a60e2d1d02086bf
https://leanpub.com/D3-Tips-and-Tricks
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/5d621a60e2d1d02086bf
https://gist.github.com/d3noob/5d621a60e2d1d02086bf
https://leanpub.com/D3-Tips-and-Tricks
https://www.dbooks.org/

Assorted Tips and Tricks 185

svg.append("text")

.attr("x", 0)

.attr("y", height + margin.top + 10)

.attr("class", "legend")

.style("fill", "steelblue")

.on("click", function(){
// Determine if current line is visible
var active = bluelLine.active ? false : true,

newOpacity = active ? 0 : 1;

// Hide or show the elements
d3.select("#bluelLine").style("opacity", newOpacity);
d3.select("#blueAxis").style("opacity", newOpacity);
// Update whether or not the elements are active
bluelLine.active = active;

When we click on our ‘Blue Line’ text element the .on("click", function() section executes.

We're using a short-hand version of the i f statement a couple of times here. Firstly we check to
see if the variable blueLine.active is true or false and if it’s true it gets set to false and if it’s
false it gets set to true (not at all confusing).

var active = bluelLine.active ? false : true,
newOpacity = active ? 0 : 1;

Then after toggling this variable we set the value of newOpacity to either 0 or 1 depending on
whether active is false or true (the second short-hand JavaScript if statement).

We can then select our identifiers that we have declared using the id attributes in the earlier
pieces of code and modify their opacity to either @ (off) or 1 (on)

d3.select("#bluelLine").style("opacity", newOpacity);
d3.select("#blueAxis").style("opacity", newOpacity);

Lastly we update our bluelLine.active variable to whatever the active state is so that it can
toggle correctly the next time it is clicked on.

bluelLine.active = active;

Quite a neat piece of code. Kudos to Max Leiserson for providing the example on which it is
largely based in an answer to a question on Stack Overflow'*.

%http://stackoverflow.com/questions/20249215/how-to-display-and-hide-links-and-nodes-when- clicking-on-a-node-in-d3-
javascript

http://stackoverflow.com/questions/20249215/how-to-display-and-hide-links-and-nodes-when-clicking-on-a-node-in-d3-javascript
http://stackoverflow.com/questions/20249215/how-to-display-and-hide-links-and-nodes-when-clicking-on-a-node-in-d3-javascript
http://stackoverflow.com/questions/20249215/how-to-display-and-hide-links-and-nodes-when-clicking-on-a-node-in-d3-javascript

Assorted Tips and Tricks 186

Export an image from a d3.js page as a SVG or bitmap

At some point you will want to take your lovingly crafted D3 graphical masterpiece and put it
in a (close your eyes if you're squeamish) Power Point presentation or Word document or export
it for sharing in some other way.

There could be many reasons for wanting to do this and some may be more complicated than I
will be willing to explore, but for the occasional conversion of images I have found what I regard
as a fairly easy process.

Before we begin our exporting odyssey, let’s cover a little bit of housekeeping and describe the
difference between a vector graphic (in this case specifically Scalable Vector Graphics) and a
bitmap. Please skip ahead if you’re comfortable with the terms.

Bitmaps

A bitmap (or raster) image is one that is composed of lots of discrete individual dots (let’s call
them pixels) which, when joined together (and zoomed out a bit) give the impression of an image.
If we use the example of the force layout example we developed, and look at a screen shot (and
it’s important to remember that this is a screen shot) of the image we see a picture that looks
fairly benign.

A bitmap at a normal zoom level

However, as we enlarge the image by doubling it’s size (x 2) we begin to see some rough edges
appear.

==

- I",;1‘-Lliﬁ Maddy
1 = T e
James
.
Eveisa ¥ . T T

A bitmap at 200%

And if we enlarge it by doubling again (x 4) , it starts to look decidedly rough.

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks

?-f lice \"1I|l -

f Jam

187

N\

A bitmap at 400%

Doubling again (x 8), starts to show the pixels pretty clearly.

-
_."--..JE

A bitmap at 800%

Doubling again for the last time (x 16) and the pixels are plainly evident.

A bitmap at 1600%

Bitmaps can be saved in a wide range of formats depending on users requirements including
compression, colour depth, transparency and a host of other attributes. Typically they can be

identified by the file suffix .jpg, .png or .bmp (and there are an equally large number of other
suffixes).

Assorted Tips and Tricks 188

This will be the type of format that most people will be familiar with for images and their ubiquity
with the advent of digital cameras almost makes it redundant to describe them.

However, there is another type of image and it is even more important to d3.js users.

Vector Graphics (Specifically SVG)

Scalable Vector Graphics (SVG) use a technique of drawing an image that relies more on a
description of an image than the final representation that a user sees. Instead of arranging
individual pixels, an image is created by describing the way the image is created.

For instance, drawing a line would be accomplished by defining two sets of coordinates and
specifying a line of a particular width and colour be drawn between the points.

This might sound a little long winded, and it does create a sense of abstraction, but it is a far more
powerful mechanism for drawing as there is no loss of detail with increasing scale. Changes to
the image can be simply carried out by adjusting the coordinates, colour description, line width
or curve diameter. If this all sounds a little familiar, you have definitely been paying attention,
because this is the heart of the way that d3.js draws images in a browser. It uses a combination
of coordinates, shapes and attributes to create vector images in a web page.

As a demonstration of the difference, here is the same original picture which I have saved as a
SVG image.

\ 1 .;Earah
Lynna Eveie b Alica
‘ [
/ _ James
A MNicky o7 Ay > 'I'\ﬂano '~
" Roger
Carol : B Maddy
; 4
A SVG image at a normal zoom level
Enlarged by doubling it’s size (x 2) everything looks smooth.
‘Jul (<10
Eveie Alice /

) | James
arry . ~Mario ~

N T S K

A SVG at 200%

If we enlarge it by doubling again (x 4) , it still looks good.

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 189

\. Jam

A SVG at 400%

Doubling again (x 8) and we can see that the text James’ is actually composed of a fill colour

and a border.

-\ am

A SVG at 800%

Doubling again for the last time (x 16) everything still retains it’s clear sharp edges.

A Ja

A SVG at 1600%

Let's get exporting!

We’ll use a three stage process for exporting our image (assuming the desired end result is a
bitmap) and usefully, the first stage will result in us having a vector image as well!

The sequence will go as follows:

1. Copy the image from the web page and save it as a SVG file

Assorted Tips and Tricks 190

2. Open the SVG image in a program designed to use vector images and edit it if required.
3. Export that image as a bitmap

Copying the image off the web page

Getting the image out of a web page is made easy by using ‘SVG Crowbar**"’. Thisisa “A Chrome-
specific bookmarklet that extracts SVG nodes and accompanying styles from an HTML document
and downloads them as an SVG file”. What that means is that once you drag the bookmarklet
from the web page to your bookmarks (You need to be using Google Chrome, and I'm told that
about 60% of the people who visit d3noob.org do) you’re ready to go.

The Bookmarklet

« Drag this to your bookmarks bar.

Drag the ‘SVG Crowbar’ Object from the web page to your bookmarks bar

Now when you have a web page open that’s displaying a D3 creation, all you need to do is click
on the SVG Crowbar bookmark and you will be prompted for a location to save a svg image.

Really. It’s that simple.

Open the SVG Image and Edit
Obviously now that you have a SVG image, you need to be able to do something with it. My
preferred software for this is Inkscape'*.

Inkscape is “An Open Source vector graphics editor, with capabilities similar to Illustrator,
CorelDraw, or Xara X, using the W3C standard Scalable Vector Graphics (SVG) file format’.

It really is an extremely capable drawing program and it is capable of a lot more than the job
we're going to use it for, so you may find it has other uses that may be valuable.

Once installed, you can open the saved file directly into Inkscape.

Phttp://nytimes.github.io/svg-crowbar/
*?http://inkscape.org/

www. dbooks. or g

http://nytimes.github.io/svg-crowbar/
http://inkscape.org/
http://nytimes.github.io/svg-crowbar/
http://inkscape.org/
https://www.dbooks.org/

Assorted Tips and Tricks

File Edit Miew Layer Ohject Path Text Filters Extensions Help
DEBEEEG Bl ¢ Db QQQ TaE £H P
B S i | 2 o Jh = | 1B =5 B5 BT | x (5250977 ¥|217.804f W |[54118 5 @
E s 7.|||QD.:||.||+| Lot e e S e e e o e
= Hanry
St '
a
T ’-SEI”)'
£ - /
2 { ablicky
= |
Q,- _ « Johan |
[- T Lynne
] Peter J-'"- k R
- i\ =
@ - \ A | Hj; Carol ‘: ‘
- TCE ~Mano
| - S :
@ - {
Maddy & - —~Tames g Sarah
@ s 2 Ir\‘,l'"——-"".n Frank
I 1
. |]
2y - \
VS Roaer Babiby
e p- -
»] |_ i i 3 %
XEEEN B EER & 2
< |:'rrr_ - .
E::lrlri:uke: :i: |50 C | @ | ooy EI Mo objects selected. Click, Shiﬂ:+clic-¥:: izz:z | 93%

x>

Inkscape with our force diagram

191

While here you can edit the drawing to your hearts delight. I particularly recommend ungrouping
the diagram and removing or adjusting individual elements if required.

Once you have finished editing, you are ready for the final step.

Saving as a bitmap

While still in Inkscape, go to the ‘File’, ‘Export Bitmap...” menu.

Assorted Tips and Tricks

Eile Edit VYiew Layer Object Path Text Filters Extensions Help
| New 'lee 0 @QQ@Q TDEaE EH B »
= Open.. Ctrl+ O
Open Becent v B ET | X 520 l.r.:-ﬂ ¥ 2047?0 W 266-:3 Sl e
b Revert .|.|.|.|.|.|.|.|..|.|.|.|..|.|.|@.
E Save Ctrl+5
B save s.. Shift+ Ctrl+ S % E
Sally
Save a Copy... Shift+Ctrl+Alt+5 !
f alicky
£ Import.. Ctrl+1 (i
E}» Export Bitmap... l} Shift+Ctrl+E T IL g Ly -4
&, Print... Ctrl+P _/ | |
1 / = =
Alicg: fano Carol | :
6 Vacuum Defs ‘? v '] e
@j Document Properties... Shift+ Ctrl+D RY
i I~ 5 _Sarah :
Document Metadata... =AY #
‘é‘% Inkscape Preferences... Shift+ Ctrl+P 7
Input Devices...
¥ Close Cel+ Wl | ’ % ”
i T
& Quit corc [T IS
3
E.:r't:)ke*. :ﬁ D:??S. : % @: {root) IZI Export this document or a selection i :g;:fg Z| 93% :

Inkscape Export Bitmap menu

192

This will open a dialog box where you can select an appropriate resolution and location for your

bitmap and then press the export button.

p
@ Export Bitmap (Shift+Ctrl+E)

Export area

| Drawing ” Selection ’ Custom l
0: 300413 S 637392 [width: 336,980 &
y0: 152832 55;,:1::358.995 £ Height: 215163]

urits | px [x]

Bitmap size
Width: |337 <l pixelsat 9000 |2 dpi
Height: | 215 =] pixels at |90.00 I
Filename
-E:\force.png

|_| Batch export all selected objects

|| Hide all except selected

Inkscape Export Bitmap dialog

There you go.

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 193

It is worth knowing that the default settings here will export the diagram with a transparent
background (using *.png) which will fit in nicely with a wide range of graphical end uses.

Assorted Tips and Tricks 194

Using HTML inputs with d3.js

Part of the attraction of using technologies like d3.js is that it expands the scope of what is
possible in a web page. At the same time, there are many different options for displaying content
on a page and plenty of ways of interacting with it.

Some of the most basic of capabilities has been the use of HTML entities that allow the entry of
data on a page. This can take a range of different forms (pun intended) and the <input> tag is
one of the most basic.

What is an HTML input?

An HTML input is an element in HTML that allows a web page to input data. There are a range of
different input types (with varying degrees of compatibility with browsers) and they are typically
utilised inside a <form> element.

For example the following code allows a web page to place two fields on a web page so that a
user can enter their first and last names in separate boxes;

<form>
First name: <input type="text" name="firstname">

Last name: <input type="text" name="lastname">

</form>

The page would then display the following;

First name:

Last name:

A form input

The range of input types is large and includes;

« text: A simple text field that a user can enter information into.

« radio: Buttons that let a user select only one of a limited number of choices.

« button: A clickable button that can activate JavaScript.

« range: A slider control for setting a number whose exact value is not important.
« number: A field for entering a number or toggling a number up and down.

... and many more. To check out others and get further background, it would be worth while
visiting theMozilla developer'* pages or w3schools.com™**.

While d3.js has the power to control and manipulate a web page to an extreme extent, sometimes
it’s desirable to use a simple process to get a result. The following explanations will demonstrate a
simple use case linking an HTML input with a d3.js element and will go on to provide examples of

*3https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Input
P*http://www.w3schools.com/tags/tag_input.asp

www. dbooks. or g

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Input
http://www.w3schools.com/tags/tag_input.asp
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/Input
http://www.w3schools.com/tags/tag_input.asp
https://www.dbooks.org/

Assorted Tips and Tricks 195

using multiple inputs, affecting multiple elements and using different input types. The examples
are deliberately kept simple. They are intended to demonstrate functionality and to provide a
starting position for you to go forward :-).

Assorted Tips and Tricks 196

Using a range input with d3.js

The first example we will follow will use a range input to adjust the radius of a circle.

radius = 132 =

s

Adjust the radius of a circle

The code

The following is the full code for the example. A live version is available online at bl.ocks.org**’
or GitHub™®. It is also available as the file ‘input-radius.html’ as a separate download with D3
Tips and Tricks. A copy of most the files that appear in the book can be downloaded (in a zip
tile) when you download the book from Leanpub'*’.

<IDOCTYPE html>
<meta charset="utf-8">
<title>Input test (circle)</title>

<p>
<label for="nRadius"
style="display: inline-block; width: 240px; text-align: right">
radius = ..
</label>
<input type="range" min="1" max="150@" id="nRadius">
</p>

<script src="http://d3js.org/d3.v3.min. js"></secript>
{script>

33http://bl.ocks.org/d3noob/10632804
https://gist.github.com/d3noob/10632804
P7https://leanpub.com/D3- Tips-and- Tricks

www. dbooks. or g

http://bl.ocks.org/d3noob/10632804
https://gist.github.com/d3noob/10632804
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/10632804
https://gist.github.com/d3noob/10632804
https://leanpub.com/D3-Tips-and-Tricks
https://www.dbooks.org/

Assorted Tips and Tricks 197

var width = 600;
var height = 300;

var holder = d3.select("body")
.append("svg")
.attr("width", width)
.attr("height", height);

// draw the circle

holder .append("circle")
.attr("cx", 300)
.attr("cy", 150)
.style("fill", "none"
.style("stroke", "blue")
.attr('r", 120);

// when the input range changes update the circle
d3.select("#nRadius").on("input", function() {
update(+this.value);

});

// Initial starting radius of the circle
update(120);

// update the elements
function update(nRadius) {

// adjust the text on the range slider
d3.select("#nRadius-value").text(nRadius);
d3.select("#nRadius").property("value", nRadius);

// update the circle radius
holder.selectAll("circle")
.attr("r", nRadius);

</script>

The explanation

As with the other examples in the book I will not go over some of the simpler lines of code that
are covered in greater detail in earlier sections of the book and will concentrate on those sections
that contain new concepts, code or look like they might need expanding :-).

The first section is the portion that sets out the html range input;

Assorted Tips and Tricks 198

<p>
<label for="nRadius"
style="display: inline-block; width: 240px; text-align: right">
radius = ..
</label>
<input type="range" min="1" max="150" id="nRadius">
</p>

The entire block is enclosed in a paragraph (<p>) tag so that is appears on a single line. It can be
broken down into the label that occurs before the input slider which is given the idnRadius-value
and the input proper.

The for attribute of the label tag equals to the id attribute of the input element to bind them
together. This allows us to update the text later as the slider is moved.

The input tag can include four attributes that specify restrictions on the operation of the slider;

« max: specifies the maximum value allowed

« min: specifies the minimum value allowed

« step: specifies the number intervals as you move the slider
« value: Specifies the default value

The ids supplied for both the label and the input are important since they provide the reference
for our d3.js script.

The first portion of our JavaScript is fairly routine if you've been following along with the rest

of the book.

var width = 600;
300;

var height

var holder = d3.select("body")
.append("svg")
.attr("width", width)
.attr("height"”, height);

// draw the circle

holder .append("circle")
.attr("cx", 300)
Lattr("cy", 150)
.style("fill", "none"
.style("stroke", "blue")
.attr("r", 120);

We append an SVG element to the body of our page and then we append a circle with some
particular styling to the SVG element.

Then things start to get more interesting...

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 199

d3.select("#nRadius").on("input", function() {
update(+this.value);

});

We select our input using the id that we had declared earlier in the html (nRadius). Then we use
the . on operator which adds what is called an ‘event listener**® to the element so that when there
is a change in the element (in this case an adjustment of the slider of the input) a function is called
(function()) that in turn calls the update function with the value from the input (+this.value).
We haven’t seen the update function yet, but never fear, it’s coming.

We also call the update function with a specific value in the next line;
update(120);

This might seem slightly redundant, but unless the function gets a value, the text associated with
the range input doesn’t get a reading and remains on ‘... until the slider is moved.

Lastly we have our update function;

function update(nRadius) {

// adjust the text on the range slider
d3.select("#nRadius-value").text(nRadius);

d3.select("#nRadius").property("value", nRadius);

// update the circle radius
holder.selectAll("circle")
.attr("r", nRadius);

The first part of the function selects the label associated with our input (with the id,
nRadius-value) and applies the vaule that has been passed into the function (nRadius). The next
line selects the input itself and applies the value to it (this would be the equivalent of having
value="<number here>" as a property in the html).

Lastly, we select the circle element and apply the new radius value based on our input value
nRadius (.attr("r", nRadius)).

And there we have it, a fully adjustable radius for our circle controlled with an HTML input.

8https://github.com/mbostock/d3/wiki/Selections#on

https://github.com/mbostock/d3/wiki/Selections#on
https://github.com/mbostock/d3/wiki/Selections#on

Assorted Tips and Tricks 200

radins = 150

Maximum radius for our circle

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 201

Using more than one input

In this example we will use two separate inputs (range type) to adjust the height and width of a
rectangle.

height = 203

width = 337

Dual inputs

This is not too much of a stretch from the previous single input example with the radius of a
circle, but it may be useful to reinforce the concept and illustrate something slightly different.

The code

The following is the full code for the example. A live version is available online at bl.ocks.org"*’
or GitHub'*. It is also available as the file ‘input-double.html’ as a separate download with D3
Tips and Tricks. A copy of most the files that appear in the book can be downloaded (in a zip
tile) when you download the book from Leanpub'*'.

<IDOCTYPE html>
<meta charset="utf-8">
<title>Double Input Test</title>

<p>
<label for="nHeight"
style="display: inline-block; width: 240px; text-align: right">
height = ..
</label>
<input type="range" min="1" max="280" id="nHeight">
</p>

**http://bl.ocks.org/d3noob/10633192
*“https://gist.github.com/d3noob/10633192
“Ihttps://leanpub.com/D3- Tips-and- Tricks

http://bl.ocks.org/d3noob/10633192
https://gist.github.com/d3noob/10633192
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/10633192
https://gist.github.com/d3noob/10633192
https://leanpub.com/D3-Tips-and-Tricks

Assorted Tips and Tricks

<p>
<label for="nWidth"

style="display: inline-block; width: 240px; text-align: right">

width = ..
</label>
<input type="range" min="1" max="400" id="nWidth">
</p>

<script src="http://d3js.org/d3.v3.min. js"></script>
<script>

var width = 600;
var height = 300;

var holder = d3.select("body")
.append("svg")
.attr("width", width)
.attr("height", height);

// draw a rectangle

holder .append("rect")
Lattr("x", 300)
.attr("y", 150)
.style("fill", "none"
.style("stroke", "blue")
.attr("height", 150)
.attr("width", 200);

// read a change in the height input

d3.select("#nHeight").on("input", function() {
updateHeight(+this.value);

1)

// read a change in the width input

d3.select("#nWidth").on("input", function() {
updateWidth(+this.value);

1)

// update the values
updateHeight(150);

updateWidth(100);

// Update the height attributes
function updateHeight(nHeight) {

// adjust the text on the range slider

202

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks

d3.select("#nHeight-value").text(nHeight);
d3.select("#nHeight").property("value", nHeight);

// update the rectangle height

holder.selectAll("rect")
.attr("y", 150-(nHeight/2))
.attr("height", nHeight);

// Update the width attributes
function updateWidth(nWidth) {

// adjust the text on the range slider
d3.select("#nWidth-value").text(nWidth);
d3.select("#nWidth").property("value", nWidth);

// update the rectangle width
holder.selectAll("rect")

.attr("x", 300-(nWidth/2))
.attr("width", nWidth);

</script>

The explanation

203

For the sake of brevity, this explanation will simply concentrate on the differences between the

previous single input example and this one.

The declarations for the inputs in the HTML at the start of the code are simply duplicates of each

other in terms of function;

<p>
<label for="nHeight"

style="display: inline-block; width: 240px; text-align:

height = ..
</label>
<input type="range" min="1" max="280" id="nHeight">
</p>

<p>
<label for="nWidth"

style="display: inline-block; width: 240px; text-align:

width = ..
</label>
<input type="range" min="1" max="400" id="nWidth">
</p>

right">

right">

Assorted Tips and Tricks 204

The only significant difference is the declaration of the id’s for each input and it’s respective

label.

The JavaScript selection of the inputs is more duplication;

d3.select("#nHeight").on("input", function() {
updateHeight(+this.value);

});

d3.select("#nWidth").on("input", function() {
updateWidth(+this.value);
1)

Again the only substantive difference is the use of the appropriate id values.

The updating of the width and height is done via two different functions;

function updateHeight(nHeight) {

// adjust the text on the range slider
d3.select("#nHeight-value").text(nHeight);
d3.select("#nHeight").property("value", nHeight);

// update the rectangle height

holder.selectAll("rect")
.attr("y", 150-(nHeight/2))
.attr("height", nHeight);

// Update the width attributes
function updateWidth(nWidth) {

// adjust the text on the range slider
d3.select("#nWidth-value").text(nWidth);
d3.select("#nWidth").property("value", nWidth);

// update the rectangle width

holder.selectAll("rect")
.attr("x", 300-(nWidth/2))
.attr("width", nWidth);

The rectangle is selected using a common rect designator, so multiple rectangles could be
controlled. But each function controls only a specific attribute (height or width).

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 205

Rotate text with an input

This example is really just a derivative of the adjustment of a single attribute of an element.

I happen to think it’s just a little bit ‘neater’ because it includes text, but in reality, it’s just another
attribute that can be adjusted.

Here we let our range input adjust the rotation of a piece of text.

angle = 307

o'
QOO
>

Text rotation with an input

The explanation

We’ll dispense with the full code listing since it’s just a regurgitation of the adjusting of the
radius of the circle example, but the code for the example is available online at bl.ocks.org'** or
GitHub'**. It is also available as the file ‘input-text-rotate.html’ as a separate download with D3
Tips and Tricks. A copy of most the files that appear in the book can be downloaded (in a zip
tile) when you download the book from Leanpub'*“.

The only, thing of even a slight difference (other than some naming conventions) is the initial
drawing of the text...

holder .append("text")
style("fill", "black")
.style("font-size", "56px")
.attr("dy", ".35em")
.attr("text-anchor", "middle")
.attr("transform", "translate(300,150) rotate(Q)")
.text("d3noob.org");

.. and the update function;

“?http://bl.ocks.org/d3noob/10633421
“3https://gist.github.com/d3noob/10633421
““https://leanpub.com/D3- Tips-and- Tricks

http://bl.ocks.org/d3noob/10633421
https://gist.github.com/d3noob/10633421
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/10633421
https://gist.github.com/d3noob/10633421
https://leanpub.com/D3-Tips-and-Tricks

Assorted Tips and Tricks 206

function update(nAngle) {

// adjust the text on the range slider
d3.select("#nAngle-value").text(nAngle);
d3.select("#nAngle").property("value", nAngle);

// rotate the text
holder.select("text")
.attr("transform", "translate(300,150) rotate("+nAngle+")");

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 207

Use a number input with d3.js

There are obviously different inputs that can be selected. The following example still rotates our
text, but uses a number type of input to do it;

<p>
<label for="nValue"
style="display: inline-block; width: 240px; text-align: right">
angle =
</label>
<input type="number" min="0" max="360" step="5" value="0Q" id="nValue">
</p>

we have set the step value to speed things up a bit when rotating, but it’s completely optional.

The input itself can be adjusted up or down using a mouse click or have a number typed into the
input box.

04
K2
@6

'O{g}

Text rotation with a number input

This type of input is slightly different from the range type since it isn’t fully supported under
Firefox and as a result when I was testing it the arrow keys for going up and down weren’t
present.

The full code for the example is available online at bl.ocks.org"** or GitHub'**. It is also available
as the file ‘input-number-text.html’ as a separate download with D3 Tips and Tricks. A copy of
most the files that appear in the book can be downloaded (in a zip file) when you download the
book from Leanpub'*’.

*>http://bl.ocks.org/d3noob/10633704
"“Shttps://gist.github.com/d3noob/10633704
“Thttps://leanpub.com/D3- Tips-and- Tricks

http://bl.ocks.org/d3noob/10633704
https://gist.github.com/d3noob/10633704
https://leanpub.com/D3-Tips-and-Tricks
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/10633704
https://gist.github.com/d3noob/10633704
https://leanpub.com/D3-Tips-and-Tricks

Assorted Tips and Tricks 208

Change more than one element with an input

The final example looking at using HTML inputs with d3.js incorporates a single input acting or
two different elements. This might seem self evident, but if you're as unfamiliar with HTML as
[am (it’s embarrassing I know, but what can you do?) it may be of assistance.

The end result is to produce a single slider as a range input that rotates two separate text objects
in different directions simultaneously.

angle = 334

Dual text rotation

The code

The following is the full code for the example. A live version is available online at bl.ocks.org*®
or GitHub'*. Tt is also available as the file ‘input-text-rotate-2.html’ as a separate download with
D3 Tips and Tricks. A copy of most the files that appear in the book can be downloaded (in a zip
tile) when you download the book from Leanpub'*.

<IDOCTYPE html>
<meta charset="utf-8">
<title>Input test</title>

<p>
<label for="nAngle"
style="display: inline-block; width: 240px; text-align: right">
angle = ..
</label>
<input type="range" min="0" max="360" id="nAngle">
</p>

<script src="http://d3js.org/d3.v3.min. js"></script>
<script>

$http://bl.ocks.org/d3noob/10633856
“https://gist.github.com/d3noob/10633856
1%https://leanpub.com/D3- Tips-and- Tricks

www. dbooks. or g

http://bl.ocks.org/d3noob/10633856
https://gist.github.com/d3noob/10633856
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/10633856
https://gist.github.com/d3noob/10633856
https://leanpub.com/D3-Tips-and-Tricks
https://www.dbooks.org/

Assorted Tips and Tricks

var width = 600;
300;

var height

var holder = d3.select("body")
.append("svg")
.attr("width", width)
.attr("height", height);

// draw d3.js text
holder .append("text")
.attr("class", "d3js")
.style("fill", "black")
.style("font-size", "56px")
.attr("dy", ".35em")
.attr("text-anchor", "middle")
.attr("transform", "translate(300,55) rotate(0)")
.text("d3.js");

// draw d3noob.org text
holder .append("text")
.attr("class", "d3noob")
.style("fill", "black")
.style("font-size", "56px")
.attr("dy", ".35em")
.attr("text-anchor", "middle")
.attr("transform", "translate(300,130) rotate(Q)")
.text("d3noob.org");

// when the input range changes update the rectangle
d3.select("#nAngle").on("input", function() {
update(+this.value);

});

// Initial starting height of the rectangle
update(0);

// update the elements
function update(nAngle) {

// adjust the range text
d3.select("#nAngle-value").text(nAngle);
d3.select("#nAngle").property("value", nAngle);

// adjust d3.js text
holder.select("text.d3js")

209

Assorted Tips and Tricks 210

.attr("transform", "translate(300,55) rotate("+nAngle+")");

// adjust d3noob.org text
holder.select("text.d3noob")
.attr("transform", "translate(300,130) rotate("+(360 - nAngle)+")");

</script>

The explanation

The explanation for this example differes from the others in the way that the d3.js elements (the
two pieces of text) are initially appended and then updated.

When they are initially drawn...

holder .append("text")
.attr("class", "d3js")
style("fill", "black")
.style("font-size", "56px")
.attr("dy", ".35em")
.attr("text-anchor", "middle")
.attr("transform", "translate(300,55) rotate(Q)")
text("d3.js");

holder.append("text")
.attr("class", "d3noob")
.style("fill", "black")
.style("font-size", "56px")
Lattr("dy", ".35em")
.attr("text-anchor", "middle")
.attr("transform", "translate(300,130) rotate(Q)")
.text("d3noob.org");

... both elements are declared with a class attribute that serves as a reference for the future
updating. Here, the text ‘d3.js’ is given a class name of d3js and the text ‘d3noob.org’ is given
a class name of d3noob.

Then when we call the update function each of the two text elements is adjusted seperately by
selecting each based on the class name that was applied in the initial setup;

www. dbooks.

org

https://www.dbooks.org/

Assorted Tips and Tricks 211

function update(nAngle) {

// adjust the range text
d3.select("#nAngle-value").text(nAngle);
d3.select("#nAngle").property("value", nAngle);

// adjust d3.js text
holder.select("text.d3js")
.attr("transform", "translate(300,55) rotate("+nAngle+")");

// adjust d3noob.org text

holder.select("text.d3noob")
.attr("transform", "translate(300,130) rotate("+(360 - nAngle)+")");

So the ‘d3.js’ text is selected using text.d3js and ‘d3noob.org’ is selected using text.d3noob.
That’s a pretty neat trick and a good lesson for applying specific transformations to specific

objects.

Assorted Tips and Tricks 212

Add an HTML table to your graph

So graphs and graphics are D3’s bread and butter you’d think. Hmm...
Well yes and no.

Yes D3 has extraordinary powers for presenting and manipulating images in a web page. But if
you’ve read through the entirety of the d3.js main site (haven’t we all) you will recall that D3
actually stands for Data Driven Documents. It’s not necessarily about the pretty pictures and the
swirling cascade of colour. It’s about generating something in a web browser based on data.

This transitions nicely into consideration of adding a table of information that can accompany
your graph (it could just as easily (or easier) stand alone, but for the sake of continuity, we’ll use
the graph).

What we’ll do is add the data that we’ve used to make our graph under the graph itself. To make
sure that it’s all nicely aligned, we’ll place it in a table.

It should end up looking a little like this (and this has been cropped slightly at the bottom to
avoid expanding the page with rows of numbers / dates).

600
500
400
300
200

100

0

T T T T T 1
April Apr 08 Apr 14 Apr 22 Apr 29

date close
1-May-12 58.13
30-Rpr-12 53.98

27-Apr-12 &

2
26-Apr-12 89.7
25-Lpr-12 43
24-Zpr-12 130.28
23-Lpr-12 166.7

Basic graph with a table of data

The code was drawn from an example provided by Shawn Allen** on Google Groups'*”. In fact,
the post itself is an excellent one if you are considering creating a table straight from a csv file.

http://jsfiddle.net/7WQjr/
Zhttp://stackoverflow.com/questions/9268645/d3- creating-a-table-linked-to-a-csv-file

www. dbooks. or g

http://jsfiddle.net/7WQjr/
http://stackoverflow.com/questions/9268645/d3-creating-a-table-linked-to-a-csv-file
http://jsfiddle.net/7WQjr/
http://stackoverflow.com/questions/9268645/d3-creating-a-table-linked-to-a-csv-file
https://www.dbooks.org/

Assorted Tips and Tricks 213

HTML Tables

I’'m walking a fine line here since I have a remarkably small amount of knowledge on
HTML tables. So I’ll try to provide a brief overview as I understand it and as I see it
represented in the code below, but for a far fuller explanation, take a look at some great
work by Peter Cook here*** or let Google be your friend.

Tables are made up of rows, columns and data (that goes in each cell). All you need to do to
successfully place a table on a web page is to lay out the rows and columns in a logical sequence
using the appropriate HTML tags and you’re away.

For example here’s the total HTML code for a web page to display a simple table;

<IDOCTYPE html>

<body>
<table border="1">
<tr>
<th>Header 1</th>
<th>Header 2</th>
</tr>
<tr>
<td>row 1, cell 1</td>
<td>row 1, cell 2</td>
</tr>
<tr>
<td>row 2, cell 1</td>
<td>row 2, cell 2</td>
</tr>
</table>
</body>

This will result in a table that looks a little like this in a web browser;

Header 1 Header 2
row 1, cell 1 row 1, cell 2
row 2, cell 1 row 2, cell 2

The entire table itself is enclosed in <table> tags. Each row is enclosed in <tr> tags. Each row has
two items which equate to the two columns. Each piece of data for each cell is enclosed in a <td>
tag except for the first row, which is a header and therefore has a special tag <th> that denotes
it as a header making it bold and centred. For the sake of ease of viewing we have told the table
to place a border around each cell and we do this in the first <table> tag with the border="1"
statement (although in this book view it may be absent).

3http://prcweb.co.uk/lab/selection/

http://prcweb.co.uk/lab/selection/
http://prcweb.co.uk/lab/selection/

Assorted Tips and Tricks 214

The good news is that you don’t need to fully understand all this, but it will help with
the explanation of what we’re doing in the code below.

There are three main things you need to do to the basic line graph to get your table to display.

1. Add some CSS
2. Add some table building d3.js code
3. Make a small but cunning change...

There is a copy of the code and the data file for this example at github*** and in the code samples
bundled with this book (simple-graph-plus-table.html and data.csv). A live example can be found

on bl.ocks.org'*.

First the CSS

This just helps the table with formatting and making sure the individual cells are spaced
appropriately;

td, th {
padding: 1px 4px;
This sets a padding of 1 px around each cell and 4 px between each column.

Feel free to play with the figures to suit your application, I've just set them there because
I thought they looked appropriate.

I’ve placed this portion of CSS at the end of our <style> section.

Now the d3.js code

Oki doki... Hopefully you have a loose understanding of the html layout of a table as explained
above, but if not you can always go with the ‘it just works’ approach.

Here’s what we should add into our simple graph example;

1*https://gist.github.com/d3noob/473f0cf661962008cf99
3http://bl.ocks.org/d3noob/473f0cf66196a008cf99

www. dbooks. or g

https://gist.github.com/d3noob/473f0cf66196a008cf99
http://bl.ocks.org/d3noob/473f0cf66196a008cf99
https://gist.github.com/d3noob/473f0cf66196a008cf99
http://bl.ocks.org/d3noob/473f0cf66196a008cf99
https://www.dbooks.org/

Assorted Tips and Tricks

function tabulate(data, columns) {
var table = d3.select("body").append("table")
.attr("style", "margin-left: 250px"),
thead = table.append("thead"),
tbody = table.append("tbody");

// append the header row

thead.append("tr")
.selectAll("th")
.data(columns)
.enter()
.append("th")

.text(function(column) { return column; });

// create a row for each object in the data
var rows = tbody.selectAll("tr")
.data(data)
.enter()
.append("tr");

// create a cell in each row for each column
var cells = rows.selectAll("td")
.data(function(row) {
return columns.map(function(column) {

return {column: column, value: row[column]};

});
1)

.enter()

.append("td")

.attr("style", "font-family: Courier")
.html(function(d) { return d.value; });

return table;

// render the table
var peopleTable = tabulate(data, ["date", "close"]);

215

And we should take care to add it into the code at the end of the portion where we’ve finished
drawing the graph, but before the enclosing curly and regular brackets that complete the portion
of the graph that has loaded our data.csv file. This is because we want our new piece of code
to have access to that data and if we place it after those brackets it won’t know what data to

display.
So, right about here;

Assorted Tips and Tricks 216

// Add the Y Axis
svg.append("g")
.attr("class", "y axis")
.call(yAxis);
// <= Add the code right here!
1)

Now, we’re going to break with tradition a bit here and examine what our current state of code
produces. Then we’re going to explain something different. THEN we’re going to come back and
explain the code...

Check it out...

B00
500+
400
3004
200+
100+
D T K T T T T 1
April Apr 08 Apr 15 Apr 22 Apr 29
date close
Tue May 01 2012 00:00:00 GMT+1200 (Mew Zealand Standard Time) 58.13
Mon Apr 30 2012 00:00:00 GMI+1200 (Mew Zezland Standard Time) 53.98
Fri Rpr 27 2012 00:00:00 GMT+1200 (MNew Zealand Standard Time) &7
Thu Apr 26 2012 00:00:00 GMI+1200 (Mew Zealand Standard Time) 89.7
Wed Rpr 25 2012 00:00:00 GMT+1200 (Mew Zealand Standard Time) 899
Tue Apr 24 2012 00:00:00 GMI+1200 (Mew Zezland Standard Time) 130.28

Woah! What happened to the date?

Not quite as we has originally envisaged?

Indeed, the date has taken it upon itself to expand from a relatively modest format of day-
abbreviated month-two digit year (30-Apr-12) to a behemoth of a thing (Mon Apr 30 2012 00:00:00
GMT+1200 (New Zealand Standard Time)) that we certainly didn’t intend, let alone have in our
data.csv file.

What’s going on here?

Well, To be perfectly frank, I'm not entirely sure. But this is what I'm going to propose. The
JavaScript code recognises and deals with the ‘date’ variable as being a date/time. So that when
we proceed to display the variable on the screen, the browser says, “this is a date / time formatted
piece of data, therefore it must be formatted in the following way”. I had a play with a few ideas to
correct it via an HTML formatting instruction, but drew a blank and then I stumbled on another
way to solve the problem. Hence the third small but cunning change to our original code.

www. dbooks.

org

https://www.dbooks.org/

Assorted Tips and Tricks 217

A small but cunning change...

So... Our table has decided to develop a mind of it’s own and format the date time as it sees fit.
Well fair enough (I for one welcome our web time formatting overlords). So how do we convince
it to display the values in their natural form?

Well, one solution that we could employ is to not tell the JavaScript that our date value in the
data is actually time. In that condition, the code should treat the values as an ordinary string and
print it directly as it appears.

The good news is that this is pretty easy to do. Where originally we had a block of data that
consisted of date and close, all at different times, we will now add a new variable called date1
which will be the variable that we convert to a time and draw the graph with. Leaving date to
be the text string that will be printed in our table.

How to do it?

It’s actually remarkably easy. Just change the following lines in the basic line graph code to
amend date to date1 and you’re good to go.

.x(function(d) { return x(d.datel); })
d.datel = parseDate(d.date);

x.domain(d3.extent(data, function(d) { return d.datel; }));

The middle line is probably the most significant, since this is the point where we declare date1,
assign a time format and bring a new column of data into being. The others simply refer to the
data.

So we’ll make those small changes and now we can return to explain the d3.js code...

Explaining the d3.js code (reloaded).

So back we come to explain what is going on in the d3.js code that we presented a page or two
back. Obviously it’s a fairly large chunk, and we can first break it down into two chunks. The
first chunk we’ll look at is in fact the last part of the code that look like this;

// render the table
var peopleTable = tabulate(data, ["date", "close"]);

This portion simply calls the tabulate function using the date and close columns of our data
array. Simply add or remove whichever columns you want to appear in your table (so long as
they are in your data.csv file) and they will be in your table. The tabulate function makes up all
of the other part of the added code. So we come to the first block of the tabulate function;

Assorted Tips and Tricks 218

function tabulate(data, columns) {
var table = d3.select("body").append("table")
.attr("style", "margin-left: 250px"),
thead = table.append("thead"),
tbody = table.append("tbody");

Here the tabulate function is declared (function tabulate) and the variables that the function
will be using are specified ((data, columns)). In our case data is of course our data array and
columns refers to ["date", "close"].

The next line appends the table to the body of the web page (so it will occur just under the graph
in this case). The I do something just slightly sneaky. The line .attr("style", "margin-left:
250px"), is actually not the code that was used to produce the table with the huge date/ time
formatted info on. I deliberately used .attr("style", "margin-left: @px"), for the huge date
/ time table since it’s job is to indent the table by a specified amount from the left hand side of
the page. And since the huge date time values would have pushed the table severely to the right,
I cheated and used 0 instead of 250. For the purposes of the final example where the date / time
values are formatted as expected, 250 is a good value.

The next two lines declare the functions we will use to add in the header cells (since they use
the <th> tags for content) and the cells for the main body of the table (they use <td>).

The next block of code adds in the header row;

thead.append("tr")
.selectAll1("th")
.data(columns)
.enter()
.append("th")
.text(function(column) { return column; });

Here we first append a row tag (<tr>), then we gather all the columns that we have in our function
(remember they were ["date", "close"] and add them to our row using header tags (<th>).

The next block of code assigns the row variable to return (append) a row tag (<tr>) whenever it’s
called ...

var rows = tbody.selectAll("tr")
.data(data)
.enter()
.append("tr");

... and it is in the following block of code...

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 219

var cells = rows.selectAll("td")
.data(function(row) {
return columns.map(function(column) {
return {column: column, value: row[column]};
1)
)

.enter()

.append("td")

.attr("style", "font-family: Courier")
.html(function(d) { return d.value; });

... where we select each row that we've added (var cells = rows.selectAl1("td")). Then the
following five lines works out from the intersection of the row and column which piece of data
we're looking at for each cell.

Then the last four lines take that piece of data (d.value) and wrap it in table data tags (<td>) and
place it in the correct cell as HTML.

It’s a very neat piece of code and I struggle to get my head around it, but that doesn’t mean that
I can’t appreciate the cleverness of it :-).

Wrap up

So there we have it. Hopefully enough to explain what is going on and perhaps also enough to
convince ourselves that D3 is indeed more than just pretty pictures. It’s all about the Data Driven
Documents.

There is a copy of the code and the data file for this example at github**® and in the code samples
bundled with this book (simple-graph-plus-table.html and data.csv). A live example can be found
on bl.ocks.org'”’

1%https://gist.github.com/d3noob/473f0cf66196a008cf99
7http://bl.ocks.org/d3noob/473f0cf66196a008cf99

https://gist.github.com/d3noob/473f0cf66196a008cf99
http://bl.ocks.org/d3noob/473f0cf66196a008cf99
https://gist.github.com/d3noob/473f0cf66196a008cf99
http://bl.ocks.org/d3noob/473f0cf66196a008cf99

Assorted Tips and Tricks 220

More table madness: sorting, prettifying and adding
columns

When we last left our tables they were happily producing a faithful list of the data points that
we had in our graph.

But what if we wanted more?

From the original contributors that bought you tables (Shawn Allen**® on Google Groups'*) and
some neat additions from Christophe Viau'’ comes extra coolness that I didn’t include in the
previous example :-).

There is a copy of the code and the data file for this example at github** and in the code samples
bundled with this book (simple-graph-plus-table-plus-addins.html and data2.csv). A live example

can be found on bl.ocks.org'®*.

Add another column of information:

Firstly, lets add another column of data to our table. To do this we want to have something extra
in our csv file to use, so let’s resurrect our old friend data2.csv that we used for the graph with
two lines previously. All we have to do to make this a reality is change the reference that loads
data.csv to data2.csv here;

d3.csv("data2.csv", function(error, data) {

P This makes the assumption that you still have the data2.csv file in place. If not, rush

away and get it from the download of code samples from Leanpub.

From here (and as promised in the previous chapter), it’s just a matter of adding in the extra
column you want (in this case it’s the open column) like so;

var peopleTable = tabulate(data, ["date", "close", "open"]);

3http://jsfiddle.net/7WQjr/

1%http://stackoverflow.com/questions/9268645/d3- creating-a-table-linked-to-a-csv-file
%http://christopheviau.com/d3_tutorial/
Thttps://gist.github.com/d3noob/5d47df5374d210b6{651
1%?http://bl.ocks.org/d3noob/5d47df5374d210b6f651

www. dbooks. or g

http://jsfiddle.net/7WQjr/
http://stackoverflow.com/questions/9268645/d3-creating-a-table-linked-to-a-csv-file
http://christopheviau.com/d3_tutorial/
https://gist.github.com/d3noob/5d47df5374d210b6f651
http://bl.ocks.org/d3noob/5d47df5374d210b6f651
http://jsfiddle.net/7WQjr/
http://stackoverflow.com/questions/9268645/d3-creating-a-table-linked-to-a-csv-file
http://christopheviau.com/d3_tutorial/
https://gist.github.com/d3noob/5d47df5374d210b6f651
http://bl.ocks.org/d3noob/5d47df5374d210b6f651
https://www.dbooks.org/

Assorted Tips and Tricks 221

200
100
D T T T T T T 1
April Apr0g Apr1a Apr 22 Apr 29
date close open
1-May-12 55.13 34.12
30-Apr-12 53.98 45.5%8
27-Apr-12 &7 &7.89
26-Apr-12 B£89.7 78.54
25-Apr-12 899 89.23
24-1 2

2
130.28 89.23

Table with extra column

Yes, if you're wondering, I have cheated slightly and changed the table indent to make
it look slightly prettier.

So can we go further?
You know we can...

In the section where we get our data and format it, lets add another column to our array in the
form of a difference between the close value and the open value (and we’ll call it di ff).

d3.csv("data2.csv", function(error, data) {
data. forEach(function(d) {

d.datel = parseDate(d.date);
d.close = +d.close;

d.open = +d.open; // <= added this for tidy house keeping
d.diff = Math.round((d.close - d.open) * 100) / 100;
1)

(the Math.round function is to make sure we get a reasonable figure to display, otherwise it tends
to get carried away with decimal places)

So now we add in our new column (di ff) to be tabulated;

var peopleTable = tabulate(data, ["date", "close", "open", "diff"]);

A

Table with extra extra column

And yes, I changed the table indent again. I am a serial offender and will continue to
change it to suit.

Assorted Tips and Tricks 222

Sorting on a column

So now with our four columns of awesome data, it turns out that we’re really interested in the
ones that have the highest close values. So we can sort on the close column by adding the
following lines directly after the line where we declare the peopleTable function (which I will
include in the code snipped below for reference).

var peopleTable = tabulate(data, ["date", "close", "open", "diff"]);

peopleTable.selectAll("tbody tr")
.sort(function(a, b) {
return d3.descending(a.close, b.close);

IDF

Which works magnificently;

A

Table sorted descending on ‘close’

Prettifying (actually just capitalising the header for each
column)

Just a little snippet that capitalises the headers for each row to make them look slightly more
authoritative.

Add the following lines of code directly below the block that you just added for sorting the table;

peopleTable.selectAll("thead th")
.text(function(column) {
return column.charAt(Q).toUpperCase() + column.substr(1);

1)

This is quite a tidy little piece of script. You can see it selecting the headers (selectAll("thead
th")), then the first character in each header (column.charAt(®)), changing it to upper-case
(.toUpperCase()) and adding it back to the rest of the string (+ column.substr(1)).

With the ultimate result...

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 223

200
100

0

T T T T T 1
April Apr 08 Apr 15 Apr 22 Apr 29

Date Close Open Diff

5-Apr-12 636.23 350.45 285.78
S5-Apr-12 633.68 410.23 223.45
3-Apr-12 629.32 460.34 16E.92
10-Apr-12 628.44 310.45 317.99
11-Apr-12 626.2 212.87 413.53

Table with capitalised first characters in headers

Add borders

Sure our table looks nice and neatly arranged, but would a border look better?
Well, here’s one way to do it;

All we need to do is add a border style to our table by adding in this line here;

function tabulate(data, columns) {
var table = d3.select("body").append("table")
.attr("style", "margin-left: 200px") // <= Remove the comma
.style("border", "2px black solid"), // <= Add this line in
thead = table.append("thead"),
tbody = table.append("tbody");

(don’t forget to move the comma from the end of the margin-1left line)

A

Table with a border

And the result is a tidy black border.

OK, so what about the individual cells?
No problem.

If we remember back to our CSS that we added in, we’ll just tell each cell that we want a 1 pixel
border buy amending the CSS for our table to this;

td, th {

padding: 1px 4px;
border: 1px black solid;

So now each cell has a slightly more subtle border like this;

Assorted Tips and Tricks 224

200
100
D T T T T T T 1
April Apr0a8 Apr 158 Apr 22 Apr 29
| Date || Close || Open || Diff
[o-2pr-12 |[636.23][350.45] 285.72
[5-zpr-12 |[633.62][410.23][223.45

[3-2pr-12 |[629.32][260.34] 165, 9
[10-zpr-12][628.44][310.45|[317. 23
[11-2pr-12][626.2 |[212.87] 413.53

s}

L
o || m

Table with cells with individual borders

Yikes! Not quite as subtle as I would have expected. I suppose it’s another example of the code
actually doing what you asked it to do. No problem, border-collapse to the rescue. Add the
following line into here;

function tabulate(data, columns) {
var table = d3.select("body").append("table")
.attr("style", "margin-left: 200px")
.style("border-collapse", "collapse") // <= Add this line in.
.style("border", "2px black solid"),
thead = table.append("thead"),
tbody = table.append("tbody");

How does that look?

A

Table with cells with collapsed borders

Ahh.... Much more refined.

The border-collapse style tells the table to overlap each cell’s borders, rather than treat
them as discrete entities. So in this case it looks a bit better.

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 225

Adding web links to d3.js objects

The idea with this tip / trick is to be able to add a ‘link’ to an object so that when you click on
it, it takes you to a web page that we will pre-define.

We are going to generate a simple rectangle with some text and look at linking from the rectangle
and the text separately and with some fanciness at the end :-).

The end result will be something that looks a little like this;

A

Objects with links

(Notice the little pointing finger at the bottom that would indicate that there actually is a link
there.)

The code that we will use as a starting point is this simple example that draws a green rectangle
and overlays some text on it;

<IDOCTYPE html>
<meta charset="utf-8">

<body>

<I-- load the d3.js library -->
<script src="http://d3js.org/d3.v3.min. js"></script>

<script>

var width = 449;
var height = 249;
var word = "gongoozler";

var holder = d3.select("body")
.append("svg")
.attr("width", width)
.attr("height", height);

// draw a rectangle

holder .append("rect")
.attr("x", 100)
Lattr("y", 50)
.attr("height", 100)
.attr("width", 200)
.style("fill", "lightgreen")
.attr("rx", 10)
.attr("ry", 10);

Assorted Tips and Tricks 226

// draw text on the screen
holder .append("text")
.attr("x", 200)
Lattr("y", 100)
.style("fill", "black")
.style("font-size", "20px")

.attr("dy", ".35em")
.attr("text-anchor", "middle")
.text(word);

</script>

</body>

There’s nothing too spectacular about the file. There’s a little bit of styling and tweaking of
attributes, but nothing too extreme. The only slightly ‘odd’ part would be defining the word
that is printed out as a variable (var word = "gongoozler";) and then adding it as a variable
(.text(word);) instead of just putting the word directly in there (which we could do like this
.text("gongoozler");). We're going to do this deliberately to explore additional options for
making our links a little more dynamic.

It's all about the ‘a’ and the ‘xlink’

The <a> tag in an HTML file defines a hyperlink'®. Items bounded by an <a> tag will become a
link to another web address. So what we will do is create an <a> tag and then append our d3.js,
svg object to it.

Of course as well as including a link, we need to tell it where to go. We do this by setting the
xlink:href attribute for our tag to point to a specific page. Xlink is short for XML Linking
Language and it is used to create hyperlinks in XML documents. In our case we will be defining
the link that we will want our user to go to.

Adding in the links

The following is the adjusted code for our rectangle that adds in the <a> tag with the x1ink:href
attribute.

1http://www.w3schools.com/html/html_links.asp

www. dbooks. or g

http://www.w3schools.com/html/html_links.asp
http://www.w3schools.com/html/html_links.asp
https://www.dbooks.org/

Assorted Tips and Tricks 227

holder.append("a")
.attr("xlink:href", "http://en.wikipedia.org")
.append("rect")
.attr("x", 100)
Lattr("y", 50)
.attr("height", 100)
.attr("width", 200)
.style("fill", "lightgreen")
.attr('rx", 10)
.attr("ry", 10);

It’s important to append the link before the object (otherwise it won’t work) but other than that,
it’s a pretty simple job.

The only fly in the ointment is that while we now have a rectangle that links to Wikipedia, if we
hover our mouse over the text, we lose our link (since we haven’t told the text to link anywhere).

We can remedy that by doing exactly the same thing with the text element;

holder.append("a")
.attr("xlink:href", "http://en.wikipedia.org/wiki/"+word)
.append("text")
.attr("x", 200)
.attr("y", 100)
.style("fill", "black")
.style("font-size", "20px")

.attr("dy", ".35em")
.attr("text-anchor", "middle")
.text(word);

The only slight difference here is that we have used the address for Wikipedia as our base and
added the variable for our word to the end of it so that the resulting web address takes us to
Wikipedia and the specific page for the word ‘gongoozler’. Hopefully this will indicate that if we
had a set of variables in an array we would make our links a little more dynamic.

Making the mouse pointer ignore an object

So in theory we're done, but in practice this has been a slightly crude method for adding what
should be a single link to two objects when we should be able to accomplish it by defining the
link once.

What we could do as an alternative to linking both the rectangle and the text using two separate
links is to make the mouse ignore the text and have it rely solely on the rectangle. We can do this
using the pointer-events style when drawing our text. By setting it to none we are instructing
our mouse to ignore any potential interaction with the text when it hovers over it and instead
the pointer will register the link on the rectangle below it.

The code for the text therefore becomes...

Assorted Tips and Tricks 228

holder .append("text")
.attr("x", 200)
.attr("y", 100)
.style("fill", "black")
.style("font-size", "20px")
.attr("dy", ".35em")
.attr("text-anchor", "middle")
.style("pointer-events", "none"
.text(word);

And as you can see from the image below, the pointer will happily ignore the text while reading
the link from the rectangle.

Objects with links

The complete code for this example is available in the appendices and a live version can be
found on bl.ocks.org'** and GitHub'**. The code is also in the downloadable files available from
Leanpub with the book in a file called ‘xlink-rect&pointerevents.html’.

1*http://bl.ocks.org/d3noob/8150631
1*https://gist.github.com/d3noob/8150631

www. dbooks. or g

http://bl.ocks.org/d3noob/8150631
https://gist.github.com/d3noob/8150631
http://bl.ocks.org/d3noob/8150631
https://gist.github.com/d3noob/8150631
https://www.dbooks.org/

Assorted Tips and Tricks 229

Understanding JavaScript Object Notation (JSON)

One of the most useful things you might want to learn when understanding how to present your
data with D3 is how to structure your data so that it is easy to use.

As explained earlier in the book, there are several different types of data that can be requested
by D3 including text, Extensible Markup Language (xml), HyperText Markup Language (html),
Comma Separated Values (csv), Tab Separated Values (tsv) and JavaScript Object Notation (json).

Comma separated values and tab separated values are fairly well understood forms of data. They
are expressed as rows and columns of information that are separated using a known character.
While these forms of data are simple to understand, it is not easy to incorporate a hierarchy
structure to the data, and when you try, it isn’t natural and makes managing the data difficult.

JavaScript Object Notation (JSON) presents a different mechanism for storing data. A light
weight description could read “JSON is a text-based open standard designed to present human-
readable data. It is derived from the JavaScript scripting language, but it is language and platform
independent”

Unfortunately, when 1 first started using JSON, I struggled with the concept of how it was
structured, in spite of some fine descriptions on the web (start with http://www.json.org/**® in
my humble opinion). So the following is how I came to think of and understand JSON.

Fair Warning: This advice is no substitute for the correct explanation of the topic of data

A structures that I'm sure you could receive from a reputable educational site or institution.
It’s just the way I like to think of it :-). It’s also just the way that I started to understand
JSON. There is plenty to learn and understand once you grasp the basics. So this isn’t a
complete guide. Just the beginnings.

In the following steps we’ll go through a process that (hopefully) demonstrates that we can
transform identifiers that would represent the closing price for a stock of 58.3 on 2013-03-14 into
more traditional x,y coordinates.

I think of data as having an identifier and a value.
identifier: value

If a point on a graph is located at the x,y coordinates 150,25 then the identifier “x’ has a value
150.

"x": 150
If the x axis was a time-line, the true value for ‘x’ could be “2013-03-14".

"x": "2013-03-14"

1$%http://www.json.org/

http://www.json.org/
http://www.json.org/

Assorted Tips and Tricks 230

This example might look similar to those seen by users of d3.js, since if we're using date / time
format we can let D3 sort out the messy parts like what coordinates to provide for the screen.

And there’s no reason why we couldn’t give the ‘x” identifier a more human readable label such
as “date”. So our data would look like;

"date": "2013-03-14"

This is only one part of our original x,y = 150,25 data set. The same way that the x value
represented a position on the x axis that was really a date, the y value represents a position
on the y axis that is really another number. It only gets converted to 25 when we need to plot
a position on a graph at 150,25. If the ‘y’ component represents the closing price of a stock we
could take the same principles used to transform...

"x": 150
... into ...

"date": "2013-03-14"

... to change
"y": 25
...into ...
"close": 58.3

This might sound slightly confusing, so try to think of it this way. We want to plot a point on a
graph at 150,25, but the data that this position is derived from is really “2013-03-14”, 58.3. D3 can
look after all the scaling and determination of the range so that the point gets plotted at 150,25
and our originating data can now be represented as;

"date": "2013-03-14", "close": 58.3

This represents two separate pieces of data. Each of which has an identifier (“date” or “close”)
and a value (“2013-03-14” and 58.3)

If we wanted to have a series of these data points that represented several days of closing prices,
we would store them as an array of identifiers and values similar to this;

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 231

"date": "2013-03-14", close: 58.13 },
"date": "2013-03-15", close: 53.98 },
"date": "2013-03-16", close: 67.00 },
"date": "2013-03-17", close: 89.70 },
"date": "2013-03-18", close: 99.00 }

L e S e W e S

Each of the individual elements of the array is enclosed in curly brackets and separated by
commas.

[am making the assumption that you are familiar with the concept of what an ‘array’
is. If this is an unfamiliar word, in the context of data, then I strongly recommend that
you do some Goggling to build up some familiarity with the principle.

Now that we have an array, we can apply the same rules to it as we did the the item that had a
single value. We can give it an identifier all of its own. In this case we will call it “data”. Now we
can use our identifier: value analogy to use “data” as the identifier and the array as the value.

