

Social Networks
with Rich Edge

Semantics

Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series

PUBLISHED TITLES

SERIES EDITOR
Vipin Kumar

University of Minnesota
Department of Computer Science and Engineering

Minneapolis, Minnesota, U.S.A.

AIMS AND SCOPE
This series aims to capture new developments and applications in data mining and knowledge
discovery, while summarizing the computational tools and techniques useful in data analysis. This
series encourages the integration of mathematical, statistical, and computational methods and
techniques through the publication of a broad range of textbooks, reference works, and hand-
books. The inclusion of concrete examples and applications is highly encouraged. The scope of the
series includes, but is not limited to, titles in the areas of data mining and knowledge discovery
methods and applications, modeling, algorithms, theory and foundations, data and knowledge
visualization, data mining systems and tools, and privacy and security issues.

ACCELERATING DISCOVERY: MINING UNSTRUCTURED INFORMATION FOR
HYPOTHESIS GENERATION
Scott Spangler

ADVANCES IN MACHINE LEARNING AND DATA MINING FOR ASTRONOMY
Michael J. Way, Jeffrey D. Scargle, Kamal M. Ali, and Ashok N. Srivastava

BIOLOGICAL DATA MINING
Jake Y. Chen and Stefano Lonardi

COMPUTATIONAL BUSINESS ANALYTICS
Subrata Das

COMPUTATIONAL INTELLIGENT DATA ANALYSIS FOR SUSTAINABLE DEVELOPMENT
Ting Yu, Nitesh V. Chawla, and Simeon Simoff

COMPUTATIONAL METHODS OF FEATURE SELECTION
Huan Liu and Hiroshi Motoda

CONSTRAINED CLUSTERING: ADVANCES IN ALGORITHMS, THEORY, AND
APPLICATIONS
Sugato Basu, Ian Davidson, and Kiri L. Wagstaff

CONTRAST DATA MINING: CONCEPTS, ALGORITHMS, AND APPLICATIONS
Guozhu Dong and James Bailey

DATA CLASSIFICATION: ALGORITHMS AND APPLICATIONS
Charu C. Aggarawal

DATA CLUSTERING: ALGORITHMS AND APPLICATIONS
Charu C. Aggarawal and Chandan K. Reddy

DATA CLUSTERING IN C++: AN OBJECT-ORIENTED APPROACH
Guojun Gan

DATA MINING: A TUTORIAL-BASED PRIMER, SECOND EDITION
Richard J. Roiger

DATA MINING FOR DESIGN AND MARKETING
Yukio Ohsawa and Katsutoshi Yada

DATA MINING WITH R: LEARNING WITH CASE STUDIES, SECOND EDITION
Luís Torgo

DATA SCIENCE AND ANALYTICS WITH PYTHON
Jesus Rogel-Salazar

EVENT MINING: ALGORITHMS AND APPLICATIONS
Tao Li

FOUNDATIONS OF PREDICTIVE ANALYTICS
James Wu and Stephen Coggeshall

GEOGRAPHIC DATA MINING AND KNOWLEDGE DISCOVERY, SECOND EDITION
Harvey J. Miller and Jiawei Han

GRAPH-BASED SOCIAL MEDIA ANALYSIS
Ioannis Pitas

HANDBOOK OF EDUCATIONAL DATA MINING
Cristóbal Romero, Sebastian Ventura, Mykola Pechenizkiy, and Ryan S.J.d. Baker

HEALTHCARE DATA ANALYTICS
Chandan K. Reddy and Charu C. Aggarwal

INFORMATION DISCOVERY ON ELECTRONIC HEALTH RECORDS
Vagelis Hristidis

INTELLIGENT TECHNOLOGIES FOR WEB APPLICATIONS
Priti Srinivas Sajja and Rajendra Akerkar

INTRODUCTION TO PRIVACY-PRESERVING DATA PUBLISHING: CONCEPTS AND
TECHNIQUES
Benjamin C. M. Fung, Ke Wang, Ada Wai-Chee Fu, and Philip S. Yu

KNOWLEDGE DISCOVERY FOR COUNTERTERRORISM AND LAW ENFORCEMENT
David Skillicorn

KNOWLEDGE DISCOVERY FROM DATA STREAMS
João Gama

LARGE-SCALE MACHINE LEARNING IN THE EARTH SCIENCES
Ashok N. Srivastava, Ramakrishna Nemani, and Karsten Steinhaeuser

MACHINE LEARNING AND KNOWLEDGE DISCOVERY FOR ENGINEERING SYSTEMS
HEALTH MANAGEMENT
Ashok N. Srivastava and Jiawei Han

MINING SOFTWARE SPECIFICATIONS: METHODOLOGIES AND APPLICATIONS
David Lo, Siau-Cheng Khoo, Jiawei Han, and Chao Liu

MULTIMEDIA DATA MINING: A SYSTEMATIC INTRODUCTION TO CONCEPTS AND
THEORY
Zhongfei Zhang and Ruofei Zhang

MUSIC DATA MINING
Tao Li, Mitsunori Ogihara, and George Tzanetakis

NEXT GENERATION OF DATA MINING
Hillol Kargupta, Jiawei Han, Philip S. Yu, Rajeev Motwani, and Vipin Kumar

RAPIDMINER: DATA MINING USE CASES AND BUSINESS ANALYTICS APPLICATIONS
Markus Hofmann and Ralf Klinkenberg

RELATIONAL DATA CLUSTERING: MODELS, ALGORITHMS, AND APPLICATIONS
Bo Long, Zhongfei Zhang, and Philip S. Yu

SERVICE-ORIENTED DISTRIBUTED KNOWLEDGE DISCOVERY
Domenico Talia and Paolo Trunfio

SOCIAL NETWORKS WITH RICH EDGE SEMANTICS
Quan Zheng and David Skillicorn

SPECTRAL FEATURE SELECTION FOR DATA MINING
Zheng Alan Zhao and Huan Liu

STATISTICAL DATA MINING USING SAS APPLICATIONS, SECOND EDITION
George Fernandez

SUPPORT VECTOR MACHINES: OPTIMIZATION BASED THEORY, ALGORITHMS, AND
EXTENSIONS
Naiyang Deng, Yingjie Tian, and Chunhua Zhang

TEMPORAL DATA MINING
Theophano Mitsa

TEXT MINING: CLASSIFICATION, CLUSTERING, AND APPLICATIONS
Ashok N. Srivastava and Mehran Sahami

TEXT MINING AND VISUALIZATION: CASE STUDIES USING OPEN-SOURCE TOOLS
Markus Hofmann and Andrew Chisholm

THE TOP TEN ALGORITHMS IN DATA MINING
Xindong Wu and Vipin Kumar

UNDERSTANDING COMPLEX DATASETS: DATA MINING WITH MATRIX
DECOMPOSITIONS
David Skillicorn

Social Networks
with Rich Edge

Semantics

Quan Zheng
Queen’s University

Kingston, Ontario, Canada

David Skillicorn
Queen’s University

Kingston, Ontario, Canada

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2017 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20170706

International Standard Book Number-13: 978-1-138-03243-9 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

The Open Access version of this book, available at www.taylorfrancis.com, has been made available
under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.taylorandfrancis.com
http://www.crcpress.com
www.taylorfrancis.com

Contents

Preface xi

List of Figures xiii

List of Tables xvii

Glossary xix

1 Introduction 1
1.1 What is a social network? . 1
1.2 Multiple aspects of relationships 6
1.3 Formally representing social networks 7

2 The core model 9
2.1 Representing networks to understand their structures 9
2.2 Building layered models . 11
2.3 Summary . 16

3 Background 17
3.1 Graph theory background . 17
3.2 Spectral graph theory . 18

3.2.1 The unnormalized graph Laplacian 21
3.2.2 The normalized graph Laplacians 23

3.3 Spectral pipeline . 24
3.4 Spectral approaches to clustering 24

3.4.1 Undirected spectral clustering algorithms 26
3.4.2 Which Laplacian clustering should be used? . . . 27

3.5 Summary . 28

4 Modelling relationships of different types 31
4.1 Typed edge model approach 32
4.2 Typed edge spectral embedding 32
4.3 Applications of typed networks 34
4.4 Summary . 37

vii

viii Contents

5 Modelling asymmetric relationships 41
5.1 Conventional directed spectral graph embedding 41
5.2 Directed edge layered approach 44

5.2.1 Validation of the new directed embedding 46
5.2.2 SVD computation for the directed edge model

approach . 47
5.3 Applications of directed networks 48
5.4 Summary . 67

6 Modelling asymmetric relationships with multiple types 69
6.1 Combining directed and typed embeddings 69
6.2 Layered approach and compositions 70
6.3 Applying directed typed embeddings 72

6.3.1 Florentine families 72
6.3.2 Criminal groups 74

6.4 Summary . 78

7 Modelling relationships that change over time 81
7.1 Temporal networks . 81
7.2 Applications of temporal networks 85

7.2.1 The undirected network over time 85
7.2.2 The directed network over time 89

7.3 Summary . 94

8 Modelling positive and negative relationships 97
8.1 Signed Laplacian . 97
8.2 Unnormalized spectral Laplacians of signed graphs 98

8.2.1 Rayleigh quotients of signed unnormalized
Laplacians . 99

8.2.2 Graph cuts of signed unnormalized Laplacians . . 100
8.3 Normalized spectral Laplacians of signed graphs 102

8.3.1 Rayleigh quotients of signed random-walk
Laplacians . 102

8.3.2 Graph cuts of signed random-walk Laplacians . . 104
8.4 Applications of signed networks 105
8.5 Summary . 118

9 Signed graph-based semi-supervised learning 121
9.1 Approach . 122
9.2 Problems of imbalance in graph data 127
9.3 Summary . 137

10 Combining directed and signed embeddings 139
10.1 Composition of directed and signed layer models 139
10.2 Application to signed directed networks 142

10.2.1 North and West Africa conflict 143

Contents ix

10.3 Extensions to other compositions 152
10.4 Summary . 155

11 Summary 157

Appendices 161

A RatioCut consistency with two versions of each node 163

B NCut consistency with multiple versions of each node 167

C Signed unnormalized clustering 175

D Signed normalized Laplacian Lsns clustering 177

E Signed normalized Laplacian Lbns clustering 181

F Example MATLAB functions 183

Bibliography 199

Index 209

Preface

As humans, we build relationships with one another. A fruitful line of research
in the last 90 years has been to consider the structure that emerges from the aggregate
of these relationships for a group of individuals, their social network. These networks
are social because they are the result of human individual and social properties and
so are quite different in structure from other kinds of networks (computer networks,
electrical distribution networks, and so on).

The payoffs from analyzing social networks come because, although each re-
lationship is formed based on the purely local choice of the individuals concerned,
the resulting structure has properties that are not obvious from the individual rela-
tionships. These properties do not come from nowhere; rather they are consequences
of deep human properties of the way that we, as humans, relate to one another. Thus
social network analysis reveals much about the way that humans in groups arrange
ourselves, mostly unconsciously. Understanding the macro-structure of a social net-
work also provides a context to revisit each individual relationship, and understand
it in a new way.

Much of the technical work on analyzing social networks has modelled the
relationship between a pair of individuals as being of only a single kind. For ex-
ample, Facebook considers all relationship as “friends” while LinkedIn considers
all relationships as “colleagues”. Even in a tribal society, the archetypal social net-
work setting, relationships are of multiple kinds: hierarchical control relationships,
relatives, friends, hunting partners, and so on. In today’s world, we also have rela-
tionships with others of multiple kinds; all of those present in tribal societies, but also
team members at work, telephone acquaintances, fellow enthusiasts about sports or
hobbies, as well as variations of online connections. It is reasonable to consider an
individual as participating in a collection of non-intersecting social networks, one at
work, one in social life, one in family gatherings, but these networks often overlap
— the same person can be both a friend and a colleague. To gather these separate
social networks into a larger one requires a way to represent all of these different
kinds of connections within a single framework.

We have already hinted that we need a way to model relationships of qualita-
tively different kinds (friends, family, colleagues). Relationships also naturally have
an associated intensity; A’s relationship to B may be much stronger or more impor-
tant than A’s relationship to C, and we need to be able to model this. Relationships
can also be asymmetric: the intensity of A’s relationship to B may be different from

xi

xii Preface

the intensity of B’s relationship to A; indeed, A may have a relationship to B, while
B has no relationship to A. Not all relationships are positive. A may be a friend or
ally of B but an enemy of C. We need a way to model relationships of both kinds.
Finally, the existence and intensity of relationships change with time, and a way to
represent the changing structure of each social network is needed.

There has been research work investigating how to add these properties to so-
cial network analysis. The contribution of this book is to show that there is a single
idea, which can be worked out in constructions, that solves all of these problems
in essentially the same way. All of the properties described above are properties of
the edges: edge types can be modelled as a property such as color, intensities as as-
sociated weights, asymmetries by directing the edges, and positivity and negativity
by allowing weights to be both positive and negative. The key idea is that, instead
of trying to model all of these possibilities at once, the nodes of the network are
replicated into versions, each of which is associated with a property, and the original
edges are connected to these versions in ways that capture and preserve their original
semantics. The resulting graph is (notionally) much larger, but its edges are ordinary,
and standard techniques can be used to analyze them. Of course, the analysis must
take account of the multiple versions of the nodes, but this turns out be a win because
the relationships among the versions themselves reveal aspects of the structure.

We show how this works out both mathematically, and with sets of examples
that illustrate, sometimes forcefully, that the social network that represents these
richer properties is very different from a representation in which they are ignored or
conflated.

List of Figures

2.1 Illustration for within-layer connection and between-layer connec-
tion . 13

2.2 The embedding of a simple graph with typed edges 13

3.1 The eigendecomposition of the cloud of points corresponding to
graph nodes . 20

4.1 The embedding of the Florentine families based on personal rela-
tionships . 35

4.2 The embedding of the Florentine families based on financial rela-
tionships . 36

4.3 The embedding of Florentine families ignoring edge types 37
4.4 Embedding of Florentine families with typed edges 38
4.5 Zooming in to the embedded Florentine families with typed edges 39
4.6 Zooming in even further . 40

5.1 A circle graph Laplacian embedding 45
5.2 The difference between symmetric and asymmetric flow 50
5.3 Embeddings of synthetic datasets 51
5.4 Network embeddings of UK university faculties 52
5.5 Network embeddings of Florentine families 54
5.6 Network embeddings of Macaque monkey visuotactile brain . . . 56
5.7 The basic structure of tax avoidance using a shell company 58
5.8 The adjacency matrix of the largest connected component 58
5.9 Network embedding of the Panama Papers 6th component — di-

rected . 59
5.10 Network embedding of the Panama Papers 6th component — undi-

rected . 60
5.11 Network embedding of the Panama Papers 2nd component 61
5.12 Network embedding of the Panama Papers 41st component — di-

rected . 62
5.13 Network embedding of the Panama Papers 41st component —

undirected . 63

xiii

xiv List of Figures

5.14 Network embedding of the Panama Papers 44th component — di-
rected . 64

5.15 Network embedding of the Panama Papers 44th component —
undirected . 65

5.16 Network embeddings of the Panama Papers 10th component, thresh-
old 300 . 66

5.17 Edges between version, 10th component 67

6.1 Added edges between the multiple versions of a single node . . . 70
6.2 Chung directed embedding of the typed Florentine families 72
6.3 Our directed embedding of the typed Florentine families 73
6.4 Zoom-in of the Medici nodes 74
6.5 Our directed embedding of the Chalonero network (untyped edges) 76
6.6 Chung directed embedding of the typed Chalonero network . . . 77
6.7 Our directed embedding of the typed Chalonero network 78
6.8 Our directed embedding of the typed Stupor Mundi network . . . 80

7.1 The general embedding of the Caviar network 86
7.2 Zoom-in the general embedding of the Caviar network 87
7.3 The embedding of the Caviar network with the 11 time periods . . 88
7.4 The embedding of the 5 key participants over time 88
7.5 Growth of the embedded network over time 91
7.6 Average diameter of the undirected network over time 92
7.7 Trajectories — Chung’s embedding 93
7.8 Trajectories — our embedding 93

8.1 Unnormalized signed graph embedding of a toy dataset 100
8.2 Graph cuts of a sample graph 101
8.3 Normalized signed graph embedding of a toy data 103
8.4 Embeddings of the enemy of my enemy 106
8.5 The embeddings of the tribes . 108
8.6 The embeddings of the Sampson monastery network 110
8.7 The embeddings of the ACLED violent groups 112
8.8 The ratio values of the ACLED embedding 113
8.9 The ratio values of the Epinions embeddings (forest-fire sampling) 114
8.10 The ratio values of the Epinions embeddings (random-walk sam-

pling) . 115
8.11 The ratio values of the Slashdot embeddings (forest-fire sampling) 116
8.12 The Slashdot embeddings with 100 nodes (forest-fire sampling) . 117
8.13 The ratio values of the Slashdot embeddings (random-walk sam-

pling) . 118

9.1 Two ways to add negative edges 123
9.2 Applying GBE to two toy datasets 127
9.3 Plot of average error as a function of parameters 128

List of Figures xv

9.4 Comparing error rates, two classes, same size, same number of
labels . 130

9.5 Comparing error rates, four classes, same size, same number of
labels . 131

9.6 Comparing error rates for two classes, completely balanced . . . 132
9.7 Comparing error rates, differing numbers of labelled records . . . 133
9.8 Boxplots of error rates . 134
9.9 Comparing error rates, different class sizes 135
9.10 Comparing error rates, two classes, different sizes, same number

of labelled nodes . 136

10.1 Illustration of our typed directed connection model 140
10.2 Directed Sampson network with positive edges 142
10.3 Directed Sampson network with negative edges 143
10.4 Overall relationships among Algerian groups 145
10.5 Negative relationships among Algerian groups 146
10.6 Positive relationships among Algerian groups 147
10.7 Negative relationships among Libyan groups 148
10.8 Zoomed-in relationships among Libyan groups 148
10.9 Positive relationships among Libyan groups 149
10.10 Negative relationships among Nigerian groups 150
10.11 Positive relationships among Nigerian groups 151
10.12 Radical groups embedding with 173 groups 151
10.13 Positive relationships of radical groups embedding with 111 groups 152
10.14 Negative relationships of radical groups embedding with 111 groups154
10.15 Positive relationships of radical groups embedding with 16 groups 154
10.16 Negative relationships of radical groups embedding with 16 groups 155
10.17 Positive relationships of violent groups embedding with 65 groups 155
10.18 Negative relationships of violent groups embedding with 65 groups 156

A.1 A cut with two copies of a node in two different clusters 163

List of Tables

4.1 Alignment of Florentine families 34

5.1 Normalized edge lengths for Florentine families 53
5.2 Normalized edge lengths for Macaque monkey visuotactile brain . 57
5.3 Nodes remaining for choices of edge weight threshold 65

6.1 Normalized edge lengths for Florentine families 75
6.2 Normalized edge lengths for Chalonero 79
6.3 Normalized edge lengths for Stupor Mundi 79

7.1 Number of pairs in each time period 89
7.2 Individuals with the top 12 largest in-out edge lengths in each time

period . 94

8.1 Ratios for the embeddings of the tribes 109
8.2 Ratios for the Sampson monastery network embeddings 111

10.1 Edge lengths for the Sampson monastery network embedding . . 144
10.2 Normalized length of embedded edges for the 16 radical groups . 153
10.3 Normalized edge lengths for the 65-node violent subset 153

xvii

http://taylorandfrancis.com

Glossary

SNA Social Network Analysis.
G a graph with vertices and edges.
V vertex set in a graph.
E edge set in a graph.
W weighted adjacency matrix of a graph.
M our layered model adjacency matrix of a graph.
1 the constant one vector.
di degree of ith vertex.
D diagonal degree matrix of an adjacency matrix.
D̂ modified diagonal total degree of signed graph.
L unnormalized Laplacian matrix of a graph.
Lsym symmetric normalized Laplacian matrix.
Lrw random-walk normalized Laplacian matrix.
Ldir Chung’s directed combinatorial Laplacian matrix.
L̂dir Chung’s directed normalized Laplacian matrix.
Ldsym our directed symmetric normalized Laplacian matrix.
Ldrw our directed random walk normalized Laplacian matrix.
L̄ Kunegis’s unnormalized signed Laplacian matrix.
L̄rw Kunegis’s random-walk normalized signed Laplacian matrix.
L̄sym Kunegis’s symmetric normalized signed Laplacian matrix.
Lsign our unnormalized signed Laplacian matrix.
Lsns our simple normalized signed Laplacian matrix.
Lbns our balanced normalized signed Laplacian matrix.
RatioCut() Kunegis’s signed ratio cut.
SRcut() our defined signed ratio cut.
1 constant one vector.
RM Rayleigh quotient of matrix M.
P probability (random walk) matrix.
cut() number of cut edges.
RatioCut() ratio cut.
Ncut() normalized cut.
CheegerCut() Cheeger cut.

xix

xx List of Tables

|Ai| the number of the nodes in group Ai.
vol(Ai) the sum of the degrees of the nodes in group Ai.
Π the stationary distribution of a probability (random-walk)

matrix.
AER our defined average edge ratio.
ANR our defined average node ratio.
MER our defined median edge ratio.
SSL semi-supervised learning.
L̂sns our modified signed Laplacian for SSL.

Chapter 1

Introduction

1.1 What is a social network?
As humans, we form relationships with other humans. Although not all relationships
are pairwise (for example, a newborn baby acquires relationships with both parents
and siblings at the same time), it turns out to be useful to model most relationships
as structures between two participants.

The creation of such pairwise relationships is usually intentional — the two
participants decide to create a mutual relationship. When the creation process is
not intentional, it is typically the result of biological, social, or legal forces. The
adjective “social” in the phrase “social networks” reflects the property that pairwise
relationships occur because of underlying properties of humans and human society.
The networks that we build to connect computers, for example, have quite different
structures and properties.

Although each individual connects to another individual as the result of a
choice (or something like it) made locally, the aggregate of all of these choices is
a network, a spider web of connections among many individuals. The overall struc-
ture of this network has many intriguing properties that do not obviously follow from
the choices made by the individuals. The collection of local, individual choices cre-
ate a structure that has global regularities. We say that a social network has emergent
properties. Looking at these emergent properties enables us to understand some-
thing about the large-scale drivers that motivated (mostly unconsciously) the choice
of each pair of individuals to create a relationship.

In other words, large-scale, mostly invisible, forces act to cause pairs of indi-
viduals to form relationships; the resulting structure can be analyzed to detect emer-
gent properties; and these properties can, in turn, be used to understand the invisible
forces, which might be difficult to see and interpret in any other way. Social net-
works, therefore, are a kind of lens that we can use to discover properties of society,
of particular groups, and sometimes particular individuals.

1

2 Chapter 1. Introduction

Organizations can form relationships with other organizations too, and some of
the forces that create relationships between individuals are in play in organizational
networks as well. However, the relationship between organizations exists on two
levels: the formal level which may be instantiated in a contract, or a memorandum
of understanding, or a buying and selling process, or something less precise; but
also on an informal level involving relationships between individuals inside each
organization. The strength of the relationship between the organizations exists apart
from the individuals in one sense (if one buyer resigns, another will be appointed to
replace him or her), but relies on these individuals in another (if they get on, the two
organizations may be able to interact more smoothly).

It is also difficult for one individual to have both a positive and negative rela-
tionship to another individual because it creates cognitive dissonance; but the rela-
tionship between two organizations can easily have both a positive and negative com-
ponent, embodied by different sets of individuals within them. “Social networks” of
organizations are therefore a useful construct, but they will not always behave in the
same ways as social networks of individuals.

The analysis of social networks has revealed many properties about the way
that humans, and human groups, operate and interact. Social networks exist at many
different scales: within a single organization, in a town, or within a country; and
they are of different sizes, from a few dozen individuals to several billion. It is also
useful to distinguish between a social network whose relationships are created by
face-to-face contact, versus one where the relationships are formed and built in an
online environment, whether on a social media platform or by exchanging emails or
text messages.

Broadly speaking, social network properties seem to apply regardless of scale,
size, and modality, probably because they are driven by, or perhaps limited by, the
cognitive and social properties that make us human. However, there are some spe-
cial situations where the processes that drive social network formation may be qual-
itatively different. For example, a group of criminals may form an unusual social
network because they explicitly consider how to make it difficult for law enforce-
ment to find and track them. They may therefore decide to limit their connections to
one another, for example by forming small subgroups that are only connected to one
another by a few connections. Such exceptional social networks may have special
properties.

Here are some examples of the properties of human social networks that emerge
from the way that individual connections are made:

• The diameter (the distance between the furthest separated nodes) of a typical
social network is logarithmic in the number of nodes it contains, rather than
linear. When social networks were first considered, it seemed natural and
intuitive that they should be mesh-like, as transportation networks are. After
all, they exist on the surface of the earth. Milgram’s famous experiments [60,
99], which led to the meme of “six degrees of separation”, showed that this
intuition is misleading: a surprisingly large number of individuals in social
networks have relationships to those who are “far away” in the natural, planar

1.1. What is a social network? 3

view. There are enough of these “long” edges that the total distance between
any two individuals, even at planetary scale, is a path of only length 6 or 7.

One easy way to reach someone far away in the world is to communicate to a
local government official, who typically has a connection to someone higher
in their government, and on to a country leader. Country leaders usually know
other country leaders, and so could pass the communication down on the other
side. Hierarchical structures are one way in which large networks can have
small diameters.

Interestingly, most social networks are not like this: the long connections are
not arranged in any careful way, but rather are present between many nodes,
distributed throughout, and these long edges connect to other nodes at all dis-
tances. In other words, the edges in any part of a social network are not a
careful mixture of mostly “short” edges and a few “long” edges, but instead
a much less structured mixture of edges of many lengths. From the perspec-
tive of any single individual, most, perhaps all of her edges will be short; but
some will be a bit longer, a few even longer than that, and perhaps one very
long. This connection structure is one example of a “small world” property:
the network looks qualitatively the same in a local neighborhood, in a region,
in a country, and for the whole world.

Thus the way to reach someone far away in the world is to find a close neighbor
with a long edge in the right direction. Milgram’s subjects tended to use this
strategy. If they had to send a package from, say, Denver to New York, they
would send it to someone they knew in the New York area, on the assumption
that the recipient would know someone in the right part of New York, and so
on.

• The number of connections an individual has (the number of relationships in
which s/he participates) is typically bounded above by a value between 125
and 150 that is known as Dunbar’s Number [30, 31]. This limitation appears
to be the result of cognitive limits on how many other individuals any one
person can keep track of in a meaningful way. This number matches very well
the number of individuals in traditional tribal groups, but seems to transfer
well to the online domain too.

Especially, but not exclusively, in the online domain, there are social networks
in which the relationships are weak, and it may be possible for an individual
to maintain a larger set of connections in such networks. For example, if the
relationships are such that they require almost no effort to maintain then an
individual can have many relationships. Heads of state have “relationships”
with most other heads of state in the sense that they could make a phone call
to them, but these relationships do not necessarily require much attention or
maintenance, which seems to be the constraint behind the Dunbar Number.
Similarly, many social media platforms allow users to have many “friends” or
followers who receive updates of their lives, but the amount of work to tell 5
people or 500 about some life event is the same, so again maintenance costs

4 Chapter 1. Introduction

are low.

If the relationship is one with real activity, and real associated costs for main-
taining it, then the Dunbar Number seems to be a quite hard limit.

• Many properties of social networks exhibit power laws. Histograms of how
frequently some property is present, plotted in descending order of frequency,
create curves that drop off extremely quickly. This drop-off is so steep that
plotting both axes on logarithmic scales produces almost straight lines (whose
slopes characterize global network properties).

The first, and most important, implication of the presence of power laws is that
average properties are almost always meaningless. For example, we expect
the number of connections individuals have to vary widely, with relatively
few having many connections and many having relatively few connections.
The average number of relationships within a social network does not provide
an accurate picture of how an arbitrary individual is connected because the
distribution is so extremely skewed.

For example, nodes such as national leaders may have very large degrees in-
deed. Individuals such as Queen Elizabeth or the Dalai Lama are plausibly
within three steps of most of the world’s population. Their neighborhood of
diameter less than or equal to 3 is roughly 7 billion. A very outgoing person
who has 125 immediate neighbors still will not have (125)2 connections at
distance two, or (125)3 connections at distance three, because many of these
neighbors, and neighbors of neighbors, will know one another. Hence their
neighborhood of diameter less than or equal to 3 might only be a few thou-
sands. A socially isolated person might only have a neighborhood of diameter
less than or equal to 3 of size 53 = 125. Thus neighborhood sizes can easily
vary by a factor of 107.

• There is structure within the set of connections that each individual has. Typ-
ically, each individual has really close connections to k others, slightly less
close connections to k2 others, even less close connections to k3 others, and
perhaps tenuous connections to k4 others. k typically has a value between 3
and 4, so the sum of the number of individuals in all of these layers agrees
well with the total given by the Dunbar Number [122]. For example, the first
layer for most people consists of family; the second layer of close friends; and
so on. (It also seems plausible that there is a further layer of k5 connections
that reflects weaker forms of acquaintance — for example, many social media
platform users have roughly 400 “friends”.)

• The degree of an individual tends to be similar to the degrees of the others to
whom that individual is connected. This property is called assortativity. In
other words, if a person has many friends, then his or her friends will also
tend to be people with many friends (and vice versa: if they have only a few
friends, these friends will also tend to have only a few friends). This is very
different from the networks connecting computers, where a node with high

1.1. What is a social network? 5

degree is likely to be connected to nodes of much lower degree. Many web
clients connect to the web servers at both Microsoft and Google, but these are
much less likely to connect to each other.

• While, from a human perspective, we conceive of ourselves as being members
of multiple groups, such groupings are not, by and large, visible in the aggre-
gate social network if all relationships are treated as the same. If the social
network region around an individual is considered only as a network of rela-
tionships, there is no obvious signal that this subregion consists of relatives,
this other subregion of work colleagues, and this third subregion of members
of a club, team, or hobby group. In other words, clusters in a social network are
a perceptual property rather than a structural property, so that finding clusters
or communities in a social network requires some care. This is partly because
there is often substantial overlap among such subregions (a family member
shares an interest in a sport or hobby), and partly because of the presence of
“long” edges.

• Properties that can be considered to flow along the edges of a social network
(that is, properties that are influence-like) travel for surprisingly long distances.
For example, there are some experiments that show that an individual is influ-
enced by the happiness not only of immediate social-network neighbors, but
also by neighbors of neighbors, and even neighbors of neighbors of neighbors
[18, 19]. In general, someone three steps away may not even be known to
the individual, so that these influence-like properties flow “over the horizon”.
Other properties that behave this way include sadness, tendency to smoke, and
being overweight. Unsurprisingly, these effects are of great interest to those
whose business is influence, for example, advertisers and many large-scale
experiments have been enabled by access to internet-scale data [65].

These results show that the social networks in which we find ourselves are not much
like we might expect them to be intuitively. We form relationships with a few other
people based on local information and independent decision making, we build a
mental picture of what the global social network that results is like, but this global
network actually has many properties that are not obvious from the perspective of
any single participant. Emergent structure is the payoff from social network analysis.
Once it is understood, the resulting insights can be used to draw conclusions about
individuals and society that have wide implications. For example, a node may be an
outlier in a social network, that is connected to the network only at the periphery.
This is not the same property as having low degree (although it may be related).
Similarly, a node may be a key node, in some sense, located centrally in the network.
Again, this is not necessarily the same property as having high degree. Emergent
structure of the network as a whole acts as a background against which properties
such as these can become visible.

6 Chapter 1. Introduction

1.2 Multiple aspects of relationships
A model of social interactions in which there is only a single type of connection
— “relationship” — is extremely limited. In the real world, our connections are
multifaceted in at least the following ways:

• Relationships are of different intensities. Some relationships are close, and
some are not so close, and noticing the differences is important for under-
standing the global structures. For example, a property of influence might be
expected to operate more forcefully in a strong relationship than in a weak
one.

• Relationships are of qualitatively different kinds: family relationships, friend-
ships, romantic relationships, work relationships, and acquaintance. This prop-
erty is different from intensity: an intense family relationship and an intense
work relationship are still inherently different.

Noticing this shows that there is a new possibility: there can be more than
one kind of relationship between the same two individuals — they might be
colleagues but also friends — and there is clarity in regarding these as two
relationships, not one.

• Relationships are not symmetric. Given any two individuals, A and B, it is
likely that the intensity of the relationship as perceived by A is different from
the intensity as perceived by B. It is natural to model the connection as two
directed relationships, one from A to B and the other from B to A.

• Relationships are not always positive. Two individuals can be enemies rather
than friends, and enemy relationships can also be of different intensities, and
perhaps different kinds.

• Relationships change over time. Few relationships of any kind are actually
static, and their intensities may change on a day-to-day basis, or over longer
time frames.

Any social network analysis that lumps all of these multifaceted ways in which hu-
mans interact into a single generic category of “relationship” must surely miss im-
portant subtleties in the resulting structures. Models for social networks must allow
all of these rich properties of the connections between one person and another to be
represented if we are to fully understand social behavior and influence in their full
complexity.

Furthermore, all or most of these properties must be modelled at once. It is
entirely natural to consider a single relationship as being, simultaneously: directed,
negative, associated with a particular qualitative experience, and changing over time.
This book shows how to build and model such networks. Thus it enables unprece-
dented sophistication in representing and understanding social networks.

1.3. Formally representing social networks 7

1.3 Formally representing social networks
Social networks are usually modelled as graphs. A graph consists of a set of nodes
(or vertices) that represent the individuals, and a set of edges that connect nodes.
These edges represent the relationship between the individuals associated with the
nodes. Graphs are a natural way to represent networks, but they require awkward
data structures, and so are difficult to work with computationally.

From the perspective of a drawing of a graph, it is easy to see how to model rich
edge types. Each edge in the graph can be drawn with (say) a color that represents
the qualitative kind of relationship (colleague vs. friend) it represents; an arrow
to indicate the directionality of the relationship; and a positive or negative weight
or label to indicate the positive or negative intensity of the relationship. However,
temporal changes are already problematic unless the drawing becomes a video.

Direct renderings of a social network like this also do not scale as the num-
ber of nodes and edges increases. Even a small network, say 20 nodes, becomes
a cluttered picture from which conclusions might be hard to draw visually. And
there remains the challenging, and long-studied, problem of how to place the nodes
for maximal effectiveness of the rendering (that is, for maximal interpretability by
human eyes) [95].

For more mathematical analysis, it is conventional to represent a graph by an
adjacency matrix. If the graph contains n nodes, its adjacency matrix is an n× n
structure where the entries are zeros except at positions (i, j) whenever node i has a
connection to node j.

For a simple social network, the i jth entry of the adjacency matrix is set to a
1 to indicate the existence of a connection between nodes i and j. If the edges are
undirected, a connection from node i to node j necessitates a connection from node
j to node i, so that the i jth and jith entries must always be the same. The adjacency
matrix is then said to be symmetric.

It is easy to extend the adjacency matrix representation to allow edges to be
positively or negatively weighted, by using the weight as the value in the corre-
sponding entry of the adjacency matrix.

It is also easy to model directed edges (for then the i jth entry represents the
edge from node i to node j and the jith entry the reverse edge). However, there
is no convenient way to extend the adjacency matrix to represent different kinds
of (weighted) relationships, nor relationships whose intensities change with time.
Tensors (3-dimensional matrices) could be used, with one layer for the adjacency
matrix of each kind or time, but this has not become a popular approach.

Adjacency matrices allow most kinds of social networks to be represented, and
the machinery of linear algebra can be used to manipulate them, and to prove theo-
rems about their properties. However, they do not provide an easy way for human-
directed presentation of the graph’s properties,

It is common to get the best of both the computational world and the drawing or
rendering world by using spectral embedding techniques. This family of algorithms
transform an adjacency matrix into one of a family of Laplacian matrices, compute
an eigendecomposition of this Laplacian, and then use a subset of the eigenvectors

8 Chapter 1. Introduction

as axes for a space in which each of nodes can be placed. Because of the properties
of the eigendecomposition, it can be proven that the representation using, say, k
eigenvectors is the most faithful possible in that dimensionality in the sense that the
distances between nodes most accurately reflect the global similarity between them
implied by the entire connection structure. In other words, this embedding is, in a
strong sense, the best embedding from the point of view of representing the graph’s
structure (although it might not be the easiest to understand visually).

Using a spectral embedding, a social network is embedded in a geometry. The
key property of the embedded network is that distances between nodes are mean-
ingful — they reflect the similarities between every pair of nodes, as far as that is
possible in a low-dimensional space — similar nodes are close, and dissimilar nodes
are far apart. Properties that are based on similarity can be computed directly on the
embedded graph, nodes that are placed centrally are in fact the most central nodes,
and directions capture differences. The embedding can be rendered as a visualization
which is accurate, even if it is not necessarily beautiful or easily comprehensible.

In particular, this distance measures the similarities between nodes that were
not connected in the original graph, that is the social distance between two indi-
viduals who do not have an existing mutual relationship. Two individuals who are
embedded close to one another can be thought of as being about to have a relation-
ship, or having a relationship that failed to be noticed when the data for the network
was collected. This approach is the basis of edge prediction or link prediction and is
used for recommendation in several social media systems.

The magnitude of the distance between two nodes that are embedded close
together could also be exploited to predict the intensity of the relationship that might
come into existence. However, as we shall see, predicting intensity is much more
difficult than predicting existence.

Many other useful properties of the social network can be read off from the
visualization of the embedding. For example, nodes that are well connected tend to
be placed centrally, so measures such as centrality are immediately apparent. Nodes
that are mutually well connected are placed close together, so that clustering is also
immediately visible.

The standard spectral embedding process requires that the adjacency matrix be
symmetric. Thus the process can only be directly applied to social networks where
the edges are undirected (although they can be weighted). As we have seen, this
is extremely limiting. The remainder of this book is about a general construction
that allows the full richness of edge types to be married to the power of spectral
embedding techniques to enable general social networks to be modelled in their full
detail.

Chapter 2

The core model

In this chapter, we introduce the key technique that we will develop and use to ana-
lyze social networks with rich semantics for the relationships between nodes. This
will include all of the possibilities mentioned in the previous chapter: qualitatively
different types of relationships, asymmetric relationship intensities, positive and neg-
ative relationships, and relationships that vary with time.

2.1 Representing networks to understand their
structures

As we mentioned in Chapter 1, there are two main ways in which a social network,
captured as a graph, can be understood. These methods can handle graphs whose
edges are positively weighted and undirected — adding other features is already
beyond their capabilities.

The first main way to understand a graph is graph drawing, collections of algo-
rithmic ways to display, visualize, or render a graph in a way that humans can directly
and easily understand. Graph drawing algorithms try to place the nodes so that any
groupings that might be present are made obvious, so that nodes do not obscure one
another, and so that edges are as uncluttered as possible. A simple intuition gives
the flavor of these algorithms. Suppose that the nodes of the graph are connected
by elastic bands whose pull is proportional to the weight of the corresponding edge
(relationship) and that a gentle uniform outward pull is applied from all directions
at once. The positions at which the outward pull on each node exactly balances the
pulls from all of the other nodes are probably a good approximation to the struc-
ture of the graph. These positions can then be tweaked locally to remove occlusions
and clutter. Of course, these algorithms work best for graphs that are close to pla-
nar, which many real-world graphs are, for example power grids and transportation
networks. They perform less well when the graph is naturally high dimensional.

The problem with the graph-drawing approach is: in how many dimensions

9

10 Chapter 2. The core model

should this relaxation be done? A perfectly accurate representation of an n-node
graph requires n− 1 dimensions, but a reasonable drawing can use at most 2, or
perhaps 3, dimensions. If the relaxation is done in a high-dimensional space, then
some kind of projection is still required to reduce it to 2 or 3 dimensions. If it is done
in 2 or 3 dimensions from the start, the pulls from the other nodes are not quite in the
right directions, so the stable configuration may not be what it “should” be.

The second main way to understand a graph is spectral embedding. First, the
graph is created in its full n− 1-dimensional spatial complexity, with each node
represented as a point in space with the distances between each connected pair
of nodes exactly representing their similarity. (Euclidean distance corresponds to
dissimilarity, so well-connected nodes are close.) Second, this cloud of points is
rotated in such a way that its maximal variation is aligned along an initial axis, its
orthogonal next largest variation along a second axis, and so on — this corresponds
to an eigendecomposition. Third, the cloud is projected into the space spanned by
the most useful of these axes — those that reveal the maximal variation — and the
values of the eigenvectors for each node are interpreted as coordinates in a lower-
dimensional space.

The advantage of spectral approaches over graph drawing is that the construc-
tion comes with strong guarantees about the quality of the embedding. A projection
to k dimensions is guaranteed to be the most faithful possible in that number of di-
mensions. Of course, this accuracy may come at the expense of direct intelligibility,
since the visualization may not be as easy for a human viewer to understand as one
produced by graph drawing. However, its inherent accuracy means that downstream
analysis can be used to make sense of its properties, even if these properties cannot
be captured in a nice picture. We will render spectral embeddings directly, but it is
possible to tweak such embeddings to increase their human comprehensibility with-
out sacrificing much of the geometric accuracy. For example, the Multinet package
(http://www.sfu.ca/personal/archives/richards/Multinet/Pages/multinet.htm)
[80] can render social networks in many different ways, based on underlying spectral
embeddings.

It might seem natural to begin this eigendecomposition with the network’s
adjacency matrix, but this does not work. A well-connected graph node has a row
in the adjacency matrix with many non-zero entries; when it is embedded in n− 1-
dimensional space, it will be placed far from the origin. Conversely, a node with few
connections will have many zeros in the corresponding row of the adjacency matrix,
and so will be placed close to the origin. Hence the cloud will be “inside out”.
Worse still, the well-connected nodes will tend to be connected to one another in
the network (assortativity) but, by being far from the origin, they are also embedded
far from one another. So using the adjacency matrix as a starting point dooms the
process to failure (which has not prevented the alarmingly large number of research
papers that do it anyway).

Rather than starting from the adjacency matrix, a transformation is applied
that is a kind of normalization. As we shall see, there are a number of ways of doing
this, but the simplest one is to convert the adjacency matrix into a combinatorial
Laplacian by summing the entries in each row (which corresponds to the weighted

http://www.sfu.ca/personal/archives/richards/Multinet/Pages/multinet.htm

2.2. Building layered models 11

degree, d, of each node), placing this value on the diagonal, and replacing each non-
zero off-diagonal weight w by −w. If W is the adjacency matrix and D the diagonal
matrix of node degrees, the combinatorial Laplacian is given by:

L = D−W

The spectral embedding begins from the Laplacian matrix, computes an eigen-
decomposition, and uses k of the eigenvectors as the coordinates for the position of
each point. Because of the normalization, the eigenvectors chosen are those with the
smallest corresponding eigenvalues (rather than the largest, which is what happens
in conventional, eigendecomposition-based dimensionality reduction techniques).