{ "data": [
{ "date": "2013-03-14", close: 58.13 },
{ "date": "2013-03-15", close: 53.98 },
{ "date": "2013-03-16", close: 67.00 },
{ "date": "2013-03-17", close: 89.70 },
{ "date": "2013-03-18", close: 99.00 }
1}

The array has been enclosed in square brackets to designate it as an array and the entire identifier:
value sequence has been encapsulated with curly braces (much the same way that the subset
“date”, “close” values were enclosed with curly braces.

If we try to convey the same principle in a more graphical format, we could show our initial
identifier and value for the x component like so;

"' Identifier l Value
‘“date” “2013-03-14" |

Single identifier and value

The we can add our additional component for the y value;

‘/ Identifier l Value [Identifier ‘ Value ‘
“date” “2013-03-14" 1 “close” 58.3

Single identifier and value

We can then add several of these combinations together in an array;

Assorted Tips and Tricks

Identifier
Hdatel!

Value

“2013-03-14" |

Identifier
“close”

Value
58.3

Identifier
Fldate!!

Value

“2013-03-15" |

Identifier
“close”

Value
53.98

Hdate”

Identifier 1

Value

“2013-03-16"

Identifier
“close”

Value
67.00

Fldate“

Identifier 1

Value

Identifier
“close”

Value
89.70

Identifier
Hdatel!

“2013-03-17" |

Value

| “2013-03-18” |

Identifier
“close”

Value
99.00"

Single identifier and value

Then the array becomes a value for another identifier “data”;

Identifier
113 da ta!!

Value

Identifier
Hdatel!

Value

Identifier
“close”

Value
58.3

“2013-03-14" |

Identifier 1
“2013-03-15" |

Fldate“

Value

Identifier
“close”

Value
53.98

Identifier
Hdatel!

“2013-03-16"

Value

Identifier
“close”

Value
67.00

Identifier
Fldate!!

“2013-03-17"

Value

Identifier
“close”

Value
89.70

Identifier
Hdatel!

Value

“2013-03-18"

Identifier
“close”

Value
99.00"

Single identifier and value

232

More complex JSON files will have multiple levels of identifiers and values arranged in complex
hierarchies which can be difficult to interpret. However, laying out the data in a logical way in
a text file is an excellent way to start to make sense of the data.

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 233

Using the Yahoo Query Language (YQL) to get data.

One of the things that I find frustrating is difficulty getting data to play with. Often I will find
myself thinking “It would be neat to see if this technique works” but then I spend a couple of
hours looking for data that will be appropriate.

Another difficulty is that access to dynamic data is also problematic. D3.js really shines when
displaying information that is changing and interactive. Finding data that is changing and which
you can interact with is not easy.

Then, when you do come across a web site that has an interesting data set, accessing that data
becomes programmatically difficult because of restrictions in accessing information that crosses
domains. A solution to this problem (and there are a few) is to have a data set that is in a domain
that permits Cross-Origin Resource Sharing'®” (CORS). These are not as common as you might
hope as it presents security concerns that need to be addressed.

One resource that I have come across is particularly useful for solving the problems outlined
above is the Yahoo! Developer Network'®® which operates a service where you can write a query
in an SQL type fashion that will return data in json (or others) format. This query can be formed
into an http request so that you can simply paste a generated URL directly into your browsers
URL bar and it will return the requested data. Better than that, because it supports CORS (and
because d3.js can manage a CORS request without breaking a sweat) all you need to do is put
the URL into you code (as a d3. json call for example) and you will be up and running.

In the ‘Examples’ chapter there will be several examples that use YQL queries to retrieve data as
is is a great resource.

YQL by example

[will use an example of looking for current weather information for Wellington New Zealand
from the Weather Underground'®® (wunderground).

In this example, we're interested in retrieving a JSON ‘blob’ that contains data on the weather
conditions (temperature, wind speed / direction, humidity etc) for a specific location.

Start at the page for the console (http://developer.yahoo.com/yql/console/*’®). On the left there is
a range of data ‘topics that you can choose from. We will want to access one of the community
tables, so select ‘Show Community Tables’ and scroll down the list until you find ‘wunderground’
and ‘wunderground.currentobservation’

*"http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
1%®http://developer.yahoo.com/yql/
*http://www.wunderground.com/
7%http://developer.yahoo.com/yql/console/

http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://developer.yahoo.com/yql/
http://www.wunderground.com/
http://developer.yahoo.com/yql/console/
http://en.wikipedia.org/wiki/Cross-origin_resource_sharing
http://developer.yahoo.com/yql/
http://www.wunderground.com/
http://developer.yahoo.com/yql/console/

Assorted Tips and Tricks 234

YAHOO!

DEVELOPER NETWORK

g Console Editor

DATATABLES (1064)

Show Community Tables @

r wiufoo

= ‘wunderground
wunderground.alerts
wunderground.currentobservation
wunderground forecast
wunderground geolookup

Select Community Tables and wunderground.currentobservation

This will bring up a query in the console that is looking for the current weather from San
Francisco International airport.

select * from wunderground.currentobservation
where location='SFQO";

XML | JSON Callbac

Callback #| Diagnostics Debug

Query for weather from San Francisco

For our example we want to be a bit more specific, so we replace the ‘SFO’ ‘location’ with
‘Wellington, New Zealand’.

If you then click on the “Test’ button the query will run and results will be presented in the box
below it;

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 235

Formatted View Tree View View - wunderground._currentobservation
:')
"station_id": "NZWN",
"observation_time": “Last Updated on March 16, 7:38 AM NZDT",

"observation_time_rfc822": “Sat, 15 Mar 2014 18:38:88 GMT",
"observation_epoch™: "1394985268",

"local_time™: "March 16, 7:45 AM NZDT",

"local_time rfcB822": "Sat, 15 Mar 2814 18:45:52 GMT",
"local_epoch™: "13949@9152",

"weather": "Clear"™,
"temperature_string": "78 F (21 C)",
"temp_f": "7e",

"temp_c": "21",

"relative_humidity™: "78%",
"wind_string": "From the NE at 14 MPH ",
"wind_dir": "NE",

"wind_degrees": "sa",
"wind_mph": "14",
"wind_gust_mph": null,

JSON weather from San Francisco

If that looks like the results you were expecting, fantastic!

The next gem from YQL is the REST'"* query that is automatically generated at the bottom of
the page;

THE REST QUERY How do | use this?

http://query yahooapis_com/1/public/ygl ?g=select%20*%20from%20wunderground. curren’

REST Query

If you select this query and past it in your URL bar, you will have the JSON data returned into
your browser.

At this point it might seem a bit confusing, and if you’re unfamiliar with how JSON based data
sets are structured it will DEFINITELY be confusing (You will need to do some research to get up
to speed there). My advice is to first understand a bit about JSON and then examine the output
from the REST query in the developer console on your browser (this is a fairly long topic in itself,
so I will not cover it here sorry). Additionally check out the ‘Examples’ chapter for real world
usage.

If you are comfortable with understanding how the data can be encoded, it is then just a matter
of including the REST query in your call when selecting data using d3. json and you will be
away.

Please check out the examples I will include in the ‘Examples’ chapter for a deeper look at the
use of the data with d3.js (This will also help with understanding the JSON structure).

" http://en.wikipedia.org/wiki/Representational_state_transfer

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer

Assorted Tips and Tricks 236

Using Plunker for development and hosting your D3
creations.

Recently Mike Bostock recommended ‘Plunker’ (http://plnkr.co/*’?) as a tool for saving work
online for collaboration and sharing. Although I had a quick look, I didn’t quite ‘get it’ and
although it looked like something that I should be interested in, I (foolishly) moved on to other
things.

Quite frankly I should have persevered.
Plunker is awesome.
So what can it do for you?

Well, in short, this gives you a place to put your graphs on the web without the hassle of needing
a web server as well as allowing others to view and collaborate! There are some limitations to
hosting graphs in this environment, but there’s no denying that for ease of use and visibility to
the outside world, it’s outstanding!

Time for an example. I'll try to go through the process of implementing the simple graph example
on Plunker.

So it’s as simple as going to http://plnkr.co/edit/*"

Plunker. BN

& & Signin =

FMEW. . 1 < !DOCTYPE html:> a | .o

1 2+ <html>
index_htmi
| ndex it [-

\ RMATION - <head lang="en">
<meta charset="utf-8">

<titlexCustom Plunker</title:

4
Description: :
[
7 < /head>
8
g
8
1

<body><,/body>
Tags:

</ html>

Comms-zeparsted izt

[¥] private plunk

Plunker editing page

What you’re seeing here is an area where you can place your entire HTML code. So let’s replace
the 11 lines of the place holder code with the simple graph example (just copy and paste it in
there over the top of the current 11 lines);

Now, there are two important things we have to do before it will work.

1. We need to tell he script where to find d3.js
2. We need to make our data accessible

Helping the script find d3.js is nice and easy. Just replace this line in your plunk;

7?http://plnkr.co/
http://plnkr.co/edit/

www. dbooks. or g

http://plnkr.co/
http://plnkr.co/edit/
http://plnkr.co/
http://plnkr.co/edit/
https://www.dbooks.org/

Assorted Tips and Tricks 237
<script type="text/javascript" src="d3/d3.v3.js"></script>

...with this line...

<script src="http://d3js.org/d3.v3.min. js"></script>

That will allow your plunk to use the version of d3.js that is hosted on d3js.org (it uses the
minimised version (which is why it has the ‘min’ in it), but never fear, it’s still d3, just distilled
to enhance the flavour :-)).

Making our data available is only slightly more difficult.

In experimenting with Plunker, I found that there appears to be something ‘odd’ about accessing
tab separated values (in the data.tsv file), however, D3 to the rescue! We can simply use Comma
Separated Values (csv) instead.

We will host our data.csv file on plunker as well and there is built in functionality to let us do it.

Plunker... R - asgin-
v FILES I__1 <!00CTYPE html> A @
. imeta charset="utf-8"> I
set the S5/ [now]

Create a new file

In the top left hand corner, beside the ‘FILES’ note, there is a ‘“+NEW... section. Clicking on this
will allow you to create another file that will exist with your plunk for its use, so let’s do that.

This will open a dialogue box that will ask you to name your new file.

A

Name your file

Enter the name data.csv.

Now another file has appeared under the ‘Files’ heading called data.csv. Click on it.

A

The empty data.csv file

This now shows us a blank file called data.csv, so now open up your data.csv file in whatever
editor you’re using (I don’t think a spreadsheet program is going to be a good idea since I doubt
that it will maintain the information in a textual form as we’re wanting it to do. So it’s Geany

for me). Copy the contents of your local data.csv file and paste it into the new plunker data.csv
file.

Assorted Tips and Tricks 238

So now we have our data in there we need to tell our JavaScript where it is. So go back to the
‘index.html’ file (which is our simple graph code) and edit the line which finds the data.tsv file
from this

d3.tsv("data/data.tsv", function(error, data) {
... to this ...
d3.csv("data.csv", function(error, data) {

Because we're using relative addressing, and plunker stores the files for the graphing script and
the data side by side, we just removed the portion of the address that told our original code to
look in the ‘data’ directory and told it to look in the current directory. And that should be that!

Now if you look on the right hand side of the screen, there is a little eye icon. If you click on it,
it opens up a preview window of your file in action and viola!
E

Preview your work in real-time

500

mm

400

e_‘..

300

Q)

200

100

T T T T T 1
April Apr 08 Apr 15 Apr 22 Apr 29

Preview your graph

If the graph doesn’t appear, go through the steps outlined above and just check that the edits
are made correctly. Unfortunately I haven’t found a nice mechanism for troubleshooting inside
Plunker yet (not like using F12 on Chrome).

But wait! There’s more!

If you now click on the ‘Save’ button at the top of the screen, you will get some new button
options.

One of them is the orange one for showing off your work.

{ Plunker..... 4Fork = ﬁ BNew ~ [EOWM 2~ | & Sign in -
FILES i 21 «/style> - -
¥ FILES HNEW... o d-‘> Show off yeur werk, b &
= <body
data.csy
s d 23 o
24 «!-- load the d3.js library --» = |

Show off your work

www. dbooks. or g

https://www.dbooks.org/

Assorted Tips and Tricks 239

If you click on this, it will present you with several different options.

| =
Share link
S | http://pinkr co/edit/QSCLGBERf2gFgrCqq7Vin
Share preview
® | http:/fembed pinkr co/QSCkGER2qFgrCqq7Vn

Embed

src="http-/embed plnkr.co/QSCkGER2gFarCag7Vin
5 :

der="0" g = N

o Tweet |0 J* Share < 0

Preview your graph

The first one is a link that will give others the option to collaborate on the script.
The second is a link that will allow others to preview the work; http://embed.plnkr.co/QSCkG8Rf2qFgrCqq7Vin"’

The last will allow you to embed your graph in a separate web page somewhere. Which I've
tested with blogger and seems to work really well! (see image below).

Testing Plunker iframe insert

This is a test of inserting a Plunker iframe into a blogger post.

Source code - [=

800
500 -

400 -

m

300+

200 -

100+

]

T T T T T
April Apr 08 Apr1s Apr 22 Apr 29 ok

Plunker iframe inserted in a blog post

7*http://embed.plnkr.co/QSCkG8Rf2qFgrCqq7Vfn

http://embed.plnkr.co/QSCkG8Rf2qFgrCqq7Vfn
http://embed.plnkr.co/QSCkG8Rf2qFgrCqq7Vfn

Assorted Tips and Tricks 240

So, 'm impressed, Nice work by Plunker and it’s creator Geoff Goodman.

www. dbooks. or g

https://www.dbooks.org/

Bar Charts

A bar chart is a visual representation using either horizontal or vertical bars to show comparisons
between discrete categories. There are a number of variations of bar charts including stacked,
grouped, horizontal and vertical.

There is a wealth of examples of bar charts on the web, but I would recommend a visit to the
D3.js gallery'”® maintained by Christophe Viau as a starting point to get some ideas.

We will work through a simple vertical bar chart that uses a value on the y axis and date values
on the x axis.

The end result will look like this;

201301
201302
201303
2013-04
201304
201306
2013-07
2013-08
2013-09
2013-10
2013-11
201312
201401
201402

Bar chart

The data

The data for this example will be sourced from an external csv file named bar-data.csv. It
consists of a column of dates in year-month format and it’s contents are as follows;

date,value
2013-01,583
2013-02,165
2013-03,269
2013-04,344
2013-05,376
2013-06,410
2013-07,421
2013-08, 405
2013-09, 376

">http://christopheviau.com/d3list/gallery. html#visualizationType=bar

http://christopheviau.com/d3list/gallery.html#visualizationType=bar
http://christopheviau.com/d3list/gallery.html#visualizationType=bar

Bar Charts

2013-10, 359
2013-11,392
2013-12,433
2014-01,455
2014-02,478

The code

The full code listing for the example we are going to work through is as follows;

<IDOCTYPE html>
<meta charset="utf-8">

<head>
<style>

.axis {

font: 10px sans-serif;

.axis path,

.axis line {
fill: none;
stroke: #000;
shape-rendering: crispEdges;

</style>
</head>
<body>
<script src="http://d3js.org/d3.v3.min. js"></script>
<script>
var margin = {top: 20, right: 20, bottom: 70, left: 40},
width = 600 - margin.left - margin.right,

height = 300 - margin.top - margin.bottom;

// Parse the date / time
var parseDate = d3.time.format("%Y-%m").parse;

var x = d3.scale.ordinal().rangeRoundBands([0, width], .05);

242

www. dbooks. or g

https://www.dbooks.org/

Bar Charts 243

var y = d3.scale.linear().range([height, 0]);

var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom")
.tickFormat(d3.time. format("%Y-%m"));

var yAxis = d3.svg.axis()
.scale(y)
.orient("left")
.ticks(10);

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform",

"translate(" + margin.left + + margin.top + ")");

non
/

d3.csv("bar-data.csv", function(error, data) {

data. forEach(function(d) ({
d.date = parseDate(d.date);
d.value = +d.value;

});

x.domain(data.map(function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.value; })]);

svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.call(xAxis)
.selectAll("text")
.style("text-anchor", "end")
.attr("dx", "-.8em")
.attr("dy", "-.55em")
.attr("transform", "rotate(-99)");

svg.append("g")
.attr("class", "y axis")
.call(yAxis)
.append("text")
.attr("transform", "rotate(-90)")
attr("y", 6)

Bar Charts 244

.attr("dy", ".7iem")
.style("text-anchor", "end")
.text("Value ($)");

svg.selectAll("bar")
.data(data)
.enter().append("rect")
.style("fill", "steelblue")
.attr("x", function(d) { return x(d.date); })
.attr("width", x.rangeBand())
.attr("y", function(d) { return y(d.value); })
.attr("height", function(d) { return height - y(d.value); });

1)
</script>

</body>

The full code for this example can be found on github'’®, in the appendices of this book
or in the code samples bundled with this book"” (bar.html and bar-data.csv). A working

example can be found on bl.ocks.org'”®.

The bar chart explained

In the course of describing the operation of the file I will gloss over the aspects of the structure
of an HTML file which have already been described at the start of the book. Likewise, aspects of
the JavaScript functions that have already been covered will only be briefly explained.

The start of the file deals with setting up the document’s head and body, loading the d3.js script
and setting up the css in the <style> section.

The css section sets styling for the axes. It sizes the font to be used and make sure the lines are
formatted appropriately.

Shttps://gist.github.com/d3noob/8952219
""https://leanpub.com/D3- Tips-and- Tricks
"®http://bl.ocks.org/d3noob/8952219

www. dbooks. or g

https://gist.github.com/d3noob/8952219
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/8952219
https://gist.github.com/d3noob/8952219
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/8952219
https://www.dbooks.org/

Bar Charts 245

.axis {

font: 10px sans-serif;

.axis path,

.axis line {
fill: none;
stroke: #000;
shape-rendering: crispEdges;

Then our JavaScript section starts and the first thing that happens is that we set the size of the
area that we’re going to use for the chart and the margins;

var margin = {top: 20, right: 20, bottom: 70, left: 40},
width = 600 - margin.left - margin.right,
height = 300 - margin.top - margin.bottom;

The next section of our code includes some of the functions that will be called from the main
body of the code.

We have a familiar parseDate function with a slight twist. Since our source data for the date is
made up of only the year and month, these are the only two portions of the date that need to be
recognised;

var parseDate = d3.time. format("%Y-%m").parse;
The next section declares the function to determine positioning in the x domain.
var x = d3.scale.ordinal().rangeRoundBands([0, width], .05);

The ordinal scale is used to describe a range of discrete values. In our case they are a set of
monthly values. The rangeRoundBands operator provides the magic that arranges our bars in a
graceful way across the x axis. In our example we use it to set the range that our bars will cover
(in this case from 0 to the width of the graph) and the amount of padding between the bars (in
this case we have selected .05 which equates to approximately (depending on the number of
pixels available) 5% of the bar width.

The function to set the scaling in the y domain is the same as most of our other graph examples;
var y = d3.scale.linear().range([height, 0]);

The declarations for our two axes are relatively simple, with the only exception being to force
the format of the labels for the x axis into a ‘year-month’ format.

Bar Charts 246

var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom")
.tickFormat(d3.time. format("%Y-%m"));

var yAxis = d3.svg.axis()
.scale(y)
.orient("left")
.ticks(10);

The next block of code selects the body on the web page and appends an svg object to it of the
size that we have set up with our width, height and margin’s.

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform",
"translate(" + margin.left + "," + margin.top + ")");

It also adds a g element that provides a reference point for adding our axes.

Then we begin the main body of our JavaScript. We load our csv file and then loop through it
making sure that the dates and numerical values are recognised correctly;

d3.csv("bar-data.csv", function(error, data) {
data. forEach(function(d) ({

d.date = parseDate(d.date);

d.value = +d.value;

),

We then then work through our x and y data and ensure that it is scaled to the domains we are
working in;

x.domain(data.map(function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.value; })]);

Following that we append our x axis;

www. dbooks. or g

https://www.dbooks.org/

Bar Charts 247

svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.call(xAxis)
.selectAll("text")
.style("text-anchor", "end")
.attr("dx", "-.8em")
.attr("dy", "-.55em")
.attr("transform", "rotate(-90)");

This is placed in the correct position .attr("transform", "translate(@," + height + ")")

and the text is positioned (using dx and dy) and rotated (.attr("transform", "rotate(-90)"
);) so that it is aligned vertically.

Then we append our y axis in a similar way and append a label (. text("value ($)"););

svg.append("g")

.attr("class", "y axis")
.call(yAxis)

.append("text")
.attr("transform", "rotate(-90)")
.attr("y", 6)
.attr("dy", ".Tiem")
.style("text-anchor", "end")
.text("Value ($)");

Lastly we add the bars to our chart;

svg.selectAll("bar")
.data(data)
.enter () .append("rect")
.style("fill", "steelblue")
.attr("x", function(d) { return x(d.date); })
.attr("width", x.rangeBand())
.attr("y", function(d) { return y(d.value); })
.attr("height", function(d) { return height - y(d.value); });

This block of code creates the bars (selectAll("bar")) and associates each of them with a data
set (.data(data)).

We then append a rectangle (.append("rect")) with values for x/y position and height/width as
configured in our earlier code.

The end result is our pretty looking bar chart;

248

0 L0

o102

ZL-eElkoZ

LL-ELDZ

aL-ekos

BO-ELOZ

202102

AOFELDZ

an-eLos

SO-ELDZ

ro-ELOZ

EQ-ELDZ

cnELns

LOErDE
(g) anjey
T T T T T T T T T
(=] (=] (=] (=] (=]
T§EREEREES

Bar Charts

Bar chart

www. dbooks. org

https://www.dbooks.org/

Tree Diagrams

What is a Tree Diagram?

The “Tree layout'’”” is not a distinct type of diagram per se. Instead, it’s representative of D3’s

family of hierarchical layouts.

It’s designed to produce a ‘node-link’ diagram that lays out the connection between nodes in a
method that displays the relationship of one node to another in a parent-child fashion.

For example, the following diagram shows a root node (the starting position) labelled “Top Node’
which has two children (Bob: Child of Top Node and Sally: Child of Top Node). Subsequently,
Bob:Child of Top Node has two dependant nodes (children) ‘Son of Bob” and ‘Daughter of Bob’.

A

Tree layout diagram

The clear advantage to this style of diagram is that describing it in text is difficult, but
representing it graphically makes the relationships easy to determine.

The data required to produce this type of layout needs to describe the relationships, but this
is not necessarily an onerous task. For example, the following is the data (in JSON form) for
the diagram above and it shows the minimum information required to form the correct layout
hierarchy.

"name": "Top Node",
"children": [

{
"name": "Bob: Child of Top Node",
"parent": "Top Node",
"children": |
{
"name": "Son of Bob",
"parent": "Bob: Child of Top Node"
1
{
"name": "Daughter of Bob",
"parent": "Bob: Child of Top Node"
}
]
},

"https://github.com/mbostock/d3/wiki/Tree-Layout

https://github.com/mbostock/d3/wiki/Tree-Layout
https://github.com/mbostock/d3/wiki/Tree-Layout

Tree Diagrams 250

"name": "Sally: Child of Top Node",
"parent": "Top Node"

It shows each node as having a name that identifies it on the tree and, where appropriate, the
children it has (as an array) and its parent.

data that is organised so nicely. As we go through use examples for this type of diagram
we will look at options for importing ‘flat’ data and converting it into a hierarchical
form.

o The data shown above is arranged as a hierarchy and it is not always possible to source

There is a wealth of examples of tree diagrams on the web, but I would recommend a visit to the
D3.js gallery'®® maintained by Christophe Viau as a starting point to get some ideas.

In this chapter we’re going to look at a very simple piece of code to generate a tree diagram before
looking at different ways to adapt it. Including rotating it to be vertical, adding some dynamic
styling to the nodes, importing from a flat file and from an external source. Finally we’ll look at
a more complex example that is more commonly used on the web that allows a user to expand
and collapse nodes interactively.

*%http://christopheviau.com/d3list/gallery.html#visualizationType=tree

www. dbooks. or g

http://christopheviau.com/d3list/gallery.html#visualizationType=tree
http://christopheviau.com/d3list/gallery.html#visualizationType=tree
https://www.dbooks.org/

Tree Diagrams 251

A simple Tree Diagram explained

We are going to work through a simple example of the code that draws a tree diagram, This is
more for the understanding of the process rather than because it is a good example of code for
drawing a tree diagram. It is a very limited example that lacks any real interactivity which is one
of the strengths of d3.js graphics. However, we will outline the operation of an interactive version
towards the end of the chapter once we have explored some possible configuration options that
we might want to make.

The graphic that we are going to generate will look like this...

A

Simple tree layout diagram

And the full code for it looks like this;
<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Collapsible Tree Example</title>
<style>
.node circle {
fill: #fff;
stroke: steelblue;
stroke-width: 3px;
.node text { font: 12px sans-serif; }
.link {
fill: none;
stroke: #ccc;
stroke-width: 2px;
</style>
</head>

<body>

<I-- load the d3.js library -->

Tree Diagrams 252

<script src="http://d3js.org/d3.v3.min. js"></script>

<script>

var treeData = |

{
"name": "Top Level",
"parent": "null",
"children": [
{
"name": "Level 2: A",
"parent": "Top Level",
"children": [
{
"name": "Son of A",
"parent": "Level 2: A"
},
{
"name": "Daughter of A",
"parent": "Level 2: A"
}
]
H
"name": "Level 2: B",
"parent": "Top Level"
}
]
}
1;
/) REEKAKKAKKAARK Generate the tree diagram A KKK A KK KKK

var margin = {top: 20, right: 120, bottom: 20, left: 120},
width = 960 - margin.right - margin.left,
height = 500 - margin.top - margin.bottom;

var i = 0;

var tree = d3.layout.tree()
.size([height, width]);

var diagonal = d3.svg.diagonal()
.projection(function(d) { return [d.y, d.x]; });

var svg = d3.select("body").append("svg")
.attr("width", width + margin.right + margin.left)

www. dbooks. or g

https://www.dbooks.org/

Tree Diagrams 253

.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

root = treeData[0Q];
update(root);
function update(source) {

// Compute the new tree layout.
var nodes = tree.nodes(root).reverse(),

links = tree.links(nodes);

// Normalize for fixed-depth.
nodes. forEach(function(d) { d.y = d.depth * 180; });

// Declare the nodes&€|
var node = svg.selectAll("g.node")
.data(nodes, function(d) { return d.id || (d.id = ++i); });

// Enter the nodes.

var nodeEnter = node.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) {

return "translate(" + d.y + "," +d.x + ")"; });

nodeEnter .append("circle")
.attr("r", 10)
style("fill", "#fff");

nodeEnter .append("text")
.attr("x", function(d) {
return d.children || d._children ? -13 : 13; })

.attr("dy", ".35em")
.attr("text-anchor", function(d) {
return d.children || d._children ? "end" : "start"; })

.text(function(d) { return d.name; })
.style("fill-opacity", 1);

// Declare the linksa€]
var link = svg.selectAll("path.link")
.data(links, function(d) { return d.target.id; });

// Enter the links.
link.enter().insert("path", "g")

Tree Diagrams 254

.attr("class", "link")
.attr("d", diagonal);

</script>

</body>
</html>

The full code for this example can be found on github*®*, in the appendices of this book
or in the code samples bundled with this book (simple-tree-diagram.html). A working

example can be found on bl.ocks.org'®.

In the course of describing the operation of the file I will gloss over the aspects of the structure
of an HTML file which have already been described at the start of the book. Likewise, aspects of
the JavaScript functions that have already been covered will only be briefly explained.

The start of the file deals with setting up the document’s head and body loading the d3.js script
and setting up the css in the <style> section.

The css section sets styling for the circle that represents the nodes, the text alongside them and
the links between them.

.node circle {
fill: #fff;
stroke: steelblue;

stroke-width: 3px;

.node text { font: 12px sans-serif; }

.link {
fill: none;
stroke: #ccc;
stroke-width: 2px;

Then our JavaScript section starts and the first thing that happens is that we declare our array
of data in the following code;

®1https://gist.github.com/d3noob/8323795
*2http://bl.ocks.org/d3noob/8323795

www. dbooks. or g

https://gist.github.com/d3noob/8323795
http://bl.ocks.org/d3noob/8323795
https://gist.github.com/d3noob/8323795
http://bl.ocks.org/d3noob/8323795
https://www.dbooks.org/

Tree Diagrams 255

var treeData = |

{
"name": "Top Level",
"parent": "null",
"children": [
{
"name": "Level 2: A",
"parent": "Top Level",
"children": [
{
"name": "Son of A",
"parent": "Level 2: A"
),
{
"name": "Daughter of A",
"parent": "Level 2: A"
}
]
},
"name": "Level 2: B",
"parent": "Top Level"
}
]
}

1;

As outlined at the start of the chapter, this data is encoded hierarchically in JavaScript Object
Notation (JSON). Each node must have a name and either a parent or child node(s) or both. There
are many examples of hierarchical data that can be encoded in this way. From the traditional
parent - offspring example to directories on a hard drive or a breakdown of materials for a
complex object. Any system of encoding where there is a single outcome from multiple sources
like an election or an alert encoding system dependent on multiple trigger points.

The next section of our code declares some of the standard features for our diagram such as the
size and shape of the svg container with margins included.

var margin = {top: 20, right: 120, bottom: 20, left: 120},
width = 960 - margin.right - margin.left,
height = 500 - margin.top - margin.bottom;

var i = 0;

var tree = d3.layout.tree()
.size([height, width]);

Tree Diagrams 256

It also assigns the variable / function tree to the d3.js function'’ that is used to assign and
calculate the data required for the nodes and links for our diagram. We will be calling that later.

The next block of code declares the function that will be used to draw the links between the
nodes. This isn’t the part of the code where the links are drawn, this is just declaring the
variable/function that will be used when it does happen.

var diagonal = d3.svg.diagonal()
.projection(function(d) { return [d.y, d.x]; });

This uses the d3.js diagonal*®* function to help draw a path between two points such that the
line exhibits some nice flowing curves (cubic BA©zier) to make the connection.

The next block of code appends our SVG working area to the body of our web page and creates
a group elements (<g>) that will contain our svg objects (our nodes, text and links).

var svg = d3.select("body").append("svg")
.attr("width", width + margin.right + margin.left)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left +

non
’

+ margin.top + ")");

The next line is one that vexed me for a while and one that I think means there are other areas
of my code that could be improved (for a short interlude on why this tried me, feel free to catch
this question'®* on Stack Overflow).

root = treeData[0];

It might not look like much and to those familiar with JavaScript, it will be a no-brainer, but
what the line is doing is defining what ‘tree’ from our data is going to be used. Because our data
is an array, the first level of the array is treeData. The name of the first object on the first level
of treeData is “Top Level’. This (being the first object) is object 0. Therefore our starting point is
treeData[0]. We could confirm this by changing the declaration to ...

root = treeData[@].children[Q];

This will take the root point for our diagram as being the first child (child[@]) of the the first
level of treeData. As a result, our tree diagram will look like this...

A

Tree layout diagram using a different root point

... since ‘Level 2: A’ is the first child of “Top Level’.

Then we call the function that draws our tree diagram.

8https://github.com/mbostock/d3/wiki/Tree- Layout

#4https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-diagonal

3http://stackoverflow.com/questions/20940854/how-to-load- data- from-an-internal-json-array-rather-than-from-an-external-
resour

www. dbooks. or g

https://github.com/mbostock/d3/wiki/Tree-Layout
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-diagonal
http://stackoverflow.com/questions/20940854/how-to-load-data-from-an-internal-json-array-rather-than-from-an-external-resour
https://github.com/mbostock/d3/wiki/Tree-Layout
https://github.com/mbostock/d3/wiki/SVG-Shapes#wiki-diagonal
http://stackoverflow.com/questions/20940854/how-to-load-data-from-an-internal-json-array-rather-than-from-an-external-resour
http://stackoverflow.com/questions/20940854/how-to-load-data-from-an-internal-json-array-rather-than-from-an-external-resour
https://www.dbooks.org/

Tree Diagrams 257

update(root);

This calls the function update and uses the data root to create our tree.

The last significant part of the code is the function update. This is the part of the code that pulls
together the functions and data that we have declared and draws our tree.

The first step in that process is to assign our nodes and links.

var nodes = tree.nodes(root),
links = tree.links(nodes);

This uses our previously declared tree function to work its d3.js magic on our data (root) and
to determine the node details and from the node details we can determine the link details.

If you’re wondering how this all works, I'm afraid that I won’t be able to help much, but a starting
point would be the results that the process produces which is a set of nodes, each of which has
a set of characteristics. Those characteristics are; - .children: Which is an array of any children
that exist for that node. - . depth: Which is the depth (described in a few paragraphs time). - . id:
Which is a unique number identifier for each node. - .name: The name we have assigned from
our data. - .parent: The name of the parent of the node. - .x and .y: Which are the x and y
positions on the screen of the node.

From this node data a set of links joining the nodes is created. Each link consists of a .source
and .target. Each of which is a node.

We then determine the horizontal spacing of the nodes.
nodes. forEach(function(d) { d.y = d.depth * 180; });

This uses the depth of the node (as determined for each node in the nodes = tree.nodes(root)
line) to calculate the position on the y axis of the screen.

The depth refers to the position in the tree relative to the root node on the left. The following
picture shows how the depth relates to the position of the node in the tree.

A

Depth of nodes on the tree

So by adjusting our ‘expansion factor’ (currently set to 180) we can adjust the spacing of the
nodes. For instance, here is the spacing changed to 80.

A

Adjusting the depth of the tree

We then declare the variable / function node so that when we call it later it will know to select
the appropriate object (a node) with the appropriate . id.

Tree Diagrams 258

var node = svg.selectAll("g.node")
.data(nodes, function(d) { return d.id || (d.id = ++i); });

The next block of code assigns the variable / function nodeEnter to the action of appending a
node to a particular position.

var nodeEnter = node.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) {

return "translate(" + d.y + "," +d.x + ")"; });

Then we get to the piece of code that appends the circle that comprises the node (using
nodeEnter).

nodeEnter .append("circle")
.attr("r", 10)
style("fill", "#fff");

(using a radius of 10 pixels and a white fill).

And we add in the text for each node...

nodeEnter .append("text")
.attr("x", function(d) {
return d.children || d._children ? -13 : 13; })

.attr("dy", ".35em")
.attr("text-anchor", function(d) {
return d.children || d._children ? "end" : "start"; })

.text(function(d) { return d.name; })
.style("fill-opacity", 1);

This is a neat piece of code that allows the text to be placed on the left side of the node if it has
children (d.children) or on the right if it has has no children or d._children. This is a slightly
redundant piece of code (the d. _children piece) for this diagram, but it becomes more useful in
the interactive version towards the end of the chapter. It also aligns the text correctly and makes
sure it is visible.

Then we declare the link variable / function and tell it to make a link based on all the links that
have unique target id’s.

var link = svg.selectAll("path.link")
.data(links, function(d) { return d.target.id; });

This might not be obvious at first glance, but we only want to draw links between a node and it’s
parent. There should be one less link than the total number of nodes since the root node (“Top
Level’) has no parent. Therefore only those links with unique target id’s in the data need to have

www. dbooks. or g

https://www.dbooks.org/

Tree Diagrams 259

links produced. If we were to replace the . target in the above code with . source we would have
only two unique .source id’s. It would therefore look like this;

A

Only Links from unique sources

Our final block of JavaScript adds in our link as a diagonal path (as declared early in the JavaScript
portion of the code).

link.enter().insert("path", "g")
.attr("class", "link")
.attr("d", diagonal);

There are only a couple of lines of HTML to close off the file and we are left with our tree

diagram!

Simple tree layout diagram

Don’t forget, the full code for this example can be found on github'®, in the appendices of
this book or in the code samples bundled with this book (simple-tree-diagram.html). A working

example can be found on bl.ocks.org®’.

8https://gist.github.com/d3noob/8323795
®7http://bl.ocks.org/d3noob/8323795

https://gist.github.com/d3noob/8323795
http://bl.ocks.org/d3noob/8323795
https://gist.github.com/d3noob/8323795
http://bl.ocks.org/d3noob/8323795

Tree Diagrams 260

Styling nodes in a tree diagram

The nodes in a tree diagram are objects that exist to provide a representation of the structure of
data, but on a tree diagram they should also be viewed as an opportunity to encode additional
information about the underlying data.

From the initial simple example that we covered at the start of the chapter we have encoded
a certain amount of information already. The position of the text relative to each node is
determined by whether or not the node is the parent of another node (if it’s a parent it’s on
the left) or a child that is on the edge of the tree (in which case it is on the right of the node).

A

Node position on the tree diagram

Now, that’s nice, but are we going to be satisfied with that??? (The answer is “No” by the way.)

This example is fairly simple, but it is an example of applying different styles to the nodes to
convey additional information. I should be clear at this stage that I am not advocating turning
your tree diagram into something that looks like it came out of a circus, because that would be
a crime against style, so don’t repeat my upcoming example, but let some of the features be a
trigger for developing your own subtle, yet compelling visualizations.

Brace yourself. Here’s a picture of the tree diagram that we’re going to generate. Those with
weaker constitutions should look away and flip forward a few pages;

A

Tree diagram with excessive styling

The changes that have been made are as a result of additional data fields that have been added to
the JSON array and these fields have been applied to various style options throughout the code.

The types of style changes we have made are - Variation of the diameter of nodes - Changing
the fill and stroke colour of nodes - Changing the colour of links depending on the associated
target node they connect to.

We’ll start by looking at the new JSON data set;

"name": "Top Level",
"parent": "null",
"value": 10,
"type": "black",
"level": "red",
"children": [
{
"name": "Level 2: A",
"parent": "Top Level",

www. dbooks. or g

https://www.dbooks.org/

Tree Diagrams 261

"value": 15,
lltypell : "g]_’ey",

"level": "red",
"children": [
{
"name": "Son of A",
"parent": "Level 2: A",
"value": 9,
"type": "steelblue",
"level": "orange"
}
{
"name": "Daughter of A",
"parent": "Level 2: A",
"value": 8,
"type": "steelblue",
"level": "red"
}
]
},
{
"name": "Level 2: B",
"parent": "Top Level",
"value": 10,
"type": "grey",
"level": "green"
}

Each node now has a value which might represent a degree of importance (we will use this to
affect the radius of the nodes), a type which might indicate a difference in the type of node (they
might be in active, inactive or undetermined states) and a 1evel which might indicate an alert
level for determining problems (red = bad, orange = caution and green = normal).

Irrespective of the contrived nature of our styling options, they are applied to our tree in fairly
similar ways with some subtle differences.

Remember, the full code for this example can be found on github'® or in the code samples

bundled with this book (simple-tree-features.html). A working example can be found on

bl.ocks.org®’.
The first change is to the node radius, stroke colour and fill colour.

We simply change the portion of the code that appends the circle from this...

8https://gist.github.com/d3noob/8324872
*http://bl.ocks.org/d3noob/8324872

https://gist.github.com/d3noob/8324872
http://bl.ocks.org/d3noob/8324872
https://gist.github.com/d3noob/8324872
http://bl.ocks.org/d3noob/8324872

Tree Diagrams 262

nodeEnter .append("circle")
.attr("r", 10)
style("fill", "#fff");

... to this ...

nodeEnter .append("circle")
.attr("r", function(d) { return d.value; })
.style("stroke", function(d) { return d.type; })
.style("fill", function(d) { return d.level; });

The changes return the radius attribute as a function using value, the stroke colour is returned
using type and the fill colour is returned with level. This is nice and simple, but we do need
to make a slight adjustment to the code that sets the distance that the text is from the nodes so
that when the radius expands or contracts, the text distance from the edge of the node adjusts
as well.

To do this we take the clever piece of code that adjusts the distance that the text is in the x
dimension from the node that looks like this ...

.attr("x", function(d) {
return d.children || d._children ? -13 : 13; })

... and we add in a dynamic aspect using the value field.

.attr("x", function(d) {
return d.children || d._children ?
(d.value + 4) * -1 : d.value + 4 })

The last thing we wanted to do is to change the colour of the link based on the colour of the
target node. We accomplish this by taking the code that inserts the links...

link.enter().insert("path", "g")
.attr("class", "link")
.attr("d", diagonal);

... and adding in a line that styles the link colour (the stroke) based on the level colour of the
target end of the link d.target.level).

link.enter().insert("path", "g")
.attr("class", "link")
.style("stroke", function(d) { return d.target.level; })
.attr("d", diagonal);

Use the concepts here wisely. I don’t want to see any heinously styled tree diagrams floating

around the internet with “Thanks to the help from D3 Tips and Tricks” next to them. Be subtle,
be thoughtful :-).

www. dbooks. or g

https://www.dbooks.org/

Tree Diagrams 263

Changing the nodes to different shapes

Many thanks to Josiah who asked a question'*® on the d3noob.org blog on how the shapes of the
nodes could be varied based on an associated value in the data.

There is more than one way to do this, but perhaps the simplest is to replace the section of the
JavaScript that appends the circle with one that appends a symbol from d3’s symbol generator*”*.

There are six pre-defined symbol types as follows;

« circle - a circle.

« cross - a Greek cross or plus sign.

« diamond - a rhombus.

« square - an axis-aligned square.

« triangle-down - a downward-pointing equilateral triangle.
« triangle-up - an upward-pointing equilateral triangle.

The following script will look at the value in the data and assign either a cross or a diamond
depending on the value

nodeEnter .append("path")
.style("stroke", "black")
style("fill", "white")
.attr("d", d3.svg.symbol()
.size(200)
.type(function(d) { if
(d.value >= 9) { return "cross"; } else if

(d.value <= 9) { return "diamond";}

1)),

<>Sun of A

Top Level Daughter of A

Level 2. B

Tree diagram different node shapes

The full code for this example can be found on github* or in the code samples bundled with
this book (simple-tree-shapes.html). A working online example can be found on bl.ocks.org”.

*http://www.d3noob.org/2014/01/tree-diagrams-in-d3js_11.html?showComment=1398062145979#c8289012474475643167
https://github.com/mbostock/d3/wiki/SVG-Shapes#symbol

Zhttps://gist.github.com/d3noob/11137963

*http://bl.ocks.org/d3noob/11137963

http://www.d3noob.org/2014/01/tree-diagrams-in-d3js_11.html?showComment=1398062145979#c8289012474475643167
https://github.com/mbostock/d3/wiki/SVG-Shapes#symbol
https://gist.github.com/d3noob/11137963
http://bl.ocks.org/d3noob/11137963
http://www.d3noob.org/2014/01/tree-diagrams-in-d3js_11.html?showComment=1398062145979#c8289012474475643167
https://github.com/mbostock/d3/wiki/SVG-Shapes#symbol
https://gist.github.com/d3noob/11137963
http://bl.ocks.org/d3noob/11137963

Tree Diagrams 264

Using images as nodes

Many thanks to nbhatta who asked a question'* on the d3noob.org blog on how to use images

as nodes.

Tree diagram with images for nodes

This was a slightly simpler change and just involved replacing the code snippet that added the
circles with one that added an image;

nodeEnter .append("image")
.attr("xlink:href", function(d) { return d.icon; })
Lattr("x", "-12px")
Lattr(ty", "-12px")
.attr("width", "24px")
.attr("height", "24px");

The images I chose were all 48 x 48 pixel for the sake of consistency and in the code above I
formatted them to be half that size and moved them in the x and y direction so that they were
centred correctly.

The cool thing that you will notice is that the specific icon that is placed at each node position
is set by the name of the icon which is gathered from the JSON file with the tree details;

var treeData = |
{
"name": "Top Level",
"parent": "null",
"value": 10,
"type": "black",

"level": "red",
"icon": "earth.png",
"children": [
{
"name": "Level 2: A",
"parent": "Top Level",

"value": Y,

"type": "grey",

"level": "red",

icon": "cart.png",

"children": [

{

"name": "Son of A",
"parent": "Level 2: A",

*http://www.d3noob.org/2014/01/tree-diagrams-in-d3js_11.html?showComment=1399025834455#c4911480988339223702

www. dbooks. or g

http://www.d3noob.org/2014/01/tree-diagrams-in-d3js_11.html?showComment=1399025834455#c4911480988339223702
http://www.d3noob.org/2014/01/tree-diagrams-in-d3js_11.html?showComment=1399025834455#c4911480988339223702
https://www.dbooks.org/

Tree Diagrams 265

"value": 5,
"type": "steelblue",
"icon": "lettern.png",

"level": "orange"

"name": "Daughter of A",
"parent": "Level 2: A",
"value": 18,

"type": "steelblue",
"icon": "vlc.png",

"level": "red"

"name": "Level 2: B",
"parent": "Top Level",
"value": 10,

"type": "grey",
"icon": "random.png",

"level": "green"

}
1;

It’s possible to just have a single image and to hard-code it into the script, but where’s the fun
in that?

The full code for this example can be found on github'* or in the code samples bundled with
this book (simple-tree-images.html, cart.png, earth.png, lettern.png, random.png and vlc.png). A
working online example can be found on bl.ocks.org'*.

>https://gist.github.com/d3noob/9662ab6d5ac823c0e444
http://bl.ocks.org/d3noob/9662ab6d5ac823c0e444

https://gist.github.com/d3noob/9662ab6d5ac823c0e444
http://bl.ocks.org/d3noob/9662ab6d5ac823c0e444
https://gist.github.com/d3noob/9662ab6d5ac823c0e444
http://bl.ocks.org/d3noob/9662ab6d5ac823c0e444

Tree Diagrams 266

Making a vertical tree diagram

Changing a tree diagram from a horizontal view to a vertical one is fairly easy. There are only
three things to change from the code that we used for our original simple tree diagram.

The first is to change the orientation of the nodes by transposing the x and y coordinates.
That means taking the section of code that appends the nodes...
var nodeEnter = node.enter().append("g")
.attr("class", "node")

.attr("transform", function(d) {

return "translate(" + d.y + "," +d.x + ")"; });
... and swapping the d.x and d.y designators so that it looks like this...

var nodeEnter = node.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) {

return "translate(" + d.x + "," + d.y + ")"; });

Because the vertical version of the tree diagram can be a lot more compact, we can adjust our
difference between the depths to a more rational value. In our example we can change the
separation from 180 to 100 pixels in the following line of code...

nodes. forEach(function(d) { d.y = d.depth * 100; });

The second is to do the same adjustment for the links. We take the block of code that generates
the curvy diagonal paths...

var diagonal = d3.svg.diagonal()
.projection(function(d) { return [d.y, d.x]; });

... and swap the d.x and d.y designators so that it looks like this...

var diagonal = d3.svg.diagonal()
.projection(function(d) { return [d.x, d.y]; });

At this point we have our tree diagram ready to go except for one small detail...

A

Vertical tree diagram with sideways text

The text is still aligned to the left and right of the nodes. On this example, it looks pretty good,
but if we were to introduce a few more nodes, it would start to get pretty cramped, so we can
place the text above and below the nodes dependent on whether the node is a parent (above) or
a child on the bottom level (below).

To do this we take the original text appending code...

www. dbooks.

org

https://www.dbooks.org/

Tree Diagrams 267

nodeEnter .append("text")
.attr("x", function(d) {
return d.children || d._children ? -13 : 13; })
.attr("dy", ".35em")
.attr("text-anchor", function(d) {
return d.children || d._children ? "end" : "start"; })
.text(function(d) { return d.name; })

.style("fill-opacity", 1);

... and change the x attribute to a y attribute, anchor the text in the middle (which is actually
a simplification of the code) and extend the distance between the node and the anchor point
slightly to 18 (and -18) pixels.

nodeEnter .append("text")
.attr("y", function(d) {
return d.children || d._children ? -18 : 18; })
.attr("dy", ".35em")
.attr("text-anchor", "middle")
.text(function(d) { return d.name; })
.style("fill-opacity", 1);

And there we have it! A vertical tree diagram.

A

Vertical tree diagram

The full code for this example can be found on github**” or in the code samples bundled with
this book (simple-tree-vertical.html). A working online example can be found on bl.ocks.org'*®.

7https://gist.github.com/d3noob/8326869
®http://bl.ocks.org/d3noob/8326869

https://gist.github.com/d3noob/8326869
http://bl.ocks.org/d3noob/8326869
https://gist.github.com/d3noob/8326869
http://bl.ocks.org/d3noob/8326869

Tree Diagrams 268

Generating a tree diagram from ‘flat’ data

Tree diagrams are a fantastic way of displaying information, but one of the drawbacks (to the
examples we’ve been using so far) is the need to have your data encoded hierarchically. Most
data in a raw form will be flat. That is to say, it won’t be formatted as an array with the parent -
child relationships. Instead it will be a list of objects (which we will want to turn into nodes) that
might describe the relationship to each other, but they won’t be encoded that way. For example,
the following is the flat representation of the example data we have been using thus far.

{ "name" : "Level 2: A", "parent":"Top Level" },

{ "name" : "Top Level", "parent":"null" },

{ "name" : "Son of A", "parent":"Level 2: A" },

{ "name" : "Daughter of A", "parent":"Level 2: A" },
{ "name" : "Level 2: B", "parent":"Top Level" }

It is actually fairly simple and consists of only the name of the node and the name of it’s parent
node. It’s easy to see how this data could be developed into a hierarchical form, but it would take
a little time and for a larger data set, that would be tiresome.

Luckily computers are built for shuffling data about and with kudos to ‘nrabinowitz’ for
answering a question'”” (and Prateek Tandon for asking) on Stack Overflow (and Jesus Ruiz
with AmeliaBR for setting me on the right path®"), here is how we can take our flat data and
convert it for use in our tree diagram.

We will be using the simple example that we started with at the start of the chapter and the first
change we need to make is to replace our original data...

var treeData = |

{
"name": "Top Level",
"parent": "null",
"children": [
{
"name": "Level 2: A",
"parent": "Top Level",

"children": [

{
"name": "Son of A",
"parent": "Level 2: A"
},
{
"name": "Daughter of A",
"parent": "Level 2: A"
}

°http://stackoverflow.com/questions/17847131/generate-multilevel-flare- json- data-format-from-flat-json
2%%http://stackoverflow.com/questions/20940854/how-to-load- data-from-an-internal-json-array-rather-than-from-an-external-
resour

www. dbooks. or g

http://stackoverflow.com/questions/17847131/generate-multilevel-flare-json-data-format-from-flat-json
http://stackoverflow.com/questions/20940854/how-to-load-data-from-an-internal-json-array-rather-than-from-an-external-resour
http://stackoverflow.com/questions/20940854/how-to-load-data-from-an-internal-json-array-rather-than-from-an-external-resour
http://stackoverflow.com/questions/17847131/generate-multilevel-flare-json-data-format-from-flat-json
http://stackoverflow.com/questions/20940854/how-to-load-data-from-an-internal-json-array-rather-than-from-an-external-resour
http://stackoverflow.com/questions/20940854/how-to-load-data-from-an-internal-json-array-rather-than-from-an-external-resour
https://www.dbooks.org/

Tree Diagrams 269

]
b

"name": "Level 2: B",
"parent": "Top Level"

}
1;

... with our flat data array...

var data = [
{ "name" : "Level 2: A", "parent":"Top Level" },
{ "name" : "Top Level", "parent":"null" },
{ "name" : "Son of A", "parent":"Level 2: A" },
{ "name" : "Daughter of A", "parent":'"lLevel 2: A" },
{ "name" : "Level 2: B", "parent":"Top Level" }
1;

It’s worth noting here that we have also changed the name of the array (to data) since we are
going to convert, then declare our newly massaged data with our original variable name treeData
so that the remainder of our code thinks there have been no changes.

Then we create a name-based map for the nodes. In his answer on Stack Overflow, ‘nrabinowitz’
uses the .reduce method®”, which starts with an empty object and iterates over the data array,
adding an entry for each node.

var dataMap = data.reduce(function(map, node) {
map [node.name] = node;

return map;

oAb

Don’t feel upset if you don’t understand exactly how it works. I struggle to understand internal
combustion engines, but I'm ok at driving a car :-). Think of this in the same way.

Then we iteratively add each child to its parents, or to the root array if no parent is found;

**Thttps://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/Reduce

Tree Diagrams 270

var treeData = [];
data. forEach(function(node) {
// add to parent
var parent = dataMap[node.parent];
if (parent) {
// create child array if it doesn't exist
(parent.children || (parent.children = []))
// add node to child array
.push(node) ;
} else {
// parent 1is null or missing

treeData.push(node);

1);

The code is essentially working through each node in the array and if it has a child it adds it to
the children sub-array and if necessary creates the array. Likewise, if the node has no parent, it
simply add it as a root node.

That’s it!

The brevity of the code to do this should not detract from its elegance. It really is very clever.
The end result doesn’t look any different from our original diagram...

A

Tree diagram (but from flat data)

... but it adds a significant capability for use of additional data.

The full code for this example can be found on github®*? or in the code samples bundled with
this book (simple-tree-from-flat.html). A working example can be found on bl.ocks.org®®.

**https://gist.github.com/d3noob/8329404
%http://bl.ocks.org/d3noob/8329404

www. dbooks. or g

https://gist.github.com/d3noob/8329404
http://bl.ocks.org/d3noob/8329404
https://gist.github.com/d3noob/8329404
http://bl.ocks.org/d3noob/8329404
https://www.dbooks.org/

Tree Diagrams 271

Generating a tree diagram from external data

In all the examples we have looked at so far we have used data that we have declared from within
the file itself. Being able to import data from an external file is an important feature that we need
to know how to implement.

Starting from the simple tree diagram example that we began with at the start of the chapter,
the first change that we need to make is to remove the section of code that declares our data.
But don’t throw it away since we will use it to create a separate file called treeData. json. It’s
contents will be;

{
"name": "Top Level",
"parent": "null",
"children": [
{
"name": "Level 2: A",
"parent": "Top Level",
"children": [
{
"name": "Son of A",
"parent": "Level 2: A"
3
{
"name": "Daughter of A",
"parent": "Level 2: A"
}
]
},
{
"name": "Level 2: B",
"parent": "Top Level"
}

(don’t include the treeData = part, or the semicolon at the end (you can delete those))

Then all we need to do is change the portion of the code that declared the root variable and
updates the diagram;

Tree Diagrams 272

root = treeData[0Q];

update(root);

... into a small section that uses the d3. json accessor to load the file treeData. json (Remember
to correctly address the file. This one assumes that the treeData. json file is in the same directory
as the html file we are opening).

d3.json("treeData. json", function(error, treeData) {
root = treeData[0Q];
update(root);

1),

It then declares the variable root in the same way and calls the update function to draw the tree
diagram. Viola!

The full code for this example can be found on github®** or in the code samples bundled with
this book (simple-tree-from-external.html and treeData.json). A working example can be found
on bl.ocks.org®”.

***https://gist.github.com/d3noob/8329447
%http://bl.ocks.org/d3noob/8329447

www. dbooks. or g

https://gist.github.com/d3noob/8329447
http://bl.ocks.org/d3noob/8329447
https://gist.github.com/d3noob/8329447
http://bl.ocks.org/d3noob/8329447
https://www.dbooks.org/

Tree Diagrams 273

Generating a tree diagram from a CSV file.

Creating a tree diagram from a csv file is an extension of the sections where we create a diagram
from flat data and where we create a diagram from an external file.

By mashing these together and using a csv file something like the following...

name, parent

Level 2: A,Top Level

Top Level,null

Son of A,Level 2: A
Daughter of A,Level 2: A
Level 2: B,Top Level

... we can ingest the name of the nodes and their relationships and then format the data correctly.

A

Tree diagram (but from csv)

The full code for this example can be found on github®’® or in the code samples bundled with
this book (simple-tree-from-csv.html and treedata.csv). A working example can be found on
bl.ocks.org®”’.

2%https://gist.github.com/d3noob/fa0f16e271cb191ae85f
**"http://bl.ocks.org/d3noob/fa0f16e271cb191ae85f

https://gist.github.com/d3noob/fa0f16e271cb191ae85f
http://bl.ocks.org/d3noob/fa0f16e271cb191ae85f
https://gist.github.com/d3noob/fa0f16e271cb191ae85f
http://bl.ocks.org/d3noob/fa0f16e271cb191ae85f

Tree Diagrams 274

An interactive tree diagram

The examples presented thus far have all been static in the sense that they present information
on a web page, but that’s where they stop. One of the strengths of web content is the ability to
involve the reader to a greater extent. Therefore the following tree diagram example includes an
interactive element where the user can click on any parent node and it will collapse on itself to
make more room for others or to simplify a view. Additionally, any collapsed parent node can
be clicked on and it will re-grow to its previous condition.

The example included here is a close derivative of Mike Bostock’s example®”®. I won’t fully
explain the operation of this file, but we will consider parts of it for interest’s sake.

The full code for this example can be found on github®”, in the appendices of this book or in the

code samples bundled with this book (interactive-tree.html). A working online example can be

found on bl.ocks.org®*’.

For a brief visual description of the action. The diagram will initially display the complete tree...

A

Tree diagram)

Then when clicking on the ‘Level 2: A’ node, the tree partially collapses to...

A

Partially collapsed tree diagram)

We could also click on the root node (“Top Level’) to fully collapse the tree...

A

Fully collapsed tree diagram)

Then clicking on the nodes opens the diagram back up again.

One of the important changes to start with is to make each node responsive to the mouse pointer.
This is done by including the following in the <style> section.

.node {

cursor: pointer;

The code then adds sections to allow the diagram to follow the d3.js model of enter - update -
exit for the nodes with a suitable transition in between.

?%%http://bl.ocks.org/mbostock/4339083
*%https://gist.github.com/d3noob/8375092
*1%http://bl.ocks.org/d3noob/8375092

www. dbooks. or g

http://bl.ocks.org/mbostock/4339083
https://gist.github.com/d3noob/8375092
http://bl.ocks.org/d3noob/8375092
http://bl.ocks.org/mbostock/4339083
https://gist.github.com/d3noob/8375092
http://bl.ocks.org/d3noob/8375092
https://www.dbooks.org/

Tree Diagrams 275

Nodes are coloured (“steelblue”) if they have been collapsed and at the end of the script we
have a function that makes use of the d. _children reference we have been using in most of our
examples.

function click(d) {
if (d.children) {
d._children = d.children;
d.children = null;
} else {
d.children = d._children;
d._children = null;

}
update(d);

This allows the action of clicking on the nodes to update the data associated with the node and
as a consequence change it’s properties in the script based on if statements (Such as "fill",
function(d) { return d._children ? "lightsteelblue" : "#fff"; } which will fill the node
with “lightsteelblue” if d._children exists, otherwise make it white.)

The examples we have looked at in the previous sections in this chapter are all applicable to this
interactive version, so this should provide you with the capability to generate some interesting
visualizations.

Enjoy.

Force Layout Diagrams

What is a Force Layout Diagram?

This is not a distinct type of diagram per se. Instead, it’s a way of representing data so that
individual data points share relationships to other data points via forces. Those forces can then
act in different ways to provide a natural structure to the data. The end result can be a wide
variety of representations of connectedness and groupings.

Mike Bostock gave a great talk which focussed on force layout techniques in 2011 at Trulia for the
Data Visualization meetup group. Check video of the presentation here: http://vimeo.com/29458354%"!
and the slides here: http://mbostock.github.com/d3/talk/20110921/#0%"?. The most memorable
quote I recall from the talk describes force layout diagrams as an “Implicit way to do position
encoding”.

Here’s some examples for those who need a reason to view the talk.

Multi-Foci Force Layout

Multi-Foci Force Layout

Simultaneous forces of repulsion and multiple gravitational focus points create a natural
clustering of data points (Source: Mike Bostock http://bl.ocks.org/mbostock/1249681°*%). The
graph is animated, so the artefacts such as overlapping circles and the purple circle that is located
beside the red area are transitory.

Force Directed Graph with Pan / Zoom

*http://vimeo.com/29458354
*http://mbostock.github.com/d3/talk/20110921/#0
*http://bl.ocks.org/mbostock/1249681

www. dbooks. or g

http://vimeo.com/29458354
http://mbostock.github.com/d3/talk/20110921/#0
http://bl.ocks.org/mbostock/1249681
http://vimeo.com/29458354
http://mbostock.github.com/d3/talk/20110921/#0
http://bl.ocks.org/mbostock/1249681
https://www.dbooks.org/

Force Layout Diagrams 277

Tissue
Merve Tissue, Meunsepithefial Tissue, and Merve Sheaths
Body Part
Flane Mervous Systam Part

Sagittal Plane (3)

Anatomic SIﬂmturf“S?E-tem. or Substance

Conceptual EntityMerve Tissue and Nerve Sheaths

Thimg Gentral Mervous System Part

T fla@amus (6)
Ner (e Mamillary Body (6)

Infratentorial Brain

Activity Brain

White Matter 6) & cingulate Gyrus (7)
Technique e Occipital Hom of ;;l?f_';;:g)‘;eunmde

Clinical or Research Activity

Research Technigue Cerebral White Matter Cerebral Gortex
Intervention or Procedure

Corpus Callosum (9)

Physical Chemical Techni
Y MRS Diagnestic Procedure

Force Directed Graph with Pan / Zoom

Multiple linked nodes show connections between related entities where those entities are
labelled and encoded with relevant information. Created by David Graus and presented here:
http://graus.nu/blog/force-directed-graphs-playing-around-with-d3-js/>**.

Collapsible Force Layout

QO ‘DD
© o]
O é’ OQD R
2 R GDQ
: 2% i v
OG OO =] 00,
N BN
O O
S 0

Collapsible Force Layout

This force directed graph can have individual nodes expanded or collapsed by clicking on them
to reveal or hide greater detail (Source: Mike Bostock http://bl.ocks.org/mbostock/1062288%*°).

Force Directed Graph showing Directionality

*“http://graus.nu/blog/force-directed-graphs-playing-around-with-d3-js/
*“http://bl.ocks.org/mbostock/1062288

http://graus.nu/blog/force-directed-graphs-playing-around-with-d3-js/
http://bl.ocks.org/mbostock/1062288
http://graus.nu/blog/force-directed-graphs-playing-around-with-d3-js/
http://bl.ocks.org/mbostock/1062288

Force Layout Diagrams 278

ZTE

Huswei

Ericsson

Force Directed Graph showing Directionality

This example showing mobile patent lawsuits between companies presents the direction as-
sociated with the links and encodes the links to show different types (Source: Mike Bostock
http://bl.ocks.org/mbostock/1153292%*°).

Collision Detection

Collision Detection

In this example the mouse exerts a repulsive force on the objects as it moves on the screen (Source:
Mike Bostock http://bl.ocks.org/mbostock/3231298%"7).

Molecule Diagram

*1http://bl.ocks.org/mbostock/1153292
*1http://bl.ocks.org/mbostock/3231298

www. dbooks. org

http://bl.ocks.org/mbostock/1153292
http://bl.ocks.org/mbostock/3231298
http://bl.ocks.org/mbostock/1153292
http://bl.ocks.org/mbostock/3231298
https://www.dbooks.org/

Force Layout Diagrams 279

Molecule Diagram

Just for fun, here is a diagram that Mike Bostock made to demonstrate drawing two parallel lines
between nodes. He’s the first to admit that increasing the number of lines becomes awkward,
but it serves as another example of the flexibility of force diagrams in D3 (Source: Mike Bostock
http://bl.ocks.org/mbostock/3037015%*%).

The main forces in play in these diagrams are charge, gravity and friction. More detailed
information on these forces and the other parameters associated with the force layout code can
be found in the D3 Wiki**.

Charge

Charge is a force that a node can exhibit where it can either attract (positive values) or repel
(negative values). Varying this value in conjunction with other forces (such as gravity) or a link
(on a node by node basis) is generally necessary to maintain stability.

Gravity

The gravity force isn’t actually a true representation of gravitational attraction (this can be more
closely approximated using positive values of charge). Instead it approximates the action of a
spring connected to a node. This has a more pleasant visual effect when the affected node is
closer to its ‘great attractor’ and avoids what would otherwise be a small black hole type effect.

Friction

The frictional force is one designed to act on the movement of a node to reduce its speed over
time. It isn’t implemented as true friction (in the physical sense) and should be thought of as a
‘velocity decay’ in the truer sense.

Mike makes the point in the 2011 talk at Trulia that when using gravity in a force layout diagram,
it is useful to include a degree of charge repulsion to provide stability. This can be demonstrated
by experimenting with varying values of the charges in a diagram and observing the effects.

Force directed graph examples.

There are a large number of possible examples to use to demonstrate force directed graphs. I
chose to combine two examples that Mike Bostock has demonstrated in the past. Both use the

**8http://bl.ocks.org/mbostock/3037015
*https://github.com/mbostock/d3/wiki/Force-Layout

http://bl.ocks.org/mbostock/3037015
https://github.com/mbostock/d3/wiki/Force-Layout
http://bl.ocks.org/mbostock/3037015
https://github.com/mbostock/d3/wiki/Force-Layout

Force Layout Diagrams 280

data for the ‘who’s suing who’ graph because I wanted especially to include the directionality

aspect of the links. The two graphs I based the final graph on were the Mobile Patent Suits**°
graph....

Sony

Oﬁaxc:}nn g -‘m“ia
e C CQualcomm
() Bames & Noble

Mobile Patent Suits

... for the directionality and link encoding and the Force-Directed Graph with Mouseover®*!

graph...

RIM

\%in:im/

Inventec Fodak
-y /

~Amazon / Apple LG

[Mzt
/ Motorola
Barnes & Moble

Mokiz
Faxconn /

Qualcomm

Force-Directed Graph with Mouseover

... for the mouseover effects (note the enlarged ‘Microsoft’ circle).

In spite of the similarities to each other in terms of data and network linkages, the final example
code was quite different, so the end result is a distinct hybrid of the two and will look something

like this;

*%http://bl.ocks.org/mbostock/1153292
**1http://bl.ocks.org/mbostock/2706022

www. dbooks. or g

http://bl.ocks.org/mbostock/1153292
http://bl.ocks.org/mbostock/2706022
http://bl.ocks.org/mbostock/1153292
http://bl.ocks.org/mbostock/2706022
https://www.dbooks.org/

Force Layout Diagrams 281

MMaddy I. . Hary

Sanny “4: o B Sally

Higky
Force-Directed Graph with Node Highlighting and Link Value Gradients

In this example the nodes can be clicked on once to enlarge the associated circle and text and
then double clicked on to return them to normal. The links vary in opacity depending on an
associated value loaded with the data. The example code for the graph above will be explained
later in the chapter and can be found on bl.ocks.org?** or in the code samples bundled with this
book (force-highlight-opacity.html and force.csv).

Basic force directed graph showing directionality

The data for this graph has been altered from the data that was comprised of litigants in the
mobile patent war to fictitious people’s names and associated values (to represent the strength
of the links between the two).

The full code for this diagram can also be found on github®** or in the code samples bundled

with this book (force.html and force.csv). A live example can be found on bl.ocks.org?*“.

In the original examples the data was contained in the graph code. In the following example it
is loaded from a csv file. The values loaded are as follows;

source, target,value
Harry,Sally,1.2

Harry,Mario,1.
Sarah,Alice, 0.
Eveie,Alice, Q.
Peter,Alice,1.
Mario,Alice, Q.
James,Alice, Q.
Harry,Carol,@.
Harry,Nicky,@.
Bobby,Frank,@.
Alice,Mario, Q.
Harry,Lynne, Q.

O O 9 0 00 9 O & O O N W

Sarah,James, 1.

[xN

Roger, James, 1.

*?http://bl.ocks.org/d3noob/5155181
**https://gist.github.com/d3noob/5141278
*2*http://bl.ocks.org/d3noob/5141278

http://bl.ocks.org/d3noob/5155181
https://gist.github.com/d3noob/5141278
http://bl.ocks.org/d3noob/5141278
http://bl.ocks.org/d3noob/5155181
https://gist.github.com/d3noob/5141278
http://bl.ocks.org/d3noob/5141278

Force Layout Diagrams 282

Maddy, James, Q.
Sonny,Roger , 0.
James,Roger,1.
Alice,Peter,1.
Johan, Peter, 1.
Alice,Eveie,Q.
Harry,Eveie, Q.
Eveie, Harry, 2.
Henry,Mikey, Q.
Elric,Mikey, Q.
James, Sarah, 1.
Alice,Sarah,0.
James ,Maddy, 0.
Peter,Johan,@.

= 0o O OO B O~ 0l O+ O O W

The code is as follows;

<IDOCTYPE html>
<meta charset="utf-8">

<script src="http://d3js.org/d3.v3. js"></script>

<style>

path.link {
fill: none;
stroke: #666;
stroke-width: 1.5px;

circle {
fill: #ccc;
stroke: #fff;
stroke-width: 1.5px;

text {
fill: #000;
font: 10px sans-serif;
pointer-events: none;

www. dbooks. or g

https://www.dbooks.org/

Force Layout Diagrams

</style>
<body>
<script>

// get the data
d3.csv("force.csv", function(error, links) {

var nodes = {};

// Compute the distinct nodes from the links.
links. forEach(function(link) {
link.source = nodes[link.source] ||
(nodes[link.source] = {name: link.source});
link.target = nodes[link.target] ||
(nodes[link.target] = {name: link.target});
link.value = +link.value;

});

var width = 960,
height = 500;

var force = d3.layout. force()
.nodes(d3.values(nodes))
.links(links)
.size([width, height])
.linkDistance(60)
.charge(-300)
.on("tick", tick)
.start();

var svg = d3.select("body").append("svg")
.attr("width", width)
.attr("height", height);

// build the arrow.
svg.append("svg:defs").selectAll("marker")

.data(["end"]) // Different link/path types can be defined here

.enter().append("svg:marker") // This section adds in the arrows

.attr("id", String)
.attr("viewBox", "0 -5 10 10")
.attr("refX", 15)
.attr("refy", -1.5)
.attr("markerWidth", 6)
.attr("markerHeight", 6)
.attr("orient", "auto")
.append("svg:path")

283

Force Layout Diagrams

.attr("d", "Mo,-5L10,0L0,5");

// add the links and the arrows
var path = svg.append("svg:g").selectAll("path")
.data(force.links())
.enter().append("svg:path")
.attr("class", "link")

.attr("marker-end", "url(#end)");

// define the nodes
var node = svg.selectAll(".node")
.data(force.nodes())
.enter().append("g")
.attr("class", "node")
.call(force.drag);

// add the nodes
node.append("circle")
.attr("r", 5);

// add the text
node.append("text")
.attr("x", 12)
.attr("dy", ".35em")
.text(function(d) { return d.name; });

// add the curvy lines
function tick() {
path.attr("d", function(d) {
var dx = d.target.x - d.source.x,
dy d.target.y - d.source.y,
dr = Math.sqrt(dx * dx + dy * dy);

return "M" +

d.source.x + "," +
d.source.y + "A" +
dr + "," +dr + " 00,1 " +
d.target.x + "," +
d.target.y;

1)

node

.attr("transform", function(d) {

return "translate(" + d.x + "," + d.y + ")"

});

;1)

284

www. dbooks. or g

https://www.dbooks.org/

Force Layout Diagrams 285

</script>
</body>
</html>

In a similar process to the one we went through when highlighting the function of the Sankey
diagram, where there are areas that we have covered before, I will gloss over some details on the
understanding that you will have already seen them explained in an earlier section (most likely
the basic line graph example).

The first block we come across is the initial html section;

<!DOCTYPE html>
<meta charset="utf-8">

<script src="http://d3js.org/d3.v3. js"></script>
<style>

The only thing slightly different with this example is that we load the d3.v3.js script earlier. This
has no effect on running the code.

The next section loads the Cascading Style Sheets;

path.link {
fill: none;
stroke: #666;
stroke-width: 1.5px;

circle {
fill: #ccc;
stroke: #fff;
stroke-width: 1.5px;

text {
fill: #000;
font: 10px sans-serif;

pointer-events: none;

}

We set styles for three elements and all the settings laid out are familiar to us from previous
work.

Then we move into the JavaScript. Our first line loads our csv data file (force.csv).
d3.csv("force.csv", function(error, links) ({

Then we declare an empty object (I still tend to think of these as arrays even though they’re
strictly not).

Force Layout Diagrams 286

var nodes = {};

This will contain our data for our nodes. We don’t have any separate node information in our
data file, it’s just link information, so we will be populating this in the next section...

links. forEach(function(link) {
link.source = nodes[link.source] ||
(nodes[link.source] = {name: link.source});
link.target = nodes[link.target] ||
(nodes[link.target] = {name: link.target});

link.value = +link.value;

});

This block of code looks through all of our data from our csv file and for each link adds it as
a node if it hasn’t seen it before. It’s quite clever how it works as it employs a neat JavaScript
shorthand method using the double pipe (| |) identifier.

So the line (expanded)...
link.source=nodes[link.source] || (nodes[link.source]={name: link.source});
... can be thought of as saying “If 1ink.source does not equal any of the nodes values then create

a new element in the nodes object with the name of the 1ink.source value being considered.”. It
could conceivably be written as follows (this is untested);

if (link.source != nodes|[link.source]) {
nodes|[link.source] = {name: link.source}

1

Then the block of code goes on to test the 1ink.target value in the same way. Then the value
variable is converted to a number from a string if necessary (1ink.value = +link.value;).

The next block sets the size of our svg area that we’ll be using;

var width = 960,
height = 500;

The next section introduces the force function.

www. dbooks. or g

https://www.dbooks.org/

Force Layout Diagrams 287

var force = d3.layout. force()
.nodes(d3.values(nodes))
.links(links)
.size([width, height])
.linkDistance(60)
.charge(-300)
.on("tick", tick)
.start();

Full details for this function are found on the D3 Wiki***, but the following is a rough description
of the individual settings.

var force = d3.layout.force() makes sure we’re using the force function.

.nodes(d3.values(nodes)) sets our layout to the array of nodes as returned by the function
d3.values (https://github.com/mbostock/d3/wiki/Arrays#wiki-d3_values**). Put simply, it sets
the nodes to the nodes we have previously set in our object.

.links(1links) does for links what .nodes did for nodes.

.size([width, height]) sets the available layout size to our predefined values. If we were using
gravity as a force in the graph this would also set the gravitational centre. It also sets the initial
random position for the elements of our graph.

.linkDistance(60) sets the target distance between linked nodes. As the graph begins and moves
towards a steady state, the distance between each pair of linked nodes is computed and compared
to the target distance; the links are then moved towards or away from each other, so as to
converge on the set distance.

Setting this value (and other force values) can be something of a balancing act. For instance, here
is the result of setting the . 1inkDistance to 160.

**>https://github.com/mbostock/d3/wiki/Force-Layout
**%https://github.com/mbostock/d3/wiki/Arrays#wiki-d3_values

https://github.com/mbostock/d3/wiki/Force-Layout
https://github.com/mbostock/d3/wiki/Arrays#wiki-d3_values
https://github.com/mbostock/d3/wiki/Force-Layout
https://github.com/mbostock/d3/wiki/Arrays#wiki-d3_values

Force Layout Diagrams 288

/

Roger Maddy

Nidky

Johan

Frank

Link distance set to 160

Here the charged nodes are trying to arrange themselves at an appropriate distance, but the
length of the links means that their arrangement is not very pretty. Likewise if we change the
value to 30 we get the following;

IM=sddy

el Sonny

\.

Sarsh

Carol

Ssll

f’

Peter

-i&
A

Lynne

Johan

Link distance set to 30

Here the link distance allows for a symmetrical layout, but the distance is too short to be practical.

.charge(-300) sets the force between nodes. Negative values of charge results in node repulsion,
while a positive value results in node attraction. In our example, if we vary the value to 150 we
get this result;

www. dbooks.

org

https://www.dbooks.org/

Force Layout Diagrams 289

Charge set to 150

It’s not exactly easy to spot, but the graph feels a little ‘lazy’. The nodes don’t find their
equilibrium easily or at all. Setting the value higher than 300 (for our example) keeps all the
nodes nice and spread out, but where there are other separate discrete linked nodes (as there are
in our example) they tend to get forced away from the centre of the defined area.

.on("tick", tick) runs the animation of the force layout one ‘step’. It’s this progression of steps
that gives the force layout diagram it’s fluid movement.

.start(); Starts the simulation; this method must be called when the layout is first created.

The next block of our code is the standard section that sets up our svg container.

var svg = d3.select("body").append("svg")
.attr("width", width)
.attr("height", height);

The next block of our code is used to create our arrowhead marker. I will be the first to admit that
it has entered a realm of svg expertise that I do not have and the amount of extra memory power I
would need to accumulate to understand it sufficiently to explain won’t be occurring in the near
future. Please accept my apologies and as a small token of my regret, accept the following links
as an invitation to learn more: http://www.w3.0org/TR/SVG/coords.html#ViewBoxAttribute®”’
and http://www.w3schools.com/svg/svg_reference.asp???®*. What is useful to note here is that
we define the label for our marker as end. We will use this in the next section to reference the
marker as an object. This particular section of the code caused me some small amount of angst.
The problem being when I attempted to adjust the width of the link lines in conjunction with the
value set in the data for the link, it would also adjust the stroke-width of the arrowhead marker.
Then when I attempted to adjust for the positioning of the arrow on the path, I could never get
the maths right. Eventually I decided to stop struggling against it and encode the value of the
line in a couple of different ways. One as opacity using discrete boundaries and the other using
variable line width, but with the arrowheads a common size. We will cover both those solutions
in the coming sections.

**"http://www.w3.0rg/TR/SVG/coords.html#ViewBoxAttribute
*28http://www.w3schools.com/svg/svg_reference.asp?

http://www.w3.org/TR/SVG/coords.html#ViewBoxAttribute
http://www.w3schools.com/svg/svg_reference.asp
http://www.w3.org/TR/SVG/coords.html#ViewBoxAttribute
http://www.w3schools.com/svg/svg_reference.asp

Force Layout Diagrams 290

svg.append("svg:defs").selectAll("marker")
.data(["end"])

.enter () .append("svg:marker")
.attr("id", String)
.attr("viewBox", "0 -5 10 10")
.attr("refX", 15)
.attr("refY", -1.5)
.attr("markerWidth", 6)
.attr("markerHeight", 6)
.attr("orient", "auto")

.append("svg:path")

.attr("d", "Mo,-5L10,0L0,5");

The .data(["end"]) line sets our tag for a future part of the script to find this block and draw
the marker.

.attr("refX", 15) sets the offset of the arrow from the centre of the circle. While it is designated
as the X offset, because the object is rotating, it doesn’t correspond to the x (left and right) axis
of the screen. The same is true of the .attr("refY", -1.5) line.

The .attr("markerWidth", 6) and .attr("markerHeight", 6) lines set the bounding box for
the marker. So varying these will vary the space available for the marker.

The next block of code adds in our links as paths and uses the #end marker to draw the arrowhead
on the end of it.

var path = svg.append("svg:g").selectAll("path")
.data(force.links())
.enter () .append("svg:path")
.attr("class", "link")

.attr("marker-end", "url(#end)");
Then we define what our nodes are going to be.

var node = svg.selectAll(".node")
.data(force.nodes())
.enter().append("g")
.attr("class", "node")
.call(force.drag);

This uses the nodes data and adds the .call(force.drag); function which allows the node to
be dragged by the mouse.

The next block adds the nodes as an svg circle.

www. dbooks. or g

https://www.dbooks.org/

Force Layout Diagrams 291

node.append("circle")
.attr("r", 5);

And then we add the name of the node with a suitable offset.

node.append("text")
.attr("x", 12)
.attr("dy", ".35em")
.text(function(d) { return d.name; });

The last block of JavaScript is the ticks function. This block is responsible for updating the graph
and most interestingly drawing the curvy lines between nodes.

function tick() {
path.attr("d", function(d) {
var dx = d.target.x - d.source.x,
dy d.target.y - d.source.y,
dr = Math.sqrt(dx * dx + dy * dy);
return "M" +

d.source.x + "," +

d.source.y + "A" +

dr + II/ " + dr + " @ @,1 n +
d.target.x + "," +
d.target.y;

1)

node

.attr("transform", function(d) {

return "translate(" + d.x + "," +d.y + ")"; });

This is another example where there are some easily recognisable parts of the code that set the
x and y points for the ends of each link (d.source.x, d.source.y for the start of the curve and
d.target.x, d.target.y for the end of the curve) and a transformation for the node points, but
the cleverness is in the combination of the math for the radius of the curve (dr = Math.sqrt(dx
* dx + dy * dy);) and the formatting of the svg associated with it. This is sadly beyond the
scope of what I can comfortable explain, so we will have to be content with “the magic happens
here”.

The end result should be a tidy graph that demonstrates nodes and directional links between
them.

Force Layout Diagrams 292

Lg /A

Basic Directional Force Layout Diagram

Directional Force Layout Diagram (Node Highlighting)

Following on from the Basic Force Layout Diagram, our next goal is to highlight our nodes so
that we can get a better view of what ones they are (the view can get a little crowded as the
nodes begin to increase in number).

To do this we are going to use a couple more of the mouse events that we first introduced in the
tooltips section.

For this example we are going to use the click event (Triggered by a mouse click (mousedown
and then mouseup over an element)) and the dblclick event (Triggered by two clicks within a
short time over an element).

The single click will enlarge the node and the associated text and the double click will return the
node and test to its original size.

The way to implement this is to first set a hook to capture when the event occurs, which calls a
function which is laid out later in the script.

The hook is going to be part of the JavaScript where we define our nodes;

var node = svg.selectAll(".node")
.data(force.nodes())
.enter().append("g")
.attr("class", "node")
.on("click", click) // Add in this line
.on("dblclick", dblclick) // Add in this line too
.call(force.drag);

The two additional lines above tell the script that when it sees a click or a double-click on the
node (since it’s part of the node set-up) to run either the click or dblclick functions.

The following two function blocks should be placed after the tick function but before the closing
curly bracket and bracket as indicated;

www. dbooks. or g

https://www.dbooks.org/

Force Layout Diagrams 293

function tick() {
path.attr("d", function(d) {
var dx = d.target.x - d.source.x,
dy d.target.y - d.source.y,
dr = Math.sqrt(dx * dx + dy * dy);
return "M" +

d.source.x + "," +

d.source.y + "A" +

dr + " " +dr + "0 0,1 " +
d.target.x + "," +
d.target.y;

1)

node

.attr("transform", function(d) {
return "translate(" + d.x + "," + d.y + ")"; });

// <= Put the functions in here!

});

The click function is as follows;

function click() {
d3.select(this).select("text").transition()
.duration(750)
attr("x", 22)
.style("fill", "steelblue")
.style("stroke", "lightsteelblue")
.style("stroke-width", ".5px")
.style("font", "20px sans-serif");
d3.select(this).select("circle").transition()
.duration(750)
.attr("r", 16)
.style("fill", "lightsteelblue");

The first line declares the function name (click). Then we select the node that we’ve clicked on
and then the associated text before we begin the declaration for our transition with the following;
d3.select(this).select("text").transition()

Then we define the new properties that will be in place after the transition. We move the text’s x

position (.attr("x", 22)), make the text fill steel blue (.style("fill", "steelblue")), set the
stroke around the edge of the text light steel blue (.style("stroke", "lightsteelblue")), set

Force Layout Diagrams 294

that stroke to half a pixel wide (.style("stroke-width", ".5px")) and increase the font size to
20 pixels (.style("font", "20px sans-serif");).

Then we do much the same for the circle component of the node. Select it, declare the transition,
increase the radius and change the fill colour.

The dblclick function does exactly the same as the click function, but reverses the action to
return the text and circle to the original settings.

function dblclick() {
d3.select(this).select("circle").transition()
.duration(750)
attr('r", 6)
.style("flll", "H#oce")
d3.select(this).select("text").transition()
.duration(750)
.attr("x", 12)
.style(" stroke", "none"
style("fill", "black")
.style("stroke", "none"

.style("font", "10px sans-serif");

The end result is a force layout diagram where you can click on nodes to increase their size (circle
and text) and then double click to reset them if desired.

Johan

<

S
A

Roger Maddy

Lynne

Sonny

Directional Force Layout Diagram (Node Highlighting)

The full code for this diagram can be found on github®* or in the code samples bundled with
this book (force-highlight.html and force.csv). A live example can be found on bl.ocks.org®*.

**’https://gist.github.com/d3noob/5141528
#*%http://bl.ocks.org/d3noob/5141528

www. dbooks.

org

https://gist.github.com/d3noob/5141528
http://bl.ocks.org/d3noob/5141528
https://gist.github.com/d3noob/5141528
http://bl.ocks.org/d3noob/5141528
https://www.dbooks.org/

Force Layout Diagrams 295

Directional Force Layout Diagram (varying link opacity)

The next variation to our force layout diagram is the addition of variation in the link to represent
different values (think of the number of packets passed or the amount of money transferred).

There are a few different ways to do this, but by virtue of the inherent close linkages between
the arrowhead marker and the link line, altering both in synchronicity proved to be beyond my
meagre talents. However, I did find a couple of suitable alternatives and I will go through one
here.

In this example we will take the value associated in the loaded data with the link and we will
adjust the opacity of the link line in a staged way according to the range of values.

For example, in a range of link strengths from 0 to 100, the bottom 25% will be at opacity 0.25,
from 25 to 50 will be 0.50, 50 to 75 will be 0.75 and above 75 will have an opacity of 1. So the
final result looks a little like this;

»" Johan
ster
= ol
oge
Sonny) " |"
b Lynne
W) \ Y .
% i & i Maric
~~ lames lice .
Y A%
Sy [™8 saly
™ Eveis Harry
Maddy Sarah

Nigky
Directional Force Layout Diagram (varying link opacity)

The changes to the code to create this effect are focussed on creating an appropriate range for
the values associated with the links and then applying the opacity according to that range in
discrete steps.

The first change to the node highlighting code that we make is to the style section. The following
elements are added;

path.link.twofive {
opacity: 0.25;
}

path.link.fivezero {
opacity: 0.50;
}

path.link.sevenfive {
opacity: 0.75;
}

path.link.onezerozero {

Force Layout Diagrams 296

opacity: 1.0;
}
This provides our four different ‘classes’ of opacity.
Then in a block of code that comes just after the declaration of the force properties we have the

following;

var v = d3.scale.linear().range([0, 100]);
v.domain([0, d3.max(links, function(d) { return d.value; })]);

links. forEach(function(link) {
if (v(link.value) <= 25) {
link.type = "twofive";
} else if (v(link.value) <= 50 && v(link.value) > 25) {

link.type = "fivezero";

} else if (v(link.value) <= 75 && v(link.value) > 50) {
link.type = "sevenfive";

} else if (v(link.value) <= 100 && v(link.value) > 75) {
link.type = "onezerozero";

});

Here we set the scale and the range for the variable v (var v = d3.scale.linear().range([0,
100]) ;). We then set the domain for v to go from 0 to the maximum value that we have in our
link data.

The final block above uses a cascading set of if statements to assign a label to the type parameter
of each link. This label is the linkage back to the styles we defined previously.

The final change is to take the line where we assigned a class of 1ink to each link previously...
.attr("class", "link")

...and add in our type parameter as well;
.attr("class", function(d) { return "link " + d.type; })

Obviously if we wanted a greater number of opacity levels we would add in further style blocks
(with the appropriate values) and modify our cascading if statements. 'm not convinced that
this solution is very elegant for what I'm trying to do (it was a much better fit for the application
that Mike Bostock applied it to originally where he designated different types of law suits) but
I’ll take the result as a suitable way of demonstrating variation of value.

The full code for this diagram can be found on github®** or in the code samples bundled with this
book (force-highlight-opacity.html and force.csv). A live example can be found on bl.ocks.org?.

The full code for the Directional Force Layout Diagram with varying link opacity is also in the
Appendix: Force Layout Diagram at the rear of the book.

*'https://gist.github.com/d3noob/5155181
**?http://bl.ocks.org/d3noob/5155181

www. dbooks. or g

https://gist.github.com/d3noob/5155181
http://bl.ocks.org/d3noob/5155181
https://gist.github.com/d3noob/5155181
http://bl.ocks.org/d3noob/5155181
https://www.dbooks.org/

Force Layout Diagrams 297

Directional Force Layout Diagram (Unique Node Colour)

The following example was put together in response to a question on the d3noob.org*”* site from

‘Gino’. While the example isn’t precisely what Gino was wanting to achieve, it does illustrate
the application of a colour palette to unique elements.

A

Directional Force Layout Diagram (Unique Node Colour)

The end result looks like the following;

Here each of the nodes has had a separate colour applied to it from one of the 20 colour palette

categorical colour ranges. An excellent overview of these ranges is on the d3 wiki***.

The full code for this diagram can be found on github*’ or in the code samples bundled with
this book (force-colour-nodes.html and force.csv). A live example can be found on bl.ocks.org*.

The changes required from the previous example with the altered opacity are pretty simple.

Firstly we declare the colour range we're going to use in the variable section.
color = d3.scale.category20c();

In this case we’ll use the category2@c range.

Then we add the fill style for the circle to the code where we append the circles to our graphic.

node.append("circle")
attr("r", 5)
.style("fill", function(d) { return color(d.name); });

The code applies the fill based on a function that returns a different colour based on each unique
node name. So just to be clear here. We’re not setting a specific colour to a node. The colours are
assigned as a function of where each name sits in the array of nodes (practically random, but in
an ordered way :-)).

Then remove the style declarations in the function click() and function dblclick() where
the fill colour is declared for the circles. This prevents the colours from turning grey or steelblue
when they are clicked / double clicked. This means that we can click on a few of our new coloured
nodes and their unique colours are retained thusly...

A

Directional Force Layout Diagram (‘clicked’ unique node colours)

Good question Gino. Many thanks.

*http://www.d3noob.org/2013/03/d3js-force-directed- graph-example-basic.html?showComment=1387379478999#
€289010472197093679

**https://github.com/mbostock/d3/wiki/Ordinal-Scales#categorical-colors

*3Shttps://gist.github.com/d3noob/8043434

**Shttp://bl.ocks.org/d3noob/8043434

http://www.d3noob.org/2013/03/d3js-force-directed-graph-example-basic.html?showComment=1387379478999#c289010472197093679
https://github.com/mbostock/d3/wiki/Ordinal-Scales#categorical-colors
https://gist.github.com/d3noob/8043434
http://bl.ocks.org/d3noob/8043434
http://www.d3noob.org/2013/03/d3js-force-directed-graph-example-basic.html?showComment=1387379478999#c289010472197093679
http://www.d3noob.org/2013/03/d3js-force-directed-graph-example-basic.html?showComment=1387379478999#c289010472197093679
https://github.com/mbostock/d3/wiki/Ordinal-Scales#categorical-colors
https://gist.github.com/d3noob/8043434
http://bl.ocks.org/d3noob/8043434

Bullet Charts

Introduction to bullet chart structure

One of the first D3.js examples I ever came across (back when Protovis was the thing to use) was
one with bullet charts (or bullet graphs).

It struck me straight away as an elegant way to represent data by providing direct information
and context.

a 500 1,000 1,500 2,000 2,500 3,000

Bullet Chart

The Bullet Graph Design Specification®” was laid down by Stephen Frew as part of his work
with Perceptual Edge®*®.

Using his specification we can break down the components of the chart as follows.

Three background fill colours Symbol Marker that shows
that show qualitative ranges a comparative value

like low, medium and high.
Text Label ‘ ‘

| \
/ T 6

CPU 1 Load

(5]
o
(=]
(=]

o 500 1.000 1.500 2,000 2,000

ki

Quantitative Scale
The bar that shows the performance measure

Bullet Chart Specification

Text label: Identifies the performance measure being represented.

Quantitative scale: A scale that is an analogue of the scale on the x axis of a two dimensional
Xy graph.

Performance measure: The primary data being displayed. In this case the frequency of operation
of a CPU.

Comparative marker: A reference symbol designating a measurement such as the previous day’s
high value (or similar).

*"http://www.perceptualedge.com/articles/misc/Bullet_Graph_Design_Spec.pdf
**%http://www.perceptualedge.com/

www. dbooks. or g

http://www.perceptualedge.com/articles/misc/Bullet_Graph_Design_Spec.pdf
http://www.perceptualedge.com/
http://www.perceptualedge.com/articles/misc/Bullet_Graph_Design_Spec.pdf
http://www.perceptualedge.com/
https://www.dbooks.org/

Bullet Charts 299

Qualitative ranges: These represent ranges such as low, medium and high or bad, satisfactory
and good. Ideally there would be no fewer than two and no more than 5 of these (for the purposes
of readability).

Understanding the specification for the chart is useful, because it’s also reflected in the way that
the data for the chart is structured.

For instance, If we take the current example, the data can be presented (in JSON) as follows;

{
"title":"CPU 1 Load",
"subtitle":"GHz",
"ranges" : [1500, 2250, 3000]
"measures": [2200],
"markers": [2500]

}

Here we an see all the components for the chart laid out and it’s these values that we will load
into our D3 script to display.

D3.js code for bullet charts

We’ll move through the explanation of the code in a similar process to the other examples in the
book. Where there are areas that we have covered before, I will gloss over some details on the
understanding that you will have already seen them explained in an earlier section (most likely
the basic line graph example).

Here is the full code;

<IDOCTYPE html>
<meta charset="utf-8">
<style>

body {
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
margin: auto;
padding-top: 40px;
position: relative;
width: 800px;

button {
position: absolute;
right: 40px;

Bullet Charts

top: 10px;

.bullet { font: 10px sans-serif; }

.bullet .marker { stroke: #0Q00; stroke-width: 2px; }
.bullet .tick line { stroke: #666; stroke-width: .5px; }
.bullet .range.s@ { fill: *#eee; }

.bullet .range.si { fill: #ddd; }

.bullet .range.s2 { fill: #ccc; }

.bullet .measure.s@ { fill: steelblue; }

.bullet .title { font-size: 14px; font-weight: bold; }
.bullet .subtitle { fill: #999; }

</style>

<button>Update</button>

<script type="text/javascript" src="d3/d3.v3.js"></secript>
<script src="js/bullet. js"></script>

<script>

var margin = {top: 5, right: 40, bottom: 20, left: 120},
width = 800 - margin.left - margin.right,
height = 50 - margin.top - margin.bottom;

var chart = d3.bullet()
.width(width)
.height(height);

d3.json("bullet-data. json", function(error, data) {
var svg = d3.select("body").selectAll("svg")

.data(data)

.enter().append("svg")
.attr("class", "bullet")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")")
.call(chart);

var title = svg.append("g")
.style("text-anchor", "end")
.attr("transform", "translate(-6," + height / 2 + ")");

title.append("text")
.attr("class", "title")
.text(function(d) { return d.title; });

300

www. dbooks. or g

https://www.dbooks.org/

Bullet Charts 301

title.append("text")
.attr("class", "subtitle")
.attr("dy", "1em")
.text(function(d) { return d.subtitle; });

d3.selectAll("button").on("click", function() {
svg.datum(randomize).call(chart.duration(1000));

1)

1)

function randomize(d) {
if (!d.randomizer) d.randomizer = randomizer(d);
d.markers = d.markers.map(d.randomizer);
d.measures = d.measures.map(d.randomizer);
return d;

function randomizer(d) {
var k = d3.max(d.ranges) * .2;
return function(d) {
return Math.max(@, d + k * (Math.random() - .5));

};

</script>
</body>

This code is a derivative of one of Mike Bostock’s blocks here®*. The full code for this graph can
also be found on github®*° or in the code samples bundled with this book (bullet-simple.html,

bullet.js and bullet-data.json). A live example can be found on bl.ocks.org®*'.

is worth noting that while the code that we will modify is as presented above, we are
employing a separate script bullet. js to enable the charts.

p It will become clearer in the process of going through the code below, but as a teaser, it

The first block of our code is the start of the file and sets up our HTML.

***http://bl.ocks.org/mbostock/4061961
***https://gist.github.com/d3noob/5886992
**Thttp://bl.ocks.org/d3noob/5886992

http://bl.ocks.org/mbostock/4061961
https://gist.github.com/d3noob/5886992
http://bl.ocks.org/d3noob/5886992
http://bl.ocks.org/mbostock/4061961
https://gist.github.com/d3noob/5886992
http://bl.ocks.org/d3noob/5886992

Bullet Charts

<IDOCTYPE html>
<meta charset="utf-8">

<style>

This leads into our style declarations.

body {

font-family:

margin: auto;

padding-top: 40px;

position: relative;

width: 800px;
}
button {
position: absolute;
right: 40px;
top: 10px;
}
.bullet { font: 10px sans-serif; }
.bullet .marker { stroke: #Q00; stroke-width: 2px; }
.bullet .tick line { stroke: #666; stroke-width:
.bullet .range.s@ { fill: #eee; }
.bullet .range.si { fill: #ddd; }
.bullet .range.s2 { fill: #ccc; }
.bullet .measure.s@ { fill: steelblue; }
.bullet .title { font-size: 14px; font-weight: bold; }
.bullet .subtitle { fill: #009: }

302

"Helvetica Neue", Helvetica, Arial, sans-serif;

.5px; }

We declare the (general) styling for the chart page in the first instance and then the button. Then

we move on to the more interesting styling for the bullet charts.

The first line .bullet { font: 1@px sans-serif; } sets the font size.

The second line sets the colour and width of the symbol marker. So if we were to change it to...

.bullet

.marker { stroke: red; stroke-width: 10px; }

... the result is...

Symbol Marker

2,000 2,500 2,000

The next three lines set the colours for the fill of the qualitative ranges.

www. dbooks. or g

https://www.dbooks.org/

Bullet Charts 303

.bullet .range.s@ { fill: #eee; }
.bullet .range.si { fill: #ddd; }
.bullet .range.s2 { fill: #ccc; }

You can have more or fewer ranges set here, but to use them you also need the appropriate values
in your data file. We will explore how to change this later.

The next line designates the colour for the value being measured.
.bullet .measure.s@ { fill: steelblue; }

Like the qualitative ranges, we can have more of them, but in my personal opinion, it starts to
get a bit confusing.

The final two lines lay out the styling for the label.
The next block of code loads the JavaScript files.

</style>

<button>Update</button>

<secript src="http://d3js.org/d3.v3.min. js"></script>
<script src="bullet. js"></script>

<script>

In this case it’s d3 and bullet. js. We need to load bullet. js as a separate file since it exists
outside the code base of the d3.js ‘kernel’.

Then we get into the JavaScript. The first thing we do is define the size of the area that we’ll be
working in.

var margin = {top: 5, right: 40, bottom: 20, left: 120},
width = 800 - margin.left - margin.right,
height = 50 - margin.top - margin.bottom;

Then we define the chart size using the variables that we have just set up.

var chart = d3.bullet()
.width(width)
.height(height);

The other important thing that occurs while setting up the chart is that we use the d3.bullet
function call to do it. The d3.bullet function is the part that resides in the bullet. js file that
we loaded earlier. The internal workings of bullet. js are a window into just how developers
are able to craft extra code to allow additional functionality for d3.js.

Then we load our JSON data with our values that we want to display.

Bullet Charts 304

d3.json("bullet-data. json", function(error, data) ({
The next block of code is the most important IMHO, since this is where the chart is drawn.

var svg = d3.select("body").selectAll("svg")

.data(data)

.enter().append("svg")
.attr("class", "bullet")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform", "translate(" + margin.left +
.call(chart);

+ margin.top + ")")

non
’

However, to look at it you can be forgiven for wondering if it’s doing anything at all.

We use our .select and .selectAll statements to designate where the chart will go (d3.select("body") .select
and then load the data as data (.data(data)).

We add in a svg element (.enter().append("svg")) and assign the styling from our css section
(.attr("class", "bullet")).

Then we set the size of the svg container for an individual bullet chart using .attr("width",
width + margin.left + margin.right) and .attr("height", height + margin.top +
margin.bottom).

We then group all the elements that make up each individual bullet chart with .append("g") be-
fore placing the group in the right place with .attr("transform", "translate(" + margin.left

+ "," + margin.top + ")").

Then we wave the magic wand and call the chart function with .call(chart); which will take
all the information from our data file (like the ranges, measures and markers values) and use
the bullet. js script to create a chart.

The reason I made the comment about the process looking like magic is that the vast majority of
the heavy lifting is done by the bullet. js file. Because it’s abstracted away from the immediate
code that we’re writing, it looks simplistic, but like all good things, there needs to be a lot of
complexity to make a process look simple.

We then add the titles.

www. dbooks. or g

https://www.dbooks.org/

Bullet Charts 305

var title = svg.append("g")
.style("text-anchor", "end")
.attr("transform", "translate(-6," + height / 2 + ")");

title.append("text")
.attr("class", "title")
.text(function(d) { return d.title; });

title.append("text")
.attr("class", "subtitle")
.attr("dy", "lem")
.text(function(d) { return d.subtitle; });

We do this in stages. First we create a variable title which will append objects to the grouped el-
ement created above (var title = svg.append("g")). We apply a style (.style("text-anchor",
"end")) and transform to the objects (.attr("transform", "translate(-6," + height / 2 +
")");)

Then we append the title and subtitle data (from our JSON file) to our chart with a modicum
of styling and placement.

Then we add a button and functions which do the job of applying random data to our variables
every time it’s pressed.

d3.selectAll("button").on("click", function() {
svg.datum(randomize).call(chart.duration(1000));
1)
1)

function randomize(d) {
if (!d.randomizer) d.randomizer = randomizer(d);
d.markers = d.markers.map(d.randomizer);
d.measures = d.measures.map(d.randomizer);

return d;

function randomizer(d) {
var k = d3.max(d.ranges) * .2;
return function(d) {
return Math.max(@, d + k * (Math.random() - .5));

};

I’'m not going to delve into the working of the randomize function, because it exists simply to
demonstrate the dynamic nature of the chart and not really how the chart is drawn.

However, I will be going through a process later to ensure that we can update the data and the
chart automatically which will hopefully be more orientated to practical applications.

Bullet Charts 306

That’s it! Now we’ll go through how you can use the data to change aspects of the chart and
what parts of the code need to be adjusted to work with those changes.

Adapting and changing bullet chart components

This section explores some of the simple changes that can be made to bullet charts that may not
necessarily be obvious.

Understand your data

The first point to note is that understanding the data loaded from the JSON file is a key to
knowing what your chart is going to do.

We’ll start by looking at our data in a way that hopefully makes the most sense.

You may be faced with data for a bullet chart that’s in a format as follows;

[

{"title":"CPU Load", "subtitle":"GHz", "ranges":[1500,2250,3000Q], "measures" :
[2200], "markers": [2500]},

{"title":"Memory Used", "subtitle":"MBytes", "ranges":[256,512,1024], "measures" :
[768], "markers": [900] }

]

This is perfectly valid data, but we’ll find it slightly easier to understand if we show it like this...

{
"title":"CPU Load",
"subtitle":"GHz",
"ranges": [1500, 2250, 3000] ,
"measures": [2200],
"markers": [2500]

H

{
"title":"Memory Used",
"subtitle":"MBytes",
"ranges":[256,512,1024],
"measures": [768],
"markers": [900]

}

The data is exactly the same (in terms of content) but I find it a lot easier to comprehend what’s
going on with the second example.

www. dbooks. or g

https://www.dbooks.org/

Bullet Charts 307

I have a section in the book called ‘Understanding JavaScript Object Notation (JSON)’ in
the ‘Assorted Tips and Tricks’ chapter. I found life a lot easier once I started to understand
how data was structured in JSON, and if you take a bit of time to understand it, I think
you’ll find life easier too.

Add as many individual charts as you want.

The example data in the file is an array of two groups. Each group represents the information

required to generate one bullet chart. Therefore the example data above will create the following
charts;

L O a0 |
] 500 1,000 1.500 2,000 2.500 3,000
L |
] 100 200 300 400 500 500 Too 200 200 1,000
Two Bullet Charts

You don’t need to make any changes to your code in order to add more individual charts. You
just need to add more data groups to your JSON file. The following example uses exactly the
same code, but with several extra groups of data.

e] |
i 500 1,000 1,500 2,000 2,500 2,000
g R |
a 100 200 200 400 E00 200 700 800 200 1,000
H D S P I
------- a 200 400 00 800 1,000 1,200 1,400
Beer
_ o 5 10 15 20
PIZZa SlIC e e ——
o a 2 4 [+ 8 10 12
e
- i 200 400 a0n 800 1,000 1,200 1,400

Lots of Bullet Charts

Add more ranges and measures

Returning to our single chart example, you can see from the JSON data that there are three
specified ranges and one measure.

Bullet Charts 308

{
"title":"CPU 1 Load",
"subtitle":"GHz",
"ranges": [1500,2250, 3000]
"measures"”: [2200],
"markers": [2500]

}

]

The same was true for the css in the JavaScript code. Three ranges and one measure

.bullet { font: 10px sans-serif; }

.bullet .marker { stroke: #Q00; stroke-width: 2px; }
.bullet .tick line { stroke: #666; stroke-width: .5px; }
.bullet .range.s@ { fill: #eee; }

.bullet .range.si1 { fill: #ddd; }

.bullet .range.s2 { fill: #ccc; }

.bullet .measure.s@ { fill: steelblue; }

.bullet .title { font-size: 14px; font-weight: bold; }
.bullet .subtitle { fill: #999; }

By matching the css for the .bullet style with the data you can add more or fewer of both. For
example here’s example data, css and a chart with five ranges and two measures.

[

{
"title":"CPU 1 Load",
"subtitle":"GHz",
"ranges": [500,1000,1500,2250, 3000]
"measures”: [1250, 2200],
"markers": [2650]

}

.bullet { font: 10px sans-serif; }

.bullet .marker { stroke: lightgreen; stroke-width: 5px; }
.bullet .tick line { stroke: #666; stroke-width: .5px; }
.bullet .range.s@ fill: navy; }

fill: mediumblue; }
fill: dodgerblue; }
fill: aqua; }

fill: lightblue; }
.bullet .measure.s@ { fill: red; }

.bullet .range.sl
.bullet .range.s2
.bullet .range.s3

o e St W e Wi e

.bullet .range.s4
.bullet .measure.s1 { fill: pink; }

.bullet .title { font-size: 14px; font-weight: bold; }
.bullet .subtitle { fill: #999; }

www. dbooks. or g

https://www.dbooks.org/

Bullet Charts 309

a 500 1,000 1,500 2,000 2,500 3,000

Bullet Chart with Five Ranges and Two Measures

First of all. Yes, I know the colours are gaudy. Hopefully they stand out. Don’t abuse your own
graphs in this hideous way:.

More importantly though, you can now get a better idea of how to align the range and measure
values in the JSON file with the .range and .measure styles in the css.

range.s4 .range.s3 .range.s2 range.s1 range.s0

o, 500 1,000 1,500 2,000 4 2,500 3,000
'S

.measure.s’ .measure.s0

Bullet Chart with Five Ranges and Two Measures

The diagram shows that the .range and . measure bars are numbered from the right. (for example
the ‘navy’ colour showing the range up to 3000 GHz is designated .range.s@. At first this
convention of numbering from the right confused me. I imagined that the smallest range should
be .range.s@ and this should be on the left. Then I realised that the numbering related to the
layer of the range. So this would make .range.s@ go from 0 to 3000. Then the second layer
would be .range.s1 which would go on top of .range.s@ from 0 to 2250, thereby covering most
of .range.s@ except for the part that exceeded .range.s1. Which is exactly what we see with
successively higher layers having higher numbers. The same is true for the .measure numbers
and layers.

Updating a bullet chart automatically

Displaying static data is a good start for a bullet chart, but if you have data that’s changing
dynamically, you need to be able to re-load the information and display it automatically.

To adapt our code to this purpose we will first remove the parts that added the button.

Remove this portion from the css section;

button {
position: absolute;
right: 40px;
top: 10px;

}

Then remove this line that added the button in the html section;

Bullet Charts 310

<button>Update</button>

All we need to do now is change the section that called the original json file from;
d3.json("bullet-data. json", function(error, data) {

.. to...

d3. json("bullet-data2. json", function(error, data) {

So that we're dealing with a different json file (there’s no need to go messing around with our
original data).

Change the section that used to call the function to randomise the data with the button click
from...

d3.selectAll("button").on("click", function() {
svg.datum(randomize).call(chart.duration(1000));
1)

..to...

setInterval (function() {
updateData();
}, 1000);

This new piece of code simply sets up a repeating function that calls another function (updateData)
every 1000ms.

The final change is to replace the original functions that randomised the data...

function randomize(d) {
if (!d.randomizer) d.randomizer = randomizer(d);
d.markers = d.markers.map(d.randomizer);
d.measures = d.measures.map(d.randomizer);
return d;

function randomizer(d) {
var k = d3.max(d.ranges) * .2;
return function(d) {
return Math.max(@, d + k * (Math.random() - .5));

};

... with our new function that updates the data ...

www. dbooks. or g

https://www.dbooks.org/

Bullet Charts 311

function updateData() {
d3.json("bullet-data2. json", function(error, data) {
d3.select("body").selectAll("svg")

.datum(function (d, i) {
d.ranges = data[i].ranges;
d.measures = data[i].measures;
d.markers = data[i].markers;
return d;

P

.call(chart.duration(1000));

});

This new function (updateData) reads in our json file again, selects all the svg elements then
updates all the .ranges, .measures and .markers data with whatever was in the file. Then it
calls the chart function that updates the bullet charts.

All the code components for this script can be found on github®*? or in the code samples
bundled with this book (bullet-auto.html and bullet-data2.json). A live example can be found
on bl.ocks.org®* (although it won’t update since the data file can’t be updated online).

***https://gist.github.com/d3noob/5893649
**3http://bl.ocks.org/d3noob/5893649

https://gist.github.com/d3noob/5893649
http://bl.ocks.org/d3noob/5893649
https://gist.github.com/d3noob/5893649
http://bl.ocks.org/d3noob/5893649

Mapping with d3.js

Another string to the bow of d3.js is the addition of a set of powerful routines for handling
geographical information.

In the same sense that a line graph is a simple representation of data on a document, a map can
be regarded as a set of points with an underlying coordinate system. When you say it like that it
seems obvious that it should be applied as a document for display. However, I don’t want to give
the impression that this is some sort of trivial matter for either the original developers or for you,
the person who wants to display a map. Behind the scenes for this type of work, the thought that
must have gone into making the code usable and extensible must have been enormous.

Mike Bostock has lauded the work of Jason Davies in the development of the latest major version
of d3.js (version 3) for his work on improving mapping capability. A visit to his home page***
provides a glimpse into Jason’s expertise and no visit would be complete without marvelling at
his work with geographic projections®*.

Examples

[am firmly of the belief that mapping in particular has an enormous potential for adding value to
data sets. The following collection of examples gives a brief taste of what has been accomplished
by combining geographic information and D3 thus far. (The screen shots following have been
sourced from the biovisualize gallery**® and as such provide attribution to the best of my ability.
If T have incorrectly attributed the source or author please let me know and I will correct it

promptly.)

Faux D3 3d globe integrated with Mapbox / Open Street Map

Above is an interactive visualization showing the position of the main map on a faux D3 3d
globe with a Mapbox / Open Street Map main window. Source dev.geosprocket.com®*” Source
Bill Morris.

***http://www.jasondavies.com/

**>http://www.jasondavies.com/maps/

*Shttp://biovisualize.github.com/d3visualization/#visualizationType=map
**"http://dev.geosprocket.com/d3/finder/

www. dbooks. or g

http://www.jasondavies.com/
http://www.jasondavies.com/maps/
http://biovisualize.github.com/d3visualization/#visualizationType=map
http://dev.geosprocket.com/d3/finder/
http://www.jasondavies.com/
http://www.jasondavies.com/maps/
http://biovisualize.github.com/d3visualization/#visualizationType=map
http://dev.geosprocket.com/d3/finder/
https://www.dbooks.org/

Mapping with d3.js

Less than 20 000 people
| 20,000 to 64,999 people
. 55,000 people or more

Kentucky Count Population from the 2010 census

This is a breakdown of population in Kentucky Counties from the 2010 census.

ccarpenterg.github.com®*® by Cristian Carpenter.

Mast palluted

Least polluted

All Pollutants

This map visualizes air pollution in Beijing. Source: scottcheng.github.com?** by Scott Cheng.

All Stations

COct 0:00 00
T

Beijing air pollution

***http://ccarpenterg.github.com/blog/us-census-visualization-with-d3js/

***http://scottcheng.github.com/bj-air-vis/

o-a0

12:00

£:00 200 12:00

: 1] =
[=== S i i
7 EEEETEEEEE EEEEE

P10

313

Source:

PM2.5

s02

NCZ

http://ccarpenterg.github.com/blog/us-census-visualization-with-d3js/
http://scottcheng.github.com/bj-air-vis/
http://ccarpenterg.github.com/blog/us-census-visualization-with-d3js/
http://scottcheng.github.com/bj-air-vis/

Mapping with d3.js 314

B\
Shuttle Radar Topography Mission tile downloading
This is a section of the globe that is presented on the Shuttle Radar Topography Mission tile

downloading web site. This excellent site uses the interactive globe to make the selection of
SRTM tiles easy. Source dwtkns.com?*® by Derek Watkins.

Animated World tour

This is a static screen-shot of an animated tour of the Worlds countries. Source bl.ocks.org** by
Mike Bostock.

*%http://dwtkns.com/srtm/
*Thttp://bl.ocks.org/mbostock/4183330

www. dbooks. org

http://dwtkns.com/srtm/
http://bl.ocks.org/mbostock/4183330
http://dwtkns.com/srtm/
http://bl.ocks.org/mbostock/4183330
https://www.dbooks.org/

Mapping with d3.js 315

A Chicago Divided by Killings

Related Article »

Homicides, 2001-2012
A New York Times analysis of

iy) o ® 30 10 -1
homicides and census data in iSO wel. PARE
Chicago compared areas near e __ [Race
murders to those that were not. iR etk . Majority white
Residents living near homicides in QHAGE it sEFEERSON i ercomn Majorfts' black
the last 12 years were much more mmawe S e Majortty, ol
likely to be black, earn less money FORTAGE mn:e"f '
and lack a college degree. DUNNING o S CNSFTTE'E. Lmi.:E !

VIEW

' sgnoate 2 Lincoln Park A

MONTCLARE BELMONT", | "0 "%, . predominantly white
MEXR MOT NE&R . _?IFW:”{ HESN m LN neighborhood on
HOMICIDES ~ HOMICIDES - . as s s Chicago's North Side

had about 10 percent

Population 1.3 mil. 1.4 mil. o WESL "o NEAR L 2
Austin More than 450 gy HET iy
.y .. InF neighborhoods to the
Income $38,318 $61,175 homicides have happened s eBeemas 88 s ; west.
in this neighborhood in T Y L e

A Chicago Divided by Killings: New Your Times

This is one of the great infographics published by the New York Times**?. Source: www.nytimes.com?®>*
by Mike Bostock, Shan Carter and Kevin Quealy.

Concentric circles emanating from glowing red dot

This is an animated graphic showing a series of concentric circles emanating from glowing red
dot which was styled after a news article in The Onion®**. Source: bl.ocks.org** by Mike Bostock.

*>?http://www.nytimes.com
*>http://www.nytimes.com/interactive/2013/01/02/us/chicago-killings.html?_r=0
*>*http://www.theonion.com/video/breaking-news-series- of-concentric- circles-emanati, 14204/
*>*http://bl.ocks.org/mbostock/4503672

http://www.nytimes.com/
http://www.nytimes.com/interactive/2013/01/02/us/chicago-killings.html?_r=0
http://www.theonion.com/video/breaking-news-series-of-concentric-circles-emanati,14204/
http://bl.ocks.org/mbostock/4503672
http://www.nytimes.com/
http://www.nytimes.com/interactive/2013/01/02/us/chicago-killings.html?_r=0
http://www.theonion.com/video/breaking-news-series-of-concentric-circles-emanati,14204/
http://bl.ocks.org/mbostock/4503672

Mapping with d3.js 316

N

)

|

|

]

|

|

|

y
/ 'II
L i
Powered by Leaflet — Stamen Toner, OpenStree

o 70

T B85

2 g

5 55

I 50

= iE

:2 »~ - Y % -
R is -"I-_ﬂ I' L I"lr. .I." L) hl. g g7
Sep 05 Tus 07 Thu 08 Sat 11 Mon 12 Wed 15 Fri 17 Sep 19 Tue 21 Thu 23 Sat 25 Meon 27

Christchurch earthquakes timeline

Here we see earthquakes represented on a selectable timeline where D3 generates a svg overlay
and the map layer is created using Leaflet. Source: bl.ocks.org®* by tnightingale.

Earthquakes in the past 24 hours

Carrying on with the earthquake theme, this is a map of all earthquakes in the past 24 hours over
magnitude 2.5. Source: bl.ocks.org*’ by benelsen.