If the graph is connected, then the smallest eigenvalue is zero, and the cor-
responding eigenvector is ignored — it represents, in a sense which we will make
rigorous later, a trivial embedding. In fact, the number of zero-valued eigenvalues
reveals the number of connected components of the graph.

It is easy to see why this approach is limited in its modelling power for some
kinds of edge properties. If some edge weights can be negative, then summing the
entries in a row no longer corresponds to the total weighted degree. If there is more
than one edge between the same pair of nodes, then there is nowhere to represent
the information about the second, and subsequent, edges. And the eigendecomposi-
tion requires that the Laplacian matrix be symmetric, which prevents the immediate
representation of edges with an orientation.

There are also some more subtle issues. The choice of this particular Lapla-
cian implicitly assumes that the right model for similarity is the so-called electrical
resistance model — the distance between two nodes depends not just on the shortest
(weighted) path between them but on the number and weights of all paths between
them, with weights interpreted as the reciprocals of resistance [45]. This choice also
assumes that the degrees of nodes in different parts of the graph are roughly the
same, and we have seen that this is not typical in social networks. We will therefore
tend to prefer slightly different Laplacian normalizations that we will introduce in
Chapter 3.

2.2 Building layered models
The difficulty with representing multiple kinds of edges at once is that adjacency ma-
trices only have a single “slot” to capture all of the information about the relationship
between a pair of individuals.

Our first key idea is to replicate the nodes of the social network so that each
copy becomes the representative, and connection point, for edges with a particular
property. When a social network has edges with many kinds of semantics, these
edges can be connected to the appropriate copies of the nodes to record and preserve
those semantics. In other words, an edge that has multiple associated semantics
becomes a constellation of edges, each with a single semantics that is carried by how
it is connected.

The second key idea is that we organize the different copies or versions of the
nodes by placing them, conceptually, in different layers. In other words, if there

12 Chapter 2. The core model

are, say, three different edge properties we replicate each node of the original social
network into three versions, and imagine that the versions of the same flavor are
arranged in a layer. The edges appropriate to that layer connect these versions of
the nodes. Thus the expanded graph has three layers, each containing the matching
versions of all of the nodes and a subset of the edges. Looking “down” on the graph
from above, the layers cannot be seen, and the graph can be seen in its original
form. To keep the versions of the “same node” aligned, we also add “vertical” edges
between them to maintain the integrity of the entire social network.

We begin with the most intuitive case: the edges in the social network reflect
different kinds of relationships such as relatives, colleagues, and friends.

Consider a social network with n nodes and two different edge types, repre-
senting roles or behaviors. There may, of course, be more than one edge between the
same pair of nodes if, for example, they are friends and colleagues.

We begin by replicating the set of n nodes, arranging each of the versions of
the network in a layer. Each layer is assigned one of the possible connection types
or roles: friends and colleagues. The edges of the original social network are then
placed in the layer to which they naturally belong. For example, if A and B are
friends, then an edge joins the versions of A and B in the friends layer. As a result,
there is now at most a single edge between any two nodes in the expanded graph.
The semantics of an edge can be inferred from the layer in which it appears.

We now connect each of the versions of the same node (for example, A in both
her versions) by a “vertical” edge, binding the new graph into a consistent whole.
These vertical edges both ensure that the graph is connected, and enforce a weak
global consistency among the versions of the same node.

The resulting adjacency matrix is of size 2n× 2n. This is bigger than the
original n× n adjacency matrix, but the actual content has not increased by much.
The total number of within-layer connections in the 2n× 2n graph is the same as
the total number of connections in the original graph, since that is where they came
from. The additional edges are the “vertical” edges; these cause the off-diagonal
submatrices to be themselves diagonal matrices. If the vertical edges are undirected,
then these two submatrices are the same; if the vertical edges are directed, they need
not be.

Adjacency matrices representing social networks are typically sparse; the ap-
parently much bigger matrix produced by the layer construction does not actually
have many more non-zero entries than there were to begin with. The cost of the
computations required for spectral embedding can be made to depend only on the
number of non-zero entries in the matrices (using sparse matrix eigendecomposition
techniques), so that the cost for the larger matrix increases only linearly, rather than
quadratically.

We can apply the spectral embedding technique to the new, larger graph and
embed it in a single geometric space. The distances between the positions of embed-
ded nodes tell us how similar the corresponding nodes are in the context of the entire
social network, accounting fully for the different types of edges.

If we consider one of the subgraphs to be red, and the other to be green, Fig-
ure 2.1 shows some possible connection patterns.

2.2. Building layered models 13

(a) Within-layer connection (b) Between-layer connection

Figure 2.1: Illustration for within-layer connection and between-layer connection

If R is the adjacency matrix of the red layer, G is the adjacency matrix of the
green layer, and Trg and Tgr are the diagonal matrices representing the two vertical
edges that connect different versions of the same nodes, then the adjacency matrix
of the larger graph is

M =

(
R Trg

Tgr G

)
.

(If the vertical edges are undirected then, of course, Trg and Tgr are identical.)

Figure 2.2: The embedding of a simple graph with typed edges

Figure 2.2 shows what happens when this idea is worked out. The original
graph has 8 nodes. These nodes are connected by solid edges in a circle. They
are connected by dashed edges into two 4-cliques. In the embedding (whose details
we have not described yet) the solid layer distorts the 4-cliques of the dashed layer,
pulling them into trapezoids; and the dashed layer distorts the solid-layer circle into
an ellipse. There are two versions of each node, indicated by a subscript, The cross-
hatched lines are the embeddings of the added vertical edges. The vertical edge
joining the two versions of node 1, for example, is long, showing that the role of this
node in the two networks is quite different.

14 Chapter 2. The core model

There are three sets of distances that inform us about the social network. The
lengths of the solid edges tell us how close any two individuals are as colleagues.
The dashed edges tell us how close any two individuals are as friends. Suppose
that individual A has friend B who has colleague C who has friend D. The distance
between the friend version of A and the friend version of D tells us how similar A
and D are likely to be as friends in the context of this entire social network. The
key benefit of analyzing the social network in this combined way is that it takes into
account the colleague similarity of B and C (as well as any friendship between them)
in estimating the relationship between A and D. Analyzing the social network of
friends and the social network of colleagues separately does not take into account
the existence of these combined relationship chains.

We can also estimate how strong the relationship between A and D might be as
colleagues by considering the distance between the colleague versions of their nodes
in the embedding. The strength of a friend relationship and a colleague relationship
between the same two individuals need not, of course, be similar.

When two nodes from the same layer are embedded close to one another, but
there is no edge between them in the social network, this signals that, in some sense,
there ought to be such an edge. The similarity of their positions in the embedding
occurs because they see the rest of the social network in a similar way. This ob-
servation is the foundation for edge prediction, detecting pairs of nodes for which a
relationship is (somehow) missing. In some contexts, this might indicate a problem
with data collection; in others, it suggests that there is a potential relationship that
can be suggested to both individuals. Social media platforms use this as the basis of
suggesting “people you may know”.

Using our typed-edge approach, such recommendations can be enriched be-
cause we are in a position to suggest what kind of relationship might or should exist.
Thus the recommendation could be “this is someone who might be a potential col-
league” or “this is someone who might be a potential friend”. There are obvious
commercial possibilities to this finer level of recommendation.

The lengths of the vertical edges also have two useful interpretations:

1. A long embedded edge indicates a dissonance between the roles played by the
node in the different (sub)social networks that each layer represents. For ex-
ample, if the red layer represents work colleagues, and the green layer friends,
then the vertical edges represent the internal effort an individual requires to
“change hats”, for example, to remember to pass on some news or a joke
heard at work to a friend. A long edge reveals the fact that there are significant
differences between the role that the individual plays in the work-based social
network, and the role played in the friend-based social network.

2. In settings where the edges represent properties that have flow associated with
them, the length of embedded vertical edges more directly signals the amount
of resistance to such flows. For example, the edges might represent influence.
A short vertical edge signals little resistance, and so strong influence, internally
from one role to the other. An individual with a short vertical edge in the
embedding is someone who forms a good bridge for information or influence

2.2. Building layered models 15

flow between the two networks.

In the example so far, the edges connecting different versions have been ver-
tical, but we will generalize the construction to allow “diagonal” edges for some
settings as well.

We have not yet explained how weights are assigned to the edges between
layers. This is obviously a critical choice, since it determines how closely each of
the layers is aligned to the other. Choosing small weights means that the embedding
of each layer will mostly depend on the structure in that layer; choosing large weights
will force the versions of the same nodes to be embedded close together, so that the
structures in one layer will distort the structures in the other layer more strongly.

There are principled ways to choose these new weights. We motivate them
based on the idea of a random walk in the graph.

We can convert the adjacency matrix to a random-walk matrix by dividing
the entries in each row by the sum of that row. The entries are all therefore values
between 0 and 1, and the sum of each row is 1. Now imagine a random walker who
moves around the graph in discrete steps, with the i jth entry of the random-walk
matrix interpreted as the probability that the random walker who is currently at node
i will move to node j in the next step. Because the outgoing edge weights sum to 1,
a random walker is more likely to choose an edge with a higher weight than one with
a lower weight.

This random-walk view of a graph is both intuitive and analytically helpful.
For example, the fraction of time that a walker spends at a particular node, summed
over a long sequence of probabilistic wandering steps, provides an estimate of how
important that node is in the graph. Important nodes are visited often; less important
nodes are visited less often.

This random-walk behavior is more stable if it is made lazy. The probabilities
for each of the outgoing edges are divided by 2, so their sum is 0.5, and the other 0.5
probability is assigned to a self-loop at each node. In other words, at each step the
random walker either stays put at the current node with probability 0.5, or takes one
of the outgoing edges with probabilities proportional to their edge weights, which
are all half what they were in the original random-walk scenario.

We use the idea of lazy random walks to motivate the choice of edge weights
for the vertical edges. In particular, we allocate the “lazy” part of the probability to
the vertical edges, giving them a total weight of 0.5. In the random-walk version of
the larger adjacency matrix, therefore, the row sums of the submatrices on the main
diagonal are 0.5, while the off-main-diagonal matrices are diagonal submatrices with
0.5 on the diameter. We model a random walker in the expanded graph as remaining
within the current layer with probability 0.5, or moving to one of the other layers
with total probability 0.5. If we ignore the typing of the edges, that is we take a
monochrome view of the graph, then the random walker moves in the conventional
lazy way, with the layer transitions appearing as self-loops.

So far, we have only considered two layers. If there are, say, c layers then the
vertical edges between the c versions of the same node form a c-clique with total
edge weight 0.5. In other words, if a random walker leaves the current layer, it has

16 Chapter 2. The core model

an equal chance of transitioning to any one of the other layers.
As we shall see, there are settings where it makes sense to adjust the relative

weighting of within-layer and between-layer edges, but the motivation in terms of
random walks provides a principled starting point from which to motivate deviations
when they are needed.

2.3 Summary
The key construction that we will use to capture rich edge semantics is to replicate
each node of the social network into multiple versions in the graph, connect edges
to the appropriate version(s) to capture their semantics, and add edges between the
multiple versions as necessary to keep them aligned. The resulting graph is notion-
ally larger, but the additions are only linear in size so that the representation and
computations also grow only linearly. The larger graph is embedded in a more or
less standard way, but the resulting embedded graph has nodes and edges of different
kinds, and so the downstream analysis changes because there are many more possible
structures to understand and exploit.

Chapter 3

Background

Having provided some intuition for the kinds of constructions we will be using, we
now introduce the mathematical notation and constructions more formally.

3.1 Graph theory background
A graph G = (V,E) consists of a set of vertices V = {v1, ...,vn} and edges E =
{e1, ...,ek}, where ex = {vi,v j}, that connect pairs of vertices. Vertices can also be
called nodes, a more common usage in the social network literature.

There are various special kinds of graphs:
Undirected graph: A graph is undirected when the edges between vertices have no
orientation, so that if {vi,v j} exists, so does {v j,vi}. These are often called undi-
rected edges.
Directed graph: A graph is directed when the existence of {vi,v j} does not neces-
sarily imply the existence of {v j,vi}. Such an edge is called a directed edge.
Unweighted graph: A graph is unweighted when the only property of an edge is its
existence. The edge is typically modelled as having weight 1 if it exists and weight
0 if it does not.
Weighted graph: A graph is weighted when each edge has an associated positive
numerical value representing, in some way, an intensity associated with that edge.
Signed graph: A weighted graph is signed when its edge weights can also be nega-
tive numerical values, representing an intensity associated with antipathy or opposi-
tion.
Simple graph: A graph is simple when it has no self-loops (edges that start and end
at the same vertex) and no more than one edge between any two different vertices.
Multigraph: A graph is a multigraph when self-loops and multiple edges between
the same pair of vertices are allowed. A directed graph is not normally considered
a multigraph since multiple edges between the same pair of nodes go in different
directions, but a signed graph must implicitly be a multigraph because it is possible

17

18 Chapter 3. Background

for a pair of vertices to be connected by both a positively and negatively weighted
edge.
Adjacency matrix: An adjacency matrix is one in which each row and column
corresponds to a vertex of a graph, and the element ai j of the matrix is the weight of
the edge connecting node i to node j. For an undirected graph, the adjacency matrix
is necessarily symmetric (A = A′); for a directed graph, it need not be. For a simple
graph, the diagonal of the adjacency matrix is necessarily zero.
Degree: The degree of a node is the number of edges, or the sum of the weights of
the edges, that connect to that node in an undirected graph.
In-degree: For directed graphs, the in-degree of a node is the number of edges, or
sum of the weights of the edges, that end at the node.
Out-degree: For directed graphs, the out-degree of a node is the number of edges,
or sum of weights of the edges, that start at the vertex.
Path: A path from node vi to node v j is a sequence of consecutive edges that start at
vi and end at v j; the length of the path is the number of these edges, for an unweighted
graph, or the total edge weight along these edges, for a weighted graph.
Geodesic distance: The geodesic distance between vertices vi and v j is the shortest
(weighted) path between them.
Bipartite graph (or bigraph): A bipartite graph is one in which the nodes can be
divided into two disjoint sets so that there is no edge between the nodes in each set.
In other words, all edges connect nodes from different sets.
Clique: A clique is a subset of nodes of an undirected graph in which every pair of
distinct nodes are connected.
Ego network: The ego network of a particular node is the subgraph of which it is
the center. It consists of the node, all of its immediate neighbors, and all of the edges
among them.
Connected graph: A graph is connected when there is a path between any pair
of nodes. The graph representing a large social network may not necessarily be
connected. The set of subgraphs, each of which is connected, are called the con-
nected components of the graph. Often, the graph of a social network contains one
connected component that contains almost all of the nodes, with a few other small
components.

3.2 Spectral graph theory
Spectral graph algorithms are based on eigendecompositions of matrices derived
from adjacency matrices. Conventionally, a matrix is regarded as an operator, but
its eigendecomposition can also be understood as providing insight in the properties
of the matrix as data, and this is the reason for the usefulness of eigendecompositions,
principal component analysis, and matrix decompositions as tools in knowledge dis-
covery [85].

For example, one way to understand an eigendecomposition of a matrix is that
it determines a basis with respect to which the matrix can be expressed in diagonal
form (where the diagonal entries are the eigenvalues).

From another perspective, an eigendecomposition represents a transformation

3.2. Spectral graph theory 19

of an initial space, where the matrix entries are coordinates with respect to the stan-
dard basis, to a new space, spanned by the eigenvectors, and coordinates in this space
that are better behaved. For example, if the space is not of full rank, such a transfor-
mation can reveal that the data lie on a lower-dimensional manifold.

From yet another perspective, an eigenvector–eigenvalue pair represent the am-
plitude and frequency of vibration if the structure associated with the matrix were to
be struck parallel to one of the original axes.

All three of these perspectives on eigendecompositions arise from regarding
the original matrix as defining a cloud of points, each one at a position described
by a row of the matrix. The eigendecomposition finds a view of this cloud that
emphasizes the aspects of its structure with the greatest variation.

An eigendecomposition of an adjacency matrix can reveal the importance of
each node in the graph, an idea exploited by Google in their PageRank algorithm.
The rows of the adjacency matrix can be regarded as points in n-dimensional space,
in fact in the positive hyperquadrant of n-dimensional space since edge weights are
positive. The principal eigenvector of this matrix points through the center of this
cloud of points, and the projection of each of the n nodes onto it determines a ranking
from most- to least-important node. For an undirected graph this corresponds to the
edge weight sum of each node, but for a directed graph, such as the random-walk
version of the adjacency matrix, this is no longer the case.

Unfortunately, further eigenvectors of the adjacency matrix do not provide sim-
ilar insights since the second, and subsequent, eigenvectors are constrained to be or-
thogonal to the first — but the direction of the principal eigenvector is determined by
the overall weights of the graph edges. In other words, the vector connecting the ori-
gin to the cloud of points in the positive hyperquadrant depends on the total structure
of the graph, but not its internal structure, and so the requirement for orthogonality
to this eigenvector is not revealing.

This can be seen in Figure 3.1. The graph edge weights are all non-negative,
so that the representation of each node as a point in n-dimensional space is a cloud in
the positive hyperquadrant. Since the eigendecomposition is a purely numerical al-
gorithm, it finds the principal eigenvector, v1, pointing along the direction of greatest
numerical variation, so from the origin to the center of the cloud. The second eigen-
vector, v2, is constrained to be orthogonal to it, but this direction is not meaningful
as a property of the cloud of points.

As we described earlier, the adjacency matrix needs to be converted to a Lapla-
cian matrix before eigendecomposition to create a structure in which all of the eigen-
vectors reflect the structure of the graph. Because of this normalization, the eigen-
vectors that are most useful for embedding are those associated with the smaller
eigenvalues, rather than those associated with the largest eigenvalues used for con-
ventional eigendecompositions. These eigenvectors are the columns at the right-hand
end of the decomposed matrix when the eigenvalues are sorted into descending order.

In such an eigendecomposition, the eigenvalue associated with the last column
is 0, and the corresponding eigenvector is conventionally ignored. (It plays no role in
the corresponding matrix product, although several of the algorithms that compute
eigendecompositions do actually place meaningful values in this last column.)

20 Chapter 3. Background

Figure 3.1: The eigendecomposition of the cloud of points corresponding to graph
nodes. Only the first eigenvector reveals anything about the graph’s structure.

It is possible that other eigenvalues at the right-hand end of the spectrum are
zero as well — the number of such zero-valued eigenvalues corresponds to the num-
ber of connected components in the graph. We will assume, for simplicity, that the
social networks we consider contain only a single component, and the constructions
we use tend to make the constructed graphs connected anyway.

The rightmost eigenvector corresponding to a non-zero eigenvalue is known as
the Fiedler vector of the graph [34] and represents the best 1-dimensional embed-
ding of the graph, that is an embedding in which the nodes are placed on a line. This
embedding is best in the sense that the distances between the embedded nodes cor-
responds as closely as possible to the similarities between them (Euclidean distance
is small when nodes are similar).

A k-dimensional embedding can be constructed using the eigenvectors associ-
ated with the n−1 to n−k smallest eigenvalues as coordinates. As before, distances
in this k-dimensional space reflect (dis)similarity. Euclidean distances can be com-
puted between pairs of nodes, whether connected or not, and geometric clustering
algorithms such as K-means, Expectation-Maximization, hierarchical clustering, and
others can be applied to the embedded nodes.

If k = 2 or 3, then direct visualization of the graph can also be carried out.
This will be more accurate, but typically less immediately intelligible, than a graph-
drawing algorithm would produce.

3.2. Spectral graph theory 21

3.2.1 The unnormalized graph Laplacian
We now outline more carefully the process for embedding a graph using a spectral
approach.

Given an adjacency matrix, what would be considered a good embedding?
We shall see that there are multiple answers to that question, but we will start with
the simplest case. Suppose we want to embed the nodes of the graph in a single
dimension (that is, along a line) in a way that best reflects their mutually connected
structure. A plausible objective function is:

1
2

n

∑
i, j=1

wi j(fi− f j)
2

where f is a non-zero vector of the positions on the line of the graph’s nodes, and wi j
is the i jth entry of the adjacency matrix, W . This function preferentially places nodes
that are strongly connected close together, and penalizes separation by an amount
proportional to Euclidean distance. The division by 2 is required because every term
appear twice in the sum.

There is no special scale for the vector f describing positions on the line. To
remove the effect of the magnitude of f , we can refine the objective function to:

1
2 ∑

n
i, j=1 wi j(fi− f j)

2

∑
n
i=1 f 2

i

This function is called the Rayleigh quotient.
If f corresponds to the position of each node of the graph in a 1-dimensional

embedding, then a small value for the Rayleigh quotient corresponds to a “good”
embedding. One particular good, but rather uninteresting, embedding would be to
place every node at the same location.

Note also that a vector of locations could be altered by adding or subtracting a
constant from all of its values, but this does not change the embedding in any useful
way. Thus there is still a normalization issue to consider.

A choice for the trivial embedding would be 1, placing every node at location
1, for which the Rayleigh quotient is, of course, equal to zero. This is a very uninter-
esting embedding, but it is useful to impose the property that every other embedding
must have the property that f ⊥ 1, that is they must be centered at the origin, and so
have mean 0. This orthogonality constraint acts to normalize all of the other potential
solutions for the vector f .

A little algebra reveals the matrix equation:

RL(f) =
f ′L f
f ′ f

=
1
2 ∑

n
i, j=1 wi j(fi− f j)

2

∑
n
i=1 f 2

i

for a matrix, L, which is
L = D−W

where D is the diagonal degree matrix of W . We have seen this matrix before. This
matrix, L, is called the unnormalized, or combinatorial, Laplacian of the graph, and

22 Chapter 3. Background

RL is its Rayleigh quotient [61, 62]. The diagonal of L consists of the degrees of
each of the corresponding nodes, and the off-diagonal entries are the negations of
the weights in the corresponding positions of W . The row sums are all zero, so the
Laplacian can be viewed as a kind of normalization of the cloud of points corre-
sponding to the nodes, since they are now (in a curious way) centered around the
origin.

Any vector can be viewed as a linear combination of the eigenvectors U of the
Laplacian matrix L. Since all eigenvectors are orthogonal, the equation Ux = f is
always solvable, where x is the combination coefficient vector. If f is an eigenvector,
the Rayleigh quotient is equal to the corresponding eigenvalue λ . If f is an arbitrary
vector, the Rayleigh quotient value of f =Ux can be calculated as:

RL(f) =
f ′L f
f ′ f

=
(Ux)′L(Ux)
(Ux)′(Ux)

=
x′U ′LUx
x′U ′Ux

=
x′Λx
x′x

=
n

∑
i=1

x2
i

∑
n
i=1 x2

i
λi

Thus, the Rayleigh quotient value of an arbitrary vector is the sum of the eigenvalues
multiplied by a percentage that is calculated by the square of the combination coeffi-
cient. Therefore, the range of the Rayleigh quotient value lies between the minimum
and maximum eigenvalues.

Because the Laplacian matrix is symmetric, we can always find a set of real-
valued orthogonal eigenvectors for L. Furthermore, if a network is connected, only
one eigenvalue of L can be 0, Because the eigenvectors are orthogonal to each other,
any other eigenvector or linear combination of other eigenvectors will automatically
eliminate this trivial solution.

The Rayleigh quotient can be expanded for a set of vectors as coordinates in
multiple dimensions. Thus, the eigenvectors corresponding to the first few smallest
eigenvalues can be viewed as the optimum graph embedding in low dimension. In
the embedded graph, the central node of a group will be placed in the center of the
group, nodes in the same group will be placed close together, and groups that are
different will tend to separate.

The Rayleigh quotient as defined above models embeddings where distance
reflects dissimilarity (since similar nodes are embedded close to one another). How-
ever, if some nodes have degrees much higher than the rest, those nodes with high
degrees contribute more to the numerator of the Rayleigh quotient since they have
more non-zero entries in the corresponding rows of the adjacency matrix. The effect
is to place such high-degree nodes slightly closer to their neighbors than they “should
be”. In other words, the embedding space is distorted to become slightly denser in
the region(s) around high-degree nodes. Since the degrees of nodes in social net-
works tend to follow a power law distribution, this distortion can become significant.
The distorting effect that arises from highly imbalanced node degrees has motivated
the definition of other Rayleigh quotients, and so other Laplacians, to compensate.

3.2. Spectral graph theory 23

3.2.2 The normalized graph Laplacians
The next Rayleigh quotient we shall consider is:

RLsym(f) =
f ′Lsym f

f ′ f
=

1
2 ∑

n
i, j=1 wi j(

fi√
di
− f j√

d j
)2

∑
n
i=1 f 2

i

which adjusts the distances between embedded positions based on the degrees of the
corresponding nodes. As before, there is a corresponding Laplacian matrix, Lsym,
which is called the symmetric (normalized) Laplacian, and can be expressed as:

Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2

where D, as before is the diagonal degree matrix of the adjacency matrix, W . The
diagonal entries of Lsym are all 1s, and the value of the i jth entry is

−
wi j√

d(vi)d(v j)

when the i jth entry of W is non-zero.
The minimum value of the Rayleigh quotient of the symmetric normalized

Laplacian is still 0, but the corresponding vector is the square roots of the degrees,
rather than the constant one vector 1. The symmetric normalized Laplacian Lsym is
still positive semi-definite, and its smallest eigenvalue is 0.

The second variant of the Rayleigh quotient is defined as:

RLrw(f) =
f ′L f
f ′D f

=
1
2 ∑

n
i, j=1 wi j(fi− f j)

2

∑
n
i=1 di f 2

i

with the corresponding random-walk Laplacian given by:

Lrw = D−1L = I−D−1W

The minimum value of the Rayleigh quotient of the random-walk normalized
Laplacian is 0, and the corresponding eigenvector is the constant one vector 1. Thus,
the random-walk normalized Laplacian Lrw is positive semi-definite, and its smallest
eigenvalue is 0, but its eigenvectors are no longer orthogonal. It is easy to see why
from Figure 3.1. The points corresponding to each row of the random-walk matrix
are all in the positive hyperquadrant in the obvious direct embedding. Eigenvectors
that capture the variation in the cloud of such points cannot be guaranteed to be
orthogonal. They are, however, orthogonal to D1/2 and fiD f j = 0.

The two normalized Laplacians are closely related:

Lrw = D−1/2(I−Lsym)D1/2

Both normalized matrices have the same eigenvalues. The vector f is an eigenvector
of Lrw if and only if g = D1/2 f is an eigenvector of Lsym; λ and f are an eigenvalue
and eigenvector of Lrw if and only if λ and f solve the generalized eigenproblem
L f = λD f .

24 Chapter 3. Background

3.3 Spectral pipeline
The overall approach to spectral embedding follows these steps:

• Construct an adjacency matrix based on the node–node relationship intensities.

• Choose a Rayleigh quotient objective function that captures the desired prop-
erties of a “good” embedding.

• Find the Laplacian matrix corresponding to this Rayleigh quotient (the choice
of objective function is constrained by the necessity to find such a matrix).
Once this step has been done, adjacency matrices can be directly converted to
Laplacians without explicit attention to the Rayleigh quotient.

• Compute an eigendecomposition of the Laplacian matrix.

• Perform a projective embedding of the nodes and edges into the space spanned
by some number of the eigenvectors of the eigendecomposition, ignoring the
last eigenvector (with corresponding 0 eigenvalue).

• In this geometric representation of the graph, positioning of the point corre-
sponding to each node corresponds to its global importance (more central =
more important), distances reflect similarity as it was expressed by the struc-
ture of the Rayleigh quotient, and standard operations on geometric spaces,
such as clustering, can be applied. If the dimensionality is low enough, the
graph can be visualized.

We will almost always be interested in networks that are connected. However, the
number of zero-valued eigenvalues equals the number of connected components of
the graph, so it is easy to tell when the network is not fully connected.

3.4 Spectral approaches to clustering
So far, we have concentrated on embedding a graph using spectral techniques. How-
ever, a substantial amount of work has focused on the role of spectral embedding in
graph clustering. This is both an application of spectral embedding, and a means of
justifying certain choices of spectral embedding techniques.

Large social networks tend not to have well-defined clusters because of the
number of different kinds of connections among individuals. But there are other set-
tings where the number of nodes is smaller, or only particular kinds of relationships
are being considered, where it makes sense to ask whether a social network contains
clusters. The concept of a cluster is hard to make rigorous, but the intuition is that
clusters are subgroups of nodes that belong together and are therefore, somehow,
well connected internally but sparsely connected to other parts of the graph. Lapla-
cian clustering techniques can be divided into graph cut, random-walk, or commute
distance approaches.

3.4. Spectral approaches to clustering 25

Graph cut approaches to clustering

For social network data, the graph cut approach is as follows: find a partition of the
network into clusters such that the number of edges between different clusters is low,
and each cluster has a higher density of edges than the network as a whole. When
this is the case, the nodes within a cluster are similar to another, and the nodes in
different clusters are dissimilar to one another. Finding an optimum partition is done
by solving the min-cut problem, defined as minimizing:

cut(A1, ...,Ak) :=
1
2

k

∑
i=1

W (Ai,Ai),

where k is the number of groups, Ai is the complement of Ai, and 1/2 accounts for
the fact that we count each edge twice.

However, in practice, this does not lead to satisfactory partitions because sim-
ply separating the node with the lowest degree from the rest of the graph may give
the minimum cut value [101]. To avoid this problem, two more sophisticated graph
cuts, RatioCut and NCut, were introduced by Hagen and Kahng [38], and Shi and
Malik [84], respectively. The definitions are:

RatioCut(A1, ...,Ak) :=
k

∑
i=1

W (Ai,Ai)

|Ai|
=

k

∑
i=1

cut(Ai,Ai)

|Ai|
,

and

NCut(A1, ...,Ak) :=
k

∑
i=1

W (Ai,Ai)

vol(Ai)
=

k

∑
i=1

cut(Ai,Ai)

vol(Ai)
,

where |Ai| is the number of the nodes in group Ai, and vol(Ai) is the sum of the
degrees of the nodes in group Ai. Both approaches try to find an optimal partition
that not only achieves a small cut value, but also keeps the groups in “balance”.

Solving min-cut problems with balance conditions is NP-hard and so is in-
tractable for large datasets [105]. Fortunately, spectral clustering can be viewed as
an approximate way to solve these problems. Relaxing NCut leads to normalized
spectral clustering, and relaxing RatioCut leads to unnormalized spectral cluster-
ing. The details of proof and discussion can be found in the tutorial written by von
Luxburg [101]. However, the quality of the solution to the relaxed problem is not
guaranteed, so they should be interpreted with some caution. Spielman and Teng
[91] and Kannan et al. [43] have explored some of the relationships between graph
properties and clustering solution quality.

Random walk approaches to clustering

Another way to explain spectral clustering is based on a random walk in the network.
We want to find an embedding in which it is easy for a random walker to travel among
the nodes of one cluster but hard to travel to nodes in a different cluster. The effect
of placing all nodes at the same spot, and the effect of the size of the graph, have

26 Chapter 3. Background

to be eliminated, and the degree of nodes needs to be considered. The non-trivial
eigenvectors associated with the smallest eigenvalues of the random-walk normal-
ized Laplacian matrix, Lrw is a good approximate solution, since the random-walk
matrix and random-walk normalized Laplacian matrix Lrw have the same eigenvec-
tors with corresponding eigenvalues λ and 1−λ , respectively.

Meila and Shi [58] proved that NCut and transition probabilities of the random
walk are formally equal. In other words, finding the minimum value of NCut is
actually looking for a partition where a random walk seldom transitions from one
group to another.

Commute distance approach

In a graph, the commute distance between two nodes is the expected distance of a
random walk from one node to another and back again. Because of the random-
ness, this commute distance takes into account all possible paths between the two
nodes. Even the presence of a long path between two nodes may reduce the com-
mute distance between them. Based on electrical network theory, Klein and Randić
[45] proved that the general commute distance ci j between node i and j could be
computed with the help of the graph Laplacian

ci j = vol(V)
n

∑
k=1

1
λk

(f (k)i − f (k)j)2

where λk and f (k) are the k-th eigenvalue and eigenvector of L. The equation tells
us that the commute distance between two nodes is the sum of the differences in
all eigenvectors divided by the corresponding eigenvalues. Therefore, the smaller
eigenvalues (except 0) and the corresponding eigenvectors play the most important
roles in the commute distance. This commute distance can also be viewed as the av-
erage first-passage time based on a Markov-chain model of random walk [35]. Even
though the commute distance seems to be helpful to explain the spectral embedding,
there is only a rather loose relation between spectral embedding and the commute
distance [101].

3.4.1 Undirected spectral clustering algorithms
Here three clustering algorithms for undirected graphs are introduced based on these
different approaches. All the algorithms begin with an adjacency matrix, W , and a
number, k, of clusters into which the graph is to be partitioned.

Unnormalized Laplacian clustering

After the Laplacian matrix L is constructed, the k smallest eigenvalues and the cor-
responding eigenvectors of L are computed. The ith entries of the k eigenvectors
are viewed as the position coordinates of the node i. Thus, we can directly cluster
the nodes by comparing their positions based on Euclidean distance. The clustering
algorithm can be K-means or any other geometric method.

3.4. Spectral approaches to clustering 27

Random walk normalized Laplacian clustering

In random-walk normalized Laplacian clustering [58], the k smallest eigenvalues and
the corresponding eigenvectors of Lrw are first computed, and then the eigenvectors
are used to cluster the graph in the same way as the unnormalized Laplacian clus-
tering. It should be noted that the (generalized) eigenvectors are not orthogonal to
each other. (Eigenvectors may not be real in some computational environments. For
example, eigenvectors in MATLAB are always orthogonal. If the real part cannot
be orthogonal, it adds an imaginary part to make the eigenvectors orthogonal. We
only need the real part, which is the same as the generalized eigenvectors of the
generalized eigenproblem L f = λD f . Alternatively, we can compute the k small-
est eigenvectors of Lsym first, and then convert them to the eigenvectors for Lrw by
multiplying by D−1/2.)

Symmetric normalized Laplacian clustering

In symmetric normalized Laplacian clustering [71], the k smallest eigenvectors are
first computed, each row considered as coordinates of the corresponding node, and
then the coordinate value of each node is renormalized to norm 1. This corresponds
to projecting the nodes onto the surface of a unit hypersphere with the origin as the
center. The nodes can then be clustered based on the new positions.

3.4.2 Which Laplacian clustering should be used?
When the network is connected, and the degrees of all nodes are approximately the
same, the eigenvectors of the three Laplacian matrices are similar, and the eigenval-
ues of the unnormalized Laplacian matrix are just the degree times the eigenvalues
of the normalized Laplacian matrices. The clustering result will be similar regardless
of which technique is used.

However, if the degrees of nodes in a network are quite different, the three
different techniques will produce different clusterings. As before, there is some ev-
idence that using a normalized Laplacian will lead to better results than using the
unnormalized Laplacian.

One of the arguments is based on the graph cut point of view. As mentioned
earlier, unnormalized Laplacian clustering is an approximation of RatioCut, and nor-
malized Laplacian clustering is an approximation of NCut. The differences between
RatioCut and NCut are the denominators — one uses the number of nodes in a clus-
ter, and the other uses the volume of edges in a cluster. Both cuts minimize the edges
between groups and also maximize the edges within groups. From the definition of
RatioCut and NCut, we can infer that the definitions of within-group RatioCut and
NCut are:

WRatioCut(A1, ...,Ak) :=
k

∑
i=1

W (Ai,Ai)

|Ai|
=

k

∑
i=1

(
vol(Ai)

|Ai|
−W (Ai,Ai)

|Ai|

)

28 Chapter 3. Background

WNCut(A1, ...,Ak) :=
k

∑
i=1

W (Ai,Ai)

vol(Ai)
=

k

∑
i=1

(
1−W (Ai,Ai)

vol(Ai)

)
It is easy to prove that WNCut(A1, ...,Ak) = k− 2 ∗NCut(A1, ...,Ak), but RatioCut
and WRatioCut do not have such a simple relationship, which means that RatioCut
and WRatioCut may not be in one-to-one correspondence. Therefore, NCut is more
natural than RatioCut, and normalized Laplacian clustering is preferable.

In addition, von Luxburg et al. [102–104] presented another argument for the
superiority of normalized Laplacian clustering based on statistical analysis. They
draw data from an underlying probability distributions with different sample sizes.
They showed that the normalized Laplacian clustering converged under some very
general conditions, while the unnormalized Laplacian clustering was only consistent
under strong additional assumptions. Furthermore, they also demonstrated that the
unnormalized Laplacian clustering could fail to converge or converge to trivial solu-
tions in real data. Therefore, the normalized Laplacian clustering is better than the
unnormalized one from both the theoretical and practical points of view.

There are two normalized Laplacian algorithms, and they are closely related.
The question is which normalized Laplacian clustering should be used. Ng et al.
[71] claimed that the random walk Laplacian might be susceptible to bad clustering
compared with symmetric Laplacian clustering when the total degree of the different
groups varies substantially across clusters. However, the claim is weak without any
explanation or proof. Furthermore, the random-walk Laplacian has a more direct
meaning. Thus, it is preferable to use the random-walk Laplacian [101].

3.5 Summary
The general strategy for spectral embedding of a graph requires a transformation of
the adjacency matrix into a Laplacian matrix. This can be thought of as a kind of
normalization, turning the graph inside out so that high-degree nodes are no longer
naturally on the outside of the embedding; or as a result of choosing an objective
function — the Rayleigh quotient — that defines what a “good” embedding should
be.

The eigendecomposition of this Laplacian matrix is then computed. This eigen-
decomposition corresponds to a change of basis in which new axes — the eigenvec-
tors — are arranged in mutually orthogonal directions in which the cloud of points
corresponding to the nodes has large variation.

The final stage is to project the nodes into a subspace of appropriate dimen-
sionality, where geometric calculations can be used to assess similarity, centrality,
clustering, outliers, and so on.

Notes
Donath and Hoffman [25, 26] were the first to suggest partitioning of graphs based
on eigenvectors of connection matrices. At the same time, Fiedler [34] discovered
that the graph partition was closely connected with the second smallest eigenvec-

3.5. Summary 29

tor of a Laplacian [91]. Since then, spectral clustering has been investigated and
extended by many researchers. Applications of the spectral approach were made
popular by the studies of Shi, Malik [84] and Ng et al. [71]. They developed two
versions of normalized spectral clustering algorithms. They also interpreted the idea
of clustering in two different ways, minimum cut and random walk. The non-linear
counterpart, p-Laplacian clustering algorithm was developed by Bühler and Hein
[10]. Subsequently, many extended spectral clustering approaches have been pre-
sented, including spectral co-clustering [23], image segmentation based on spectral
clustering [33], detecting the community structures in networks [69] and improved
spectral clustering algorithms [54, 55]. An overview over the properties and interpre-
tation of Laplacian clustering can be found in von Luxburg [101] and an overview
focused more directly on social networks in Seary and Richards [81].

Chapter 4

Modelling relationships
of different types

Our first use of the layer approach is to model relationships that are of qualitatively
different kinds, such as the examples of friends and colleagues that we have already
mentioned. There are, of course, many different possible relationships: not only
friends and colleagues, but close family members, more distant family members,
school and university friends, fellow members of interest groups, and professional
contacts. These different kinds of relationships have different properties. As the
simplest example, not all of the facts about an individual’s life would necessarily
be appropriate to share with everyone that individual has a relationship with. As
a result, the property of influence would operate differently along some edges than
others because of the kind of information that could/should traverse them.

As we have indicated, our approach will be to use a layer for each kind of
relationship. So there might be a friends layer, a family layer, a colleagues layer,
and so on. There is no difficulty allowing any edge to have an associated weight,
reflecting the intensity of that relationship. Note, however, that these weights have
to be on the same scale, no matter what kind of relationship they are associated with.
For example, it might be natural that family edges have weights that are, on average,
larger than those of colleague edges. To simplify the exposition, we will think of
the different edge types as being labelled with different colors. These colors can be
mapped to any set of relationship types.

The payoff from modelling a social network with typed edges is that we can
determine the structure of the complete ecosystem of individuals with all of their
multiple relationship types. We can also measure the social distance between any
pair of individuals, taking into account all of the ways in which they are connected,
directly and indirectly.

Ignoring the different kinds associated with the relationships — taking the
monochrome view of the social network — loses information about the ways in
which humans relate to one another. In particular, the social network will seem
smaller than it should be; individuals will seem more similar than they “should”.

31

32 Chapter 4. Modelling relationships of different types

4.1 Typed edge model approach
Formally, we model a graph with n nodes and c different edge types by extracting c
subgraphs, each one consisting of copies of all of the nodes, but just the edges of one
particular type. We then connect the subgraphs (layers) together by adding edges
connecting the c versions of each node together in a c-clique. We cannot use a path
to connect the c versions of each node because (a) there is no obvious order for the
different colors, and (b) the embedding of a path is a curved structure which makes
the top and bottom layers special, aggravating (a).

This new, enhanced graph will then be embedded, using a standard spectral
embedding since it is just a conventional graph with cn nodes. Information associated
with the types of edges has been coded in their connection pattern, that is which
nodes they are connected to.

The weights on the edges in each subgraph are just the weights from the orig-
inal graph. The embedding of each subgraph, therefore, reflects the intensity of the
connections of that particular type — a popular social individual may be richly con-
nected in the social subgraph and so will tend to be embedded centrally within the
embedding of that layer.

However, new edges have been created between the versions of the same node
in different subgraphs. What weights should be allocated to these edges that connect
the c copies of each of the original nodes into a c-clique? These edges serve to
align the embeddings of each subgraph because they force the copies of nodes that
represent the same individual to be close to one another. The greater the weights on
these edges, the more the global embedding aligns the subgraphs. It is therefore a
critical choice.

4.2 Typed edge spectral embedding
We have hinted at a principled way to allocate weights to the new vertical edges that
connect the versions of the same node: compute the total degree incident at a node
in a layer, divide the weights of all of the incident edges in that layer by two, and
allocate the remaining half evenly among the c− 1 edges that connect the node to
its versions in the other c−1 layers. The motivation for this choice is that, from the
perspective of each individual subgraph (layer), it behaves like a lazy random walk
— the transitions to other layers are similar to the transitions around a self-loop.

Implicit in our layered model is that each individual plays a different role in the
specialized social networks of each layer. An individual’s role in the friendship social
network is not necessarily the same as in a work-related social network. In particular,
the same individual might be quite central in a friendship social network, but quite
peripheral in a work-related social network. Thus we expect that the (weighted)
degree of versions of the same node might be quite different in different subgraphs.

It is possible that a node might have versions with no connections in a particu-
lar subgraph — they have no relationships of a particular kind. However, the addition
of the vertical edges ensures that they are connected in the larger graph.

The vertical edges model a kind of resistance associated with the differences

4.2. Typed edge spectral embedding 33

between roles. How this works out is easiest to see from an influence or information
flow perspective. For example, an individual might hear a joke at work. If the joke
is to reach that individual’s social domain, they have to remember and repeat it in a
social context, and there is a certain resistance or cost associated with making that
happen.

Our association of the weight of the vertical edge to the total weight of the
individual in a subgraph also reflects the assumption that an individual who is central
or powerful in one subgraph plausibly is in a better position to be central or powerful
in other subgraphs. If they hear more jokes at work (so to speak), they are more
likely to disseminate jokes into their social domain.

We have constructed a cn×cn network in which all of the edges are now of the
same type, so we can embed it in the standard way using spectral embedding, and
project it into an appropriate number of dimensions.

In the embedding, distances represent dissimilarity (equivalently, geometric
closeness represents relationship closeness), but there are now multiple nodes corre-
sponding to each individual. For nodes of the same color, distance represents sim-
ilarity within the subgraph of that color — for example, the distance between two
individuals in a layer representing friendship represents how close they are, or could
be, as friends, but in the context of all of the other relationships of other types in
which they, and their entire group, participate. It is not meaningful to consider the
distance between the embedded point representing the friend role of one individual
and the embedded point representing the colleague role of another.

The length, in the embedding, of each vertical edge reveals the magnitude of
the difference between the role an individual plays in one social network and the role
they play in another. For example, someone who is a key person in both a friend-
and work-related network will be placed centrally in both, and so the vertical edge
connecting those roles will be short. On the other hand, someone who is key in
a friend network but peripheral in the work-related network is being pulled towards
the center of the friend layer, but towards the outside of the work-related layer, and so
his or her vertical edge will tend to be long. The information revealed by the vertical
nodes is only available because of the layered approach to representing typed edges.

Edge prediction uses proximity of two unconnected nodes as the basis for sug-
gesting that the two individuals “should” or “might” have a relationship. Having
multiple versions of nodes corresponding to each individual in the embedding makes
it possible to do typed edge prediction.

If the friend layer versions of two nodes are close but they are not connected,
then we could predict for each of them that “this might be a potential friend” while if
the work-related layer versions are close, we could predict “this might be a potential
colleague”. Such predictions are both more accurate and richer than those that could
be generated from an untyped version of the same social network.

The layer approach imposes costs for creating and embedding a larger matrix,
and the analyses of the embedded network are complicated by the multiple copies
of each node, but there are benefits as well that arise from access to these embedded
multiple versions and, in particular, the similarities and differences between them.

34 Chapter 4. Modelling relationships of different types

Medici bloc Oligarch bloc Oligarch bloc
Medici Bischeri Guadagni

Fioravanti Ardinghelli Da Uzzano
Dietsalvi Altoviti Solosmei
Davanzati Rondinelli Guasconi
Orlandini Pepi Castellani

Cocco-Donati Peruzzi Scambrilla
Valori Benizzi Strozzi

Guicciardini Panciatichi Aldobrandini
Ginori Rucellai Lamberteschi

Tornabuoni Baroncelli
Dall’Antella, Albizzi, Della Casa, Velluti

with divided loyalties.

Table 4.1: Alignment of Florentine families

4.3 Applications of typed networks
To illustrate the power of the typed-edge representation, we build the combined so-
cial network of Florentine families in the 15th Century. This period has been ex-
tensively studied because of the Medici family, who rose from humble beginnings
to dominate Tuscany and the Papacy over the ensuing two centuries. Padgett con-
structed, by hand, a social network [74] of these families in which the edges captured
a variety of relationships. We will use this dataset as a running example. Here we
divide the edges into two general categories: those associated with financial relation-
ships, and those associated with social relationships (mostly marriages). Although
these edges are directed, we ignore this for now by adding the directed adjacency
matrix to its transpose, so that the initial adjacency matrices are undirected.

These Florentine families are divided, by historians, into two blocs: those asso-
ciated strongly with the (upstart) Medicis, and a group of longer-established, oligarch
families. The families and their alignment are shown in Table 4.1.

One popular theory explaining the growth in Medici power at the beginning of
the 15th Century is that they developed two separate social networks. On one hand,
they built financial relationships with nouveau riche families; on the other, they built
marriage ties with the “old money” oligarch families [74]. By keeping these two
kinds of ties distinct, they were able to act as gatekeepers between two communities,
a role they parleyed into power broking.

For the major families of Florence during this period, Figure 4.1 is the graph
of personal ties and Figure 4.2 is the graph of financial ties. There are some families
who have only one type of relationship and so they are placed at the origin in the
embedding in which they are not connected. Figure 4.3 shows the embedding when
both types of edges are used, but their types are not differentiated. We can already

4.3. Applications of typed networks 35

Figure 4.1: The embedding of the Florentine families based on personal rela-
tionships and undirected edges. Color versions of all of the figures are available
at the Github repository https://github.com/PHDZheng/Social-Networks-with-
Rich-Edge-Semantics, which also has MATLAB code and dataset so that you can
look at the embedding results live.

see that the historical hypothesis, that the Medici family acted as middlemen between
two groups of other families, is reasonably well supported.

Figure 4.4 is the embedding when the two types of relationships are modelled
as separate layers. Nodes from the financial layer are labelled in upper case, and
the edges from this layer are represented by solid lines. Nodes from the personal
layer are labelled in lower case, and the edges are represented by dashed lines. The
“vertical” edges between versions of the same nodes are represented by dotted lines.

Figures 4.5 and 4.6 show the cluster of oligarch families in greater detail, but
with the same orientation. The “vertical” edges can be seen, at least for some of the
families.

The differences between the roles of each family are small. There are obvious
differences for the peripherally placed families (Davanzati and Valori), but these are
the least important families because they are placed peripherally, and the length of
their edges is also mostly a side effect of how unusual they are. The placement of
the personal Medici node is closer to the oligarch families, while the placement of
the financial node is closer to the Medici-aligned families, providing some evidence
to support the hypothesis that the Medici family acted as a middleman in Florentine
society, as suggested by Padgett and Ansell [74].

https://github.com/PHDZheng/Social-Networks-with-Rich-Edge-Semantics
https://github.com/PHDZheng/Social-Networks-with-Rich-Edge-Semantics

36 Chapter 4. Modelling relationships of different types

Figure 4.2: The embedding of the Florentine families based on financial relationships
and undirected edges

Edge prediction

Edge prediction uses the structure of the embedding and, in particular, the existence
of Euclidean distance as an encoding of similarity, to predict pairs of nodes that are
not already connected but for which an edge is plausible.

Edge prediction is a nice illustration of how social networks integrate local
information into a global whole which then has local implications. The two nodes
for which a joining edge is recommended are detected as similar because of all of
the other nodes and edges in the entire social network, and their mutual similarities.

Although the embedding is quite cluttered, we can get insights by computing
the pairwise distances. One of the shortest distances is between the Pepi and Scam-
brilla families. Castellani is the only family that has a relationship (marriage) with
them. Since the Pepi and Scambrilla families have the same connections, they are
embedded in the same place, suggesting that they play effectively equivalent roles in
the social system of Florence and so should have an edge between them.

The Strozzi and Medici families are quite remote from one another in this
social network, but the embedding suggests that, if they make a connection, it is sig-
nificantly more likely to be a marriage connection rather than a financial connection
— the distances between them in the embedding are 0.124 (personal) and 0.145 (fi-
nancial). That is indeed what happened: the Strozzis married into the Medicis, but
not until years later.

4.4. Summary 37

Figure 4.3: Undirected embedding of Florentine families ignoring edge types

4.4 Summary
Our first use of the layered-subgraph embedding approach has been used to embed
and analyze graphs with multiple edge types, where the edges are weighted but undi-
rected. The construction requires allocating weights to the new edges that connect
different versions of the same node. We have motivated this by appealing to the intu-
ition of lazy random walks as a formal justification, and to the reality that individuals
who are influential in one domain are often influential in others as a pragmatic justi-
fication.

We have illustrated how this approach works with a practical example, which
we will revisit throughout the book, the power structure around the Medici family
in 15th Century Florence. The embedding provides a more nuanced representation
of the social network of the city than those based on either the financial or personal
networks alone, and more than the social network obtained by simply combining
them. We have also illustrated how edge prediction can be generalized to predict not
only the potential existence of an edge, but also its probable type.

Notes
There have been two different ways to frame the problem of typed edges based on
different assumptions. One way to consider the problem is to assume that the under-
lying graph structures of the different edge types in a dataset are somehow consistent
with one another. Another way to consider this problem is to assume that each edge

38 Chapter 4. Modelling relationships of different types

Figure 4.4: Embedding of Florentine families with typed but undirected edges; there
are now two versions of each node. Financial layer: solid lines; personal layer:
dashed lines; vertical edges: dotted lines. Little can be seen of the central structure
in this view, but zoomed-in versions are shown in subsequent figures.

type graph has its own underlying structure, but is influenced by others.
Most attempts to represent graphs with different edge types are based on the

first assumption, and two common strategies can be applied. One strategy is to com-
bine all the subgraphs of each edge type into a consistent whole, and then do further
analysis based on the new graph. Directly adding all subgraphs together is the easiest
way. However, when the density of each edge type is quite different, the final embed-
ding of the whole graph tends to be based mostly on the structure of the edge type
with the greatest density. Thus, some kind of normalization is usually the first step.
For example, Zhou and Burges [119] combined random walk normalized Laplacian
matrices of different views with user-determined weights for the views. Xia et al.
[107] used iterative techniques to optimize the weights of different views, and then
combined symmetric normalized Laplacian matrices into a whole. Cheng and Zhao
[16] combined the distances in each separate Laplacian embedding to create a com-
pletely new similarity matrix and then repeated the spectral clustering of this matrix
to produce the final embedding. Muthukrishnan et al. [66] fused all subgraphs to-
gether using a regularization framework over edges in multiple graphs, and then
applied the Laplacian approach. Dong et al. [28] and Tao et al. [97] used a similar
way to merge the Laplacian matrices of each subgraph into a general Laplacian ma-
trix for embedding. The problem with this strategy is deciding how the individual
representations should be combined, and there is usually not enough information to

4.4. Summary 39

Figure 4.5: Zooming in to the embedded Florentine families. Financial layer: solid
lines; personal layer: dashed lines; vertical edges: dotted lines.

decide this in a principled way.
The other strategy is to find an optimum embedding that somehow represents

all the subgraphs, whose values are determined using a regularization framework.
For example, Tang et al. [96] used an approach that they called Linked Matrix Fac-
torization to decompose each graph and then found the common factor for all graphs
as a low-dimensional embedding of entities characterized by multiple graphs. Dong
et al. [27] used an approach to find a set of vectors that are close to all the random
walk Laplacian eigenvectors of all subgraphs, and then used the first k vectors as a
common representation. Kumar et al. [46, 47] used iterative techniques to find low-
dimensional embeddings of each subgraph which were highly similar to each other.
Regularization is problematic because it is not clear whether we should build a global
regularizer that applies equally to edges of each type and to the edges that connect
different subgraphs, or whether each subgraph should have its own regularizer and

40 Chapter 4. Modelling relationships of different types

Figure 4.6: Zooming in even further. Financial layer: solid lines; personal layer:
dashed lines; vertical edges: dotted lines.

there should also be another regularizer for connecting different edge types. There
do not seem to be compelling arguments for any of the above possibilities, let alone
a way to relate them to one another.

The approach in this chapter was first described in Skillicorn and Zheng [87].

Chapter 5

Modelling asymmetric
relationships

We have seen that there are advantages to modelling connections between nodes in
a social network as edges of qualitatively different types. We now turn to settings
in which it is appropriate to represent edges as having a direction, from one node
to another node. Arguably this is actually the normal case. Experiments with so-
cial groups have shown that relationships are rarely symmetric; A believes that B is
a close friend, while B believes that A is an acquaintance. There are also many set-
tings where direction is obvious: a hierarchical organization such as some businesses
and militaries, where relationship has an element of command; and networks where
relationships reflect influence or information flow from one participant to the other.

As a practical matter, edges with a direction can be represented straightfor-
wardly in an adjacency matrix, by allowing different weights on the i jth and jith
edges. However, the adjacency matrix is now no longer symmetric. The spectral
embedding technique we have used so far requires that the adjacency matrix, and
so the Laplacian derived from it, are symmetric, so we must develop a new method
that deals with this issue. We will develop a layer approach that handles directed
graphs, but first we will review the state-of-the-art approach to spectral embedding
of directed graphs.

5.1 Conventional directed spectral graph
embedding

The conventional way to embed directed graphs is due to Chung [20]. Let W be the
asymmetric adjacency matrix of the directed graph, and P the random-walk matrix
obtained, as usual, by dividing each row by the corresponding row sum.

The following Rayleigh quotient provides some insight into what a good em-
bedding should be like. We want to find embeddings, f , for which this function is

41

42 Chapter 5. Modelling asymmetric relationships

small:

R(f) =
∑

n
i, j=1 πiPi j(fi− f j)

2

2∑
n
i=1 πi f 2

i

where P is the random-walk matrix and π is a measure of the importance of the ith
node. In other words, this function tries to place well-connected important nodes
close together.

P is defined by Pi j = Wi j/di or, if D is the diagonal degree matrix, by P =
D−1W This implies d′P = 1′DP = 1′W = d′ for the undirected case. π is computed
as the principal left eigenvector of the transition matrix P with the corresponding
eigenvalue 1, that is π ′P = π ′. Thus π = d/∑

n
i=1 di for undirected graphs. In other

words, for an undirected graph, the degree of a node is directly interpretable as its
importance. The importance of a node is proportional to its accessibility to a random
walker, which is equivalent to the proportion of time a random walker spends at that
node.

In a directed graph, the relationship between degree and importance is more
subtle. From a random-walk perspective, the fraction of time that a random walker
spends at a particular node does not just depend on the total weight of its incoming
edges. It also depends on how accessible its upstream nodes are, which in turn
depends on the weight of the incoming edges to those upstream nodes, and so on.
Thus importance is a property that depends on the global structure of the network,
rather than being a mostly local property as it is for an undirected graph.

The πi in this Rayleigh quotient plays the role of degree in earlier Laplacians.
It captures the property of global importance, and therefore requires that the embed-
dings of important nodes count for more in the objective function that the Rayleigh
quotient describes. Computing these πis requires a global computation; they are
the elements of the principal left eigenvector of the transition matrix, P. Call this
eigenvector Π. (Note the similarity to the PageRank calculation used for ranking by
Google.)

Based on this Rayleigh quotient, we define the symmetric Laplacian as:

L̂dir = I− Π1/2PΠ−1/2 +Π−1/2P′Π1/2

2

and the combinatorial Laplacian as:

Ldir = Π− ΠP+P′Π
2

Both of these Laplacians are more sophisticated versions of symmetrizing a matrix
by adding its transpose; in this case adjusting the entries based on the global impor-
tance of each node.

It can be proved that

R(f) =
< f Ldir, f >
< f Π, f >

=
< gL̂dir,g >

< g,g >

where g = Π1/2 f .

5.1. Conventional directed spectral graph embedding 43

Furthermore, it is easy to prove that both Laplacians have the same eigenval-
ues and eigenvectors as the conventional Laplacian when the adjacency matrix is
undirected.

Since Chung’s approach is conceptually rigorous and has provable properties,
it is widely used for analyzing directed networks, for example Zhou et al. [120, 121],
Zhou and Burges [119], Huang et al. [40], Chen et al. [15], and Skillicorn and Zheng
[88].

An extra technical step is required for most directed graphs. A random walker
in a directed graph can become trapped at a sink node, one that has only incoming
edges. However, this is easy to detect because the row corresponding to that node
has no non-zero entries. The same problem, however, can happen for an entire region
of the graph — there are no outgoing edges from the region — and this is expensive
to detect in practice. The conventional solution is known as the “Google trick”. It
consists of adding a constant ε matrix to the transition matrix, allowing a random
walker to escape from any node of the graph to any other node, with some low
probability, ε .

In its use by Google, this constant matrix models the behavior of web users
who visit one page and then change to another by some process other than following
links (perhaps typing in a URL directly, or using a bookmark). For social networks
with directed relationships, the semantics of this constant matrix is more problem-
atic. For example, if the edges are directed because they are modelling influence,
then a constant matrix models the ability of every node to influence, weakly, every
other node. It is not obvious what this might represent; perhaps something like mass
media. If edges are directed because they are modelling positive affect, then a con-
stant matrix models a global positive feeling. These are strong assumptions which
may not be appropriate in social network applications.

The use of the Google trick also has two substantial computational drawbacks.
First, the adjacency matrix is now dense which prevents the use of sparse matrix
techniques for the eigendecompositions, and so increases the computational time
and storage required. Second, outlying nodes tend to be placed in positions folded
back towards the center of the embedding. This is because, although the added edges
are individually weak, there are many of them. This tends to make such nodes seem
to be, misleadingly, more important than they actually are.

After these refinements, Chung’s spectral embedding uses these steps [20]:

1. Convert the non-symmetric adjacency matrix of the (directed) social network
to a random walk matrix, R, by dividing each row by the row sum.

2. Add a constant matrix, ε to R, and compute its Laplacian.

3. Compute the principal left eigenvector of this Laplacian matrix and create a
diagonal matrix, Π, with these values on the diagonal.

4. Form the symmetric matrix:

L = I− Π1/2LrwΠ−1/2 +Π−1/2L′rwΠ1/2

2

44 Chapter 5. Modelling asymmetric relationships

and use an eigendecomposition to embed L in the standard way.

The drawbacks of the Chung approach are not trivial. Computational times are
long, even for networks of moderate size, and the resulting embedding, as we shall
show, has significant distortions.

5.2 Directed edge layered approach
We now develop a new way to embed directed networks, using our layer intuition,
but in a different way than the way it was used for typed networks. The common
theme is that we transform information about the properties of edges into patterns
of connection of those edges, which can then be simplified to undirected, untyped,
although still weighted, edges.

The key idea, as before, is to split each node v into two versions, vin and vout .
The in versions are placed in one layer, and the out versions in another.

If we have a directed edge from, say, node p to node q, then it becomes an
undirected edge from pout to qin. The out versions of each node are the connection
points for the outgoing edges of directed edges, and the in versions are the connection
points for the incoming edges. The connection pattern encodes the direction of the
edges, allowing them to be undirected in the expanded graph. The original directed
edges become connections between a layer containing the outgoing versions of each
node, and a layer containing the incoming versions of each layer.

As before, we add edges (“between the layers” but vertically) to connect vin
and vout . The weight associated with these edges is the sum of the in-degree and
out-degree of the nodes vin and vout , because this weight provably ensures that both
vin and vout will be placed in the same cluster by any reasonable clustering of the
larger graph, and also ensures that the result of the directed embedding agrees with
the embedding of the graph if edge directions are ignored.

Unlike the previous embedding of typed edges, all of the edges connect from
one layer to the other; those from the original graph as “diagonal” edges, and the
added edges as “vertical” edges. As a result, the graph is bipartite (there are no
connections within each layer).

The resulting 2n-node graph is symmetric, and so standard spectral embedding
techniques can be used to embed it. Formally, let W be the (non-symmetric) adja-
cency matrix of the directed graph, and Din and Dout be the diagonal matrices of the
in-degrees and out-degrees, respectively: din1, ...dinn and dout1, ...doutn. Let M be
the adjacency matrix of the larger graph in which nodes have been split into in and
out copies. M is a 2n×2n matrix defined as

M =

(
0 W +Din +Dout

W ′+Din +Dout 0

)
.

Let T be the diagonal degree matrix of M with the degrees t1out , ...tnout , t1in, ...tnin,
where tiout = dini +2∗douti and tiin = 2∗dini +douti. The corresponding Laplacian
matrices are:

Ld = T −M,

5.2. Directed edge layered approach 45

Ldrw = I−T−1M.

An eigendecomposition is used to embed Ld or Ldrw in the standard way.
Computationally, the matrix is now 2n×2n but, as before, the only new non-

zero entries are the diagonal submatrices representing the “vertical” edges. Thus the
matrix is sparse, only one eigendecomposition is required, and so execution times
are much smaller than for the Chung technique.

There are two points corresponding to each node, one corresponding to its
in version and one corresponding to its out version. This has two new, substantial
benefits:

1. The distance between the two versions of a node captures how much asym-
metric flow there is through that node. If the flow primarily originates and
terminates in the same subset of other nodes, then this flow will be small.
However, if it originates in one subset of nodes and terminates in another,
this flow will be large (and the distance between versions will also be large).
Thus, this distance in the embedding defines a new, and useful, form of flow
betweenness.

2. Directed edge prediction now becomes possible. For example, if an in version
of one node is embedded close to an out version of another node and they
are not connected in the original graph, then a directed edge from the node
associated with the out-node to the node associated with the in-node can be
predicted.

Both of these properties are shown in the embedding of a directed cycle, shown
in Figure 5.1.

(a) Original graph (b) Graph Laplacian embedding

Figure 5.1: A circle graph Laplacian embedding in two dimensions. The solid edges
are the original edges of the directed graph and the dashed edges are the edges con-
necting the versions of each node.

As expected, there is net flow through each node, shown by the length of the
dashed edges connecting the two versions of each node. Also, for example, 1out and
3in are closer than 1in and 3out . So if we were to predict an edge between nodes 1 and
3, we would predict that it would be directed from 1 to 3, rather than the converse,
which is clearly correct.

46 Chapter 5. Modelling asymmetric relationships

5.2.1 Validation of the new directed embedding
The above example shows how our approach works. To justify this approach, we
demonstrate that the following two properties hold:

• The connection between the in and out versions of each node is strong enough
to keep them in the same cluster if the graph is partitioned or clustered.

• When applied to an undirected graph, the result is the same as for the conven-
tional Laplacian embedding.

The proofs of these properties are as follows:
Property 1: Consistency in clustering
The proofs can be found in Appendices A and B.
Property 2: Consistency with the undirected Laplacian
For an undirected graph, if λ is an eigenvalue of L with eigenvector f , λ is an eigen-
value of Ld with eigenvector

[f
f

]
.

Since matrix W is symmetric for an undirected graph, W = W ′ and dini =
douti = di. Thus, T =

[
3D 0
0 3D

]
, and

Ld

[
f
f

]
=

(
T −

[
0 W +Din +Dout

W ′+Din +Dout 0

])[
f
f

]
=

[
3D −W −2D

−W −2D 3D

][
f
f

]
=

[
(3D−W −2D) f
(−W −2D+3D) f

]
=

[
(D−W) f
(D−W) f

]
= λ

[
f
f

]
Furthermore, the eigenvalues of the other “half” of Ld are β with eigenvectors[g

−g
]

if β is an eigenvalue of 5D+W with eigenvector g. Based on the graph cut point
of view, the eigenvector

[g
−g
]

will separate the in and out copies into two different
groups. The corresponding cut value is so big that we would not consider it as a good
partition. It is the same with the eigenvalue β . Therefore, a good embedding of the
Laplacian matrix Ld for an undirected graph is the same as the Laplacian matrix L.

For an undirected graph, if λ is an eigenvalue of Lrw with eigenvector f , λ/3
is an eigenvalue of Ldrw with eigenvector

[f
f

]
.

5.2. Directed edge layered approach 47

Since Lrw = I−D−1W ,

Ldrw

[
f
f

]
=

[
I −D−1

3 (W+Din+Dout)
−D−1

3 (W ′+Din+Dout) I

][
f
f

]

=

[
I −D−1W−2I

3
−D−1W−2I

3 I

][
f
f

]

=

[
I−D−1W

3 f
I−D−1W

3 f

]

=
λ

3

[
f
f

]
The eigenvalues of the other “half” of Ldrw are 2− λ

3 with eigenvectors
[f
− f

]
. Since

0≤ λ ≤ 2, the eigenvalues λ/3 are always smaller than the eigenvalues 2− λ

3 . There-
fore, a good embedding of the Laplacian matrix Ldrw for an undirected graph is the
same as the Laplacian matrix Lrw.

5.2.2 SVD computation for the directed edge model
approach

The larger matrix constructed by replicating each node into in and out versions has
edges only between the layers, and so represents a bipartite graph. The eigenvalues
and eigenvectors of Ldrw (the generalized eigenproblem of Ldu= λTu) can be solved
using singular value decomposition (SVD). The proof is similar to the normalized
spectral technique for bipartite graphs [23]. The size of the matrices for SVD is the
same as the size of the original adjacency matrix, and the computational time is also
the same as conventional Laplacian approaches.

The directed spectral embedding algorithm for connected graphs can be com-
puted in these four steps.

Algorithm: Given a directed adjacency matrix W , and a choice of k−1 dimensions
for embedding.

1. Compute the diagonal matrices of outgoing and incoming degrees from W :
Dout and Din.

2. Add directed edges to connect the in and out versions of each node, and nor-
malize as:

A =(2Dout+Din)
−1/2∗(W+Dout+Din)∗(2Din+Dout)

−1/2.

48 Chapter 5. Modelling asymmetric relationships

3. Compute the first k singular values αi and the corresponding singular vectors
ui and vi of A.

4. Modify and combine the embedding vectors as:

fi =

[
(2Dout +Din)

−1/2ui

(2Din +Dout)
−1/2vi

]
.

and embed the graph into k−1 dimensions by using the k−1 vectors fi (omit-
ting the trivial vector 1 with singular value 1).

The range of eigenvalues λ of the directed Laplacian matrix Ldrw is from 0
and 2. However, the range of singular values α of matrix A is between 0 and 1. The
eigenvalues of the other “half” of Ldrw are λ2n−i = 2−αi with eigenvectors

f2n−i =

[
(2Dout +Din)

−1/2ui

−(2Din +Dout)
−1/2vi

]
In contrast to previous approaches, our directed graph embedding has the fol-

lowing advantages:

1. The directional information about each original edge is now encoded by the
structure of the (undirected) connections between the new versions of the orig-
inal nodes; that is, the graph to be embedded is now undirected. This avoids
the need to use the Google trick to address reducibility, and therefore keeps
the graph sparse. This is a great performance advantage.

2. Because the (expanded) graph is undirected, there is no need to compute a left
eigenvector to determine each node’s importance. Degree in the undirected
graph, a local property, suffices.

These two advantages are obtained at the cost of making the graph nominally twice
as big, but the additional cost remains linear in the original size of the network;
we can use sparse matrix decomposition techniques, and so this adds only a small
constant factor.

5.3 Applications of directed networks
We have shown that our methods are mathematically well behaved and motivated.
As applications of our methods for embedding and clustering, we use a synthetic
dataset and four real-world directed networks to demonstrate the effectiveness of the
directed graph spectral embedding. By comparing our results with Chung’s directed
embeddings we show how our approach is an improvement.

In the embedding of directed networks, there are two versions of each node,
one corresponding to incoming edges and the other to outgoing edges. The position
of each member of a pair is important, but so is their distance from one another —

5.3. Applications of directed networks 49

the greater this distance, the more different their upstream and downstream sets of
neighbors.

For larger networks, where visualizations of the graph become cluttered and
hard to understand, tabulating edge lengths can indicate regions of the graphs whose
nodes are unusual in some way. For example, connected nodes that are placed far
from one another are anomalous, since connection and closeness are naturally asso-
ciated. However, edges on the periphery of the graph tend to be long simply because
of their poor connectivity to the rest of the graph. We therefore need a measure that
differentiates expected long edges from unexpected long edges. An unexpected long
edge is one that is being “pulled” because different subsets of its neighbors all want
it to be close to them.

The embedding of a graph can be considered as the fixed point of a relax-
ation in which edge weight is proportional to internode pull. Therefore, globally,
the distance between two nodes reflects their global dissimilarity. In other words,
length ∝ 1/edgeweight. We call the product of length and edgeweight the normal-
ized edge length of an edge. Normalized edge lengths should be roughly constant for
all “normal” edges of the graph. Edges for which this value is far from average, espe-
cially much larger than average, are those whose local environment is distorted. Such
edges are likely to connect nodes of special interest. For example, a node that acts
as a “broker” between two disparate subgroups will tend to have the relevant edges
pulled towards the subgroups; these edges will tend to be longer in the embedding
than their edge weight and local neighborhood would suggest.

We can now see why edge weight prediction is much harder than edge (exis-
tence) prediction. For the ordinary or typical regions of the network, the closeness
of two unconnected nodes may indeed reflect the strength of the potential relation-
ship between them, and a weight prediction might be quite accurate. However, in
less typical regions of the network, those for which the normalized edge lengths are
far from average, the embedded distance is no longer an estimate of intensity. The
problem is that it is difficult to tell these regions apart since a deviation in normalized
edge length is a property of an edge and not of a region. In other words, a network
region may be typical (embedded edge lengths match edge weights), distorted (most
embedded lengths deviate from edge weights), or a hybrid (embedded lengths mostly
match edge weights, but some edge lengths deviate from their expected lengths).

The difference between a node that brokers symmetric flow and one that bro-
kers asymmetric flow is shown in Figure 5.2. The graph consists of two directed
cliques connected to one another in two ways. One connection (via node 12) is bidi-
rectional; the other (via node 11) is one-directional. The embedding shows, by the
length of the dotted line, the strength of the asymmetric flow through node 11, in
comparison to the flow through node 12.

Our second example is a more complex synthetic dataset. It consists of two
circles in two dimensions, with small random variations for each node, and a joining
bridge, shown in Figure 5.3(a), with the subgraphs given different shadings. Each
node is connected to its five nearest neighbors by outgoing directed edges. Hence
the nodes in the bridge are better connected to the adjacent circle nodes than those
circle nodes are connected to nodes in the bridge. Figure 5.3(b) shows the new

50 Chapter 5. Modelling asymmetric relationships

(a) Graph with two clusters (b) Embedding of the two broker nodes

Figure 5.2: The difference between symmetric and asymmetric flow

directed embedding, and Figure 5.3(c) shows Chung’s directed embedding of this
graph with the bridge nodes highlighted. Visually, our approach separates the three
groups, but the Chung embedding is not as revealing, especially for the bridge nodes.
Figures 5.3(d) and 5.3(e) show the nodes shaded by average normalized embedded
lengths of incident edges, and length of in-out edges. Figure 5.3(d) shows that the
nodes that have longer average lengths usually occur in gaps in the two-dimensional
map. Figure 5.3(e) shows that the node at the bottom of bridge has the longest in-out
length in the embedding and therefore is the most important node for net flow. This
node is not only one of the bridge nodes, but it also connects to the inner circle nodes,
while the inner circle nodes tend not to connect to it.

U.K. university dataset

To further compare the quality of the different directed Laplacian embeddings, we
use four real-world datasets. First, we use the social network of the academic staff
of a Faculty in a U.K. university, consisting of three separate schools. This data
was used by Nepusz et al. [68]. Figure 5.4 shows the embeddings of the network,
shaded by schools, in two dimensions. From the visualization, it can be seen that our
directed embedding is better than Chung’s, even though both detect the difference in
school affiliation.

Florentine families with edges directed by power

Second, we return to the social network of Florentine families in the 15th Century.
For financial interactions between families, we direct the edges to represent power
— a family that lends money to another is surely the more powerful of the two.
Similarly, we direct the edges representing marriages between families. Here it is
less clear how to direct the edges to capture information about which family is more
powerful. We direct them from the family providing the son to the family providing
the daughter. The families and their alignment are shown in Table 4.1.

5.3. Applications of directed networks 51

(a) Map of two joined circles

(b) Embedding using the new directed
approach

(c) Embedding using Chung’s directed
approach

(d) Shaded by average normalized
edge length in the new embedding

(e) Shaded by in-out edge length in the
new embedding

Figure 5.3: Embeddings of synthetic datasets

Figure 5.5(a) shows the directed graph embedding using Chung’s directed ap-
proach in three dimensions. There is a clear separation between the Medici group
and oligarch families, except for Guicciardini and Tornabuoni. Medici is located in
the center and is the key family that connects the two blocs. The Medici group forms
three long arms in the embedding.

This embedding shows that the oligarch families are well connected, since they
are all placed close to one another; but the Medici group is only weakly connected.
This embedding is consistent with historians’ views.

52 Chapter 5. Modelling asymmetric relationships

(a) New directed embedding

(b) Chung directed embedding

Figure 5.4: Network embeddings of UK university faculties

5.3. Applications of directed networks 53

Names in-out average Din Dout
BISCHERI 19 45 5 4
GUADAGNI 50 75 6 6
FIORAVANTI 30 46 1 1
DALL’ANTELLA 13 36 0 1
DIETSALVI 13 38 1 0
DAVANZATI 55 155 0 1
ORLANDINI 78 264 2 0
COCCO-DONATI 49 134 3 0
VALORI 23 65 0 1
GUICCIARDINI 28 89 4 5
GINORI 36 64 6 3
TORNABUONI 111 70 4 3
MEDICI 136 147 6 19
ARDINGHELLI 42 67 1 2
DA-UZZANO 6 98 2 2
ALTOVITI 4 12 1 0
SOLOSMEI 7 40 2 2
RONDINELLI 18 70 5 4
GUASCONI 76 98 9 8
ALBIZZI 26 68 12 7
DELLA-CASA 26 64 3 3
PEPI 9 25 1 0
CASTELLANI 42 43 7 8
PERUZZI 93 52 6 9
SCAMBRILLA 9 25 1 0
BENIZZI 31 31 2 2
STROZZI 43 51 6 8
PANCIATICHI 43 33 2 1
ALDOBRANDINI 5 15 1 0
RUCELLAI 9 45 2 1
LAMBERTESCHI 8 52 5 6
BARONCELLI 55 77 3 2
VELLUTI 4 67 3 3
Means 36.3 68.6 3.4 3.4
Std 32.2 48.9 2.8 3.9

Table 5.1: Normalized edge lengths for Florentine families (×1000) and degrees

54 Chapter 5. Modelling asymmetric relationships

(a) Chung directed embedding

(b) New directed embedding

Figure 5.5: Network embeddings of Florentine families

One of the problems caused by the use of the “Google trick” is the folding
back of the arms on the left of the embedding which makes, for example, Valori
seem more important (central) than Cocco-Donati, when the opposite is the case.

Figure 5.5(b) shows the three-dimensional embedding using our new directed
approach. Edges between the in and out versions of each individual node are drawn
with hatched lines. More detail is evident within the oligarch cluster, and the spurious
placement of poorly connected nodes (for example, Valori) does not occur. The
embedding indicates that Medici tends to be the channel for net flow from oligarch

5.3. Applications of directed networks 55

families to the Medici group since the Medici in node is close to the oligarch families
and the Medici out node is close to the Medici group.

We can use this data for edge prediction by computing and comparing the
distances between the out version of a node and the in version of the other and the
converse. For example, the Strozzi family were one of the most powerful of the
oligarchs. The distance from Medici to Strozzi is 0.0458 and from Strozzi to Medici
is 0.0413 so we would (weakly) predict that such an edge, if created, would point
from Strozzi to Medici. At the time of this dataset, Medici was still relatively weak,
so this seems plausible. A more asymmetric example is the relationship between
the Tornabuoni family and the Guasconi family. The distance from Tornabuoni to
Guasconi is 0.2186 while the converse distance is 0.2412, so we would predict the
direction of such an edge to be from Tornabuoni to Guasconi.

While the figures could provide more detailed useful information if they could
be rotated and zoomed into in real time, there is also useful information to be gleaned
from measures computed about the embedding. The in-out normalized edge length
and the average neighborhood edge length are given in Table 5.1. Recall that the
in-out lengths reveal the amount of asymmetric flow through each (original) node,
while the normalized edge length reveals the amount of local distortion associated
with each (original) edge.

The Medici-aligned families tend to have long normalized edges since they
are weakly connected. However, the fact that Medici has long normalized edges but
high degrees makes it special. The average neighborhood edge length indicates that
Medici is the key broker between the two blocs in the embedding. The in-out edge
associated with Medici has the highest normalized value of all normalized added
edges, indicating their importance to flow of influence, and the direction indicates
that the oligarch families can influence the Medici-aligned families via the Medici
family, but influence does not flow strongly in the reverse direction. Again, this is
consistent with historians’ views of this period.

Macaque brain connections

The third real-world dataset we use is the visuotactile brain areas and connection
network model of the macaque monkey. The model was defined by Felleman & Van
Essen [32] as well as Hilgetag et al. [39] and used by Négyessy et al. [67]. The
model consists of 45 areas and 463 directed connections.

Figure 5.6 shows the embeddings of the network of the main cortical areas in
two dimensions. Both embeddings reveal similar structure for this network, and there
is a clear separation between visual and sensorimotor areas in both embeddings. The
area VIP occupies a central position in both embeddings, and areas LIP, 7a, and 46
of the visual cortex are also close to the center. This is similar to the findings of
Négyessy et al. [67]. However, in Figure 5.6(a) (Chung’s embedding), the perirhinal
cortex areas, 35 and 36, are far from the visual cortical areas, even though they have
connections to both groups. In Figure 5.6(b) (our new embedding), areas 35 and 36
are not only closer to the visual cortical areas, but it becomes obvious that they tend
to transmit information from visual cortical areas to sensorimotor areas.

56 Chapter 5. Modelling asymmetric relationships

(a) Chung directed embedding

(b) New directed embedding

Figure 5.6: Network embeddings of Macaque monkey visuotactile brain

Table 5.2 shows that the average neighborhood edge lengths of areas VIP, LIP,
7a and 46 are also all well above average among the visual cortical areas. Area VIP
has a small in-out normalized edge length, while area 46 has a large in-out length.
The perirhinal cortex areas 35 and 36 have the longest in-out length in the sensori-
motor areas. This means that they play roles not only in the connection between the
two groups, but also in net flow from one group to the other.

5.3. Applications of directed networks 57

Names in-out av Din Dout Names in-out av Din Dout
V1 2 77 8 8 V2 92 80 13 15
V3 13 97 14 14 V3A 14 72 12 13
V4 17 189 20 20 V4t 32 77 8 9
VOT 4 139 5 5 VP 15 104 13 14
MT 13 88 16 16 MSTd/p 61 126 16 17
MSTl 17 101 11 8 PO 26 86 15 13
LIP 82 168 18 20 PIP 83 78 8 8
VIP 69 225 20 20 DP 24 95 10 10
7a 179 190 14 10 FST 111 142 18 17
PITd 28 152 5 8 PITv 181 162 11 9
CITd 26 121 3 6 CITv 7 118 8 8
AITd 91 141 9 5 AITv 38 119 7 5
STPp 17 178 10 10 STPa 25 115 4 5
TF 493 212 12 17 TH 128 150 9 12
FEF 432 158 18 20 46 566 225 16 20
3a 13 123 6 6 3b 6 114 4 4
1 71 123 7 8 2 126 130 10 10
5 192 158 10 10 Ri 5 237 4 4
SII 245 271 13 10 7b 206 223 12 10
4 319 132 9 8 6 21 148 10 10
SMA 13 149 8 8 Ig 170 321 6 5
Id 108 280 3 4 35 480 292 4 2
36 773 336 6 2
Means 125.2 156.0 10.3 10.3 Std 173.0 67.4 4.7 5.2

Table 5.2: Normalized edge lengths for Macaque monkey visuotactile brain
(×10000) and degrees

Panama papers

The Panama Papers are a set of documents leaked from a Panamanian law firm,
Mossack Fonseca, detailing the setting up of a large number of shell companies for
the purpose of tax avoidance (but also conceivably tax evasion, money laundering,
and terrorist financing).

The files can be downloaded from: cloudfront-files-1.publicintegrity.org/off
shoreleaks/data-csv.zip.

Figure 5.7 shows the basic structure of tax avoidance using a shell company.
An individual with assets arranges with an intermediary to set up a shell company,
and to give it assets. The apparent owners of the shell company now own these assets
on behalf of the individual. Often these owners are simply “bearer” so that anyone
who can authenticate himself or herself can remove assets from the shell company.

58 Chapter 5. Modelling asymmetric relationships

Figure 5.7: The basic structure of tax avoidance using a shell company

The 2016 version of the Panama Papers contains 1,040,331 nodes of three
kinds: intermediaries, businesses like banks that set up shell companies; entities, the
shell companies themselves; and officers, the apparent owners of these businesses.
There are 4,505,738 directed edges. Edges are directed from intermediaries to the
entities they create, and from the officers to the entities that they apparently own.

A social network this size is too large to examine exhaustively to try and un-
derstand it. We can, however, look at some of its connected components that are
small enough to be intelligible. In particular, we will show that a directed network
embedding is essential; without it, most of the structure disappears.

There are 10,425 connected components, but they shrink in size quite quickly
— the 500th in rank connects only 30 nodes. The largest connected component
connects 942,176 nodes. Its adjacency matrix is shown in Figure 5.8. Notice that it
is asymmetric as expected.

Figure 5.8: The adjacency matrix of the largest connected component

5.3. Applications of directed networks 59

(a) Directed embedding

(b) Zoomed into the main region of the directed embedding

Figure 5.9: Network embeddings for the 6th component of the Panama Papers social
network with directed edges. The out versions of each node are indicated by circles,
the in versions by triangles, and layer nodes that are not connected in the graph are
omitted.

The 2nd-largest connected component connects 1599 nodes, the next 1295, and
so on. All of these components show one of a small set of connection patterns: a di-
rected star with an intermediary at the center, or patterns connecting an intermediary
and a set of officers in a few slightly different ways.

We begin with the 6th component, which exhibits the structure indicated in
Figure 5.7. A single intermediary, Sociata Europenne de Banque in Luxemburg, sets
up 139 shell companies in the British Virgin Islands (for example, Jeddi Industries).
These shell companies are owned by 449 different owners, most being owned by 2
officers, almost all of whom are “bearer”.

Figures 5.9 and 5.10 show the embeddings based on the social network with
directed edges (using our new embedding), and the corresponding embeddings with

60 Chapter 5. Modelling asymmetric relationships

(a) Undirected embedding

(b) Zoomed into the main region of the undirected embedding

Figure 5.10: Network embeddings for the 6th component of the Panama Papers so-
cial network treating edges as undirected

the edges treated as undirected. The zoomed-in versions show what happens in the
main region of the network. The intermediary node is the central one. From it,
directed edges go to a cluster of entity nodes that are quite similar to one another.
Officials are placed further from the center, and directed edges go from these officials
to the entities they own. In contrast to the detailed structure in the directed embed-

5.3. Applications of directed networks 61

(a) Directed embedding

(b) Undirected embedding

Figure 5.11: Network embeddings for the 2nd component of the Panama Papers
social network. The out versions of each node are indicated by circles, the in versions
by triangles, and layer nodes that are not connected in the graph are omitted.

ding, the undirected version places entity and officer nodes in the same region, and
there is no straightforward way to understand their structure.

The 2nd component is a pure star, with an intermediary at the center and 1598
entities, each connected to it by a single edge. The embeddings can be seen in
Figure 5.11. The embeddings for the directed and undirected cases are quite similar,
but the directed embedding makes it possible to see immediately that the structure is
a star with outgoing directed edges.

The 41st component connects 201 nodes by 208 edges. The embeddings are
shown in Figures 5.12 and 5.13. Although the directed and undirected versions are
roughly the same, the directed version makes it possible to understand the structure

62 Chapter 5. Modelling asymmetric relationships

(a) Directed embedding

(b) Zoomed into the lower-right region of the directed embedding

Figure 5.12: Network embeddings for the 41st component of the Panama Papers
social network with directed edges. The out versions of each node are indicated by
circles, the in versions by triangles, and layer nodes that are not connected in the
graph are omitted.

more clearly. The zoomed-in figure is for the lower-right structure in the directed
embedding, and lets us see that this is another star-like structure with a single inter-
mediary and a large number of quite similar branches from it.