*>Shttp://bl.ocks.org/tnightingale/4718717
**"http://bl.ocks.org/benelsen/4969007

www. dbooks. or g

http://bl.ocks.org/tnightingale/4718717
http://bl.ocks.org/benelsen/4969007
http://bl.ocks.org/tnightingale/4718717
http://bl.ocks.org/benelsen/4969007
https://www.dbooks.org/

Mapping with d3.js 317

Satellite projection

An interactive satellite projection. Source dev.geosprocket.com*** by Bill Morris.

GeoJSON and TopoJSON

Projecting countries and various geographic features onto a map can be a very data hungry
exercise. By that I mean that the information required to present geographic shapes can result
in data files that are quite large. GeoJSON has been the default geographic data file of choice for
quite some time, and as the name would suggest it encodes the data in a JSON type hierarchy.
Often these GeoJSON files include a significant amount of extraneous detail or incorporate a
level of accuracy that is impractical (too detailed).

Enter TopoJSON. Mike Bostock has designed TopoJSON as an extension to GeoJSON in the sense
that it has a similar structure, but the geometries are not encoded discretely and where they share
features, they are combined. Additionally TopoJSON encodes numeric values more efficiently
and can incorporate a degree of simplification. This simplification can result in savings of file
size of 80% or more depending on the area and use of compression. Although TopoJSON has
only begun to be used, the advantages of it seem clear and so I will anticipate its future use by
incorporating it in my example diagrams (not that the use of GeoJSON differs much if at all). A
great description of TopoJSOn can be found on the TopoJSON wiki on github®*’.

3http://dev.geosprocket.com/d3/sat/
**https://github.com/mbostock/topojson/wiki

http://dev.geosprocket.com/d3/sat/
https://github.com/mbostock/topojson/wiki
http://dev.geosprocket.com/d3/sat/
https://github.com/mbostock/topojson/wiki

Mapping with d3.js 318

Starting with a simple map

Our starting example will demonstrate the simple display of a World map. Our final result will

looks like this;

h s - i
2 aghn S .

The World

The data file for the World map is one produced by Mike Bostock’s as part of his Topo]SON
work.

We’ll move through the explanation of the code in a similar process to the one we went through
when highlighting the function of the Sankey diagram. Where there are areas that we have
covered before, I will gloss over some details on the understanding that you will have already
seen them explained in an earlier section (most likely the basic line graph example).

The full code for this graphic can be found on github?**° or in the code samples bundled with this
book (world-map.html and world-110mz2). A live example can be found on bl.ocks.org®*.

Here is the full code;

<!DOCTYPE html>
<meta charset="utf-8">
<style>

**®https://gist.github.com/d3noob/5189184
**Thttp://bl.ocks.org/d3noob/5189184

www. dbooks. org

https://gist.github.com/d3noob/5189184
http://bl.ocks.org/d3noob/5189184
https://gist.github.com/d3noob/5189184
http://bl.ocks.org/d3noob/5189184
https://www.dbooks.org/

Mapping with d3.js

path {
stroke: white;
stroke-width: ©.25px;
fill: grey;

</style>
<body>
<script src="http://d3js.org/d3.v3.min. js"></script>

<script src="http://d3js.org/topojson.v@.min. js"></script>

<script>

var

var

var

var

var

width = 960,
height = 500;

projection = d3.geo.mercator()
.center([0, 5])

.scale(150)

.rotate([-180,0]);

svg = d3.select("body").append("svg")
.attr("width", width)
.attr("height”, height);

path = d3.geo.path()
.projection(projection);

g = svg.append("g");

// load and display the World
d3. json("world-110m2. json", function(error, topology) {

});

g.selectAll("path")
.data(topojson.object(topology, topology.objects.countries)
.geometries)
.enter()
.append("path")
.attr("d", path)

</script>
</body>
</html>

319

Mapping with d3.js 320

One of the first things that struck me when I first saw the code to draw a map was how small
it was (the amount of code, not the World). It’s a measure of the degree of abstraction that D3
is able to provide to the process of getting data from a raw format to the screen that such a
complicated task can be condensed to such an apparently small amount of code. Of course that
doesn’t tell the whole story. Like a duck on a lake, above the water all is serene and calm while
below the water the feet are paddling like fury. In this case, our code looks serene because D3 is

doing all the hard work :-).
The first block of our code is the start of the file and sets up our HTML.

<IDOCTYPE html>
<meta charset="utf-8">

{style>
This leads into our style declarations.

path {
stroke: white;
stroke-width: ©0.25px;
fill: grey;

We only state the properties of the path components which will make up our countries. Obviously
we will fill them with grey and have a thin (0. 25px) line around each one.

The next block of code loads the JavaScript files.

</style>

<body>

<script src="http://d3js.org/d3.v3.min. js"></script>
<script src="http://d3js.org/topojson.v@.min. js"></script>

<script>

In this case it’s d3 and topojson. We load topojson.v@.min. js as a separate file because it’s still
fairly new. In other words it hasn’t been incorporated into the main d3.js code base (that’s an
assumption on my part since it might exist in isolation or perhaps end up as a plug-in). Whatever
the case, for the time being, it exists as a separate file.

Then we get into the JavaScript. The first thing we do is define the size of our map.

var width = 960,
height = 500;

Then we get into one of the simple, but cool parts of making any map. Setting up the view.

www. dbooks. or g

https://www.dbooks.org/

Mapping with d3.js 321

var projection = d3.geo.mercator()
.center([0, 5])
.scale(150)
.rotate([-180,0]);

The projection is the way that the geographic coordinate system is adjusted for display on our
flat screen. The screen is after all a two dimensional space and we are trying to present a three
dimensional object. This is a big deal to cartographers in the sense that selecting a geographic
projection for a map is an exercise in compromise. You can make it look pretty, but in doing
so you can grievously distort the land size / shape. On the other hand you might make it more
accurate, in size / shape but people will have trouble recognising it because they’re so used to
the standard Mercator projection. For example, the awesome Waterman Butterfly*s*.

The Waterman Butterfly

There are a lot of alternatives available. Please have a browse on the wiki*** where you will find
a huge range of options (66 at time of writing).

In our case we’ve gone with the conservative Mercator option.

Then we define three aspects of the projection. Center, scale and rotate.

?**http://bl.ocks.org/mbostock/4458497
*S*https://github.com/mbostock/d3/wiki/Geo-Projections

http://bl.ocks.org/mbostock/4458497
https://github.com/mbostock/d3/wiki/Geo-Projections
http://bl.ocks.org/mbostock/4458497
https://github.com/mbostock/d3/wiki/Geo-Projections

Mapping with d3.js 322

center

If center is specified, this sets the projection’s center to the specified location as a two-element
array of longitude and latitude in degrees and returns the projection. If center is not specitfied
the default of (0°,0°) is used.

Our example is using [0, 5] which I have selected as being in the middle (I use @) for longitude
(left to right) and 5 degrees North of the equator (for latitude, North is positive, South is negative).
This was purely to make it look aesthetically pleasing. Here’s the result of setting the center to
[100,30].

Center set to [100,30]

The map has been centered on 100 degrees West and 30 degrees North. Of course, it’s also been
pushed to the left without the right hand side of the map scrolling around. We’ll get to that in a
moment.

www. dbooks. org

https://www.dbooks.org/

Mapping with d3.js 323

scale

If scale is specified, this sets the projection’s scale factor to the specified value. If scale is not
specified, it returns the current scale factor which defaults to 150. It’s important to note that
scale factors are not consistent across projections.

Our current map uses a scale of 900. Again, this has been set for aesthetics. Keeping our center
of [100,30], if we increase our scale to 2000 this is the result.

Scale set to 2000

Mapping with d3.js 324

rotate

If rotation is specified, this sets the projection’s three-axis rotation to the specified angles for yaw,
pitch and roll (equivalently longitude, latitude and roll) in degrees and returns the projection. If
rotation is not specified, it sets the values to [0, 0, 0]. If the specified rotation has only two values,
rather than three, the roll is assumed to be 0°.

In our map we have specified [-180,0] so we can assume a roll value of zero. Likewise we have
rotated our map by -180 degrees in longitude. This has been done specifically to place the map
with the center on the anti-meridian (The international date line in the middle of the Pacific
Ocean). If we return the value to [0,0] (with our original values of scale and center this is the
result.

// . cheolebesssten

Rotate set to [0, 0]

In this case the centre of the map lines up with the meridian.

The next block of code sets our svg window;

var svg = d3.select("body").append("svg")
.attr("width", width)
.attr("height", height);

The following portion of code creates a new geographic path generator;

var path = d3.geo.path()
.projection(projection);

The path generator (d3.geo.path()) is used to specify a projection type (.projection) which
was defined earlier as a Mercator projection via the variable projection. (’'m not entirely sure,

www. dbooks. org

https://www.dbooks.org/

Mapping with d3.js 325

but it is possible that I have just set some kind of record for use of the word ‘projection’ in a
sentence.)

We then declare g as our appended svg.
var g = svg.append("g");
The last block of JavaScript draws our map.

d3. json("world-110m2. json", function(error, topology) {
g.selectAll("path")
.data(topojson.object(topology, topology.objects.countries)
.geometries)
.enter()
.append("path")
.attr("d", path)
1)

We load the TopoJSON file with the coordinates for our World map (wor1d-11@m2. json). Then we
declare that we are going to act on all the path elements in the graphic (g.selectAll("path")).

Then we pull the data that defines the countries from the TopoJSON file (. data(topojson.object(topology,
topology.objects.countries).geometries)). We add it to the data that we’re going to display
(.enter()) and then we append that data as path elements (.append("path")).

The last html block closes off our tags and we have a map!

- gt O

The World map centered on the Pacific

Mapping with d3.js 326

Zooming and panning a map

With our map displayed nicely we need to be able to move it about to explore it fully . To do this
we can provide the functionality to zoom and pan it using the mouse.

Towards the end of the script, just before the close off of the script at the </script> tag we can
add in the following code;

var zoom = d3.behavior.zoom()
.on("zoom", function() {
g.attr("transform","translate("+
d3.event.translate. join(",")+")scale("+d3.event.scale+")");
g.selectAll("path")
.attr("d", path.projection(projection));

});

svg.call(zoom)

This block of code introduces the behaviors functions. Using the d3.behavior.zoom function
creates event listeners (which are like hidden functions standing by to look out for a specific
type of activity on the computer and in this case mouse actions) to handle zooming and panning
gestures on a container element (in this case our map). More information on the range of zoom
options is available on the D3 Wiki**.

We begin by declaring the zoom function as d3.behavior . zoom.

Then we instruct the computer that when it ‘sees’ a ‘zoom’ event to carry out another function
(.on("zoom", function() {).

That function firstly gathers the (correctly formatted) translate and scale attributes in...

g.attr("transform", "translate("+
d3.event.translate. join(",")+")scale("+d3.event.scale+")");

... and then applies them to all the path elements (which are the shapes of the countries) via...

g.selectAll("path")
.attr("d", path.projection(projection));

Lastly we call the zoom function.
svg.call(zoom)

Then we relax and explore our map!

***https://github.com/mbostock/d3/wiki/Zoom-Behavior

www. dbooks. or g

https://github.com/mbostock/d3/wiki/Zoom-Behavior
https://github.com/mbostock/d3/wiki/Zoom-Behavior
https://www.dbooks.org/

Mapping with d3.js 327

The World map with zoom and pan

The full code for this graphic can be found on github®® or in the code samples bundled with
this book (world-map-zoom-pan.html and world-110m2). A live example can be found on
266

bl.ocks.org?*°.

Displaying points on a map

Displaying maps and exploring them is pretty entertaining, but as anyone who has participated
in the improvement of our geographic understanding of our world via projects such as Open
Street Map®®” will tell you, there’s a whole new level of cool to be attained by adding to a map.

With that in mind, our next task is to add some simple detail in the form of points that show the
location of cities.

To do this we will load in a csv file with data that identifies our cities and includes latitude and
longitude details. Our file is called cities.csv and looks like this;

code,city,country, lat, lon

ZNZ ,ZANZIBAR, TANZANIA,-6.13,39.31

TYO, TOKYO, JAPAN,35.68,139.76

AKL , AUCKLAND,NEW ZEALAND,-36.85,174.78
BKK, BANGKOK, THAILAND,13.75,100.48

DEL ,DELHI,INDIA,29.01,77.38
SIN,SINGAPORE, SINGAPOR,1.36,103.75
BSB,BRASILIA,BRAZIL,-15.67,-47.483
RIO,RIO DE JANEIRO,BRAZIL,-22.90,-43.24

*Shttps://gist.github.com/d3noob/5189284
*http://bl.ocks.org/d3noob/5189284
**"http://www.openstreetmap.org/

https://gist.github.com/d3noob/5189284
http://bl.ocks.org/d3noob/5189284
http://www.openstreetmap.org/
http://www.openstreetmap.org/
https://gist.github.com/d3noob/5189284
http://bl.ocks.org/d3noob/5189284
http://www.openstreetmap.org/

Mapping with d3.js 328

YTO, TORONTO, CANADA, 43 .64, -79 . 40
IPC,EASTER ISLAND,CHILE,-27.11,-109.36
SEA, SEATTLE, USA,47.61,-122.33

While we're only going to use the latitude and longitude for our current work, the additional
details could just as easily be used for labelling or tooltips.

We need to place our code carefully in this case because while you might have some flexibility
in getting the right result with a locally hosted version of a map, there is a possibility that with
a version hosted in the outside World (gasp the internet) you could strike trouble.

The code to load the cities should be placed inside the function that is loading the World map as
indicated below;

d3. json("world-110m2. json", function(error, topology) {
g.selectAll("path")
.data(topojson.object(topology, topology.objects.countries)
.geometries)
.enter()
.append("path")
.attr("d", path)
// <== Put the new code block here
1)

Here’s the new code;

d3.csv("cities.csv", function(error, data) {
g.selectAll("circle")
.data(data)
.enter()
.append("circle")
.attr("cx", function(d) {
return projection([d.lon, d.lat])[Q];
b
.attr("cy", function(d) {
return projection([d.lon, d.lat])[1];

’

)
Lattr('r", 5)
.style("fill", "red");

We'll go through the code and then explain the quirky thing about it.

First of all we load thecities.csv file (d3.csv("cities.csv", function(error, data) {). Then
we select all the circle elements (g.selectAll("circle")), assign our data (.data(data)), enter
our data (.enter()) and then add in circles (.append("circle")).

Then we set the x and y position for the circles based on the longitude (([d.lon, d.lat])[0])
and latitude (([d.1on, d.1at])[1]) information in the csv file.

www. dbooks. or g

https://www.dbooks.org/

Mapping with d3.js 329

Finally we assign a radius of 5 pixels and fill the circles with red.

The quirky thing about the new code block is that we have to put it inside the code block that
loads the world data (d3. json("world-11@m2. json", function(error, topology) {). We could
place the two blocks one after the others (load / draw the world data, then load / draw the circles).
And this will probably work if you run the file from your local computer. But when you host the
files on the internet, it takes too long to load the world data compared to the city data and the
end result is that the city data gets drawn before the world data and this is the result.

The cities under the World

To avoid the problem we place the loading of the city data into the code that loads the World
data. That way the city data doesn’t get loaded until the World data is loaded and then the circles
get drawn on top of the world instead of under it :-).

Mapping with d3.js 330

The cities on top of the World

The full code for this graphic can be found on github®*® or in the code samples bundled with
this book (world-map-cities.html, cities.csv and world-110m2). A live example can be found on
bl.ocks.org?*’.

Additionally the full code can be found in the appendix section at the rear of the book.

As an added extra and in response to a question that was asked on the d3noob.org blog, the
names of the cities can be placed alongside the location dots by the addition of the following
block of code inside the ‘cities’ loading portion of the script;

g.selectAll("text")
.data(data)
.enter()
.append("text") // append text
.attr("x", function(d) {
return projection([d.lon, d.lat])[Q];
3]
.attr("y", function(d) {
return projection([d.lon, d.lat])[1];

)

.attr("dy", -7) // set y position of bottom of text
.style("fill", "black") // fill the text with the colour black
.attr("text-anchor", "middle") // set anchor y justification
.text(function(d) {return d.city;}); // define the text to display

The end result shows the name of the cities placed above and centred with respect to the location.

**®https://gist.github.com/d3noob/5193723
**http://bl.ocks.org/d3noob/5193723

www. dbooks. org

https://gist.github.com/d3noob/5193723
http://bl.ocks.org/d3noob/5193723
https://gist.github.com/d3noob/5193723
http://bl.ocks.org/d3noob/5193723
https://www.dbooks.org/

Mapping with d3.js 331

AUCI%AN D
™

The full code for this graphic can be found on github?® or in the code samples bundled with this

book (world-map-cities-text.html, cities.csv and world-110m2). A live example can be found on
271

bl.ocks.org?”*.

The cities on top of the World

*"https://gist.github.com/d3noob/401237468c9e38ceasc?
*"Thttp://bl.ocks.org/d3noob/401237468c9e38ceasdc?

https://gist.github.com/d3noob/401237468c9e38cea8c7
http://bl.ocks.org/d3noob/401237468c9e38cea8c7
https://gist.github.com/d3noob/401237468c9e38cea8c7
http://bl.ocks.org/d3noob/401237468c9e38cea8c7

Mapping with d3.js 332

Making maps with d3.js and leaflet.js combined

If you've read to this point in D3 Tips and Tricks, you may be aware that I have also written
another book called ‘Leaflet Tips and Tricks*’*. I haven’t written both books because they are
integrated with each other or because they seem made to compliment each other. I wrote them
because both libraries are the best of breed (IMHO) at what they do. It should come as little
surprise that they can have a lot to offer users who want to combine the incredible scope of d3.js’s
data manipulation functions and the elegance of leaflet.js’s tile map presentation capabilities.

leaflet.js Overview

Leaflet.js*”* is an Open Source JavaScript library designed to make deploying maps on a web
page easy. It uses a paltry 34kB (at time of writing) JavaScript file that loads with your web page
and provides access to a range of functions that will allow you to present a map.

Its goals are to be simple to use while focussing on performance and usability, but it’s also built
to be extended using plugins that extend its functionality. It has an excellent API which is well
documented, so there are no mysteries to using it successfully in a range of situations.

Out of the box Leaflet provides the functionality to add markers, popups, overlay lines and
shapes, use multiple layers, zoom, pan and generally have a good time :-). But these are just the
the core features of Leaflet. One of the significant strengths of Leaflet is the ability to extend
the functionality of the script with plugins from third parties. At the time of writing there are
over 80 separate plugins that allow features such as overlaying a heatmap, animating markers,
loading csv files of data, drawing complex shapes, measuring distance, manipulating layers and
displaying coordinates.

Leaflet is simple, elegant and functional but powerful. There’s a good chance that even if you
don’t present maps with Leaflet, you’ll be using ones that someone else made with it at some
stage on the Internet.

Why use leaflet.js when d3.js does maps too?
Good question. I can see you've been paying attention.

There is a significant difference between the underlying way that d3.js and leaflet.js presents
mapping data. D3.js predominantly focusses on vector based graphics when drawing maps and
leaflet.js leverages the huge range of bitmap based map tiles that are available for use around
the world. Both bitmap and vector based solutions have strengths and weaknesses depending on
the application. Combining both allows the use of the best of both worlds.

*"*https://leanpub.com/leaflet-tips-and-tricks
*"http://leafletjs.com/

www. dbooks. or g

https://leanpub.com/leaflet-tips-and-tricks
http://leafletjs.com/
https://leanpub.com/leaflet-tips-and-tricks
http://leafletjs.com/
https://www.dbooks.org/

Mapping with d3.js

Leaflet map with d3.js objects that scale with the

map

333

The first example we’ll look at will project a leaflet.js map on the screen with a d3.js object (in

this case a simple rectangle) onto the map.

The rectangle will be bound to a set of geographic coordinates so that as the map is panned and
zoomed the rectangle will shrink and grow. For example the following diagram shows a rectangle

(made with d3.js) superimposed over a leaflet.js map;

Rectangular d3 area on leaflet map

If we then zoom in...

5 o Roseneath A
Ziinro valleyl, i,
e 7 1
ol i i ME Victoria . Maupuia’?
s [! ;]
’ 1 4
-;,i‘,'wMt' Cook 5 ¢
b i Hataital i Karaka Bay
o e iy [
3 ! e (
. } .,"f." b ! =
¥) : Leaflet | & OpenStrestiap Contributors

Mapping with d3.js 334

o e &

b A
_+“Thornden
i 4 :

z . i
.-,?& a cﬁﬁ'éz‘-.

FE gty 8 E.ﬂ.:ln.n_wi.l f |
L : =
The (Glen =7 ﬁh’ | Puaint femingharm
] , 2

e § welliigto

X Karak

sl B
'Ij Roseneath
#u ArojValley i e
'

MEEVictoria: By
Wy Leaflet { & OpenStreetMMap Contributors

Zoomed rectangular d3 area on leaflet map

...the rectangle zooms in as well.

This may not sound terribly exciting and if you’re familiar with Leaflet you will know that it
is possible to draw polygons onto a map using only leaflet’s built in functions. However, the
real strength of this application of vector data comes when making the d3.js content interactive
which is more difficult with leaflet.js.

For an excellent example of this please visit Mike Bostock’s tutorial?’* where he demonstrates
superimposing a map of the United States separated by state (which react individually to the
mouse being hovered over them). My following explanation is a humble derivation of his code.

Speaking of code, here is a full listing of the code that we will be using;

<IDOCTYPE html>
<html>
<head>
<title>Leaflet and D3 Map</title>
<meta charset="utf-8" />
<link
rel="stylesheet"
href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"
/>

</head>
<body>

<div id="map" style="width: 600px; height: 400px"></div>

*"*http://bost.ocks.org/mike/leaflet/

www. dbooks.

org

http://bost.ocks.org/mike/leaflet/
http://bost.ocks.org/mike/leaflet/
https://www.dbooks.org/

Mapping with d3.js

335

<script src="http://d3js.org/d3.v3.min. js"></script>

<script

src="http://cdn.leafletjs.com/leaflet-0.7/leaflet. js">

</script>
<script>
var map

mapLink
|<a

= L.map('map"').setView([-41.2858, 174.7868], 13);

href="http://openstreetmap.org">0OpenStreetMap";

L.tileLayer(
"http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
attribution: '© ' + mapLink + ' Contributors’,

maxZoom: 18,
}).addTo(map);

// Add an SVG element to Leaflet’s overlay pane
var svg = d3.select(map.getPanes().overlayPane).append("svg"),
g = svg.append("g").attr("class", "leaflet-zoom-hide");

d3. json("rectangle. json", function(geoShape) ({

// create a d3.geo.path to convert GeoJSON to SVG
var transform = d3.geo.transform({point: projectPoint}),

path = d3.geo.path().projection(transform);

// create path elements for each of the features
d3_features = g.selectAll("path")
.data(geoShape. features)
.enter().append("path");
map.on("viewreset", reset);

reset();

// fit the SVG element to leaflet's map layer
function reset() {

bounds = path.bounds(geoShape);

var topLeft = bounds[Q],
bottomRight = bounds[1];

svg .attr("width", bottomRight[@] - topLeft[0Q])
.attr("height", bottomRight[1] - topLeft[1])

Mapping with d3.js 336

_style("left", topLeft[0] + "px")
.style("top", topLeft[1] + "px");

g .attr("transform", "translate(" + -topLeft[0] + ", 6"
+ -topLeft[1] + ")");

// initialize the path data

d3_features.attr("d", path)
.style("fill-opacity", ©.7)
.attr('fill', 'blue');

// Use Leaflet to implement a D3 geometric transformation.
function projectPoint(x, y) {
var point = map.latlLngTolLayerPoint(new L.LatLng(y, x));
this.stream.point(point.x, point.y);

1))

</script>
</body>
</html>

There is also an associated json data file (called rectangle. json) that has the following contents;

{

"type": "FeatureCollection",
"features": [{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [[
[174.78, -41.29]
[174.79, -41.29],
[174.79, -41.28]
[174.78, -41.28]
[174.78, -41.29]
11
}

The full code and a live example are available online at bl.ocks.org?”> or GitHub?¢. They are

*"http://bl.ocks.org/d3noob/9211665
*Shttps://gist.github.com/d3noob/9211665

www. dbooks. or g

http://bl.ocks.org/d3noob/9211665
https://gist.github.com/d3noob/9211665
http://bl.ocks.org/d3noob/9211665
https://gist.github.com/d3noob/9211665
https://www.dbooks.org/

Mapping with d3.js 337

also available as the files ‘leaflet-d3-combined.html’ and ‘rectangle.json’ as a separate download
with D3 Tips and Tricks. A a copy of all the files that appear in the book can be downloaded (in
a zip file) when you download the book from Leanpub?”’

While I will explain the code below, please be aware that I will gloss over some of the simpler
sections that are covered in other sections of either books and will instead focus on the portions
that are important to understand the combination of d3 and leaflet.

Our code begins by setting up the html document in a fairly standard way.

<IDOCTYPE html>
<html>
<head>
<title>Leaflet and D3 Map</title>
<{meta charset="utf-8" />
<link
rel="stylesheet"
href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"
/>

</head>
<body>

<div id="map" style="width: 600px; height: 400px"></div>
<script src="http://d3js.org/d3.v3.min. js"></script>

<script
src="http://cdn.leafletjs.com/leaflet-0.7/leaflet. js">
</script>

Here we’re getting some css styling and loading our leaflet.js / d3.js libraries. The only
configuration item is where we set up the size of the map (in the <style> section and as part of
the map div).

Then we break into the JavaScript code. The first thing we do is to project our Leaflet map;

var map = L.map('map').setView([-41.2858, 174.7868], 13);
mapLink =

'0OpenStreetMap";
L.tileLayer(
"http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© + mapLink + ' Contributors',
maxZoom: 18,

}).addTo(map);

*"Thttps://leanpub.com/leaflet-tips-and-tricks

https://leanpub.com/leaflet-tips-and-tricks
https://leanpub.com/leaflet-tips-and-tricks

Mapping with d3.js 338

This is exactly the same as we have done in any of the simple map explanations in Leaflet Tips
and Tricks®”® and in this case we are using the OpenStreetMap tiles.

Then we start on the d3.js part of the code.

The first part of that involves making sure that Leaflet and D3 are synchronised in the view that
they’re projecting. This synchronisation needs to occur in zooming and panning so we add an
SVG element to Leaflet’s overlayPlane

var svg = d3.select(map.getPanes().overlayPane).append("svg"),
g = svg.append("g").attr("class", "leaflet-zoom-hide");

Then we add a g element that ensures that the SVG element and the Leaflet layer have the same
common point of reference. Otherwise when they zoomed and panned it could be offset. The
leaflet-zoom-hide affects the presentation of the map when zooming. Without it the underlying
map zooms to a new size, but the d3.js elements remain as they are until the zoom effect has taken
place and then they adjust. It still works fine, but it ‘looks” wrong.

Then we load our data file with the line...
d3.json("rectangle. json", function(geoShape) {

This is pretty standard fare for d3.js but it’s worth being mindful that while the type of data file
is . json this is a GeoJSON file and they have particular features (literally) that allow them to do
their magic. There is a good explanation of how they are structured at geojson.org®”® for those
who are unfamiliar with the differences.

Using our data we need to ensure that it is correctly transformed from our latitude/longitude
coordinates as supplied to coordinates on the screen. We do this by implementing d3’s geographic
transformation features (d3.geo°).

var transform = d3.geo.transform({point: projectPoint}),
path = d3.geo.path().projection(transform);

Here the path that we want to create in SVG is generated from the points that are supplied from
the data file which are converted by the function projectPoint This function (which is placed
at the end of the file) takes our latitude and longitudes and transforms them to screen (layer)
coordinates®®'.

function projectPoint(x, y) {
var point = map.latLngTolLayerPoint(new L.LatLng(y, x));
this.stream.point(point.x, point.y);

With the transformations now all taken care of we can generate our path in the traditional d3.js
way and append it to our g group.

*"®https://leanpub.com/leaflet-tips-and-tricks/
*"’http://geojson.org/geojson-spec.html
*%%https://github.com/mbostock/d3/wiki/API-Reference#wiki- d3geo-geography
**1http://leafletjs.com/reference.html#map- conversion-methods

www. dbooks. or g

https://leanpub.com/leaflet-tips-and-tricks/
https://leanpub.com/leaflet-tips-and-tricks/
http://geojson.org/geojson-spec.html
https://github.com/mbostock/d3/wiki/API-Reference#wiki-d3geo-geography
http://leafletjs.com/reference.html#map-conversion-methods
http://leafletjs.com/reference.html#map-conversion-methods
https://leanpub.com/leaflet-tips-and-tricks/
http://geojson.org/geojson-spec.html
https://github.com/mbostock/d3/wiki/API-Reference#wiki-d3geo-geography
http://leafletjs.com/reference.html#map-conversion-methods
https://www.dbooks.org/

Mapping with d3.js 339

d3_features = g.selectAll("path")
.data(geoShape. features)
.enter().append("path");

The last ‘main’ part of our JavaScript makes sure that when our view of what we’re looking at
changes (we zoom or pan) that our d3 elements change as well;

map.on("viewreset", reset);

reset();

Obviously when our view changes we call the function reset. It’s the job of the reset function
to ensure that whatever the leaflet layer does, the SVG (d3.js) layer follows;

function reset() {
bounds = path.bounds(geoShape);

var toplLeft = bounds[0],
bottomRight = bounds[1];

svg .attr("width", bottomRight[0] - topLeft[Q])
.attr("height", bottomRight[1] - topLeft[1])
.style("left", topLeft[Q] + "px")
.style("top", topLeft[1] + "px");

g .attr("transform", "translate(" + -topLeft[@] + ","
+ -topLeft[1] + ")");

// initialize the path data

d3_features.attr("d", path)
.style("fill-opacity", 0.7)
.attr('fill', 'blue');

It does this by establishing the topLeft and bottomRightcorners of the desired area and then
it applies the width, height, top and bottom attributes to the svg element and translates the g
element to the right spot. Last, but not least it redraws the path.

The end result being a fine combination of leaflet.js map and ds.js element;

Mapping with d3.js 340

Rectangular d3 area on leaflet map

Leaflet map with d3.js elements that are overlaid on a map

The next example of a combination of d3.js and leaflet.js is one where we want to have an element
overlaid on our map at a specific location, but have it remain a specific size over the map. For
example, here we will display 5 circles which are centred at specific geographic locations.

d3.js circles fixed in geographic location on leaflet map but constant size

When we zoom out of the map, those circles remain over the geographic location, but the same

size on the screen.

www. dbooks. org

https://www.dbooks.org/

Mapping with d3.js 341

Zoomed d3 js circles fixed in geographic location on leaflet map but constant size

You may (justifiably) ask yourself why we would want to do this with d3.js when Leaflet could
do the same job with a marker? The answer is that as cool as leaflet.js’s markers are, d3 elements
have a wider range of features that make their use advantageous in some situations. For instance
if you want to animate or rotate the icons or dynamically adjust some of their attributes, d3.js
would have a greater scope for adjustments.

The following code draws circles at geographic locations;

<IDOCTYPE html>
<html>
<head>
<title>d3. js with leaflet. js</title>

<link
rel="stylesheet"
href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"
/>
<seript src="http://d3js.org/d3.v3.min. js"></script>

<script
src="http://cdn.leafletjs.com/leaflet-0.7/leaflet. js">

</script>

</head>
<body>

<div id="map" style="width: 6@@px; height: 400px"></div>

Mapping with d3.js 342

<script type="text/javascript">

var map = L.map('map').setView([-41.2858, 174.7868], 13);
mapLink
'OpenStreetMap"';

L.tileLayer(
"http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
attribution: '© ' + mapLink + ' Contributors’,
maxZoom: 18,

}).addTo(map);

// Initialize the SVG layer
map._initPathRoot ()

// We pick up the SVG from the map object
var svg = d3.select("#map").select("svg"),
g = svg.append("g");

d3. json("circles. json", function(collection) ({
// Add a LatLng object to each item in the dataset
collection.objects. forEach(function(d) {
d.LatLng = new L.LatLng(d.circle.coordinates[0],
d.circle.coordinates[1])

1))

var feature = g.selectAll("circle")
.data(collection.objects)
.enter().append("circle")
.style("stroke", "black")
.style("opacity", .6)
.style("fill", "red")
Lattr('r", 20);

map.on("viewreset", update);
update();

function update() {
feature.attr("transform",
function(d) {
return "translate("+
map.latLngToLayerPoint(d.LatLng).x +","+
map.latLngToLayerPoint(d.LatlLng).y +")";

1))

www. dbooks. or g

https://www.dbooks.org/

Mapping with d3.js 343

</script>
</body>
</html>

There is also an associated json data file (called circles. json) that has the following contents;

{"objects": [
{"circle":{"coordinates":[-41.28,174.77]}},
{"circle":{"coordinates":[-41.29,174.76]}},
{"circle":{"coordinates":[-41.30,174.79]}},
[-41.27,174.80]}},
[]

-41.29,174.78]}}

{"circle":{"coordinates":
{"circle":{"coordinates":

1}

The full code and a live example are available online at bl.ocks.org?*? or GitHub?**. They are also
available as the files ‘leaflet-d3-linked.html” and ‘circles.json’ as a separate download with D3
Tips and Tricks. A a copy of all the files that appear in the book can be downloaded (in a zip file)
when you download the book from Leanpub®*

While I will explain the code below, as with the previous example (which is similar, but different)
please be aware that I will gloss over some of the simpler sections that are covered in other
sections of either books and will instead focus on the portions that are important to understand
the combination of d3 and leaflet.

Our code begins by setting up the html document in a fairly standard way.

<IDOCTYPE html>

<html>
<head>
<title>d3.js with leaflet. js</title>
<link
rel="stylesheet"
href="http://cdn.leafletjs.com/leaflet-0.7/leaflet.css"
/>

<seript src="http://d3js.org/d3.v3.min. js"></script>
<script
src="http://cdn.leafletjs.com/leaflet-0.7/leaflet. js">

</script>

</head>
<body>

<div id="map" style="width: 600px; height: 400px"></div>

*82http://bl.ocks.org/d3noob/9267535
*83https://gist.github.com/d3noob/9267535
***https://leanpub.com/D3-Tips-and- Tricks

http://bl.ocks.org/d3noob/9267535
https://gist.github.com/d3noob/9267535
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/9267535
https://gist.github.com/d3noob/9267535
https://leanpub.com/D3-Tips-and-Tricks

Mapping with d3.js 344

Here we're getting some css styling and loading our leaflet.js / d3.js libraries. The only
configuration item is where we set up the size of the map (in the <div> section and as part
of the map div).

Then we break into the JavaScript code. The first thing we do is to project our Leaflet map;

var map = L.map('map').setView([-41.2858, 174.7868], 13);
maplLink

'0OpenStreetMap";
L.tileLayer(
'http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {

attribution: '© + mapLink + ' Contributors’',

maxZoom: 18,
}).addTo(map);

This is exactly the same as we have done in any of the simple map explanations in Leaflet Tips
and Tricks®® and in this case we are using the OpenStreetMap tiles.

Then we start on the d3.js part of the code.

Firstly the Leaflet map is initiated as SVG using map._initPathRoot().

// Initialize the SVG layer
map._initPathRoot ()

// We pick up the SVG from the map object
var svg = d3.select("#map").select("svg"),
g = svg.append("g");

Then we select the svg layer and append a g element to give a common reference point g =
svg.append("g").

Then we load the json file with the coordinates for the circles;
d3.json("circles. json", function(collection) {

Then for each of the coordinates in the objects section of the json data we declare a new latitude
/ longitude pair from the associated coordinates;

collection.objects. forEach(function(d) {
d.LatlLng = new L.LatLng(d.circle.coordinates[0],
d.circle.coordinates[1])

D)

Then we use a simple d3.js routine to add and place our circles based on the coordinates of each
of our objects.

**https://leanpub.com/leaflet-tips-and-tricks/

www. dbooks. or g

https://leanpub.com/leaflet-tips-and-tricks/
https://leanpub.com/leaflet-tips-and-tricks/
https://leanpub.com/leaflet-tips-and-tricks/
https://www.dbooks.org/

Mapping with d3.js 345

var feature = g.selectAll("circle")
.data(collection.objects)
.enter().append("circle")
.style("stroke", "black")
.style("opacity", .6)
.style("fill", "red")
.attr("r", 20);

We declare each as a feature and add a bit of styling just to make them stand out.

The last ‘main’ part of our JavaScript makes sure that when our view of what we’re looking at
changes (we zoom or pan) that our d3 elements change as well;

map.on("viewreset", update);
update();

Obviously when our view changes we call the function update. It’s the job of the update function
to ensure that whenever the leaflet layer moves, the SVG layer with the d3.js elements follows
and the points that designate the locations of those objects move appropriately;

function update() {
feature.attr("transform",
function(d) {
return "translate("+
map.latLngTolLayerPoint(d.LatLng).x +","+
map.latLngToLayerPoint(d.LatlLng).y +")";

Here we are using the transform function on each feature to adjust the coordinates on our
LatLng coordinates. We only need to adjust our coordinates since the size, shape, rotation and
any other attribute or style is dictated by the objects themselves.

And there we have it!

Mapping with d3.js 346

d3.js circles fixed in geographic location on leaflet map but constant size

www. dbooks. org

https://www.dbooks.org/

D3.js Examples Explained

I've decided to include an examples chapter because I have occasionally come across things that
I wanted to do with data or a technique that didn’t necessarily fall into a specific category or
where I had something that I wanted to do that went beyond an exercise that I would want to
turn into a simple description.

In other words I think that this will be a place where I can put random graphics that I have made
up that don’t necessarily fall into a logical category but which I think would be worth recording.

In many cases these examples will combine a range of techniques that have been explained in
the book and in some cases they may include new material that perhaps I would have struggled
to explain.

Whatever the case, I will try to explain the examples as best I can and to include a full code
listing for each and a link to an electronic version wherever possible.

D3.js Examples Explained 348

Dynamically retrieve historical stock records via YQL

Purpose

This page was developed to be an attempt to integrate the ability to download time range data
from the Yahoo! Developer Network?*® via a YQL query and to be able to edit that query and
dynamically adjust the output graph.

It doesn’t hurt that the data is pretty interesting (who isn’t fascinated by the rise and fall of stock
prices?).

The following is a picture of the resulting graph;

Stock: GOOG Start: |2013-08-10 End: |2014-03-10 | Update |
1200 - GOOG HOH
1,100 -
1,000 -
900 -
T T T T T T T 1
September October Movember December 2014 February March

Dynamic historical stock graph

The code

The following is the full code for the example. A live version is available online at bl.ocks.org?’
or GitHub?®, It is also available as the file ‘yql-dynamic-stock-line.html’ as a separate download
with D3 Tips and Tricks. A a copy of most the files that appear in the book can be downloaded
(in a zip file) when you download the book from Leanpub®®.

*http://developer.yahoo.com/yql/
*87http://bl.ocks.org/d3noob/9576689
*83https://gist.github.com/d3noob/9576689
***https://leanpub.com/D3-Tips-and- Tricks

www. dbooks. or g

http://developer.yahoo.com/yql/
http://bl.ocks.org/d3noob/9576689
https://gist.github.com/d3noob/9576689
https://leanpub.com/D3-Tips-and-Tricks
http://developer.yahoo.com/yql/
http://bl.ocks.org/d3noob/9576689
https://gist.github.com/d3noob/9576689
https://leanpub.com/D3-Tips-and-Tricks
https://www.dbooks.org/

D3.js Examples Explained 349

<IDOCTYPE html>
<meta charset="utf-8">
<style> /* set the CSS */

body { font: 12px Arial;}

path {
stroke: steelblue;
stroke-width: 2;
fill: none;

text.shadow {
stroke: white;
stroke-width: 2.5px;
opacity: 0.9;

.axis path,
.axis line {
fill: none;
stroke: grey;
stroke-width: 1;
shape-rendering: crispkdges;

</style>
<body>

<I-- set inputs for the query -->
<div id="new_input">

Stock: <input type="text" name="stock" id="stock" value="YHOO"
style="width: 70px;">

Start: <input type="text" name="start" id="start" value="2013-08-10"
style="width: 80px;">

End: <input type="text" name="end" id="end" value="2014-03-10"
style="width: 80px;">

<input name="updateButton"
type="button"
value="Update"
onclick="updateData()" />
</div>

D3.js Examples Explained

<I-- load the d3.js library -->
<script src="http://d3js.org/d3.v3.min. js"></script>

<script>

// Set the dimensions of the graph

var margin = {top: 30, right: 40, bottom: 30, left: 50},
width = 600 - margin.left - margin.right,
height = 270 - margin.top - margin.bottom;

// Parse the date / time
var parseDate = d3.time.format("%Y-%m-%d").parse;

// Set the ranges
var x = d3.time.scale().range([0, width]);

var y = d3.scale.linear().range([height, 0]);
var xAxis = d3.svg.axis().scale(x)
.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)
.orient("left").ticks(5);

var valueline = d3.svg.line()
.x(function(d) { return x(d.date); })
.y(function(d) { return y(d.high); });

var svg = d3.select("body")
.append("svg")
.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform", "translate("
+ margin.left
+ "," + margin.top + ")");

var stock = document.getElementById('stock').value;
var start = document.getElementById('start').value;

var end = document.getElementById('end').value;

var inputURL = "http://query.yahooapis.com/vi/public/yql"+

"?7q=select%20*%20from%20yahoo. finance.historicaldata%20"+

"where%20symbol%20%3D%20%22"
+stock+"%22%20and%20startDate%20%3D%20%22"
+start+"%22%20and%20endDate%20%3D%20%22"

350

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 351

+end+"%22&format=json&env=store%3A%2F%2F"
+"datatables.org%2Falltableswithkeys";

// Get the data
d3. json(inputURL, function(error, data)({

data.query.results.quote. forEach(function(d) {
d.date = parseDate(d.Date);
d.high = +d.High;
d.low = +d.Low;

});

// Scale the range of the data
x.domain(d3.extent(data.query.results.quote, function(d) {
return d.date; }));
y.domain([
d3.min(data.query.results.quote, function(d) { return d.low; }),
d3.max(data.query.results.quote, function(d) { return d.high; })

D
svg.append("path") // Add the valueline path.
.attr("class", "line")
.attr("d", valueline(data.query.results.quote));
svg.append("g") // Add the X Axis
.attr("class", "x axis"
.attr("transform", "translate(®@," + height + ")")
.call(xAxis);
svg.append("g") // Add the Y Axis
.attr("class", "y axis")
.call(yAxis);
svg.append("text") // Add the label
.attr("class", "label")
.attr("transform", "translate(" + (width+3) + ",6"
+ y(data.query.results.quote[@] .high) + ")")
.attr("dy", ".35em")
.attr("text-anchor", "start")
.style("fill", "steelblue")
text("high");
svg.append("text") // Add the title shadow

.attr("x", (width / 2))
.attr("y", margin.top / 2)
.attr("text-anchor", "middle")

D3.js Examples Explained 352

.attr("class", "shadow")
.style("font-size", "16px")
.text(stock);

svg.append("text") // Add the title
.attr("class", "stock")

Lattr("x", (width / 2))
.attr("y", margin.top / 2)
.attr("text-anchor", "middle")
.style("font-size", "16px")
.text(stock);

1)

// ** Update data section (Called from the onclick)
function updateData() {

var stock = document.getElementById('stock').value;
var start = document.getElementById('start').value;

var end = document.getElementById('end').value;

var inputURL = "http://query.yahooapis.com/vi/public/yql"+
"?7q=select%20*%20from%20yahoo. finance.historicaldata%20"+
"where%20symbol%20%3D%20%22"
+stock+"%22%20and%20startDate%20%3D%20%22"
+start+"%22%20and%20endDate%20%3D%20%22."
+end+"%22&format=json&env=store%3A%2F%2F"
+"datatables.org%2Falltableswithkeys";

// Get the data again
d3. json(inputURL, function(error, data)({

data.query.results.quote. forEach(function(d) {
d.date = parseDate(d.Date);
d.high = +d.High;
d.low = +d.Low;

});

// Scale the range of the data
x.domain(d3.extent(data.query.results.quote, function(d) {
return d.date; }));
y.domain([
d3.min(data.query.results.quote, function(d) {
return d.low; }),
d3.max(data.query.results.quote, function(d) {
return d.high; })

1);

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 353

// Select the section we want to apply our changes to

var svg = d3.select("body").transition();

// Make the changes

svg.select(".line") // change the line
.duration(750)
.attr("d", valueline(data.query.results.quote));

svg.select(".label") // change the label text
.duration(750)
.attr("transform", "translate(" + (width+3) + ", 6"

+ y(data.query.results.quote[@] .high) + ")");

svg.select(".shadow") // change the title shadow
.duration(750)
.text(stock);

svg.select(".stock") // change the title
.duration(750)
.text(stock);

svg.select(".x.axis") // change the x axis
.duration(750)
.call(xAxis);

svg.select(".y.axis") // change the y axis

.duration(750)
.call(yAxis);
1)
}
</script>
</body>

The description

Firstly, I have not included any form of validation or sanitising of the input fields. If you were
to build something that was being used in a serious way, that would be essential.

Secondly, there are limits on what the YQL query will return. I have found that there appears
to be a limit on the date range allowed (although I'm not sure what that limit is) and there is of
course a limit to what the Yahoo! Developer Network will support for different end use cases.
If you want to use the data for commercial reasons or if your use is heavy®”, you will need to
contact them to arrange for some form of agreement to use the data appropriately.

***http://developer.yahoo.com/yql/guide/usage_info_limits.html

http://developer.yahoo.com/yql/guide/usage_info_limits.html
http://developer.yahoo.com/yql/guide/usage_info_limits.html

D3.js Examples Explained 354

To use the graph all you need to do is enter a valid ticker symbol*’* and a start / end date range

where the date is formatted as yyyy/mm/dd. As I noted earlier, there appears to be a range limit,
so feel free to experiment a bit to work it out if necessary to your use.

Stock: [YHOO Start: |2013-08-10 End:|2014-03-10 Update
The ticker symbol and start/stop dates

The section to get the input fields was something new to me as normally I would use
bootstrap.js*** with it’s wealth of form input options. But the following section in the HTLM
portion was neat enough to get the required input.

<div id="new_input">

Stock: <input type="text" name="stock" id="stock" value="YHOO"
style="width: 70px;">

Start: <input type="text" name="start" id="start" value="2013-08-10"
style="width: 8@px;">

End: <input type="text" name="end" id="end" value="2014-03-10"
style="width: 80px;">

<input name="updateButton"
type="button"
value="Update"
onclick="updateData()" />
</div>

Of course it needs to be coupled with a JavaScript section to allow it to use the inputted fields in
the query but that was also nice and easy with the following section of code;

var stock = document.getElementById('stock').value;
var start = document.getElementById('start').value;
var end = document.getElementById('end').value;

The HTML portion includes the onclick="updateData()" code that allows the JavaScript
updateData function to be called that reloads new data from the Yahoo! Developer Network
and updates the d3.js objects.

This particular file uses the ‘load everything first’ then ‘update everything that needs updating’
model that was followed in the earlier chapter on creating a line graph that loads data
dynamically.

The YQL query is declared as a variable in the following section;

**thttp://en.wikipedia.org/wiki/Ticker_symbol
**?http://getbootstrap.com/

www. dbooks. or g

http://en.wikipedia.org/wiki/Ticker_symbol
http://getbootstrap.com/
http://en.wikipedia.org/wiki/Ticker_symbol
http://getbootstrap.com/
https://www.dbooks.org/

D3.js Examples Explained 355

var inputURL = "http://query.yahooapis.com/v1/public/yql"+
"?7q=select%20*%20from%20yahoo. finance.historicaldata%20"+
"where%20symbol%20%3D%20%22"
+stock+"%22%20and%20startDate%20%3D%20%22"
+start+"%22%20and%20endDate%20%3D%20%22"
+end+"%22&format=json&env=store%3A%2F%2F"
+"datatables.org%2Falltableswithkeys";

It has had line feeds deliberately introduced to make formatting on the pages of the book easier
(otherwise the publishing process introduces additional characters). In it you can see the addition
of the variables that allow the query to be executed (stock, start and end).

Immediately after loading the data we run it through a forEach loop that goes to the location in
the JSON hierarchy where the High, Low and Date values are stored and it ensures that the high
and low values are correctly recognises as numbers and formats the date.

data.query.results.quote. forEach(function(d) {
d.date = parseDate(d.Date);
d.high = +d.High;
d.low = +d.Low;

1)

This is quite interesting because it provides a peek at the structure of the JSON. This is a pretty
important piece of information because without the structure, it is not possible to correctly
address the data you want. I'm not sure what the best method would be for determining the
structure of the returned data, but I simply use a console.log(data) call after the data is loaded
while I am developing the file and this allows me to explore and note the structure.

The following screen-shot illustrates the method,;

Q, Elements MNetwork Scurces Timeline Profiles Rescurces Audits | Console |

8 W <topframe> ¥

¥ Object
¥ query: Object
count: 145

created: "2814-83-16T86:23:59Z"
lang: "en-Us"
¥ results: Object
¥ quote: Array[145]
¥[8 .. 99]
B @: Object
v 1: Object
Adj_Close: "1214.73"
Close: "1214,79"
Date: "2814-83-47"
High: "1226.99"
Low: "1211.44"
Open: "1226.8@"
Symbol: "G00G"
Volume: "1515184"
» date: Fri Mar @7 2814 99:80:80 GMT+1388 (New Zealand Daylight Time)
high: 1225.99
low: 1211.44
» __proto__: Object

console.log(data) structure

D3.js Examples Explained 356

You should be able to discern the . query.results.quote pathway that leads to the High, Low and
Date values.

The remainder of the code is a repetition of examples explained in the remainder of the book.
Most especially in the simple line graph area.

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 357

Linux Processes via Interactive Tree diagram

Purpose

This page was developed to play with the idea of visualizing the relationship between processes
running on a Linux server. To my shame, I never twigged that since the processes were ordered
in a hierarchy they would therefore make an excellent tree diagram. I am therefore indebted to
a friend for pointing out the obvious (as he often needs to do :-)).

Ultimately I have grand visions of this type of display being used to illustrate excessive
memory or CPU usage when fault conditions occur, but for the purposes of simply showing
the relationships, this example is suitable.

There are obviously a lot of processes running on a Linux server, so it was necessary to make the
diagram interactive to allow branches to collapse where required for clarity. Indeed, there are a
few of the tree diagram features which are covered separately in the chapter on tree diagrams
which are combined here (interactive nodes, loading from an external source and making the tree
interactive). Additionally, there is a great deal of data about each node that is available when
running the ps command. I have chosen to show some of these in a tool tip that will appear when
hovered over a node.

The tree is fairly large, so the following is a section of the tree with tool tip in action

ssh-agent
gnome-settings-
metacity
unity-2d-panel
unity-2d-shell
nm-applet
Xarg PID: 1306 oolkit-gnome-au
ightdm anome-session Command: gnome-session gnome-falloack-
e]ﬁﬁat‘lcglcusth apple
s _D'D 5 gdu-notificatio
Memaory. 223184 ‘slepathy-indic

= Jgnome-screensay
Update-notifier
deja-dup-monito

Linux processes in tree form

The Code

The following is the full code for the example. A live version is available online at bl.ocks.org?** or
GitHub**“. It is also available as the files ‘process-tree.html’ and ‘ps.csv’ as separate downloads
with the book D3 Tips and Tricks. A a copy of most the files that appear in the book can be
downloaded (in a zip file) when you download the book from Leanpub®”.

*>*http://bl.ocks.org/d3noob/9692795
***https://gist.github.com/d3noob/9692795
***https://leanpub.com/D3-Tips-and- Tricks

http://bl.ocks.org/d3noob/9692795
https://gist.github.com/d3noob/9692795
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/9692795
https://gist.github.com/d3noob/9692795
https://leanpub.com/D3-Tips-and-Tricks

D3.js Examples Explained 358

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">

<title>Linux Process Tree</title>

<style>

div.tooltip {
position: absolute;
text-align: left;
width: 180px;
height: 80px;
padding: 2px;
font: 12px sans-serif;
background: lightsteelblue;
border: Opx;
border-radius: 8px;
pointer-events: none;

.node circle {
fill: #fff;
stroke: steelblue;
stroke-width: 3px;
.node text { font: 12px sans-serif; }
.link {
fill: none;
stroke: #ccc;
stroke-width: 2px;
</style>
</head>

<body>

<I-- load the d3.js library -->
<script src="http://d3js.org/d3.v3.min. js"></script>

<script>

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 359

/) RRKKAKKAKKAKKK Generate the tree diagram — FKFFKKFAKKAKKAKKAK
var margin = {top: 20, right: 120, bottom: 20, left: 120},
width = 1200 - margin.right - margin.left,
height = 900 - margin.top - margin.bottom;

var i = 0;

!

duration = 750;

var tree = d3.layout.tree()
.size([height, width]);

var diagonal = d3.svg.diagonal()
.projection(function(d) { return [d.y, d.x]; });

var svg = d3.select("body").append("svg")
.attr("width", width + margin.right + margin.left)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + ",6" +
margin.top + ")");

// load the external data
d3.csv("ps.csv", function(error, data) {

/) RRERRRRRRk Convert flat data Into a nice tree *FFfskddsrsfdsrs
// create a name: node map
var dataMap = data.reduce(function(map, node) {

map [node.name] = node;

return map;

boADS

// create the tree array
var treeData = [];
data. forEach(function(node) {
// add to parent
var parent = dataMap[node.parent];
if (parent) {
// create child array if it doesn't exist
(parent.children || (parent.children = []))
// add node to child array
.push(node);
} else {
// parent 1is null or missing

treeData.push(node);

D3.js Examples Explained 360

1)

root = treeData[Q];
root.x@ = height / 2;
root.y@ = 0;

update(root);
1)

d3.select(self. frameElement).style("height", "500px");
function update(source) {

// Compute the new tree layout.
var nodes = tree.nodes(root).reverse(),
links = tree.links(nodes);

// Normalize for fixed-depth.
nodes. forEach(function(d) { d.y = d.depth * 180; });

// Update the nodes&€/
var node = svg.selectAll("g.node")
.data(nodes, function(d) { return d.id || (d.id = ++i); });

// Enter any new nodes at the parent's previous position.
var nodeEnter = node.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) {
return "translate(" + source.y@ + "," + source.x@ + ")"; })
.on("click", click)
// add tool tip for ps -eo pid,ppid,pcpu,size,comm,ruser,s
.on("mouseover", function(d) {
div.transition()

.duration(200)
.style("opacity", .9);
div .html(
"PID: " + d.name + "
" +

"Command: " + d.COMMAND + "
" +

"User: " + d.RUSER + "
" +

"%CPU: " 4+ d.CPU + "
" +

"Memory: " + d.SIZE

)
.style("left", (d3.event.pageX) + "px")
.style("top", (d3.event.pageY - 28) + "px");

)

.on("mouseout", function(d) {

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 361

div.transition()
.duration(500)
.style("opacity", 0);
1)

nodeEnter .append("circle")
.attr("r", 1e-6)
.style("fill", function(d) {
return d._children ? "lightsteelblue" : "#fff"; });

nodeEnter .append("text")
.attr("x", function(d) {
return d.children || d._children ? -13 : 13; })

.attr("dy", ".35em")
.attr("text-anchor", function(d) {
return d.children || d._children ? "end" : "start"; })

.text(function(d) { return d.COMMAND; })
.style("fill-opacity", 1e-6);

// add the tool tip
var div = d3.select("body").append("div")
.attr("class", "tooltip")
.style("opacity", 0);

// Transition nodes to their new position.
var nodeUpdate = node.transition()

.duration(duration)
.attr("transform", function(d) {
return "translate(" + d.y + "," + d.x + ")";
1)

nodeUpdate.select("circle")
.attr("r", 10)
.style("fill", function(d) {
return d._children ? "lightsteelblue" : "#fff"; });

nodeUpdate.select("text")
.style("fill-opacity", 1);

// Transition exiting nodes to the parent's new position.
var nodeExit = node.exit().transition()
.duration(duration)
.attr("transform", function(d) { return "translate(" + source.y +
"," + source.x + ")"; })
.remove();

D3.js Examples Explained 362

nodeExit.select("circle")
.attr("r", 1e-6);

nodeExit.select("text")

.style("fill-opacity", 1e-6);

// Update the 1inks&€/
var link = svg.selectAll("path.link")
.data(links, function(d) { return d.target.id; });

// Enter any new links at the parent's previous position.
link.enter().insert("path", "g")
.attr("class", "link")
.attr("d", function(d) {
var o = {X: source.x@, y: source.y@};
return diagonal({source: o, target: o});

1);

// Transition links to their new position.
link.transition()

.duration(duration)

.attr("d", diagonal);

// Transition exiting nodes to the parent's new position.
link.exit().transition()
.duration(duration)
.attr("d", function(d) {
var o = {Xx: source.x, y: source.y};
return diagonal({source: o, target: o});
)

.remove();

// Stash the old positions for transition.
nodes. forEach(function(d) {

d.x0 = d.x;
d.yo = d.y;
1);

// Toggle children on click.
function click(d) {
if (d.children) {
d._children = d.children;
d.children = null;
} else {
d.children = d._children;

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 363

d._children = null;

}
update(d);

</script>

</body>
</html>

Description

I will describe both the code for the example and the csv file that accompanies it since (in this
case) the data that generates the tree is not gathered entirely automatically and has some manual
intervention applied to make it suitable for purpose.

The csv file (ps.csv) was generated by running the command...
ps -eo pid,ppid,pcpu,size,comm,ruser,s
...and converting the resultant output to a csv file.

name, parent,CPU,SIZE,COMMAND, RUSER, S
@, ,0,0,start,nul,u
1,0,0.0,1140,init,root,S
2,0,0.0,0,kthreadd, root, S
3,2,0.0,0,ksoftirqd/0,root,S
5,2,0.0,0,kworker/0:0H,root,S
6,2,0.0,0,kworker/u2:0,root,S
7,2,0.0,0,migration/0,root,S
8,2,0.0,0,rcu_bh,root,S
9,2,0.0,0,rcuob/0,root,S
10,2,0.0,0,rcu_sched,root, S

The column names I have specifically asked for with the command are;

« pid: Process ID - The unique numeric identifier assigned to the process

« ppid: Parent Process ID - Indicates the decimal value of the parent process ID

« pcpu: Percentage of CPU - Time used (total CPU time divided by length of time the process
has been running)

« size: Size - Memory size in kilobytes

« comm: Command -Indicates the short name of the command being executed

ruser: Real User ID - The textual user ID

« s: State - Process state with possible values:

D3.js Examples Explained 364

« R Running

« S Sleeping (may be interrupted)

« D Sleeping (may not be interrupted) used to indicate process is handling input/output
« T Stopped or being traced

« Z Zombie or “hung” process

I manually added the ‘start’ line (0, ,0,0,start,nul,u) to include the root node and removed the ‘%’
sign from the ‘%CPU’ label (which is produces when running ‘ps’) to reduce chance of errors.