The 44th component resembles the 6th component (Figures 5.14 and 5.15) with
similarities between the outlier structure of the directed and undirected versions, but

5.3. Applications of directed networks 63

(a) Undirected embedding

Figure 5.13: Network embeddings for the 41st component of the Panama Papers
social network treating the edges as undirected.

large differences in the fine-grained structure of the embeddings.
We can also get some understanding of the structure within the largest con-

nected component by beginning from the subgraph of well-connected nodes, that is
the subgraph all of whose edge weights exceed a given threshold. Table 5.3 shows
how the number of nodes that remains decreases as the threshold on edge weights
changes. Unsurprisingly, a threshold as small as 3 removes almost 90% of the nodes,
so that there are many nodes (mostly individuals) who only have one or two connec-
tions to the network. However, there is clearly also a core set of nodes that interact
with one another often, since increasing thresholds reduce the size of the graph only
a little. For example, increasing the required threshold from 11 to 20 reduces the
number of nodes in the subgraph by only about a third.

Using a threshold selects only the strong relationships in the social network,
and there is no guarantee that these form a connected subset. For example, when the
threshold of 300 is used, there are only 12 connected components that contain more
than a single pair.

These 12 connected components all have similar structures. The example of
the 10th component is shown in Figure 5.16. The embeddings of the undirected and
directed networks are quite different. This particular component connects all of the
different roles played by Circle Corporate Services as an officer. The structure is
a complex chain where the nodes at one end of the boat-like shape have primarily
outgoing edges, while those at the other end have primarily incoming edges. The
plot of the edges between the two versions of each node, shown in Figure 5.17, show

64 Chapter 5. Modelling asymmetric relationships

(a) Directed embedding

(b) Zoomed into the main region of the directed embedding

Figure 5.14: Network embeddings for the 44th component of the Panama Papers
social network. The out versions of each node are indicated by circles, the in versions
by triangles, and layer nodes that are not connected in the graph are omitted.

that the net flow is greatest for the two extremal nodes and smallest for those in the
(lower) center.

In contrast, the undirected embedding shows simply that there are a collection
of high degree nodes.

5.3. Applications of directed networks 65

(a) Undirected embedding

(b) Zoomed into the main region of the undirected embedding

Figure 5.15: Network embedding for the 44th component of the Panama Papers
social network treating edges as undirected

Threshold Number of nodes
3 156,626
5 70,696
9 32,256
11 26,888
20 19,000
30 16,258
40 14,802
60 12,896
300 5542
600 3284

Table 5.3: Nodes remaining for choices of edge weight threshold

66 Chapter 5. Modelling asymmetric relationships

(a) Directed embedding

(b) Undirected embedding

Figure 5.16: Network embeddings for the 10th component of the subgraph of
Panama Papers social network when an edge weight threshold of 300 is used. The
out versions of each node are indicated by circles, the in versions by triangles, and
layer nodes that are not connected in the graph are omitted.

5.4. Summary 67

Figure 5.17: Edges between the in and out versions of each node from the 10th
component

5.4 Summary
A second way in which edges can have rich properties is by being directed — rep-
resenting relationships that are of different intensities between the same two indi-
viduals. Such asymmetries are common in the real world. They cause difficulties
for the spectral embedding approach, however, because the natural representation
as an adjacency matrix is asymmetric, but spectral embeddings require symmetric
matrices.

Chung’s approach represents a well-motivated way to compute a symmetric
Laplacian from an asymmetric adjacency matrix. However, it has two weaknesses:
for most matrices, the “Google trick” has to be used to address reducibility, which
in turn makes the matrices dense, with substantial performance costs; and as a result
it tends to fold peripheral nodes inwards in the embedding, creating a misleading
impression of their importance.

We have shown that a variation of the layer approach can avoid all of these
problems. By creating a bipartite layered graph of undirected edges, the computa-
tions can remain sparse, the eigendecomposition can be done using SVD, and we
get new information about net flow from the lengths of the edges between in and out
versions of the same node.

Notes
The simplest way to convert a directed matrix into an undirected matrix is to ig-
nore the directionality of edges via the transformation W =W +W ′, where W is the
directed matrix and W is the resulting symmetric matrix. This ignores the useful
information of edge direction.

68 Chapter 5. Modelling asymmetric relationships

By counting the common connections we can get a symmetric matrix; W =
WW ′, W =W ′W or W =WW ′+W ′W . However, these methods only work well when
it is true that the number of the nodes connected in common is a meaningful value of
local similarity. If this assumption holds true, the degree-discounted symmetrization
method [79] is suitable when the degree of nodes in a network varies.

Chung [20] was the first to present a formal model and proof for use of the
Laplacian approach for directed graphs. This algorithm is based on random walk
strategy in which a transition probability matrix P and its associated stationary dis-
tribution Π are used to reconstruct the symmetric matrix.

The weighted cut algorithm is a generalized version of the Laplacian approach
for directed graphs and was developed by Meila and Pentney [57]. Instead of using
the stationary distribution Π as the weight (importance) of each node, the weighted
cut offers a more flexible way to define the node’s weight used to symmetrize the
adjacency matrix of a directed graph. It is always a problem to decide what node
weights should be used to normalize and transform the adjacent matrix to a symmet-
ric Laplacian matrix.

There are some modularity based community structure detection techniques
for directed networks [13, 14, 49]. There is also an earlier version of a non-symmetric
matrix decomposition spectral approach [110]. An overview of approaches for di-
rected networks can be found in Malliaros and Vazirgiannis [56].

However, in the embedding of the above approaches, the directionality be-
tween nodes is lost. Thus in the embedding we know the distance between two
nodes A and B, but cannot tell the direction of the original edge that joined them.
This limits the analysis possible within the embedding.

The material in this chapter was first presented in Zheng and Skillicorn [111]
and [114].

Chapter 6

Modelling asymmetric
relationships with
multiple types

We now turn to constructions that compose the layered models we have built so far.
For example, we have seen that the Florentine families data captures different kinds
of relationships (especially financial and social); but also directed relationships, rep-
resenting family power or political leverage. Can we combine our approaches that
have modelled each of these aspects separately, to model both at once?

Our basic strategy is to separate the edge properties into layers, as before, but to
combine different sets of layers orthogonally. For example, if we create two versions
of each node to connect two different edge types, and two versions to connect the in
and out ends of directed edges, then we have four versions of each node. However, if
we keep in mind the property that each version represents, then it is straightforward
to connect the edges of the original social network to the right versions of each node.

In our example of the Florentine families, we would have four versions of each
node, whose meanings are social-out, social-in, financial-out, and financial-in, and
so a directed social edge would connect from a social-out node to a social-in node.

Of course, the “vertical” edges still need to be added. Here there are some
choices, depending on the details of exactly how we compose the constructions. For
example, we could imagine a clique connection between all four versions, or some
subset connecting only versions from the same subconstruction. We also need to
decide on principled ways to assign weights to these new edges.

6.1 Combining directed and typed embeddings
For simplicity, we continue to assume that there are two types of edges, which we
will think of as colors (say, red and green). Adding more types complicates the
explanation, but does not complicate the construction.

Each node of the original network is now replaced by four versions: red in, red
out, green in, and green out. The resulting graph contains two layers representing
the typed subgraphs, and two (orthogonal) layers representing the in and out layers.

69

70 Chapter 6. Modelling asymmetric relationships with multiple types

Replacing each node of the original graph is a four-node nexus. The key to the
construction is the additional edges that are present in this nexus.

(a) Typed layers, then directed layers (b) Directed layers, then typed layers

Figure 6.1: Added edges between the multiple versions of a single node

The construction could be done in two ways:

1. Split the data into typed subgraphs, and then apply a second split to represent
the directed edges (shown in Figure 6.1(a));

2. Split the nodes into in and out versions, and then split them by type (shown in
Figure 6.1(b)).

The different orders lead to different constructions and result in different em-
beddings. The question is which is the more reasonable? Separating the data by
typed subgraphs, and then encoding the directed edges seems more plausible, be-
cause it embeds the in and out versions close to each other and therefore tends to
keep the community structures in each layer.

6.2 Layered approach and compositions
Each node of the original graph is first replicated into red and green versions. We
will assume that all of the edges in the red and green subgraphs are directed. If an
edge is undirected, we can easily model it as a pair of directed edges with the same
weight in opposite directions.

Now we add “vertical” directed edges between the versions of the same origi-
nal node with different colors. (When there are more than two colors, this becomes a
directed clique connecting the c versions of each node.) This generalizes the previous
typed graph construction, where the vertical edges were undirected.

Each red node has incoming and outgoing red edges; each green node has
incoming and outgoing green edges; and both have incoming and outgoing vertical
(say, blue) edges.

We now have a directed graph that represents the typed structure of the graph,
so we can temporarily forget the color coding, and treat it as an ordinary directed
graph, for which we already know a construction.

6.2. Layered approach and compositions 71

In the second part, each of the nodes of this 2n× 2n graph is replicated into
an in version and an out version, using the construction in Section 4.4. The newly
added blue edges, since they are directed, are also included in this next step. The new
configuration of node versions and added edges that result is shown in Figure 6.1(a).
We call this the nexus of versions of each original node.

The weights of the added edges are:

• weight(blue edge from green to red) = weight(green out)

• weight(blue edge from red to green) = weight(red out)

• weight(green dashed edge) = weight(total in) + weight(total out) = weight(green
in) + 2 × weight(green out) + weight(red out)

• weight(red dashed edge) = weight(total in) + weight(total out) = weight(red
in) + 2 × weight(red out) + weight(green out)

More formally, let A1, ...,Ac be the c n× n adjacency matrices of each of the
typed subgraphs, and D1, ...,Dc be the diagonal matrices of the outgoing degrees of
each. The embedding happens in three steps:

1. Bind together the versions of each node in the different colored layers to build
a cn× cn adjacency matrix as:

W =

A1 · · · 1
c−1 D1 · · · 1

c−1 D1
...

. . .
...

. . .
...

1
c−1 Di · · · Ai · · · 1

c−1 Di
...

. . .
...

. . .
...

1
c−1 Dc · · · 1

c−1 Dc · · · Ac

 ,

2. Split each node in every version into in and out copies as:

M =

(
0 W +DW

in +DW
out

W ′+DW
in +DW

out 0

)
,

where DW
in and DW

out are the diagonal in and out degree matrices of adjacency
matrix W .

3. Convert M to a Laplacian matrix and use an eigendecomposition to embed it.

As before, all of the work involves connecting node versions by the appro-
priate edges, and defining weights for the new edges that were not present in the
original graph. Once this is done, the resulting matrix is apparently larger, but does
not contain more than a linear number of extra non-zero entries. The (sparse) eigen-
decomposition required to do the actual embedding is straightforward.

72 Chapter 6. Modelling asymmetric relationships with multiple types

6.3 Applying directed typed embeddings
We will continue to use the Florentine families dataset, in its full richness with edges
typed by social and financial connections, and directed by power.

In the embedding of networks that are both directed and have typed edges,
there are four versions of each node, and it becomes increasingly difficult to interpret
visualization of the figures. However, if a particular small set of nodes are of interest,
and an interactive environment is available, it is still possible to learn much from the
renderings themselves.

It is also useful to compute the distances between the embedded points and
consider these distances as markers for interesting properties of nodes. Here we use
the normalized edge length of the edges (mentioned earlier) for further comparison.

6.3.1 Florentine families

Figure 6.2: Embedding of the typed Florentine families network using the Chung
directed embedding

The social network with typed edges and using Chung’s approach for the di-
rected edges is shown in Figure 6.2. This embedding structure is similar to Chung’s
directed embedding in Figure 5.5(a) but with the differentiation of the edge types.
Edges connecting the two roles of each individual node are drawn as dotted. As
in the undirected typed embedding in Figure 5.5(a), this embedding has misleading
folded-back arms for poorly connected groups such as Valori.

The normalized length of the vertical edges can be interpreted as an indication

6.3. Applying directed typed embeddings 73

Figure 6.3: Embedding of the typed Florentine families network using our directed
embedding

of how different the social (lowercase) and business (uppercase) roles of each family
is in this context. Most families play similar roles in both the financial and personal
domains, and their financial and personal points are close to one another. This is not
surprising, given the close-knit nature of the Florentine community and the fact that
these families would not have considered the finance and personal domains as dis-
tinct in the way that a modern social system might. However, the difference between
the two roles of Medici is large; the personal placement of Medici is close to the
oligarch families but the financial placement is close to the Medici-aligned families.

Figure 6.3 shows the embedding of the construction combining our directed
approach with typed edges. Figure 6.4 is the zoomed-in version of Figure 6.3, and
shows the relations among the four roles of the Medici family. The embedding is
similar to previous ones, but shows more detailed structure. The pairwise normalized
edge lengths and the average neighborhood edge lengths are given in Table 6.1.

The financial out to personal in of Medici has the highest normalized value of
all normalized added edges. Medici is the key broker between the two blocs in the
embedding and the direction indicates who influences whom. We can interpret this
as evidence that the Medici family used its financial resources to influence personal
relationships with the oligarch families.

There are also some other interesting nodes. For example, Guasconi has a high
financial vertical edge, but low average neighborhood edge length, Castellani has a
high personal vertical edge, and Castellani and Albizzi have relative high personal

74 Chapter 6. Modelling asymmetric relationships with multiple types

Figure 6.4: Zoom-in typed directed embedding of the Medici nodes

out to financial in edges but low average neighborhood edge lengths. The nodes
in the middle of the arms tend to have high edge lengths, for example Orlandini,
Cocco-Donati and Dall’antella.

6.3.2 Criminal groups
Two datasets describing real criminal organizations will also be used as examples.
The structure of both criminal networks were derived from judicial documents from
investigations of two ’Ndrangheta groups involved in drug trafficking in Italy. The
’Ndrangheta is a mafia organization that originated in Calabria, but has spread north
in Italy and now exists in several other countries as well. The organization is divided
into groups whose members tend to come from a localized geographical region and
share a strong internal culture [11, 12, 75, 76].

The data results from two investigations: Operation Chalonero, which targeted
a group bringing cocaine from South America to Italy via Spain, and Operation Stu-
por Mundi, which targeted a group bringing cocaine from South America to Italy via
Spain and The Netherlands. For convenience, we refer to the target groups by the
names of the associated investigation.

The cultural and purposive similarity of these two groups would suggest that
they would have similar social networks. Earlier work on techniques for identifying
the core subgroup that should be targeted by law enforcement [86] suggested that
this is not the case — the two groups are, surprisingly, structured in substantially

6.3. Applying directed typed embeddings 75

Names FF PP FP PF Avg Din Dout
BISCHERI 2 20 10 12 20 5 4
GUADAGNI 16 47 57 94 49 6 6
FIORAVANTI 14 9 9 13 25 1 1
DALL’ANTELLA 29 254 108 166 453 0 1
DIETSALVI 27 348 209 157 765 1 0
DAVANZATI 28 245 102 158 440 0 1
ORLANDINI 387 241 314 338 622 2 0
COCCO-DONATI 509 330 427 444 832 3 0
VALORI 40 346 146 224 620 0 1
GUICCIARDINI 45 4 72 91 106 4 5
GINORI 98 42 213 460 462 6 3
TORNABUONI 64 33 10 20 55 4 3
MEDICI 302 191 470 264 283 6 19
ARDINGHELLI 1 3 19 10 20 1 2
DA-UZZANO 0 1 32 32 30 2 2
ALTOVITI 5 59 36 27 131 1 0
SOLOSMEI 3 1 7 4 22 2 2
RONDINELLI 88 69 69 19 79 5 4
GUASCONI 179 25 64 68 97 9 8
ALBIZZI 26 107 56 304 150 12 7
DELLA-CASA 4 66 15 15 39 3 3
PEPI 10 133 80 60 294 1 0
CASTELLANI 31 241 156 230 100 7 8
PERUZZI 42 32 43 60 68 6 9
SCAMBRILLA 10 133 80 60 294 1 0
BENIZZI 31 8 4 7 30 2 2
STROZZI 7 44 8 41 55 6 8
PANCIATICHI 8 108 6 16 64 2 1
ALDOBRANDINI 62 5 28 37 136 1 0
RUCELLAI 1 11 20 19 41 2 1
LAMBERTESCHI 7 18 39 11 30 5 6
BARONCELLI 5 3 17 8 22 3 2
VELLUTI 6 4 20 8 40 3 3
Means 63.3 96.4 89.3 105.3 196.2 3.4 3.4
Std 116.8 112.0 116.9 129.8 234.9 2.8 3.9

Table 6.1: Table of normalized edge lengths for Florentine families (×10000) and
degree, where FF= financial in to out (red dash), PP= personal in to out (green dash),
FP= financial out to personal in (blue), PF= personal out to financial in (blue), Avg=
average neighborhood tension.

76 Chapter 6. Modelling asymmetric relationships with multiple types

Figure 6.5: Our directed embedding of the Chalonero social network (untyped edges)

different ways.
Law enforcement targeted members of the group by intercepting telephone

calls and by observing meetings. They had access to the content of telephone calls,
and so were able eventually to determine with precision the functions of members of
the group, and who its leadership were. We consider the social network as containing
two different edge types: directed edges representing phone calls, and undirected
edges representing participation in meetings. Thus, a meeting among three people is
represented as a 3-clique (triangle) of undirected edges, a meeting among 4 people
as an undirected 4-clique, and so on.

Chalonero organization

For both criminal networks we use only the individuals with at least two contacts and
who participate in at least five communications. In the embeddings, we label the key
nodes (known from the content of interceptions in the law enforcement investigation)
with numbers in a larger font size.

In Chalonero, the general structures in the three embeddings of Figures 6.5,
6.6 and 6.7 are similar. N2 was one of the most active traffickers and the son of
the group leader, N1. N2 is placed centrally in the embeddings. Furthermore, N2’s
four added edges are long, as showed in Table 6.2. The meeting edge lengths are
significantly smaller than the others, because these edges are undirected.

N1 was a fugitive during the investigation, and he was unable to manage the
group’s activities directly. He never spoke on the telephone, preferring to issue orders

6.3. Applying directed typed embeddings 77

Figure 6.6: Embedding of the typed Chalonero social network using the Chung di-
rected embedding (C = call version, M = meeting version)

through meetings with a few trusted contacts, including his son, N2. In Figure 6.6,
N1 is placed far away from his son, N2, while the other two embeddings more accu-
rately place him close to N2.

Table 6.2 shows that the normalized embedded lengths for the important group
members are all well above average, and they could have been identified by this
alone. Other members with large normalized edge lengths are explicable from their
roles in the embedded network: N19 plays a role in the connection between the cen-
tral group and the subgroup in the lower left; N31 and N79 are peripheral; but N54
has interestingly varying roles that are only made visible by the combined embedding
in Figure 6.7.

Stupor Mundi organization

Figure 6.8 shows the embedding of the Stupor Mundi network using our directed
typed approach. All the key individuals are placed close to each other. In this net-
work, N46 was the boss; N35 was another high-status trafficker; and two brothers
N27 and N28 were “assigned”, respectively, to support them. Although N35 is out-
ranked by N46, his large normalized edge lengths indicate his importance in com-
munication both by telephone and in meetings. The two brothers, N27 and N28, the
assistants, have significantly different normalized edge lengths. The small values for
N27 indicate that his roles are consistent with each other, and he has low net flow
influence also; but the large values of N28 indicate his importance in the network.

78 Chapter 6. Modelling asymmetric relationships with multiple types

Figure 6.7: Embedding of the typed Chalonero social network using our directed
embedding

This is partly the result of the complex role of his boss; but it is also known that
N28 was, on one occasion, reproached by N46 for his conduct (he was trying to col-
lect money to pay for a drug smuggling operation organized by N35, but opposed
by N46). Some of the other large entries in Table 6.3 point to individuals who are
peripheral but with interesting role differences (N120), and to “brokers” (N10 who
embeds at the right-hand side of the left cluster).

6.4 Summary
Real-world social networks do not have edges with just one extra property; they are
likely to have edges of many different kinds. We have shown how to extend the
layer construction to handle edges of two different kinds — typed and directed — by
composing the layer construction. These compositions now create many versions of
each node, so the housekeeping to keep all of the connections straight requires some
care, but the constructions themselves are straightforward. The same arguments that
were used to justify the weights added to the newly created edges can be applied to
the compositions.

The results now become increasingly difficult to understand by visualization,
although in practice an analyst could rotate and zoom into the renderings to gain
greater insight. Measures that capture the local distortions implicit in the embedding
become increasingly useful as ways to highlight nodes that are playing some kind of

6.4. Summary 79

ID CC MM CM MC Avg Din Dout
1 106 163 39 333 95 12 12
2 1470 109 1312 1352 383 153 207
17 199 55 79 180 455 36 15
19 597 107 473 182 276 9 23
23 1194 318 1859 773 697 37 41
24 561 18 244 340 332 28 30
31 370 109 83 228 505 8 5
45 232 34 278 316 326 32 37
47 304 55 108 125 228 49 32
54 11 24 107 151 132 3 5
79 94 33 24 64 110 6 5
87 23 2 14 18 27 4 2
Means 175.6 39.4 143.6 144.0 173.0 16.4 16.4

Table 6.2: Table of normalized edge lengths for Chalonero (×10000) and degree,
where CC= call in to out (red dash), MM= Meet in to out (green dash), CM= call
out to meet in (blue), MC= meet out to call in (blue), Avg= average neighborhood
tension. Known important individuals are in bold; other individuals are those with
interesting positions in the embedding.

ID CC MM CM MC Avg Din Dout
3 339 22 124 136 295 39 37
10 195 189 605 73 493 12 11
15 303 6 68 58 231 10 7
16 740 237 636 299 412 14 22
23 551 104 327 226 392 279 297
24 424 51 349 299 133 210 180
27 10 15 8 30 18 14 12
28 226 24 437 374 159 161 150
34 268 73 16 40 234 17 24
35 857 375 1336 240 181 119 388
38 457 74 299 261 213 632 419
46 255 11 164 176 48 46 63
120 82 42 126 19 156 0 6
Means 137.5 40.8 147.0 92.0 126.1 47.8 47.8

Table 6.3: Table of normalized edge lengths for Stupor Mundi (×10000) and degree,
where CC= call in to out (red dash), MM= Meet in to out (green dash), CM= call
out to meet in (blue), MC= meet out to call in (blue), Avg= average neighborhood
tension. Known important individuals are in bold; other individuals are those with
interesting positions in the embedding.

80 Chapter 6. Modelling asymmetric relationships with multiple types

Figure 6.8: Embedding of the typed Stupor Mundi social network using our directed
embedding

unusual role in the global structure.

Notes
The approach in this chapter was first presented in Skillicorn and Zheng [88], and
the applications to criminal networks appeared in Zheng, Skillicorn, and Calderoni
[115].

Chapter 7

Modelling relationships
that change over time

So far, all of our social networks have assumed that relationships are static: they
either exist or not between any pairs of nodes, and intensities, as described by edge
weights, do not change. This is not very realistic. Relationships are created (and
sometimes lapse), and the intensity of any particular relationship ebbs and flows
over time. It is useful to be able to model the effect of each of these changes on
the overall structure of the social network, and so we turn our attention to modelling
edges whose intensities change with time. We include in this edges that may come
into existence (that is, a change from an intensity of zero to a non-zero value), and
that disappear (that is, a change from a non-zero intensity to an intensity of zero).

7.1 Temporal networks
Temporal (dynamic) social network analysis aims to understand the structures in net-
works as they evolve, building on static analysis techniques but adding a mechanism
for variation with time.

The benefits, and drawbacks, of graph representations of relationships is that
a single change, for example the addition or deletion of an edge, can change the
entire graph structure. When a social network changes from one time to another,
reflecting this change completely requires a fresh embedding of the graph into a new
space. There is no natural way to compare such embeddings to one another because
the shape of the geometric space itself depends on the entire graph. For example,
the placement of the origin and axes in one embedding need not have any particular
relationship to the origin and axes in others.

This creates a problem when the goal is to understand what has changed in the
structure of the graph from one time to another. It is, of course, possible to make
qualitative statements (“these two nodes seem to have become less related”) but it is
hard to make such statements rigorous. It is also impossible to define the trajectory
of a single node over time since there is no common space within which such a

81

82 Chapter 7. Modelling relationships that change over time

trajectory could exist.
We address these problems by defining a sequence of social networks over

time, treating each one as a layer in a way that, by now, should be familiar; binding
the layers together; and embedding the whole graph in a single space. The existence
of such a space makes it possible to compare, rigorously, the relationships of nodes
and edges between time periods. Because the networks at different times are all
embedded in the same space, it also becomes possible to define the concept of a
trajectory, and therefore to track nodes and relationships across time with a new
level of clarity.

A successful embedding makes it possible to ask and answer questions such
as: Do two nodes become closer or farther apart over time, and which node drives
this process? Are communities or other kinds of subgroups stable over time? If they
evolve, how do they change?

As before, we begin by considering the entire social network at each time step
as one of a set of layers in the sense of our previous constructions. Thus the network
at time t = 0 becomes the first layer, the network at t = 1 the second layer, and so
on. The versions of each node represent that same node of the social network at its
different moments of existence. The edges in each layer represent the strengths of the
relationship during a particular time period. Edges might appear and disappear from
one time to the next; but it is perhaps more common for their weights (the intensities
of the relationships) to vary with time. For simplicity, we create placeholder versions
of nodes that are not present during any time period but, of course, they will not be
connected to the rest of the graph when they are acting as placeholders. Thus each
layer contains versions of all nodes that are present in the network at any time.

The obvious approach to binding the subgraphs representing each time snap-
shot into a single graph would be to connect each node version in one subgraph to
its corresponding node version in the subgraph of the next time. Unlike the previous
versions of the layer construction, there is a natural ordering for the layers.

However, this does not work — the spectral embedding of a path is a curve in
two dimensions because the endpoints resemble each other more than they resemble
the internal nodes. This effect will happen to some extent to the path connecting each
particular node as it appears in subgraphs, creating a geometry where the effects of
the structure from the connections across time cannot be cleanly separated from the
structure inside each subgraph.

Instead, we connect all of the versions of each node together in a c-clique, as
we did for typed networks.

We also add a further refinement precisely because there is a natural ordering
of the layers. It may be appropriate and useful to allow the embedded structure of the
network at previous times to influence the embedded structure in the current period.
In other words we may want to force the structure at a particular time step to align
more strongly with the structure from earlier times to help with understanding what
is changing. This provides a mechanism for putting back one facet of the natural
ordering of the layers. Alignment also conceals small-scale changes from layer to
layer, making larger changes, or changes that are consistent over time, more easily
visible.

7.1. Temporal networks 83

The snapshot matrix at time t is combined with the matrices from previous
snapshots with a down-weighting given by parameter α . This value can be chosen to
vary the relative impact of historical network structure on the analysis of the current
snapshot. The aggregate network adjacency matrix At is computed as follows: if
t = 1,A1 =W1, else At =Wt +α ∗At−1.

Each of these aggregate adjacency matrices is then converted to a random walk
matrix by dividing each row by its row sum to convert entries to probabilities, and
producing aggregate random walk matrices Rt .

There is also a low-level technical problem to be addressed. A node may be
isolated in one (or more) of the aggregate matrices, either because it genuinely had
no relationships during that time, or because it is present in other layers and so was
inserted as a placeholder. The row sum of its row in the aggregate random walk ma-
trix will be zero, so we put a 1 in the corresponding diagonal position, representing
a self-loop. This ensures that every row sum is 1.

These random walk matrices are then put on the main diagonal of a cn× cn
matrix Mrw (for c time periods), and the edges connecting different versions of the
same nodes are weighted based on a probability, β . (We could also use the weighting
schemes we used previously, basing the “vertical” weights on the connectivity of
the nodes in each layer but, in this setting, the node versions we are connecting
vertically are the same node at different times, so we do not expect big changes in its
connectivity.)

Changing the value of β can be used to bind the structures at different time
steps more or less tightly together. For example, if the goal is to understand the
behavior of an outlier, a large value of β tends to align the central structure of the
network and so make it easier to see changes at the periphery.

The cn× cn random walk matrix Mrw is defined as:

Mrw =

(1−β)R1 · · · β

c−1 ∗ I · · · β

c−1 ∗ I
...

. . .
...

. . .
...

β

c−1 ∗ I · · · (1−β)Rt · · · β

c−1 ∗ I
...

. . .
...

. . .
...

β

c−1 ∗ I · · · β

c−1 ∗ I · · · (1−β)Rc

where I is an identity matrix of size n. The entire matrix Mrw reflects not only the
structure during each time period, but also the evolution of the social network with
time.

If the edges of the network are undirected, then the required construction for
the embedding is the one we used for typed networks, with each time period corre-
sponding to a color, and with a slightly different weighting for the “vertical” edges.

The choice of α , which is independent of the spectral embedding, reflects the
amount of smoothing in the base data. It may be used, for example, to compensate
for sampling omissions when data is collected over short time intervals or in settings
such as law enforcement where concealment is an issue.

The choice of β determines how much influence the structure of the social

84 Chapter 7. Modelling relationships that change over time

network at one time has on its structure at other times, and so is a critical choice for
the global model. We prefer to use a larger value of β in order to align the embedding
of each node across time. As a result, this will also tend to align the larger structures
such as clusters, communities, and cuts.

We have already seen that most realistic social networks have edges that are
directed, so we also want to be able to model edges within the original social network
that are directed. In this case, the “vertical” edges that connect versions of the same
node across time can also be directed. These connections form a directed c-clique.

We have seen that there are two ways to model these directed edges: using
Chung’s embedding, or using our new directed embedding. With Chung’s technique,
the algorithm has these 6 steps.

Algorithm: Given temporal adjacency matrices Wt ,α,β .

1. Compute the aggregate network matrix At as:
If t = 1,A1 =W1; else, At =Wt +α ∗At−1.

2. Convert each matrix At to a random walk matrix Rt .

3. Connect the snapshot random walk matrices Rt together to build a larger ran-
dom walk matrix Mrw with total probability β for random walks to another
snapshot.

4. Let Π be the diagonal matrix whose entries are those of the stationary distri-
bution of Mrw. Construct the Laplacian matrix:

L = I− Π1/2MrwΠ−1/2 +Π−1/2M′rwΠ1/2

2
.

5. Compute the eigenvalues λi and corresponding eigenvectors gi of L.

6. Modify the embedding vectors fi = Π−1/2gi and embed the graph into k di-
mensions by using the k vectors fi corresponding to the k smallest non-zero
eigenvalues.

For the composition of the temporal approach with the new directed approach,
the algorithm is much simpler.

Algorithm: Given temporal adjacency matrices Wt ,α,β .

1. Compute the aggregate network matrix At as above.

2. Apply the new directed approach (Algorithm 5.2.2) to the aggregate matrix At .

7.2. Applications of temporal networks 85

7.2 Applications of temporal networks
We illustrate the power of these techniques by applying them to a real-world crim-
inal network, for which some of the structures are already known by other means.
The Caviar network was a criminal network for hashish and cocaine importation cen-
tered in Montréal. Electronic surveillance data was gathered during a 2-year (1994—
1996) investigation (known as Project Caviar) conducted by the Montréal Police, the
Royal Canadian Mounted Police and law-enforcement agencies from several coun-
tries (England, Spain, Italy, Brazil, Paraguay and Colombia) [64]. In this case, the
suspects were not arrested until the end of the 2-year period, although there were
11 seizures (four hashish consignments and seven cocaine consignments). This data
gives us the chance to observe a real-world criminal network, particularly its evolu-
tion over time and its responses to law-enforcement actions.

The data describes electronically monitored telephone conversations among a
total of 105 participants in the criminal network. Edge weights are the number of
calls in each period. We begin by treating the edges as undirected.

Data was collected over 11 periods, corresponding to 2-month investigative
phases for which interception warrants had to be obtained afresh [64]. Each of these
11 periods is treated as a subnetwork, and its data becomes the adjacency matrix
describing a snapshot.

Because law enforcement had access to the content of the telephone calls, they
were able to identify 5 key participants [63], N1 (the principal coordinator for hashish
importation), N12 (the principal coordinator for cocaine importation), N3 (a partner
to N1 and an intermediary between N1 and N12), N76 (a key trafficker), and N87
(a key financial investor in various drug consignments). The 5 key participants are
the most active in the network. In the figures, these 5 key participants are often
highlighted.

Figure 7.1 shows the Laplacian embedding of the network as a whole, that is
adding together all of the undirected interactions of all participants over all 11 time
periods. Figure 7.2 shows the center area of Figure 7.1 omitting the edges since the
pairwise distances represent similarity whether or not an edge exists in the graph.
There are three main clusters: a central one containing N1 and N3; one slightly
below it containing N87; and one to the upper left containing N12. There are also
several extreme arms of individuals with weak connections to the network. Recall
that nodes embedded centrally are most significant, and those embedded extremally
are least significant.

7.2.1 The undirected network over time
We can also examine the evolution of the structures in the network. In this example,
we use these parameters for the model: α = 0.5, β = 0.3. Even though there are 105
participants, on average only 32.5 participants made or received a phone call in each
2-month period, the number varying between 15 and 42. The total edge weight of
the active nodes in each time period ranges from 1 to 453.

The global undirected temporal criminal network is shown in Figure 7.3. In

86 Chapter 7. Modelling relationships that change over time

Figure 7.1: Laplacian embedding of the Caviar network with undirected edges with
all time periods merged. Labels are individual identifiers, which range from 1 to 110.

the embedded graph, each participant appears 11 times; the time period follows the
node ID in parentheses. To have a clearer view of the node relationships, we do not
show the edges — in the embedding, distance reflects dissimilarity for all pairs of
nodes, whether they were originally connected or not. There are many participants
who are almost inactive in many time periods and so are clearly peripheral to the
structure of the network — their placement in the embedding is far from the origin,
so we omit them and show only the center part of the embedded graph.

Four important clusters are visible in Figure 7.3. The vertical arm corresponds
to the cocaine importation group with its key figure, N12. There is also a large
cluster that appears centrally, but actually goes back into the plane of the image in
a 3-dimensional representation; this is the hashish importation group with its key

7.2. Applications of temporal networks 87

Figure 7.2: Zoomed-in version of the Laplacian embedding of the Caviar network
without showing edges.

figures, N1 and N3. The third cluster forms an arm down and to the right. This is
the finance group with its key figure, N87. The fourth cluster forms an arm down
and to the left, and represents a group including an airport security connection and a
foreign supplier with its key figure, N76. From the figure, it is clear that the hashish
importation group is the heart of this criminal confederation.

The usefulness of global integration of local pairwise information can be illus-
trated by considering the phone calls between N1 and N12. Over the 11 time periods
the number of calls is [0 2 2 0 2 4 0 0 0 0 0]. Given that N1 made hundreds of phone
calls in each period, this data by itself seems to suggest that there is only a weak
relationship between them. However, the other members of their groups did tele-
phone each other a lot, and this combined indirect connectivity between N1 and N12
causes them to be embedded quite close together. Their global similarity reflects the
sum over many different paths of weak local similarity. This illustrates how spectral
techniques discover connections even when those involved might try to conceal them
by using intermediaries.

Police records indicated that the two drug groups had known each other and
had been cooperating well during the earlier part of the investigation. After con-
signments began to be seized, the conflicts between them increased. The embedded
temporal network allows us to evaluate these changing relationships.

Figure 7.4 shows the change of positions, over time, for the 5 key participants,
still treating their communication as undirected. Because the embedding is a global
one of the entire set of snapshots, the distances are meaningful, both for any single
snapshot and over the entire period. We can estimate the change in the strength of
relationships by considering how distances change. During the first 4 time periods,
the relative positions of all 5 are stable, but then there is a pattern of accelerating
disintegration. The first seizure (estimated at $2.5 million) took place during time

88 Chapter 7. Modelling relationships that change over time

Figure 7.3: Laplacian embedding of the 11-time period undirected temporal network
(central region only, with edges omitted)

Figure 7.4: The embedding of the 5 key participants over time in the undirected
graph

7.2. Applications of temporal networks 89

Period 1 2 3 4 5 6 7 8 9 10 11
Pairs 26 35 68 64 49 68 58 73 60 66 71

Table 7.1: Number of pairs in each time period

period 4. The remaining seizures were scattered across the later time periods: one
with an estimated cost of $1.3 million during time period 6; $3.5 million during time
period 7; $360,000 during time period 8; $4.3 million during time period 9; $18.7
million during time period 10, and $1.3 million during time period 11 [64]. Individ-
uals N76, N12, and N87 all distance themselves from N1, with N12 moving rapidly
away especially in the last two time periods. N1 and N3, his primary lieutenant,
remain close to each other.

But what about the network as a whole over time? Figure 7.5 shows the struc-
ture of the entire network across the 11 time periods. The number of pairs who call
each other during each period is shown in Table 7.1. Apart from the first few time
periods, where the increase can be attributed to law-enforcement discovery of new
members of the network and their addition to the intercept list, the number of pairs
that communicate with one another is quite stable. Thus, the expanding radius of the
embeddings shown in Figure 7.5 must reflect, at a grassroots level, the same kind of
distancing that was visible among the leaders.

This can be made more rigorous by calculating the average size of the net-
work, a concept that is meaningful because each subgraph is embedded in the same
space. These subnetwork diameters are shown in Figure 7.6 which plots the average
pairwise distances between nodes that appear in at least eight of the time periods.
The flat region of this curve suggests that those who are “regular” participants in the
network remain at about the same distance until time period 8, but then they also
begin to distance themselves from one another.

7.2.2 The directed network over time
Now we turn to the embedding of the directed network. The directed representation
more accurately reflects the way in which individuals control their position in the
network, Chung’s directed approach and the new directed approach are both applied.

When an individual A calls another individual B, we consider that A is the
more powerful of the two — the call represents some form of command and control,
either demanding a response or issuing an instruction. The individual making the
call is being proactive and the call reveals that individual’s intentionality. However,
from the point of view of importance, sources in a directed graph are regarded as less
important than sinks. Hence a call from A to B must result in an edge that is directed
from B to A. The edge directions of the telephone call graph have to be reversed to
create the social network of importance or influence.

The resulting embedding of Chung’s directed approach is shown in Figure 7.7.
Overall, the network structure is similar, with the same four groups evident. The
most significant difference is the placement of N1. In the undirected embedding, he

90 Chapter 7. Modelling relationships that change over time

(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6

Figure 7.5: Growth of the embedded network over time (on the same scale)

remains central throughout. In Chung’s directed embedding, he moves far from the
rest of the network in time period 5, drawing N3 and N76 with him. This is the result
of a substantial drop in the number of phone calls that he (and his close associates)
make to the rest of the network during this time period. While it seems to have taken
most members some time to realize that something was wrong after the first seizure,

7.2. Applications of temporal networks 91

(g) t = 7 (h) t = 8

(i) t = 9 (j) t = 10

(k) t = 11

Figure 7.5: (continued) Growth of the embedded network over time (on the same
scale)

N1 seems to have made a drastic change of habit in the following time period, before
moving towards N87 in the later time periods, bringing N3 and N76 with him. The
trajectories of the other key players are also more convoluted than they were in the
undirected case. It is clear, for example, that N87 moves towards the center of the

92 Chapter 7. Modelling relationships that change over time

Figure 7.6: Average diameter of the undirected network over time

group in the early time periods, before reversing course quite dramatically after time
period 9. In the undirected graph, N12 moves far from the center in time periods 10
and 11; in contrast, in the directed graph he stays at about the same distance from
the center in these time periods. This suggests that it is he who is taking steps to
remain connected to the center in these late time periods, but the central figures are
not doing the same for him. This was confirmed from the intercepted content of the
telephone calls.

Figure 7.8 shows the three-dimensional embedding using our new directed ap-
proach, where each individual has in (triangle) and out (circle) versions. Overall, the
network structure is similar to the undirected version. The most significant differ-
ence is the trajectory of N12. In the undirected embedding, he remains in relatively
the same location from time period 2 to time period 6, and then moves far from the
center. In our directed embedding, he moves toward the center until time period 6,
and then makes a drastic change in the following time periods. Time period 6 is the
period that the first seizure of cocaine took place. N12, as the principal coordinator
for the cocaine consignments, was panicked and started to have some conflict with
N1 and N3 during this time period.

The top 12 nodes of the largest in-out edge lengths in each period are shown
in Table 7.2. This shows that N1, N3, and N12 have long edges during some early
periods and suggests that they are most active moderating communication between
the disparate subgroups. However, after time period 8 they start losing these moder-
ator roles. N12 has the longest in-out edge in the last time period. This suggests that
N12 wanted to take over the whole network as coordinator.

The results of the embedding of the Caviar network are, qualitatively, the kind

7.2. Applications of temporal networks 93

Figure 7.7: Trajectories of the 5 key members from the directed graph — Chung’s
embedding

Figure 7.8: Trajectories of the 5 key members from the directed graph — our em-
bedding

94 Chapter 7. Modelling relationships that change over time

Period 1 2 3 4 5 6 7 8 9 10 11
Rank 1 N3 N1 N12 N12 N3 N1 N3 N12 N87 N40 N12
Rank 2 N1 N3 N3 N107 N12 N12 N12 N1 N14 N87 N76
Rank 3 N85 N76 N83 N3 N1 N14 N1 N14 N41 N37 N26
Rank 4 N89 N12 N1 N1 N107 N3 N14 N3 N37 N14 N43
Rank 5 N83 N85 N76 N83 N83 N76 N78 N22 N12 N12 N72
Rank 6 N6 N83 N86 N14 N14 N17 N76 N37 N1 N1 N41
Rank 7 N8 N9 N85 N89 N31 N107 N75 N76 N3 N82 N40
Rank 8 N5 N89 N13 N86 N89 N83 N85 N82 N76 N3 N87
Rank 9 N7 N5 N107 N63 N13 N85 N83 N87 N82 N83 N37

Rank 10 N2 N2 N9 N13 N86 N19 N107 N78 N22 N93 N1
Rank 11 N88 N6 N89 N85 N85 N13 N81 N33 N78 N22 N27
Rank 12 N54 N7 N2 N76 N76 N9 N13 N80 N16 N13 N3

Table 7.2: Individuals with the top 12 largest in-out edge lengths in each time period

of information of use to law enforcement: where relationships are strengthening or
weakening, and how apparent loyalties are shifting. In this particular dataset, the
reaction of the network to law enforcement actions (intercepting shipments) is also
detectable. Note especially that this analysis is done using only the existence of
calls between the members of the group, not the content of these calls. The cost of
collecting data on who called whom is orders of magnitude cheaper than collecting
content, but we have been able to show that essentially the same kinds of conclusions
about group operations and command and control can be drawn from the cheaper
data.

The other conclusion from this analysis is that criminal networks do not behave
like other kinds of social networks. Criminals do not introduce their friends to one
another; so there are many fewer triangles than expected; rather, the network looks
like a set of small stars, with occasional overlaps. Although there are detectable clus-
ters, these are not tightly bound as they would be in a more typical social network,
but rather are loose aggregations around one or two figures.

7.3 Summary
Social networks change with time, as new members are added, current members
leave, and the strength of existing relationships increases or decreases. It is important
to be able to model these changes. Our layered approach enables time-varying social
networks to be bound into a single structure. Within this structure, comparisons can
be made rigorous, and the trajectories of individual nodes can be tracked against the
background of other nodes or clusters. When edges are directed, it also becomes
possible to draw conclusions about intentions because the individual or group at
the source end of a directed edge controls the weight on that edge. Increasing and
decreasing weights can therefore be ascribed to the desires or goals of the particular
nodes that control them.

7.3. Summary 95

Notes
Temporal (dynamic) social network analysis aims to understand the structures in net-
works as they evolve, building on static analysis techniques but including variation.
There are two different ways of framing the problem which have led to two different
algorithmic strategies.

The first might be called the “Networks only change slowly” view. Recom-
puting a spectral embedding after every network change is expensive, especially for
large networks. It is more efficient to update the current network structure from the
(assumed small) changes that have taken place. For example, Shang et al. [82, 83]
keep track of the community structure of temporal networks by using an extended
modularity algorithm based on the Newman algorithm. Nguyen et al. [72] update
the network structure based on new-Node, remove-Node, new-Edge, remove-Edge
primitives. Bouchachia and Prossegger [9] extend the spectral approach with fuzzy
c-varieties to cluster incremental data. Aston and Hu [2] update the community
structure based on a density-based clustering algorithm. Kas et al. [44] propose an
incremental algorithm by updating the affected parts only.

Even a small change in the network can produce a large change in the em-
bedded structure, but these approaches implicitly assume that this does not happen.
Finding matching reference points from one embedding to the next is also non-trivial,
but again the implicit assumption is that changes have been small enough to enable
some level of tracking across time.

The second framing might be called the “Align the independent networks”
view. These approaches treat each network at a moment in time independently, but
try to get the structures of the network into a consistent form. For example, Qiu and
Lin [77] explore the evolution of the organizational structure of a temporal network
by comparing the change to the evolving community trees based on random walk
and PageRank. Gong et al. [36] propose a novel multi-objective immune algorithm
to cluster temporal networks into consistent communities. Yang et al. [109] analyze
the community evolution based on a statistical model. However, these approaches
only consider the evolution of each network at the level of group structures, and fail
to handle changing properties of individual nodes and edges.

The approach in this chapter was described in Skillicorn, Zheng, and Morselli
[89, 90].

Chapter 8

Modelling positive and
negative relationships

Almost all social networks model relationships as properties that are either non-
existent, or have a positive intensity. Now we turn to the situation where the rela-
tionship between two nodes might also be a negative one — the two individuals or
organizations are in opposition, or have a mutual antipathy.

At one level, this is an easy extension. In social networks so far, adjacency
matrix entries are either zero or positive; a negative relationship can be modelled by
a negative edge weight. The difficulty arises in trying to model the effects of transi-
tivity. For social networks with positively weighted edges, transitivity has a natural
interpretation: if A has a close relationship with B, and B has a close relationship
with C, it seems natural that A and C might be considered to be similar, or might be
likely to have a positive relationship if they met, because of their mutual connection,
B.

However, what is the relationship between A and C, if A and B have a negative
relationship and so do B and C? Conventionally, “the enemy of my enemy is my
friend” but this cannot be a standard pattern, especially in an environment with a
large number of actors [22].

In this chapter, we develop an embedding approach that also enables modelling
social networks with negatively weighted edges and, along the way, resolves the issue
of how to think about the enemy of my enemy.

8.1 Signed Laplacian
We derive spectral graph embeddings for signed graphs that create embeddings with
the obvious desirable properties: nodes connected by positive edges are placed close
together, while those connected by negative edges are placed far apart. The diffi-
culty, of course, is how to balance the “pull” of positive edges against the “push” of
negative ones to produce appropriate global solutions that approximate optima. We
derive an unnormalized and two normalized Laplacian matrices for signed graphs,

97

98 Chapter 8. Modelling positive and negative relationships

each in two ways: arguing from Rayleigh quotients as objective functions whose
minima represent good node placement, and from cut functions that are the signed
analogues of standard cuts. The methods produce, in each case, the same Laplacian
matrix representations of a signed graph, increasing confidence that this captures a
reasonable model of the balance between positive and negative edges. The difference
between them is how they address the issue of what makes a good cut (or, equiva-
lently, good clusters). The resulting Laplacians can be used as embeddings by using
some or all of the eigenvectors of an eigendecomposition of such a matrix.

We compare these new embedding techniques with a previously suggested
spectral method for signed graphs [48] and show the performance of all of the algo-
rithms on real-world datasets from Epinions, Slashdot, and the Africa Armed Con-
flict Location & Event Data (ACLED), as well as two small datasets, the Gahuku–
Gama alliance network of tribes in New Guinea, and the Sampson monastery net-
work. For the small datasets, we validate our techniques by appealing to visualiza-
tions; for the larger datasets we compute measures based on the distances between
positively and between negatively connected nodes in the embedding.

8.2 Unnormalized spectral Laplacians of signed
graphs

The embedding of a signed network should place nodes that are positively related
close together, but must place nodes that are negatively related far from one another,
balancing these two different objectives in a globally consistent way that reflects the
underlying reality of the social network. We first define an unnormalized Laplacian
for signed graphs, and argue for the validity of the resulting construction based on
both Rayleigh quotient and graph cut points of views.

There is no reason why there cannot be both a positive and negative relation-
ship between the same two individuals, and this is not necessarily the same as a
single relationship whose weight is the difference between the two intensities. In
other words, if A has a positive relationship with B with intensity 3, and a negative
relationship with intensity−2, this is not necessarily the same as a single relationship
of intensity +1. In other words, positive and negative relationships are qualitatively
different, and do not necessarily cancel out.

Therefore, we begin from two adjacency matrices: W+ which contains positive
values representing the intensity of positive relationships between the pairs of nodes,
and W− which also contains positive values representing the intensity of negative
relationships between the pairs of nodes. For the time being, we will consider the
edges to be undirected, and so both matrices are symmetric.

Let D+ be the diagonal degree matrix of W+, that is D+
ii = ∑

n
j=1 W+

i j and D−

be the diagonal degree matrix of W−, that is D−ii = ∑
n
j=1 W−i j . The total degree matrix

is therefore: D = D++D−.
A method proposed by Kunegis et al. [48] extends the conventional Laplacian

8.2. Unnormalized spectral Laplacians of signed graphs 99

approach to signed networks by defining a signed graph Laplacian as:

L = D−W = D++D−−W++W−

However, there are several difficulties with this definition. We will instead define:

Lsign = D+−D−−W = (D+−W+)− (D−−W−)

and show that it leads to a more natural embedding.

8.2.1 Rayleigh quotients of signed unnormalized
Laplacians

As usual, the Rayleigh quotient provides some insight into the property that the
Laplacian captures. The Rayleigh quotient of the Kunegis Laplacian, L, is:

RL(f) =
f ′L f
f ′ f

=

1
2 ∑

n
i, j=1

(
w+

i j(fi− f j)
2 +w−i j(fi + f j)

2
)

∑
n
i=1 f 2

i

In the numerator, the first term is the sum of the squared distances between positively
connected nodes, the same as for the conventional Laplacian. However, the second
term is the square of terms associated with nodes connected by negative edges. As
a result, the Rayleigh quotient is made smaller by embedding the negatively con-
nected nodes symmetrically around the origin. There is a certain logic to this, since
it certainly tends to place a given pair of negatively connected nodes far apart, but its
global effect is hard to determine and, as we will show, turns out not to be appropri-
ate.

Figure 8.1(a) shows the signed Laplacian L embedding of a toy graph. In the
toy graph, nodes 1, 3, and 5 are positively connected to nodes 2, 4, and 6, respec-
tively, and nodes 2, 4, and 6 are negative connected to each other. Consider the
relationship between node 1 and node 4. Although nodes 2 and 4 are antagonistic
to one another, it does not seem appropriate that the positive relationship between
nodes 1 and 2 should make node 1 more hostile to node 4 than node 2 is. Figure
8.1(a) suggests that the L embedding does not model transitivity of positive and neg-
ative connections as it should.

The natural way to deal with negative edges is to maximize the distances be-
tween the pairs of nodes that they connect, regardless of where those nodes want to
be embedded given the structure of the rest of the graph. In other words, the problem
with the Kunegis approach is that negatively connected nodes are forced to be on
opposite sides of the origin, when simply being far apart is enough.

Our definition of an unnormalized Laplacian matrix for signed graphs, Lsign,
uses this intuition. The corresponding Rayleigh quotient is:

RLsign(f) =
f ′Lsign f

f ′ f
=

1
2 ∑

n
i, j=1

(
w+

i j(fi− f j)
2−w−i j(fi− f j)

2
)

∑
n
i=1 f 2

i
.

100 Chapter 8. Modelling positive and negative relationships

(a) L (b) Lsign

Figure 8.1: A toy signed graph embedding of unnormalized Laplacians in two di-
mensions, where edges are weighted ±1, shown as solid lines (+1) and dashed lines
(−1).

A minimum of the Rayleigh quotient RLsign(f) corresponds to an embedding that
minimizes the total squared distance between positively connected pairs and maxi-
mizes the total squared distance between negatively connected pairs. Thus, embed-
ding using the Laplacian Lsign avoids the problem of L.

Figure 8.1(b) shows that the embedding based on Lsign places the nodes in
more reasonable positions. For example, node 1 is closer to node 4 than node 2 is.

The matrix Lsign has the following properties. First, 0 is an eigenvalue of Lsign,
and the corresponding eigenvector is the constant one vector 1. Exactly as for the
conventional Laplacian L, this is a trivial embedding. Second, if fi and f j are two
different eigenvectors of matrix Lsign, then fi ⊥ f j. The proofs are similar to those
for the conventional Laplacian L.

8.2.2 Graph cuts of signed unnormalized Laplacians
For signed graphs, there is also a direct relationship between spectral embeddings
and the cuts used for clustering. In other words, for each Rayleigh quotient of the
signed unnormalized Laplacians, there is a corresponding plausible cut function.

When there are negative edges in a graph, balanced minimum cut approaches
need to be redefined. For convenience, we represent the basic cut in its positive and
negative parts, respectively:

cut+(A1, ...,Ak) =
1
2

k

∑
i=1

W+(Ai,Ai),

cut−(A1, ...,Ak) =
1
2

k

∑
i=1

W−(Ai,Ai).

The sum of the positive and negative volumes is the total volume of the nodes in a

8.2. Unnormalized spectral Laplacians of signed graphs 101

group Ai:
vol(Ai) = vol−(Ai)+ vol+(Ai).

Kunegis et al. define a signed ratio minimum cut corresponding to their Lapla-
cian definition [48]:

RatioCut(A,A) = scut(A,A)
(

1
|A|

+
1
|A|

)
,

where scut(A,A) = 2cut+(A,A)+W−(A,A)+W−(A,A).
The minimum of the Rayleigh quotient RL can be viewed as a relaxation of

the minimization of RatioCut [48]. This objective function penalizes negative edges
within clusters, but it does so without any regard for the size of each cluster. It
seems natural that a large cluster ought to be “allowed” to contain relatively more
negative edges than a small one, so that a function like this might be more plausible
if the weights in scut were fractions of negative edges per cluster rather than simply
counts. Furthermore, this definition assumes only 2 clusters and it is problematic to
extend it to k clusters [17].

Instead, we define an unnormalized signed cut objective function by:

SRcut(A1, ...,Ak) =
k

∑
i=1

W+(Ai,Ai)−W−(Ai,Ai)

|Ai|

=
k

∑
i=1

cut+(Ai,Ai)− cut−(Ai,Ai)

|Ai|

The minimum of the SRcut function finds a solution with the fewest positive edges
and the most negative edges between groups. The value of SRcut could be negative.

Figure 8.2: Graph cuts of a sample graph

Both unnormalized cuts of signed graphs treat the positive edges in the same
way, but treat the negative edges differently. The RatioCut emphasizes minimizing
the total within-group negative edges. The SRcut maximizes the outgoing negative
edges from each group; this tends to create large groups when the sum of the positive
edge weights is greater than the sum of the negative edge weights between groups,
but small groups otherwise. For example, in Figure 8.2 the minimum cut of the
RatioCut is “Cut 1”, with no negative edge within groups. “Cut 2” is the result of
SRcut, with the node on the right side alone in a group. The question is which one is
the better cut? We argue that it is the second one, because the node on the right side
does not have any positive relationship to the nodes on the left.

102 Chapter 8. Modelling positive and negative relationships

The minimum of the Rayleigh quotient RLsign can be viewed as a relaxation of
the minimization of SRcut. The proof follows the same strategy as in von Luxburg
[101]. The details of the proof can be found in Appendix C.

8.3 Normalized spectral Laplacians of signed
graphs

Using the unnormalized Laplacian has the same issues for signed graphs as it does
for unsigned graphs, so it is natural to consider versions of the normalized Laplacians
to represent signed graphs.

Kunegis et al. [48] also proposed two versions of signed normalized Lapla-
cians:

Lrw = I−D−1W,

and Lsym = I−D−1/2WD−1/2
.

However, these two normalized Laplacians have the same issue as the Kunegis un-
normalized signed Laplacian.

We restrict ourselves to the case of the random-walk Laplacian and extend it
to the signed case in a different way. We derive two normalized Laplacian matrices
for signed graphs — the simple normalized signed graph Laplacian:

Lsns = D−1
(D+−D−−W) = D−1 (

(D+−W+)− (D−−W−)
)
,

and the balanced normalized signed graph Laplacian:

Lbns = D−1
(D+−W) = D−1

(D+−W++W−).

As before, we justify each in two ways: arguing from Rayleigh quotients as ob-
jective functions whose minima represent good node placement, and from cut func-
tions that are the signed analogues of standard cuts.

8.3.1 Rayleigh quotients of signed random-walk
Laplacians

The Rayleigh quotient corresponding to Kunegis’s Lrw is:

RLrw
(f) =

f ′L f
f ′D f

=

1
2 ∑

n
i, j=1

(
w+

i j(fi− f j)
2 +w−i j(fi + f j)

2
)

∑
n
i=1 di f 2

i
.

As before, the numerator can be made smaller by placing nodes connected by nega-
tive edges on opposite sides of the origin. Figure 8.3(a) is the normalized version of
Figure 8.1(a) and shows that, as before, the Lrw embedding does not model transitiv-
ity of positive and negative connections as it should.

8.3. Normalized spectral Laplacians of signed graphs 103

(a) Lrw (b) Lsns (c) Lbns

Figure 8.3: A toy signed graph embedding of normalized Laplacians in two dimen-
sions, where edges are weighted ±1, shown as solid lines (+1) and as dashed lines
(−1).

Our simple normalized signed graph Laplacian Lsns is motivated by the Rayleigh
quotient:

RLsns(f) =
f ′(D+−D−−W) f

f ′D f

=
1
2 ∑

n
i, j=1 wi j(fi− f j)

2

∑
n
i=1 di f 2

i

=

1
2 ∑

n
i, j=1

(
w+

i j(fi− f j)
2−w−i j(fi− f j)

2
)

∑
n
i=1 di f 2

i
.

which penalizes long positive edges and short negative edges in the same way as our
unnormalized construction.

A minimum of the Rayleigh quotient RLsns(f) corresponds to an embedding
that minimizes the total squared distance between positively connected pairs and
maximizes the total squared distance between negatively connected pairs, normal-
ized by the total degree D. Thus, embedding using the Laplacian Lsns avoids the
problem of L.

Figure 8.3 shows the embeddings of the three normalized signed Laplacians;
the relationships are qualitatively the same as for the unnormalized signed Lapla-
cians.

The matrix Lsns has the following properties. First, 0 is an eigenvalue of Lsns,
and the corresponding eigenvector is the constant one vector 1. Exactly as for the
conventional Laplacian Lrw, this is a trivial embedding. Second, if fi and f j are two
different eigenvectors of matrix Lsns, then f ′i D f j = 0. The proof is similar to that
for the conventional Laplacian Lrw. Third, Lsns has n real-valued eigenvalues within
range [−2,2]. The proof is based on the Rayleigh quotient. If f is an eigenvector
of matrix Lsns, the corresponding eigenvalue is equal to the corresponding Rayleigh
quotient value.

104 Chapter 8. Modelling positive and negative relationships

A small issue remains. There is an asymmetry in the two terms in the numer-
ator of RLsns(f). As two positively connected nodes are moved closer, the change in
the magnitude of the contribution to the numerator becomes smaller as desired (but
it tends to be in the “flat” part of the quadratic). When two negatively connected
nodes are moved farther apart, the change in the magnitude of the contribution to the
numerator becomes larger, again as desired (but it also tends to be in the “steep” part
of the quadratic). The numerator therefore has a bias towards separating negatively
connected pairs rather than placing positively connected pairs closer together — the
same relative movement has an asymmetric effect on the numerator. Globally this
means that positively connected pairs are embedded farther apart than they “should
be”.

A better Laplacian, therefore, should slightly reduce the effect of strongly neg-
atively weighted edges. The Rayleigh quotient corresponding to the balanced nor-
malized signed graph Laplacian is:

RLbns(f) =
f ′(D+−W) f

f ′D f

=
∑

n
i, j=1

(
1
2 wi j(fi− f j)

2 +w−i j f 2
i

)
∑

n
i=1 di f 2

i

=
∑

n
i, j=1

(
1
2 w+

i j(fi− f j)
2− 1

2 w−i j(fi− f j)
2 +w−i j f 2

i

)
∑

n
i=1 di f 2

i
,

The w−i j f 2
i term acts to pull nodes with incident negatively weighted edges slightly

towards the origin. The effect is shown in Figure 8.3(c), where nodes 1, 3, and 5 are
closer to nodes 2, 4, and 6, respectively, than in Figure 8.3(b).

However, the constant one vector 1 is no longer guaranteed to be an eigenvec-
tor of Lbns. In other words, the origin will no longer be the “center” of the embedded
graph. Lbns has n real-valued eigenvalues which lie between −1 and 2.

8.3.2 Graph cuts of signed random-walk Laplacians
Kunegis et al. also derive a signed normalized minimum cut from their Laplacian
[48]:

SignedNcut(A,A) = scut(A,A)
(

1
vol(A)

+
1

vol(A)

)
.

As before, SignedNcut does not consider the balance of negative edges in each group,
which may lead to the same problem as in the positive cut. Their definitions are based
on clustering into 2 clusters and it is problematic to extend to general k clusters [17].

8.4. Applications of signed networks 105

We define two normalized signed cuts:

SNScut(A1, ...,Ak) =
k

∑
i=1

W+(Ai,Ai)−W−(Ai,Ai)

vol(Ai)

=
k

∑
i=1

cut+(Ai,Ai)− cut−(Ai,Ai)

vol(Ai)

BNScut(A1, ...,Ak) =
k

∑
i=1

W+(Ai,Ai)+W−(Ai,Ai)

vol(Ai)

=
k

∑
i=1

W+(Ai,Ai)+W−(Ai,V)−W−(Ai,Ai)

vol(Ai)

=
k

∑
i=1

cut+(Ai,Ai)+ vol−(Ai)− cut−(Ai,Ai)

vol(Ai)

Both objective functions are derived from the normalized cut for signed graphs. The
minimum of the SNScut function tries to find a solution with the fewest positive
edges and the most negative edges between groups. The solution based on BNScut
function tries to minimize the positive edges between groups and the negative edges
within each group. These sound equivalent, since the maximum of the negative edges
between groups is equal to the minimum of the negative edges within each group,
that is W−(Ai,Ai) = vol−(Ai)− cut−(Ai,Ai). However, there will be a difference
between the mimima when vol(Ai) of each group Ai is considered. The difference
between the two normalized signed cut objective functions leads to two different
normalized signed Laplacian clusterings.

SNScut corresponds to the Laplacian matrix Lsns and BNScut corresponds to
the Laplacian matrix Lbns. We prove this using the same strategy as in von Luxburg
[101]. The details of the proofs can be found in Appendix D and Appendix E for Lsns
and Lbns, respectively.

These proofs show that our definitions of Laplacian matrices, derived from a
Rayleigh quotient point of view, agree with reasonable definitions of cuts for signed
graphs. As usual, the quality of the solution to the relaxed problem is not guaranteed
to be optimal, but is almost always good in practice [101].

8.4 Applications of signed networks
Our embedding approach allows the question of how to model the enemy of my
enemy to be answered rigorously. Figure 8.4 shows two embeddings of graphs con-
taining only negative edges. In both cases, it is clear that the edges from “me” to
my enemy, and from my enemy to his enemy are approximately orthogonal. In other
words, the enemy of my enemy is embedded exactly in between complete reflexivity
and complete transitivity — the embedding algorithm is agnostic about the behavior
of transitivity in the absence of other information (for example, other positive edges).

This intuitive result also answers the question about how many dimensions
should be retained in an embedding to get good results from a clustering algorithm.

106 Chapter 8. Modelling positive and negative relationships

Figure 8.4: Embeddings of the enemy of my enemy

Each group that has a negative relationship with any other group will tend to occupy
its own dimension; so choosing the dimensionality equal to the number of antipa-
thetic groups is guaranteed to suffice (but may be too conservative if there are strong
positive relationships among some of the groups).

We have shown that our methods are mathematically well behaved and mo-
tivated. As applications of our methods to real-world data, we use five signed net-
works to demonstrate the effectiveness of signed graph spectral embedding. Because
normalized Laplacians have better performance than the unnormalized ones [101],
we use only the random-walk Laplacians of signed graphs in the experiments. We
compare our results with the Lrw embedding and show how our approach is an im-
provement for real-world datasets as well.

For small datasets, we validate the results by visualizing the embeddings. To
compare the embedding quality for graphs that are too large for straightforward vi-
sualization, we define new performance measures. Since the Rayleigh quotients of
all three Laplacian matrices Lrw, Lsns and Lbns are normalized by the total degree of
each node, f ′D f , it is meaningful to compare distances between connected pairs in
different embeddings. Since the goal of a signed embedding is to make positively
weighted edges short and negatively weighted edges long, we can use the ratio of
positive distances to negative distances between connected pairs, and such ratios are
also comparable across different embedding algorithms.

We define three ways to compute the ratio. The first is the average edge ratio
(AER), which is computed by dividing the average embedded edge length of posi-
tively weighted edges by the average embedded edge length of negatively weighted
edges:

AER =

(
n
∑

i=1

n
∑
j=1

w+
i jdisi j

)
/vol+(V)(

n
∑

i=1

n
∑
j=1

w−i jdisi j

)
/vol−(V)

,

8.4. Applications of signed networks 107

where disi j is the Euclidean distance between node i and node j in the embedding.
The second is the average node ratio (ANR). This measure computes the aver-

age embedded lengths of edges from the perspective of each node; in other words, it
computes the ratio of the average “pull” on nodes to the average “push” on nodes:

ANR =

(
n
∑

i=1

n
∑
j=1

w+
i jdisi j/d+

i

)
/|V |+(

n
∑

i=1

n
∑
j=1

w−i jdisi j/d−i

)
/|V |−

,

where |V |+ and |V |− are the numbers of nodes with positive edges and negative
edges, respectively.

The third is the median edge ratio (MER), which is computed by dividing the
median embedded edge length of positively weighted edges by the median embedded
edge length of negatively weighted edges:

MER =
median(disi j |W+

i j > 0)

median(disi j |W−i j > 0)
.

The three measures are similar, but they emphasize different aspects of an em-
bedding. AER focuses on the total edge lengths. ANR moderates the edge lengths
by how they are incident at nodes. MER limits the effects of extreme values, for
example a single node embedded far from the rest of the graph.

Gahuku–Gama network

We begin with a small dataset described by Read [78] and used by Hage and Harary
[37]. This dataset contains the relations between 16 tribes of the Eastern Central
Highlands of New Guinea. Read suggested an alliance structure among three tribal
groupings. The dataset is an unweighted signed network, where positive edges are
alliance (“rova”) relations and negative edges are antagonistic (“hina”) relations. The
enemy of an enemy is sometimes a friend and sometimes an enemy. The dataset is
small enough that we can visualize the embeddings.

The tribe dataset embeddings based on the three signed Laplacian are shown
in Figure 8.5. In all three embeddings the positive (solid) edges are short, and the
negative (dashed) edges are long. The known alliance structure among three tribal
groups is shown clearly in the three embeddings, with only negative edges between
groups.

However, there are some important differences among the Laplacian embed-
dings. First we focus on the tribes in the upper left group. The tribe MASIL not only
does not have any enemies, but also plays a key broker role between the upper left
and lower left groups. This means that tribe MASIL should be placed close to the
center of the embedding. In the embedding of Figure 8.5(a), tribe MASIL is not as
close to the right-hand group as it is in the other two embeddings. Furthermore, in
the upper-left group, tribes GEHAM, GAHUK and ASARO are most antagonistic

108 Chapter 8. Modelling positive and negative relationships

(a) Lrw

(b) Lsns

(c) Lbns

Figure 8.5: The embeddings of the tribes of the Eastern Central Highlands of New
Guinea in two dimensions with alliance relations shown as solid edges and antago-
nistic relations shown as dashed edges.

8.4. Applications of signed networks 109

towards other groups. In the embedding of Figure 8.5(b) and Figure 8.5(c), they are
placed further away from the other groups, which seems appropriate. However, this
is not the case in the Lrw embedding. Other nodes in the Lrw embedding also show
reversed placement of the kind shown in the toy dataset. From both a mathematical
and practical point of view, our two proposed signed Laplacian embedding methods
are better than the signed Laplacian embedding methods in Kunegis et al. [48].

The embeddings of Lsns and Lbns are similar to one another. However, if we
look at the differences between the two signed Laplacian embeddings, members of
each subgroup are closer to one another in the Lbns embedding than they are in Lsns
embedding. The Lbns embedding seems to work well rendering this network.

The measures for the Eastern Central Highlands of New Guinea dataset, with
distances computed in three dimensions since there are three groupings, are shown
in Table 8.1.

AER ANR MER

Lrw 0.42 0.40 0.42
Lsns 0.39 0.40 0.40
Lbns 0.39 0.40 0.35

Table 8.1: Ratios for the Eastern Central Highlands of New Guinea embeddings
—smaller values are better

The ANR values for the three embeddings are similar. The Lbns embedding
arguably produces the best embedding overall, especially for the MER score which
ignores extreme values.

Sampson monastery network

We use another small dataset derived from Sampson’s 1969 unpublished doctoral
thesis (the data available from the UCINET repository). The data comes from 18
trainee monks who were asked for opinions about their relationships over a period
of time in which the group they formed was disintegrating. The monks were asked
about who influenced them positively and negatively, whom they esteemed or de-
spised, and whom they praised or blamed, but almost all of the analysis has focused
on the like/dislike ratings. Almost any technique applied to the matrix produces four
clusters that agree with those that Sampson originally postulated (for example, [29]).
The network is directed so we add the transpose to produce an undirected network,
ignoring the possibility that A likes B but B dislikes A. For simplicity, we also ignore
the difference of the like/dislike ratings.

The Sampson monastery dataset embeddings based on the three signed Lapla-
cians are shown in Figure 8.6. In all three embeddings the positive (solid) edges are
short, and the negative (dashed) edges are long. The negative edges are not only
between groups, but also within groups. Figure 8.6 shows that the known group
structure is clearly visible in all three embeddings.

110 Chapter 8. Modelling positive and negative relationships

(a) Lrw

(b) Lsns

(c) Lbns

Figure 8.6: The embeddings of the relations between the 18 monks in two dimen-
sions with like relations shown as solid edges and dislike relations shown as dashed
edges.

8.4. Applications of signed networks 111

However, as before, there are some differences among the Laplacian embed-
dings. For example, Node WINF12 (Winifrid), a leader of the “Young Turks” group,
does not have any incident negative edges and should be placed close to the center in
the embedding. In the embedding of Figure 8.6(a), WINF12 is the extremal node in
the upper group. In Figures 8.6(b) and Figure 8.6(c), WINF12 is placed much closer
to other groups, as it should be. BONAVEN5 is a loyalist with no negative incident
edges, so ir should be placed close to the center of the network. This is what happens
using Lbns and Lsns but not using Lrw. The measures for the Sampson monastery
dataset, computed in three dimensions, are shown in Table 8.2.

AER ANR MER

Lrw 0.49 0.47 0.53
Lsns 0.46 0.50 0.48
Lbns 0.45 0.46 0.50

Table 8.2: Ratios for the Sampson monastery network embeddings — smaller values
are better

Lsns and Lbns have better performance overall, except that the ANR values of
the Lsns is slightly worse than the ANR values of the Lrw. But this time Lsns has a
lower value than Lbns for the MER score. Based on the embeddings of the two small
datasets, our two proposed signed Laplacian embedding methods are better than the
signed Laplacian embedding methods in Kunegis et al. [48]. However, it is hard to
decide which one of the two is the best.

ACLED violent groups network

The ACLED (Armed Conflict Location & Event Data Project — acleddata.com), is
a dataset of political violence events in Africa from 1997 to the present. Subsets of
this dataset were converted to directed signed social networks as follows: each record
describes an attack by group A on group B, possibly with A assisted by some other
group C and group B assisted by some other group D. This record results in a negative
directed edge from A to B, and positive directed edges from C to A and/or from D to
B. Multiple attacks or collaborations increase the edge weights accordingly. There
can be (and are!) both positive and negative edges between the same pair of actors.

We select records involving 21 countries in North and West Africa and the in-
cidents involving violent groups. We use the largest connected component of groups:
173 groups. (As expected, there are small sets of groups that interact only with one
another, and we ignore these.) Most edges in this network are negative: 62 groups
have only negative edges and some have only one negative edge. The subset has
previously been examined from a geographical perspective [106].

Figure 8.7 shows the embeddings in three dimensions. The Lrw embedding
shows a strong bipartite structure, while the other two show a more complex struc-
ture.

112 Chapter 8. Modelling positive and negative relationships

(a) Lrw

(b) Lsns

(c) Lbns

Figure 8.7: The embeddings of the relationships between violent groups in Northern
and Western Africa, plotted in two dimensions with like relations shown as solid
edges and dislike relations shown as dashed edges.

8.4. Applications of signed networks 113

(a) AER of ACLED (b) ANR of ACLED

(c) MER of ACLED

Figure 8.8: The AER, ANR, and MER values of the ACLED violent groups network
as a function of different numbers of dimensions (lower values are better)

Because of the large number of negative relationships in this data, it is not clear
how many dimensions are appropriate to reveal the structure in this data. Figure 8.8
shows the three measures computed using increasing numbers of dimensions. All
three measures for Lrw are slightly lower than those of Lsns and Lbns when only a few
dimensions are used. However, when more dimensions are used, Lsns and Lbns are
better than Lrw.

Epinions network

To further compare the quality of the different signed Laplacian embeddings, we use
a larger real-world dataset, Epinions. The Epinions dataset is a who-trusts-whom
online social network from a general consumer review site (Epinions.com) [51]. The
network is directed so we add the transpose to produce an undirected network.

The network has about 130,000 nodes and hundreds of thousands of edges. We
sample different subgraphs from the real-world dataset using two standard sampling
techniques for large graphs: random-walk sampling and forest-fire sampling [50].
The two sampling methods have two different goals: creating a sample that is a
scaled-down version of the whole graph (random walk), or creating a version of the
graph as it would have been at some previous time in its growth (forest fire).

114 Chapter 8. Modelling positive and negative relationships

(a) AER of Epinions (b) ANR of Epinions

(c) MER of Epinions

Figure 8.9: The AER, ANR, and MER values for 30 randomly chosen subsets of
10,000 nodes from the Epinions dataset using the forest-fire sampling method (lower
values are better)

We generate 30 sampled subgraphs of a given size, since 30 is large enough for
the central limit theorem to apply, giving us dependable scores. For the forest-fire
sampling method, to ensure that the sampled graph is connected we restart from a
uniformly randomly chosen burned node if the fire dies. (For the random-walk sam-
pling method, the sampled subgraph is necessarily connected; we pick a restart node
from the visited list.) We ignore the sign of edges when we use the sampling meth-
ods. We use Laplacian embedding in three dimensions to compute the measures.
The ratio of positive to negative edges in the samples is larger than for the graph as
a whole suggesting that negative edges are relatively rare in the sparser parts of both
networks. This seems plausible — those less well connected socially may be more
reluctant to become visibly negative, and there is little point to being part of this kind
of social network via only negative connections.

Figure 8.9 shows plots of the three measures for sampled 10,000-node sub-
graphs using the forest-fire sampling method. Here we compute the measures in
only three dimensions, since there are not really expected to be clusters in this kind
of data. The AER and ANR values of Lsns and Lbns for this dataset are significantly
lower than the values of Lrw. This indicates that Lsns and Lbns embeddings are better
than the Lrw embedding. The AER and ANR values of Lsns and Lbns in these exam-

8.4. Applications of signed networks 115

(a) AER of Epinions (b) ANR of Epinions

(c) MER of Epinions

Figure 8.10: The AER, ANR, and MER values for 30 randomly chosen subsets of
10,000 nodes from the Epinions dataset using the random-walk sampling method
(lower values are better)

ples are similar, but the Lsns result is always slightly better. Figure 8.9(c) shows that
the MER values are similar for all three techniques, so the differences between them
must be associated with how they deal with more extremal nodes (and longer edges).
Smaller subgraphs, with 100 and 1000 nodes, have measure values similar to those
in Figure 8.9.

Figure 8.10 shows plots of the three measures for the sampled 10,000-node
subgraphs using the random-walk sampling method. The results are similar to the
results using the forest-fire sampling method, with AER and ANR values for Lsns
and Lbns significantly lower than the values for Lrw, but with similar MER values
for all. The two sampling methods have different goals, but the embeddings perform
similarly for all of the samples.

Slashdot network

We also use another larger real-world signed network, Slashdot. Slashdot is a
technology-related news website. Users are allowed to tag each other as friends or
foes. A signed link may also indicate that one user likes or dislikes the comments of
another [51]. The network is directed so, as before, we add the transpose to produce
an undirected network.

116 Chapter 8. Modelling positive and negative relationships

(a) AER of Slashdot (b) ANR of Slashdot

(c) MER of Slashdot

Figure 8.11: The AER, ANR, and MER values for 30 randomly chosen subsets of
10,000 nodes from the Slashdot dataset using the forest-fire sampling method (lower
values are better)

The Slashdot network has close to 80,000 nodes and hundreds of thousands of
edges. As before, we sample subgraphs using forest-fire and random-walk sampling.

We generate 30 sampled subgraphs of a given size and use a Laplacian embed-
ding in three dimensions to compute the measures. Once again, the ratio of positive
to negative edges in the samples is higher for subsets than for the graph as a whole.

Figure 8.11 shows plots of the three measures for 10,000-node subgraphs using
forest-fire sampling. Just as for the Epinions dataset, the AER and ANR values of
Lsns and Lbns are significantly lower than the values of Lrw. Figure 8.11(c) shows
that the Lrw embedding works poorly on the Slashdot dataset, presumably because
its balancing strategy works poorly when negative edges become more common.
Furthermore, some values of Lrw in Figures 8.11(a) and 8.11(b) are greater than 1,
which is clearly undesirable for a non-pathological subgraph. The Lsns and Lbns
embeddings seem better than the Lrw embedding.

Figure 8.12 shows three embeddings of a 100-node subgraph, small enough
to be visualized, sampled using forest-fire sampling. In Figure 8.12(a) the negative
edges are concentrated at the lower left near the origin, but the long arms are positive
edges. Embeddings similar to this show why the AER and ANR values can be greater
than 1 for the Lrw measures. Figures 8.12(b) and 8.12(c) show that the Lsns and Lbns

8.4. Applications of signed networks 117

(a) Lrw

(b) Lsns

(c) Lbns

Figure 8.12: Visualization of three embeddings of a 100-node forest-fire sample
subgraph from Slashdot, using the three different Laplacians

118 Chapter 8. Modelling positive and negative relationships

(a) AER of Slashdot (b) ANR of Slashdot

(c) MER of Slashdot

Figure 8.13: The AER, ANR, and MER values for 30 randomly chosen subsets of
10,000 nodes from the Slashdot dataset using the random-walk sampling method
(lower values are better)

embeddings are more plausible but do not necessarily resemble one another.
Figure 8.13 shows the three ratio measures for the sampled 10,000 node sub-

graphs using random-walk sampling. The results are similar to those of the forest-fire
subgraphs — the two measures for Lsns and Lbns are significantly lower than those
for Lrw.

The similarity of results with different sized subgraphs, different sampling
methods and different datasets shows the usefulness of the three measures. The AER
and ANR measures indicate that the Lsns and Lbns embeddings have better perfor-
mance than the Lrw embedding. The Lsns embedding is slightly better than the Lbns
embedding. The MER measure does not distinguish the different embeddings as
much, suggesting that the differences are mainly in the way that the non-core nodes
are embedded.

8.5 Summary
It is obviously implausible that the relationships in social networks, even when typed
and directed, are always positive. It is useful to be able to include situations where a
relationship is negative. However, this is not easy because of transitivity — positive

8.5. Summary 119

relationships tend to be transitive in a natural way (the friend of my friend might
well become my friend), but negative relationships are more complex. The enemy
of my enemy could form an alliance with me against out mutual enemy but, on the
other hand, I might dislike them even more than my immediate enemy. We have
developed a way to balance the similarity implicit in positive relationships with the
dissimilarity implicit in negative relationships. Using it as the basis of embeddings
produces plausible results, looked at from several different perspectives.

Notes
The spectral method for signed graphs proposed by Kunegis et al. [48] can be used
to embed signed networks and do further analysis, such as clustering. However,
their signed graph embedding has an obvious weakness, and is also problematic to
extend from 2-way signed ratio cut and 2-way normalized cut to the k-way clustering
problem [17].

A weighted kernel k-means clustering objective is mathematically equivalent
to a general spectral clustering objective [24] and can outperform spectral methods
in terms of quality, speed, and memory usage. Chiang et al. [17] modified weighted
kernel k-means clustering to apply it to signed graphs. Their signed kernel is similar
to one of our methods, but is a different way to solve this problem. Furthermore, an
embedding map is more meaningful than a simple index of partitions. For example,
the embedding allows us to visualize a graph, and tells us the global quantifiable
similarity between unconnected nodes which a simple clustering cannot do.

There are also other signed graph clustering methods. For example, Yang et
al. [108] proposed an agent-based approach to partition signed networks; Traag and
Bruggeman [98] presented a graph clustering method based on modularity using the
Potts model representation; Anchuri and Magdon-Ismail [1] extended an existing
modularity-based graph-partitioning technique [70] to signed networks. However,
an embedding map is more meaningful than a simple index of partitions.

The approach described in this chapter was first presented in Zheng and Skil-
licorn [112].

Chapter 9

Signed graph-based
semi-supervised learning

We now turn to using the signed graph embedding construction of the last chapter as
a new way to frame and solve the problems of semi-supervised prediction, especially
for classes of different sizes.

Consider a social network where only a few nodes have been labelled with
the value of a particular property. The task is to label all of the other nodes in the
way that best respects the known labels and the connection structure of the social
network. Of course, this will only work well if the property of interest is associated
with homophily — similar nodes from the social-network perspective are likely to
be similar with respect to the property. Examples include political affiliation (friends
tend to have similar political views), age (friends tend to be in a similar age cohort),
and length of arrest record (criminals tend to have criminal friends).

The intuition for graph-based semi-supervised prediction is that an unlabelled
record should be assigned the label of its “closest” labelled neighbor — but “closest”
is a subtle relationship because it may depend not only on the shortest path from the
unlabelled node to the labelled node, but also on the number of such paths. In other
words, an unlabelled node connected to a class A node by a single short path, but to
a class B node by several slightly longer paths, may still be reasonably classified as
class B. Graph-based semi-supervised prediction is appropriate when the properties
of a node are best understood within some larger context — for example, the decision
to buy a product may depend not only on an individual’s preferences, but also on
those of their neighbors in the social network, either because of social pressure, or
because they get trusted recommendations from their neighbors. Graph-based Semi-
Supervised Learning (SSL) algorithms tend to have a better performance than non-
graph-based SSL approaches [92] and have been successfully used in many areas
[93].

The labels of the labelled subset of the nodes could be thought of as a kind of
influence that flows along the edges of a graph, flowing most easily along edges with
heavy weights and gradually diminishing in intensity, but also flowing in parallel

121

122 Chapter 9. Signed graph-based semi-supervised learning

along multiple edges. The label given to an unlabelled node becomes either that of
the leading edge of the flow from one of the labelled nodes, or the greatest intensity
of flow that reached it from any labelled node. Most existing algorithms use some
variant of this “spreading activation” intuition.

When the sizes of the classes are different, or the number of labelled nodes
is not proportional to the size of the class that they represent, the performance of
these algorithms degrades. It is easy to see why. The flow from the labelled nodes
of a small class can quickly reach all of the nodes of the cluster of unlabelled nodes
that belong to that class, and then begins to infiltrate the nodes of other clusters,
even though these other clusters are only weakly connected to it. If there are few
labelled nodes for one of the classes, then the flow from them does not necessarily
reach all of the nodes in the appropriate cluster before the flow from nodes with other
labels reaches them. These performance degradations can be demonstrated in both
synthetic and real-world datasets.

Embedding the social network in a geometric space simplifies the spreading
process because it becomes a wavefront moving directly in that space. Or, to put
it another way, the label of an unlabelled node can be determined by computing
the distance between it and the labelled nodes in the geometry. Using the signed
network embedding technique introduced in the previous chapter enables a semi-
supervised prediction algorithm that performs at about the same level as other graph-
based SSL approaches when the classes, or the labelled class representatives, are
balanced. However, when either, or both, are not balanced this approach performs
substantially better. Since there is no reason to suppose that real-world datasets will
necessarily be doubly balanced, as these other algorithms require, our approach is
more general.

We compare our SSL method with existing spectral kernel SSL methods: LGC
[118], LapSVMp [59] and TACO [73] by applying them to several synthetic and
two real-world datasets: the USPS handwritten digits and ISOLET Spoken Letter
datasets.

9.1 Approach
We avoid the problems associated with spreading activation strategies and leverage
the ability to embed signed graphs. Consider first the two-class case. The high-level
algorithm uses these steps:

1. Add two new nodes (“stations”) that act as class representatives;

2. Connect the labelled nodes of each class to their class representative by posi-
tively weighted edges;

3. Force the class representatives apart by adding a negative edge between them
(which tends to pull the labelled nodes of each class further from one another
which, in turn, tends to pull the unlabelled nodes of each class further apart);

4. Embed the graph in a Euclidean space using the spectral signed network em-
bedding algorithm;

9.1. Approach 123

5. Allocate each unlabelled node to a class based on the sign of the corresponding
entry in the principal eigenvector of the eigendecomposition corresponding to
the signed graph Laplacian. It would be plausible to use a subset of k of the
eigenvectors, and cluster in k-dimensional space, using any standard clustering
algorithm, but this turns out not to be stable.