In theory the process of formatting the data file could be automated (indeed, there may be a
much better way to gather and include it!).

The code is essentially an amalgam of four components which have been covered separately in
earlier sections of the book;

1. Tree code where the data is loaded from an external source

2. Tree code where the data is converted into a hierarchy from a flat file
3. Tree code to allow the diagram to collapse and expand.

4. Tool tips as an HTML object.

The loading of the data from an external source occurs in this portion of the code;

// load the external data
d3.csv("ps.csv", function(error, data) {

[/ RRERRRRRRRk Convert flat data Iinto a nice tree ¥*FFfsfddsrsfdtrs
// create a name: node map
var dataMap = data.reduce(function(map, node) {

map [node.name] = node;

return map;

BoADS

// create the tree array
var treeData = [];
data. forEach(function(node) {
// add to parent
var parent = dataMap[node.parent];
if (parent) {
// create child array if it doesn't exist
(parent.children || (parent.children = []))
// add node to child array
.push(node);
} else {
// parent 1is null or missing
treeData.push(node);
}
1)

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 365

root = treeData[0Q];
root.x@ = height / 2;
root.yQ = 0;

update(root);
1),

In reality the loading process is just the wrapping part of that code segment as the inner portion
is the section that takes the flat data and creates the hierarchical treeData.

The function update is the main section that allows the tree to expand and collapse (along with
the click function). I won’t repeat that code here as it is quite lengthy and probably unnecessary
(as it appears only a few pages previously). The only difference between the update function here
and the one that is used in the example in the tree chapter is that we include a portion of code
that allows us to include some of the details of each process in a tool tip;

// Enter any new nodes at the parent's previous position.
var nodeEnter = node.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) {
return "translate(" + source.y@ + "," + source.x@ + ")"; })
.on("click", click)
// add tool tip for ps -eo pid,ppid,pcpu,size,comm,ruser,s
.on("mouseover", function(d) {
div.transition()

.duration(200)
.style("opacity", .9);
div.html(
"PID: " + d.name + "
" +

"Command: " + d.COMMAND + "
" +
"User: " + d.RUSER + "
" +
"%CPU: " + d.CPU + "
" +
"Memory: " + d.SIZE
)
.style("left", (d3.event.pageX) + "px")
.style("top", (d3.event.pageY - 28) + "px");
)
.on("mouseout", function(d) {
div.transition()
.duration(500)
.style("opacity", 0);
1)

We use the mouseover and mouseout calls to find out when the cursor is over a portion of a node
(and this includes the text part as well as the circle) and print out the name of the process (which

D3.js Examples Explained 366

is the Process ID (PID)), the command name (a nice textual equivalent of the PID) the user that
the process is run by along with the CPU use and memory used.

The tree is pretty large, so depending on your use it might want to expand or perhaps contract.
It could be drawn radially perhaps and there is certainly scope for encoding information about
memory and CPU usage in the associated colouring of the nodes / links.

I would recommend visiting the demo page on bl.ocks.org®* to get a good look at the result, as
no picture in a book will be able to capture it sufficiently :-)

ssh-agent
gnome-settings-
metacity
unity-2d-panel
unity-2d-shell
nm-applet
Xarg PID: 1306 oolkit-gnome-au
ightdm anome-session Command: gnome-session gnome-falloack-
e]Iauuet‘lcglosth apple
s _D'D 5 gdu-notificatio
Memaory: 223184 ‘elepathy-indic

~ Janome-screensay
Update-notifier
deja-dup-monito

Linux processes in tree form

2%http://bl.ocks.org/d3noob/9692795

www. dbooks. or g

http://bl.ocks.org/d3noob/9692795
http://bl.ocks.org/d3noob/9692795
https://www.dbooks.org/

D3.js Examples Explained 367

Multi-line graph with automatic legend and toggling
show / hide lines.

Purpose

Creating a multi-line graph is a pretty handy thing to be able to do and we worked through an
example earlier in the book as an extension of our simple graph. In that example we used a csv
file that had the data arranged with each lines values in a separate column.

date,close, open
1-May-12,68.13,34.12
30-Apr-12,63.98,45.56
2T7-Apr-12,67.00,67.89
26-Apr-12,89.70,78.54
25-Apr-12,99.00,89.23
24-Apr-12,130.28,99.23
23-Apr-12,166.70,101 .34

This is a common way to have data stored, but if you are retrieving information from a database,
you may not have the luxury of having it laid out in columns. It may be presented in a more
linear fashion where each lines values are stores on a unique row with the identifier for the line
on the same row. For instance, the data above could just as easily be presented as follows;

price,date,value
close,1-May-12,68.13
close, 30-Apr-12,63.98
close,27-Apr-12,67.00
close,26-Apr-12,89.70
close,25-Apr-12,99.00
close,24-Apr-12,130.28
close,23-Apr-12,166.70
open,1-May-12,34.12
open,30-Apr-12,45.56
open,27-Apr-12,67.89
open,26-Apr-12,78.54
open,25-Apr-12,89.283
open,24-Apr-12,99.23
open,23-Apr-12,101.34

In this case, we would need to ‘pivot’ the data to produce the same multi-column representation
as the original format. This is not always easy, but it can be achieved using the d3 nest function
which we will examine.

As well as this we will want to automatically encode the lines to make them different colours
and to add a legend with the line name and the colour of the appropriate line.

D3.js Examples Explained 368

Finally, because we will build a graph script that can cope with any number of lines (within
reason), we will need to be able to show / hide the individual lines to try and clarify the graph
if it gets too cluttered.

All of these features have been covered individually in the book, so what we’re going to do is
combine them in a way that presents us with an elegant multi-line graph that looks a bit like

this;

Multi-line graph with legend

The Code

The following is the code for the initial example which is a slight derivative of the original simple
graph. A live version is available online at bl.ocks.org®” or GitHub?*®. It is also available as the
files ‘super-multi-lines.html’ and ‘stocks.csv’ as a download with the book D3 Tips and Tricks
(in a zip file) when you download the book from Leanpub®”’.

<IDOCTYPE html>
<meta charset="utf-8">
<style> /* set the CSS */

body { font: 12px Arial;}

path {
stroke: steelblue;
stroke-width: 2;

fill: none;

.axis path,
.axis line {
fill: none;
stroke: grey;
stroke-width: 1;
shape-rendering: crispEdges;

</style>
<body>

<!-- load the d3.js library -->
<script src="http://d3js.org/d3.v3.min. js"></script>

*"http://bl.ocks.org/d3noob/d8be922a10cbob148cd5
***https://gist.github.com/d3noob/d8be922a10cbob148cd5
***https://leanpub.com/D3-Tips-and- Tricks

www. dbooks. or g

http://bl.ocks.org/d3noob/d8be922a10cb0b148cd5
https://gist.github.com/d3noob/d8be922a10cb0b148cd5
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/d8be922a10cb0b148cd5
https://gist.github.com/d3noob/d8be922a10cb0b148cd5
https://leanpub.com/D3-Tips-and-Tricks
https://www.dbooks.org/

D3.js Examples Explained

<script>

// Set the dimensions of the canvas / graph

var margin = {top: 30, right: 20, bottom: 30, left:

width = 600 - margin.left - margin.right,
height = 270 - margin.top - margin.bottom;

// Parse the date / time
var parseDate = d3.time.format("%b %Y").parse;

// Set the ranges
var x = d3.time.scale().range([0, width]);
var y = d3.scale.linear().range([height, 0]);

// Define the axes
var xAxis = d3.svg.axis().scale(x)
.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)
.orient("left").ticks(5);

// Define the line

var priceline = d3.svg.line()
.X(function(d) { return x(d.date); })
.y(function(d) { return y(d.price); });

// Adds the svg canvas
var svg = d3.select("body")
.append("svg")

50},

.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform",
"translate(" + margin.left + ", "
// Get the data
d3.csv("stocks.csv", function(error, data) {
data. forEach(function(d) {
d.date = parseDate(d.date);
d.price = +d.price;

});

// Scale the range of the data

+ margin.top + ")");

x.domain(d3.extent(data, function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.price; })]);

369

D3.js Examples Explained 370

// Nest the entries by symbol

var dataNest = d3.nest()
.key(function(d) {return d.symbol;})
.entries(data);

// Loop through each symbol / key
dataNest . forEach(function(d) {

svg.append("path")
.attr("class", "line")

.attr("d", priceline(d.values));

});

// Add the X Axis

svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.call(xAxis);

// Add the Y Axis

svg.append("g")
.attr("class", "y axis")
.call(yAxis);

});

</script>
</body>

Description

Nesting the data

The example code above differs from the simple graph in two main ways.

Firstly, the script loads the file stocks . csv which was used by Mike Bostock in his small multiples
example®”. This means that the variable names used are different (price for the value of the
stocks, symbol for the name of the stock and good old date for the date) and we have to adjust
the parseDate function to parse a modified date value.

Secondly we add the code blocks to take the stocks.csv information that we load as data and
we apply the d3.nest function to it and draw each line.

The following code nest’s the data

*%http://bl.ocks.org/mbostock/1157787

www. dbooks. or g

http://bl.ocks.org/mbostock/1157787
http://bl.ocks.org/mbostock/1157787
http://bl.ocks.org/mbostock/1157787
https://www.dbooks.org/

D3.js Examples Explained 371

var dataNest = d3.nest()
.key(function(d) {return d.symbol;})
.entries(data);

We declare our new array’s name as dataNest and we initiate the nest function;
var dataNest = d3.nest()

We assign the key for our new array as symbol. A ‘key’ is like a way of saying “This is the thing
we will be grouping on”. In other words our resultant array will have a single entry for each
unique symbol or stock which will itself be an array of dates and values.

.key(function(d) {return d.symbol;})

Then we tell the nest function which data array we will be using for our source of data.
}).entries(data);

Then we use the nested data to loop through our stocks and draw the lines

dataNest. forEach(function(d) {

svg.append("path")
.attr("class", "line")

.attr("d", priceline(d.values));

});

The forEach function being applied to dataNest means that it will take each of the keys that we
have just declared with the d3.nest (each stock) and use the values for each stock to append a
line using its values.

The end result looks like the following;

200
150
100

50

2000 2002 2004 2008 2008 2010
A very plain multi-line graph
You would be justified in thinking that this is more than a little confusing. Clearly while we have

been successful in making each stock draw a corresponding line, unless we can tell them apart,
the graph is pretty useless.

D3.js Examples Explained 372

Applying the colours

Making sure that the colours that are applied to our lines (and ultimately our legend text) is
unique from line to line is actually pretty easy.

The code that we will implement for this change is available online at bl.ocks.org** or GitHub**.
It is also available as the files ‘super-multi-colours.html’ and ‘stocks.csv’ as a download with the
book D3 Tips and Tricks (in a zip file) when you download the book from Leanpub®®.

The changes that we will make to our code are captured in the following code snippet.

var color = d3.scale.category10();

// Loop through each symbol / key
dataNest. forEach(function(d) {

svg.append("path")
.attr("class", "line")
.style("stroke", function() {
return d.color = color(d.key); })
.attr("d", priceline(d.values));

});

Firstly we need to declare an ordinal scale®*** for our colours with var color = d3.scale.category10();.
This is a set of categorical colours (10 of them in this case) that can be invoked which are a nice
mix of difference from each other and pleasant on the eye.

We then use the colour scale to assign a unique stroke (line colour) for each unique key (symbol)
in our dataset.

.style("stroke", function() {
return d.color = color(d.key); })

It seems easy when it’s implemented, but in all reality, it is the product of some very clever
thinking behind the scenes when designing d3.js and even picking the colours that are used. The
end result is a far more usable graph of the stock prices.

**Thttp://bl.ocks.org/d3noob/88d2a87b72ea894c285c¢
*%https://gist.github.com/d3noob/88d2a87b72ea894c285¢
*%https://leanpub.com/D3-Tips-and- Tricks
*%*https://github.com/mbostock/d3/wiki/Ordinal-Scales

www. dbooks. or g

http://bl.ocks.org/d3noob/88d2a87b72ea894c285c
https://gist.github.com/d3noob/88d2a87b72ea894c285c
https://leanpub.com/D3-Tips-and-Tricks
https://github.com/mbostock/d3/wiki/Ordinal-Scales
http://bl.ocks.org/d3noob/88d2a87b72ea894c285c
https://gist.github.com/d3noob/88d2a87b72ea894c285c
https://leanpub.com/D3-Tips-and-Tricks
https://github.com/mbostock/d3/wiki/Ordinal-Scales
https://www.dbooks.org/

D3.js Examples Explained 373

200+

150 -

2000 2002 2004 2006 2008 2010
Multi-line graph with unique colours

Of course now we’re faced with the problem of not knowing which line represents which stock
price. Time for a legend.

Adding the legend

If we think about the process of adding a legend to our graph, what we’re trying to achieve is
to take every unique data series we have (stock) and add a relevant label showing which colour
relates to which stock. At the same time, we need to arrange the labels in such a way that they
are presented in a manner that is not offensive to the eye. In the example I will go through I
have chosen to arrange them neatly spaced along the bottom of the graph. so that the final result

looks like the following;

Multi-line graph with legend

Bear in mind that the end result will align the legend completely automatically. If there are three
stocks it will be equally spaced, if it is six stocks they will be equally spaced. The following is
a reasonable mechanism to facilitate this, but if the labels for the data values are of radically
different lengths, the final result will looks ‘odd’ likewise, if there are a LOT of data values, the
legend will start to get crowded.

The code that we will implement for this change is available online at bl.ocks.org**® or GitHub**.
It is also available as the files ‘super-multi-legend.html” and ‘stocks.csv’ as a download with the
book D3 Tips and Tricks (in a zip file) when you download the book from Leanpub®”’.

There are three broad categories of changes that we will want to make to our current code;

1. Declare a style for the legend font
2. Change the area and margins for the graph to accommodate the additional text
3. Add the text

Declaring the style for the legend text is as easy as making an appropriate entry in the <style>
section of the code. For this example I have chosen the following;

*%http://bl.ocks.org/d3noob/7cd5a74c4620db72f43f
3%https://gist.github.com/d3noob/7cd5a74c4620db72f43f
**"https://leanpub.com/D3-Tips-and- Tricks

http://bl.ocks.org/d3noob/7cd5a74c4620db72f43f
https://gist.github.com/d3noob/7cd5a74c4620db72f43f
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/7cd5a74c4620db72f43f
https://gist.github.com/d3noob/7cd5a74c4620db72f43f
https://leanpub.com/D3-Tips-and-Tricks

D3.js Examples Explained 374

.legend {
font-size: 16px;
font-weight: bold;
text-anchor: middle;

To change the area and margins of the graph we can make the following small changes to the
code.

var margin = {top: 30, right: 20, bottom: 70, left: 50},
width = 600 - margin.left - margin.right,
height = 300 - margin.top - margin.bottom;

The bottom margin is now 70 pixels high and the overall space for the area that the graph
(including the margins) covers is increased to 300 pixels.

To add the legend text is slightly more work, but only slightly more. The following code
incorporates the changes and I have placed commented out asterisks to the end of the lines
that have been added

legendSpace = width/dataNest.length; // spacing for legend // *¥¥***

// Loop through each symbol / key
dataNest . forEach(function(d, i) { /) RkRARK

svg.append("path")
.attr("class", "line")
.style("stroke", function() { // Add the colours dynamically
return d.color = color(d.key); })

.attr("d", priceline(d.values));

// Add the Legend

svg.append("text") /) FKFAKAK
.attr("x", (legendSpace/2)+i*legendSpace) // spacing // ****
.attr("y", height + (margin.bottom/2)+ 5)) ARARAK

.attr("class", "legend") // style the legend // *¥kkik*%
.style("fill", function() { // dynamic colours /) REERAAK

return d.color = color(d.key); }) /) HRARRAK
.text(d.key); /) FkEARAK

1),

The first added line finds the spacing between each legend label by dividing the width of the
graph area by the number of symbols (key’s or stocks).

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 375

legendSpace = width/dataNest.length;

Then there is a small and subtle change that might other wise go unnoticed, but is nonetheless
significant. We add an i to the forEach function;

dataNest . forEach(function(d,i) {

This might not seem like much of a big deal, but declaring i allows us to access the index of the
returned data. This means that each unique key (stock or symbol) has a unique number. In our
example those numbers would be from 0 to 3 (MSFT = 0, AMZN = 1, IBM = 2 and AAPL = 3 (this
is the order in which the stocks appear in our csv file)).

Now we get to adding our text. Again, this is a fairly simple exercise which is following the route
that we have taken several times already in the book but using some of our prepared values.

svg.append("text")
.attr("x", (legendSpace/2)+i*legendSpace)
.attr("y", height + (margin.bottom/2)+ 5)
.attr("class", "legend")
.style("fill", function() {
return d.color = color(d.key); })
.text(d.key);

The horizontal spacing for the labels is achieved by setting each label to the position set by the
index associated with the label and the space available on the graph. To make it work out nicely
we add half a 1egendSpace at the start (legendSpace/2) and then add the product of the index
(i) and 1egendSpace (i*legendSpace).

We position the legend vertically so that it is in the middle of the bottom margin (height +
(margin.bottom/2)+ 5).

And we apply the same colour function to the text as we did to the lines earlier;

.style("fill", function() {
return d.color = color(d.key); })

The final result is a neat and tidy legend at the bottom of the graph;

A

Multi-line graph with legend

If you’re looking for an exercise to test your skills you could adapt the code to show the legend
to the right of the graph. And if you wanted to go one better, you could arrange the order of the
legend to reflect the final numeric value on the right of the graph (Le in this case AAPL would
be on the top and MSFT on the bottom).

D3.js Examples Explained 376

Making it interactive

The last step we’ll take in this example is to provide ourselves with a bit of control over how the
graph looks. Even with the multiple colours, the graph could still be said to be ‘busy’. To clean it
up or at least to provide the ability to more clearly display the data that a user wants to see we
will add code that will allow us to click on a legend label and this will toggle the corresponding
graph line on or off.

This is a progression from the example of how to show / hide an element by clicking on another
element that was introduced in he ‘Assorted tips and tricks’ chapter.

The only changes to our code that need to be implemented are in the forEach section below. I
have left some comments with asterisks in the code below to illustrate lines that are added.

dataNest . forEach(function(d,i) {

svg.append("path")
.attr("class", "line")
.style("stroke", function() {
return d.color = color(d.key); })
.attr("id", 'tag'+d.key.replace(/\s+/g, '')) // assign ID **
.attr("d", priceline(d.values));

// Add the Legend
svg.append("text")
.attr("x", (legendSpace/2)+i*legendSpace)
.attr("y", height + (margin.bottom/2)+ 5)
.attr("class", "legend")
.style("fill", function() {
return d.color = color(d.key); })

.on("click", function(){ /) RISk kK
// Determine if current line is visible
var active = d.active ? false : true, [/ Fkrrfkrrirrtr
newOpacity = active ? 0 : 1; /) RIS KK

// Hide or show the elements based on the ID
d3.select("#tag"+d.key.replace(/\s+/qg, '')) [/ Frkkssskk

.transition().duration(100)) RkkA kKK

.style("opacity", newOpacity);) KA AR
// Update whether or not the elements are active
d.active = active; J)RR AAAA AN K
) [REEEFFIFAAAHK

.text(d.key);

});

The full code for the complete working example is available online at bl.ocks.org**® or GitHub**’.

*%http://bl.ocks.org/d3noob/e99a762017060ce81c76
**https://gist.github.com/d3noob/e99a762017060ce81c76

www. dbooks. or g

http://bl.ocks.org/d3noob/e99a762017060ce81c76
https://gist.github.com/d3noob/e99a762017060ce81c76
http://bl.ocks.org/d3noob/e99a762017060ce81c76
https://gist.github.com/d3noob/e99a762017060ce81c76
https://www.dbooks.org/

D3.js Examples Explained 377

It is also available as the files ‘super-multi.html” and ‘stocks.csv’ as a download with the book
D3 Tips and Tricks (in a zip file) when you download the book from Leanpub®*°.

The first piece of code that we need to add assign an id to each legend text label.
.attr("id", 'tag'+d.key.replace(/\s+/g, ''))

Being able to use our key value as the id means that each label will have a unique identifier.
“What’s with adding the 'tag' piece of text to the id?” I hear you ask. Good question. If our
key starts with a number we could strike trouble (in fact I'm sure there are plenty of other ways
we could strike trouble too, but this was one I came accross). As well as that we include a little
regular expression goodness to strip any spaces out of the key with .replace(/\s+/g, '").

The .replace calls the regular expression action on our key. \s is the regex for
“whitespace”, and g is the “global” flag, meaning match ALL \s (whitespaces). The +
allows for any contiguous string of space characters to being replaced with the empty
string (' *). This was a late addition to the example and kudos go to the participants in
the Stack Overflow question here®'.

Then we use the .on("click", function(){ call carry out some actions on the label if it is clicked
on. We toggle the .active descriptor for our element with var active = d.active ? false :
true, . Then we set the value of newOpacity to either @ or 1 depending on whether active is false
or true.

From here we can select our label using its unique id and adjust it’s opacity to either @
(transparent) or 1 (opaque);

d3.select("#tag"+d.key.replace(/\s+/g, ''))
.transition().duration(100)
.style("opacity", newOpacity);

Just because we can, we also add in a transition statement so that the change in transparency
doesn’t occur in a flash (100 milli seconds in fact (.duration(100))).

Lastly we update our d.active variable to whatever the active state is so that it can toggle
correctly the next time it is clicked on.

Since it’s kind of difficult to represent interactivity in a book, head on over to the live example
on bl.ocks.org®? to see the toggling awesomeness that could be yours!

*1%https://leanpub.com/D3- Tips-and-Tricks
*"http://stackoverflow.com/questions/5963182/how-to-remove-spaces-from-a- string-using-javascript
*1http://bl.ocks.org/d3noob/e99a762017060ce81c76

https://leanpub.com/D3-Tips-and-Tricks
http://stackoverflow.com/questions/5963182/how-to-remove-spaces-from-a-string-using-javascript
http://bl.ocks.org/d3noob/e99a762017060ce81c76
http://bl.ocks.org/d3noob/e99a762017060ce81c76
https://leanpub.com/D3-Tips-and-Tricks
http://stackoverflow.com/questions/5963182/how-to-remove-spaces-from-a-string-using-javascript
http://bl.ocks.org/d3noob/e99a762017060ce81c76

D3.js Examples Explained 378

My Favourite tooltip method for a line graph.

Purpose

Tooltips are a fabulous way to include an interactive element on a graph and a great mechanism
for including additional, focussed information to the user.

There are quite a number of different ways to implement tooltips (one of which you can find in
the ‘Adding tooltips’ section of the ‘Assorted Tips and Tricks’ chapter of D3 Tips and Tricks) and
I would be very hesitant about proclaiming any one better than another. However, the one we
will work through here is my favourite when using a line graph as I think it brings a ‘fuzzier’
mechanism for deciding when a tooltip is highlighted (you don’t have to be over an object to get
information on it) which I like.

I believe that the original example for this was shown by Mike Bostock here**?, but I first came
across the technique in an example by ‘gniemetz’***. I liked ‘gniemetz’s example enough to adapt
a similar example which I will explain below.

The idea with this technique is to set an area the size of the graph that will be used to determine
when a tooltip will be displayed. So that when the mouse enters that area, the display style
that allows elements to be shown or hidden. This then tells the script to show the tooltip and the
location of the mouse determines which point will have the tooltip. In the example below we can
see that the mouse cursor is some distance away from the point that is being highlighted, but it
is in line (in the vertical axis) with the highlighted point (in fact we will use some clever maths
to determine which date point (or point on the x axis) is the one that will be used to generate the
tooltip.

500
400
300

200

100

T T T T T 1
April Apriog Apr1s Apr 2z Apr 29
More complicated favourite tooltip example

To begin this explanation we’ll start with a simple example that will just project a circle on the
point where the tooltip will appear. Once we’ve worked out how that works we can add whatever
we want and I will explain what is going on in the more complex example.

As mentioned, we will start with a simple example that adds a circle on the point where we will
place our tooltip. It will look a bit like this;

*Phttp://bl.ocks.org/mbostock/3902569
*"http://bl.ocks.org/gniemetz/4618602

www. dbooks. or g

http://bl.ocks.org/mbostock/3902569
http://bl.ocks.org/gniemetz/4618602
http://bl.ocks.org/mbostock/3902569
http://bl.ocks.org/gniemetz/4618602
https://www.dbooks.org/

D3.js Examples Explained 379

600
500 -
400
300
200

100+

0

T T T T T
April Apr0a Apr1a Apr 2z Apr 29

Simple version of the favourite tooltip example

The Code

The full code for this simple example is available online at bl.ocks.org®** or GitHub?*’. It is also
available as the files ‘best-tooltip-simple.html’ and ‘atad.csv’ as a download with the book D3
Tips and Tricks (in a zip file) when you download the book from Leanpub®*’.

I have placed commented out asterisks besides the lines that have been added or altered from
the simple graph example that we started out with at the beginning of the book so that it’s easy
to see what has changed.

<IDOCTYPE html>
<meta charset="utf-8">
<style> /* set the CSS */

body { font: 12px Arial;}

path {
stroke: steelblue;
stroke-width: 2;
fill: none;

.axis path,

.axis line ({
fill: none;
stroke: grey;
stroke-width: 1;

shape-rendering: crispEdges;

</style>

3http://bl.ocks.org/d3noob/e5daff57a04c2639125¢
1https://gist.github.com/d3noob/e5daff57a04c2639125e
*"https://leanpub.com/D3-Tips-and- Tricks

http://bl.ocks.org/d3noob/e5daff57a04c2639125e
https://gist.github.com/d3noob/e5daff57a04c2639125e
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/e5daff57a04c2639125e
https://gist.github.com/d3noob/e5daff57a04c2639125e
https://leanpub.com/D3-Tips-and-Tricks

D3.js Examples Explained

<body>

<!-- Ioad the d3.js library -->
<script src="http://d3js.org/d3.v3.min. js"></script>

<script>

// Set the dimensions of the canvas / graph

var margin = {top: 30, right: 20, bottom: 30, left: 50},
width = 600 - margin.left - margin.right,
height = 270 - margin.top - margin.bottom;

// Parse the date / time
var parseDate = d3.time.format("%d-%b-%y").parse;

bisectDate = d3.bisector(function(d) { return d.date; }).left; // **

// Set the ranges
var x = d3.time.scale().range([0, width]);
var y = d3.scale.linear().range([height, 0]);

// Define the axes
var xAxis = d3.svg.axis().scale(x)
.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)
.orient("left").ticks(5);

// Define the line

var valueline = d3.svg.line()
.x(function(d) { return x(d.date); })
.y(function(d) { return y(d.close); });

// Adds the svg canvas
var svg = d3.select("body")
.append("svg")
.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform",

non

"translate(" + margin.left + "," + margin.top +

var lineSvg = svg.append("g");

var focus = svg.append("g")
.style("display", "none");

//

/7
/7

u)u);
oK ok ok ok ok Kk KKk K

KoK KKK K KK KK

KK KKK K KK KK

380

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained

// Get the data
d3.csv("atad.csv", function(error, data) {
data. forEach(function(d) {
d.date = parseDate(d.date);
d.close = +d.close;

});

// Scale the range of the data

x.domain(d3.extent(data, function(d) { return d.date; }));

/7

KoK KKK K KK KK

y.domain([0, d3.max(data, function(d) { return d.close; })]);

// Add the valueline path.

lineSvg.append("path")
.attr("class", "line")
.attr("d", valueline(data));

// Add the X Axis

svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.call(xAxis);

// Add the Y Axis

svg.append("g")
.attr("class", "y axis")
.call(yAxis);

// append the circle at the intersection
focus.append("circle")
.attr("class", "y")
.style("fill", "none"
.style("stroke", "blue")
.attr(tr", 4);

// append the rectangle to capture mouse
svg.append("rect")
.attr("width", width)
.attr("height", height)
.style("fill", "none"
.style("pointer-events", "all")

/7

//
/7
//
//
//
/7

/7
//
/7
//
/7
/7

KK KKK KKK KK

KoK KKK K K kK kK

P I i

ok ok ok ok ok ok ok ok ok ok

ok ok ok ok ok Kk ok Kk ok

K ok ok ok ok kKKK K

K oK KKK KKK kK

ok ok ok ok ok ok ok ok ok ok

Sk ok ok ok ok ok ok Kk Kk ok

K ok ok ok ok Kk kKKK

Sk ok ok ok ok K ok Kk K

KoK KKK KKK KK

ok ok ok ok ok ok ok ok ok ok

.on("mouseover", function() { focus.style("display", null); })

.on("mouseout", function() { focus.style("display", "none"); })

.on("mousemove", mousemove);

function mousemove() {
var x0 = x.invert(d3.mouse(this)[0]),

/7

/7
/7

oK oK K ok ok K oK Kk K

ok ok ok ok ok ok ok ok ok ok

ok ok ok ok ok ok ok ok ok ok

381

D3.js Examples Explained 382

i = bisectDate(data, x0, 1), [/ kERAKA KRR K
do = data[i - 1],) kKA AR K
d1 = data[i], /) RRARARAKAKK
d = x0 - do.date > dl.date - x0 ? d1 : do; J) RRAAKAK KA K
focus.select("circle.y") /) kERARA KRN
.attr("transform", [/ kEARA AR
"translate(" + x(d.date) + "," + J) RRARAAKAK
y(d.close) + ")"); /) RRAAFAA KA
} /) RIS AR K
1);
</script>
</body>
Description

You should be able to tell from the asterisks in the code above that there aren’t too many changes
and appart from a few at the start and middle, the majority are contained in a large block towards
the end.

Starting with our first change
bisectDate = d3.bisector(function(d) { return d.date; }).left;

This is our function that will be called later in the code that returns a value in our array of data
that corresponds to the horizontal position of the mouse pointer. Specifically it returns the date
that falls to the left of the mouse cursor.

The d3.bisector®'® is an ‘array method’ that can use an accessor or comparator function to
divide an array of objects. In this case our array of date values. In the code I have used the
d3.bisector asan accessor, because I believe that it’s simpler to do so for the point of explanation,
but the downside is that I had to have my dates ordered in ascending order which is why I load
a slightly different csv file later (atad.csv).

If your eyes glazed over slightly reading the previous paragraph, don’t let that put you off. Like
with so many things, just relax and let d3.js do the magic and remember that d3.bisector can
find a value in an ordered array.

The next block of changes declares a couple of functions that we will use to add our elements to
our graph;

*18https://github.com/mbostock/d3/wiki/Arrays#wiki-d3_bisector

www. dbooks. or g

https://github.com/mbostock/d3/wiki/Arrays#wiki-d3_bisector
https://github.com/mbostock/d3/wiki/Arrays#wiki-d3_bisector
https://www.dbooks.org/

D3.js Examples Explained 383

var lineSvg = svg.append("g");

var focus = svg.append("g")
.style("display”, "none");

We will use 1ineSvg to add our line for the line graph and focus will add our tooltip elements.
it is possible to avoid using lineSvg, but this way of declaring the functions means that we can
control which elements are on top of which on the screen. For instance, it would be a pretty sad
affair if our tooltip was appearing under the line of the line graph (hard to read).

As we saw earlier, our data is being sourced from a different csv file (atad.csv).
d3.csv("atad.csv", function(error, data) {

This is because we need to have it in a compatible order (ascending) to allow our bisector function
to operate correctly. So while the line may look the same as the simple graph version, the data
is ordered in reverse (some may say that this is the way the original data should have been
presented all along, but I suppose we can’t always second guess the data we get).

We then make a small change to the script that appended the line to the graph and instead of
using svg.append... we use our newly declared 1ineSvg.

lineSvg.append("path")
.attr("class", "line")
.attr("d", valueline(data));

The final, larger block of code can be broken into 4 logical sections;

1. Adding the circle to the graph

2. Set the area that we use to capture our mouse movements

3. The clever maths that determines which date will be highlighted
4. Move the circle to the appropriate position

The last two points actually occur within a separate function, but for the purposes of
explanation I'm happy that this is a logical division of labour for the script.

Adding the circle to the graph

Adding the circle to the graph is actually fairly simple;

D3.js Examples Explained 384

focus.append("circle")
.attr("class", "y")
.style("fill", "none"
.style("stroke", "blue")
.attr('r", 4);

If you’ve followed any of the other examples in D3 Tips and Tricks there shouldn’t be any
surprises here (well, perhaps assigning a class to the circle (y) could count as mildly unusual).

Except for one small thing....

We don’t place it anywhere on the graph! There is no x y coordinates and no translation of
position. Nothing! Never fear. All we want to do at this stage is to create the element. In a few
blocks of code time we will move the circle.

Set the area to capture the mouse movements

As we briefly covered earlier, the thing that makes this particular tooltip technique different is
that we don’t hover over an element to highlight the tooltip. Instead we move the mouse into an
area which is relevant to the tooltip and it appears.

And its all thanks to the following code;

svg.append("rect")
.attr("width", width)
.attr("height"”, height)
.style("fill", "none"
.style("pointer-events", "all")
.on("mouseover", function() { focus.style("display", null); })
.on("mouseout", function() { focus.style("display", "none"); })

.on("mousemove", mousemove);

Here we’re adding a rectangle to the graph (svg.append("rect")) with the same height and width
as our graph area (.attr("width", width) and .attr("height", height)) and we're making
sure that there’s no colour (fill) in it (.style("fill", "none")). Nothing too weird about all that.

Then we make sure that if any mouse events occur within the area that we capture them
(.style("pointer-events", "all")). This is when things start to get interesting.

The first pointer event that we want to work with is mouseover;
.on("mouseover", function() { focus.style("display", null); })

This line of code tells the script that when the mouse moves over the area of the rectangle of the
area of the graph the display properties of the focus elements (remember that we appended our
circle to focus earlier) are set to null. This might sound like a bit of a strange thing to do, since
what we want to do is to make sure that when the mouse moves over the graph we want the focus
elements to be displayed. but by setting the display style to null the default value for display

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 385

is enacted and this is inline which allows the elements to be rendered as normal. So why not
use inline instead of nul1? Good question. I've tried it and it works without problem, but the
original example that Mike Bostock used had the setting at null and I'll make the assumption
that Mike knows something that I don’t know about when to use null and when to use inline
for a display style*'” (maybe some browser incompatibility issues?).

The reverse of making our focus element display display everything is being able to make it stop
displaying everything. This is what happens in the next line;

.on("mouseout", function() { focus.style("display", "none"); })

Here, where the mouse moves off the area, the display properties for the focus element are turned

off.

Lastly for this block, we need to capture the actions of the mouse as it moves on the graph area
and move our tooltips as required. This is accomplished with the final line in the block...

.on("mousemove", mousemove);
... where if the mouse moves we call the mousemove function.

Determining which date will be highlighted

Once the mousemove function is called is carries out the last two steps in our code. The first of
which is the clever maths that determines which point in our graph has the tooltip applied to it.

var x0 = x.invert(d3.mouse(this)[0Q]),
i = bisectDate(data, x0, 1),
do = datali - 1],
d1 = data[i],
d = x0 - do.date > dl.date - x0 ? d1 : do;

The first line of this block is a dozy;

var x0 = x.invert(d3.mouse(this)[0]),
If we break it down the d3.mouse(this)[@] portion returns the x position on the screen of the
mouse (d3.mouse(this)[1] would return the y position). Then the x. invert function is reversing

the process that we use to map the domain (date) to range (position on screen). So it takes the
position on the screen and converts it into an equivalent date!

function and check out the changing date/time as the cursor moves pixel by pixel (This
will work for Google Chrome). Very cool.

o For the adventurous amongst you, throw a console.log(x@); line into the mousemove

Then we use our bisectDate function that we declared earlier to find the index of our data array
that is close to the mouse cursor.

*http://www.w3schools.com/jsref/prop_style_display.asp

http://www.w3schools.com/jsref/prop_style_display.asp
http://www.w3schools.com/jsref/prop_style_display.asp

D3.js Examples Explained 386

i = bisectDate(data, x0, 1),

It takes our data array and the date corresponding to the position of or mouse cursor and returns
the index number of the data array which has a date that is higher than the cursor position.

Then we declare arrays that are subsets of our data array;

do
d1l

datal[i - 1],
data[i],

do is the combination of date and close that is in the data array at the index to the left of the
cursor and d1 is the combination of date and close that is in the data array at the index to the
right of the cursor. In other words we now have two variables that know the value and date
above and below the date that corresponds to the position of the cursor.

The final line in this segment declares a new array d that is represents the date and close
combination that is closest to the cursor.

d = x0 - d9.date > dl.date - x0 7 d1 : do;

It is using the magic JavaScript short hand for an i f statement that is essentially saying if the
distance between the mouse cursor and the date and close combination on the left is greater
than the distance between the mouse cursor and the date and close combination on the right
then d is an array of the date and close on the right of the cursor (d1). Otherwise d is an array
of the date and close on the left of the cursor (d0).

This could be regarded as a fairly complicated little piece of code, but if you take the time to
understand it, you will be surprised how elegant it appears. As we’ve seen before though, if you
just want to believe that the d3.js magic is happening, that’s fine.

Move the circle to the appropriate position

The final block of code that we’ll check out takes the closest date / close combination that we’ve
just worked out and moves the circle to that position;

focus.select("circle.y")
.attr("transform",
"translate(" + x(d.date) + "," +
y(d.close) + ")");

This is a pretty easy bit of code to follow. We select the circle (using the class y that we assigned
to it earlier) and then move it using translate to the date / close position that we had just
worked out was the closest.

Of course this is provision of the coordinates to the circle that we noticed was missing earlier in
the code when we were appending it to the graph.

And there we have it. A simple circle positioned at the closest point to the mouse cursor when
the cursor hovers over the graph.

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 387

600
500 -
400
300
200

100+

0

T T T T T
April Apr0a Apr1a Apr 2z Apr 29

Simple version of the favourite tooltip example

If we hadn’t mentioned it earlier you might be thinking that this could possibly be the most
complicated method for making most basic (read lame) tooltip ever. But you know there’s more
right? Right....? Read on.

Complex version

You've read to this point, so that’s a sign that you’re still interested. In that case, I recommend
320

that you take a moment to check out the live example®*® of the graph that 'm going to describe.

500
400
300
200

100

T T T T T
April Apriog Apr1s Apr 2z Apr 29
More complicated favourite tooltip example

Here’s a graph that when you move your mouse over it shows the closest intersection point on
the graph with lines that extend the full width of the graph (great for comparing the level across
the graph) and down to the x axis (to get a rough feel for the date). As well as this there is a
subtle circle around the data point in question (as already explained in the previous section) and
the actual date and value represented at the intersection point. As if that wasn’t enough there is
a nice little drop shadow effect under the text so that no matter what the background is you can
read it. Nice.

The full code for this example is available online at bl.ocks.org®*! or GitHub**. It is also available
as the files ‘best-tooltip-coolio.html’ and ‘atad.csv’ as a download with the book D3 Tips and
Tricks (in a zip file) when you download the book from Leanpub®**.

*2%http://bl.ocks.org/d3noob/6eb506b129f585ce5c8a
*2thttp://bl.ocks.org/d3noob/6eb506b129f585ce5c8a
**?https://gist.github.com/d3noob/6eb506b129f585ce5c8a
*#https://leanpub.com/D3-Tips-and- Tricks

http://bl.ocks.org/d3noob/6eb506b129f585ce5c8a
http://bl.ocks.org/d3noob/6eb506b129f585ce5c8a
https://gist.github.com/d3noob/6eb506b129f585ce5c8a
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/6eb506b129f585ce5c8a
http://bl.ocks.org/d3noob/6eb506b129f585ce5c8a
https://gist.github.com/d3noob/6eb506b129f585ce5c8a
https://leanpub.com/D3-Tips-and-Tricks

D3.js Examples Explained 388

Code / Explanation

Because the date at the tooltip needs to be formatted in a particular way we need to declare this
appropriately;

formatDate = d3.time. format("%d-%b"),

Other than that everything is pretty normal until we get to the part where we start adding
elements to our focus group (you remember we had the circle before? Now we're adding
additional elements.).

// append the x line
focus.append("line")

.attr("class", "x")
.style("stroke", "blue")
.style("stroke-dasharray", "3,3")
.style("opacity", 0.5)
Lattr("yi", 0)
.attr("y2", height);

// append the y line
focus.append("line")
.attr("class", "y")
.style("stroke", "blue")
.style("stroke-dasharray", "3,3")
.style("opacity", 0.5)
attr("x1", width)
Lattr("x2", width);

// append the circle at the intersection
focus.append("circle")
.attr("class", "y")
.style("fill", "none"
.style("stroke", "blue")
.attr('r", 4);

// place the value at the intersection
focus.append("text")
.attr("class", "yi")
.style("stroke", "white")
.style("stroke-width", "3.5px")
.style("opacity", 0.8)
.attr("dx", 8)
.attr("dy", "-.3em");
focus.append("text")
.attr("class", "y2")

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 389

_attr("dx", 8)
.attr("dy", "-.3em");

// place the date at the intersection
focus.append("text")
.attr("class", "y3")
.style("stroke", "white")
.style("stroke-width", "3.5px")
.style("opacity", 0.8)
.attr("dx", 8)
Lattr("dy", "lem");
focus.append("text")
.attr("class", "y4")
.attr("dx", 8)
.attr("dy", "1em");

Here you can see we’re adding the x (horizontal) line and the y (vertical) line as well as the date
and text values. Notice on the text values, there is a white drop shadow added first and then
the text over the top. Another thing to note is that just like the position information, we don’t
actually put the text in here, this is simple a ‘placeholder’ for the element.

Then all we need to do is move all the new elements to the correct position and add the changing
text where appropriate;

focus.select("circle.y")
.attr("transform",
"translate(" + x(d.date) + "," +
y(d.close) + ")");

focus.select("text.y1")
.attr("transform",
"translate(" + x(d.date) + "," +
y(d.close) + ")")
.text(d.close);

focus.select("text.y2")
.attr("transform",
"translate(" + x(d.date) + "," +
y(d.close) + ")")
.text(d.close);

focus.select("text.y3")
.attr("transform",
"translate(" + x(d.date) + "," +
y(d.close) + ")")
.text(formatDate(d.date));

D3.js Examples Explained 390

focus.select("text.y4")
.attr("transform",
"translate(" + x(d.date) + "," +
y(d.close) + ")")
.text(formatDate(d.date));

focus.select(".x"
.attr("transform",
"translate(" + x(d.date) + "," +
y(d.close) + ")")
.attr("y2", height - y(d.close));

focus.select(".y")
.attr("transform",
"translate(" + width * -1 + ", " +
y(d.close) + ")")
.attr("x2", width + width);

There’s no big surprises here. Just an extension of what we accomplished with the circle earlier.
The only part that looks semi-interesting is some of the application of the positioning of the x
and y lines and this is more because of the points at which the lines start and finish.

Now this is unlikely to be the end solution for most people, but at least there are plenty of
examples of different elements in there to play with and experiment on.

Enjoy!

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 391

Exploring Event Data by Combination Scatter Plot
and Interactive Line Graphs

Purpose

In the process of implementing a method of measuring and displaying the passage of a cat
through a cat-door (as described in the book ‘Raspberry Pi: Measure, Record, Explore***’) I built
a graph that showed events indicated by both date and time on separate axes. It was then that
I figured that this would be useful for exploring event data or data that exists as a series of
date/time stamps that signify a particular ‘thing as having occurred. In the cat door example it
was the use of the door by the cat, but this is applicable to a huge range of data sets.

One that I thought of straight away was the dates and times that people downloaded this book.
Leanpub has an API for accessing the history of book activity and I was able to download it and
store it in a database for examination.

Ultimately what I developed was a scatter plot that shows the date of the events on the X axis
and the time of the events on the Y axis. This was augmented by two line graphs that showed
the accumulated sums of each axis on their respective sides.

f ‘l.‘l!l.J b r fih 2
’l[' I [I“.|L|'”| I "' "||J|" | l' "ﬂu' lllﬂl'lll n'J'J'[”n' I\ "h[fl "l ["'111';“"'-.%““' h "'|FJJ|1' 'nln' il |l L,," o ‘,-,I||=I-}|'
W A "'. ' I| I' LNV A

Data Event Exploration

The full code for this example is available online at bl.ocks.org®* or GitHub?*°. It is also available
as the files ‘book-downloads.html’ and ‘downloads.zip’ (which contains downloads.json (it’s
zipped up because otherwise it’s a bit too large for Leanpub)) as a download with the book
D3 Tips and Tricks (in a zip file) when you download the book from Leanpub®?’.

***https://leanpub.com/RPiMRE
*#http://bl.ocks.org/d3noob/a0cbeddcobfoeb9s69fe
*2Shttps://gist.github.com/d3noob/a0cbcddc6bfoeb9569fe
**"https://leanpub.com/D3-Tips-and- Tricks

https://leanpub.com/RPiMRE
http://bl.ocks.org/d3noob/a0cbcddc6bf0eb9569fe
https://gist.github.com/d3noob/a0cbcddc6bf0eb9569fe
https://leanpub.com/D3-Tips-and-Tricks
https://leanpub.com/RPiMRE
http://bl.ocks.org/d3noob/a0cbcddc6bf0eb9569fe
https://gist.github.com/d3noob/a0cbcddc6bf0eb9569fe
https://leanpub.com/D3-Tips-and-Tricks

D3.js Examples Explained 392

To make the information slightly more accessible when the user hovers their mouse over the
scatter plot there is an intersection of the position extrapolated to show the relationship to the
other graphs and it presents the appropriate value of date, time and number downloaded by date
and time.

This graph is a relatively complex combination of a range of different techniques presented in
the book, including wrangling and nesting of data, combination of multiple graphs and the use
of mouse movement to display tooltips and additional data.

The Code

The code is extremely lengthy, so in lieu of placing it in the book it can be found on bl.ocks.org**®
or Github®®. It is liberally commented to assist readers and I will describe particular sections of
the code below and hopefully that will help more where required.

Wrangling the data

The graph uses four sets of data.

1. The raw event data (an array called events)

2. The scatter plot data (an array called data)

3. The date graph data (an array called dataDate)
4. The time graph data (an array called dataTime)

The raw event data is ingested from an external JSON file using the standard d3. json call.

The data itself is simply a collection of dates.

{"dtg":"2013-01-24 ©9:10:59"},
{"dtg":"2013-01-24 ©9:17:37"},
{"dtg":"2013-01-24 ©9:48:48"},
{"dtg":"2013-01-24 15:01:59"},
{"dtg":"2013-01-24 18:11:44"},
{"dtg":"2013-01-24 18:47:05"},
{"dtg":"2013-01-24 18:47:23"},
{"dtg":"2013-01-24 19:55:53"},
{"dtg":"2013-01-24 22:37:39"},
{"dtg":"2013-01-25 01:22:48"},
{"dtg":"2013-01-25 ©6:37:38"},
{"dtg":"2013-01-25 ©8:28:20"},

Each date represents the time that a book was downloaded.

Once loaded we run a forEach over the file to put it in a format for manipulation into the
remaining three data sets.

*28http://bl.ocks.org/d3noob/a0cbeddc6bfoeb9569fe
**https://gist.github.com/d3noob/a0cbcddcsbfoeb9s69fe

www. dbooks. or g

http://bl.ocks.org/d3noob/a0cbcddc6bf0eb9569fe
https://gist.github.com/d3noob/a0cbcddc6bf0eb9569fe
http://bl.ocks.org/d3noob/a0cbcddc6bf0eb9569fe
https://gist.github.com/d3noob/a0cbcddc6bf0eb9569fe
https://www.dbooks.org/

D3.js Examples Explained 393

// parse and format all the event data
events. forEach(function(d) {
d.dtg = d.dtg.slice(0,-4)+'0:00'; // get the 10 minute block

dtgSplit = d.dtg.split(" "); // split on the space
d.date = dtgSplit[Q]; // get the date seperatly

d.time = dtgSplit[1]; // format the time
d.number_downloaded = 1; // Number of downloads

),

The first thing we do is to slice off the last four characters of the dtg string and replace them
with 0:00. This leave us with a set of dtg values that are only represented by the 10 minute
window in which they were downloaded.

We then split the dtg string on the space that separates the date and the time and we designate
one half date and the other half time.

Lastly we represent the number of books downloaded for each event as 1 (this helps us sum them
up later).

Using the events data we create the data-set for the scatter plot (data) by nesting the information
on the 10 minute dtg value of date/time and by summing the number of downloads;

var data = d3.nest()
.key(function(d) { return d.dtg;})
.rollup(function(d) {
return d3.sum(d, function(g) {return g.number_downloaded; });

1))

.entries(events);
We carry out a similar process for the date...

var dataDate = d3.nest()
.key(function(d) { return d.date;})
.rollup(function(d) {
return d3.sum(d, function(g) {return g.number_downloaded; });

D)

.entries(events);

... and the time;

D3.js Examples Explained 394

var dataTime = d3.nest()
.key(function(d) { return d.time;})
.sortKeys(d3.ascending)
.rollup(function(d) {
return d3.sum(d, function(g) {return g.number_downloaded; });

1))

.entries(events);

Sizing Everything Up

The size of the graph is determined by a number of fixed variables which are fairly self
explanatory;

« scatterplotHeight (which is also the height of the time graph)
e dateGraphHeight
e timeGraphWidth

But we need to let the width of the scatter plot (and the date graph) be a function of the number
of days that have been collected. This variable is handled by;

e scatterplotWidth
This set-up is handled in the following block of code;

var oneDay = 24*60*60*1000; // hours*minutes*seconds*milliseconds

var dateStart = d3.min(data, function(d) { return d.date; });

var dateFinish = d3.max(data, function(d) { return d.date; });

var numberDays = Math.round(Math.abs((dateStart.getTime() -
dateFinish.getTime())/(oneDay)));

var margin = {top: 20, right: 20, bottom: 20, left: 50},
scatterplotHeight = 520,
scatterplotWidth = numberDays * 1.5,
dateCGraphHeight = 220,
timeGraphWidth = 220;

The overall size of the graphic (height and width) is therefore a combination of these variables;

var height = scatterplotHeight + dateGraphHeight,
width = scatterplotWidth + timeGraphWidth;

The Scatter Plot

There is no real surprise with the scatter plot itself. The only thing slightly unusual is the use of
a time scale for both the X and Y axes;

www. dbooks.

org

https://www.dbooks.org/

D3.js Examples Explained 395

var x = d3.time.scale().range([0, scatterplotWidth]);

var y = d3.time.scale().range([0, scatterplotHeight]);

When the circles are drawn, the size of the circle is determined by the radius, which is the number
of downloads multiplied by 1.5. I know that this is a bit of a visualization ‘no-no’ because the
area of the circle should be representative of the number, not the radius, but I tried it both ways
and to my simple way of viewing the data, the radius adjustment provided the best comparison.

svg.selectAll(".dot")

.data(data)

.enter().append("circle")
.attr("class", "dot")
.attr("r", function(d) { return d.number_downloaded*1.5; })
.style("opacity", 0.3)
.style("fill", "#e31alc")
.attr("cx", function(d) { return x(d.date); })
.attr("cy", function(d) { return y(d.time); });

I know that this is a topic of some academic debate, and it is fascinating, so here are both results
for comparison;

D3.js Examples Explained 396

Circle Area Representing Downloads

Circle Radius Representing Downloads

Date and Time Graphs

Both of these graphs are fairly routine. The time graph has the X and Y axes reversed from what
would be ordinarily expected, but otherwise not much else to write home about.

Mouse Movement Information Display

This portion of the graph is an expansion of the ‘Favourite tool tip’ method from the previous
section in this chapter. We expand the number of elements to update dynamically to about 10.
All of which are designated with their own class.

We append the rectangle to capture the mouse movement over the scatterplot;

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 397

svg.append("rect")
.attr("width", scatterplotWidth)
.attr("height", scatterplotHeight)
.style("fill", "none"
.style("pointer-events", "all")
.on("mouseover", function() { focus.style("display", null); })
.on("mouseout", function() { focus.style("display", "none"); })

.on("mousemove", mousemove);

We capture the position of the mouse and convert it to figures we can use to compare to our
data;

function mousemove() {
var xpos = d3.mouse(this)[0],
X0 = x.invert(xpos),
yQ = d3.mouse(this)[1],
yl = y.invert(yQ),
datel = d3.mouse(this)[0Q];

And then we place our dynamic text and lines with our focus.select statements.

Labelling

The last order of business is to place some labels.

The location of labelling in this example is an interesting problem in itself. 'm personally torn
between the desire to maintain simplicity and to ensure clarity. Hopefully what I have is enough
to satisfy both requirements, but as always, each user and requirement will differ, so label as
desired.

If there are additional parts of the code that you would like explained, please feel free to get in
touch.

D3.js Examples Explained 398

Difference Chart: Science vs Style.

Dear readers, please forgive me for including this example in D3 Tips and Tricks. While it
demonstrates a really cool graphing technique, I have chosen to apply it to a topic that has a
potential to raise a couple of sets of eyebrows in the form of Messrs Roger Peng and Jeff Leek.
Both work at the Johns Hopkins Bloomberg School of Public Health where Roger is an Associate
Professor of Biostatistics, and Jeff is an Associate Professor of Biostatistics and Oncology.

While both are doing amazing work to improve peoples health and well-being (amongst other
things), both are also authors of highly successful books published by Leanpub. In particular
Roger has written R Programming for Data Science® and Exploratory Data Analysis with R***
while Jeff has penned The Elements of Data Analytic Style**>. As we could anticipate, there is a
possibility that there is something of a competitive element®* to publishing for both gentlemen
as they see the the number of downloads of their books climb ever higher.

While [would hate to promote an increase to these tensions, The opportunity was too attractive
given that I had access to some data on the number of downloads that each of the books had
been achieving and I really wanted to write about difference charts using d3.js (and the method
of sourcing the data for the book Raspberry Pi: Measure, Record, Explore®**).

So at the risk of providing some form of offence to these fine gentlemen or inciting an increased
rivalry, I have forged ahead and hopefully the worst that will happen is that someone interested
in d3.js will also find some interesting reading in R Programming for Data Science, Exploratory
Data Analysis with R or The Elements of Data Analytic Style. Ultimately we should be left with
a graph that will look something like this;

| Science vs Style - Daily Leanpub Book Sales

8004

600 —

I I] I i I I I I 1] |
Apr28 May 03 May 10 May 17 May 24 May 31 Jun 07 Jun 14 Jun 21 Jun 23 Jul s Jul 12 Jui 12

The Elements of Data Analytic Style R Programming for Data Science

Science vs Style - Daily Leanpub Book Sales

*>3%https://leanpub.com/rprogramming
*31https://leanpub.com/exdata

>3?https://leanpub.com/datastyle
>*https://twitter.com/d3noob/status/611227825685725184/photo/1
*3*https://leanpub.com/RPiMRE

www. dbooks. or g

https://leanpub.com/rprogramming
https://leanpub.com/exdata
https://leanpub.com/datastyle
https://twitter.com/d3noob/status/611227825685725184/photo/1
https://leanpub.com/RPiMRE
https://leanpub.com/rprogramming
https://leanpub.com/exdata
https://leanpub.com/datastyle
https://twitter.com/d3noob/status/611227825685725184/photo/1
https://leanpub.com/RPiMRE
https://www.dbooks.org/

D3.js Examples Explained 399

Purpose

A difference chart is a variation on a bivariate area chart®*. This is a line chart that includes
two lines that are interlinked by filling the space between the lines. A difference chart as
demonstrated in the example here**® by Mike Bostock is able to highlight the differences between
the lines by filling the area between them with different colours depending on which line is the
greater value.

As Mike points out in his example, this technique harks back at least as far as William Playfair**’
when he was describing the time series of exports and imports of Denmark and Norway in 1786.

Exports and Imports to and from DENMARK &% NORWAY from oo 101780,

I
L | [Bazavee & |,

| | i i __FAVOUR o
|

- —— - : —|120 [
[4 e ‘

EEEED

=]

— E— -_t o

| | | | |
R —
oo 1710 1720 1750 1740 1750 1700 1770 1780
The Bottorm loee w5 divided irnte Years, the Rggftt hand lirne wnte LIQOOO cact.
Prblished e cha Act clebwess, 10° Mgw 1706, by W™ Llayadr Nale vevipt JOL, Serand. Lovdort .

William Playfair’s Time Series of Exports and Imports of Denmark and Norway

All that remains is for us to work out how d3.js can help us out by doing the job programmatically.
The example that I use here is based on that of Mike Bostock’s**®, with the addition of a few
niceties in the form of a legend, a title, and some minor changes.

We will start with a simple example of the code and we will add blocks to finally arrive at the
example with Legends and title.

3http://www.informit.com/articles/article.aspx?p=709139&seqNum=>5
**http://bl.ocks.org/mbostock/3894205
>*"https://en.wikipedia.org/wiki/William_Playfair
**¥http://bl.ocks.org/mbostock/3894205

http://www.informit.com/articles/article.aspx?p=709139&seqNum=5
http://bl.ocks.org/mbostock/3894205
https://en.wikipedia.org/wiki/William_Playfair
http://bl.ocks.org/mbostock/3894205
http://www.informit.com/articles/article.aspx?p=709139&seqNum=5
http://bl.ocks.org/mbostock/3894205
https://en.wikipedia.org/wiki/William_Playfair
http://bl.ocks.org/mbostock/3894205

D3.js Examples Explained

The Code

400

The following is the code for the simple difference chart. A live version is available online at
bl.ocks.org® or GitHub’*. It is also available as the files ‘diff-basic.html” and ‘downloads.csv’
as a download with the book D3 Tips and Tricks (in a zip file) when you download the book

from Leanpub®*’.

<!DOCTYPE html>
<meta charset="utf-8">
<style>

body { font: 10px sans-serif;}

text.shadow {
stroke: white;
stroke-width: 2px;
opacity: 0.9;

.axis path,

.axis line {
fill: none;
stroke: #0Q00;
shape-rendering: crispkdges;

.x.axis path { display: none; }

.area.above { fill: rgb(252,141,89); }
.area.below { fill: rgb(145,207,96); }

.line {
fill: none;
stroke: #000;
stroke-width: 1.5px;

</style>

<body>

<script src="http://d3js.org/d3.v3.min. js"></script>
<script>

var title = "Science vs Style - Daily Leanpub Book Sales";

*3%http://bl.ocks.org/d3noob/8beea1d918ff4104f9ab
**®https://gist.github.com/d3noob/8beea1d918ff4104foab
**Thttps://leanpub.com/D3-Tips-and- Tricks

www. dbooks. or g

http://bl.ocks.org/d3noob/8beea1d918ff4104f9ab
https://gist.github.com/d3noob/8beea1d918ff4104f9ab
https://leanpub.com/D3-Tips-and-Tricks
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/8beea1d918ff4104f9ab
https://gist.github.com/d3noob/8beea1d918ff4104f9ab
https://leanpub.com/D3-Tips-and-Tricks
https://www.dbooks.org/

D3.js Examples Explained

var margin = {top: 20, right: 20, bottom: 50, left: 50},
width = 960 - margin.left - margin.right,
height = 500 - margin.top - margin.bottom;

var parsedtg = d3.time.format("%Y-%m-%d").parse;

var x = d3.time.scale().range([0, width]);
var y = d3.scale.linear().range([height, 0]);

var xAxis = d3.svg.axis().scale(x).orient("bottom");
var yAxis = d3.svg.axis().scale(y).orient("left");

var lineScience = d3.svg.area()
.interpolate("basis")
.x(function(d) { return x(d.dtg); })
.y(function(d) { return y(d["Science"]); });

var lineStyle = d3.svg.area()
.interpolate("basis")
.x(function(d) { return x(d.dtg); })
.y(function(d) { return y(d["Style"]); });

var area = d3.svg.area()
.interpolate("basis")
.x(function(d) { return x(d.dtg); })
.y1(function(d) { return y(d["Science"]); });

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform",

"translate(" + margin.left + "," + margin.top + ")");

d3.csv("downloads.csv", function(error, dataNest) ({

dataNest. forEach(function(d) {
d.dtg = parsedtg(d.date_entered);
d.downloaded = +d.downloaded;

1)
var data = d3.nest()
.key(function(d) {return d.dtg;})

.entries(dataNest);

data. forEach(function(d) {

401

D3.js Examples Explained 402

d.dtg = d.values[0]['dtg'];
d["Science"] = d.values[Q]['downloaded'];
d["Style"] = d.values[1]['downloaded'];

1)

for(i=data.length-1;i>0;i--) {
data[i].Science = data[i].Science -data[(i-1)].Science ;
data[i].Style = data[i].Style -data[(i-1)].Style ;

data.shift(); // Removes the first element in the array

x.domain(d3.extent(data, function(d) { return d.dtg; }));
y.domain([
// d3.min(data, function(d) {
// return Math.min(d["Science"], d["Style"]); }),
// d3.max(data, function(d) {
// return Math.max(d["Science"], d["Style"]); })
0,1400
1);

svg.datum(data);

svg.append("clipPath")
.attr("id", "clip-above")
.append("path")
.attr("d", area.yQ(9));

svg.append("clipPath")
.attr("id", "clip-below")
.append("path")
.attr("d", area.y@(height));

svg.append("path")
.attr("class", "area above")
.attr("clip-path", "url(#clip-above)")
.attr("d", area.y@(function(d) { return y(d["Style"]); }));

svg.append("path")
.attr("class", "area below")
.attr("clip-path", "url(#clip-below)")
.attr("d", area.y@(function(d) { return y(d["Style"]); }1));

svg.append("path")

.attr("class", "line")
.style("stroke", "darkgreen")

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained

.attr("d", lineScience);

svg.append("path")
.attr("class", "line")
.style("stroke", "red"
.attr("d", lineStyle);

svg.append("g")

)

.attr("class", "x axis"

.attr("transform", "translate(®@," + height + ")")

.call(xAxis);

svg.append("g")

.attr("class", "y axis")
.call(yAxis);

1)

</script>

</body>

A sample of the associated csv file (downloads.csv) is formatted as follows;

date_entered, downloaded, book_name

2015-04-19,5481 ,R Programming
2015-04-19,23751,The Elements
2015-04-20,5691 ,R Programming
2015-04-20,23782,The Elements
2015-04-21,6379,R Programming
2015-04-21,23820,The Elements
2015-04-22,7281,R Programming
2015-04-22,23857,The Elements
2015-04-23,7554,R Programming
2015-04-23,23881,The Elements
2015-04-24,9331,R Programming
2015-04-24,23932,The Elements

Description

for Data Science
of Data Analytic
for Data Science
of Data Analytic
for Data Science
of Data Analytic
for Data Science
of Data Analytic
for Data Science
of Data Analytic
for Data Science
of Data Analytic

Style

Style

Style

Style

Style

Style

403

The graph has some portions that are common to the simple line graph example.

We start the HTML file, load some styling for the upcoming elements, set up the margins, time
formatting scales, ranges and axes.

Because the graph is composed of two lines we need to declare two separate line functions;

D3.js Examples Explained 404

var lineScience = d3.svg.area()
.interpolate("basis")
.x(function(d) { return x(d.dtg); })
.y(function(d) { return y(d["Science"]); });

var lineStyle = d3.svg.area()
.interpolate("basis")
.X(function(d) { return x(d.dtg); })
.y(function(d) { return y(d["Style"]); });

To fill an area we declare an area function using one of the lines as the baseline (y1) and when
it comes time to fill the area later in the script we declare yo separately to define the area to be
filled as an intersection of two paths.

var area = d3.svg.area()
.interpolate("basis")
.x(function(d) { return x(d.dtg); })
.y1(function(d) { return y(d["Science"]); });

In this instance we are using the green ‘Science’ line as the y1 line.

The svg area is then set up using the height, width and margin values and we load our csv files
with our number of downloads for each book. We then carry out a standard forEach to ensure
that the time and numerical values are formatted correctly.

Nesting the data

The data that we are starting with is formatted in a way that we could reasonably expect data to
be available in this instance where a value is saved for distinct elements on an element by element
basis. This style of recording data makes it easy to add new elements into the data stream or a
database rather than relying on having them as discrete columns.

date_entered, downloaded, book_name

2015-04-19,5481,R Programming for Data Science
2015-04-19,23751,The Elements of Data Analytic Style
2015-04-20,5691,R Programming for Data Science
2015-04-20,23782,The Elements of Data Analytic Style
2015-04-21,6379,R Programming for Data Science
2015-04-21,23820,The Elements of Data Analytic Style

In this case, we will need to ‘pivot’ the data to produce a multi-column representation where we
have a single row for each date, and the number of downloads for each book as separate columns
as follows;

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 405

date_entered,R Programming for Data Science,The Elements of Data Analytic Style
2015-04-19,5481,23751
2015-04-20,5691 ,23782
2015-04-21,6379,23820

This can be achieved using the d3 nest function.

var data = d3.nest()
.key(function(d) {return d.dtg;})
.entries(dataNest);

We declare our new array’s name as data and we initiate the nest function;
var data = d3.nest()

We assign the key for our new array as dtg. A ‘key’ is like a way of saying “This is the thing we
will be grouping on”. In other words our resultant array will have a single entry for each unique
date (dtg) which will have the values of the number of downloaded books associated with it.

.key(function(d) {return d.dtg;})
Then we tell the nest function which data array we will be using for our source of data.

}).entries(dataNest);

Wrangle the data

Once we have our pivoted data we can format it in a way that will suit the code for the
visualisation. This involves storing the values for the ‘Science’ and ‘Style’ variables as part of
a named index.

data. forEach(function(d) {
d.dtg = d.values[0]['dtg'];
d["Science"] = d.values[Q]['downloaded'];
d["Style"] = d.values[1]['downloaded'];

});

We then loop through the ‘Science’ and ‘Style” array to convert the incrementing value of the
total number of downloads into a value of the number that have been downloaded each day;

D3.js

406

Examples Explained

for(i=data.length-1;i>0;i--) {

-data[(i-1)].Science ;
-data[(i-1)].Style ;

= data[i].Science
= data[i].Style

data[i].Science
data[i].Style

Finally because we are adjusting from total downloaded to daily values we are left with an
orphan value that we need to remove from the front of the array;

data.shift();

Cheating with the domain

The

observant d3.js reader will have noticed that the setting of the y domain has a large section

commented out;

x.domain(d3.extent(data, function(d) { return d.dtg; }));
y.domain([

// d3.min(data, function(d) {
// return Math.min(d["Science"], d["Style"]); }),
// d3.max(data, function(d) {
// return Math.max(d["Science"], d["Style"]); })
0,1400
1,

That’s because I want to be able to provide an ideal way for the graph to represent the data in
an appropriate range, but because we are using the basis smoothing modifier, and the data is
‘peaky’, there is a tendency for the y scale to be fairy broad and the resultant graph looks a little

lost;

1,500
1,400
1,200
1,000 -
200
500 |
400

200 H

- I I
Apr 28 May 03

May 10

I I [I I I 1 I I I
May 17 May 24 May 31 Jun 07 Jun 14 J

Using automatic range

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 407

Alternatively, we could remove the smoothing and let the true data be shown;

1,500
1,400
1,200
1,000

500

800 o

I I 1 I I I
Apr 26 May 03

1 I
May 10 May 17 May 24 May 31 Jun 07 Jun 14 Jun 21 Jun 28 Jul 05 Jui 12 Jul 1@

Using automatic range and removing the basis smoothing

It should be argued that this is a truer representation of the data, but in this case I feel comfortable
sacrificing accuracy for aesthetics (what have I become?).

Therefore, the domain for the y axis is set manually to between 0 and 1400, but feel free to remove
that at the point when you introduce your own data :-).

data VS datum

One small line gets its own section. That line is;
svg.datum(data);

A casual d3.js user could be forgiven for thinking that this doesn’t seem too fearsome a line, but

it has hidden depths.

As Mike Bostock explains here**?, if we want to bind data to elements as a group we would be
* _data, but if we want to bind that data to individual elements, we should use *.datum.

It’s a function of how the data is stored. If there is an expectation that the data will be dynamic
then data is the way to go since it has the feature of preparing enter and exit selections. If the
data is static (it won’t be changing) then datum is the way to go.

In our case we are assigning data to individual elements and as a result we will be using datum.
Setting up the clipPaths

The clipPath®*® operator is used to define an area that is used to create a shape by intersecting
one area with another.

**http://bost.ocks.org/mike/selection/#data
>*https://developer.mozilla.org/en-US/docs/Web/SVG/Element/clipPath

http://bost.ocks.org/mike/selection/#data
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/clipPath
http://bost.ocks.org/mike/selection/#data
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/clipPath

D3.js Examples Explained

408

In our case we are going to set up two clip paths. One is the area above the green ‘Science’ line

(which we defined earlier as being the y4 component of an area selection);

1,400

1,200 4

1.000

500 -

500

400

200+

I I I I I I
Aprae May 03 May 10 May 17 May 24 May 31 Jun 07 Jun 14 Jun 21 Jul 05 Jul 12

the ‘clip-above’ clip path

This is declared via this portion of the code;
svg.append("clipPath")
.attr("id", "clip-above")
.append("path")
.attr("d", area.y@(0));

Then we set up the clip path that will exist for the area below the green ‘Science’ line ;

1,400 4
1,200
1,000

500

500

400 -

200

1
Jul 18

T 1 T T T
Apras May 03 May 10 May 17 May 24 May 31 Jun 07 Jun 14 Jun 21

The ‘clip-below’ clip path

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 409

This is declared via this portion of the code;

svg.append("clipPath")
.attr("id", "clip-below")
.append("path")
.attr("d", area.y@(height));

Each of these paths has an ‘id’ which can be subsequently used by the following code.

Clipping and adding the areas

Now we come to clipping our shape and filling it with the appropriate colour.

We do this by having a shape that represents the area between the two lines and applying our
clip path for the values above and below our reference line (the green ‘Science’ line). Where the
two intersect, we fill it with the appropriate colour. The code to fill the area above the reference
line is as follows;

svg.append("path")
.attr("class", "area above")
.attr("clip-path", "url(#clip-above)")
.attr("d", area.y@(function(d) { return y(d["Style"]); }));

Here we have two lines that are defining the shape between the two science and style lines;

svg.append("path")

.attr("d", area.y@(function(d) { return y(d["Style"]); }));

If we were to look at the shape that this produces it would look as follows (greyed out for

highlighting);

D3.js Examples Explained 410

1,400 4

1,200

1,000

500

500

400

200

| | | | | | | | | | | | |
Apr 28 May 03 May 10 May 17 May 24 May 31 Jun 07 Jun 14 Jun 21 Jun 28 Julds Jul 12 Jul 1@

The shape between the science and style lines

We apply a class to the shape so that is filled with the colour that we want;
.attr("class", "area above")

.. and apply the clip path so that only the areas that intersect the two shapes are filled with the
appropriate colour;

.attr("clip-path", "url(#clip-above)")

Here the intersection of those two shapes is shown as pink;

1,400

1,200

1,000

£00

500

400

I I I I I 1 I
Apr2g May 03 May 10 May 17 May 24 May 31 Jun 07 Jun 14 Jun 21 Jun 28 Jul 0§ Jui 12 Jul 18

The intersection of the shapes

Then we do the same for the area below;

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 411

svg.append("path")
.attr("class", "area below")
.attr("clip-path", "url(#clip-below)")
.attr("d", area.y@(function(d) { return y(d["Style"]); }1));

With the corresponding areas showing the intersection of the two shapes coloured differently;

1,400 -
1,200 H
1,000

500

500

400

200 H

1 T T 1 T 1 1 T T 1 1 1
Apr 26 May 03 May 10 May 17 May 24 May 31 Jun O7 Jun 14 Jun 21 Jun 28 Jul 05 Jul 12 Jul1g

The intersection of the shapes

Draw the lines and the axes

The final part of our basic difference chart is to draw in the lines over the top so that they are
highlighted and to add in the axes;

svg.append("path")
.attr("class", "line")
.style("stroke", "darkgreen")
.attr("d", lineScience);

svg.append("path")
.attr("class", "line")
.style("stroke", "red")
.attr("d", lineStyle);

svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.call(xAxis);

svg.append("g")

D3.js Examples Explained 412

.attr("class", "y axis")

.call(yAxis);

Et viola! we have our difference chart!

1,400 —

1,200

1,000

500

500

400

200 H

0- I I I I I I I I I I I I I
Apr28 May 03 May 10 May 17 May 24 May 31 Jun 07 Jun 14 Jun 21 Jun 28 Jul 0§ Jul 12 Jul 19

The basic difference chart

As mentioned earlier, the code for the simple difference chart is available online at bl.ocks.org***

or GitHub?*. It is also available as the files ‘diff-basic.htm!l’ and ‘downloads.csv’ as a download
with the book D3 Tips and Tricks (in a zip file) when you download the book from Leanpub®*‘.

Adding a bit more to our difference chart.

The chart itself is a thing of beauty, but given the subject matter (it’s describing two books after
all) we should include a bit more information on what it is we’re looking at and provide some
links so that a fascinated viewer of the graphs can read the books!

Add a Y axis label

Because it’s not immediately obvious what we’re looking at on the Y axis we should add in a
nice subtle label on the Y axis;

***http://bl.ocks.org/d3noob/8beea1d918ff4104f9ab
**>https://gist.github.com/d3noob/8beea1d918ff4104foab
*Shttps://leanpub.com/D3-Tips-and- Tricks

www. dbooks. or g

http://bl.ocks.org/d3noob/8beea1d918ff4104f9ab
https://gist.github.com/d3noob/8beea1d918ff4104f9ab
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/8beea1d918ff4104f9ab
https://gist.github.com/d3noob/8beea1d918ff4104f9ab
https://leanpub.com/D3-Tips-and-Tricks
https://www.dbooks.org/

D3.js Examples Explained

svg.append("g")

.attr("class", "y axis")
.call(yAxis)
.append("text")

.attr("transform", "rotate(-90)")

Lattr("y", 6)
.attr("dy", ".7iem")
.style("text-anchor", "end")

.text("Daily Downloads from Leanpub");

Add a title

413

Every graph should have a title. The following code adds this to the top(ish) centre of the chart

and provides a white drop-shadow for readability;

/) kkxkkkk Title Block *¥kkkkikx

svg.append("text") // Title shadow

.attr("x", (width / 2))
Lattr("y", 50)
.attr("text-anchor", "middle")
.style("font-size", "30px")
.attr("class", "shadow")
.text(title);

svg.append("text") // Title

Lattr("x", (width / 2))
Lattr("y", 50)
.attr("text-anchor", "middle")
.style("font-size", "30px")
.style("stroke", "none"
.text(title);

Adding the legend

A respectable legend in this case should provide visual context of what it is describing in relation
to the graph (by way of colour) and should actually name the book. We can also go a little bit
further and provide a link to the books in the legend so that potential readers can access them

easily.

Firstly the rectangles filled with the right colour, sized appropriately and arranged just right;

D3.js Examples Explained 414

var block = 300; // rectangle width and position

svg.append("rect") // Style Legend Rectangle
Lattr("x", ((width / 2)/2)-(block/2))
.attr("y", height+(margin.bottom/2))
.attr("width", block)
.attr("height", "25")
.attr("class", "area above");

svg.append("rect") // Science Legend Rectangle
Lattr("x", ((width / 2)/2)+(width / 2)-(block/2))
.attr("y", height+(margin.bottom/2))
.attr("width", block)
.attr("height", "25")
.attr("class", "area below");

Then we add the text (with a drop-shadow) and a link;

svg.append("text") // Style Legend Text shadow
Lattr("x", ((width / 2)/2))
.attr("y", height+(margin.bottom/2) + 5)
.attr('dy", ".7iem")
.attr("text-anchor", "middle")
.style("font-size", "18px")
.attr("class", "shadow")
.text("The Elements of Data Analytic Style");

svg.append("text") // Science Legend Text shadow
Lattr("x", ((width / 2)/2)+(width / 2))
.attr("y", height+(margin.bottom/2) + 5)
.attr("dy", ".T7iem")
.attr("text-anchor", "middle")
.style("font-size", "18px")
.attr("class", "shadow")

.text("R Programming for Data Science");

svg.append("a")
.attr("xlink:href", "https://leanpub.com/datastyle")
.append("text") // Style Legend Text
Lattr("x", ((width / 2)/2))
.attr("y", height+(margin.bottom/2) + 5)
.attr("dy", ".7iem")
.attr("text-anchor", "middle")
.style("font-size", "18px")
.style("stroke", "none"
.text("The Elements of Data Analytic Style");

www. dbooks. or g

https://www.dbooks.org/

D3.js Examples Explained 415

svg.append("a")
.attr("xlink:href", "https://leanpub.com/rprogramming")
.append("text") // Science Legend Text
sattr("x", ((width / 2)/2)+(width / 2))
.attr("y", height+(margin.bottom/2) + 5)
.attr("dy", ".T7iem")
.attr("text-anchor", "middle")
.style("font-size", "18px")
.style("stroke", "none"
.text("R Programming for Data Science");

I'll be the first to admit that this could be done more efficiently with some styling via css, but
then it would leave nothing for the reader to try :-).

Link the areas

As alast touch we can include the links to the respective books in the shading for the graph itself;

svg.append("a")
.attr("xlink:href", "https://leanpub.com/datastyle")
.append("path")
.attr("class", "area above")
.attr("clip-path", "url(#clip-above)")
.attr("d", area.y@(function(d) { return y(d["Style"]); }));

svg.append("a")
.attr("xlink:href", "https://leanpub.com/rprogramming")
.append("path")
.attr("class", "area below")
.attr("clip-path", "url(#clip-below)")
.attr("d", area.y@(function(d) { return y(d["Style"]); }));

Perhaps not strictly required, but a nice touch none the less.

The final result

And here it is;

D3.js Examples Explained 416

1,400 4

Science vs Style - Daily Leanpub Book Sales

1,200+

1,000+

Daily Downloads from Leanpub

800

800

400

I I I I
Jun 28 Jul 05 Jut 12 Jui1g

I
Jun 21

I | | I | | | |
Apr28 May 03 May 10 May 17 May 24 May 31 Jun 07 Jun 14

The Elements of Data Analytic'Style
The full difference chart

The code for the full difference chart is available online at bl.ocks.org®*” or GitHub***. It is also
available as the files ‘diff-full.htm]’ and ‘downloads.csv’ as a download with the book D3 Tips
and Tricks (in a zip file) when you download the book from Leanpub®*.

**"http://bl.ocks.org/d3noob/f6d8588a0aa3a7503f57
***https://gist.github.com/d3noob/f6d8588a0aa3a7503f57
***https://leanpub.com/D3-Tips-and-Tricks

www. dbooks. org

http://bl.ocks.org/d3noob/f6d8588a0aa3a7503f57
https://gist.github.com/d3noob/f6d8588a0aa3a7503f57
https://leanpub.com/D3-Tips-and-Tricks
http://bl.ocks.org/d3noob/f6d8588a0aa3a7503f57
https://gist.github.com/d3noob/f6d8588a0aa3a7503f57
https://leanpub.com/D3-Tips-and-Tricks
https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data
Discovery

The ability to interact with visual data is the third step on the road to data nirvana in my humble
opinion.

« Step 1: Raw data
« Step 2: Visualize data
« Step 3: Interact with data

But I think that there might be a 4th step where data is a more fluid construct. Where the
influences of interaction have a more profound impact on how information is presented and
perceived. I think that the visualization tools that we’re going to explore in this chapter take that
4th step.

+ Step 4: Data immersion

The tools we’re going to use are not the only way that we can achieve the effect of immersion,
but they are simple enough for me to use and they incorporate d3.js at their core.

Introduction to Crossfilter

Crossfilter is a JavaScript library for exploring large datasets that include many variables in the
browser. It supports extremely fast interactions with concurrent views and was built to power
analytics for Square Register®*® so that online merchants can slice and dice their payment history
fluidly. It was developed for Square®* by (amongst other people) the ever tireless Mike Bostock
and was released under the Apache Licence®?.

Crossfilter provides a map-reduce function to data using ‘dimensions’ and ‘groups’. Map-reduce
is an interesting concept itself and it’s useful to understand it in a basic form to understand
crossfilter better.

Map-reduce

Wikipedia tells us**® that “MapReduce is a programming model for processing large data sets with
a parallel, distributed algorithm on a cluster”. Loosely translated into language I can understand,
I think of a large data set having one dimension ‘mapped’ or loaded into memory ready to be

**%https://squareup.com/register
>>thttps://squareup.com/
>>?http://www.apache.org/licenses/LICENSE-2.0.html
*3https://en.wikipedia.org/wiki/MapReduce

https://squareup.com/register
https://squareup.com/
http://www.apache.org/licenses/LICENSE-2.0.html
https://en.wikipedia.org/wiki/MapReduce
https://squareup.com/register
https://squareup.com/
http://www.apache.org/licenses/LICENSE-2.0.html
https://en.wikipedia.org/wiki/MapReduce

Crossfilter, dc.js and d3.js for Data Discovery

418

worked on. In practical terms, this could be an individual column of data from a larger group of
information. This column of data has ‘key’ values which we can define as being distinct. In the
case of the data below, this could be earthquake magnitudes.

FID

quake 2013p550753
quake.2013p550747
quake 2013p550725
quake.2013p550724
quake 2013p550719
guake.2013p550707
quake 2013p550696
quake.2013p550685
quake 2013p550676
quake.2013p550656
quake 2013p550639
quake.2013p550626
quake 2013p550623
quake.2013p550609
quake 2013p550598
guake.2013p550587
quake 2013p550576
quake.2013p550558
quake 2013p550549
quake.2013p550545
quake 2013p550538
quake.2013p550529
quake 2013p550514
quake.2013p550510
quake 2013p550507

publicid

2013p550753
2013p550747
2013p550725
2013p550724
2013p550719
2013p550707
2013p550696
2013p550685
2013p550676
2013p550656
2013p550639
2013p550626
2013p550623
2013p550609
2013p550598
2013p550587
2013p5504576
2013p550558
2013p550549
2013p550545
2013p550538
2013p550529
2013p550514
2013p550510
2013p550507

origintime
2013-07-23T18:41:11.707
2013-07-23T18:38:02 481
2013-07-23T18:26:30.229
2013-07-23T18:25:52 618
2013-07-23T18:23:04 562
2013-07-23T18:16:41.795
2013-07-23T18:11:13.808
2013-07-23T18:05:20 677
2013-07-23T18:01:08 435
2013-07-23T17:50:01.564
2013-07-23T17-:40:58 613
2013-07-23T17:33:41.661
2013-07-23T17-32:15.04
2013-07-23T17:24:30.87
2013-07-23T17-18:53 637
2013-07-23T17:13:47 503
2013-07-23T17-06:55 593
2013-07-23T16:547:41.898
2013-07-23T16:52:50.013
2013-07-23T16:50:42 2
2013-07-23T16:46:44 168
2013-07-23T16:42:19.669
2013-07-23T16:34:19.725
2013-07-23T16:32:12.908
2013-07-23T16:31:20.374

depth magnitude

7.9883 22
11.6797 1.8
8.75 35
11.2109 43
51172 19
18.0078 27
76953 23
140.4688 21
212891 34
10,0977 25
106.4844 33
5.0586 24

5 0586 23
51172 2.2
51172 20

5 6445 35
19 8828 24
53516 27

5 0586 24
25,7422 2.2
141406 21
18.9443 25
5 0586 23
1647129 38
118555 36

Mapping a Single Dimension of Data

longitude |latitude

174.4298 41,5313

174.414-41.5181
1755516 -40.0264
174.2292 -41.6837
174.0623 -41.6946
174.1772-41.7113
174.3964 -41.6919
175.4547-38.8079
174.283141.6327
174.3607 -41.6244
167 5654 45 1528
174.2668 -41.675
174.3556 -41.5858
174.2196 -41.6342
174 3878 -41.529
174.2576-41.6488
174.1842 41,5197
174.2321-41.6229
174 2858 41.6297

176.732/-39.5607
174.3338 41.5187
174.1726-41.7112
174.2362 -41.6261

178.667 -35.874
174 3866 41.5317

The reduce function then takes that dimension and ‘reduces’ it by grouping it according to a
specific aspect. For instance in the example above we may want to group each unique value
of magnitude (by counting how many occurrences of each there are) to know how many
earthquakes of a specific magnitude have taken place. Leaving us with a very specific subset
of our data.

Magnitude Count

.6

W W W W wwNhDNDDNDDN
O b O N~ 0 O 0

—

63

134
292
299
378
351
403
455
512
688

Please don’t think that this is the sum total of information you need to know to be the
master of map-reduce. This is a ridiculously simplistic view which is only intended to
supply enough information to get you familiar with the way that we will use crossfilter

later :-).

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 419

What can crossfilter do?

The best way to get a feel for the capabilities of crossfilter is to visit the demo page for crossfilter®*
and to play with their example.

Time of Day

Arrival Delay (min) Distance (mi.)

B W

T T 1
0 2 4 & & 10 1Z 14 16 18 20 22 24 £0-40-20 0 20 40 ‘D BD 135140143] 800 1,000 1453 14DD 1800 1,800 200

Date

T
Jan 07

T
Jan 14

February 20, 2001

11:50 PM
11:22 PM
11:20 PM
11:05 PM

MCI
PHX
LAS
LAS

T
Jan 21

MDW

ONT
LAX
PHX

T T T T T T 1
Jan 28 Feb 04 Feb 11 Feb 18 Feb 25 IMar 04 Mar 11 Mar 18 Mar 25 April

48,329 of 231,083 flights selected.

405 mi. -10 min.
325 mi +4 min.
236 mi. +27 min.
256 mi. -11 min.

Crossfilter Demo Page

Here we are presented with five separate views of a data set that represents flight records
demonstrating airline on-time performance. There are 231,083 flight records in the database
being used, so getting that rendered in a web page is no small feat in itself.

The bottom view is a table showing data for individual flights. The top, left view is of the number
of flights that occur at a specific hour of the day.

Time of Day

a2 & & 10 12 14 18 18 20 22 24

Flights at a Specific Hour of the Day

The top, middle graph shows the amount of delay for flights grouped in 10 minute intervals.

>>*http://square.github.io/crossfilter/

http://square.github.io/crossfilter/
http://square.github.io/crossfilter/

Crossfilter, dc.js and d3.js for Data Discovery 420

Arrival Delay (min)

-80-40-20 0 20 40 80 &0 100120140

Flights Delay in 10 Minute Intervals
The top, right graph shows the distance covered by each flight grouped in 50 mile chunks.

Distance (mi.)

=

0 200 400 500 200 1,000 1,200 1,‘;33 1,EI-EIEI 1,BIEIEI 2,00
Flights Delay in 10 Minute Intervals
The wider bar graph in the second row shows the number of flights per day.

Date

T T T T T T T T T 1
Jan 07 Jan 14 Jan 21 Jan 28 Feb 04 Feb 11 Feb 18 Feb 25 MMar 04 Mar 11 Mar 18 Mar 25 April

Flights per Day

This particular graph is the first to give a hint at how cool this visualization really is, because it
includes a section in the middle of the graph which is selected with ‘handles’ on either side of
the selection. You can move these handles with a mouse and as a result you will find all the data
represented in the other graphs adjusting dynamically to follow your selection.

This same feature is available in all the graphs. So you are able to filter dynamically and have the
results presented virtually instantaneously. This is where you can start to have fun and discover
things that might not be immediately obvious.

For instance, if we select only the flights that arrived late, we can see a marked skew in the time
of day. Does this mean that flights that are delayed will typically be in the late evening?

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 421

Time of Day Arrival Delay (min.) Distance (mi.)

T T T T T T T 1 1 11 T T T T 1
0 2 & & & 10 12 14 16 18 20 22 24 -B80-40-20 O 20 40 S0 80 100120140] Z00 400 200 800 1,000 1,200 1400 1600 1,800 Z00

Date

Jan 07 Jan 14 Jan 21 Jan 28 Feb 04 Feb 11 Feb 18 Feb 25 MMar 04 Mar 11 Mar 18 Mar 25 April

Arrival Delay and Time of Day

So this is why tools like crossfilter are cool. All we need to do now is learn how to make them
ourselves :-).

Introduction to dc.js

Why, if we’ve just explored the benefits of crossfilter are we now introducing a completely
different JavaScript library (dc.js)?

Well, crossfilter isn’t a library that’s designed to draw graphs. It’s designed to manipulate data.
D3.js is a library that’s designed to manipulate graphical objects (and more) on a web page. The
two of them will work really well together, but the barrier to getting data onto a web page can
be slightly daunting because the combination of two non-trivial technologies can be difficult to
achieve.

356

This is where dc.js>** comes in. It was developed by Nick Qi Zhu**® and the first version was

released on the 7th of July 2012.

Dc.js is designed to be an enabler for both libraries. Taking the power of crossfilter’s data
manipulation capabilities and integrating the graphical capabilities of d3.js.

It is designed to provide access to a range of different chart types in a relatively easy to use
fashion. It is more limited in the range of options available for graphical design in this respect
than d3.js, but the simplicity that it provides for creating pages using crossfiltered data is a real
benefit if you’re anything like me and need all the help you can get.

The different (generic) types of chart that dc.js supports are

+ Bar Chart

« Pie Chart

« Row Chart

o Line Chart

« Bubble Chart

+ Geo Choropleth Chart

*>http://nickqizhu.github.io/dc.js/
*3https://github.com/NickQiZhu

http://nickqizhu.github.io/dc.js/
https://github.com/NickQiZhu
http://nickqizhu.github.io/dc.js/
https://github.com/NickQiZhu

Crossfilter, dc.js and d3.js for Data Discovery 422
« Data Table

All these examples come with a range of options which we will cover in greater depth in later
sections.

My initial sources of information for developing the examples here came primarily from;

« Nick Zhu’s examples®’
« Rusty Klophaus’ blog post on crossfilter**®
« Eamonn O’Loughlin’s blog post on dc.js***

Bar Chart

This is a standard bar chart.

280
200 4
150 -
100 -
50 -
o | L., | = | |
1 2 2 2 s 8 7
Bar Chart Example

Pie Chart

This is a standard pie chart. The examples below are from one of Nick Zhu’s dc.js example
pages®®.

Days by Gain/Loss Quarters

Loss(46%)

| Gain{53%)

Pie Chart Examples

**"http://nickqizhu.github.io/dc.js/
*3http://blog.rusty.io/2012/09/17/crossfilter-tutorial/
*>>*https://becomingadatascientist.wordpress.com/tag/crossfilter-js/
*%http://nickqizhu.github.io/dc.js/

www. dbooks. org

http://nickqizhu.github.io/dc.js/
http://blog.rusty.io/2012/09/17/crossfilter-tutorial/
https://becomingadatascientist.wordpress.com/tag/crossfilter-js/
http://nickqizhu.github.io/dc.js/
http://nickqizhu.github.io/dc.js/
http://nickqizhu.github.io/dc.js/
http://blog.rusty.io/2012/09/17/crossfilter-tutorial/
https://becomingadatascientist.wordpress.com/tag/crossfilter-js/
http://nickqizhu.github.io/dc.js/
https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 423

Row Chart

The row chart is a horizontal version of a bar chart, but with the ability to represent discrete
values and to select them for filtering by clicking on them.

Day of the Week

Sun

Tue

Fri

T T
200 400

) IH

Row Chart Example

Line Chart

Standard line chart.

Events per hour

o T T T T T T T T T T T 1
Thu 18 12PM Fri18 12PM Sat20 1Z2FM Jul 21 12PM Mon22 1Z2PM Tue23 12FPM Wed:

Line Chart Example

Bubble Chart

The bubble chart is a derivative of a scatter plot with control over x axis position, y axis position,
bubble radius and colour.

Crossfilter, dc.js and d3.js for Data Discovery 424

120 o B i
113 ! o

100 o 1o

)

= 72
20— B A ™ &
40 - = e
2
. B o=
20 - @ e P
1% 17
T 1”‘% T T T T T u T T
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.8 5.0
Bubble Chart Example

Geo Choropleth Chart

A Choropleth map is one where areas are shaded or patterned in proportion to the measurement
of a variable being displayed on the map, such as population density or per-capita income. The
example below is from one of Nick Zhu’s dc.js example pages*’

VC Distribution by States (color: total amount raised)

Geo Choropleth Chart Example

Data Table

A data table is a simple table made up of data elements derived from the information loaded.

*thttp://nickgizhu.github.io/dc.js/vc/

www. dbooks. or g

http://nickqizhu.github.io/dc.js/vc/
http://nickqizhu.github.io/dc.js/vc/
https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery

DTG

List of all earthquakes corresponding to the filters

Tue Jul 23 2013 17:50:01 GMT+1200 (Mew Zealand Standard Time)
Tue Jul 23 2013 18:01:08 GMT+1200 (Mew Zealand Standard Time)
Tue Jul 23 2013 18:05:20 GMT+1200 (Mew Zealand Standard Time)
Tue Jul 23 2013 18:11:13 GMT+1200 (Mew Zealand Standard Time)
Tue Jul 23 2013 18:16:41 GMT+1200 (Mew Zealand Standard Time)

Tue Jul 23 2013 18:23:04 GMT+1200 (New Zealand Standard Time)

Lat

-41.6244

-41.6327

-38.8079

-41.6919

-41.7113

-41.6946

Long

1743607

1742831

175.4547

1743964

1741772

1740623

Data Table Example

Depth

21

140

Magnitude

25

34

21

23

27

Google Map

Google Map

Google Map

Google Map

Google Map

Google Map

Google Map

425

Q5N Map

03M Map
03M Map
03M Map
03M Map
03M Map

OSM Map

Crossfilter, dc.js and d3.js for Data Discovery 426

Bare bones structure for dc.js and crossfilter page

To learn some of the capabilities of dc.js and crossfilter we will start with a rudimentary template
and build chart examples as we go.

The template we’ll start with will load d3.js, crossfilter.js, dc.js, jquery.js and bootstrap.js. We will
be including bootstrap as it provides lots of nice capabilities for fine tuning layout and styling as
laid out in the chapter on using bootstrap. Since bootstrap depends on jquery, we have to load
that as well.

We'll also load cascading style sheets for bootstrap and dc.js.

The template will load a csv file with earthquake data sourced from New Zealand’s Geonet®*?
site over a date range that covers a period of reasonable activity in July 2013.

In its bare bones form we will present only a data table with some values from the csv file. When
we begin to add charts, we will see this table adjust dynamically.

We’ll move through the explanation of the code in a similar process to the other examples in the
book. Where there are areas that we have covered before, I will gloss over some details on the
understanding that you will have already seen them explained in other sections.

The full code for this example can be found on github*** or in the code samples bundled with
this book (dcjs-examples.html, dc.js, dc.css, crossfilter.js, jquery-1.9.1.min.js, bootstrap.min.js,
bootstrap.min.css and quakes.csv). A live example can be found on bl.ocks.org?**.

<IDOCTYPE html>
<html lang='en'>
<head>
<meta charset='utf-8'>

<title>dc. js Experiment</title>

<seript src="http://d3js.org/d3.v3.min. js"></secript>

<script src='crossfilter.js' type='text/javascript'></script>
<script src='dc.js' type='text/javascript'></script>

<script src='jquery-1.9.1.min.js' type='text/javascript'></script>
<script src='bootstrap.min. js' type='text/javascript'></script>

<link href='bootstrap.min.css' rel='stylesheet' type='text/css'>
<link href='dc.css' rel='stylesheet' type='text/css'>

<style type="text/css"></style>
</head>

<body>

*%http://geonet.org.nz/
*$https://gist.github.com/d3noob/6584483
3**http://bl.ocks.org/d3noob/6584483

www. dbooks. or g

http://geonet.org.nz/
https://gist.github.com/d3noob/6584483
http://bl.ocks.org/d3noob/6584483
http://geonet.org.nz/
https://gist.github.com/d3noob/6584483
http://bl.ocks.org/d3noob/6584483
https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 427

<div class='container' style='font: 12px sans-serif;'>
<div class='row'>
<div class='spani2'>
<table class='table table-hover' id='dc-table-graph'>
<thead>
<tr class='header'>
<th>DTG</th>
<th>Lat</th>
<th>Long</th>
<th>Depth</th>
<th>Magnitude</th>
<th>Google Map</th>
<th>0OSM Map</th>
</tr>
</thead>
</table>
</div>
</div>
</div>

<script>

// Create the dc.js chart objects & link to div
var dataTable = dc.dataTable("#dc-table-graph");

// load data from a csv file
d3.csv("quakes.csv", function (data) {

// format our data
var dtgFormat = d3.time.format("%Y-%m-%dT%H:%M:%S");

data. forEach(function(d) {

d.dtg = dtgFormat.parse(d.origintime.substr(0,19));
d.lat = +d.latitude;
d.long = +d.longitude;
d.mag = d3.round(+d.magnitude,1);
d.depth = d3.round(+d.depth,0);
1)

// Run the data through crossfilter and load our 'facts'
var facts = crossfilter(data);

// Create dataTable dimension
var timeDimension = facts.dimension(function (d) {
return d.dtg;

Crossfilter, dc.js and d3.js for Data Discovery

1)

// Setup the charts

// Table of earthquake data
dataTable.width(960).height(800)
.dimension(timeDimension)

.group(function(d) { return "Earthquake Table"

P
.size(10)
.columns([

function(d)
function(d)
function(d)
function(d)
function(d)
function(d)

return '<a href=\"http://maps.google.com/maps?z=12&t=m&g=1loc:"' +
d.lat + '+' + d.long + "\" target=\"_blank\">Google Map"},

function(d)

return '<a href=\"http://www.openstreetmap.org/?mlat=" +

o N i et W e S e

{

{

return
return
return
return

return

d.dtg; },
d.lat; },
d.long; },
d.depth; 1},
d.mag; },

d.lat + '&mlon=' + d.long +'&zoom=12'+
"\" target=\"_blank\"> OSM Map"}

D

.sortBy(function(d){ return d.dtg; })
.order(d3.ascending);

// Render the Charts

dc.renderAll();

});

</script>

</body>
</html>

428

The first part of the code starts the html file and inside the <head> segment loads our JavaScript

and css files

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 429

<IDOCTYPE html>
<html lang='en'>
<head>
<meta charset='utf-8'>

<title>dc.js Experiment</title>

<seript src="http://d3js.org/d3.v3.min. js"></secript>

<script src='crossfilter.js' type='text/javascript'></script>
<script src='dc.js' type='text/javascript'></script>

<seript src='jquery-1.9.1.min.js' type='text/javascript'></script>

<script src='bootstrap.min.js' type='text/javascript'></script>

<link href='bootstrap.min.css' rel='stylesheet' type='text/css'>
<link href='dc.css' rel='stylesheet' type='text/css'>

<style type="text/css"></style>
</head>

It’s worth noting that the order of loading the files is important. The
jquery-1.9.1.min.js file must be loaded before the bootstrap.min.js file or it
just won’t work.

From here we move into the section where we set up our page to load our bootstrap grid layout
for the table.

<div class='container' style='font: 12px sans-serif;'>
<div class='row'>
<div class='spanl2'>
<table class='table table-hover' id='dc-table-graph'>
<thead>
<tr class='header'>
<th>DTG</th>
<th>Lat</th>
<th>Long</th>
<th>Depth</th>
<th>Magnitude</th>
<th>Google Map</th>
<th>0SM Map</th>
</tr>
</thead>
</table>
</div>
</div>
</div>

Crossfilter, dc.js and d3.js for Data Discovery 430

It might look a little complicated, but if you have a look through the bootstrap chapter (where
we cover using the bootstrap grid layout), you will find it no problem at all.

The important features to note are that we have declared an ID selector for our table id="dc-table-graph’
and we have set a series of headers for the table; DTG, Lat, Long, Depth, Magnitude, Google Map
and OSM Map.

We have also included some bootstrap styling for the table by including the class='table
table-hover' portion of the code. With that styling included our table looks like this;

OTG Lat Long Depth Magnitude Google Map OS5M Map

Earthquake Table

Tue Jul 23 2013 17:50:01 GMT+1200 (New Zealand Standard Time) -41.6244 1743607 10 25 Google Map QSM Map
Tue Jul 23 2013 18:01:08 GMT+1200 (Mew Zealand Standard Time) -41.6327 174.2831 21 34 Google Map OSM Map
Tue Jul 23 2013 18:05:20 GMT+1200 (Mew Zealand Standard Time) -35.8079 175.4547 140 21 Google Map OSM Map
Tue Jul 23 2013 18:11:13 GMT+1200 (New Zealand Standard Time) -41.6919 174.3964 g 23 Google Map OSM Map
Tue Jul 23 2013 18:16:41 GMT+1200 (Mew Zealand Standard Time) -41.7113 1741772 18 27 Google Map OSM Map
Tue Jul 23 2013 18:23:04 GMT+1200 (Mew Zealand Standard Time) -41.6945 174.0623 5 1.9 Google Map OSM Map
Tue Jul 23 2013 18:25:52 GMT+1200 (Mew Zealand Standard Time) -41.6837 174.2292 11 43 Google Map OSM Map
Tue Jul 23 2013 18:26:30 GMT+1200 (Mew Zealand Standard Time) -40.0264 175.5516 9 35 Google Map OSM Map
Tue Jul 23 2013 18:38:02 GMT+1200 (Mew Zealand Standard Time) -41.5181 174,414 12 1.8 Google Map OSM Map
Tue Jul 23 2013 18:41:11 GMT+1200 (New Zealand Standard Time) -41.5313 174.4298 g 22 Google Map O5SM Map

Data Table with Bootstrap Styling

Without the styling it would look like this;

DTG Lat Long Depth Magnitude Google Map OSM Map
Earthquake Table
Tue Jul 23 2013 17:50:01 GMT+1200 (Mew Zealand Standard Time}-41.6244 174 3607 10 25 Google Map OSM Map
Tue Jul 23 2013 18:01:08 GMT+1200 (Mew Zealand Standard Time)-41.6327 174.2831 21 34 Google Map O3M Map
Tue Jul 23 2013 18:05:20 GMT+1200 (Mew Zealand Standard Time}-38.8079175.4547 140 21 Google Map OSM Map
Tue Jul 23 2013 18:11:13 GMT+1200 (Mew Zealand Standard Time)-41.6919174.3964 8 2.3 Google Map O3M Map
Tue Jul 23 2013 18:16:41 GMT+1200 (Mew Zealand Standard Time}-41.7113174 177218 27 Google Map OSM Map
Tue Jul 23 2013 18:23:04 GMT+1200 (Mew Zealand Standard Time)-41.6946 174.06235 1.9 Google Map O3M Map
Tue Jul 23 2013 18:25:52 GMT+1200 (Mew Zealand Standard Time}-41.6837 174 2292 11 4.3 Google Map OSM Map
Tue Jul 23 2013 18:26:30 GMT+1200 (Mew Zealand Standard Time)-40.0264 17555169 35 Google Map O3M Map
Tue Jul 23 2013 18:38:02 GMT+1200 (Mew Zealand Standard Time}-41.5181174 414 12 18 Google Map OSM Map
Tue Jul 23 2013 18:41:11 GMT+1200 (Mew Zealand Standard Time)-41.5313 174 4298 8 2.2 Google Map O3M Map

Data Table without Bootstrap Styling

We will be adding to this grid layout section as we add in charts which will want their own
allocated space on our page.

The next section of the file starts our JavaScript and declares our variables for our charts.

// Create the dc.js chart objects & link to div
var dataTable = dc.dataTable("#dc-table-graph");

The first line assigns the variable dataTable to the dc.js dataTable chart type (var dataTable =
dc.dataTable("#dc-table-graph");) and assigns the chart to the ID selector dc-table-graph.

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 431

Then we get into the d3.js.

// load data from a csv file

d3.csv("quakes.csv", function (data) {

// format our data
var dtgFormat = d3.time.format("%Y-%m-%dT%H:%M:%S");

data. forEach(function(d) {
d.dtg = dtgFormat.parse(d.origintime.substr(0,19));
d.lat = +d.latitude;
d.long = +d.longitude;
d.mag d3.round(+d.magnitude,1);
d.depth = d3.round(+d.depth,0);

});

We load our csv file with the line d3. csv("quakes.csv", function (data) {.Ihave deliberately
left this file in its raw form as received from Geonet. Its format looks a little like this (be warned,
the formatting of the book can create word wrap issues where the text will be broken by a
backslash () and this is likely to happen with the text below);

FID,publicid,origintime,longitude, latitude,depth,magnitude,magnitudetype,status,p\
hases, type,agency,updatetime,origin_geom

quake . 2013p550753,2013p550753,2013-07-23T18:41:11.707,174.4298,-41.5313,7.9883,2.\
2425,M,automatic, 27, ,WEL(GNS_Primary),2013-07-23T18:43:15.672,POINT (174.42978 -4\
1.531299)

quake .2013p550747,2013p550747,2013-07-23T18:38:02.481,174.414,-41.5181,11.6797,1.\
7892,M,automatic,11, ,WEL(GNS_Primary),2013-07-23T18:39:25.37,POINT (174.41398 -41\
.518114)

quake . 2013p550725,2013p550725,2013-07-23T18:26:30.229,175.5516, -40.0264,8.75,3.45\
62,M,automatic,21, ,WEL(GNS_Primary),2013-07-23T18:29:46.305,POINT (175.55155 -40.\
026412)

We then declare a small function that will format our time correctly (var dtgFormat =
d3.time. format("%Y-%m-%dT%H:%M:%S");). This follows exactly the same procedure we took
when creating our very first simple line graph at the start of the book.

However, there is a slight twist... Observant readers will notice that while we have
a function that resolves a date/time that is formatted with year, month, day, hour,
minute and second values, I don’t include an allowance for the fractions of seconds
that appear in the csv file. Well spotted. The reason for this is that in spite of initially
including this formatting, I found it caused some behaviour that I couldn’t explain,
so I reverted to cheating and you will note that in the next section when I format
the values from the csv file, I truncate the date/time value to the first 19 characters
(d.origintime.substr(@,19)). This solved my problem by chopping off the fractions
of a second (admittedly without actually solving the underlying issue) and I moved on
with my life.

Crossfilter, dc.js and d3.js for Data Discovery

432

While we’re on the subject, observant readers will have noticed that the format of the date / time
that appears in the table are (how to put this kindly.......), not what came out of the csv file.

If you want to put this in a different format we can employ the same technique we used when
formatting time figures in the section that dealt with tables. All we need to do is to assign a new
variable for our ‘correctly’ formatted time in the forEach loop. and then call that variable when

displaying the table values.

The following code will create a date / time string in the format yyyy-mm-dd hh:mm:ss with a

variable name dtg1 (put this in the forEach loop).
d.dtgl = d.origintime.substr(0,10) + " " + d.origintime.substr(11,8);

Then, when your code calls the values for the table, instead of the line that says;

function(d) { return d.dtg; },

You rename dtg to dtg1 like so;

function(d) { return d.dtgl; },

The end result will look like this;

DTG Lat Long

Earthquake Table

2013-07-2317:50:01 -41.6244 174.3607
2013-07-23 18:01:08 -41.6327 174.2831
2013-07-23 18:05:20 -38.8079 175.4547
2013-07-23 181113 -41.6919 174.3064
2013-07-23 18:16:41 -41.7113 1741772
2013-07-23 18:22:.04 -41 6946 174.0623

Depth

o

Magnitude

Data Table with Formatted Date / Time

Google Map

]

Google Map

1

oogle Map

(7]

oogle Map

]

oogle Map

(7]

ogle Map

(7]
[=]

=]

ogle Map

]

0OSM Map
QSM Map
QSM Map
QSM Map
QSM Map
QSM Map
QSM Map

As mentioned, the next section goes through each of the records and formats them correctly.
The date/time gets formatted, the latitude and longitude are declared as numerical values (if
they weren’t already) and the magnitude and depth values are rounded to make the process of

grouping them simpler.

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 433

data. forEach(function(d) {

d.dtg = dtgFormat.parse(d.origintime.substr(0,19));
d.lat = +d.latitude;

d.long = +d.longitude;

d.mag = d3.round(+d.magnitude,1);

d.depth = d3.round(+d.depth,0);

)

The next section in our code sets up the dimensions and groupings for the dc.js chart type and

crossfilter functions.

// Run the data through crossfilter and load our 'facts'

var facts = crossfilter(data);

// Create dataTable dimension

var timeDimension = facts.dimension(function (d) {

return d.dtg;
1)

We load all of our data into crossfilter (var facts = crossfilter(data);) and give it the name

facts.

Then we create a dimension from our data (facts) of the date/time values.

var timeDimension = facts.dimension(function (d) {

return d.dtg;
1)

The last major chunk of code is the piece that configures our data table.

dataTable.width(960).height(800)
.dimension(timeDimension)

.group(function(d) { return "Earthquake Table"

1)

.size(10)
.columns([

function(d)
function(d)
function(d)
function(d)
function(d)
function(d)
return

{
{
{
{
{
{

return
return
return
return

return

d.dtg; },
d.lat; },
d.long; },
d.depth; 1},
d.mag; },

'<a href=\"http://maps.google.com/maps?z=12&t=m&q=1oc:"' +

d.lat + '+' + d.long +"\" target=\"_blank\">Google Map"},

function(d)

{

return '<a href=\"http://www.openstreetmap.org/?mlat="' +

Crossfilter, dc.js and d3.js for Data Discovery 434

d.lat + '&mlon=' + d.long +
'&zoom=12"'+ "\" target=\"_blank\"> OSM Map"}

D
.sortBy(function(d){ return d.dtg; })
.order(d3.ascending);

Firstly the width and height are declared (dataTable.width(96@).height(800)). Then the
dimension of the data that will be used is declared (.dimension(timeDimension)).

Separate sections of the table can have a header applied. In this case the entire table
is given the grouping ‘Earthquake Table’ (. group(function(d) { return "Earthquake
Table"})), but several examples online give the date.

The .size(10) line sets the maximum number of lines of the table to be displayed to 10.

Then we have the block of code that sets what data appears in which columns. It should be noted
that this matches up with the headers that were declared in the earlier section of the code where
the divs for the table were laid out.

The portion of this block that has a ‘little bit of fancy’ are the two columns that set links that
allow a user to click on the designation ‘Google Map’ or ‘OSM Map’ and have the browser open
a new window containing a Google or Open Street Map (OSM) map with a marker designating
the location of the quake. I won’t mention too much about how the links are made up other than
to say that they are pretty much a combination of the latitude, longitude and zoom level for both.
Please check out the code for more.

Lastly we sort by the date/time value (.sortBy(function(d){ return d.dtg; })) in ascending
order (.order(d3.ascending);).

The final part of our JavaScript renders all our charts (dc.renderAl1();) and then closes off the
initial d3.csv call.

// Render the Charts
dc.renderAll();

});

The final part of our code simply closes off the <script>, <body> and <html> tags.

There we have it. The template for starting to play with different crossfiltered dc.js charts.

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 435

Add a Bar Chart.

The ubiquitous bar chart is a smart choice if you're starting out with crossfilter and dc.js. It’s
pretty easy to implement and gives a certain degree of instant satisfaction.

The bar chart that we’ll create will be a representation of the magnitude of the earthquakes that
we have in our dataset. In this respect, what we are expecting to see is the magnitude of the
events along the x axis and the number of each such event on the y axis.

It should end up looking a bit like this.

250

200

150

100 <

50

. [-
5

1 2 3 4

Bar Chart Example

We’ll work through adding the chart in stages (and this should work for subsequent charts).
Firstly we’ll organise a position for our chart on the page using the bootstrap grid set-up. Then
we’ll name our chart and assign it a chart type. Then we’ll create any required dimension and
grouping and finally we’ll configure the parameters for the chart. Sounds simple right?

1. Position the chart

2. Assign type

3. Dimension and Group

4. Configure chart parameters

Position the bar chart

We are going to position our bar chart above our data table and we’ll actually only make it half
the width of our data table so that we can add in another one along side it later.

Just under the line of code that defined the main container for the layout;
<div class='container' style='font: 12px sans-serif; '>

We add in a new row that has two span6’s in it (remembering our total is a span of 12 (see the
section on bootstrap layout if it’s a bit unfamiliar)).

Crossfilter, dc.js and d3.js for Data Discovery 436

<div class='row'>
<div class='span6' id='dc-magnitude-chart'>
<h4>Events by Magnitude</h4>

</div>
<div class='span6' id='blank'>
<h4>Blank</h4>
</div>
</div>

We’ve given the first span6 an ID selector of dc-magnitude-chart. So when we we assign our
chart that selector, it will automatically appear in that position. We’ve also put a simple title in
place (<h4>Events by Magnitude</h4>). The second span6 is set as blank for the time being (we’ll
put another bar chart in it later).

Assign the bar chart type

Here we give our chart it’s name (magnitudeChart), assign it with a dc.js chart type (in this case
barChart) and assign it to the ID selector (dc-magnitude-chart).

Under the line that assigns the dataTable chart type...
var dataTable = dc.dataTable("#dc-table-graph");
.. add in the equivalent for our bar chart.

var dataTable = dc.dataTable("#dc-table-graph");
var magnitudeChart = dc.barChart("#dc-magnitude-chart");

All done.

Dimension and group the bar chart data

To set our dimension for magnitude, it’s as simple as following the same format as we had
previously done for the data table but in this case using the .mag variable.

This should go just before the portion of the code that created the data table dimension.

var magValue = facts.dimension(function (d) {
return d.mag;

});

This dimension (magvValue) has been set and now has, as its index, each unique magnitude that
is seen in the database. This is essentially defining the values on the x axis for our bar chart.

Then we want to group the data by counting the number of events of each magnitude.

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 437

var magValueGroupCount = magValue.group()
.reduceCount(function(d) { return d.mag; }) // counts

This piece of code (which should go directly under the magvalue dimension portion), groups
(.group()) by counting (.reduceCount) all of the magnitude values (function(d) { return
d.mag; })) and assigns it to the magValueGroupCount variable. This has essentially defined the
values for the y axis of our bar chart (the number of times each magnitude occurs).

Configure the bar chart parameters

There are lots of parameters that can be configured, and if the truth be told, I haven’t explored
all of them or, in some cases, worked out exactly how they work.

However, the best way to learn is by doing, so here is the block of code for configuring the bar
chart. This should go just before the block that configures the dataTable.

magnitudeChart.width(480)
.height(150)
.margins({top: 10, right: 10, bottom: 20, left: 40})
.dimension(magValue)
.group(magValueGroupCount)
.transitionDuration(500)
.centerBar(true)
.gap(65)
.filter([3, 5])
.x(d3.scale.linear().domain([0.5, 7.5]))
.elasticY(true)
.xAxis().tickFormat();

That should be it. With the addition of this portion of the code, you should have a functioning
visualization that can be filtered dynamically. Just check to make sure that everything is working
properly and we’ll go through some of the configuration options to see what they do.

Your web page should look a little like this;

Crossfilter, dc.js and d3.js for Data Discovery 438

Events by Magnitude Blank

m hn

OTG Lat Long Depth Magnitude Google Map O5M Map

Earthquake Table

Tue Jul 23 2013 15:14:23 GMT+1200 (New Zealand Standard Time) -42.8906 170.7942 13 37 Google Map OSM Map

Tue Jul 23 2013 15:36:33 GMT+1200 (New Zealand Standard Time) -40.8335 173.7048 114 33 Google Map OSM Map

Tue Jul 23 2013 15:45:43 GMT+1200 (New Zealand Standard Time) -41.6872 174.2658 5 31 Google Map OSM Map

Tue Jul 23 2013 16:31:20 GMT+1200 (New Zealand Standard Time) -41.5317 174.3866 12 36 Google Map OSM Map
Web Page with Bar Chart

The configuration options start by declaring the name of the chart (nagnitudeChart) and setting

the height and width of the chart.

magnitudeChart.width(480)
.height(150)

In the case of our example I have selected the width based on the default size for a span6é grid
segment in bootstrap and adjusted the height to make it look suitable.

Then we have our margins set up.
.margins({top: 10, right: 10, bottom: 20, left: 40})

Nothing too surprising there although the left margin is slightly larger to allow for larger values
on the y axis to be represented without them getting clipped.

Then we define which dimension and grouping we will use.

.dimension(magValue)
.group(magValueGroupCount)

I like to think of this section as the .dimension declaration being the x axis and the .group
declaration being the y axis. This just helps me get the graph straight in my head before it’s
plotted.

The .transitionDuration setting defines the length of time that any change takes to be applied
to the chart as it adjusts.

.transitionDuration(500)

Then we ensure that the bar for the bar graph is centred on the ticks on the x axis.

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 439

.centerBar(true)

Without this (true is not the default), the graph will look slightly odd.

Events by Magnitude

120]
100 -
80
20 |
40 4
20

a4 n. T T 1

1 2 2 4 z g 7

Bar Chart with Bars Not Centred

The setting of the gap between the bars is accomplished with the following setting;

.gap(65)

I will admit that I still don’t quite understand how this setting works exactly, but I can get it to
do what I want with a little trial and error.

For instance, I would expect that .gap(2) would have the effect of producing a gap of 2 pixels
between the bars. But this would be the result for our graph if I have that set.

Events by Magnitude

120
100 4
50
&0
g

20 A

04

3 4 5 a T

Bar Chart with gap Set to 2

If you select a portion of the graph you will see some strange things going on. That appears to
be as a result of the bars being too wide for the graph.

Setting the gap for a bar graph is a pretty tricky thing to do (programmatically), and I can see
why it would throw some strange results. The way around this and the way to find the ideal
.gap setting is to set the .gap value high and then reduce it till it’s right.

For instance, if we set it to 100 (.gap(100)) we will get the following result.

Crossfilter, dc.js and d3.js for Data Discovery 440

Events by Magnitude

120]

100
30 |
80
29 -

20

‘ |‘|| il 1
T T
4

=)

ol o |||‘ .
1 2

o =
-1

T
2
Bar Chart with gap Set to 100

Then we just keep backing the values off till we reach an acceptable chart on the screen.

In the case of our example, it’s .gap(65).

250
200
150
100
B0 -

. [-
1 2 3 4 5 L&l

Bar Chart Example

[have added in the next setting more because I want you to know it exists, rather than wanting
to use it in this example.

filter([3, 5])

Events by Magnitude

120
100
20 | " N
| |
40 o

20 o

a - . In.m
1 2 3 4 5]

Bar Chart with Pre-Selection Section

Setting the . filter configuration will load the graph with a portion of it pre-selected. If you
omit this parameter, the entire graph is selected by default. In most cases that I can think of, that
is what I would start with.

We can set the range of values presented in our graph by defining the domain (in the same way
as for d3.js).

.x(d3.scale.linear().domain([©.5, 7.5]))

The next parameter sets the y axis to adjust dynamically as the filtered data is returned.

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 441
.elasticY(true)

The final parameter that we set is to format the values on the x axis.
.xAxis().tickFormat();

And that’s it! A bar graph added to your visualization with full dynamic control.

Just one more thing...

Just another snippet that could be useful. In the section where we set up our group to count the
number of instances of individual magnitudes we had;

var magValueGroupCount = magValue.group()
.reduceCount(function(d) { return d.mag; }) // counts

We could have just as easily summed the magnitude values instead of counting them by using
.reduceSum instead of .reduceCount. This has the effect of increasing the value on the y axis (as
the sum of the magnitudes would have been greater than the count) like so

Events by Magnitude Counted Events by Magnitude Summed

120
100

80
20 150

280

200

40 100
20 =]

o .-I T T 1 DI T -
5 ; 7 1

2 5 [:] T

Bar Chart Counting and Summing

The reason I mention it is that summing the numeric value would be useful in many circum-
stances (file size or packet size or similar).

Just yet another thing...

When we initially set up our grid layout for the web page we left ourselves a blank position for

another graph. If you feel so inclined, try to include another bar graph in this position that will
display the depth of the earthquakes.

The example I came up with looks like this;

Crossfilter, dc.js and d3.js for Data Discovery

Events by Magnitude Counted

120
100

Events by Depth (km)

DTG

Earthquake Table

Tue Jul 23 2013 17:50:01 GMT+1200 (Mew Zealand Standard Time)
Tue Jul 23 2013 18:07:08 GMT+1200 (Mew Zealand Standard Time)

Tue Jul 23 2013 18:05:20 GMT+1200 (New Zealand Standard Time)

Lat

41,6244

-41.6327

-38.8079

1743607

174.2831

175.4547

442

Depth

10

21

140

40 50
Magnitude
25
34
21

Earthquake page with Magnitude and Depth Bar Charts

And the sections I added are as follows;

Position the chart

(more of a change than an addition)

<div class='span6' id='dc-depth-chart'>

<h4>Events by Depth (km)</h4>

</div>

Assign type

var depthChart = dc.barChart("#dc-depth-chart");

Dimension and Group

var depthValue = facts.dimension(function (d) {

return d.depth;
1)

var depthValueGroup = depthValue.group();

Configure chart parameters

T T
a0 70

Google Map

T T 1
a0 20 100

OSM Map

OSM Map
OSM Map
OSM Map

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 443

depthChart . width(480)
.height(150)
.margins({top: 10, right: 10, bottom: 20, left: 40})
.dimension(depthValue)
.group(depthValueGroup)
.transitionDuration(500)
.centerBar(true)
.gap(1)
.x(d3.scale.linear().domain([@, 100]))
.elasticY(true)
.xAxis().tickFormat(function(v) {return v;});

Crossfilter, dc.js and d3.js for Data Discovery 444

Add a Line Chart.

The line chart is another simple choice for implementation using crossfilter and dc.js.

The line chart that we’ll create will be a representation of the frequency of the occurrence of
the earthquakes that we have in our dataset. In this respect, what we are expecting to see is the
number of events on the y axis and the time-scale on the x axis.

It should end up looking a bit like this.

Events per hour

20

N
» l"'. Ilf'\ N/ "\/\/\/\ A ANAN V\J\\/\ \NW\

| L
N NAN— A~ AAA
0

T T T T T T T T T
Thu 18 12FM Fri 19 12FM Sat 20 1ZFM Jul 21 12FM Maon 22 1ZFPM

T T
Tue 22 1ZFM

Line Chart Example

Just as with the bar chart, we’ll work through adding the chart in the following stages.

1. Position the chart

2. Assign type

3. Dimension and Group

4. Configure chart parameters

Position the line chart

We are going to position our line chart above our data table (and below the bar charts) and we’ll
make it the full width of our data table so that it looks like it belongs there.

Just under the line of code that defined the containers for the bar graphs;

<div class='row'>
<div class='span6' id='dc-magnitude-chart'>
<h4>Events by Magnitude Counted</h4>
</div>
<div class='span6' id='dc-depth-chart'>
<h4>Events by Depth (km)</h4>
</div>
</div>

We add in a new row that has a single span12.

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 445

<div class='row'>
<div class='span12' id='dc-time-chart'>
<h4>Events per hour</h4>
</div>
</div>

We’ve given it an ID selector of dc-time-chart. So when we assign our chart that selector, it will
automatically appear in that position. We’ve also put another simple title in place (<h4>Events
per hour</h4>).

Assign the line chart type

Here we give our chart it’s name (timeChart), assign it with a dc.js chart type (in this case
lineChart) and assign it to the ID selector (dc-time-chart).

Under the line that assigns the depthChart chart type...
var depthChart = dc.barChart("#dc-depth-chart");
... add in the equivalent for our line chart.

var depthChart = dc.barChart("#dc-depth-chart");

var timeChart = dc.lineChart("#dc-time-chart");

Nice.

Dimension and group the line chart data

We'll put the code between the dimension and group of the depth chart and the data table
dimension (this is just to try and keep the code in the same order as the graphs on the page).

To set our dimension for our time we do something a little different.

var volumeByHour = facts.dimension(function(d) {
return d3.time.hour(d.dtg);

1)

This dimension (volumeByHour) uses the same facts data, but when the key values are returned
(return d3.time.hour(d.dtg);) we are going to return the information by hours. This is
essentially defining the resolution of the values on the x axis for our line chart.

Then we want to group the data by counting the number of events of for each hour.

Crossfilter, dc.js and d3.js for Data Discovery 446

var volumeByHourGroup = volumeByHour.group()
.reduceCount(function(d) { return d.dtg; });

This piece of code (which should go directly under the volumeByHour dimension portion) groups
(.group()) by counting (.reduceCount) all of the magnitude values (function(d) { return
d.dtg; }))and assigns it to the volumeByHourGroup variable. This has defined the values for the
y axis of our line chart (the number of events we see in a given hour).

Configure the line chart parameters

As with the bar chart, there are lots of parameters that can be configured. The best way to learn
what they do is by having a play with them. So here is the block of code for configuring the
line chart. Once you are happy that it works on your system, take some time and go through the
settings in conjunction with the information from the demo page®** and the api reference®**.

This should go just before the block that configures the dataTable (again, this is just to try and
keep the code in the same order as the graphs on the page).

// time graph
timeChart.width(960)
.height(150)
.margins({top: 10, right: 10, bottom: 20, left: 40})
.dimension(volumeByHour)
.group(volumeByHourGroup)
.transitionDuration(500)
.elasticY(true)
.x(d3.time.scale().domain([new Date(2013, 6, 18), new Date(2013, 6, 24)]))
.xAxis();

That should be it. With the addition of this portion of the code, you should have a functioning
visualization that can be filtered dynamically. Just check to make sure that everything is working
properly and we’ll go through some of the configuration options to see what they do.

To start with, your page should look something like this;

*$http://nickqizhu.github.io/dc.js/
*https://github.com/NickQiZhu/dc.js/wiki/API

www. dbooks. or g

http://nickqizhu.github.io/dc.js/
https://github.com/NickQiZhu/dc.js/wiki/API
http://nickqizhu.github.io/dc.js/
https://github.com/NickQiZhu/dc.js/wiki/API
https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery

Events by Magnitude Counted

120]
100 -
30 | f
m
4 - N
20 -

a T T

Events per hour

254
204

15+

447

Events by Depth (km)

a0

20

'\

10 -] (|| I/\,/ﬂl
[|

N N A A NV NWI AN~

a T T T T T T T T T

Thu 18 12FM Fri 13 12FM Jul 21 12FM Man 22 1ZFPM Tue 23 12FM
OTG Lat Long Depth Magnitude Google Map OS5M Map
Earthquake Table
Tue Jul 23 2013 15:14:23 GMT+1200 (Mew Zealand Standard Time) -42.8906 170.7942 13 37 Google Map OSM Map
Tue Jul 23 2013 15:36:33 GMT+1200 (Mew Zealand Standard Time) -40.8335 173.7048 114 33 Google Map OSM Map
Tue Jul 23 2013 15:45:43 GMT+1200 (Mew Zealand Standard Time) -41.6872 174.2658 5 31 Google Map OSM Map

Web Page with Line Chart

The configuration options start by declaring the name of the chart (timeChart) and setting the
height and width of the chart.

timeChart.width(960)
.height(150)

In the case of our example I have selected the width based on the default size for a span12 grid
segment in bootstrap and adjusted the height to make it look suitable.

Then we have our margins set up.
.margins({top: 10, right: 10, bottom: 20, left: 40})

Nothing too surprising there although the left margin is slightly larger to allow for larger values
on the y axis to be represented without them getting clipped (not strictly for this example, but
it’s a handy default).

Then we define which dimension and grouping we will use.

.dimension(volumeByHour)
.group(volumeByHourGroup)

Think of the . dimension declaration being the x axis and the . group declaration being the y axis.

The .transitionDuration setting defines the length of time that any change takes to be applied
to the chart as it adjusts.

Crossfilter, dc.js and d3.js for Data Discovery

.transitionDuration(500)

448

We can set the y axis to dynamically adjust when the number of events are filtered by selections

on any of the other charts.

.elasticY(true)

For instance if we select only earthquakes with a magnitude between 4 and 5, our line chart will

have a maximum value on the y axis of 7 events;

Events by Magnitude Counted Events by Depth (km)

120
s
100
50

y X .

|| ||

40 b g 2

i I

o T T T T Il-lm. .I T T 1 o T T T T T T T T 1

1 2 3 4 5 [-] T a 10 20 20 40 =0 0 o g0 =20 100

Events per hour

e

4

2

Thu 18 12PM Fri 19 12PM Sat 20 12PM Jul 21 12PM Mon 22 12PM Tue 23 12PM Wed 2

Line Chart y Axis Low

However, if we select all the earthquakes, the y axis will dynamically adjust to over 30.

Events by Magnitude Counted Events by Depth (km)

120]

100 H 400
80 200
507 200
40 -
20 4 100
0 = .I T T 1 o “II T T T T T T 1
1 2 3 4 5 6 T 0 10 20 20 40 50 €0 70 g0 20 100
Events per hour
203
25 |
20 4
15
10
5
o T T T T T T T T T T T 1
Thu 18 12PM Fri 19 12PM Sat 20 12PM Jul 21 12ZPM Mon 22 12ZPM Tue 22 12PM Wed 2
Line Chart y Axis High

Since the line chart has an x axis which is made of date/time values, we set our scale and domain

using the d3.time.scale declaration.

.x(d3.time.scale().domain([new Date(2013, 6, 18), new Date(2013, 6, 24)]))

This is hard coded for our date range, but a smarter method would be to have the scale adjust to

suit your range of date/time values automatically with the following line;

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 449
.x(d3.time.scale().domain(d3.extent(data, function(d) { return d.dtg; })))

Using the d3.extent function means that our line graph of time now spans the exact range of
our data values on the x axis (note that the time scale now starts just before the 18th and ends

when our data ends).

Events per hour

T T T T
Jul 21 12PM Mon 22 12PM Tue 23 12PM

Line Chart with Better x Axis

The final parameter that we set is to add the x axis.

.xAxis();

Adding tooltips to a line chart

dc.js has a nice feature for adding tooltips to a line chart.

It utilises the .title function in the configuration of the chart to apply the tooltip, but the
downside is that the ability to select the time range needs to be disabled (there are ways to
compensate for this which I hope to cover in the future).

If we take our example line chart configuration block of code;

// time graph
timeChart.width(960)
.height(150)
.margins({top: 10, right: 10, bottom: 20, left: 40})
.dimension(volumeByHour)
.group(volumeByHourGroup)
.transitionDuration(500)
.elasticY(true)
.x(d3.time.scale().domain([new Date(2013, 6, 18), new Date(2013, 6, 24)]))

.xAxis();

We need to turn off the .brushon feature (.brushon(false)) that allows for selection and add in
the .title function as follows;

Crossfilter, dc.js and d3.js for Data Discovery 450

// time graph
timeChart.width(960)
.height(150)
.margins({top: 10, right: 10, bottom: 20, left: 40})
.dimension(volumeByHour)
.group(volumeByHourGroup)

.transitionDuration(500)

.brushOn(false)
.title(function(d){
return d.data.key
+ "\nNumber of Events: " + d.data.value;
1)
.elasticY(true)
.x(d3.time.scale().domain([new Date(2013, 6, 18), new Date(2013, 6, 24)]))
.xAxis();

Events per hour

[I}
=]
1 1

(=T = T =]
|

TP, T N W

Sun Jul 21 2013 03:00:00 GMT+1200 (New Zealand
Standard Time)
- ; - Mumber of Events: 16

Wed 17 Fri 19 Jul 21 Tue 23 Thu 25 Sat 27

Line Chart with Tooltip

As we can see, the tooltip is using the default time format for the script from our key value (on the
x axis), and as a result, the representation of the date / time is quite long winded. We can adapt
this to a format of our choosing by calling a time formatting function similar to the following;

var dtgFormat2 = d3.time.format("%a %e %b %H:%M");

This line could ideally go after the other time formatting function (dtgFormat) that occurs earlier
in the script. The formatting it’s introducing can be found in the d3.js wiki**’, but in short it
returns the date / time formatted as abbreviated weekday name, day of the month as a decimal
number, abbreviated month name and 24 hour clock hour:minute.

With our function in place, the .title. call from our line chart configuration code would now
look like this;

**"https://github.com/mbostock/d3/wiki/Time-Formatting#wiki- format

www. dbooks. or g

https://github.com/mbostock/d3/wiki/Time-Formatting#wiki-format
https://github.com/mbostock/d3/wiki/Time-Formatting#wiki-format
https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery

.title(function(d){
return dtgFormat2(d.data.key)
+ "\nNumber of Events: " + d.data.value;
P

And the resulting graph looks like this;

Events per hour

309

25+
20+
18

.

10

Sun 21 Jul 02:00
Mumber of Events: 16

T T T T T T
Wed 17 Fri 19 Jul 21 Tue 23 Thu 26 Sat 27

Line Chart with Improved Tooltip

451

We also add in the number of the events from the y axis (d.data.value), separated with a new

line character (\n) and some appropriate text.

Crossfilter, dc.js and d3.js for Data Discovery 452

Add a Row Chart.

The row chart provides an excellent mechanism for presenting and filtering on discrete values
or identifiers.

The row chart that we’ll create will be a representation of the number of earthquake events that
occur on a particular day of the week. As such it doesn’t represent any logical reason for selecting
a Saturday over a Wednesday, and it is used here solely because the data makes a nice row chart
:-). In this respect, what we are expecting to see is the number of events on the x axis and the
individual days on the y axis.

It should end up looking a bit like this.

Day of the Week

Fri

T
200 400

=y

Row Chart Example

Now for a super cool feature with row charts...
Click on one of the rows...

Events per hour

O T T T T T T T T T T
Thu 18 12FM Fri 19 1ZFM Sat 20 12FM Jul 21 12PM Mon 22 1ZFM Tue 23 12FM

Day of the Week Blank 1 Blank 2

Selecting a Row

How about that!

You can select an individual row from your chart and all the other rows reflect the selection.

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 453

Go ahead and select other combinations of more than one row if you want. Welcome to data
immersion!

Just as with the previous chart examples, we’ll work through adding the chart in the following
stages.

1. Position the chart

2. Assign type

3. Dimension and Group

4. Configure chart parameters

Position the row chart

We are going to position our row chart above our data table (and below the line chart) and we’ll
divide the row that it sits in into 3 equally spaced spans of span3. The additional two spans we’ll
leave blank for future use.

Just under the row of code that defined the containers for the line graph;

<div class="'row'>
<div class='spanl12' id='dc-time-chart'>
<h4>Events per hour</h4>
</div>
</div>

We add in a new row that has our three span4’s.

<div class='row'>
<div class='"'span4' id='dc-dayweek-chart'>
<h4>Day of the Week</h4>
</div>
<div class='span4' id='blank1l'>
<h4>Blank 1</h4>
</div>
<div class='span4' id='blank2'>
<h4>Blank 2</h4>
</div>
</div>

We’ve given it an ID selector of dc-dayweek-chart. So when we assign our chart that selector, it
will automatically appear in that position. We’ve also put another simple title in place (<h4>Day
of the Week</h4>).

The additional two span4s have been left blank.

Crossfilter, dc.js and d3.js for Data Discovery 454

Assign the row chart type

Here we give our chart its name (dayOfWeekChart), assign it with a dc.js chart type (in this case
rowChart) and assign it to the ID selector (dc-dayweek-chart).

Under the row that assigns the depthChart chart...
var depthChart = dc.barChart("#dc-depth-chart");
... add in the equivalent for our row chart.

var dayOfWeekChart = dc.rowChart("#dc-dayweek-chart");

Dimension and group the row chart data

We’ll put the code between the dimension and group of the line (time) chart and the data table
dimension (this is just to try and keep the code in the same order as the graphs on the page).

When adding our dimension for our day of the week we want to provide an appropriate label so
our code does something extra.

var dayOfWeek = facts.dimension(function (d) {
var day = d.dtg.getDay();
switch (day) {
case 0:
return "0.Sun";
case 1:

return "1.Mon";

case 2:

"o,
!

return "2.Tue
case 3:

return "3.Wed";
case 4:

return "4.Thu";

case 5:

"o,
!

return "5.Fri
case ©:
return "6.Sat";
}
1)

This dimension (dayOfWeek) uses the same facts data, but when we return our key values we
are going to return them as a combination of their numerical order (0 = Sunday etc) and their
abbreviation (Sun = Sunday etc). This is essentially defining the categories of the values on the
y axis for our row chart.

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 455

The code snippet looks a little strange, but think of it as extracting the numerical representation
of the day of the week from our data (var day = d.dtg.getDay();) and then matching each
number with an appropriate label (0 = ‘0.Sun’, 1 = “1.Mon’ etc). It’s these labels that are now our
key values in our dimension.

Then we want to group the data by using the default action of the .group() function to count
the number of events for each day of the week.

var dayOfWeekGroup = dayOfWeek.group();

Configure the row chart parameters

As with the previous charts, there are plenty of parameters that can be configured. The best way
to learn what they do is still to have a play with them. So here is the block of code for configuring
the row chart. Once you are happy that it works on your system, take some time and go through
the settings in conjunction with the information from the demo page®*® and the api reference®®.

This should go just before the block that configures the dataTable (again, this is just to try and
keep the code in the same order as the graphs on the page).

// row chart day of week
dayOfWeekChart.width(300)

.height(220)
.margins({top: 5, left: 10, right: 10, bottom: 20})
.dimension(dayOfWeek)

.group(dayOfWeekGroup)
.colors(d3.scale.categoryl@())
.label(function (d){

return d.key.split(".")[1];
)
.title(function(d){return d.value;})
.elasticX(true)
.xAxis().ticks(4);

That should get you working. With the addition of this portion of the code, you should have a
functioning visualization that can be filtered dynamically by clicking on the appropriate day of
the week in your row chart. Just check to make sure that everything is working properly and
we’ll go through some of the configuration options to see what they do.

To start with, your page should look something like this;

*%http://nickqizhu.github.io/dc.js/
>$*https://github.com/NickQiZhu/dc.js/wiki/ API

http://nickqizhu.github.io/dc.js/
https://github.com/NickQiZhu/dc.js/wiki/API
http://nickqizhu.github.io/dc.js/
https://github.com/NickQiZhu/dc.js/wiki/API

Crossfilter, dc.js and d3.js for Data Discovery 456
Number of Events by Magnitude Events by Depth (km)
120]
100 - 400
50 - 200
204 200
20
20 100
0 - -I T T 1 o T T T T T T T 1
1 2 3 4 5 L] 7 0 10 20 40 0 €0 7o 80 20 100
Events per hour
203
20
18 4
10 -
o T T T T T T T T T T T T 1
Thu 18 12FM Fri 19 12FM Sat 20 12FM Jul 21 12FM Mon 22 12FM Tue 22 12FM
Day of the Week Blank 1 Blank 2
T T T 1
0 200 400
DTG Lat Long Depth Magnitude Google Map OSM Map
Earthquake Table
Tue Jul 23 2013 17:50:01 GMT+1200 (New Zealand Standard Time) -41.6244 174.3607 10 25 Google Map O5SM Map
Tue Jul 23 2013 18:01:08 GMT+1200 (New Zealand Standard Time) -41.6327 174.2831 21 34 Google Map O5SM Map
Web Page with Row Chart

The configuration options start by declaring the name of the chart (dayofWeekChart) and setting

the height and width of the chart.

dayOfWeekChart.width(300)
.height(220)

In the case of our example I have selected the width based on the default size for a span4 grid
segment in bootstrap and adjusted the height to make it look suitable.

Then we have our margins set up.

.margins({top: 5, left: 10, right: 10, bottom: 20})

Nothing too surprising there although I did reduce the top margin slightly more than I thought

I would need. You can be the judge for your own charts.

Then we define which dimension and grouping we will use.

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 457

.dimension(dayOfWeek)
.group(dayOfWeekGroup)

For a row chart, think of the .dimension declaration being the y axis and the . group declaration
being the x axis (the opposite to the previous charts).

We can set the range of colours to use one of the standard palettes®”°.
.colors(d3.scale.category10())

Then we add the labels to our categories by splitting the key values (remember @. Sun, 1 .Mon etc)
at the decimal point and returning the second part of the split value (which is the Sun, Mon part)
as the label.

.label(function (d){
return d.key.split(".")[1];

D)

A cool way to prove this is to change the variable that returns the label to use the 1st part of the
split value buy using a [@] instead of a [1] with code like this;

.label(function (d){
return d.key.split(".")[0];

D)

The end result produces...

Day of the Week

T
400

@
[
(=1
(=]

Row Chart with the First Part of the Key Value

The next line in the configuration adds a tool tip to our row chart using the value when the
mouse hovers over the appropriate bar.

.title(function(d){return d.value;})

*"%http://www.schneidy.com/Tutorials/ColorTutorial.html

http://www.schneidy.com/Tutorials/ColorTutorial.html
http://www.schneidy.com/Tutorials/ColorTutorial.html

Crossfilter, dc.js and d3.js for Data Discovery 458

Day of the Week

200 4;]5
Row Chart Tool Tip
We can set the x axis to dynamically adjust when the number of events are filtered by selections
on any of the other charts using the following configuration line.
.elasticX(true)
For instance if we select a subset of the earthquakes using our time / line chart, our row chart
will have a corresponding selection of the appropriate days and the x axis will alter accordingly.

Events per hour

30

0 T T T T T T T T T T T
Thu18 12PM Fri 19 12PM Sat 20 12PM Jul 21 12PM Men 22 12PM Tue 23 12PM

Day of the Week Blank 1 Blank 2

Sun

T T 1
a 100 200 300

Selection Effect on Row Chart and Dynamic X Axis

Lastly we set up our x axis with 4 ticks.

.xAxis().ticks(4);

www. dbooks. org

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 459

Add a Pie Chart.

The pie chart provides an useful way of presenting and filtering on discrete values or identifiers
similar to a row chart.

The pie chart that we’ll create will be a representation of which island the earthquakes occurred
in. For those of you unfamiliar with the stunning landscape of New Zealand, there are two
main islands creatively named North Island and South Island (stunning and practical!). The
determination of what constitutes the North and South Island has been decided in a completely
unscientific way (by me) by designating any area South of latitude -40.555907 and West of
longitude 174.590607 as the South Island and anything else is the North Island.

Determination of North and South

The pie graph should end up looking a bit like this.

Crossfilter, dc.js and d3.js for Data Discovery 460

North or South Island

Pie Chart Example

Good news! The pie chart shares the same cool feature as the row chart...

Click on one of the pie segments...

Events per hour

]
4
2

0 T T T T T T T T T T
Thu 18 12PM Fri 13 12PM Sat 20 12PM Jul 21 12PM Mon 22 12PM Tue 23 12PM

Day of the Week North or South Island Blank 2
Sun
Tue

o 20 40 I

Selecting a Pie Segment

... and everything dynamically reflects the selection.
Just as with the previous chart examples, we’ll work through adding the chart in the following

stages.

1. Position the chart

2. Assign type

3. Dimension and Group

4. Configure chart parameters

Position the pie chart

We are going to position our pie chart above our data table (and below the line chart) in the same
row as the row chart in one of the blank span4’s.

The code that sets up that row should now look like this;

www. dbooks. org

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 461

<div class='row'>
<div class='span4' id='dc-dayweek-chart'>
<h4>Day of the Week</h4>
</div>
<div class='span4' id='dc-island-chart'>
<h4>North or South Island</h4>
</div>
<div class='span4' id='blank2'>
<h4>Blank 2</h4>
</div>
</div>

We’ve given it an ID selector of dc-island-chart. So when we assign our chart that selector, it
will automatically appear in that position. We’ve also put another simple title in place (<h4>North
or South Island</h4>).

The last span4 is still blank.
Assign the pie chart type

Here we give our chart its name (dayOfWeekChart), assign it with a dc.js chart type (in this case
pieChart) and assign it to the ID selector (dc-dayweek-chart).

Under the row that assigns the dayOfWeekChart chart...
var dayOfWeekChart = dc.rowChart("#dc-dayweek-chart");
... add in the equivalent for our pie chart.

var islandChart = dc.pieChart("#dc-island-chart");

Dimension and group the pie chart data

We'll put the code between the dimension and group of the row chart and the data table
dimension (this is just to try and keep the code in the same order as the graphs on the page).

When adding our dimension for our islands we want to provide an appropriate label so our code
does the figuring out based on the latitude and longitude that we had established as the boundary
between North and South.

Crossfilter, dc.js and d3.js for Data Discovery 462

var islands = facts.dimension(function (d) {
if (d.lat <= -40.555907 && d.long <= 174.590607)
return "South";
else

return "North";

1),

This dimension (islands) uses the same facts data, but when we return our key values we are
going to return them as either ‘North’ or ‘South’. To do this we employ a simple if statement
with a little logic. These are the only two ‘slices’ for our pie chart.

Then we want to group the data by using the default action of the .group() function to count
the number of events for each day of the week.

var islandsGroup = islands.group();

Configure the pie chart parameters

There are fewer parameters that can be configured for pie charts, but we’ll still take the time to
go through the options used here.

This code should go just before the block that configures the dataTable (again, this is just to try
and keep everything in the same order as the graphs on the page).

islandChart.width(250)
.height(220)
.radius(100)
.innerRadius(30)
.dimension(islands)
.group(islandsGroup)
.title(function(d){return d.value;});

That should get the chart working. With the addition of this portion of the code, you should
have a functioning visualization that can be filtered dynamically by clicking on the appropriate
island in your pie chart. Just check to make sure that everything is working properly and we’ll
go through some of the configuration options to see what they do.

To start with, your page should look something like this;

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 463

Number of Events by Magnitude Events by Depth (km)
120
100 400
80— 200
e 200
40 4
20 100
LE — T — o Aafas r T T T T T T 1
1 2 3 4 5 (<3 T Ll 10 20 20 40 g0 80 0 20 20 100

Events per hour

2303
25
20+
15
10
B4
0 ; r r r r T r r r r T
Thu 18 12 PM Fri-19 12FM Sat 20 12PM Jul 21 1ZFPM Mon 22 12PM Tue 23 12PM
Day of the Week North or South Island Blank 2

oOTG Lat Long Depth Magnitude Google Map OSM Map

Earthquake Table

Tue Jul 23 2013 17:50:01 GMT+1200 (Mew Zealand Standard Time) -41.6244 174.3607 10 25 Google Map OSM Map
Tue Jul 23 2013 18:01:08 GMT+1200 (Mew Zealand Standard Time} -41.6327 174.2821 21 34 Google Map OSM Map
Web Page with Pie Chart

The configuration options start by declaring the name of the chart (islandChart) and setting the
height and width of the chart.

islandChart.width(250)
.height(220)

In the case of our example I have selected the width based on the default size for a span4 grid
segment in bootstrap and adjusted the height to make it look suitable alongside the row chart.

Then we set up our inner and outer radii for our pie.

.radius(100)
.innerRadius(30)

This is fairly self explanatory, but by all means adjust away to make sure the chart suits your
visualization.

Then we define which dimension and grouping we will use.

Crossfilter, dc.js and d3.js for Data Discovery 464

.dimension(islands)
.group(islandsGroup)

For a pie chart, the .dimension declaration is the discrete values that make up each segment of
the pie and the .group declaration is the size of the pie.

The final line in the configuration adds a tool tip to our pie chart using the value when the mouse
hovers over the appropriate slice.

.title(function(d){return d.value;})

North or South Island

Pie Chart Tool Tip

www. dbooks. org

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 465

Resetting filters

Once you have made selections on some of your data dimensions, often you will want to reset
those selections to return to a stable state.

For example, when selecting different days to display in the row chart, if you have three days
selected as so...

Day of the Week

T
400

@
[3]
=}
=}

Selected Elements in Row Chart

... to return to the default setting where all the days are selected can be a bit of a pain.

Instead, we can use a dc.js ‘reset’ feature where a ‘reset’ label is generated to allow us revert to
the starting condition.

There is a simple way to enable this feature, but we’ll take an additional few steps to make it
look slightly better (and to learn some new tricks).

In the simplest method, this feature simply involves adding in the following code to the section
where we add in the rows and spans when setting out our layout.

<a class="reset"
href="javascript:dayOfWeekChart.filterAll();dc.redrawAll();"
style="display: none;">
reset

In the case of our example row chart, that would then look a bit like this;

Crossfilter, dc.js and d3.js for Data Discovery 466

<div class='span4' id='dc-dayweek-chart'>
<h4>Day of the Week</h4>
<a class="reset"
href="javascript:dayOfWeekChart.filterAl1();dc.redrawAll();"
style="display: none;">
reset

</div>

The additional code adds in a link (that’s the <a> tags) with a specific class that designates its
function (the class="reset" part (this is what will let dc.js know what to do)). The link action
(href="javascript:dayOfWeekChart.filterAll();dc.redrawAll();") provides the instructions
on what to do when the ‘reset’ link is clicked on (in this case, we remove all the filters and redraw
the dayOf WeekChart chart). Then there’s a nice touch to not display the word reset when the
page first loads (style="display: none;") before finally printing the word ‘reset’ on the page.

The end result (when a day of the week is selected) looks like this;

Day of the Week

reset

T
o 200 400

Reset Link for the Row Chart

You can now click on the ‘reset’ link and the chart will revert to the default setting of all days
selected.

Making the reset label a little bit better behaved.

While we now have our reset label working well, it’s a bit poorly behaved the way that it creates
a new line to put the label on. We can do better than that.

It would be fair to say that this is as a result of the decision to use the <h4> heading tags to make
our chart headings. There are other options that could be employed to avoid using these, but I
like them, so I'll describe how I kept them and kept the reset label on the same line.

None of what we're about to do is remotely d3.js or dc.js related. It’s more HTML and CSS
focussed (which doesn’t mean it’s not worth learning :-)).

The first thing we want to do is to get the ‘reset’ label onto the same line as our ‘Day of the
Week’ heading.

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 467

This is simply done by ensuring that the <a> section is inside the <h4> section. The code should
therefore look like this;

<div class='span4' id='dc-dayweek-chart'>
<h4>Day of the Week
<a class="reset"
href="javascript:dayOfWeekChart.filterAll();dc.redrawAll();"
style="display: none;">
reset

</h4>
</div>

(Notice how the code layout shows the <a> code nested inside the <h4> section?)

The result on the web page now looks like this when a day is selected;

Day of the Week reset

I T T
o 200 400

Reset Link for the Row Chart on the Same Line

That’s a good start and certainly more acceptable, but the styling for the ‘reset’ label still looks
a bit ‘bold’ and ‘BIG’. We can do better than that.

What we’ll do is place our <a> tag information inside a tag (this is the type of tag to use
for in-line elements). Then we’ll set a CSS style in our <stlye> area to make any text that is
inside a which is inside a <h4> appear with formatting that makes it not bold and smaller
in size.

First of all we place the <a> tag into a container like so;

Crossfilter, dc.js and d3.js for Data Discovery 468

<div class='span4' id='dc-dayweek-chart'>
<h4>Day of the Week
<{span>
<a class="reset"
href="javascript:dayOfWeekChart.filterAll();dc.redrawAll();"
style="display: none;">
reset

</h4>
</div>

Then we create a section at the start of our file (under the <style type="text/css"></style>
line looks like the right place) that declares the styling for our h4 span text. It should look like

this;

<style>
h4 span {
font-size:14px;
font-weight:normal;

}
</style>

That tells our web page that any h4, span labelled text should be 14px in size and not bold (or

normal).

The end result when you now have a day of the week selected looks like this;

Day of the WeeK reset

I T T
o 200 400

Nicer Looking Reset Link for the Row Chart on the Same Line

Reset all the charts

We also have the option to reset all the charts at once. This could also be accomplished by
reloading the page, but that would also incur a time and bandwidth penalty because the

www. dbooks.

org

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery 469

associated data would be downloaded again. So just resetting everything in the browser is a
good feature.

Again dc.js has got our back.

This feature is treated like a separate chart in itself, so it has a dimension and group and a section
to draw the chart (not that it’s a chart, but I'm sure you get the idea). It’s executed slightly
differently, but it’s not too tricky.

What we’re going to aim to do is provide our page with a title and add some nice dc.js trickery
alongside that looks like this;

New Zealand Earthquakes 290 selected out of 1,606 records | Reset Al

Number of Events by Magnitude reset Events by Depth (km)

120 ea]
100 A 50
80+ 40 -
m I
40) 20 |
20 |IIIII 10 4

2 T T T T T T 1 0 II.I L I. 1 T

1 2 32 4 5 8 7] 10 20 20 40 50

Reset All with Count Beside Page Title

The trickery shows us the number of selected records accompanied with the total number of
records and gives us the option to reset all the selected charts so that all the records are selected.

There are 4 pieces of code that we will add to accomplish this task. We won’t add them from top
to bottom, because it makes slightly more sense to explain them in a different order.

First of all we will add the block of code that declares the variable that includes all of our data
values (facts).

var all = facts.groupAll();

This piece of code should go soon after the line that initialises the crossfilter process (var facts
= crossfilter(data);).

Then we will include a section of code that dimensions and counts all of our facts. It also anchors
the values to the dc-data-count ID Selector that we will set up in a moment.

// count all the facts

dc.dataCount (" .dc-data-count™)
.dimension(facts)
.group(all);

This block of code belongs in the section that sets up our charts, although you could be forgiven
for thinking that it kind of straddles more than one section.

The next section we’ll add will be our title along with the count and reset information. It looks

like this;

Crossfilter, dc.js and d3.js for Data Discovery 470

<div class="dc-data-count" style="float: left;">
<h2>New Zealand Earthquakes
<{span>

selected out of

records |
Reset All

</h2>
</div>

This block needs to go at the top of our area in the file where the layout of the portions of
the web page are being set out. Put it directly under the outermost container div line (<div
class="'container' style='font: 12px sans—serif;’>)

It places a <h2> heading with the text ‘New Zealand Earthquakes’ and then places, in-line with
this, five additional pieces. The first is a count of the filtered facts via...

Then there is the text ‘ selected out of * followed by a count of the total number of facts via...

The some more text ‘ records | “ and then another JavaScript call (as a link) that allows us to reset
all the chart elements via...

Reset All

This is all well and good, but the formatting will look a bit strange (like the following).

New Zealand Earthquakes 1,606 selected out of 1,606
records | Reset All

Number of Events by Magnitude Events by Depth (km)

120
100 400

g0 200

T T T 1
1 2 3 4 5] 7] 10 20 a0 40] a0 ¥

Reset All with Count Beside Page Title Poorly Formatted

This tells us that we need to apply some styling to the elements alongside the title. We can do
this with the following CSS elements which can go into the <style> block with the one we added
earlier for the other reset block.

www. dbooks. or g

https://www.dbooks.org/

Crossfilter, dc.js and d3.js for Data Discovery

h2 {
float: right;
}
h2 span {
font-size:14px;
font-weight:normal;

}

471

These will allow the <h2> heading to be left justified and will reduce the size of the in-line span

and remove the ‘bold’ formatting.

Et viola!

New Zealand Earthq UAKES 200 seiected out of 1,606 records | Reset Al

Number of Events by Magnitude reset Events by Depth (km)

120] &0
100 4 50 4
50 " N 40 -
| I
40 | - 20
20+ |IIIII 10

0 T T T T T T 1 0 II.I L I. T T

1 2 3 4 5 a ¥ a 10 20 a0 40 50

Nicer Looking Title with Count / Reset Information

Using Bootstrap with d3.js

Visualising data on a web page is a noble pursuit in itself, but often there is a need to be able to
associate the visualization with other content (I know! It came as a surprise to me as well).

Developing a web page has become an activity that just about anyone can accomplish for better
of for worse and I'm not going to claim to demonstrate any mastery of design or artistic flair.
However, I have found using Bootstrap is a great way to make structural arrangements to a
web page, it’s simple to use and there is a fantastic range of features that can provide additional
functionality to your pages and sometimes more importantly, a consistent ‘feel’ across many

pages.

ﬁ The syntax used for the Bootstrap code in this section is compatible with version 3.x.

Previous versions of this book described the process using version 2.x so if there is some

degree of confusion and you think is could be because you are using an older version of
Bootstrap, I recommend that you move to version 3.x.

Bootstrap can be found here*’* and I thoroughly recommend working your way through the site
to discover some of the cool things that it can do.

What is Bootstrap?

Twitter Bootstrap is a free collection of tools for creating websites and web applications.
It contains HTML and CSS based design templates for typography, forms, buttons, charts,
navigation and other interface components, as well as optional JavaScript extensions.

Bootstrap was developed by Mark Otto and Jacob Thornton at Twitter as a framework to en-
courage consistency across internal tools. The word ‘framework’ is probably the best descriptive
term, since it’s purpose is to provide structure to content. Perhaps in a similar way that d3.js
provides structure to data.

Some of Bootstrap’s most important features include;

« A layout grid
« Interface components

*"Thttp://getbootstrap.com/

www. dbooks. or g

http://getbootstrap.com/
http://getbootstrap.com/
https://www.dbooks.org/

Using Bootstrap with d3.js 473

Layout grid

Bootstrap includes 4 standard pixel width grid layout schemas which allow you to quickly
arrange a page structure. This allows you to plan and implement what you’re going to place
on the page with a minimum of fuss. You can change any of the pre-set options if you wish and
you can also implement a ‘fluid’ row option where bootstrap will dynamically size a column’s
width using a percentage instead of a fixed pixel value.

Hello, world! =

This is an example to show the potential of an offcanvas layout pattern in
Bootstrap. Try some responsive-range viewpart sizes to see it in action.

Heading Heading Heading

Donec id elit non mi portz gravida a2t eget Donec id elit non mi porta gravida at eget
metus. Fusce dapibus, 1=iius ac cursus
commaoda,

bk L

magna moilis evismaod. Do

C magna moilis euismod. Donec sed odio magna mollis euismod. Donsc sed odio
cuil. i dui.

View details » View details » Wiew details »
Bootstrap example page

It’s this feature that first attracted me to using Bootstrap and while I may be using a complex
tool for a simple task, it does that task very well.

Using Bootstrap with d3.js 474

Interface components

A large number of interface components are also provided. These include standard buttons...

e | D D

Bootstrap Standard Buttons

.. tables...
First Name Last Name Usemame # First Name Last Name Username
1 Mark Otto @mdo 1 Iark Otto @mdo
2 Jacob Thornton @fat 2 Jacob Thornton @fat
3 Larry the Bird @twitter 3 Larry the Bird @twitter
First Name Last Name Username # First Name Last Name Username
1 Mark Otto @mdo s gt @mdo
2 Jacob Thornton @fat
Mark Otto @TwBootstrap
3 Larry the Bird @twitter
2 Jacob Thornton @fat
3 Larry the Bird @twitter
Bootstrap Tables
.. labels...

Detauit] Primary | Success] ino] Warning
| Default | Primary | Success | info | Waming

Bootstrap Labels

www. dbooks. org

https://www.dbooks.org/

Using Bootstrap with d3.js 475

... drop-down menus...

Another action

Something else here

Separated link

Bootstrap Drop-down menus

... navigation controls...

Project name Home About Contact Dropdown -

Bootstrap Navbars

... alerts...

Well done! You successiully read this important alert message.

Heads up! This alert needs your attention, but it's not super important

Warning! Best check yo self, you're not looking too good.

Oh snap! Change a few things up and try submitting again

Bootstrap Alerts
... and to be perfectly honest, the list goes on and on.

There is a dizzying array of options available for web designers and while I encourage you to

use them, I can’t promise to explain the nuances of their use, since I'm a humble journeyman in
this world :-).

Using Bootstrap with d3.js 476

Incorporating Bootstrap into your html code.

Bootstrap is a remarkably flexible product. We could be forgiven for thinking that the process
of installing it would be difficult. However, in the spirit of keeping things simple, we’ll make the
process crude, but effective.

You could easily just follow along with the instructions on the ‘getting started**” page (and I
recommend you do). But the following are important points.

Make sure you remember that you will need to download the appropriate scripts from the ‘getting
started®”’ page.;

Bootstrap

Compiled and minified CSS, JavaScript,
and fonts. No docs or original source files
are included.

Download Bootstrap

Bootstrap Download

You will need to copy the bootstrap. js file (or the minimised version (bootstrap.min. js)) to
a place where it can be reached and loaded by your script. While you’re there, you will need
to include a line to load the jquery.js file (which is a dependency of Bootstrap (not that it gets
talked about much)) The following two lines, included with the line that loads d3.js, would do
the job nicely (assuming that you’ve copied the bootstrap.min. js file into the js directory);

<script src="http://code. jquery.com/jquery. js"></script>

—n

<script src="js/bootstrap.min. js"></script>
If we wanted to we could load Bootstrap the same way that we are loading jquery.js (off the
Internet each time we load a page). To do this we could use;

<script src="http://code. jquery.com/jquery. js"></script>

<script src=
"https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/js/bootstrap.min. js">

</script>

This is the way we will try to form our code in the coming examples to make the scripts as
location independent as possible.

Make sure that the jquery line comes before the bootstrap line, because it won’t work
the other way round.

*"?http://getbootstrap.com/getting-started/
*"http://twitter.github.io/bootstrap/getting- started.html

www. dbooks. or g

http://getbootstrap.com/getting-started/
http://twitter.github.io/bootstrap/getting-started.html
http://twitter.github.io/bootstrap/getting-started.html
http://getbootstrap.com/getting-started/
http://twitter.github.io/bootstrap/getting-started.html
https://www.dbooks.org/

Using Bootstrap with d3.js 477

You will also need to copy the bootstrap.css (or the minimised version (bootstrap.min.css)) to
a place where it can be reached and loaded by your script. The following lines show it being
loaded from the css directory with the line that loads the script in the <head> section.

<head>
<link href="css/bootstrap.min.css" rel="stylesheet" media="screen">

</head>
Or again we could load it from the Internet as follows;

<head>

<link rel="stylesheet" href=

"https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/css/bootstrap.min.css”
>

</head>

That should be all that’s required! Of course as I mentioned earlier, there are plenty of other
plug-in scripts that could be loaded to do fancy things with your web page, but we’re going to
try and keep things simple.

Using Bootstrap with d3.js 478

Arranging more than one graph on a web page.

We’ll start with the presumption that we want to be able to display two separate graphs on the
same web page. The example we will use is clearly contrived, but we should remember that it’s
the process we’re interested in this case, not the content.

First make a page with two graphs

This is surprisingly easy. If you start with the simple graph that we initially used as our learning
example at the start of the book, and duplicate the section that looks like the following, you are
99% of the way there.

// Adds the svg canvas
var chart2 = d3.select("body")
.append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

// Get the data
d3.csv("data2.csv", function(error, data) {
data. forEach(function(d) {
d.date = parseDate(d.date);
d.close = +d.close;

});

// Scale the range of the data
x.domain(d3.extent(data, function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.close; })]);

// Add the valueline path.
chart2.append("path")
.attr("class", "line")
.attr("d", valueline(data));

// Add the X Axis

chart2.append("g")
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.call(xAxis);

// Add the Y Axis

chart2.append("g")
.attr("class", "y axis")

www. dbooks. or g

https://www.dbooks.org/

Using Bootstrap with d3.js 479

.call(yAxis);

});

For simplicity, the full code for this graph can also be found on github*"* or in the code samples
bundled with this book (two-graphs-one-anchor.html, data-1.csv and data-2.csv). A live example

can be found on bl.ocks.org®”’.

The differences from the original simple graph example are;

« The graphs are slightly smaller (to make it easier to display the graphs as they move about).

« [have used *.csv files for the data and there are two different data files so that they look
different and we can differentiate between the graphs.

« Most importantly, I have declared the two charts with different variable names (one as
chart1 and the other as chart2).

The different variable names are important, because if you leave them with the same identifier,
the web page decides that what you’re trying to do is to put all your drawing data into the same
space. The end result is two graphs trying to occupy the same space and looks a bit like this...

1888-

500

1,688

300+
200 =
100+

0

TT T T T T T T T 1
ARl ApRPBOB Apr AEr 15 Apr 2&pr 23pr 29

Two Simple Graphs Mashed

The example with the correct (different) variable labels should look a little like this...

C | [blocks.org/d3noob/raw/5987480/ e =
| Index of /D3 E’ Google Advanced S.. =, Stack Overflow d3js E] D3js Tips and Tricks %% Twitter d2noob » [] Other bookmarks
o 1500
500
0% 1,000
300+
200+ 500
100
0 T T T T — 0 T T T T
April Aprog Apri15 Apr2z Apraa April Apr 03 Apr 15 Apr 22
Two Simple Graphs

*"*https://gist.github.com/d3noob/5987480
*"http://bl.ocks.org/d3noob/5987480

https://gist.github.com/d3noob/5987480
http://bl.ocks.org/d3noob/5987480
https://gist.github.com/d3noob/5987480
http://bl.ocks.org/d3noob/5987480

Using Bootstrap with d3.js 480

Arrange the graphs with the same anchor

The first thing I want to point out about how the graphs are presented is that they are both
‘attached’ to the same point on our web page. Both of the graphs select the body of the web page
and then append a svg element to it;

var chart2 = d3.select("body")
.append("svg")

This has the effect of appending the graphs to the same anchor point. Interestingly, if we narrow
the window of our web browser to less that the width of both of our graphs side by side, the
browser will automatically move one of the graphs to a position below the first in much the
same way that text will wrap on a page.

[=T ﬁ
(o % (@S x/)bl x \[E]Pr x
C' | [} blocks.org/d3ncob/raw/5987480/ 92| =
[Index of /D3 El Geoogle Advanced 5. » Other bockmarks
600
500
400 —
200
200+
100+
D T T T T T 1
April Apr 08 Apr1a Apr 22 Apr 28
1,500+
1,000+
500+
0 T T T T 1
April Apr 03 Apr s Apr 22
—

Two Simple Graphs Wrapping

For a very simple mechanism of putting two graphs (or any two d3.js generated images) on a
single page, this will work, but we don’t have a lot of control over the positioning.

www. dbooks. or g

https://www.dbooks.org/

Using Bootstrap with d3.js 481

Arrange the graphs with separate anchors

To gain a little more control over where the graphs are placed we will employ ID selectors.

An ID selector is a way of naming an anchor point on an HTML page. They can be defined as “a
unique identifier to an element”. This means that we can name a position on our web page and
then we can assign our graphs to those positions.

This can be done simply by placing div tags in our html file in an appropriate place (here I've
put them in between the <style> section and the <body>).

</style>

<div id="areal"></div>

<div id="area2"></div>

<body>

Remembering that the <div> tag defines a division or a section in an HTML document.
Therefore we are labelling specific sections in our web page.

Now all we need to do is to tell each graph to append itself to either of these ID selectors. We do
this by replacing the selected section in our JavaScript code with the appropriate ID selector as
follows;

var chartl = d3.select("#areal")
.append("svg")

..and ...

var chart2 = d3.select("#area2")
.append("svg")

o A couple of points to note:

When we reference our ID selectors in the code (other than when we we set them with
id="area1") we need to put a hash (#) in front of the selector for the HTML to recognise
it.

We can only use a single ID selector in a single place. This might sound like common
sense, but whatever the temptation, don’t go trying to assign the same ID selector to
more than one place (You can certainly assign more than one item to an ID selector (for

instance, you could append chart2 to areal (var chart2 = d3.select("#areat")) but
an ID selector is a unique identifier of a position.).

With these divs added, when you browse to the file, you will find that it looks like this;

Using Bootstrap with d3.js 482

f S
/[localhost/D3/multi-graph % "\
= C | [localhost/D3/multi-graph-03.htm g —
[Index of /D3 E Google Advanced 5., IE\I Stack Overflow d3.js B D3js Tips and Tricks % Twitter d3ncck » [Other bockmarks
600
500
400 -
300+
200
100
0 T T T T T
April Apr 08 Apr 15 Apr 22 Apr 29
1,500 -
1,000 -
500
D T T T T
April Apr 08 Apr 15 Apr 22

Two Simple Graphs with divs

This looks the same as when the two graphs were wrapping when the browser was narrowed.
However, this time the browser is wide enough to support the two side by side, but they won’t
position themselves that way. This is because each div divides the web page. The top graph is in
the div with the ID selector areat and the bottom graph is in the div with the ID selector area2.
These divs effectively extend for the width of the web page.

The situation that we now find ourselves in is that we have control over where the graphs will
be anchored, but we don’t have much flexibility for arranging those anchors. This is where
Bootstrap comes in.

www. dbooks. or g

https://www.dbooks.org/

Using Bootstrap with d3.js 483

How does Bootstrap’s grid layout work

Bootstrap’s grid layout subdivides the page by using rows and columns. A row will extend
horizontally and a web page can be thought of as being 12 columns wide. Each column is a
place to put horizontally separated content.

In order to make the best use of variable width devices, Bootstrap employs four different types
of columns;

« Extra small devices (phones): With a horizontal resolution of less than 768px, Bootstrap
reccomends we use col-xs-.

« Small devices (Tablets): With a horizontal resolution of greater than or equal to 768px,
Bootstrap reccomends we use col-sm-.

« Medium devices (Desktops):With a horizontal resolution of greater than or equal to 992px,
Bootstrap reccomends we use col-md-.

« Large devices (Desktops): With a horizontal resolution of greater than or equal to 1200px,
Bootstrap reccomends we use col-1g-.

The examples we’ll employ will use col-md-, but you should choose based on your anticipated
needs.

Each column will have a width designated by a number at the end of our column designator.
This will be the width in terms of the number of columns in the row.. For example col-md-4
would be a single column 4 units wide (remember the row is a maximum of 12 possible units
wide).

As an example, the picture below shows a single row divided into twelve individual columns.

A

Simple Bootstrap Layout with 12 columns

The columns can be combined to create larger spaces for larger content. The example below has
a single col-md-6 and two col-md-3’s.

row

col-md-6 col-md-3 col-md-3

Simple Bootstrap Layout with one column 6 and two column 3’s

The column’s will change height dynamically to fit their contents. So if there was a larger item
in the col-md-6 example given above (perhaps a graph), it would expand like so;

Using Bootstrap with d3.js 484

row

col-md-6 col-md-3 col-md-3

600 —
500 -
400+
300+
200+
100+

T T 1
April Apros Apri5 Apr22 Apr29

Simple Bootstrap Layout with Content

The way to set these rows and columns up is by dividing the screen using divs and assigning
them class types that match the grid layout.

For example, to create our example of a single row with a col-md-6 and two col-md-3’s we would
use the following html code as our baseline.

<div class="row">
<div class="col-md-6"></div>
<div class="col-md-3"></div>
<div class="col-md-3"></div>
</div>

In this example code we can see the row div is enclosing the three columns. We can extend the
comparison by putting the code into our graphic example.

<div class="row">

<dw class="col-md-6"> <dw class="col-md-3"> <dw class="col-md-3">

500
500 -
400
300
200
100

D T T T T T 1

April Apr 08 Apr 15 Apr 22 Apr 29

</div= </div> </div>
</div>

Simple Bootstrap Layout with Content and Code

To add content to the structure, all that is needed is to put our web page components between
the <div class="col-md-x"> and </div> tags.

Later we will look (briefly) at more complex configurations that might be useful.

www. dbooks. or g

https://www.dbooks.org/

Using Bootstrap with d3.js 485

Arrange more than one d3.js graph with Bootstrap

In the previous sections we have seen how to assign ID selectors so that we anchor our d3.js
graphs to a particular section of our web page. We have also seen how to utilise Bootstrap to
divide up our web page into different sections. Now we will bring the two examples together
and assign ID selectors to sections set up with Bootstrap.

We will start with our simple two graph example (as seen on bl.ocks.org here®”®).

We will need to make sure we have our bootstrap.min. js and bootstrap.min.css files in the
appropriate place.

Then insert the code to use bootstrap.min.css at the start of the file (just before the <style>
tag would be good);

<head>

<link rel="stylesheet" href=
"https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/css/bootstrap.min.css"
>

</head>

Then include the lines to load the jquery. js and bootstrap.min. js files just after the line that
loads the d3. js file.

<script src="http://code. jquery.com/jquery. js"></script>

<script src=
"https://maxcdn.bootstrapcdn.com/bootstrap/3.3.2/js/bootstrap.min. js">

</script>

What we’ll do to make things simple is to create a Bootstrap layout that is made up of a single
row with just two col-md-6 elements in it. The following code will do this nicely and should go
after the </style> tag and before the <body> tag.

<div class="row">
<div class="col-md-6"></div>
<div class="col-md-6"></div>
</div>

Now we add in our ID selectors in a clever way by incorporating them into the divs that we have
just entered. So remembering the code for our original two selectors...

%7Shttp://bl.ocks.org/d3noob/raw/5987480/

http://bl.ocks.org/d3noob/raw/5987480/
http://bl.ocks.org/d3noob/raw/5987480/

Using Bootstrap with d3.js 486

<div id="areal"></div>
<div id="area2"></div>

... we can incorporate these into our row and columns as follows;

<div class="row">
<div class="col-md-6" id="areal"></div>
<div class="col-md-6" id="area2"></div>
</div>

The last thing we need to do is to change the d3.select from selecting the body of the web page
to selecting our two new ID selectors areal and area2.

var chart1 = d3.select("#areal")
.append("svg")

..and ...

var chart2 = d3.select("#area2")
.append("svg")

Et viola! Our new web page has two graphs which are settled into their own specific section.

i 2 =
[localhost/D3/multi-graph % \
€« C | [3 localhost/D3/multi-graph-boot-02.htm 9% =
| Index of /D3 E’ Gooegle Advanced 5... E\I Stack Overflow d3,js E’ D3.js Tips and Tricks 5% Twitter d3noob 13 Google Analytics » [] Other bookmarks
fot 1,500 -
500
A0 1,000 -
200
200 500 -
100
0 T T T T T a T T T T
April Apr 08 Apr 15 Apr 22 Apr 29 April Apr 08 Apr 15 Apr 22
\

Simple Bootstrap Layout Example with Graphs

To provide another example of the flexibility of the layout schema, we can take our row / column
layout section and adapt it so that our graphs are in two separate sections with a third, smaller,
section in the middle describing the graphs.

If we start with our previously entered columns with their ID selectors;

www. dbooks. or g

https://www.dbooks.org/

Using Bootstrap with d3.js 487

<div class="row">
<div class="col-md-6" id="areal"></div>
<div class="col-md-6" id="area2"></div>
</div>

We can change the columns to col-md-5 and add an additional col-md-2 in between with some
text (remember, the total number of columns has to add up to 12).

<div class="row">
<div class="col-md-5" id="areal"></div>
<div class="col-md-2">
To the left is a graph showing the anticipated profits
of the 'Widget Incorporated' company.
On the right is the anticipated cost of production as
the number of Widgets is increased.
Clearly we will be RICH!
</div>
<div class="col-md-5" id="area2"></div>
</div>

And the end result is...

T
; [localhost/D3/multi-graph % |
| &« C | [localhost/D3/multi-graph-boot-02.htm I =
[Index of /D3 E Google Advanced 5. E\, Stack Overflow d3.js E D3.js Tips and Tricks %% Twitter d3noob o5 Google Analytics » [] Other bookmarks
Tothe leftis a graph
~ showing the anticipated _
Wide
600 | profits of the Widget S
i Incorporated’ company.
500+ onthe right is the
4004 anticipated cost of
production as the 1,000+
300 number of Widgets is
increased. Clearly we will
20071 be RICH! 500 |
100
0 T T T T ™ 0 T T T T
April Apr 08 Apr 15 Apr 22 Apr 29 April Apr 08 Apr 15 Apr 22
\

Simple Bootstrap Layout with Graphs and Text

Neither of these examples is particularly elegant in terms of its layout. I am relying on you to
bring the prettiness!

The full code for this final graph and paragraph combination can also be found on github*’” or in
the code samples bundled with this book (two-graphs-bootstrap.html, data-1.csv and data-2.csv).
A live example can be found on bl.ocks.org®”®.

A more complicated Bootstrap layout example

As promised earlier, it’s worth looking at a more complex example for a layout with Bootstrap,
just to get a feel for how it works or the potential it might have for you.

*""https://gist.github.com/d3noob/6a3b59149cf3ebdb3fc4
*"*http://bl.ocks.org/d3noob/6a3b59149cf3ebdb3fc4

https://gist.github.com/d3noob/6a3b59149cf3ebdb3fc4
http://bl.ocks.org/d3noob/6a3b59149cf3ebdb3fc4
https://gist.github.com/d3noob/6a3b59149cf3ebdb3fc4
http://bl.ocks.org/d3noob/6a3b59149cf3ebdb3fc4

Using Bootstrap with d3.js 488

The example code layout we will design will look a bit like this;

row
col-md-12

row

col-md-4 col-md-8

row

col-md-4 col-md-4

row

col-md-8

More Complicated Bootstrap Layout

It looks slightly complex with a nesting of columns and rows, and the end result is only 5 separate
sections, but it’s really not too hard to put together if you start in the right place and build it up
piece by piece.

We'll start in the middle and work our way out. The first piece to consider is the two side-by-side
col-md-4’s.

row

col-md-4 col-md-4

Two col-md-4’s

The code for these is just...

www. dbooks. or g

https://www.dbooks.org/

Using Bootstrap with d3.js 489

<div class="row">
<div class="col-md-4"></div>
<div class="col-md-4"></div>
</div>

Directly under that row is another with a single col-md-8.

row

col-md-8

A Single col-md-8
The code for this section is...
<div class="row">

<div class="col-md-8"></div>
</div>

Using Bootstrap with d3.js
Both of these rows together look like this;

row

col-md-4 col-md-4

row

col-md-8

Two Stacked rows

And the code is just one piece after the other.

<div class="row">
<div class="col-md-n4"></div>
<div class="col-md-4"></div>
</div>
<div class="row">
<div class="col-md-8"></div>
</div>

490

www. dbooks. or g

https://www.dbooks.org/

Using Bootstrap with d3.js 491

Because this entire block forms part of another (larger) row, we need to enclose it in its own
col-md-8 (since this is part is only col-md-8 wide).

col-md-8
row
col-md-4 col-md-4

row

col-md-8

Enclosed Stacked rows

And for the code the new col-md-8 div wraps all the current code we have.

<div class="col-md-8">
<div class="row">
<div class="col-md-4"></div>
<div class="col-md-4"></div>
</div>
<div class="row">
<div class="col-md-8"></div>
</div>
</div>

Using Bootstrap with d3.js

The col-md-8 is alongside a large col-md-4 that sits to the left.

col-md-4 col-md-8

row
col-md-4 col-md-4

row

col-md-8

col-md-4 plus Complex col-md-8

This requires another col-md-4 div to be placed before the col-md-8.

<div class="col-md-4"></div>
<div class="col-md-8">
<div class="row">
<div class="col-md-4"></div>
<div class="col-md-4"></div>
</div>
<div class="row">
<div class="col-md-8"></div>
</div>
</div>

492

www. dbooks. or g

https://www.dbooks.org/

Using Bootstrap with d3.js 493

The col-md-4 and the complex col-md-8 need to be in their own row...

row

col-md-4 col-md-8

row

col-md-4 col-md-4

row

col-md-8

col-md-4 plus Complex col-md-8 in a row

So a row div encloses all the code we have so far.

<div class="row">
<div class="col-md-4"></div>
<div class="col-md-8">
<div class="row">
<div class="col-md-4"></div>
<div class="col-md-4"></div>
</div>
<div class="row">
<div class="col-md-8"></div>
</div>
</div>
</div>

Using Bootstrap with d3.js 494

Finally we need to place another row with a col-md-12 in it above our current work.

row

col-md-12

row

col-md-4 col-md-8

row

col-md-4 col-md-4

row

col-md-8

More Complicated Bootstrap Layout

Again, we need to place the row and column before our current code so that it appears above
the current code on the page.

<div class="row">
<div class="col-md-12"></div>
</div>
<div class="row">
<div class="col-md-4"></div>
<div class="col-md-8">
<div class="row">
<div class="col-md-4"></div>
<div class="col-md-4"></div>
</div>
<div class="row">
<div class="col-md-8"></div>
</div>
</div>
</div>

There we have it!

Slightly more complex, but if you needed a heading, a sidebar, a couple of graphs and some
explanatory text, that might be exactly what you were looking for :-).

www. dbooks. or g

https://www.dbooks.org/

Working with GitHub, Gist and
bl.ocks.org

General stuff about bl.ocks.org

In the words of Mike Bostock on the bl.ocks.org®”” main page;

“This is a simple viewer for code examples hosted on GitHub Gist. Code up an example
using Gist, and then point people here to view the example and the source code, live!”

The whole idea is to take the information that you have in a gist (the pastebin area in Github)
and to give it a viewer that will allow it to display in your browser.

The reason this works is that the files that make up a web page that can be displayed in
your browser conform to a pretty well defined standard. If you can name your main web file
index.html and put it in a gist, bl.ocks.org will not just render it to a browser, but since you can
store your data files in the same gists, your visualization can use those as data sources as well
since they shouldn’t violate any cross domain security restrictions.

Mike’s clever code allows a gallery type preview page to be generated (including a thumbnails
if you follow the instructions in another part of this section).

d3noob’s blocks

New Zealand Earthquakes 68OmpTE TMe~grapiTTh d3 s

January 3. 2013 %gc_%mber 31, 2012

Thumbnails of examples for d3noob’s blocks

And if you include a readme file formatted using markdown you can have a nice little explanation
of how your visualization works.

The front rendering page includes any markdown notes and the code (not the full screen) is
optimised to accept visualizations of 960x500 pixels (although you can make them other sizes,
it’s just that this is an ‘optimum’ size). Of course there is always the full screen mode to render
your creation in its full glory if necessary.

If T was to pass on any advice when using bl.ocks.org, please consider others who will no doubt
view your work and wonder how you achieved your magic. Help them along where possible
with a few comments in the readme.md file because sharing is caring :-).

*"*http://bl.ocks.org/

http://bl.ocks.org/
http://bl.ocks.org/

Working with GitHub, Gist and bl.ocks.org 496

Installing the plug-in for bl.ocks.org for easy block
viewing

This might sound slightly odd at first if you're not familiar with using Gist or bl.ocks.org, but
trust me, a) you should use them, b) if you get to the point where you are using these fantastic
services, there’s a good chance that you will want to be able to quickly check out what your
block looks like when you update or add in a Gist.

Here’s the scenario. You’re slaving away getting all your data and files into Gist, and then you’re
switching - in some tiresome manner - to get to the block that bl.ocks.org generates.

Well, throw away that tiresome technique! It’s time to move into the 21st century with some
plug-in goodness. Clever Mike Bostock has put together some handy dandy browser extensions
that will add a button to your Chrome, Safari or Firefox browser to take you straight from your
Gist to your block!

It will turn your Gist page from this...

github

d3noob / README.md

Hew Zealand Earthquakes

Gist Detail [&] README.md | Markdown | 93 bites

P

Er s irim
mEVISIONS

Graph of Earthquakes in New Zealand
<> Download Gist

https: /foist.github
B S 3 earthquakes03.csv | 361 kb
Gist page without bl.ocks.org button

.. to this ...

www. dbooks. or g

https://www.dbooks.org/

Working with GitHub, Gist and bl.ocks.org 497

github

d3noob / README.md

Mew Zealand Earthguakes

Gist Detail 5 README.md | Markdown | 92 bytes

Hewisions 2

Graph of Earthquakes in New Zealand
[2 bl.ocks.org

&> Download Gist

| earthquakesD3.csv | 3671 kb
https://gist.github

week_year,day_time,value

Gist page with bl.ocks.org button!

Check out the button!

It’s really handy and works like a charm. You can download it directly from the bl.ocks.org home
page*®® or from theGithub page*®' where the code is hosted (this also includes a quick couple of
lines of instructions for installation if you’re unsure).

Loading a thumbnail into Gist for bl.ocks.org d3
graphs

This description will start on the assumption that the user already has a GitHub / Gist account
set up and running. It’s purpose is to demonstrate how to upload an image as a file named
thumbnail.png to a Gist so that when viewing the users home page on bl.ocks.org you see a
nice little preview of what a visitor can anticipate, when they go to look at your work :-). This
description is a fleshed out version of the one provided by Christophe Viau on Google Groups®*.

Setting the scene:

There you are: a fresh faced d3.js user keen to share his/her work with the world. You set yourself
up a GitHub / Gist account and put your code into a gist.

*%%http://bl.ocks.org/
**'https://github.com/mbostock/bl.ocks.org
*%?https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc

http://bl.ocks.org/
http://bl.ocks.org/
https://github.com/mbostock/bl.ocks.org
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc
http://bl.ocks.org/
https://github.com/mbostock/bl.ocks.org
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc

Working with GitHub, Gist and bl.ocks.org 498

@®

d3noob / data.csv

Simple line graph in d3 js

Gist Detail o data.csv | 441bytes

Revisions 1

date,close
1-May-12,58.13
3@-Apr-12,53.98
2

[bl.ocks.org Apr-12,67.68

8_
?.
The gist web page
Your graph is a thing of rare beauty and the community needs to marvel at your brilliance. Of
course this is a breeze with bl.ocks.org. Once you have all the code sorted out, and all data files
made accessible, bl.ocks.org can display the graph with the code and can even open the graph in

its own window. The person responsible for bl.ocks.org? Mike Bostock of course (wherever does
he get the time?).

Clicking on the bl.ocks.org button on the gist page (load the extension available from the main
page of bl.ocks.org) takes you to see your graph.

A

Your awesome graph ready to go

Wow! Impressive.

So you think that will make a fine addition to your collection of awesome graphs and if you click
on your GitHub user name that is in the top left of the screen you go to a page that lays out all
your graphs with a thumbnail giving a sneak preview of what the user can expect.

A

d3noob’s blocks, but no thumbnail!

Aww... Rats! There’s a nice place holder, but no pretty picture.
Hang on, what had Mike said on the bl.ocks.org main page?

“The main source code for your example should be named index.html. You can also include a
README.md using Markdown, and a thumbnail.png for preview.”

Ahh.. you need to include a thumbnail.png file in your Gist!

So how to get it there? Well Gist is a repository, so what you need to do is to put the code in
there somehow. Now from the Gist web page this doesn’t appear to be a nice (gui) way to do
this. So from here you will need to suspend your noob status and hit the command line.

www. dbooks.

org

https://www.dbooks.org/

Working with GitHub, Gist and bl.ocks.org 499

The good news (if you're a windows user (and sorry, [haven’t done this in Linux or on a Mac)) is
that, as part of the GitHub for windows installation, a command line tool was installed as well!
Prepare yourself, you’re going to use the Git Shell.

GitHub Git Shell

The Windows GitHub and Git Shell icons

Enough of the scene setting. Let’s git going :-).

I’'m going to describe the steps in a pretty verbose fashion with pretty pictures and everything
else, but at the end I will put a simple set of steps in the form that Christophe Viau outlined on
Google Groups®®.

First you will want to have your image ready. It needs to be a png with dimensions of 230 x 120
pixels. It should also be less than 50kB in size.

Go to your public Gist that you have already set up and copy the link in the “Clone this gist”
box.
24-Apr-12,138.28

23-Apr-12,166.78
28-Apr-12,234.98
l/\\s 19-Apr-12,345.44
18-Apr-12,445,34
17-Apr-12,543.78

=zarrint arc="httn=:.

Copy the ‘Clone this gist’ link

(this should look something like https://gist.github.com/441443°**)

Now you’re going to clone this gist to a local repository using the Git Shell. Open it up from the
desktop icon and you should see something like the following;

£Y Ch\Windows\System32\WindowsPowerShellwl.0\Powershell.exe Ii@ﬁ

Windows PowerShell
Copyright <G> 28@? HMicrosoft Corporation. All rights reserved.

E:“My Documents>docss\GitHub>

The Git Shell is open for business

You can clone the gist to a local folder with the command;

git clone https://gist.github.com/4414436.git

Or if you’re using OSX, the following command has been passed on by Alex Hornbake
as an alternative (thanks Alex).

git clone git@gist.github.com:4414436.git

*33https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc
*%*https://gist.github.com/441443

https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc
https://gist.github.com/441443
https://groups.google.com/forum/?fromgroups=#!topic/d3-js/FBosXiTB9Pc
https://gist.github.com/441443

Working with GitHub, Gist and bl.ocks.org 500

(The url is the one copied from the ‘Clone this gist’ box.)

£ Ch\Windows\System32\WindowsPowerShellywl.0\Powershell.exe | =oRe X

Windows Power8hell
Copuyright <G> 200% Microsoft Corporation. All rights reserved.

E:“My Documents“docs»GitHub> git clone https:rrgist.github.coms4414436 _git
Cloning into ‘4414436°

remote: Counting thectﬁ= 4. done.

remote: Compressing objects: 1608 <4-4>, done.
remote: Total 4 (delta B>, reused B {delta B>
Unpacking obhjects: 188¢ (4-4>. done.

E:“My Documentssdocs ~GitHubX

Running the command

This will create a folder with the id (the number) of the gist in your local GitHub working

directory.

A folder is created for your gist

And there it is (Ooo... Look almost New Years!).

Another tip for Mac users (This time from ‘Fern of the Andes’ in a comment from the
d3noob.org®* blog) is that at this stage you should be able to drag the generated folder
into GitHub for Mac (http://mac.github.com/). Then simply drag the image file into the
GitHub for Mac folder and commit. Have a crack if you're confident enough. I can’t
claim to have tried it, but Fern reckons it’s OK :-).

Copy your thumbnail.png file into this directory.

Back to the Git Shell and change into the directory (4414436) . We can now add the thumbnail.png
file to the gist with the command;

git add thumbnail.png

E:“My Documents>docs™\GitHuh> cd 4414436
E:“My Documents“docs“GitHub“4414436 [master 1* git add thumbnail.png

E:“My Documents“docs“GitHub“4414436 [master 1>

Running the git add command

And now commit it to your gist with the following command in the Git Shell;

git commit -m "Thumbnail image added"

A

Running the git commit command

Now we need to push the commit to the remote gist (you may be asked for your GitHub user
name and password if you haven’t done this before) with the following command;

*$http://www.d3noob.org/2012/12/loading-thumbnail-into- gist-for.html

www. dbooks. or g

http://www.d3noob.org/2012/12/loading-thumbnail-into-gist-for.html
http://www.d3noob.org/2012/12/loading-thumbnail-into-gist-for.html
http://www.d3noob.org/2012/12/loading-thumbnail-into-gist-for.html
https://www.dbooks.org/

Working with GitHub, Gist and bl.ocks.org 501

git push

A

Push! Push!

OK, now you can go back to the web page for your gist and refresh it and scroll on down...

3 thumbnail.png | 1.86 kb

500 -
400+

ann

A thumbnail is born

Woo Hoo!
(I know it doesn’t look like much, but this is a VERY simple graph :-)).

Now for the real test. Go back to your home page for your blocks on bl.ocks.org and refresh the

page.

d3noob’s blocks complete with thumbnail

Oh yes. You may now bask in the sweet glow of victory. And as a little bit of extra fancy, if you
move your mouse over the image it translates up slightly!

Wrap up.

The steps to get your thumbnail into the gist aren’t exactly point and click, but the steps you
need to take are fairly easy to follow. As promised, here is the abridged list of steps that will
avoid you going through the several previous pages.

Create your public gist on https://gist.github.com/**¢

Get an image ready (230 x 120 pixels, named thumbnail.png)

Under “Clone this gist”, copy the link (i.e., https://gist.github.com/4414436.git)

If you have the command line git tools (Git Shell), clone this gist to a local folder: git clone
https://gist.github.com/4414436.git (orgit clone git@gist.github.com:4414436.git
for OSX) It will add a folder with the gist id as a name (i.e., 4414436) under the current
working directory.

W=

*$Shttps://gist.github.com/

https://gist.github.com/
https://gist.github.com/

Working with GitHub, Gist and bl.ocks.org 502

5.

A S

10.
11.

Navigate to this folder via the command line in Git Shell: cd 4414436 (dir 4414436 on
windows)

Navigate to this folder in file explorer and add your image (i.e., thumbnail.png)

Add it to git from the command line: git add thumbnail.png

Commit it to git: git commit -m "Thumbnail added"

Push this commit to your remote gist (you may need your Github user name and password):
git push

Go back and refresh your Gist on https://gist.github.com/ to confirm that it worked
Check your blocks home page and see if it’s there too. http://bl.ocks.org/<yourusername>

Just to finish off. A big thanks to Christophe Viau for the hard work on finding out how it all
goes together and if there are any errors in the above description I have no doubt they will be
mine.

www. dbooks. or g

https://www.dbooks.org/

Appendices

Simple Line Graph

<IDOCTYPE html>
<meta charset="utf-8">
<style> /* set the CSS */

body { font: 12px Arial;}

path {
stroke: steelblue;
stroke-width: 2;
fill: none;

.axis path,
.axis line ({
fill: none;
stroke: grey;
stroke-width: 1;
shape-rendering: crispEdges;

</style>
<body>

<!-- load the d3.js library -->
<script src="http://d3js.org/d3.v3.min. js"></script>

<script>

// Set the dimensions of the canvas / graph

var margin = {top: 30, right: 20, bottom: 30, left: 50},
width = 600 - margin.left - margin.right,
height = 270 - margin.top - margin.bottom;

// Parse the date / time
var parseDate = d3.time.format("%d-%b-%y").parse;

// Set the ranges
var x = d3.time.scale().range([0, width]);

Appendices 504

var y = d3.scale.linear().range([height, 0]);

// Define the axes
var xAxis = d3.svg.axis().scale(x)
.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)
.orient("left").ticks(5);

// Define the line

var valueline = d3.svg.line()
.X(function(d) { return x(d.date); })
.y(function(d) { return y(d.close); });

// Adds the svg canvas
var svg = d3.select("body")
.append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform",
"translate(" + margin.left + "," + margin.top + ")");

// Get the data
d3.csv("data/data.csv", function(error, data) {
data. forEach(function(d) {
d.date = parseDate(d.date);

d.close = +d.close;

});

// Scale the range of the data
x.domain(d3.extent(data, function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.close; })]);

// Add the valueline path.

svg.append("path")
.attr("class", "line")
.attr("d", valueline(data));

// Add the X Axis

svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.call(xAxis);

// Add the Y Axis

www. dbooks. or g

https://www.dbooks.org/

Appendices 505

svg.append("g")
.attr("class", "y axis")
.call(yAxis);

});

</script>
</body>

Appendices

Graph with Many Features

<!DOCTYPE html>
<meta charset="utf-8">
<style>

body {
font: 12px Arial;

text.shadow {
stroke: #fff;
stroke-width: 2.5px;

opacity: 0.9;

}

path {
stroke: steelblue;
stroke-width: 2;
fill: none;

}

.axis path,

.axis line {
fill: none;
stroke: grey;
stroke-width: 1;
shape-rendering: crispEdges;

.grid .tick {
stroke: lightgrey;
stroke-opacity: 0.7;
shape-rendering: crispEdges;
}
.grid path {
stroke-width: 0;

.area {
fill: lightsteelblue;
stroke-width: 9;

</style>

506

www. dbooks. or g

https://www.dbooks.org/

Appendices 507

<body>
<script src="http://d3js.org/d3.v3.min. js"></script>

<script>
var margin = {top: 30, right: 20, bottom: 35, left: 50},
width = 600 - margin.left - margin.right,

height = 270 - margin.top - margin.bottom;

var parseDate = d3.time.format("%d-%b-%y").parse;

d3.time.scale().range([0, width]);
d3.scale.linear().range([height, 0]);

var X

var y

var xAxis = d3.svg.axis()
.scale(x)
.orient("bottom")
.ticks(5);

var yAxis = d3.svg.axis()
.scale(y)
.orient("left")
.ticks(5);

var area = d3.svg.area()
.x(function(d) { return x(d.date); })
.y@(height)
.y1(function(d) { return y(d.close); });

var valueline = d3.svg.line()
.x(function(d) { return x(d.date); })
.y(function(d) { return y(d.close); });

var svg = d3.select("body")
.append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform",

non

"translate(" + margin.left + "," + margin.top + ")");

// function for the x grid lines
function make_x_axis() {
return d3.svg.axis()
.scale(x)
.orient("bottom")

Appendices 508

.ticks(5)

// function for the y grid lines
function make_y_axis() {
return d3.svg.axis()
.scale(y)
.orient("left")
.ticks(5)

// Get the data
d3.csv("data.csv", function(error, data) {
data. forEach(function(d) {
d.date = parseDate(d.date);
d.close = +d.close;

1);

// Scale the range of the data
x.domain(d3.extent(data, function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.close; })]);

// Add the filled area

svg.append("path")
.datum(data)
.attr("class", "area"
.attr("d", area);

// Draw the x Grid lines
svg.append("g")
.attr("class", "grid")
.attr("transform", "translate(®@," + height + ")")
.call(make_x_axis()
.tickSize(-height, 0, 0)
.tickFormat("")

// Draw the y Grid lines
svg.append("g")
.attr("class", "grid")
.call(make_y_axis()
.tickSize(-width, 0, 0)
.tickFormat("")

// Add the valueline path.

www. dbooks. or g

https://www.dbooks.org/

Appendices 509

svg.append("path")
.attr("d", valueline(data));

// Add the X Axis

svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(Q," + height + ")")
.call(xAxis);

// Add the Y Axis

svg.append("g")
.attr("class", "y axis")
.call(yAxis);

// Add the text label for the X axis
svg.append("text")
.attr("transform",
"translate(" + (width/2) + " ," +
(height+margin.bottom) + ")")
.style("text-anchor", "middle")
_text("Date");

// Add the white background to the y axis label for legibility
svg.append("text")
.attr("transform", "rotate(-90)")

Lattr("y", 6)
.attr("x", margin.top - (height / 2))
.attr("dy", ".7iem")

.style("text-anchor", "end")
.attr("class", "shadow")
.text("Price ($)");

// Add the text label for the Y axis
svg.append("text")
.attr("transform", "rotate(-90)")

Lattr("y", 6)
.attr("x", margin.top - (height / 2))
.attr("dy", ".7lem")

.style("text-anchor", "end")
.text("Price ($)");

// Add the title

svg.append("text")
Lattr("x", (width / 2))
.attr("y", © - (margin.top / 2))
.attr("text-anchor", "middle")

Appendices 510

.style("font-size", "16px")
.style("text-decoration", "underline")
.text("Price vs Date Graph");

});

</script>
</body>

www. dbooks. or g

https://www.dbooks.org/

Appendices 511

Graph with Area Gradient

<!DOCTYPE html>
<meta charset="utf-8">
<style>

body { font: 12px Arial;}
.axis path,
.axis line {
fill: none;
stroke: grey;
stroke-width: 1;
shape-rendering: crispEdges;
}
.area { /* changed from line to area */
fill: url(*area-gradient); /* url reference fill instead of stroke */
stroke-width: Opx; /* removed stroke reference and any line*/

</style>

<body>

<script type="text/javascript" src="d3/d3.v3.js"></script>
<script>

// Set the dimensions of the canvas / graph

var margin = {top: 30, right: 20, bottom: 30, left: 50},
width = 600 - margin.left - margin.right,
height = 270 - margin.top - margin.bottom;

// Parse the date / time

var parseDate = d3.time.format("%d-%b-%y").parse;

// Set the ranges

var x = d3.time.scale().range([0, width]);

var y = d3.scale.linear().range([height, 0]);

// Define the axes

var xAxis = d3.svg.axis().scale(x)
.orient("bottom").ticks(5);

var yAxis = d3.svg.axis().scale(y)
.orient("left").ticks(5);

// Define the area (remove the line definition)

var area = d3.svg.area()
.x(function(d) { return x(d.date); })
.y@(height)
.y1(function(d) { return y(d.close); });

Appendices

// Adds the svg canvas
var svg = d3.select("body")
.append("svg")

.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

.append("g")
.attr("transform",

"translate(" + margin.left + "," + margin.top + ")

)i
// Get the data

"

d3.tsv("data/data.tsv", function(error, data) {
data. forEach(function(d) {

d.date = parseDate(d.date);

d.close = +d.close;

});

// Scale the range of the data

x.domain(d3.extent(data, function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.close; })]);

// Set the threshold

svg.append("linearGradient")

.attr("id", "area-gradient") // change from line to area

.attr("gradientUnits", "userSpaceOnUse")
.attr("x1", 0).attr("y1", y(@))
.attr("x2", 0).attr("y2", y(1000))

.selectAll("stop")
.data([

{offset: "0%", color: "red"},

{offset: "30%",
{offset: "45%",
{offset: "55%",
{offset: "60%",

color:
color:
color:

color:

"I'ed"},
"black"},
"black"},

"lawngreen"},

{offset: "100%", color: "lawngreen"}

1)
.enter().append("stop")

.attr("offset", function(d) { return d.offset; })
.attr("stop-color", function(d) { return d.color; });
// Add the filled area and remove the value line block

svg.append("path")
.datum(data)

.attr("class", "area"

.attr("d", area);
// Add the X Axis

svg.append("g")

.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")

.call(xAxis);

512

www. dbooks. or g

https://www.dbooks.org/

Appendices 513

// Add the Y Axis

svg.append("g")
.attr("class", "y axis")
.call(yAxis);

});

</script>
</body>

Appendices

Bar Chart

<!DOCTYPE html>
<meta charset="utf-8">

<head>
<style>

.axis {

font: 10px sans-serif;

.axis path,

.axis line {
fill: none;
stroke: #000;
shape-rendering: crispEdges;

</style>
</head>
<body>
<script src="http://d3js.org/d3.v3.min. js"></script>
<script>
var margin = {top: 20, right: 20, bottom: 70, left: 40},
width = 600 - margin.left - margin.right,

height = 300 - margin.top - margin.bottom;

// Parse the date / time
var parseDate = d3.time.format("%Y-%m").parse;

var x = d3.scale.ordinal().rangeRoundBands([@, width], .05);

var y = d3.scale.linear().range([height, 0]);
var xAxis = d3.svg.axis()

.scale(x)

.orient("bottom")

.tickFormat(d3.time. format("%Y-%m"));

var yAxis = d3.svg.axis()

514

www. dbooks. or g

https://www.dbooks.org/

Appendices 515

.scale(y)
.orient("left")
.ticks(10);

var svg = d3.select("body").append("svg")
.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform",

"translate(" + margin.left + "," + margin.top + ")");

d3.csv("bar-data.csv", function(error, data) {

data. forEach(function(d) {
d.date = parseDate(d.date);

d.value = +d.value;

1);

x.domain(data.map(function(d) { return d.date; }));
y.domain([0, d3.max(data, function(d) { return d.value; })]);

svg.append("g")
.attr("class", "x axis"
.attr("transform", "translate(@," + height + ")")
.call(xAxis)
.selectAll("text")
.style("text-anchor", "end")
.attr("dx", "-.8em")
.attr("dy", "-.55em")
.attr("transform", "rotate(-90)");

svg.append("g")

.attr("class", "y axis")
.call(yAxis)

.append("text")
.attr("transform", "rotate(-90)")
attr("'y", 6)
.attr("dy", ".T7ilem")
.style("text-anchor", "end")
.text("Value ($)");

svg.selectAll("bar")
.data(data)
.enter () .append("rect")
.style("fill", "steelblue")
.attr("x", function(d) { return x(d.date); })

Appendices 516

.attr("width", x.rangeBand())

.attr("y", function(d) { return y(d.value); })

.attr("height", function(d) { return height - y(d.value); });
1)

</script>

</body>

www. dbooks. or g

https://www.dbooks.org/

Appendices 517

Linking Objects

<!DOCTYPE html>
<meta charset="utf-8">

<body>

<I-- load the d3.js library -->
<script src="http://d3js.org/d3.v3.min. js"></script>

<script>

var width = 449;
var height = 249;

var word = "gongoozler";

var holder = d3.select("body")
.append("svg")
.attr("width", width)
.attr("height", height);

// draw a rectangle

holder .append("a"
.attr("xlink:href", "http://en.wikipedia.org/wiki/"+word)
.append("rect")
.attr("x", 100)
Lattr('y", 50)
.attr("height", 100)
.attr("width", 200)
.style("fill", "lightgreen")
.attr("rx", 10)
.attr("ry", 10);

// draw text on the screen
holder.append("text")
.attr("x", 200)
.attr("y", 100)
.style("fill", "black")
.style("font-size", "20px")
.attr("dy", ".35em")
.attr("text-anchor", "middle")
.style("pointer-events", "none"
.text(word);

</script>

Appendices 518

</body>

A live version of this code can be found online on bl.ocks.org®*” and GitHub?®*®.

**"http://bl.ocks.org/d3noob/8150631
*%*https://gist.github.com/d3noob/8150631

www. dbooks. or g

http://bl.ocks.org/d3noob/8150631
https://gist.github.com/d3noob/8150631
http://bl.ocks.org/d3noob/8150631
https://gist.github.com/d3noob/8150631
https://www.dbooks.org/

Appendices 519

PHP with MySQL Access

<?php
$username = "homedbuser";
$password = "homedbuser";

$host = "localhost";
$database="homedb" ;

$server = mysql_connect($host, $username, $password);
$connection = mysqgl_select_db($database, $server);
$myquery = "

SELECT “date”, “close™ FROM “data2

",
!

$query = mysqgl_query($myquery);

if (! $myquery) {
echo mysql_error();
die;

$data = array();

for ($x = 0; $x < mysqgl_num_rows($query); $x++) {
$data[] = mysqgl_fetch_assoc($query);

echo json_encode($data);

mysqgl_close($server);
2>

Appendices

Simple Sankey Graph

<IDOCTYPE html>

<meta charset="utf-8">
<title>SANKEY Experiment</title>
<style>

.node rect {
Cursor: move;
fill-opacity: .9;
shape-rendering: crispEdges;
}
.node text {
pointer-events: none;
text-shadow: O 1px 0 #fff;
}
.link {
fill: none;
stroke: #0Q00;
stroke-opacity: .2;
}
.link:hover {
stroke-opacity: .5;

</style>

<body>

<p id="chart">

<script type="text/javascript" src="d3/d3.v3.js"></script>
<script src="js/sankey. js"></script>

<script>

var units = "Widgets";
var margin = {top: 10, right: 10, bottom: 10, left: 10},
width = 700 - margin.left - margin.right,
height = 300 - margin.top - margin.bottom;
var formatNumber = d3.format(",.0f"), // zero decimal places

non

format = function(d) { return formatNumber(d) + + units; },
color = d3.scale.category20();

// append the svg canvas to the page

var svg = d3.select("#chart").append("svg")
.attr("width", width + margin.left + margin.right)

.attr("height", height + margin.top + margin.bottom)

520

www. dbooks. or g

https://www.dbooks.org/

Appendices

.append("g")
.attr("transform",
"translate(" + margin.left + "," + margin.top + ")");
// Set the sankey diagram properties
var sankey = d3.sankey()
.nodeWidth(36)
.nodePadding(40)
.size([width, height]);
var path = sankey.link();
// load the data
d3. json("data/sankey-formatted. json", function(error, graph) {
sankey
.nodes(graph.nodes)
.links(graph.links)
.layout(32);
// add in the links
var link = svg.append("g").selectAll(".link")
.data(graph.links)
.enter().append("path")
.attr("class", "link")
.attr("d", path)

.style("stroke-width", function(d) { return Math.max(1, d.dy); })

.sort(function(a, b) { return b.dy - a.dy; });
// add the 1link titles
link.append("title")
.text(function(d) {
return d.source.name + " 0O " +
d.target.name + "\n" + format(d.value); });
// add in the nodes
var node = svg.append("g").selectAll(".node")
.data(graph.nodes)
.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) ({
return "translate(" + d.x + "," + d.y + ")"; })
.call(d3.behavior.drag()
.origin(function(d) { return d; })
.on("dragstart", function() {
this.parentNode.appendChild(this); })
.on("drag", dragmove));
// add the rectangles for the nodes
node.append("rect")
.attr("height", function(d) { return d.dy; })
.attr("width", sankey.nodeWidth())
.style("fill", function(d) {

return d.color = color(d.name.replace(/ .*/, "")); })

521

Appendices 522

.style("stroke", function(d) {
return d3.rgb(d.color).darker(2); })
.append("title")
.text(function(d) {
return d.name + "\n" + format(d.value); });
// add in the title for the nodes
node.append("text")
.attr("x", -6)
.attr("y", function(d) { return d.dy / 2; })
.attr("dy", ".35em")
.attr("text-anchor", "end")
.attr("transform", null)
.text(function(d) { return d.name; })
.filter(function(d) { return d.x < width / 2; })
.attr("x", 6 + sankey.nodeWidth())
.attr("text-anchor", "start");
// the function for moving the nodes
function dragmove(d) {
d3.select(this).attr("transform",
"translate(" + (
d.x = Math.max(©, Math.min(width - d.dx, d3.event.x))

)
+ ll,ll +(

d.y = Math.max(@, Math.min(height - d.dy, d3.event.y))
)+)

sankey.relayout();
link.attr("d", path);
}
1)

</script>
</body>
</html>

www. dbooks. or g

https://www.dbooks.org/

Appendices 523

Simple Tree Diagram

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Collapsible Tree Example</title>
<style>
.node circle {
fill: #fff;
stroke: steelblue;
stroke-width: 3px;
.node text { font: 12px sans-serif; }
.link {
fill: none;
stroke: #ccc;
stroke-width: 2px;
</style>
</head>

<body>

<I-- load the d3.js library -->
<script src="http://d3js.org/d3.v3.min. js"></script>

{script>

var treeData = |

{
"name": "Top Level",
"parent": "null",
"children": [
{
"name": "Level 2: A",
"parent": "Top Level",

"children": [

Appendices
{
"name": "Son of A",
"parent": "Level 2: A"
3
{
"name": "Daughter of A",
"parent": "Level 2: A"
}
]
4
{
"name": "Level 2: B",
"parent": "Top Level™
}
]
}

1;

/) RRIRRIIRRKKRKK Generate the tree diagram
var margin = {top: 20, right: 120, bottom: 20, left: 120},
width = 960 - margin.right - margin.left,
height = 500 - margin.top - margin.bottom;

var i = O;

var tree = d3.layout.tree()
.size([height, width]);

var diagonal = d3.svg.diagonal()

.projection(function(d) { return [d.y, d.x]; });

var svg = d3.select("body").append("svg")
.attr("width", width + margin.right + margin.left)
.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform", "translate(" + margin.left +

root = treeData[0Q];

update(root);

function update(source) {

// Compute the new tree layout.

var nodes = tree.nodes(root).reverse(),

links = tree.links(nodes);

oK oK oK oK oK oK oK oK oK oK oK oK K oK K Kk Kk

+ margin.top + ")");

524

www. dbooks. or g

https://www.dbooks.org/

Appendices 525

// Normalize for fixed-depth.
nodes. forEach(function(d) { d.y = d.depth * 180; });

// Declare the nodes..
var node = svg.selectAll("g.node")
.data(nodes, function(d) { return d.id || (d.id = ++i); });

// Enter the nodes.
var nodeEnter = node.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) {
return "translate(" + d.y + "," + d.x + ")"; });

nodeEnter .append("circle")
Lattr('r", 10)
style("fill", "#fff");

nodeEnter .append("text")
.attr("x", function(d) {
return d.children || d._children ? -13 : 13; })

.attr("dy", ".35em")
.attr("text-anchor", function(d) {
return d.children || d._children ? "end" : "start"; })

.text(function(d) { return d.name; })
.style("fill-opacity", 1);

// Declare the links..
var link = svg.selectAll("path.link")
.data(links, function(d) { return d.target.id; });

// Enter the links.

link.enter().insert("path", "g")
.attr("class", "link")
.attr("d", diagonal);

</script>

</body>
</html>

Appendices 526

Interactive Tree Diagram

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">

<title>Tree Example</title>
<style>
.node {

cursor: pointer;

.node circle {
fill: #fff;
stroke: steelblue;
stroke-width: 3px;

.node text {
font: 12px sans-serif;

.link {
fill: none;
stroke: #ccc;
stroke-width: 2px;
</style>
</head>

<body>

<!-- load the d3.js library -->
<script src="http://d3js.org/d3.v3.min. js"></script>

<script>
var treeData = |

{

"name": "Top Level",

www. dbooks. or g

https://www.dbooks.org/

Appendices

"parent": "null",

"children": [

{
"name": "Level 2: A",
"parent": "Top Level",
"children": [
{
"name": "Son of A",
"parent": "Level 2: A"
3,
{
"name": "Daughter of A",
"parent": "Level 2: A"
}
]
4,
{
"name": "Level 2: B",
"parent": "Top Level™
}
]
}
1;
/) FFEKIKKFKKFNRK Generate the tree diagram A A KK KK KKK KKK

var margin = {top: 20, right: 120, bottom: 20, left: 120},
width = 960 - margin.right - margin.left,
height = 500 - margin.top - margin.bottom;

var i = 0,
duration = 750,

root;

var tree = d3.layout.tree()
.size([height, width]);

var diagonal = d3.svg.diagonal()
.projection(function(d) { return [d.y, d.x]; });

var svg = d3.select("body").append("svg")
.attr("width", width + margin.right + margin.left)
.attr("height", height + margin.top + margin.bottom)
.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")");

527

Appendices

root = treeData[0Q];
root.x@ = height / 2;
root.yQ = 0;

update(root);

d3.select(self. frameElement).style("height", "500px");

function update(source) {

// Compute the new tree layout.
var nodes = tree.nodes(root).reverse(),
links = tree.links(nodes);

// Normalize for fixed-depth.
nodes. forEach(function(d) { d.y = d.depth * 180; });

// Update the nodes..
var node = svg.selectAll("g.node")
.data(nodes, function(d) { return d.id || (d.id

// Enter any new nodes at the parent's previous posi

var nodeEnter = node.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) ({
return "translate(" + source.y@ + ",
.on("click", click);

nodeEnter .append("circle")
.attr("r", 1e-6)
.style("fill", function(d) {

= ++i); 1);

tion.

" + source.x@ + ")": })

return d._children ? "lightsteelblue" : "#fff"; });

nodeEnter .append("text")
.attr("x", function(d) {

return d.children || d._children ? -13 : 13; })

.attr("dy", ".35em")
.attr("text-anchor", function(d) {

return d.children || d._children ? "end" : "start"; })

.text(function(d) { return d.name; })
.style("fill-opacity", 1e-6);

// Transition nodes to their new position.
var nodeUpdate = node.transition()
.duration(duration)
.attr("transform", function(d) {

528

www. dbooks. or g

https://www.dbooks.org/

Appendices 529

return "translate(" + d.y + "," +d.x + ")"; });

nodeUpdate.select("circle")
Lattr('r", 10)
.style("fill", function(d) {
return d._children ? "lightsteelblue" : "#fff"; });

nodeUpdate.select("text")
.style("fill-opacity", 1);

// Transition exiting nodes to the parent's new position.
var nodeExit = node.exit().transition()
.duration(duration)
.attr("transform", function(d) ({

return "translate(" + source.y + + source.x + ")"; })

.remove();

nodeExit.select("circle")
.attr("r", 1e-6);

nodeExit.select("text")

.style("fill-opacity", 1e-6);

// Update the links..
var link = svg.selectAll("path.link")
.data(links, function(d) { return d.target.id; });

// Enter any new links at the parent's previous position.
link.enter().insert("path", "g")
.attr("class", "link")
.attr("d", function(d) {
var o = {X: source.x@, y: source.yQ};
return diagonal({source: o, target: o});

});

// Transition links to their new position.
link.transition()

.duration(duration)

.attr("d", diagonal);

// Transition exiting nodes to the parent's new position.
link.exit().transition()
.duration(duration)
.attr("d", function(d) {
var o = {x: source.x, y: source.y};

return diagonal({source: o, target: o});

Appendices 530

1))

.remove();

// Stash the old positions for transition.
nodes. forEach(function(d) {

d.x0 = d.x;

d.yo = d.y;
1)

// Toggle children on click.
function click(d) {
if (d.children) {
d._children = d.children;
d.children = null;
} else {
d.children = d._children;
d._children = null;

}
update(d);

</script>

</body>
</html>

www. dbooks. or g

https://www.dbooks.org/

Appendices 531

Force Layout Diagram

<IDOCTYPE html>

<meta charset="utf-8">

<script type="text/javascript" src="d3/d3.v3.js"></script>
<style>

path.link {
fill: none;
stroke: #666;
stroke-width: 1.5px;

path.link.twofive {
opacity: 0.25;

path.link.fivezero {
opacity: 0.50;

path.link.sevenfive {
opacity: 0.75;

}

path.link.onezerozero {
opacity: 1.0;

}

circle {

fill: #ccc;
stroke: #fff;
stroke-width: 1.5px;

text {
fill: #000;
font: 10px sans-serif;
pointer-events: none;

Appendices

</style>
<body>
<script>

// get the data

d3.csv("data/force.csv", function(error, links) {

var nodes = {};

// Compute the distinct nodes from the links.

links. forEach(function(link) {

link.source = nodes[link.source]
(nodes[link.source] = {name: link.source});
link.target = nodes[link.target]
(nodes[link.target] = {name: link.target});

link.value = +link.value;

});

var width = 960,
height = 500;

var force = d3.layout. force()
.nodes(d3.values(nodes))
.links(links)
.size([width, height])
.linkDistance(60)
.charge(-300)
.on("tick", tick)
.start();

// Set the range

var v = d3.scale.linear().range([0, 100]);

// Scale the range of the data
v.domain([@, d3.max(links, function(d) { return d.value; })]);

// asign a type per value to encode opacity
links. forEach(function(link) {
if (v(link.value) <= 25) {
link.type = "twofive";
} else if (v(link.value) <= 50 && v(link.value) > 25) {

} else if (v(link.value) <= 75 & v(link.value) > 50) {

} else if (v(link.value) <= 100 && v(link.value) > 75) {

link.type = "fivezero";
link.type = "sevenfive";
link.type = "onezerozero";

532

www. dbooks. or g

https://www.dbooks.org/

Appendices 533

});

var svg = d3.select("body").append("svg")
.attr("width", width)
.attr("height”, height);

// build the arrow.
svg.append("svg:defs").selectAll("marker")
.data(["end"])
.enter().append("svg:marker")
.attr("id", String)
.attr("viewBox", "@ -5 10 10")
.attr("refX", 15)
.attr("refy", -1.5)
.attr("markerwWidth", 6)
.attr("markerHeight", 6)
.attr("orient", "auto")
.append("svg:path")
.attr("d", "Mo,-5L10,0L0,5");

// add the links and the arrows
var path = svg.append("svg:g").selectAll("path")
.data(force.links())
.enter().append("svg:path")
.attr("class", function(d) { return "link " + d.type; })

.attr("marker-end", "url(#*end)");

// define the nodes

var node = svg.selectAll(".node")
.data(force.nodes())

.enter().append("g")

.attr("class", "node")
.on("click", click)
.on("dblelick", dblclick)
.call(force.drag);

// add the nodes
node.append("circle")
.attr("r", 5);

// add the text
node.append("text")
.attr("x", 12)
.attr("dy", ".35em")
.text(function(d) { return d.name; });

Appendices 534

// add the curvy lines
function tick() {
path.attr("d", function(d) {
var dx

d.target.x - d.source.x,

dy = d.target.y - d.source.y,

dr = Math.sqrt(dx * dx + dy * dy);
return "M" +

d.source.x + "," +

d.source.y + "A" +

dr + n , n + dr + n @ @,1 n +
d.target.x + "," +
d.target.y;

1)

node

.attr("transform", function(d) {

return "translate(" + d.x + "," +d.y + ")"; });

// action to take on mouse click
function click() {
d3.select(this).select("text").transition()
.duration(750)
.attr("x", 22)
.style("fill", "steelblue")
.style("stroke", "lightsteelblue")
.style("stroke-width", ".5px")
.style("font", "20px sans-serif");
d3.select(this).select("circle").transition()
.duration(750)
attr('r", 16)
.style("fill", "lightsteelblue");

// action to take on mouse double click
function dblclick() {
d3.select(this).select("circle").transition()
.duration(750)
.attr("r", 6)
.style("fill", "#ccc");
d3.select(this).select("text").transition()
.duration(750)
.attr("x", 12)
.style("stroke", "none"
_style("fill", "black")

www. dbooks. or g

https://www.dbooks.org/

Appendices 535

.style("stroke", "none"

.style("font", "10px sans-serif");

});

</script>
</body>
</html>

Appendices 536

Bullet Chart

<!DOCTYPE html>
<meta charset="utf-8">
<style>

body {
font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;
margin: auto;
padding-top: 40px;
position: relative;
width: 800px;

button {
position: absolute;
right: 40px;
top: 10px;

.bullet { font: 10px sans-serif; }

.bullet .marker { stroke: #0Q00; stroke-width: 2px; }
.bullet .tick line { stroke: #666; stroke-width: .5px; }
.bullet .range.s@ { fill: #eee; }

.bullet .range.si { fill: #ddd; }

.bullet .range.s2 { fill: #ccc; }

.bullet .measure.s@ { fill: steelblue; }

.bullet .title { font-size: 14px; font-weight: bold; }
.bullet .subtitle { fill: #999; }

</style>

<button>Update</button>

<script type="text/javascript" src="d3/d3.v3.js"></script>
<script src="js/bullet. js"></script>

<script>

www. dbooks. or g

https://www.dbooks.org/

Appendices

var margin = {top: 5, right: 40, bottom: 20, left:
width = 800 - margin.left - margin.right,
height = 50 - margin.top - margin.bottom;

var chart = d3.bullet()
.width(width)
.height(height);

d3. json("data/cpuil. json", function(error, data) {
var svg = d3.select("body").selectAll("svg")
.data(data)
.enter().append("svg")
.attr("class", "bullet")

.attr("width", width + margin.left + margin.right)
.attr("height", height + margin.top + margin.bottom)

.append("g")

.attr("transform", "translate(" + margin.left + "," + margin.top + ")")

.call(chart);

var title = svg.append("g")
.style("text-anchor", "end")

.attr("transform", "translate(-6," + height / 2 + ")");

title.append("text")
.attr("class", "title")
.text(function(d) { return d.title; });

title.append("text")
.attr("class", "subtitle")
.attr("dy", "lem")
.text(function(d) { return d.subtitle; });

d3.selectAll("button").on("click", function() {

120},

svg.datum(randomize).call(chart.duration(1000));

});
});

function randomize(d) {
if (!d.randomizer) d.randomizer = randomizer(d);
d.markers = d.markers.map(d.randomizer);
d.measures = d.measures.map(d.randomizer);
return d;

function randomizer(d) {
var k = d3.max(d.ranges) * .2;

537

Appendices 538

return function(d) {
return Math.max(@, d + k * (Math.random() - .5));
};

</script>
</body>

www. dbooks. or g

https://www.dbooks.org/

Appendices 539

Map with zoom / pan and cities

<!DOCTYPE html>
<meta charset="utf-8">
<style>

path {
stroke: white;
stroke-width: ©.25px;
fill: grey;

</style>

<body>

<script type="text/javascript" src="d3/d3.v3.js"></script>
<script src="js/topojson.v@.min. js"></script>

<script>

var width = 960,
height = 500;

var projection = d3.geo.mercator()
.center([0, 5])
.scale(900)
.rotate([-180,0]);

var svg = d3.select("body").append("svg")
.attr("width", width)
.attr("height", height);

var path = d3.geo.path()
.projection(projection);

var g = svg.append("g");

// load and display the World
d3. json("json/world-110m2. json", function(error, topology) {
g.selectAll("path")
.data(topojson.object(topology, topology.objects.countries)
.geometries)
.enter()
.append("path")
.attr("d", path)

Appendices 540

// load and display the cities
d3.csv("data/cities.csv", function(error, data) {
g.selectAll("circle")

.data(data)

.enter()

.append("circle")

.attr("cx", function(d) {

return projection([d.lon, d.lat])[Q];

’

)
.attr("cy", function(d) {
return projection([d.lon, d.lat])[1];
)
.attr("r", 5)
style("fill", "red");
1)

});

// zoom and pan
var zoom = d3.behavior.zoom()
.on("zoom", function() {
g.attr("transform","translate("+
d3.event.translate. join(",")+")scale("+d3.event.scale+")");
g.selectAll("path")
.attr("d", path.projection(projection));
g.selectAll("circle")
.attr("d", path.projection(projection));
1)

svg.call(zoom)

</script>
</body>
</html>

www. dbooks. or g

https://www.dbooks.org/

	Table of Contents
	Acknowledgements
	Mike
	Partners, Supporters and Contributors.
	Proof Reading
	The d3.js Community
	Cover art
	Leanpub
	Make sure you get the most up to date copy of D3 Tips and Tricks

	What is d3.js?
	Introduction
	What do you need to get started?
	HTML
	JavaScript
	Cascading Style Sheets (CSS)
	Web Servers
	PHP
	Other Useful Stuff
	Text Editor
	Getting D3
	Where to get information on d3.js
	d3js.org
	Google Groups
	Stack Overflow
	Github
	bl.ocks.org
	Twitter
	Books

	Starting with a basic graph
	HTML
	CSS
	D3 JavaScript
	Setting up the margins and the graph area.
	Getting the Data
	Formatting the Date / Time.
	Setting Scales Domains and Ranges
	Setting up the Axes
	Adding data to the line function
	Adding the SVG Canvas.
	Actually Drawing Something!

	Wrap Up

	Things you can do with the basic graph
	Adding Axis Labels
	How to add a title to your graph
	Smoothing out graph lines
	Adding grid lines to a graph
	The grid line CSS
	Define the grid line functions
	Draw the lines

	Make a dashed line
	Filling an area under the graph
	CSS for an area fill
	Define the area function
	Draw the area
	Filling an area above the line

	Adding a drop shadow to allow text to stand out on graphics.
	CSS for white shadowy background
	Drawing the white shadowy background.

	Adding more than one line to a graph
	Labelling multiple lines on a graph
	Multiple axes for a graph
	How to rotate the text labels for the x Axis.
	Format a date / time axis with specified values
	Update data dynamically - On Click
	Adding a Button
	Updating the data
	Changes to the d3.js code layout
	What's happening in the code?

	Update data dynamically – Automatically

	Elements, Attributes and Styles
	The Framework
	Elements
	Circle
	Ellipse
	Rectangle
	Line
	Polyline
	Polygon
	Path
	Clipped Path (AKA clipPath)
	Text
	Anchor at the bottom, middle of the text:
	Anchor at the bottom, right of the text:
	Anchor at the middle, left of the text:
	Anchor in the middle, centre of the text:
	Anchor in the middle, right of the text:
	Anchor at the top, left of the text:
	Anchor at the top, middle of the text:
	Anchor at the top, right of the text:

	Attributes
	x, y
	x1, x2, y1, y2
	points
	cx, cy
	r
	rx, ry
	transform (translate(x,y), scale(k), rotate(a))
	transform (translate(x,y))
	transform (scale(k))
	transform (rotate(a))

	width, height
	text-anchor
	dx, dy
	textLength
	lengthAdjust

	Styles
	fill
	stroke
	opacity
	fill-opacity
	stroke-opacity
	stroke-width
	stroke-dasharray
	stroke-linecap
	stroke-linejoin
	writing-mode
	glyph-orientation-vertical
	Using styles in Cascading Style Sheets

	Assorted Tips and Tricks
	Change a line chart into a scatter plot
	Adding tooltips.
	Transitions
	Events
	Get tipping
	on.mouseover
	on.mouseout
	Including an HTML link in a tool tip
	Moar Links!

	What are the predefined, named colours?
	Selecting / filtering a subset of objects
	Select items with an IF statement.
	Applying a colour gradient to a line based on value.
	Applying a colour gradient to an area fill.
	Show / hide an element by clicking on another element
	The code

	Export an image from a d3.js page as a SVG or bitmap
	Bitmaps
	Vector Graphics (Specifically SVG)
	Let's get exporting!
	Copying the image off the web page
	Open the SVG Image and Edit
	Saving as a bitmap

	Using HTML inputs with d3.js
	What is an HTML input?
	Using a range input with d3.js
	The code
	The explanation

	Using more than one input
	The code
	The explanation

	Rotate text with an input
	The explanation

	Use a number input with d3.js
	Change more than one element with an input
	The code
	The explanation

	Add an HTML table to your graph
	HTML Tables
	First the CSS
	Now the d3.js code
	A small but cunning change…
	Explaining the d3.js code (reloaded).
	Wrap up

	More table madness: sorting, prettifying and adding columns
	Add another column of information:
	Sorting on a column
	Prettifying (actually just capitalising the header for each column)
	Add borders

	Adding web links to d3.js objects
	It's all about the `a' and the `xlink'
	Adding in the links
	Making the mouse pointer ignore an object

	Understanding JavaScript Object Notation (JSON)
	Using the Yahoo Query Language (YQL) to get data.
	YQL by example

	Using Plunker for development and hosting your D3 creations.

	Bar Charts
	The data
	The code
	The bar chart explained

	Tree Diagrams
	What is a Tree Diagram?
	A simple Tree Diagram explained
	Styling nodes in a tree diagram
	Changing the nodes to different shapes
	Using images as nodes

	Making a vertical tree diagram
	Generating a tree diagram from `flat' data
	Generating a tree diagram from external data
	Generating a tree diagram from a CSV file.
	An interactive tree diagram

	Force Layout Diagrams
	What is a Force Layout Diagram?
	Force directed graph examples.
	Basic force directed graph showing directionality
	Directional Force Layout Diagram (Node Highlighting)
	Directional Force Layout Diagram (varying link opacity)
	Directional Force Layout Diagram (Unique Node Colour)

	Bullet Charts
	Introduction to bullet chart structure
	D3.js code for bullet charts
	Adapting and changing bullet chart components
	Understand your data
	Add as many individual charts as you want.
	Add more ranges and measures
	Updating a bullet chart automatically

	Mapping with d3.js
	Examples
	GeoJSON and TopoJSON
	Starting with a simple map
	center
	scale
	rotate

	Zooming and panning a map
	Displaying points on a map
	Making maps with d3.js and leaflet.js combined
	leaflet.js Overview
	Leaflet map with d3.js objects that scale with the map
	Leaflet map with d3.js elements that are overlaid on a map

	D3.js Examples Explained
	Dynamically retrieve historical stock records via YQL
	Purpose
	The code
	The description

	Linux Processes via Interactive Tree diagram
	Purpose
	The Code
	Description

	Multi-line graph with automatic legend and toggling show / hide lines.
	Purpose
	The Code
	Description
	Nesting the data
	Applying the colours
	Adding the legend
	Making it interactive

	My Favourite tooltip method for a line graph.
	Purpose
	The Code
	Description
	Adding the circle to the graph
	Set the area to capture the mouse movements
	Determining which date will be highlighted
	Move the circle to the appropriate position

	Complex version
	Code / Explanation

	Exploring Event Data by Combination Scatter Plot and Interactive Line Graphs
	Purpose
	The Code
	Wrangling the data
	Sizing Everything Up
	The Scatter Plot
	Date and Time Graphs
	Mouse Movement Information Display
	Labelling

	Difference Chart: Science vs Style.
	Purpose
	The Code
	Description
	Nesting the data
	Wrangle the data
	Cheating with the domain
	data vs datum
	Setting up the clipPaths
	Clipping and adding the areas
	Draw the lines and the axes

	Adding a bit more to our difference chart.
	Add a Y axis label
	Add a title
	Adding the legend
	Link the areas
	The final result

	Crossfilter, dc.js and d3.js for Data Discovery
	Introduction to Crossfilter
	Map-reduce
	What can crossfilter do?

	Introduction to dc.js
	Bar Chart
	Pie Chart
	Row Chart
	Line Chart
	Bubble Chart
	Geo Choropleth Chart
	Data Table

	Bare bones structure for dc.js and crossfilter page
	Add a Bar Chart.
	Position the bar chart
	Assign the bar chart type
	Dimension and group the bar chart data
	Configure the bar chart parameters
	Just one more thing…
	Just yet another thing…
	Position the chart
	Assign type
	Dimension and Group
	Configure chart parameters

	Add a Line Chart.
	Position the line chart
	Assign the line chart type
	Dimension and group the line chart data
	Configure the line chart parameters

	Adding tooltips to a line chart
	Add a Row Chart.
	Position the row chart
	Assign the row chart type
	Dimension and group the row chart data
	Configure the row chart parameters

	Add a Pie Chart.
	Position the pie chart
	Assign the pie chart type
	Dimension and group the pie chart data
	Configure the pie chart parameters

	Resetting filters
	Making the reset label a little bit better behaved.

	Reset all the charts

	Using Bootstrap with d3.js
	What is Bootstrap?
	Layout grid
	Interface components

	Incorporating Bootstrap into your html code.
	Arranging more than one graph on a web page.
	First make a page with two graphs
	Arrange the graphs with the same anchor
	Arrange the graphs with separate anchors

	How does Bootstrap's grid layout work
	Arrange more than one d3.js graph with Bootstrap
	A more complicated Bootstrap layout example

	Working with GitHub, Gist and bl.ocks.org
	General stuff about bl.ocks.org
	Installing the plug-in for bl.ocks.org for easy block viewing
	Loading a thumbnail into Gist for bl.ocks.org d3 graphs
	Setting the scene:
	Enough of the scene setting. Let's git going :-).
	Wrap up.

	Appendices
	Simple Line Graph
	Graph with Many Features
	Graph with Area Gradient
	Bar Chart
	Linking Objects
	PHP with MySQL Access
	Simple Sankey Graph
	Simple Tree Diagram
	Interactive Tree Diagram
	Force Layout Diagram
	Bullet Chart
	Map with zoom / pan and cities