When there are more than two classes, a one-versus-the-rest strategy is used, in the
style of support vector machines. The effect of this strategy is shown in Figure 9.1(a).

(a) Adding edges between station nodes

(b) Adding edges between all labelled nodes

Figure 9.1: Two possible ways to add negative edges. The solid edges are positive
and the dashed edges are negative.

It would also be possible to add positive nodes between labelled nodes with
the same label, and negative edges between nodes with different labels. The result
is shown in Figure 9.1(b). With this strategy, the number of added edges increases
quadratically in the number of labelled nodes, while our strategy requires extra edges
only linear in the number of labelled nodes. As the figures show, even for this small
graph the difference is non-trivial.

A technical problem remains which requires an extension to the previous signed
spectral embedding technique. Node degree matters and the labelled nodes have all
had their degree increased by one by the addition of a new edge to the class represen-
tative node. The total degree of the graph has also increased. To avoid the distortions
that this might create, we modify the total degree term in Lsns so that the total de-
gree of original nodes are computed based on the original graph edges, and the total
degree of stations are computed based on the total degree in the new graph.

Let A be the original n× n graph adjacency matrix, and apw and anw be the
added positive and negative edge weights. Assume we have two classes with a n×2
label indication matrix F , where Fi = [1,0] (the ith row vector of F) if node xi is

124 Chapter 9. Signed graph-based semi-supervised learning

labelled as the first class, Fi = [0,1] if node xi is labelled as the second class, and
Fi = [0,0] if node xi is not labelled. Then the (n+2)× (n+2) adjacency matrix W
of the new graph with extra nodes is defined as:

W =

 A apw∗F

apw∗F ′
0 −anw
−anw 0

 . (9.1)

The modified total degree D̂ of the new graph is a (n+2)× (n+2) diagonal matrix
with diagonal value:

D̂ii =
n

∑
j=1
|Ai j|, ∀i ∈ [1,n],

D̂ii = anw+apw∗
n

∑
j=1

Fi−n, j, ∀i ∈ [n+1,n+2].
(9.2)

Let RS be the row sum diagonal matrix of W , that is, RSii = ∑
n+2
j=1 Wi j. Then the

modified signed Laplacian becomes:

L̂sns = D̂−1(RS−W)

where RS−W = (D+−W+)− (D−−W−).
Thus, the positive part W+ of the new graph with extra nodes, a (n+2)× (n+

2) matrix, is defined as:

W+ =

(
A apw∗F

apw∗F ′ 0

)
.

The negative part, the (n+2)× (n+2) matrix W−, is defined as:

W− =

0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0
0 · · · 0 0 anw
0 · · · 0 anw 0

 .

The modified total degree D̂ of the new graph is a (n+2)× (n+2) diagonal matrix
with diagonal value:

D̂ii =
n

∑
j=1

Ai j, ∀i ∈ [1,n]

D̂n+i,n+i = anw+apw∗
n

∑
j=1

Fi j, ∀i ∈ [1,2]

The modified signed Laplacian becomes:

L̂sns = D̂−1 ((D+−W+)− (D−−W−)
)

9.1. Approach 125

The corresponding Rayleigh quotient is:

RL̂sns
(f) =

1
2 ∑

n+2
i, j=1

(
w+

i j(fi− f j)
2−w−i j(fi− f j)

2
)

∑
n+2
i=1 d̂i f 2

i

=
1
2 ∑

n
i, j=1 Ai j(fi− f j)

2

∑
n+2
i=1 d̂i f 2

i

+
∑

n
i=1 apw∗Fi,1(fi− fn+1)

2

∑
n+2
i=1 d̂i f 2

i

+
∑

n
i=1 apw∗Fi,2(fi− fn+2)

2

∑
n+2
i=1 d̂i f 2

i

− anw(fn+1− fn+2)
2

∑
n+2
i=1 d̂i f 2

i
.

A minimum of the Rayleigh quotient RL̂sns
(f) corresponds to an embedding that min-

imizes the total squared distance between connected nodes in the original graphs,
plus the distances of the labelled nodes to the corresponding class-representative
nodes, and maximizes the total squared distance between the two stations, normal-
ized by the modified total degree D̂.

We use the Rayleigh quotient RL̂sns
(f) as a relaxed version of our objective

function for our graph-based SSL method. Finding the embedding to minimize the
Rayleigh quotient RL̂sns

(f) is equivalent to finding the eigenvector corresponding to
the smallest eigenvalue of L̂sns. Thus we can use eigendecomposition to find the opti-
mal solution of our objective function. Two-class classification is based on the eigen-
vector associated with the smallest non-trivial eigenvalue — the nodes are divided
into two groups based on the sign of their corresponding entries in this eigenvector,
and these two groups are predicted to be members of the two classes.

There is also a random-walk interpretation of our approach. For the part of the
graph connected by positive edges, the matrix L̂sns without the class-representative
nodes has the same eigenvectors as the conventional random walk normalized Lapla-
cian matrix Lrw = I−D−1W [84]. A random walk starting from any node wanders
around the graph until it reaches a labelled node, but is then likely to go to the class-
representative node since the edge to it has high weight. From this perspective, the
random walk measures how likely an unlabelled node is to reach the “nearest” class
representative. In contrast, a random-walk interpretation of activation spreading ap-
proaches begins from the labelled nodes. Unlabelled nodes are labelled by the first
random walker that reaches them. When one cluster is small, a random walker from
its labelled node(s) can reach unlabelled nodes in other clusters before the random
walker from their own labelled nodes.

The modified Laplacian matrix L̂sns has most the properties of Lsns except for
the range of its eigenvalues. The lower boundary is still −2, but the upper boundary
can exceed 2. The eigendecomposition of L̂sns can be calculated using instead the
symmetric matrix D̂−1/2(RS−W)D̂−1/2. This calculation is fast because the matrix
is symmetric. Since we only need one eigenvector, the complexity of the calculation
is quadratic in n if the matrix is dense, and linear if the matrix is sparse. As we

126 Chapter 9. Signed graph-based semi-supervised learning

have already discussed, social network graphs are likely to be sparse (although this
algorithm could be applied to graphs generated in other ways, where this might not
be true.)

To summarize, the Binary Class Graph Embedding (BCGE) for graph data
with a limited class label set can be computed in 6 steps.

Method (BCGE) Input: An undirected adjacency matrix A, an n×2 label indication
matrix F , and apw and anw the added positive and negative edge weights.
Output: One-dimensional embedding vector v.

1. Compute the new adjacency matrix W with two added nodes as in equation
(9.1).

2. Compute the diagonal matrices D̂ as in equation (9.2).

3. Compute the row sum diagonal matrix RS of W .

4. Compute the symmetric Laplacian matrix L̂sym = D̂−1/2(RS−W)D̂−1/2.

5. Compute the smallest non-trivial eigenvector u of L̂sym.

6. Use 0 as a threshold to allocate objects corresponding to each entry of the
eigenvector to one class or the other.

The general process for our graph-based eigenvector SSL algorithm, GBE, is:

Input: An undirected adjacency matrix A, an n× c label indication matrix F , where
fi is the ith column vector of F , and apw and anw the added positive and negative
edge weights.
Output: Label prediction vector y∗.

If c = 2, run v = BCGE(A,F,apw,anw);
y∗i = 1 if vi > 0, else y∗i = 2.

If c > 2, for each i ∈ [1,c]
F∗ = [fi,∑ j 6=i f j];
Vi = BCGE(A,F∗,apw,anw);

y∗i = argmax j Vi j

Each eigenvector f of L̂sns can be computed by f = D̂−1/2v, where v is the
eigenvector of the L̂sym. But this step is unnecessary because the modified total
degrees of the nodes do not change for different class labels. When we deal with
the multiple class problem, for each node i, the Vi j are on the same scale. As a side
effect, in the multiple class problem, the major part of L̂sym for each label is the
same; only the last two columns and rows need to be changed. Furthermore, because
we know the trivial eigenvalue of the symmetric Laplacian is 0 with corresponding
eigenvector D̂1/2 ∗1, we can directly compute the smallest non-trivial eigenvector.

9.2. Problems of imbalance in graph data 127

This means we only need to compute a single specific eigenvector of the symmetric
matrix for each class.

9.2 Problems of imbalance in graph data
There are two ways in which data can be imbalanced. First, the number of records in
one class might be much larger than the number in the other class(es). Second, the
number of available labelled records in one class might be larger than the number
in other class(es). And of course both might happen simultaneously. These imbal-
ances cause performance difficulties for models based on some form of spreading
activation.

We have shown that our methods are mathematically well behaved and moti-
vated. Comparing our results with two existing spectral kernel SSL methods: LGC
[118] and LapSVMp [59], and a method based on probability: TACO [73] which was
shown to outperform LP [3], MAD [94] and AM [92], we show the advantages of our
approach.

(a) Toy data with two circles (b) Toy data with two moons

Figure 9.2: Applying GBE to two toy datasets with only one labelled node (square)
for each class

First, we start with toy data. The nodes of two toy datasets are generated in
two-dimensional space, and adjacency matrices are constructed by connecting each
point to its five nearest neighbors. One node of each class is labelled. Figure 9.2
shows that the results of our GBE approach work as well as the algorithms of [5, 118].

If the structure of the original graph is consistent with the class labels, only
a small repulsive force is needed to model the graph structure. Hence only a small
value for the negative edge weight anw is needed. Both of these examples have such
consistent structure, so only a small value of anw leads to good classification results.

A more substantial synthetic data was created, with 0/1 edge weights. Edges
between two nodes in the same class were created with probability 10% and between
nodes in different classes with probability 2%. Class sizes of 300 were used for
balanced datasets; sizes of 250 and 1000 for two-class datasets; and 250, 500, 750,
and 1000 for four-class datasets.

128 Chapter 9. Signed graph-based semi-supervised learning

We also apply our approach to two real-world datasets: the USPS handwritten
digit and the ISOLET Spoken Letter datasets, which are commonly used for graph-
based SSL. The ISOLET Spoken Letter dataset [53] was generated by 150 subjects
speaking the name of each English letter of the alphabet twice. Thus there are 300 in-
stances for each letter. We use letters “A” and “B” as a binary classification problem
and letters “A”, “B”, “C”, and “D” as a four-class problem in our experiments.

The USPS data consists of handwritten grayscale 8-bit (16× 16) images of
digits “0” to “9”. There are 1100 examples of each class, but we only use the first
300 examples of each class to match the size of the ISOLET data. We use digits
“2” and “3” as a binary classification problem and digits “1”, “2”, “3”, and “4” as a
four-class problem.

Both datasets are not graph-based. We convert the data to adjacency matrices
first, and then apply the graph-based SSL. The adjacency matrices are constructed us-
ing the K-Nearest Neighbor approach with an RBF kernel, with K set to 5; and the di-
agonal elements of the created adjacency matrices are set to 0. We add the transpose
to symmetrize the adjacency matrices. The average degree in all the generated adja-
cency matrices is a little less than 5. The average edge weight is little greater than 0.5.

In all the experiments, we set apw = 150 for the added positive edges, creating
a strong “pull” of labelled nodes towards their class representatives, and anw = 5 for
the negative edge weight, around the mean value of the degree. A sensitivity anal-
ysis over a range of values for apw and anw is shown in Figure 9.3. It is clear that
the quality of the results is relatively insensitive to these choices, as long as they are
large enough.

Figure 9.3: Plot of average error over 30 repeated executions for different choices
of positive and negative edge weights, apw and anw. These results are for the case
of imbalanced group sizes and equal number of labels, but results are similar for all
other configurations.

We use α = 0.8 in the LGC approach; γI = 1, γA = 1e− 5, the normalized
Laplacian kernel with early stopping “PCG” in the LapSVMp approach; and α =
1e− 6, β = 1e− 3, γ = 1 in the TACO approach. The test errors are averaged over
30 trials of each label pair.

Because there are slight differences between binary classification and c-class
classification, we test the performances in both situations.

9.2. Problems of imbalance in graph data 129

The balanced case

First, we use SSL for a two-class problem, comparing all four approaches. The
number of labelled nodes in each group is varied, increasing gradually. Figure 9.4
shows that the error rates of LGC and TACO are worse than those of LapSVMp and
GBE for the datasets when the number of labelled nodes is small. However, the
difference is negligible when there are 10% or more labelled nodes in each group.
Furthermore, the error percentages tend to be stable after more than 10% labels for
all three approaches.

The LapSVMp approach has a worse performance on the synthetic dataset, but
better performances on the real-world datasets. Our GBE has good performance on
the three datasets.

We also use four equal-sized classes, with the same number of labelled nodes
in each group. Figure 9.5 shows that the performance of our approach GBE is bet-
ter than others for the synthetic data, but is similar for the two real-world datasets.
Figure 9.5 also shows that the performances of LapSVMp and GBE are slightly bet-
ter than LGC and TACO for the USPS handwritten data, but worse for the ISOLET
Spoken Letter data. When the number of labelled nodes in each group reaches 30
(10%) or more, the results of the four approaches tend to be consistent and stable.
All of the four approaches perform equally when the class sizes and the numbers of
labelled nodes are balanced. The performances for multiple classes are significantly
worse than for two classes since the connections among the classes become more
complicated.

Imbalance in the number of labelled nodes

Now we consider the case where the class sizes are equal but the number of labelled
nodes per class is not. For the two-class classification problem, we set the number
of labelled nodes in the second class to be 4 times the number in the first class.
Figure 9.6 shows the results of two-class classification in this setting. GBE is now
substantially better than the others, especially for small numbers of labelled nodes.
Its performance remains at the same level as the balanced case.

For the four-class problem, we label the second, third and fourth classes with
2, 3 and 4 times the number of labelled nodes as the first class. Figure 9.7 shows the
results. Our GBE approach again shows better performances for both datasets.

Figure 9.8 gives the boxplots of the distributions of error percentages in the
last column of Figure 9.7. Figure 9.8 shows that the errors of our GBE approach
are statistically significantly lower than the other two. In this case, we have 30, 60,
90 and 120 labelled instances in the first to fourth classes, respectively, more than
10% of the total instances. From the previous experiments, 10% of nodes labelled
is sufficient for a stable result, and this is true for our GBE approach in these cases.
Error percentages for the LGC, LapSVMp and TACO approaches are far higher than
in the previous experiments with the same number of labels.

130 Chapter 9. Signed graph-based semi-supervised learning

(a) Synthetic

(b) USPS

(c) ISOLET

Figure 9.4: Error rates for two classes, same size classes, same number of labelled
nodes in each class (GBE is our technique).

9.2. Problems of imbalance in graph data 131

(a) Synthetic

(b) USPS

(c) ISOLET

Figure 9.5: Error rates for four classes, same size classes, same number of labelled
nodes in each class (GBE is our technique)

132 Chapter 9. Signed graph-based semi-supervised learning

(a) Synthetic

(b) USPS

(c) ISOLET

Figure 9.6: Error rates for two classes, equal class sizes, number of labelled nodes in
the second class is 4 times that of the first class.

9.2. Problems of imbalance in graph data 133

(a) Synthetic

(b) USPS

(c) ISOLET

Figure 9.7: Error rates for four classes, equal class sizes, the number of labelled
records in the second, third and fourth classes is 2, 3, and 4 times the number of
labelled records in the first class

134 Chapter 9. Signed graph-based semi-supervised learning

(a) Synthetic (b) USPS

(c) ISOLET

Figure 9.8: Boxplots of error rates from the last column of the figures in Figure 9.7
(i.e. with 30, 60, 90 and 120 labels in the first to fourth classes, respectively)

When the number of labelled nodes are different in different classes, the thresh-
old of the decision boundaries are different. For simplicity, consider only the two-
class case. All four approaches put the labelled nodes at the ends of a structure,
and let the rest of nodes “pull” each other according to the edge structure. After the
configuration relaxes, the LGC, TACO and LapSVMp place the nodes in the middle.
For example, in the LGC approach, +1 and −1 are the boundaries of the two labels,
and 0 is the threshold for predictions. However, when the number of labelled nodes
in one group is much greater than in the other, all of the unlabelled nodes tend to
be pulled towards the end with more labelled nodes. This discrepancy causes the
performance of all of the LGC, TACO and LapSVMp approaches to be poor. This
is the same kind of problem that happens in algorithms such as K-means when the
obvious clusters are of very different sizes or non-spherical shapes.

On the other hand, our GBE approach splits the nodes into two groups based
on the constraint D̂ f ⊥ 1 and with 0 as threshold. Our approach therefore pulls the
nodes out of the middle region of the embedding.

Imbalance in class sizes

We also consider the case where the number of labelled nodes in each class is the
same, but the number of instances of each class is different. Figure 9.9 shows the
results for the three datasets with four classes. Our approach has better performance

9.2. Problems of imbalance in graph data 135

(a) Synthetic — two classes (250, 500, 750, and 1000 nodes).

(b) USPS — two classes (250, 500, 750, and 1000 nodes).

(c) ISOLET — two classes (75, 150, 225, and 300 nodes).

Figure 9.9: Error rates for four classes with the same number of labelled nodes but
different numbers of nodes in each class

136 Chapter 9. Signed graph-based semi-supervised learning

(a) Synthetic — two classes (250 and 1000 nodes).

(b) USPS — two classes (250 and 1000 nodes).

(c) ISOLET — two classes (75 300 nodes).

Figure 9.10: Error rates for two classes with the same number of labelled nodes, but
different numbers of nodes in each class

9.3. Summary 137

and stabilizes with fewer labelled nodes than LGC, TACO and LapSVMp. The LGC
and TACO approaches have also a stable performance, but LapSVMp approach has
worse performance on the synthetic dataset and the ISOLET dataset. The results for
two classes are similar to the four-class case, but the LapSVMp approach has similar
performance to ours using the ISOLET data.

Our GBE approach shows a lower error rate when the number of labelled nodes
in each class is the same, but the number of instances of each class is different. Thus
it performs at approximately the same level as the other state-of-the-art algorithms
in the balanced cases, but outperforms them in both imbalanced cases: imbalanced
class sizes, and imbalanced numbers of labelled points.

9.3 Summary
The attraction of graph-based semi-supervised learning algorithms is that they not
only use the class label information, but also exploit the graph structure, in partic-
ular the intuition that connected nodes “should”, in general, have the same labels.
Graph-based SSL approaches tend to have better performance than non-graph-based
SSL [92]. We have combined the intuition that graph structure helps class label as-
signments with our new technique for signed network embedding, The performance
of our technique matches that of the comparable approaches when the class sizes are
balanced, but exceeds them substantially when classes are imbalanced — which is
the typical real-world case. The performance differences illustrate the weakness of
these other two methods — their embedding creates the same well-known problem
as k-means when the classes are of different sizes and shapes because they place the
decision boundary in the “middle” of the class representatives.

Notes
There are two ways of framing the graph-based SSL problem which have led to
different algorithmic strategies. One is based on probability. The Information Reg-
ularization approach [21, 41] is an example of the early work of this kind. The ad-
sorption approach [3] is another example based on random-walk probability. Two
modified versions of the adsorption approach [73, 94] were proposed later. There are
also some other similar versions, for example the Quadratic Criteria approach [6]
and Measure Propagation [92].

The other way to frame this problem is based on graph cuts and Laplacian
kernels. An overview of the properties and interpretation of spectral clustering can
be found in [101]. In these approaches, classification is carried out in the embedded
graph by classifying each unlabelled point as belonging to the class of its (Euclidean
distance) nearest labelled neighbor.

Subsequently, many extensions of spectral graph analysis approaches have
been developed, including a signed graph spectral approach based on placing neg-
ative pairs on opposite sides of the axis [48], and a signed graph spectral approach
based on pushing negative pairs apart [112].

138 Chapter 9. Signed graph-based semi-supervised learning

Blum et al. [7, 8] was the first to use graph cut ideas for classification by sim-
ple counting the edges between classes. Joachims [42] embeds the graph first, and
then learns from the embeddings. Zhu et al. [123] proposed the first approach us-
ing a Laplacian kernel in the optimal function and called it the Gaussian Random
Fields SSL approach. Zhou et al. [118] proposed a more relaxed version: the Local
and Global Consistency (LGC) approach, which counts the distances from the la-
belled nodes to the corresponding labelled node as penalties in the objective function.
Belkin et al. [4, 5] proposed two similar versions based on SVM (LapSVM) and Reg-
ularized Least Squares. Melacci and Belkin [59] later refine the LapSVM approach
and reduced the computational complexity for training from O(n3) to O(kn2).

Subramanya et al. [93] compared various approaches using several common
datasets. Based on their experiments, there is no single approach which performs the
best for all datasets.

The problem of imbalance has been considered by Li et al. [52] in the context
of sentiment prediction. They compare undersampling and oversampling approaches
(which assume that labelled examples are relatively plentiful) to dynamic subspaces
using attribute selection and show that this latter technique improves prediction per-
formance by 2 to 4 percentage points. However, subspace sampling approaches can
only be applied to attributed data, and not to data that is already graphical, for exam-
ple social networks.

The approach in this chapter was first described in Zheng and Skillicorn [113].

Chapter 10

Combining directed and
signed embeddings

We now show how the layer approach and compositions can be used to model net-
works that have edges that are both signed (with positive and negative weights) and
directed. So, for example, we will be able to model the situation where A has a
positive relationship with B, but B has a negative relationship with A.

Intelligence, terrorism and law-enforcement applications, in particular, are char-
acterized by asymmetric relationships (command-and-control or flow of information)
and by relationships with both allies and foes. Understanding the social dynamics
of a group, or the ecosystem of interactions among groups requires social network
analysis for networks in which the edges are both signed and directed.

In this chapter we take the signed embedding technique, the directed embed-
ding technique, and the composition of layered models technique and show how to
use them to embed directed, signed networks. Properties of the network can be un-
derstood from visualizations; we also define a measure that highlights nodes with
unusual roles.

10.1 Composition of directed and signed layer
models

As before, the strategy for embedding based on both sign and direction is to take
the information implicit in the network edges (direction and sign) and encode it by
introducing multiple versions for each node.

First, multiple versions of each node are created, one connected to the positive
edges, and one to the negative edges. Then, each node is replaced by two versions,
one coding for its incoming edges and the other for its outgoing edges, as in the
new directed network construction. All of the edges connecting versions are undi-
rected, since the directional information is coded in the pattern of connections of
these edges. Each node of the original graph is therefore replaced by four versions
with these connections: incoming negative edges, outgoing negative edges, incom-

139

140 Chapter 10. Combining directed and signed embeddings

ing positive edges, and outgoing positive edges. The edges of the original graph are
connected to these nodes in the obvious way. The four versions of each node are
then connected to each other by an undirected four-clique whose edge weights are
the sum of (the absolute values of) the incident weight of the original version of the
node. Thus both incident positive and negative edges act to make the nexus more
closely bound.

Let W+ be the directed adjacency matrix representing the positive edges; W−

the directed adjacency matrix representing the negative edges (so both matrices con-
taining only non-negative entries); DPin and DNin the indegrees of the two adjacency
matrices, and DPout and DNout their outdegrees. The weights on the edges joining
the new versions of the ith node will be the sum of the ith entries of these vectors.
Let D be the matrix with these weights on the diagonal.

Figure 10.1: Replication of each node first into positive and negative versions and
then into in- and out-versions

Define a matrix in which the four versions are connected in a clique as shown
in Figure 10.1. First, each node is duplicated and the positive edges connected to one
copy and the negative edges to the other. Then each of these nodes is duplicated and
the incoming edges connected to one and the outgoing edges to the other. Finally, a
clique is added to connect the four versions of each original node.

More formally, define the adjacency matrix for the graph that captures the
signed structure of the network by:

X =

[
W++D D

D −W−+D

]
(10.1)

If the network contains n nodes, then X is a 2n× 2n matrix, but as usual the
added pieces are only diagonals (so linear in n) and, if W+ and W− are sparse, then
so is X .

Let bigD be the 2n×2n matrix:

bigD =

[
0 D
D 0

]
and then define a 4n×4n matrix:

M =

[
bigD X

X ′ bigD

]
(10.2)

10.1. Composition of directed and signed layer models 141

Equation 10.1 adds the horizontal (dashed) edges in Figure 10.1 by the entries added
to the major diagonal submatrices, and adds the vertical (solid) edges by the sub-
matrices on the minor diagonal. Equation 10.2 adds the diagonal (dotted) edges in
Figure 10.1.

Let D̃P and D̃N be the matrices whose diagonals are the row sums of the abso-
lute values of the positive and negative entries of M, respectively. Let D̃ be the sum
of D̃P and D̃N. Then the desired Laplacian matrix is

Lsns = D̃−1(D̃P− D̃N−M)

Although Lsns is much larger than W+ and W−, the extra pieces are either diagonals
or transposes. The matrix remains sparse if W+ and W− are.

If V is the matrix of the eigenvectors of Lsns, then the network is embedded in
k dimensions by treating the k smallest eigenvectors as coordinates for each point 1.

Because there are now four versions of each node of the original graph, embed-
dings can become cluttered. Each of the four versions are connected to one another
by edges of the same weight. They should therefore be embedded at similar distances
from one another, all things being equal.

The effect on added “vertical” edges is not the same for positive and negative
edges. When an individual has positive connections from one set of participants but
positive connections to a largely disjoint set of other participants, one edge of the
clique will be long because there is a net flow of positivity across the individual.

When an individual has positive connections from many different participants,
the corresponding edge of the clique will be short, because the “pull” on its versions
comes from many different directions.

When an individual has negative connections from a few nodes that are similar
to one another, the embedded negative-negative edge will tend to be longer than
expected. This is because negative edges tend to “push” nodes outwards; this push is
effectively stronger when most of the outward force is aligned, that is it comes from
a set of nodes that are embedded in relatively the same direction.

When an individual has negative connections from many diverse nodes (that
is, negativity comes from many different directions), the negative-negative edge will
be short, because the “push” will come from many different directions. Thus, an
individual whose embedded negative-negative edge is short can be thought of as
transmitting negativity among a variety of different subgroups.

Thus the noteworthy distortions within the cliques of versions of the same node
are:

• Long positive-positive edges, indicating transmission of positivity from one
subset of nodes to a mostly disjoint subset; and

1One eigenvector with eigenvalue 0 represents the trivial embedding in which each node is placed at
the same location and is ignored as usual; however, it can appear at any point in the eigenvalue spectrum
since eigenvalues range from −2 to +2. Furthermore, it is possible (though unlikely) that another eigen-
value is 0, even for a connected graph, because positive and negative values cancel one another out, so
care is needed in this region of the spectrum.

142 Chapter 10. Combining directed and signed embeddings

• Long negative-negative edges, indicating focused negativity from a single sub-
set of nodes.

Computing the effective lengths of the edges inside the clique that joins the
four versions of each node can therefore provide information about how that node
fits into the wider structure of positive and negative connections in the entire network.

10.2 Application to signed directed networks
To illustrate the embedding, we apply it to the Sampson Monastery data (which was
used before as an undirected signed network), and another dataset derived from the
Armed Conflict Location & Event Data (ACLED) Project (also used earlier).

Figure 10.2: Embedded graph of the Sampson network showing positive-positive
edges

Our embedding of the Sampson network produces the same four clusters that
we saw earlier; but what we add by using the signs of the edges is the ability to see
the net like and dislike experienced by each individual. The full embedding contains
4× 18 = 72 points, so the rendering is cluttered. We show the positive-positive
edges and the negative-negative edges corresponding to each individual separately,
in Figures 10.2 and 10.3.

The positive-positive edges are all short. From this we conclude that there is
a strong clique structure, with liking being almost entirely a within-subgroup rela-
tionship. The negative edges show more variability. Individuals such as BONAVEN
or WINF appear to be disliked from all directions (short negative-negative edges);

10.2. Application to signed directed networks 143

Figure 10.3: Embedded graph of the Sampson network showing negative-negative
edges

whereas individuals such as ALBERT, AMBROSE, and BONI are involved in much
more focused dislike (longer negative-negative edges).

We also compute the normalized embedded edge lengths for these edges. Ta-
ble 10.1 shows these edge lengths for each of the monks. PETER stands out with
both positive-positive and negative-negative values that are well above the mean.
As expected of the leader of the “Young Turks” PETER has discrepancies between
those he likes and those who like him (so he mediates the flow of positivity); and he
is disliked in a relatively focused way.

We now turn to a more significant real-world dataset: the ACLED (Armed
Conflict Location & Event Data Project — acleddata.com), which was used before
as an undirected signed network.

10.2.1 North and West Africa conflict
We begin by looking at particular countries with a complex insurgent landscape, both
because at the scale of a single country visualizations of the social network are small
enough that they can be understood directly, and because there are interesting and
practical intelligence benefits to comparing these countries to one another.

We display the positive and negative segments of the embedded social network
separately, but with the same orientation and scale so that they can be compared
visually. We remove groups that only participate in negative interactions — most

144 Chapter 10. Combining directed and signed embeddings

Name pos-pos neg-neg
ROMUL 0.848 1.023
BONAVEN 0.247 0.000
AMBROSE 0.899 5.638
BERTH 1.609 1.994
PETER 2.026 10.851
LOUIS 0.747 3.710
VICTOR 1.037 3.372
WINF 0.978 0.696
JOHN 1.731 3.448
GREG 0.523 8.541
HUGH 0.367 3.399
BONI 0.691 5.964
MARK 0.877 2.957
ALBERT 0.544 5.195
AMAND 1.241 1.691
BASIL 0.654 5.921
ELIAS 0.854 3.315
SIMP 1.372 3.283
Means 0.958 3.944
STD 0.478 2.739

Table 10.1: Product of edge length and reciprocal of edge weight; deviations from
average indicate nodes with unusual neighborhoods

of these are pairs of groups that attack each other, and so are readily understood by
analysts. The embedded position of each node is determined by both the “pull” of
the other nodes to which it is connected positively, and the “push” of the other nodes
to which it is connected negatively, but both “pull” and “push” are directional, that
is asymmetric. The dotted edges represent the embedded positive and negative in-to-
out edges, respectively — the longer such an edge, the more net flow involving the
node.

Algeria

Figure 10.4 shows the two main axes of the embedding with the four versions of each
node. Positive versions tend to be close to the center because the positive versions
tend to “pull” each other and the negative versions tend to “push” each other. To show
the details of the structure, we show the positive and negative versions in separate
figures. Figures 10.5 and 10.6 show the negative and positive relationship ecosystem
of groups in that country. The negative edges show clearly the separation of bad
actors and good actors: radical groups such as GIA, GSPC, and AQIM on the left,

10.2. Application to signed directed networks 145

Figure 10.4: Overall relationships among Algerian groups

and police, military, and civilians on the right2. Nodes that are not directly connected
are embedded close together when they see the same landscape in the rest of the
graph; this is often a signal that they are similar, but concealing their similarity. In
this case, AQIM and GSPC are unconnected and embedded close together and, in
this case, it is because AQIM is a rebranding of GSPC. Differences in strategy are
also clearly visible: AQIM, GSPC, and MUJAO tend to target government forces
while GIA tends to target civilians. (At the end of the 1990s, the Armed Islamic
Group (GIA) lost popular support in Algeria because of its massive atrocities against
civilians; the situation was so bad that several GIA commanders decided to create
their own, more moderate, Islamist groups, such as GSPC.)

Groups such as, in this figure, the Islamic Salvation Front are folded in towards
the middle of the picture because they have a negative relationship with only one
other group, GIA. It would be tempting to think of the natural position of such groups
as even more peripheral, but their potential relationship to all other groups need
not be negative just because of their one known negative relationship, and the more
central placement reflects this.

The positive relationships contain a surprise, since they show that GIA has
some indirect positive relationships with the government, even though GIA attacks
civilians. The good actors have extensive alliances amongst themselves, and the

2A limitation of the dataset coding is that, while “GIA” is a well-defined group, “civilians” is a
placeholder for a number of different groups at different times.

146 Chapter 10. Combining directed and signed embeddings

Figure 10.5: Negative relationships among Algerian groups

entire positive social network occupies less space than the negative one (the two
figures are to the same scale). There is also a cross-border threat revealed in the
relationship between AQIM and MUJAO with Mauritanian groups.

Libya

The relationships in Libya are, as expected, more complex with many combinations
of both positive and negative relationships between the same subset of groups. Fig-
ure 10.7 shows the two main axes of negative relationships: between Al Qaeda and
military special forces, and between Ansar al Sharia (and some related groups) and
military and civilians. Figure 10.8 shows this latter axis in greater detail. The positive
relationships are shown in Figure 10.9. There are several examples of positive rela-
tionships between groups who are, at the same time, closely associated with groups
that have negative relationships — a messy ecosystem indeed.

Nigeria

The structure in Nigeria is simpler because it is dominated by Boko Haram, which is
opposed to almost every other actor in the country. Figure 10.10 shows this clearly;
note the relatively long dashed edge between the in- and out-versions of the Boko
Haram node, signalling that negative relationships connect to groups that are simi-
lar in their position in the social network. The positive relationships are shown in

10.2. Application to signed directed networks 147

Figure 10.6: Positive relationships among Algerian groups

Figure 10.11. Both of the positive relationships to Boko Haram are of intelligence
interest. First, they clearly enjoy some support from civilians; second, they are sup-
ported by an Unidentified Armed Group suggesting that they are capable or willing
to act under a false flag. Note how far separated the civilian groups are from the po-
lice and military post-2010, a situation that did not hold for these groups at an earlier
time.

This country-by-country analysis shows that visualizations are able to reveal
significant relationships: subsets of groups that are primarily in opposition to one
another, subsets that are allies, and groups whose relationships to everyone else are
unusual.

The entire North and West Africa ecosystem

We now scale up this analysis to all 21 countries in North and West Africa. This
is worthwhile because many groups operate across national borders, and a country-
by-country analysis therefore misses significant interactions. We choose incidents
coded as violent and in which radical groups participated. For each set of records,
we select a large connected component of groups. (As expected, there are small sets
of groups that interact only with one another, and we ignore these.) These subsets
have previously been examined from a geographical perspective [106].

This much larger set of incidents can still be visualized but it is more challeng-
ing, especially as strong negative relationships tend to occupy the more significant

148 Chapter 10. Combining directed and signed embeddings

Figure 10.7: Negative relationships among Libyan groups

Figure 10.8: Zoomed-in relationships among Libyan groups

dimensions in the embedding.
Figure 10.12(a) shows the interaction structure of the positive edges of a 173-

10.2. Application to signed directed networks 149

Figure 10.9: Positive relationships among Libyan groups

node connected component derived from radical incidents; Figure 10.12(b) shows
the corresponding negative edges.

The presence of groups with only negative edges to others necessarily produces
embeddings in which the first few dimensions capture this oppositional structure, at
the expense of showing details of the relationships of other groups, which are all
embedded close to the origin. For example, the negative edge weight between node
127 (GIA) and node 49 (Civilians (Algeria)) is 309, while the mean positive edge
weight in this entire subgraph is 5.2 and the mean negative edge weight is 12.9.

If we eliminate groups that are only connected to the rest by negative edges, we
are left with 111 groups. The embeddings of their positive and negative structure is
shown in Figures 10.13 and 10.14. Structures more complex than simply opposition
now become visible in both the positive and negative substructure.

Finally, we select a subset of those groups that are connected to at least ten
other groups. The relationships among these 16 groups are shown in Figures 10.15
and 10.16. These break into a small number of positively connected components
(that is, collaborating groups) that are united into a single structure by their negative
edges.

At this granularity, the lengths of the embedded extra edges become visible;
for example, node 13 (Ansar al Sharia) has almost no net positive flow (so has mu-
tual positive relationships with the same groups) but a substantial net negative one.
The directed social network is important here since Ansar al Sharia has been the

150 Chapter 10. Combining directed and signed embeddings

Figure 10.10: Negative relationships among Nigerian groups

aggressor against several different categories of groups including civilians, rebels,
the Libyan government, and external groups, including the 2012 attack against the
U.S. Consulate in Benghazi, but has also been the target of violence from the Libyan
government and external groups. These visualizations give some insights into the
complex and shifting alliances and divisions among groups.

The visualizations are useful but become hard to interpret for large numbers
of nodes or complex structure. Computing the normalized edge lengths for the extra
edges between versions of the same node focuses attention on those that are un-
usual. This is shown in Table 10.2. First, it is clear that the negative edges are much
longer than the positive ones, as expected; there are more negative relationships,
and they are quite focused. Second, the nodes that have substantial net flow can be
highlighted. For example, node 77 (Civilians (Nigeria)) has unusually high normal-
ized edge lengths in both columns. The figures show why: this node is connected in
interesting ways to one set of nodes by positive edges, for example, 11 (Civilians (in-
ternational)); and to a completely different set of nodes by negative edges (75 Boko
Haram, and 85 Military Forces of Nigeria 2010-). Notice that there are both posi-
tive and negative edges connecting all three of these groups. The nodes highlighted
here are all among the most important actors of the Northern Nigeria conflict, which
opposes Boko Haram to both the Nigerian government and to Nigerian civilians. As
Walther and Leuprecht show [106], Boko Haram has been successful despite having
virtually no allies. (The same can be said of ISIS.)

10.2. Application to signed directed networks 151

Figure 10.11: Positive relationships among Nigerian groups

(a) Positive interactions
(b) Negative edges

Figure 10.12: 173 embedded groups involved in incidents with radical groups

The subset of groups associated with violent action contains 1895 members.
Since the relationships of weakly connected nodes tend to occupy the more signifi-
cant dimensions in the embedding, we select the subset of those connected to at least
20 others, resulting in a subset of 65 nodes. The positive and negative embeddings
are shown in Figures 10.17 and 10.18. Again, constellations of groups in mutual op-

152 Chapter 10. Combining directed and signed embeddings

Figure 10.13: 111 embedded groups involved in incidents with radical groups show-
ing positive edges

position are clearly visible, but there are also some interesting (primarily negative)
relationships that connect the arms of the clusters. Note especially the strongly fo-
cused negativity between groups 195 (Unidentified Armed Group, Nigeria) and 196
(Niger Delta Defence and Security Council).

Table 10.3 shows the normalized edge lengths for some of the groups that
either have anomalous values or are visible in the embeddings. The magnitude of the
values for Unidentified Armed Group (Nigeria) is a strong red flag, since it signals
both that there is a major player in the conflicts in this region, and that it remains
unidentified (although the earlier analysis for Nigeria suggested that it is probably
Boko Haram acting in ways it does not want to acknowledge).

10.3 Extensions to other compositions
There are some other combination networks that exist in the real world, such as
temporal directed networks and temporal signed networks, as well as more complex
networks, such as temporal signed directed networks with typed edges. Extending
the layered model for those other combinations of connection types requires finding
an appropriate construction. Although this is not difficult in principle, an argument
about the edge weights in the nexus created by the versions of each node must always
be made. Also, a composition of three different properties generates six versions of
each node, so visualization becomes more unwieldy and abstract measures must be
used instead.

10.3. Extensions to other compositions 153

Node Name pos-pos neg-neg
8 GSPC 1.090 5.709
9 Al Qaeda 0.189 0.922
11 Civ (international) 0.143 3.291
13 Ansar al-Sharia 0.285 83.459
24 Mil Forces Libya 0.000 85.975
29 Libya Shield Brigade 0.000 1.443
35 Ansar Dine 3.271 46.533
38 AQIM 1.007 101.464
42 MUJAO 1.871 6.400
43 Mil Forces France 0.567 58.890
48 Police (Algeria, 1999C) 0.042 1.971
53 Mil Forces (Algeria, 1999C) 0.300 102.445
75 Boko Haram 0.543 144.854
77 Civ (Nigeria) 0.803 198.399
85 Mil Forces (Nigeria, 2010C) 0.541 56.623
127 Mil Forces (Algeria, 1994-99) 0.044 4.242
Means 0.668 56.414
STD 0.858 59.733

Table 10.2: Normalized length of embedded edges for the 16 radical groups

Nodes Name pos-pos neg-neg
7 Mil Forces (Algeria, 1999C) 0.523 94.370
10 Police (Algeria, 1999C) 3.223 45.456
13 Rioters (Algeria) 0.708 37.868
18 AQIM 0.281 99.248
27 Civ (international) 0.432 21.145
31 Civ (Mali) 0.336 25.875
46 Unident Armed Group (Libya) 0.084 11.993
56 MUJAO 0.059 11.852
195 Unident Armed Group (Nigeria) 6.945 354.766
196 Niger Delta Def and Sec Council 0.130 211.881
229 Farmers Militia (Cameroon) 0.031 49.918
426 RUF 0.092 14.273
428 RPG (Guinea) 0.422 169.181
440 Union for the New Republic 0.660 117.739
Means 0.570 26.898
STD 1.133 58.828

Table 10.3: Normalized edge lengths for selected nodes in the 65-node violent subset

154 Chapter 10. Combining directed and signed embeddings

Figure 10.14: 111 embedded groups involved in incidents with radical groups show-
ing negative edges

Figure 10.15: 16 embedded groups involved in incidents with radical groups showing
positive edges

10.4. Summary 155

Figure 10.16: 16 embedded groups involved in incidents with radical groups showing
negative edges

Figure 10.17: 65 embedded groups involved in violent incidents showing positive
edges

10.4 Summary
Social networks that contain both positively and negatively weighted relationships
often tend also to require the directions of these relationships to be taken into ac-

156 Chapter 10. Combining directed and signed embeddings

Figure 10.18: 65 embedded groups involved in violent incidents showing negative
edges

count. We have seen some practical example, where the edges represent propensity
to attack or to join in defence. There are also more mundane examples: influence
within a group of friends may have the property that negative influence (for example,
poor reviews) flows more easily among some individuals, while positive influence
flows more easily among others.

We have shown how to extend the compositional layered approach to create
expanded social networks that have layers for positive-negative edges, and layers
for outgoing and incoming edges. This expanded graph is, once again, a simple
undirected graph, and can be embedded in the usual way.

As with any construction involving two properties, there are now four versions
of each node, so that direct interpretation of the visualized embedding becomes dif-
ficult (especially in the static views here). However, computing the magnitude of
the local distortions that the structures in the original network impose on the edges
within the nexus that connects the versions of each node makes it possible to pick
out those nodes whose properties are anomalous. Thus we can focus on the parts of
the network where interesting and unusual structures are to be found.

Notes
The approach in this chapter was first described in Zheng, Skillicorn, and Walther
[116, 117].

Chapter 11

Summary

The way in which the quality of a model depends on the amount of data that it is
built from is actually quite subtle. For example, if we want to build a prediction
boundary between data of two classes, then having more examples of each class is
a good thing, but the accuracy of the boundary does not increase linearly with the
number of examples. Rather, it increases quickly and then flattens. The perspective
of support vector machines shows why — new records are only useful to improve
the boundary when they are support vectors; as the data increases, each new record
becomes less and less likely to be a support vector.

If we want to find a clustering, then more data will tend to produce a better
clustering, but without some data, it is impossible even to tell whether a few scattered
records are a cluster or not. So while a few records from each class can already locate
the prediction boundary between the classes quite well, a few records do not enable
any conclusions for a clustering. We could say that the clusters are emergent from
the data in this weak sense.

When it comes to social networks, the requirement for lots of data becomes
even more important. Knowing a few scattered relationships does not enable any
general conclusions. As the number of known relationships increases, brand new
properties of the social network begin to appear. As the network of relationships
becomes connected, we can define the diameter of the network. Once the network
is more or less complete, we can compute the degrees of the nodes and discover that
they tend to follow a power law. We can differentiate those nodes that are somehow
central and those nodes that are peripheral.

Because social networks are generated by humans, making individual, local
decisions about whom to relate to, and what form and intensity that relationship will
take, these emergent properties are particularly revealing and important, because they
provide insights at a more abstract level about why these relationships are formed.
From the perspective of each individual, the decision to form a relationship is a
local and private one. The emergent structures of social networks show that this

157

158 Chapter 11. Summary

cannot quite be true — there are forces arising from the way the human mind works,
and from the ways human society works that influence each individual decision.
By looking at the structure of the social network, we can infer these higher-level
forces, deepening our understanding of psychology and sociology, as well as more
operational properties such as influence, advertising, power, and emotional bonding.
Understanding the backdrop of normality in social connections also enables us to
detect anomalies that may represent criminality or concealment.

All of these properties can, in principle, be computed directly from a repre-
sentation of the social network as a graph. However, many of these computations
have complexities that are cubic in the number of nodes in the graph, so that com-
puting them directly does not scale well to large graphs. This is particularly true if
the graph is changing since such properties are brittle in the sense that a change in a
single edge, or adding or deleting a single node, can result in changes throughout the
graph. Spectral embedding has become the standard way to avoid these difficulties.
Once a graph has been embedded in a geometry in such a way that distance accu-
rately reflects dissimilarity, many of the useful emergent properties can be calculated
directly in the geometry. If the geometry is low-dimensional, visualizations make it
possible for analysts to see and understand emergent properties directly.

However, most social network analysis has been limited to modelling settings
where relationships are of a single type, usually with an associated (positive) inten-
sity. We have argued that this is limiting; real-world relationships are multifaceted,
including at least: being of multiple, qualitatively different types; asymmetric; neg-
ative, as well as positive; and varying with time. There have been attempts to model
each of these possibilities individually, with varying amounts of success.

We have introduced a single, comprehensive approach — the layered model
— that allows many different edge properties to be modelled in essentially the same
way. Instead of trying to represent edge properties directly, the key idea is to replicate
each node into multiple versions, each of which can carry the semantics of different
edge properties; and then connect simple untyped edges to the appropriate versions
of these nodes to preserve their semantics.

The result is a nominally larger graph, but one which includes only a linear
number of extra edges, so that if the original graph was sparse (and, in practice, it
usually is), the resulting graph is also sparse. This means that the eigendecomposi-
tion at the heart of spectral embedding remains inexpensive to compute.

When this layered subgraph process is followed, the layers have to be bound
together by edges that connect the versions of the same node to one another. There
are strong reasons to use a clique as the basic connection pattern. Choosing the
weights requires some skill, perhaps some understanding of the domain from which
the social networks are taken, and perhaps some experimentation. We have made
some arguments for principled ways in which these weights might be chosen.

Because the larger graph has undirected edges, the embedding step is com-
pletely standard, and the embedded graph can be visualized in a few dimensions.
All of the theory of spectral embedding applies to the larger graph, so most of its
properties follow directly.

The embeddings of the edges added between the layers (the “vertical” edges)

159

reveal many subtle properties about the social network being modelled. At their
simplest, the length of such an edge in the embedding measures the discrepancies
between the individual’s role in the network described by each layer. This can be
used to detect that an individual acts quite differently in a social setting than in a
work setting, or that an individual has suddenly changed his or her role in a group
from one time period to the next.

In general, the length of an embedded edge “should” match its weight — edges
with large weights should be shorter than edges with small weights. In a perfectly
consistent social network, the ratio of embedded length to weight should be con-
stant. Therefore, edges for which this is not true are of special interest — they are
being pushed or pulled from their natural location by the nodes in their neighbor-
hood. Computing measures based on discrepancies between expected and actual
embedded length provide a way to focus attention on the interesting pieces of large
social networks, those for which visualizations are too complex and cluttered for
easy direct analysis.

We have also shown that the layered approach can be composed to model edges
with more than one kind of semantics at once. This means that the layered approach
can be used to build up models of increasing complexity by adding new edge types
one at a time. This is not an automatic process — the difficulty is to choose the
weights for the added edges in a principled way as the number of possible connec-
tions in the nexus of multiple versions of each individual node increases.

Discrepancies between expected and actual embedded length are particularly
useful for the extra edges added in the nexus when a composed layered model is
used. These edges represent, as before, discrepancies between the roles of the in-
dividual associated with that node with respect to all of the edge semantics in play
in the layered composition. Especially as the number of versions of each node al-
most guarantees a cluttered visualization, calculating the discrepancies for all nodes
is a way to focus attention on those parts of the social network that are especially
interesting.

We have shown how these techniques can be applied to real-world data of
varying kinds. Often, the differences between existing techniques and the layered
approach make it clear why the layered approach is an improvement.

Appendices

161

Appendix A

RatioCut consistency
with two versions of
each node

Figure A.1: A cut with the V1 and V2 copies of a node x in two different clusters

Figure A.1 is a graph cut partition by using our layered model construction,
where a pair of nodes xV 1 and xV 2 are separated into two different groups of A and A,
and the cut value is cut(A,A). Let dV 1x and dV 2x be the degree of nodes xV 1 and xV 2
without the added edges (without the edge between xV 1 and xV 2 in this case). Thus,
the total degrees of nodes xV 1 and xV 2 in the layered model matrix M are 2dV 1x+dV 2x
and dV 1x +2dV 2x, respectively. Let p be the sum of edge’s weight from xV 1 to nodes
in A except xV 2. Let q be the sum of edge’s weight from xV 2 to nodes in A except
xV 1. This cut would always be worse than the cut that puts xV 1 and xV 2 in the same
group based on RatioCut and NCut theory.

Theorem 1: The two versions of a node will be placed in the same cluster
based on RatioCut with two versions of each node, when the added edge weight
between two versions of a same node is equal to the sum of the degrees of the two
versions.

Proof of RatioCut Consistency with two versions of each node (c = 2):
Assume there is a minimum RatioCut which separates at least a pair of nodes xV 1

163

164 Appendix A. RatioCut consistency with two versions of each node

and xV 2 into two different groups A and A as shown in Figure A.1. Thus

minRatioCut = RatioCut(A,A) =
cut(A,A)
|A|

+
cut(A,A)
|A|

=
cut(A,A)∗2n
|A||A|

,

where |A| is the number of the nodes in group A.
By moving xV 2 to A, we get

RatioCut(A+ xV 2,A− xV 2) =
cut(A+ xV 2,A− xV 2)∗2n
|A+ xV 2||A− xV 2|

=
cut(A+ xV 2,A− xV 2)∗2n

(|A|+1)(|A|−1)

=

(
cut(A,A)− (dV 1x +dV 2x +q)+(dV 2x−q)

)
∗2n

(|A|+1)(|A|−1)

=

(
cut(A,A)−dV 1x−2q

)
∗2n

|A||A|− |A|+ |A|−1
.

Similarly by moving xV 1 to A, we get

RatioCut(A− xV 1,A+ xV 1) =
cut(A− xV 1,A+ xV 1)∗2n
|A− xV 1||A+ xV 1|

=

(
cut(A,A)− (dV 1x +dV 2x + p)+(dV 1x− p)

)
∗2n

(|A|−1)(|A|+1)

=

(
cut(A,A)−dV 2x−2p

)
∗2n

|A||A|+ |A|− |A|−1
.

Since the RatioCut(A,A) is the minimum,

RatioCut(A,A)≤ RatioCut(A+ xV 2,A− xV 2)

=⇒ cut(A,A)
|A||A|

≤ cut(A,A)−dV 1x−2q
|A||A|− |A|+ |A|−1

(A.1)

and RatioCut(A,A)≤ RatioCut(A− xV 1,A+ xV 1)

=⇒ cut(A,A)
|A||A|

≤ cut(A,A)−dV 2x−2p
|A||A|+ |A|− |A|−1

.
(A.2)

We have an even number of nodes in our layered model graph M, if |A| > |A|, then
|A| ≥ |A|+2. Thus, |A||A|< |A||A|+ |A|−|A|−1. Furthermore, dV 2x ≥ 0 and p≥ 0.
This implies that (A.2) is not true. Similarly, (A.1) is not true if |A|< |A|.

If |A|= |A|, there is at least one other pair of nodes yV 1 and yV 2 that is separated
into two different groups. By moving xV 1 and xV 2 into one group and yV 1 and yV 2 into
another, the cut value will be reduced, although the number of nodes in each group
is the same as before. This implies RatioCut(A,A) is not the minimum RatioCut if
|A|= |A|.

165

Thus, by contradiction, the assumption is not true. In other words, there does
not exist a minimum RatioCut which separates at least a pair of nodes xV 1 and xV 2
into different groups in a RatioCut of two clusters. Similarly, the RatioCut consis-
tency of more than two clusters can be proved, since the Cut variables caused by the
unrelated clusters are constant.

Therefore, the RatioCut clustering results would not separate the two versions
of any node xV 1 and xV 2 into two different groups by using our approach.

Appendix B

NCut consistency with
multiple versions of each
node

Theorem 2: The versions of a node will be placed in the same cluster based on
NCut with multiple versions of each node, when the added edge weight between two
versions of a same node is equal to the sum of the degrees of the two versions.

Proof of NCut consistency with two versions of each node (c = 2): Follow-
ing the illustration of Figure A.1, assume there is a minimum NCut which separates
at least a pair of nodes xV 1 and xV 2 into two different groups A and A, as shown in
Figure A.1. Thus

minNCut = NCut(A,A) =
cut(A,A)
vol(A)

+
cut(A,A)
vol(A)

=
cut(A,A)∗ vol(V)

vol(A)vol(A)
,

where vol(A) is the degree summation of the nodes in group A, and vol(V) is the
degree summation of all the nodes in our double copy structure, means Vol(V) =

∑
n
i=1(tV 1i + tV 2i) = 3∑

n
i=1(dV 1i + dV 2i). Here tV 1i = 2dV 1i + dV 2i and tV 2i = dV 1i +

2dV 2i are the total degrees of the two versions of node i in the bigger graph M.
By moving xV 2 to A, we get

NCut(A+ xV 2,A− xV 2) =
cut(A+ xV 2,A− xV 2)∗ vol(V)

vol(A+ xV 2)vol(A− xV 2)

=

(
cut(A,A)− (dV 1x +dV 2x +q)+(dV 2x−q)

)
∗ vol(V)

(vol(A)+ tV 2x)(vol(A)− tV 2x)

=

(
cut(A,A)−dV 1x−2q

)
∗ vol(V)

(vol(A)+dV 1x +2dV 2x)(vol(A)−dV 1x−2dV 2x)
.

167

168 Appendix B. NCut consistency with multiple versions of each node

Similarly by moving xV 1 to A, we get

NCut(A− xV 1,A+ xV 1) =
cut(A− xV 1,A+ xV 1)∗ vol(V)

vol(A− xV 1)vol(A+ xV 1)

=

(
cut(A,A)−dV 2x−2p

)
∗ vol(V)

(vol(A)−2dV 1x−dV 2x)(vol(A)+2dV 1x +dV 2x)
.

Since the NCut(A,A) is the minimum,

NCut(A,A)≤ NCut(A+ xV 2,A− xV 2)

=⇒ cut(A,A)
vol(A)vol(A)

≤ cut(A,A)−dV 1x−2q
(vol(A)+dV 1x +2dV 2x)(vol(A)−dV 1x−2dV 2x)

(B.1)

and

NCut(A,A)≤ NCut(A− xV 1,A+ xV 1)

=⇒ cut(A,A)
vol(A)vol(A)

≤ cut(A,A)−dV 2x−2p
(vol(A)−2dV 1x−dV 2x)(vol(A)+2dV 1x +dV 2x)

.
(B.2)

Let cut(B,B) be any cut where every pair of V1 and V2 copies are in the same group.
Thus,

cut(B,B)≤

∑
i∈B

(dV 1i +dV 2i)

∑
i∈B

(dV 1i +dV 2i)

and vol(B) = ∑
i∈B

(tV 1i + tV 2i) = ∑
i∈B

3∗ (dV 1i +dV 2i),

vol(B) = ∑
i∈B

(tV 1i + tV 2i) = ∑
i∈B

3∗ (dV 1i +dV 2i).

Thus, NCut(B,B) =
cut(B,B)
vol(B)

+
cut(B,B)
vol(B)

≤ 2
3
.

Since the NCut(A,A) is the minimum,

NCut(A,A) =
cut(A,A)∗ vol(V)

vol(A)vol(A)
≤ 2

3
,

vol(V)≥ 6∗ (dV 1x +dV 2x)

=⇒ 9cut(A,A)(dV 1x +dV 2x)≤ vol(A)vol(A).

(B.3)

(B.1) implies

cut(A,A)
vol(A)vol(A)

≤ cut(A,A)−dV 1x

(vol(A)+dV 1x +2dV 2x)(vol(A)−dV 1x−2dV 2x)
,

=⇒ dV 1xvol(A)vol(A)

≤ cut(A,A)
(
vol(A)(dV 1x +2dV 2x)− vol(A)(dV 1x +2dV 2x)+(dV 1x +2dV 2x)

2) .

169

Similarly, (B.2) implies

dV 2xvol(A)vol(A)

≤ cut(A,A)
(
−vol(A)(2dV 1x +dV 2x)+ vol(A)(2dV 1x +dV 2x)+(2dV 1x +dV 2x)

2) .
By adding the above two equations together, we get

(dV 1x +dV 2x)vol(A)vol(A)

≤cut(A,A)
(
vol(A)(−dV 1x+dV 2x)+vol(A)(dV 1x−dV 2x)+5d2

V 1x+5d2
V 2x+8dV 1xdV 2x

)
.

Combining with (B.3), we get

4d2
V 1x +4d2

V 2x +10dV 1xdV 2x ≤ (vol(A)− vol(A))(dV 1x−dV 2x). (B.4)

In the inequality (B.1), the left numerator is greater than or equal to the right nu-
merator. Thus, the left denominator has to be greater than or equal to the right
denominator:

vol(A)vol(A)≥ (vol(A)+dV 1x +2dV 2x)(vol(A)−dV 1x−2dV 2x).

If vol(A)≤ vol(A), then the above inequality implies

=⇒ vol(A)≤ vol(A)+dV 1x +2dV 2x.

When dV 1x < dV 2x, the right side of (B.4) is less than 0.
When dV 1x ≥ dV 2x, by applying the above inequality to (B.4), we get

4d2
V 1x +4d2

V 2x +10dV 1xdV 2x

≤ vol(A)(−dV 1x +dV 2x)+(vol(A)+dV 1x +2dV 2x)(dV 1x−dV 2x)

=⇒ 3d2
V 1x +6d2

V 2x +9dV 1xdV 2x ≤ 0.

Since dV 1x ≥ 0, dV 1x ≥ 0 and dV 1x + dV 2x > 0 for a connected graph, the above
inequality is not true. Similarly we can prove that, if vol(A)≥ vol(A), the inequality
(B.4) is not true either. Thus, based on the proof above, the assumption is not true.
In other words, there does not exist a minimum NCut which separates at least a pair
of nodes xV 1 and xV 2 into different groups in a NCut of two clusters. Similarly, the
NCut consistency of more than two clusters can be proved, since the cut variables in
the unrelated clusters are constant.

Therefore, the NCut clustering results would not separate the two versions of
any node xV 1 and xV 2 into two different groups by using our approach. �

Proof of NCut consistency with multiple versions of each node (c≥ 3): The
property still holds for optimum NCut results when there is more than two roles of
each node. The proof is similar to the one for c = 2. Again we assume there is a
minimum NCut in which there is at least a node whose copies are separated into two
different groups A and A.
Let xA and xA be the copies of x in the two partitions;

170 Appendix B. NCut consistency with multiple versions of each node

k = |xA| and k = |xA| be the number of copies of the node x in two partitions, where
k+ k = c and k ≥ 1, k ≥ 1;
dAx and dAx be the total degree of nodes xA and xA without the added edges. Thus, the
total degrees of all versions of the node x in the bigger matrix M is (2c−1)(dAx+dAx)
since each version connects to other c− 1 versions (counting twice) and the total
given edges of the node is also counted.
Let p be the sum of edge’s weight from xA to nodes in A except xA. Let q be the sum
of edge’s weight from xA to nodes in A except xA.

Thus

minNCut = NCut(A,A) =
cut(A,A)∗ vol(V)

vol(A)vol(A)
.

where Vol(V) = ∑
n
i=1 ∑

c
j=1(ti j) = (2c−1)∑

n
i=1(dAi +dAi).

By moving xA to A, we get

NCut(A+ xA,A− xA) =
cut(A+ xA,A− xA)∗ vol(V)

vol(A+ xA)vol(A− xA)

=

(
cut(A,A)− (kdAx +kdAx +q)+(dAx−q)

)
∗ vol(V)

(vol(A)+ tAx)(vol(A)− tAx)

=

(
cut(A,A)− kdAx− (k−1)dAx−2q

)
∗ vol(V)

(vol(A)+ kdAx +(c+ k−1)dAx)(vol(A)− kdAx− (c+ k−1)dAx)
.

Similarly by moving xA to A, we get

NCut(A−xA,A+ xA) =
cut(A− xA,A+ xA)∗ vol(V)

vol(A− xA)vol(A+ xA)

=

(
cut(A,A)− kdAx− (k−1)dAx−2p

)
∗ vol(V)

(vol(A)− kdAx− (c+ k−1)dAx)(vol(A)+ kdAx +(c+ k−1)dAx)
.

Since the NCut(A,A) is the minimum,

NCut(A,A)≤ NCut(A+ xA,A− xA)

=⇒ cut(A,A)
vol(A)vol(A)

≤
cut(A,A)− kdAx− (k−1)dAx−2q

(vol(A)+ kdAx +(c+ k−1)dAx)(vol(A)− kdAx− (c+ k−1)dAx)

(B.5)

and

NCut(A,A)≤ NCut(A− xA,A+ xA)

=⇒ cut(A,A)
vol(A)vol(A)

≤
cut(A,A)− kdAx− (k−1)dAx−2p

(vol(A)− kdAx− (c+ k−1)dAx)(vol(A)+ kdAx +(c+ k−1)dAx)
.

(B.6)

171

Let cut(B,B) be any cut where all version of each node are in the same group. Thus,

cut(B,B)≤

∑
i∈B

c

∑
j=1

di j

∑
i∈B

c

∑
j=1

di j

and vol(B) = ∑
i∈B

c

∑
j=1

ti j = (2c−1)∑
i∈B

c

∑
j=1

di j,

vol(B) = ∑
i∈B

c

∑
j=1

ti j = (2c−1)∑
i∈B

c

∑
j=1

di j.

Thus, NCut(B,B) =
cut(B,B)
vol(B)

+
cut(B,B)
vol(B)

≤ 2
2c−1

.

Since the NCut(A,A) is the minimum,

NCut(A,A) =
cut(A,A)∗ vol(V)

vol(A)vol(A)
≤ 2

2c−1
,

vol(V)≥ 2(2c−1)(dAx +dAx)

=⇒ (2c−1)2cut(A,A)(dAx +dAx)≤ vol(A)vol(A).

(B.7)

(B.5) implies

vol(A)vol(A)(kdAx +(k−1)dAx)≤ cut(A,A)

(
vol(A)

(
kdAx +(c+ k−1)dAx

)
− vol(A)

(
kdAx +(c+ k−1)dAx

)
+
(

kdAx +(c+ k−1)dAx

)2
)
.

Similarly, (B.6) implies

vol(A)vol(A)(kdAx +(k−1)dAx)≤ cut(A,A)

(
− vol(A)

(
kdAx +(c+ k−1)dAx

)
+ vol(A)

(
kdAx +(c+ k−1)dAx

)
+
(

kdAx +(c+ k−1)dAx

)2
)
.

172 Appendix B. NCut consistency with multiple versions of each node

By adding the above two equations together, we get

vol(A)vol(A)((2k−1)dAx +(2k−1)dAx)

≤ cut(A,A)

((
vol(A)− vol(A)

)
(c−1)(dAx−dAx)

+
(

kdAx +(c+ k−1)dAx

)2

+
(

kdAx +(c+ k−1)dAx

)2
)
.

Combining with (B.7), we get

(2c−1)2(dAx +dAx)
(
(2k−1)dAx +(2k−1)dAx

)
≤
(
vol(A)− vol(A)

)
(c−1)(dAx−dAx)

+
(

kdAx +(c+ k−1)dAx

)2
+
(

kdAx +(c+ k−1)dAx

)2
.

(B.8)

In the inequality (B.5), the left numerator is greater than or equal to the right nu-
merator. Thus, the left denominator has to be greater than or equal to the right
denominator:

vol(A)vol(A)≥
(

vol(A)+ kdAx +(c+ k−1)dAx

)(
vol(A)− kdAx− (c+ k−1)dAx

)
.

If vol(A)≤ vol(A), then the above inequality implies

vol(A)≤ vol(A)+ kdAx +(c+ k−1)dAx.

When dAx ≥ dAx, by applying it to (B.8), we get

(2c−1)2(dAx +dAx)
(
(2k−1)dAx +(2k−1)dAx

)
≤
(
kdAx +(c+ k−1)dAx

)
(c−1)(dAx−dAx)

+
(

kdAx +(c+ k−1)dAx

)2
+
(

kdAx +(c+ k−1)dAx

)2

≤
(

kdAx +(c+ k−1)dAx

)(
(c+ k−1)dAx + kdAx

)
+
(

kdAx +(c+ k−1)dAx

)2

≤
(
(c+2k−1)dAx +(c+2k−1)dAx

)(
(c+ k−1)dAx + kdAx

)
.

(B.9)

Since c ≥ 3, c = k+ k, k ≥ 1 and k ≥ 1, so (2c− 1)2 ≥ 3c2, c+ 2k− 1 < 3c
and c+2k−1 < 3c. Then (B.9) implies

c
(
(2k−1)dAx +(2k−1)dAx

)
<
(
(c+ k−1)dAx + kdAx

)
=⇒ c(2k−1)dAx < (c+ k−1)dAx

173

By using k = 1 and k ≥ 2, we can show that the above inequality is not true.

If vol(A)≤ vol(A) and dAx < dAx, the inequality (B.6) implies

vol(A)≥ vol(A)− kdAx− (c+ k−1)dAx.

By applying it to (B.8), we get

(2c−1)2(dAx +dAx)
(
(2k−1)dAx +(2k−1)dAx

)
≤
(
− kdAx− (c+ k−1)dAx)(c−1)(dAx−dAx)

+
(

kdAx +(c+ k−1)dAx

)2
+
(

kdAx +(c+ k−1)dAx

)2

≤
(

kdAx +(c+ k−1)dAx

)2
+
(

kdAx +(c+ k−1)dAx

)(
(c+ k−1)dAx + kdAx

)
≤
(
(c+2k−1)dAx +(c+2k−1)dAx

)(
kdAx +(c+ k−1)dAx

)
.

(B.10)

Similarly, the above inequality is not true either. Thus, if vol(A) ≤ vol(A), the in-
equality (B.8) does not hold. Similarly we can prove that, if vol(A) ≥ vol(A), the
inequality (B.8) is not true either. Thus, by contradiction, the assumption is not true.
In other words, there does not exist a minimum NCut which separates the versions
of any node into two different groups.

Similarly, there does not exist a minimum NCut which separates the versions
of any node into more than two different groups, since the variables in the unrelated
groups are constant. In more detail, considering the case that the versions of a node
x are separated into three groups – A1, A2 and A3. The NCut value for group A3 is
unchanged if we move any version of node between groups A1 and A2. Based on the
above proof, when we move the versions of the node x from A1 to A2 or from A2 to
A1, the NCut value will be reduced. Now the versions of the node x are separated
only in groups A1 and A3, or A2 and A3. Again, the NCut value will be reduced if
versions of the node are in a same group.

Therefore, there does not exist a minimum NCut which separates the different
versions of any node into different groups.

Appendix C

Signed unnormalized
clustering

Let us start with the case of k = 2. Our goal is to solve the optimization problem:

min
A⊂V

SRcut(A,A).

For a subset A⊂V , let u be the vector (u1, . . . ,un)
′ ∈ Rn with entries:

ui =

√
|A|/|A| if vi ∈ A

−
√
|A|/|A| if vi ∈ A

Using the defined vector u, the SRcut objective function can be seen to be equivalent
to the unnormalized signed Laplacian Lsign:

u′Lsignu =
1
2

n

∑
i, j=1

wi j(ui−u j)
2

=
1
2 ∑

i∈A, j∈A

wi j

√ |A|
|A|

+

√
|A|
|A|

2

+
1
2 ∑

i∈A, j∈A

wi j

−√ |A|
|A|
−

√
|A|
|A|

2

=
(
cut+(A,A)− cut−(A,A)

)√ |A|
|A|

+

√
|A|
|A|

2

=
(
cut+(A,A)− cut−(A,A)

)(|A|
|A|

+
|A|
|A|

+2
)

=
(
cut+(A,A)− cut−(A,A)

)(|A|+ |A|
|A|

+
|A|+ |A|
|A|

)
=|V | ∗SRcut(A,A)

175

176 Appendix C. Signed unnormalized clustering

Additionally, we have
n

∑
i=1

u2
i = |A|

|A|
|A|

+ |A| |A|
|A|

= n.

Furthermore, it is provable that u⊥ 1.
Thus, RLsign(u) = SRcut(A,A). In other words, the problem of minimizing

SRcut(A,A) can be equivalently rewritten as: min
A⊂V

RLsign(u).

We can relax the problem by taking an arbitrary real value vector f :

min
f∈Rn

RLsign(f),

s.t. f ⊥ 1; || f ||=
√

n.

The solution of this problem is the eigenvector corresponding to the smallest eigen-
value of Lsign.

The smallest eigenvector is a real-valued solution rather than a discrete indica-
tor vector. The simplest way to partition a graph using such an eigenvector is to use
the sign of each entry value. A more sophisticated partition can be obtained by using
any standard clustering algorithm — k-means has often been used.

The relaxation of the minimization SRcut in a general case of k > 2 follows
a similar principle. We define the indicator matrix H = (h1, . . . ,hk) ∈ Rn∗k, where
each column vector h j with entries

hi, j =

{
1/
√
|A| if vi ∈ A

0 otherwise
(i = 1, . . . ,n; j = 1, . . . ,k).

As before, we see that

h′iLsignhi =
cut+(Ai,Ai)− cut−(Ai,Ai)

|Ai|
,

h′iLsignhi =
(
H ′LsignH

)
ii ,

and h′ihi = 1, H ′H = I.
Combining those facts, we get

SRcut(A1, ...,Ak) =
k

∑
i=1

h′iLsignh = Tr(H ′i LsignH),

where Tr denotes the trace of a matrix. As before, we relax the problem of minimiz-
ing SRcut(A1, ...,Ak) by allowing matrix F to take arbitrary real values F ∈ Rn∗k.
The relaxed problem becomes:

min
F∈Rn∗k

T R(F ′LsignF), s.t. F ′F = I.

This is the standard form of a trace minimization problem, and it can be solved
by choosing F as the k smallest eigenvectors of the Laplacian matrix Lsign as columns
[100]. Clustering methods can then be applied to (some of) the columns to get a
discrete partition as before.

Appendix D

Signed normalized
Laplacian Lsns clustering

Let us start with the case of SNScut and k = 2. Our goal is to solve the optimization
problem:

min
A⊂V

SNScut(A,A).

For a subset A⊂V , let u be the vector (u1, . . . ,un)
′ ∈ Rn with entries:

ui =

√

vol(A)/vol(A) if vi ∈ A

−
√

vol(A)/vol(A) if vi ∈ A

Using the defined vector u, the SNScut objective function can be seen to be
equivalent to the normalized signed Laplacian Lsns:

u′(D+−D−−W)u =
1
2

n

∑
i, j=1

wi j(ui−u j)
2

=
1
2 ∑

i∈A, j∈A

wi j

√vol(A)
vol(A)

+

√
vol(A)
vol(A)

2

+
1
2 ∑

i∈A, j∈A

wi j

−√vol(A)
vol(A)

−

√
vol(A)
vol(A)

2

=
(
cut+(A,A)− cut−(A,A)

)(vol(A)
vol(A)

+
vol(A)
vol(A)

+2
)

=
(
cut+(A,A)− cut−(A,A)

)(vol(A)+ vol(A)
vol(A)

+
vol(A)+ vol(A)

vol(A)

)
=vol(V)∗SNScut(A,A)

Additionally, we have

n

∑
i=1

diu2
i = vol(A)

vol(A)
vol(A)

+ vol(A)
vol(A)
vol(A)

= vol(V).

177

178 Appendix D. Signed normalized Laplacian Lsns clustering

Furthermore, it is provable that Du⊥ 1.
Thus, RLsns(u) = SNScut(A,A). In other words, the problem of minimizing

SNScut(A,A) can be equivalently rewritten as: min
A⊂V

RLsns(u).

We can relax the problem by taking an arbitrary real-valued vector f :

min
f∈Rn

RLsns(f).

The solution of this problem is the eigenvector corresponding to the smallest eigen-
value of Lsns, or equivalently the generalized eigenvector of (D+ −D− −W) f =
λD f .

As before, the smallest eigenvector is a real-valued solution rather than a dis-
crete indicator vector, but standard approaches can be used to turn this into a cluster-
ing.

The relaxation of the minimization SNScut in a general case of k > 2 follows
in a similar way. We define the indicator matrix H = (h1, . . . ,hk)∈Rn∗k, where each
column vector h j with entries

hi, j =

{
1/
√

vol(A) if vi ∈ A

0 otherwise
(i = 1, . . . ,n; j = 1, . . . ,k).

As before, we see that

h′i(D
+−D−−W)hi =

cut+(Ai,Ai)− cut−(Ai,Ai)

vol(Ai)
,

h′i(D
+−D−−W)hi =

(
H ′(D+−D−−W)H

)
ii ,

and h′iDhi = 1, H ′DH = I.
Combining those facts, we get

SNScut(A1, ...,Ak) =
k

∑
i=1

h′i(D
+−D−−W)hi

= Tr
(
H ′i (D

+−D−−W)H
)
,

where Tr denotes the trace of a matrix. As before, we relax the problem of minimiz-
ing SNScut(A1, ...,Ak) by allowing matrix F to take arbitrary real values F ∈Rn∗k.
The relaxed problem becomes:

min
F∈Rn∗k

RLsns(F) s.t. F ′DF = I.

Substituting F = D−1/2T , we obtain:

min
T∈Rn∗k

Tr
(

T ′D−1/2
(D+−D−−W)D−1/2T

)
s.t. T ′T = I.

179

This is the standard form of a trace minimization problem, and it can be solved
by choosing T as the k smallest eigenvectors of the matrix T ′D−1/2

(D+ −D− −
W)D−1/2T as columns [100]. Resubstituting F = D−1/2T and using Proposition 3 in
von Luxburg [101], F is the matrix with the k smallest eigenvectors of the Laplacian
matrix Lsns as columns. Clustering methods can then be applied to (some of) the
columns to get a discrete partition as before.

Appendix E

Signed normalized
Laplacian Lbns clustering

In the case k = 2, we use the same defined indicator vector u as in Appendix D:
n

∑
i, j=1

w−i ju
2
i =

n

∑
i=1

d−i u2
i

= ∑
i∈A

d−i
vol(A)
vol(A)

+∑
i∈A

d−i
vol(A)
vol(A)

=
vol−(A)vol(A)

vol(A)
+

vol−(A)vol(A)
vol(A)

=
vol−(A)vol(V)

vol(A)
− vol−(A)+

vol−(A)vol(V)

vol(A)
− vol−(A)

=
vol−(A)vol(V)

vol(A)
+

vol−(A)vol(V)

vol(A)
− vol−(V).

Then,

u′(D+−W)u =
n

∑
i, j=1

(
1
2

wi j(ui−u j)
2 +w−i ju

2
i

)
=
(
cut+(A,A)− cut−(A,A)

)(vol(V)

vol(A)
+

vol(V)

vol(A)

)
+

vol−(A)vol(V)

vol(A)
+

vol−(A)vol(V)

vol(A)
− vol−(V)

=vol(V)∗BNScut(A,A)− vol−(V)

Thus, RLbns(u) = BNScut(A,A)− vol−(V)/vol(V).
Since vol−(V)/vol(V) is constant for a graph, the problem of minimizing

BNScut(A,A) can be equivalently rewritten as: min
A⊂V

RLbns(u).

181

182 Appendix E. Signed normalized Laplacian Lbns clustering

Again we can relax the problem by taking an arbitrary real-valued vector f :

min
f∈Rn

RLbns(f).

The solution of the minimization problem is the eigenvector corresponding to the
smallest eigenvalue of Lbns, or equivalently the generalized eigenvector of (D+−
W) f = λD f .

For the case of finding k > 2 clusters, we use the same indicator matrix H
defined in Appendix D. We get:

h′i(D
+−W)h =

cut+(Ai,Ai)− cut−(Ai,Ai)+ vol−(Ai)

vol(Ai)
,

h′i(D
+−W)h =

(
H ′i (D

+−W)H
)

ii ,

and h′iDhi = 1, H ′DH = I.
Combining those facts, we get

BNScut(A1, ...,Ak) = Tr
(
H ′i (D

+−W)H
)
.

Again we use an arbitrary real-valued matrix F ∈ Rn∗k. Then the relaxed problem
becomes:

min
F∈Rn∗k

RLbns(F) s.t. HD′H = I.

The minimization problem is solved by choosing F as the first k smallest eigenvec-
tors of the Laplacian matrix Lbns as columns.

Appendix F

Example MATLAB
functions to implement
spectral embeddings

This appendix provides MATLAB library functions that implement the basic spec-
tral embeddings that we have discussed. They each return the appropriate eigenvec-
tor matrices that provide the coordinates for embedding each network.

The included functions are:

• Laplacian — implements three of the standard Laplacian embeddings for an
undirected network.

• DirLaplacian — implements our directed spectral embedding.

• DirLaplacianChung — implements the directed spectral embedding designed
by Fan Chung.

• SignedLaplacian — implements our signed spectral embedding given two pos-
itive matrices, representing the strength of positive and negative relationships.

• TypedDirLaplacian — implements our composition of typed and directed edges;
calls DirLaplacian.

• TemporalDirLaplacian — implements our composition of directed edges with
temporal changes in intensity; calls TypedDirLaplacian.

• TypedLaplacian — implements spectral embedding of a typed network using
Chung’s directed embedding; calls DirLaplacianChung.

• TemporalLaplacian — implements spectral embedding of networks with tem-
poral changes in intensity; calls DirLaplacianChung.

• SignedDirLaplacian — implements our composition of signed and directed
networks.

183

184 Appendix F. Example MATLAB functions

The versions of the MATLAB functions below are simplified by omitting the
simple, but space-consuming, code that checks input arguments. Full versions are
in the Github repository: https://github.com/PHDZheng/Social-Networks-with-
Rich-Edge-Semantics.

function [varargout] = Laplacian(W, type, k)
% Spectral embedding of an undirected graph
%
% W is the weighted adjacency matrix of a graph.
% type = un and empty: unnormalized graph Laplacian
% sym: symmetric normalized graph Laplacian
% rw: random walk normalized graph Laplacian
% k = number of groups to cluster into (default is disabled)
%
% Vector = eigenvector matrix of the embedding
% E = the vector of Laplacian eigenvalues
%
% varargout = cellarray
% 1: Vector
% 2: E

[n,m] = size(W);

tempvalue = max(max(W-W’));
if tempvalue ˜= 0
W = (W + W’)/2;

end

D = sparse(1:n,1:n,sum(W,2));
L = D - W;

%unnormalized graph Laplacian

if (nargin < 2) || isempty(type) || strcmp(type,’un’)
|| strcmp(type,’Un’) ...
|| strcmp(type,’UN’)
display(’Unnormalized Laplacian decomposition’);
tempvalue = max(D(:));
if k == n
[Vector,eigenvalue] = eig(L);
e = diag(eigenvalue);
[e, IXY] = sort(e,1,’ascend’);
Vector = Vector(:,IXY);

else
[Vector,eigenvalue] = eigs(2 * tempvalue * eye(n)-L,k);
e = 2 * tempvalue - diag(eigenvalue);

end

varargout{1} = Vector;
varargout{2} = e;

% symmetric normalized graph-Laplacian
elseif strcmp(type,’sym’) || strcmp(type,’Sym’) || strcmp(type,’SYM’)
% Normalized spectral clustering according to Ng, Jordan, and Weiss
% (2002)
display(’Symmetric Laplacian decomposition’);

https://github.com/PHDZheng/Social-Networks-with-Rich-Edge-Semantics
https://github.com/PHDZheng/Social-Networks-with-Rich-Edge-Semantics

185

D2 = sparse(n,n);
for i=1:n

if D(i,i) ˜= 0
D2(i,i)=1/D(i,i)ˆ0.5;

end
end
Lsym = D2 * L * D2; % L=Dˆ(-0.5)*L*Dˆ(-0.5);
Lsym= (Lsym + Lsym’)/2;
if k == n

[Vector,eigenvalue] = eig(Lsym);
e = diag(eigenvalue);
[e,IXY] = sort(e,1,’ascend’);
Vector = Vector(:,IXY);

else
[Vector,eigenvalue] = eigs(2*eye(n) - Lsym,k);
e = 2 - diag(eigenvalue);

end
varargout{1} = Vector;
varargout{2} = e;

% random walk normalized graph-Laplacian
elseif strcmp(type,’rw’) || strcmp(type,’Rw’) || strcmp(type,’RW’)
display(’Random walk Laplacian decomposition’);
D2 = sparse(n,n); % D2= Dˆ(-0.5);
for i=1:n

if D(i,i) ˜= 0
D2(i,i) = 1/D(i,i)ˆ.5;

end
end
Lsym = D2 * L * D2; %L=Dˆ(-0.5)*L*Dˆ(-0.5);
Lsym = (Lsym + Lsym’)/2;
if k == n

[Vector,eigenvalue] = eig(Lsym);
e = diag(eigenvalue);

else
[Vector,eigenvalue] = eigs(2*eye(n)-Lsym,k);
e=2-diag(eigenvalue);

end
Vector = D2*Vector;
varargout{1} = Vector;
varargout{2} = e;

else
error(’Type cannot be identified.’);

end

function [varargout] = DirLaplacian(W, k)
% Creates spectral embedding from a directed adjacency matrix
%
% The matrix W is the weighted adjacency matrix of a directed graph.
% k = number of eigenvectors.
% Vout = the eigenvector of out versions of nodes
% Vin = the eigenvector of in versions of nodes
% E = the diagonal matrix of Laplacian eigenvalues
% varargout = cell array of results
% 1: Vout
% 2: Vin

186 Appendix F. Example MATLAB functions

% 3: E

[n,m] = size(W);

din = sum(W,1)’;
dout = sum(W,2);

X = sparse(diag((2*dout+din).ˆ(-0.5))) * (W+diag(din+dout)) * ...
sparse(diag((dout+2*din).ˆ(-0.5)));

if k == n
[U, E, V] = svd(X);

else
[U, E, V] = svds(X, k);

end

e = 1 - diag(E);

Vout = diag((2*dout+din).ˆ(-0.5)) * U;
Vin = diag((dout+2*din).ˆ(-0.5)) * V;

varargout{1} = Vout;
varargout{2} = Vin;
varargout{3} = e;

function [varargout] = DirLaplacianChung(W, epsilon, k)
% Spectral embedding of a directed graph using the method of Fan Chung
%
% W is the weighted adjacency matrix of a directed graph.
% epsilon: is a value between 0 and 1, used to avoid the problem
% of reducibility of directed graph (default is 0)
% k = number of eigenvectors desired
% Vector = the eigenvector matrix for the embedding
% E = the diagonal matrix of Laplacian eigenvalues
% importance = importance value of the random walk matrix
% varargout = cell array of results
% 1: Vector
% 2: E
% 3: importance

n = size(W,1);
D = diag(sum(W,2));

RW = sparse(n,n); % RW is the random walk matrix of W

for i = 1:n
if D(i,i) ˜= 0

RW(i,:) = W(i,:)./D(i,i);
else

RW(i,i) = 1;
end

end

if epsilon > 0
RW = (1-epsilon) * reshape(RW,n,n)

187

+ epsilon/(n-1) * (ones(n,n)-eye(n));
end

% compute principal left eigenvector of RW - the importance in a
% directed graph

[pie, eigpie] = eigs(RW.’,1);
importance = abs(pie);

% build symmetric directed Laplacian

imphalf = diag(sqrt(importance));
impminushalf = sparse(n,n);
for i = 1:n
if importance(i) > 1e-10;

impminushalf(i,i) = 1./imphalf(i,i);
end

end

L = speye(n,n) - (imphalf * RW * impminushalf
+ impminushalf * RW’ * imphalf)/2;

if nargin < 3
[Vector,E] = eig(L);
[e,IX] = sort(diag(E));
Vector = Vector(:,IX);

else
[Vector,E] = eigs(2*speye(n)-L,k);
e = 2 - diag(E);

end

Vector = impminushalf * Vector;

varargout{1} = Vector;
varargout{2} = e;
varargout{3} = importance;

function [varargout] = SignedLaplacian(posW, negW, type, k)
% Spectral embedding of a signed adjacency matrix
%
% The matrices posW and negW are the weighted adjacency matrices of
% the positive and negative edges of the network
% type= un or empty: unnormalized graph Laplacian
% SNS: simple normalized signed graph Laplacian
% BNS: balanced normalized signed graph Laplacian
%
% k = cluster the graph into k groups (default is disabled)
%
% Vector = eigenvector matrix for embedding
% E = the diagonal matrix of the Laplacian eigenvalues
%
% varargout = cell array
% 1: Vector
% 2: E

188 Appendix F. Example MATLAB functions

[n,m] = size(posW);

tempvalue = max(max(posW-posW’));
if tempvalue ˜= 0
posW = (posW+posW’)/2;

end

tempvalue = max(max(negW-negW’));
if tempvalue ˜= 0
negW = (negW+negW’)/2;

end

Dpos = sparse(1:n,1:n,sum(posW,2));
Dneg = sparse(1:n,1:n,sum(negW,2));
D = Dpos + Dneg;
D2 = zeros(n,n);
for i=1:n
if D(i,i) ˜= 0

D2(i,i) = 1/D(i,i)ˆ0.5;
end

end

pDinv = sparse(n,n);
nDinv = sparse(n,n);
for i=1:n
if D(i,i) ˜= 0

D2(i,i) = 1/D(i,i)ˆ0.5;
end
if Dpos(i,i) > 0;

pDinv(i,i)=1/Dpos(i,i);
end
if Dneg(i,i)>0

nDinv(i,i) = 1/Dneg(i,i);
end

end

%unnormalized graph Laplacian
if (nargin < 3) || isempty(type) || strcmp(type,’un’)
|| strcmp(type,’Un’) ...
|| strcmp(type,’UN’)
display(’Unnormalized signed Laplacian decomposition’);
L = Dpos - posW - Dneg + negW;
tempvalue = max(Dpos(:));
if k == n
[Vector,eigenvalue] = eig(L);
E = diag(eigenvalue);
[E,IXY] = sort(E,1,’ascend’);
Vector = Vector(:,IXY);

else
[Vector,eigenvalue] = eigs(2*tempvalue*eye(n)-L,k);
E = 2 * tempvalue - diag(eigenvalue);

end
varargout{1} = Vector;
varargout{2} = E;

%simple normalized signed graph Laplacian
elseif strcmp(type,’SNS’) || strcmp(type,’Sns’) || strcmp(type,’sns’)

189

display(’Simple normalized signed graph Laplacian decomposition’);
L = Dpos - posW - Dneg + negW;
D = Dpos + Dneg;
D2 = zeros(n,n);
for i=1:n

if D(i,i) ˜= 0
D2(i,i) = 1/D(i,i)ˆ0.5;

end
end
Lsym = D2 * L * D2; % L=Dˆ(-0.5)*L*Dˆ(-0.5);
if k == n

[Vector,eigenvalue] = eig(Lsym);
E = diag(eigenvalue);
[E,IXY] = sort(E,1,’ascend’);
Vector = Vector(:,IXY);

else
[Vector,eigenvalue] = eigs(2*eye(n)-Lsym,k);
E = 2 - diag(eigenvalue);

end
Vector = D2*Vector;
varargout{1} = Vector;
varargout{2} = E;

% balanced normalized signed graph Laplacian
elseif strcmp(type,’BNS’) || strcmp(type,’Bns’) || strcmp(type,’bns’)
display(’Balanced normalized signed graph Laplacian decomposition’);
L = Dpos - posW + negW;
D = Dpos + Dneg;
D2 = zeros(n,n);
for i=1:n

if D(i,i) ˜= 0
D2(i,i) = 1/D(i,i)ˆ0.5;

end
end
Lsym = D2 * L * D2; %L=Dˆ(-0.5)*L*Dˆ(-0.5);
if k == n

[Vector,eigenvalue] = eig(Lsym);
E = diag(eigenvalue);
[E,IXY] = sort(E,1,’ascend’);

Vector = Vector(:,IXY);
else

[Vector,eigenvalue] = eigs(2*eye(n) - Lsym,k);
E = 2 - diag(eigenvalue);

end
Vector = D2 * Vector;
varargout{1} = Vector;
varargout{2} = E;

else
error(’Type cannot be identified’);

end

function [varargout] = TypedDirLaplacian(W, k, LazyRate)
% Spectral embedding of a graph with directed typed edges
%
% n is the number of nodes, and c is the number of different edge
% types.

190 Appendix F. Example MATLAB functions

% W: an n*n*c weighted adjacency matrix of the graph. It can be
% undirected or directed, or a random walk matrix.
% LazyRate: a value between 0 and 1, the probability of moving
% to another layer (default is 0.5)
% k: the number of vectors desired, corresponding to the k smallest
% eigenvalues (default is all)
%
% Vout = the eigenvector matrix of out-roles
% Vin = the eigenvector matrix of in-roles
% both n*k*c
% E = the diagonal matrix of Laplacian eigenvalues
% bigW = the large constructed matrix
%
% varargout = cell array
% 1: Vout
% 2: Vin
% 3: E
% 4: bigW

[n,m,c] = size(W);

%%%% Bind together the versions of each node in the different
%%%% layers to build a cn*cn adjacency matrix

bigW = sparse(c*n,c*n);
for i = 1:c
rowsumd = sum(W(:,:,i),2);
tempv = sparse(n,1);
tempv(rowsumd == 0) = 1;
W(:,:,i) = W(:,:,i) + diag(tempv);
rowsumd(rowsumd == 0) = 1;
tempD = diag(rowsumd);
for j = 1:c

if i == j
bigW((i-1)*n+1:i*n,(j-1)*n+1:j*n) = (1-LazyRate)*W(:,:,i);

else
bigW((i-1)*n+1:i*n,(j-1)*n+1:j*n) = LazyRate/(c-1)*tempD;

end
end

end

%%%% compute our new directed Laplacian

[DirOut,DirIn,e] = DirLaplacian(bigW,k);
Vout = zeros(n,k,c);
Vin = zeros(n,k,c);
for i = 1:c
Vout(:,:,i) = DirOut((i-1)*n+1:i*n,:);
Vin(:,:,i) = DirIn((i-1)*n+1:i*n,:);

end

varargout{1} = Vout;
varargout{2} = Vin;
varargout{3} = e;
varargout{4} = bigW;

191

function [varargout] = TemporalDirLaplacian(W,k,alpha,beta)
% Spectral embedding of a directed graph changing with time
%
% n is the number of nodes, and c is the number of different time
% periods
%
% W: is an n*n*c weighted adjacency matrix of the graph. It can be
% undirected or directed, or a random walk matrix.

% k: the number of eigenvectors corresponding to the k smallest
% eigenvalues desired (default is all);
% alpha: a value between 0 and 1, down-weighting the contribution of
% matrices from previous time periods
% beta: a value between 0 and 1, the total probability of a random
% walk transitioning to one of the other layers in the large
% constructed graph (default is 0.5)
%
% Vout = the eigenvector matrix of out-roles
% Vin = the eigenvector matrix of in-roles
% E = the diagonal matrix of Laplacian eigenvalue
% bigW = the large constructed adjacency matrix
% for rendering purposes

% varargout = cell array
% 1: Vout
% 2: Vin
% 3: E
% 4: bigW

[n,m,c] = size(W);

%%%% incorporate the backwards weighting using alpha
A(:,:,1) = W(:,:,1);

for i = 2:c
A(:,:,i) = alpha * A(:,:,i-1) + W(:,:,i);

end

%%%% compute the new typed Directed Laplacian
[Vout, Vin, e, bigW] = TypedDirLaplacian(A, k, beta);

varargout{1} = Vout;
varargout{2} = Vin;
varargout{3} = e;
varargout{4} = bigW;

function [varargout] = TypedLaplacian(W, k, epsilon, LazyRate)
% Spectral embedding of a typed directed network
%
% n is the number of nodes, and c is the number of different edge
% types
% W: an n*n*c weighted adjacency matrix. It can be
% undirected or directed, or a random walk matrix.
% epsilon: a value between 0 and 1, used to avoid the problem
% of reducibility of directed graphs -- the Google trick (default is 0)

192 Appendix F. Example MATLAB functions

% k: is the number of vectors desired, corresponding to the k smallest
% eigenvalues (default is all)
% LazyRate: a value between 0 and 1, the transition probability to
% another layer (default is 0.5)
%
% Vector = the eigenvector matrix
% E = the diagonal matrix of Laplacian eigenvalues
% R = the large constructed random walk matrix created
%
% varargout = cell array
% 1: Vector=Eigenvectors
% 2: E= Eigenvalues
% 3: R= random walk matrix of the big connected graph

[n,m,c] = size(W);

%%%% convert each layer to a random walk matrix

RW = zeros(n,n,c);

for i = 1:c
for j = 1:n

rs = sum(W(j,:,i));
if rs == 0;
RW(j,j,i) = 1;

else
RW(j,:,i) = W(j,:,i)/rs;

end
end

end

%%%%% add epsilon

if epsilon > 0
% RW = (1-epsilon) * RW+epsilon/n;
for i = 1:c

RW(:,:,i) = (1-epsilon) * RW(:,:,i)
+epsilon/(n-1)*(ones(n,n)-eye(n));

end
end

%%%% convert entire graph to a random walk matrix R

R = zeros(c*n,c*n);
for i = 1:c
for j = 1:c

if i == j
R((i-1)*n+1:i*n,(j-1)*n+1:j*n) = (1-LazyRate) * RW(:,:,i);

else
R((i-1)*n+1:i*n,(j-1)*n+1:j*n) = LazyRate/(c-1)*eye(n,n);

end
end

end

%%%% compute Fan Chung’s Directed Laplacian

193

[Cvector, e] = DirLaplacianChung(R,0,k);

Vector = zeros(n,k,c);
for i = 1:c
Vector(:,:,i) = Cvector((i-1)*n+1:i*n,:);

end

varargout{1} = Vector;
varargout{2} = e;
varargout{3} = R;

function [varargout] = TemporalLaplacian(W, k, alpha, beta, epsilon)
% Spectral embedding of a directed graph with changing weights
% using Fan Chung’s directed embedding technique
%
% n is the number of nodes, and c is the number of different time
% periods
%
% W: an n*n*c weighted adjacency matrix of the graph. It can be
% undirected or directed, or a random walk matrix.
% epsilon: is a value between 0 and 1, used to avoid the problem
% of reducibility of directed graph -- the Google trick (default is 0)
% k: the number of vectors desired, corresponding to the k smallest
% eigenvalues (default is all)
% alpha: a value between 0 and 1, the down-weighting value for
% combining matrices from previous time periods
% beta: a value between 0 and 1, the probability of transitioning out
% of a layer (default is 0.5)
%
% Vector = the matrix of eigenvectors
% E = the diagonal matrix of Laplacian eigenvalues
% aggregateRW: = the large constructed random walk matrix R
%
% varargout = cell array
% 1: Vector=Eigenvectors
% 2: E= Eigenvalues
% 3: aggregateRW=(cn*cn) matrix

[n,m,c] = size(W);

aggregateRW = sparse(c*n,c*n);

%%% apply the weighting from previous time periods
A = W(:,:,1);
for i = 2:c
A = alpha * A + W(:,:,i);

end

temprw = sparse(n,n);
%% convert aggregate graph to a random walk matrix
for j = 1:n
rs = sum(A(j,:));
if rs == 0;

temprw(j,j) = 1;
else

194 Appendix F. Example MATLAB functions

temprw(j,:) = A(j,:)/rs;
end

end

if epsilon > 0
temprw = (1-epsilon) * temprw + epsilon/(n-1) * (ones(n,n)-eye(n));

end

for j = 1:c % minimize the disagreement between layers using beta
if i == j

aggregateRW((i-1)*n+1:i*n,(j-1)*n+1:j*n) = (1-beta) * temprw;
else

aggregateRW((i-1)*n+1:i*n,(j-1)*n+1:j*n) = beta/(c-1)* eye(n,n);
end

end

%%%% compute Fan Chung’s Directed Laplacian
[Cvector, e] = DirLaplacianChung(aggregateRW, 0, k);
Vector = zeros(n, k, c);
for i = 1:c
Vector(:,:,i) = Cvector((i-1)*n+1:i*n,:);

end

varargout{1} = Vector;
varargout{2} = e;
varargout{3} = aggregateRW;

function [varargout] = SignedDirLaplacian(posW,negW,type,k)
% Spectral embedding of a signed directed network
%
% W an n*n*c weighted adjacency matrix
% with n nodes, and c different edge types
% k is the number of eigenvectors desired, corresponding to the k
% smallest eigenvalues (default is all);
%
% varargout = cell array of output
% 1: PosOut=Eigenvectors of positive Out role
% 2: Negout=Eigenvectors of negative Out role
% 3: PosIn=Eigenvectors of positive in role
% 4: NegIn=Eigenvectors of negative in role
% 5: E=Eigenvalues
% 6: Xpos= the positive adjacency matrix created
% by modelling the signed directed graph
% 6: Xneg= the negative adjacency matrix created
% by modelling the signed directed graph

[n,m] = size(posW);

%%%% Bind together the four different versions of each node

Dinpos = sum(posW,1);
Doutpos = sum(posW,2);
Dinneg = sum(negW,1);
Doutneg = sum(negW,2);
crossweights = Dinpos + Doutpos’ + Dinneg + Doutneg’;

195

D = diag(crossweights);
Wp = [posW + D, D; D, D];

bigD = sparse(2*n);
bigD(1:n, n+1:2*n) = D;
bigD(n+1:2*n, 1:n) = D;
Xpos = [bigD, Wp; Wp’, bigD];
Xneg = sparse(4*n);
Xneg(n+1:2*n, 3*n+1:4*n) = negW;
Xneg(3*n+1:4*n, n+1:2*n) = negW’;

%%%% compute our signed Laplacian
[Vector,e] = SignedLaplacian(Xpos,Xneg,type,k);
PosOut = Vector(1:n,:);
Negout = Vector(n+1:2*n,:);
PosIn = Vector(2*n+1:3*n,:);
NegIn = Vector(3*n+1:4*n,:);
if nargout == 1
varargout{1} = Vector;

elseif nargout == 2
varargout{1} = Vector;
varargout{2} = e;

else
varargout{1} = PosOut;
varargout{2} = Negout;
varargout{3} = PosIn;
varargout{4} = NegIn;
varargout{5} = e;
varargout{6} = Xpos;
varargout{7} = Xneg;

end

function F = BCGE(W,Y,ew)
% Given a graph with some nodes labelled, build the enhanced
% signed graph and embed it using out signed spectral embedding
%
% W: the n*n weighted adjacency matrix of a undirected graph.
% Y: an n*2 label indication matrix, with value {0 1};
% 0 rows for unlabelled nodes.
% ew: [apw,anw] vector for positive and negative added edge weights
% between labeled points; default value is [1,1].

[n,m] = size(Y);

% build the negative matrix with only one undirected edge.
negW = sparse(n+2,n+2);
negW(n+1,n+2) = ew(2);
negW(n+2,n+1) = ew(2);

% build the positive matrix from the adjacency matrix with
% added positive edges.
posW = sparse(n+2,n+2);
posW(1:n,1:n) = W;
posW(1:n,n+1) = ew(1) * Y(:,1);
posW(n+1,1:n) = ew(1) * Y(:,1)’;

196 Appendix F. Example MATLAB functions

posW(1:n,n+2) = ew(1) * Y(:,2);
posW(n+2,1:n) = ew(1) * Y(:,2)’;

% build the modified total degree matrices.
Dpos = diag(sum(posW,2));
Dneg = diag(sum(negW,2));
D = diag(sum(W,2));
D(n+1,n+1) = Dpos(n+1,n+1) + Dneg(n+1,n+1);
D(n+2,n+2) = Dpos(n+2,n+2) + Dneg(n+2,n+2);
D2 = sparse(n+2,n+2);

for i = 1:n+2
if D(i,i) ˜= 0

D2(i,i) = 1/D(i,i)ˆ0.5;
end

end

% signed Laplacian embedding
L = (Dpos-posW) - (Dneg-negW);
Lsym = max(sum(abs(D2*L*D2),2)) * speye(n+2) - D2*L*D2;
%- max(sum(abs(D2*L*D2),2))*D3*D3’;
Lsym = Lsym + Lsym’;
[V,e] = eigs(Lsym,2);

if abs(e(1,1) - 2*max(sum(abs(D2*L*D2),2))) < 1e-10;
U = V(:,2);

else
U = V(:,1);

end

% make the output vector consistent with the labels.

if U(n+1,1) > 0
F = U(1:n,1);

else
F = -U(1:n,1);

end

function F = GBE(posW,label,ew)
% Implements our GBE semi-supervised learning algorithm
%
% posW: is the n*n weighted adjacency matrix of a undirected graph.
% label: is a n*c label indication matrix, with value {-1, 0 1} if
% label is a vector, {1,0} if label is a matrix; and 0 row for
% unlabelled nodes.
% ew: is a [apw,anw] vector for positive and negative added edge
% weight between labeled points; default value is [1,1].

[n,m] = size(label);

if m <= 2 % two classes
if m==1

Y(:,1) = label;
Y(:,2) = -label;
Y(Y<0) = 0;

197

else
Y = label;

end
F = sign(BCGE(posW,Y,ew));

else % more than two classes
for i = 1:m

Y = [label(:,i),sum(label,2)-label(:,i)];
V(:,i) = BCGE(posW,Y,ew);

end
[C,F] = max(V,[],2);

end

Bibliography

[1] P. Anchuri and M. Magdon-Ismail. Communities and balance in signed net-
works: A spectral approach. In Proceedings of the 2012 International Confer-
ence on Advances in Social Networks Analysis and Mining, pages 235–242.
IEEE Computer Society, 2012.

[2] N. Aston and W. Hu. Community detection in dynamic social networks. Com-
munications and Network, page 124, 2014.

[3] S. Baluja, R. Seth, D Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichan-
dran, and M. Aly. Video suggestion and discovery for YouTube: taking ran-
dom walks through the view graph. In Proceedings of the 17th international
conference on World Wide Web, pages 895–904. ACM, 2008.

[4] M. Belkin, I. Matveeva, and P. Niyogi. Regularization and semi-supervised
learning on large graphs. Learning Theory, pages 624–638, 2004.

[5] M. Belkin, P. Niyogi, and V. Sindhwani. On manifold regularization. In
Proceedings of the Tenth International Workshop on Artificial Intelligence and
Statistics, pages 17–24, 2005.

[6] Y Bengio, O Delalleau, and NL Roux. Label propagation and quadratic crite-
rion. In Semi-Supervised Learning. MIT Press, 2007.

[7] A. Blum and S. Chawla. Learning from labeled and unlabeled data using
graph mincuts. In Proceedings of the 18th International Conference on Ma-
chine Learning, ICML ’01, pages 19–26, 2001.

[8] A. Blum, J. Lafferty, M.R. Rwebangira, and R. Reddy. Semi-supervised learn-
ing using randomized mincuts. In Proceedings on the 21st international con-
ference on Machine learning. ACM Press, 2004.

[9] A. Bouchachia and M. Prossegger. Incremental spectral clustering. Learning
in Non-Stationary Environments: Methods and Applications, page 77, 2012.

[10] T. Bühler and M. Hein. Spectral clustering based on the graph p-Laplacian. In
Proceedings of the 26th Annual International Conference on Machine Learn-
ing, pages 81–88. ACM, 2009.

199

200 Bibliography

[11] F. Calderoni. The structure of drug trafficking mafias: the ’Ndrangheta and
cocaine. Crime, Law and Social Change, 58(3):321–349, 2012.

[12] F. Calderoni. Identifying mafia bosses from meeting attendance. In Networks
and Network Analysis for Defence and Security, pages 27–48. Springer, 2014.

[13] Y. Chang, D. Pantazis, and R.M. Leahy. Statistically optimal modular parti-
tioning of directed graphs. In Signals, Systems and Computers (ASILOMAR),
pages 1075–1079. IEEE, 2010.

[14] Y. Chang, D. Pantazis, and R.M. Leahy. Partitioning directed graphs based
on modularity and information flow. In IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pages 1105–1108. IEEE, 2011.

[15] T. Chen, Q. Yang, and X. Tang. Directed graph embedding. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pages
2707–2712, 2007.

[16] Y. Cheng and R. Zhao. Multiview spectral clustering via ensemble. In
IEEE International Conference on Granular Computing, pages 101–106,
Aug. 2009.

[17] K. Chiang, J.J. Whang, and I.S. Dhillon. Scalable clustering of signed net-
works using balance normalized cut. In Proceedings of the 21st ACM inter-
national conference on Information and knowledge management, pages 615–
624. ACM, 2012.

[18] N.A. Christakis and J.H. Fowler. Connected: The Surprising Power of Our So-
cial Networks and How They Shape Our Lives – How Your Friends’ Friends’
Friends Affect Everything You Feel, Think, and Do. Little Brown, 2009.

[19] N.A. Christakis and J.H. Fowler. Social contagion theory: examining dynamic
social networks and human behavior. Statistics in Medicine, 32(4):556–577,
2013.

[20] F. Chung. Laplacians and the Cheeger inequality for directed graphs. Annals
of Combinatorics, 9(1):1–19, 2005.

[21] A. Corduneanu and T. Jaakkola. On information regularization. In Proceed-
ings of the Nineteenth conference on Uncertainty in Artificial Intelligence,
pages 151–158. Morgan Kaufmann Publishers Inc., 2002.

[22] J.A. Davis. Clustering and structural balance in graphs. Human Relations,
pages 181–187, 1967.

[23] I.S. Dhillon. Co-clustering documents and words using bipartite spectral
graph partitioning. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 269–274. ACM,
2001.

Bibliography 201

[24] I.S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors:
a multilevel approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(11):1944–1957, 2007.

[25] W.E. Donath and A.J. Hoffman. Algorithms for partitioning of graphs and
computer logic based on eigenvectors of connection matrices. IBM Technical
Disclosure Bulletin, 15(3):938–944, 1972.

[26] W.E. Donath and A.J. Hoffman. Lower bounds for the partitioning of graphs.
IBM Journal of Research and Development, 17(5):420–425, 1973.

[27] X. Dong, P. Frossard, P. Vandergheynst, and N. Nefedov. Clustering with
Multi-Layer Graphs: A Spectral Perspective. IEEE Transactions on Signal
Processing, 60(11):5820–5831, 2012.

[28] X. Dong, P. Frossard, P. Vandergheynst, and N. Nefedov. Clustering on multi-
layer graphs via subspace analysis on Grassmann manifolds. IEEE Transac-
tions on Signal Processing, 62(4):905–918, 2014.

[29] P. Doreian, V. Batagelj, and A. Ferligoj. Generalized blockmodeling, vol-
ume 25. Cambridge University Press, 2005.

[30] R.I.M. Dunbar. Neocortex size as a constraint on group size in primates.
Journal of Human Evolution, 22(6):469–493, 1992.

[31] R.I.M. Dunbar. Coevolution of neocortical size, group size and language in
humans. Behavioral and Brain Sciences, 16(04):681–694, 1993.

[32] D.J. Felleman and D.C. Van Essen. Distributed hierarchical processing in the
primate cerebral cortex. Cerebral Cortex, 1(1):1–47, 1991.

[33] P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Seg-
mentation. International Journal of Computer Vision, 59:167–181, 2004.
10.1023/B:VISI.0000022288.19776.77.

[34] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal, 23(2):298–305, 1973.

[35] F. Fouss, A. Pirotte, and M. Saerens. A novel way of computing similarities
between nodes of a graph, with application to collaborative recommendation.
In The 2005 IEEE/WIC/ACM International Conference on Web Intelligence,
pages 550–556. IEEE, 2005.

[36] M.G. Gong, L.J. Zhang, J.J. Ma, and L.C. Jiao. Community detection in
dynamic social networks based on multiobjective immune algorithm. Journal
of Computer Science and Technology, 27(3):455–467, 2012.

[37] P. Hage and F. Harary. Structural Models in Anthropology. Cambridge Uni-
versity Press, 1983.

202 Bibliography

[38] L. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning
and clustering. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 11(9):1074–1085, 1992.

[39] C. Hilgetag, M.A. O’Neill, and M.P. Young. Hierarchical organization of
macaque and cat cortical sensory systems explored with a novel network pro-
cessor. Philosophical Transactions of the Royal Society B: Biological Sci-
ences, 355(1393):71–89, 2000.

[40] J. Huang, T. Zhu, and D. Schuurmans. Web communities identification from
random walks. In Knowledge Discovery in Databases: PKDD 2006, pages
187–198. Springer, 2006.

[41] M.S.T. Jaakkola and M. Szummer. Partially labeled classification with
Markov random walks. Advances in Neural Information Processing Systems
(NIPS), 14:945–952, 2002.

[42] T. Joachims. Transductive learning via spectral graph partitioning. In Pro-
ceedings of the 20th International Conference on Machine Learning, vol-
ume 3, pages 290–297, 2003.

[43] R. Kannan, S. Vempala, and A. Vetta. On clusterings: Good, bad and spectral.
Journal of the ACM (JACM), 51(3):497–515, 2004.

[44] M. Kas, K.M. Carley, and L. R. Carley. Incremental closeness centrality for
dynamically changing social networks. In Advances in Social Networks Anal-
ysis and Mining, 2013 IEEE/ACM International Conference on, pages 1250–
1258. IEEE, 2013.

[45] D.J. Klein and M. Randić. Resistance distance. Journal of Mathematical
Chemistry, 12(1):81–95, 1993.

[46] A. Kumar and H. Daum. Co-training approach for multi-view spectral clus-
tering. Computer, 94(5):393–400, 2011.

[47] A. Kumar, P. Rai, and H. Daume. Co-regularized multi-view spectral clus-
tering. In Advances in Neural Information Processing Systems, pages 1413–
1421, 2011.

[48] J. Kunegis, S. Schmidt, A. Lommatzsch, J. Lerner, E.W. De Luca, and S. Al-
bayrak. Spectral analysis of signed graphs for clustering, prediction and vi-
sualization. In SIAM International Conference on Data Mining, volume 10,
pages 559–559. SIAM, 2010.

[49] E.A. Leicht and M.E. Newman. Community structure in directed networks.
Physical Review Letters, 100(11):118703, 2008.

[50] J. Leskovec and C. Faloutsos. Sampling from large graphs. In Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 631–636. ACM, 2006.

Bibliography 203

[51] J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social
media. In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pages 1361–1370. ACM, 2010.

[52] L. Li and J. Zhang. Information clustering method in social network. In
Strategic Technology (IFOST), 2011 6th International Forum on, volume 2,
pages 1104 –1108, Aug. 2011.

[53] M. Lichman. UCI machine learning repository. http://archive.ics.uci.edu/ml,
2013.

[54] X. Liu, X. Yong, and H. Lin. An improved spectral clustering algorithm based
on local neighbors in kernel space. Computer Science and Information Sys-
tems, 8(4):1143–1157, 2011.

[55] D. Luo, H. Huang, C. Ding, and F. Nie. On the eigenvectors of p-Laplacian.
Machine Learning, 81(1):37–51, 2010.

[56] F.D. Malliaros and M. Vazirgiannis. Clustering and community detection in
directed networks: A survey. Physics Reports, 533(4):95–142, 2013.

[57] M. Meila and W. Pentney. Clustering by weighted cuts in directed graphs. In
Proceedings of the 7th SIAM International Conference on Data Mining, pages
135–144, 2007.

[58] M. Meila and J. Shi. A random walks view of spectral segmentation. In AI
and STATISTICS (AISTATS) 2001, 2001.

[59] S. Melacci and M. Belkin. Laplacian support vector machines trained in the
primal. Journal of Machine Learning Research, 12:1149–1184, March 2011.

[60] S. Milgram. The small world problem. Psychology Today, 2(1):60–67, 1967.

[61] B. Mohar. The Laplacian spectrum of graphs. Graph Theory, Combinatorics,
and Applications, 2:871–898, 1991.

[62] B. Mohar. Some applications of Laplace eigenvalues of graphs. Graph Sym-
metry: Algebraic Methods and Applications, 497(22):227, 1997.

[63] C. Morselli, C. Giguère, and K. Petit. The efficiency/security trade-off in
criminal networks. Social Networks, 29(1):143–153, 2007.

[64] C. Morselli and K. Petit. Law-enforcement disruption of a drug importation
network. Global Crime, 8(2):109–130, 2007.

[65] L. Muchnik, S. Aral, and S.J. Taylor. Social influence bias: A randomized
experiment. Science, 341(6146):647–651, 2013.

[66] P. Muthukrishnan, D.R. Radev, and Q. Mei. Edge weight regularization over
multiple graphs for similarity learning. In IEEE 10th International Conference
Data Mining, pages 374–383. IEEE, 2010.

http://archive.ics.uci.edu/ml,2013
http://archive.ics.uci.edu/ml,2013

204 Bibliography

[67] L. Négyessy, T. Nepusz, L. Kocsis, and F. Bazsó. Prediction of the main
cortical areas and connections involved in the tactile function of the visual
cortex by network analysis. European Journal of Neuroscience, 23(7):1919–
1930, 2006.

[68] T. Nepusz, A. Petróczi, L. Négyessy, and F. Bazsó. Fuzzy communities
and the concept of bridgeness in complex networks. Physical Review E,
77(1):016107, 2008.

[69] M.E.J. Newman. Detecting community structure in networks. The European
Physical Journal B-Condensed Matter and Complex Systems, 38(2):321–330,
2004.

[70] M.E.J. Newman and M. Girvan. Finding and evaluating community structure
in networks. Physical Review E, 69:026113, Feb. 2004.

[71] A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. Advances in Neural Information Processing Systems, 2:849–856,
2002.

[72] N.P. Nguyen, T.N. Dinh, Y. Xuan, and M.T. Thai. Adaptive algorithms for
detecting community structure in dynamic social networks. In IEEE Inter-
national Conference on Computer Communications, pages 2282–2290. IEEE,
2011.

[73] M. Orbach and K. Crammer. Graph-based transduction with confidence. In
Machine Learning and Knowledge Discovery in Databases, pages 323–338.
Springer, 2012.

[74] J.F. Padgett and C.K. Ansell. Robust action and the rise of the Medici, 1400-
1434. American Journal of Sociology, pages 1259–1319, 1993.

[75] L. Paoli. An Underestimated Criminal Phenomenon: The Calabrian
’Ndrangheta, An. Eur. J. Crime Crim. L. & Crim Just., 2:212, 1994.

[76] L. Paoli. Mafia Brotherhoods: Organized Crime, Italian Style. Oxford Uni-
versity Press, 2003.

[77] J. Qiu and Z. Lin. A framework for exploring organizational structure in
dynamic social networks. Decision Support Systems, 51(4):760–771, 2011.

[78] K.E. Read. Cultures of the central highlands, new guinea. Southwestern Jour-
nal of Anthropology, pages 1–43, 1954.

[79] V. Satuluri and S. Parthasarathy. Symmetrizations for clustering directed
graphs. In Proceedings of the 14th International Conference on Extending
Database Technology, pages 343–354. ACM, 2011.

Bibliography 205

[80] A.J. Seary. MultiNet: An interactive program for analysing and visualizing
complex networks. PhD thesis, Faculty of Applied Science, Simon Fraser
University, 2005.

[81] A.J. Seary and W.D. Richards. Spectral methods for analyzing and visualizing
networks: an introduction. In R. Breiger, K. Carley, and P. Pattison, editors,
National Research Council, Dynamic Social Network Modeling and Analy-
sis: Workshop Summary and Papers, pages 209–228. The National Academic
Press, 2003.

[82] J. Shang, L. Liu, X. Li, F. Xie, and C. Wu. Targeted revision: A learning-
based approach for incremental community detection in dynamic networks.
Physica A: Statistical Mechanics and its Applications, 2015.

[83] J. Shang, L. Liu, F. Xie, Z. Chen, J. Miao, X. Fang, and C. Wu. A real-time
detecting algorithm for tracking community structure of dynamic networks.
In The 6th Workshop on Social Network Mining and Analysis co-held with
KDD (SNA-KDD12), 2012.

[84] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[85] D.B. Skillicorn. Understanding Complex Datasets: Data Mining with Matrix
Decompositions. CRC Press, 2007.

[86] D.B. Skillicorn, F. Calderoni, and Q. Zheng. Inductive discovery of crimi-
nal group structure using spectral embedding. Information and Security: An
International Journal, 31:49–66, 2015.

[87] D.B. Skillicorn and Q. Zheng. Global similarity in social networks with typed
edges. In 2012 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), pages 79–85, August 2012.

[88] D.B. Skillicorn and Q. Zheng. Global structure in social networks with di-
rected typed edges. In Social Networks: Analysis and Case Studies, pages
61–81. Springer, 2014.

[89] D.B. Skillicorn, Q. Zheng, and C. Morselli. Spectral embedding for dynamic
social networks. In Proceedings of the 2013 IEEE/ACM International Confer-
ence on Advances in Social Networks Analysis and Mining, pages 316–323.
ACM, 2013.

[90] D.B. Skillicorn, Q. Zheng, and C. Morselli. Modeling dynamic social net-
works using spectral embedding. Social Network Analysis and Mining,
4(1):1–14, 2014.

[91] D.A. Spielman and S.H. Teng. Spectral partitioning works: Planar graphs and
finite element meshes. In Foundations of Computer Science, 1996. Proceed-
ings., 37th Annual Symposium on, pages 96–105. IEEE, 1996.

206 Bibliography

[92] A. Subramanya and J. Bilmes. Semi-supervised learning with measure prop-
agation. The Journal of Machine Learning Research, 12:3311–3370, 2011.

[93] A. Subramanya and P.P. Talukdar. Graph-based semi-supervised learning.
Synthesis Lectures on Artificial Intelligence and Machine Learning, 8(4):1–
125, 2014.

[94] P.P. Talukdar and K. Crammer. New regularized algorithms for transductive
learning. In Machine Learning and Knowledge Discovery in Databases, pages
442–457. Springer, 2009.

[95] R. Tamassia. Handbook of Graph Drawing and Visualization. CRC Press,
2013.

[96] W. Tang, Z. Lu, and I.S. Dhillon. Clustering with multiple graphs. In Pro-
ceedings of the 9th IEEE International Conference on Data Mining, pages
1016–1021. IEEE, 2009.

[97] H. Tao, C. Hou, and D. Yi. Multiple-view spectral embedded clustering us-
ing a co-training approach. In Computer Engineering and Networking, pages
979–987. Springer, 2014.

[98] V.A. Traag and J. Bruggeman. Community detection in networks with positive
and negative links. Physical Review E, 80(3):036115, 2009.

[99] J. Travers and S. Milgram. An experimental study of the small world problem.
Sociometry, pages 425–443, 1969.

[100] G. Trenkler. Handbook of Matrices. Computational Statistics & Data Analy-
sis, 25(2):243–243, July 1997.

[101] U. Von Luxburg. A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416, December 2007.

[102] U. Von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clus-
tering. The Annals of Statistics, pages 555–586, 2008.

[103] U. Von Luxburg, O. Bousquet, and M. Belkin. On the convergence of spectral
clustering on random samples: the normalized case. Learning Theory, pages
457–471, 2004.

[104] U. Von Luxburg, O. Bousquet, and M. Belkin. Limits of spectral cluster-
ing. Advances in Neural Information Processing Systems (NIPS), 17:857–864,
2005.

[105] D. Wagner and F. Wagner. Between min cut and graph bisection. In Pro-
ceedings of the 18th International Symposium on Mathematical Foundations
of Computer Science, pages 744–750, London, UK, 1993. Springer-Verlag.

Bibliography 207

[106] O. Walther and C. Leuprecht. Mapping and deterring violent extremist net-
works in North-West Africa. Working Papers 7, University of Southern Den-
mark, Department of Border Region Studies, 2015.

[107] T. Xia, D. Tao, T. Mei, and Y. Zhang. Multiview spectral embedding. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 40(6):1438–1446,
2010.

[108] B. Yang, W.K. Cheung, and J. Liu. Community mining from signed so-
cial networks. IEEE Transactions on Knowledge and Data Engineering,
19(10):1333–1348, 2007.

[109] T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin. Detecting communities and
their evolutions in dynamic social networks: A Bayesian approach. Machine
Learning, 82(2):157–189, 2011.

[110] S.X. Yu and J. Shi. Grouping with directed relationships. In Energy Minimiza-
tion Methods in Computer Vision and Pattern Recognition, pages 283–297.
Springer, 2001.

[111] Q. Zheng and D.B. Skillicorn. Spectral embedding of directed networks. In
Proceedings of the 2015 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), pages 432–439, 2015.

[112] Q. Zheng and D.B. Skillicorn. Spectral embedding of signed networks. In
SIAM International Conference on Data Mining, pages 55–63, 2015.

[113] Q. Zheng and D.B. Skillicorn. Graph based eigenvector semi-supervised
learning. In Foundations of Big Data Analytics, IEEE/ACM ASONAM 2016,
pages 960–967, August 2016.

[114] Q. Zheng and D.B. Skillicorn. Spectral embedding of directed networks. So-
cial Network Analysis and Mining, 6:15pp., December 2016.

[115] Q. Zheng, D.B. Skillicorn, and F. Calderoni. Analysis of criminal social net-
works with typed and directed edges. In IEEE International Conference on
Intelligence and Security Informatics, 2015.

[116] Q. Zheng, D.B. Skillicorn, and O. Walther. Signed directed social network
analysis applied to group conflict. In IEEE ICDM Workshop on Intelligence
and Security Informatics (ISI-ICDM 2015), 2015.

[117] Q. Zheng, D.B. Skillicorn, and O. Walther. Signed directed social network
analysis applied to group conflict. In IEEE International Conference on Data
Mining, Intelligence and Security Informatics Workshop, November 2015.

[118] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and B. Schölkopf. Learning with
local and global consistency. Advances in Neural Information Processing Sys-
tems, 16:321–328, 2004.

208 Bibliography

[119] D. Zhou and C.J.C. Burges. Spectral clustering and transductive learning with
multiple views. In Proceedings of the 24th International Conference on Ma-
chine Learning, ICML ’07, pages 1159–1166, New York, NY, USA, 2007.
ACM.

[120] D. Zhou, J. Huang, and B. Schölkopf. Learning from labeled and unlabeled
data on a directed graph. In Proceedings of the 22nd International Conference
on Machine Learning, pages 1036–1043. ACM, 2005.

[121] D. Zhou, B. Schölkopf, and T. Hofmann. Semi-supervised learning on di-
rected graphs. In The annual Neural Information Processing Systems, pages
1633–1640. MIT Press, 2005.

[122] W. Zhou, D. Sornette, R.A. Hill, and R.I.M. Dunbar. Discrete hierarchical
organization of social group sizes. Proceedings of the Royal Society of London
B: Biological Sciences, 272(1561):439–444, 2005.

[123] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaus-
sian fields and harmonic functions. In Proceedings of the 20th International
Conference on Machine Learning, pages 912–919, 2003.

Index

’Ndrangheta groups, 74

Adjacency matrix, 7, 18
Assortativity, 4
Asymmetric flow, 45
Average edge ratio, 106
Average node ratio, 107

Bipartite graph, 18

Caviar network, 85
Chung’s directed embedding, 41
Clique, 18
Combinatorial Laplacian, 10
Communities in social networks, 5
Commute distance, 26
Composing models, 69
Connected graph, 18

Degree, 18
Diameter, 157
Directed adjacency matrix, 7
Directed edge prediction, 45
Directed edges, 41
Directed graph, 17
Dunbar’s Number, 3

Edge prediction, 8, 36
directed, 45

Edge weight prediction, 8
Ego network, 18
Eigendecomposition, 18

adjacency matrix, 19
Laplacian, 19

Emergent properties, 1, 157
Enemy of my enemy, 105
Example

’Ndrangheta groups, 74
ACLED dataset, 111, 143
Algeria, 144
Caviar, 85
Epinions, 113
Florentine families, 34, 50, 72
Gahuku–Gama, 107
ISOLET spoken digits, 128
Libya, 146
Macaque brains, 55
Nigeria, 146
North and West Africa, 147
Sampson monastery, 109, 142
Slashdot, 115
UK schools, 50
USPS handwritten digits, 128
Panama Papers, 57

Fiedler vector, 20
Florentine families, 34, 50, 72
Flow in networks, 5

Geodesic distance, 18
Geometric space, 12
Google trick, 43
Graph

introduction, 7
Graph cut

min-cut, 25
normalized cut, 25
ratio cut, 25

Graph cut clustering, 25
Graph drawing, 7, 9

Homophily, 121

Imbalanced classes, 121

209

210 Index

Imbalanced data, 127
In-degree, 18
Influence, 5, 14

Laplacian
combinatorial, 10
random walk, 23
symmetric, 23
introduction, 7

layer model, 11
Lazy random walk, 15
Link prediction, 8

Median edge ratio, 107
Medicis, 34, 36
Milgram’s experiment, 2
Multigraph, 17

Nexus, 71
Normalized edge length, 49, 72

Operation Chalonero, 74, 76
Operation Stupor Mundi, 74, 77
Organizational networks, 2
Out-degree, 18

PageRank, 42
Panama Papers, 57
Path, 18
Power laws, 4

Random walk clustering, 25
Rayleigh quotient, 21, 22

Semi-supervised prediction, 121
Signed graph, 17
Simple graph, 17
Six degrees of separation, 2
Spectral clustering, 24
Spectral embedding, 10

introduction, 7
Spectral graph embedding, 18
Spreading activation, 122
Strozzis, 36
Symmetric matrix, 7

Temporal social networks, 81

Typed edge prediction, 33

Undirected graph, 17
Unweighted graph, 17

Vertical edges, 32

Weighted adjacency matrix, 7
Weighted graph, 17

	Cover
	Half title
	Published titles��
	Title
	Copyright
	Contents��
	Preface�������������������������������������
	List of figures���
	List of tables��
	Glossary��
	Chapter1 introduction
	1.1 what is a social network��
	1.2 multiple aspects of relationships���
	1.3 formally representing social networks���

	Chapter2 the core model
	2.1 representing networks to understand their structures��
	2.2 building layered models���
	2.3 summary���

	Chapter3 background
	3.1 graph theory background���
	3.2 spectral graph theory���
	3.2.1 the unnormalized graph laplacian��
	3.2.2 the normalized graph laplacians���

	3.3 spectral pipeline���
	3.4 spectral approaches to clustering���
	3.4.1 undirected spectral clustering algorithms���
	3.4.2 which laplacian clustering should be used���

	3.5 summary���

	Chapter4 modelling relationships of different types
	4.1 typed edge model approach���
	4.2 typed edge spectral embedding���
	4.3 applications of typed networks��
	4.4 summary���

	Chapter5 modelling asymmetric relationships
	5.1 conventional directed spectral graph embedding��
	5.2 directed edge layered approach��
	5.2.1 validation of the new directed embedding��
	5.2.2 svd computation for the directed edge model approach���

	5.3 applications of directed networks���
	5.4 summary���

	Chapter6 modelling asymmetric relationships with multiple types
	6.1 combining directed and typed embeddings���
	6.2 layered approach and compositions���
	6.3 applying directed typed embeddings��
	6.3.1 florentine families���
	6.3.2 criminal groups���

	6.4 summary���

	Chapter7 modelling relationships that change over time
	7.1 temporal networks���
	7.2 applications of temporal networks���
	7.2.1 the undirected network over time��
	7.2.2 the directed network over time��

	7.3 summary���

	Chapter8 modelling positive and negative relationships
	8.1 signed laplacian��
	8.2 unnormalized spectral laplacians of signed graphs���
	8.2.1 rayleigh quotients of signed unnormalized laplacians���
	8.2.2 graph cuts of signed unnormalized laplacians��

	8.3 normalized spectral laplacians of signed graphs���
	8.3.1 rayleigh quotients of signed random-walk laplacians��
	8.3.2 graph cuts of signed random-walk laplacians���

	8.4 applications of signed networks���
	8.5 summary���

	Chapter9 signed graph-based semi-supervised learning
	9.1 approach��
	9.2 problems of imbalance in graph data���
	9.3 summary���

	Chapter10 combining directed and signed embeddings
	10.1 composition of directed and signed layer models��
	10.2 application to signed directed networks��
	10.2.1 north and west africa conflict���

	10.3 extensions to other compositions���
	10.4 summary��

	Chapter11 summary
	Appendices��
	AppendixA ratiocut consistency with two versions of each node
	AppendixB ncut consistency with multiple versions of each node
	AppendixC signed unnormalized clustering
	AppendixD signed normalized laplacian lsns clustering
	AppendixE signed normalized laplacian lbns clustering
	AppendixF example matlab functions

	Bibliography��
	Index�������������������������������

