
Jasmin Blanchette
Laura Kovács
Dirk Pattinson (Eds.)

 123

LN
AI

 1
33

85

11th International Joint Conference, IJCAR 2022
Haifa, Israel, August 8–10, 2022
Proceedings

Automated Reasoning

Lecture Notes in Artificial Intelligence 13385

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Wolfgang Wahlster
DFKI, Berlin, Germany

Zhi-Hua Zhou
Nanjing University, Nanjing, China

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this subseries at https://link.springer.com/bookseries/1244

https://link.springer.com/bookseries/1244

Jasmin Blanchette · Laura Kovács ·
Dirk Pattinson (Eds.)

Automated Reasoning
11th International Joint Conference, IJCAR 2022
Haifa, Israel, August 8–10, 2022
Proceedings

Editors
Jasmin Blanchette
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Dirk Pattinson
Australian National University
Canberra, ACT, Australia

Laura Kovács
Vienna University of Technology
Wien, Austria

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-10768-9 ISBN 978-3-031-10769-6 (eBook)
https://doi.org/10.1007/978-3-031-10769-6

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8367-0936
https://orcid.org/0000-0002-5832-6666
https://orcid.org/0000-0002-8299-2714
https://doi.org/10.1007/978-3-031-10769-6
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the papers presented at the 11th International Joint Conference on
Automated Reasoning (IJCAR 2022) held during August 8–10, 2022, in Haifa, Israel.
IJCAR was part of the Federated Logic Conference (FLoC 2022), which took place from
July 31 to August 12, 2022, in Haifa.

IJCAR is the premier international joint conference on all aspects of automated
reasoning, including foundations, implementations, and applications, comprising several
leading conferences and workshops. IJCAR 2022 united the Conference on Automated
Deduction (CADE), the International Symposium on Frontiers of Combining Systems
(FroCoS), and the International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods (TABLEAUX). Previous IJCAR conferences were held
in Siena, Italy, in 2001, Cork, Ireland, in 2004, Seattle, USA, in 2006, Sydney, Australia,
in 2008, Edinburgh, UK, in 2010, Manchester, UK, in 2012, Vienna, Austria, in 2014,
Coimbra, Portugal, in 2016, Oxford, UK, in 2018, and Paris, France, in 2020 (virtual).

There were 85 submissions. Each submission was assigned to at least three Program
Committee members and was reviewed in single-blind mode. The committee decided to
accept 41 papers: 32 regular papers and nine system descriptions.

The program also included two invited talks, by Elvira Albert and Gilles Dowek, as
well as a plenary FLoC talk by Aarti Gupta.

We acknowledge the FLoC sponsors:

• Diamond sponsors: Amazon Web Services, Meta, Intel
• Gold sponsors: Google, Nvidia, Synopsys
• Silver sponsor: Cadence
• Bronze sponsors: DLVSystem, Veridise
• Other sponsors: Technion, The Henry and Marilyn Taub Faculty of Computer Science

We also acknowledge the generous sponsorship of Springer and the Trakhtenbrot
family, as well as the invaluable support provided by the EasyChair developers. We
finally thank the FLoC 2022 organization team for assisting us with local organization
and general conference management.

May 2022 Jasmin Blanchette
Laura Kovács

Dirk Pattinson

Organization

Program Committee

Erika Abraham RWTH Aachen University, Germany
Carlos Areces Universidad Nacional de Córdoba, Spain
Bernhard Beckert Karlsruhe Institute of Technology, Germany
Alexander Bentkamp Chinese Academy of Sciences, China
Armin Biere University of Freiburg, Germany
Nikolaj Bjørner Microsoft, USA
Jasmin Blanchette (Co-chair) Vrije Universiteit Amsterdam, The Netherlands
Frédéric Blanqui Inria, France
Maria Paola Bonacina Università degli Studi di Verona, Italy
Kaustuv Chaudhuri Inria, France
Agata Ciabattoni Vienna University of Technology, Austria
Stéphane Demri CNRS, LMF, ENS Paris-Saclay, France
Clare Dixon University of Manchester, UK
Huimin Dong Sun Yat-sen University, China
Katalin Fazekas Vienna University of Technology, Austria
Mathias Fleury University of Freiburg, Austria
Pascal Fontaine Université de Liège, Belgium
Nathan Fulton IBM, USA
Silvio Ghilardi Università degli Studi di Milano, Italy
Jürgen Giesl RWTH Aachen University, Germany
Rajeev Gore Australian National University, Australia
Marijn Heule Carnegie Mellon University, USA
Radu Iosif Verimag, CNRS, Université Grenoble Alpes,

France
Mikolas Janota Czech Technical University in Prague,

Czech Republic
Moa Johansson Chalmers University of Technology, Sweden
Cezary Kaliszyk University of Innsbruck, Austria
Laura Kovacs (Co-chair) Vienna University of Technology, Austria
Orna Kupferman Hebrew University, Israel
Cláudia Nalon University of Brasília, Brazil
Vivek Nigam Huawei ERC, Germany
Tobias Nipkow Technical University of Munich, Germany
Jens Otten University of Oslo, Norway
Dirk Pattinson (Co-chair) Australian National University, Australia
Nicolas Peltier CNRS, LIG, France

viii Organization

Brigitte Pientka McGill University, Canada
Elaine Pimentel University College London, UK
André Platzer Carnegie Mellon University, USA
Giles Reger Amazon Web Services, USA, and University of

Manchester, UK
Andrew Reynolds University of Iowa, USA
Simon Robillard Université de Montpellier, France
Albert Rubio Universidad Complutense de Madrid, Spain
Philipp Ruemmer Uppsala University, Sweden
Renate A. Schmidt University of Manchester, UK
Stephan Schulz DHBW Stuttgart, Germany
Roberto Sebastiani University of Trento, Italy
Martina Seidl Johannes Kepler University Linz, Austria
Viorica Sofronie-Stokkermans University of Koblenz-Landau, Germany
Lutz Straßburger Inria, France
Martin Suda Czech Technical University in Prague,

Czech Republic
Tanel Tammet Tallinn University of Technology, Estonia
Sophie Tourret Inria, France, and Max Planck Institute for

Informatics, Germany
Uwe Waldmann Max Planck Institute for Informatics, Germany
Christoph Weidenbach Max Planck Institute for Informatics, Germany
Sarah Winkler Free University of Bozen-Bolzano, Italy
Yoni Zohar Bar-Ilan University, Israel

Additional Reviewers

László Antal
Paolo Baldi
Lionel Blatter
Brandon Bohrer
Marius Bozga
Chad Brown
Lucas Bueri
Guillaume Burel
Marcelo Coniglio
Riccardo De Masellis
Warren Del-Pinto
Zafer Esen
Michael Färber
Sicun Gao
Jacques Garrigue
Thibault Gauthier

Samir Genaim
Alessandro Gianola
Raúl Gutiérrez
Fajar Haifani
Alejandro Hernández-Cerezo
Ullrich Hustadt
Jan Jakubuv
Martin Jonas
Michael Kirsten
Gereon Kremer
Roman Kuznets
Jonathan Laurent
Chencheng Liang
Enrico Lipparini
Florin Manea
Marco Maratea

Organization ix

Sonia Marin
Enrique Martin-Martin
Andrea Mazzullo
Stephan Merz
Antoine Miné
Sibylle Möhle
Cristian Molinaro
Markus Müller-Olm
Jasper Nalbach
Joel Ouaknine
Tobias Paxian
Wolfram Pfeifer
Andrew Pitts

Amaury Pouly
Stanisław Purgał
Michael Rawson
Giselle Reis
Clara Rodríguez-Núñez
Daniel Skurt
Giuseppe Spallitta
Sorin Stratulat
Petar Vukmirović
Alexander Weigl
Richard Zach
Anna Zamansky
Michal Zawidzki

Contents

Invited Talks

Using Automated Reasoning Techniques for Enhancing the Efficiency
and Security of (Ethereum) Smart Contracts . 3

Elvira Albert, Pablo Gordillo, Alejandro Hernández-Cerezo,
Clara Rodríguez-Núñez, and Albert Rubio

From the Universality of Mathematical Truth to the Interoperability
of Proof Systems . 8

Gilles Dowek

Satisfiability, SMT Solving, and Arithmetic

Flexible Proof Production in an Industrial-Strength SMT Solver 15
Haniel Barbosa, Andrew Reynolds, Gereon Kremer, Hanna Lachnitt,
Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner,
Arjun Viswanathan, Scott Viteri, Yoni Zohar, Cesare Tinelli,
and Clark Barrett

CTL∗ Model Checking for Data-Aware Dynamic Systems with Arithmetic 36
Paolo Felli, Marco Montali, and Sarah Winkler

SAT-Based Proof Search in Intermediate Propositional Logics 57
Camillo Fiorentini and Mauro Ferrari

Clause Redundancy and Preprocessing in Maximum Satisfiability 75
Hannes Ihalainen, Jeremias Berg, and Matti Järvisalo

Cooperating Techniques for Solving Nonlinear Real Arithmetic
in the cvc5 SMT Solver (System Description) . 95

Gereon Kremer, Andrew Reynolds, Clark Barrett, and Cesare Tinelli

Preprocessing of Propagation Redundant Clauses . 106
Joseph E. Reeves, Marijn J. H. Heule, and Randal E. Bryant

Reasoning About Vectors Using an SMT Theory of Sequences 125
Ying Sheng, Andres Nötzli, Andrew Reynolds, Yoni Zohar, David Dill,
Wolfgang Grieskamp, Junkil Park, Shaz Qadeer, Clark Barrett,
and Cesare Tinelli

xii Contents

Calculi and Orderings

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 147
Martin Bromberger, Lorenz Leutgeb, and Christoph Weidenbach

Ground Joinability and Connectedness in the Superposition Calculus 169
André Duarte and Konstantin Korovin

Connection-Minimal Abduction in EL via Translation to FOL 188
Fajar Haifani, Patrick Koopmann, Sophie Tourret,
and Christoph Weidenbach

Semantic Relevance . 208
Fajar Haifani and Christoph Weidenbach

SCL(EQ): SCL for First-Order Logic with Equality . 228
Hendrik Leidinger and Christoph Weidenbach

Term Orderings for Non-reachability of (Conditional) Rewriting 248
Akihisa Yamada

Knowledge Representation and Justification

Evonne: Interactive Proof Visualization for Description Logics (System
Description) . 271

Christian Alrabbaa, Franz Baader, Stefan Borgwardt,
Raimund Dachselt, Patrick Koopmann, and Julián Méndez

Actions over Core-Closed Knowledge Bases . 281
Claudia Cauli, Magdalena Ortiz, and Nir Piterman

GK: Implementing Full First Order Default Logic for Commonsense
Reasoning (System Description) . 300

Tanel Tammet, Dirk Draheim, and Priit Järv

Hypergraph-Based Inference Rules for Computing EL+-Ontology
Justifications . 310

Hui Yang, Yue Ma, and Nicole Bidoit

Choices, Invariance, Substitutions, and Formalizations

Sequent Calculi for Choice Logics . 331
Michael Bernreiter, Anela Lolic, Jan Maly, and Stefan Woltran

Contents xiii

Lash 1.0 (System Description) . 350
Chad E. Brown and Cezary Kaliszyk

Goéland: A Concurrent Tableau-Based Theorem Prover (System
Description) . 359

Julie Cailler, Johann Rosain, David Delahaye, Simon Robillard,
and Hinde Lilia Bouziane

Binary Codes that Do Not Preserve Primitivity . 369
Štěpán Holub, Martin Raška, and Štěpán Starosta

Formula Simplification via Invariance Detection by Algebraically Indexed
Types . 388

Takuya Matsuzaki and Tomohiro Fujita

Synthetic Tableaux: Minimal Tableau Search Heuristics . 407
Michał Sochański, Dorota Leszczyńska-Jasion, Szymon Chlebowski,
Agata Tomczyk, and Marcin Jukiewicz

Modal Logics

Paraconsistent Gödel Modal Logic . 429
Marta Bílková, Sabine Frittella, and Daniil Kozhemiachenko

Non-associative, Non-commutative Multi-modal Linear Logic 449
Eben Blaisdell, Max Kanovich, Stepan L. Kuznetsov, Elaine Pimentel,
and Andre Scedrov

Effective Semantics for the Modal Logics K and KT via Non-deterministic
Matrices . 468

Ori Lahav and Yoni Zohar

Local Reductions for the Modal Cube . 486
Cláudia Nalon, Ullrich Hustadt, Fabio Papacchini, and Clare Dixon

Proof Systems and Proof Search

Cyclic Proofs, Hypersequents, and Transitive Closure Logic 509
Anupam Das and Marianna Girlando

Equational Unification and Matching, and Symbolic Reachability Analysis
in Maude 3.2 (System Description) . 529

Francisco Durán, Steven Eker, Santiago Escobar, Narciso Martí-Oliet,
José Meseguer, Rubén Rubio, and Carolyn Talcott

xiv Contents

Leśniewski’s Ontology – Proof-Theoretic Characterization 541
Andrzej Indrzejczak

Bayesian Ranking for Strategy Scheduling in Automated Theorem Provers 559
Chaitanya Mangla, Sean B. Holden, and Lawrence C. Paulson

A Framework for Approximate Generalization in Quantitative Theories 578
Temur Kutsia and Cleo Pau

Guiding an Automated Theorem Prover with Neural Rewriting 597
Jelle Piepenbrock, Tom Heskes, Mikoláš Janota, and Josef Urban

Rensets and Renaming-Based Recursion for Syntax with Bindings 618
Andrei Popescu

Finite Two-Dimensional Proof Systems for Non-finitely Axiomatizable
Logics . 640

Vitor Greati and João Marcos

Vampire Getting Noisy: Will Random Bits Help Conquer Chaos? (System
Description) . 659

Martin Suda

Evolution, Termination, and Decision Problems

On Eventual Non-negativity and Positivity for the Weighted Sum
of Powers of Matrices . 671

S. Akshay, Supratik Chakraborty, and Debtanu Pal

Decision Problems in a Logic for Reasoning About Reconfigurable
Distributed Systems . 691

Marius Bozga, Lucas Bueri, and Radu Iosif

Proving Non-Termination and Lower Runtime Bounds with LoAT (System
Description) . 712

Florian Frohn and Jürgen Giesl

Implicit Definitions with Differential Equations for KeYmaera X: (System
Description) . 723

James Gallicchio, Yong Kiam Tan, Stefan Mitsch, and André Platzer

Contents xv

Automatic Complexity Analysis of Integer Programs via Triangular
Weakly Non-Linear Loops . 734

Nils Lommen, Fabian Meyer, and Jürgen Giesl

Author Index . 755

Invited Talks

Using Automated Reasoning Techniques
for Enhancing the Efficiency and Security

of (Ethereum) Smart Contracts

Elvira Albert1,2(B) , Pablo Gordillo1 , Alejandro Hernández-Cerezo1 ,
Clara Rodŕıguez-Núñez1 , and Albert Rubio1,2

1 Complutense University of Madrid, Madrid, Spain
2 Instituto de Tecnoloǵıa del Conocimiento, Madrid, Spain

elvira@fdi.ucm.es

The use of the Ethereum blockchain platform [17] has experienced an enor-
mous growth since its very first transaction back in 2015 and, along with it,
the verification and optimization of the programs executed in the blockchain
(known as Ethereum smart contracts) have raised considerable interest within
the research community. As for any other kind of programs, the main properties
of smart contracts are their efficiency and security. However, in the context of
the blockchain, these properties acquire even more relevance. As regards effi-
ciency, due to the huge volume of transactions, the cost and response time of
the Ethereum blockchain platform have increased notably: the processing capac-
ity of the transactions is limited and it is providing low transaction ratios per
minute together with increased costs per transaction. Ethereum is aware of such
limitations and it is currently working on solutions to improve scalability with
the goal of increasing its capacity. As regards security, due to the public nature
and immutability of smart contracts and the fact that their public functions can
be executed by any user at any time, programming errors can be exploited by
attackers and have a high economic impact [7,13]. Verification is key to ensure
the security of smart contract’s execution and provide safety guarantees. This
talk will present our work on the use of automated reasoning techniques and
tools to enhance the security and efficiency [2–4,6] of Ethereum smart contracts
along the two directions described below.

Security. Our main focus on security will be to detect and avoid potential
reentrancy attacks, one of the best known and exploited vulnerabilities that
have caused infamous attacks in the Ethereum ecosystem due to they economic
impact [9,11,15]. Reentrancy attacks might occur on programs with callbacks,
a mechanism that allows making calls among contracts. Callbacks occur when a
method of a contract invokes a method of another contract and the latter, either
directly or indirectly, invokes one or more methods of the former before the orig-
inal method invocation returns. While this mechanism is useful and powerful

This work was funded partially by the Ethereum Foundation (Grant FY21-0372), the
Spanish MCIU, AEI and FEDER (EU) project RTI2018-094403-B-C31 and by the CM
project S2018/TCS-4314 co-funded by EIE Funds of the European Union.

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 3–7, 2022.
https://doi.org/10.1007/978-3-031-10769-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_1&domain=pdf
http://orcid.org/0000-0003-0048-0705
http://orcid.org/0000-0001-6189-4667
http://orcid.org/0000-0003-2109-8863
http://orcid.org/0000-0002-5417-8934
http://orcid.org/0000-0002-0501-9830
https://doi.org/10.1007/978-3-031-10769-6_1

4 E. Albert et al.

in event-driven programming, it has been used to exploit vulnerabilities. Our
approach to detect potential reentrancy problems is to ensure that the program
meets the Effectively Callback Freeness (ECF) property [10]. ECF guarantees the
modularity of a contract in the sense that executions with callbacks cannot result
in new states that are not reachable by callback free executions. This implies
that the use of callbacks will not lead to unpredicted, potentially dangerous,
states. In order to ensure the ECF property, we use commutation and projection
of fragments of code [6]. Intuitively, given a function fragment A followed by B
(denoted A.B), in case we can receive a callback to some function f between
these fragments (that is, A.f.B), we ensure safety by proving that this execu-
tion that contains callbacks is equivalent to a callback free execution: either to
A.B (projection), f.A.B (left-commutation) or A.B.f (right-commutation). The
use of automated reasoning techniques enables proving this kind of properties.
Inspired by the use of SMT solvers to prove redundancy of concurrent executions
[1,8,16], we have implemented such checks using state-of-the-art SMT solvers.

The ECF property can be generalized to allow callbacks to introduce new
behaviors as long as they are benign, as [5] does by defining the notion of R-ECF.
The main difference between ECF and R-ECF is that while ECF checks that
the states reached by executions with callbacks are exactly the same as the ones
reached by executions that do not contain callbacks, R-ECF checks that they
satisfy a relation with respect to the states reached without callbacks. This way,
R-ECF is able to recognize and distinguish the benign behaviors introduced by
callbacks from the ones that are potentially dangerous, while ECF cannot. The
main application of R-ECF is that, from a particular invariant of the program, it
allows reducing the problem of verifying the invariant in the presence of callbacks,
to the callback-free setting. For example, if we consider the invariant balance ≥
0 and prove that the contract is R-ECF with respect to the relation balancecb ≥
balancecbfree (i.e., the balance reached by executions with callbacks is greater
than the one reached without callbacks), then we only need to consider callback
free executions in order to prove the preservation of the invariant.

We considered as benchmarks the top-150 contracts based on volume of
usage, and studied the modularity of their functions in terms of ECF and R-
ECF. A total of 386 of their functions were susceptible to have callbacks, from
which 62.7% were verified to be ECF. The R-ECF approach was able to increase
the accuracy of the analysis, being able to prove the correctness of an extra 2%
of functions [5,6].

Efficiency. The main focus on efficiency will be on optimizing the resource
consumption of smart contract executions. On the Ethereum blockchain, the
resource consumption is measured in terms of gas, a unit introduced in the sys-
tem to quantify the computational effort and charge a fee accordingly in order
to have a transaction executed. To understand how we can optimize gas, we
need to discuss it (and do it) at the level of the Ethereum bytecode. Smart con-
tracts in Ethereum are executed using the Ethereum Virtual Machine (EVM).
The EVM is a simple stack-based architecture which uses 256-bit words and
has its own repertory of instructions (EVM opcodes). In the EVM, the mem-

Using Automated Reasoning Techniques for Enhancing the Efficiency 5

ory model is split into two different structures: the storage, which is persistent
between transactions and expensive to use; and the memory, which does not
persist between transactions and is cheaper. Each opcode has a gas cost associ-
ated to its execution. Besides, an additional fee must be paid for each byte when
the smart contract is deployed. Thus, the resource to be optimized can be either
the total amount of gas in a program or its size. Even though both criteria are
usually related, there are some situations in which they do not correlate. For
instance, pushing a big number in the stack consumes a small amount of gas
and increases significantly the bytecode size, whereas obtaining the same value
using arithmetic operations is more expensive but involves fewer bytes.

Among all possible techniques to optimize code, we have used the technique
known as superoptimization [12]. The main idea of superoptimization is auto-
matically finding an equivalent optimal sequence of instructions to another given
loop-free sequence. In order to achieve this goal, we enumerate all possible can-
didates and determine the best option among them wrt.the optimization cri-
teria. In the context of EVM, there exists several superoptimizers: EBSO [14],
SYRUP [3,4] and GASOL [2]. The techniques presented in this work correspond
to the ones implemented in GASOL, which are an improvement and extension
of the ones in SYRUP. We apply two kinds of automated reasoning techniques
to superoptimize Ethereum smart contracts, symbolic execution and Max-SMT
as described next.

– Symbolic execution is used to obtain a a representation on how the stack and
memory evolves wrt. to an initial stack. We determine the lowest size of the
stack needed to perform all the operations in a block and apply symbolic exe-
cution to an initial stack containing that number of unknown stack variables.
Opcodes representing operations that don’t manage the stack are left as unin-
terpreted functions. Then, we apply as many simplification rules as possible
from a fixed set of rules. Depending on the chosen criteria, some rules are
disabled if they lead to worse candidates. Moreover, we apply static analysis
regarding memory opcodes to determine whether there are some redundant
store or load operations inside a block that can be safely removed or replaced.
This leads to a simplified specification of the optimal block.

– The second technique involves synthesizing the optimal block from a given
symbolic representation using a Max-SMT solver. The synthesis problem is
expressed as a first-order formula in which every model corresponds to a
valid equivalent block. Our encoding is expressed in the simple logic QF IDL,
so that the Max-SMT solver can reason effectively on EVM blocks. In this
encoding, the length of the sequence of instructions is fixed by an upper
bound so that quantifiers are avoided. NOP operations are considered in the
encoding to allow shorter sequences. The state of the stack is represented
explicitly for each position in the sequence. Every instruction in the block and
every basic stack operation have a constraint that reflects the impact they
have on the stack for each possible position. Memory accesses are encoded
as a partial order relation that synthesizes the dependencies among them.
Regarding the optimization process, we express the cost (gas or bytes-size) of

6 E. Albert et al.

each instruction using soft constraints. For both criteria, the corresponding
set of soft constraints satisfies that an optimal model returned by the solver
corresponds to an optimal block for that criteria.

Combining both approaches, we obtain significant savings for both criteria.
For a subset of 30 smart contracts, selected among the latest published in Ether-
scan as of June 21, 2021 and optimized using the compiler solc v0.8.9, GASOL
still manages to reduce 0.72% the amount of gas with the gas criteria enabled,
and decreases the overall size by 3.28% with the size criteria enabled.

Future work. The current directions for future work include enhancing the per-
formance of the smart contract optimizer in both accuracy and scalability of the
process while keeping the efficiency. For the accuracy we are currently working
on adding further reasoning on non-stack operations while staying in a quite
simple logic. This will allow us to consider a wider set of equivalent blocks and
hence increase the savings. Scalability can be threatened when we consider blocks
of code of large size. We are investigating different approaches to scale better,
including heuristics to partition the blocks in smaller sub-blocks, more efficient
SMT encodings, among others. Finally, another direction for future work is to
formally prove the correctness of the optimizer, i.e.developing a checker that
can formally prove the equivalence of the optimized and the original (Ethereum)
bytecode. For this, we are planning to use the Coq proof assistant in which
we will develop a checker that, given an original bytecode –that corresponds
a block of the control flow graph– and its optimization, it can formally prove
their equivalence for any possible execution, and optionally it can generate a
soundness proof that can be used as certificate.

References

1. Albert, E., Gómez-Zamalloa, M., Isabel, M., Rubio, A.: Constrained dynamic par-
tial order reduction. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS,
vol. 10982, pp. 392–410. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-96142-2 24

2. Albert, E., Gordillo, P., Hernández-Cerezo, A., Rubio, A.: A Max-SMT superopti-
mizer for EVM handling memory and storage. In: Fisman, D., Rosu, G. (eds) Tools
and Algorithms for the Construction and Analysis of Systems. TACAS 2022. LNCS,
vol. 13243. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-99524-9 11

3. Albert, E., Gordillo, P., Hernández-Cerezo, A., Rubio, A., Schett, M.A.: Super-
optimization of smart contracts. ACM Trans. Softw. Eng. Methodol. (2022)

4. Albert, E., Gordillo, P., Rubio, A., Schett, M.A.: Synthesis of super-optimized
smart contracts using Max-SMT. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12224, pp. 177–200. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53288-8 10

5. Albert, E., Grossman, S., Rinetzky, N., Nunez, C.R., Rubio, A., Sagiv, M.: Relaxed
effective callback freedom: a parametric correctness condition for sequential mod-
ules with callbacks. IEEE Trans. Dependable Secure Comput. (2022)

https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-319-96142-2_24
https://doi.org/10.1007/978-3-030-99524-9_11
https://doi.org/10.1007/978-3-030-53288-8_10
https://doi.org/10.1007/978-3-030-53288-8_10

Using Automated Reasoning Techniques for Enhancing the Efficiency 7

6. Albert, E., Grossman, S., Rinetzky, N., Rodŕıguez-Núñez, C., Rubio, A., Sagiv,
M.: Taming callbacks for smart contract modularity. In: Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages and
Applications, OOPSLA 2020, vol. 4, pp. 209:1–209:30 (2020)

7. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

8. Bansal, K., Koskinen, E., Tripp, O.: Automatic generation of precise and useful
commutativity conditions. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS,
vol. 10805, pp. 115–132. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89960-2 7

9. Daian, P.: Analysis of the DAO exploit (2016). http://hackingdistributed.com/
2016/06/18/analysis-of-the-dao-exploit/

10. Grossman, S., et al.: Online detection of effectively callback free objects with appli-
cations to smart contracts. PACMPL, 2(POPL) (2018)

11. Liu, M.: Urgent: OUSD was hacked and there has been a loss of
funds (2020). https://medium.com/originprotocol/urgent-ousd-has-hacked-and-
there-has-been-a-loss-of-funds-7b8c4a7d534c. Accessed 29 Jan 2021

12. Massalin, H.: Superoptimizer - a look at the smallest program. In: Proceedings of
the Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS II), pp. 122–126 (1987)

13. Mehar, M.I., et al.: Understanding a revolutionary and flawed grand experiment
in blockchain: the DAO attack. J. Cases Inf. Technol. 21(1), 19–32 (2019)

14. Nagele, J., Schett, M.A.: Blockchain superoptimizer. In: Proceedings of 29th
International Symposium on Logic-Based Program Synthesis and Transformation
(LOPSTR) (2019). https://arxiv.org/abs/2005.05912

15. Tarasov, A.: Millions lost: the top 19 DeFi cryptocurrency hacks of 2020 (2020).
https://cryptobriefing.com/50-million-lost-the-top-19-defi-cryptocurrency-hacks-
2020/2. Accessed 29 Jan 2021

16. Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole partial order reduction. In:
Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 382–396.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3 29

17. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-319-89960-2_7
https://doi.org/10.1007/978-3-319-89960-2_7
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://medium.com/originprotocol/urgent-ousd-has-hacked-and-there-has-been-a-loss-of-funds-7b8c4a7d534c
https://medium.com/originprotocol/urgent-ousd-has-hacked-and-there-has-been-a-loss-of-funds-7b8c4a7d534c
https://arxiv.org/abs/2005.05912
https://cryptobriefing.com/50-million-lost-the-top-19-defi-cryptocurrency-hacks-2020/2
https://cryptobriefing.com/50-million-lost-the-top-19-defi-cryptocurrency-hacks-2020/2
https://doi.org/10.1007/978-3-540-78800-3_29
http://creativecommons.org/licenses/by/4.0/

From the Universality of Mathematical
Truth to the Interoperability of Proof

Systems

Gilles Dowek(B)

Inria and ENS Paris-Saclay, Paris, France

gilles.dowek@ens-paris-saclay.fr

1 Yet Another Crisis of the Universality of Mathematical
Truth

The development of computerized proof systems, such as Coq, Matita, Agda,
Lean, HOL 4, HOL Light, Isabelle/HOL, Mizar, etc. is a major step
forward in the never ending quest of mathematical rigor. But it jeopardizes the
universality of mathematical truth [5]: we used to have proofs of Fermat’s little
theorem, we now have Coq proofs of Fermat’s little theorem, Isabelle/HOL
proofs of Fermat’s little theorem, PVS proofs of Fermat’s little theorem, etc.
Each proof system: Coq, Isabelle/HOL, PVS, etc. defining its own language
for mathematical statements and its own truth conditions for these statements.

This crisis can be compared to previous ones, when mathematicians have
disagreed on the truth of some mathematical statements: the discovery of the
incommensurability of the diagonal and side of a square, the introduction of
infinite series, the non-Euclidean geometries, the discovery of the independence
of the axiom of choice, and the emergence of constructivity. All these past crises
have been resolved.

2 Predicate Logic and Other Logical Frameworks

One way to resolve a crisis, such as that of non-Euclidean geometries, or that of
the axiom of choice, is to view geometry, or set theory, as an axiomatic theory.
The judgement that the statement the sum of the angles in a triangle equals
the straight angle is true evolves to that that it is a consequence of the parallel
axiom and of the other axioms of geometry. Thus, the truth conditions must
be defined, not for the statements of geometry, but for arbitrary sequents: pairs
Γ � A formed with a theory, a set of axioms, Γ and a statement A.

This induces a separation between the definition of the truth conditions of
a sequent: the logical framework and the definition of the various geometries
as theories in this logical framework. This logical framework, Predicate logic,
was made precise by Hilbert and Ackermann [13], in 1928, more than a century
after the beginning of the crisis of non-Euclidean geometries. The invention of

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 8–11, 2022.
https://doi.org/10.1007/978-3-031-10769-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_2&domain=pdf
https://doi.org/10.1007/978-3-031-10769-6_2

From the Universality of Mathematical Truth to the Interoperability 9

Predicate Logic was a huge step forward. But Predicate Logic also has some
limitations.

To overcome these limitation, it has been modernized in various ways in the
last decades. First, λ-Prolog [15] and Isabelle [17] have extended Predicate
logic with variable binding function symbols, such as the symbol λ in the term
λx x. Then, the λΠ-calculus [12] has permitted to explicitly represent proof-
trees, using the so-called Brouwer-Heyting-Kolmogorov algorithmic interpreta-
tion of proofs and Curry-de Bruijn-Howard correspondence. In a second stream
of research, Deduction modulo theory [4,6] has introduced a distinction between
computation and deduction, in such a way that the statement 27 × 37 = 999
computes to 999 = 999, with the algorithm of multiplication, and then to �,
with the algorithm of natural number comparison. It thus has a trivial proof. A
third stream of research has extended classical Predicate logic to an Ecumeni-
cal predicate logic [3,9–11,14,18,19] with both constructive and classical logical
constants.

These streams of research have merged, to provide a logical framework, the
λΠ-calculus modulo theory [2], also called Martin-Löf’s logical framework [16].
This framework permits function symbols to bind variables, it includes an explicit
representation for proof-trees, it distinguishes computation from deduction, and
it permits to define both constructive and classical logical constants. It is the
basis of the language Dedukti, where Simple type theory, Martin-Löf’s type
theory, the Calculus of constructions, etc. can easily be expressed.

3 The Theory U
The expression in Dedukti of Simple type theory, Simple type theory with
polymorphism, Simple type theory with predicate subtyping, the Calculus of
constructions, etc. use symbol declarations and computation rules that play the
rôle of axioms in Predicate logic. But, just like the various geometries or the
various set theories share a lot of axioms and distinguish by a few, these theories
share a lot of symbols and rules. This remark leads to defining a large theory,
the theory U [1], that contains Simple type theory, Simple type theory with
polymorphism, Simple type theory with predicate subtyping, and the Calculus
of constructions, etc. as sub-theories.

Many proofs developed in proof processing systems can be expressed in the
theory U and depending on the symbols and rules they use they can be translated
to more common formulations of the theories implemented in these systems.

For instance, F. Thiré has expressed a large library of arithmetic, originally
developed in Matita, in an sub-theory of the theory U , corresponding to Sim-
ple type theory with polymorphism and translated these proofs to the language
of seven proof systems [20], Y. Géran has expressed the first book of Euclid’s
elements originally developed in Coq, in a sub-theory of the theory U , cor-
responding to Predicate logic, and translated these proofs to the language of
many proof systems, including predicate logic ones [8], and T. Felicissimo has
shown that a large library of proofs originally developed in Matita, including

10 G. Dowek

a proof of Bertrand’s postulate, could be expressed in predicative type theory
and expressed in Agda [7].

References

1. Blanqui, F., Dowek, G., Grienenberger, É., Hondet, G., Thiré, F.: Some axioms
for mathematics. In: Kobayashi, N. (ed.) Formal Structures for Computation and
Deduction, vol. 195, pp. 20:1–20:19. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2021)

2. Cousineau, D., Dowek, G.: Embedding pure type systems in the lambda-pi-calculus
modulo. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 102–117.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73228-0 9

3. Dowek, G.: On the definition of the classical connectives and quantifiers. In:
Haeusler, E.H., de Campos Sanz, W., Lopes, B. (eds.) Why is this a Proof?
Festschrift for Luiz Carlos Pereira. College Publications (2015)

4. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reason.
31, 33–72 (2003). https://doi.org/10.1023/A:1027357912519

5. Dowek, G., Thiré, F.: The universality of mathematical truth jeopardized by the
development of computerized proof systems. In: Arana, A., Pataut, F. (eds.) Proofs,
To be published

6. Dowek, G., Werner, B.: Proof normalization modulo. J. Symb. Log. 68(4), 1289–
1316 (2003)

7. Felicissimo, T., Blanqui, F., Kumar Barnawal, A.: Predicativize: sharing proofs
with predicative systems. Manuscript (2022)

8. Géran, Y.: Mathématiques inversées de Coq. l’exemple de GeoCoq. Master thesis
(2021)

9. Gilbert, F.: Extending higher-order logic with predicate subtyping: application to
PVS. (Extension de la logique d’ordre supérieur avec le sous-typage par prédicats).
PhD thesis, Sorbonne Paris Cité, France (2018)

10. Girard, J.-Y.: On the unity of logic. Ann. Pure Appl. Logic 59(3), 201–217 (1993)
11. Grienenberger, É.: A logical system for an ecumenical formalization of mathemat-

ics. Manuscript (2020)
12. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM

40(1), 143–184 (1993)
13. Hilbert, D., Ackermann, W.: Grundzüge der theoretischen Logik. Springer-Verlag

(1928)
14. Liang, C., Miller, D.: Unifying classical and intuitionistic logics for computational

control. In: 28th Symposium on Logic in Computer Science, pp. 283–292 (2013)
15. Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge Uni-

versity Press (2012)
16. Nordström, B., Petersson, K., Smith, J.M.: Programming in Martin-Löf’s type

theory. Oxford University Press (1990)
17. Paulson, L.C.: Isabelle: the next 700 theorem provers. In: Odifreddi, P. (ed.) Logic

and Computer Science, pp. 361–386. Academic Press (1990)
18. Pereira, L.C., Rodriguez, R.O.: Normalization, soundness and completeness for the

propositional fragment of Prawitz’ecumenical system. Rev. Port. Filos. 73(3–4),
1153–1168 (2017)

19. Prawitz, D.: Classical versus intuitionistic logic. In: Haeusler, E.H., de Campos
Sanz, W., Lopes, B. (eds.) Why is this a Proof? Festschrift for Luiz Carlos Pereira.
College Publications (2015)

https://doi.org/10.1007/978-3-540-73228-0_9
https://doi.org/10.1023/A:1027357912519

From the Universality of Mathematical Truth to the Interoperability 11

20. Thiré, F.: Sharing a library between proof assistants: reaching out to the HOL fam-
ily. In: Blanqui, F., Reis, G. (eds.) Proceedings of the 13th International Workshop
on Logical Frameworks and Meta-Languages, vol. 274, pp. 57–71. EPTCS (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Satisfiability, SMT Solving,
and Arithmetic

Flexible Proof Production
in an Industrial-Strength SMT Solver

Haniel Barbosa1, Andrew Reynolds2, Gereon Kremer3, Hanna Lachnitt3,
Aina Niemetz3, Andres Nötzli3, Alex Ozdemir3, Mathias Preiner3,

Arjun Viswanathan2, Scott Viteri3, Yoni Zohar4(B), Cesare Tinelli2,
and Clark Barrett3

1 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
2 The University of Iowa, Iowa City, USA

3 Stanford University, Stanford, USA
4 Bar-Ilan University, Ramat Gan, Israel

yoni206@gmail.com

Abstract. Proof production for SMT solvers is paramount to ensure
their correctness independently from implementations, which are often
prohibitively difficult to verify. Historically, however, SMT proof pro-
duction has struggled with performance and coverage issues, resulting in
the disabling of many crucial solving techniques and in coarse-grained
(and thus hard to check) proofs. We present a flexible proof-production
architecture designed to handle the complexity of versatile, industrial-
strength SMT solvers and show how we leverage it to produce detailed
proofs, including for components previously unsupported by any solver.
The architecture allows proofs to be produced modularly, lazily, and with
numerous safeguards for correctness. This architecture has been imple-
mented in the state-of-the-art SMT solver cvc5. We evaluate its proofs
for SMT-LIB benchmarks and show that the new architecture produces
better coverage than previous approaches, has acceptable performance
overhead, and supports detailed proofs for most solving components.

1 Introduction

SMT solvers [9] are widely used as backbones of formal methods tools in a
variety of applications, often safety-critical ones. These tools rely on the solver’s
correctness to guarantee the validity of their results such as, for instance, that an
access policy does not inadvertently give access to sensitive data [4]. However,
SMT solvers, particularly industrial-strength ones, are often extremely complex
pieces of engineering. This makes it hard to ensure that implementation issues do
not affect results. As the industrial use of SMT solvers increases, it is paramount
to be able to convince non-experts of the trustworthiness of their results.

A solution is to decouple confidence from the implementation by coupling
results with machine-checkable certificates of their correctness. For SMT solvers,

This work was partially supported by the Office of Naval Research (Contract No.
68335-17-C-0558), a gift from Amazon Web Services, and by NSF-BSF grant numbers
2110397 (NSF) and 2020704 (BSF).

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 15–35, 2022.
https://doi.org/10.1007/978-3-031-10769-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_3&domain=pdf
https://doi.org/10.1007/978-3-031-10769-6_3

16 H. Barbosa et al.

this amounts to providing proofs of unsatisfiability. The main challenges are
justifying a combination of theory-specific algorithms while keeping the solver
performant and providing enough details to allow scalable proof checking, i.e.,
checking that is fundamentally simpler than solving. Moreover, while proof pro-
duction is well understood for propositional reasoning and common theories,
that is not the case for more expressive theories, such as the theory of strings,
or for more advanced solver operations such as formula preprocessing.

We present a new, flexible proof-production architecture for versatile, indus-
trial-strength SMT solvers and discuss its integration into the cvc5 solver [5]. The
architecture (Sect. 2) aims to facilitate the implementation effort via modular
proof production and internal proof checking, so that more critical components
can be enabled when generating proofs. We provide some details on the core proof
calculus and how proofs are produced (Sect. 3), in particular how we support
eager and lazy proof production with built-in proof reconstruction (Sect. 3.2).
This feature is particularly important for substitution and rewriting techniques,
facilitating the instrumentation of notoriously challenging functionalities, such as
simplification under global assumptions [6, Section 6.1] and string solving [40,46,
48], to produce detailed proofs. Finally, we describe (Sect. 5) how the architecture
is leveraged to produce detailed proofs for most of the theory reasoning, critical
preprocessing, and underlying SAT solving of cvc5. We evaluate proof production
in cvc5 (Sect. 6) by measuring the proof overhead and the proof quality over an
extensive set of benchmarks from SMT-LIB [8].

In summary, our contributions are a flexible proof-producing architecture
for state-of-the-art SMT solvers, its implementation in cvc5, the production of
detailed proofs for simplification under global assumptions and the full theory
of strings, and initial experimental evidence that proof-production overhead is
acceptable and detailed proofs can be generated for a majority of the problems.

Preliminaries. We assume the usual notions and terminology of many-sorted
first-order logic with equality (≈) [29]. We consider signatures Σ all containing
the distinguished Boolean sort Bool. We adopt the usual definitions of well-sorted
Σ-terms, with literals and formulas as terms of sort Bool, and Σ-interpretations.
A Σ-theory is a pair T = (Σ, I) where I, the models of T , is a class of Σ-
interpretations closed under variable reassignment. A Σ-formula ϕ is T-valid
(resp., T-unsatisfiable) if it is satisfied by all (resp., no) interpretations in I.
Two Σ-terms s and t of the same sort are T-equivalent if s ≈ t is T -valid.
We write �a to denote a tuple (a1, . . . , an) of elements, with n ≥ 0. Depending
on context, we will abuse this notation and also denote the set of the tuple’s
elements or, in case of formulas, their conjunction. Similarly, for term tuples �s,�t
of the same length and sort, we will write �s ≈ �t to denote the conjunction of
equalities between their respective elements.

2 Proof-Production Architecture

Our proof-production architecture is intertwined with the CDCL(T) architec-
ture [43], as shown in Fig. 1. Proofs are produced and stored modularly by each
solving component, which also checks they meet the expected proof structure

Flexible Proof Production in an Industrial-Strength SMT Solver 17

Pre-processor ϕ

Propositional Engine

Clausifier

SAT Solver

Post-processor

Cp
1 ... Cp

m

P : �C → ⊥

P : ψ1 → C1

..
.

P : ψm → Cm

φ1 ... φn

Theory Engine

Theory Combination

T1 T2

P : L1 L1 L2 P : L2

...

Tk

Lk P : Lk

L

P : L

Asserted Literals

SMT Proof Post-processor P : ϕ → ⊥
⊥P : �φ → ⊥

P : ϕ → φ1

...

P : ϕ → φn

Fig. 1. Flexible proof-production architecture for CDCL(T)-based SMT solvers. In the

above, ψi ∈ {�φ, �L} for each i, with ψi not necessarily distinct from ψi+1.

for that component, as described below. Proofs are combined only when needed,
via post-processing. The pre-processor receives an input formula ϕ and simplifies
it in a variety of ways into formulas φ1, . . . , φn. For each φi, the pre-processor
stores a proof P : ϕ → φi justifying its derivation from ϕ.

The propositional engine receives the preprocessed formulas, and its clausifier
converts them into a conjunctive normal form C1 ∧ · · · ∧Cl. A proof P : ψ → Ci

is stored for each clause Ci, where ψ is a preprocessed formula. Note that sev-
eral clauses may derive from each formula. Corresponding propositional clauses
Cp

1 , . . . , Cp
l , where first-order atoms are abstracted as Boolean variables, are sent

to the SAT solver, which checks their joint satisfiability. The propositional engine
enters a loop with the theory engine, which considers a set of literals asserted
by the SAT solver (corresponding to a model of the propositional clauses) and
verifies its satisfiability modulo a combination of theories T . If the set is T -
unsatisfiable, a lemma L is sent to the propositional engine together with its
proof P : L. Note that since lemmas are T -valid, their proofs have no assump-
tions. The propositional engine stores these proofs and clausifies the lemmas,
keeping the respective clausification proofs in the clausifier. The clausified and
abstracted lemmas are sent to the SAT solver to block the current model and
cause the assertion of a different set of literals, if possible. If no new set is
asserted, then all the clauses C1, . . . , Cm generated until then are jointly unsat-
isfiable, and the SAT solver yields a proof P : C1 ∧ · · · ∧ Cm → ⊥. Note that
the proof is in terms of the first-order clauses, as are the derivation rules that

18 H. Barbosa et al.

conclude ⊥ from them. The propositional abstraction does not need to be rep-
resented in the proof.

The post-processor of the propositional engine connects the assumptions of
the SAT solver proof with the clausifier proofs, building a proof P : φ1∧· · ·∧φn →
⊥. Since theory lemmas are T -valid, the resulting proof only has preprocessed
formulas as assumptions. The final proof is built by the SMT solver’s post-
processor combining this proof with the preprocessing proofs P : ϕ → φi. The
resulting proof P : ϕ → ⊥ justifies the T -unsatisfiability of the input formula.

3 The Internal Proof Calculus

In this section, we specify how proofs are represented in the internal calculus of
cvc5. We also provide some low-level details on how proofs are constructed and
managed in our implementation.

The proof rules of the internal calculus are similar to rules in other calculi for
ground first-order formulas, except that they are made a little more operational
by optionally having argument terms and side conditions. Each rule has the form

r
ϕ1 · · · ϕn

ψ
or r

ϕ1 · · · ϕn | t1, . . . , tm
ψ

if C

with identifier r, premises ϕ1, . . . , ϕn, arguments t1, . . . , tm, conclusion ψ, and
side condition C. The argument terms are used to construct the conclusion from
the premises and can be used in the side condition together with the premises.

3.1 Proof Checkers and Proofs

The semantics of each proof rule r is provided operationally in terms of a proof-
rule checker for r. This is a procedure that takes as input a list of argument
terms �t and a list of premises �ϕ for r. It returns fail if the input is malformed,
i.e., it does not match the rule’s arguments and premises or does not satisfy the
side condition. Otherwise, it returns a conclusion formula ψ expressing the result
of applying the rule. All proof rules of the internal calculus have an associated
proof-rule checker. We say that a proof rule proves a formula ψ, from given
arguments and premises, if its checker returns ψ.

cvc5 has an internal proof checker built modularly out of the individual
proof-rule checkers. This checker is meant mostly for internal debugging dur-
ing development, to help guarantee that the constructed proofs are correct. The
expectation is that users will rely instead on third-party tools to check the proof
certificates emitted by the solver.

A proof object is constructed internally using a data structure that we will
describe abstractly here and call a proof node. This is a triple (r, �N, �t) consisting
of a rule identifier r; a sequence �N of proof nodes, its children; and a sequence �t
of terms, its arguments. The relationships between proof nodes and their children
induces a directed graph over proof nodes, with edges from proofs nodes to their
children. We call a single-root graph rooted at node N a proof. A proof P is

Flexible Proof Production in an Industrial-Strength SMT Solver 19

Fig. 2. Core proof rules of the internal calculus.

well-formed if it is finite, acyclic, and there is a total mapping Ψ from the
nodes of P to formulas such that, for each node N = (r, (N1, . . . , Nm), �t), Ψ(N)
is the formula returned by the proof checker for rule r when given premises
Ψ(N1), . . . , Ψ(Nn) and arguments �t. For a well-formed proof P with root N and
mapping Ψ , the conclusion of P is the formula Ψ(N); a subproof of P is any
proof rooted at a descendant of N in P . For convenience, we will identify a
well-formed proof with its root node from now on.

3.2 Core Proof Rules

In total, the internal calculus of cvc5 consists of 155 proof rules,1 which cover
all reasoning performed by the SMT solver, including theory-specific rules, rules
for Boolean reasoning, and others. In the remainder of this section, we describe
the core rules of the internal calculus, which are used throughout the system,
and are illustrated in Fig. 2.

Proof Rules for Equality. Many theory solvers in cvc5 perform theory-specific
reasoning on top of basic equational reasoning. The latter is captured by the
proof rules eq res, refl, symm, trans, and cong. The first rule is used to prove a
formula ψ from a formula ϕ that was proved equivalent to ψ. The rest are the
standard rules for computing the congruence closure of a set of term equalities.

Proof Rules for Rewriting, Substitution and Witness Forms. A single
coarse-grained rule, sr, is used for tracking justifications for core utilities in the
SMT solver such as rewriting and substitution. This rule, together with other
non-core rules with side conditions (omitted for brevity), allows the generation of
coarse-grained proofs that trust the correctness of complex side conditions. Those
conditions involve rewriting and substitution operations performed by cvc5 dur-
ing solving. More fine-grained proofs can be constructed from coarse-grained
ones by justifying the various rewriting and substitution steps in terms of sim-
pler proof rules. This is done with the aid of the equality rules mentioned above
and the additional core rules atom rewrite and witness. To describe atom rewrite,
witness, and sr, we first need to introduce some definitions and notations.

1 See https://cvc5.github.io/docs/cvc5-1.0.0/proofs/proof rules.html.

https://cvc5.github.io/docs/cvc5-1.0.0/proofs/proof_rules.html

20 H. Barbosa et al.

A rewriter R is a function over terms that preserves equivalence in the back-
ground theory T , i.e., returns a term t↓R T -equivalent to its input t. We call
t↓R the rewritten form of t with respect to R. Currently, cvc5 uses a handful
of specialized rewriters for various purposes, such as evaluating constant terms,
preprocessing input formulas, and normalizing terms during solving. Each indi-
vidual rewrite step executed by a rewriter R is justified in fine-grained proofs
by an application of the rule atom rewrite, which takes as argument both (an
identifier for) R and the term s the rewrite was applied to. Note that the rule’s
soundness requires that the rewrite step be equivalence preserving.

A (term) substitution σ is a finite sequence (t1 �→ s1, . . . , tn �→ sn) of oriented
pairs of terms of the same sort. A substitution method S is a function that takes a
term r and a substitution σ and returns a new term that is the result of applying
σ to r, according to some strategy. We write S(r, σ) to denote the resulting term.
We distinguish three kinds of substitution methods for σ: simultaneous, which
returns the term obtained by simultaneously replacing every occurrence of term
ti in r with si, for i = 1, . . . , n; sequential, which splits σ into n substitutions
(t1 �→ s1), . . . , (tn �→ sn) and applies them in sequence to r using the simultane-
ous strategy above; and fixed-point, which, starting with r, repeatedly applies σ
with the simultaneous strategy until no further subterm replacements are pos-
sible. For example, consider the application S(y, (x �→ u, y �→ f(z), z �→ g(x))).
The steps the substitution method takes in computing its result are the fol-
lowing: y � f(z) if S is simultaneous; y � f(z) � f(g(x)) if S is sequential;
y � f(z) � f(g(x)) � f(g(u)) if S is fixed-point.

In cvc5, we use a substitution derivation method D to derive a contextual
substitution (t1 �→ s1, . . . , tn �→ sn) from a collection �ϕ of derived formulas. The
substitution essentially orients a selection of term equalities ti ≈ si entailed by
�ϕ and, as such, can be applied soundly to formulas derived from �ϕ.2 We write
D(�ϕ) to denote the substitution computed by D from �ϕ.

Finally, cvc5 often introduces fresh variables, or Skolem variables, which are
implicitly globally existentially quantified. This happens as a consequence of
Skolemization of existential variables, lifting of if-then-else terms, and some kinds
of flattening. Each Skolem variable k is associated with a term k↑ of the same
sort containing no Skolem variables, called its witness term. This global map
from Skolem variables to their witness term allows cvc5 to detect when two
Skolem variables can be equated, as a consequence of their respective witness
terms becoming equivalent in the current context [47]. Witness terms can also be
used to eliminate Skolem variables at proof output time. We write t↑ to denote
the witness form of term t, which is obtained by replacing every Skolem variable
in t by its witness term. For example, if k1 and k2 are Skolem variables with
associated witness terms ite(x ≈ z, y, z) and y − z, respectively, and ϕ is the
formula ite(x ≈ k2, k1 ≈ y, k1 ≈ z), the witness form ϕ↑ of ϕ is the formula
ite(x ≈ y − z, ite(x ≈ z, y, z) ≈ y, ite(x ≈ z, y, z) ≈ z). When a Skolem variable k

2 Observe that substitutions are generated dynamically from the formulas being pro-
cessed, whereas rewrite rules are hard-coded in cvc5’s rewriters.

Flexible Proof Production in an Industrial-Strength SMT Solver 21

appears in a proof, the witness proof rule is used to explicitly constrain its value
to be the same as that of the term k↑ it abstracts.3

We can now explain the sr proof rule, which is parameterized by a substitution
method S, a rewriter R, and substitution derivation method D. The rule is used
to transform the proof of a formula ϕ into one of a formula ψ provided that the
two formulas are equal up to rewriting under a substitution derived from the
premises �ϕ. Note that this rule is quite general because its conclusion ψ, which
is provided as an argument, can be any formula that satisfies the side condition.

Proof Rules for Scoped Reasoning. Two of the core proof rules, assume
and scope, enable local reasoning. Together they achieve the effect of the ⇒-
introduction rule of Natural Deduction. However, separating the local assump-
tion functionality in assume provides more flexibility. That rule has no premises
and introduces a local assumption ϕ provided as an argument. The scope rule
is used to close the scope of the local assumptions ϕ1, . . . , ϕn made to prove a
formula ϕ, inferring the formula ϕ1 ∧ · · · ∧ ϕn ⇒ ϕ.

We say that ϕ is a free assumption in proof P if P has a node (assume, (), ϕ)
that is not a subproof of a scope node with ϕ as one of its arguments. A proof
is closed if it has no free assumptions, and open otherwise.

Soundness. All proof rules other than assume are sound with respect to the
background theory T in the following sense: if a rule proves a formula ψ from
premises �ϕ, every model of T that satisfies �ϕ, and assigns the same values to
Skolem variables and their respective witness term, satisfies ψ as well. Based on
this and a simple structural induction argument, one can show that well-formed
closed proofs have T -valid conclusions. In contrast, open proofs have conclusions
that are T -valid only under assumptions. More precisely, in general, if �ϕ are all
the free assumptions of a well-formed proof P with conclusion ψ and �k are all
the Skolem variables introduced in P , then �k ≈ �k↑ ∧ �ϕ ⇒ ψ is T -valid.

3.3 Constructing Proof Nodes

We have implemented a library of proof generators that encapsulates common
patterns for constructing proof nodes. We assume a method getProof that takes
the proof generator g and a formula ϕ as input and returns a proof node with
conclusion ϕ based on the information in g. During solving, cvc5 uses a combina-
tion of eager and lazy proof generation. In general terms, eager proof generation
involves constructing proof nodes for inference steps at the time those steps are
taken during solving. Eager proof generation may be required if the computation
state pertinent to that inference cannot be easily recovered later. In contrast,
lazy proof generation occurs for inferred formulas associated with proof genera-
tors that can do internal bookkeeping to be able to construct proof nodes for the
formula after solving is completed. Depending on the formula, different kinds of
proof generators are used. For brevity, we only describe in detail (see Sect. 3.2)

3 The proof rules that account for the introduction of Skolem variables in the first
place are not part of the core set and so are not discussed here.

22 H. Barbosa et al.

Algorithm 1 . Proof generation for term-conversion generators, rewrite-once
policy. B is a lazy proof builder, R a map from terms to their converted form,
and cpre, cpost are sets of pairs of equalities and the proof generators justifying
them.
getProof(g, ϕ) where g contains cpre, cpost and ϕ is t1 ≈ t2

1: B := ∅, R := ∅
2: getTermConv(t1, cpre, cpost, B, R)
3: if R[t1] �= t2 then fail else return getProof(B, t1 ≈ R[t1])

getTermConv(s, cpre, cpost, B, R), where s = f(s1, . . . , sn)

1: if s in dom(R) then return
2: if (s ≈ s′, g′) ∈ cpre for some s′, g′ then
3: R[s] := s′, addLazyStep(B, s ≈ s′, g′)
4: return
5: for 1 ≤ i ≤ n do getTermConv(si, cpre, cpost, B, R)
6: R[s] := r, where r = f(R[s1], . . . , R[sn])
7: if s �= r then addStep(B, cong, (s1 ≈ R[s1], . . . , sn ≈ R[sn]), f)
8: else addStep(B, rfl, (), s ≈ s)
9: if (r ≈ r′, g′) ∈ cpost for some r′, g′ then

10: R[s] := r′, addLazyStep(B, r ≈ r′, g′), addStep(B, trans, (s ≈ r, r ≈ r′), ())

the proof generator most relevant to the core calculus, the term-conversion proof
generator, targeted for substitution and rewriting proofs.

4 Proof Reconstruction for Substitution and Rewriting

Once it determines that the input formulas ϕ1, . . . , ϕn are jointly unsatisfiable,
the SMT solver has a reference to a proof node P that concludes ⊥ from the
free assumptions ϕ1, . . . , ϕn. After the post-processor is run, the (closed) proof
(scope, P ′, (ϕ1, . . . , ϕn)) is then generated as the final proof for the user, where
P ′ is the result of optionally expanding coarse-grained steps (in particular, appli-
cations of the rule sr) in P into fine-grained ones. To do so, we require the
following algorithm for generating term-conversion proofs.

In particular, we focus on equalities t ≈ s whose proof can be justified by
a set of steps that replace subterms of t until it is syntactically equal to s. We
assume these steps are provided to a term-conversion proof generator. Formally,
a term-conversion proof generator g is a pair of sets cpre and cpost. The set cpre

(resp., cpost) contains pairs of the form (t ≈ s, gt,s) indicating that t should
be replaced by s in a preorder (resp., postorder) traversal of the terms that g
processes, where gt,s is a proof generator that can prove the equality t ≈ s. We
require that neither cpre nor cpost contain multiple entries of the form (t ≈ s1, g1)
and (t ≈ s2, g2) for distinct (s1, g1) and (s2, g2).

The procedure for generating proofs from a term-conversion proof generator
g is given in Algorithm 1. When asked to prove an equality t1 ≈ t2, getProof
traverses the structure of t1 and applies steps from the sets cpre and cpost from g.

Flexible Proof Production in an Industrial-Strength SMT Solver 23

The traversal is performed by the auxiliary procedure getTermConv which relies
on two data structures. The first is a lazy proof builder B that stores the inter-
mediate steps in the overall proof of t1 ≈ t2. The proof builder is given these
steps either via addStep, as a concrete triple with the proof rule, a list of premise
formulas, and a list of argument terms, or as a lazy step via addLazyStep, with a
formula and a reference to another generator that can prove that formula. The
second data structure is a mapping R from terms to terms that is updated (using
array syntax in the pseudo-code) as the converted form of terms is computed
by getTermConv. For any term s, executing getTermConv(s, cpre, cpost, B,R) will
result in R[s] containing the converted form of s according to the rewrites in cpre

and cpost, and B storing a proof step for s ≈ R[s]. Thus, the procedure getProof
succeeds when, after invoking getTermConv(t1, cpre, cpost, B,R) with B and R ini-
tially empty, the mapping R contains t2 as the converted form of t1. The proof
for the equality t1 ≈ R[t1] can then be constructed by calling getProof on the
lazy proof builder B, based on the (lazy) steps stored in it.

Each subterm s of t1 is traversed only once by getTermConv by checking
whether R already contains the converted form of s. When that is not the case,
s is first preorder processed. If cpre contains an entry indicating that s rewrites
to s′, this rewrite step is added to the lazy proof builder and the converted form
R[s] of s is set to s′. Otherwise, the immediate subterms of s, if any, are traversed
and then s is postorder processed. The converted form of s is set to some term
r of the form f(R[s1], . . . , R[sn]), considering how its immediate subterms were
converted. Note that B will contain steps for �s ≈ R[�s]. Thus, the equality s ≈ r
can be proven by congruence for function f with these premises if s �= r, and by
reflexivity otherwise. Furthermore, if cpost indicates that r rewrites to r′, then
this step is added to the lazy proof builder; a transitivity step is added to prove
s ≈ r′ from t ≈ r and r ≈ r′; and the converted form R[s] is set to r′.

Example 1. Consider the equality t ≈ ⊥, where t = f(b)+f(a) < f(a−0)+f(b),
and suppose the conversion of t is justified by a term-conversion proof generator
g containing the sets cpre = {(f(b) + f(a) ≈ f(a) + f(b), gAC), (a − 0 ≈ a, gArith

0)}
and cpost = {(f(a)+f(b) < f(a)+f(b) ≈ ⊥, gArith

1)}. The generator gAC provides
a proof based on associative and commutative reasoning, whereas gArith

0 and
gArith
1 provide proofs based on arithmetic reasoning. Invoking getProof(g, t ≈ ⊥)

initiates the traversal with getTermConv(t, cpre, cpost, ∅, ∅). Since t is not in the
conversion map, it is preorder processed. However, as it does not occur in cpre,
nothing is done and its subterms are traversed. The subterm f(b) + f(a) is
equated to f(a) + f(b) in cpre, justified by gAC. Therefore R is updated with
R[f(b) + f(a)] = f(a) + f(b) and the respective lazy step is added to B. The
subterms of f(b)+f(a) are not traversed, therefore the next term to be traversed
is f(a−0)+f(b). Since it does not occur in cpre, its subterm f(a−0) is traversed,
which analogously leads to the traversal of a−0. As a−0 does occur in cpre, both R
and B are updated accordingly and the processing of its parent f(a−0) resumes.
A congruence step added to B justifies its conversion to f(a) being added to R.

24 H. Barbosa et al.

No more additions happen since f(a) does not occur in cpost. Analogously, R and
B are updated with f(b) not changing and f(a − 0) + f(b) being converted into
f(a) + f(b). Finally, the processing returns to the initial term t, which has been
converted to R[f(b) + f(a)] < R[f(a + 0) + f(b)], i.e., f(a) + f(b) < f(a) + f(b).
Since this term is equated to ⊥ in cpost, justified by gArith

1 , the respective lazy
step is added to B, as well as a transitivity step to connect f(b) + f(a) <
f(a − 0) + f(b) ≈ f(a) + f(b) < f(a) + f(b) and f(a) + f(b) < f(a) + f(b) ≈ ⊥.
At this point, the execution terminates with R[f(b)+f(a) < f(a+0)+f(b)] = ⊥,
as expected. A proof for t ≈ ⊥ with the following structure can then be extracted
from B:

P0 : cong
Lazy

g
AC

f(b) + f(a) ≈ f(a) + f(b) P1 | <

f(b) + f(a) < f(a − 0) + f(b) ≈ f(a) + f(b) < f(a) + f(b)
P2 : refl

| f(b) ≈ f(b)

f(b) ≈ f(b)

trans
P0

Lazy
g

Arith
1

f(a) + f(b) < f(a) + f(b) ≈ ⊥
f(b) + f(a) < f(a − 0) + f(b) ≈ ⊥ P1 : cong

cong
Lazy

g
Arith
0

a − 0 ≈ a | f

f(a − 0) ≈ f(a) P2 | +

f(a − 0) + f(b) ≈ f(a) + f(b)

We use several extensions to the procedures in Algorithm 1. Notice that this
procedure follows the policy that terms on the right-hand side of conversion
steps (equalities from cpre and cpost) are not traversed further. The procedure
getTermConv is used by term-conversion proof generators that have the rewrite-
once policy. A similar procedure which additionally traverses those terms is used
by term-conversion proof generators that have a rewrite-to-fixpoint policy.

We now show how the term-conversion proof generator can be used for recon-
structing fine-grained proofs from coarse-grained ones. In particular we focus on
proofs Pψ1 of the form (sr, (Qψ0 ,

�Q), (S,R,D, ψ)). Recall from Fig. 2 that the
proof rule sr concludes a formula ψ that can be shown equivalent to the for-
mula ψ0 proven by Qψ0 based on a substitution derived from the conclusions of
the nodes �Q. A proof like Pψ1 above can be transformed to one that involves
(atomic) theory rewrites and equality rules only. We show this transformation
in two phases. In the first phase, the proof is expanded to:

(eq res, (Qψ0 , (trans, (R0, (symm, R1)))))

with Ri = (trans, ((subs, �Q�ϕ, (S,D, ψi)), (rewrite, (), (R,S(ψi,D(�ϕ)))))) for i ∈
{0, 1} where �ϕ are the conclusions of �Q�ϕ, and subs and rewrite are auxiliary proof
rules used for further expansion in the second phase. We describe them next.

Substitution Steps. Let Pt≈s be the subproof (subs, �Q�ϕ, (S,D, t)) of Ri above
proving t ≈ s with s = S(ψi,D(�ϕ)) and D(�ϕ) = (t1 �→ s1, . . . , tn �→ sn). Sub-
stitution steps can be expanded to fine-grained proofs using a term-conversion
proof generator. First, for each j = 1, . . . , n, we construct a proof of tj ≈ sj ,
which involves simple transformations on the proofs of �ϕ. Suppose we store all
of these in an eager proof generator g. If S is a simultaneous or fixed-point
substitution, we then build a single term-conversion proof generator C, which

Flexible Proof Production in an Industrial-Strength SMT Solver 25

recall is modeled as a pair of mappings (cpre, cpost). We add (tj ≈ sj , g) to cpre

for all j. We use the rewrite-once policy for C if S is a simultaneous substi-
tution, and the rewrite-fixed-point policy for C otherwise. We then replace the
proof Pt≈s by getProof(C, t ≈ s), which runs the procedure in Algorithm 1.
Otherwise, if S is a sequential substitution, we construct a term-conversion
generator Cj for each j, initializing it so that its cpre set contains the single
rewrite step (tj ≈ sj , g) and uses a rewrite-once policy. We then replace the
proof Pt≈s by (trans, (P1, . . . , Pn)) where, for j = 1, . . . , n: Pj is generated by
getProof(Cj , sj−1 ≈ sj); s0 = t; si is the result of the substitution D(�ϕ) after
the first i steps; and sn = s.

Rewrite Steps. Let P be the proof node (rewrite, (), (R, t)), which proves the
equality t ≈ t↑↓R. During reconstruction, we replace P with a proof involving
only fine-grained rules, depending on the rewrite method R. For example, if
R is the core rewriter, we run the rewriter again on t in proof tracking mode.
Normally, the core rewriter performs a term traversal and applies atomic rewrites
to completion. In proof tracking mode, it also return two lists, for pre- and post-
rewrites, of steps (t1 ≈ s1, g), . . . , (tn ≈ sn, g) where g is a proof generator that
returns (atom rewrite, (), (R, ti)) for all equalities ti ≈ si. Furthermore, for each
Skolem k that is a subterm of t, we construct the rewrite steps (k ≈ k↑, g′) where
g′ is a proof generator that returns (witness, (), (k)) for equalities k ≈ k↑. We
add these rewrite proof steps to a term-conversion generator C with rewrite-
fixed-point policy, and replace P by getProof(C, t ≈ t↑↓R).

5 SMT Proofs

Here we briefly describe each component shown in Sect. 2 and how it produces
proofs with the infrastructure from Sects. 3 and 3.2.

5.1 Preprocessing Proofs

The pre-processor transforms an input formula ϕ into a list of formulas to be
given to the core solver. It applies a sequence of preprocessing passes. A pass
may replace a formula ϕi with another one φi, in which case it is responsible for
providing a proof of ϕi ≈ φi. It may also append a new formula φ to the list,
in which case it is responsible for providing a proof for it. We use a (lazy) proof
generator that tracks these proofs, maintaining the invariant that a proof can be
provided for all (preprocessed) formulas when requested. We have instrumented
proof production for the most common preprocessing passes, relying heavily on
the sr rule to model transformations such as expansion of function definitions
and, with witness forms, Skolemization and if-then-else elimination [6].

Simplification Under Global Assumptions. cvc5 aggressively learns literals that
hold globally by performing Boolean constraint propagation over the input for-
mula. When a learned literal corresponds to a variable elimination (e.g., x ≈ 5
corresponds to x �→ 5) or a constant propagation (e.g., P (x) corresponds to

26 H. Barbosa et al.

P (x) �→ �), we apply the corresponding (term) substitution to the input. This
application is justified via sr, while the derivation of the globally learned literals
is justified via clausification and resolution proofs, as explained in Sect. 5.3.

The key features of our architecture that make it feasible to produce proofs
for this simplification are the automatic reconstruction of sr steps and the abil-
ity to customize the strategy for substitution application during reconstruction,
as detailed in Sect. 3.2. When a new variable elimination x �→ t is learned, old
ones need to be normalized to eliminate any occurrences of x in their right-hand
sides. Computing the appropriate simultaneous substitution for all eliminations
requires quadratically many traversals over those terms. We have observed that
the size of substitutions generated by this preprocessing pass can be very large
(with thousands of entries), which makes this computation prohibitively expen-
sive. Using the fixed-point strategy, however, the reconstruction for the sr steps
can apply the substitution efficiently and its complexity depends on how many
applications are necessary to reach a fix-point, which is often low in practice.

5.2 Theory Proofs

The theory engine produces lemmas, as disjunctions of literals, from an indi-
vidual theory or a combination of them. In the first case, the lemma’s proof is
provided directly by the corresponding theory solver. In the second case, a the-
ory solver may produce a lemma ψ containing a literal 	 derived by some other
theory solver from literals �	. A lemma over the combined theory is generated by
replacing 	 in ψ by �	. This regression process, which is similar to the computa-
tion of explanations during solving, is repeated until the lemma contains only
input literals. The proof of the final lemma then uses rules like sr to combine the
proofs of the intermediate literals derived locally in various theories and their
replacement by input literals in the final lemma.

Equality and Uninterpreted Function (EUF) Proofs. The EUF solver can be
easily instrumented to produce proofs [31,42] with equality rules (see Fig. 2).
In cvc5, term equivalences are also derived via rewriting in some other theory
T : when a function from T has all of its arguments inferred to be congruent to
T -values, it may be rewritten into a T -value itself, and this equivalence asserted.
Such equivalences are justified via sr steps. Since generating equality proofs
incurs minimal overhead [42] and rewriting proofs are reconstructed lazily, EUF
proofs are generated during solving and stored in an eager proof generator.

Extensional Arrays and Datatypes Proofs. While these two theories differ sig-
nificantly, they both combine equality reasoning with rules for handling their
particular operators. For arrays, these are rules for select, store, and array exten-
sionality (see [36, Sec. 5]). For datatypes, they are rules reflecting the properties
of constructors and selectors, as well as acyclicity. The justifications for lemmas
are also generated eagerly and stored in an eager proof generator.

Bit-Vector Proofs. The bit-vector solver applies bit-blasting to reduce bit-vector
problems to equisatisfiable propositional problems. Thus, its lemmas amount

Flexible Proof Production in an Industrial-Strength SMT Solver 27

to the rewriting of the bit-vector literals into Boolean formulas, which will be
solved and proved by the propositional engine. The bit-vector lemmas are proven
lazily, analogous to sr steps, with the difference that the reconstruction uses the
bit-blaster in the bit-vector solver instead of the rewriter.

Arithmetic Proofs. The linear arithmetic solver is based on the simplex algo-
rithm [24], and each of its lemmas is the negation of an unsatisfiable conjunction
of inequalities. Farkas’ lemma [30,49] guarantees that there exists a linear com-
bination of these inequalities equivalent to ⊥. The coefficients of the combination
are computed during solving with minimal overhead [38], and the equivalence
is proven with an sr step. To allow the rewriter to prove this equivalence, the
bounds of the inequalities are scaled by constants and summed during recon-
struction. Integer reasoning is proved through rules for branching and integer
bound tightening, recorded eagerly.

Non-linear arithmetic lemmas are generated from incremental linearization
[16] or cylindrical algebraic coverings [1]. The former can be proven via propo-
sitional and basic arithmetic rules, with only a few, such as the tangent plane
lemma, needing a dedicated proof rule. The latter requires two complex rules
that are not inherently simpler than solving, albeit not as complex as those for
regular CAD-based theory solvers [2]. We point out that checking these rules
would require a significant portion of CAD-related theory, whose proper formal-
ization is still an open, if actively researched, problem [18,25,34,41,53].

Quantifier Proofs. Quantified formulas not Skolemized during pre-processing are
handled via instantiation, which produces theory lemmas of the form (∀�x ϕ) ⇒
ϕσ, where σ is a grounding substitution. An instantiation rule proves them
independently of how the substitution was actually derived, since any well-typed
one suffices for soundness.

String Proofs. The strings solver applies a layered approach, distinguishing
between core [40] and extended operators [48]. The core operators consist of
(dis)equalities between string concatenations and length constraints. Reasoning
over them is proved by a combination of equality and linear integer arithmetic
proofs, as well as specific string rules. The extended operators are reduced to core
ones via formulas with bounded quantifiers. The reductions are proven with rules
defining each extended function’s semantics, and sr steps justifying the reduc-
tions. Finally, regular membership constraints are handled by string rules that
unfold occurrences of the Kleene star operator and split up regular expression
concatenations into different parts. Overall, the proofs for the strings theory
solver encompass not only string-specific reasoning but also equality, linear inte-
ger arithmetic, and quantifier reasoning, as well as substitution and rewriting.

Unsupported. The theory solvers for the theories of floating-point arithmetic,
sequences, sets and relations, and separation logic are currently not proof-
producing in cvc5. These are relatively new or non-standard theories in SMT
and have not been our focus, but we intend to produce proofs for them in the
future.

28 H. Barbosa et al.

Table 1. Cumulative solving times (s) on benchmarks solved by all configurations,
with the slowdown versus cvc+s in parentheses.

Logics # cvc+os cvc+s cvc+sp cvc+spr

non-BVs 116,321 164k 166k 284k (1.7×) 299k (1.8×)

BVs 29,192 45k 57k 150k (2.6×) 224k (3.9×)

5.3 Propositional Proofs

Propositional proofs justify both the conversion of preprocessed input formulas
and theory lemmas into conjunctive normal form (CNF) and the derivation of
⊥ from the resulting clauses. CNF proofs are a combination of Boolean trans-
formations and introductions of Boolean formulas representing the definition of
Tseytin variables, used to ensure that the CNF conversion is polynomial. The
clausifier uses a lazy proof builder which stores the clausification steps eagerly,
with the preprocessed input formulas as assumptions, and the theory lemmas as
lazy steps, with associated proof generators.

For Boolean reasoning, cvc5 uses a version of MiniSat [27] instrumented to
produce resolution proofs. It uses a lazy proof builder to record resolution steps
for learned clauses as they are derived (see [7, Chap 1] for more details) and to
lazily build a refutation with only the resolution steps necessary for deriving ⊥.
The resolution rule, however, is ground first-order resolution, since the proofs are
in terms of the first-order clauses rather than their propositional abstractions.

6 Evaluation

In this section, we discuss an initial evaluation of our implementation in cvc5 of
the proof-production architecture presented in this paper. In the following, we
denote different configurations of cvc5 by cvc plus some suffixes. A configuration
using variable and clause elimination in the SAT solver [26], symmetry break-
ing [23] in the EUF solver, and black-box SAT solving in the bit-vector (BV)
solver, is denoted by the suffix o. These techniques are currently incompatible
with the proof production architecture. Other cvc5 techniques for which we do
not yet support fine-grained proofs, however, are active and have their inferences
registered in the proofs as trusted steps. A configuration that includes simpli-
fication under global assumptions is denoted by s; one that includes producing
proofs by p; and one that additionally reconstructs proofs by r. The default
configuration of cvc5 is cvc+os.

We split our evaluation into measuring the proof-production cost as well
as the performance impact of making key techniques proof-producing; the proof
reconstruction overhead; and the coverage of the proof production. We also com-
ment on how cvc5’s proofs compare with CVC4’s proofs. Note that the internal
proof checking described in Sect. 3, which was invaluable for a correct implemen-
tation, is disabled for evaluating performance. Experiments ran on a cluster with

Flexible Proof Production in an Industrial-Strength SMT Solver 29

100000 105000 110000 115000 120000
solved instances

100

101

102

ru
nt

im
e

[s
]

cvc+os

cvc+s

cvc

cvc+pr

cvc+spr

cvc+sp

20000 22500 25000 27500 30000 32500 35000 37500
solved instances

100

101

102

ru
nt

im
e

[s
]

cvc+os (BV)

cvc+s (BV)

cvc (BV)

cvc+pr (BV)

cvc+spr (BV)

cvc+sp (BV)

10−1 100 101 102

cvc+s [s]

10−1

100

101

102

c
v
c
+

sp
r

[s
]

10x
100x
1000x

10−1 100 101 102

cvc+s (BV) [s]

10−1

100

101

102

c
v
c
+

sp
r

(B
V

)
[s

]

10x
100x
1000x

10−1 100 101 102

cvc+sp [s]

10−1

100

101

102

c
v
c
+

sp
r

[s
]

10x
100x
1000x

10−1 100 101 102

cvc+sp (BV) [s]

10−1

100

101

102

c
v
c
+

sp
r

(B
V

)
[s

]

10x
100x
1000x

a b

c d

Fig. 3. (a) Cactus plot for non-BVs (b) Cactus plot for BVs (c) Scatter plot of overall
proof cost (d) Reconstruction cost

Intel Xeon E5-2620 v4 CPUs, with 300s and 8GB of RAM for each solver and
benchmark pair. We consider 162,060 unsatisfiable problems from SMT-LIB [8],
across all logics except those with floating point arithmetic, as determined by
cvc5 [5, Sec. 4]. We split them into 38,732 problems with the BV theory (the
BVs set) and 123,328 problems without (the non-BVs set).

Proof Production Cost. The cost of proof production is summarized in Table 1
and Figs. 3a to 3d. The impact of running without o is negligible overall in non-
BVs, but steep for BVs, both in terms of solving time and number of problems
solved, as evidenced by the table and Fig. 3b respectively. This is expected given
the effectiveness of combining bit-blasting with black-box SAT solvers. The over-
head of p is similar for both sets, although more pronounced in BVs. While the
total time is around double that of cvc+s, Fig. 3c shows a finer distribution,
with most problems having a less significant overhead. Moreover, the total num-
ber of problems solved is quite similar, as shown in Figs. 3a and 3b, particularly
for non-BVs. The difference in overhead due to p between the BVs and non-
BVs sets can be attributed to the cost of managing large proofs, which are
more common in BVs. This stems from the well-known blow-up in problem size
incurred by bit-blasting, which is reflected in the proofs.

The cost of generating fine-grained steps for the sr rule and for the similarly
reconstructed theory-specific steps mentioned in Sect. 5, varies again between

30 H. Barbosa et al.

the two sets, but more starkly. While for non-BVs the overall solving time and
number of problems solved are very similar between cvc+sp and cvc+spr, for
the BVs set cvc+spr is significantly slower overall. This difference again arises
mainly because of the increased proof sizes. Nevertheless, r leads to only a small
increase in unsolved problems in BVs, as shown in Fig. 3b.

The importance of being able to produce proofs for simplification under
global assumptions is made clear by Fig. 3a: the impact of disabling s is virtu-
ally the same as that of adding p; moreover, cvc+spr significantly outperforms
cvc+pr. In Fig. 3b the difference is less pronounced but still noticeable.

Proofs Coverage. When using techniques that are not yet fully proof-producing,
but still active, cvc5 inserts trusted steps in the proof. These are usually steps
whose checking is not inherently simpler than solving. They effectively represent
holes in the proof, but are still useful for users who avail themselves of powerful
proof-checking techniques. Trusted steps are commonly used when integrating
SMT solvers into proof assistants [11,28,51].

The percentage of cvc+spr proofs without trusted steps is 92% for BVs and
80% for non-BVs. That is to say, out of 145,683 proofs, 120,473 of them are
fully fine-grained proofs. The vast majority of the trusted steps in the remaining
proofs are due to theory-specific preprocessing passes that are not yet fully proof-
producing. In non-BVs, the occurrence of trusted steps is heavily dependent
on the specific SMT-LIB logic, as expected. Common offenders are logics with
datatypes, with trusted steps for acyclicity checks, and quantified logics, with
trusted steps for certain α-equivalence eliminations. In non-linear real arithmetic
logics, all cylindrical algebraic coverings proofs are built with trusted steps (see
Sect. 5.2), but we note this is the state of the art for CAD-based proofs. As for
non-linear integer arithmetic logics, our proof support is still in its early stages,
so a significant portion of their theory lemmas are trusted steps.

We stress the extent of our coverage for string proofs, which were previously
unsupported by any SMT solver. In the string logics without length constraints,
100% of the proofs are fully fine-grained. This rate goes down to 80% in the
logics with length. For the remaining 20%, the overwhelming majority of the
trusted steps are for theory-specific preprocessing or some particular string or
linear arithmetic inference within the proof of a theory lemma.

Comparison with CVC4 Proofs. We compare the proof coverage of cvc5 versus
CVC4. The cvc5 proof production replaces CVC4’s [32,36], which was incom-
plete and monolithic. CVC4 did not produce proofs at all for strings, substitu-
tions, rewriting, preprocessing, quantifiers, datatypes, or non-linear arithmetic.
In particular, simplification over global assumptions had to be disabled when
producing proofs. In fragments supported by both systems, CVC4’s proofs are
at most as detailed as cvc5’s. The only superior aspect of CVC4’s proof produc-
tion was to support proofs from external SAT solvers [45] used in the BV solver,
which are very significant for solving performance, as shown above. Integrating
this feature into cvc5 is left as future work, but we note that there is no limi-
tation in the proof architecture that would prevent it. We also point out that
cvc5 produces resolution proofs for the bit-blasted BV constraints, which can

Flexible Proof Production in an Industrial-Strength SMT Solver 31

be checked in polynomial time, whereas external SAT solvers produce DRAT
proofs [33] (or reconstructions of them via other tools [19,20,37,39]), which can
take exponential time to check. So there is a significant trade-off to be considered.

7 Related Work

Two significant proof-producing state-of-the-art SMT solvers are z3 [22] and
veriT [14]. Both can have their proofs successfully reconstructed in proof assis-
tants [3,12,13,51]. They can produce detailed proofs for the propositional and
theory reasoning in EUF and linear arithmetic, as well as for quantifiers. How-
ever, z3’s proofs are coarse-grained for preprocessing and rewriting, and for bit-
vector reasoning, which complicates proof checking. Moreover, to the best of our
knowledge, z3 does not produce proofs for its other theories. In contrast, veriT
can produce fine-grained proofs for preprocessing and rewriting [6], which has led
to a better integration with Isabelle/HOL [51]. However, it does so eagerly, which
requires a tight integration between the preprocessing and the proof-production
code. In addition, it does not support simplification under global assumptions
when producing proofs, which significantly impacts its performance. Other proof-
producing SMT solvers are MathSAT5 [17] and SMTInterpol [15]. They produce
resolution proofs and theory proofs for EUF, linear arithmetic, and, in SMTIn-
terpol’s case, array theories. Their proofs are tailored towards unsatisfiable core
and interpolant generation, rather than external certification. Moreover, they do
not seem to provide proofs for preprocessing, clausification or rewriting.

While cvc5 is possibly the only proof-producing solver for the full theory of
strings, CertiStr [35] is a certified solver for the fragment with concatenation
and regular expressions. It is automatically generated from Isabelle/HOL [44]
but is significantly less performant than cvc5, although a proper comparison
would need to account for proof-checking time in cvc5’s case.

8 Conclusion and Future Work

We presented and evaluated a flexible proof production architecture, showing it
is capable of producing proofs with varying levels of granularity in a scalable
manner for a state-of-the-art and industrial-strength SMT solver like cvc5.

Since currently, there is no standard proof format for SMT solvers, our archi-
tecture is designed to support multiple proof formats via a final post-processing
transformation to convert internal proofs accordingly. We are developing back-
ends for the LFSC [52] proof checker and the proof assistants Lean 4 [21],
Isabelle/HOL [44], and Coq [10], the latter two via the Alethe proof format [50].
Since using these tools requires mechanizing the respective target proof calculi in
their languages, besides external checking, another benefit is to decouple confi-
dence on the soundness of the proof calculi from the internal cvc5 proof calculus.

A considerable challenge for SMT proofs is the plethora of rewrite rules used
by the solvers, which are specific for each theory and vary in complexity. In

32 H. Barbosa et al.

particular, string rewrites can be very involved [46] and hard to check. We are
also developing an SMT-LIB-based DSL for specifying rewrite rules, to be used
during proof reconstruction to decompose rewrite steps in terms of them, thus
providing more fine-grained proofs for rewriting.

Finally, we plan to incorporate into the proof-production architecture the
unsupported theories and features mentioned in Sects. 5.2 and 6, particularly
those relevant for solving performance that currently either leave holes in proofs,
such as theory pre-processing or non-linear arithmetic reasoning, or that have
to be disabled, such as the use of external SAT solvers in the BV theory.

References

1. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consistency
of non-linear real arithmetic constraints with a conflict driven search using cylin-
drical algebraic coverings. J. Log. Algebr. Methods Program. 119, 100633 (2021)

2. Abrahám, E., Davenport, J.H., England, M., Kremer, G.: Proving UNSAT
in SMT: the case of quantifier free non-linear real arithmetic. arXiv preprint
arXiv:2108.05320 (2021)

3. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to coq through proof witnesses. In: Jouannaud, J.-
P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25379-9 12

4. Backes, J., et al.: Semantic-based automated reasoning for AWS access policies
using SMT. In: Bjørner, N., Gurfinkel, A. (eds.) Formal Methods in Computer-
Aided Design (FMCAD), pp. 1–9. IEEE (2018)

5. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Fis-
man, D., Rosu, G. (eds.) Tools and Algorithms for Construction and Analysis of
Systems (TACAS). LNCS, Springer, Cham (2022). https://doi.org/10.1007/978-
3-030-99524-9 24

6. Barbosa, H., Blanchette, J.C., Fleury, M., Fontaine, P.: Scalable fine-grained proofs
for formula processing. J. Autom. Reason. 64(3), 485–510 (2020)

7. Barrett, C., de Moura, L., Fontaine, P.: Proofs in satisfiability modulo theories.
All About Proofs Proofs All (APPA) 55(1), 23–44 (2014)

8. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.6. Technical
report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

9. Barrett, C., Tinelli, C.: Satisfiability Modulo Theories. In: Clarke, E., Henzinger,
T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 11

10. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series, Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

11. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT
solvers. J. Autom. Reason. 51(1), 109–128 (2013)

12. Böhme, S., Fox, A.C.J., Sewell, T., Weber, T.: Reconstruction of Z3’s bit-vector
proofs in HOL4 and Isabelle/HOL. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP
2011. LNCS, vol. 7086, pp. 183–198. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25379-9 15

http://arxiv.org/abs/2108.05320
https://doi.org/10.1007/978-3-642-25379-9_12
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-25379-9_15
https://doi.org/10.1007/978-3-642-25379-9_15

Flexible Proof Production in an Industrial-Strength SMT Solver 33

13. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14052-5 14

14. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS
(LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02959-2 12

15. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: an interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31759-0 19

16. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Satisfiability mod-
ulo transcendental functions via incremental linearization. In: de Moura, L. (ed.)
CADE 2017. LNCS (LNAI), vol. 10395, pp. 95–113. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63046-5 7

17. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

18. Cohen, C.: Construction of real algebraic numbers in Coq. In: Beringer, L., Felty,
A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 67–82. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32347-8 6

19. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.:
Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNCS
(LNAI), vol. 10395, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63046-5 14

20. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient certified resolu-
tion proof checking. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 118–135. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5 7

21. de Moura, L., Ullrich, S.: The lean 4 theorem prover and programming language.
In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp.
625–635. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5 37

22. de Moura, L.M., Bjørner, N.: Proofs and refutations, and Z3. In: Rudnicki, P.,
Sutcliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR) Workshops. CEUR Workshop Pro-
ceedings, vol. 418. CEUR-WS.org (2008)

23. Déharbe, D., Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Exploiting symmetry
in SMT problems. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 222–236. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22438-6 18

24. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 11

25. Eberl, M.: A decision procedure for univariate real polynomials in Isabelle/HOL.
In: Proceedings of the 2015 Conference on Certified Programs and Proofs, CPP
2015, pp. 75–83. Association for Computing Machinery, New York (2015)

26. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). https://doi.org/10.1007/11499107 5

27. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-31759-0_19
https://doi.org/10.1007/978-3-319-63046-5_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-32347-8_6
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-642-22438-6_18
https://doi.org/10.1007/978-3-642-22438-6_18
https://doi.org/10.1007/11817963_11
https://doi.org/10.1007/11499107_5
https://doi.org/10.1007/978-3-540-24605-3_37

34 H. Barbosa et al.

28. Ekici, B., et al.: SMTCoq: a plug-in for integrating SMT solvers into Coq. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 126–133.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 7

29. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press,
Cambridge (2001)

30. Farkas, G.: A Fourier-féle mechanikai elv alkamazásai. Mathematikaiés
Természettudományi Érteśıtö 12, 457–472 (1894). Reference from Schrijver’s Com-
binatorial Optimization textbook (Hungarian)

31. Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness +
automation + soundness: towards combining SMT solvers and interactive proof
assistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 167–181. Springer, Heidelberg (2006). https://doi.org/10.1007/11691372 11

32. Hadarean, L., Barrett, C., Reynolds, A., Tinelli, C., Deters, M.: Fine grained SMT
proofs for the theory of fixed-width bit-vectors. In: Davis, M., Fehnker, A., McIver,
A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 340–355. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-48899-7 24

33. Heule, M.J.H.: The DRAT format and drat-trim checker. CoRR, abs/1610.06229
(2016)

34. Joosten, S.J.C., Thiemann, R., Yamada, A.: A verified implementation of algebraic
numbers in Isabelle/HOL. J. Autom. Reason. 64, 363–389 (2020)

35. Kan, S., Lin, A.W., Rümmer, P., Schrader, M.: Certistr: a certified string solver.
In: Popescu, A., Zdancewic, S. (eds.) Certified Programs and Proofs (CPP), pp.
210–224. ACM (2022)

36. Katz, G., Barrett, C., Tinelli, C., Reynolds, A., Hadarean, L.: Lazy proofs for
DPLL(T)-based SMT solvers. In: Piskac, R., Talupur, M. (eds.) Formal Methods
in Computer-Aided Design (FMCAD), pp. 93–100. IEEE (2016)

37. Kiesl, B., Rebola-Pardo, A., Heule, M.J.H.: Extended resolution simulates DRAT.
In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol.
10900, pp. 516–531. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
94205-6 34

38. King, T.: Effective algorithms for the satisfiability of quantifier-free formulas over
linear real and integer arithmetic (2014)

39. Lammich, P.: Efficient verified (UN)SAT certificate checking. In: de Moura, L.
(ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 237–254. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63046-5 15

40. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.)
CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08867-9 43

41. Mahboubi, A.: Implementing the cylindrical algebraic decomposition within the
coq system. Math. Struct. Comput. Sci. 17(1), 99–127 (2007)

42. Nieuwenhuis, R., Oliveras, A.: Proof-producing congruence closure. In: Giesl, J.
(ed.) RTA 2005. LNCS, vol. 3467, pp. 453–468. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-32033-3 33

43. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

44. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.1007/11691372_11
https://doi.org/10.1007/978-3-662-48899-7_24
https://doi.org/10.1007/978-3-319-94205-6_34
https://doi.org/10.1007/978-3-319-94205-6_34
https://doi.org/10.1007/978-3-319-63046-5_15
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-540-32033-3_33
https://doi.org/10.1007/3-540-45949-9

Flexible Proof Production in an Industrial-Strength SMT Solver 35

45. Ozdemir, A., Niemetz, A., Preiner, M., Zohar, Y., Barrett, C.: DRAT-based bit-
vector proofs in CVC4. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol.
11628, pp. 298–305. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
24258-9 21

46. Reynolds, A., Nötzli, A., Barrett, C., Tinelli, C.: High-level abstractions for sim-
plifying extended string constraints in SMT. In: Dillig, I., Tasiran, S. (eds.) CAV
2019. LNCS, vol. 11562, pp. 23–42. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-25543-5 2

47. Reynolds, A., Nötzli, A., Barrett, C.W., Tinelli, C.: Reductions for strings and
regular expressions revisited. In: Formal Methods in Computer-Aided Design
(FMCAD), pp. 225–235. IEEE (2020)

48. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling
up DPLL(T) string solvers using context-dependent simplification. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 453–474. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63390-9 24

49. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1998)
50. Schurr, H.-J., Fleury, M., Barbosa, H., Fontaine, P.: Alethe: towards a generic SMT

proof format (extended abstract). CoRR, abs/2107.02354 (2021)
51. Schurr, H.-J., Fleury, M., Desharnais, M.: Reliable reconstruction of fine-grained

proofs in a proof assistant. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS
(LNAI), vol. 12699, pp. 450–467. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-79876-5 26

52. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking
using a logical framework. Formal Methods Syst. Des. 42(1), 91–118 (2013)

53. Thiemann, R., Yamada, A.: Algebraic numbers in Isabelle/HOL. In: Blanchette,
J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 391–408. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-43144-4 24

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-24258-9_21
https://doi.org/10.1007/978-3-030-24258-9_21
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.1007/978-3-030-25543-5_2
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-030-79876-5_26
https://doi.org/10.1007/978-3-030-79876-5_26
https://doi.org/10.1007/978-3-319-43144-4_24
http://creativecommons.org/licenses/by/4.0/

CTL∗ Model Checking for Data-Aware
Dynamic Systems with Arithmetic

Paolo Felli, Marco Montali, and Sarah Winkler(B)

Free University of Bolzano-Bozen, Bolzano, Italy
{pfelli,montali,winkler}@inf.unibz.it

Abstract. The analysis of complex dynamic systems is a core research
topic in formal methods and AI, and combined modelling of systems with
data has gained increasing importance in applications such as business
process management. In addition, process mining techniques are nowa-
days used to automatically mine process models from event data, often
without correctness guarantees. Thus verification techniques for linear
and branching time properties are needed to ensure desired behavior.

Here we consider data-aware dynamic systems with arithmetic
(DDSAs), which constitute a concise but expressive formalism of tran-
sition systems with linear arithmetic guards. We present a CTL∗ model
checking procedure for DDSAs that addresses a generalization of the
classical verification problem, namely to compute conditions on the ini-
tial state, called witness maps, under which the desired property holds.
Linear-time verification was shown to be decidable for specific classes
of DDSAs where the constraint language or the control flow are suit-
ably confined. We investigate several of these restrictions for the case of
CTL∗, with both positive and negative results: witness maps can always
be found for monotonicity and integer periodicity constraint systems,
but verification of bounded lookback systems is undecidable. To demon-
strate the feasibility of our approach, we implemented it in an SMT-based
prototype, showing that many practical business process models can be
effectively analyzed.

Keywords: Verification · CTL∗ · Counter systems · Constraints ·
SMT

1 Introduction

The study of complex dynamic systems is a core research topic in AI, with a long
tradition in formal methods. It finds application in a variety of domains, such
as notably business process management (BPM), where studying the interplay
between control-flow and data has gained momentum [9,10,24,46]. Processes are
increasingly mined by automatic techniques [1,3] that lack any correctness guar-
antees, making verification even more important to ensure the desired behavior.

This work is partially supported by the UNIBZ projects DaCoMan, QUEST, SMART-
APP, VERBA, and WineId.

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 36–56, 2022.
https://doi.org/10.1007/978-3-031-10769-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_4&domain=pdf
https://doi.org/10.1007/978-3-031-10769-6_4

CTL∗ Model Checking for Data-Aware Dynamic Systems with Arithmetic 37

However, the presence of data pushes verification to the verge of undecidability
due to an infinite state space. This is aggravated by the use of arithmetic, in spite
of its importance for practical applications [24]. Indeed, model checking of tran-
sition systems operating on numeric data variables with arithmetic constraints
is known to be undecidable, as it is easy to model a two-counter machine.

In this work, we focus on the concise but expressive framework of data-aware
dynamic systems with arithmetic (DDSAs) [28,38], also known as counter sys-
tems [13,20,34]. Several classes of DDSAs have been isolated where specific ver-
ification tasks are decidable, notably reachability [6,13,29,34] and linear-time
model checking [14,20,22,28,38]. Fewer results are known about the case of
branching time, except for flat counter systems [21], gap-order systems where
constraints are restricted to the form x− y ≥ 2 [8,42], and systems with a
nice symbolic valuation abstraction [31]. However, many processes in BPM and
beyond fall into neither of these classes, as illustrated by the next example.

Example 1. The following DDSA B models a management process for road fines
by the Italian police [41]. It maintains seven so-called case data variables (i.e.,
variables local to each process instance, called “case” in the BPM literature): a
(amount), t (total amount), d (dismissal code), p (points deducted), e (expenses),
and time durations ds, dp, dj . The process starts by creating a case, upon which
the offender is notified within 90 days, i.e., 2160h (send fine). If the offender pays
a sufficient amount t, the process terminates via silent actions τ1, τ2, or τ3. For
the less happy paths, the credit collection action is triggered if the payment was
insufficient; while appeal to judge and appeal to prefecture reflect filed protests
by the offender, which again need to respect certain time constraints.

p1 p2 p3 p4

end

p5

p6p7p8

create fine

aw, tw, dw, pw ≥ 0

payment
tw ≥ 0

send fine

0≤ dsw ≤ 2160 ∧ ew ≥ 0

τ1

d �= 0 ∨ (p = 0 ∧ tr ≥ ar)

payment
tw ≥ 0

insert notification

τ2

tr ≥ ar + er

payment
tw ≥ 0

add penalty
aw ≥ 0

appeal to judge

0≤ djw ≤ 1440 ∧ dw ≥ 0

credit collection

tr < ar + er

τ3

tr ≥ ar + er

τ5

dr = 0

appeal to prefecture

0≤ dpw ≤ 1440

send to prefecture

dw ≥ 0

result prefecture

dr = 0τ6

dr = 1 τ4

dr = 2

notify

This model was generated from real-life logs by automatic process mining tech-
niques paired with domain knowledge [41], but without any correctness guar-
antee. For instance, data-aware soundness [4,25] requires that the process can
always reach a final state from any reachable configuration, expressed by the
branching-time property A G E F end. This property is false here, as B can get
stuck in state p7 if d> 1. In addition, process-specific linear-time properties are
needed, e.g., that a send fine event is always followed by a sufficient payment (i.e.,
〈send fine〉	 → F 〈payment〉(t ≥ a), where 〈α〉 is the next operator via action α).

38 P. Felli et al.

This example highlights how both linear-time and branching-time verifica-
tion are needed. In this paper, we present a CTL∗ model checking algorithm for
DDSAs, adopting a finite-trace semantics (CTL∗

f) [44] to reflect the nature of
processes as in Example 1. More precisely, our approach can synthesize condi-
tions on the initial variable assignment such that a given property χ holds, called
witness maps. If such a witness map can be found, it is in particular decidable
what is more commonly called the verification problem, namely whether χ is sat-
isfied in a designated initial configuration. We derive an abstract criterion on the
computability of witness maps, which is satisfied by two practical DDSA classes
that restrict the constraint language to (a) monotonicity constraints [20,25], i.e.,
variable-to-variable or variable-to-constant comparisons over Q or R, and (b)
integer periodicity constraints [18,22], i.e., variable-to-constant and restricted
variable-to-variable comparisons with modulo operators. On the other hand,
we show that the verification problem is undecidable for bounded lookback sys-
tems [28], a control flow restriction that generalizes feedback freedom [14].

In summary, we make the following contributions:

1. We present a model checking algorithm to generate a witness map for a given
DDSA and CTL∗

f property;
2. We prove an abstract termination criterion for this algorithm (Corollary 1);
3. This result is used to show that witness maps can be effectively computed for

monotonicity constraint and integer periodicity constraint systems;
4. CTL∗

f verification is shown undecidable for bounded-lookback systems;
5. We implemented our approach in the prototype ada using SMT solvers as

backends and tested it on a range of business processes from the literature.

The paper is structured as follows: The rest of this section recapitulates related
work. Section 2 compiles preliminaries about DDSAs and CTL∗

f . Section 3 is
dedicated to LTL with configuration maps, which is used by our model checking
procedure in Sect. 4. Based on an abstract termination criterion, (un)decidability
results for concrete DDSA classes are given in Sect. 5. We describe our imple-
mentation in Sect. 6. Complete proofs and further examples can be found in [27].

Related work. Verification of transition systems with arithmetic constraints, also
called counter systems, has been studied in many areas including formal meth-
ods, database theory, and BPM. Reachability was proven decidable for a variety
of classes, e.g., reversal-bounded counter machines [34], finite linear [29], flat [13],
and gap-order constraint (GC) systems [6]. Considerable work has also been
dedicated to linear-time verification: LTL model checking is decidable for mono-
tonicity constraint (MC) systems [20]. LTL verification is also decidable for inte-
ger periodicity constraint (IPC) systems, even with past-time operators [18,22];
and feedback-free systems, for an enriched constraint language referring to a
read-only database [14]. DDSAs with MCs are also considered in [25] from the
perspective of LTL with a finite-run semantics (LTLf), giving a procedure to
compute finite, faithful abstractions. LTLf is moreover decidable for systems
with the abstract finite summary property [28], which includes MC, GC, and
systems with bounded lookback, where the latter generalizes feedback freedom.

CTL∗ Model Checking for Data-Aware Dynamic Systems with Arithmetic 39

Branching-time verification was less studied: Decidability of CTL∗ was
proven for flat counter systems with Presburger-definable loop iteration [21],
even in NP [19]. Moreover, it was shown that CTL∗ verification is decidable for
pushdown systems, which can model counter systems with a single integer vari-
able [30]. For integer relational automata (IRA), i.e., systems with constraints
x≥ y or x>y and domain Z, CTL model checking is undecidable while the exis-
tential and universal fragments of CTL∗ remain decidable [12]. For GC systems,
which extend IRAs to constraints of the form x−y ≥ k, the existential fragment
of CTL∗ is decidable while the universal one is not [8]. A similar dichotomy holds
for the EF and EG fragments of CTL [42]. A subclass of IRAs was considered
in [7,11], allowing only periodicity and monotonicity constraints. While satisfi-
ability of CTL∗ was proven decidable, model checking is not (as already shown
in [12]), though it is decidable for CEF+ properties, an extension of the EF
fragment [7]. In contrast, rather than restricting temporal operators, we show
decidability of model checking under an abstract property of the DDSA and
the verified property, which can be guaranteed by suitably constraining the con-
straint class or the control flow. More closely related is work by Gascon [31], who
shows decidability of CTL∗ model checking for DDSAs that admit a nice sym-
bolic valuation abstraction, an abstract property which includes MC and IPC
systems. The relationship between our decidability criterion and the property
defined by Gascon will need further investigation. Another difference is that we
here adopt a finite-path semantics for CTL∗ as e.g. considered in [47], since for
the analysis of real-world processes such as business processes it is sufficient to
consider finite traces. On a high level, our method follows a common approach
to CTL∗: the verification property is processed bottom-up, computing solutions
for each subproperty. These are then used to solve an equivalent linear-time
problem [2, p. 429]. For the latter, we partially rely on earlier work [28].

2 Background

We start by defining the set of constraints over expressions of sort int , rat , or
real , with associated domains dom(int) = Z, dom(rat) = Q, and dom(real) = R.

Definition 1. For a given set of sorted variables V , expressions es of sort s and
atoms a are defined as follows:

es:= vs | ks | es + es | es − es a := es = es | es <es | es ≤ es | eint ≡n eint

where ks ∈ dom(s), vs ∈ V has sort s, and ≡n denotes equality modulo some
n∈ N. A constraint is then a quantifier-free boolean expression over atoms a.

The set of all constraints built from atoms over variables V is denoted by C(V).
For instance, x �= 1, x < y − z, and x− y = 2 ∧ y �= 1 are valid constraints
independent of the sort of {x, y, z}, while u ≡3 v + 1 is a constraint for integer
variables u and v. We write Var(ϕ) for the set of variables in a formula ϕ. For

40 P. Felli et al.

an assignment α with domain V that maps variables to values in their domain,
and a formula ϕ we write α |= ϕ if α satisfies ϕ.

We are thus in the realm of SMT with linear arithmetic, which is decidable
and admits quantifier elimination [45]: if ϕ is a formula in C(X ∪ {y}), thus
having free variables X ∪ {y}, there is a quantifier-free ϕ′ with free variables X
that is equivalent to ∃y.ϕ, i.e., ϕ′ ≡ ∃y.ϕ, where ≡ denotes logical equivalence.

2.1 Data-Aware Dynamic Systems with Arithmetic

From now on, V is a fixed, finite set of variables. We consider two disjoint,
marked copies of V , denoted V r = {vr | v ∈V } and V w = {vw | v ∈ V }, called
the read and write variables. They will refer to variable values before and after a
transition, respectively. We also write V for a vector that orders V in an arbitrary
but fixed way, and V

r
and V

w
for vectors ordering V r and V w in the same way.

Definition 2. A DDSA B = 〈B, bI ,A, T,BF , V, αI , guard〉 is a labeled transi-
tion system where (i) B is a finite set of control states, with bI ∈B the initial
one; (ii) A is a set of actions; (iii) T ⊆ B×A×B is a transition relation; (iv)
BF ⊆ B are final states; (v) V is the set of process variables; (vi) αI the ini-
tial variable assignment; (vii) guard : A �→ C(V r ∪ V w) specifies executability
constraints for actions over variables V r ∪V w.

Example 2. We consider the following DDSAs B, Bbl , and Bipc , where x, y have
domain Q and u, v, s have domain Z. Initial and final states have incoming
arrows and double borders, respectively; αI is not fixed for now.

b1 b2 b3

a1 : [yw > 0]

a2 : [xw > yr]

a3 : [xr = yr]
b1 b2 b3

[sw = ur] [sw = sr + vr]

[uw = 0 ∧ vw = 0]

[uw > 0] [vw > 0]

b1 b2

a3 : [vr = ur ∧ ur > 9]

a1 : [uw ≡7 vr]

a2 : [vw ≡2 ur]

Also the system in Example 1 represents a DDSA. If state b admits a transition to
b′ via action a, namely (b, a, b′) ∈ Δ, this is denoted by b a−→ b′. A configuration
of B is a pair (b, α) where b ∈ B and α is an assignment with domain V . A
guard assignment is an assignment β with domain V r ∪ V w. For an action a,
let write(a) = Var(guard(a)) ∩ V w. As defined next, an action a transforms a
configuration (b, α) into a new configuration (b′, α′) by updating the assignment
α according to the action guard, which can at the same time evaluate conditions
on the current values of variables and write new values:

Definition 3. A DDSA B = 〈B, bI ,A, T,BF , V, αI , guard〉 admits a step from
configuration (b, α) to (b′, α′) via action a, denoted (b, α) a−→ (b′, α′), if b a−→ b′,
α′(v) = α(v) for all v ∈ V \ write(a), and the guard assignment β given by
β(vr) = α(v) and β(vw) = α′(v) for all v ∈ V , satisfies β |= guard(a).

For instance, for B in Example 2 and initial assignment αI (x) = αI (y) = 0, the
initial configuration admits a step (b1,

[
x=0
y=0

]
) a1−→ (b2,

[
x=0
y=3

]
) with β(xr) = β(xw) =

β(yr) = 0 and β(yw) = 3.

CTL∗ Model Checking for Data-Aware Dynamic Systems with Arithmetic 41

A run ρ of a DDSA B of length n from configuration (b, α) is a sequence of
steps ρ : (b, α) = (b0, α0) a1−→ (b1, α1) a2−→ . . . an−−→ (bn, αn). We also associate with
ρ the symbolic run σ : b0

a1−→ b1
a2−→ . . . an−−→ bn where state and action sequences

are recorded without assignments, and say that σ is the abstraction of ρ (or, σ
abstracts ρ). For some m < n, σ|m denotes the prefix of σ that has m steps.

2.2 History Constraints

In this section, we fix a DDSA B = 〈B, bI ,A, T,BF , V, αI , guard〉. We aim to
build an abstraction of B that covers the (potentially infinite) set of configura-
tions by finitely many nodes of the form (b, ϕ), where b ∈ B is a control state
and ϕ a formula that expresses conditions on the variables V . A state (b, ϕ)
thus represents all configurations (b, α) s.t. α |= ϕ. To express how such a for-
mula ϕ is modified by executing an action, let the transition formula of action
a be Δa(V

r
, V

w
) = guard(a) ∧ ∧

v∈V \write(a) vw = vr. This states conditions on
variables before and after executing a: guard(a) must hold and the values of all
variables that are not written are propagated by inertia. We write Δa(X,Y) for
the formula obtained from Δa by replacing V

r
by X and V

w
by Y . Let a variable

vector U be a fresh copy of V if it has the same length as |V | and U ∩ V = ∅.
To mimic steps on the abstract level, we define the following update function:

Definition 4. For a formula ϕ with free variables V and action a,
update(ϕ, a) = ∃U.ϕ(U) ∧ Δa(U, V), where U is a fresh copy of V .

Our approach will generate formulas of a special shape called history con-
straints [28], obtained by iterated update operations in combination with a
sequence of verification constraints ϑ. Intuitively, the latter depends on the ver-
ification property. For now it suffices to consider ϑ an arbitrary sequence of con-
straints with free variables V . Its prefix of length k is denoted by ϑ|k. We need
a fixed set of placeholder variables V0 disjoint from V , and assume an injective
variable renaming ν : V �→ V0. Let ϕν be the formula ϕν =

∧
v∈V v = ν(v).

Definition 5. For a symbolic run σ : b0
a1−→ b1

a2−→ . . . an−−→ bn, and verification
constraint sequence ϑ = 〈ϑ0, . . . , ϑn〉, the history constraint h(σ, ϑ) is given by
h(σ, ϑ)= ϕν ∧ϑ0 if n= 0, and h(σ, ϑ)= update(h(σ|n−1, ϑ|n−1), an)∧ϑn if n> 0.

Thus, history constraints are formulas with free variables V ∪ V0. Satisfying
assignments for history constraints are closely related to assignments in runs:1

Lemma 1. For a symbolic run σ : b0
a1−→ b1

a2−→ . . . an−−→ bn and ϑ = 〈ϑ0, . . . , ϑn〉,
h(σ, ϑ) is satisfied by assignment α with domain V ∪V0 iff σ abstracts a run
ρ : (b0, α0) a1−→ . . . an−−→ (bn, αn) such that (i) α0(v) = α(ν(v)), and (ii) αn(v) =
α(v) for all v ∈ V , and (iii) αi |= ϑi for all i, 0 ≤ i ≤ n.

1 Lemma 1 is a slight variation of [28, Lemma 3.5]: Definition 5 differs from history
constraints in [28] in that the initial assignment is not fixed. A proof can be found
in [27].

42 P. Felli et al.

2.3 CTL∗
f

For a DDSA B as above, we consider the following verification properties:

Definition 6. CTL∗
f state formulas χ and path formulas ψ are defined by the

following grammar, for constraints c∈ C(V) and control states b ∈ B:

χ := 	 | c | b | χ ∧ χ | ¬χ | E ψ ψ := χ | ψ ∧ ψ | ¬ψ | Xψ | Gψ | ψ U ψ

We use the usual abbreviations F ψ = 	 U ψ, χ1 ∨ χ2 = ¬(¬χ1 ∧ ¬χ2), and
Aψ = ¬E ¬ψ. To simplify the presentation, we do not explicitly treat next state
operators 〈a〉 via a specific action a, as used in Example 1, though this would be
possible (cf. [28]). However, such an operator can be encoded by adding a fresh
data variable x to V , the conjunct xw = 1 to guard(a), and xw = 0 to all other
guards, and replacing 〈a〉ψ in the verification property by X (ψ ∧ x = 1).

The maximal number of nested path quantifiers in a formula ψ is called the
quantifier depth of ψ, denoted by qd(ψ). We adopt a finite path semantics for
CTL∗ [44]: For a control state b ∈ B and a state assignment α, let FRuns(b, α)
be the set of final runs ρ : (b, α) = (b0, α0) a1−→ . . . an−−→ (bn, αn) such that bn ∈ F
is a final state. The i-th configuration (bi, αi) in ρ is denoted by ρi.

Definition 7. The semantics of CTL∗
f is inductively defined as follows. For a

DDSA B with configuration (b, α), state formulas χ, χ′, and path formulas ψ, ψ′:

(b, α) |= 	
(b, α) |= c iff α |= c
(b, α) |= b′ iff b = b′

(b, α) |= χ ∧ χ′ iff (b, α) |= χ and (b, α) |= χ′

(b, α) |= ¬χ iff (b, α) �|= χ
(b, α) |= E ψ iff ∃ρ ∈ FRuns(b, α) such that ρ |= ψ

where ρ |= ψ iff ρ, 0 |= ψ holds, and for a run ρ of length n and all i, 0≤ i≤ n:

ρ, i |= χ iff ρi |= χ
ρ, i |= ¬ψ iff ρ, i �|= ψ
ρ, i |= ψ ∧ ψ′ iff ρ, i |= ψ and ρ, i |= ψ′

ρ, i |= Xψ iff i < n and ρ, i + 1 |= ψ
ρ, i |= Gψ iff for all j, i ≤ j ≤ n, it holds that ρ, j |= ψ
ρ, i |= ψ U ψ′ iff ∃k with i + k ≤ n such that ρ, i + k |= ψ′

and for all j, 0 ≤ j < k, it holds that ρ, i + j |= ψ.

Instead of simply checking whether the initial configuration of a DDSA B
satisfies a CTL∗

f property χ, we try to determine, for every state b ∈ B, which
constraints on variables need to hold in order to satisfy χ. As the number of
configurations (b, α) of a DDSA B is usually infinite, configuration sets cannot
be enumerated explicitly. Instead, we represent a set of configurations as a con-
figuration map K : B �→ C(V) that associates with every control state b ∈ B a
formula K(b) ∈ C(V), representing all configurations (b, α) such that α |= K(b).

We now define when a configuration captures the maximal set of configura-
tions in which a formula χ holds. We call these witness maps.

CTL∗ Model Checking for Data-Aware Dynamic Systems with Arithmetic 43

Definition 8. For a DDSA B and state formula χ, a configuration map K is a
witness map if it holds that (b, α) |= χ iff α |= K(b), for all b ∈ B and all α.

For instance, for B from Example 2 and χ1 = A G (x≥ 2), a witness map is given
by K = {b1 �→ ⊥, b2 �→ x≥ 2 ∧ y ≥ 2, b3 �→ x ≥ 2}. For χ2 |= E X (A G (x ≥ 2)),
a solution is K ′ = {b1 �→ x≥ 2, b2 �→ y ≥ 2, b3 �→ ⊥}. As b1 is the initial state,
B satisfies χ2 with every initial assignment that sets αI (x) ≥ 2.

In this paper we address the problem of finding a witness map for B and χ.
Note that a witness map in particular allows to decide what is commonly called
the verification problem, namely to check whether (bI , αI) |= χ holds, by testing
αI |= K(bI). It remains to investigate whether there exist a DDSA B and χ for
which no witness map exists, as the configuration set satisfying χ is not finitely
representable. Even if it exists, finding it is in general undecidable. However, in
this paper we identify DDSA classes where a witness map can always be found.

3 LTL with Configuration Maps

Following a common approach to CTL∗ verification, our technique processes
the property χ bottom-up, computing solutions for each subformula E ψ, before
solving a linear-time model checking problem χ′ in which the solutions to subfor-
mulas appear as atoms. Given our representation of sets of configurations, we use
LTL formulas where atoms are configuration maps, and denote this specification
language by LTLB

f . For a given DDSA B, it is formally defined as follows:

ψ := K | ψ ∧ ψ | ¬ψ | Xψ | Gψ | ψ U ψ

where K ∈ KB, for KB is the set of configuration maps for B.

Definition 9. A run ρ of length n satisfies an LTLB
f formula ψ, denoted ρ |=K

ψ, iff ρ, 0 |=K ψ holds, where for all i, 0 ≤ i ≤ n:

ρ, i |=K K iff ρi = (b, α) and α |= K(b);
ρ, i |=K ψ ∧ ψ′ iff ρ, i |=K ψ and ρ, i |=K ψ′;
ρ, i |=K ¬ψ iff ρ, i �|=K ψ;
ρ, i |=K Xψ iff i < n and ρ, i+1 |=K ψ;
ρ, i |=K Gψ iff ρ, i |=K ψ and (i = n or ρ, i+1 |=K Gψ);
ρ, i |=K ψ U ψ′ iff ρ, i |=K ψ′ or (i<n and ρ, i |=K ψ and ρ, i+1 |=K ψ U ψ′).

Our approach to LTLB
f verification proceeds along the lines of the LTLf

procedure from [28], with the difference that simple constraint atoms are replaced
by configuration maps. In order to express the requirements on a run of a DDSA
B to satisfy an LTLB

f formula χ, we use a nondeterministic automaton (NFA)
Nψ = (Q,Σ, �, q0, QF), where the states Q are a set of subformulas of ψ, Σ = 2KB

is the alphabet, � is the transition relation, q0 ∈ Q is the initial state, and QF ⊆
Q is the set of final states. The construction of Nψ is standard [15,28], treating
configuration maps for the time being as propositions; but for completeness it is
described in [27, Appendix C]. For instance, for a configuration map K, ψ = F K

44 P. Felli et al.

corresponds to the NFA ψ 	K and ψ′ = XK to ψ′ K 	K . (For
simplicity, edges labels {K} are shown as K, and edge labels ∅ are omitted.)

For wi ∈ Σ, i.e., wi is a set of configuration maps, wi(b) denotes the formula∧
K∈w K(b). Moreover, for w = w0, . . . , wn ∈ Σ∗ and a symbolic run σ : b0

a1−→
b1

a2−→ . . . an−−→ bn, let w⊗σ denote the sequence of formulas 〈w0(b0), . . . , wn(bn)〉,
i.e., the component-wise application of w to the control states of σ. A word
w0, . . . , wn ∈ Σ∗ is consistent with a run (b0, α0) a1−→ (b1, α1) a2−→ . . . an−−→ (bn, αn)
if αi |= wi(bi) for all i, 0≤ i≤ n. The key correctness property of Nψ is the
following (cf. [28, Lemma 4.4], and see [27] for the proof adapted to LTLB

f):

Lemma 2. Nψ accepts a word that is consistent with a run ρ iff ρ |=K ψ.

Product Construction. As a next step in our verification procedure, given a con-
trol state b of B, we aim to find (a symbolic representation of) all configurations
(b, α) that satisfy an LTLB

f formula ψ. To that end, we combine Nψ with B
to a cross-product automaton N ψ

B,b. For technical reasons, when performing the
product construction, the steps in B need to be shifted by one with respect to the
steps in Nψ. Hence, given b ∈ B, let Bb be the DDSA obtained from B by adding
a dummy initial state b, so that Bb has state set B′ = B ∪ {b} and transition
relation T ′ = T ∪ {(b, a0, b)} for a fresh action a0 with guard(a0) = 	.

Definition 10. The product automaton N ψ
B,b is defined for an LTLB

f formula
ψ, a DDSA B, and a control state b ∈ B. Let Bb = 〈B′, b,A, T ′, BF , V, αI , guard〉
and Nψ as above. Then N ψ

B,b = (P,R, p0, PF) is as follows:

• P ⊆ B′ × Q × C(V ∪ V0), i.e., states in P are triples (b, q, ϕ) such that
• the initial state is p0 = (b, q0, ϕν);
• if b a−→ b′ in T ′, q w−→ q′ in Nψ, and update(ϕ, a) ∧ w(b′) is satisfiable, there is

a transition (b, q, ϕ) a,w−−→ (b′, q′, ϕ′) in R such that ϕ′ ≡ update(ϕ, a) ∧ w(b′);
• (b′, q′, ϕ′) is in the set of final states PF ⊆ P iff b′ ∈ BF , and q′ ∈ QF .

Example 3. Consider the DDSA B from Example 2, and let K = {b1 �→ ⊥, b2 �→
x≥ 2 ∧ y ≥ 2, b3 �→ x≥ 2}. The property ψ = XK is captured by the NFA

ψ K 	K . The product automata N ψ
B,b1

and N ψ
B,b2

are as follows:

b ψ x=x0 ∧ y = y0

b1 K x=x0 ∧ y = y0

b2 	 x=x0 ∧ x≥ 2 ∧ y ≥ 2

b3 	 x=x0 = y ∧ x0 ≥ 2 b2 	 x≥ y ∧ y ≥ 2 ∧ x0 ≥ 2

b3 	 x= y ∧ y ≥ 2 ∧ x0 ≥ 2

a0

Ka1

a3 a2

a3

a2

b ψ x=x0 ∧ y = y0

b2 K x=x0 ∧ y = y0

b3 	 x=x0 = y = y0 ∧ y0 ≥ 2 b2 	 y = y0 ∧ x≥ y ∧ y ≥ 2

b3 	 x= y = y0 ∧ y0 ≥ 2

a0

Ka3 Ka2

a3

a2

where the shaded nodes are final. The formulas in nodes were obtained by apply-
ing quantifier elimination to the formulas built using update according to Defi-
nition 10. N ψ

B,b3
consists only of the dummy transition and has no final states.

CTL∗ Model Checking for Data-Aware Dynamic Systems with Arithmetic 45

Definition 10 need not terminate if infinitely many non-equivalent formulas
occur in the construction. In Sect. 4 we will identify a criterion that guarantees
termination. First, we state the key correctness property, which lifts [28, Theorem
4.7] to LTL with configuration maps. Its proof is similar to the respective result
in [28], and can be found in [27].

Theorem 1. Let ψ ∈LTLB
f and b ∈ B such that there is a finite product automa-

ton N ψ
B,b. Then there is a final run ρ : (b, α0) →∗ (bF , αF) of B such that ρ |=K ψ,

iff N ψ
B,b has a final state (bF , qF , ϕ) for some qF and ϕ such that ϕ is satisfied

by assignment γ with γ(V0)= α0(V) and γ(V)= αF (V).

Thus, witnesses for ψ correspond to paths to final states in the product
automaton: e.g., in N ψ

B,b1
in Example 3 the formula in the left final node is satis-

fied by γ(x0) = γ(x) = γ(y) = 3 and γ(y0) = 0. For α0 and α2 such that α0(V) =
γ(V 0) = {x �→ 3, y �→ 0} and α2(V) = γ(V) = {x �→ 3, y �→ 3} there is a witness
run for ψ from (b1, α0) to (b1, α2), e.g., (b1,

[
x=3
y=0

]
) a1−→ (b2,

[
x=3
y=3

]
) a3−→ (b3,

[
x=3
y=3

]
).

4 Model Checking Procedure

Using the results of Sect. 3, we define a model checking procedure, shown in
Fig. 1. First, we explain the tasks achieved by the three mutually recursive func-
tions:

• checkState(χ) returns a configuration map representing the set of config-
urations that satisfy a state formula χ. In the base cases, it returns a function
that checks the respective condition, for boolean operators we recurse on the
arguments, and for a formula E ψ we proceed to the checkPath procedure.

• checkPath(ψ) returns a configuration map K that represents all configura-
tions from which a path satisfying ψ exists. First, toLTLK is used to obtain an
equivalent LTLB

f formula ψ′ (which entails the computation of solutions for all
subproperties E η). Then solution K is constructed as follows: For every control
state b, we build the product automaton N ψ′

B,b, and collect the set ΦF of formu-
las in final states. Every ϕ ∈ ΦF encodes runs from b to a final state of B that
satisfy ψ′. The variables V0 and V in ϕ act as placeholders for the initial and the
final values of the runs, respectively. We rename variables in ϕ to use V at the
start and U at the end, we quantify existentially over U (as the final valuation
is irrelevant), and take the disjunction over all ϕ ∈ ΦF . The resulting formula
ϕ′ encodes all final runs from b that satisfy ψ′, so we set K(b) := ϕ′.

• toLTLK(ψ) computes an LTLB
f formula equivalent to a path formula ψ. To

this end, it performs two kinds of replacements in ψ: (a) 	, b ∈ B, and constraints
c are represented as configuration maps; and (b) subformulas E η are replaced
by their solutions KEη, which are computed by a recursive call to checkPath.

To represent the base cases of formulas as configuration maps in Fig. 1, we
define K� := (λ .), Kb := (λb′. b= b′ ?	 : ⊥) for all b ∈ B, and Kc := (λ .c) for
constraints c. We also write ¬K for (λb.¬K(b)) and K∧K ′ for (λb.K(b)∧K ′(b)).
The next example illustrates the approach.

46 P. Felli et al.

Fig. 1. Model checking procedure.

Example 4. Consider χ =E X (A G (x≥ 2)) and the DDSA B in Example 2. To
get a solution K1 to checkState(χ) = checkPath(ψ1) for ψ1 = X (A G (x≥ 2)), we
first compute an equivalent LTLB

f formula ψ′
1 = XK2, where K2 is a solution to

A G (x≥ 2) ≡ ¬E F (x< 2). To this end, we run checkPath(ψ2) for ψ2 = F (x< 2),
which is represented in LTLB

f as ψ′
2 = F (Kx<2) with NFA ψ′

1 	
Kx<2 . Next,

checkPath builds N ψ′
2

B,b for all states b. For instance, for b2 we get:

b0 ψ′
2 x=x0 ∧ y = y0

b2 ψ′
2 x=x0 ∧ y = y0 b2 	 x=x0 ∧ y = y0 ∧ x< 2

b2 	 y = y0 ∧ 2> x≥ y b3 	 x=x0 = y0 = y ∧ x0 < 2

b2 	 y0 = y ∧ 2> y ∧ x≥ y

b2 ψ′
1 x≥ y = y0

b2 	 y = y0 ∧ x≥ y ∧ x0 < 2

b3 	 x= y = y0 ∧ y < 2 b3 	 x= y = y0 ∧ x0 < 2

Kx<2

Kx<2

Kx<2

Kx<2

ϕ1

ϕ2 ϕ3

where dashed arrows indicate transitions to non-final sink states. For U = 〈x̂, ŷ〉,
and the formulas ϕ1, ϕ2, and ϕ3 in final nodes, we compute

∃U. ϕ1(V ,U) = ∃x̂ ŷ. x̂ =x= ŷ = y ∧ x < 2 ≡ x < 2
∃U. ϕ2(V ,U) = ∃x̂ ŷ. x̂ = ŷ = y ∧ ŷ < 2 ≡ y < 2
∃U. ϕ3(V ,U) = ∃x̂ ŷ. x̂ = ŷ = y ∧ x< 2 ≡ x < 2

CTL∗ Model Checking for Data-Aware Dynamic Systems with Arithmetic 47

so that K3 := checkPath(ψ2) sets K3(b2) =
∨3

i=1 ∃U. ϕi(V ,U) ≡ x< 2 ∨ y < 2.
For reasons of space, the constructions for b1 and b3 are shown in [27, Appendix
B]; we obtain K3(b1) = 	 and K3(b3) = x < 2. By negation, the solution K2

to A G (x ≥ 2) is K2 = ¬K3 = {b1 �→ ⊥, b2 �→ x ≥ 2 ∧ y ≥ 2, b3 �→ x ≥ 2}.
Now we can proceed with checkPath(ψ1). The NFA and product automata for
ψ′

1 = XK2 are as shown in Example 3 and in a similar way as above we obtain
the solution K1 for E X A G (x ≥ 2) as K1 = {b1 �→ x≥ 2, b2 �→ y ≥ 2, b3 �→ ⊥}.
Thus, B satisfies the property for any initial assignment αI with αI (x) ≥ 2.

Next we prove correctness of checkState(χ) under the condition that it is defined,
i.e., all required product automata are finite. First we state our main result, but
before giving its proof we show helpful properties of toLTLK and checkPath.

Theorem 2. For every configuration (b, α) of the DDSA B and every state prop-
erty χ, if checkState(χ) is defined then (b, α) |= χ iff α |= checkState(χ)(b).

Lemma 3. Let ψ be a path formula with qd(ψ)= k. Suppose that for all confi-
gurations (b, α) and path formulas ψ′ with qd(ψ′)< k, there is a ρ′ ∈ FRuns(b, α)
with ρ′ |= ψ′ iff α |= checkPath(ψ′)(b). Then ρ |= ψ iff ρ |=K toLTLK(ψ).

Proof (sketch). By induction on ψ. The base cases are by the definitions of K�,
Kb, and Kc. In the induction step, if ψ =E ψ′ then ρ |= ψ iff ∃ρ′ ∈FRuns(b0, α0)
with ρ′ |= ψ′, for ρ0 = (b0, α0). As qd(ψ′)< qd(ψ), this holds by assump-
tion iff α0 |= checkPath(ψ′)(b0). This is equivalent to ρ |=K toLTLK(ψ) =
checkPath(ψ′). All other cases are by the induction hypothesis and Definitions 7
and 9.

Lemma 4. If ψ′ = toLTLK(ψ) such that for all runs ρ it is ρ |= ψ iff ρ |=K ψ′,
there is a run ρ∈FRuns(b, α) with ρ |= ψ iff α |= checkPath(ψ)(b).

Proof. (=⇒) Suppose there is a run ρ∈FRuns(b, α) with ρ |= ψ, so ρ is of the
form (b, α) →∗ (bF , αF) for some bF ∈ BF . By assumption, this implies ρ |=K ψ′,
so that by Theorem 1, N ψ′

B,b has a final state (bF , qF , ϕ) where ϕ is satisfied by
an assignment γ with domain V ∪V0 such that γ(V0)= α(V) and γ(V)= αF (V).
By definition, checkPath(ψ)(b) contains a disjunct ∃U. ϕ(V ,U). As γ satisfies
ϕ and γ(V0)= α(V), α |= checkPath(ψ)(b). (⇐=) If α |= checkPath(ψ)(b), by
definition of checkPath there is a formula ϕ such that α |= ∃U. ϕ(V ,U) and ϕ
occurs in a final state (bF , qF , ϕ) of N ψ′

B,b. Hence there is an assignment γ with
domain V ∪V0 and γ(V0)= α(V) such that γ |= ϕ. By Theorem 1, there is a run
ρ : (b, α) →∗ (bF , αF) such that ρ |=K ψ′. By the assumption, we have ρ |= ψ. ��
At this point the main theorem can be proven:

Proof (of Theorem 2). We first show (�): for any path formula ψ, there is a
run ρ ∈ FRuns(b, α) with ρ |= ψ iff α |= checkPath(ψ)(b). The proof is by
induction on qd(ψ). If ψ contains no path quantifiers, Lemma 3 implies that
ρ |= ψ iff ρ |=K toLTLK(ψ) for all runs ρ, so (�) follows from Lemma 4. In the
induction step, we conclude from Lemma 3, using the induction hypothesis of

48 P. Felli et al.

(�) as assumption, that ρ |= ψ iff ρ |=K toLTLK(ψ) for all runs ρ. Again, (�)
follows from Lemma 4.

The theorem is then shown by induction on χ: The base cases 	, b′ ∈B,
c∈ C are easy to check, and for properties of the form ¬χ′ and χ1 ∧χ2 the claim
follows from the induction hypothesis and the definitions. Finally, for χ = E ψ,
(b, α) |= χ iff there is a run ρ ∈ FRuns(b, α) such that ρ |= ψ. By (�) this is the
case iff α |= checkPath(ψ)(b) = checkState(χ)(b). ��

Termination. We next show that the formulas generated in our procedure all
have a particular shape, to obtain an abstract termination result. For a set of
formulas Φ ⊆ C(V) and a symbolic run σ, let a history constraint h(σ, ϑ) be over
basis Φ if ϑ = 〈ϑ0, . . . , ϑn〉 and for all i, 1≤ i≤ n, there is a subset Ti ⊆ Φ s.t.
ϑi =

∧
Ti. Moreover, for a set of formulas Φ, let Φ± = Φ ∪ {¬ϕ | ϕ ∈ Φ}.

Definition 11. For a DDSA B, a constraint set C over free variables V , and
k ≥ 0, the formula sets Φk are inductively defined by Φ0 = C ∪ {	,⊥} and

Φk+1 = {
∨

ϕ∈H
∃U. ϕ(V ,U) | H ⊆ Hk}

where Hk is the set of all history constraints of B with basis
⋃

i≤k Φ±
i .

Note that formulas in Φk have free variables V , while those in Hk have free vari-
ables V0 ∪V . We next show that these sets correspond to the formulas generated
by our procedure, if all constraints in the verification property are in C.

Lemma 5. Let E ψ have quantifier depth k, ψ′ = toLTLK(ψ), and N ψ′
B,b be a

constraint graph constructed in checkPath(ψ) for some b ∈ B. Then,

(1) for all nodes (b′, q, ϕ) in N ψ′
B,b there is some ϕ′ ∈ Hk such that ϕ ≡ ϕ′,

(2) checkPath(ψ)(b) is equivalent to a formula in Φk+1.

The statements are proven by induction on k, using the results on the product
construction ([27, Lemma 6]). From part (1) of this lemma and Theorem 2 we
thus obtain an abstract criterion for decidability that will be useful in the next
section:

Corollary 1. For a DDSA B as above and a state formula χ, if Hj(b) is finite up
to equivalence for all j < qd(χ) and b ∈ B, a witness map can always be computed.

Proof. By the assumption about the sets Hj(b) for j < qd(χ), all product
automata constructions in recursive calls checkPath(ψ) of checkState(χ) termi-
nate if logical equivalence of formulas is checked eagerly. Thus checkState(χ) is
defined, and by Theorem 2 the result is a witness map. ��

The property that all sets Hj(b), j < qd(χ), are finite might not be decidable
itself. However, in the next section we will show means to guarantee this property.
Moreover, we remark that finiteness of all Hj(b) implies a finite history set,
a decidability criterion identified for the linear-time case [28, Definition 3.6];
but Example 5 below illustrates that the requirement on the Hj(b)’s is strictly
stronger.

CTL∗ Model Checking for Data-Aware Dynamic Systems with Arithmetic 49

5 Decidability of DDSA Classes

We here illustrate restrictions on DDSAs, either on the control flow or on the
constraint language, that render our approach a decision procedure for CTL∗

f .

Monotonicity constraints (MCs) restrict constraints (Definition 1) as follows:
MCs over variables V and domain D have the form p � q where p, q ∈ D ∪V
and � is one of =, �=,≤, <,≥, or >. The domain D may be R or Q. We call a
boolean formula whose atoms are MCs an MC formula, a DDSA where all atoms
in guards are MCs an MC-DDSA, and a CTL∗

f property whose constraint atoms
are MCs an MC property. For instance, B in Example 2 is an MC-DDSA.

We exploit a useful quantifier elimination property: If ϕ is an MC formula over
a set of constants L and variables V ∪{x}, there is some ϕ′ ≡ ∃x. ϕ such that ϕ′ is
a quantifier-free MC formula over V and L. Such a ϕ′ can be obtained by writing
ϕ in disjunctive normal form and applying a Fourier-Motzkin procedure [36,
Sect. 5.4] to each disjunct, which guarantees that all constants in ϕ′ also occur
in ϕ.

Theorem 3. For any DDSA B and property χ over monotonicity constraints,
a witness map is computable.

Proof. Let χ be an MC property, and L the finite set of constants in constraints
in χ, α0, and guards of B. Let moreover MCL be the set of quantifier-free formulas
whose atoms are MCs over V ∪ V0 and L, so MCL is finite up to equivalence.

We show the following property (�): all history constraints h(σ, ϑ) over basis
MCL are equivalent to a formula in MCL. For a symbolic run σ : b0 →∗ bn−1

a−→ bn

and a sequence ϑ = 〈ϑ0, . . . , ϑn〉 over MCL, the proof is by induction on n.
In the base case, h(σ, ϑ)= ϕν ∧ ϑ0 is in MCL because ϕν is a conjunction
of equalities between V ∪ V0, and ϑ0 ∈ MCL by assumption. In the induc-
tion step, h(σ, ϑ)= update(h(σ|n−1, ϑ|n−1), an) ∧ ϑn. By induction hypothesis,
h(σ|n−1, ϑ|n−1) ≡ ϕ for some ϕ in MCL. Thus h(σ, ϑ) ≡ ∃U.ϕ(U)∧Δa(U, V)∧ϑn.
As B is an MC-DDSA, Δa(U, V) is a conjunction of MCs over V ∪ U and con-
stants L, and ϑn ∈ MCL by assumption. By the quantifier elimination property,
there exists a quantifier-free MC-formula ϕ′ over variables V0 ∪V that is equiva-
lent to ∃U.ϕ(U)∧Δa(U, V)∧ϑn, and mentions only constants in L, so ϕ′ ∈ MCL.

For C the set of constraints in χ, we now show that Hj ⊆ MCL for all
j ≥ 0, by induction on j. In the base case (j = 0), the claim follows from (�), as
all constraints in Φ0, i.e., in χ, are in MCL. For j > 0, consider first a formula
ϕ̂ ∈ Φj for some b ∈ B. Then ϕ̂ is of the form ϕ̂ =

∨
ϕ∈H ∃U. ϕ(V ,U) for

some H ⊆ Hj−1. By the induction hypothesis, H ⊆ MCL, so by the quantifier
elimination property of MC formulas, ϕ̂ is equivalent to an MC-formula over V
and L in MCL. As Hj s built over basis Φj , the claim follows from (�). ��

Notably, the above quantifier elimination property fails for MCs over integer
variables; indeed, CTL model checking is undecidable in this case [42, Theorem
4.1].

50 P. Felli et al.

Integer periodicity constraint systems confine the constraint language to
variable-to-constant comparisons and restricted forms of variable-to-variable
comparisons, and are for instance used in calendar formalisms [18,22]. More
precisely, integer periodicity constraint (IPC) atoms have the form x = y, x � d
for � ∈ {=, �=, <,>}, x ≡k y + d, or x ≡k d, for variables x, y with domain
Z and k, d ∈ N. A boolean formula whose atoms are IPCs is an IPC formula,
a DDSA whose guards are conjunctions of IPCs an IPC-DDSA, and a CTL∗

f

formula whose constraint atoms are IPCs an IPC property. For instance, Bipc in
Example 2 is an IPC-DDSA.

Using Corollary 1 and a known quantifier elimination property for IPCs [18,
Theorem 2], one can show that witness maps are also computable for IPC-
DDSAs, in a proof that resembles the one of Theorem 3 (see [27, Theorem 4]).

Theorem 4. For any DDSA B and property χ over integer periodicity con-
straints, a witness map is computable.

The proofs of both Theorems 3 and 4 rely on the fact that all transition guards
and constraints in the verification property are in a finite set of constraints C
that is closed under quantifier elimination, so that for all ϕ ∈ C and actions
a, update(ϕ, a) is again equivalent to a formula in C. However, this is not the
only way to ensure the requirements of Corollary 1: For a simple example, these
requirements are satisfied by a loop-free DDSA, where the number of runs is
finite. Interestingly, while the cases of MC and IPC systems are also captured
by the abstract decidability criterion by Gascon [31], this need not apply to loop-
free DDSAs. A clarification of the relationship between the criteria in Corollary 1
and [31, Thm 4.5] requires further investigation.
Bounded lookback [28] restricts the control flow of a DDSA rather than the
constraint language, and is a generalization of the earlier feedback-freedom prop-
erty [14]. Intuitively, k-bounded lookback demands that the behavior of a DDSA
at any point in time depends only on k events from the past. We refer to [28,
Definition 5.9] for the formal definition. Systems that enjoy bounded lookback
allow for decidable linear-time verification [28, Theorem 5.10]. However, we next
show that this result does not extend to branching time.

Example 5. We reduce control state reachability of two-counter machines (2CM)
to the verification problem of CTL∗

f formulas in bounded lookback systems,
inspired by [42, Theorem 4.1]. 2CMs have a finite control structure and two
counters x1, and x2 that can be incremented, decremented, and tested for 0. It
is undecidable whether a 2CM will ever reach a designated control state f [43].
For a 2CM M, we build a feedback-free DDSA B = 〈B, bI ,A, T,BF , V, αI , guard〉
and a CTL∗

f property χ such that B satisfies χ iff f is reachable in M. The set B
consists of the control states of M, together with an error state e and auxiliary
states bt for transitions t of M, and BF = {f, e}. The set V consists of x1, x2

and auxiliary variables p1, p2, m1, m2. Zero-test transitions of M are directly
modeled in B, whereas a step q → q′ that increments xi by one is modeled as:

CTL∗ Model Checking for Data-Aware Dynamic Systems with Arithmetic 51

q bt q′

e

xw
i ≥ 0 ∧ pw

i = xr
i

xr
i �= pr

i + 1

The step q → bt writes xi, storing its previous value in pi, but if the write was not
an increment by exactly 1, a step to state e is enabled. Decrements are modeled
similarly. Intuitively, bounded lookback holds because variable dependencies are
limited: in a run of M, a variable dependency that is not an equality extends over
at most two time points. (More formally, non-equality paths in the computation
graph have at most length 1.) As increments are not exact, B overapproximates
M. However, χ = E G (¬E X e) asserts existence of a path that never allows for
a step to e (i.e., it properly simulates M) but reaches the final state f . Thus, B
satisfies χ iff f is reachable in M.

6 Implementation

We implemented our approach in the prototype ada (arithmetic DDS analyzer)
in Python; source code, benchmarks, and a web interface are available (https://
ctlstar.adatool.dev). As input, the tool takes a CTL∗ property χ together with
a DDSA in JSON format; alternatively, a given (bounded) Petri net with data
(DPN) in PNML format [5] can be transformed into a DDSA. The tool then
applies the algorithm in Fig. 1. If successful, it outputs the configuration map
returned by checkState(χ), and it can visualize the product constructions. For
SMT checks and quantifier elimination, ada interfaces CVC5 [23] and Z3 [17].
Besides numeric variables, ada also supports variables of type boolean and string;
for the latter, only equality comparison is supported, so different constants can
be represented by distinct integers. In addition to the operations in Definition 6,
ada allows next operators 〈a〉 via an action a, which are useful for verification.

We tested ada on a set of business process models presented as Data Petri nets
(DPNs) in the literature. As these nets are bounded, they can be transformed
into DDSAs. The results are reported in the table below. We indicate whether
the system belongs to a decidable class, the verified property and whether it is
satisfied by the initial configuration, the verification time, the number of SMT
checks, and the number of nodes in the DDSA B and the sum of all product
constructions, respectively. We used CVC5 as SMT solver; times are without
visualization, which tends to be time-consuming for large graphs. All tests were
run on an Intel Core i7 with 4×2.60 GHz and 19 GB RAM.

https://ctlstar.adatool.dev
https://ctlstar.adatool.dev

52 P. Felli et al.

process property sat time checks |B| |N ψ
B,b|

(a) road fines No deadlock ✗ 7.0s 8161 9 2052
AG (p7 → E F end) � 7.6s 7655 1987

AG (end → total ≤ amount) ✗ 1m12s 111139 3622
(b) road fines No deadlock � 15m27s 247563 9 4927

AG (p7 → E F end) � 16m7s 246813 4927
(c) road fines No deadlock ✗ 9s 9179 9 1985

AG (p7 → E F end) � 6.6s 6382 1597
ψc1 = EF (dS ≥ 2160) ✗ 11.5s 17680 1280
ψc2 = EF (dP ≥ 1440) ✗ 10.0s 15187 1280
ψc3 = EF (dJ ≥ 1440) ✗ 10.5 16000 1280

(d) hospital billing No deadlock � 20m59s 1234928 17 23147
ψd1 = EF (p16 ∧ ¬closed) � 10m20s 669379 10654

(e) sepsis No deadlock � 1m36s 139 301 44939
ψe1 = AG (sink → ttr < tab) ✗ 30.1s 170 22724

ψe2 = AG (sink → ttr+60 ≥ tab) � 32s 153 22538
(f) sepsis No deadlock � 7m24 4524 301 161242

ψf1 = A (¬lacticAcidG 〈diagnostic〉�) � 3m53s 5734 74984
(g) board: register No deadlock � 1.4s 12 7 27
(h) board: transfer No deadlock � 1.4s 27 7 51
(i) board: discharge No deadlock � 1.5s 25 6 67

ψi1 = AG (p2 ∧ o1=207 → AG o1=207) � 1.5s 94 91
ψi2 = A (EF 〈tra〉� ∧ EF 〈his〉�) � 1.5s 27 98
ψi3 = ¬E (F 〈tra〉� ∧ F 〈his〉�) � 1.4s 56 43

(j) credit approval No deadlock � 1.7s 470 6 230
ψj1 = AG (〈openLoan〉� → ver ∧ dec) � 13.2s 14156 645

ψj2 = A (F (ver ∧ dec) → F 〈openLoan〉�) ✗ 3.7s 3128 316
ψj3 = A (F (ver ∧ dec) → EF 〈openLoan〉�) � 5.6s 4748 548

(k) package handling No deadlock � 2.7ss 1025 16 693
No deadlock (τ1) � 2.5s 1079 398
ψk1 = EF 〈fetch〉� ✗ 2.6s 850 343
ψk2 = EF 〈τ6 〉� ✗ 2.4s 875 336

(l) auction No deadlock ✗ 10.8s 1683 5 186
EF (sold ∧ d > 0 ∧ o ≤ t) ✗ 6.4s 1180 79

EF (b = 1 ∧ o > t ∧ F (sold ∧ b > 1)) � 26.5s 4000 263

We briefly comment on the benchmarks and some properties: For all examples
we checked no deadlock, which abbreviates AG EFχf where χf is a disjunction
of all final states. This is one of the two requirements of the crucial soundness
property (cf. Example 1). Weak soundness [4] relaxes this requirement to demand
only that if a transition is reachable, it does not lead to deadlocks; this is called
here no deadlock(a), expressed by EF (〈a〉) → AG (〈a〉	 → F χf). One can also
check whether a specific state p is deadlock-free, via AG (p → EF χf).

(a)-(c) are versions of the road fine management process (cf. Example 1); (a) [40,
Fig. 12.7] and (b) [37, Fig. 13] were mined automatically from logs, while (c)
is the normative version [41, Fig. 7] shown in Example 1. While in (a) and
(c) no deadlock is violated, this issue was fixed in version (b). The fact that
ψc1, ψc2, and ψc3 hold confirm that the time constraints are never violated.

(d) models a billing process in a hospital [40, Fig. 15.3], which is deadlock-free.
(e) is a normative model for a sepsis triage process in a hospital [40, Fig. 13.3],

and (f) is a variation that was mined purely automatically from logs [40,
Fig. 13.6]. According to [40, Sect. 13], triage should happen before antibiotics
are administered, expressed by ψe1, which is actually not satisfied. However,
the desired time constraint expressed by ψe2 holds.

(g)–(i) reflect activities in patient logistics of a hospital, based on logs of real-
life processes [40, Fig. 14.3]. While the no deadlock property is satisfied by

CTL∗ Model Checking for Data-Aware Dynamic Systems with Arithmetic 53

all initial configurations, the output of ada reveals that for (h) this need not
hold for other initial assignments.

(j) is a credit approval process [16, Fig. 3]. It is deadlock-free; ψj1 and ψj2 verify
desirable conditions under which a loan is granted to a client.

(k) is a package handling routine [26, Fig. 5]. The fact that the properties ψk1

and ψk2 are not satisfied shows that the transitions τ6 and fetch are dead.
(l) models an auction process [28, Example 1.1], for which ada reveals a deadlock.

Results for two further properties from [28, Example 1.1] are listed as well.

Seven systems are in a decidable class wrt. the listed properties: (a), (b), (d),
(f), (h), (i), (k) are MC, while (d), (h), (i), (k) are IPC. This is due to the fact
that automatic mining techniques often produce monotonicity constraints [39].

7 Conclusion

This paper presents a technique to compute witness maps for a given DDSA and
CTL∗

f property, where a witness map specifies conditions on the initial variable
assignment such that the property holds. The addressed problem is thus a slight
generalization of the common verification problem. While our model checking
procedure need not terminate in general, we show that it does if an abstract
property on history constraints holds. Moreover, witness maps always exist for
monotonicity and integer periodicity constraint systems. However, this result
does not extend to bounded lookback systems. We implemented our approach
in the tool ada and showed its usefulness on a range of business process models.

We see various opportunities to extend this work. A richer verification lan-
guage could support past time operators [18] and future variable values [20].
Further decidable fragments could be sought using covers [33], or aiming for
compatibility with locally finite theories [32]. Moreover, a restricted version of
the bounded lookback property could guarantee decidability of CTL∗

f , similarly
to the way feedback freedom was strengthened in [35]. The implementation could
be improved to avoid the computation of many similar formulas, thus gaining
efficiency. Finally, the complexity class that our approach implies for CTL∗

f in
the decidable classes is yet to be clarified.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer (2016).
https://doi.org/10.1007/978-3-662-49851-4

2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
3. Baral, C., De Giacomo, G.: Knowledge representation and reasoning: what’s hot.

In: Proceedings of the 29th AAAI, pp. 4316–4317 (2015)
4. Batoulis, K., Haarmann, S., Weske, M.: Various notions of soundness for decision-

aware business processes. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.)
ER 2017. LNCS, vol. 10650, pp. 403–418. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-69904-2 31

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-69904-2_31
https://doi.org/10.1007/978-3-319-69904-2_31

54 P. Felli et al.

5. Billington, J., et al.: The petri net markup language: concepts, technology, and
tools. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679,
pp. 483–505. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44919-
1 31

6. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating octagons. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00768-2 29

7. Bozzelli, L., Gascon, R.: Branching-time temporal logic extended with qualitative
Presburger constraints. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 197–211. Springer, Heidelberg (2006). https://doi.org/10.
1007/11916277 14

8. Bozzelli, L., Pinchinat, S.: Verification of gap-order constraint abstractions of
counter systems. Theor. Comput. Sci. 523, 1–36 (2014). https://doi.org/10.1016/
j.tcs.2013.12.002

9. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data-aware process
analysis: a database theory perspective. In: Proceedings of the 32nd PODS, pp.
1–12 (2013). https://doi.org/10.1145/2463664.2467796

10. Calvanese, D., De Giacomo, G., Montali, M., Patrizi, F.: First-order µ-calculus over
generic transition systems and applications to the situation calculus. Inf. Comput.
259(3), 328–347 (2018). https://doi.org/10.1016/j.ic.2017.08.007

11. Carapelle, C., Kartzow, A., Lohrey, M.: Satisfiability of ECTL∗ with constraints.
J. Comput. Syst. Sci. 82(5), 826–855 (2016). https://doi.org/10.1016/j.jcss.2016.
02.002

12. Čerāns, K.: Deciding properties of integral relational automata. In: Abiteboul, S.,
Shamir, E. (eds.) ICALP 1994. LNCS, vol. 820, pp. 35–46. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58201-0 56

13. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Presburger
arithmetic. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 268–
279. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028751

14. Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies
and arithmetic. ACM Trans. Database Syst. 37(3), 22:1–22:36 (2012). https://doi.
org/10.1145/2338626.2338628

15. de Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces:
insensitivity to infiniteness. In: Proceedings of the 28th AAAI, pp. 1027–1033
(2014)

16. de Leoni, M., Mannhardt, F.: Decision discovery in business processes. In: Ency-
clopedia of Big Data Technologies, pp. 1–12. Springer (2018). https://doi.org/10.
1007/978-3-319-63962-8 96-1

17. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

18. Demri, S.: LTL over integer periodicity constraints. Theor. Comput. Sci. 360(1–3),
96–123 (2006). https://doi.org/10.1016/j.tcs.2006.02.019

19. Demri, S., Dhar, A.K., Sangnier, A.: Equivalence between model-checking flat
counter systems and Presburger arithmetic. Theor. Comput. Sci. 735, 2–23 (2018).
https://doi.org/10.1016/j.tcs.2017.07.007

20. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL.
Inform. Comput. 205(3), 380–415 (2007). https://doi.org/10.1016/j.ic.2006.09.006

21. Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Model-checking CTL* over
flat Presburger counter systems. J. Appl. Non Class. Logics 20(4), 313–344 (2010).
https://doi.org/10.3166/jancl.20.313-344

https://doi.org/10.1007/3-540-44919-1_31
https://doi.org/10.1007/3-540-44919-1_31
https://doi.org/10.1007/978-3-642-00768-2_29
https://doi.org/10.1007/11916277_14
https://doi.org/10.1007/11916277_14
https://doi.org/10.1016/j.tcs.2013.12.002
https://doi.org/10.1016/j.tcs.2013.12.002
https://doi.org/10.1145/2463664.2467796
https://doi.org/10.1016/j.ic.2017.08.007
https://doi.org/10.1016/j.jcss.2016.02.002
https://doi.org/10.1016/j.jcss.2016.02.002
https://doi.org/10.1007/3-540-58201-0_56
https://doi.org/10.1007/BFb0028751
https://doi.org/10.1145/2338626.2338628
https://doi.org/10.1145/2338626.2338628
https://doi.org/10.1007/978-3-319-63962-8_96-1
https://doi.org/10.1007/978-3-319-63962-8_96-1
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1016/j.tcs.2006.02.019
https://doi.org/10.1016/j.tcs.2017.07.007
https://doi.org/10.1016/j.ic.2006.09.006
https://doi.org/10.3166/jancl.20.313-344

CTL∗ Model Checking for Data-Aware Dynamic Systems with Arithmetic 55

22. Demri, S., Gascon, R.: Verification of qualitative Z constraints. Theor. Comput.
Sci. 409(1), 24–40 (2008). https://doi.org/10.1016/j.tcs.2008.07.023

23. Deters, M., Reynolds, A., King, T., Barrett, C.W., Tinelli, C.: A tour of CVC4:
how it works, and how to use it. In: Proceedings of the 14th FMCAD, p. 7 (2014).
https://doi.org/10.1109/FMCAD.2014.6987586

24. Deutsch, A., Hull, R., Li, Y., Vianu, V.: Automatic verification of database-
centric systems. ACM SIGLOG News 5(2), 37–56 (2018). https://doi.org/10.1145/
3212019.3212025

25. Felli, P., de Leoni, M., Montali, M.: Soundness verification of decision-aware process
models with variable-to-variable conditions. In: Proceedings of the 19th ACSD, pp.
82–91. IEEE (2019). https://doi.org/10.1109/ACSD.2019.00013

26. Felli, P., de Leoni, M., Montali, M.: Soundness verification of data-aware process
models with variable-to-variable conditions. Fund. Inform. 182(1), 1–29 (2021).
https://doi.org/10.3233/FI-2021-2064

27. Felli, P., Montali, M., Winkler, S.: CTL∗ model checking for data-aware dynamic
systems with arithmetic (extended version) (2022). https://doi.org/10.48550/
arXiv.2205.08976

28. Felli, P., Montali, M., Winkler, S.: Linear-time verification of data-aware dynamic
systems with arithmetic. In: Proceedings of the 36th AAAI (2022). https://doi.
org/10.48550/arXiv.2203.07982

29. Finkel, A., Leroux, J.: How to compose Presburger-accelerations: applications to
broadcast protocols. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol.
2556, pp. 145–156. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36206-1 14

30. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems. In: Proc. 2nd INFINITY. ENTCS, vol. 9, pp. 27–37 (1997).
https://doi.org/10.1016/S1571-0661(05)80426-8

31. Gascon, R.: An automata-based approach for CTL∗ with constraints. In: Proceed-
ings of the INFINITY 2006, 2007 and 2008. ENTCS, vol. 239, pp. 193–211 (2009).
https://doi.org/10.1016/j.entcs.2009.05.040

32. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Combination methods for satis-
fiability and model-checking of infinite-state systems. In: Pfenning, F. (ed.) CADE
2007. LNCS (LNAI), vol. 4603, pp. 362–378. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73595-3 25

33. Gulwani, S., Musuvathi, M.: Cover algorithms and their combination. In:
Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 193–207. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78739-6 16

34. Ibarra, O.H., Su, J.: Counter machines: decision problems and applications. In:
Jewels are Forever: Contributions on Theoretical Computer Science in Honor of
Arto Salomaa, pp. 84–96 (1999)

35. Koutsos, A., Vianu, V.: Process-centric views of data-driven business artifacts. J.
Comput. Syst. Sci. 86, 82–107 (2017). https://doi.org/10.1016/j.jcss.2016.11.012

36. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View.
Second Edition. Springer (2016). https://doi.org/10.1007/978-3-662-50497-0

37. de Leoni, M., Felli, P., Montali, M.: A holistic approach for soundness verification
of decision-aware process models. In: Trujillo, J.C., Davis, K.C., Du, X., Li, Z.,
Ling, T.W., Li, G., Lee, M.L. (eds.) ER 2018. LNCS, vol. 11157, pp. 219–235.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00847-5 17

38. de Leoni, M., Felli, P., Montali, M.: Strategy synthesis for data-aware dynamic
systems with multiple actors. In: Proceedings of the 17th KR, pp. 315–325 (2020).
https://doi.org/10.24963/kr.2020/32

https://doi.org/10.1016/j.tcs.2008.07.023
https://doi.org/10.1109/FMCAD.2014.6987586
https://doi.org/10.1145/3212019.3212025
https://doi.org/10.1145/3212019.3212025
https://doi.org/10.1109/ACSD.2019.00013
https://doi.org/10.3233/FI-2021-2064
https://doi.org/10.48550/arXiv.2205.08976
https://doi.org/10.48550/arXiv.2205.08976
https://doi.org/10.48550/arXiv.2203.07982
https://doi.org/10.48550/arXiv.2203.07982
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1016/S1571-0661(05)80426-8
https://doi.org/10.1016/j.entcs.2009.05.040
https://doi.org/10.1007/978-3-540-73595-3_25
https://doi.org/10.1007/978-3-540-73595-3_25
https://doi.org/10.1007/978-3-540-78739-6_16
https://doi.org/10.1016/j.jcss.2016.11.012
https://doi.org/10.1007/978-3-662-50497-0
https://doi.org/10.1007/978-3-030-00847-5_17
https://doi.org/10.24963/kr.2020/32

56 P. Felli et al.

39. de Leoni, M., Felli, P., Montali, M.: Integrating BPMN and DMN: modeling and
analysis. J. Data Semant. 10(1), 165–188 (2021). https://doi.org/10.1007/s13740-
021-00132-z

40. Mannhardt, F.: Multi-perspective process mining. Ph.D. thesis, Technical Univer-
sity of Eindhoven (2018)

41. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-
perspective checking of process conformance. Computing 98(4), 407–437 (2015).
https://doi.org/10.1007/s00607-015-0441-1

42. Mayr, R., Totzke, P.: Branching-time model checking gap-order constraint sys-
tems. Fundam. Informaticae 143(3–4), 339–353 (2016). https://doi.org/10.3233/
FI-2016-1317

43. Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
44. Murano, A., Parente, M., Rubin, S., Sorrentino, L.: Model-checking graded

computation-tree logic with finite path semantics. Theor. Comput. Sci. 806, 577–
586 (2020). https://doi.org/10.1016/j.tcs.2019.09.021

45. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Comptes Rendus du I congres de Mathem. des Pays Slaves, pp. 92–101 (1929)

46. Reichert, M.: Process and data: two sides of the same coin? In: Meersman, R.,
Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha,
A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012. LNCS, vol. 7565, pp. 2–19.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33606-5 2

47. Sorrentino, L., Rubin, S., Murano, A.: Graded CTL* over finite paths. In: Pro-
ceedings of the 19th ICTCS. CEUR Workshop Proceedings, vol. 2243, pp. 152–161.
CEUR-WS.org (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s13740-021-00132-z
https://doi.org/10.1007/s13740-021-00132-z
https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.3233/FI-2016-1317
https://doi.org/10.3233/FI-2016-1317
https://doi.org/10.1016/j.tcs.2019.09.021
https://doi.org/10.1007/978-3-642-33606-5_2
http://creativecommons.org/licenses/by/4.0/

SAT-Based Proof Search in Intermediate
Propositional Logics

Camillo Fiorentini1 and Mauro Ferrari2(B)

1 Department of Computer Science, Università degli Studi di Milano, Milan, Italy
2 Department of Theoretical and Applied Sciences,
Università degli Studi dell’Insubria, Varese, Italy

mauro.ferrari@uninsubria.it

Abstract. We present a decision procedure for intermediate logics rely-
ing on a modular extension of the SAT-based prover intuitR for IPL
(Intuitionistic Propositional Logic). Given an intermediate logic L and a
formula α, the procedure outputs either a Kripke countermodel for α or
the instances of the characteristic axioms of L that must be added to IPL
in order to prove α. The procedure exploits an incremental SAT-solver;
during the computation, new clauses are learned and added to the solver.

1 Introduction

Recently, Claessen and Rosén have introduced intuit [4], an efficient decision
procedure for Intuitionistic Propositional Logic (IPL) based on the Satisfiability
Modulo Theories (SMT) approach. The prover language consists of (flat) clauses
of the form

∧
A1 →

∨
A2 (with Ai a set of atoms), which are fed to the SAT-

solver, and implication clauses of the form (a → b) → c (a, b, c atoms); thus,
we need an auxiliary clausification procedure to preprocess the input formula.
The search is performed via a proper variant of the DPLL(T) procedure [16],
by exploiting an incremental SAT-solver; during the computation, whenever a
semantic conflict is thrown, a new clause is learned and added to the SAT-solver.
As discussed in [9], there is a close connection between the intuit approach and
the known proof-theoretic methods. Actually, the decision procedure mimics the
standard root-first proof search strategy for a sequent calculus strongly con-
nected with Dyckhoff’s calculus LJT [5] (alias G4ip). To improve performances,
we have re-designed the prover by adding a restart operation, thus obtaining
intuitR [8] (intuit with Restart). Differently from intuit, the intuitR pro-
cedure has a simple structure, consisting of two nested loops. Given a formula
α, if α is provable in IPL the call intuitR(α) yields a derivation of α in the
sequent calculus introduced in [8], a plain calculus where derivations have a sin-
gle branch. If α is not provable in IPL, the outcome of intuitR(α) is a (typically
small) countermodel for α, namely a Kripke model falsifying α. We stress that
intuitR is highly performant: on the basis of a standard benchmarks suite, it
outperforms intuit and other state-of-the-art provers (in particular, fCube [6]
and intHistGC [12]).

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 57–74, 2022.
https://doi.org/10.1007/978-3-031-10769-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_5&domain=pdf
http://orcid.org/0000-0003-2152-7488
http://orcid.org/0000-0002-7904-1125
https://doi.org/10.1007/978-3-031-10769-6_5

58 C. Fiorentini and M. Ferrari

In this paper we present intuitRIL, an extension of intuitR to Interme-
diate Logics, namely propositional logics extending IPL and contained in CPL
(Classical Propositional Logic). Specifically, let α be a formula and L an axiom-
atizable intermediate logic having Kripke semantics; the call intuitRIL(α,L)
tries to prove the validity of α in L. To this aim, the prover searches for a set
Ψ containing instances of Ax(L), the characteristic axioms of L, such that α
can be proved in IPL from Ψ . Note that this is different from other approaches,
where the focus is on the synthesis of specific inference rules for the logic at
hand (see, e.g., [17]). Basically, intuitRIL(α,L) searches for a countermodel K
for α, exploiting the search engine of intuitR: whenever we get K, we check
whether K is a model of L. If this is the case, we conclude that α is not valid
in L (and K is a witness to this). Otherwise, the prover selects an instance ψ
of Ax(L) falsified in K (there exists at least one); ψ is acknowledged as learned
axiom and, after clausification, it is fed to the SAT-solver. We stress that a naive
implementation of the procedure, where at each iteration of the main loop the
computation restarts from scratch, would be highly inefficient: each time the
SAT-solver should be initialized by inserting all the clauses encoding the input
problem and all the clauses learned so far. Instead, we exploit an incremental
SAT-solver, where clauses can be added but never deleted (hence, all the sim-
plifications and optimisations performed by the solver are preserved); note that
this prevents us from exploiting strategies based on standard sequent/tableaux
calculi, where backtracking is required.

If the call intuitRIL(α,L) succeeds, by tracking the computation we get a
derivation D of α in the sequent calculus CL (see Fig. 1); from D we can extract
all the axioms learned during the computation. We stress that the procedure is
quite modular: to handle a logic L, one has only to implement a specific learning
mechanism for L (namely: if K is not a model of L, pick an instance of Ax(L)
falsified in K). The main drawback is that there is no general way to bound the
learned axioms, thus termination must be investigated on a case-by-case basis.
We guarantee termination for some relevant intermediate logics, such as Gödel-
Dummett Logic GL, the family GLn (n ≥ 1) of Gödel-Dummett Logics with
depth bounded by n (GL1 coincides with Here and There Logic, well known
for its applications in Answer Set Programming [15]) and Jankov Logic (for a
presentation of such logics see [2]). As a corollary, for each of the mentioned
logic L we get a bounding function [3], namely: given α, we compute a bounded
set Ψα of instances of Ax(L) such that α is valid in L iff α is provable in IPL
from assumptions Ψα; in general we improve the bounds in [1,3]. The intuitRIL
Haskell implementation and other additional material (e.g., the omitted proofs)
can be downloaded at https://github.com/cfiorentini/intuitRIL.

2 Basic Definitions

Formulas, denoted by lowercase Greek letters, are built from an enumerable set of
propositional variables V, the constant ⊥ and the connectives ∧, ∨, →; moreover,
¬α stands for α → ⊥ and α ↔ β stands for (α → β) ∧ (β → α). Elements of
the set V ∪ {⊥} are called atoms and are denoted by lowercase Roman letters,

https://github.com/cfiorentini/intuitRIL

SAT-Based Proof Search in Intermediate Propositional Logics 59

uppercase Greek letters denote sets of formulas. By Vα we denote the set of
propositional variables occurring in α. The notation is extended to sets: VΓ is
the union of Vα such that α ∈ Γ ; VΓ,Γ ′ and VΓ,α stand for VΓ∪Γ ′ and VΓ∪{α}
respectively. A substitution is a map from propositional variables to formulas.
By [p1
→ α1, . . . , pn
→ αn] we denote the substitution χ such that χ(p) = αi if
p = pi and χ(p) = p otherwise; the set {p1, . . . , pn} is the domain of χ, denoted
by Dom(χ); ε is the substitution having empty domain. The application of χ to
a formula α, denoted by χ(α), is defined as usual; χ(Γ) is the set of χ(α) such
that α ∈ Γ . The composition χ1 ·χ2 is the substitution mapping p to χ1(χ2(p)).

A (classical) interpretation M is a subset of V, identifying the propositional
variables assigned to true. By M |= α we mean that α is true in M ; M |= Γ
iff M |= α for every α ∈ Γ . Classical Propositional Logic (CPL) is the set of
formulas true in every interpretation. We write Γ �c α iff M |= Γ implies
M |= α, for every M . Note that α is CPL-valid (namely, α ∈ CPL) iff ∅ �c α.

A (rooted) Kripke model is a quadruple 〈W,≤, r, ϑ〉 where W is a finite
and non-empty set (the set of worlds), ≤ is a reflexive and transitive binary
relation over W , the world r (the root of K) is the minimum of W w.r.t. ≤, and
ϑ : W
→ 2V (the valuation function) is a map obeying the persistence condition:
for every pair of worlds w1 and w2 of K, w1 ≤ w2 implies ϑ(w1) ⊆ ϑ(w2); the
triple 〈W,≤, r〉 is called (Kripke) frame. The valuation ϑ is extended to a forcing
relation between worlds and formulas as follows:

w � p iff p ∈ ϑ(w), ∀p ∈ V w � ⊥ w � α ∧ β iff w � α and w � β

w � α ∨ β iff w � α or w � β w � α → β iff ∀w′ ≥ w, w′ � α implies w′ � β.

By w � Γ we mean that w � α for every α ∈ Γ . A formula α is valid in the
frame 〈W,≤, r〉 iff for every valuation ϑ, r � α in the model 〈W,≤, r, ϑ〉. Proposi-
tional Intuitionistic Logic (IPL) is the set of formulas valid in all frames. Accord-
ingly, if there is a model K such that r � α (here and below r designates the root
of K), then α is not IPL-valid; we call K a countermodel for α. We write Γ �i δ
iff, for every model K, r � Γ implies r � δ; thus, α is IPL-valid iff ∅ �i α.

Let L be one of the logics IPL and CPL; then, L is closed under modus
ponens ({α, α → β} ⊆ L implies β ∈ L) and under substitution (for every χ,
α ∈ L implies χ(α) ∈ L). An intermediate logic is any set of formulas L such
that IPL ⊆ L ⊆ CPL, L is closed under modus ponens and under substitution. A
model K is an L-model iff r � L; if r � α, we say that K is an L-countermodel for
α. An intermediate logic L can be characterized by a set of CPL-valid formulas,
called the L-axioms and denoted by Ax(L). An L-axiom ψ of Ax(L) must be
understood as a schematic formula, representing all the formulas of the kind
χ(ψ); we call χ(ψ) an instance of ψ. Formally, IPL + Ax(L) is the intermediate
logic collecting the formulas α such that Ψ �i α, where Ψ is a finite set of
instances of L-axioms from Ax(L). A bounding function for L is a map that,
given α, yields a finite set Ψα of instances of L-axioms such that Ψα �i α. If L
admits a computable bounding function, we can reduce L-validity to IPL-validity
(see [3] for an in-depth discussion). Let F be a class of frames and let Log(F)
be the set of formulas valid in all frames of F ; then, Log(F) is an intermediate
logic. A logic L has Kripke semantics iff there exists a class of frames F such
that L = Log(F); we also say that L is characterized by F . Henceforth, when we

60 C. Fiorentini and M. Ferrari

mention a logic L, we leave understood that L is an axiomatizable intermediate
logic having Kripke semantics.

Example 1 (GL). A well-known intermediate logic is Gödel-Dummett logic
GL [2], characterized by the class of linear frames. An axiomatization of GL
is obtained by adding the linearity axiom lin = (a → b) ∨ (b → a) to IPL. Using
the terminology of [3], GL is formula-axiomatizable: a bounding function for GL
is obtained by mapping α to the set Ψα of instances of lin where a and b are
replaced with subformulas of α. In [1] it is proved that it is sufficient to consider
the subformulas of α of the kind p ∈ Vα, ¬β, β1 → β2. In Lemma 4 we further
improve this bound tacking as bounding function the following map:

AxGL(α) = { (a → b) ∨ (b → a) | a, b ∈ Vα } ∪ { (a → ¬a) ∨ (¬a → a) | a ∈ Vα }
∪ { (a → (a → b)) ∨ ((a → b) → a)) | a, b ∈ Vα }

Thus, if Vα = {a}, the only instance of lin to consider is (a → ¬a)∨(¬a → a),
independently of the size of α (the other instances are IPL-valid and can be
omitted). As pointed out in [3], GL is not variable-axiomatizable, namely: it is
not sufficient to consider instances of lin obtained by replacing a and b with
variables from Vα. As an example, let α = ¬a ∨ ¬¬a; α is GL-valid, the only
variable-replacement instance of lin is ψα = (a → a) ∨ (a → a) and ψα �i α. ♦

We review the main concepts about the clausification procedure described
in [4]. Clauses ϕ and implication clauses λ are defined as

ϕ :=
∧

A1 →
∨

A2 |
∨

A2 ∅ ⊂ Ak ⊆ V ∪ {⊥}, fork ∈ {1, 2}
λ := (a → b) → c a ∈ V, {b, c} ⊆ V ∪ {⊥}

where
∧

A1 and
∨

A2 denote the conjunction and the disjunction of the atoms
in A1 and A2 respectively (

∧
{a} =

∨
{a} = a). Henceforth,

∧
∅ →

∨
A2 must

be read as
∨

A2; R, R1, . . . denote sets of clauses, X, X1, . . . sets of implication
clauses. Given a set of implication clauses X, the closure of X, denoted by (X)�,
is the set of clauses b → c such that (a → b) → c ∈ X.

The following lemma states some properties of clauses and closures.

Lemma 1. (i) R �i g iff R �c g, for every set of clauses R and every atom g.
(ii) X �i b → c, for every b → c ∈ (X)�.
(iii) Γ �i α iff α ↔ g, Γ �i g, where g �∈ VΓ,α.

Clausification. We assume a procedure Clausify that, given a formula α, com-
putes sets of clauses R and X equivalent to α w.r.t. IPL. Formally, let α be a
formula and let V be a set of propositional variables such that Vα ⊆ V . The
procedure Clausify(α,V) computes a triple (R,X, χ) satisfying:

(C1) Γ, α �i δ iff Γ,R,X �i δ, for every Γ and δ such that VΓ,δ ⊆ V .
(C2) Dom(χ) = VR,X \ V and Vχ(p) ⊆ V for every p ∈ Dom(χ).
(C3) R,X �i p ↔ χ(p) for every p ∈ Dom(χ).

SAT-Based Proof Search in Intermediate Propositional Logics 61

Fig. 1. The sequent calculus CL.

Basically, clausification introduces new propositional variables to represent sub-
formulas of α; as a result we obtain a substitution χ which tracks the mapping
on the new variables. Condition (C1) states that α can be replaced by R ∪ X in
IPL reasoning. By (C2) the domain of χ consists of the new variables introduced
in the clausification process. The following properties easily follow by (C1)–(C3):

(P1) R,X �i α. (P2) R,X �i β ↔ χ(β) for every formula β.

We exploit a Clausify procedure essentially similar to the one described
in [4], with slight modifications in order to match (C3). As discussed in [4], in IPL
we can use a weaker condition (either R,X �i p → χ(p) or R,X �i χ(p) → p
according to the case). It is not obvious whether the weaker condition should be
more efficient; in many cases strong equivalences are more performant, maybe
because they trigger more simplifications in the SAT-solver.

Example 2. Let α = (a → b)∨ (b → a) and V = {a, b}. The call Clausify(α,V)
introduces the new variables p̃0 and p̃1 associated with the subformulas a → b
and b → a respectively. Accordingly, the obtained sets R and X must satisfy
R,X �i p̃0 ↔ (a → b) and R,X �i p̃1 ↔ (b → a). We get:

R = { p̃0 ∨ p̃1, p̃0 ∧ a → b, p̃1 ∧ b → a } χ = [p̃0
→ a → b, p̃1
→ b → a]
X = { (a → b) → p̃0, (b → a) → p̃1 }

♦

3 The Calculus CL

Let L be an intermediate logic; we introduce the sequent calculus CL to prove
L-validity. We assume that L is axiomatized by a set Ax(L) of L-axioms; by

62 C. Fiorentini and M. Ferrari

. . .

. . .

Rn−1 c g
ρn = cpl0Rn−1, Xn−1 ⇒ g
ρn−1

Rn−2, Xn−2 ⇒ g

...
R1, X1 ⇒ g

ρ1
R0, X0 ⇒ g

ρ0 = Claus0⇒ α

∀i ∈ {1, . . . , n − 1}, ρi = cpl1 or ρi = Claus1

π(D) = Ψ0 ∪ · · · ∪ Ψn , χ0 · . . . · χn

where Ψj , χj = π(ρj)

Fig. 2. A CL-derivation of ⇒ α.

Ax(L, V) we denote the set of instances ψ of L-axioms such that Vψ ⊆ V . The
calculus relies on a clausification procedure Clausify satisfying conditions (C1)–
(C3) and acts on sequents Γ ⇒ δ such that:

– either Γ = ∅ or Γ = R ∪ X and (X)� ⊆ R and δ is an atom.

Rules of CL are displayed in Fig. 1. Rule cpl0 (initial rule) can only be applied
if the condition R �c g holds; if this is the case, the conclusion R,X ⇒ g is an
initial sequent, namely a top sequent of a derivation. The other rules depend on
parameters that are made explicit in the rule name. A bottom-up application of
cpl1 requires the choice of an implication clause λ = (a → b) → c from X, we
call the main formula, and the selection of a set of atoms A ⊆ VR,X,g such that
R,A �c b, where b is the middle variable in λ. As discussed in [8,9], cpl1 is a
sort of generalization of the rule L →→ of the sequent calculus LJT/G4ip for
IPL [5,18]. Rules Claus0 and Claus1 exploit the clausification procedure. Rule
Claus0 requires the clausification of the formula α ↔ g, with g a new atom
(g �∈ Vα); in rule Claus1, the clausified formula ψ is selected from Ax(L,VR,X,g).
In both cases, the clauses returned by Clausify are stored in the premise of
the applied rule and the computed substitution χ is displayed in the rule name;
moreover, Claus0 is annotated with the new atom g and Claus1 with the chosen
L-axiom ψ. To recover the relevant information associated with the application
of a rule ρ, in Fig. 1 we define the pair π(ρ) = 〈Ψ, χ〉, where Ψ is a set of instances
of L-axioms and χ is a substitution. CL-trees and CL-derivations are defined as
usual (see e.g. [18]); a sequent σ is provable in CL iff there exists a CL-derivation
having root sequent σ. Let us consider a CL-derivation D of ⇒ α (see Fig. 2).
Reading the derivation bottom-up, the first applied rule is Claus0. After such
an application, the obtained sequents have the form σk = Rk,Xk ⇒ g, where
Rk ∪ Xk is non-empty, thus rule Claus0 cannot be applied any more; the rule
applied at the top is cpl0. Note that D contains a unique branch, consisting of
the sequents ⇒ α, σ0, . . . , σn−1. In Fig. 2 we also define the pair π(D) = 〈Ψ, χ〉:
Ψ collects the (instances of) L-axioms selected by rule Claus1, χ is obtained by
composing the substitutions associated with the applied rules. The definition of
π(T), with T a CL-tree, is similar. By T (α;R,X ⇒ g) we denote a CL-tree
having root ⇒ α and leaf R,X ⇒ g. Given a CL-tree T , VT is the set of
variables occurring in T . We state some properties about CL-trees:

SAT-Based Proof Search in Intermediate Propositional Logics 63

Lemma 2. Let T = T (α;R,X ⇒ g) and let π(T) = 〈Ψ, χ〉.

(i) Vχ(p) ⊆ Vα, for every p ∈ VT .
(ii) R,X �i β ↔ χ(β), for every formula β.
(iii) If R,X, Γ �i g and VΓ ⊆ Vα, then Γ, χ(Ψ) �i α.

Proposition 1. Let D be a CL-derivation of ⇒ α and let π(D) = 〈Ψ, χ〉. Then,
Vχ(Ψ) ⊆ Vα and χ(Ψ) �i α.

Proof. Since D is a CL-derivation, D has the form
depicted on the right where T = T (α;R,X ⇒ g);
note that π(T) = π(D) = 〈Ψ, χ〉. Since R �c g, by
Lemma 1(i) we get R �i g, hence R,X �i g. We
can apply Lemma 2 and claim that Vχ(Ψ) ⊆ Vα and
χ(Ψ) �i α. ��

D =

R �c g
cpl0R, X ⇒ g

... T
⇒ α

Given a CL-derivation D of ⇒ α, Prop. 1 exhibits how to extract a set
of instances Ψα of the L-axioms such that Ψα �i α. If D does not contain
applications of rule Claus1, Ψα is empty, and this ascertains that α is IPL-valid;
actually, D can be immediately embedded into the calculus for IPL introduced
in [8]. As an immediate consequence of Prop. 1, we get the soundness of CL: if
⇒ α is provable in CL, then α is L-valid.

Even though CL-derivations have a simple structure, the design of a root-
first proof search strategy for CL is far from being trivial. After having applied
rule Claus0 to the root sequent ⇒ α, we enter a loop where at each iteration
k we search for a derivation of σk = Rk,Xk ⇒ g. It is convenient to firstly
check whether Rk �c g so that, by applying rule cpl0, we immediately close the
derivation at hand. To check classical provability, we exploit a SAT-solver; each
time the solver is invoked, the set Rk has increased, thus it is advantageous to use
an incremental SAT-solver. If Rk �c g, we have to apply either rule cpl1 or rule
Claus1, but it is not obvious which strategy should be followed. First, we have to
select one between the two rules. If rule cpl1 is chosen, we have to guess proper λ
and A; otherwise, we have to apply Claus1, and this requires the selection of an
instance ψ of an L-axiom. In any case, if we followed a blind choice, the procedure
would be highly inefficient. To guide proof search, we follow a different approach
based on countermodel construction; to this aim, we introduce a representation
of Kripke models where worlds are classical interpretations ordered by inclusion.

Countermodels. Let W be a finite set of interpretations with minimum M0,
namely: M0 ⊆ M for every M ∈ W . By K(W) we denote the Kripke model
〈W,≤,M0, ϑ〉 where ≤ coincides with the subset relation ⊆ and ϑ is the identity
map, thus M � p (in K(W)) iff p ∈ M . We introduce the following realizability
relation �W between elements of W and implication clauses:

M �W (a → b) → c iff (a ∈ M) or (b ∈ M) or (c ∈ M) or

(∃M ′ ∈ W s.t. M ⊂ M ′ and a ∈ M ′ and b �∈ M ′) .

64 C. Fiorentini and M. Ferrari

By M �W X we mean that M �W λ for every λ ∈ X. We state the crucial
properties of the model K(W):

Proposition 2. Let K(W) be the model generated by W and let w ∈ W . Let ϕ
be a clause and λ = (a → b) → c an implication clause.

(i) If w′ |= ϕ, for every w′ ∈ W such that w ≤ w′, then w � ϕ.
(ii) If w′ |= b → c and w′ �W λ, for every w′ ∈ W such that w ≤ w′, then w � λ.

Let K(W) be a model with root r, and assume that every interpretation w in
W is a model of R; our goal is to get r � R ∪ X (where (X)∗ ⊆ R), possibly by
filling W with new worlds. To this aim, we exploit Prop. 2. By our assumption
and point (i), we claim that r � R. Suppose that there is w ∈ W and λ =
(a → b) → c ∈ X such that w�W λ; is it possible to amend K(W) in order to
match (ii) and conclude r � X? By definition of �W , none of the atoms a, b, c
belongs to w; moreover K(W) lacks a world w′ such that w ⊂ w′ and a ∈ w′ and
b �∈ w′. We can try to fix K(W) by inserting the missing world w′; to preserve (i),
we also need w′ |= R. Accordingly, such a w′ exists if and only if R,w, a �c b.
This can be checked by querying a SAT-solver; moreover, if R,w, a �c b, the
solver also computes the required w′. This completion process must be iterated
until K(W) has been saturated with all the missing worlds or we get stuck. It
is easy to check that the process eventually terminates. This is one of the key
ideas beyond the procedure intuitRIL we present in next section.

4 The Procedure intuitRIL

We present the procedure intuitRIL (intuit with Restart for Intermediate
Logics) that, given a formula α and a logic L = IPL + Ax(L), returns either a
set of L-axioms Ψα or a model K(W) with the following properties:

(Q1) If intuitRIL(α,L) returns Ψα, then Ψα ⊆ Ax(L,Vα) and Ψα �i α.
(Q2) If intuitRIL(α,L) returns K(W), then K(W) is an L-countermodel for α.

Thus, α is L-valid in the former case, not L-valid in the latter. If intuitRIL(α,L)
returns Ψα, by tracing the computation we can build a CL-derivation D of ⇒ α
such that Ψα = χ(Ψ), where 〈Ψ, χ〉 = π(D); this certificates that Ψα �i α.

The procedure is described by the flowchart in Fig. 3 and exploits a single
incremental SAT-solver s: clauses can be added to s but not removed; by R(s)
we denote the set of clauses stored in s. The SAT-solver is required to support
the following operations:

– newSolver(R) creates a new SAT-solver initialized with the clauses in R.
– addClauses(s, R) adds the clauses in R to the SAT-solver s.
– satProve(s, A, g) calls s to decide whether R(s), A �c g (A is a set of

propositional variables). The solver outputs one of the following answers:
• Yes(A′): thus, A′ ⊆ A and R(s), A′ �c g;
• No(M): thus, A ⊆ M ⊆ VR(s) ∪ A and M |= R(s) and g �∈ M .

In the former case it follows that R(s), A �c g, in the latter R(s), A �c g.

SAT-Based Proof Search in Intermediate Propositional Logics 65

Fig. 3. Computation of intuitRIL(α, L).

The computation of intuitRIL(α,L) consists of the following steps:

(S0) The formula α ↔ g, with g new propositional variable, is clausified. The
outcome (R′,X ′, χ′) is used to create a new SAT-solver s and to prop-
erly initialize the global variables X (set of implication clauses), Ψ (set of
L-axiom instances), V (set of propositional variables) and χ (substitution).

(S1) A loop starts (main loop). The SAT-solver s is called to check whether
R(s) �c g. If the answer is Yes(∅), the computation stops yielding
χ(Ψ). Otherwise, the output is No(M) and the computation continues at
Step (S2).

(S2) We set r = M (the root of K(W)) and W = {r}.
(S3) A loop starts (inner loop). We have to select a pair 〈w, λ〉 such that w ∈ W ,

λ ∈ X and w�W λ. If such a pair does not exist, the inner loop ends and
next step is (S4), otherwise the inner loop continues at Step (S6).

(S4) As we show in Lemma 3, at this point K(W) is a countermodel for α. If
all the axioms in Ax(L, V) are forced at the root r of K(W), then K(W)
is an L-countermodel for α and the computation ends returning K(W).
Otherwise, we select ψ from Ax(L, V) such that r � ψ and the computation
continues at Step (S5); we call ψ the learned axiom.

66 C. Fiorentini and M. Ferrari

(S5) We clausify ψ and we update the global variables. The computation restarts
from Step (S1) with a new iteration of the main loop (semantic restart).

(S6) Let 〈w, (a → b) → c〉 be the pair selected at Step (S3). The SAT-solver s is
called to check whether R(s), w, a �c b. If the result is No(M), the inner
loop continues at step (S7). Otherwise, the answer is Yes(A); the inner
loop ends and the computation continues at Step (S8).

(S7) The interpretation M is added to W and the computation continues at
Step (S3) with a new iteration of the inner loop.

(S8) The clause ϕ (learned basic clause) is added to the SAT-solver s and the
computation restarts from Step (S1) (basic restart).

Intuitively, intuitRIL(α,L) searches for an L-countermodel K(W) for α. In the
construction of K(W), whenever a conflict arises, a restart operation is triggered.
A basic restart happens when it is not possible to fill the set W with a missing
world (see the discussion after Prop. 2). A semantic restart is thrown when
K(W) is a countermodel for α but it fails to be an L-model. In either case, the
construction of K(W) restarts from scratch. However, to prevent that the same
kind of conflict shows up again, new clauses are learned and fed to the SAT-solver
(this complies with DPLL(T) with learning computation paradigm [16]). If the
outcome is χ(Ψ), by tracing the computation we can build a CL-derivation D
of ⇒ α such that π(D) = 〈Ψ, χ〉. The derivation is built bottom-up. The initial
Step (S0) corresponds to the application of rule Claus0 to the root sequent ⇒ α;
basic and semantic restarts bottom-up expand the derivation by applying rule
cpl1 and Claus1 respectively. We stress that the procedure is quite modular; to
treat a specific logic L one has only to provide a concrete implementation of
Step (S4). For L = IPL, Step (S4) is trivial, since the set Ax(IPL, V) is empty.
Actually, intuitRIL applied to IPL has the same behaviour as the procedure
intuitR introduced in [8].

Example 3. Let us consider Jankov axiom wem = ¬a ∨ ¬¬a [2,13] (aka weak
excluded middle), which holds in all frames having a single maximal world (thus,
wem is GL-valid). The trace of the execution of intuitRIL(wem,GL) is shown
in Fig. 4. The initial clausification yields (R0,X0, g̃), where X0 consists of the
implication clauses λ0, λ1 in Fig. 4 and R0 contains the 7 clauses below:

g̃ → p̃2, p̃0 → p̃2, a ∧ p̃0 → ⊥, p̃1 → p̃2, p̃0 ∧ p̃1 → ⊥, p̃2 → g̃, p̃2 → p̃0 ∨ p̃1.

Each row in Fig. 4 displays the validity tests performed by the SAT-solver
and the computed answers. If the result is No(M), the last two columns show
the worlds wk in the current set W and, for each wk, the list of λ such that
w�W λ; the pair selected for the next step is underlined. For instance, after
call (1) we have W = {w0}, w0�W λ0 and w0�W λ1; the selected pair is 〈w0, λ0〉.
After call (2), the set W is updated by adding the world w1; we have w1 �W λ0,
w1 �W λ1, w0 �W λ0 and w0�W λ1. Whenever the SAT-solver outputs Yes(A),
we display the learned clause ψk. The SAT-solver is invoked 18 times and there
are 6 restarts (1 semantic, 5 basic). After (3), we get W = {w0, w1, w2} and no
pair 〈w, λ〉 can be selected, hence the model K(W) (displayed in the figure) is

SAT-Based Proof Search in Intermediate Propositional Logics 67

a countermodel for wem. However, K(W) is not a GL-model (indeed, it is not
linear), hence we choose an instance of the linearity axiom not forced at w0,
namely ψ0, and we force a semantic restart. The clausification of ψ0 produces 6
new clauses and the new implication clauses λ2, λ3, λ4. After each restart, the
sets Rj are:

R1 = R0 ∪ { p̃3 → p̃4, a → p̃5, p̃3 ∧ p̃5 → a, a ∧ p̃4 → p̃3, a ∧ p̃3 → ⊥, p̃4 ∨ p̃5 }
Rj = Rj−1 ∪ {ψj−1} for 2 ≤ j ≤ 6 (the ψ′

js are defined in Fig. 4).

The CGL-derivation of ⇒ ¬a ∨ ¬¬a extracted from the computation is:

R1, a, p̃0 �c ⊥
R2, a, p̃0 �c ⊥

R3, a, p̃3 �c ⊥
R4, p̃0, p̃5 �c ⊥

R5, a, p̃4 �c ⊥
R6 �c g̃

cpl0R6, X1 ⇒ g̃
cpl1(λ1)

R5, X1 ⇒ g̃
cpl1(λ0)

R4, X1 ⇒ g̃
cpl1(λ1)

R3, X1 ⇒ g̃
cpl1(λ0)

R2, X1 ⇒ g̃
cpl1(λ3)

R1, X1 ⇒ g̃
Claus1(ψ0, χ1)

R0, X0 ⇒ g̃
Claus0(g̃, χ0)⇒ ¬a ∨ ¬¬a

♦
Now, we discuss partial correctness and termination of intuitRIL. Let us

denote with ∼c classical equivalence (α ∼c β iff �c α ↔ β) and with ∼i

intuitionistic equivalence (α ∼i β iff �i α ↔ β). We introduce some notation.

(†) The following terms refer to the configuration at the beginning of iteration
k (k ≥ 0), just after the execution of Step (S2):
– Φk is the set collecting all the learned basic clauses;
– Rk is the set of clauses stored in the SAT-solver s;
– Xk, Ψk, Vk, χk, rk are the values of the corresponding global variables.

In Fig. 5 we inductively define the CL-tree Tk, having the form T (α;Rk,Xk ⇒ g).
In the application of rule Claus0, g and χ′ are defined as in Step (S0). In rule
cpl1, λ is the implication clause selected at iteration k − 1 (of the main loop)
in the last execution of Step (S3); A is the value computed at Step (S6) of
iteration k − 1. In the application of rule Claus1, ψ and χ′ are defined as in the
execution of Step (S4) and (S5) of iteration k − 1. One can easily check that the
applications of the rules are sound. If Step (S1) yields Yes(∅), we can turn Tk

into a CL-derivation by applying rule cpl0.
Next lemma states some relevant properties of the computations of

intuitRIL.

Lemma 3. Let us consider the execution of iteration k of the main loop (k ≥ 0).

(i) (Xk)� ∪ Φk ⊆ Rk.
(ii) Vk = VTk

and Ψk ⊆ Ax(L, Vk) and π(Tk) = 〈Ψk, χk〉.
(iii) Vχk(p) ⊆ Vα, for every p ∈ Vk, and Rk,Xk �i β ↔ χk(β), for every β.

68 C. Fiorentini and M. Ferrari

@SAT Answer W λ s.t. w W λ

Start (1) R0 c g̃ ? No(w0) w0 λ0, λ1

(2) R0, w0, p̃0 c ⊥ ? No(w1) w1 ∅
w0 λ1

(3) R0, w0, a c ⊥ ? No(w2) w2 ∅
w1 ∅
w0 ∅

Semantic
failure

w0 : ∅

w1 : g̃, p̃0, p̃2 w2 : a, g̃, p̃1, p̃2 Learned axiom:
ψ0 = (a → ¬a) ∨ (¬a → a)

SRest 1 (4) R1 c g̃ ? No(w3) w3 λ0, λ1, λ3, λ4

(5) R1, w3, p̃0 c ⊥ ? No(w4) w4 λ3, λ4

w3 λ1, λ3, λ4

(6) R1, w4, p̃3 c a ? No(w5) w5 ∅
w4 λ3

w3 λ1, λ3

(7) R1, w4, a c ⊥ ? Yes({ a, p̃0 }) ψ1 = p̃0 → p̃3

BRest 2 (8) R2 c g̃ ? No(w6) w6 λ0

(9) R2, w6, p̃0 c ⊥ ? Yes({ a, p̃0 }) ψ2 = a → p̃1

BRest 3 (10) R3 c g̃ ? No(w7) w7 λ0, λ1

(11) R3, w7, p̃0 c ⊥ ? No(w8) w8 ∅
w7 λ1

(12) R3, w7, a c ⊥ ? Yes({ a, p̃3 }) ψ3 = p̃3 → p̃0

BRest 4 (13) R4 c g̃ ? No(w9) w9 λ0, λ1, λ2, λ3

(14) R4, w9, p̃0 c ⊥ ? Yes({ p̃0, p̃5 }) ψ4 = p̃5 → p̃1

BRest 5 (15) R5 c g̃ ? No(w10) w10 λ0, λ1, λ3, λ4

(16) R5, w10, p̃0 c ⊥ ? No(w11) w11 ∅
w10 λ1, λ3

(17) R5, w10, a c ⊥ ? Yes({ a, p̃4 }) ψ5 = p̃4 → p̃0

BRest 6 (18) R6 c g̃ ? Yes(∅) Proved

λ0 = (p̃0 → ⊥) → p̃1 λ1 = (a → ⊥) → p̃0

λ2 = (a → p̃3) → p̃4 λ3 = (a → ⊥) → p̃3 λ4 = (p̃3 → a) → p̃5

w0 = ∅ w1 = {g̃, p̃0, p̃2} w2 = {a, g̃, p̃1, p̃2} w3 = {p̃4} w4 = {g̃, p̃0, p̃2, p̃4}
w5 = {g̃, p̃0, p̃2, p̃3, p̃4} w6 = {a, p̃5} w7 = {p̃3, p̃4} w8 = {g̃, p̃0, p̃2, p̃3, p̃4}
w9 = {p̃5} w10 = {p̃4} w11 = {g̃, p̃0, p̃2, p̃3, p̃4}
χ0 = [g̃ a ∨ ¬¬a, p̃0 a, p̃1 a, p̃2 a ∨ ¬¬a]
χ1 = [p̃3 a, p̃4 a → ¬a, p̃5 a → a]

Fig. 4. Computation of intuitRIL(¬a ∨ ¬¬a, GL).

SAT-Based Proof Search in Intermediate Propositional Logics 69

Fig. 5. Definition of Tk (k ≥ 0).

(iv) At every step after (S2), w |= Rk, for every w ∈ W .
(v) At every step after (S2), rk is the root of K(W) and rk � Rk and rk � g.
(vi) At Step (S4), rk � Rk ∪ Xk ∪ Ψk and rk � g (in K(W)).
(vii) Assume that iteration k ends with a basic restart and let ϕ be the learned

basic clause. For every ϕ′ ∈ Φk, ϕ �∼c ϕ′.
(viii) Assume that iteration k ends with a semantic restart and let ψ be the

learned axiom. For every ψ′ ∈ Ψk, χk(ψ) �∼i χk(ψ′).

Proof. We only sketch the proof of the non-trivial points.
(iii). By Lemma 2 applied to Tk.
(v). Every interpretation M generated at Step (S6) is a superset of rk, thus

after Step (S2) rk is the minimum element of W and the root of K(W). By (iv)
and Prop. 2(i), rk � Rk. Since g �∈ rk, we get rk � g.

(vi). At Step (S4), w �W λ for every w ∈ W and λ ∈ Xk. Since (Xk)� ⊆ Rk,
by Prop. 2(ii) we get rk � Xk. Let ψ ∈ Ψk; then, ψ has been learned at some
iteration k′ < k. Let (R′,X ′, χ′) be the output of Clausify(ψ,V) at Step (S5)
of iteration k′ . Since R′ ⊆ Rk and X ′ ⊆ Xk, it holds that rk � R′ ∪X ′. By (P1)
R′,X ′ �i ψ, hence rk � ψ, which proves rk � Ψk.

(vii). Let ϕ′ ∈ Φk; we show that ϕ �∼c ϕ′. Let ϕ =
∧

(A \ {a}) → c; then,
there are w ∈ W and λ = (a → b) → c ∈ Xk such that 〈w, λ〉 has been selected
at Step (S3) and the outcome of satProve(s,w ∪ {a},b) at Step (S6) is Yes(A).
Note that w�W λ, hence c �∈ w; since A ⊆ w ∪ {a}, we get w �|= ϕ. On the other
hand, w |= ϕ′, since ϕ′ ∈ Φk and Φk ⊆ Rk. We conclude ϕ �∼c ϕ′.

(viii). Let ψ′ ∈ Ψk and let K(W) be the model obtained at Step (S4) of
iteration k. By (iii) Rk,Xk �i ψ ↔ χk(ψ) and Rk,Xk �i ψ′ ↔ χk(ψ′). Since
rk � ψ and rk � ψ′ (indeed, ψ′ ∈ Ψk and rk � Ψk) and rk � Rk ∪ Xk, we get
rk � χk(ψ) and rk � χk(ψ′). We conclude χk(ψ) �∼i χk(ψ′). ��

The following proposition proves the partial correctness of intuitRIL:

Proposition 3. intuitRIL(α,L) satisfies properties (Q1) and (Q2).

Proof. Let us assume that the computation ends at iteration k with output
Ψα. Then, the call to the SAT-solver at Step (S0) yields Yes(∅), meaning that
Rk �c g. We can build the following CL-derivation D of ⇒ α:

70 C. Fiorentini and M. Ferrari

D =

Rk �c g
cpl0Rk,Xk ⇒ g

... Tk

⇒ α

π(D) = π(Tk) = 〈Ψk, χk〉

Note that Ψα = χk(Ψk). Accordingly, by Prop. 1 we get (Q1).
Let us assume that the output is the model K(W), having root r. Then, K(W)

is an L-model (otherwise, Step (S4) should have forced a semantic restart). By
Lemma 3(vi) we get r � R0 ∪X0 and r � g. Since at Step (S0) we have clausified
the formula α ↔ g, by (P1) we get R0,X0 �i α ↔ g, which implies r � α ↔ g.
We conclude that r � α, hence (Q2) holds. ��

It seems challenging to provide a general proof of termination, and each logic
must be treated apart. We can only state some general properties about the
termination of the inner loop and of consecutive basic restarts.

Proposition 4. (i) The inner loop is terminating.
(ii) The number of consecutive basic restarts is finite.

Proof. Let us assume, by absurd, that the inner loop is not terminating. For
every j ≥ 0, by Wj we denote the value of W at Step (S3) of iteration j of
the inner loop; note that the value of the variable V does not change during the
iterations. We show that Wj ⊂ Wj+1, for every j ≥ 0. At iteration j, the outcome
of Step (S6) is No(M). Thus, there are w ∈ Wj and λ = (a → b) → c ∈ X such
that the pair 〈w, λ〉 has been selected at Step (S3); accordingly, w�Wj

λ and
w ∪ {a} ⊆ M and b �∈ M . We have M �∈ Wj , otherwise we would get w �Wj

λ, a
contradiction. Since Wj+1 = Wj ∪ {M}, this proves that Wj ⊂ Wj+1. We have
shown that W0 ⊂ W1 ⊂ W2 This leads to a contradiction since, for every
j ≥ 0 and every w ∈ Wj , w is a subset of V and V is finite. We conclude that
the inner loop is terminating, and this proves (i).

Let us assume, by contradiction, that there is an infinite sequence of consec-
utive basic restarts. Then, there is n ≥ 0 such that, for every k ≥ n, the iteration
k of the main loop ends with a basic restart. Let ϕk be the clause learned at
iteration k. Note that an iteration ending with a basic restart does not introduce
new atoms, thus Vϕk

⊆ Vn for every k ≥ n (where Vn is defined as in (†)). We
get a contradiction, since Vn is finite and, by Lemma 3(vi), the clauses ϕk are
pairwise non ∼c-equivalent; this proves (ii). ��

Lemma 3(vii) guarantees that the learned axioms are pairwise distinct, but this
is not sufficient to prove termination since in general we cannot set a bound on
the size and on the number of learned axioms. In next section we present some
relevant logics where the procedure is terminating.

SAT-Based Proof Search in Intermediate Propositional Logics 71

5 Termination

Let GL = IPL + lin be the Gödel-Dummett logic presented in Ex. 1; we show
that every call intuitRIL(α,GL) is terminating. To this aim, we exploit the
bounding function AxGL(α) presented in the mentioned example.

Lemma 4. Let us consider the computation of intuitRIL(α,GL) and assume
that at iteration k of the main loop Step (S4) is executed and that the obtained
model K(W) is not linear. Then, there exists ψ ∈ AxGL(α) such that rk � ψ.

Proof. Let us assume that K(W) has two distinct maximal worlds w1 and w2;
note that w1 ⊆ Vk and w2 ⊆ Vk (with Vk defined as in (†)). We show that:

(a) w1 ∩ Vα �= w2 ∩ Vα.

Suppose by contradiction w1 ∩ Vα = w2 ∩ Vα; let p ∈ Vk and β = χk(p) (with
χk defined as in (†)). By Lemma 3(iii), Rk,Xk �i p ↔ β; by Lemma 3(vi)
we get w1 � p ↔ β and w2 � p ↔ β. Since Vβ ⊆ Vα (see Lemma 3(iii)) and
we are assuming w1 ∩ Vα = w2 ∩ Vα, it holds that w1 � β iff w2 � β, thus
w1 � p iff w2 � p, namely p ∈ w1 iff p ∈ w2. Since p is any element of Vk, we
get w1 = w2, a contradiction; this proves (a). By (a) there is a ∈ Vα such that
either a ∈ w1 \ w2 or a ∈ w2 \ w1. We consider the former case (the latter one
is symmetric), corresponding to Case 1 in Fig. 6. We have w1 � a and w2 � ¬a;
setting ψ = (a → ¬a) ∨ (¬a → a), we conclude rk � ψ.

Assume that K(W) has only one maximal world; since it is not linear, there
are three distinct worlds w1, w2, w3 as in Case 2 in Fig. 6, namely: w1 is an
immediate successor of w2 and w3 (i.e., for j ∈ {2, 3}, wj < w1 and, if wj < w,
then w1 ≤ w), w2 �≤ w3, w3 �≤ w2. Reasoning as in (a), we get:

(b) w2 ∩ Vα �= w3 ∩ Vα. (c) w2 ∩ Vα ⊂ w1 ∩ Vα and w3 ∩ Vα ⊂ w1 ∩ Vα.

By (b) there is a ∈ Vα such that either a ∈ w2 \ w3 or a ∈ w3 \ w2. Let us
consider the former case (the latter one is symmetric). By (c), there is b ∈ Vα

such that b ∈ w1 \ w2. If b ∈ w3 (Case 2.1 in Fig. 6), we get a ∈ w2, b �∈ w2,
a �∈ w3, b ∈ w3. Setting ψ = (a → b) ∨ (b → a), we conclude rk � ψ. Finally,
let us assume b �∈ w3 (Case 2.2). We have {a, b} ⊆ w1, a ∈ w2, b �∈ w2, a �∈ w3

and b �∈ w3. It is easy to check that w3 � a → b (recall that w3 < w implies
w1 ≤ w), thus w3 � (a → b) → a. On the other hand w2 � a → (a → b). Setting
ψ = (a → (a → b)) ∨ ((a → b) → a), we get rk � ψ. ��
We exploit Lemma 4 to implement Step (S4). If K(W) is linear, then K(W) is a
GL-model and we are done. Otherwise, the proof of Lemma 4 hints an effective
method to select an instance ψ of lin from AxGL(α).

Proposition 5. The computation of intuitRIL(α,GL) is terminating.

Proof. Assume that intuitRIL(α,GL) is not terminating. Since the number of
iterations of the inner loop and of the consecutive basic restarts is finite (see
Prop. 4), Step (S4) must be executed infinitely many times. This leads to a
contradiction, since the axioms selected at Step (S4) are pairwise distinct (see
Lemma 3(vii)) and such axioms are chosen from the finite set AxGL(α). ��

72 C. Fiorentini and M. Ferrari

Fig. 6. Proof of Lemma 4, case analysis.

As a corollary, we get that AxGL(α) is a bounding function for GL:

Proposition 6. If α is GL-valid, there is Ψα ⊆ AxGL(α) such that Ψα �i α.

Other proof-search strategies for GL are discussed in [10,14]. This technique
can be extended to other notable intermediate logics. Among these, we recall
the logics GLn (Gödel Logic of depth n), obtained by adding to GL the axioms
bdn (bounded depth) where: bd0 = a0 ∨ ¬a0, bdn+1 = an+1 ∨ (an+1 → bdn).
Semantically, GLn is the logic characterized by linear frames having depth at
most n. We are not able to prove termination for the logics IPL + bdn, but we
can implement the following terminating strategy for GLn. Let K(W) be the
model obtained at Step (S4) of the computation of intuitRIL(α,GLn):

– If K(W) is not linear, we select the axiom ψ from AxGL(α).
– Otherwise, assume that K(W) is linear but not a GLn-model. Then, K(W)

contains a chain of worlds w0 ⊂ w1 ⊂ · · · ⊂ wn+1. The crucial point is
that wj+1 \ wj contains at least a propositional variable from Vα, for every
0 ≤ j ≤ n. Thus, we can choose a proper renaming of bdn as ψ.

Another terminating logic is the Jankov Logic (see Ex. 3); actually, also in this
case the learned axiom can be chosen by renaming the wem axiom. In general,
all the logics BTWn (Bounded Top Width, at most n maximal worlds, see [2])
are terminating. An intriguing case is Scott Logic ST [2]: even though the class
of ST-frames is not first-order definable, we can implement a learning procedure
for ST-axioms arguing as in [7] (see Sec. 2.5.2). Some of the mentioned logics
have been implemented in intuitRIL1.

One may wonder whether this method can be applied to other non-classical
logics or to fragments of predicate logics (these issues have been already raised
in the seminal paper [4]). A significant work in this direction is [11], where the
procedure has been applied to some modal logics. However, the main difference
with the original approach is that it is not possible to use a single SAT-solver,
but one needs a supply of SAT-solvers. This is primarily due to the fact that
forcing relation of modal Kripke models is not persistent; thus worlds are loosely
related and must be handled by independent solvers.
1 Available at https://github.com/cfiorentini/intuitRIL.

https://github.com/cfiorentini/intuitRIL

SAT-Based Proof Search in Intermediate Propositional Logics 73

References

1. Avellone, A., Moscato, U., Miglioli, P., Ornaghi, M.: Generalized tableau systems
for intermediate propositional logics. In: Galmiche, D. (ed.) TABLEAUX 1997.
LNCS, vol. 1227, pp. 43–61. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0027404

2. Chagrov, A.V., Zakharyaschev, M.: Modal Logic, Oxford Logic Guides, vol. 35.
Oxford University Press (1997)

3. Ciabattoni, A., Lang, T., Ramanayake, R.: Bounded-analytic sequent calculi and
embeddings for hypersequent logics. J. Symb. Log. 86(2), 635–668 (2021)

4. Claessen, K., Rosén, D.: SAT modulo intuitionistic implications. In: Davis, M.,
Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp.
622–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-
7 43

5. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log.
57(3), 795–807 (1992)

6. Ferrari, M., Fiorentini, C., Fiorino, G.: fCube: an efficient prover for intuitionistic
propositional logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS,
vol. 6397, pp. 294–301. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16242-8 21

7. Fiorentini, C.: Kripke completeness for intermediate logics. Ph.D. thesis, Università
degli Studi di Milano (2000)

8. Fiorentini, C.: Efficient SAT-based proof search in intuitionistic propositional logic.
In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 217–
233. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5 13

9. Fiorentini, C., Goré, R., Graham-Lengrand, S.: A proof-theoretic perspective on
SMT-solving for intuitionistic propositional logic. In: Cerrito, S., Popescu, A. (eds.)
TABLEAUX 2019. LNCS (LNAI), vol. 11714, pp. 111–129. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29026-9 7

10. Fiorino, G.: Terminating calculi for propositional dummett logic with subformula
property. J. Autom. Reason. 52(1), 67–97 (2013). https://doi.org/10.1007/s10817-
013-9276-7

11. Goré, R., Kikkert, C.: CEGAR-tableaux: improved modal satisfiability via modal
clause-learning and SAT. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS
(LNAI), vol. 12842, pp. 74–91. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-86059-2 5

12. Goré, R., Thomson, J., Wu, J.: A history-based theorem prover for intuitionistic
propositional logic using global caching: IntHistGC system description. In: Demri,
S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp.
262–268. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6 19

13. Jankov, V.: The calculus of the weak “law of excluded middle.”. Math. USSR 8,
648–650 (1968)

14. Larchey-Wendling, D.: Gödel-dummett counter-models through matrix computa-
tion. Electron. Notes Theory Comput. Sci. 125(3), 137–148 (2005)

15. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2(4), 526–541 (2001)

16. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

https://doi.org/10.1007/BFb0027404
https://doi.org/10.1007/BFb0027404
https://doi.org/10.1007/978-3-662-48899-7_43
https://doi.org/10.1007/978-3-662-48899-7_43
https://doi.org/10.1007/978-3-642-16242-8_21
https://doi.org/10.1007/978-3-642-16242-8_21
https://doi.org/10.1007/978-3-030-79876-5_13
https://doi.org/10.1007/978-3-030-29026-9_7
https://doi.org/10.1007/s10817-013-9276-7
https://doi.org/10.1007/s10817-013-9276-7
https://doi.org/10.1007/978-3-030-86059-2_5
https://doi.org/10.1007/978-3-030-86059-2_5
https://doi.org/10.1007/978-3-319-08587-6_19

74 C. Fiorentini and M. Ferrari

17. Schmidt, R.A., Tishkovsky, D.: Automated synthesis of tableau calculi. Log. Meth-
ods Comput. Sci. 7(2) (2011)

18. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, Cambridge Tracts in The-
oretical Computer Science, vol. 43, 2nd edn. Cambridge University Press, Cam-
bridge (2000)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Clause Redundancy and Preprocessing
in Maximum Satisfiability

Hannes Ihalainen, Jeremias Berg(B) , and Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland

hannes.ihalainen@helsinki.fi, jeremias.berg@helsinki.fi,

matti.jarvisalo@helsinki.fi

Abstract. The study of clause redundancy in Boolean satisfiability
(SAT) has proven significant in various terms, from fundamental insights
into preprocessing and inprocessing to the development of practical proof
checkers and new types of strong proof systems. We study liftings of
the recently-proposed notion of propagation redundancy—based on a
semantic implication relationship between formulas—in the context of
maximum satisfiability (MaxSAT), where of interest are reasoning tech-
niques that preserve optimal cost (in contrast to preserving satisfiability
in the realm of SAT). We establish that the strongest MaxSAT-lifting of
propagation redundancy allows for changing in a controlled way the set
of minimal correction sets in MaxSAT. This ability is key in succinctly
expressing MaxSAT reasoning techniques and allows for obtaining cor-
rectness proofs in a uniform way for MaxSAT reasoning techniques very
generally. Bridging theory to practice, we also provide a new MaxSAT
preprocessor incorporating such extended techniques, and show through
experiments its wide applicability in improving the performance of mod-
ern MaxSAT solvers.

Keywords: Maximum satisfiability · Clause redundancy ·
Propagation redundancy · Preprocessing

1 Introduction

Building heavily on the success of Boolean satisfiability (SAT) solving [13], max-
imum satisfiability (MaxSAT) as the optimization extension of SAT constitutes
a viable approach to solving real-world NP-hard optimization problems [6,35].
In the context of SAT, the study of fundamental aspects of clause redundancy
[20,21,23,28,29,31,32] has proven central for developing novel types of prepro-
cessing and inprocessing-style solving techniques [24,29] as well as in enabling
efficient proof checkers [7,15,16,18,19,41,42] via succinct representation of most
practical SAT solving techniques. Furthermore, clause redundancy notions have

Work financially supported by Academy of Finland under grants 322869, 328718 and
342145. The authors wish to thank the Finnish Computing Competence Infrastructure
(FCCI) for supporting this project with computational and data storage resources.

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 75–94, 2022.
https://doi.org/10.1007/978-3-031-10769-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_6&domain=pdf
http://orcid.org/0000-0001-7660-8061
http://orcid.org/0000-0003-2572-063X
https://doi.org/10.1007/978-3-031-10769-6_6

76 H. Ihalainen et al.

been shown to give rise to very powerful proof systems, going far beyond res-
olution [22,23,30]. In contrast to viewing clause redundancy through the lens
of logical entailment, the redundancy criteria developed in this line of work are
based on a semantic implication relationship between formulas, making them
desirably efficient to decide and at the same time are guaranteed to merely pre-
serve satisfiability rather than logical equivalence.

The focus of this work is the study of clause redundancy in the context of
MaxSAT through lifting recently-proposed variants of the notion of propagation
redundancy [23] based on a semantic implication relationship between formulas
from the realm of SAT. The study of such liftings is motivated from several per-
spectives. Firstly, earlier it has been shown that a natural MaxSAT-lifting called
SRAT [10] of the redundancy notion of the notion of resolution asymmetric tau-
tologies (RAT) [29] allows for establishing the general correctness of MaxSAT-
liftings of typical preprocessing techniques in SAT solving [14], alleviating the
need for correctness proofs for individual preprocessing techniques [8]. However,
the need for preserving the optimal cost in MaxSAT—as a natural counterpart
for preserving satisfiability in SAT—allows for developing MaxSAT-centric pre-
processing and solving techniques which cannot be expressed through SRAT
[2,11]. Capturing more generally such cost-aware techniques requires developing
more expressive notions of clause redundancy. Secondly, due to the fundamental
connections between solutions and so-called minimal corrections sets (MCSes) of
MaxSAT instances [8,25], analyzing the effect of clauses that are redundant in
terms of expressive notions of redundancy on the MCSes of MaxSAT instances
can provide further understanding on the relationship between the different
notions and their fundamental impact on the solutions of MaxSAT instances.
Furthermore, in analogy with SAT, more expressive redundancy notions may
prove fruitful for developing further practical preprocessing and solving tech-
niques for MaxSAT.

Our main contributions are the following. We propose natural liftings of the
three recently-proposed variants PR, LPR and SPR of propagation redundancy
in the context of SAT to MaxSAT. We provide a complete characterization of the
relative expressiveness of the lifted notions CPR, CLPR and CSPR (C standing
for cost for short) and of their impact on the set of MCSes in MaxSAT instances.
In particular, while removing or adding clauses redundant in terms of CSPR and
CLPR (the latter shown to be equivalent with SRAT) do not influence the set
of MCSes underlying MaxSAT instances, CPR can in fact have an influence on
MCSes. In terms of solutions, this result implies that CSPR or CLPR clauses
can not remove minimal (in terms of sum-of-weights of falsified soft clauses)
solutions of MaxSAT instances, while CPR clauses can.

The—theoretically greater—effect that CPR clauses have on the solutions
of MaxSAT instances is key for succinctly expressing further MaxSAT reason-
ing techniques via CPR and allows for obtaining correctness proofs in a uniform
way for MaxSAT reasoning techniques very generally; we give concrete examples
of how CPR captures techniques not in the reach of SRAT. Bridging to prac-
tical preprocessing in MaxSAT, we also provide a new MaxSAT preprocessor

Clause Redundancy and Preprocessing in Maximum Satisfiability 77

extended with such techniques. Finally, we provide large-scale empirical evidence
on the positive impact of the preprocessor on the runtimes of various modern
MaxSAT solvers, covering both complete and incomplete approaches, suggesting
that extensive preprocessing going beyond the scope of SRAT appears beneficial
to integrate for speeding up modern MaxSAT solvers.

An extended version of this paper, with formal proofs missing from this
version, is available via the authors’ homepages.

2 Preliminaries

SAT. For a Boolean variable x there are two literals, the positive x and the
negative ¬x, with ¬¬l = l for a literal l. A clause C is a set (disjunction) of
literals and a CNF formula F a set (conjunction) of clauses. We assume that all
clauses are non-tautological, i.e., do not contain both a literal and its negation.
The set var(C) = {x | x ∈ C or ¬x ∈ C} consists of the variables of the
literals in C. The set of variables and literals, respectively, of a formula are
var(F) =

⋃
C∈F var(C) and lit(F) =

⋃
C∈F C, respectively. For a set L of

literals, the set ¬L = {¬l | l ∈ L} consists of the negations of the literals in L.
A (truth) assignment τ is a set of literals for which x /∈ τ or ¬x /∈ τ for any

variable x. For a literal l we denote l ∈ τ by τ(l) = 1 and ¬l ∈ τ by τ(l) = 0 or
τ(¬l) = 1 as convenient, and say that τ assigns l the value 1 and 0, respectively.
The set var(τ) = {x | x ∈ τ or ¬x ∈ τ} is the range of τ , i.e., it consists of the
variables τ assigns a value for. For a set L of literals and an assignment τ , the
assignment τL = (τ \ ¬L) ∪ L is obtained from τ by setting τL(l) = 1 for all
l ∈ L and τL(l) = τ(l) for all l /∈ L assigned by τ . For a literal l, τl stands for
τ{l}. An assignment τ satisfies a clause C (τ(C) = 1) if τ ∩C �= ∅ or equivalently
if τ(l) = 1 for some l ∈ C, and a CNF formula F (τ(F) = 1) if it satisfies each
clause C ∈ F . A CNF formula is satisfiable if there is an assignment that satisfies
it, and otherwise unsatisfiable. The empty formula � is satisfied by any truth
assignment and the empty clause ⊥ is unsatisfiable. The Boolean satisfiability
problem (SAT) asks to decide whether a given CNF formula F is satisfiable.

Given two CNF formulas F1 and F2, F1 entails F2 (F1 |= F2) if any
assignment τ that satisfies F1 and only assigns variables of F1 (i.e. for which
var(τ) ⊂ var(F1)) can be extended into an assignment τ2 ⊃ τ that satisfies F2.
The formulas are equisatisfiable if F1 is satisfiable iff F2 is. An assignment τ is
complete for a CNF formula F if var(F) ⊂ var(τ), and otherwise partial for F .
The restriction F

∣
∣
τ

of F wrt a partial assignment τ is a CNF formula obtained
by (i) removing from F all clauses that are satisfied by τ and (ii) removing from
the remaining clauses of F literals l for which τ(l) = 0. Applying unit propaga-
tion on F refers to iteratively restricting F by τ = {l} for a unit clause (clause
with a single literal) (l) ∈ F until the resulting (unique) formula, denoted by
UP(F), contains no unit clauses or some clause in F becomes empty. We say that
unit propagation on F derives a conflict if UP(F) contains the empty clause. The
formula F1 implies F2 under unit propagation (F1 �1 F2) if, for each C ∈ F2,

78 H. Ihalainen et al.

unit propagation derives a conflict in F1 ∧ {(¬l) | l ∈ C}. Note that F1 �1 F2

implies F1 |= F2, but not vice versa in general.

Maximum Satisfiability. An instance F = (FH ,FS , w) of (weighted partial)
maximum satisfiability (MaxSAT for short) consists of two CNF formulas, the
hard clauses FH and the soft clauses FS , and a weight function w : FS → N that
assigns a positive weight to each soft clause.

Without loss of generality, we assume that every soft clause C ∈ FS is unit1.
The set of blocking literals B(F) = {l | (¬l) ∈ FS} consists of the literals
l the negation of which occurs in FS . The weight function w is extended to
blocking literals by w(l) = w((¬l)). Without loss of generality, we also assume
that l ∈ lit(FH) for all l ∈ B(F)2. Instead of using the definition of MaxSAT
in terms of hard and soft clauses, we will from now on view a MaxSAT instance
F = (FH ,B(F), w) as a set FH of hard clauses, a set B(F) of blocking literals
and a weight function w : B(F) → N.

Any complete assignment τ over var(FH) that satisfies FH is a solution to
F . The cost COST(F , τ) =

∑
l∈B(F) τ(l)w(l) of a solution τ is the sum of weights

of blocking literals it assigns to 13. The cost of a complete assignment τ that
does not satisfy FH is defined as ∞. The cost of a partial assignment τ over
var(FH) is defined as the cost of smallest-cost assignments that are extensions
of τ . A solution τo is optimal if COST(F , τo) ≤ COST(F , τ) holds for all solutions
τ of F . The cost of the optimal solutions of a MaxSAT instance is denoted by
COST(F), with COST(F) = ∞ iff FH is unsatisfiable. In MaxSAT the task is to
find an optimal solution to a given MaxSAT instance.

Example 1. Let F = (FH ,B(F), w) be a MaxSAT instance with FH = {(x ∨
b1), (¬x ∨ b2), (y ∨ b3 ∨ b4), (z ∨ ¬y ∨ b4), (¬z)}, B(F) = {b1, b2, b3, b4} hav-
ing w(b1) = w(b4) = 1, w(b2) = 2 and w(b3) = 8. The assignment τ =
{b1, b4,¬b2,¬b3,¬x,¬z, y} is an example of an optimal solution of F and has
COST(F , τ) = COST(F) = 2.

With a slight abuse of notation, we denote by F ∧ C = (FH ∪ {C},B(F ∧
C), w) the MaxSAT instance obtained by adding a clause C to an instance
F = (FH ,B(F), w). Adding clauses may introduce new blocking literals but
not change the weights of already existing ones, i.e., B(F) ⊂ B(F ∧ C) and
wF (l) = wF∧C(l) for all l ∈ B(F).

Correction Sets. For a MaxSAT instance F , a subset cs ⊂ B(F) is a minimal
correction set (MCS) of F if (i) FH ∧ ∧

l∈B(F)\cs(¬l) is satisfiable and (ii) FH ∧
∧

l∈B(F)\css
(¬l) is unsatisfiable for every css � cs. In words, cs is an MCS if it

1 A soft clause C can be replaced by the hard clause C ∨x and soft clause (¬x), where
x is a variable not in var(FH ∧ FS), without affecting the costs of solutions.

2 Otherwise the instance can be simplified by unit propagating ¬l without changing
the costs of solutions. As a consequence, any complete assignment for FH will be
complete for FH ∧ FS as well.

3 This is equivalent to the sum of weights of soft clauses not satisfied by τ .

Clause Redundancy and Preprocessing in Maximum Satisfiability 79

is a subset-minimal set of blocking literals that is included in some solution τ of
F .4 We denote the set of MCSes of F by mcs(F).

There is a tight connection between the MCSes and solutions of MaxSAT
instances. Given an optimal solution τo of a MaxSAT instance F , the set τo ∩
B(F) is an MCS of F . In the other direction, for any cs ∈ mcs(F), there is a (not
necessary optimal) solution τ cs such that cs = B(F) ∩ τ cs and COST(F , τ cs) =∑

l∈cs w(l).

Example 2. Consider the instance F from Example 1. The set {b1, b4} ∈ mcs(F)
is an MCS of F that corresponds to the optimal solution τ described in
Example 1. The set {b2, b3} ∈ mcs(F) is another example of an MCS that
instead corresponds to the solution τ2 = {b2, b3,¬b1,¬b4, x,¬z,¬y} for which
COST(F , τ) = 10.

3 Propagation Redundancy in MaxSAT

We extend recent work [23] on characterizing redundant clauses using semantic
implication in the context of SAT to MaxSAT. In particular, we provide natural
counterparts for several recently-proposed strong notions of redundancy in SAT
to the context of MaxSAT and analyze the relationships between them.

In the context of SAT, the most general notion of clause redundancy is seem-
ingly simple: a clause C is redundant for a formula F if it does not affect its
satisfiability, i.e., clause C is redundant wrt a CNF formula F if F and F ∧ {C}
are equisatisfiable [20,29]. This allows for the set of satisfying assignments to
change, and does not require preserving logical equivalence; we are only inter-
ested in satisfiability.

A natural counterpart for this general view in MaxSAT is that the cost of
optimal solutions (rather than the set of optimal solutions) should be preserved.

Definition 1. A clause C is redundant wrt a MaxSAT instance F if COST(F) =
COST(F ∧ C).

This coincides with the counterpart in SAT whenever B(F) = ∅, since then
the cost of a MaxSAT instance F is either 0 (if FH is satisfiable) or ∞ (if FH

is unsatisfiable). Unless explicitly specified, we will use the term “redundant” to
refer to Definition 1.

Following [23], we say that a clause C blocks the assignment ¬C (and all
assignments τ for which ¬C ⊂ τ). As shown in the context of SAT [23], a clause
C is redundant (in the equisatisfiability sense) for a CNF formula F if C does not
block all of its satisfying assignments. The counterpart that arises in the context
of MaxSAT from Definition 1 is that the cost of at least one of the solutions not
blocked by C is no greater than the cost of ¬C.

Proposition 1. A clause C is redundant wrt a MaxSAT instance F if and
only if there is an assignment τ for which COST(F ∧ C, τ) = COST(F , τ) ≤
COST(F ,¬C).
4 This is equivalent to a subset-minimal set of soft clauses falsified by τ .

80 H. Ihalainen et al.

The equality COST(F ∧ C, τ) = COST(F , τ) of Proposition 1 is necessary, as
witnessed by the following example.

Example 3. Consider the MaxSAT instance F detailed in Example 1, the clause
C = (b5) with b5 ∈ B(F ∧ C) and the assignment τ = {b5}. Then 2 =
COST(F , τ) ≤ COST(F ,¬C) = 2 but C is not redundant since COST(F ∧ C) =
2 + wF∧C(b5) > 2 = COST(F).

Proposition 1 provides a sufficient condition for a clause C being redundant.
Further requirements on the assignment τ can be imposed without loss of gen-
erality.

Theorem 1. A non-empty clause C is redundant wrt a MaxSAT instance F =
(FH ,B(F), w) if and only if there is an assignment τ such that
(i) τ(C) = 1, (ii) FH

∣
∣
¬C

|= FH

∣
∣
τ

and
(iii) COST(F ∧ C, τ) = COST(F , τ) ≤ COST(F ,¬C).

As we will see later, a reason for including two additional conditions in The-
orem 1 is to allow defining different restrictions of redundancy notions, some of
which allow for efficiently identifying redundant clauses.

Example 4. Consider the instance F = (FH ,B(F), w) detailed in Example 1, a
clause C = (¬x∨ b5) for a b5 ∈ B(F ∧C) and an assignment τ = {¬x, b1}. Then:
τ(C) = 1, {(b2), (y ∨ b3 ∨ b4), (z ∨ ¬y ∨ b4), (¬z)} = FH

∣
∣
¬C

|= FH

∣
∣
τ

= {(y ∨ b3 ∨
b4), (z∨¬y∨b4), (¬z)}, and 2 = COST(F∧C, τ) = COST(F , τ) ≤ COST(F ,¬C) = 3.
We conclude that C is redundant.

In the context of SAT, imposing restrictions on the entailment operator and
the set of assignments has been shown to give rise to several interesting redun-
dancy notions which hold promise of practical applicability. These include three
variants (LPR, SPR, and PR) of so-called (literal/set) propagation redundancy
[23]. For completeness we restate the definitions of these three notions. A clause C
is LPR wrt a CNF formula F if there is a literal l ∈ C for which F

∣
∣
¬C

�1 F
∣
∣
(¬C)l

,
SPR if the same holds for a subset L ⊂ C, and PR if there exists an assignment
τ that satisfies C and for which F

∣
∣
¬C

�1 F
∣
∣
τ
. With the help of Theorem1, we

obtain counterparts for these notions in the context of MaxSAT.

Definition 2. With respect to an instance F = (FH ,B(F), w), a clause C is

– cost literal propagation redundant (CLPR) (on l) there is a literal l ∈ C
for which either (i) ⊥ ∈ UP(FH

∣
∣
¬C

) or (ii) l /∈ B(F ∧ C) and FH

∣
∣
¬C

�1

FH

∣
∣
(¬C)l

;
– cost set propagation redundant (CSPR) (on L) if there is a set L ⊂

C \ B(F ∧ C) of literals for which FH

∣
∣
¬C

�1 FH

∣
∣
(¬C)L

; and
– cost propagation redundant (CPR) if there is an assignment τ such that

(i) τ(C) = 1, (ii) FH

∣
∣
¬C

�1 FH

∣
∣
τ

and
(iii) COST(F ∧ C, τ) = COST(F , τ) ≤ COST(F ,¬C).

Clause Redundancy and Preprocessing in Maximum Satisfiability 81

Example 5. Consider again F = (FH ,B(F), w) from Example 1. The clause D =
(b1 ∨ b2) is CLPR wrt F since ⊥ ∈ UP(FH

∣
∣
¬D

) as {(x), (¬x)} ⊂ FH

∣
∣
¬D

. As for
the redundant clause C and assignment τ detailed in Example 3, we have that
C is CPR, since FH

∣
∣
τ

⊂ FH

∣
∣
¬C

which implies FH

∣
∣
¬C

�1 FH

∣
∣
τ
.

We begin the analysis of the relationship between these redundancy notions
by showing that CSPR (and by extension CLPR) clauses also satisfy the
MaxSAT-centric condition (iii) of Theorem1. Assume that C is CSPR wrt a
instance F = (FH ,B(F), w) on the set L.

Lemma 1. Let τ ⊃ ¬C be a solution of F . Then, COST(F , τ) ≥ COST(F , τL).

The following corollary of Lemma 1 establishes that CSPR and CLPR clauses
are redundant according to Definition 1.

Corollary 1. COST(F ∧ C, (¬C)L) = COST(F , (¬C)L) ≤ COST(F ,¬C).

The fact that CPR clauses are redundant follows trivially from the fact that
FH

∣
∣
¬C

�1 FH

∣
∣
τ

implies FH

∣
∣
¬C

|= FH

∣
∣
τ
. However, given a solution ω that does

not satisfy a CPR clause C, the next example demonstrates that the assignment
ωτ need not have a cost lower than ω. Stated in another way, the example
demonstrates that an observation similar to Lemma 1 does not hold for CPR
clauses in general.

Example 6. Consider a MaxSAT instance F = (FH ,B(F), w) having FH =
{(x ∨ b1), (¬x, b2)}, B(F) = {b1, b2} and w(b1) = w(b2) = 1. The clause C =
(x) is CPR wrt F , the assignment τ = {x, b2} satisfies the three conditions of
Definition 2. Now δ = {¬x, b1} is a solution of F that does not satisfy C for
which δτ = {x, b1, b2} and 1 = COST(F , δ) < 2 = COST(F , δτ).

Similarly as in the context of SAT, verifying that a clause is CSPR (and
by extension CLPR) can be done efficiently. However, in contrast to SAT, we
conjecture that verifying that a clause is CPR can not in the general case be
done efficiently, even if the assignment τ is given. While we will not go into
detail on the complexity of identifying CPR clauses, the following proposition
gives some support for our conjecture.

Proposition 2. Let F be an instance and k ∈ N. There is another instance
FM , a clause C, and an assignment τ such that C is CPR wrt FM if and only
if COST(F) ≥ k.

As deciding if COST(F) ≥ k is NP-complete in the general case, Proposition 2
suggests that it may not be possible to decide in polynomial time if an assignment
τ satisfies the three conditions of Definition 2 unless P=NP. This is in contrast to
SAT, where verifying propagation redundancy can be done in polynomial time
if the assignment τ is given, but is NP-complete if not [24].

The following observations establish a more precise relationship between the
redundancy notions. For the following, let RED(F) denote the set of clauses that
are redundant wrt a MaxSAT instance F according to Definition 1. Analogously,
the sets CPR(F), CSPR(F) and CLPR(F) consist of the clauses that are CPR,
CSPR and CLPR wrt F , respectively.

82 H. Ihalainen et al.

Observation 1 CLPR(F) ⊂ CSPR(F) ⊂ CPR(F) ⊂ RED(F) holds for any
MaxSAT instance F .

Observation 2 There are MaxSAT instances F1,F2 and F3 for which
CLPR(F1) � CSPR(F1), CSPR(F2) � CPR(F2) and CPR(F3) � RED(F3).

The proofs of Observations 1 and 2 follow directly from known results in
the context of SAT [23] by noting that any CNF formula can be viewed as an
instance of MaxSAT without blocking literals.

For a MaxSAT-centric observation on the relationship between the redun-
dancy notions, we note that the concept of redundancy and CPR coincide for
any MaxSAT instance that has solutions.

Observation 3 CPR(F) = RED(F) holds for any MaxSAT instance F with
COST(F) < ∞.

We note that a result similar to Observation 3 could be formulated in the context
of SAT. The SAT-counterpart would state that the concept of redundancy (in the
equisatisfiability sense) coincides with the concept of propagation redundancy
for SAT solving (defined e.g. in [23]) for satisfiable CNF formulas. However,
assuming that a CNF formula is satisfiable is very restrictive in the context
of SAT. In contrast, it is natural to assume that a MaxSAT instance admits
solutions.

We end this section with a simple observation: adding a redundant clause C
to a MaxSAT instance F preserves not only optimal cost, but optimal solutions
of F ∧ C are also optimal solutions of F . However, the converse need not hold;
an instance F might have optimal solutions that do not satisfy C.

Example 7. Consider an instance F = (FH ,B(F), w) with FH = {(b1 ∨ b2)},
B(F) = {b1, b2} and w(b1) = w(b2) = 1. The clause C = (¬b1) is CPR wrt
F . In order to see this, let τ = {¬b1, b2}. Then τ satisfies C (condition (i) of
Definition 2). Furthermore, τ satisfies FH , implying FH

∣
∣
¬C

�1 FH

∣
∣
τ

(condition
(ii)). Finally, we have that 1 = COST(F , τ) = COST(F ∧C, τ) ≤ COST(F ,¬C) = 1
(condition (iii)). The assignment δ = {b1,¬b2} is an example of an optimal
solution of F that is not a solution of F ∧ C.

4 Propagation Redundancy and MCSes

In this section, we analyze the effect of adding redundant clauses on the MCSes
of MaxSAT instances. As the main result, we show that adding CSPR (and by
extension CLPR) clauses to a MaxSAT instance F preserves all MCSes while
adding CPR clauses does not in general. Stated in terms of solutions, this means
that adding CSPR clauses to F preserves not only all optimal solutions, but
all solutions τ for which (τ ∩ B(F)) ∈ mcs(F), while adding CPR clauses only
preserves at least one optimal solution.

Effect of CLPR Clauses on MCSes. MaxSAT-liftings of four specific SAT
solving techniques (including bounded variable elimination and self-subsuming

Clause Redundancy and Preprocessing in Maximum Satisfiability 83

resolution) were earlier proposed in [8]. Notably, the correctness of the lift-
ings was shown individually for each of the techniques by arguing individu-
ally that applying one of the liftings does not change the set of MCSes of any
MaxSAT instance. Towards a more generic understanding of optimal cost pre-
serving MaxSAT preprocessing, in [10] the notion of solution resolution asym-
metric tautologies (SRAT) was proposed as a MaxSAT-lifting of the concept of
resolution asymmetric tautologies (RAT). In short, a clause C is a SRAT clause
for a MaxSAT instance F = (FH ,B(F), w) if there is a literal l ∈ C \ B(F ∧ C)
such that FH �1 ((C ∨ D) \ {¬l}) for every D ∈ FH for which ¬l ∈ D.

In analogy with RAT [29], SRAT was shown in [10] to allow for a general
proof of correctness for natural MaxSAT-liftings of a wide range of SAT prepro-
cessing techniques, covering among other the four techniques for which individual
correctness proofs were provided in [8]. The generality follows essentially from
the fact that the addition and removal of SRAT clauses preserves MCSes. The
same observations apply to CLPR, as CLPR and SRAT are equivalent.

Proposition 3. A clause C is CLPR wrt F iff it is SRAT wrt F .

The proof of Proposition 3 follows directly from corresponding results in the
context of SAT [23]. Informally speaking, a clause C is SRAT on a literal l iff it
is RAT [29] on l and l /∈ B(F). Similarly, a clause C is CLPR on a literal l iff it is
LPR as defined in [23] on l and l /∈ B(F). Proposition 3 together with previous
results from [10] implies that the MCSes of MaxSAT instances are preserved
under removing and adding CLPR clauses.

Corollary 2. If C is CLPR wrt F , then mcs(F) = mcs(F ∧ C).

Effect of CPR Clauses on MCSes. We turn our attention to the effect of
CPR clauses on the MCSes of MaxSAT instances. Our analysis makes use of
the previously-proposed MaxSAT-centric preprocessing rule known as subsumed
label elimination (SLE) [11,33]5.

Definition 3. (Subsumed Label Elimination [11,33]) Consider a MaxSAT
instance F = (FH ,B(F), w) and a blocking literal l ∈ B(F) for which ¬l /∈
lit(FH). Assume that there is another blocking literal ls ∈ B(F) for which
(1) ¬ls /∈ lit(FH), (2) {C ∈ FH | l ∈ C} ⊂ {C ∈ FH | ls ∈ C} and (3)
w(l) ≥ w(ls). The subsumed label elimination (SLE) rule allows adding (¬l) to
FH .

A specific proof of correctness of SLE was given in [11]. The following proposition
provides an alternative proof based on CPR.

Proposition 4 (Proof of correctness for SLE). Let F be a MaxSAT
instance and assume that the blocking literals l, ls ∈ B(F) satisfy the three con-
ditions of Definition 3. Then, the clause C = (¬l) is CPR wrt F .

5 Rephrased here using our notation.

84 H. Ihalainen et al.

Proof. We show that τ = {¬l, ls} satisfies the three conditions of Definition 2.
First τ satisfies C (condition (i)). Conditions (1) and (2) of Definition 3 imply
FH

∣
∣
τ

⊂ FH

∣
∣
¬C

which in turn implies FH

∣
∣
¬C

�1 FH

∣
∣
τ

(condition (ii)).
As for condition (iii), the requirement COST(F ∧ C, τ) = COST(F , τ) follows

from B(F ∧ C) = B(F). Let δ ⊃ ¬C be a complete assignment of FH for which
COST(F , δ) = COST(F ,¬C). If COST(F , δ) = ∞ then COST(F , τ) ≤ COST(F ,¬C)
follows trivially. Otherwise δ \¬C satisfies FH

∣
∣
¬C

so by FH

∣
∣
¬C

�1 FH

∣
∣
τ

it satis-
fies FH

∣
∣
τ

as well. Thus δR = ((δ\¬C)\{¬l | l ∈ τ})∪τ = (δ\{l, ¬l, ¬ls})∪{¬l, ls}
is an extension of τ that satisfies FH and for which COST(F , τ) ≤ COST(F , δR) ≤
COST(F , δ) by condition (3) of Definition 3. Thereby τ satisfies the conditions of
Definition 2 so C is CPR wrt F . ��
Example 8. The blocking literals b3, b4 ∈ B(F) of the instance F detailed in
Example 1 satisfy the conditions of Definition 3. By Proposition 4 the clause (¬b3)
is CPR wrt F .

In [11] it was shown that SLE does not preserve MCSes in general. By Corol-
lary 2, this implies that SLE can not be viewed as the addition of CLPR clauses.
Furthermore, by Proposition 4 we obtain the following.

Corollary 3. There is a MaxSAT instance F and a clause C that is CPR wrt
F for which mcs(F) �= mcs(F ∧ C).

Effect of CSPR Clauses on MCSes. Having established that CLPR clauses
preserve MCSes while CPR clauses do not, we complete the analysis by demon-
strating that CSPR clauses preserve MCSes.

Theorem 2. Let F be a MaxSAT instance and C a CSPR clause of F . Then
mcs(F) = mcs(F ∧ C).

Theorem 2 follows from the following lemmas and propositions. In the fol-
lowing, let C be a clause that is CSPR wrt a MaxSAT instance F on a set
L ⊂ C \ B(F ∧ C).

Lemma 2. Let cs ⊂ B(F). If FH ∧ ∧
l∈B(F)\cs(¬l) is satisfiable, then

(FH ∧ C) ∧ ∧
l∈B(F∧C)\cs(¬l) is satisfiable.

Lemma 2 helps in establishing one direction of Theorem2.

Proposition 5. mcs(F) ⊂ mcs(F ∧ C).

Proof. Let cs ∈ mcs(F). Then FH ∧ ∧
l∈B(F)\cs(¬l) is satisfiable, which by

Lemma 2 implies that (FH ∧ C) ∧ ∧
l∈B(F∧C)\cs(¬l) is satisfiable.

To show that (FH ∧C)∧∧
l∈B(F∧C)\css

(¬l) is unsatisfiable for any css � cs ⊂
B(F), we note that any assignment satisfying (FH∧C)∧∧

l∈B(F∧C)\css
(¬l) would

also satisfy FH ∧ ∧
l∈B(F)\css

(¬l), contradicting cs ∈ mcs(F). ��
The following lemma is useful for showing inclusion in the other direction.

Clause Redundancy and Preprocessing in Maximum Satisfiability 85

Lemma 3. Let cs ∈ mcs(F ∧ C). Then cs ⊂ B(F).

Lemma 3 allows for completing the proof of Theorem2.

Proposition 6. mcs(F ∧ C) ⊂ mcs(F).

Proof. Let cs ∈ mcs(F ∧ C), which by Lemma 3 implies cs ⊂ B(F). Let τ be
a solution that satisfies (FH ∧ C) ∧ ∧

l∈B(F∧C)\cs(¬l). Then τ satisfies FH ∧
∧

l∈B(F)\cs(¬l). For contradiction, assume that FH ∧∧
l∈B(F)\css

(¬l) is satisfiable
for some css � cs. Then by Lemma 2, (FH ∧C)∧∧

l∈B(F∧C)\css
(¬l) is satisfiable

as well, contradicting cs ∈ mcs(F ∧ C). Thereby cs ∈ mcs(F). ��
Theorem 2 implies that SLE can not be viewed as the addition of CSPR

clauses. In light of this, an interesting remark is that—in contrast to CPR clauses
in general (recall Example 6)—the assignment τ used in the proof of Proposi-
tion 4 can be used to convert any assignment that does not satisfy the CPR
clause detailed in Definition 3 into one that does, without increasing its cost.

Observation 4 Let F be a MaxSAT instance and assume that the blocking lit-
erals l, ls ∈ B(F) satisfy the three conditions of Definition 3. Let τ = {¬l, ls}
and consider any solution δ ⊃ ¬C of F that does not satisfy the CPR clause
C = (¬l). Then δτ is a solution of F ∧ C for which COST(F , δτ) ≤ COST(F , δ).

5 CPR-Based Preprocessing for MaxSAT

Mapping the theoretical observations into practical preprocessing, in this section
we discuss through examples how CPR clauses can be used as a unified theoret-
ical basis for capturing a wide variety of known MaxSAT reasoning rules, and
how they could potentially help in the development of novel MaxSAT reasoning
techniques.

Our first example is the so-called hardening rule [2,8,17,26]. In terms of our
notation, given a solution τ to a MaxSAT instance F = (FH ,B(F), w) and a
blocking literal l ∈ B(F) for which w(l) > COST(F , τ), the hardening rule allows
adding the clause C = (¬l) to FH .

The correctness of the hardening rule can be established with CPR clauses.
More specifically, as COST(F , τ) < w(l) it follows that τ(C) = 1 (condition (i)
of Definition 2). Since τ satisfies F , we have that FH

∣
∣
τ

= � so FH

∣
∣
¬C

�1 FH

∣
∣
τ

(condition (ii)). Finally, as COST(F , δ) ≥ w(l) > COST(F , τ) holds for all δ ⊃ ¬C
it follows that COST(F ,¬C) > COST(F , τ) = COST(F ∧ C, τ). As such, (¬l) is
CPR clause wrt F . If fact, instead of assuming w(l) > COST(F , τ) it suffices to
assume w(l) ≥ COST(F , τ) and τ(l) = 0.

The hardening rule can not be viewed as the addition of CSPR or CLPR
clauses because it does not in general preserve MCSes.

Example 9. Consider the MaxSAT instance F from Example 1 and a solution
τ = {b1, b2, b4,¬b3,¬z, x, y}. Since COST(F , τ) = 3 < 8 = w(b3), the clause (¬b3)
is CPR. However, mcs(F) �= mcs(F ∧ C) since the set {b2, b3} ∈ mcs(F) is not
an MCS of F ∧ C as (FH ∧ C) ∧ ∧

l∈B(F)\cs(¬l) = (FH ∧ (¬b3)) ∧ (¬b1) ∧ (¬b4)
is not satisfiable.

86 H. Ihalainen et al.

Viewing the hardening rule through the lens of CPR clauses demonstrates
novel aspects of the MaxSAT-liftings of propagation redundancy. In particular,
instantiated in the context of SAT, an argument similar to the one we made for
hardening shows that given a CNF formula F , an assignment τ satisfying F , and
a literal l for which τ(l) = 0, the clause (¬l) is redundant (wrt equisatisfiability).
While formally correct, such a rule is not very useful for SAT solving. In contrast,
in the context of MaxSAT the hardening rule is employed in various modern
MaxSAT solvers and leads to non-trivial performance-improvements [4,5].

As another example of capturing MaxSAT-centric reasoning with CPR, con-
sider the so-called TrimMaxSAT rule [39]. Given a MaxSAT instance F =
(FH ,B(F), w) and a literal l ∈ B(F) for which τ(l) = 1 for all solutions of
F , the TrimMaxSAT rule allows adding the clause C = (l) to FH . In this case
the assumptions imply that all solutions of F also satisfy C, i.e., that FH

∣
∣
¬C

is
unsatisfiable. As such, any assignment τ that satisfies C and FH will also satisfy
the three conditions of Definition 2 which demonstrates that C is CPR. It is,
however, not CSPR since the only literal in C is blocking.

As a third example of capturing (new) reasoning techniques with CPR, con-
sider an extension of the central variable elimination rule that allows (to some
extent) for eliminating blocking literals.

Definition 4. Consider a MaxSAT instance F and a blocking literal l ∈ B(F).
Let BBVE(F) be the instance obtained by (i) adding the clause C ∨ D to F for
every pair (C ∨ l), (D ∨ ¬l) ∈ FH and (ii) removing all clauses (D ∨ ¬l) ∈ FH .
Then COST(F) = COST(BBVE(F)) and mcs(F) = mcs(BBVE(F)).

On the Limitations of CPR. Finally, we note that while CPR clauses sig-
nificantly generalize existing theory on reasoning and preprocessing rules for
MaxSAT, there are known reasoning techniques that can not (at least straight-
forwardly) be viewed through the lens of propagation redundancy. For a concrete
example, consider the so-called intrinsic atmost1 technique [26].

Definition 5. Consider a MaxSAT instance F and a set L ⊂ B(F) of blocking
literals. Assume that (i) |τ ∩ {¬l | l ∈ L}| ≤ 1 holds for any solution τ of F and
(ii) w(l) = 1 for each l ∈ L. Now form the instance AT-MOST-ONE(F , L) by
(i) removing each literal l ∈ L from B(F), and (ii) adding the clause {(¬l) | l ∈
L} ∪ {lL} to F , where lL is a fresh blocking literal with w(lL) = 1.

It has been established that any optimal solution of AT-MOST-ONE(F , L)
is an optimal solution of F [26]. However, as the next example demonstrates,
the preservation of optimal solutions is in general not due to the clauses added
being redundant, as applying the technique can affect optimal cost.

Example 10. Consider the MaxSAT instance F = (FH ,B(F), w) with FH =
{(li) | i = 1 . . . n}, B(F) = {l1 . . . ln} and w(l) = 1 for all l ∈ B(F). Then |τ ∩
¬B(F)| = 0 ≤ 1 holds for all solutions τ of F so the intrinsic-at-most-one tech-
nique can be used to obtain the instance F2 = AT-MOST-ONE(F ,B(F)) =
(F2

H ,B(F2), w2) with F2
H = FH ∪ {(¬l1 ∨ . . . ∨ ¬ln ∨ lL)}, B(F2) = {lL} and

Clause Redundancy and Preprocessing in Maximum Satisfiability 87

w2(lL) = 1. Now δ = {l | l ∈ B(F)} ∪ {lL} is an optimal solution to both F2

and F for which 1 = COST(F2, δ) < COST(F , δ) = n.

Example 10 implies that the intrinsic atmost1 technique can not be viewed as
the addition or removal of redundant clauses. Generalizing CPR to cover weight
changes could lead to further insights especially due to potential connections
with core-guided MaxSAT solving [1,36–38].

6 MaxPre 2: More General Preprocesssing in Practice

Connecting to practice, we extended the MaxSAT preprocessor MaxPre [33]
version 1 with support for techniques captured by propagation redundancy. The
resulting MaxPre version 2, as outlined in the following, hence includes tech-
niques which have previously only been implemented in specific solver imple-
mentations rather than in general-purpose MaxSAT preprocessors.

First, let us mention that the earlier MaxPre [33] version 1 assumes that
any blocking literals only appear in a single polarity among the hard clauses.
Removing this assumption—supported by theory developed in Sects. 3–4—
decreases the number of auxiliary variables that need to be introduced when
a MaxSAT instance is rewritten to only include unit soft clauses. For exam-
ple, consider a MaxSAT instance F with FH = {(¬x ∨ y), (¬y ∨ x)} and
FS = {(x), (¬y)}. For preprocessing the instance, MaxPre 1 extends both soft
clauses with a new, auxiliary variable and runs preprocessing on the instance
F = {(¬x ∨ y), (¬y ∨ x), (x ∨ b1), (¬y ∨ b2)} with B(F) = {b1, b2}. In contrast,
MaxPre 2 detects that the clauses in FS are unit and reuses them as blocking
literals, invoking preprocessing on F = {(¬x∨y), (¬y∨x)} with B(F) = {¬x, y}.

In addition to the techniques already implemented in MaxPre 1, MaxPre
2 includes the following additional techniques: hardening [2], a variant Trim-
MaxSAT [39] that works on all literals of a MaxSAT instance, the intrinsic
atmost1 technique [26] and a MaxSAT-lifting of failed literal elimination [12]. In
short, failed literal elimination adds the clause (¬l) to the hard clauses FH of
an instance in case unit-propagation derives a conflict in FH ∧ {(l)}. Addition-
ally, the implementation of failed literal elimination attempts to identify implied
equivalences between literals that can lead to further simplification.

For computing the solutions required by TrimMaxSAT and detecting the car-
dinality constraints required by intrinsic-at-most-one constraints, MaxPre 2 uses
the Glucose 3.0 SAT-solver [3]. For computing solutions required by hardening,
MaxPre 2 additionally uses the SatLike incomplete MaxSAT solver [34] within
preprocessing. MaxPre 2 is available in open source at https://bitbucket.org/
coreo-group/maxpre2/.

We emphasize that, while the additional techniques implemented by MaxPre
2 have been previously implemented as heuristics in specific solver implemen-
tations, MaxPre 2 is—to the best of our understanding—the first stand-alone
implementation supporting techniques whose correctness cannot be established
with previously-proposed MaxSAT redundancy notions (i.e., SRAT). The goal

https://bitbucket.org/coreo-group/maxpre2/
https://bitbucket.org/coreo-group/maxpre2/

88 H. Ihalainen et al.

of our empirical evaluation presented in the next section is to demonstrate the
potential of viewing expressive reasoning techniques not only as solver heuristics,
but as a separate step in the MaxSAT solving process whose correctness can be
established via propagation redundancy.

7 Empirical Evaluation

We report on results from an experimental evaluation of the potential of incor-
porating more general reasoning in MaxSAT preprocessing. In particular, we
evaluated both complete solvers (geared towards finding provably-optimal solu-
tions) and incomplete solvers (geared towards finding relatively good solutions
fast) on standard heterogenous benchmarks from recent MaxSAT Evaluations.
All experiments were run on 2.60-GHz Intel Xeon E5-2670 8-core machines with
64 GB memory and CentOS 7. All reported runtimes include the time used in
preprocessing (when applicable).

7.1 Impact of Preprocessing on Complete Solvers

We start by considering recent representative complete solvers covering three
central MaxSAT solving paradigms: the core-guided solver CGSS [27] (as a recent
improvement to the successful RC2 solver [26]), and the MaxSAT Evaluation
2021 versions of the implicit hitting set based solver MaxHS [17] and the solution-
improving solver Pacose [40]. For each solver S we consider the following variants.

– S: S in its default configuration.
– S no preprocess: S with the solver’s own internal preprocessing turned off

(when applicable).
– S+maxpre1: S after applying MaxPre 1 using its default configuration.
– S+maxpre2/none: S after applying MaxPre 2 using the default configuration

of MaxPre 1.
– S + maxpre2/<TECH>: S after applying MaxPre 2 using the standard config-

uration of MaxPre 1 and additional techniques integrated into MaxPre 2 (as
detailed in Section 6) as specified by <TECH>.

More precisely, <TECH> specifies which of the techniques HTVGR are applied:
H for hardening, T and V for TrimMaxSAT on blocking and non-blocking liter-
als, respectively, G for intrinsic-at-most-one-constraints and R for failed literal
elimination. It should be noted that an exhaustive evaluation of all subsets and
application orders of these techniques is infeasible in practice. Based on prelim-
inary experiments, we observed that the following choices were promising: HRT
for CGSS and MaxHS, and HTVGR for Pacose; we report results using these
individual configurations.

As benchmarks, we used the combined set of weighted instances from the
complete tracks of MaxSAT Evaluation 2020 and 2021. After removing dupli-
cates, this gave a total of 1117 instances. We enforced a per-instance time limit of

Clause Redundancy and Preprocessing in Maximum Satisfiability 89

0
10

00
20

00
30

00

610 620 630 640 650 660 670 680 690

Ti
m

e
(s

)
Pacose (657)

Pacose+maxpre1 (677)
Pacose+maxpre2/none (659)

Pacose+maxpre2/HVRTG (694)

0
10

00
20

00
30

00

740 760 780 800 820

Ti
m

e
(s

)

CGSS (812)
CGSS+maxpre1 (799)

CGSS+maxpre2/none (805)
CGSS+maxpre2/HRT (810)

0
10

00
20

00
30

00

740 760 780 800 820

Ti
m

e
(s

)

Number of solved instances

MaxHS no preprocess (787)
MaxHS (826)

MaxHS+maxpre1 (824)
MaxHS+maxpre2/none (824)
MaxHS+maxpre2/HRT (829)

Fig. 1. Impact of preprocessing on complete solvers. For each solver, the number of
instances solved within a 60-min per-instance time limit in parentheses.

60 minutes and memory limit of 32 GB. Furthermore, we enforced a per-instance
120-second time limit on preprocessing.

An overview of the results is shown in Fig. 1, illustrating for each solver
the number of instances solved (x-axis) under different per-instance time lim-
its (y-axis). We observe that for both CGSS and MaxHS, S+maxpre1 and
S+maxpre2/none leads to less instances solved compared to S. In contrast,
S+maxpre2/HRT, i.e., incorporating the stronger reasoning techniques of Max-
Pre 2, performs best of all preprocessing variants and improves on MaxHS
also in terms of the number of instances solved. For Pacose, we observe that
both Pacose+maxpre1 and Pacose+maxpre2/new (without the stronger reason-
ing techniques) already improve the performance of Pacose, leading to more
instances solved. Incorporating the stronger reasoning rules further significantly
improves performance, with Pacose+maxpre2/HVRTG performing the best among
all of the Pacose variants.

7.2 Impact of Preprocessing on Incomplete MaxSAT Solving

As a representative incomplete MaxSAT solver we consider the MaxSAT Evalua-
tion 2021 version of Loandra [9], as the best-performing solver in the incomplete

90 H. Ihalainen et al.

Table 1. Impact of preprocessing on the incomplete solver Loandra. The wins are
organized column-wise, the cell on row X column Y contains the total number of
instances that the solver on column Y wins over the solver on row X.

#Wins base (maxpre1) no-prepro maxpre2/ none maxpre2/ VG

base (maxpre1) — 154 135 152

no-prepro 208 — 216 218

maxpre2/none 105 143 — 77

maxpre2/VG 110 140 80 —

Score (avg): 0.852 0.840 0.863 0.870

track of MaxSAT Evaluation under a 300s per-instance time limit on weighted
instances. Loandra combines core-guided and solution-improving search towards
finding good solutions fast. We consider the following variants of Loandra.

– base (maxpre1): Loandra in its default configuration which makes use of
MaxPre 1.

– no-prepro: Loandra with its internal preprocessing turned off.
– maxpre2/none: base with its internal preprocessor changed from MaxPre 1

to MaxPre 2 using the default configuration of MaxPre 1.
– maxpre2/VG: maxpre2 incorporating the additional intrinsic-at-most-one con-

straints technique and the extension of TrimMaxSAT to non-blocking literals
(cf. Sect. 6), found promising in preliminary experimentation.

As benchmarks, we used the combined set of weighted instances from the
incomplete tracks of MaxSAT Evaluation 2020 and 2021. After removing dupli-
cates, this gave a total of 451 instances. When reporting results, we consider for
each instance and solver the cost of the best solution found by the solver within
300 s (including time spent preprocessing and solution reconstruction).

We compare the relative runtime performance of the solver variants using
two metrics: #wins and the average incomplete score. Assume that τx and τy

are the lowest-cost solutions computed by two solvers X and Y on a MaxSAT
instance F and that best-cost(F) is the lowest cost of a solution of F found
either in our evaluation or in the MaxSAT Evaluations. Then X wins over Y
if COST(F , τx) < COST(F , τy). The incomplete score, score(F ,X), obtained by
solver X on F is the ratio between the cost of the solution found by X and
best-cost(F), i.e., score(F ,X) = (best-cost(F) + 1)/(COST(F , τx) + 1). The
score of X on F is 0 if X is unable to find any solutions within 300 s.

An overview of the results is shown in Table 1. The upper part of the table
shows a pairwise comparison on the number of wins over all benchmarks. The
wins are organized column-wise, i.e., the cell on row X column Y contains the
total number of instances that the solver on column Y wins over the solver on
row X. The last row contains the average score obtained by each solver over
all instances. We observe that any form of preprocessing improves the perfor-
mance of Loandra, as witnessed by the fact that no-prepro is clearly the worst-
performing variant. The variants that make use of MaxPre 2 outperform the

Clause Redundancy and Preprocessing in Maximum Satisfiability 91

101

102

103

104

105

106

107

108

101 102 103 104 105 106 107 108

m
ax

pr
e2

/H
R

T

maxpre 1 - clauses
101 102 103 104 105 106 107 108

maxpre 1 - variables

101

102

103

104

105

106

107

108

101 102 103 104 105 106 107 108

m
ax

pr
e2

/H
R

T

original instance - clauses
101 102 103 104 105 106 107 108

original instance - variables

Fig. 2. Impact of preprocessing on instance size.

baseline under both metrics; both maxpre2 no new and maxpre2-w:VG obtain
a higher average score and win on more instances over base. The comparison
between maxpre2/none and maxpre2/VG is not as clear. On one hand, the score
obtained by maxpre2/VG is higher. On the other hand, maxpre2/none wins on
80 instances over maxpre2/VG and looses on 77. This suggests that the quality
of solutions computed by maxpre2/VG is on average higher, and that on the
instances on which maxpre2/none wins the difference is smaller.

7.3 Impact of Preprocessing on Instance Sizes

In addition to improved solver runtimes, we note that MaxPre 2 has a positive
effect on the size of instances (both in terms of the number of variables and
clauses remaining) when compared to preprocessing with MaxPre 1; see Fig. 2
for a comparison, with maxpre2/HRT compared to maxpre1 (left) and to original
instance sizes (right).

8 Conclusions

We studied liftings of variants of propagation redundancy from SAT in the con-
text of maximum satisfiability where—more fine-grained than in SAT—of inter-
est are reasoning techniques that preserve optimal cost. We showed that CPR,
the strongest MaxSAT-lifting, allows for changing minimal corrections sets in
MaxSAT in a controlled way, thereby succinctly expressing MaxSAT reason-
ing techniques very generally. We also provided a practical MaxSAT preproces-
sor extended with techniques captured by CPR and showed empirically that
extended preprocessing has a positive overall impact on a range of MaxSAT
solvers. Interesting future work includes the development of new CPR-based
preprocessing rules for MaxSAT capable of significantly affecting the MaxSAT
solving pipeline both in theory and practice, as well as developing an under-
standing of the relationship between redundancy notions and the transforma-
tions performed by MaxSAT solving algorithms.

References

1. Ansótegui, C., Bonet, M., Levy, J.: SAT-based MaxSAT algorithms. Artif. Intell.
196, 77–105 (2013)

92 H. Ihalainen et al.

2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving SAT-based weighted
MaxSAT solvers. In: Milano, M. (ed.) CP 2012. LNCS, pp. 86–101. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33558-7 9

3. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of the IJCAI, pp. 399–404 (2009)

4. Bacchus, F., Berg, J., Järvisalo, M., Martins, R. (eds.): MaxSAT Evaluation 2020:
Solver and Benchmark Descriptions, Department of Computer Science Report
Series B, vol. B-2020-2. Department of Computer Science, University of Helsinki
(2020)

5. Bacchus, F., Järvisalo, M., Martins, R. (eds.): MaxSAT Evaluation 2019: Solver
and Benchmark Descriptions, Department of Computer Science Report Series B,
vol. B-2019-2. Department of Computer Science, University of Helsinki (2019)

6. Bacchus, F., Järvisalo, M., Martins, R.: Maximum satisfiability (chap. 24). In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, pp. 929–991. IOS Press (2021)

7. Baek, S., Carneiro, M., Heule, M.J.H.: A flexible proof format for sat solver-
elaborator communication. In: TACAS 2021. LNCS, vol. 12651, pp. 59–75.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2 4

8. Belov, A., Morgado, A., Marques-Silva, J.: SAT-based preprocessing for MaxSAT.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol.
8312, pp. 96–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
45221-5 7

9. Berg, J., Demirović, E., Stuckey, P.J.: Core-boosted linear search for incom-
plete MaxSAT. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS,
vol. 11494, pp. 39–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
19212-9 3

10. Berg, J., Järvisalo, M.: Unifying reasoning and core-guided search for maximum
satisfiability. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS
(LNAI), vol. 11468, pp. 287–303. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-19570-0 19

11. Berg, J., Saikko, P., Järvisalo, M.: Subsumed label elimination for maximum sat-
isfiability. In: Proceedings of the ECAI. Frontiers in Artificial Intelligence and
Applications, vol. 285, pp. 630–638. IOS Press (2016)

12. Bhalla, A., Lynce, I., de Sousa, J.T., Marques-Silva, J.: Heuristic-based backtrack-
ing for propositional satisfiability. In: Pires, F.M., Abreu, S. (eds.) EPIA 2003.
LNCS (LNAI), vol. 2902, pp. 116–130. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-24580-3 19

13. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability (Second
Edition): Volume 336 Frontiers in Artificial Intelligence and Applications. IOS
Press, Amsterdam, The Netherlands (2021)

14. Biere, A., Järvisalo, M., Kiesl, B.: Preprocessing in SAT solving (chap. 9). In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, pp. 391–435. IOS Press (2021)

15. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.:
Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNCS
(LNAI), vol. 10395, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63046-5 14

16. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient certified resolu-
tion proof checking. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 118–135. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5 7

https://doi.org/10.1007/978-3-642-33558-7_9
https://doi.org/10.1007/978-3-030-72016-2_4
https://doi.org/10.1007/978-3-642-45221-5_7
https://doi.org/10.1007/978-3-642-45221-5_7
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-030-19212-9_3
https://doi.org/10.1007/978-3-030-19570-0_19
https://doi.org/10.1007/978-3-030-19570-0_19
https://doi.org/10.1007/978-3-540-24580-3_19
https://doi.org/10.1007/978-3-540-24580-3_19
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.1007/978-3-662-54577-5_7
https://doi.org/10.1007/978-3-662-54577-5_7

Clause Redundancy and Preprocessing in Maximum Satisfiability 93

17. Davies, J., Bacchus, F.: Exploiting the power of mip solvers in maxsat. In:
Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5 13

18. Heule, M., Hunt, W., Kaufmann, M., Wetzler, N.: Efficient, verified checking of
propositional proofs. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 269–284. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66107-0 18

19. Heule, M., Hunt, W.A., Jr., Wetzler, N.: Bridging the gap between easy generation
and efficient verification of unsatisfiability proofs. Softw. Test. Verif. Reliab. 24(8),
593–607 (2014)

20. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)

21. Heule, M., Kiesl, B.: The potential of interference-based proof systems. In: Pro-
ceedings of the ARCADE@CADE. EPiC Series in Computing, vol. 51, pp. 51–54.
EasyChair (2017)

22. Heule, M.J.H., Kiesl, B., Biere, A.: Short proofs without new variables. In: de
Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 130–147. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 9

23. Heule, M.J.H., Kiesl, B., Biere, A.: Strong extension-free proof systems. J. Autom.
Reason. 64(3), 533–554 (2020)

24. Heule, M.J.H., Kiesl, B., Seidl, M., Biere, A.: PRuning through satisfaction. In:
HVC 2017. LNCS, vol. 10629, pp. 179–194. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70389-3 12

25. Hou, A.: A theory of measurement in diagnosis from first principles. Artif. Intell.
65(2), 281–328 (1994)

26. Ignatiev, A., Morgado, A., Marques-Silva, J.: RC2: an efficient MaxSAT solver. J.
Satisf. Boolean Model. Comput. 11(1), 53–64 (2019)

27. Ihalainen, H., Berg, J., Järvisalo, M.: Refined core relaxation for core-guided
MaxSAT solving. In: Proceedings of the CP. LIPIcs, vol. 210, pp. 28:1–28:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

28. Järvisalo, M., Biere, A., Heule, M.: Simulating circuit-level simplifications on CNF.
J. Autom. Reason. 49(4), 583–619 (2012)

29. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 28

30. Kiesl, B., Rebola-Pardo, A., Heule, M.J.H., Biere, A.: Simulating strong practi-
cal proof systems with extended resolution. J. Autom. Reason. 64(7), 1247–1267
(2020)

31. Kiesl, B., Seidl, M., Tompits, H., Biere, A.: Super-blocked clauses. In: Olivetti,
N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 45–61. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40229-1 5

32. Kiesl, B., Seidl, M., Tompits, H., Biere, A.: Local redundancy in SAT: generaliza-
tions of blocked clauses. Log. Methods Comput. Sci. 14(4) (2018)

33. Korhonen, T., Berg, J., Saikko, P., Järvisalo, M.: MaxPre: an extended MaxSAT
preprocessor. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
449–456. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 28

34. Lei, Z., Cai, S.: Solving (weighted) partial MaxSAT by dynamic local search for
SAT. In: Proceedings of the IJCAI, pp. 1346–1352 (2018). ijcai.org

35. Li, C., Manyà, F.: MaxSAT, hard and soft constraints. In: Biere, A., Heule, M., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, pp. 613–631. IOS Press
(2009)

https://doi.org/10.1007/978-3-642-39071-5_13
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-66107-0_18
https://doi.org/10.1007/978-3-319-63046-5_9
https://doi.org/10.1007/978-3-319-70389-3_12
https://doi.org/10.1007/978-3-319-70389-3_12
https://doi.org/10.1007/978-3-642-31365-3_28
https://doi.org/10.1007/978-3-319-40229-1_5
https://doi.org/10.1007/978-3-319-66263-3_28

94 H. Ihalainen et al.

36. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 41

37. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534
(2013)

38. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: Proceedings of the AAAI, pp. 2717–2723. AAAI Press (2014)

39. Paxian, T., Raiola, P., Becker, B.: On preprocessing for weighted MaxSAT. In:
Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol. 12597, pp.
556–577. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67067-2 25

40. Paxian, T., Reimer, S., Becker, B.: Dynamic polynomial watchdog encoding for
solving weighted MaxSAT. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT
2018. LNCS, vol. 10929, pp. 37–53. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94144-8 3

41. Rebola-Pardo, A., Cruz-Filipe, L.: Complete and efficient DRAT proof checking.
In: Proceedings of the FMCAD, pp. 1–9. IEEE (2018)

42. Yolcu, E., Wu, X., Heule, M.J.H.: Mycielski graphs and PR proofs. In: Pulina, L.,
Seidl, M. (eds.) SAT 2020. LNCS, vol. 12178, pp. 201–217. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51825-7 15

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-10428-7_41
https://doi.org/10.1007/978-3-030-67067-2_25
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.1007/978-3-319-94144-8_3
https://doi.org/10.1007/978-3-030-51825-7_15
http://creativecommons.org/licenses/by/4.0/

Cooperating Techniques for Solving
Nonlinear Real Arithmetic in the cvc5

SMT Solver (System Description)

Gereon Kremer1 , Andrew Reynolds2(B) , Clark Barrett1 ,
and Cesare Tinelli2

1 Stanford University, Stanford, USA
2 The University of Iowa, Iowa City, USA

andrew.j.reynolds@gmail.com

Abstract. The cvc5 SMT solver solves quantifier-free nonlinear real
arithmetic problems by combining the cylindrical algebraic coverings
method with incremental linearization in an abstraction-refinement loop.
The result is a complete algebraic decision procedure that leverages effi-
cient heuristics for refining candidate models. Furthermore, it can be used
with quantifiers, integer variables, and in combination with other theo-
ries. We describe the overall framework, individual solving techniques,
and a number of implementation details. We demonstrate its effective-
ness with an evaluation on the SMT-LIB benchmarks.

Keywords: Satisfiability modulo theories · Nonlinear real arithmetic ·
Abstraction refinement · Cylindrical algebraic coverings

1 Introduction

SMT solvers are used as back-end engines for a wide variety of academic and
industrial applications [2,19,20]. Efficient reasoning in the theory of real arith-
metic is crucial for many such applications [5,8]. While modern SMT solvers
have been shown to be quite effective at reasoning about linear real arithmetic
problems [21,43], nonlinear problems are typically much more difficult. This is
not surprising, given that the worst-case complexity for deciding the satisfiabil-
ity of nonlinear real arithmetic formulas is doubly-exponential in the number
of variables in the formula [15]. Nevertheless, a variety of techniques have been
proposed and implemented, each attempting to target a class of formulas for
which reasonable performance can be observed in practice.

Related Work. All complete decision procedures for nonlinear real arithmetic
(or the theory of the reals) originate in computer algebra, the most prominent
being cylindrical algebraic decomposition (CAD) [11]. While alternatives exist
[6,25,41], they have not seen much use [27], and CAD-based methods are the only
sound and complete methods in practical use today. CAD-based methods used
c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 95–105, 2022.
https://doi.org/10.1007/978-3-031-10769-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_7&domain=pdf
http://orcid.org/0000-0002-0393-5739
http://orcid.org/0000-0002-3529-8682
http://orcid.org/0000-0002-9522-3084
http://orcid.org/0000-0002-6726-775X
https://doi.org/10.1007/978-3-031-10769-6_7

96 G. Kremer et al.

in modern SMT solvers include incremental CAD implementations [34,36] and
cylindrical algebraic coverings [3], both of which are integrated in the traditional
CDCL(T) framework for SMT [40].

In contrast, the NLSAT [30] calculus and the generalized MCSAT [28,39]
framework provide for a much tighter integration of a conflict-driven CAD-based
theory solver into a theory-aware core solver. This has been the dominant app-
roach over the last decade due to its strong performance in practice. However,
it has the significant disadvantage of being difficult to integrate with CDCL(T)-
based frameworks for theory combination.

A number of incomplete techniques are also used by various SMT solvers:
incremental linearization [9] gradually refines an abstraction of the nonlinear
formula obtained via a naive linearization by refuting spurious models of the
abstraction; interval constraint propagation [24,36,45] employs interval arith-
metic to narrow down the search space; subtropical satisfiability [22] provides
sufficient linear conditions for nonlinear solutions in the exponent space of the
polynomials; and virtual substitution [12,31,46] makes use of parametric solu-
tion formulas for polynomials of bounded degree. Though all of these techniques
have limitations, each of them is useful for certain subclasses of nonlinear real
arithmetic or in combination with other techniques.

Contributions. We present an integration of cylindrical algebraic coverings and
incremental linearization, implemented in the cvc5 SMT solver. Crucial to the
success of the integration is an abstraction-refinement loop used to combine the
two techniques cooperatively. The solution is effective in practice, as witnessed
by the fact that cvc5 won the nonlinear real arithmetic category of SMT-COMP
2021 [44], the first time a non-MCSAT-based technique has won since 2013. Our
integrated technique also has the advantage of being very flexible: in particular, it
fits into the regular CDCL(T) schema for theory solvers and theory combination,
it supports (mixed) integer problems, and it can be easily extended using further
subsolvers that support additional arithmetic operators beyond the scope of
traditional algebraic routines (e.g., transcendental functions).

2 Nonlinear Solving Techniques

The nonlinear arithmetic solver implemented in cvc5 generally follows the
abstraction-refinement framework introduced by Cimatti et al. [9] and depicted
in Fig. 1. The input assertions are first checked by the linear arithmetic solver,
where they are linearized implicitly by treating every application of multipli-
cation as if it were an arithmetic variable. For example, given input assertions
x ·y > 0 ∧ x > 1∧y < 0, the linear solver treats the expression x ·y as a variable.
It may then find the (spurious) model: x �→ 2, y �→ −1, and x · y �→ 1. We call
the candidate model returned by the linear arithmetic solver, where applications
of multiplication are treated as variables, a linear model. If a linear model does
not exist, i.e., the input is unsatisfiable according to the linear solver, the linear
solver generates a conflict that is immediately returned to the CDCL(T) engine.

Cooperating Techniques for Solving Nonlinear Real Arithmetic in the cvc5 97

linear solverinput assertions

SAT

lemmas / conflicts

check model abstraction-refinement

linear model

conflict

repair model

Fig. 1. Structural overview of the nonlinear solver

When a linear model does exist, we check whether it already satisfies the
input assertions or try to repair it to do so. We only apply a few very sim-
ple heuristics for repairs such as updating the value for z in the presence of a
constraint like z = x · y based on the values of x and y.

If the model can not be repaired, we refine the abstraction for the linear
solver [9]. This step constructs lemmas, or conflicts, based on the input asser-
tions and the linear model, to advance the solving process by blocking either
the current linear model or the current Boolean model, that is, the propositional
assignment generated by the SMT solver’s SAT engine. The Boolean model is
usually eliminated only by the coverings approach, while the incremental lin-
earization technique generates lemmas with new literals that target the linear
model, e.g., the lemma x > 0 ∧ y < 0 ⇒ x ·y < 0 in the example above. We next
describe our implementation of cylindrical algebraic coverings and incremental
linearization, and how they are combined in cvc5.

2.1 Cylindrical Algebraic Coverings

Cylindrical algebraic coverings is a technique recently proposed by Ábrahám et
al. [3] and is heavily inspired by CAD. While the way the computation proceeds
is very different from traditional CAD, and instead somewhat similar to NLSAT
[30], their mathematical underpinnings are essentially identical. The cylindri-
cal algebraic coverings subsolver in cvc5 closely follows the presentation in [3].
Below, we discuss some differences and extensions. For this discussion, we must
refer the reader to [3] for the relevant background material because of space
constraints. We note that cvc5 relies on the libpoly library [29] to provide most
of the computational infrastructure for algebraic reasoning.

Square-Free Basis. As with most CAD projection schemas, the set of projection
polynomials needs to be a square-free basis when computing the characterization
for an interval in [3, Algorithm 4]. However, the resultants computed in this
algorithm combine polynomials from different sets, which are not necessarily
coprime. The remedy is to either make these sets of polynomials pairwise square-
free or to fully factor all projection polynomials. We adopt the former approach.

Starting Model. Although the linear model may not satisfy the nonlinear con-
straints, we may expect it to be in the vicinity of a proper model. We thus

98 G. Kremer et al.

optionally use the linear model as an initial assignment for the cylindrical alge-
braic coverings algorithm in one of two ways: either using it initially in the search
and discarding it as soon as it conflicts; or using it whenever possible, even if
it leads to a conflict in another branch of the search. Unfortunately, neither
technique has any discernible impact in our experiments.

Interval Pruning. As already noted in [3], a covering may contain two kinds
of redundant intervals: intervals fully contained in another interval, or intervals
contained in the union of other intervals. Removing the former kind of redundan-
cies is not only clearly beneficial, but also required for how the characterizations
are computed. It is not clear, however, if it is worthwhile to remove redundancies
of the second kind because, while it can simplify the characterization locally, it
may also make the resulting interval smaller, slowing down the overall solving
process. Note that there may not be a unique redundant interval: e.g., if multi-
ple intervals overlap, it may be possible to remove one of two intervals, but not
both of them. We have implemented a simple heuristic to detect redundancies
of the second kind, always removing the smallest interval with respect to the
interval ordering given in [3]. Even if these redundancies occur in about 7.5%
of all QF NRA benchmarks, using this technique has only a very limited impact.
It may be that for certain kinds of benchmarks, underrepresented in SMT-LIB,
the technique is valuable. Or it may be that some variation of the technique is
more broadly helpful. These are interesting directions for future work.

Lifting and Coefficient Selection with Lazard. The original cylindrical algebraic
coverings technique is based on McCallum’s projection operator [37], which is
particularly well-studied, but also (refutationally) unsound: polynomial nullifi-
cation may occur when computing the real roots, possibly leading to the loss of
real roots and thus solution candidates. One then needs to check for these cases
and fall back to a more conservative, albeit more costly, projection schema such
as those due to Collins [11] or Hong [26].

Lazard’s projection schema [35], which has been proven correct only recently
[38], provides very small projection sets and is both sound and complete. This
comes at the price of a different mathematical background and a modified lifting
procedure, which corresponds to a modified procedure for real root isolation.
Although the local projections employed in cylindrical algebraic coverings have
not been formally verified for Lazard’s projection schema yet, we expect no
significant issues there. Adopting it seems to be a logical improvement, as already
mentioned in [3]. The modified real root isolation procedure is a significant hurdle
in practice, as it requires additional nontrivial algorithms [32, Section 5.3.2]. We
implemented it using CoCoALib [1] in cvc5 [33], achieving soundness without
any discernible negative performance impact.

Using Lazard’s projection schema, for all its benefits, may seem questionable
for the following reasons: (i) the unsoundness of McCallum’s projection operator
is virtually never witnessed in practice [32,33, Section 6.5], and (ii) the projection
sets computed by Lazard’s and McCallums’s projection operator are identical
on more than 99.5% on all of QF NRA [33]. We argue, though, that working in

Cooperating Techniques for Solving Nonlinear Real Arithmetic in the cvc5 99

the domain of formal verification warrants the effort of obtaining a (provably)
correct result, especially if it does not incur a performance overhead.

Proof Generation. Recently, generating formal proofs to certify the result of SMT
solvers has become an area of focus. In particular, there is a large and ongoing
effort to produce proofs in cvc5. The incremental linearization approach can be
seen as an oracle which produces lemmas that are easy to prove individually, so
cvc5 does generate proofs for them; the complex part is finding those lemmas
and making sure they actually help the solver make progress.

The situation is very different for cylindrical algebraic coverings: the pro-
duced lemma is the infeasible subset, and we usually have no simpler proof than
the computations relying on CAD theory. That said, cylindrical algebraic cover-
ings appear to be more amenable to automatic proof generation than traditional
CAD-based approaches [4,14]. In fact, although making these proofs detailed
enough for automated verification is still an open problem, they are already bro-
ken into smaller parts that closely follow the tree-shaped computation of the
algorithm. This allows cvc5 to produce at least a proof skeleton in that case.

2.2 Incremental Linearization

Our theory solver for nonlinear (real) arithmetic optionally uses lemma schemas
following the incremental linearization approaches described by Cimatti et al. [9]
and Reynolds et al. [42]. These schemas incrementally refine candidate models
from the linear arithmetic solver by introducing selected quantifier-free lemmas
that express properties of multiplication, such as signedness (e.g., x > 0 ∧ y >
0 ⇒ x ·y > 0) or monotonicity (e.g., |x| > |y| ⇒ x ·x > y ·y). They are generated
as needed to refute spurious models that violate these properties.

Most lemma schemas built-in in cvc5 are crafted so as to avoid introducing
new monomial terms or coefficients, since that could lead to non-termination in
the CDCL(T) search. As a notable exception, we rely on a lemma schema for
tangent planes for multiplication [9], which can be used to refute the candidate
model for any application of the multiplication operator · whose value in the
linear model is inconsistent with the standard interpretation of ·. Note that
since these lemmas depend upon the current model value chosen for arithmetic
variables, tangent plane lemmas may introduce an unbounded number of new
literals into the search. The set of lemma schemas used by the solver is user-
configurable, as described in the following section.

2.3 Strategy

The overall theory solver for nonlinear arithmetic is built from several subsolvers,
implementing the techniques described above, using a rather naive strategy,
as summarized in Algorithm 1. After a spurious linear model has been con-
structed that cannot be repaired, we first apply a subset of the lemma schemas
that do not introduce an unbounded number of new terms (with procedure
IncLinearizationLight); then, we continue with the remaining lemma schemas

100 G. Kremer et al.

1 Function NlSolve(assertions)
2 if not LinearSolve(assertions) then return linear conflict
3 M = linear model for assertions
4 if RepairModel(assertions, M) then return repaired model
5 if IncLinearizationLight(assertions, M) then return lemmas
6 if IncLinearizationFull(assertions, M) then return lemmas
7 return Coverings(assertions, M)

Algorithm 1: Strategy for nonlinear arithmetic solver

(with procedure IncLinearizationFull); finally, we resort to the coverings
solver which is guaranteed to find either a conflict or a model. Internally, each
procedure sequentially tries its assigned lemma schemas from [9,42] until it con-
structs a lemma that can block the spurious model.

The approach is dynamically configured based on input options and the logic
of the input formula. For example, by default, we disable IncLinearizationFull
for QF NRA as it tends to diverge in cases where the coverings solver quickly
terminates.

2.4 Beyond QF NRA

The presented solver primarily targets quantifier-free nonlinear real arithmetic,
but is used also in the presence of quantifiers and with multiple theories.

Quantified Logics. Solving quantified logics for nonlinear arithmetic requires solv-
ing quantifier-free subproblems, and thus any improvement to quantifier-free
solving also benefits solving with quantifiers. In practice, however, the instanti-
ation heuristics are just as important for overall solver performance.

Multiple Theories. The theory combination framework as implemented in cvc5
requires evaluating equalities over the combined model. To support this func-
tionality, real algebraic numbers had to be properly integrated into the entire
solver; in particular, the ability to compute with these numbers could not be
local to the cylindrical algebraic coverings module or even the nonlinear solver.

3 Experimental Results

We evaluate our implementation within cvc5 (commit id 449dd7e) in comparison
with other SMT solvers on all 11552 benchmarks in the quantifier-free nonlinear
real arithmetic (QF NRA) logic of SMT-LIB. We consider three configurations of
cvc5, each of which runs a subset of steps from Algorithm 1. All the configura-
tions run lines 2–4. In addition, cvc5.cov runs line 7, cvc5.inclin runs lines
5 and 6, and cvc5 runs lines 5 and 7. All experiments were conducted on Intel
Xeon E5-2637v4 CPUs with a time limit of 20 min and 8 GB memory.

We compare cvc5 with recent versions of all other SMT solvers that partici-
pated in the QF NRA logic of SMT-COMP 2021 [44]: MathSAT 5.6.6 [10], SMT-RAT
19.10.560 [13], veriT [7] (veriT+raSAT+Redlog), Yices2 2.6.4 [18] (Yices-QS for

Cooperating Techniques for Solving Nonlinear Real Arithmetic in the cvc5 101

quantified logics), and z3 4.8.14 [16]. MathSAT employs an abstraction-refinement
mechanism very similar to the one described in Sect. 2.2; veriT [23] forwards non-
linear arithmetic problems to the external tools raSAT [45], which uses interval
constraint propagation, and Redlog/Reduce [17], which focuses on virtual sub-
stitution and cylindrical algebraic decomposition; SMT-RAT, Yices2, and z3 all
implement some variant of MCSAT [30]. Note that SMT-RAT also implements the
cylindrical algebraic coverings approach, but it is less effective than SMT-RAT’s
adaptation of MCSAT [3].

QF_NRA sat unsat solved

cvc5 5137 5596 10733
Yices2 4966 5450 10416
z3 5136 5207 10343
cvc5.cov 5001 5077 10078
SMT-RAT 4828 5038 9866
veriT 4522 5034 9556
MathSAT 3645 5357 9002
cvc5.inclin 3421 5376 8797

(a)

Beyond QF_NRA sat unsat solved

NRA Yices2 231 3817 4048
z3 236 3812 4048
cvc5.cov 236 3809 4045
cvc5 221 3809 4030
cvc5.inclin 120 3786 3906

QF_UFNRA z3 24 11 35
Yices2 23 11 34
cvc5 20 11 31
cvc5.inclin 12 11 23
cvc5.cov 2 11 13

(b)

Fig. 2. (a) Experiments for QF NRA (b) Experiments for NRA and QF UFNRA

Figure 2a shows that cvc5 significantly outperforms all other QF NRA
solvers. Both the coverings approach (cvc5.cov) and the incremental lineariza-
tion approach (cvc5.inclin) contribute substantially to the overall perfor-
mance of the unified solver in cvc5, with coverings solving many satisfiable
instances, and incremental linearization helping on unsatisfiable ones. Even
though cvc5.inclin closely follows [9], it outperforms MathSAT on unsatisfi-
able benchmarks, those where cvc5 relies on incremental linearization the most.

Comparing cvc5 and Yices2 is particularly interesting, as the coverings app-
roach in cvc5 and the NLSAT solver in Yices2 both rely on libpoly [29], thus
using the same implementation of algebraic numbers and operations over them.
Our integration of incremental linearization and algebraic coverings is compat-
ible with the traditional CDCL(T) framework and outperforms the alternative
NLSAT approach, which is specially tailored to nonlinear real arithmetic.

Going beyond QF NRA, we also evaluate the performance of our solver in
the context of theory combination (with all 37 benchmarks from QF UFNRA) and
quantifiers (with all 4058 benchmarks from NRA). There, cvc5 is a close runner-up
to Yices2 and z3, thanks to the coverings subsolver which significantly improves
cvc5’s performance. We conjecture that the remaining gap is due to components
other than the nonlinear arithmetic solver, such as the solver for equality and
uninterpreted functions, details of theory combination, or quantifier instantiation

102 G. Kremer et al.

heuristics. Interestingly, the sets of unsolved instances in NRA are almost disjoint
for cvc5.cov, Yices2 and z3, indicating that each tool could solve the remaining
benchmarks with reasonable extra effort.

4 Conclusion

We have presented an approach for solving quantifier-free nonlinear real
arithmetic problems that combines previous approaches based on incremen-
tal linearization [9] and cylindrical algebraic coverings [3] into one coherent
abstraction-refinement loop. The resulting implementation is very effective, out-
performing other state-of-the-art solver implementations, and integrates seam-
lessly in the CDCL(T) framework.

The general approach also applies to integer problems, quantified formulas,
and instances with multiple theories, and can additionally be used in combina-
tion with transcendental functions [9] and bitwise conjunction for integers [47].
Further evaluations of these combinations are left to future work.

References

1. Abbott, J., Bigatti, A.M., Palezzato, E.: New in CoCoA-5.2.4 and CoCoALib-
0.99600 for SC-square. In: Satisfiability Checking and Symbolic Computation.
CEUR Workshop Proceedings, vol. 2189, pp. 88–94. CEUR-WS.org (2018). http://
ceur-ws.org/Vol-2189/paper4.pdf

2. Ábrahám, E., Corzilius, F., Johnsen, E.B., Kremer, G., Mauro, J.: Zephyrus2: on
the fly deployment optimization using SMT and CP technologies. In: Fränzle, M.,
Kapur, D., Zhan, N. (eds.) SETTA 2016. LNCS, vol. 9984, pp. 229–245. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47677-3 15

3. Ábrahám, E., Davenport, J.H., England, M., Kremer, G.: Deciding the consistency
of non-linear real arithmetic constraints with a conflict driven search using cylindri-
cal algebraic coverings. J. Logic. Algebr. Methods Program. 119(100633) (2021).
https://doi.org/10.1016/j.jlamp.2020.100633

4. Abrahám, E., Davenport, J.H., England, M., Kremer, G.: Proving UNSAT
in SMT: the case of quantifier free non-linear real arithmetic. arXiv preprint
arXiv:2108.05320 (2021)

5. Arnett, T.J., Cook, B., Clark, M., Rattan, K.: Fuzzy logic controller stability
analysis using a satisfiability modulo theories approach. In: 19th AIAA Non-
Deterministic Approaches Conference, p. 1773 (2017)

6. Basu, S., Pollack, R., Roy, M.F.: On the combinatorial and algebraic complexity
of quantifier elimination. J. ACM 43, 1002–1045 (1996). https://doi.org/10.1145/
235809.235813

7. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS
(LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02959-2 12

8. Cashmore, M., Magazzeni, D., Zehtabi, P.: Planning for hybrid systems via satisfi-
ability modulo theories. J. Artif. Intell. Res. 67, 235–283 (2020). https://doi.org/
10.1613/jair.1.11751

http://ceur-ws.org/Vol-2189/paper4.pdf
http://ceur-ws.org/Vol-2189/paper4.pdf
https://doi.org/10.1007/978-3-319-47677-3_15
https://doi.org/10.1016/j.jlamp.2020.100633
http://arxiv.org/abs/2108.05320
https://doi.org/10.1145/235809.235813
https://doi.org/10.1145/235809.235813
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1613/jair.1.11751
https://doi.org/10.1613/jair.1.11751

Cooperating Techniques for Solving Nonlinear Real Arithmetic in the cvc5 103

9. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental lin-
earization for satisfiability and verification modulo nonlinear arithmetic and tran-
scendental functions. ACM Trans. Comput. Logic 19, 19:1–19:52 (2018). https://
doi.org/10.1145/3230639

10. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

11. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). https://doi.org/10.1007/3-540-07407-4 17

12. Corzilius, F., Ábrahám, E.: Virtual substitution for SMT-solving. In: Owe, O.,
Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 360–371. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22953-4 31

13. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an open
source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver,
S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24318-4 26

14. Davenport, J., England, M., Kremer, G., Tonks, Z., et al.: New opportunities for
the formal proof of computational real geometry? arXiv preprint arXiv:2004.04034
(2020)

15. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponen-
tial. J. Symb. Comput. 5(1), 29–35 (1988). https://doi.org/10.1016/S0747-
7171(88)80004-X

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

17. Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic. ACM
SIGSAM Bull. 31(2), 2–9 (1997). https://doi.org/10.1145/261320.261324

18. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 49

19. Ermon, S., Le Bras, R., Gomes, C.P., Selman, B., van Dover, R.B.: SMT-aided
combinatorial materials discovery. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 172–185. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31612-8 14

20. Fagerberg, R., Flamm, C., Merkle, D., Peters, P.: Exploring chemistry using SMT.
In: Milano, M. (ed.) CP 2012. LNCS, pp. 900–915. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33558-7 64

21. Faure, G., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: SAT modulo
the theory of linear arithmetic: exact, inexact and commercial solvers. In: Kleine
Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 77–90. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-79719-7 8

22. Fontaine, P., Ogawa, M., Sturm, T., Vu, X.T.: Subtropical satisfiability. In: Dixon,
C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 189–206.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4 11

23. Fontaine, P., Ogawa, M., Sturm, T., Vu, X.T., et al.: Wrapping computer algebra is
surprisingly successful for non-linear SMT. In: SC-square 2018-Third International
Workshop on Satisfiability Checking and Symbolic Computation (2018)

24. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–
214. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 14

https://doi.org/10.1145/3230639
https://doi.org/10.1145/3230639
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/978-3-642-22953-4_31
https://doi.org/10.1007/978-3-319-24318-4_26
https://doi.org/10.1007/978-3-319-24318-4_26
http://arxiv.org/abs/2004.04034
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/261320.261324
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-642-31612-8_14
https://doi.org/10.1007/978-3-642-31612-8_14
https://doi.org/10.1007/978-3-642-33558-7_64
https://doi.org/10.1007/978-3-540-79719-7_8
https://doi.org/10.1007/978-3-319-66167-4_11
https://doi.org/10.1007/978-3-642-38574-2_14

104 G. Kremer et al.

25. Grigor’ev, D.Y., Vorobjov, N.: Solving systems of polynomial inequalities in subex-
ponential time. J. Symb. Comput. 5, 37–64 (1988). https://doi.org/10.1016/S0747-
7171(88)80005-1

26. Hong, H.: An improvement of the projection operator in cylindrical algebraic
decomposition. In: International Symposium on Symbolic and Algebraic Compu-
tation, pp. 261–264 (1990). https://doi.org/10.1145/96877.96943

27. Hong, H.: Comparison of several decision algorithms for the existential theory of
the reals. RES report, Johannes Kepler University (1991)

28. Jovanović, D., Barrett, C., de Moura, L.: The design and implementation of the
model constructing satisfiability calculus. In: Formal Methods in Computer-Aided
Design, pp. 173–180. IEEE (2013). https://doi.org/10.1109/FMCAD.2013.7027033

29. Jovanovic, D., Dutertre, B.: LibPoly: a library for reasoning about polynomials. In:
Satisfiability Modulo Theories. CEUR Workshop Proceedings, vol. 1889. CEUR-
WS.org (2017). http://ceur-ws.org/Vol-1889/paper3.pdf

30. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 27

31. Košta, M., Sturm, T.: A generalized framework for virtual substitution. CoRR
abs/1501.05826 (2015)

32. Kremer, G.: Cylindrical algebraic decomposition for nonlinear arithmetic problems.
Ph.D. thesis, RWTH Aachen University (2020). https://doi.org/10.18154/RWTH-
2020-05913

33. Kremer, G., Brandt, J.: Implementing arithmetic over algebraic numbers: a tutorial
for Lazard’s lifting scheme in CAD. In: Symbolic and Numeric Algorithms for Sci-
entific Computing, pp. 4–10 (2021). https://doi.org/10.1109/SYNASC54541.2021.
00013

34. Kremer, G., Ábrahám, E.: Fully incremental cylindrical algebraic decomposition.
J. Symb. Comput. 100, 11–37 (2020). https://doi.org/10.1016/j.jsc.2019.07.018

35. Lazard, D.: An improved projection for cylindrical algebraic decomposition. In:
Bajaj, C.L. (ed.) Algebraic Geometry and Its Applications, pp. 467–476. Springer,
New York (1994). https://doi.org/10.1007/978-1-4612-2628-4 29

36. Loup, U., Scheibler, K., Corzilius, F., Ábrahám, E., Becker, B.: A symbiosis of inter-
val constraint propagation and cylindrical algebraic decomposition. In: Bonacina,
M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 193–207. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38574-2 13

37. McCallum, S.: An improved projection operation for cylindrical algebraic decom-
position. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204, pp. 277–278.
Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15984-3 277

38. McCallum, S., Parusiński, A., Paunescu, L.: Validity proof of Lazard’s method for
cad construction. J. Symb. Comput. 92, 52–69 (2019). https://doi.org/10.1016/j.
jsc.2017.12.002

39. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9 1

40. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006). https://doi.org/10.1145/1217856.1217859

41. Renegar, J.: A faster PSPACE algorithm for deciding the existential theory of the
reals. In: Symposium on Foundations of Computer Science, pp. 291–295 (1988).
https://doi.org/10.1109/SFCS.1988.21945

https://doi.org/10.1016/S0747-7171(88)80005-1
https://doi.org/10.1016/S0747-7171(88)80005-1
https://doi.org/10.1145/96877.96943
https://doi.org/10.1109/FMCAD.2013.7027033
http://ceur-ws.org/Vol-1889/paper3.pdf
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.18154/RWTH-2020-05913
https://doi.org/10.18154/RWTH-2020-05913
https://doi.org/10.1109/SYNASC54541.2021.00013
https://doi.org/10.1109/SYNASC54541.2021.00013
https://doi.org/10.1016/j.jsc.2019.07.018
https://doi.org/10.1007/978-1-4612-2628-4_29
https://doi.org/10.1007/978-3-642-38574-2_13
https://doi.org/10.1007/3-540-15984-3_277
https://doi.org/10.1016/j.jsc.2017.12.002
https://doi.org/10.1016/j.jsc.2017.12.002
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1145/1217856.1217859
https://doi.org/10.1109/SFCS.1988.21945

Cooperating Techniques for Solving Nonlinear Real Arithmetic in the cvc5 105

42. Reynolds, A., Tinelli, C., Jovanović, D., Barrett, C.: Designing theory solvers with
extensions. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483,
pp. 22–40. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4 2

43. Roselli, S.F., Bengtsson, K., Åkesson, K.: SMT solvers for job-shop scheduling
problems: models comparison and performance evaluation. In: International Con-
ference on Automation Science and Engineering (CASE), pp. 547–552 (2018).
https://doi.org/10.1109/COASE.2018.8560344

44. SMT-COMP 2021 (2021). https://smt-comp.github.io/2021/
45. Tung, V.X., Van Khanh, T., Ogawa, M.: raSAT: an SMT solver for polynomial

constraints. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol.
9706, pp. 228–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40229-1 16

46. Weispfenning, V.: Quantifier elimination for real algebra-the quadratic case and
beyond. Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997). https://doi.
org/10.1007/s002000050055

47. Zohar, Y., et al.: Bit-precise reasoning via Int-blasting. In: Finkbeiner, B., Wies,
T. (eds.) VMCAI 2022. LNCS, vol. 13182, pp. 496–518. Springer, Cham (2022).
https://doi.org/10.1007/978-3-030-94583-1 24

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-66167-4_2
https://doi.org/10.1109/COASE.2018.8560344
https://smt-comp.github.io/2021/
https://doi.org/10.1007/978-3-319-40229-1_16
https://doi.org/10.1007/978-3-319-40229-1_16
https://doi.org/10.1007/s002000050055
https://doi.org/10.1007/s002000050055
https://doi.org/10.1007/978-3-030-94583-1_24
http://creativecommons.org/licenses/by/4.0/

Preprocessing of Propagation Redundant Clauses

Joseph E. Reeves(B) , Marijn J. H. Heule , and Randal E. Bryant

Carnegie Mellon University, Pittsburgh, PA, USA
{jereeves,mheule,randy.bryant}@cs.cmu.edu

Abstract. The propagation redundant (PR) proof system generalizes the resolu-
tion and resolution asymmetric tautology proof systems used by conflict-driven
clause learning (CDCL) solvers. PR allows short proofs of unsatisfiability for
some problems that are difficult for CDCL solvers. Previous attempts to auto-
mate PR clause learning used hand-crafted heuristics that work well on some
highly-structured problems. For example, the solver SADICAL incorporates PR
clause learning into the CDCL loop, but it cannot compete with modern CDCL
solvers due to its fragile heuristics. We present PRELEARN, a preprocessing tech-
nique that learns short PR clauses. Adding these clauses to a formula reduces the
search space that the solver must explore. By performing PR clause learning as
a preprocessing stage, PR clauses can be found efficiently without sacrificing
the robustness of modern CDCL solvers. On a large portion of SAT competi-
tion benchmarks we found that preprocessing with PRELEARN improves solver
performance. In addition, there were several satisfiable and unsatisfiable formu-
las that could only be solved after preprocessing with PRELEARN. PRELEARN

supports proof logging, giving a high level of confidence in the results.

1 Introduction

Conflict-driven clause learning (CDCL) [27] is the standard paradigm for solving the
satisfiability problem (SAT) in propositional logic. CDCL solvers learn clauses implied
through resolution inferences. Additionally, all competitive CDCL solvers use pre- and
in-processing techniques captured by the resolution asymmetric tautology (RAT) proof
system [21]. As examples, the well-studied pigeonhole and mutilated chessboard prob-
lems are challenging benchmarks with exponentially-sized resolution proofs [1,12]. It
is possible to construct small hand-crafted proofs for the pigeonhole problem using
extended resolution (ER) [8], a proof system that allows the introduction of new vari-
ables [32]. ER can be expressed in RAT but has proved difficult to automate due to the
large search space. Even with modern inprocessing techniques, many CDCL solvers
struggle on these seemingly simple problems. The propagation redundant (PR) proof
system allows short proofs for these problems [14,15], and unlike in ER, no new vari-
ables are required. This makes PR an attractive candidate for automation.

At a high level, CDCL solvers make decisions that typically yield an unsatisfiable
branch of a problem. The clause that prunes the unsatisfiable branch from the search
space is learned, and the solver continues by searching another branch. PR extends this

The authors are supported by the NSF under grant CCF-2108521.

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 106–124, 2022.
https://doi.org/10.1007/978-3-031-10769-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_8&domain=pdf
http://orcid.org/0000-0002-4585-0565
http://orcid.org/0000-0002-5587-8801
http://orcid.org/0000-0001-5024-6613
https://doi.org/10.1007/978-3-031-10769-6_8

Preprocessing of Propagation Redundant Clauses 107

paradigm by allowing more aggressive pruning. In the PR proof system a branch can
be pruned as long as there exists another branch that is at least as satisfiable. As an ex-
ample, consider the mutilated chessboard. The mutilated chessboard problem involves
finding a covering of 2 × 1 dominos on an n × n chessboard with two opposite cor-
ners removed (see Section 5.4). Given two horizontally oriented dominoes covering a
2 × 2 square, two vertically oriented dominos could cover the same 2 × 2 square. For
any solution that uses the dominos in the horizontal orientation, replacing them with the
dominos in the vertical orientation would also be a solution. The second orientation is as
satisfiable as the first, and so the first can be pruned from the search space. Even though
the number of possible solutions may be reduced, the pruning is satisfiability preserv-
ing. This is a powerful form of reasoning that can efficiently remove many symmetries
from the mutilated chessboard, making the problem much easier to solve [15].

The satisfaction-driven clause learning (SDCL) solver SADICAL [16] incorporates
PR clause learning into the CDCL loop. SADICAL implements hand-crafted decision
heuristics that exploit the canonical structure of the pigeonhole and mutilated chess-
board problems to find short proofs. However, SADICAL’s performance deteriorates
under slight variations to the problems including different constraint encodings [7].
The heuristics were developed from a few well-understood problems and do not gener-
alize to other problem classes. Further, the heuristics for PR clause learning are likely
ill-suited for CDCL, making the solver less robust.

In this paper, we present PRELEARN, a preprocessing technique for learning PR
clauses. PRELEARN alternates between finding and learning PR clauses. We develop
multiple heuristics for finding PR clauses and multiple configurations for learning some
subset of the found PR clauses. As PR clauses are learned we use failed literal prob-
ing [11] to find unit clauses implied by the formula. The preprocessing is made efficient
by taking advantage of the inner/outer solver framework in SADICAL. The learned PR
clauses are added to the original formula, aggressively pruning the search space in an ef-
fort to guide CDCL solvers to short proofs. With this method PR clauses can be learned
without altering the complex heuristics that make CDCL solvers robust. PRELEARN

focuses on finding short PR clauses and failed literals to effectively reduce the search
space. This is done with general heuristics that work across a wide range of problems.

Most SAT solvers support logging proofs of unsatisfiability for independent check-
ing [17,20,33]. This has proved valuable for verifying solutions independent of a (po-
tentially buggy) solver. Modern SAT solvers log proofs in the DRAT proof system
(RAT [21] with deletions). DRAT captures all widely used pre- and in-processing tech-
niques including bounded variable elimination [10], bounded variable addition [26],
and extended learning [4,32]. DRAT can express the common symmetry-breaking tech-
niques, but it is complicated [13]. PR can compactly express some symmetry-breaking
techniques [14,15], yielding short proofs that can be checked by the proof checker
DPR-TRIM [16]. PR gives a framework for strong symmetry-breaking inferences and
also maintains the highly desirable ability to independently verify proofs.

The contributions of this paper include: (1) giving a high-level algorithm for ex-
tracting PR clauses, (2) implementing several heuristics for finding and learning PR
clauses, (3) evaluating the effectiveness of different heuristic configurations, and (4)
assessing the impact of PRELEARN on solver performance. PRELEARN improves the

108 J. E. Reeves et al.

performance of the CDCL solver KISSAT on a quarter of the satisfiable and unsatisfiable
competition benchmarks we considered. The improvement is significant for a number
of instances that can only be solved by KISSAT after preprocessing. Most of them come
from hard combinatorial problems with small formulas. In addition, PRELEARN di-
rectly produces refutation proofs for the mutilated chessboard problem containing only
unit and binary PR clauses.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF). A CNF formula
ψ is a conjunction of clauses where each clause is a disjunction of literals. A literal l is
either a variable x (positive literal) or a negated variable x (negative literal). For a set
of literals L the formula ψ(L) is the clauses {C ∈ ψ | C ∩ L �= ∅}.

An assignment is a mapping from variables to truth values 1 (true) and 0 (false).
An assignment is total if it assigns every variable to a value, and partial if it assigns a
subset of variables to values. The set of variables occurring in a formula, assignment,
or clause is given by var(ψ), var(α), or var(C). For a literal l, var(l) is a variable.

An assignment α satisfies a positive (negative) literal l if α maps var(l) to true (α
maps var(l) to false, respectively), and falsifies it if α maps var(l) to false (α maps
var(l) to true, respectively). We write a finite partial assignment as the set of literals it
satisfies. An assignment satisfies a clause if the clause contains a literal satisfied by the
assignment. An assignment satisfies a formula if every clause in the formula is satisfied
by the assignment. A formula is satisfiable if there exists a satisfying assignment, and
unsatisfiable otherwise. Two formula are logically equivalent if they share the same set
of satisfying assignments. Two formulas are satisfiability equivalent if they are either
both satisfiable or both unsatisfiable.

If an assignment α satisfies a clause C we define C |α = �, otherwise C |α repre-
sents the clause C with the literals falsified by α removed. The empty clause is denoted
by ⊥. The formula ψ reduced by an assignment α is given by ψ |α = {C |α | C ∈
ψ and C |α �= �}. Given an assignment α = l1 . . . ln, C = (l1 ∨ · · · ∨ ln) is the clause
that blocks α. The assignment blocked by a clause is the negation of the literals in the
clause. The literals touched by an assignment is defined by touchedα(C) = {l | l ∈
C and var(l) ∈ var(α)} for a clause. For a formula ψ, touchedα(ψ) is the union of
touched variables for each clause in ψ. A unit is a clause containing a single literal.
The unit clause rule takes the assignment α of all units in a formula ψ and generates
ψ |α. Iteratively applying the unit clause rule until fixpoint is referred to as unit propa-
gation. In cases where unit propagation yields ⊥ we say it derived a conflict. A formula
ψ implies a formula ψ′, denoted ψ |= ψ′, if every assignment satisfying ψ satisfies ψ′.
By ψ 	1 ψ′ we denote that for every clause C ∈ ψ′, applying unit propagation to the
assignment blocked by C in ψ derives a conflict. If unit propagation derives a conflict
on the formula ψ∪{{l}}, we say l is a failed literal and the unit l is logically implied by
the formula. Failed literal probing [11] is the process of successively assigning literals
to check if units are implied by the formula. In its simplest form, probing involves as-
signing a literal l and learning the unit l if unit propagation derives a conflict, otherwise
l is unassigned and the next literal is checked.

Preprocessing of Propagation Redundant Clauses 109

To evaluate the satisfiability of a formula, a CDCL solver [27] iteratively performs
the following operations: First, the solver performs unit propagation, then tests for a
conflict. Unit propagation is made efficient with two-literal watch pointers [28]. If there
is no conflict and all variables are assigned, the formula is satisfiable. Otherwise, the
solver chooses an unassigned variable through a variable decision heuristic [6,25], as-
signs a truth value to it, and performs unit propagation. If, however, there is a conflict,
the solver performs conflict analysis potentially learning a short clause. In case this
clause is the empty clause, the formula is unsatisfiable.

3 The PR Proof System

A clause C is redundant w.r.t. a formula ψ if ψ and ψ∪{C} are satisfiability equivalent.
The clause sequence ψ,C1, C2, . . . , Cn is a clausal proof of Cn if each clause Ci (1 ≤
i ≤ n) is redundant w.r.t. ψ ∪ {C1, C2, . . . , Ci−1}. The proof is a refutation of ψ if Cn

is ⊥. Clausal proof systems may also allow deletion. In a refutation proof clauses can
be deleted freely because the deletion cannot make a formula less satisfiable.

Clausal proof systems are distinguished by the kinds of redundant clauses they allow
to be added. The standard SAT solving paradigm CDCL learns clauses implied through
resolution. These clauses are logically implied by the formula, and fall under the reverse
unit propagation (RUP) proof system. The Resolution Asymmetric Tautology (RAT)
proof system generalizes RUP. All commonly used inprocessing techniques emit DRAT
proofs. The propagation redundant (PR) proof system generalizes RAT by allowing the
pruning of branches without loss of satisfaction.

Let C be a clause in the formula ψ and α the assignment blocked by C. Then C is
PR w.r.t. ψ if and only if there exists an assignment ω such that ψ |α 	1 ψ |ω and ω
satisfies C. Intuitively, this allows inferences that block a partial assignment α as long
as another assignment ω is as satisfiable. This means every assignment containing α
that satisfies ψ can be transformed to an assignment containing ω that satisfies ψ.

Clausal proofs systems must be checkable in polynomial time to be useful in prac-
tice. RUP and RAT are efficiently checkable due to unit propagation. In general, deter-
mining if a clause is PR is an NP-complete problem [18]. However, a PR proof is check-
able in polynomial time if the witness assignments ω are included. A clausal proof with
witnesses will look like ψ, (C1, ω1), (C2, ω2), . . . , (Cn, ωn). The proof checker DPR-
TRIM can efficiently check PR proofs that include witnesses. Further, DPR-TRIM can
emit proofs in the LPR format. They can be validated by the formally-verified checker
CAKE-LPR [31], which was used to validate results in recent SAT competitions.

4 Pruning Predicates and SADICAL

Determining if a clause is PR is NP-complete and can naturally be formulated in SAT.
Given a clause C and formula ψ, a pruning predicate is a formula such that if it is
satisfiable, the clause C is redundant w.r.t. ψ. SADICAL uses two pruning predicates
to determine if a clause is PR: positive reduct and filtered positive reduct. If either
predicate is satisfiable, the satisfying assignment serves as the witness showing the
clause is PR.

110 J. E. Reeves et al.

Given a formula ψ and assignment α, the positive reduct is the formula G ∧ C
where C is the clause that blocks α and G = {touchedα(D) | D ∈ ψ and D |α = �}.
If the positive reduct is satisfiable, the clause C is PR w.r.t. ψ. The positive reduct is
satisfiable iff the clause blocked by α is a set-blocked clause [23].

Given a formula ψ and assignment α, the filtered positive reduct is the formula G∧C
where C is the clause that blocks α and G = {touchedα(D) | D ∈ ψ and D |α �1

touchedα(D)}. If the filtered positive reduct is satisfiable, the clause C is PR w.r.t. ψ.
The filtered positive reduct is a subset of the positive reduct and is satisfiable iff the
clause blocked by α is a set-propagation redundant clause [14]. Example 1 shows a
formula for which the positive and filtered positive reducts are different, and only the
filtered positive reduct is satisfiable.

Example 1. Given the formula (x1 ∨ x2) ∧ (x1 ∨ x2), the positive reduct with α = x1

is (x1)∧ (x1), which is unsatisfiable. The clause (x1) can be filtered, giving the filtered
positive reduct (x1), which is satisfiable.

SADICAL [16] uses satisfaction-driven clause learning (SDCL) that extends CDCL
by learning PR clauses [18] based on (filtered) positive reducts. SADICAL uses an in-
ner/outer solver framework. The outer solver attempts to solve the SAT problem with
SDCL. SDCL diverges from the basic CDCL loop when unit propagation after a deci-
sion does not derive a conflict. In this case a reduct is generated using the current as-
signment, and the inner solver attempts to solve the reduct using CDCL. If the reduct is
satisfiable, the PR clause blocking the current assignment is learned, and the SDCL loop
continues. The PR clause can be simplified by removing all non-decision variables from
the assignment. SADICAL emits PR proofs by logging the satisfying assignment of the
reduct as the witness, and these proofs are verified with DPR-TRIM. The key to SADI-
CAL finding good PR clauses leading to short proofs is the decision heuristic, because
variable selection builds the candidate PR clauses. Hand-crafted decision heuristics en-
able SADICAL to find short proofs on pigeonhole and mutilated chessboard problems.
However, these heuristics differ significantly from the score-based heuristics in most
CDCL solvers. Our experiences with SaCiDaL suggest that improving the heuristics
for SDCL reduces the performance of CDCL and the other way around. This may ex-
plain why SADICAL performs worse than standard CDCL solvers on the majority of
the SAT competition benchmarks. While SADICAL integrates finding PR clauses of
arbitrary size in the main search loop, our tool focuses on learning short PR clauses as
a preprocessing step. This allows us to develop good heuristics for PR learning without
compromising the main search loop.

5 Extracting PR Clauses

The goal of PRELEARN is to find useful PR clauses that improve the performance of
CDCL solvers on both satisfiable and unsatisfiable instances. Figure 1 shows how a
SAT problem is solved using PRELEARN. For some preset time limit, PR clauses are
found and then added to the original formula. Interleaved in this process is failed literal
probing to check if unit clauses can be learned. When the preprocessing stage ends,
the new formula that includes learned PR clauses is solved by a CDCL solver. If the

Preprocessing of Propagation Redundant Clauses 111

PRELEARN CDCL Proof CheckerCNF
PR Clauses

PR Proof
DRAT Proof

VerifiedSAT

Fig. 1. Solving a formula with PRELEARN and a CDCL solver.

formula is satisfiable, the solver will produce a satisfying assignment. If the formula is
unsatisfiable, a refutation proof of the original formula can be computed by combining
the satisfaction preserving proof from PRELEARN and the refutation proof emitted by
the CDCL solver. The complete proof can be verified with DPR-TRIM.

PRELEARN alternates between finding PR clauses and learning PR clauses. Candi-
date PR clauses are found by iterating over each variable in the formula, and for each
variable constructing clauses that include that variable. To determine if a clause is PR,
the positive reduct generated by that clause is solved. It can be costly to generate and
solve many positive reducts, so heuristics are used to find candidate clauses that are
more likely to be PR. It is possible to find multiple PR clauses that conflict with each
other. PR clauses are conflicting if adding one of the PR clauses to the formula makes
the other no longer PR. Learning PR clauses involves selecting PR clauses that are non-
conflicting. The selection may maximize the number of PR clauses learned or optimize
for some other metric. Adding PR clauses and units derived from probing may cause
new clauses to become PR, so the entire process is iterated multiple times.

5.1 Finding PR Clauses

PR clauses are found by constructing a set of candidate clauses and solving the positive
reduct generated by each clause. In SADICAL the candidates are the clauses blocking
the partial assignment of the solver after each decision in the SDCL loop that does
not derive a conflict. In effect, candidates are constructed using the solver’s variable
decision heuristic. We take a more general approach, constructing sets of candidates for
each variable based on unit propagation and the partial assignment’s neighbors.

For a variable x, neighbors(x) denotes the set of variables occurring in clauses
containing literal x or x, excluding variable x. For a partial assignment α, neighbors(α)
denotes

⋃
x∈var(α) neighbors(x) \ var(α). Candidate clauses for a literal l are generated

in the following way:

– Let α be the partial assignment found by unit propagation starting with the assign-
ment that makes l true.

– Generate the candidate PR clauses {(l ∨ y), (l ∨ y) | y ∈ neighbors(α)}.

Example 2 shows how candidate binary clauses are constructed using both polarities
of an initial variable x. In Example 3 the depth is expanded to reach more variables and
create larger sets of candidate clauses. The depth parameter is used in Section 5.4.

112 J. E. Reeves et al.

Example 2. Consider the following formula: (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4 ∨ x5) ∧
(x2 ∨ x6 ∨ x7) ∧ (x3 ∨ x7 ∨ x8) ∧ (x8 ∨ x9),
Case 1: We start with var(x1) = 1 and perform unit propagation resulting in α =
{x1x3}. Observe that neighbors(α) = {x2, x4, x5, x7, x8}. The generated candidate
clauses are (x1 ∨ x2), (x1 ∨ x2), (x1 ∨ x4), (x1 ∨ x4), . . . , (x1 ∨ x8), (x1 ∨ x8).
Case 2: We start with var(x1) = 0 and perform unit propagation resulting in α =
{x1x2}. Observe that neighbors(α) = {x3, x4, x5, x6, x7}. The generated candidate
clauses are (x1 ∨ x3), (x1 ∨ x3), (x1 ∨ x4), (x1 ∨ x4), . . . , (x1 ∨ x7), (x1 ∨ x7).

Example 3. Take the formula from Example 2 and assignment of var(x1) = 1 as in
case 1. The set of candidate clauses can be expanded by also considering the unas-
signed neighbors of the variables in neighbors(α). For example, neighbors(x8) =
{x3, x7, x9}, of which x9 is new and unassigned. This adds (x1 ∨ x9) and (x1 ∨ x9) to
the set of candidate clauses. This can be iterated by including neighbors of new unas-
signed variables from the prior step.

We consider both polarities when constructing candidates for a variable. After all
candidates for a variable are constructed, the positive reduct for each candidate is gen-
erated and solved in order. Note that propagated literals appearing in the partial assign-
ment do not appear in the PR clause. The satisfying assignment is stored as the witness
and the PR clause may be learned immediately depending on the learning configuration.

This process is naturally extended to ternary clauses. The binary candidates are gen-
erated, and for each candidate (x∨y), x and y are assigned to false in the first step. The
variables z ∈ neighbors(α) yield clauses (x∨y ∨ z) and (x∨y ∨ z). This approach can
generate many candidate ternary clauses depending on the connectivity of the formula
since each candidate binary clause is expanded. A filtering operation would be useful to
avoid the blow-up in number of candidates. There are likely diminishing returns when
searching for larger PR clauses because (1) there are more possible candidates, (2) the
positive reducts are likely larger, and (3) each clause blocks less of the search space.
We consider only unit and binary candidate clauses in our main evaluation.

Ideally, we should construct candidate clauses that are likely PR to reduce the num-
ber of failed reducts generated. Note, the (filtered) positive reduct can only be satisfiable
if given the partial assignment there exists a reduced, satisfied clause. By focusing on
neighbors, we guarantee that such a clause exists. The reduced heuristic in SADICAL
finds variables in all reduced but unsatisfied clauses. The idea behind this heuristic is
to direct the assignment towards conditional autarkies that imply a satisfiable positive
reduct [18]. The neighbors approach generalizes this to variables in all reduced clauses
whether or not they are unsatisfied. A comparison can be found in our repository.

5.2 Learning PR Clauses

Given multiple clauses that are PR w.r.t. the same formula, it is possible that some of
the clauses conflict with each other and cannot be learned simultaneously. Example 4
shows how learning one PR clause may invalidate the witness of another PR clause. It
may be that a different witness exists, but finding it requires regenerating the positive
reduct to include the learned PR clause and solving it. The simplest way to avoid con-
flicting PR clause is to learn PR clauses as they are found. When a reduct is satisfiable,

Preprocessing of Propagation Redundant Clauses 113

the PR clauses is added to the formula and logged with its witness in the proof. Then
subsequent reducts will be generated from the formula including all added PR clauses.
Therefore, a satisfiable reduct ensures a PR clause can be learned.

Alternatively, clauses can be found in batches, then a subset of nonconflicting clauses
can be learned. The set of conflicts between PR clauses can be computed in polynomial
time. For each pair of PR clauses C and D, if the assignment that generated the pruning
predicate for D touches C and C is not satisfied by the witness of D, then C con-
flicts with D. In some cases reordering the two PR clauses may avoid a conflict. In
Example 4 learning the second clause would not affect the validity of the first clauses’
witness. Once the conflicts are known, clauses can be learned based on some heuristic
ordering. Batch learning configurations are discussed more in the following section.

Example 4. Assume the following clause witness pairs are valid in a formula ψ: {(x1 ∨
x2 ∨ x3), x1x2x3}, and {(x1 ∨ x2 ∨ x4), x1x2x4}. The first clause conflicts with the
second. If the first clause is added to ψ, the clause (x1 ∨ x2) would be in the positive
reduct for the second clause, but it is not satisfied by the witness of the second clause.

5.3 Additional Configurations

The sections above describe the PRELEARN configuration used in the main evaluation,
i.e., finding candidate PR clauses with the neighbors heuristic and learning clauses in-
stantly as the positive reducts are solved. In this section we present several additional
configurations. The time-constrained reader may skip ahead to Section 5.4 for the pre-
sentation of our main results.

In batch learning a set of PR clauses are found in batches then learned. Learning as
many nonconflicting clauses as possible coincides with the maximum independent set
problem. This problem is NP-Hard. We approximate the solution by adding the clause
causing the fewest conflicts with unblocked clauses. When a clause is added, the clauses
it blocks are removed from the batch and conflict counts are recalculated Alternatively,
clauses can be added in a random order. Random ordering requires less computation at
the cost of potentially fewer learned PR clauses.

The neighbors heuristic for constructing candidate clauses can be modified to in-
clude a depth parameter. neighbors(i) indicates the number of iterations expanding the
variables. For example, neighbors(2) expands on the variables in neighbors(1), seen in
Example 3. We also implement the reduced heuristic, shown in Example 5. Detailed
evaluations and comparisons can be found in our repository. In general, we found that
the additional configurations did not improve on our main configuration. More work
needs to be done to determine when and how to apply these additional configurations.

Example 5. Given the set of clauses (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x3 ∨ x5), and
initial assignment α = x1, only the second clause is reduced and not satisfied, giving
reduced(α) = {x3, x4} and candidate clauses (x1∨x3), (x1∨x4), (x1∨x3), (x1∨x4).

5.4 Implementation

PRELEARN was implemented using the inner/outer-solver framework in SADICAL.
The inner solver acts the same as in SADICAL, solving pruning predicates using CDCL.

114 J. E. Reeves et al.

The outer solver is not used for SDCL, but the SDCL data-structures are used to find
and learn PR clauses. The outer solver is initialized with the original formula and main-
tains the list of variables, clauses, and watch pointers. By default, the outer solver has
no variables assigned other than learned units. When finding candidates, the variables
in the partial clause are assigned in the outer solver. Unit propagation makes it possible
to find all reduced clauses in the formula with a single pass. This is necessary for con-
structing the positive reduct. After a candidate clause has been assigned and the positive
reduct solved, the variables are unassigned. This returns the outer solver to the top-level
before examining the next candidate. When a PR clause is learned, it is added to the
formula along with its watch pointers. Additionally, failed literals are found if assign-
ing a variable at the top-level causes a conflict through unit propagation. The negation
of a failed literal is a unit that can be added to the formula.

In a single iteration each variable in the formula is processed in a breadth-first search
(BFS) starting from the first variable in the numbering. When a variable is encountered
it is first checked whether either assignment of the variable is a failed literal or a unit PR
clause. If not, binary candidates are generated based on the selected heuristic and PR
clauses are learned based on the learning configuration. Variables are added to the fron-
tier of the BFS as they are encountered during candidate clause generation, but they are
not repeated. Optionally, after all variables have been encountered the BFS restarts, now
constructing ternary candidates. The repetition continues to the desired clause length.
Then another iteration begins again with binary clauses. Running PRELEARN multi-
ple times is important because adding PR clauses in one iteration may allow additional
clauses to be added in the next.

6 Mutilated Chessboard

The mutilated chessboard is an n × n grid of alternating black and white squares with
two opposite corners removed. The problem is whether or not the the board can be cov-
ered with 2 × 1 dominoes. This can be encoded in CNF by using variables to represent

Fig. 2. Occurrences of two horizontal dominoes may be replaced by two vertical dominos in a
solution. Similarly, occurrences of a horizontal domino atop two vertical dominos can be replaced
by shifting the horizontal domino down.

Preprocessing of Propagation Redundant Clauses 115

0 50 100 150 200 250 300 350 400 450 500
0

1,000

2,000

3,000

4,000

CPU time

le
ar

ne
d

cl
au

se
s

Units and Binary PR Clauses Learned per Execution for N = 20

units
binary PR
execution
conflict found

Fig. 3. Unit and binary PR clauses learned each execution (red-dotted line) until a contradiction
was found. Markers on binary PR lines represent an iteration within an execution.

domino placements on the board. At-most-one constraints (using the pairwise encod-
ings) say only one domino can cover each square, and at-least-one constraints (using a
disjunction) say some domino must cover each square.

In recent SAT competitions, no proof-generating SAT solver could deal with in-
stances larger than N = 18. In ongoing work, we found refutation proofs that contain
only units and binary PR clauses for some boards of size N ≤ 30. PRELEARN can be
modified to automatically find proofs of this type. Running iterations of PRELEARN un-
til saturation, meaning no new binary PR clauses or units can be found, yields some set
of units and binary PR clauses. Removing the binary PR clauses from the formula and
rerunning PRELEARN will yield additional units and a new set of binary PR clauses.
Repeating the process of removing binary PR clauses and keeping units will eventually
derive the empty clause for this problem. Figure 3 gives detailed values for N = 20.
Within each execution (red dotted lines) there are at most 10 iterations (red tick mark-
ers), and each iteration learns some set of binary PR clauses (red). Some executions
saturate binary PR clauses before the tenth iteration and exit early. At the end of each
execution the binary PR clauses are deleted, but the units (blue) are kept for the follow-
ing execution. A complete DPR proof (PR with deletion) can be constructed by adding
deletion information for the binary PR clauses removed between each execution when
concatenating the PRELEARN proofs. The approach works for mutilated chess because
in each execution there are many binary PR clauses that can be learned and will lead
to units, but they are mutually exclusive and cannot be learned simultaneously. Further,
adding units allows new binary PR clauses to be learned in following executions.

Table 1 shows the statistics for PRELEARN. Achieving these results required some
modifications to the configuration of PRELEARN. First, notice in Figure 2 the PR
clauses that can be learned involve blocking one domino orientation that can be re-
placed by a symmetric orientation. To optimize for these types of PR clauses, we only

116 J. E. Reeves et al.

Table 1. Statistics running multiple executions of PRELEARN on the mutilated chessboard prob-
lem with the configurations described below. Total units includes failed literals and learned PR
units. The average units and average binary PR clauses learned during each execution (Exe.) are
shown as well.

N Time (s) # Exe. Avg. (s) Total Units Total Bin. Avg. Units Avg. Bin.

8 0.14 1 0.14 30 164 30.00 164.00
12 4.94 1 4.94 103 1,045 103.00 1,045.00
16 62.47 2 31.23 195 3,988 97.50 1,994.00
20 513.12 6 85.52 339 1,4470 56.50 2,411.67
24 4,941.38 26 190.05 512 64,038 19.69 2,463.00

constructed candidates where the first literal was negative. The neighbors heuristic had
to be increased to a depth of 6, meaning more candidates were generated for each vari-
able. Intuitively, the proof is constructed by adding binary PR clauses in order to find
negative units (dominos that cannot be placed) around the borders of the board. Follow-
ing iterations build more units inwards, until a point is reached where units cover almost
the entire board. This forces an impossible domino placement leading to a contradic-
tion. Complete proofs using only units and binary PR clauses were found for boards
up to size N = 24 within 5,000 seconds. We verified all proofs using DPR-TRIM. The
mutilated chessboard has a high degree of symmetry and structure, making it suitable
for this approach. For most problems it is not expected that multiple executions while
keeping learned units will find new PR clauses.

Experiments were done with several configurations (see Section 5.3) to find the best
results. We found that increasing the depth of neighbors was necessary for larger boards
including N = 24. Increasing the depth allows more binary PR clauses to be found, at
the cost of generating more reducts. This is necessary to find units. The reduced heuris-
tic (a subset of neighbors) did not yield complete proofs. We also tried incrementing
the depth after each execution starting with 1 and reseting at 9. In this approach, the
execution times for depth greater than 6 were larger but did not yield more unit clauses
on average. We attempted batch learning on every 500 found clauses using either ran-
dom or the sorted heuristic. In each batch many of the 500 PR clauses blocked each
other because many conflicting PR clauses can be found on a small set of variables in
mutilated chess. The PR clauses that were blocked would be found again in follow-
ing iterations, leading to more reducts generated and solved. This caused much longer
execution times. Adding PR clauses instantly is a good configuration for reducing exe-
cution time when there are many conflicting clauses. However, for some less symmetric
problems it may be worth the tradeoff to learn the clauses in batches, because learning
a few bad PR clauses may disrupt the subsequent iterations.

7 SAT Competition Benchmarks

We evaluated PRELEARN on previous SAT competition formulas. Formulas from the
’13, ’15, ’16, ’19, ’20, and ’21 SAT competitions’ main tracks were grouped by size.
0-10k contains the 323 formulas with less than 10,000 clauses and 10k-50k contains

Preprocessing of Propagation Redundant Clauses 117

Table 2. Fraction of benchmarks where PR clauses were learned, average runtime of PRELEARN,
generated positive reducts and satisfiable positive reducts (PR clauses learned), and number of
failed literals found.

Set Benches Avg. (s) Generated Reducts Sat. Reducts % Sat. Failed Lits

0-10k 221/323 22.36 104,850,011 548,417 0.52% 3,416
10k-50k 237/348 71.08 163,014,068 789,281 0.48% 6,290

the 348 formulas with between 10,000 and 50,000 clauses. In general, short PR proofs
have been found for hard combinatorial problems typically having few clauses (0-10k).
These include the pigeonhole and mutilated chessboard problems, some of which ap-
pear in 0-10k benchmarks. The PR clauses that can be derived for these formulas are
intuitive and almost always beneficial to solvers. Less is known about the impact of PR
clauses on larger formulas, motivating our separation of test sets by size. The repository
containing the preprocessing tool, experiment configurations, and experiment data can
be found at https://github.com/jreeves3/PReLearn.

We ran our experiments on StarExec [30]. The specs for the compute nodes can be
found online.1 The compute nodes that ran our experiments were Intel Xeon E5 cores
with 2.4 GHz, and all experiments ran with 64 GB of memory and a 5,000 second
timeout. We run PRELEARN for 50 iterations over 100 seconds, exiting early if no new
PR clauses were found in an iteration.

PRELEARN was executed as a stand-alone program, producing a derivation proof
and a modified CNF. For experiments, the CDCL solver KISSAT [5] was called once on
the original formula and once on the modified CNF. KISSAT was selected because of
its high-rankings in previous SAT competitions, but we expect the results to generalize
to other CDCL SAT solvers.

Derivation proofs from PRELEARN were verified in all solved instances using the
independent proof checker DPR-TRIM using a forward check. This can be extended to
complete proofs in the following way. In the unsatisfiable case the proof for the learned
PR clauses is concatenated to the proof traced by KISSAT, and the complete proof is
verified against the original formula. In the satisfiable case the partial proof for the
learned PR clauses is verified using a forward check in DPR-TRIM, and the satisfying
assignment found by KISSAT is verified by the StarExec post-processing tool. Due to
resource limitations, we verified a subset of complete proofs in DPR-TRIM. This is
more costly because it involves running KISSAT with proof logging, then running DPR-
TRIM on the complete proof.

Table 2 shows the cumulative statistics for running PRELEARN on the benchmark
sets. Note the number of satisfiable reducts is the number of learned PR clauses, because
PR clauses are learned immediately after the reduct is solved. These include both unit
and binary PR clauses. A very small percentage of generated reducts is satisfiable, and
subsequently learned. This is less important for small formulas when reducts can be
computed quickly and there are fewer candidates to consider. However, for the 10k-50k
formulas the average runtime more than triples but the number of generated reducts

1 https://starexec.org/starexec/public/about.jsp

https://github.com/jreeves3/PReLearn
https://starexec.org/starexec/public/about.jsp

118 J. E. Reeves et al.

Table 3. Number of total solved instances and exclusive solved instances running KISSAT with
and without PRELEARN. Number of improved instances running KISSAT with PRELEARN.
PRELEARN execution times were included in total execution times.

0-10k SAT 0-10k UNSAT 10k-50k SAT 10k-50k UNSAT

Total w/ PRELEARN 84 149 143 89
Total w/o PRELEARN 80 141 143 91

Exclusively w/ PRELEARN 4 10 4 1
Exclusively w/o PRELEARN 0 2 4 3

Improved w/ PRELEARN 20 44 25 13

less than doubles. PR clauses are found in about two thirds of the formulas, showing
our approach generalizes beyond the canonical problems for which we knew PR clauses
existed. Expanding the exploration and increasing the time limit did not help to find PR
clauses in the remaining one third.

Table 3 gives a high-level picture of PRELEARN’s impact on KISSAT. PRELEARN

significantly improves performance on 0-10k SAT and UNSAT benchmarks. These
contain the hard combinatorial problems including pigeonhole that PRELEARN was
expected to perform well on. There were 4 additional SAT formulas solved with PRE-
LEARN that KISSAT alone could not solve. This shows that PRELEARN impacts not
only hard unsatisfiable problems but satisfiable problems as well. On the other hand,
the addition of PR clauses makes some problems more difficult. This is clear with the
10k-50k results, where 5 benchmarks are solved exclusively with PRELEARN and 7 are
solved exclusively without. Additionally, PRELEARN improved KISSAT’s performance
on 102 of 671 or approx. 15% of benchmarks. This is a large portion of benchmarks,
both SAT and UNSAT, for which PRELEARN is helpful.

Figure 4 gives a more detailed picture on the impact of PRELEARN per benchmark.
In the scatter plot the left-hand end of each line indicates the KISSAT execution time,
while the length of the line indicates the PRELEARN execution time, and so the right-
hand end gives the total time for PRELEARN plus KISSAT. Lines that cross the diagonal
indicate that the preprocessing improved KISSAT’s performance but ran for longer than
the improvement. PRELEARN improved performance for points above the diagonal.
Points on the dotted-lines (timeout) are solved by one configuration and not the other.

The top plot gives the results for the 0-10k formulas, with many points on the top
timeout line as expected. These are the hard combinatorial problems that can only be
solved with PRELEARN. In general, the unsatisfiable formulas benefit more than the
satisfiable formulas. PR clauses can reduce the number of solutions in a formula and
this may explain the negative impact on many satisfiable formulas. However, there are
still some satisfiable formulas that are only solved with PRELEARN.

In the bottom plot, formulas that take a long time to solve (above the diagonal in the
upper right-hand corner) are helped more by PRELEARN. In the bottom half of the plot,
many lines cross the diagonal meaning the addition of PR clauses provided a negligible
benefit. For this set there are more satisfiable formulas for which PRELEARN is helpful.

Preprocessing of Propagation Redundant Clauses 119

100 101 102 103
100

101

102

103

With PRELEARN

W
ith

ou
tP

R
E

L
E

A
R

N

SAT
UNSAT

100 101 102 103
100

101

102

103

With PRELEARN

W
ith

ou
tP

R
E

L
E

A
R

N

SAT
UNSAT

Fig. 4. Execution times w/ and w/o PRELEARN on 0-10k (top) and 10k-50k (bottom) bench-
marks. The left-hand point of each segment shows the time for the SAT solver alone; the right-
hand point indicates the combined time for preprocessing and solving.

120 J. E. Reeves et al.

Table 4. Some formulas solved by KISSAT exclusively with PRELEARN (top) and some formulas
solved exclusively without PRELEARN (bottom). (*) solved without KISSAT. Clauses include PR
clauses and failed literals learned.

Set Value With Without Clauses Formula Year

0-10k UNSAT 1.26 – 2,033 ph12* 2013
0-10k UNSAT 35.69 – 20,179 Pb-chnl15-16 c18* 2019
0-10k UNSAT 105.01 – 46,759 Pb-chnl20-21 c18 2019
0-10k UNSAT 59.99 – 1,633 randomG-Mix-n17-d05 2021
0-10k UNSAT 61.08 – 1,472 randomG-n17-d05 2021
0-10k UNSAT 407.51 – 1,640 randomG-n18-d05 2021
0-10k UNSAT 584.95 – 1,706 randomG-Mix-n18-d05 2021
0-10k SAT 1,082.62 – 9,650 fsf-300-354-2-2-3-2.23.opt 2013
0-10k SAT 1,250.82 – 10,058 fsf-300-354-2-2-3-2.46.opt 2013
10k-50k SAT 1,076.34 – 804 sp5-26-19-bin-stri-flat-noid 2021
10k-50k SAT 608.48 – 901 sp5-26-19-una-nons-tree-noid 2021

10k-50k SAT – 22.99 254 Ptn-7824-b13 2016
10k-50k SAT – 549.27 133 Ptn-7824-b09 2016
10k-50k SAT – 1,246.42 39 Ptn-7824-b02 2016
10k-50k SAT – 1,290.49 121 Ptn-7824-b08 2016
10k-50k UNSAT – 3,650.21 31,860 rphp4 110 shuffled 2016
10k-50k UNSAT – 4,273.88 31,531 rphp4 115 shuffled 2016

The results in Figure 4 are encouraging, with many formulas significantly benefit-
ting from PRELEARN. PRELEARN improves the performance on both SAT and UN-
SAT formulas of varying size and difficulty. In addition, lines that cross the diagonal
imply that improving the runtime efficiency of PRELEARN alone would produce more
improved instances. For future work, it would be beneficial to classify formulas before
running PRELEARN. There may exist general properties of a formula that signal when
PRELEARN will be useful and when PRELEARN will be harmful to a CDCL solver.
For instance, a formula’s community structure [2] may help focus the search to parts of
the formula where PR clauses are beneficial.

7.1 Benchmark Families

In this section we analyze benchmark families that PRELEARN had the greatest positive
(negative) effect on, found in Table 4. Studying the formulas PRELEARN works well
on may reveal better heuristics for finding good PR clauses.

It has been shown that PR works well for hard combinatorial problems based on
perfect matchings [14,15]. The perfect matching benchmarks (randomG) [7] are a gen-
eralization of the pigeonhole (php) and mutilated chessboard problems with varying
at-most-one encodings and edge densities. The binary PR clauses can be intuitively
understood as blocking two edges from the perfect matching if there exists two other
edges that match the same nodes. These benchmarks are relatively small but extremely
hard for CDCL solvers. Symmetry-breaking with PR clauses greatly reduces the search
space and leads KISSAT to a short proof of unsatisfiability. PRELEARN also benefits

Preprocessing of Propagation Redundant Clauses 121

other hard combinatorial problems that use pseudo-Boolean constraints. The pseudo-
Boolean (Pb-chnl) [24] benchmarks are based on at-most-one constraints (using the
pairwise encoding) and at-least-one constraints. These formulas have a similar graph-
ical structure to the perfect matching benchmarks. Binary PR clauses block two edges
when another set of edges exists that are incident to the same nodes.

For the other two benchmark families that benefited from PRELEARN, the intuition
behind PR learning is less clear. The fixed-shape random formulas (fsf) [29] are pa-
rameterized non-clausal random formulas built from hyper-clauses. The SAT encoding
makes use of the Plaisted-Greenbaum transformation, introducing circuit-like structure
to the problem. The superpermutation problem (sp) [22] asks whether a sequence of
digits 1–n of length l can contain every permutation of [1, n] as a subsequence, and the
optimization variant asks for the smallest such l given n. The sequence of l digits is en-
coded directly and passed through a multi-layered circuit that checks for the existence
of each individual permutation. Digits use the binary (bin) or unary (una) encoding, are
strict stri if clauses constrain digit bits to valid encodings and nonstrict nons otherwise,
and flat if the circuit is a large AND or tree for prefix recognizing nested circuits. The
formulas given ask to find a prefix of a superpermutation for n = 5 or length 26 with 19
permutations. The check for 19 permutations was encoded as cardinality constraints in
a pseudo-Boolean instance, then converted back to SAT. Each individual permutation
is checked by duplicating circuits at each possible starting position of the permutation
in l. PR clauses may be pruning certain starting positions for some permutations or
affecting the pseudo-Boolean constraints. This cannot be determined without a deeper
knowledge of the benchmark generator.

The relativized pigeonhole problem (rphp) [3] involves placing k pigeons in k −
1 holes with n nesting places. This problem has polynomial hardness for resolution,
unlike the exponential hardness of the classical pigeonhole problem. The symmetry-
breaking preprocessor BREAKID [9] generates symmetry-breaking formulas for rphp
that are easy for a CDCL solver. PRELEARN can learn many PR clauses but the formula
does not become easier. Note PRELEARN can solve the php with n = 12 in a second.

One problem is clause and variable permuting (a.k.a. shuffling). The mutilated
chessboard problem can still be solved by PRELEARN after permuting variables and
clauses. The pigeonhole problem can be solved after permuting clauses but not after
permuting variable names. In PRELEARN, PR candidates are sorted by variable name
independent of clause ordering, but when the variable names change the order of learned
clauses changes. In the mutilated chessboard problem there is local structure, so simi-
lar PR clauses are learned under variable renaming. In the pigeonhole problem there is
global structure, so a variable renaming can significantly change the binary PR clauses
learned and cause earlier saturation with far fewer units.

Another problem is that the addition of PR clauses can change the existing structure
of a formula and negatively affect CDCL heuristics. The Pythagorean Triples Problem
(Ptn) [19] asks whether monochromatic solutions of the equation a2 + b2 = c2 can be
avoided. The formulas encode numbers {1, . . . , 7824}, for which a valid 2-coloring is
possible. In the namings, the N in bN denotes the number of backbone literals added
to the formula. A backbone literal is a literal assigned true in every solution. Adding
more than 20 backbone literals makes the problem easy. For each formula KISSAT can

122 J. E. Reeves et al.

find a satisfying assignment, but timeouts with the addition of PR clauses. For one
instance, adding only 39 PR clauses will lead to a timeout. In some hard SAT and
UNSAT problems solvers require some amount of luck and adding a few clauses or
shuffling a formula can cause a CDCL solver’s performance to sharply decrease. The
Pythagorean Triples problem was originally solved with a local search solver, and local
search still performs well after adding PR clauses.

In a straight-forward way, one can avoid the negative effects of adding harmful PR
clauses by running two solvers in parallel: one with PRELEARN and one without. This
fits with the portfolio approach for solving SAT problems.

8 Conclusion and Future Work

In this paper we presented PRELEARN, a tool built from the SADICAL framework
that learns PR clauses in a preprocessing stage. We developed several heuristics for
finding PR clauses and multiple configurations for clause learning. In the evaluation we
found that PRELEARN improves the performance of the CDCL solver KISSAT on many
benchmarks from past SAT competitions.

For future work, quantifying the usefulness of each PR clause in relation to guid-
ing the CDCL solver may lead to better learning heuristics. This is a difficult task that
likely requires problem specific information. Separately, failed clause caching can im-
prove performance by remembering and avoiding candidate clauses that fail with unsat-
isfiable reducts in multiple iterations. This would be most beneficial for problems like
the mutilated chessboard that have many conflicting PR clauses. Lastly, incorporating
PRELEARN during in-processing may allow for more PR clauses to be learned. This
could be implemented with the inner/outer solver framework but would require a sig-
nificantly narrowed search. CDCL learns many clauses during execution and it would
be infeasible to examine binary PR clauses across the entire formula.

Acknowledgements. We thank the community at StarExec for providing computational
resources.

Preprocessing of Propagation Redundant Clauses 123

References

1. Alekhnovich, M.: Mutilated chessboard problem is exponentially hard for resolution. Theo-
retical Computer Science 310(1), 513–525 (2004)

2. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J., Simon, L.: Community structure in in-
dustrial SAT instances. Journal of Artificial Intelligence Research (JAR) 66, 443–472 (2019)

3. Atserias, A., Lauria, M., Nordström, J.: Narrow proofs may be maximally long. ACM Trans-
actions on Computational Logic 17(3) (2016)

4. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for clause
learning SAT solvers. In: AAAI Conference on Artificial Intelligence. pp. 15–20. AAAI
Press (2010)

5. Biere, A., Fazekas, K., Fleury, M., Heisinger, M.: CaDiCaL, Kissat, Paracooba, Plingeling
and Treengeling entering the SAT competition 2020 (2020), unpublished

6. Biere, A., Fröhlich, A.: Evaluating CDCL variable scoring schemes. In: Theory and Appli-
cations of Satisfiability Testing (SAT). LNCS, vol. 9340, pp. 405–422 (2015)

7. Codel, C.R., Reeves, J.E., Heule, M.J.H., Bryant, R.E.: Bipartite perfect matching bench-
marks. In: Pragmatics of SAT (2021)

8. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT
News 8(4), 28–32 (1976)

9. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static symmetry break-
ing for SAT. In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 9710,
pp. 104–122. Springer (2016)

10. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 3569, pp. 61–75.
Springer (2005)

11. Freeman, J.W.: Improvements to Propositional Satisfiability Search Algorithms. Ph.D. thesis,
USA (1995)

12. Haken, A.: The intractability of resolution. Theoretical Computer Science 39, 297–308
(1985)

13. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Expressing symmetry breaking in DRAT proofs.
In: Conference on Automated Deduction (CADE). LNCS, vol. 9195, pp. 591–606. Springer
(2015)

14. Heule, M.J.H., Kiesl, B., Biere, A.: Short proofs without new variables. In: Conference on
Automated Deduction (CADE). LNCS, vol. 10395, pp. 130–147. Springer (2017)

15. Heule, M.J.H., Kiesl, B., Biere, A.: Clausal proofs of mutilated chessboards. In: NASA For-
mal Methods. LNCS, vol. 11460, pp. 204–210 (2019)

16. Heule, M.J.H., Kiesl, B., Biere, A.: Encoding redundancy for satisfaction-driven clause
learning. In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
LNCS, vol. 11427, pp. 41–58. Springer (2019)

17. Heule, M.J.H., Kiesl, B., Biere, A.: Strong extension free proof systems. In: Journal of Au-
tomated Reasoning. vol. 64, pp. 533–544 (2020)

18. Heule, M.J.H., Kiesl, B., Seidl, M., Biere, A.: PRuning through satisfaction. In: Haifa Veri-
fication Conference (HVC). LNCS, vol. 10629, pp. 179–194 (2017)

19. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean pythagorean
triples problem via cube-and-conquer. In: Theory and Applications of Satisfiability Testing
(SAT). LNCS, vol. 9710, pp. 228–245. Springer (2016)

20. Heule, M.J., Hunt, W.A., Wetzler, N.: Trimming while checking clausal proofs. In: Formal
Methods in Computer-Aided Design (FMCAD). pp. 181–188 (2013)

21. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: International Joint Conference
on Automated Reasoning (IJCAR). LNCS, vol. 7364, pp. 355–370. Springer (2012)

124 J. E. Reeves et al.

22. Johnston, N.: Non-uniqueness of minimal superpermutations. Discrete Mathematics
313(14), 1553–1557 (2013)

23. Kiesl, B., Seidl, M., Tompits, H., Biere, A.: Super-blocked clauses. In: International Joint
Conference on Automated Reasoning (IJCAR). LNCS, vol. 9706, pp. 45–61 (2016)

24. Lecoutre, C., Roussel, O.: XCSP3 competition 2018 proceedings. pp. 40–41 (2018)
25. Liang, J., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for

SAT solvers. In: Theory and Applications of Satisfiability Testing (SAT). LNCS, vol. 9710,
pp. 123–140 (2016)

26. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of Boolean formulas. In: Haifa
Verification Conference (HVC). LNCS, vol. 7857, pp. 102–117 (2013)

27. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
Handbook of Satisfiability, pp. 131–153. IOS Press (2009)

28. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
efficient sat solver. In: Proceedings of the 38th Annual Design Automation Conference. p.
530–535. ACM (2001)

29. Navarro, J.A., Voronkov, A.: Generation of hard non-clausal random satisfiability problems.
In: AAAI Conference on Artificial Intelligence. pp. 436–442. The MIT Press (2005)

30. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure for logic
solving. In: International Joint Conference on Automated Reasoning (IJCAR). LNCS,
vol. 8562, pp. 367–373. Springer (2014)

31. Tan, Y.K., Heule, M.J.H., Myreen, M.O.: cake lpr: Verified propagation redundancy check-
ing in CakeML. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Part II. LNCS, vol. 12652, pp. 223–241 (2021)

32. Tseitin, G.S.: On the Complexity of Derivation in Propositional Calculus, pp. 466–483.
Springer (1983)

33. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient checking and trimming using
expressive clausal proofs. In: Theory and Applications of Satisfiability Testing (SAT). LNCS,
vol. 8561, pp. 422–429 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Reasoning About Vectors Using an SMT Theory
of Sequences

Ying Sheng1(B), Andres Nötzli1, Andrew Reynolds2, Yoni Zohar3, David Dill4,
Wolfgang Grieskamp4, Junkil Park4, Shaz Qadeer4, Clark Barrett1, and Cesare Tinelli2

1 Stanford University, Stanford, USA
ying1123@stanford.edu

2 The University of Iowa, Iowa City, USA
3 Bar-Ilan University, Ramat Gan, Israel

4 Meta Novi, Menlo Park, USA

Abstract. Dynamic arrays, also referred to as vectors, are fundamental data
structures used in many programs. Modeling their semantics efficiently is cru-
cial when reasoning about such programs. The theory of arrays is widely sup-
ported but is not ideal, because the number of elements is fixed (determined by
its index sort) and cannot be adjusted, which is a problem, given that the length
of vectors often plays an important role when reasoning about vector programs.
In this paper, we propose reasoning about vectors using a theory of sequences.
We introduce the theory, propose a basic calculus adapted from one for the the-
ory of strings, and extend it to efficiently handle common vector operations. We
prove that our calculus is sound and show how to construct a model when it ter-
minates with a saturated configuration. Finally, we describe an implementation
of the calculus in cvc5 and demonstrate its efficacy by evaluating it on verifica-
tion conditions for smart contracts and benchmarks derived from existing array
benchmarks.

1 Introduction

Generic vectors are used in many programming languages. For example, in C++’s stan-
dard library, they are provided by std::vector. Automated verification of software
systems that manipulate vectors requires an efficient and automated way of reason-
ing about them. Desirable characteristics of any approach for reasoning about vec-
tors include: piq expressiveness—operations that are commonly performed on vectors
should be supported; piiq generality—vectors are always “vectors of” some type (e.g.,
vectors of integers), and so it is desirable that vector reasoning be integrated within a
more general framework; solvers for satisfiability modulo theories (SMT) provide such
a framework and are widely used in verification tools (see [5] for a recent survey); piiiq
efficiency—fast and efficient reasoning is essential for usability, especially as verifica-
tion tools are increasingly used by non-experts and in continuous integration.

This work was funded in part by the Stanford Center for Blockchain Research, NSF-BSF grant
numbers 2110397 (NSF) and 2020704 (BSF), and Meta Novi. Part of the work was done when
the first author was an intern at Meta Novi.

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 125–143, 2022.
https://doi.org/10.1007/978-3-031-10769-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_9&domain=pdf
https://doi.org/10.1007/978-3-031-10769-6_9

126 Y. Sheng et al.

Despite the ubiquity of vectors in software on the one hand and the effectiveness
of SMT solvers for software verification on the other hand, there is not currently a
clean way to represent vectors using operators from the SMT-LIB standard [3]. While
the theory of arrays can be used, it is not a great fit because arrays have a fixed size
determined by their index type. Representing a dynamic array thus requires additional
modeling work. Moreover, to reach an acceptable level of expressivity, quantifiers are
needed, which often makes the reasoning engine less efficient and robust. Indeed, part
of the motivation for this work was frustration with array-based modeling in the Move
Prover, a verification framework for smart contracts [24] (see Sect. 6 for more infor-
mation about the Move Prover and its use of vectors). The current paper bridges this
gap by studying and implementing a native theory of sequences in the SMT framework,
which satisfies the desirable properties for vector reasoning listed above.

We present two SMT-based calculi for determining satisfiability in the theory of
sequences. Since the decidability of even weaker theories is unknown (see, e.g., [9,15]),
we do not aim for a decision procedure. Rather, we prove model and solution soundness
(that is, when our procedure terminates, the answer is correct). Our first calculus lever-
ages techniques for the theory of strings. We generalize these techniques, lifting rules
specific to string characters to more general rules for arbitrary element types. By itself,
this base calculus is already quite effective. However, it misses opportunities to per-
form high-level vector-based reasoning. For example, both reading from and updating
a vector are very common operations in programming, and reasoning efficiently about
the corresponding sequence operators is thus crucial. Our second calculus addresses
this gap by integrating reasoning methods from array solvers (which handle reads and
updates efficiently) into the first procedure. Notice, however, that this integration is not
trivial, as it must handle novel combinations of operators (such as the combination of
update and read operators with concatenation) as well as out-of-bounds cases that do
not occur with ordinary arrays. We have implemented both variants of our calculus in
the cvc5 SMT solver [2] and evaluated them on benchmarks originating from the Move
prover, as well as benchmarks that were translated from SMT-LIB array benchmarks.

As is typical, both of our calculi are agnostic to the sort of the elements in the
sequence. Reasoning about sequences of elements from a particular theory can then
be done via theory combination methods such as Nelson-Oppen [18] or polite combi-
nation [16,20]. The former can be done for stably infinite theories (and the theory of
sequences that we present here is stably infinite), while the latter requires investigating
the politeness of the theory, which we expect to do in future work.

The rest of the paper is organized as follows. Section 2 includes basic notions from
first-order logic. Section 3 introduces the theory of sequences and shows how it can
be used to model vectors. Section 4 presents calculi for this theory and discusses their
correctness. Section 5 describes the implementation of these calculi in cvc5. Section 6
presents an evaluation comparing several variations of the sequence solver in cvc5 and
Z3. We conclude in Sect. 7 with directions for further research.

Related Work: Our work crucially builds on a proposal by Bjørner et al. [8], but
extends it in several key ways. First, their implementation (for a logic they call
QF_BVRE) restricts the generality of the theory by allowing only bit-vector elements
(representing characters) and assuming that sequences are bounded. In contrast, our

Reasoning About Vectors Using an SMT Theory of Sequences 127

calculus maintains full generality, allowing unbounded sequences and elements of arbi-
trary types. Second, while our core calculus focuses only on a subset of the operators in
[8], our implementation supports the remaining operators by reducing them to the core
operators, and also adds native support for the update operator, which is not included
in [8].

The base calculus that we present for sequences builds on similar work for the
theory of strings [6,17]. We extend our base calculus to support array-like reasoning
based on the weak-equivalence approach [10]. Though there exists some prior work on
extending the theory of arrays with more operators and reasoning about length [1,12,
14], this work does not include support for most of the of the sequence operators we
consider here.

The SMT-solver Z3 [11] also provides a solver for sequences. However, its docu-
mentation is limited [7], it does not support update directly, and its internal algorithms
are not described in the literature. Furthermore, as we show in Sect. 6, the performance
of the Z3 implementation is generally inferior to our implementation in cvc5.

2 Preliminaries

We assume the usual notions and terminology of many-sorted first-order logic with
equality (see, e.g., [13] for a complete presentation). We consider many-sorted sig-
natures Σ, each containing a set of sort symbols (including a Boolean sort Bool),
a family of logical symbols « for equality, with sort σ ˆ σ Ñ Bool for all sorts
σ in Σ and interpreted as the identity relation, and a set of interpreted (and sorted)
function symbols. We assume the usual definitions of well-sorted terms, literals, and
formulas as terms of sort Bool. A literal is flat if it has the form K, ppx1, . . . , xnq,
�ppx1, . . . , xnq, x « y, �x « y, or x « fpx1, . . . , xnq, where p and f are function
symbols and x, y, and x1, . . . , xn are variables. A Σ-interpretation M is defined as
usual, satisfying MpKq “ false and assigns: a set Mpσq to every sort σ of Σ, a func-
tion Mpfq : Mpσ1q ˆ . . . ˆ Mpσnq → Mpσq to any function symbol f of Σ with
arity σ1 ˆ . . . ˆ σn → σ, and an element Mpxq P Mpσq to any variable x of sort σ.
The satisfaction relation between interpretations and formulas is defined as usual and is
denoted by |“.

A theory is a pair T “ pΣ, Iq, in which Σ is a signature and I is a class of Σ-
interpretations, closed under variable reassignment. The models of T are the interpreta-
tions in I without any variable assignments. A Σ-formula ϕ is satisfiable (resp., unsat-
isfiable) in T if it is satisfied by some (resp., no) interpretation in I. Given a (set of)
terms S, we write T pSq to denote the set of all subterms of S. For a theory T “ pΣ, Iq,
a set S of Σ-formulas and a Σ-formula ϕ, we write S |“T ϕ if every interpretation
M P I that satisfies S also satisfies ϕ. By convention and unless otherwise stated, we
use letters w, x, y, z to denote variables and s, t, u, v to denote terms.

The theory TLIA “ pΣLIA, ITLIA
q of linear integer arithmetic is based on the signature

ΣLIA that includes a single sort Int, all natural numbers as constant symbols, the unary
´ symbol, the binary ` symbol and the binary ď relation. When k P N, we use the
notation k · x, inductively defined by 0 · x “ 0 and pm ` 1q · x “ x ` m · x. In turn,
ITLIA

consists of all structures M for ΣLIA in which the domain MpIntq of Int is the set

128 Y. Sheng et al.

Fig. 1. Signature for the theory of sequences.

of integer numbers, for every constant symbol n P N, Mpnq “ n, and `, ´, and ď are
interpreted as usual. We use standard notation for integer intervals (e.g., [a, b] for the
set of integers i, where a ď i ď b and [a, bq for the set where a ď i ă b).

3 A Theory of Sequences

We define the theory TSeq of sequences. Its signature ΣSeq is given in Fig. 1. It includes
the sorts Seq, Elem, Int, and Bool, intuitively denoting sequences, elements, integers,
and Booleans, respectively. The first four lines include symbols of ΣLIA. We write t1 ’
t2, with ’ P {ą, ă, ď}, as syntactic sugar for the equivalent literal expressed using ď
(and possibly �). The sequence symbols are given on the remaining lines. Their arities
are also given in Fig. 1. Notice that `̀ · · · `̀ is a variadic function symbol.

Interpretations M of TSeq interpret: Int as the set of integers; Elem as some set; Seq
as the set of finite sequences whose elements are from Elem; ε as the empty sequence;
unit as a function that takes an element from MpElemq and returns the sequence that
contains only that element; nth as a function that takes an element s from MpSeqq and
an integer i and returns the ith element of s, in case i is non-negative and is smaller than
the length of s (we take the first element of a sequence to have index 0). Otherwise, the
function has no restrictions; update as a function that takes an element s from MpSeqq,
an integer i, and an element a from MpElemq and returns the sequence obtained from
s by replacing its ith element by a, in case i is non-negative and smaller than the length
of s. Otherwise, the returned value is s itself; extract as a function that takes a sequence
s and integers i and j, and returns the maximal sub-sequence of s that starts at index i
and has length at most j, in case both i and j are non-negative and i is smaller than the
length of s. Otherwise, the returned value is the empty sequence;1 | | as a function that
takes a sequence and returns its length; and `̀ · · · `̀ as a function that takes some
number of sequences (at least 2) and returns their concatenation.

1 In [8], the second argument j denotes the end index, while here it denotes the length of the
sub-sequence, in order to be consistent with the theory of strings in the SMT-LIB standard.

Reasoning About Vectors Using an SMT Theory of Sequences 129

Notice that the interpretations of Elem and nth are not completely fixed by the
theory: Elem can be set arbitrarily, and nth is only defined by the theory for some
values of its second argument. For the rest, it can be set arbitrarily.

3.1 Vectors as Sequences

We show the applicability of TSeq by using it for a simple verification task. Consider the
C++ function swap at the top of Fig. 2. This function swaps two elements in a vector.
The comments above the function include a partial specification for it: if both indexes
are in-bounds and the indexed elements are equal, then the function should not change
the vector (this is expressed by s_out==s). We now consider how to encode the ver-
ification condition induced by the code and the specification. The function variables a,
b, i, and j can be encoded as variables of sort Int with the same names. We include two
copies of s: s for its value at the beginning, and sout for its value at the end. But what
should be the sorts of s and sout? In Fig. 2 we consider two options: one is based on
arrays and the other on sequences.

Example 1 (Arrays). The theory of arrays includes three sorts: index, element (in this
case, both are Int), and an array sort Arr, as well as two operators: x[i], interpreted as
the ith element of x; and x[i Ð a], interpreted as the array obtained from x by setting
the element at index i to a. We declare s and sout as variables of an uninterpreted sort
V and declare two functions � and c, which, given v of sort V , return its length (of sort
Int) and content (of sort Arr), respectively.2

Next, we introduce functions to model vector operations: «A for comparing vectors,
nthA for reading from them, and updateA for updating them. These functions need to
be axiomatized. We include two axioms (bottom of Fig. 2): Ax1 states that two vectors
are equal iff they have the same length and the same contents. Ax2 axiomatizes the
update operator; the result has the same length, and if the updated index is in bounds,
then the corresponding element is updated. These axioms are not meant to be complete,
but are rather just strong enough for the example.

The first two lines of the swap function are encoded as equalities using nthA, and
the last two lines are combined into one nested constraint that involves updateA. The
precondition of the specification is naturally modeled using nthA, and the post-condition
is negated, so that the unsatisfiability of the formula entails the correctness of the func-
tion w.r.t. the specification. Indeed, the conjunction of all formulas in this encoding is
unsatisfiable in the combined theories of arrays, integers, and uninterpreted functions.

The above encoding has two main shortcomings: It introduces auxiliary symbols, and
it uses quantifiers, thus reducing clarity and efficiency. In the next example, we see how
using the theory of sequences allows for a much more natural and succinct encoding.

Example 2 (Sequences). In the sequences encoding, s and sout have sort Seq. No aux-
iliary sorts or functions are needed, as the theory symbols can be used directly. Further,

2 It is possible to obtain a similar encoding using the theory of datatypes; however, here we use
uninterpreted functions which are simpler and better supported by SMT solvers.

130 Y. Sheng et al.

Fig. 2. An example using TSeq.

these symbols do not need to be axiomatized as their semantics is fixed by the the-
ory. The resulting formula, much shorter than in Exmaple 2 and with no quantifiers, is
unsatisfiable in TSeq.

4 Calculi

After introducing some definitions and assumptions, we describe a basic calculus for
the theory of sequences, which adapts techniques from previous procedures for the
theory of strings. In particular, the basic calculus reduces the operators nth and update
by introducing concatenation terms. We then show how to extend the basic calculus by
introducing additional rules inspired by solvers for the theory of arrays; the modified
calculus can often reason about nth and update terms directly, avoiding the introduction
of concatenation terms (which are typically expensive to reason about).

Given a vector of sequence terms t “ pt1, . . . , tnq, we use t to denote the term
corresponding to the concatenation of t1, . . . , tn. If n “ 0, t denotes ε, and if n “ 1, t
denotes t1; otherwise (when n ą 1), t denotes a concatenation term having n children.
In our calculi, we distinguish between sequence and arithmetic constraints.

Definition 1. A ΣSeq-formula ϕ is a sequence constraint if it has the form s « t or
s �« t; it is an arithmetic constraint if it has the form s « t, s ≥ t, s �« t, or s ă t where
s, t are terms of sort Int, or if it is a disjunction c1 ∨ c2 of two arithmetic constraints.

Notice that sequence constraints do not have to contain sequence terms (e.g., x « y
where x, y are Elem-variables). Also, equalities and disequalities between terms of sort
Int are both sequence and arithmetic constraints. In this paper we focus on sequence

Reasoning About Vectors Using an SMT Theory of Sequences 131

Fig. 3. Rewrite rules for the reduced form t↓ of a term t, obtained from t by applying these rules
to completion.

constraints and arithmetic constraints. This is justified by the following lemma. (Proofs
of this lemma and later results can be found in an extended version of this paper [23].)

Lemma 1. For every quantifier-free ΣSeq-formula ϕ, there are sets S1, . . . ,Sn of
sequence constraints and sets A1, . . . ,An of arithmetic constraints such that ϕ is TSeq-
satisfiable iff Si Y Ai is TSeq-satisfiable for some i P [1, n].

Throughout the presentation of the calculi, we will make a few simplifying assumptions.

Assumption 1. Whenever we refer to a set S of sequence constraints, we assume:

1. for every non-variable term t P T pSq, there exists a variable x such that x « t P S;
2. for every Seq-variable x, there exists a variable �x such that �x « |x| P S;
3. all literals in S are flat.

Whenever we refer to a set of arithmetic constraints, we assume all its literals are flat.

These assumptions are without loss of generality as any set can easily be transformed
into an equisatisfiable set satisfying the assumptions by the addition of fresh variables
and equalities. Note that some rules below introduce non-flat literals. In such cases,
we assume that similar transformations are done immediately after applying the rule to
maintain the invariant that all literals in S Y A are flat. Rules may also introduce fresh
variables k of sort Seq. We further assume that in such cases, a corresponding constraint
�k « |k| is added to S with a fresh variable �k.

Definition 2. Let C be a set of constraints. We write C |“ ϕ to denote that C entails
formula ϕ in the empty theory, and write ”C to denote the binary relation over T pCq
such that s ”C t iff C |“ s « t.

Lemma 2. For all set S of sequence constraints, ”S is an equivalence relation; fur-
thermore, every equivalence class of ”S contains at least one variable.

We denote the equivalence class of a term s according to ”S by [s]”S
and drop the ”S

subscript when it is clear from the context.
In the presentation of the calculus, it will often be useful to normalize terms to what

will be called a reduced form.

Definition 3. Let t be a ΣSeq-term. The reduced form of t, denoted by t↓, is the term
obtained by applying the rewrite rules listed in Fig. 3 to completion.

Observe that t↓ is well defined because the given rewrite rules form a terminating
rewrite system. This can be seen by noting that each rule reduces the number of appli-
cations of sequence operators in the left-hand side term or keeps that number the same
but reduces the size of the term. It is not difficult to show that |“TSeq

t « t↓.
We now introduce some basic definitions related to concatenation terms.

132 Y. Sheng et al.

Definition 4. A concatenation term is a term of the form s1 `̀ · · · `̀ sn with n ≥ 2.
If each si is a variable, it is a variable concatenation term. For a set S of sequence
constraints, a variable concatenation term x1`̀ · · ·`̀ xn is singular in S if S �|“ xi « ε
for at most one variable xi with i P [1, n]. A sequence variable x is atomic in S if
S � x « ε and for all variable concatenation terms s P T pSq such that S |“ x « s, s
is singular in S.

We lift the concept of atomic variables to atomic representatives of equivalence classes.

Definition 5. Let S be a set of sequence constraints. Assume a choice function α :
T pSq/”S → T pSq that chooses a variable from each equivalence class of ”S. A
sequence variable x is an atomic representative in S if it is atomic in S and x “
αp[x]”S

q.

Finally, we introduce a relation that is the foundation for reasoning about concatena-
tions.

Definition 6. Let S be a set of sequence constraints. We inductively define a relation
S |“`̀ x « s, where x is a sequence variable in S and s is a sequence term whose
variables are in T pSq, as follows:

1. S |“`̀ x « x for all sequence variables x P T pSq.
2. S |“`̀ x « t for all sequence variables x P T pSq and variable concatenation terms

t, where x « t P S.
3. If S |“`̀ x « pw `̀ y `̀ zq↓ and S |“ y « t and t is ε or a variable concatenation

term in S that is not singular in S, then S |“`̀ x « pw `̀ t `̀ zq↓.

Let α be a choice function for S as defined in Definition 5. We additionally define the
entailment relation S |“∗`̀ x « y, where y is of length n ≥ 0, to hold if each element of
y is an atomic representative in S and there exists z of length n such that S |“`̀ x « z
and S |“ yi « zi for i P [1, n].

In other words, S |“∗`̀ x « t holds when t is a concatenation of atomic representa-
tives and is entailed to be equal to x by S. In practice, t is determined by recursively
expanding concatenations using equalities in S until a fixpoint is reached.

Example 3. Suppose S “ {x « y `̀ z, y « w `̀ u, u « v} (we omit the additional
constraints required by Assumption 1, part 2 for brevity). It is easy to see that u, v, w,
and z are atomic in S, but x and y are not. Furthermore, w and z (and one of u or v)
must also be atomic representatives. Clearly, S |“`̀ x « x and S |“ x « y `̀ z.
Moreover, y `̀ z is a variable concatenation term that is not singular in S. Hence, we
have S |“`̀ x « py `̀ zq↓, and so S |“`̀ x « y `̀ z (by using either Item 2 or
Item 3 of Defintion 6, as in fact x « y `̀ z P S.). Now, since S |“`̀ x « y `̀ z,
S |“ y « w `̀ u, and w `̀ u is a variable concatenation term not singular in S, we get
that S |“`̀ x « ppw `̀ uq `̀ zq↓, and so S |“`̀ x « w `̀ u `̀ z. Now, assume that
v “ αp[v]”S

q “ αp{v, u}q. Then, S |“∗`̀ x « w `̀ v `̀ z.

Our calculi can be understood as modeling abstractly a cooperation between an arith-
metic subsolver and a sequence subsolver. Many of the derivation rules lift those in the
string calculus of Liang et al. [17] to sequences of elements of an arbitrary type. We
describe them similarly as rules that modify configurations.

Reasoning About Vectors Using an SMT Theory of Sequences 133

Definition 7. A configuration is either the distinguished configuration unsat or a pair
pS,Aq of a set S of sequence constraints and a set A of arithmetic constraints.

The rules are given in guarded assignment form, where the rule premises describe the
conditions on the current configuration under which the rule can be applied, and the
conclusion is either unsat, or otherwise describes the resulting modifications to the
configuration. A rule may have multiple conclusions separated by ‖. In the rules, some
of the premises have the form S |“ s « t (see Definition 2). Such entailments can be
checked with standard algorithms for congruence closure. Similarly, premises of the
form S |“LIA s « t can be checked by solvers for linear integer arithmetic.

An application of a rule is redundant if it has a conclusion where each component
in the derived configuration is a subset of the corresponding component in the premise
configuration. We assume that for rules that introduce fresh variables, the introduced
variables are identical whenever the premises triggering the rule are the same (i.e., we
cannot generate an infinite sequence of rule applications by continuously using the same
premises to introduce fresh variables).3 A configuration other than unsat is saturated
with respect to a set R of derivation rules if every possible application of a rule in R
to it is redundant. A derivation tree is a tree where each node is a configuration whose
children, if any, are obtained by a non-redundant application of a rule of the calculus.
A derivation tree is closed if all of its leaves are unsat. As we show later, a closed
derivation tree with root node pS,Aq is a proof that A Y S is unsatisfiable in TSeq. In
contrast, a derivation tree with root node pS,Aq and a saturated leaf with respect to all
the rules of the calculus is a witness that A Y S is satisfiable in TSeq.

4.1 Basic Calculus

Definition 8. The calculus BASE consists of the derivation rules in Figs. 4 and 5.

Some of the rules are adapted from previous work on string solvers [17,22]. Compared
to that work, our presentation of the rules is noticeably simpler, due to our use of the
relation |“∗`̀ from Definition 6. In particular, our configurations consist only of pairs of
sets of formulas, without any auxiliary data-structures.

Note that judgments of the form S |“∗`̀ x « t are used in premises of the calculus.
It is possible to compute whether such a premise holds thanks to the following lemma.

Lemma 3. Let S be a set of sequence constraints and A a set of arithmetic constraints.
If pS,Aq is saturated w.r.t. S-Prop, L-Intro and L-Valid, the problem of determining
whether S |“∗`̀ x « s for given x and s is decidable.

Lemma 3 assumes saturation with respect to certain rules. Accordingly, our proof strat-
egy, described in Sect. 5, will ensure such saturation before attempting to apply rules
relying on |“∗`̀ . The relation |“∗`̀ induces a normal form for each equivalence class of
”S.

3 In practice, this is implemented by associating each introduced variable with a witness term as
described in [21].

134 Y. Sheng et al.

Fig. 4. Core derivation rules. The rules use k and i to denote fresh variables of sequence and
integer sort, respectively, and w1 and w2 for fresh element variables.

Lemma 4. Let S be a set of sequence constraints and A a set of arithmetic constraints.
Suppose pS,Aq is saturated w.r.t. A-Conf, S-Prop, L-Intro, L-Valid, and C-Split. Then,
for every equivalence class e of ”S whose terms are of sort Seq, there exists a unique
(possibly empty) s such that whenever S |“∗`̀ x « s′ for x P e, then s′ “ s. In this
case, we call s the normal form of e (and of x).

We now turn to the description of the rules in Fig. 4, which form the core of the
calculus. For greater clarity, some of the conclusions of the rules include terms before
they are flattened. First, either subsolver can report that the current set of constraints is
unsatisfiable by using the rules A-Conf or S-Conf. For the former, the entailment |“LIA

(which abbreviates |“TLIA
) can be checked by a standard procedure for linear integer

arithmetic, and the latter corresponds to a situation where congruence closure detects
a conflict between an equality and a disequality. The rules A-Prop, S-Prop, and S-A
correspond to a form of Nelson-Oppen-style theory combination between the two sub-
solvers. The first two communicate equalities between the sub-solvers, while the third
guesses arrangements for shared variables of sort Int. L-Intro ensures that the length
term |s| for each sequence term s is equal to its reduced form p|s|q↓. L-Valid restricts
sequence lengths to be non-negative, splitting on whether each sequence is empty or
has a length greater than 0. The unit operator is injective, which is captured by U-Eq.
C-Eq concludes that two sequence terms are equal if they have the same normal form. If
two sequence variables have different normal forms, then C-Split takes the first differing
components y and y′ from the two normal forms and splits on their length relationship.
Note that C-Split is the source for non-termination of the calculus (see, e.g., [17,22]).

Reasoning About Vectors Using an SMT Theory of Sequences 135

Fig. 5. Reduction rules for extract, nth, and update. The rules use k, k′, and k′′ to denote fresh
sequence variables. We write s « minpt, uq as an abbreviation for s « t ∨ s « u, s ď t, s ď u.

Finally, Deq-Ext handles disequalities between sequences x and y by either asserting
that their lengths are different or by choosing an index i at which they differ.

Figure 5 includes a set of reduction rules for handling operators that are not directly
handled by the core rules. These reduction rules capture the semantics of these operators
by reduction to concatenation. R-Extract splits into two cases: Either the extraction uses
an out-of-bounds index or a non-positive length, in which case the result is the empty
sequence, or the original sequence can be described as a concatenation that includes
the extracted sub-sequence. R-Nth creates an equation between y and a concatenation
term with unitpxq as one of its components, as long as i is not out of bounds. R-Update
considers two cases. If i is out of bounds, then the update term is equal to y. Otherwise,
y is equal to a concatenation, with the middle component (k′) representing the part of y
that is updated. In the update term, k′ is replaced by unitpzq.

Example 4. Consider a configuration pS,Aq, where S contains the formulas x « y`̀ z,
z « v `̀ x `̀ w, and v « unitpuq, and A is empty. Hence, S |“ |x| « |y `̀ z|. By
L-Intro, we have S |“ |y `̀ z| « |y| ` |z|. Together with Assumption 1, we have
S |“ �x « �y ` �z , and then with S-Prop, we have �x « �y ` �z P A. Similarly, we
can derive �z « �v ` �x ` �w, �v « 1 P S, and so p∗qA |“LIA �z « 1 ` �y ` �z ` �w.
Notice that for any variable k of sort Seq, we can apply L-Valid, L-Intro, and S-Prop to
add to A either �k ą 0 or �k “ 0. Applying this to y, z, w, we have that A |“LIA K in
each branch thanks to p∗q, and so A-Conf applies and we get unsat.

4.2 Extended Calculus

Definition 9. The calculus EXT is comprised of the derivation rules in Figs. 4 and 6,
with the addition of rule R-Extract from Fig. 5.

Our extended calculus combines array reasoning, based on [10] and expressed by
the rules in Fig. 6, with the core rules of Fig. 4 and the R-Extract rule. Unlike in BASE,
those rules do not reduce nth and update. Instead, they reason about those operators
directly and handle their combination with concatenation. Nth-Concat identifies the ith

136 Y. Sheng et al.

element of sequence y with the corresponding element selected from its normal form
(see Lemma 4). Update-Concat operates similarly, applying update to all the compo-
nents. Update-Concat-Inv operates similarly on the updated sequence rather than on the
original sequence. Nth-Unit captures the semantics of nth when applied to a unit term.
Update-Unit is similar and distinguishes an update on an out-of-bounds index (different
from 0) from an update within the bound. Nth-Intro is meant to ensure that Nth-Update
(explained below) and Nth-Unit (explained above) are applicable whenever an update
term exists in the constraints. Nth-Update captures the read-over-write axioms of arrays,
adapted to consider their lengths (see, e.g., [10]). It distinguishes three cases: In the first,
the update index is out of bounds. In the second, it is not out of bounds, and the cor-
responding nth term accesses the same index that was updated. In the third case, the
index used in the nth term is different from the updated index. Update-Bound considers
two cases: either the update changes the sequence, or the sequence remains the same.
Finally, Nth-Split introduces a case split on the equality between two sequence variables
x and x′ whenever they appear as arguments to nth with equivalent second arguments.
This is needed to ensure that we detect all cases where the arguments of two nth terms
must be equal.

4.3 Correctness

In this section we prove the following theorem:

Theorem 1. Let X P {BASE,EXT} and pS0,A0q be a configuration, and assume with-
out loss of generality that A0 contains only arithmetic constraints that are not sequence
constraints. Let T be a derivation tree obtained by applying the rules of X with pS0,A0q
as the initial configuration.

1. If T is closed, then S0 Y A0 is TSeq-unsatisfiable.
2. If T contains a saturated configuration pS,Aq w.r.t. X , then pS,Aq is TSeq-satisfiable,

and so is pS0,A0q.

The theorem states that the calculi are correct in the following sense: if a closed deriva-
tion tree is obtained for the constraints S0 Y A0 then those constraints are unsatisfiable
in TSeq; if a tree with a saturated leaf is obtained, then they are satisfiable. It is possible,
however, that neither kind of tree can be derived by the calculi, making them neither
refutation-complete nor terminating. This is not surprising since, as mentioned in the
introduction, the decidability of even weaker theories is still unknown.

Proving the first claim in Theorem 1 reduces to a local soundness argument for each
of the rules. For the second claim, we sketch below how to construct a satisfying model
M from a saturated configuration for the case of EXT. The case for BASE is similar
and simpler.

Model Construction Steps. The full model construction and its correctness are
described in a longer version of this paper [23] together with a proof of the theorem
above. Here is a summary of the steps needed for the model construction.

1. Sorts: MpElemq is interpreted as some arbitrary countably infinite set. MpSeqq and
MpIntq are then determined by the theory.

Reasoning About Vectors Using an SMT Theory of Sequences 137

Fig. 6. Extended derivation rules. The rules use z1, . . . , zn to denote fresh sequence variables and
e, e′ to denote fresh element variables.

2. ΣSeq-symbols: TSeq enforces the interpretation of almost all ΣSeq-symbols, except
for nth when the second input is out of bounds. We cover this case below.

3. Integer variables: based on the saturation of A-Conf, we know there is some TLIA-
model satisfying A. We set M to interpret integer variables according to this model.

4. Element variables: these are partitioned into their ”S equivalence classes. Each class
is assigned a distinct element from MpElemq, which is possible since it is infinite.

5. Atomic sequence variables: these are assigned interpretations in several sub-steps:
(a) length: we first use the assignments to variables �x to set the length of Mpxq,

without assigning its actual value.
(b) unit variables: for variables x with x ”S unitpzq, we set Mpxq to be [Mpzq].

138 Y. Sheng et al.

(c) non-unit variables: All other sequence variables are assigned values according
to a weak equivalence graph we construct in a manner similar to [10]. This
construction takes into account constraints that involve update and nth.

6. Non-atomic sequence variables: these are first transformed to their unique normal
form (see Lemma 4), consisting of concatenations of atomic variables. Then, the
values assigned to these variables are concatenated.

7. nth-terms: for out-of-bounds indices in nth-terms, we rely on ”S to make sure that
the assignment is consistent.

We conclude this section with an example of the construction of M.

Example 5. Consider a signature in which Elem is Int, and a saturated configuration
pS∗,A∗q w.r.t. EXT that includes the following formulas: y « y1 `̀ y2, x « x1 `̀ x2,
y2 « x2, y1 « updatepx1, i, aq, |y1| “ |x1|, |y2| “ |x2|, nthpy, iq « a, nthpy1, iq « a.
Following the above construction, a satisfying interpretation M can be built as follows:

Step 1 Set both MpIntq and MpElemq to be the set of integer numbers. MpSeqq is
fixed by the theory.

Step 3, Step 4 First, find an arithmetic model, Mp�xq “ Mp�yq “ 4,Mp�y1q “
Mp�x1q “ 2,Mp�y2q “ Mp�x2q “ 2,Mpiq “ 0. Further, set Mpaq “ 0.

Step 5a Start assigning values to sequences. First, set the lengths of Mpxq and Mpyq
to be 4, and the lengths of Mpx1q,Mpx2q,Mpy1q,Mpy2q to be 2.

Step 5b is skipped as there are no unit terms.
Step 5c Set the 0th element of Mpy1q to 0 to satisfy nthpy1, iq “ a (y1 is atomic, y

is not). Assign fresh values to the remaining indices of atomic variables. The result
can be, e.g., Mpy1q “ [0, 2],Mpx1q “ [1, 2],Mpy2q “ Mpx2q “ [3, 4].

Step 6 Assign non-atomic sequence variables based on equivalent concatenations:
Mpyq “ [0, 2, 3, 4],Mpxq “ [1, 2, 3, 4].

Step 7 No integer variable in the formula was assigned an out-of-bound value, and so
the interpretation of nth on out-of-bounds cases is set arbitrarily.

5 Implementation

We implemented our procedure for sequences as an extension of a previous theory
solver for strings [17,22]. This solver is integrated in cvc5, and has been generalized to
reason about both strings and sequences. In this section, we describe how the rules of
the calculus are implemented and the overall strategy for when they are applied.

Like most SMT solvers, cvc5 is based on the CDCLpT q architecture [19] which
combines several subsolvers, each specialized on a specific theory, with a solver for
propositional satisfiability (SAT). Following that architecture, cvc5 maintains an evolv-
ing set of formulas F. When F starts with quantifier-free formulas over the theory TSeq,
the case targeted by this work, the SAT solver searches for a satisfying assignment for
F, represented as the set M of literals it satisfies. If none exists, the problem is unsatisfi-
able at the propositional level and hence TSeq-unsatisfiable. Otherwise, M is partitioned
into the arithmetic constraints A and the sequence constraints S and checked for TSeq-
satisfiability using the rules of the EXT calculus. Many of those rules, including all

Reasoning About Vectors Using an SMT Theory of Sequences 139

those with multiple conclusions, are implemented by adding new formulas to F (fol-
lowing the splitting-on-demand approach [4]). This causes the SAT solver to try to
extend its assignment to those formulas, which results in the addition of new literals to
M (and thereby also to A and S).

In this setting, the rules of the two calculi are implemented as follows. The effect
of rule A-Conf is achieved by invoking cvc5’s theory solver for linear integer arithmetic.
Rule S-Conf is implemented by the congruence closure submodule of the theory solver
for sequences. Rules A-Prop and S-Prop are implemented by the standard mechanism
for theory combination. Note that each of these four rules may be applied eagerly, that
is, before constructing a complete satisfying assignment M for F.

The remaining rules are implemented in the theory solver for sequences. Each time
M is checked for satisfiability, cvc5 follows a strategy to determine which rule to apply
next. If none of the rules apply and the configuration is different from unsat, then it is
saturated, and the solver returns sat. The strategy for EXT prioritizes rules as follows.
Only the first applicable rule is applied (and then control goes back to the SAT solver).

1. (Add length constraints) For each sequence term in S, apply L-Intro or L-Valid, if not
already done. We apply L-Intro for non-variables, and L-Valid for variables.

2. (Mark congruent terms) For each set of update (resp. nth) terms that are congruent
to one another in the current configuration, mark all but one term and ignore the
marked terms in the subsequent steps.

3. (Reduce extract) For extractpy, i, jq in S, apply R-Extract if not already done.
4. (Construct normal forms) Apply U-Eq or C-Split. We choose how to apply the latter

rule based on constructing normal forms for equivalence classes in a bottom-up fash-
ion, where the equivalence classes of x and y are considered before the equivalence
class of x`̀ y. We do this until we find an equivalence class such that S |“∗`̀ z « u1

and S |“∗`̀ z « u2 for distinct u1, u2.
5. (Normal forms) Apply C-Eq if two equivalence classes have the same normal form.
6. (Extensionality) For each disequality in S, apply Deq-Ext, if not already done.
7. (Distribute update and nth) For each term updatepx, i, tq (resp. nthpx, jq) such that

the normal form of x is a concatenation term, apply Update-Concat and Update-
Concat-Inv (resp. Nth-Concat) if not already done. Alternatively, if the normal form
of the equivalence class of x is a unit term, apply Update-Unit (resp. Nth-Unit).

8. (Array reasoning on atomic sequences) Apply Nth-Intro and Update-Bound to
update terms. For each update term, find the matching nth terms and apply
Nth-Update. Apply Nth-Split to pairs of nth terms with equivalent indices.

9. (Theory combination) Apply S-A for all arithmetic terms occurring in both S and A.

Whenever a rule is applied, the strategy will restart from the beginning in the next itera-
tion. The strategy is designed to apply with higher priority steps that are easy to compute
and are likely to lead to conflicts. Some steps are ordered based on dependencies from
other steps. For instance, Steps 5 and 7 use normal forms, which are computed in Step
4. The strategy for the BASE calculus is the same, except that Steps 7 and 8 are replaced
by one that applies R-Update and R-Nth to all update and nth terms in S.

We point out that the C-Split rule may cause non-termination of the proof strategy
described above in the presence of cyclic sequence constraints, for instance, constraints
where sequence variables appear on both sides of an equality. The solver uses methods

140 Y. Sheng et al.

for detecting some of these cycles, to restrict when C-Split is applied. In particular,
when S |“∗`̀ x « pu `̀ s `̀ wq↓, S |“∗`̀ x « pu `̀ t `̀ vq↓, and s occurs in v,
then C-Split is not applied. Instead, other heuristics are used, and in some cases the
solver terminates with a response of “unknown” (see e.g., [17] for details). In addition
to the version shown here, we also use another variation of the C-Split rule where the
normal forms are matched in reverse (starting from the last terms in the concatenations).
The implementation also uses fast entailment tests for length inequalities. These tests
may allow us to conclude which branch of C-Split, if any, is feasible, without having to
branch on cases explicitly.

Although not shown here, the calculus can also accommodate certain extended
sequence constraints, that is, constraints using a signature with additional functions.
For example, our implementation supports sequence containment, replacement, and
reverse. It also supports an extended variant of the update operator, in which the third
argument is a sequence that overrides the sequence being updated starting from the
index given in the second argument. Constraints involving these functions are handled
by reduction rules, similar to those shown in Fig. 5. The implementation is further opti-
mized by using context-dependent simplifications, which may eagerly infer when cer-
tain sequence terms can be simplified to constants based on the current set of assertions
[22].

6 Evaluation

We evaluate the performance of our approach, as implemented in cvc5. The evaluation
investigates: (i) whether the use of sequences is a viable option for reasoning about
vectors in programs, (ii) how our approach compares with other sequence solvers, and
(iii) what is the performance impact of our array-style extended rules. As a baseline, we
use Version 4.8.14 of the Z3 SMT solver, which supports a theory of sequences with-
out updates. For cvc5, we evaluate implementations of both the basic calculus (denoted
cvc5) and the extended array-based calculus (denoted cvc5-a). The benchmarks, solver
configurations, and logs from our runs are available for download.4 We ran all exper-
iments on a cluster equipped with Intel Xeon E5-2620 v4 CPUs. We allocated one
physical CPU core and 8 GB of RAM for each solver-benchmark pair and used a time
limit of 300 s. We use the following two sets of benchmarks:

Array Benchmarks (ARRAYS). The first set of benchmarks is derived from the QF_AX
benchmarks in SMT-LIB [3]. To generate these benchmarks, we (i) replace declarations
of arrays with declarations of sequences of uninterpreted sorts, (ii) change the sort of
index terms to integers, and (iii) replace store with update and select with nth. The
resulting benchmarks are quantifier-free and do not contain concatenations. Note that
the original and the derived benchmarks are not equisatisfiable, because sequences take
into account out-of-bounds cases that do not occur in arrays. For the Z3 runs, we add to
the benchmarks a definition of update in terms of extraction and concatenation.

Smart Contract Verification (DIEM). The second set of benchmarks consists of veri-
fication conditions generated by running the Move Prover [24] on smart contracts writ-
ten for the Diem framework. By default, the encoding does not use the sequence update

4 http://dx.doi.org/10.5281/zenodo.6146565.

http://dx.doi.org/10.5281/zenodo.6146565

Reasoning About Vectors Using an SMT Theory of Sequences 141

Fig. 7. Figure a lists the number of solved benchmarks and total time on commonly solved bench-
marks. The scatter plots compare the base solver (cvc5) and the extended solver (cvc5-a) on
ARRAY (Fig. b) and DIEM (Fig. c) benchmarks.

operation, and so Z3 can be used directly. However, we also modified the Move Prover
encoding to generate benchmarks that do use the update operator, and ran cvc5 on them.
In addition to using the sequence theory, the benchmarks make heavy use of quantifiers
and the SMT-LIB theory of datatypes.

Figure 7a summarizes the results in terms of number of solved benchmarks and total
time in seconds on commonly solved benchmarks. The configuration that solves the
largest number of benchmarks is the implementation of the extended calculus (cvc5-a).
This approach also successfully solves most of the DIEM benchmarks, which suggests
that sequences are a promising option for encoding vectors in programs. The results
further show that the sequences solver of cvc5 significantly outperforms Z3 on both the
number of solved benchmarks and the solving time on commonly solved benchmarks.

Figures 7b and 7c show scatter plots comparing cvc5 and cvc5-a on the two bench-
mark sets. We can see a clear trend towards better performance when using the extended
solver. In particular, the table shows that in addition to solving the most benchmarks,
cvc5-a is also fastest on the commonly solved instances from the DIEM benchmark set.

For the ARRAYS set, we can see that some benchmarks are slower with the extended
solver. This is also reflected in the table, where cvc5-a is slower on the commonly
solved instances. This is not too surprising, as the extra machinery of the extended
solver can sometimes slow down easy problems. As problems get harder, however, the
benefit of the extended solver becomes clear. For example, if we drop Z3 and consider
just the commonly solved instances between cvc5 and cvc5-a (of which there are 242),
cvc5-a is about 2.47ˆ faster (426 vs 1053 s). Of course, further improving the perfor-
mance of cvc5-a is something we plan to explore in future work.

7 Conclusion

We introduced calculi for checking satisfiability in the theory of sequences, which can
be used to model the vector data type. We described our implementation in cvc5 and
provided an evaluation, showing that the proposed theory is rich enough to naturally

142 Y. Sheng et al.

express verification conditions without introducing quantifiers, and that our implemen-
tation is efficient. We believe that verification tools can benefit by changing their encod-
ing of verification conditions that involve vectors to use the proposed theory and imple-
mentation.

We plan to propose the incorporation of this theory in the SMT-LIB standard and
contribute our benchmarks to SMT-LIB. As future research, we plan to integrate other
approaches for array solving into our basic solver. We also plan to study the politeness
[16,20] and decidability of various fragments of the theory of sequences.

References

1. Alberti, F., Ghilardi, S., Pagani, E.: Cardinality constraints for arrays (decidability results and
applications). Formal Methods Syst. Des. 51(3), 545–574 (2017). https://doi.org/10.1007/
s10703-017-0279-6

2. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: Fisman, D., Rosu,
G. (eds.) TACAS 2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.
org/10.1007/978-3-030-99524-9 24

3. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Technical report,
Department of Computer Science, The University of Iowa (2017). www.SMT-LIB.org

4. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in SAT modulo
theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
512–526. Springer, Heidelberg (2006). https://doi.org/10.1007/11916277 35

5. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Clarke, E., Henzinger, T., Veith,
H., Bloem, R. (eds.) Handbook of Model Checking, pp. 305–343. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8 11

6. Berzish, M., Ganesh, V., Zheng, Y.: Z3str3: a string solver with theory-aware heuristics. In:
Stewart, D., Weissenbacher, G. (eds.) 2017 Formal Methods in Computer Aided Design,
FMCAD 2017, Vienna, Austria, 2–6 October 2017, pp. 55–59. IEEE (2017)

7. Bjørner, N., de Moura, L., Nachmanson, L., Wintersteiger, C.: Programming Z3 (2018).
https://theory.stanford.edu/∼nikolaj/programmingz3.html#sec-sequences-and-strings

8. Bjørner, N., Ganesh, V., Michel, R., Veanes, M.: An SMT-LIB format for sequences and
regular expressions. SMT 12, 76–86 (2012)

9. Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-manipulating
programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 307–
321. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2 27

10. Christ, J., Hoenicke, J.: Weakly equivalent arrays. In: Lutz, C., Ranise, S. (eds.) FroCoS
2015. LNCS (LNAI), vol. 9322, pp. 119–134. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24246-0 8

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3 24

12. Elad, N., Rain, S., Immerman, N., Kovács, L., Sagiv, M.: Summing up smart transitions. In:
Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 317–340. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-81685-8 15

13. Enderton, H.B.: A Mathematical Introduction to Logic, 2nd edn. Academic Press (2001)
14. Falke, S., Merz, F., Sinz, C.: Extending the theory of arrays: memset, memcpy, and

beyond. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164, pp. 108–
128. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54108-7 6

https://doi.org/10.1007/s10703-017-0279-6
https://doi.org/10.1007/s10703-017-0279-6
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
www.SMT-LIB.org
https://doi.org/10.1007/11916277_35
https://doi.org/10.1007/978-3-319-10575-8_11
https://theory.stanford.edu/~nikolaj/programmingz3.html#sec-sequences-and-strings
https://doi.org/10.1007/978-3-642-00768-2_27
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1007/978-3-319-24246-0_8
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-81685-8_15
https://doi.org/10.1007/978-3-642-54108-7_6

Reasoning About Vectors Using an SMT Theory of Sequences 143

15. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length con-
straints: what’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol.
7857, pp. 209–226. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-
3 21

16. Jovanović, D., Barrett, C.: Polite theories revisited. In: Fermüller, C.G., Voronkov, A. (eds.)
LPAR 2010. LNCS, vol. 6397, pp. 402–416. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16242-8 29

17. Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A DPLL(T) theory solver for a
theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 646–662. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-
9 43

18. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans.
Program. Lang. Syst. 1(2), 245–257 (1979)

19. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an
abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977
(2006)

20. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably infinite
theories using many-sorted logic. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol.
3717, pp. 48–64. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306 3

21. Reynolds, A., Nötzli, A., Barrett, C.W., Tinelli, C.: Reductions for strings and regular expres-
sions revisited. In: 2020 Formal Methods in Computer Aided Design, FMCAD 2020, Haifa,
Israel, 21–24 September 2020, pp. 225–235. IEEE (2020)

22. Reynolds, A., Woo, M., Barrett, C., Brumley, D., Liang, T., Tinelli, C.: Scaling up DPLL(T)
string solvers using context-dependent simplification. In: Majumdar, R., Kunčak, V. (eds.)
CAV 2017. LNCS, vol. 10427, pp. 453–474. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 24

23. Sheng, Y.,et al.: Reasoning about vectors using an SMT theory of sequences. CoRR
10.48550/ARXIV.2205.08095 (2022)

24. Zhong, J.E., et al.: The move prover. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol.
12224, pp. 137–150. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 7

Open Access This chapter is licensed under the terms of the Creative Commons Attribution
4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-39611-3_21
https://doi.org/10.1007/978-3-642-16242-8_29
https://doi.org/10.1007/978-3-642-16242-8_29
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/978-3-319-08867-9_43
https://doi.org/10.1007/11559306_3
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-319-63390-9_24
https://doi.org/10.1007/978-3-030-53288-8_7
http://creativecommons.org/licenses/by/4.0/

Calculi and Orderings

An Efficient Subsumption Test Pipeline
for BS(LRA) Clauses

Martin Bromberger1 , Lorenz Leutgeb1,2(B) , and Christoph Weidenbach1

1 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany

{mbromber,lorenz,weidenb}@mpi-inf.mpg.de
2 Graduate School of Computer Science, Saarland Informatics Campus,

Saarbrücken, Germany

Abstract. The importance of subsumption testing for redundancy elim-
ination in first-order logic automatic reasoning is well-known. Although
the problem is already NP-complete for first-order clauses, the mean-
while developed test pipelines efficiently decide subsumption in almost
all practical cases. We consider subsumption between first-oder clauses of
the Bernays-Schönfinkel fragment over linear real arithmetic constraints:
BS(LRA). The bottleneck in this setup is deciding implication between
the LRA constraints of two clauses. Our new sample point heuristic pre-
empts expensive implication decisions in about 94% of all cases in bench-
marks. Combined with filtering techniques for the first-order BS part
of clauses, it results again in an efficient subsumption test pipeline for
BS(LRA) clauses.

Keywords: Bernays-Schönfinkel fragment · Linear arithmetic ·
Redundancy elimination · Subsumption

1 Introduction

The elimination of redundant clauses is crucial for the efficient automatic rea-
soning in first-order logic. In a resolution [5,50] or superposition setting [4,44], a
newly inferred clause might be subsumed by a clause that is already known (for-
ward subsumption) or it might subsume a known clause (backward subsumption).
Although the SCL calculi family [1,11,21] does not require forward subsump-
tion tests, a property also inherent to the propositional CDCL (Conflict Driven
Clause Learning) approach [8,34,41,55,63], backward subsumption and hence
subsumption remains an important test in order to remove redundant clauses.

In this work we present advances in deciding subsumption for constrained
clauses, specifically employing the Bernays-Schönfinkel fragment as foreground
logic, and linear real arithmetic as background theory, BS(LRA). BS(LRA) is of
particular interest because it can be used to model supervisors, i.e., components
in technical systems that control system functionality. An example for a super-
visor is the electronic control unit of a combustion engine. The logics we use
c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 147–168, 2022.
https://doi.org/10.1007/978-3-031-10769-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_10&domain=pdf
http://orcid.org/0000-0001-7256-2190
http://orcid.org/0000-0003-0391-3430
http://orcid.org/0000-0001-6002-0458
https://doi.org/10.1007/978-3-031-10769-6_10

148 M. Bromberger et al.

to model supervisors and their properties are called SupERLogs—(Sup)ervisor
(E)ffective(R)easoning (Log)ics. SupERLogs are instances of function-free first-
order logic extended with arithmetic [18], which means BS(LRA) is an example
of a SupERLog.

Subsumption is an important redundancy criterion in the context of hier-
archic clausal reasoning [6,11,20,35,37]. At the heart of this paper is a new
technique to speed up the treatment of linear arithmetic constraints as part of
deciding subsumption. For every clause, we store a solution of its associated con-
straints, which is used to quickly falsify implication decisions, acting as a filter,
called the sample point heuristic. In our experiments with various benchmarks,
the technique is very effective: It successfully preempts expensive implication
decisions in about 94% of cases. We elaborate on these findings in Sect. 4.

For example, consider three BS clauses, none of which subsumes another:

C1 := P (a, x) C2 := ¬P (y, z) ∨ Q(y, z, b) C3 := ¬R(b) ∨ Q(a, x, b)

Let C4 be the resolvent of C1 and C2 upon the atom P (a, x), i.e., C4 := Q(a, z, b).
Now C4 backward-subsumes C3 with matcher σ := {z �→ x}, i.e. C4σ ⊂ C3, thus
C3 is redundant and can be eliminated. Now, consider an extension of the above
clauses with some simple LRA constraints following the same reasoning:

C ′
1 := x ≥ 1 ‖ P (a, x)

C ′
2 := z ≥ 0 ‖ ¬P (y, z) ∨ Q(y, z, b)

C ′
3 := x ≥ 0 ‖ ¬R(b) ∨ Q(a, x, b)

where ‖ is interpreted as an implication, i.e., clause C ′
1 stands for ¬x ≥ 1∨P (a, x)

or simply x < 1 ∨ P (a, x). The respective resolvent on the constrained clauses
is C ′

4 := z ≥ 0, z ≥ 1 ‖ Q(a, z, b) or after constraint simplification C ′
4 := z ≥

1 ‖ Q(a, z, b) because z ≥ 1 implies z ≥ 0. For the constrained clauses, C ′
4 does

no longer subsume C ′
3 with matcher σ := {z �→ x}, because z ≥ 0 does not

LRA-imply z ≥ 1. Now, if we store the sample point x = 0 as a solution for
the constraint of clause C ′

3, this sample point already reveals that z ≥ 0 does
not LRA-imply z ≥ 1. This constitutes the basic idea behind our sample point
heuristic. In general, constraints are not just simple bounds as in the above
example, and sample points are solutions to the system of linear inequalities of
the LRA constraint of a clause.

Please note that our test on LRA constraints is based on LRA theory impli-
cation and not on a syntactic notion such as subsumption on the first-order part
of the clause. In this sense it is “stronger” than its first-order counterpart. This
fact is stressed by the following example, taken from [26, Ex. 2], which shows
that first-order implication does not imply subsumption. Let

C1 := ¬P (x, y) ∨ ¬P (y, z) ∨ P (x, z)
C2 := ¬P (a, b) ∨ ¬P (b, c) ∨ ¬P (c, d) ∨ P (a, d)

Then we have C1 → C2, but again, for all σ we have C1σ �⊆ C2: Constructing
σ from left to right we obtain σ := {x �→ a, y �→ b, z �→ c}, but P (a, c) �∈ C2.

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 149

Constructing σ from right to left we obtain σ := {z �→ d, x �→ a, y �→ c}, but
¬P (a, c) �∈ C2.

Related Work. Treatment of questions regarding the complexity of deciding sub-
sumption of first-order clauses [27] dates back more than thirty years. Notions
of subsumption, varying in generality, are studied in different sub-fields of the-
orem proving, whereas we restrict our attention to first-order theorem proving.
Modern implementations typically decide multiple thousand instances of this
problem per second: In [62, Sect. 2], Voronkov states that initial versions of
Vampire “seemed to [. . .] deadlock” without efficient implementations to decide
(forward) subsumption.

In order to reduce the number of clauses out of a set of clauses to be con-
sidered for pairwise subsumption checking, the best known practice in first-
order theorem proving is to use (imperfect) indexing data structures as a means
for pre-filtering and research concerning appropriate techniques is plentiful, see
[24,25,27–30,33,39,40,43,45–49,52–54,56,59,61] for an evaluation of these tech-
niques. Here we concentrate on the efficiency of a subsumption check between
two clauses and therefore do not take indexing techniques into account. Fur-
thermore, the implication test between two linear arithmetic constraints is of
a semantic nature and is not related to any syntactic features of the involved
constraints and can therefore hardly be filtered by a syntactic indexing approach.

In addition to pre-filtering via indexing, almost all above mentioned imple-
mentations of first-order subsumption tests rely on additional filters on the clause
level. The idea is to generate an abstraction of clauses together with an ordering
relation such that the ordering relation is necessary to hold between two clauses
in order for one clause to subsume the other. Furthermore, the abstraction as
well as the ordering relation should be efficiently computable. For example, a
necessary condition for a first-order clause C1 to subsume a first-order clause
C2 is | vars(C1)| ≥ | vars(C2)|, i.e., the number of different variables in C1 must
be larger or equal than the number of variables in C2. Further and additional
abstractions included by various implementations rely on the size of clauses,
number of ground literals, depth of literals and terms, occurring predicate and
function symbols. For the BS(LRA) clauses considered here, the structure of the
first-order BS part, which consists of predicates and flat terms (variables and
constants) only, is not particularly rich.

The exploration of sample points has already been studied in the context of
first-order clauses with arithmetic constraints. In [17,36] it was used to improve
the performance of iSAT [23] on testing non-linear arithmetic constraints. In
general, iSAT tests satisfiability by interval propagation for variables. If intervals
get “too small” it typically gives up, however sometimes the explicit generation
of a sample point for a small interval can still lead to a certificate for satisfiability.
This technique was successfully applied in [17], but was not used for deciding
subsumption of constrained clauses.

150 M. Bromberger et al.

Motivation. The main motivation for this work is the realization that comput-
ing implication decisions required to treat constraints of the background theory
presents the bottleneck of an BS(LRA) subsumption check in practice. Inspired
by the success of filtering techniques in first-order logic, we devise an exception-
ally effective filter for constraints and adopt well-known first-order filters to the
BS fragment. Our sample point heuristic for LRA could easily be generalized to
other arithmetic theories as well as full first-order logic.

Structure. The paper is structured as follows. After a section defining BS(LRA)
and common notions and notation, Sect. 2, we define redundancy notions and our
sample point heuristic in Sect. 3. Section 4 justifies the success of the sample point
heuristic by numerous experiments in various application domains of BS(LRA).
The paper ends with a discussion of the obtained results, Sect. 5. Binaries, utility
scripts, benchmarking instances used as input, and the output used for evaluation
may be obtained online [13].

2 Preliminaries

We briefly recall the basic logical formalisms and notations we build upon [10].
Our starting point is a standard many-sorted first-order language for BS with
constants (denoted a, b, c), without non-constant function symbols, with vari-
ables (denoted w, x, y, z), and predicates (denoted P,Q,R) of some fixed arity.
Terms (denoted t, s) are variables or constants. An atom (denoted A,B) is an
expression P (t1, . . . , tn) for a predicate P of arity n. A positive literal is an
atom A and a negative literal is a negated atom ¬A. We define comp(A) = ¬A,
comp(¬A) = A, |A| = A and |¬A| = A. Literals are usually denoted L,K,H.
Formulas are defined in the usual way using quantifiers ∀, ∃ and the boolean
connectives ¬, ∨, ∧, →, and ≡.

A clause (denoted C,D) is a universally closed disjunction of literals A1∨· · ·∨
An∨¬B1∨· · ·∨¬Bm. Clauses are identified with their respective multisets and all
standard multiset operations are extended to clauses. For instance, C ⊆ D means
that all literals in C also appear in D respecting their number of occurrences. A
clause is Horn if it contains at most one positive literal, i.e. n � 1, and a unit
clause if it has exactly one literal, i.e. n + m = 1. We write C+ for the set of
positive literals, or conclusions of C, i.e. C+ := {A1, . . . , An} and respectively
C− for the set of negative literals, or premises of C, i.e. C− := {¬B1, . . . ,¬Bm}.
If Y is a term, formula, or a set thereof, vars(Y) denotes the set of all variables
in Y , and Y is ground if vars(Y) = ∅.

The Bernays-Schönfinkel Clause Fragment (BS) in first-order logic consists
of first-order clauses where all involved terms are either variables or constants.
The Horn Bernays-Schönfinkel Clause Fragment (HBS) consists of all sets of BS
Horn clauses.

A substitution σ is a function from variables to terms with a finite domain
dom(σ) = {x | xσ �= x} and codomain codom(σ) = {xσ | x ∈ dom(σ)}. We
denote substitutions by σ, δ, ρ. The application of substitutions is often written

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 151

postfix, as in xσ, and is homomorphically extended to terms, atoms, literals,
clauses, and quantifier-free formulas. A substitution σ is ground if codom(σ) is
ground. Let Y denote some term, literal, clause, or clause set. A substitution σ
is a grounding for Y if Y σ is ground, and Y σ is a ground instance of Y in this
case. We denote by gnd(Y) the set of all ground instances of Y , and by gndB(Y)
the set of all ground instances over a given set of constants B. The most general
unifier mgu(Z1, Z2) of two terms/atoms/literals Z1 and Z2 is defined as usual,
and we assume that it does not introduce fresh variables and is idempotent.

We assume a standard many-sorted first-order logic model theory, and write
A � φ if an interpretation A satisfies a first-order formula φ. A formula ψ is a
logical consequence of φ, written φ � ψ, if A � ψ for all A such that A � φ. Sets
of clauses are semantically treated as conjunctions of clauses with all variables
quantified universally.

2.1 Bernays-Schönfinkel with Linear Real Arithmetic

The extension of BS with linear real arithmetic, BS(LRA), is the basis for the
formalisms studied in this paper. We consider a standard many-sorted first-
order logic with one first-order sort F and with the sort R for the real numbers.
Given a clause set N , the interpretations A of our sorts are fixed: RA = R and
FA = F. This means that FA is a Herbrand interpretation, i.e., F is the set of
first-order constants in N , or a single constant out of the signature if no such
constant occurs. Note that this is not a deviation from standard semantics in
our context as for the arithmetic part the canonical domain is considered and
the first-order sort has the finite model property over the occurring constants
(note that equality is not part of BS).

Constant symbols, arithmetic function symbols, variables, and predicates are
uniquely declared together with their respective sort. The unique sort of a con-
stant symbol, variable, predicate, or term is denoted by the function sort(Y)
and we assume all terms, atoms, and formulas to be well-sorted. We assume
pure input clause sets, which means the only constants of sort R are (rational)
numbers. This means the only constants that we do allow are rational num-
bers c ∈ Q and the constants defining our finite first-order sort F . Irrational
numbers are not allowed by the standard definition of the theory. The current
implementation comes with the caveat that only integer constants can be parsed.
Satisfiability of pure BS(LRA) clause sets is semi-decidable, e.g., using hierar-
chic superposition [6] or SCL(T) [11]. Impure BS(LRA) is no longer compact
and satisfiability becomes undecidable, but its restriction to ground clause sets
is decidable [22].

All arithmetic predicates and functions are interpreted in the usual way.
An interpretation of BS(LRA) coincides with ALRA on arithmetic predicates
and functions, and freely interprets free predicates. For pure clause sets this is
well-defined [6]. Logical satisfaction and entailment is defined as usual, and uses
similar notation as for BS.

Example 1. The clause y < 5 ∨ x′ �= x + 1 ∨ ¬S0(x, y) ∨ S1(x′, 0) is part of
a timed automaton with two clocks x and y modeled in BS(LRA). It represents

152 M. Bromberger et al.

a transition from state S0 to state S1 that can be traversed only if clock y is at
least 5 and that resets y to 0 and increases x by 1.

Arithmetic terms are constructed from a set X of variables, the set of integer
constants c ∈ Z, and binary function symbols + and − (written infix). Addi-
tionally, we allow multiplication · if one of the factors is an integer constant.
Multiplication only serves us as syntactic sugar to abbreviate other arithmetic
terms, e.g., x + x + x is abbreviated to 3 · x. Atoms in BS(LRA) are either
first-order atoms (e.g., P (13, x)) or (linear) arithmetic atoms (e.g., x < 42).
Arithmetic atoms are denoted by λ and may use the predicates ≤, <, �=,=, >,≥,
which are written infix and have the expected fixed interpretation. We use � as a
placeholder for any of these predicates. Predicates used in first-order atoms are
called free. First-order literals and related notation is defined as before. Arith-
metic literals coincide with arithmetic atoms, since the arithmetic predicates are
closed under negation, e.g., ¬(x ≥ 42) ≡ x < 42.

BS(LRA) clauses are defined as for BS but using BS(LRA) atoms. We often
write clauses in the form Λ ‖ C where C is a clause solely built of free first-order
literals and Λ is a multiset of LRA atoms called the constraint of the clause.
A clause of the form Λ ‖ C is therefore also called a constrained clause. The
semantics of Λ ‖ C is as follows:

Λ ‖ C iff
(∧

λ∈Λ

λ
) → C iff

(∨

λ∈Λ

¬λ
) ∨ C

For example, the clause x > 1∨y �= 5∨¬Q(x)∨R(x, y) is also written x ≤ 1, y =
5||¬Q(x) ∨ R(x, y). The negation ¬(Λ ‖ C) of a constrained clause Λ ‖ C where
C = A1 ∨ · · · ∨ An ∨ ¬B1 ∨ · · · ∨ ¬Bm is thus equivalent to (

∧
λ∈Λ λ) ∧ ¬A1 ∧

· · · ∧ ¬An ∧ B1 ∧ · · · ∧ Bm. Note that since the neutral element of conjunction is
�, an empty constraint is thus valid, i.e. equivalent to true.

An assignment for a constraint Λ is a substitution (denoted β) that maps
all variables in vars(Λ) to real numbers c ∈ R. An assignment is a solution
for a constraint Λ if all atoms λ ∈ (Λβ) evaluate to true. A constraint Λ is
satisfiable if there exists a solution for Λ. Otherwise it is unsatisfiable. Note that
assignments can be extended to C by also mapping variables of the first-order
sort accordingly.

A clause or clause set is abstracted if its first-order literals contain only vari-
ables or first-order constants. Every clause C is equivalent to an abstracted clause
that is obtained by replacing each non-variable arithmetic term t that occurs in
a first-order atom by a fresh variable x while adding an arithmetic atom x �= t
to C. We assume abstracted clauses for theory development, but we prefer non-
abstracted clauses in examples for readability, e.g., a unit clause P (3, 5) is consid-
ered in the development of the theory as the clause x = 3, y = 5 ‖ P (x, y). In the
implementation, we mostly prefer abstracted clauses except that we allow inte-
ger constants c ∈ Z to appear as arguments of first-order literals. In some cases,
this makes it easier to recognize whether two clauses can be matched or not. For
instance, we see by syntactic comparison that the two unit clauses P (3, 5) and
P (0, 1) have no substitution σ such that P (3, 5) = P (0, 1)σ. For the abstracted

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 153

versions on the other hand, x = 3, y = 5 ‖ P (x, y) and u = 0, v = 1 ‖ P (u, v) we
can find a matching substitution for the first-order part σ := {u �→ x, v �→ y}
and would have to check the constraints semantically to exclude the matching.

Hierarchic Resolution. One inference rule, foundational to most algorithms for
solving constrained first-order clauses, is hierarchic resolution [6]:

Λ1 ‖ L1 ∨ C1 Λ2 ‖ L2 ∨ C2 σ = mgu(L1, comp(L2))(
Λ1, Λ2 ‖ C1 ∨ C2

)
σ

The conclusion is called hierarchic resolvent (of the two clauses in the premise).
A refutation is the sequence of resolution steps that produces a clause Λ ‖
⊥ with ALRA � Λδ for some grounding δ. Hierarchic resolution is sound and
refutationally complete for the BS(LRA) clauses considered here, since every
set N of BS(LRA) clauses is sufficiently complete [6], because all constatnts
of the arithemtic sort are numbers. Hence hierarchic resolution is sound and
refutationally complete for N [6,7]. Hierarchic unit resolution is a special case
of hierarchic resolution, that only combines two clauses in case one of them is a
unit clause. Hierarchic unit resolution is sound and complete for HBS(LRA) [6,7],
but not even refutationally complete for BS(LRA).

Most algorithms for Bernays-Schnönfinkel, first-order logic, and beyond uti-
lize resolution. The SCL(T) calculus for HBS(LRA) uses hierarchic resolution
in order to learn from the conflicts it encounters during its search. The hierar-
chic superposition calculus on the other hand derives new clauses via hierarchic
resolution based on an ordering. The goal is to either derive the empty clause
or a saturation of the clause set, i.e., a state from which no new clauses can be
derived. Each of those algorithms must derive new clauses in order to progress,
but their subroutines also get progressively slower as more clauses are derived. In
order to increase efficiency, it is necessary to eliminate clauses that are obsolete.
One measure that determines whether a clause is useful or not is redundancy.

Redundancy. In order to define redundancy for constrained clauses, we need
an H-order, i.e., a well-founded, total, strict ordering ≺ on ground literals such
that literals in the constraints (in our case arithmetic literals) are always smaller
than first-order literals. Such an ordering can be lifted to constrained clauses and
sets thereof by its respective multiset extension. Hence, we overload any such
order ≺ for literals, constrained clauses, and sets of constrained clause if the
meaning is clear from the context. We define � as the reflexive closure of ≺ and
N�Λ‖C := {D | D ∈ N and D � Λ ‖ C}. An instance of an LPO [15] with
appropriate precedence can serve as an H-order.

Definition 2 (Clause Redundancy). A ground clause Λ ‖ C is redundant
with respect to a set N of ground clauses and an H-order ≺ if N�Λ ‖ C � Λ ‖ C.
A clause Λ ‖ C is redundant with respect to a clause set N and an H-order ≺
if for all Λ′ ‖ C ′ ∈ gnd(Λ ‖ C) the clause Λ′ ‖ C ′ is redundant with respect to
gnd(N).

154 M. Bromberger et al.

If a clause Λ ‖ C is redundant with respect to a clause set N , then it can be
removed from N without changing its semantics. Determining clause redundancy
is an undecidable problem [11,63]. However, there are special cases of redundant
clauses that can be easily checked, e.g., tautologies and subsumed clauses. Tech-
niques for tautology deletion and subsumption deletion are the most common
elimination techniques in modern first-order provers.

A tautology is a clause that evaluates to true independent of the predicate
interpretation or assignment. It is therefore redundant with respect to all orders
and clause sets; even the empty set.

Corollary 3 (Tautology for Constrained Clauses). A clause Λ ‖ C is a
tautology if the existential closure of ¬(Λ ‖ C) is unsatisfiable.

Since ¬(Λ ‖ C) is essentially ground (by existential closure and skolemiza-
tion), it can be solved with an appropriate SMT solver, i.e., an SMT solver that
supports unquantified uninterpreted functions coupled with linear real arith-
metic. In [2], it is recommended to check only the following conditions for tau-
tology deletion in hierarchic superposition:

Corollary 4 (Tautology Check). A clause Λ ‖ C is a tautology if the exis-
tential closure of Λ is unsatisfiable or if C contains two literals L1 and L2 with
L1 = comp(L2).

The advantage is that the check on the first-order side of the clause is still
purely syntactic and corresponds to the tautology check for pure first-order logic.
Nonetheless, there are tautologies that are not captured by Corollary 4, e.g.,
x = y ‖ P (x) ∨ ¬P (y). The SCL(T) calculus on the other hand requires no
tautology checks because it never learns tautologies as part of its conflict analysis
[1,11,21]. This property is also inherent to the propositional CDCL (Conflict
Driven Clause Learning) approach [8,34,41,55,63].

3 Subsumption for Constrained Clauses

A subsumed constrained clause is a clause that is redundant with respect to a
single clause in our clause set. Formally, subsumption is defined as follows.

Definition 5. (Subsumption for Constrained Clauses [2]). A constrained
clause Λ1 ‖ C1 subsumes another constrained clause Λ2 ‖ C2 if there exists a sub-
stitution σ such that C1σ ⊆ C2, vars(Λ1σ) ⊆ vars(Λ2), and the universal closure
of Λ2 → (Λ1σ) holds in LRA.

Eliminating redundant clauses is crucial for the efficient operation of an auto-
matic first-order theorem prover. Although subsumption is considered one of the
easier redundancy relationships that we can check in practice, it is still a hard
problem in general:

Lemma 6. (Complexity of Subsumption in the BS Fragment). Deciding
subsumption for a pair of BS clauses is NP-complete.

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 155

Proof. Containment in NP follows from the fact that the size of subsumption
matchers is limited by the subsumed clause and set inclusion of literals can
be decided in polynomial time. For the hardness part, consider the following
polynomial-time reduction from 3-SAT. Take a propositional clause set where
all clauses have length three. Now introduce a 6-place predicate R and encode
each propositional variable P by a first-order variable xP . Then a propositional
clause L1 ∨L2 ∨L3 can be encoded by an atom R(xP1 , p1, xP2 , p2, xP3 , p3) where
pi is 0 if Li is negative and 1 otherwise and Pi is the predicate of Li. This way
the clause set N can be represented by a single BS clause CN . Now construct a
clause D that contains all atoms representing the way a clause of length three
can become true by ground atoms over R and constants 0, 1. For example, it
contains atoms like R(0, 0, . . .) and R(1, 1, . . .) representing that the first literal
of a clause is true. Actually, for each such atom R(0, 0, . . .) the clause D contains
|CN | copies. Finally, CN subsumes D if and only if N is satisfiable. ��

In order to be efficient, modern theorem provers need to decide multiple
thousand subsumption checks per second. In the pure first-order case, this is
possible because of indexing and filtering techniques that quickly decide most
subsumption checks [24,25,27–30,33,39,40,45–49,52–54,56,59,61,62].

For BS(LRA) (and FOL(LRA)), there also exists research on how to perform
the subsumption check in general [2,36], but the literature contains no dedicated
indexing or filtering techniques for the constraint part of the subsumption check.
In this section and as the main contribution of this paper, we present the first
such filtering techniques for BS(LRA). But first, we explain how to solve the
subsumption check for constrained clauses in general.

First-Order Check. The first step of the subsumption check is exactly the
same as in first-order logic without arithmetic. We have to find a substitution
σ, also called a matcher, such that C1σ ⊆ C2. The only difference is that it is
not enough to compute one matcher σ, but we have to compute all matchers
for C1σ ⊆ C2 until we find one that satisfies the implication Λ2 → (Λ1σ). For
instance, there are two matchers for the clauses C1 := x + y ≥ 0 ‖ Q(x, y) and
C2 := x < 0, y ≥ 0 ‖ Q(x, x) ∨ Q(y, y). The matcher {x �→ y} satisfies the
implication Λ2 → (Λ1σ) and {y �→ x} does not. Our own algorithm for finding
matchers is in the style of Stillman except that we continue after we find the
first matcher [27,58].

Implication Check. The universal closure of the implication Λ2 → (Λ1σ) can
be solved by any SMT solver for the respective theory after we negate it. Note
that the resulting formula

∃x1, . . . , xn. Λ2 ∧ ¬(Λ1σ) where {x1, . . . , xn} = vars(Λ2) (1)

is already in clause normal form and that the formula can be treated as ground
since existential variables can be handled as constants. Intuitively, the universal
closure Λ2 → (Λ1σ) asserts that the set of solutions satisfying Λ2 is a subset of

156 M. Bromberger et al.

Fig. 1. Solutions of the constraints Λ1σ, Λ2, and Λ3 depicted as polytopes

the set of solutions satisfying Λ1σ. This means a solution to its negation (1) is a
solution for Λ2, but not for Λ1σ, thus a counterexample of the subset relation.

Example 7. Let us now look at an example to illustrate the role that formula (1)
plays in deciding subsumption. In our example, we have three clauses: Λ1 ‖ C1,
Λ2 ‖ C2, and Λ3 ‖ C2, where C1 := ¬P (x, y) ∨ Q(u, z), C2 := ¬P (x, y) ∨ Q(2, x),
Λ1 := y ≥ 0 , y ≤ u , y ≤ x+z , y ≥ x+z−2·u, Λ2 := x ≥ 1 , y ≤ 1 , y ≥ x−1,
and Λ3 := x ≥ 2 , y ≤ 1 , y ≥ x − 2. Our goal is to test whether Λ1 ‖ C1

subsumes the other two clauses. As our first step, we try to find a substitution
σ such that C1σ ⊆ C2. The most general substitution fulfilling this condition is
σ := {z �→ x, u �→ 2}. Next, we check whether Λ1σ is implied by Λ2 and Λ3.
Normally, we would do so by solving the formula (1) with an SMT solver, but to
help our intuitive understanding, we instead look at their solution sets depicted
in Fig. 1. Note that Λ1σ simplifies to Λ1σ := y ≥ 0 , y ≤ 2 , y ≤ 2·x , y ≥ 2·x−4.
Here we see that the solution set for Λ2 is a subset of Λ1σ. Hence, Λ2 implies
Λ1σ, which means that Λ2 ‖ C2 is subsumed by Λ1 ‖ C1. The solution set for Λ3

is not a subset of Λ1σ. For instance, the assignment β2 := {x �→ 3, y �→ 1} is
a counterexample and therefore a solution to the respective instance of formula
(1). Hence, Λ1 ‖ C1 does not subsume Λ3 ‖ C2.

Excess Variables. Note that in general it is not sufficient to find a sub-
stitution σ that matches the first-order parts to also match the theory con-
straints: C1σ ⊆ C2 does not generally imply vars(Λ1σ) ⊆ vars(Λ2). In par-
ticular, if Λ1 contains variables that do not appear in the first-order part
C1, then these must be projected to Λ2. We arrive at a variant of (1), that
is ∃x1, . . . , xn∀y1, . . . , ym. Λ2 ∧ ¬(Λ1σ) where {x1, . . . , xn} = vars(Λ2) and
{y1, . . . , ym} = vars(Λ1) \ vars(C1). Our solution to this problem is to normal-
ize all clauses Λ ‖ C by eliminating all excess variables Y := vars(Λ) \ vars(C)
such that vars(Λ) ⊆ vars(C) is guaranteed. For linear real arithmetic this is
possible with quantifier elimintation techniques, e.g., Fourier-Motzkin elimina-
tion (FME). Although these techniques typically cause the size of Λ to increase
exponentially, they often behave well in practice. In fact, we get rid of almost
all excess variables in our benchmark examples with simplification techniques
based on Gaussian elimination with execution time linear in the number of LRA
atoms. Given the precondition Y = ∅ achieved by such elimination techniques,

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 157

we can compute σ as matcher for the first-order parts and then directly use it
for testing whether the universal closure of Λ2 → (Λ1σ) holds. An alternative
solution to the issue of excess variables has been proposed: In [2], the substitu-
tion σ is decomposed as σ = δτ , where δ is the first-order matcher and τ is a
theory matcher, i.e. dom(τ) ⊆ Y and vars(codom(τ)) ⊆ vars(Λ2). Then, exploit-
ing Farkas’ lemma, the computation of τ is reduced to testing the feasibility of
a linear program (restricted to matchers that are affine transformations).

The reduction to solving a linear program offers polynomial worst-case com-
plexity but in practice typically behaves worse than solving the variant with
quantifier alternations using an SMT solver such as Z3 [36,42].

Filtering First-Order Literals. Even though deciding implication of theory
constraints is in practice more expensive than constructing a matcher and decid-
ing inclusion of first-order literals, we still incorporate some lightweight filters
for our evaluation. Inspired by Schulz [54] we choose three features, so that every
feature f maps clauses to N0, and f(C1) � f(C2) is necessary for C1σ ⊆ C2.

The features are: |C+|, the number of positive first-order literals in C, |C−|,
the number of negative first-order literals in C, and �C�, the number of occur-
rences of constants in C.

Sample Point Heuristic. The majority of subsumption tests fail because we
cannot find a fitting substitution for their first-order parts. In our experiments,
between 66.5% and 99.9% of subsumption tests failed this way. This means our
tool only has to check in less than 33.5% of the cases whether one theory con-
straint implies the other. Despite this, our tool spends more time on implication
checks than on the first-order part of the subsumption tests without filtering on
the constraint implication tests. The reason is that constraint implication tests
are typically much more expensive than the first-order part of a subsumption
test. For this reason, we developed the sample point heuristic that is much faster
to execute than a full constraint implication test, but still filters out the majority
of implications that do not hold (in our experiments between 93.8% and 100%).

The idea behind the sample point heuristic is straightforward. We store for
each clause Λ ‖ C a sample solution β for its theory constraint Λ. Before we
execute a full constraint implication test, we simply evaluate whether the sample
solution β for Λ2 is also a solution for Λ1σ. If this is not the case, then β is a
solution for (1) and a counterexample for the implication. If β is a solution for
Λ1σ, then the heuristic returns unknown and we have to execute a full constraint
implication test, i.e., solve the SMT problem (1).

Often it is possible to get our sample solutions for free. Theorem provers
based on hierarchic superposition typically check for every new clause Λ ‖ C
whether Λ is satisfiable in order to eliminate tautologies. This means we can
already use this tautology check to compute and store a sample solution for
every new clause without extra cost. We only need to pick a solver for the check
that returns a solution as a certificate of satisfiability. Although the SCL(T)
calculus never learns any tautologies, it is also possible to get a sample solution
for free as part of its conflict analysis [11].

158 M. Bromberger et al.

Example 8. We revisit Example 7 to illustrate the sample point heuristic. During
the tautology check for Λ2 ‖ C2 and Λ3 ‖ C2, we determined that β1 := {x �→
2, y �→ 1} is a sample solution for Λ2 and β2 := {x �→ 3, y �→ 1} a sample
solution for Λ3. Since Λ2 implies Λ1σ, all sample solutions for Λ2 automatically
satisfy Λ1σ. This is the reason why the sample point heuristic never filters out an
implication that actually holds, i.e., it returns unknown when we test whether Λ2

implies Λ1σ. The assignment β2 on the other hand does not satisfy Λ1σ. Hence,
the sample point heuristic correctly claims that Λ3 does not imply Λ1σ. Note
that we could also have chosen β1 as the sample point for Λ3. In this case, the
sample point heuristic would also return unknown for the implication Λ3 → Λ1σ
although the implication does not hold.

Trivial Cases. Subsumption tests become much easier if the constraint Λi of
one of the participating clauses is empty. We use two heuristic filters to exploit
this fact. We highlight them here because they already exclude some subsump-
tion tests before we reach the sample point heuristic in our implementation.

The empty conclusion heuristic exploits that Λ1 is valid if Λ1 is empty. In this
case, all implications Λ2 → (Λ1σ) hold because Λ1σ evaluates to true under any
assignment. So by checking whether Λ1 = ∅, we can quickly determine whether
Λ2 → (Λ1σ) holds for some pairs of clauses. Note that in contrast to the sample
point heuristic, this heuristic is used to find valid implications.

The empty premise test exploits that Λ2 is valid if Λ2 is empty. In this case,
an implication Λ2 → (Λ1σ) may only hold if Λ1σ simplifies to the empty set as
well. This is the case because any inequality in the canonical form

∑n
i=1 aixi�c

either simplifies to true (because ai = 0 for all i = 1, . . . , n and 0�c holds) and
can be removed from Λ1σ, or the inequality eliminates at least one assignment
as a solution for Λ1σ [51]. So if Λ2 = ∅, we check whether Λ1σ simplifies to the
empty set instead of solving the SMT problem (1).

Pipeline. We call our approach a pipeline since it combines multiple procedures,
which we call stages, that vary in complexity and are independent in principle,
for the overall aim of efficiently testing subsumption. Pairs of clauses that “make
it through” all stages, are those for which the subsumption relation holds. The
pipeline is designed with two goals in mind: (1) To reject as many pairs of
clauses as early as possible, and (2) to move stages further towards the end of
the pipeline the more expensive they are.

The pipeline consists of six stages, all of which are mentioned above. We
divide the pipeline into two phases, the first-order phase (FO-phase) consisting
of two stages, and the constraint phase (C-phase), consisting of four stages.
First-order filtering rejects all pairs of clauses for which f(C1) > f(C2) holds.
Then, matching constructs all matchers σ such that C1σ ⊆ C2. Every matcher
is individually tested in the constraint phase. Technically, this means that the
input of all following stages is not just a pair of clauses, but a triple of two clauses
and a matcher. The constraint phase then proceeds with the empty conclusion
heuristic and the empty premise test to accept (resp. reject) all trivial cases of

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 159

Algorithm 1: Saturation prover used for evaluation
Input : A set N of clauses.
Output : ⊥ or “unknown”.

1 U := {C ∈ N | |C| = 1}
2 while U �= ∅ do
3 M := ∅
4 foreach C ∈ U do M := M ∪ resolvents(C, N)
5 if ⊥ ∈ M then return ⊥
6 reduce M using N (forward subsumption)
7 if M = ∅ then return “unknown”
8 reduce N using M (backward subsumption)
9 U := {C ∈ M | |C| = 1}

10 N := N ∪ M

11 end
12 return “unknown”

the constraint implication test. The next stage is the sample point heuristic.
If the sample solution β2 for Λ2 is no solution for Λ1 (i.e. � Λ1σβ2), then the
matcher σ is rejected. Otherwise (i.e. � Λ1σβ2), the implication test Λ2 → (Λ1σ)
is performed by solving the SMT problem (1) to produce the overall result of
the pipeline and finally determine whether subsumption holds.

4 Experimentation

In order to evaluate our new approach on three benchmark instances, derived
from BS(LRA) applications, all presented techniques and their combination in
form of a pipeline were implemented in the theorem prover SPASS-SPL, a pro-
totype for BS(LRA) reasoning.

Note that SPASS-SPL contains more than one approach for BS(LRA) rea-
soning, e.g., the Datalog hammer for HBS(LRA) reasoning [10]. These vari-
ous modes of operation operate independently, and the desired mode is cho-
sen via command-line option. The reasoning approach discussed here is the
current default option. On the first-order side, SPASS-SPL consists of a sim-
ple saturation prover based on hierarchic unit resolution, see Algorithm 1. It
resolves unit clauses with other clauses until either the empty clause is derived
or no new clauses can be derived. Note that this procedure is only complete
for Horn clauses. For arithmetic reasoning, SPASS-SPL relies on SPASS-SATT,
our sound and complete CDCL(LA) solver for quantifier-free linear real and
linear mixed/integer arithmetic [12]. SPASS-SATT implements a version of the
dual simplex algorithm fine-tuned towards SMT solving [16]. In order to ensure
soundness, SPASS-SATT represents all numbers with the help of the arbitrary-
precision arithmetic library FLINT [31]. This means all calculations, including
the implication test and the sample point heuristic, are always exact and thus
free of numerical errors. The most relevant part of SPASS-SPL with regards to

160 M. Bromberger et al.

Table 1. Overview of how many clause pairs advance in the pipeline (top to bottom)

lc bakery, tad All

All 1 244 819k 196 437k 1 441 256k

F
O

Filtering 61.21% 85.03% 64.45%

f(C1) ≤ f(C2) 761 905k 61.2061% 167 025k 85.0274% 928 931k 64.4540%

Matching 0.02% 39.83% 7.18%

C1σ ⊆ C2 131k 0.0106% 66 531k 33.8694% 66 664k 4.6254%

C

Empty (pre./con.) 44.73% 100.00% 99.89%

� Λ1σ, � Λ2 59k 0.0047% 66 531k 33.8694% 66 591k 4.6203%

Sample point 59.28% 0.12% 0.18%

� Λ1σβ2 35k 0.0028% 82k 0.0416% 117k 0.0081%

Implication 95.51% 100.00% 98.66%

Subsumes 33k 0.0027% 82k 0.0416% 115k 0.0080%

Table 2. An overview of the accuracy of non-perfect pipeline stages

Test Specificity/Sensitivity Pos./Neg. Predictive Value

Instances lc bakery, tad All lc bakery, tad All

FO Filtering 0.38797 0.14979 0.35552 0.00013 0.00049 0.00020

FO Matching 0.99996 0.60196 0.92841 0.78456 0.00123 0.00275

Empty Conclusion 0.70973 0.00000 0.00103 0.54474 0.00123 0.00173

Sample Point 0.93864 1.00000 0.99998 0.95510 1.00000 0.98653

this paper is that it performs tautology and subsumption deletion to eliminate
redundant clauses. As a preprocessing step, SPASS-SPL eliminates all tautolo-
gies from the set of input clauses. Similarly, the function resolvents(C,N) (see
Line 4 of Algorithm 1) filters out all newly derived clauses that are tautologies.
Note that we also use these tautology checks to eliminate all excess variables
and to store sample solutions for all remaining clauses. After each iteration of
the algorithm, we also check for subsumed clauses. We first eliminate newly gen-
erated clauses by forward subsumption (see Line 6 of Algorithm 1), then use the
remaining clauses for backward subsumption (see Line 8 of Algorithm 1).

Benchmarks. Our benchmarking instances come out of three different appli-
cations. (1.) A supervisor for an automobile lane change assistant, formulated
in the Horn fragment of BS(LRA) [9,10] (five instances, referred to as lc in
aggregate). (2.) The formalization of reachability for non-deterministic timed
automata, formulated in the non-Horn fragment of BS(LRA) [20] (one instance,
referred to as tad). (3.) Formalizations of variants of mutual exclusion proto-
cols, such as the bakery protocol [38], also formulated in the non-Horn fragment
of BS(LRA) [19] (one instance, referred to as bakery). The machine used for
benchmarking features an Intel Xeon W-1290P CPU (10 cores, 20 threads, up
to 5.2 GHz) and 64 GiB DDR4-2933 ECC main memory. Runtime was limited
to ten minutes, and memory usage was not limited.

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 161

Table 3. Evaluation of the sample point heuristic

Instances lc bakery, tad All

Bottleneck (C time ÷ FO time)

without sample point 127 2757 14867

with sample point 78 32 89

Avg. pipeline runtime in μs

without sample point 0.0315 89.9401 0.5189

with sample point 0.0311 1.4150 0.2197

Speedup (C time with ÷ without) 1.63 1̇37.88 124.16

Benefit-to-cost (C time taken ÷ saved) 6.74 1̇81.72 163.72

Evaluation. In Table 1 we give an overview of how many pairs of clauses advance
how far in the pipeline (in thousands). Rows with grey background refer to a
stage of the pipeline and show which portion of pairs of clauses were kept, relative
to the previous stage. Rows with white background refer to (virtual) sets of
clauses, their absolute size, and their size relative to the number of attempted
tests, as well as the condition(s) established. The three groups of columns refer
to groups of benchmark instances. Results vary greatly between lc and the
aggregate of bakery and tad. In lc the relative number of subsumed clauses is
significantly smaller (0.0027% compared to 0.0416%). FO Matching eliminates a
large number of pairs in lc, because the number of predicate symbols, and their
arity (lc1, . . . , lc4: 36 predicates, arities up to 5; lc5: 53 predicates, arities
up to 12) is greater than in bakery (11 predicates, all of arity 2) and tad (4
predicates, all of arity 2).

Binary Classifiers. To evaluate the performance of each stage of the proposed
test pipeline, we view each stage individually as a binary classifier on pairs
of constrained clauses. The two classes we consider are “subsumes” (positive
outcome) and “does not subsume” (negative outcome). Each stage of the pipeline
computes a prediction on the actual result of the overall pipeline. We are thus
interested in minimizing two kinds of errors: (1) When one stage of the pipeline
predicts that the subsumption test will succeed (the prediciton is positive) but
it fails (the actual result is negative), called false positive (FP). (2) When one
stage of the pipeline predicts that the subsumption test will fail (the prediction
is negative) but it succeeds (the actual result is positive), called false negative
(FN). Dually, a correct prediction is called true positive (TP) and true negative
(TN). For each stage, at least one kind of error is excluded by design: First-
order filtering and the sample point heuristic never produce false negatives. The
empty conclusion heuristic never produces false positives. The empty premise
test is perfect, i.e. it neither produces false positives nor false negatives, with the
caveat of not always being applicable. The last stage (implication test) decides
the overall result of the pipeline, and thus is also perfect. For evaluation of binary
classifiers, we use four different measures (two symmetric pairs):

SPC = TN ÷ (TN + FP) PPV = TP ÷ (TP + FP) (2)

162 M. Bromberger et al.

The first pair, specificity (SPC) and positive predictive value, see (2), is relevant
only in presence of false postives (the measures approach 1 as FP approaches 0).

SEN = TP ÷ (TP + FN) NPV = TN ÷ (TN + FN) (3)

The second pair, sensitivity (SEN) and negative predictive value (NPV), see (3),
is relevant only in presence of false negatives (the measures approach 1 as FN
approaches 0). Specificity (resp. sensitivity) might be considered the “success
rate” in our setup. They answer the question: “Given the actual result of the
pipeline is ‘subsumed’ (resp. ‘not subsumed’), in how many cases does this stage
predict correctly?” A specificity (resp. sensitivity) of 0.99 means that the clas-
sifier produces a false positive (resp. negative), i.e. a wrong prediction, in one
out of one hundred cases. Both measures are independent of the prevalence of
particular actual results, i.e. the measures are not biased by instances that fea-
ture many (or few) subsumed clauses. On the other hand, positive and negative
predictive value are biased by prevalence. They answer the following question:
“Given this stage of the pipeline predicts ‘subsumed’ (resp. ‘not subsumed’), how
likely is it that the actual result indeed is ‘subsumed’ (resp. ‘not subsumed’)?”

In Table 2 we present for all non-perfect stages of the pipeline specificity
(for those that produce false positives) and sensitivity (for those that produce
false negatives) as well as the (positive/negative) predictive value. Note that the
sample point heuristic has an exceptionally high specificity, still above 93% in
the benchmarks where it performed worst. For the benchmarks bakery and tad
it even performs perfectly. Combined, this gives a specificity of above 99.99%.
Considering FO Filtering, we expect limited performance, since the structure
of terms in BS is flat compared to the rich structure of terms as trees in full
first-order logic. This is evidenced by a comparatively low specificity of 35%.
However, this classifier is very easy to compute, so pays for itself. FO Matching
is a much better classifier, at an aggregate sensitivity of 93%. Even though this
classifier is NP-complete, this is not problematic in practice.

Runtime. In Table 3 we focus on the runtime improvement achieved by the sample
point heuristic. In the first two lines (Bottleneck), we highlight how much slower
testing implication of constraints (the C-phase) is compared to treating the first-
order part (the FO-phase). This is equivalent to the time taken for the C-phase
per pair of clauses (that reach at least the first C-phase) divided by the time taken
for the FO-phase per pair of clauses. We see that without the sample point heuris-
tic, we can expect the constraint implication test to take hundreds to thousands
of times longer than the FO-phase. Adding the sample point heuristic decreases
this ratio to below one hundred. In the fourth line (avg. pipeline runtime) we do
not give a ratio, but the average time it takes to compute the whole pipeline. We
achieve millions of subsumption checks per second. In the fifth line (Speedup), we
take the time that all C-phases combined take per pair of clauses that reach at
least the first C-phase, and take the ratio to the same time without applying the
sample point heuristic. In the sixth line (Benefit-to-cost), we consider the time
taken to compute the sample point vs. the time it saves. The benefit is about two
orders of magnitude greater than the cost.

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 163

5 Conclusion

Our next step will be the integration of the subsumption test in the backward
subsumption procedure of an SCL based reasoning procedure for BS(LRA) [11]
which is currently under development.

There are various ways to improve the sample point heuristic. One improve-
ment would be to store and check multiple sample points per clause. For instance,
whenever the sample point heuristic fails and the implication test for Λ2 → (Λ1σ)
also fails, store the solution to (1) as an additional sample point for Λ2. The new
sample point will filter out any future implication tests with Λ1σ or similar
constraints. However, testing too many sample points might lead to costs out-
weighing benefits. A potential solution to this problem would be score-based
garbage collection, as done in SAT solvers [57]. Another way to store and check
multiple sample points per clause is to store a compact description of a set of
points that is easy to check against. For instance, we can store the center point
and edge length of the largest orthogonal hypercube contained in the solutions
of a constraint, which is equivalent to infinitely many sample points. Computing
the largest orthogonal hypercube for an LRA constraint is not much harder than
finding a sample solution [14]. Checking whether a cube is contained in an LRA
constraint works almost the same as evaluating a sample point [14].

Although we developed our sample point technique for the BS(LRA) frag-
ment it is obvious that it will also work for the overall FOL(LRA) clause frag-
ment, because this extension does not affect the LRA constraint part of clauses.
From an automated reasoning perspective, satisfiability of the FOL(LRA) and
BS(LRA) fragments (clause sets) is undecidable in both cases. Actually, satisfi-
ability of a BS(LRA) clause set is already undecidable if the first-order part is
restricted to a single monadic predicate [32]. The first-order part of BS(LRA) is
decidable and therefore enables effective guidance for an overall reasoning pro-
cedure [11]. Form an application perspective, the BS(LRA) fragment already
encompasses a number of used (sub)languages. For example, timed automata [3]
and a number of extensions thereof are contained in the BS(LRA) fragment [60].

We also believe that the sample point heuristic will speed up the constraint
implication test for FOL(LIA), first-order clauses over linear integer arithmetic,
FOL(NRA), i.e., first-order clauses over non-linear real arithmetic, and other
combinations of FOL with arithmetic theories. However, the non-linear case will
require a more sophisticated setup due to the nature of test points in this case,
e.g., a solution may contain root expressions.

Acknowledgments. This work was partly funded by DFG grant 389792660 as part
of TRR 248, see https://perspicuous-computing.science. We thank the anonymous
reviewers for their thorough reading and detailed constructive comments. Martin
Desharnais suggested some textual improvements.

References

1. Alagi, G., Weidenbach, C.: NRCL - a model building approach to the Bernays-
Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI),

https://perspicuous-computing.science

164 M. Bromberger et al.

vol. 9322, pp. 69–84. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24246-0 5

2. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic
SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol.
5749, pp. 84–99. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
04222-5 5

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

4. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Log. Comput. 4(3), 217–247 (1994). https://doi.org/10.
1093/logcom/4.3.217

5. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 19–
99. Elsevier and MIT Press, Cambridge (2001). https://doi.org/10.1016/b978-
044450813-3/50004-7

6. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212
(1994). https://doi.org/10.1007/BF01190829

7. Baumgartner, P., Waldmann, U.: Hierarchic superposition revisited. In: Lutz, C.,
Sattler, U., Tinelli, C., Turhan, A.-Y., Wolter, F. (eds.) Description Logic, Theory
Combination, and All That. LNCS, vol. 11560, pp. 15–56. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-22102-7 2

8. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

9. Bromberger, M., et al.: A sorted datalog hammer for supervisor verification con-
ditions modulo simple linear arithmetic. CoRR abs/2201.09769 (2022). https://
arxiv.org/abs/2201.09769

10. Bromberger, M., Dragoste, I., Faqeh, R., Fetzer, C., Krötzsch, M., Weidenbach,
C.: A datalog hammer for supervisor verification conditions modulo simple linear
arithmetic. In: Konev, B., Reger, G. (eds.) FroCoS 2021. LNCS (LNAI), vol. 12941,
pp. 3–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86205-3 1

11. Bromberger, M., Fiori, A., Weidenbach, C.: Deciding the Bernays-Schoenfinkel
Fragment over bounded difference constraints by simple clause learning over the-
ories. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol.
12597, pp. 511–533. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67067-2 23

12. Bromberger, M., Fleury, M., Schwarz, S., Weidenbach, C.: SPASS-SATT. In:
Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 111–122. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29436-6 7

13. Bromberger, M., Leutgeb, L., Weidenbach, C.: An Efficient subsumption test
pipeline for BS(LRA) clauses (2022). https://doi.org/10.5281/zenodo.6544456.
Supplementary Material

14. Bromberger, M., Weidenbach, C.: Fast cube tests for LIA constraint solving. In:
Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 116–132.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1 9

15. Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput. Sci. 17,
279–301 (1982). https://doi.org/10.1016/0304-3975(82)90026-3

16. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 11

https://doi.org/10.1007/978-3-319-24246-0_5
https://doi.org/10.1007/978-3-319-24246-0_5
https://doi.org/10.1007/978-3-642-04222-5_5
https://doi.org/10.1007/978-3-642-04222-5_5
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1007/BF01190829
https://doi.org/10.1007/978-3-030-22102-7_2
https://arxiv.org/abs/2201.09769
https://arxiv.org/abs/2201.09769
https://doi.org/10.1007/978-3-030-86205-3_1
https://doi.org/10.1007/978-3-030-67067-2_23
https://doi.org/10.1007/978-3-030-67067-2_23
https://doi.org/10.1007/978-3-030-29436-6_7
https://doi.org/10.5281/zenodo.6544456
https://doi.org/10.1007/978-3-319-40229-1_9
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1007/11817963_11

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 165

17. Eggers, A., Kruglov, E., Kupferschmid, S., Scheibler, K., Teige, T., Weiden-
bach, C.: Superposition Modulo Non-linear Arithmetic. In: Tinelli, C., Sofronie-
Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 119–134.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24364-6 9

18. Faqeh, R., Fetzer, C., Hermanns, H., Hoffmann, J., Klauck, M., Köhl, M.A., Stein-
metz, M., Weidenbach, C.: towards dynamic dependable systems through evidence-
based continuous certification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020.
LNCS, vol. 12477, pp. 416–439. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-61470-6 25

19. Fietzke, A.: Labelled superposition. Ph.D. thesis, Universität des Saarlandes
(2014). https://doi.org/10.22028/D291-26569

20. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed
automata. Math. Comput. Sci. 6(4), 409–425 (2012). https://doi.org/10.1007/
s11786-012-0134-5

21. Fiori, A., Weidenbach, C.: SCL clause learning from simple models. In: Fontaine, P.
(ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 233–249. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29436-6 14

22. Fiori, A., Weidenbach, C.: SCL with theory constraints. CoRR abs/2003.04627
(2020). https://arxiv.org/abs/2003.04627

23. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure. J.
Satisf. Boolean Model. Comput. 1(3–4), 209–236 (2007). https://doi.org/10.3233/
sat190012

24. Ganzinger, H., Nieuwenhuis, R., Nivela, P.: Fast term indexing with coded context
trees. J. Autom. Reason. 32(2), 103–120 (2004). https://doi.org/10.1023/B:JARS.
0000029963.64213.ac

25. Gleiss, B., Kovács, L., Rath, J.: Subsumption demodulation in first-order theo-
rem proving. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12166, pp. 297–315. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51074-9 17

26. Gottlob, G.: Subsumption and implication. Inf. Process. Lett. 24(2), 109–111
(1987). https://doi.org/10.1016/0020-0190(87)90103-7

27. Gottlob, G., Leitsch, A.: On the efficiency of subsumption algorithms. J. ACM
32(2), 280–295 (1985). https://doi.org/10.1145/3149.214118

28. Graf, P.: Extended path-indexing. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814,
pp. 514–528. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58156-
1 37

29. Graf, P.: Substitution tree indexing. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914,
pp. 117–131. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59200-
8 52

30. Graf, P. (ed.): Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-61040-5

31. Hart, W.B.: Fast library for number theory: an introduction. In: Fukuda, K.,
Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp.
88–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6 18

32. Horbach, M., Voigt, M., Weidenbach, C.: The universal fragment of pres-
burger arithmetic with unary uninterpreted predicates is undecidable. CoRR
abs/1703.01212 (2017). http://arxiv.org/abs/1703.01212

33. Purdom, P.W., Brown, C.A.: Fast many-to-one matching algorithms. In: Jouan-
naud, J.-P. (ed.) RTA 1985. LNCS, vol. 202, pp. 407–416. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-15976-2 21

https://doi.org/10.1007/978-3-642-24364-6_9
https://doi.org/10.1007/978-3-030-61470-6_25
https://doi.org/10.1007/978-3-030-61470-6_25
https://doi.org/10.22028/D291-26569
https://doi.org/10.1007/s11786-012-0134-5
https://doi.org/10.1007/s11786-012-0134-5
https://doi.org/10.1007/978-3-030-29436-6_14
https://arxiv.org/abs/2003.04627
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.1023/B:JARS.0000029963.64213.ac
https://doi.org/10.1023/B:JARS.0000029963.64213.ac
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1016/0020-0190(87)90103-7
https://doi.org/10.1145/3149.214118
https://doi.org/10.1007/3-540-58156-1_37
https://doi.org/10.1007/3-540-58156-1_37
https://doi.org/10.1007/3-540-59200-8_52
https://doi.org/10.1007/3-540-59200-8_52
https://doi.org/10.1007/3-540-61040-5
https://doi.org/10.1007/978-3-642-15582-6_18
http://arxiv.org/abs/1703.01212
https://doi.org/10.1007/3-540-15976-2_21

166 M. Bromberger et al.

34. Bayardo, R.J., Schrag, R.: Using CSP look-back techniques to solve exceptionally
hard SAT instances. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 46–60.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61551-2 65

35. Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Cal-
culus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp.
223–237. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74915-
8 19

36. Kruglov, E.: Superposition modulo theory. Ph.D. thesis, Universität des Saarlandes
(2013). https://doi.org/10.22028/D291-26547

37. Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment
over ground theories. Math. Comput. Sci. 6(4), 427–456 (2012). https://doi.org/
10.1007/s11786-012-0135-4

38. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974). https://doi.org/10.1145/361082.361093

39. McCune, W.: Otter 2.0. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp.
663–664. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52885-7 131

40. McCune, W.: Experiments with discrimination-tree indexing and path indexing for
term retrieval. J. Autom. Reason. 9(2), 147–167 (1992). https://doi.org/10.1007/
BF00245458

41. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, 18–22 June 2001, pp. 530–535. ACM
(2001). https://doi.org/10.1145/378239.379017

42. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

43. Nieuwenhuis, R., Hillenbrand, T., Riazanov, A., Voronkov, A.: On the evaluation
of indexing techniques for theorem proving. In: Goré, R., Leitsch, A., Nipkow, T.
(eds.) IJCAR 2001. LNCS, vol. 2083, pp. 257–271. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45744-5 19

44. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robin-
son, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes),
pp. 371–443. Elsevier and MIT Press, Cambridge (2001). https://doi.org/10.1016/
b978-044450813-3/50009-6

45. Ohlbach, H.J.: Abstraction tree indexing for terms. In: 9th European Conference
on Artificial Intelligence, ECAI 1990, Stockholm, Sweden, pp. 479–484 (1990)

46. Overbeek, R.A., Lusk, E.L.: Data structures and control architecture for imple-
mentation of theorem-proving programs. In: Bibel, W., Kowalski, R. (eds.) CADE
1980. LNCS, vol. 87, pp. 232–249. Springer, Heidelberg (1980). https://doi.org/10.
1007/3-540-10009-1 19

47. Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 1853–
1964. Elsevier and MIT Press, Cambridge (2001). https://doi.org/10.1016/b978-
044450813-3/50028-x

48. Riazanov, A., Voronkov, A.: Partially adaptive code trees. In: Ojeda-Aciego, M., de
Guzmán, I.P., Brewka, G., Moniz Pereira, L. (eds.) JELIA 2000. LNCS (LNAI),
vol. 1919, pp. 209–223. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-40006-0 15

49. Riazanov, A., Voronkov, A.: Efficient instance retrieval with standard and rela-
tional path indexing. Inf. Comput. 199(1–2), 228–252 (2005). https://doi.org/10.
1016/j.ic.2004.10.012

https://doi.org/10.1007/3-540-61551-2_65
https://doi.org/10.1007/978-3-540-74915-8_19
https://doi.org/10.1007/978-3-540-74915-8_19
https://doi.org/10.22028/D291-26547
https://doi.org/10.1007/s11786-012-0135-4
https://doi.org/10.1007/s11786-012-0135-4
https://doi.org/10.1145/361082.361093
https://doi.org/10.1007/3-540-52885-7_131
https://doi.org/10.1007/BF00245458
https://doi.org/10.1007/BF00245458
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-45744-5_19
https://doi.org/10.1016/b978-044450813-3/50009-6
https://doi.org/10.1016/b978-044450813-3/50009-6
https://doi.org/10.1007/3-540-10009-1_19
https://doi.org/10.1007/3-540-10009-1_19
https://doi.org/10.1016/b978-044450813-3/50028-x
https://doi.org/10.1016/b978-044450813-3/50028-x
https://doi.org/10.1007/3-540-40006-0_15
https://doi.org/10.1007/3-540-40006-0_15
https://doi.org/10.1016/j.ic.2004.10.012
https://doi.org/10.1016/j.ic.2004.10.012

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 167

50. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM, 12(1), 23–41 (1965). https://doi.org/10.1145/321250.321253, http://doi.
acm.org/10.1145/321250.321253

51. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience series
in discrete mathematics and optimization, Wiley, Hoboken (1999)

52. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing. In:
Proceedings of the IJCAR-2004 Workshop on Empirically Successful First-Order
Theorem Proving. Elsevier Science (2004)

53. Schulz, S.: Fingerprint Indexing for Paramodulation and Rewriting. In: Gramlich,
B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 477–
483. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 37

54. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing.
In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 45–67. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36675-8 3

55. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA,
USA, 10–14 November 1996, pp. 220–227. IEEE Computer Society/ACM (1996).
https://doi.org/10.1109/ICCAD.1996.569607

56. Socher, R.: A subsumption algorithm based on characteristic matrices. In: Lusk, E.,
Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 573–581. Springer, Heidelberg
(1988). https://doi.org/10.1007/BFb0012858

57. Soos, M., Kulkarni, R., Meel, K.S.: CrystalBall: gazing in the black box of SAT
solving. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 371–387.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 26

58. Stillman, R.B.: The concept of weak substitution in theorem-proving. J. ACM
20(4), 648–667 (1973). https://doi.org/10.1145/321784.321792

59. Tammet, T.: Towards efficient subsumption. In: Kirchner, C., Kirchner, H. (eds.)
CADE 1998. LNCS, vol. 1421, pp. 427–441. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054276

60. Voigt, M.: Decidable ∃∗∀∗ first-order fragments of linear rational arithmetic with
uninterpreted predicates. J. Autom. Reason. 65(3), 357–423 (2020). https://doi.
org/10.1007/s10817-020-09567-8

61. Voronkov, A.: The anatomy of vampire implementing bottom-up procedures with
code trees. J. Autom. Reason. 15(2), 237–265 (1995). https://doi.org/10.1007/
BF00881918

62. Voronkov, A.: Algorithms, datastructures, and other issues in efficient automated
deduction. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS,
vol. 2083, pp. 13–28. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45744-5 3

63. Weidenbach, C.: Automated reasoning building blocks. In: Meyer, R., Platzer,
A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 172–188.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6 12

https://doi.org/10.1145/321250.321253
http://doi.acm.org/10.1145/321250.321253
http://doi.acm.org/10.1145/321250.321253
https://doi.org/10.1007/978-3-642-31365-3_37
https://doi.org/10.1007/978-3-642-36675-8_3
https://doi.org/10.1007/978-3-642-36675-8_3
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1007/BFb0012858
https://doi.org/10.1007/978-3-030-24258-9_26
https://doi.org/10.1145/321784.321792
https://doi.org/10.1007/BFb0054276
https://doi.org/10.1007/BFb0054276
https://doi.org/10.1007/s10817-020-09567-8
https://doi.org/10.1007/s10817-020-09567-8
https://doi.org/10.1007/BF00881918
https://doi.org/10.1007/BF00881918
https://doi.org/10.1007/3-540-45744-5_3
https://doi.org/10.1007/3-540-45744-5_3
https://doi.org/10.1007/978-3-319-23506-6_12

168 M. Bromberger et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Ground Joinability and Connectedness
in the Superposition Calculus

André Duarte(B) and Konstantin Korovin(B)

The University of Manchester, Manchester, UK
{andre.duarte,konstantin.korovin}@manchester.ac.uk

Abstract. Problems in many theories axiomatised by unit equalities
(UEQ), such as groups, loops, lattices, and other algebraic structures,
are notoriously difficult for automated theorem provers to solve. Con-
sequently, there has been considerable effort over decades in developing
techniques to handle these theories, notably in the context of Knuth-
Bendix completion and derivatives. The superposition calculus is a gen-
eralisation of completion to full first-order logic; however it does not carry
over all the refinements that were developed for it, and is therefore not
a strict generalisation. This means that (i) as of today, even state of the
art provers for first-order logic based on the superposition calculus, while
more general, are outperformed in UEQ by provers based on completion,
and (ii) the sophisticated techniques developed for completion are not
available in any problem which is not in UEQ. In particular, this includes
key simplifications such as ground joinability, which have been known for
more than 30 years. In fact, all previous completeness proofs for ground
joinability rely on proof orderings and proof reductions, which are not
easily extensible to general clauses together with redundancy elimina-
tion. In this paper we address this limitation and extend superposition
with ground joinability, and show that under an adapted notion of redun-
dancy, simplifications based on ground joinability preserve completeness.
Another recently explored simplification in completion is connectedness.
We extend this notion to “ground connectedness” and show superposi-
tion is complete with both connectedness and ground connectedness. We
implemented ground joinability and connectedness in a theorem prover,
iProver, the former using a novel algorithm which we also present in this
paper, and evaluated over the TPTP library with encouraging results.

Keywords: Superposition · Ground joinability · Connectedness ·
Closure redundancy · First-order theorem proving

1 Introduction

Automated theorem provers based on equational completion [4], such as Wald-
meister, MædMax or Twee [13,21,25], routinely outperform superposition-based
provers on unit equality problems (UEQ) in competitions such as CASC [22],
despite the fact that the superposition calculus was developed as a generalisation
c© The Author(s) 2022

J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 169–187, 2022.
https://doi.org/10.1007/978-3-031-10769-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_11&domain=pdf
http://orcid.org/0000-0002-5228-213X
http://orcid.org/0000-0002-0740-621X
https://doi.org/10.1007/978-3-031-10769-6_11

170 A. Duarte and K. Korovin

of completion to full clausal first-order logic with equality [19]. One of the main
ingredients for their good performance is the use of ground joinability criteria for
the deletion of redundant equations [1], among other techniques. However, exist-
ing proofs of refutational completeness of deduction calculi wrt. these criteria
are restricted to unit equalities and rely on proof orderings and proof reduc-
tions [1,2,4], which are not easily extensible to general clauses together with
redundancy elimination.

Since completion provers perform very poorly (or not at all) on non-UEQ
problems (relying at best on incomplete transformations to unit equality [8]), this
motivates an attempt to transfer those techniques to the superposition calculus
and prove their completeness, so as to combine the generality of the superposition
calculus with the powerful simplification rules of completion. To our knowledge,
no prover for first-order logic incorporates ground joinability redundancy criteria,
except for particular theories such as associativity-commutativity (AC) [20].

For instance, if f(x, y) ≈ f(y, x) is an axiom, then the equation
f(x, f(y, z)) ≈ f(x, f(z, y)) is redundant, but this cannot be justified by any
simplificaton rule in the superposition calculus. On the other hand, a comple-
tion prover which implements ground joinability can easily delete the latter
equation wrt. the former. We show that ground joinability can be enabled in the
superposition calculus without compromising completeness.

As another example, the simplification rule in completion can use f(x) ≈ s
(when f(x) � s) to rewrite f(a) ≈ t regardless of how s and t compare, while
the corresponding demodulation rule in superposition can only rewrite if s ≺ t.
Our “encompassment demodulation” rule matches the former, while also being
complete in the superposition calculus.

In [11] we introduced a novel theoretical framework for proving complete-
ness of the superposition calculus, based on an extension of Bachmair-Ganzinger
model construction [5], together with a new notion of redundancy called “closure
redundancy”. We used it to prove that certain AC joinability criteria, long used
in the context of completion [1], could also be incorporated in the superposition
calculus for full first-order logic while preserving completeness.

In this paper, we extend this framework to show the completeness of the
superposition calculus extended with: (i) a general ground joinability simplifi-
cation rule, (ii) an improved encompassment demodulation simplification rule,
(iii) a connectedness simplification rule extending [3,21], and (iv) a new ground
connectedness simplification rule. The proof of completeness that enables these
extensions is based on a new encompassment closure ordering. In practice, these
extensions help superposition to be competitive with completion in UEQ prob-
lems, and improves the performance on non-UEQ problems, which currently do
not benefit from these techniques at all.

We also present a novel incremental algorithm to check ground joinability,
which is very efficient in practice; this is important since ground joinability can
be an expensive criterion to test. Finally, we discuss some of the experimental
results we obtained after implementing these techniques in iProver [10,16].

The paper is structured as follows. In Sect. 2 we define some basic notions to
be used throughout the paper. In Sect. 3 we define the closure ordering we use to

Ground Joinability and Connectedness in the Superposition Calculus 171

prove redundancies. In Sect. 4 we present redundancy criteria for demodulation,
ground joinability, connectedness, and ground connectedness. We prove their
completeness in the superposition calculus, and discuss a concrete algorithm for
checking ground joinability, and how it may improve on the algorithms used in
e.g. Waldmeister [13] or Twee [21]. In Sect. 5 we discuss experimental results.

2 Preliminaries

We consider a signature consisting of a finite set of function symbols and the
equality predicate as the only predicate symbol. We fix a countably infinite set
of variables. First-order terms are defined in the usual manner. Terms without
variables are called ground terms. A literal is an unordered pair of terms with
either positive or negative polarity, written s ≈ t and s �≈ t respectively (we
write s ≈̇ t to mean either of the former two). A clause is a multiset of literals.
Collectively terms, literals, and clauses will be called expressions.

A substitution is a mapping from variables to terms which is the identity
for all but finitely many variables. An injective substitution onto variables is
called a renaming. If e is an expression, we denote application of a substitution
σ by eσ, replacing all variables with their image in σ. Let GSubs(e) = {σ |
eσ is ground} be the set of ground substitutions for e. Overloading this notation
for sets we write GSubs(E) = {σ | ∀e ∈ E. eσ is ground}. Finally, we write e.g.
GSubs(e1, e2) instead of GSubs({e1, e2}). The identity substitution is denoted
by ε.

A substitution θ is more general than σ if θρ = σ for some substitution ρ
which is not a renaming. If s and t can be unified, that is, if there exists σ such
that sσ = tσ, then there also exists the most general unifier, written mgu(s, t).
A term s is said to be more general than t if there exists a substitution θ that
makes sθ = t but there is no substitution σ such that tσ = s. Two terms s and t
are said to be equal modulo renaming if there exist injective θ, σ such that sθ = t
and tσ = s. The relations “less general than”, “equal modulo renaming”, and
their union are represented respectively by the symbols �, ≡, and 	.

A more refined notion of instance is that of closure [6]. Closures are pairs
e · σ that are said to represent the expression eσ while retaining information
about the original term and its instantiation. Closures where eσ is ground are
said to be ground closures. Let GClos(e) = {e · σ | eσ is ground} be the set of
ground closures of e. Overloading the notation for sets, if N is a set of clauses
then GClos(N) =

⋃
C∈N GClos(C).

We write s[t] if t is a subterm of s. If also s �= t, then it is a strict subterm.
We denote these relations by s � t and s � t respectively. We write s[t
→ t′] to
denote the term obtained from s by replacing all occurrences of t by t′.

A (strict) partial order is a binary relation which is transitive (a � b � c ⇒
a � c), irreflexive (a � a), and asymmetric (a � b ⇒ b � a). A (non-strict)
partial preorder (or quasiorder) is any transitive, reflexive relation. A (pre)order
is total over X if ∀x, y ∈ X. x
 y ∨ y
 x. Whenever a non-strict (pre)order

 is given, the induced equivalence relation ∼ is
 ∩
, and the induced strict
pre(order)� is
\∼. The transitive closure of a relation�, the smallest transitive

172 A. Duarte and K. Korovin

relation that contains �, is denoted by �+. A transitive reduction of a relation
�, the smallest relation whose transitive closure is �, is denoted by �−.

For an ordering � over a set X, its multiset extension �� over multisets of X
is given by: A �� B iff A �= B and ∀x ∈ B. B(x) > A(x) ∃y ∈ A. y � x∧A(y) >
B(y), where A(x) is the number of occurrences of element x in multiset A (we
also use ��� for the the multiset extension of ��). It is well known that the mutl-
tiset extension of a well-founded/total order is also a well-founded/total order,
respectively [9]. The (n-fold) lexicographic extension of � over X is denoted
�lex over ordered n-tuples of X, and is given by 〈x1, . . . , xn〉 �lex 〈y1, . . . , yn〉
iff ∃i. x1 = y1 ∧ · · · ∧ xi−1 = yi−1 ∧ xi � yi. The lexicographic extension of a
well-founded/total order is also a well-founded/total order, respectively.

A binary relation → over the set of terms is a rewrite relation if (i) l →
r ⇒ lσ → rσ and (ii) l → r ⇒ s[l] → s[l
→ r]. The reflexive-transitive closure
of a relation is the smallest reflexive-transitive relation which contains it. It is
denoted by ∗→. Two terms are joinable (s ↓ t) if s

∗→ u
∗← t.

If a rewrite relation is also a strict ordering, then it is a rewrite ordering. A
reduction ordering is a rewrite ordering which is well-founded. In this paper we
consider reduction orderings which are total on ground terms, such orderings are
also simplification orderings i.e., satisfy s � t ⇒ s � t.

3 Ordering

In [11] we presented a novel proof of completeness of the superposition calculus
based on the notion of closure redundancy, which enables the completeness of
stronger redundancy criteria to be shown, including AC normalisation, AC join-
ability, and encompassment demodulation. In this paper we use a slightly different
closure ordering (�cc), in order to extract better completeness conditions for the
redundancy criteria that we present in this paper (the definition of closure redun-
dant clause and closure redundant inference is parametrised by this �cc).

Let �t be a simplification ordering which is total on ground terms. We extend
this first to an ordering on ground term closures, then to an ordering on ground
clause closures. Let

s · σ �tc′ t · ρ iff either sσ �t tρ
or else sσ = tρ and s � t, (1)

where sσ and tρ are ground, and let �tc be an (arbitrary) total well-founded
extension of �tc′ . We extend this to an ordering on clause closures. First let

Mlc((s ≈ t) · θ) = {sθ · ε, tθ · ε}, (2)

Mlc((s �≈ t) · θ) = {sθ · ε, tθ · ε, sθ · ε, tθ · ε}, (3)

and let Mcc be defined as follows, depending on whether the clause is unit or
non-unit:

Mcc(∅ · θ) = ∅, (4)
Mcc((s ≈ t) · θ) = {{s · θ}, {t · θ}}, (5)

Ground Joinability and Connectedness in the Superposition Calculus 173

Mcc((s �≈ t) · θ) = {{s · θ, t · θ, sθ · ε, tθ · ε}}, (6)
Mcc((s ≈̇ t ∨ · · ·) · θ) = {Mlc(L · θ) | L ∈ (s ≈̇ t ∨ · · ·)}, (7)

then �cc is defined by

C · σ �cc D · ρ iff Mcc(C · σ) ���tc Mcc(D · ρ). (8)

The main purpose of this definition is twofold: (i) that when sθ �t tθ and u
occurs in a clause D, then sθ �u or s � sθ = u implies (s ≈ t) · θρ ≺cc D ·ρ, and
(ii) that when C is a positive unit clause, D is not, s is the maximal subterm
in Cθ and t is the maximal subterm in Dσ, then s
t t implies C · θ ≺cc D · σ.
These two properties enable unconditional rewrites via oriented unit equations
on positive unit clauses to succeed whenever they would also succeed in unfailing
completion [4], and rewrites on negative unit and non-unit clauses to always
succeed. This will enable us to prove the correctness of the simplification rules
presented in the following section.

4 Redundancies
In this section we present several redundancy criteria for the superposition cal-
culus and prove their completeness. Recall the definitions in [11]: a clause C
is redundant in a set S if all its ground closures C · θ follow from closures in
GClos(S) which are smaller wrt. �cc; an inference C1, . . . , Cn |− D is redundant
in a set S if, for all θ ∈ GSubs(C1, . . . , Cn, D) such that C1θ, . . . , Cnθ |− Dθ is
a valid inference, the closure D · θ follows from closures in GClos(S) such that
each is smaller than some C1 ·θ, . . . , Cn ·θ. These definitions (in terms of ground
closures rather than in terms of ground clauses, as in [19]) arise because they
enable us to justify stronger redundancy criteria for application in superposition
theorem provers, including the AC criteria developed in [11] and the criteria in
this section.
Theorem 1. The superposition calculus [19] is refutationally complete wrt. clo-
sure redundancy, that is, if a set of clauses is saturated up to closure redundancy
(meaning any inference with non-redundant premises in the set is redundant)
and does not contain the empty clause, then it is satisfiable.
Proof. The proof of completeness of the superposition calculus wrt. this closure
ordering carries over from [11] with some modifications, which are presented in
a full version of this paper [12].

4.1 Encompassment Demodulation
We introduce the following definition, to be re-used throughout the paper.
Definition 1. A rewrite via l ≈ r in clause C[lθ] is admissible if one of the
following conditions holds: (i) C is not a positive unit, or (let C = s[lθ] ≈ t for
some θ) (ii) lθ �= s, or (iii) lθ � l, or (iv) s ≺t t, or (v) rθ ≺t t.1

1 We note that (iv) is superfluous, but we include it since in practice it is easier to
check, as it is local to the clause being rewritten and therefore needs to be checked
only once, while (v) needs to be checked with each demodulation attempt.

174 A. Duarte and K. Korovin

We then have

Encompassment
Demodulation

l ≈ r ���C[lθ]
C[lθ
→ rθ]

,
where lθ �t rθ, and
rewrite via l ≈ r in C is admissible. (9)

In other words, given an equation l ≈ r, if an instance lθ is a subterm in
C, then the rewrite is admissible (meaning, for example, that an unconditional
rewrite is allowed when lθ �t rθ) if C is not a positive unit, or if lθ occurs at
a strict subterm position, or if lθ is less general than l, or if lθ occurs outside
a maximal side, or if rθ is smaller than the other side. This restriction is much
weaker than the one given for the usual demodulation rule in superposition [17],
and equivalent to the one in equational completion when we restrict ourselves
to unit equalities [4].

Example 1. If f(x) �t s, we can use f(x) ≈ s to rewrite f(x) ≈ t when s ≺t t,
and f(a) ≈ t, f(x) �≈ t, or f(x) ≈ t ∨ C regardless of how s and t compare.

4.2 General Ground Joinability

In [11] we developed redundancy criteria for the theory of AC functions in the
superposition calculus. In this section we extend these techniques to develop
redundancy criteria for ground joinability in arbitrary equational theories.

Definition 2. Two terms are strongly joinable (s t), in a clause C wrt. a set
of equations S, if either s = t, or s → s[l1σ1
→ r1σ1] ∗→ t via rules li ≈ ri ∈ S,
where the rewrite via l1 ≈ r1 is admissible in C, or s → s[l1σ1
→ r1σ1] ↓
t[l2σ2
→ r2σ2] ← t via rules li ≈ ri ∈ S, where the rewrites via l1 ≈ r1 and
l2 ≈ r2 are admissible in C. To make the ordering explicit, we may write s � t.
Two terms are strongly ground joinable (s t), in a clause C wrt. a set of
equations S, if for all θ ∈ GSubs(s, t) we have sθ tθ in C wrt. S.

We then have:

Ground joinability
�����s ≈ t ∨ C S

, where s t in s ≈ t ∨ C wrt. S, (10a)

Ground joinability �����s �≈ t ∨ C S

C
, where s t in s �≈ t ∨ C wrt. S. (10b)

Theorem 2. Ground joinability is a sound and admissible redundancy criterion
of the superposition calculus wrt. closure redundancy.

Proof. We will show the positive case first. If s t, then for any instance (s ≈
t ∨ C) · θ we either have sθ = tθ, and therefore ∅ |= (s ≈ t) · θ, or we have wlog.
sθ �t tθ, with sθ ↓ tθ. Then sθ and tθ can be rewritten to the same normal form
u by liσi→ riσi where li ≈ ri ∈ S. Since u ≺t sθ and u
t tθ, then (s ≈ t∨C) ·θ

Ground Joinability and Connectedness in the Superposition Calculus 175

follows from smaller (u ≈ u ∨ C) · θ2 (a tautology, i.e. follows from ∅) and from
the instances of clauses in S used to rewrite sθ → u ← tθ. It only remains to
show that these latter instances are also smaller than (s ≈ t ∨ C) · θ. Since we
have assumed sθ �t tθ, then at least one rewrite step must be done on sθ. Let
l1σ1→ r1σ1 be the instance of the rule used for that step, with (l1 ≈ r1) · σ1 the
closure that generates it. By Definition 1 and 2, one of the following holds:

– C �= ∅, therefore (l1 ≈ r1) · σ1 ≺cc (s ≈ t ∨ C) · θ, or
– l1σ1�sθ, therefore l1σ1 ≺t sθ ⇒ l1 ·σ1 ≺tc s·θ ⇒ (l1 ≈ r1)·σ1 ≺cc (s ≈ t)·θ,

or
– l1σ1 = sθ and s � l1, therefore l1 · σ1 ≺tc s · θ ⇒ (l1 ≈ r1) · σ1 ≺cc (s ≈ t) · θ,

or
– l1σ1 = sθ and s ≡ l1 and r1σ1 ≺t tθ, therefore r1 · σ1 ≺tc t · θ ⇒ (l1 ≈

r1) · σ1 ≺cc (s ≈ t) · θ.

As for the remaining steps, they are done on the smaller side tθ or on the other
side after this first rewrite, which is smaller than sθ. Therefore all subsequent
steps done by any ljσj → rjσj will have rj · σj ≺tc lj · σj ≺tc s · θ ⇒ (lj ≈
rj) · σj ≺cc (s ≈ t ∨ C) · θ. As such, since this holds for all ground closures
(s ≈ t ∨ C) · θ, then s ≈ t ∨ C is redundant wrt. S.

For the negative case, the proof is similar. We will conclude that (s �≈ t∨C)·θ
follows from smaller (li ≈ ri) · σi ∈ GClos(S) and smaller (u �≈ u ∨ C) · θ. The
latter, of course, follows from smaller C · θ, therefore s �≈ t∨C is redundant wrt.
S ∪ {C}. ��
Example 2. If S = {f(x, y) ≈ f(y, x)}, then f(x, f(y, z)) ≈ f(x, f(z, y)) is
redundant wrt. S. Note that f(x, y) ≈ f(y, x) is not orientable by any sim-
plification ordering, therefore this cannot be justified by demodulation alone.

Testing for Ground Joinability. The general criterion presented above begs
the question of how to test, in practice, whether s t in a clause s≈̇t∨C. Several
such algorithms have been proposed [1,18,21]. All of these are based on the
observation that if we consider all total preorders
v on Vars(s, t) and for all of
them show strong joinability with a modified ordering—which we denote �t[v]—
then we have shown strong ground joinability in the order �t [18].

Definition 3. A simplification order on terms �t extended with a preorder on
variables
v, denoted
t[v], is a simplification preorder (i.e. satisfies all the
relevant properties in Sect. 2) such that
t[v] ⊇ �t ∪
v.

Example 3. If x �v y, then g(x) �t[v] g(y), g(x) �t[v] y, f(x, y) �t[v] f(y, x),
etc.

The simplest algorithm based on this approach would be to enumerate all
possible total preorders
v over Vars(s, t), and exhaustively reduce both sides

2 Wlog. uθ = u, renaming variables in u if necessary.

176 A. Duarte and K. Korovin

via equations in S orientable by �t[v], checking if the terms can be reduced to the
same normal form for all total preorders. This is very inefficient since there are
O(n!en) such total preorders [7], where n is the cardinality of Vars(s, t). Another
approach is to consider only a smaller number of partial preorders, based on the
obvious fact that s �t[v]

t ⇒ ∀
′
v ⊇
v. s �t[v′]

t, so that joinability under
a smaller number of partial preorders can imply joinability under all the total
preorders, necessary to prove ground joinability.

However, this poses the question of how to choose which partial preorders to
check. Intuitively, for performance, we would like that whenever the two terms
are not ground joinable, that some total preorder where they are not joinable is
found as early as possible, and that whenever the two terms are joinable, that
all total preorders are covered in as few partial preorders as possible.
Example 4. Let S = {f(x, f(y, z))≈f(y, f(x, z))}. Then f(x, f(y, f(z, f(w, u))))
≈f(x, f(y, f(w, f(z, u)))) can be shown to be ground joinable wrt. S by checking
just three cases:
v ∈ {z�w , z∼w , z≺w}, even though there are 6942 possible
preorders.

Waldmeister first tries all partial preorders relating two variables among
Vars(s, t), then three, etc. until success, failure (by trying a total order and fail-
ing to join) or reaching a predefined limit of attempts [1]. Twee tries an arbitrary
total strict order, then tries to weaken it, and repeats until all total preorders are
covered [21]. We propose a novel algorithm—incremental ground joinability—
whose main improvement is guiding the process of picking which preorders to
check by finding, during the process of searching for rewrites on subterms of the
terms we are attempting to join, minimal extensions of the term order with a
variable preorder which allow the rewrite to be done in the � direction.

Our algorithm is summarised as follows. We start with an empty queue of
variable preorders, V , initially containing only the empty preorder. Then, while
V is not empty, we pop a preorder
v from the queue, and attempt to perform
a rewrite via an equation which is newly orientable by some extension
′

v of
v.
That is, during the process of finding generalisations of a subterm of s or t among
left-hand sides of candidate unoriented unit equations l ≈ r, when we check that
the instance lθ ≈ rθ used to rewrite is oriented, we try to force this to be true
under some minimal extension �t[v′] of �t[v], if possible. If no such rewrite exists,
the two terms are not strongly joinable under �t[v] or any extension, and so are
not strongly ground joinable and we are done. If it exists, we exhaustively rewrite
with �t[v′], and check if we obtain the same normal form. If we do not obtain
it yet, we repeat the process of searching rewrites via equations orientable by
further extensions of the preorder. But if we do, then we have proven joinability
in the extended preorder; now we must add back to the queue a set of preorders
O such that all the total preorders which are ⊇
v (popped from the queue)
but not ⊇
′

v (minimal extension under which we have proven joinability) are
⊇ of some
′′

v ∈ O (pushed back into the queue to be checked). Obtaining this
O is implemented by order diff(
v,
′

v), defined below. Whenever there are no
more preorders in the queue to check, then we have checked that the terms are
strongly joinable under all possible total preorders, and we are done.

Ground Joinability and Connectedness in the Superposition Calculus 177

Together with this, some book-keeping for keeping track of completeness
conditions is necessary. We know that for completeness to be guaranteed, the
conditions in Definition 1 must hold. They automatically do if C is not a positive
unit or if the rewrite happens on a strict subterm. We also know that after a
term has been rewritten at least once, rewrites on that side are always complete
(since it was rewritten to a smaller term). Therefore we store in the queue,
together with the preorder, a flag in P({L, R}) indicating on which sides does a
top rewrite need to be checked for completeness. Initially the flag is {L} if s �t t,
{R} if s ≺t t, {L, R} if s and t are incomparable, and {} if the clause is not a
positive unit. When a rewrite at the top is attempted (say, l ≈ r used to rewrite
s = lθ with t being the other side), if the flag for that side is set, then we check if
lθ � l or rθ ≺ t. If this fails, the rewrite is rejected. Whenever a side is rewritten
(at any position), the flag for that side is cleared.

The definition of order diff is as follows. Let the transitive reduction of
 be
represented by a set of links of the form x�y / x∼y.

order diff(
1,
2) = {
+|
 ∈ order diff ′(
1,
2
−)} , (11a)

order diff ′(
1,
−
2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
2 = {x�y} �
−

2
′ ⇒

⎧
⎪⎪⎨

⎪⎪⎩

x �1 y ⇒ order diff ′(
1,
−
2

′)

x �1 y ⇒
{
1 ∪ {y�x} ,
1 ∪ {x∼y}}
∪ order diff ′(
1 ∪ {x�y},
−

2
′)

−
2 = {x∼y} �
−

2
′ ⇒

⎧
⎪⎪⎨

⎪⎪⎩

x ∼1 y ⇒ order diff ′(
1,
−
2

′)

x �1 y ⇒
{
1 ∪ {x�y} ,
1 ∪ {y�x}}
∪ order diff ′(
1 ∪ {x∼y},
−

2
′)

−
2 = ∅ ⇒ ∅ .

(11b)

where
1 ⊆
2. In other words, we take a transitive reduction of
2, and for
all links � in that reduction which are not part of
1, we return orders
1
augmented with the reverse of � and recurse with
1 =
1 ∪ �.

Example 5.

�1 �2 order diff(�1, �2)
x � y x � y � z � w x � y ∼ z , x � y ≺ z , x � y � z ∼ w , x � y � z ≺ w

y ≺ x � z x � y � z x � y ∼ z , x � z � y

Theorem 3. For all total
T
v ⊇
1, there exists one and only one
i ∈ {
2}∪

order diff(
1,
2) such that
T
v ⊇
i. For all
T

v �
1, there is no
i ∈
{
2} ∪ order diff(
1,
2) such that
T

v ⊇
i.

178 A. Duarte and K. Korovin

Proof. See full version of the paper [12].

An algorithm based on searching for rewrites in minimal extensions of a
variable preorder (starting with minimal extensions of the bare term ordering,
�t[∅]), has several advantages. The main benefit of this approach is that, instead
of imposing an a priori ordering on variables and then checking joinability under
that ordering, we instead build a minimal ordering while searching for candidate
unit equations to rewrite subterms of s, t. For instance, if two terms are not
ground joinable, or not even rewritable in any �t[v] where it was not rewritable in
�t, then an approach such as the one used in Avenhaus, Hillenbrand and Löchner
[1] cannot detect this until it has extended the preorder arbitrarily to a total
ordering, while our incremental algorithm immediately realises this. We should
note that empirically this is what happens in most cases: most of the literals we
check during a run are not ground joinable, so for practical performance it is
essential to optimise this case.

Theorem 4. Algorithm 1 returns “Success” only if s t in C wrt. S.3

Proof. We will show that Algorithm 1 returns “Success” if and only if s �t[vT]
t

for all total
T
v over Vars(s, t), which implies s �t

t.
When 〈
v, s, t, c〉 is popped from V , we exhaustively reduce s, t via equations

in S oriented wrt. �t[v], obtaining sr, tr. If sr ∼t[v] tr, then s �t[v]
t, and so

s �t[vT]
t for all total
T

v ⊇
v. If sr �t[v] tr, we will attempt to rewrite one
of sr, tr using some extended �t[v′] where
′

v ⊃
v. If this is impossible, then
s � �t[v′]

t for any
′
v ⊇
v, and therefore there exists at least one total
T

v such
that s � �T

v
t, and we return “Fail”.

If this is possible, then we repeat the process: we exhaustively reduce wrt.
�t[v′], obtaining s′, t′. If s′ �t[v′] t′, then we start again the process from the step
where we attempt to rewrite via an extension of
′

v: we either find a rewrite with
some �t[v′′] with
′′

v ⊃
′
v, and exhaustively normalise wrt. �t[v′′] obtaining

s′′, t′′, etc., or we fail to do so and return “Fail”.
If in any such step (after exhaustively normalising wrt. �t[v′]) we find s′ ∼t[v′]

t′, then s �t[v′]
t, and so s �t[vT]

t for all total
T
v ⊇
′

v. Now at this point
we must add back to the queue a set of preorders
′′

v i such that: for all total

T

v ⊇
v, either
T
v ⊇
′

v (proven to be) or
T
v ⊇ some
′′

v i (added to V
to be checked). For efficiency, we would also like for there to be no overlap: no
total
T

v ⊇
v is an extension of more than one of {
′
v,
′′

v 1, . . .}.
This is true because of Theorem 3. So we add {〈
′′

v i, sr, tr, cr〉 |
′′
v i ∈

order diff(
v,
′
v)} to V , where cr = c \ (if sr �= s then {L} else {}) \(if tr �=

t then {R} else {}). Note also that s �t[v]
sr and t �t[v]

tr, therefore also
s �t[vi′′]

sr and t �t[vi′′]
tr if
′′

v i ⊃
v.

3 Note that the other direction may not always hold, there are strongly ground joinable
terms which are not detected by this method of analysing all preorders between
variables, e.g. f(x, g(y)) f(g(y), x) wrt. S = {f(x, y) ≈ f(y, x)}.

Ground Joinability and Connectedness in the Superposition Calculus 179

Algorithm 1: Incremental ground joinability test
Input: literal s ≈̇ t ∈ C; set of unorientable equations S
Output: whether s t in C wrt. S
begin

c ← ∅ if C is not pos. unit, {L} if s � t, {R} if s ≺ t, {L, R} otherwise
V ← {〈∅, s, t, c〉}
while V is not empty do

〈�v, s, t, c〉 ← pop from V
s, t ← normalise s, t wrt. �t[v], with completeness flag c
c ← c \ ({L} if s was changed) \ ({R} if t was changed)
if s ∼t[v] t then

continue
else

s′, t′, c′ ← s, t, c
while there exists l ≈ r ∈ S that can rewrite s′ or t′ wrt. some
�′

v ⊃ �v, with completeness flag c do
s′, t′ ← normalise s′, t′ wrt. �t[v′], with completeness flag c
c′ ← c′ \ ({L} if s′ was changed) \ ({R} if t′ was changed)
if s′ ∼t[v′] t′ then

for �′′
v in order diff(�v, �′

v) do push 〈�′′
v , s, t, c〉 to V

break
end
�v ← �′

v

else
return Fail

end
end

else
return Success

end
end
where rewriting u in s, t wrt. � with completeness flag c succeeds if

(i) u is a strict subterm of s or t,
(ii) u = s with L /∈ c,
(iii) u = t with R /∈ c,
(iv) instance lσ ≈ rσ used to rewrite has l � u,
(v) u = s with rσ ≺ t,
(vi) or u = t with rσ ≺ s.

end

During this whole process, any rewrites must pass a completeness test men-
tioned previously, such that the conditions in the definition of hold. Let s0, t0
be the original terms and s, t be the ones being rewritten and c the completeness
flag. If the rewrite is at a strict subterm position, it succeeds by Definition 2.
If the rewrite is at the top, then we check c. If L is unset (L /∈ c), then either
s
 s0 ≺ t0 or s ≺ s0 or the clause is not a positive unit, so we allow a rewrite
at the top of s, again by Definition 2. If L is set (L ∈ c), then an explicit check

180 A. Duarte and K. Korovin

must be done: we allow a rewrite at the top of s (= s0) iff it is done by lσ→ rσ
with lσ � l or rσ ≺ t0. Respectively for R, with the roles of s and t swapped.

In short, we have shown that if 〈
v, s′, t′, c′〉 is popped from V , then V is only
ever empty, and so the algorithm only terminates with “Success”, if s′

�t[vT]
t′

for all total
T
v ⊇
v. Since V is initialised with 〈∅, s, t, c〉, then the algorithm

only returns “Success” if s �t[vT]
t for all total
T

v . ��

Orienting via Extension of Variable Ordering. In order to apply the
ground joinability algorithm we need a way to check, for a given �t and
v

and some s, t, whether there exists a
′
v ⊃
v such that s �t[v′] t. Here we show

how to do this when �t is a Knuth-Bendix Ordering (KBO) [15].
Recall the definition of KBO. Let �s be a partial order on symbols, w be

an N-valued weight function on symbols and variables, with the property that
∃m ∀x ∈ V. w(x) = m, w(c) ≥ m for all constants c, and there may only exist
one unary symbol f with w(f) = 0 and in this case f �s g for all other symbols
g. For terms, their weight is w(f(s1, . . .)) = w(f) + w(s1) + · · · . Let also |s|x be
the number of occurrences of x in s. Then

f(s1, . . .) �KBO g(t1, . . .) iff

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

either w(f(s1, . . .)) > w(g(t1, . . .)),
or w(f(s1, . . .)) = w(g(t1, . . .))

and f �s g,
or w(f(s1, . . .)) = w(g(t1, . . .))

and f = g,
and s1, . . . �KBOlex t1, . . . ;

and ∀x ∈ V. |f(. . .)|x ≥ |g(. . .)|x.

(12a)

f(s1, . . .) �KBO x iff |f(s1, . . .)|x ≥ 1 . (12b)
x �KBO y iff ⊥ . (12c)

The conditions on variable occurrences ensure that s �KBO t ⇒ ∀θ. sθ �KBO tθ.
When we extend the order �KBO with a variable preorder
v, the starting

point is that x �v y ⇒ x �KBO[v] y and x ∼v y ⇒ x ∼KBO[v] y. Then, to ensure
that all the properties of a simplification order (included the one mentioned
above) hold, we arrive at the following definition (similar to [1]).

f(s1, . . .) �KBO[v] g(t1, . . .) iff

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

either w(f(. . .)) > w(g(. . .)),
or w(f(s1, . . .)) = w(g(t1, . . .))

and f �s g,
or w(f(s1, . . .)) = w(g(t1, . . .))

and f = g,
and s1, . . . �KBO[v]lex t1, . . . ;

and ∀x ∈ V.
∑

y�vx |f(. . .)|y
≥ ∑

y�vx |g(. . .)|y.

(13a)

f(s1, . . .) �KBO[v] x iff ∃y
v x. |f(s1, . . .)|y ≥ 1 . (13b)
x �KBO[v] y iff x �v y . (13c)

Ground Joinability and Connectedness in the Superposition Calculus 181

To check whether there exists a
′
v ⊃
v such that s �KBO[v′] t, we need

to check whether there are some x�y or x = y relations that we can add to
v

such that all the conditions above hold (and such that it still remains a valid
preorder). Let us denote “there exists a
′

v ⊃
v such that s �KBO[v′] t” by
s �KBO[v,v′] t. Then the definition is

f(s1, . . .) �KBO[v,v′] g(t1, . . .) iff

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

either w(f(. . .)) > w(g(. . .)),
or w(f(s1, . . .)) = w(g(t1, . . .))

and f �s g,
or w(f(s1, . . .)) = w(g(t1, . . .))

and f = g,
and s1, . . . �KBOlex t1, . . . ;

and ∃x1, y1, . . .
�′

v = (�v ∪ {〈x1, y1〉, . . .})+ is a preorder
such that ∀x∈V.

∑
y�′

vx
|f(. . .)|y

≥ ∑
y�′

vx
|g(. . .)|y.

(14a)

f(s1, . . .) �KBO[v,v′] x iff

{∃y ⊀v x. |f(s1, . . .)|y ≥ 1 ,
with �′

v = �v ∪ {x�y}
or �′

v = �v ∪ {x=y} .
(14b)

x �KBO[v,v′] y iff
{

x ⊀v y
with �′

v = �v ∪ {x�y} . (14c)

This check can be used in Algorithm 1 for finding extensions of variable order-
ings that orient rewrite rules allowing required normalisations.

4.3 Connectedness
Testing for joinability (i.e. demodulating to s ≈ s or s �≈ s) and ground joinability
(presented in the previous section) require that each step in proving them is done
via an oriented instance of an equation in the set. However, we can weaken this
restriction, if we also change the notion of redundancy being used.

As criteria for redundancy of a clause, finding either joinability or ground
joinability of a literal in the clause means that the clause can be deleted or the
literal removed from the clause (in case of a positive or negative literal, resp.)
in any context, that is, we can for example add them to a set of deleted clauses,
and for any new clause, if it appears in that set, then immediately remove it
since we already saw that it is redundant. The criterion of connectedness [3,21],
however, is a criterion for redundancy of inferences. This means that a conclusion
simplified by this criterion can be deleted (or rather, not added), but in that
context only; if it ever comes up again as a conclusion of a different inference,
then it is not necessarily also redundant. Connectedness was introduced in the
context of equational completion, here we extend it to general clauses and show
that it is a redundancy in the superposition calculus.
Definition 4. Terms s and t are connected under clauses U and uni-
fier ρ wrt. a set of equations S if there exist terms v1, . . . , vn, equations
l1 ≈ r1, . . . , ln−1 ≈ rn−1, and substitutions σ1, . . . , σn−1 such that:

182 A. Duarte and K. Korovin

(i) v1 = s and vn = t,
(ii) for all i ∈ 1, . . . , n− 1, either vi+1 = vi[liσi
→ riσi] or vi = vi+1[liσi
→ riσi],

with li ≈ ri ∈ S,
(iii) for all i ∈ 1, . . . , n− 1, there exists w in

⋃
C∈U

⋃
p≈̇q∈C{p, q}4 such that for

ui ∈ {li, ri}, either (a) uiσi ≺ wρ, or (b) uiσi = wρ and either ui � w or
w ∈ C such that C is not a positive unit.

Theorem 5. Superposition inferences of the form

l ≈ r ∨ C s[u] ≈ t ∨D

(s[u
→ r] ≈ t ∨ C ∨D)ρ
,

where ρ = mgu(l, u),
lρ � rρ, sρ � tρ,
and u not a variable,

(15)

where s[u
→ r]ρ and tρ are connected under {l ≈ r ∨ C, s ≈ t ∨D} and unifier
ρ wrt. some set of clauses S, are redundant inferences wrt. S.

Proof. Let us denote s′ = s[u
→ r]. Let also U = {l ≈ r ∨ C, s ≈ t ∨ D} and
M =

⋃
C∈U

⋃
p≈̇q∈C{p, q}. We will show that if s′ρ and tρ are connected under

U and ρ, by equations in S, then every instance of that inference obeys the
condition for closure redundancy of an inference (see, Sect. 4), wrt. S.

Consider any (s′ ≈ t ∨ C ∨D)ρ · θ where θ ∈ GSubs(Uρ). Either s′ρθ = tρθ,
and we are done (it follows from ∅), or s′ρθ � tρθ, or s′ρθ ≺ tρθ.

Consider the case s′ρθ � tρθ. For all i ∈ 1, . . . , n−1, there exists a C ′ ∈ U and
a w ∈ C ′ such that either (iii.a) liσiθ ≺ wρθ, or (iii.b) liσiθ = wρθ and li � v,
or (iii.b) liσiθ = wρθ and C ′ is not a positive unit. Likewise for ri. Therefore,
for all i ∈ 1, . . . , n − 1, there exists a C ′ ∈ U such that (li ≈ ri) · σiθ ≺ C ′ · ρθ.
Since (t ≈ t ∨ · · ·)ρ · θ is also smaller than (s′ ≈ t ∨ · · ·)ρ · θ and a tautology,
then the instance (s′ ≈ t ∨ · · ·)ρ · θ of the conclusion follows from closures in
GClos(S) such that each is smaller than one of (l ≈ r ∨C) · ρθ, (s ≈ t ∨D) · ρθ.

In the case that s′ρθ ≺ tρθ, the same idea applies, but now it is (s′ ≈
s′ ∨ · · ·)ρ · θ which is smaller than (s′ ≈ t ∨ · · ·)ρ · θ and is a tautology.

Therefore, we have shown that for all θ ∈ GSubs((l ≈ r∨C)ρ, (s ≈ t∨D)ρ),
the instance (s′ ≈ t∨· · ·)ρ ·θ of the conclusion follows from closures in GClos(S)
which are all smaller than one of (l ≈ r ∨ C) · ρθ, (s ≈ t ∨ D) · ρθ. Since
any valid superposition inference with ground clauses has to have l = u, then
any θ′ ∈ GSubs(l ≈ r ∨ C, s ≈ t ∨ D, (s′ ≈ t ∨ C ∨ D)ρ) such that the
inference (l ≈ r ∨ C)θ′, (s ≈ t ∨ D)θ′ |− (s′ ≈ t ∨ C ∨ D)ρθ′ is valid must
have θ′ = ρθ′′, since ρ is the most general unifier. Therefore, we have shown
that for all θ′ ∈ GSubs(l ≈ r ∨ C, s ≈ t ∨ D, (s′ ≈ t ∨ C ∨ D)ρ) for which
(l ≈ r ∨ C)θ′, (s ≈ t ∨ D)θ′ |− (s′ ≈ t ∨ C ∨ D)ρθ′ is a valid superposition
inference, the instance (s′ ≈ t ∨ · · ·)ρ · θ′ of the conclusion follows from closures
in GClos(S) which are all smaller than one of (l ≈ r ∨C) · θ′, (s ≈ t∨D) · θ′, so
the inference is redundant. ��

4 That is, in the set of top-level terms of literals of clauses in U .

Ground Joinability and Connectedness in the Superposition Calculus 183

Theorem 6. Superposition inferences of the form

l ≈ r ∨ C s[u] �≈ t ∨D

(s[u
→ r] �≈ t ∨ C ∨D)ρ
,

where ρ = mgu(l, u),
lρ � rρ, sρ � tρ,
and u not a variable,

(16)

where s[u
→ r]ρ and tρ are connected under {l ≈ r ∨ C, s �≈ t ∨D} and unifier
ρ wrt. some set of clauses S, are redundant inferences wrt. S ∪ {(C ∨D)ρ}.
Proof. Analogously to the previous proof, we find that for all instances of the
inference, the closure (s′ �≈ t∨· · ·)ρ·θ follows from smaller closure (t �≈ t∨· · ·)ρ·θ
or (s′ �≈ s′∨ · · ·)ρ · θ and closures (li ≈ ri) ·σiθ smaller than max{(l ≈ r∨C) · θ ,
(s �≈ t∨D)·θ , (s′ �≈ t∨C∨D)ρ·θ}. But (t �≈ t∨C∨D)ρ·θ and (s′ �≈ s′∨C∨D)ρ·θ
both follow from smaller (C ∨D)ρ · θ, therefore the inference is redundant wrt.
S ∪ {(C ∨D)ρ}. ��

4.4 Ground Connectedness
Just as joinability can be generalised to ground joinability, so can connectedness
be generalised to ground connectedness. Two terms s, t are ground connected
under U and ρ wrt. S if, for all θ ∈ GSubs(s, t), sθ and tθ are connected under
D and ρ wrt. S. Analogously to strong ground joinability, we have that if s and t
are connected using �t[v] for all total
v over Vars(s, t), then s and t are ground
connected.

Theorem 7. Superposition inferences of the form

l ≈ r ∨ C s[u] ≈ t ∨D

(s[u
→ r] ≈ t ∨ C ∨D)ρ
,

where ρ = mgu(l, u),
lρ � rρ, sρ � tρ,
and u not a variable,

(17)

where s[u
→ r]ρ and tρ are ground connected under {l ≈ r ∨C, s ≈ t ∨D} and
unifier ρ wrt. some set of clauses S, are redundant inferences wrt. S.

Theorem 8. Superposition inferences of the form

l ≈ r ∨ C s[u] �≈ t ∨D

(s[u
→ r] �≈ t ∨ C ∨D)ρ
,

where ρ = mgu(l, u),
lρ � rρ, sρ � tρ,
and u not a variable,

(18)

where s[u
→ r]ρ and tρ are ground connected under {l ≈ r ∨C, s �≈ t ∨D} and
unifier ρ wrt. some set of clauses S, are redundant inferences wrt. S∪{(C∨D)ρ}.
Proof. The proof of Theorem 7 and 8 is analogous to that of Theorem 5 and 6.
The weakening of connectedness to ground connectedness only means that the
proof of connectedness (e.g. the vi, li ≈ ri, σi) may be different for different
ground instances. For all the steps in the proof to hold we only need that for all
the instances θ ∈ GSubs(l ≈ r ∨ C , s ≈̇ t ∨D , (s[u
→ r] ≈̇ t ∨ C ∨D)ρ) of the
inference, θ = σθ′ with σ ∈ GSubs(s[u
→ r]ρ, tρ), which is true. ��
Discussion about the strategy for implementation of connectedness and ground
connectedness is outside the scope of this paper.

184 A. Duarte and K. Korovin

5 Evaluation

We implemented ground joinability in a theorem prover for first-order logic,
iProver [10,16].5 iProver combines superposition, Inst-Gen, and resolution cal-
culi. For superposition, iProver implements a range of simplifications including
encompassment demodulation, AC normalisation [10], light normalisation [16],
subsumption and subsumption resolution. We run our experiments over FOF
problems of the TPTP v7.5 library [23] (17 348 problems) on a cluster of Linux
servers with 3 GHz 11 core CPUs, 128 GB memory, with each problem running on
a single core with a time limit of 300 s. We used a default strategy (which has not
yet been fine-tuned after the introduction of ground joinability), with superpo-
sition enabled and the rest of the components disabled. With ground joinability
enabled, iProver solved 133 problems more which it did not solve without ground
joinability. Note that this excludes the contribution of AC ground joinability or
encompassment demodulation [11] (always enabled).

Some of the problems are not interesting for this analysis because ground
joinability is not even tried, either because they are solved before superposition
saturation begins, or because they are ground. If we exclude these, we are left
with 10 005 problems. Ground joinability is successfully used to eliminate clauses
in 3057 of them (30.6%, Fig. 1a). This indicates that ground joinability is useful
in many classes of problems, including in non-unit problems where it previously
had never been used.

Fig. 1. (a) Clauses simplified by ground joinability. (b) % of runtime spent in gr.
joinability

In terms of the performance impact of enabling ground joinability, we mea-
sure that among problems whose runtime exceeds 1 s, only in 72 out of 8574
problems does the time spent inside the ground joinability algorithm exceed 20%
of runtime, indicating that our incremental algorithm is efficient and suitable for
broad application (Fig. 1b).

5 iProver is available at http://www.cs.man.ac.uk/∼korovink/iprover.

http://www.cs.man.ac.uk/~korovink/iprover

Ground Joinability and Connectedness in the Superposition Calculus 185

TPTP classifies problems by rating in [0,1]. Problems with rating ≥0.9 are
considered to be very challenging. Problems with rating 1.0 have never been
solved by any automated theorem prover. iProver using ground joinability solves
3 previously unsolved rating 1.0 problems, and 7 further problems with rating in
[0.9,1.0[(Table 1). We note that some of these latter (e.g. LAT140-1, ROB018-10,
REL045-1) were previously only solved by UEQ or SMT provers, but not by any
full first-order prover.

Table 1. Hard or unsolved problems in TPTP, solved by iProver with ground joinabil-
ity.

Name Rating Name Rating
LAT140-1 0.90 ROB018-10 0.95
REL045-1 0.90 LCL477+1 0.97
LCL557+1 0.92 LCL478+1 1.00
LCL563+1 0.92 CSR039+6 1.00
LCL474+1 0.94 CSR040+6 1.00

6 Conclusion and Further Work

In this work we extended the superposition calculus with ground joinability and
connectedness, and proved that these rules preserve completness using a modified
notion of redundancy, thus bringing for the first time these techniques for use in
full first-order logic problems. We have also presented an algorithm for checking
ground joinability which attempts to check as few variable preorders as possible.

Preliminary results show three things: (1) ground joinability is applicable in
a sizeable number of problems across different domains, including in non-unit
problems (where it was never applied before), (2) our proposed algorithm for
checking ground joinability is efficient, with over 3

4 of problems spending less
than 1% of runtime there, and (3) application of ground joinability in the super-
position calculus of iProver improves overall performance, including discovering
solutions to hitherto unsolved problems.

These results are promising, and further optimisations can be done. Imme-
diate next steps include fine-tuning the implementation, namely adjusting the
strategies and strategy combinations to make full use of ground joinability and
connectedness. iProver uses a sophisticated heuristic system which has not yet
been tuned for ground joinability and connectedness [14].

In terms of practical implementation of connectedness and ground connect-
edness, further research is needed on the interplay between those (criteria for
redundancy of inferences) and joinability and ground joinability (criteria for
redundancy of clauses).

On the theoretical level, recent work [24] provides a general framework for
saturation theorem proving, and we will investigate how techniques developed
in this paper can be incorporated into this framework.

186 A. Duarte and K. Korovin

References

1. Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations
in equational theorem proving. J. Symb. Comput. 36(1), 217–233 (2003). https://
doi.org/10.1016/S0747-7171(03)00024-5

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998). ISBN 978-0521779203

3. Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. J. Symb. Com-
put. 6(1), 1–18 (1988). https://doi.org/10.1016/S0747-7171(88)80018-X

4. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Aı̈t-
Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures, vol. II:
Rewriting Techniques, pp. 1–30. Academic Press (1989). https://doi.org/10.1016/
B978-0-12-046371-8.50007-9

5. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Log. Comput. 4(3), 217–247 (1994). https://doi.org/10.
1093/logcom/4.3.217

6. Bachmair, L., Ganzinger, H., Lynch, C.A., Snyder, W.: Basic paramodulation. Inf.
Comput. 121(2), 172–192 (1995). https://doi.org/10.1006/inco.1995.1131. ISSN
0890-5401

7. Barthelemy, J.P.: An asymptotic equivalent for the number of total preorders on
a finite set. Discret. Math. 29(3), 311–313 (1980). https://doi.org/10.1016/0012-
365x(80)90159-4

8. Claessen, K., Smallbone, N.: Efficient encodings of first-order horn formulas in
equational logic. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018.
LNCS (LNAI), vol. 10900, pp. 388–404. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94205-6 26

9. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8), 465–476 (1979). https://doi.org/10.1145/359138.359142

10. Duarte, A., Korovin, K.: Implementing superposition in iProver (system descrip-
tion). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 388–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 24

11. Duarte, A., Korovin, K.: AC simplifications and closure redundancies in the super-
position calculus. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI),
vol. 12842, pp. 200–217. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-86059-2 12

12. Duarte, A., Korovin, K.: Ground Joinability and Connectedness in the Superposi-
tion Calculus (2022, to appear)

13. Hillenbrand, T., Buch, A., Vogt, R., Löchner, B.: Waldmeister—high-performance
equational deduction. J. Autom. Reason. 18(2), 265–270 (1997). https://doi.org/
10.1023/A:1005872405899

14. Holden, E.K., Korovin, K.: Heterogeneous heuristic optimisation and scheduling for
first-order theorem proving. In: Kamareddine, F., Sacerdoti Coen, C. (eds.) CICM
2021. LNCS (LNAI), vol. 12833, pp. 107–123. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81097-9 8

15. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon
(1970). https://doi.org/10.1016/B978-0-08-012975-4.50028-X

16. Korovin, K.: iProver—an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR

https://doi.org/10.1016/S0747-7171(03)00024-5
https://doi.org/10.1016/S0747-7171(03)00024-5
https://doi.org/10.1016/S0747-7171(88)80018-X
https://doi.org/10.1016/B978-0-12-046371-8.50007-9
https://doi.org/10.1016/B978-0-12-046371-8.50007-9
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1006/inco.1995.1131
https://doi.org/10.1016/0012-365x(80)90159-4
https://doi.org/10.1016/0012-365x(80)90159-4
https://doi.org/10.1007/978-3-319-94205-6_26
https://doi.org/10.1007/978-3-319-94205-6_26
https://doi.org/10.1145/359138.359142
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-86059-2_12
https://doi.org/10.1007/978-3-030-86059-2_12
https://doi.org/10.1023/A:1005872405899
https://doi.org/10.1023/A:1005872405899
https://doi.org/10.1007/978-3-030-81097-9_8
https://doi.org/10.1007/978-3-030-81097-9_8
https://doi.org/10.1016/B978-0-08-012975-4.50028-X

Ground Joinability and Connectedness in the Superposition Calculus 187

2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 24

17. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

18. Martin, U., Nipkow, T.: Ordered rewriting and confluence. In: Stickel, M.E. (ed.)
CADE 1990. LNCS, vol. 449, pp. 366–380. Springer, Heidelberg (1990). https://
doi.org/10.1007/3-540-52885-7 100

19. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, pp. 371–443.
Elsevier and MIT Press (2001). ISBN 0-444-50813-9

20. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45221-5 49

21. Smallbone, N.: Twee: an equational theorem prover. In: Platzer, A., Sutcliffe, G.
(eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 602–613. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-79876-5 35

22. Sutcliffe, G.: The CADE ATP system competition–CASC. AI Mag. 37(2), 99–101
(2016). https://doi.org/10.1609/aimag.v37i2.2620

23. Sutcliffe, G.: The TPTP problem library and associated infrastructure–from CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017). https://doi.org/
10.1007/s10817-017-9407-7

24. Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive frame-
work for saturation theorem proving. In: Peltier, N., Sofronie-Stokkermans, V.
(eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 316–334. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51074-9 18

25. Winkler, S., Moser, G.: MædMax: a maximal ordered completion tool. In: Galmiche,
D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp.
472–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6 31

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/3-540-52885-7_100
https://doi.org/10.1007/3-540-52885-7_100
https://doi.org/10.1007/978-3-642-45221-5_49
https://doi.org/10.1007/978-3-030-79876-5_35
https://doi.org/10.1609/aimag.v37i2.2620
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/978-3-030-51074-9_18
https://doi.org/10.1007/978-3-319-94205-6_31
http://creativecommons.org/licenses/by/4.0/

Connection-Minimal Abduction in EL
via Translation to FOL

Fajar Haifani1,2(B) , Patrick Koopmann3(B) , Sophie Tourret1,4(B) ,
and Christoph Weidenbach1(B)

1 Max-Planck-Institut für Informatik, Saarland Informatics Campus,
Saarbrücken, Germany

{f.haifani,c.weidenbach}@mpi-inf.mpg.de
2 Graduate School of Computer Science, Saarbrücken, Germany

3 TU Dresden, Dresden, Germany
patrick.koopmann@tu-dresden.de

4 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
sophie.tourret@inria.fr

Abstract. Abduction in description logics finds extensions of a knowl-
edge base to make it entail an observation. As such, it can be used to
explain why the observation does not follow, to repair incomplete knowl-
edge bases, and to provide possible explanations for unexpected observa-
tions. We consider TBox abduction in the lightweight description logic
EL, where the observation is a concept inclusion and the background
knowledge is a TBox, i.e., a set of concept inclusions. To avoid useless
answers, such problems usually come with further restrictions on the
solution space and/or minimality criteria that help sort the chaff from
the grain. We argue that existing minimality notions are insufficient, and
introduce connection minimality. This criterion follows Occam’s razor by
rejecting hypotheses that use concept inclusions unrelated to the problem
at hand. We show how to compute a special class of connection-minimal
hypotheses in a sound and complete way. Our technique is based on a
translation to first-order logic, and constructs hypotheses based on prime
implicates. We evaluate a prototype implementation of our approach on
ontologies from the medical domain.

1 Introduction

Ontologies are used in areas like biomedicine or the semantic web to represent
and reason about terminological knowledge. They consist normally of a set of
axioms formulated in a description logic (DL), giving definitions of concepts, or
stating relations between them. In the lightweight description logic EL [2], par-
ticularly used in the biomedical domain, we find ontologies that contain around
a hundred thousand axioms. For instance, SNOMED CT1 contains over 350,000
axioms, and the Gene Ontology GO2 defines over 50,000 concepts. A central
1 https://www.snomed.org/.
2 http://geneontology.org/.

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 188–207, 2022.
https://doi.org/10.1007/978-3-031-10769-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_12&domain=pdf
http://orcid.org/0000-0001-5139-4503
http://orcid.org/0000-0001-5999-2583
http://orcid.org/0000-0002-6070-796X
http://orcid.org/0000-0001-6002-0458
https://www.snomed.org/
http://geneontology.org/
https://doi.org/10.1007/978-3-031-10769-6_12

Abduction in EL via FOL 189

reasoning task for ontologies is to determine whether one concept is subsumed
by another, a question that can be answered in polynomial time [1], and rather
efficiently in practice using highly optimized description logic reasoners [29]. If
the answer to this question is unexpected or hints at an error, a natural inter-
est is in an explanation for that answer—especially if the ontology is complex.
But whereas explaining entailments—i.e., explaining why a concept subsump-
tion holds—is well-researched in the DL literature and integrated into standard
ontology editors [21,22], the problem of explaining non-entailments has received
less attention, and there is no standard tool support. Classical approaches involve
counter-examples [5], or abduction.

In abduction a non-entailment T �|= α, for a TBox T and an observation α, is
explained by providing a “missing piece”, the hypothesis, that, when added to the
ontology, would entail α. Thus it provides possible fixes in case the entailment
should hold. In the DL context, depending on the shape of the observation, one
distinguishes between concept abduction [6], ABox abduction [7–10,12,19,24,
25,30,31], TBox abduction [11,33] or knowledge base abduction [14,26]. We are
focusing here on TBox abduction, where the ontology and hypothesis are TBoxes
and the observation is a concept inclusion (CI), i.e., a single TBox axiom.

To illustrate this problem, consider the following TBox, about academia,

Ta = { ∃employment.ResearchPosition � ∃qualification.Diploma � Researcher,

∃writes.ResearchPaper � Researcher, Doctor � ∃qualification.PhD,

Professor ≡ Doctor � ∃employment.Chair,

FundsProvider � ∃writes.GrantApplication }

that states, in natural language:

• “Being employed in a research position and having a qualifying diploma
implies being a researcher.”

• “Writing a research paper implies being a researcher.”
• “Being a doctor implies holding a PhD qualification.”
• “Being a professor is being a doctor employed at a (university) chair.”
• “Being a funds provider implies writing grant applications.”

The observation αa = Professor � Researcher, “Being a professor implies being
a researcher”, does not follow from Ta although it should. We can use TBox
abduction to find different ways of recovering this entailment.

Commonly, to avoid trivial answers, the user provides syntactic restrictions
on hypotheses, such as a set of abducible axioms to pick from [8,30], a set
of abducible predicates [25,26], or patterns on the shape of the solution [11].
But even with those restrictions in place, there may be many possible solutions
and, to find the ones with the best explanatory potential, syntactic criteria
are usually combined with minimality criteria such as subset minimality, size
minimality, or semantic minimality [7]. Even combined, these minimality criteria
still retain a major flaw. They allow for explanations that go against the principle
of parsimony, also known as Occam’s razor, in that they may contain concepts

190 F. Haifani et al.

that are completely unrelated to the problem at hands. As an illustration, let us
return to our academia example. The TBoxes

Ha1 = { Chair � ResearchPosition, PhD � Diploma} and
Ha2 = { Professor � FundsProvider, GrantApplication � ResearchPaper}

are two hypotheses solving the TBox abduction problem involving Ta and αa.
Both of them are subset-minimal, have the same size, and are incomparable w.r.t.
the entailment relation, so that traditional minimality criteria cannot distinguish
them. However, intuitively, the second hypothesis feels more arbitrary than the
first. Looking at Ha1, Chair and ResearchPosition occur in Ta in concept inclusions
where the concepts in αa also occur, and both PhD and Diploma are similarly
related to αa but via the role qualification. In contrast, Ha2 involves the concepts
FundsProvider and GrantApplication that are not related to αa in any way in
Ta. In fact, any random concept inclusion A � ∃writes.B in Ta would lead to
a hypothesis similar to Ha2 where A replaces FundsProvider and B replaces
GrantApplication. Such explanations are not parsimonious.

We introduce a new minimality criterion called connection minimality that
is parsimonious (Sect. 3), defined for the lightweight description logic EL. This
criterion characterizes hypotheses for T and α that connect the left- and right-
hand sides of the observation α without introducing spurious connections. To
achieve this, every left-hand side of a CI in the hypothesis must follow from
the left-hand side of α in T , and, taken together, all the right-hand sides of the
CIs in the hypothesis must imply the right-hand side of α in T , as is the case
for Ha1. To compute connection-minimal hypotheses in practice, we present a
technique based on first-order reasoning that proceeds in three steps (Sect. 4).
First, we translate the abduction problem into a first-order formula Φ. We then
compute the prime implicates of Φ, that is, a set of minimal logical consequences
of Φ that subsume all other consequences of Φ. In the final step, we construct,
based on those prime implicates, solutions to the original problem. We prove
that all hypotheses generated in this way satisfy the connection minimality cri-
terion, and that the method is complete for a relevant subclass of connection-
minimal hypotheses. We use the SPASS theorem prover [34] as a restricted SOS-
resolution [18,35] engine for the computation of prime implicates in a prototype
implementation (Sect. 5), and we present an experimental analysis of its perfor-
mances on a set of bio-medical ontologies.(Sect. 6). Our results indicate that our
method can in many cases be applied in practice to compute connection-minimal
hypotheses. A technical report companion of this paper includes all proofs as well
as a detailed example of our method as appendices [16].

There are not many techniques that can handle TBox abduction in EL or
more expressive DLs [11,26,33]. In [11], instead of a set of abducibles, a set
of justification patterns is given, in which the solutions have to fit. An arbi-
trary oracle function is used to decide whether a solution is admissible or not
(which may use abducibles, justification patterns, or something else), and it is
shown that deciding the existence of hypotheses is tractable. However, different
to our approach, they only consider atomic CIs in hypotheses, while we also

Abduction in EL via FOL 191

allow for hypotheses involving conjunction. The setting from [33] also considers
EL, and abduction under various minimality notions such as subset minimality
and size minimality. It presents practical algorithms, and an evaluation of an
implementation for an always-true informativeness oracle (i.e., limited to sub-
set minimality). Different to our approach, it uses an external DL reasoner to
decide entailment relationships. In contrast, we present an approach that directly
exploits first-order reasoning, and thus has the potential to be generalisable to
more expressive DLs.

While dedicated resolution calculi have been used before to solve abduction
in DLs [9,26], to the best of our knowledge, the only work that relies on first-
order reasoning for DL abduction is [24]. Similar to our approach, it uses SOS-
resolution, but to perform ABox adbuction for the more expressive DL ALC.
Apart from the different problem solved, in contrast to [24] we also provide a
semantic characterization of the hypotheses generated by our method. We believe
this characterization to be a major contribution of our paper. It provides an
intuition of what parsimony is for this problem, independently of one’s ease with
first-order logic calculi, which should facilitate the adoption of this minimality
criterion by the DL community. Thanks to this characterization, our technique
is calculus agnostic. Any method to compute prime implicates in first-order logic
can be a basis for our abduction technique, without additional theoretical work,
which is not the case for [24]. Thus, abduction in EL can benefit from the latest
advances in prime implicates generation in first-order logic.

2 Preliminaries

We first recall the descripton logic EL and its translation to first-order logic [2],
as well as TBox abduction in this logic.

Let NC and NR be pair-wise disjoint, countably infinite sets of unary predi-
cates called atomic concepts and of binary predicates called roles, respectively.
Generally, we use letters A, B, E, F ,... for atomic concepts, and r for roles,
possibly annotated. Letters C, D, possibly annotated, denote EL concepts, built
according to the syntax rule

C ::= � | A | C � C | ∃r.C .

We implicitly represent EL conjunctions as sets, that is, without order, nested
conjunctions, and multiple occurrences of a conjunct. We use

�{C1, . . . , Cm} to
abbreviate C1 � . . . � Cm, and identify the empty conjunction (m = 0) with �.
An EL TBox T is a finite set of concept inclusions (CIs) of the form C � D.

EL is a syntactic variant of a fragment of first-order logic that uses NC and NR

as predicates. Specifically, TBoxes T and CIs α correspond to closed first-order
formulas π(T) and π(α) resp., while concepts C correspond to open formulas
π(C, x) with a free variable x. In particular, we have

192 F. Haifani et al.

π(�, x) := true, π(∃r.C, x) := ∃y.(r(x, y) ∧ π(C, y)),
π(A, x) := A(x), π(C � D) := ∀x.(π(C, x) → π(D,x)),

π(C � D,x) := π(C, x) ∧ π(D,x), π(T) :=
∧

{π(α) | α ∈ T }.

As common, we often omit the
∧

in conjunctions
∧

Φ, that is, we identify sets
of formulas with the conjunction over those. The notions of a term t; an atom
P (t̄) where t̄ is a sequence of terms; a positive literal P (t̄); a negative literal
¬P (t̄); and a clause, Horn, definite, positive or negative, are defined as usual for
first-order logic, and so are entailment and satisfaction of first-order formulas.

We identify CIs and TBoxes with their translation into first-order logic, and
can thus speak of the entailment between formulas, CIs and TBoxes. When
T |= C � D for some T , we call C a subsumee of D and D a subsumer of C.
We adhere here to the definition of the word “subsume”: “to include or contain
something else”, although the terminology is reversed in first-order logic. We say
two TBoxes T1, T2 are equivalent, denoted T1 ≡ T2 iff T1 |= T2 and T2 |= T1. For
example {D � C1, . . . , D � Cn} ≡ {D � C1 � . . . � Cn}. It is well known that,
due to the absence of concept negation, every EL TBox is consistent.

The abduction problem we are concerned with in this paper is the following:

Definition 1. An EL TBox abduction problem (shortened to abduction prob-
lem) is a tuple 〈T ,Σ, C1 � C2〉, where T is a TBox called the background
knowledge, Σ is a set of atomic concepts called the abducible signature, and
C1 � C2 is a CI called the observation, s.t. T �|= C1 � C2. A solution to this
problem is a TBox

H ⊆ {A1 � · · · � An � B1 � · · · � Bm | {A1, . . . , An, B1, . . . , Bm} ⊆ Σ}

where m > 0, n ≥ 0 and such that T ∪ H |= C1 � C2 and, for all CIs α ∈ H,
T �|= α. A solution to an abduction problem is called a hypothesis.

For example, Ha1 and Ha2 are solutions for 〈Ta,Σ, αa〉, as long as Σ contains
all the atomic concepts that occur in them. Note that in our setting, as in [6,
33], concept inclusions in a hypothesis are flat, i.e., they contain no existential
role restrictions. While this restricts the solution space for a given problem,
it is possible to bypass this limitation in a targeted way, by introducing fresh
atomic concepts equivalent to a concept of interest. We exclude the consistency
requirement T ∪ H �|= ⊥, that is given in other definitions of DL abduction
problem [25], since EL TBoxes are always consistent. We also allow m > 1 instead
of the usual m = 1. This produces the same hypotheses modulo equivalence.

For simplicity, we assume in the following that the concepts C1 and C2 in the
abduction problem are atomic. We can always introduce fresh atomic concepts
A1 and A2 with A1 � C1 and C2 � A2 to solve the problem for complex concepts.

Common minimality criteria include subset minimality, size minimality and
semantic minimality, that respectively favor H over H′ if: H � H′; the number
of atomic concepts in H is smaller than in H′; and if H |= H′ but H′ �|= H.

Abduction in EL via FOL 193

3 Connection-Minimal Abduction

To address the lack of parsimony of common minimality criteria, illustrated
in the academia example, we introduce connection minimality, Intuitively, con-
nection minimality only accepts those hypotheses that ensure that every CI in
the hypothesis is connected to both C1 and C2 in T , as is the case for Ha1

in the academia example. The definition of connection minimality is based on
the following ideas: 1) Hypotheses for the abduction problem should create a
connection between C1 and C2, which can be seen as a concept D that satisfies
T ∪ H |= C1 � D, D � C2. 2) To ensure parsimony, we want this connection
to be based on concepts D1 and D2 for which we already have T |= C1 � D1,
D2 � C2. This prevents the introduction of unrelated concepts in the hypothe-
sis. Note however that D1 and D2 can be complex, thus the connection from C1

to D1 (resp. D2 to C2) can be established by arbitrarily long chains of concept
inclusions. 3) We additionally want to make sure that the connecting concepts
are not more complex than necessary, and that H only contains CIs that directly
connect parts of D2 to parts of D1 by closely following their structure.

To address point 1), we simply introduce connecting concepts formally.

Definition 2. Let C1 and C2 be concepts. A concept D connects C1 to C2 in T
if and only if T |= C1 � D and T |= D � C2.

Note that if T |= C1 � C2 then both C1 and C2 are connecting concepts from
C1 to C2, and if T �|= C1 � C2, the case of interest, neither of them are.

To address point 2), we must capture how a hypothesis creates the connec-
tion between the concepts C1 and C2. As argued above, this is established via
concepts D1 and D2 that satisfy T |= C1 � D1, D2 � C2. Note that having
only two concepts D1 and D2 is exactly what makes the approach parsimonious.
If there was only one concept, C1 and C2 would already be connected, and as
soon as there are more than two concepts, hypotheses start becoming more arbi-
trary: for a very simple example with unrelated concepts, assume given a TBox
that entails Lion � Felidae, Mammal � Animal and House � Building. A possible
hypothesis to explain Lion � Animal is {Felidae � House,Building � Mammal}
but this explanation is more arbitrary than {Felidae � Mammal}—as is the case
when comparing Ha2 with Ha1 in the academia example—because of the lack of
connection of House � Building with both Lion and Animal. Clearly this CI could
be replaced by any other CI entailed by T , which is what we want to avoid.

We can represent the structure of D1 and D2 in graphs by using EL descrip-
tion trees, originally from Baader et al. [3].

Definition 3. An EL description tree is a finite labeled tree T = (V,E, v0, l)
where V is a set of nodes with root v0 ∈ V , the nodes v ∈ V are labeled with
l(v) ⊆ NC, and the (directed) edges vrw ∈ E are such that v, w ∈ V and are
labeled with r ∈ NR.

Given a tree T = (V,E, v0, l) and v ∈ V , we denote by T(v) the subtree of T that
is rooted in v. If l(v0) = {A1, . . . , Ak} and v1, . . ., vn are all the children of v0, we

194 F. Haifani et al.

∅

Chair

employment

PhD

qualification

∅

ResearchPosition

employment

Diploma

qualification

Fig. 1. Description trees of D1 (left) and D2 (right).

can define the concept represented by T recursively using CT = A1 � . . . � Ak �
∃r1.CT(v1) � . . . � ∃rl.CT(vl) where for j ∈ {1, . . . , n}, v0rjvj ∈ E. Conversely,
we can define TC for a concept C = A1 � . . . � Ak � ∃r1.C1 � . . . � ∃rn.Cn

inductively based on the pairwise disjoint description trees TCi
= {Vi, Ei, vi, li},

i ∈ {1, . . . , n}. Specifically, TC = (VC , EC , vC , lC), where

VC = {v0} ∪ ⋃n
i=1 Vi, lC(v) = li(v) for v ∈ Vi,

EC = {v0rivi | 1 ≤ i ≤ n} ∪ ⋃n
i=1 Ei, lC(v0) = {A1, . . . , Ak}.

If T = ∅, then subsumption between EL concepts is characterized by the
existence of a homomorphism between the corresponding description trees [3].
We generalise this notion to also take the TBox into account.

Definition 4. Let T1 = (V1, E1, v0, l1) and T2 = (V2, E2, w0, l2) be two descrip-
tion trees and T a TBox. A mapping φ : V2 → V1 is a T -homomorphism from
T2 to T1 if and only if the following conditions are satisfied:

1. φ(w0) = v0

2. φ(v)rφ(w) ∈ E1 for all vrw ∈ E2

3. for every v ∈ V1 and w ∈ V2 with v = φ(w), T |= �
l1(v) � �

l2(w)

If only 1 and 2 are satisfied, then φ is called a weak homomorphism.

T -homomorphisms for a given TBox T capture subsumption w.r.t. T . If there
exists a T -homomorphism φ from T2 to T1, then T |= CT1 � CT2 . This can
be shown easily by structural induction using the definitions [16]. The weak
homomorphism is the structure on which a T -homomorphism can be built by
adding some hypothesis H to T . It is used to reveal missing links between a
subsumee D2 of C2 and a subsumer D1 of C1, that can be added using H.

Example 5. Consider the concepts

D1 = ∃employment.Chair � ∃qualification.PhD

D2 = ∃employment.ResearchPosition � ∃qualification.Diploma

from the academia example. Figure 1 illustrates description trees for D1 (left)
and D2 (right). The curved arrows show a weak homomorphism from TD2 to
TD1 that can be strengthened into a T -homomorphism for some TBox T that
corresponds to the set of CIs in Ha1 ∪ {� � �}. The figure can also be used to

Abduction in EL via FOL 195

illustrate what we mean by connection minimality: in order to create a connection
between D1 and D2, we should only add the CIs from Ha1 ∪ {� � �} unless
they are already entailed by Ta. In practice, this means the weak homomorphism
from D2 to D1 becomes a (Ta ∪ Ha1)-homomorphism.

To address point 3), we define a partial order �� on concepts, s.t. C �� D if
we can turn D into C by removing conjuncts in subexpressions, e.g., ∃r′.B ��
∃r.A � ∃r′.(B � B′). Formally, this is achieved by the following definition.

Definition 6. Let C and D be arbitrary concepts. Then C �� D if either:

• C = D,
• D = D′ � D′′, and C �� D′, or
• C = ∃r.C ′, D = ∃r.D′ and C ′ �� D′.

We can finally capture our ideas on connection minimality formally.

Definition 7 (Connection-Minimal Abduction). Given an abduction prob-
lem 〈T ,Σ, C1 � C2〉, a hypothesis H is connection-minimal if there exist concepts
D1 and D2 built over Σ ∪ NR and a mapping φ satisfying each of the following
conditions:

1. T |= C1 � D1,
2. D2 is a ��-minimal concept s.t. T |= D2 � C2,
3. φ is a weak homomorphism from the tree TD2 = (V2, E2, w0, l2) to the tree

TD1 = (V1, E1, v0, l1), and
4. H = {�

l1(φ(w)) � �
l2(w) | w ∈ V2 ∧ T �|= �

l1(φ(w)) � �
l2(w)}.

H is additionally called packed if the left-hand sides of the CIs in H cannot hold
more conjuncts than they do, which is formally stated as: for H, there is no H′

defined from the same D2 and a D′
1 and φ′ s.t. there is a node w ∈ V2 for which

l1(φ(w)) � l′1(φ
′(w)) and l1(φ(w′)) = l′1(φ

′(w′)) for w′ �= w.

Straightforward consequences of Definition 7 include that φ is a (T ∪ H)-
homomorphism from TD2 to TD1 and that D1 and D2 are connecting con-
cepts from C1 to C2 in T ∪ H so that T ∪ H |= C1 � C2 as wanted [16].
With the help of Fig. 1 and Example 5, one easily establishes that hypothe-
sis Ha1 is connection-minimal—and even packed. Connection-minimality rejects
Ha2, as a single T ′-homomorphism for some T ′ between two concepts D1 and
D2 would be insufficient: we would need two weak homomorphisms, one link-
ing Professor to FundsProvider and another linking ∃writes.GrantApplication to
∃writes.ResearchPaper.

4 Computing Connection-Minimal Hypotheses Using
Prime Implicates

To compute connection-minimal hypotheses in practice, we propose a method
based on first-order prime implicates, that can be derived by resolution. We

196 F. Haifani et al.

C1 � C2

T translation Φ PI generation

Σ

PIg+
Σ (Φ)

PIg−
Σ (Φ)

recombination S

Fig. 2. EL abduction using prime implicate generation in FOL.

assume the reader is familiar with the basics of first-order resolution, and do not
reintroduce notions of clauses, Skolemization and resolution inferences here (for
details, see [4]). In our context, every term is built on variables, denoted x, y,
a single constant sk0 and unary Skolem functions usually denoted sk, possibly
annotated. Prime implicates are defined as follows.

Definition 8 (Prime Implicate). Let Φ be a set of clauses. A clause ϕ is an
implicate of Φ if Φ |= ϕ. Moreover ϕ is prime if for any other implicate ϕ′ of Φ
s.t. ϕ′ |= ϕ, it also holds that ϕ |= ϕ′.

Let Σ ⊆ NC be a set of unary predicates. Then PIg+
Σ (Φ) denotes the set of

all positive ground prime implicates of Φ that only use predicate symbols from
Σ ∪ NR, while PIg−

Σ (Φ) denotes the set of all negative ground prime implicates
of Φ that only use predicates symbols from Σ ∪ NR.

Example 9. Given a set of clauses Φ = {A1(sk0),¬B1(sk0),¬A1(x)∨r(x, sk(x)),
¬A1(x) ∨ A2(sk(x)),¬B2(x) ∨ ¬r(x, y) ∨ ¬B3(y) ∨ B1(x)}, the ground prime
implicates of Φ for Σ = NC are, on the positive side, PIg+

Σ (Φ) = {A1(sk0),
A2(sk(sk0)), r(sk0, sk(sk0))} and, on the negative side, PIg−

Σ (Φ) = {¬B1(sk0),
¬B2(sk0)∨¬B3(sk(sk0))}. They are implicates because all of them are entailed
by Φ. For a ground implicate ϕ, another ground implicate ϕ′ such that ϕ′ |= ϕ
and ϕ �|= ϕ′ can only be obtained from ϕ by dropping literals. Such an operation
does not produce another implicate for any of the clauses presented above as
belonging to PIg+

Σ (Φ)and PIg−
Σ (Φ), thus they really are all prime.

To generate hypotheses, we translate the abduction problem into a set of first-
order clauses, from which we can infer prime implicates that we then combine to
obtain the result as illustrated in Fig. 2. In more details: We first translate the
problem into a set Φ of Horn clauses. Prime implicates can be computed using an
off-the-shelf tool [13,28] or, in our case, a slight extension of the resolution-based
version of the SPASS theorem prover [34] using the set-of-support strategy and
some added features described in Sect. 5. Since Φ is Horn, PIg+

Σ (Φ) contains
only unit clauses. A final recombination step looks at the clauses in PIg−

Σ (Φ)
one after the other. These correspond to candidates for the connecting concepts
D2 of Definition 7. Recombination attempts to match each literal in one such
clause with unit clauses from PIg+

Σ (Φ). If such a match is possible, it produces a

Abduction in EL via FOL 197

suitable D1 to match D2, and allows the creation of a solution to the abduction
problem. The set S contains all the hypotheses thus obtained.

In what follows, we present our translation of abduction problems into first-
order logic and formalize the construction of hypotheses from the prime impli-
cates of this translation. We then show how to obtain termination for the prime
implicate generation process with soundness and completeness guarantees on the
solutions computed.

Abduction Method. We assume the EL TBox in the input is in normal form
as defined, e.g., by Baader et al. [2]. Thus every CI is of one of the following
forms:

A � B A1 � A2 � B ∃r.A � B A � ∃r.B

where A, A1, A2, B ∈ NC ∪ {�}.
The use of normalization is justified by the following lemma.

Lemma 10. For every EL TBox T , we can compute in polynomial time an EL
TBox T ′ in normal form such that for every other TBox H and every CI C � D
that use only names occurring in T , we have T ∪H |= C � D iff T ′∪H |= C � D.

After the normalisation, we eliminate occurrences of �, replacing this concept
everywhere by the fresh atomic concept A�. We furthermore add ∃r.A� � A�
and B � A� in T for every role r and atomic concept B occurring in T . This
simulates the semantics of � for A�, namely the implicit property that C �
� holds for any C no matter what the TBox is. In particular, this ensures
that whenever there is a positive prime implicate B(t) or r(t, t′), A�(t) also
becomes a prime implicate. Note that normalisation and � elimination extend
the signature, and thus potentially the solution space of the abduction problem.
This is remedied by intersecting the set of abducible predicates Σ with the
signature of the original input ontology. We assume that T is in normal form
and without � in the rest of the paper.

We denote by T − the result of renaming all atomic concepts A in T using
fresh duplicate symbols A−. This renaming is done only on concepts but not on
roles, and on C2 but not on C1 in the observation. This ensures that the literals
in a clause of PIg−

Σ (Φ) all relate to the conjuncts of a ��-minimal subsumee of
C2. Without it, some of these conjuncts would not appear in the negative impli-
cates due to the presence of their positive counterparts as atoms in PIg+

Σ (Φ).
The translation of the abduction problem 〈T ,Σ, C1 � C2〉 is defined as the
Skolemization of

π(T � T −) ∧ ¬π(C1 � C−
2)

where sk0 is used as the unique fresh Skolem constant such that the Skolemiza-
tion of ¬π(C1 � C−

2) results in {C1(sk0),¬C−
2 (sk0)}. This translation is usually

denoted Φ and always considered in clausal normal form.

Theorem 11. Let 〈T ,Σ, C1 � C2〉 be an abduction problem and Φ be its first-
order translation. Then, a TBox H′ is a packed connection-minimal solution to
the problem if and only if an equivalent hypothesis H can be constructed from
non-empty sets A and B of atoms verifying:

198 F. Haifani et al.

• B = {B1(t1), . . . , Bm(tm)} s.t.
(¬B−

1 (t1) ∨ · · · ∨ ¬B−
m(tm)

) ∈ PIg−
Σ (Φ),

• for all t ∈ {t1, . . . , tm} there exists an A s.t. A(t) ∈ PIg+
Σ (Φ),

• A = {A(t) ∈ PIg+
Σ (Φ) | t is one of t1, . . . , tm}, and

• H = {CA,t � CB,t | t is one of t1, . . . , tm and CB,t ��� CA,t}, where CA,t =�
A(t)∈A A and CB,t =

�
B(t)∈B B.

We call the hypotheses that are constructed as in Theorem 11 constructible. This
theorem states that every packed connection-minimal hypothesis is equivalent
to a constructible hypothesis and vice versa. A constructible hypothesis is built
from the concepts in one negative prime implicate in PIg−

Σ (Φ) and all matching
concepts from prime implicates in PIg+

Σ (Φ). The matching itself is determined by
the Skolem terms that occur in all these clauses. The subterm relation between
the terms of the clauses in PIg+

Σ (Φ) and PIg−
Σ (Φ) is the same as the ancestor

relation in the description trees of subsumers of C1 and subsumees of C2 respec-
tively. The terms matching in positive and negative prime implicates allow us
to identify where the missing entailments between a subsumer D1 of C1 and a
subsumee D2 of C2 are. These missing entailments become the constructible H.
The condition CB,t ��� CA,t is a way to write that CA,t � CB,t is not a tautology,
which can be tested by subset inclusion.

The formal proof of this result is detailed in the technical report [16]. We
sketch it briefly here. To start, we link the subsumers of C1 with PIg+

Σ (Φ). This
is done at the semantics level: We show that all Herbrand models of Φ, i.e.,
models built on the symbols in Φ, are also models of PIg+

Σ (Φ), that is itself such
a model. Then we show that C1(sk0) as well as the formulas corresponding to
the subsumers of C1 in our translation are satisfied by all Herbrand models. This
follows from the fact that Φ is in fact a set of Horn clauses. Next, we show, using
a similar technique, how duplicate negative ground implicates, not necessarily
prime, relate to subsumees of C2, with the restriction that there must exist a
weak homomorphism from a description tree of a subsumer of C1 to a description
tree of the considered subsumee of C2. Thus, H provides the missing CIs that
will turn the weak homomorphism into a (T ∪ H)-homomorphism. Then, we
establish an equivalence between the ��-minimality of the subsumee of C2 and
the primality of the corresponding negative implicate. Packability is the last
aspect we deal with, whose use is purely limited to the reconstruction. It holds
because A contains all A(t) ∈ PIg+

Σ (Φ) for all terms t occurring in B.

Example 12. Consider the abduction problem 〈Ta,Σ, αa〉 where Σ contains all
concepts from Ta. For the translation Φ of this problem, we have

PIg+
Σ (Φ) = {Professor(sk0), Doctor(sk0), Chair(sk1(sk0)), PhD(sk2(sk0))}

PIg−
Σ (Φ) = {¬Researcher−(sk0),

¬ResearchPosition−(sk1(sk0)) ∨ ¬Diploma−(sk2(sk0))}
where sk1 is the Skolem function introduced for Professor � ∃employment.Chair
and sk2 is introduced for Doctor � ∃qualification.PhD. This leads to two con-
structible solutions: {Professor � Doctor � Researcher} and Ha1, that are both

Abduction in EL via FOL 199

packed connection-minimal hypotheses if Σ = NC. Another example is presented
in full details in the technical report [16].

Termination. If T contains cycles, there can be infinitely many prime impli-
cates. For example, for T = {C1 � A,A � ∃r.A,∃r.B � B,B � C2} both the
positive and negative ground prime implicates of Φ are unbounded even though
the set of constructible hypotheses is finite (as it is for any abduction problem):

PIg+
Σ (Φ) = {C1(sk0), A(sk0), A(sk(sk0)), A(sk(sk(sk0))), . . .},

PIg−
Σ (Φ) = {¬C−

2 (sk0),¬B−(sk0),¬B−(sk(sk0)), . . .}.

To find all constructible hypotheses of an abduction problem, an approach that
simply computes all prime implicates of Φ, e.g., using the standard resolution
calculus, will never terminate on cyclic problems. However, if we look only
for subset-minimal constructible hypotheses, termination can be achieved for
cyclic and non-cyclic problems alike, because it is possible to construct all such
hypotheses from prime implicates that have a polynomially bounded term depth,
as shown below. To obtain this bound, we consider resolution derivations of the
ground prime implicates and we show that they can be done under some restric-
tions that imply this bound.

Before performing resolution, we compute the presaturation Φp of the set of
clauses Φ, defined as

Φp = Φ ∪ {¬A(x) ∨ B(x) | Φ |= ¬A(x) ∨ B(x)}
where A and B are either both original or both duplicate atomic concepts. The
presaturation can be efficiently computed before the translation, using a modern
EL reasoner such as Elk [23], which is highly optimized towards the computation
of all entailments of the form A � B. While the presaturation computes nothing
a resolution procedure could not derive, it is what allows us to bind the maximal
depth of terms in inferences to that in prime implicates. If Φp is presaturated,
we do not need to perform inferences that produce Skolem terms of a higher
nesting depth than what is needed for the prime implicates.

Starting from the presaturated set Φp, we can show that all the relevant
prime implicates can be computed if we restrict all inferences to those where

R1 at least one premise contains a ground term,
R2 the resolvent contains at most one variable, and
R3 every literal in the resolvent contains Skolem terms of nesting depth at most

n×m, where n is the number of atomic concepts in Φ, and m is the number
of occurrences of existential role restrictions in T .

The first restriction turns the derivation of PIg+
Σ (Φ) and PIg−

Σ (Φ) into an SOS-
resolution derivation [18] with set of support {C1(sk0), C−

2 (sk0)}, i.e., the only
two clauses with ground terms in Φ. This restriction is a straightforward conse-
quence of our interest in computing only ground implicates, and of the fact that
the non-ground clauses in Φ cannot entail the empty clause since every EL TBox
is consistent. The other restrictions are consequences of the following theorems,
whose proofs are available in the technical report [16].

200 F. Haifani et al.

Theorem 13. Given an abduction problem and its translation Φ, every con-
structible hypothesis can be built from prime implicates that are inferred under
restriction 4.

In fact, for PIg+
Σ (Φ) it is even possible to restrict inferences to generating only

ground resolvents, as can be seen in the proof of Theorem 13, that directly looks
at the kinds of clauses that are derivable by resolution from Φ.

Theorem 14. Given an abduction problem and its translation Φ, every subset-
minimal constructible hypothesis can be built from prime implicates that have a
nesting depth of at most n × m, where n is the number of atomic concepts in Φ,
and m is the number of occurrences of existential role restrictions in T .

The proof of Theorem 14 is based on a structure called a solution tree, which
resembles a description tree, but with multiple labeling functions. It assigns to
each node a Skolem term, a set of atomic concepts called positive label, and a
single atomic concept called negative label. The nodes correspond to matching
partners in a constructible hypothesis: The Skolem term is the term on which
we match literals. The positive label collects the atomic concepts in the positive
prime implicates containing that term. The maximal anti-chains of the tree,
i.e., the maximal subsets of nodes s.t. no node is the ancestor of another are
such that their negative labels correspond to the literals in a derivable negative
implicate. For every solution tree, the Skolem labels and negative labels of the
leaves determine a negative prime implicate, and by combining the positive and
negative labels of these leaves, we obtain a constructible hypothesis, called the
solution of the tree. We show that from every solution tree with solution H we
can obtain a solution tree with solution H′ ⊆ H s.t. on no path, there are two
nodes that agree both on the head of their Skolem labeling and on the negative
label. Furthermore the number of head functions of Skolem labels is bounded by
the total number n of Skolem functions, while the number of distinct negative
labels is bounded by the number m of atomic concepts, bounding the depth of
the solution tree for H′ at n × m. This justifies the bound in Theorem14. This
bound is rather loose. For the academia example, it is equal to 22 × 6 = 132.

5 Implementation

We implemented our method to compute all subset-minimal constructible
hypotheses in the tool CAPI.3 To compute the prime implicates, we used SPASS
[34], a first-order theorem prover that includes resolution among other calculi.
We implemented everything before and after the prime implicate computation in
Java, including the parsing of ontologies, preprocessing (detailed below), clausifi-
cation of the abduction problems, translation to SPASS input, as well as the pars-
ing and processing of the output of SPASS to build the constructible hypotheses
and filter out the non-subset-minimal ones. On the Java side, we used the OWL
API for all DL-related functionalities [20], and the EL reasoner Elk for comput-
ing the presaturations [23].
3 available under https://lat.inf.tu-dresden.de/∼koopmann/CAPI.

https://lat.inf.tu-dresden.de/~koopmann/CAPI

Abduction in EL via FOL 201

Preprocessing. Since realistic TBoxes can be too large to be processed by SPASS,
we replace the background knowledge in the abduction problem by a subset of
axioms relevant to the abduction problem. Specifically, we replace the abduction
problem (T ,Σ, C1 � C2) by the abduction problem (M⊥

C1
∪ M�

C2
,Σ, C1 � C2),

where M⊥
C1

is the ⊥-module of T for the signature of C1, and M�
C2

is the �-
module of T for the signature of C2 [15]. Those notions are explained in the
technical report [16]. Their relevant properties are that M⊥

C1
is a subset of T

s.t. M⊥
C1

|= C1 � D iff T |= C1 � D for all concepts D, while M�
C2

is a subset
of T that ensures M�

C2
|= D � C2 iff T |= D � C2 for all concepts D. It

immediately follows that every connection-minimal hypothesis for the original
problem (T ,Σ, C1 � C2) is also a connection-minimal hypothesis for (M⊥

C1
∪

M�
C2

,Σ, C1 � C2). For the presaturation, we compute with Elk all CIs of the
form A � B s.t. M⊥

C1
∪ M�

C2
|= A � B.

Prime implicates generation. We rely on a slightly modified version of SPASS
v3.9 to compute all ground prime implicates. In particular, we added the possi-
bility to limit the number of variables allowed in the resolvents to enforce R2.
For each of the restrictions R1–R3 there is a corresponding flag (or set of flags)
that is passed to SPASS as an argument.

Recombination. The construction of hypotheses from the prime implicates found
in the previous stage starts with a straightforward process of matching negative
prime implicates with a set of positive ones based on their Skolem terms. It is
followed by subset minimality tests to discard non-subset-minimal hypotheses,
since, with the bound we enforce, there is no guarantee that these are valid
constructible hypotheses because the negative ground implicates they are built
upon may not be prime. If SPASS terminates due to a timeout instead of reaching
the bound, then it is possible that some subset-minimal constructible hypotheses
are not found, and thus, some non-constructible hypotheses may be kept. Note
that these are in any case solutions to the abduction problem.

6 Experiments

There is no benchmark suite dedicated to TBox abduction in EL, so we created
our own, using realistic ontologies from the bio-medical domain. For this, we used
ontologies from the 2017 snapshot of Bioportal [27]. We restricted each ontol-
ogy to its EL fragment by filtering out unsupported axioms, where we replaced
domain axioms and n-ary equivalence axioms in the usual way [2]. Note that,
even if the ontology contains more expressive axioms, an EL hypothesis is still
useful if found. From the resulting set of TBoxes, we selected those contain-
ing at least 1 and at most 50,000 axioms, resulting in a set of 387 EL TBoxes.
Precisely, they contained between 2 and 46,429 axioms, for an average of 3,039
and a median of 569. Towards obtaining realistic benchmarks, we created three
different categories of abduction problems for each ontology T , where in each
case, we used the signature of the entire ontology for Σ.

202 F. Haifani et al.

• Problems in ORIGIN use T as background knowledge, and as observation a
randomly chosen A � B s.t. A and B are in the signature of T and T �|= A �
B. This covers the basic requirements of an abduction problem, but has the
disadvantage that A and B can be completely unrelated in T .

• Problems in JUSTIF contain as observation a randomly selected CI α s.t., for
the original TBox, T |= α and α �∈ T . The background knowledge used is a
justification for α in T [32], that is, a minimal subset I ⊆ T s.t. I �|= α, from
which a randomly selected axiom is removed. The TBox is thus a smaller set
of axioms extracted from a real ontology for which we know there is a way of
producing the required entailment without adding it explicitly. Justifications
were computed using functionalities of the OWL API and Elk.

• Problems in REPAIR contain as observation a randomly selected CI α s.t.
T |= α, and as background knowledge a repair for α in T , which is a maximal
subset R ⊆ T s.t. R �|= α. Repairs were computed using a justification-
based algorithm [32] with justifications computed as for JUSTIF. This usually
resulted in much larger TBoxes, where more axioms would be needed to
establish the entailment.

All experiments were run on Debian Linux (Intel Core i5-4590, 3.30 GHz,
23 GB Java heap size). The code and scripts used in the experiments are available
online [17]. The three phases of the method (see Fig. 2) were each assigned a
hard time limit of 90 s.

For each ontology, we attempted to create and translate 5 abduction prob-
lems of each category. This failed on some ontologies because either there was
no corresponding entailment (25/28/25 failures out of the 387 ontologies for
ORIGIN/JUSTIF/REPAIR), there was a timeout during the translation (5/5/5
failures for ORIGIN/JUSTIF/REPAIR), or because the computation of justifica-
tions caused an exception (-/2/0 failures for ORIGIN/JUSTIF/REPAIR). The final
number of abduction problems for each category is in the first column of Table 1.

We then attempted to compute prime implicates for these benchmarks using
SPASS. In addition to the hard time limit, we gave a soft time limit of 30 s to
SPASS, after which it should stop exploring the search space and return the
implicates already found. In Table 1 we show, for each category, the percentage
of problems on which SPASS succeeded in computing a non-empty set of clauses
(Success) and the percentage of problems on which SPASS terminated within the
time limit, where all solutions are computed (Compl.). The high number of CIs
in the background knowledge explains most of the cases where SPASS reached
the soft time limit. In a lot of these cases, the bound on the term depth goes
into the billion, rendering it useless in practice. However, the “Compl.” column
shows that the bound is reached before the soft time limit in most cases.

The reconstruction never reached the hard time limit. We measured the
median, average and maximal number of solutions found (#H), size of solu-
tions in number of CIs (|H|), size of CIs from solutions in number of atomic
concepts (|α|), and SPASS runtime (time, in seconds), all reported in Table 1.
Except for the simple JUSTIF problems, the number of solutions may become
very large. At the same time, solutions always contain very few axioms (never

Abduction in EL via FOL 203

Table 1. Evaluation results.

Median / avg / max

#Probl. Success Compl. #H |H| |α| Time (s.)

ORIGIN 1,925 94.7% 61.3% 1/8.51/1850 1/1.00/2 6/7.48/91 0.2/12.4/43.8

JUSTIF 1,803 100.0% 97.2% 1/1.50/5 1/1/1 2/4.21/32 0.2/1.1/34.1

REPAIR 1,805 92.9% 57.0% 43/228.05/6317 1/1.00/2 5/5.09/49 0.6/13.6/59.9

more than 3), though the axioms become large too. We also noticed that highly
nested Skolem terms rarely lead to more hypotheses being found: 8/1/15 for
ORIGIN/JUSTIF/REPAIR, and the largest nesting depth used was: 3/1/2 for
ORIGIN/JUSTIF/REPAIR. This hints at the fact that longer time limits would not
have produced more solutions, and motivates future research into redundancy
criteria to stop derivations (much) earlier.

7 Conclusion

We have introduced connection-minimal TBox abduction for EL which finds
parsimonious hypotheses, ruling out the ones that entail the observation in an
arbitrary fashion. We have established a formal link between the generation of
connection-minimal hypotheses in EL and the generation of prime implicates of
a translation Φ of the problem to first-order logic. In addition to obtaining these
theoretical results, we developed a prototype for the computation of subset-
minimal constructible hypotheses, a subclass of connection-minimal hypotheses
that is easy to construct from the prime implicates of Φ. Our prototype uses
the SPASS theorem prover as an SOS-resolution engine to generate the needed
implicates. We tested this tool on a set of realistic medical ontologies, and the
results indicate that the cost of computing connection-minimal hypotheses is
high but not prohibitive.

We see several ways to improve our technique. The bound we computed to
ensure termination could be advantageously replaced by a redundancy criterion
discarding irrelevant implicates long before it is reached, thus greatly speeding
computation in SPASS. We believe it should also be possible to further constrain
inferences, e.g., to have them produce ground clauses only, or to generate the
prime implicates with terms of increasing depth in a controlled incremental way
instead of enforcing the soft time limit, but these two ideas remain to be proved
feasible. As an alternative to using prime implicates, one may investigate direct
method for computing connection-minimal hypotheses in EL.

The theoretical worst-case complexity of connection-minimal abduction is
another open question. Our method only gives a very high upper bound: by
bounding only the nesting dept of Skolem terms polynomially as we did with
Theorem 13, we may still permit clauses with exponentially many literals, and
thus double exponentially many clauses in the worst case, which would give us
an 2ExpTime upper bound to the problem of computing all subset-minimal con-
structible hypotheses. Using structure-sharing and guessing, it is likely possible

204 F. Haifani et al.

to get a lower bound. We have not looked yet at lower bounds for the complexity
either.

While this work focuses on abduction problems where the observation is a CI,
we believe that our technique can be generalised to knowledge that also contains
ground facts (ABoxes), and to observations that are of the form of conjunctive
queries on the ABoxes in such knowledge bases. The motivation for such an
extension is to understand why a particular query does not return any results,
and to compute a set of TBox axioms that fix this problem. Since our translation
already transforms the observation into ground facts, it should be possible to
extend it to this setting. We would also like to generalize TBox abduction by
finding a reasonable way to allow role restrictions in the hypotheses, and to
extend connection-minimality to more expressive DLs such as ALC.

Acknowledgments. This work was supported by the Deutsche Forschungsgemein-
schaft (DFG), Grant 389792660 within TRR 248.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L.P.,
Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, Edinburgh, Scotland, UK, 30 July - 5 August
2005, pp. 364–369. Professional Book Center (2005). http://ijcai.org/Proceedings/
05/Papers/0372.pdf

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/
9781139025355

3. Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in
description logics with existential restrictions. In: Proceedings of IJCAI 1999, pp.
96–103. Morgan Kaufmann (1999)

4. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 19–
99. Elsevier and MIT Press, Cambridge (2001). https://doi.org/10.1016/b978-
044450813-3/50004-7

5. Bauer, J., Sattler, U., Parsia, B.: Explaining by example: model exploration for
ontology comprehension. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.)
Proceedings of the 22nd International Workshop on Description Logics (DL 2009),
Oxford, UK, 27–30 July 2009. CEUR Workshop Proceedings, vol. 477. CEUR-
WS.org (2009). http://ceur-ws.org/Vol-477/paper 37.pdf

6. Bienvenu, M.: Complexity of abduction in the EL family of lightweight description
logics. In: Proceedings of KR 2008, pp. 220–230. AAAI Press (2008), http://www.
aaai.org/Library/KR/2008/kr08-022.php

7. Calvanese, D., Ortiz, M., Simkus, M., Stefanoni, G.: Reasoning about explanations
for negative query answers in DL-Lite. J. Artif. Intell. Res. 48, 635–669 (2013).
https://doi.org/10.1613/jair.3870

8. Ceylan, İ.İ., Lukasiewicz, T., Malizia, E., Molinaro, C., Vaicenavicius, A.: Explana-
tions for negative query answers under existential rules. In: Calvanese, D., Erdem,
E., Thielscher, M. (eds.) Proceedings of KR 2020, pp. 223–232. AAAI Press (2020).
https://doi.org/10.24963/kr.2020/23

http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1016/b978-044450813-3/50004-7
http://ceur-ws.org/Vol-477/paper_37.pdf
http://www.aaai.org/Library/KR/2008/kr08-022.php
http://www.aaai.org/Library/KR/2008/kr08-022.php
https://doi.org/10.1613/jair.3870
https://doi.org/10.24963/kr.2020/23

Abduction in EL via FOL 205

9. Del-Pinto, W., Schmidt, R.A.: ABox abduction via forgetting in ALC. In: The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, pp. 2768–
2775. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33012768

10. Du, J., Qi, G., Shen, Y., Pan, J.Z.: Towards practical ABox abduction in large
description logic ontologies. Int. J. Semantic Web Inf. Syst. 8(2), 1–33 (2012).
https://doi.org/10.4018/jswis.2012040101

11. Du, J., Wan, H., Ma, H.: Practical TBox abduction based on justification pat-
terns. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, pp. 1100–1106 (2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/
paper/view/14402

12. Du, J., Wang, K., Shen, Y.: A tractable approach to ABox abduction over descrip-
tion logic ontologies. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, pp. 1034–1040. AAAI Press
(2014). http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8191

13. Echenim, M., Peltier, N., Sellami, Y.: A generic framework for implicate generation
modulo theories. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018.
LNCS (LNAI), vol. 10900, pp. 279–294. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94205-6 19

14. Elsenbroich, C., Kutz, O., Sattler, U.: A case for abductive reasoning over ontolo-
gies. In: Proceedings of the OWLED’06 Workshop on OWL: Experiences and Direc-
tions (2006). http://ceur-ws.org/Vol-216/submission 25.pdf

15. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
theory and practice. J. Artif. Intell. Res. 31, 273–318 (2008). https://doi.org/10.
1613/jair.2375

16. Haifani, F., Koopmann, P., Tourret, S., Weidenbach, C.: Connection-minimal
abduction in EL via translation to FOL - technical report (2022). https://doi.
org/10.48550/ARXIV.2205.08449, https://arxiv.org/abs/2205.08449

17. Haifani, F., Koopmann, P., Tourret, S., Weidenbach, C.: Experiment data for the
paper Connection-minimal Abduction in EL via translation to FOL, May 2022.
https://doi.org/10.5281/zenodo.6563656

18. Haifani, F., Tourret, S., Weidenbach, C.: Generalized completeness for SOS reso-
lution and its application to a new notion of relevance. In: Platzer, A., Sutcliffe,
G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 327–343. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79876-5 19

19. Halland, K., Britz, K.: ABox abduction in ALC using a DL tableau. In: 2012 South
African Institute of Computer Scientists and Information Technologists Confer-
ence, SAICSIT ’12, pp. 51–58 (2012). https://doi.org/10.1145/2389836.2389843

20. Horridge, M., Bechhofer, S.: The OWL API: a java API for OWL ontologies.
Semant. Web 2(1), 11–21 (2011). https://doi.org/10.3233/SW-2011-0025

21. Horridge, M., Parsia, B., Sattler, U.: Explanation of OWL entailments in protege
4. In: Bizer, C., Joshi, A. (eds.) Proceedings of the Poster and Demonstration
Session at the 7th International Semantic Web Conference (ISWC2008), Karlsruhe,
Germany, 28 October 2008. CEUR Workshop Proceedings, vol. 401. CEUR-WS.org
(2008). http://ceur-ws.org/Vol-401/iswc2008pd submission 47.pdf

22. Kazakov, Y., Klinov, P., Stupnikov, A.: Towards reusable explanation services in
protege. In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Proceedings of the 30th
International Workshop on Description Logics, Montpellier, France, 18–21 July
2017. CEUR Workshop Proceedings, vol. 1879. CEUR-WS.org (2017). http://ceur-
ws.org/Vol-1879/paper31.pdf

https://doi.org/10.1609/aaai.v33i01.33012768
https://doi.org/10.4018/jswis.2012040101
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14402
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14402
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8191
https://doi.org/10.1007/978-3-319-94205-6_19
https://doi.org/10.1007/978-3-319-94205-6_19
http://ceur-ws.org/Vol-216/submission_25.pdf
https://doi.org/10.1613/jair.2375
https://doi.org/10.1613/jair.2375
https://doi.org/10.48550/ARXIV.2205.08449
https://doi.org/10.48550/ARXIV.2205.08449
https://arxiv.org/abs/2205.08449
https://doi.org/10.5281/zenodo.6563656
https://doi.org/10.1007/978-3-030-79876-5_19
https://doi.org/10.1145/2389836.2389843
https://doi.org/10.3233/SW-2011-0025
http://ceur-ws.org/Vol-401/iswc2008pd_submission_47.pdf
http://ceur-ws.org/Vol-1879/paper31.pdf
http://ceur-ws.org/Vol-1879/paper31.pdf

206 F. Haifani et al.

23. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial
procedures to efficient reasoning with EL ontologies. J. Autom. Reason. 53(1),
1–61 (2014). https://doi.org/10.1007/s10817-013-9296-3

24. Klarman, S., Endriss, U., Schlobach, S.: ABox abduction in the description logic
ALC. J. Autom. Reason. 46(1), 43–80 (2011). https://doi.org/10.1007/s10817-010-
9168-z

25. Koopmann, P.: Signature-based abduction with fresh individuals and complex
concepts for description logics. In: Zhou, Z. (ed.) Proceedings of the Thirti-
eth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual
Event/Montreal, Canada, 19–27 August 2021, pp. 1929–1935 (2021). https://doi.
org/10.24963/ijcai.2021/266

26. Koopmann, P., Del-Pinto, W., Tourret, S., Schmidt, R.A.: Signature-based abduc-
tion for expressive description logics. In: Calvanese, D., Erdem, E., Thielscher, M.
(eds.) Proceedings of the 17th International Conference on Principles of Knowl-
edge Representation and Reasoning, KR 2020, pp. 592–602. AAAI Press (2020).
https://doi.org/10.24963/kr.2020/59

27. Matentzoglu, N., Parsia, B.: Bioportal snapshot 30.03.2017 (2017). https://doi.
org/10.5281/zenodo.439510

28. Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: SOLAR: an automated deduction
system for consequence finding. AI Commun. 23(2–3), 183–203 (2010). https://doi.
org/10.3233/AIC-2010-0465

29. Parsia, B., Matentzoglu, N., Gonçalves, R.S., Glimm, B., Steigmiller, A.: The owl
reasoner evaluation (ORE) 2015 competition report. J. Autom. Reason. 59(4),
455–482 (2017). https://doi.org/10.1007/s10817-017-9406-8

30. Pukancová, J., Homola, M.: Tableau-based ABox abduction for the ALCHO
description logic. In: Proceedings of the 30th International Workshop on Descrip-
tion Logics (2017). http://ceur-ws.org/Vol-1879/paper11.pdf

31. Pukancová, J., Homola, M.: The AAA Abox abduction solver. KI - Künstliche
Intell. 34(4), 517–522 (2020). https://doi.org/10.1007/s13218-020-00685-4

32. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging
of description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence (IJCAI
2003), pp. 355–362. Morgan Kaufmann, Acapulco, Mexico (2003). http://ijcai.
org/Proceedings/03/Papers/053.pdf

33. Wei-Kleiner, F., Dragisic, Z., Lambrix, P.: Abduction framework for repairing
incomplete EL ontologies: complexity results and algorithms. In: Proceedings of
the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp. 1120–1127.
AAAI Press (2014). http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/
view/8239

34. Weidenbach, C., Schmidt, R.A., Hillenbrand, T., Rusev, R., Topic, D.: System
description: Spass version 3.0. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 514–520. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73595-3 38

35. Wos, L., Robinson, G., Carson, D.: Efficiency and completeness of the set of support
strategy in theorem proving. J. ACM 12(4), 536–541 (1965)

https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1007/s10817-010-9168-z
https://doi.org/10.1007/s10817-010-9168-z
https://doi.org/10.24963/ijcai.2021/266
https://doi.org/10.24963/ijcai.2021/266
https://doi.org/10.24963/kr.2020/59
https://doi.org/10.5281/zenodo.439510
https://doi.org/10.5281/zenodo.439510
https://doi.org/10.3233/AIC-2010-0465
https://doi.org/10.3233/AIC-2010-0465
https://doi.org/10.1007/s10817-017-9406-8
http://ceur-ws.org/Vol-1879/paper11.pdf
https://doi.org/10.1007/s13218-020-00685-4
http://ijcai.org/Proceedings/03/Papers/053.pdf
http://ijcai.org/Proceedings/03/Papers/053.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8239
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8239
https://doi.org/10.1007/978-3-540-73595-3_38
https://doi.org/10.1007/978-3-540-73595-3_38

Abduction in EL via FOL 207

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Semantic Relevance

Fajar Haifani1,2 and Christoph Weidenbach1(B)

1 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany

{f.haifani,weidenbach}@mpi-inf.mpg.de
2 Graduate School of Computer Science, Saarbrücken, Germany

Abstract. A clause C is syntactically relevant in some clause set N ,
if it occurs in every refutation of N . A clause C is syntactically semi-
relevant, if it occurs in some refutation of N . While syntactic relevance
coincides with satisfiability (if C is syntactically relevant then N \ {C}
is satisfiable), the semantic counterpart for syntactic semi-relevance was
not known so far. Using the new notion of a conflict literal we show that
for independent clause sets N a clause C is syntactically semi-relevant
in the clause set N if and only if it adds to the number of conflict literals
in N . A clause set is independent, if no clause out of the clause set is the
consequence of different clauses from the clause set.

Furthermore, we relate the notion of relevance to that of a minimally
unsatisfiable subset (MUS) of some independent clause set N . In proposi-
tional logic, a clause C is relevant if it occurs in all MUSes of some clause
set N and semi-relevant if it occurs in some MUS. For first-order logic
the characterization needs to be refined with respect to ground instances
of N and C.

1 Introduction

In our previous work [11], we introduced a notion of syntactic relevance based
on refutations while at the same time generalized the completeness result for
resolution by the set-of-support strategy (SOS) [28,33] as its test. Our notion of
syntactic relevance is useful for explaining why a set of clauses is unsatisfiable.
In this paper, we introduce a semantic counterpart of syntactic relevance that
sheds further light on the relationship between a clause out of a clause set and
the potential refutations of this clause set. In the following Sect. 1.1, we first
recall syntactic relevance along with an example and then proceeds to explain it
in terms of our new semantic relevance in the later Sect. 1.2.

1.1 Syntactic Relevance

Given an unsatisfiable set of clauses N , C ∈ N is syntactically relevant if it occurs
in all refutations, it is syntactically semi-relevant if it occurs in some refutation,
otherwise it is called syntactically irrelevant. The clause-based notion of relevance
is useful in relating the contribution of a clause to refutation (goal conjecture).

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 208–227, 2022.
https://doi.org/10.1007/978-3-031-10769-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_13&domain=pdf
http://orcid.org/0000-0001-5139-4503
http://orcid.org/0000-0001-6002-0458
https://doi.org/10.1007/978-3-031-10769-6_13

Semantic Relevance 209

This has in particular been shown in the context of product scenarios built out
of construction kits as they are used in the car industry [8,32].

For an illustration of our privous notions and results we now consider the
following unsatisfiable first-order clause set N where Fig. 1 presents a refutation
of N .

N = {(1)A(f(a)) ∨ D(x3),
(2)¬D(x7),
(3)¬B(c,a) ∨ B(b,f(x6)),
(4)B(x1,x2) ∨ C(x1),
(5)¬C(x5),
(6)¬A(x4) ∨ ¬B(b,x4)}

(11) ⊥

(10) C(c)

(8) ¬B(b,f(a))

(6) ¬A(x4) ∨ ¬B(b,x4)(7) A(f(a))

(1) A(f(a)) ∨ D(x3)(2) ¬D(x7)

(9) B(b,f(x6)) ∨ C(c)

(4) B(x1,x2) ∨ C(x1)(3) ¬B(c,a) ∨ B(b,f(x6))

(5) ¬C(x5)

{x4 �→ f(a)}

{x3 �→ x7}

{x6 �→ a}

{x1 �→ c, x2 �→ a}

{x5 �→ c}

Fig. 1. A refutation of N in tree representation

In essence, inferences in an SOS refutation always involve at least one
clause in the SOS and put the resulting clause back in it. So, this refu-
tation is not an SOS refutation from the syntactically semi-relevant clause
(3)¬B(c,a) ∨ B(b,f(x6)), because only the shaded part represents an SOS
refutation starting with this clause. More specifically, there are two infer-
ences ended in (8)¬B(b,f(a)) which violates the condition for an SOS refu-
taiton. Nevertheless, it can be transformed into an SOS refutation where the
clause (3)¬B(c,a) ∨ B(b,f(x6)) is in the SOS [11], Fig. 2. Please note that
N \ {(3)¬B(c, a) ∨ B(b, f(x6))} is still unsatisfiable and classical SOS complete-
ness [33] is not sufficient to guarantee the existence of a refutation with SOS
{(3)¬B(c,a) ∨ B(b,f(x6))} [11].

In addition, N \ {(3)¬B(c, a) ∨ B(b, f(x6))} is also a minimally unsatisfi-
able subset (MUS), where Fig. 3 presents a respective refutation. A MUS is an
unsatisfiable clause set such that removing a clause from this set would ren-
der it satisfiable. Consequently, a MUS-based defined notion of semi-relevance
on the level of the original first-order clauses is not sufficient here. The clause

210 F. Haifani and C. Weidenbach

(11) ⊥

(10) C(c)

(8’) D(x3) ∨ C(c)

(1) A(f(a)) ∨ D(x3)(7’) ¬A(f(x6) ∨ C(c))

(6) ¬A(x4) ∨ ¬B(b,x4)(9) B(b,f(x6)) ∨ C(c)

(4) B(x1,x2) ∨ C(x1)(3) ¬B(c,a) ∨ B(b,f(x6))

(2) ¬D(x7)

(5) ¬C(x5)
{x3 �→ x7}

{x6 �→ a}

{x4 �→ f(x6)}

{x1 �→ c, x2 �→ a}

{x5 �→ c}

Fig. 2. Semi-relevant clause (3)¬B(c, a) ∨ B(b, f(x6)) in SOS

(3)¬B(c, a) ∨ B(b, f(x6)) should not be disregarded, because it leads to a dif-
ferent grounding of the clauses. For example, in the refutation of Fig. 2 clause
(5)¬C(x5) is necessarily instantiated with {x5 �→ c} where in the refutation of
Fig. 3 it is necessarily instantiated with {x5 �→ b}. Therefore, the two refutations
are different and clause (3)¬B(c, a) ∨ B(b, f(x6)) should be considered semi-
relevant. Nevertheless, in propositional logic it is sufficient to consider MUSes
to explain unsatisfiability on the original clause level, Lemma 18.

(11) ⊥

(14) C(b)

(13) ¬B(b,f(a))

(12) D(x3) ∨ ¬B(b,f(a))

(6) ¬A(x4) ∨ ¬B(b,x4)(1) A(f(a)) ∨ D(x3)

(2) ¬D(x7)

(4) B(x1,x2) ∨ C(x1)

(5) ¬C(x5)

{x3 �→ x7}

{x4 �→ f(a)}

{x1 �→ b, x2 �→ f(a)}

{x5 �→ b}

Fig. 3. A refutation of N without (3)¬B(c, a) ∨ B(b, f(x6))

1.2 Semantic Relevance

We now illustrate how our new notion of relevance works on the previous exam-
ple. First, different from the other works, we propose a way of characterizing
semantic relevance by using our novel concept of a conflict literal. A ground

Semantic Relevance 211

literal L is a conflict literal in a clause set N if there are some satisfiable sets of
instances N1 and N2 from N s.t. N1 |= L and N2 |= comp(L). On the one hand,
explaining an unsatisfiable clause set as the absence of a model (as it is usually
defined) is not that helpful since an absence means there is nothing to discuss in
the first place. On the other hand, the contribution of a clause to unsatisfiability
of a clause set can only partially be explained using the concept of a MUS which
we have discussed before. A conflict literal provides a middle ground to explain
the contribution of a clause to unsatisfiability between the absence of a model
and MUSes. It also better reflects our intuition that there is a contradiction (in
the form of two implied simple facts that cannot be both true at the same time)
in an unsatisfiable set of clauses.

From Fig. 1, we can already see that C(c) and its complement ¬C(c) are
conflict literals because

N \ {¬C(x)} |= C(c)
¬C(x) |= ¬C(c)

Also, in addition to that {¬C(x)} is trivially satisfiable, N \ {¬C(x)} is also
satisfiable. Based on the refutation in Fig. 3, ¬C(x) is syntactically relevant due
to N \ {(3)¬B(c, a) ∨ B(b, f(x6))} being a MUS. We will also show that for a
ground MUS any ground literal occurring in it is a conflict literal, Lemma 20.
For our ongoing example it is still possible to identify the conflict literals by
means of ground MUSes by looking into the refutations from Fig. 1 and Fig. 3.
This leads to the following conflict literals for N , see Definition 10:

conflict(N) = {(¬)A(f(a)),
(¬)B(b, f(a)), (¬)B(c, a),
(¬)C(b), (¬)C(c)} ∪

{(¬)D(t) | t is a ground term}

These conflict literals can be identified by pushing the substitutions in the refu-
tations from Fig. 1 and Fig. 3 towards the input clauses. They correspond to two
first-order MUSes M1 and M2. All the ground literals are conflict literals and
all other ground conflict literals can be obtained by grounding the remaining
variables.

M1 = {(5)¬C(c), (2)¬D(x7),
(1)A(f(a)) ∨ D(x3),
(3)¬B(c, a) ∨ B(b, f(a)),
(4)B(c, a) ∨ C(c),
(6)¬A(f((a))) ∨ ¬B(b, f(a))}

M2 = {(5)¬C(b),
(4)B(b, f(a)), (2)¬D(x7),
(1)A(f(a)) ∨ D(x3),
(6)¬A(f(a)) ∨ ¬B(b, f(a))}

212 F. Haifani and C. Weidenbach

One can see that, despite (3)¬B(c, a) ∨ B(b, f(x6)) is outside of the only MUS
on the first-order level, an instance of it does occur in some ground MUS, take
M1 and an arbitrary grounding of x3 and x7 to the identical term t, and the con-
flict literal (¬)B(c, a) depends on clause (3). Nevertheless, determining conflict
literals is not so obvious in the general case since we do not necessarily know
beforehand which ground terms should substitute the variables in the clauses.
Moreover, there can be an infinite number of such ground MUSes of possibly
unbounded size.

Based on conflict literals, here we introduce a notion of relevance that is
semantic in nature, Definition 16. This will also serve as an alternative char-
acterization to our previous refutation-based syntactic relevance. As redundant
clauses, e.g., tautologies, can also be syntactically semi-relevant, we require inde-
pendent clause sets for the definition of semantic relevance. A clause set is inde-
pendent, if it does not contain clauses with instances implied by satisfiable sets of
instances of different clauses out of the set. Given an unsatisfiable independent
set of clauses N , a clause C is relevant in N if N without C has no conflict
literals, it is semi-relevant if C is necessary to some conflict literals, and it is
irrelevant otherwise.

Similar to our previous work, relevant clauses are the obvious ones because
removing them would make our set satisfiable. On the other hand, irrelevant
clauses can be freely identified once we know the semi-relevant ones. For our
running example, in fact (3)¬B(c, a) ∨ B(b, f(x6)) is semi-relevant because it is
necessary for the conflict literals (¬)C(c) and (¬)B(c, a). More specifically, the
set of conflicts for N \ {¬B(c, a) ∨ B(b, f(x6))} does not include (¬)C(c) and
(¬)B(c, a):

conflict(N \ {¬B(c, a) ∨ B(b, f(x6))}) = {(¬)A(f(a)), (¬)B(b, f(a)), (¬)C(b)}�
{(¬)D(t)|t is a ground term}

These are conflict literals identifiable from M2: Assume that the variables
x3 and x7 in M2 are both grounded by an identical term t. Take some ground
literal, for example, A(f(a)) ∈ conflict(N \ {¬B(c, a) ∨ B(b, f(x6))), and define

N∅ = {C ∈ M2|A(f(a)) �∈ C and ¬A(f(a)) �∈ C}
= {(5)¬C(b), (4)B(b, f(a)), (2)¬D(t)}

NA(f(a)) = {C ∈ M2|A(f(a)) ∈ C}
= {(1)A(f(a)) ∨ D(t)}

N¬A(f(a)) = {C ∈ M2|¬A(f(a)) ∈ C}
= {(6)¬A(f(a)) ∨ ¬B(b, f(a))}

N∅ ∪NA(f(a)) and N∅ ∪N¬A(f(a)) are satisfiable because of the Herbrand model
{B(b, f(a)), A(f(a))} and {B(b, f(a))} respectively. In addition,

N∅ ∪ NA(f(a)) |= A(f(a))
N∅ ∪ N¬A(f(a)) |= ¬A(f(a))

Semantic Relevance 213

because A(f(a)) can be acquired using resolution between (1) and (2) for N∅ ∪
NA(f(a)) and ¬A(f(a)) can be acquired using resolution between (4) and (6) for
N∅ ∪ N¬A(f(a)). In a similar manner, we can show that the other ground literals
are also conflict literals.

Related Work: Other works which aim to explain unsatisfiability mostly rely on
the notion of MUSes, mainly in propositional logic [14–16,21,26]. The complexity
of determining whether a clause set is a MUS is Dp-complete for a propositional
clause set with at most three literals per clause and at most three occurrences
of each propositional variable [25]. In [14], syntactically semi-relevant clauses
for propositional logic are called a plain clause set. Using the terminology in
[16], a clause C ∈ N is necessary if it occurs in all MUSes, it is potentially
necessary if it occurs in some MUS, otherwise, it is never necessary. In addition,
a clause is defined to be usable if it occurs in some refutation. This is thus
similar to our syntactic notion of semi-relevance [11]: Given a clause C ∈ N ,
C is usable if-and-only-if C is syntactically semi-relevant. It is also argued that
a usable clause that is not potentially necessary is semantically superfluous. A
different but related notion has also been applied for propositional abduction [7].
The notion of a MUS has also been used for explaining unsatisfiability in first-
order logic [20]. There, it has been defined in a more general setting: If a set
of clauses N is divided into N = N ′ � N ′′ with a non-relaxable clause set N ′

and relaxable clause set N ′′ (which must be satisfiable), a MUS is a subset
M of N ′′ s.t. N ′ � M is unsatisfiable but removing a clause from M would
render it satisfiable. There are also some works in satisfiability modulo theory
(SMT) [5,6,9,35]. A deletion-based approach well-known in propositional logic
has also been used for MUS extraction in SMT [9]. In [5,6], a MUS is extracted by
combining an SMT solver with an arbitrary external propositional core extractor.
Another approach is to construct some graph representing the subformulas of
the problem instance, recursively remove clauses in a depth-first-search manner
and additionally use some heuristics to further improve the runtime[35]. For
the function-free and equality-free first-order fragment, there is a ”decompose-
merge” approach to compute all MUSes [19,34]. In description logic, a notion
that is related to MUS is called minimal axiom set (MinA) usually identified by
the problem of axiom pinpointing [1,4,13,30]. Its computation is usually divided
into two categories: black-box and white-box. A black-box approach picks some
inputs, executes it using some sound and complete reasoner, and then interprets
the output [13]. On the other hand, white-box approach takes some reasoner
and performs an internal modification for it. In this case, Tableau is mostly
used [1,30]. In addition, the concept of a lean kernel has also been used to
approximate the union of such MinA’s [27]. The way relevance is defined is similar
in spirit but usually used for an entailment problem instead of unsatisfiability.
The notion of syntactic semi-relevance has also been applied to description logics
via a translation scheme to first-order logic [10].

The paper is organized as follows. Section 2 fixes the notations, definitions
and existing results in particular from [11]. Section 3 is reserved for our new

214 F. Haifani and C. Weidenbach

notion of semantic relevance. Finally, we conclude our work in Sect. 4 with a
discussion of our results.

2 Preliminaries

We assume a standard first-order language without equality over a signature
Σ = (Ω,Π) where Ω is a non-empty set of functions symbols, Π a non-empty
set of predicate symbols both coming with their respective fixed arities denoted
by the function arity. The set of terms over an infinite set of variables X is
denoted by T (Σ,X). Atoms, literals, clauses, and clause sets are defined as
usual, e.g., see [24]. We identify a clause with its multiset of literals. Variables
in clauses are universally quantified. Then N denotes a clause set; C,D denote
clauses; L,K denote literals; A,B denote atoms; P,Q,R, T denote predicates;
t, s terms; f, g, h functions; a, b, c, d constants; and x, y, z variables, all possibly
indexed. The complement of a literal is denoted by the function comp. Atoms,
literals, clauses, and clause sets are ground if they do not contain any variable.

An interpretation I with a nonempty domain (or universe) U assigns (i) a
total function fI : Un �→ U for each f ∈ Ω with arity(f) = n and (ii) a relation
P ⊆ Um to every predicate symbol P I ∈ Π with arity(P) = m. A valuation β
is a function X �→ U where the assignment of some variable x can be modified
to e ∈ U by β[x �→ e]. It is extended to terms as I(β) : T (Σ,X) �→ U . Seman-
tic entailment |= considers variables in clauses to be universally quantified. The
extension to atoms, literals, disjunctions, clauses and sets of clauses is as fol-
lows: I(β)(P (t1, . . . , tn)) = 1 if (I(β)(t1), . . . , I(β)(tn)) ∈ P I and 0 otherwise;
I(β)(¬φ) = 1 − I(β)(φ); for a disjunction L1 ∨ . . . ∨ Lk, I(β)(L1 ∨ . . . ∨ Lk) =
max(I(β)(L1), . . . , I(β)(Lk)); for a clause C, I(β)(C) = 1 if for all valuations
β = {x1 �→ e1, . . . , xn �→ en} where the xi are the free variables in C there is
a literal L ∈ C such that I(β)(L) = 1; for a set of clauses N = {C1, . . . , Ck},
I(β)({C1, . . . , Ck}) = min(I(β)(C1), . . . , I(β)(Ck)). A set of clauses N is satis-
fiable if there is an I of N such that I(β)(N) = 1, β arbitrary, (in this case I is
called a model of N : I |= N) otherwise N is called unsatisfiable.

Substitutions σ, τ are total mappings from variables to terms, where
dom(σ) := {x | xσ �= x} is finite and codom(σ) := {t | xσ = t, x ∈ dom(σ)}.
A renaming σ is a bijective substitution. The application of substitutions is
extended to literals, clauses, and sets/sequences of such objects in the usual
way. If C ′ = Cσ for some substitution σ, then C ′ is an instance of C. A unifier
σ for a set of terms t1, . . . , tk satisfies tiσ = tjσ for all 1 ≤ i, j ≤ k and it is called
a most general unifier if for any unifier σ′ of t1, . . . , tk there is a substitution τ
s.t. σ′ = στ . The function mgu denotes the most general unifier of two terms,
atoms, literals if it exists. We assume that any mgu of two terms or literals does
not introduce any fresh variables and is idempotent.

The resolution calculus consists of two inference rules: Resolution and Fac-
toring [28,29]. The rules operate on a state (N,S) where the initial state for
a classical resolution refutation from a clause set N is (∅, N) and for an SOS
(Set Of Support) refutation with clause set N and initial SOS clause set S the

Semantic Relevance 215

initial state is (N,S). We describe the rules in the form of abstract rewrite rules
operating on states (N,S). As usual we assume for the resolution rule that the
involved clauses are variable disjoint. This can always be achieved by applying
renamings into fresh variables.

Resolution (N,S � {C ∨ K}) ⇒RES (N,S ∪ {C ∨ K, (D ∨ C)σ})
provided (D ∨ L) ∈ (N ∪ S) and σ = mgu(L, comp(K))

Factoring (N,S � {C ∨ L ∨ K}) ⇒RES (N,S ∪ {C ∨ L ∨ K} ∪ {(C ∨ L)σ})
provided σ = mgu(L,K)

The clause (D∨C)σ is the result of a Resolution inference between its parents
and called a resolvent. The clause (C ∨L)σ is the result of a Factoring inference
of its parent and called a factor. A sequence of rule applications (N,S) ⇒∗

RES

(N,S′) is called a resolution derivation. It is called an SOS resolution derivation
if N �= ∅. In case ⊥ ∈ S′ it is a called a (SOS) resolution refutation. If for two
clauses C,D there exists a substitution σ such that Cσ ⊆ D, then we say that
C subsumes D. In this case C |= D.

Theorem 1 (Soundness and Refutational Completeness of (SOS) Res-
olution [11,28,33]). Resolution is sound and refutationally complete [28]. If for
some clause set N and initial SOS S, N is satisfiable and N ∪S is unsatisfiable,
then there is a (SOS) resolution derivation of ⊥ from (N,S) [33]. If for some
clause set N and clause C ∈ N there exists a resolution refutation from N using
C, then there is an SOS derivation of ⊥ from (N \ {C}, {C}) [11].

Please note that the recent SOS completeness result of [11] generalizes the
classical SOS completeness result by [33].

Theorem 2 (Deductive Completeness of Resolution [17,22]). Given a
set of clauses N and a clause D, if N |= D, then there is a resolution derivation
of some clause C from (∅, N) such that C subsumes D.

For deductions we require every clause to be used exactly once, so deductions
always have a tree form.

Definition 3 (Deduction [11]). A deduction πN = [C1, . . . , Cn] of a clause
Cn from some clause set N is a finite sequence of clauses such that for each Ci

the following holds:

1.1 Ci is a renamed, variable-fresh version of a clause in N , or
1.2 there is a clause Cj ∈ πN , j < i s.t. Ci is the result of a Factoring inference

from Cj, or
1.3 there are clauses Cj , Ck ∈ πN , j < k < i s.t. Ci is the result of a Resolution

inference from Cj and Ck,

and for each Ci ∈ πN , i < n:

216 F. Haifani and C. Weidenbach

2.1 there exists exactly one factor Cj of Ci with j > i, or
2.2 there exists exactly one Cj and Ck such that Ck is a resolvent of Ci and Cj

and i, j < k.

We omit the subscript N in πN if the context is clear.

A deduction π′ of some clause C ∈ π, where π, π′ are deductions from N is a
subdeduction of π if π′ ⊆ π, where the subset relation is overloaded for sequences.
A deduction πN = [C1, . . . , Cn−1,⊥] is called a refutation. While the conditions
3.1.1, 3.1.2, and 3.1.3 are sufficient to represent a resolution derivation, the
conditions 3.2.1 and 3.2.2 force deductions to be minimal with respect to Cn.

Note that variable renamings are only applied to clauses from N such that all
clauses from N that are introduced in the deduction are variable disjoint. Also
recall that our notion of a deduction implies a tree structure. Both assumptions
together admit the existence of overall grounding substitutions for a deduction.

Definition 4 (Overall Substitution of a Deduction [11]). Given a deduc-
tion π of a clause Cn the overall substitution τπ,i of Ci ∈ π is recursively defined
by

1 if Ci is a factor of Cj with j < i and mgu σ, then τπ,i = τπ,j ◦ σ,
2 if Ci is a resolvent of Cj and Ck with j < k < i and mgu σ, then τπ,i =

(τπ,j ◦ τπ,k) ◦ σ,
3 if Ci is an initial clause, then τπ,i = ∅,

and the overall substitution of the deduction is τπ = τπ,n. We omit the subscript
π if the context is clear.

Overall substitutions are well-defined because clauses introduced from N into
the deduction are variable disjoint and each clause is used exactly once in the
deduction. A grounding of an overall substitution τ of some deduction π is a
substitution τδ such that codom(τδ) only contains ground terms and dom(δ) is
exactly the variables from codom(τ).

Definition 5 (SOS Deduction [11]). A deduction πN∪S = [C1, . . . , Cn] is
called an SOS deduction with SOS S, if the derivation (N,S0) ⇒∗

RES (N,Sm) is
an SOS derivation where C ′

1, . . . , C
′
m is the subsequence from [C1, . . . , Cn] with

input clauses removed, S0 = S, and Si+1 = Si ∪ C ′
i+1.

Oftentimes, it is of particular interest to identify the set of clauses that is
minimally unsatisfiable, i.e., removing a clause would make it satisfiable. The
earliest mention of such a notion is in [26] where it is introduced via a decision
problem. Minimally unsatisfiable sets (MUS) have also gained a lot of attention
in practice.

Definition 6 (Minimal Unsatisfiable Subset (MUS) [20]). Given an
unsatisfiable set of clauses N , the subset N ′ ⊆ N is a minimally unsatisfiable
subset (MUS) of N if any strict subset of N ′ is satisfiable.

Semantic Relevance 217

In our previous work, we defined a notion of relevance based on how clauses
may contribute to unsatisfiability by means of refutations.

Definition 7 (Syntactic Relevance [11]). Given an unsatisfiable set of
clauses N , a clause C ∈ N is syntactically relevant if for all refutations π
of N it holds that C ∈ π. A clause C ∈ N is syntactically semi-relevant if there
exists a refutation π of N in which C ∈ π. A clause C ∈ N is syntactically
irrelevant if there is no refutation π of N in which C ∈ π.

Syntactic relevance can be identified by using the resolution calculus. A clause
C ∈ N is syntactically semi-relevant if and only if there exists an SOS refutation
from SOS {C} and N \ {C}.

Theorem 8 (Syntactic Relevance [11]). Given an unsatisfiable set of clauses
N , the clause C ∈ N is

1. syntactically relevant if and only if N \ {C} is satisfiable,
2. syntactically semi-relevant if and only if (N \ {C}, {C}) ⇒∗

RES (N \ {C}, S ∪
{⊥}).

An open problem from [11] is the question of a semantic counterpart to
syntactic semi-relevance. Without any further properties of the clause set N , the
notion of semi-relevance can lead to unintuitive results. For example, a tautology
could be semi-relevant. Given a refutation showing semi-relevance of some clause
C, where, in the refutation, some unary predicate P occurs, the refutation can be
immediately extended using the tautology P (x) ∨ ¬P (x). We may additionally
stumble upon a problem in the case where our set of clauses contains a subsumed
clause. For example, if both clauses Q(a) and Q(x) exist in a clause set, they
may be both semi-relevant, although from an intuition point of view one may
only want to consider Q(x) to be semi-relevant, or even relevant. On the other
hand, in some cases, redundant clauses are welcome as semi-relevant clauses.

Example 9 (Redundant Clauses). Given a set of clauses

N = {Q(x), Q(a), ¬Q(a) ∨ P (b), ¬P (b), P (x) ∨ ¬P (x)},

all clauses are syntactically semi-relevant while ¬Q(a) ∨ P (b) and ¬P (b) are
syntactically relevant. However, if we disregard the redundant clauses Q(a) and
P (x)∨¬P (x), then the clause Q(x) becomes a relevant clause. Therefore, for our
semantic notion of relevance we will only consider clause sets without clauses
implied by other, different clauses from the clause set.

3 Semantic Relevance

Except for the trivially false clause ⊥, the simplest form of a contradiction is
two unit clauses K and L such that K and comp(L) are unifiable. They will
be called conflict literals, below. Then the idea for our semantic definition of

218 F. Haifani and C. Weidenbach

semi-relevance is to consider clauses that contribute to the number of conflict
literals of a clause set. Furthermore, we will show that in any MUS every literal
is a conflict literal.

While conflict literals could straightforwardly be defined in propositional
logic having the above idea in mind, in first-order logic we have always to relate
properties of literals, clauses to their respective ground instances. This is simply
due to the fact that unsatisfiability of a first-order clause set is given by unsat-
isfiability of a finite set of ground instances from this set. Eventually, we will
show that for independent clause sets a clause is semi-relevant, if it contributes
to the number of conflict literals.

Definition 10 (Conflict Literal). Given a set of clauses N over some sig-
nature Σ, a ground literal L is a conflict literal in a clause set N if there are
two satisfiable clause sets N1, N2 such that

1. the clauses in N1, N2 are instances of clauses from N and
2. N1 |= L and N2 |= comp(L).

conflict(N) denotes the set of conflict literals in N .

Our notion of a conflict literal generalizes the respective notion in [12] defined
for propositional logic.

Example 11 (Conflict Literal). Given an unsatisfiable set of clauses over the
signature Σ = ({a, b, c, d, f}, {P}):

N = {¬P (f(a, x)) ∨ ¬P (f(c, y)), P (f(x, d)) ∨ P (f(y, b))}

Consider the following satisfiable sets of instances from N

N1 = {¬P (f(a, d)) ∨ ¬P (f(c, y)), P (f(x, d)) ∨ P (f(a, b))}
N2 = {¬P (f(a, b)) ∨ ¬P (f(c, y)), P (f(x, d)) ∨ P (f(c, b))}

P (f(a, b)) is a conflict literal because N1 |= P (f(a, b)) and N2 |= ¬P (f(a, b)).

We can show that N1 |= P (f(a, b)) because the resolution calculus is sound.
Resolving both literals of ¬P (f(a, d)) ∨ ¬P (f(c, y)) with the first literal of the
clause P (f(x, d)) ∨ P (f(a, b)) results in the clause P (f(a, b)) ∨ P (f(a, b)) which
can be factorized to P (f(a, b)). Moreover, N1 is satisfiable: An interpretation I
with I(P (f(a, b))) = 1 and I(P (t)) = 0 for all terms t �= f(a, b) satisfies N1 and
P (f(a, b)). N2 |= ¬P (f(a, b)) can also be shown in the same manner.

Example 12 (Conflict Literal). Given

N = {¬R(z), R(c) ∨ P (a, y),
Q(a),¬Q(x) ∨ P (x, b),
¬P (a, b)}

Semantic Relevance 219

its conflict literals are

conflict(N) = {P (a, b),¬P (a, b),
R(c),¬R(c),
Q(a),¬Q(a)}

In addition to a refutation, the existence of a conflict literal is another way
to characterize unsatisfiability of a clause set. Obviously, conflict literals always
come in pairs.

Lemma 13 (Minimal Unsatisfiable Ground Clause Sets and Conflict
Literals). If N is a minimally unsatisfiable set of ground clauses (MUS) then
any literal occurring in N is a conflict literal.

Proof Take any ground atom A such that A occurs in N . N can be split into
three disjoint clause sets:

N∅ = {C ∈ N |A �∈ C and ¬A �∈ C}
NA = {C ∈ N |A ∈ C}

N¬A = {C ∈ N |¬A ∈ C}

Since N is minimal, NA and N¬A are nonempty, because otherwise A is a pure
literal and its corresponding clauses can be removed from N preserving unsatis-
fiability. Obviously N∅ ∪ NA must be satisfiable, for otherwise the initial choice
of N was not minimal. However, N∅ ∪ N ′

A, where N ′
A results from all NA by

deleting all A literals from the clauses of NA, must be unsatisfiable, for oth-
erwise we can construct a satisfying interpretation for N . Thus, every model
of N∅ ∪ NA must also be a model of A: N∅ ∪ NA |= A. Using the same argu-
ment, N∅ ∪ N¬A is satisfiable and N∅ ∪ N¬A |= ¬A. Therefore, A is a conflict
literal. ��

Lemma 14 (Conflict Literals and Unsatisfiability). Given a set of clauses
N , conflict(N) �= ∅ if and only if N is unsatisfiable.

Proof “⇒” Let L ∈ conflict(N). By definition, there are two satisfiable subsets
of instances N1, N2 from N such that N1 |= L and N2 |= comp(L). Towards
contradiction, suppose N is satisfiable. Then, there exists an interpretation I
with I |= N and therefore it holds that I |= N1 and I |= N2. Furthermore, by
definition of a conflict literal, I |= L and I |= comp(L), a contradiction.
“⇐” Given an unsatisfiable clause set N , we show that there is a conflict literal
in N . Since N is unsatisfiable, by compactness of first-order logic there is a
minimal set of ground instances N ′ from N that is also unsatisfiable. The rest
follows from Lemma 13. ��

Intuitively, a clause that is implied by other clauses is redundant and can be
removed from the set of clauses. However, then applying a calculus generating
new clauses, this intuitive notion of redundancy may destroy completeness [2,23].
Still, the detection and elimination of redundant clauses, compatible or incom-
patible with completeness, is an important concept to the efficiency of automatic

220 F. Haifani and C. Weidenbach

reasoning, e.g., in propositional logic [3,18]. It is also apparently important when
we try to define a semantic notion of relevance. For example, a syntactically rele-
vant clause would step down to be syntactically semi-relevant if it is duplicated.
So, in order to have a semantically robust notion of relevance in first-order logic,
we need to use a strong notion of (in)dependency.

Definition 15 (Dependency). A clause C is dependent in N if there exists
a satisfiable set of instances N ′ from N \ {C} such that N ′ |= Cσ for some σ. If
C is not dependent in N it is independent in N . A clause set N is independent
if it does not contain any dependent clauses.

A subsumed clause is obviously a dependent clause. However, there could
also be non-subsumed clauses that are dependent. For example, in the set of
clauses

N = {P (a, y), P (x, b),¬P (a, b)}
P (x, b) is dependent because P (a, b) is an instance of P (x, b) and it is entailed
by P (a, y). Now, we are ready to define the semantic notion of relevance based
on conflict literals and dependency.

In some way, our notion of independence of clause sets is a strong assumption
because there might be non-redundant clauses that are considered dependent.
While this holds by design in some scenarios (e.g. the mentioned car scenario)
in others it is violated by design. In addition, one question that may arise is how
to acquire an independent clause set out of a dependent one. For example, in a
scenario where some theory is developed out of some independent axioms. Then
of course proven lemmas, theorems are dependent with respect to the axioms. In
this case one could trace out of the proofs the dependency relations between the
intermediate lemmas, theorems and the axioms and this way calculate indepen-
dent clause sets with respect to some proven conjecture. This would then lead
again to independent (sub) clause sets with respect to the proven conjecture
where our results are applicable.

Definition 16 (Semantic Relevance). Given an unsatisfiable set of inde-
pendent clauses N , a clause C ∈ N is

1. relevant, if conflict(N \ {C}) = ∅
2. semi-relevant, if conflict(N \ {C}) � conflict(N)
3. irrelevant, if conflict(N \ {C}) = conflict(N)

Example 17 (Dependent Clauses in Propositional Logic).

N = {P,¬P,

¬P ∨ Q,¬R ∨ P,

¬Q ∨ R}

The existence of dependent clauses ¬P ∨ Q and ¬R ∨ P causes an independent
clause ¬Q ∨ R to be a semi-relevant clause. However, ¬Q ∨ R is not inside the
only MUS {P,¬P}.

Semantic Relevance 221

Very often, concepts from propositional logic can be generalized to first-order
logic. However, in the context of relevance this is not the case. Our notion of
(semi-)relevance can also be characterized by MUSes in propositional logic, but
not in first-order logic without considering instances of clauses.

Lemma 18 (Propositional Clause Sets and Relevance). Given an inde-
pendent unsatisfiable set of propositional clauses N , the relevant clauses coincide
with the intersection of all MUSes and the semi-relevant clauses coincide with
the union of all MUSes.

Proof For the case of relevance: Given C ∈ N , C is relevant if and only if
conflict(N \ {C}) = ∅ if and only if N \ {C} is satisfiable by Lemma 14 if and
only if C is contained in all MUSes N ′ of N .

For the case of semi-relevance: Given C ∈ N , we show C is semi-relevant if and
only if C is in some MUS N ′ ⊆ N .

“⇒”: Towards contradiction, suppose there is a semi-relevant clause C that is
not in any MUS. By definition of semi-relevant clauses, there are satisfiable
sets N1 and N2 and a propositional variable P such that N1 |= P , N2 |= ¬P
but the MUS M out of N1 ∪ N2 does not contain C. By Theorem 2 there
exist deductions π1 and π2 of P and ¬P from N1 and N2, respectively. Since a
deduction is connected, some clauses in M and (N1 ∪ N2) \ M must have some
complementary propositional literals Q and ¬Q, respectively to be eventually
resolved upon in either π1 or π2. At least one of these deductions must contain
this resolution step between a clause from M and one from (N1 ∪ N2) \ M . Now
by Lemma 13 the literals Q and ¬Q are conflict literals in M . Thus, there are
satisfiable subsets from M which entail Q and ¬Q, respectively. Therefore, the
clause containing Q or ¬Q in (N1 ∪ N2) \ M is dependent contradicting the
assumption that N does not contain dependent clauses.

“⇐”: If C is in some MUS N ′ ⊆ N , then, N ′ \ {C} is satisfiable. So invoking
Lemma 13 any literal L ∈ C is a conflict literal in N ′. In addition, L is not a
conflict literal in N \ {C} for otherwise C is dependent: Suppose L is a conflict
literal in N \ {C} then, by definition, there is satisfiable subset from N \ {C}
which entails L. However, since L |= C, it means C is dependent. ��

The next example demonstrates that the notion of a MUS cannot be carried
over straightforwardly to the level of clauses with variables to characterize semi-
relevant clauses in first-order logic.

Example 19 (First-Order Relevant Clauses). Given a set of clauses

N = {P (a, y),¬P (a, d) ∨ Q(b, d),
¬P (x, c),¬Q(b, d) ∨ P (d, c), Q(z, e)}

over Σ = ({a, b, c, d, e}, {P,Q}). The conflict literals are

{(¬)P (a, c), (¬)Q(b, d), (¬)P (d, c), (¬)P (a, d)}.

222 F. Haifani and C. Weidenbach

The clause P (a, y) is relevant. The literals entailed by some satisfiable instances
N ′ from N such that P (a, y) �∈ N ′ are {¬Q(b, d)} � {¬P (t, c),¬Q(t, e) |
t ∈ {a, b, c, d, e}} and no two of them are complementary. Thus, conflict(N \
{P (a, y)}) = ∅. The clause ¬P (a, d) ∨ Q(b, d) is semi-relevant: Q(b, d) �∈
conflict(N \ {¬P (a, d) ∨ Q(b, d)}). The clause Q(z, e) is irrelevant.

With respect to a MUS, the clause ¬P (a, d) ∨ Q(b, d) from Example 19 is
irrelevant. The only MUS from N is {P (a, y),¬P (x, c)} with grounding substi-
tution {x �→ a, y �→ c}. However, in first-order logic we should not ignore the
clauses ¬P (a, d) ∨ Q(b, d), ¬Q(b, d) ∨ P (d, c), because together with the clauses
P (a, y),¬P (x, c) they result in a different grounding {x �→ d, y �→ d}. So, we
argue that MUS-based (semi-)relevance on the original clause set is not suffi-
cient to characterize the way clauses are used to derive a contradiction for full
first-order logic. However, it does so if ground instances are considered.

Lemma 20 (Relevance and MUSes on First-Order Clauses). Given an
unsatisfiable set of independent first-order clauses N . Then a clause C is relevant
in N , if all MUSes of unsatisfiable sets of ground instances from N contain a
ground instance of C. The clause C is semi-relevant in N , if there exists a
MUS of an unsatisfiable set of ground instances from N that contains a ground
instance of C.

Proof (Relevance) Since all ground instances from N contain a ground instance
of C, then, if N \ {C} contains a ground MUS from N it means that some
ground instance of C is entailed by N \ {C}. This violates our assumption that
N contains no dependent clauses. Thus, N\{C} contains no ground MUSes. This
further means that N \ {C} is satisfiable by the compactness theorem of first-
order logic. By Lemma 14 it therefore has no conflict literals and C is relevant.
(Semi-Relevance) Take some ground MUS M containing some ground instance
C ′ of C. Due to Lemma 13, any literal P ∈ C ′ is a conflict literal in M and
consequently also in N . In addition, P is not a conflict literal in N \ {C} for
otherwise C is dependent: Suppose P is a conflict literal in N \ {C}. Then,
by definition, there is some satisfiable instances from N \ {C} which entails P .
However, since P |= C ′, it means C is dependent. In conclusion, P ∈ conflict(N)\
conflict(N \ {C}) and thus C is semi-relevant. ��

In Example 19, we could identify two ground MUSes:

{P (a, c),¬P (a, c)}

and
{P (a, d),¬P (a, d) ∨ Q(b, d),¬P (d, c),¬Q(b, d) ∨ P (d, c)}

Our notion of relevance is thus alternatively explainable using Lemma 20: P (a, y)
is relevant because every MUS contains an instance of it (P (a, c) and P (a, d)).
The clause ¬P (a, d)∨Q(b, d) is semi-relevant as it is immediately contained in the
second MUS. The clause Q(z, e) is irrelevant since no MUS contains any instance
of Q(z, e). On the other hand, we may still encounter the case where a dependent

Semantic Relevance 223

clause is actually categorized as syntactically semi-relevant. Therefore, by using
the dependency notion while at the same time not restricting a refutation to only
use MUS as the input set, we can show that (semi-)relevance actually coincides
with the syntactic (semi-)relevance. So, the semi-decidability result also follows.

Theorem 21 (Semantic versus Syntactic Relevance). Given an inde-
pendent, unsatisfiable set of clauses N in first-order logic, then (semi)-relevant
clauses coincide with syntactically (semi)-relevant clauses.

Proof We show the following: if N contains no dependent clause, C is (semi-)
relevant if and only if C is syntactically (semi-)relevant. The case for relevant
clauses is a consequence of Lemma 14. Now, we show it for semi-relevant clauses.
“⇒” Let L be a ground literal with L ∈ conflict(N) \ conflict(N \ {C}). We
can construct a refutation using C. There are two satisfiable subsets of instances
N1, N2 from N such that N1 |= L and N2 |= comp(L) where N1 ∪N2 contains at
least one instance of C, for otherwise L �∈ conflict(N)\ conflict(N \{C}). By the
deductive completeness, Theorem 2, and the fact that L and comp(L) are ground
literals, there are two variable disjoint deductions π1 and π2 of some literals
K1 and K2 such that K1σ = L and K2σ = comp(L) for some grounding σ.
Obviously, the two variable disjoint deductions can be combined to a refutation
π1.π2.⊥ containing C. Thus, C is syntactically semi-relevant in N .

“⇐” Given an SOS refutation π using C, i.e., an SOS refutation π from
N \ {C} with SOS {C} and overall grounding substitution σ, we show that C is
semantically semi-relevant. Let N ′ be the variable renamed versions of clauses
from N \ {C} used in the refutation and S′ be the renamed copies of C used
in the refutation. First, we show that N ′σ is satisfiable. Towards contradiction,
suppose N ′σ is unsatisfiable and let Mσ ⊆ N ′σ be its MUS. Since π is connected,
some clauses in Mσ and S′σ ∪ (N ′σ \ Mσ) contains literals L and comp(L)
respectively. By Lemma 13, L and comp(L) are also conflict literals in Mσ. So,
by Definition 15, the clause containing comp(L) in S′σ∪(N ′σ\Mσ) is dependent
violating our initial assumption.

Now, since N ′σ is satisfiable, there is a ground MUS from (N ′ ∪ S′)σ con-
taining some C ′σ ∈ Sσ. Due to Lemma 13, any L ∈ C ′σ is a conflict literal
in N ′ (and consequently also in N). In addition, L is not a conflict literal in
N \ {C} for otherwise C is dependent: Suppose L is a conflict literal in N \ {C}.
Then, by definition, there is some satisfiable instances from N \ {C} which
entails L. However, since L |= C ′σ, it means C is dependent. In conclusion,
L ∈ conflict(N) \ conflict(N \ {C}) and thus C is semi-relevant. ��

When we have a ground MUS, identifification of conflict literals is obvious
because all of the literals in it are. However, testing if a literal L is a conflict
literal is not trivial, in general. One can try enumerating all MUSes and check if
L is contained in some. This definitely works for propositional logic despite being
computationally expensive. In first-order logic, this is problematic because there
could potentially be an infinite number of MUSes and determining a MUS is not
even semi-decidable, in general. The following lemma provides a semi-decidable
test using the SOS strategy.

224 F. Haifani and C. Weidenbach

Lemma 22 Given a ground literal L and an unsatisfiable set of clauses N with
no dependent clauses, L is a conflict literal if and only if there is an SOS refu-
tation from (N, {L ∨ comp(L)}).

Proof “⇒” By the deductive completeness, Theorem 2, and the fact that L
and comp(L) are ground literals, there are two variable disjoint deductions π1

and π2 of some literals K1 and K2 such that K1σ = L and K2σ = comp(L)
for some grounding σ. Obviously, the two variable disjoint deductions can be
combined to a refutation π1.π2.⊥. We can then construct a refutation π1.π2.(L∨
¬L).(comp(L)).⊥ where K2 is resolved with L ∨ comp(L) to get comp(L) which
will be resolved with K1 from π1 to get ⊥. By Theorem 7, it means there is an
SOS refutation from (N, {L ∨ ¬L})

“⇐” Given an SOS refutation π using {L∨comp(L)}, i.e., an SOS refutation
π from N \{{L∨ comp(L)}} with SOS {{L∨ comp(L)}}, Let N ′ be the variable
renamed versions of clauses from N and overall grounding substitution σ. N ′σ
is a MUS for otherwise there is a dependent clause: Suppose N ′σ \ M is an
MUS where M is non-empty. Since π is connected, some clause D′ in M must
be resolved with some D ∈ N ′σ upon some literal K. Thus, by Lemma 13, K
and comp(K) are also conflict literals in N ′σ \ M . So, by Definition 15, the
clause subsuming D′ in N is dependent violating our initial assumption. Finally,
because L occurs in N ′σ and N ′σ is an MUS, by Lemma 13, L is a conflict
literal. ��

4 Conclusion

The main results of this paper are: (i) a semantic notion of relevance based on the
existence of conflict literals, Definition 10, and Definition 16, (ii) its relationship
to syntactic relevance, namely, both notions coincide for independent clause
sets, Theorem 21, and (iii) the relationship of semantic relevance to minimal
unsatisfiable sets, MUSes, both for propositional logic, Lemma 18, and first-
order logic, Lemma 20.

The semantic relevance notion sheds some further light on the way clauses
may contribute to a refutation beyond what can be offered by the notion of
MUSes. While the syntactic notion of semi-relevance also considers redundant
clauses such as tautologies to be semi-relevant, the semantic notion rules out
redundant clauses. Here, the notions only coincide for independent clause sets.
Still, the syntactic notion is “easier” to test and there are applications where
clause sets do not contain implied clauses by construction. Hence, the syntactic-
relevance coincides with semantic relevance. For example, first-order toolbox
formalizations have this property because every tool is formalized by its own
distinct predicate. Still a goal, refutation, can be reached by the use of different
tools. The classic example is the toolbox for car/truck/tractor building [8,31].

Acknowledgments. This work was partly funded by DFG grant 389792660 as part of
TRR 248. We thank Christopher Lynch and David Plaisted for a number of discussions
on semantic relevance. We thank the anonymous reviewers for their constructive and
detailed comments.

http://perspicuous-computing.science

Semantic Relevance 225

References

1. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. J. Log. Comput.
20(1), 5–34 (2010)

2. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chap. 2, pp. 19–99.
Elsevier, Amsterdam (2001)

3. Boufkhad, Y., Roussel, O.: Redundancy in random SAT formulas. In: Kautz, H.A.,
Porter, B.W. (eds.) Proceedings of the Seventeenth National Conference on Artifi-
cial Intelligence and Twelfth Conference on on Innovative Applications of Artificial
Intelligence, 30 July - 3 August, 2000, Austin, Texas, USA, pp. 273–278. AAAI
Press/The MIT Press (2000)

4. Bourgaux, C., Ozaki, A., Peñaloza, R., Predoiu, L.: Provenance for the description
logic ELHr. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020, pp. 1862–1869. ijcai.org
(2020)

5. Cimatti, A., Griggio, A., Sebastiani, R.: A simple and flexible way of computing
small unsatisfiable cores in SAT modulo theories. In: Marques-Silva, J., Sakallah,
K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 334–339. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72788-0 32

6. Cimatti, A., Griggio, A., Sebastiani, R.: Computing small unsatisfiable cores in
satisfiability modulo theories. J. Artif. Intell. Res. 40, 701–728 (2011)

7. Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J. ACM 42(1),
3–42 (1995)

8. Fetzer, C., Weidenbach, C., Wischnewski, P.: Compliance, functional safety and
fault detection by formal methods. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016.
LNCS, vol. 9953, pp. 626–632. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-47169-3 48

9. Guthmann, O., Strichman, O., Trostanetski, A.: Minimal unsatisfiable core extrac-
tion for SMT. In: Piskac, R., Talupur, M. (eds.) 2016 Formal Methods in Computer-
Aided Design, FMCAD 2016, Mountain View, CA, USA, October 3–6, 2016. pp.
57–64. IEEE (2016)

10. Haifani, F., Koopmann, P., Tourret, S., Weidenbach, C.: On a notion of relevance.
In: Borgwardt, S., Meyer, T. (eds.) Proceedings of the 33rd International Workshop
on Description Logics (DL 2020) Co-located with the 17th International Confer-
ence on Principles of Knowledge Representation and Reasoning (KR 2020), Online
Event [Rhodes, Greece], 12th to 14th September 2020. CEUR Workshop Proceed-
ings, vol. 2663. CEUR-WS.org (2020)

11. Haifani, F., Tourret, S., Weidenbach, C.: Generalized completeness for SOS reso-
lution and its application to a new notion of relevance. In: Platzer, A., Sutcliffe,
G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 327–343. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-79876-5 19

12. Jabbour, S., Ma, Y., Raddaoui, B., Sais, L.: Quantifying conflicts in propositional
logic through prime implicates. Int. J. Approx. Reason. 89, 27–40 (2017)

13. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: Aberer, K. (ed.) ASWC/ISWC -2007. LNCS, vol. 4825, pp.
267–280. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-
0 20

14. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Fron-

https://doi.org/10.1007/978-3-540-72788-0_32
https://doi.org/10.1007/978-3-319-47169-3_48
https://doi.org/10.1007/978-3-319-47169-3_48
https://doi.org/10.1007/978-3-030-79876-5_19
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1007/978-3-540-76298-0_20

226 F. Haifani and C. Weidenbach

tiers in Artificial Intelligence and Applications, vol. 185, pp. 339–401. IOS Press,
Amsterdam (2009)

15. Kullmann, O.: Investigations on autark assignments. Discret. Appl. Math. 107(1–
3), 99–137 (2000)

16. Kullmann, O., Lynce, I., Marques-Silva, J.: Categorisation of clauses in conjunctive
normal forms: minimally unsatisfiable sub-clause-sets and the lean kernel. In: Biere,
A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 22–35. Springer, Heidelberg
(2006). https://doi.org/10.1007/11814948 4

17. Lee, C.T.: A Completeness Theorem and a Computer Program for Finding Theo-
rems Derivable from Given Axioms. Ph.D. thesis, University of Berkeley, California,
Department of Electrical Engineering (1967)

18. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell.
163(2), 203–232 (2005)

19. Liu, S., Luo, J.: FMUS2: an efficient algorithm to compute minimal unsatisfiable
subsets. In: Fleuriot, J., Wang, D., Calmet, J. (eds.) AISC 2018. LNCS (LNAI),
vol. 11110, pp. 104–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99957-9 7

20. Marques-Silva, J., Menćıa, C.: Reasoning about inconsistent formulas. In: Bessiere,
C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2020, pp. 4899–4906. ijcai.org (2020)

21. Menćıa, C., Kullmann, O., Ignatiev, A., Marques-Silva, J.: On computing the union
of MUSes. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 211–
221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 15

22. Nienhuys-Cheng, S.-H., de Wolf, R.: The equivalence of the subsumption theorem
and the refutation-completeness for unconstrained resolution. In: Kanchanasut, K.,
Lévy, J.-J. (eds.) ACSC 1995. LNCS, vol. 1023, pp. 269–285. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-60688-2 50

23. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,
A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chap. 7, pp.
371–443. Elsevier, Amsterdam (2001)

24. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robin-
son, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, chap. 6,
pp. 335–367. Elsevier, Amsterdam (2001)

25. Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput.
Syst. Sci. 37(1), 2–13 (1988)

26. Papadimitriou, C.H., Yannakakis, M.: The complexity of facets (and some facets
of complexity). J. Comput. Syst. Sci. 28(2), 244–259 (1984)

27. Peñaloza, R., Menćıa, C., Ignatiev, A., Marques-Silva, J.: Lean kernels in descrip-
tion logics. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler,
P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 518–533. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-58068-5 32

28. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

29. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press, Cambridge (2001)

30. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) Proceedings of
the Eighteenth International Joint Conference on Artificial Intelligence, IJCAI-03,
Acapulco, Mexico, 9–15 August 2003, pp. 355–362. Morgan Kaufmann (2003)

https://doi.org/10.1007/11814948_4
https://doi.org/10.1007/978-3-319-99957-9_7
https://doi.org/10.1007/978-3-319-99957-9_7
https://doi.org/10.1007/978-3-030-24258-9_15
https://doi.org/10.1007/3-540-60688-2_50
https://doi.org/10.1007/978-3-319-58068-5_32

Semantic Relevance 227

31. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive
product configuration data. Artif. Intell. Eng. Des. Anal. Manuf. 17(1), 75–97
(2003)

32. Walter, R., Felfernig, A., Küchlin, W.: Constraint-based and SAT-based diagnosis
of automotive configuration problems. J. Intell. Inf. Syst. 49(1), 87–118 (2016).
https://doi.org/10.1007/s10844-016-0422-7

33. Wos, L., Robinson, G., Carson, D.: Efficiency and completeness of the set of support
strategy in theorem proving. J. ACM 12(4), 536–541 (1965)

34. Xie, H., Luo, J.: An algorithm to compute minimal unsatisfiable subsets for a decid-
able fragment of first-order formulas. In: 28th IEEE International Conference on
Tools with Artificial Intelligence, ICTAI 2016, San Jose, CA, USA, 6–8 November
2016, pp. 444–451. IEEE Computer Society (2016)

35. Zhang, J., Xu, W., Zhang, J., Shen, S., Pang, Z., Li, T., Xia, J., Li, S.: Finding first-
order minimal unsatisfiable cores with a heuristic depth-first-search algorithm. In:
Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp.
178–185. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23878-
9 22

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s10844-016-0422-7
https://doi.org/10.1007/978-3-642-23878-9_22
https://doi.org/10.1007/978-3-642-23878-9_22
http://creativecommons.org/licenses/by/4.0/

SCL(EQ): SCL for First-Order Logic
with Equality

Hendrik Leidinger1,2(B) and Christoph Weidenbach1

1 Max-Planck Institute for Informatics, Saarbrücken, Germany
{hleiding,weidenbach}@mpi-inf.mpg.de

2 Graduate School of Computer Science, Saarbrücken, Germany

Abstract. We propose a new calculus SCL(EQ) for first-order logic
with equality that only learns non-redundant clauses. Following the idea
of CDCL (Conflict Driven Clause Learning) and SCL (Clause Learning
from Simple Models) a ground literal model assumption is used to guide
inferences that are then guaranteed to be non-redundant. Redundancy
is defined with respect to a dynamically changing ordering derived from
the ground literal model assumption. We prove SCL(EQ) sound and
complete and provide examples where our calculus improves on super-
position.

Keywords: First-order logic with equality · Term rewriting ·
Model-based reasoning

1 Introduction

There has been extensive research on sound and complete calculi for first-order
logic with equality. The current prime calculus is superposition [2], where order-
ing restrictions guide paramodulation inferences and an abstract redundancy
notion enables a number of clause simplification and deletion mechanisms, such
as rewriting or subsumption. Still this “syntactic” form of superposition infers
many redundant clauses. The completeness proof of superposition provides a
“semantic” way of generating only non-redundant clauses, however, the under-
lying ground model assumption cannot be effectively computed in general [31]. It
requires an ordered enumeration of infinitely many ground instances of the given
clause set, in general. Our calculus overcomes this issue by providing an effective
way of generating ground model assumptions that then guarantee non-redundant
inferences on the original clauses with variables.

The underlying ordering is based on the order of ground literals in the model
assumption, hence changes during a run of the calculus. It incorporates a stan-
dard rewrite ordering. For practical redundancy criteria this means that both
rewriting and redundancy notions that are based on literal subset relations are
permitted to dynamically simplify or eliminate clauses. Newly generated clauses
are non-redundant, so redundancy tests are only needed backwards. Further-
more, the ordering is automatically generated by the structure of the clause set.
c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 228–247, 2022.
https://doi.org/10.1007/978-3-031-10769-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_14&domain=pdf
http://orcid.org/0000-0003-2634-4154
http://orcid.org/0000-0001-6002-0458
https://doi.org/10.1007/978-3-031-10769-6_14

SCL(EQ): SCL for First-Order Logic with Equality 229

Instead of a fixed ordering as done in the superposition case, the calculus finds
and changes an ordering according to the currently easiest way to make progress,
analogous to CDCL (Conflict Driven Clause Learning) [11,21,25,29,34].

Typical for CDCL and SCL (Clause Learning from Simple Models) [1,14,18]
approaches to reasoning, the development of a model assumption is done by deci-
sions and propagations. A decision guesses a ground literal to be true whereas
a propagation concludes the truth of a ground literal through an otherwise false
clause. While propagations in CDCL and propositional logic are restricted to
the finite number of propositional variables, in first-order logic there can already
be infinite propagation sequences [18]. In order to overcome this issue, model
assumptions in SCL(EQ) are at any point in time restricted to a finite number
of ground literals, hence to a finite number of ground instances of the clause set
at hand. Therefore, without increasing the number of considered ground literals,
the calculus either finds a refutation or runs into a stuck state where the current
model assumption satisfies the finite number of ground instances. In this case
one can check whether the model assumption can be generalized to a model
assumption of the overall clause set or the information of the stuck state can
be used to appropriately increase the number of considered ground literals and
continue search for a refutation. SCL(EQ) does not require exhaustive propaga-
tion, in general, it just forbids the decision of the complement of a literal that
could otherwise be propagated.

For an example of SCL(EQ) inferring clauses, consider the three first-order
clauses

C1 := h(x) ≈ g(x) ∨ c ≈ d C2 := f(x) ≈ g(x) ∨ a ≈ b
C3 := f(x) �≈ h(x) ∨ f(x) �≈ g(x)

with a Knuth-Bendix Ordering (KBO), unique weight 1, and precedence d ≺
c ≺ b ≺ a ≺ g ≺ h ≺ f . A Superposition Left [2] inference between C2 and C3

results in
C ′

4 := h(x) �≈ g(x) ∨ f(x) �≈ g(x) ∨ a ≈ b.

For SCL(EQ) we start by building a partial model assumption, called a trail,
with two decisions

Γ := [h(a) ≈ g(a)1:(h(x)≈g(x)∨h(x) �≈g(x))·σ, f(a) ≈ g(a)2:(f(x)≈g(x)∨f(x) �≈g(x))·σ]

where σ := {x �→ a}. Decisions and propagations are always ground instances
of literals from the first-order clauses, and are annotated with a level and a
justification clause, in case of a decision a tautology. Now with respect to Γ clause
C3 is false with grounding σ, and rule Conflict is applicable; see Sect. 3.1 for
details on the inference rules. In general, clauses and justifications are considered
variable disjoint, but for simplicity of the presentation of this example, we repeat
variable names here as long as the same ground substitution is shared. The
maximal literal in C3σ is (f(x) �≈ h(x))σ and a rewrite refutation using the
ground equations from the trail results in the justification clause

(g(x) �≈ g(x) ∨ f(x) �≈ g(x) ∨ f(x) �≈ g(x) ∨ h(x) �≈ g(x))·σ

230 H. Leidinger and C. Weidenbach

where for the refutation justification clauses and all otherwise inferred clauses
we use the grounding σ for guidance, but operate on the clauses with variables.
The respective ground clause is smaller than (f(x) �≈ h(x))σ, false with respect
to Γ and becomes our new conflict clause by an application of our inference rule
Explore-Refutation. It is simplified by our inference rules Equality-Resolution
and Factorize, resulting in the finally learned clause

C4 := h(x) �≈ g(x) ∨ f(x) �≈ g(x)

which is then used to apply rule Backtrack to the trail. Observe that C4 is
strictly stronger than C ′

4 the clause inferred by superposition and that C4 cannot
be inferred by superposition. Thus SCL(EQ) can infer stronger clauses than
superposition for this example.

Related Work: SCL(EQ) is based on ideas of SCL [1,14,18] but for the first time
includes a native treatment of first-order equality reasoning. Similar to [14] prop-
agations need not to be exhaustively applied, the trail is built out of decisions
and propagations of ground literals annotated by first-order clauses, SCL(EQ)
only learns non-redundant clauses, but for the first time conflicts resulting out
of a decision have to be considered, due to the nature of the equality relation.

There have been suggested several approaches to lift the idea of an inference
guiding model assumption from propositional to full first-order logic [6,12,13,18].
They do not provide a native treatment of equality, e.g., via paramodulation or
rewriting.

Baumgartner et al. describe multiple calculi that handle equality by using
unit superposition style inference rules and are based on either hyper tableaux [5]
or DPLL [15,16]. Hyper tableaux fix a major problem of the well-known free
variable tableaux, namely the fact that free variables within the tableau are
rigid, i.e., substitutions have to be applied to all occurrences of a free variable
within the entire tableau. Hyper tableaux with equality [7] in turn integrates
unit superposition style inference rules into the hyper tableau calculus.

Another approach that is related to ours is the model evolution calculus with
equality (MEE) by Baumgartner et al. [8,9] which lifts the DPLL calculus to
first-order logic with equality. Similar to our approach, MEE creates a candidate
model until a clause instance contradicts this model or all instances are satisfied
by the model. The candidate model results from a so-called context, which con-
sists of a finite set of non-ground rewrite literals. Roughly speaking, a context
literal specifies the truth value of all its ground instances unless a more specific
literal specifies the complement. Initially the model satisfies the identity relation
over the set of all ground terms. Literals within a context may be universal or
parametric, where universal literals guarantee all its ground instances to be true.
If a clause contradicts the current model, it is repaired by a non-deterministic
split which adds a parametric literal to the current model. If the added literal
does not share any variables in the contradictory clause it is added as a universal
literal.

Another approach by Baumgartner and Waldmann [10] combined the super-
position calculus with the Model Evolution calculus with equality. In this cal-

SCL(EQ): SCL for First-Order Logic with Equality 231

culus the atoms of the clauses are labeled as “split atoms” or “superposition
atoms”. The superposition part of the calculus then generates a model for the
superposition atoms while the model evolution part generates a model for the
split atoms. Conversely, this means that if all atoms are labeled as “split atom”,
the calculus behaves similar to the model evolution calculus. If all atoms are
labeled as “superposition atom”, it behaves like the superposition calculus.

Both the hyper tableaux calculus with equality and the model evolution cal-
culus with equality allow only unit superposition applications, while SCL(EQ)
inferences are guided paramodulation inferences on clauses of arbitrary length.
The model evolution calculus with equality was revised and implemented in
2011 [8] and compares its performance with that of hyper tableaux. Model evo-
lution performed significantly better, with more problems solved in all relevant
TPTP [30] categories, than the implementation of the hyper tableaux calculus.

Plaisted et al. [27] present the Ordered Semantic Hyper-Linking (OSHL) cal-
culus. OSHL is an instantiation based approach that repeatedly chooses ground
instances of a non-ground input clause set such that the current model does not
satisfy the current ground clause set. A further step repairs the current model
such that it satisfies the ground clause set again. The algorithm terminates if
the set of ground clauses contains the empty clause. OSHL supports rewriting
and narrowing, but only with unit clauses. In order to handle non-unit clauses
it makes use of other mechanisms such as Brand’s Transformation [3].

Inst-Gen [22] is an instantiation based calculus, that creates ground instances
of the input first-order formulas which are forwarded to a SAT solver. If a ground
instance is unsatisfiable, then the first-order set is as well. If not then the cal-
culus creates more instances. The Inst-Gen-EQ calculus [23] creates instances
by extracting instantiations of unit superposition refutations of selected liter-
als of the first-order clause set. The ground abstraction is then extended by the
extracted clauses and an SMT solver then checks the satisfiability of the resulting
set of equational and non-equational ground literals.

In favor of examples and explanations we omit all proofs. They are available
in an extended version published as a research report [24]. The rest of the paper
is organized as follows. Section 2 provides basic formalisms underlying SCL(EQ).
The rules of the calculus are presented in Sect. 3. Soundness and completeness
results are provided in Sect. 4. We end with a discussion of obtained results and
future work, Sect. 5. The main contribution of this paper is the SCL(EQ) cal-
culus that only learns non-redundant clauses, permits subset based redundancy
elimination and rewriting, and its soundness and completeness.

2 Preliminaries

We assume a standard first-order language with equality and signature Σ =
(Ω, ∅) where the only predicate symbol is equality ≈. N denotes a set of clauses,
C,D denote clauses, L,K,H denote equational literals, A,B denote equational
atoms, t, s terms from T (Ω,X) for an infinite set of variables X , f, g, h function
symbols from Ω, a, b, c constants from Ω and x, y, z variables from X . The func-
tion comp denotes the complement of a literal. We write s �≈ t as a shortcut for

232 H. Leidinger and C. Weidenbach

¬(s ≈ t). The literal s # t may denote both s ≈ t and s �≈ t. The semantics of
first-order logic and semantic entailment |= is defined as usual.

By σ, τ, δ we denote substitutions, which are total mappings from variables to
terms. Let σ be a substitution, then its finite domain is defined as dom(σ) := {x |
xσ �= x} and its codomain is defined as codom(σ) = {t | xσ = t, x ∈ dom(σ)}.
We extend their application to literals, clauses and sets of such objects in the
usual way. A term, literal, clause or sets of these objects is ground if it does
not contain any variable. A substitution σ is ground if codom(σ) is ground. A
substitution σ is grounding for a term t, literal L, clause C if tσ, Lσ, Cσ is
ground, respectively. By C·σ, L·σ we denote a closure consisting of a clause C,
literal L and a grounding substitution σ, respectively. The function gnd computes
the set of all ground instances of a literal, clause, or clause set. The function mgu
denotes the most general unifier of terms, atoms, literals, respectively. We assume
that mgus do not introduce fresh variables and that they are idempotent.

The set of positions pos(L) of a literal (term pos(t)) is inductively defined as
usual. The notion L|p denotes the subterm of a literal L (t|p for term t) at position
p ∈ pos(L) (p ∈ pos(t)). The replacement of a subterm of a literal L (term t)
at position p ∈ pos(L) (p ∈ pos(t)) by a term s is denoted by L[s]p (t[s]p). For
example, the term f(a, g(x)) has the positions {ε, 1, 2, 21}, f(a, g(x))|21 = x and
f(a, g(x))[b]2 denotes the term f(a, b).

Let R be a set of rewrite rules l → r, called a term rewrite system (TRS).
The rewrite relation →R⊆ T (Ω,X) × T (Ω,X) is defined as usual by s →R t if
there exists (l → r) ∈ R, p ∈ pos(s), and a matcher σ, such that s|p = lσ and
t = s[rσ]p. We write s = t↓R if s is the normal form of t in the rewrite relation
→R. We write s # t = (s′ # t′)↓R if s is the normal form of s′ and t is the normal
form of t′. A rewrite relation is terminating if there is no infinite descending chain
t0 → t1 → ... and confluent if t ∗← s →∗ t′ implies t ↔∗ t′. A rewrite relation is
convergent if it is terminating and confluent. A rewrite order is a irreflexive and
transitive rewrite relation. A TRS R is terminating, confluent, convergent, if the
rewrite relation →R is terminating, confluent, convergent, respectively. A term t
is called irreducible by a TRS R if no rule from R rewrites t. Otherwise it is called
reducible. A literal, clause is irreducible if all of its terms are irreducible, and
reducible otherwise. A substitution σ is called irreducible if any t ∈ codom(σ) is
irreducible, and reducible otherwise.

Let ≺T denote a well-founded rewrite ordering on terms which is total on
ground terms and for all ground terms t there exist only finitely many ground
terms s ≺T t. We call ≺T a desired term ordering. We extend ≺T to equations by
assigning the multiset {s, t} to positive equations s ≈ t and {s, s, t, t} to inequa-
tions s �≈ t. Furthermore, we identify ≺T with its multiset extension comparing
multisets of literals. For a (multi)set of terms {t1, . . . , tn} and a term t, we define
{t1, . . . , tn} ≺T t if {t1, . . . , tn} ≺T {t}. For a (multi)set of Literals {L1, . . . , Ln}
and a term t, we define {L1, . . . , Ln} ≺T t if {L1, . . . , Ln} ≺T {{t}}. Given a
ground term β then gnd≺T β computes the set of all ground instances of a lit-
eral, clause, or clause set where the groundings are smaller than β according to

SCL(EQ): SCL for First-Order Logic with Equality 233

the ordering ≺T . Given a set (sequence) of ground literals Γ let conv(Γ) be a
convergent rewrite system out of the positive equations in Γ using ≺T .

Let ≺ be a well-founded, total, strict ordering on ground literals, which is
lifted to clauses and clause sets by its respective multiset extension. We overload
≺ for literals, clauses, clause sets if the meaning is clear from the context. The
ordering is lifted to the non-ground case via instantiation: we define C ≺ D
if for all grounding substitutions σ it holds Cσ ≺ Dσ. Then we define � as
the reflexive closure of ≺ and N	C := {D | D ∈ N and D � C} and use the
standard superposition style notion of redundancy [2].

Definition 1 (Clause Redundancy). A ground clause C is redundant with
respect to a set N of ground clauses and an ordering ≺ if N	C |= C. A clause
C is redundant with respect to a clause set N and an ordering ≺ if for all
C ′ ∈ gnd(C), C ′ is redundant with respect to gnd(N).

3 The SCL(EQ) Calculus

We start the introduction of the calculus by defining the ingredients of an
SCL(EQ) state.

Definition 2 (Trail). A trail Γ := [Li1:C1·σ1
1 , ..., Lin:Cn·σn

n] is a consistent
sequence of ground equations and inequations where Lj is annotated by a level
ij with ij−1 ≤ ij, and a closure Cj ·σj. We omit the annotations if they are not
needed in a certain context. A ground literal L is true in Γ if Γ |= L. A ground lit-
eral L is false in Γ if Γ |= comp(L). A ground literal L is undefined in Γ if Γ �|= L
and Γ �|= comp(L). Otherwise it is defined. For each literal Lj in Γ it holds that
Lj is undefined in [L1, ..., Lj−1] and irreducible by conv({L1, ..., Lj−1}).

The above definition of truth and undefinedness is extended to clauses in the
obvious way. The notions of true, false, undefined can be parameterized by a
ground term β by saying that L is β-undefined in a trail Γ if β ≺T L or L is
undefined. The notions of a β-true, β-false term are restrictions of the above
notions to literals smaller β, respectively. All SCL(EQ) reasoning is layered with
respect to a ground term β.

Definition 3. Let Γ be a trail and L a ground literal such that L is defined in
Γ . By core(Γ ;L) we denote a minimal subsequence Γ ′ ⊆ Γ such that L is defined
in Γ ′. By cores(Γ ;L) we denote the set of all cores.

Note that core(Γ ;L) is not necessarily unique. There can be multiple cores
for a given trail Γ and ground literal L.

Definition 4 (Trail Ordering). Let Γ := [L1, ..., Ln] be a trail. The (partial)
trail ordering ≺Γ is the sequence ordering given by Γ , i.e., Li ≺Γ Lj if i < j for
all 1 ≤ i, j ≤ n.

234 H. Leidinger and C. Weidenbach

Definition 5 (Defining Core and Defining Literal). For a trail Γ and
a sequence of literals Δ ⊆ Γ we write max≺Γ

(Δ) for the largest literal in Δ
according to the trail ordering ≺Γ . Let Γ be a trail and L a ground literal such
that L is defined in Γ . Let Δ ∈ cores(Γ ;L) be a sequence of literals where
max≺Γ

(Δ) �Γ max≺Γ
(Λ) for all Λ ∈ cores(Γ ;L), then maxΓ (L) := max≺Γ

(Δ)
is called the defining literal and Δ is called a defining core for L in Γ . If
cores(Γ ;L) contains only the empty core, then L has no defining literal and
no defining core.

Note that there can be multiple defining cores but only one defining literal for
any defined literal L. For example, consider a trail Γ := [f(a) ≈ f(b)1:C1·σ1 , a ≈
b2:C2·σ2 , b ≈ c3:C3·σ3] with an ordering ≺T that orders the terms of the equations
from left to right, and a literal g(f(a)) ≈ g(f(c)). Then the defining cores are
Δ1 := [a ≈ b, b ≈ c] and Δ2 := [f(a) ≈ f(b), b ≈ c]. The defining literal, however,
is in both cases b ≈ c. Defined literals that have no defining core and therefore no
defining literal are literals that are trivially false or true. Consider, for example,
g(f(a)) ≈ g(f(a)). This literal is trivially true in Γ . Thus an empty subset of Γ
is sufficient to show that g(f(a)) ≈ g(f(a)) is defined in Γ .

Definition 6 (Literal Level). Let Γ be a trail. A ground literal L ∈ Γ is of
level i if L is annotated with i in Γ . A defined ground literal L �∈ Γ is of level i
if the defining literal of L is of level i. If L has no defining literal, then L is of
level 0. A ground clause D is of level i if i is the maximum level of a literal in
D.

The restriction to minimal subsequences for the defining literal and defini-
tion of a level eventually guarantee that learned clauses are smaller in the trail
ordering. This enables completeness in combination with learning non-redundant
clauses as shown later.

Lemma 7. Let Γ1 be a trail and K a defined literal that is of level i in Γ1. Then
K is of level i in a trail Γ := Γ1, Γ2.

Definition 8. Let Γ be a trail and L ∈ Γ a literal. L is called a decision literal
if Γ = Γ0,K

i:C·τ , Li+1:C′·τ ′
, Γ1. Otherwise L is called a propagated literal.

In our above example g(f(a)) ≈ g(f(c)) is of level 3 since the defining literal
b ≈ c is annotated with 3. a �≈ b on the other hand is of level 2.

We define a well-founded total strict ordering which is induced by the trail
and with which non-redundancy is proven in Sect. 4. Unlike SCL [14,18] we
use this ordering for the inference rules as well. In previous SCL calculi, conflict
resolution automatically chooses the greatest literal and resolves with this literal.
In SCL(EQ) this is generalized. Coming back to our running example above,
suppose we have a conflict clause f(b) �≈ f(c)∨b �≈ c. The defining literal for both
inequations is b ≈ c. So we could do paramodulation inferences with both literals.
The following ordering makes this non-deterministic choice deterministic.

SCL(EQ): SCL for First-Order Logic with Equality 235

Definition 9 (Trail Induced Ordering). Let Γ := [Li1:C1·σ1
1 , ..., Lin:Cn·σn

n]
be a trail, β a ground term such that {L1, ..., Ln} ≺T β and Mi,j all β-
defined ground literals not contained in Γ ∪ comp(Γ): for a defining literal
maxΓ (Mi,j) = Li and for two literals Mi,j, Mi,k we have j < k if Mi,j ≺T Mi,k.
The trail induces a total well-founded strict order ≺Γ ∗ on β-defined ground lit-
erals Mk,l,Mm,n, Li, Lj of level greater than zero, where

1. Mi,j ≺Γ ∗ Mk,l if i < k or (i = k and j < l)
2. Li ≺Γ ∗ Lj if Li ≺Γ Lj

3. comp(Li) ≺Γ ∗ Lj if Li ≺Γ Lj

4. Li ≺Γ ∗ comp(Lj) if Li ≺Γ Lj or i = j
5. comp(Li) ≺Γ ∗ comp(Lj) if Li ≺Γ Lj

6. Li ≺Γ ∗ Mk,l, comp(Li) ≺Γ ∗ Mk,l if i ≤ k
7. Mk,l ≺Γ ∗ Li, Mk,l ≺Γ ∗ comp(Li) if k < i

and for all β-defined literals L of level zero:

8. ≺Γ ∗ :=≺T

9. L ≺Γ ∗ K if K is of level greater than zero and K is β-defined

and can eventually be extended to β-undefined ground literals K,H by

10. K ≺Γ ∗ H if K ≺T H
11. L ≺Γ ∗ H if L is β-defined

The literal ordering ≺Γ ∗ is extended to ground clauses by multiset extension and
identified with ≺Γ ∗ as well.

Lemma 10 (Properties of ≺Γ ∗).

1. ≺Γ ∗ is well-defined.
2. ≺Γ ∗ is a total strict order, i.e. ≺Γ ∗ is irreflexive, transitive and total.
3. ≺Γ ∗ is a well-founded ordering.

Example 11. Assume a trail Γ := [a ≈ b1:C0·σ0 , c ≈ d1:C1·σ1 , f(a′) �≈
f(b′)1:C2·σ2], select KBO as the term ordering ≺T where all symbols have weight
one and a ≺ a′ ≺ b ≺ b′ ≺ c ≺ d ≺ f and a ground term β := f(f(a)). According
to the trail induced ordering we have that a ≈ b ≺Γ ∗ c ≈ d ≺Γ ∗ f(a′) �≈ f(b′)
by 9.2. Furthermore we have that

a ≈ b ≺Γ ∗ a �≈ b ≺Γ ∗ c ≈ d ≺Γ ∗ c �≈ d ≺Γ ∗ f(a′) �≈ f(b′) ≺Γ ∗ f(a′) ≈ f(b′)

by 9.3 and 9.4. Now for any literal L that is β-defined in Γ and the defining
literal is a ≈ b it holds that a �≈ b ≺Γ ∗ L ≺Γ ∗ c ≈ d by 9.6 and 9.7. This holds
analogously for all literals that are β-defined in Γ and the defining literal is c ≈ d
or f(a′) �≈ f(b′). Thus we get:

L1 ≺Γ ∗ ... ≺Γ ∗ a ≈ b ≺Γ ∗ a �≈ b ≺Γ ∗ f(a) ≈ f(b) ≺Γ ∗ f(a) �≈ f(b) ≺Γ ∗

c ≈ d ≺Γ ∗ c �≈ d ≺Γ ∗ f(c) ≈ f(d) ≺Γ ∗ f(c) �≈ f(d) ≺Γ ∗

f(a′) �≈ f(b′) ≺Γ ∗ f(a′) ≈ f(b′) ≺Γ ∗ a′ ≈ b′ ≺Γ ∗ a′ �≈ b′ ≺Γ ∗ K1 ≺Γ ∗ . . .

where Ki are the β-undefined literals and Lj are the trivially defined literals.

236 H. Leidinger and C. Weidenbach

Definition 12 (Rewrite Step). A rewrite step is a five-tuple (s#t·σ, s#t ∨
C·σ,R, S, p) and inductively defined as follows. The tuple (s#t·σ, s#t ∨
C·σ, ε, ε, ε) is a rewrite step. Given rewrite steps R,S and a position p then
(s#t·σ, s#t∨C·σ,R, S, p) is a rewrite step. The literal s#t is called the rewrite
literal. In case R,S are not ε, the rewrite literal of R is an equation.

Rewriting is one of the core features of our calculus. The following definition
describes a rewrite inference between two clauses. Note that unlike the superpo-
sition calculus we allow rewriting below variable level.

Definition 13 (Rewrite Inference). Let I1 := (l1 ≈ r1·σ1, l1 ≈ r1 ∨
C1·σ1, R1, L1, p1) and I2 := (l2#r2·σ2, l2#r2∨C2·σ2, R2, L2, p2) be two variable
disjoint rewrite steps where r1σ1 ≺T l1σ1, (l2#r2)σ2|p = l1σ1 for some position
p. We distinguish two cases:

1. if p ∈ pos(l2#r2) and μ := mgu((l2#r2)|p, l1) then (((l2#r2)[r1]p)μ·σ1σ2,
((l2#r2)[r1]p)μ∨C1μ∨C2μ·σ1σ2, I1, I2, p) is the result of a rewrite inference.

2. if p �∈ pos(l2#r2) then let (l2#r2)δ be the most general instance of l2#r2 such
that p ∈ pos((l2#r2)δ), δ introduces only fresh variables and (l2#r2)δσ2ρ =
(l2#r2)σ2 for some minimal ρ. Let μ := mgu((l2#r2)δ|p, l1). Then
((l2#r2)δ[r1]pμ·σ1σ2ρ, (l2#r2)δ[r1]pμ ∨ C1μ ∨ C2δμ·σ1σ2ρ, I1, I2, p) is the
result of a rewrite inference.

Lemma 14. Let I1 := (l1 ≈ r1·σ1, l1 ≈ r1 ∨ C1·σ1, R1, L1, p1) and I2 :=
(l2#r2·σ2, l2#r2 ∨ C2·σ2, R2, L2, p2) be two variable disjoint rewrite steps
where r1σ1 ≺T l1σ1, (l2#r2)σ2|p = l1σ1 for some position p. Let I3 :=
(l3#r3·σ3, l3#r3 ∨ C3·σ3, I1, I2, p) be the result of a rewrite inference. Then:

1. C3σ3 = (C1 ∨ C2)σ1σ2 and l3#r3σ3 = (l2#r2)σ2[r1σ1]p.
2. (l3#r3)σ3 ≺T (l2#r2)σ2

3. If N |= (l1 ≈ r1 ∨ C1) ∧ (l2#r2 ∨ C2) for some set of clauses N , then N |=
l3#r3 ∨ C3

Now that we have defined rewrite inferences we can use them to define a
reduction chain application and a refutation, which are sequences of rewrite
steps. Intuitively speaking, a reduction chain application reduces a literal in a
clause with literals in conv(Γ) until it is irreducible. A refutation for a literal
L that is β-false in Γ for a given β, is a sequence of rewrite steps with literals
in Γ,L such that ⊥ is inferred. Refutations for the literals of the conflict clause
will be examined during conflict resolution by the rule Explore-Refutation.

Definition 15 (Reduction Chain). Let Γ be a trail. A reduction chain P
from Γ is a sequence of rewrite steps [I1, ..., Im] such that for each Ii =
(si#ti·σi, si#ti ∨ Ci·σi, Ij , Ik, pi) either

1. si#tni:si#ti∨Ci·σ
i is contained in Γ and Ij = Ik = pi = ε or

2. Ii is the result of a rewriting inference from rewrite steps Ij , Ik out of
[I1, ..., Im] where j, k < i.

SCL(EQ): SCL for First-Order Logic with Equality 237

Let (l # r)δo:l # r∨C·δ be an annotated ground literal. A reduction chain appli-
cation from Γ to l # r is a reduction chain [I1, ..., Im] from Γ, (l # r)δo:l # r∨C·δ

such that lδ↓conv(Γ) = smσm and rδ↓conv(Γ) = tmσm. We assume reduction
chain applications to be minimal, i.e., if any rewrite step is removed from the
sequence it is no longer a reduction chain application.

Definition 16 (Refutation). Let Γ be a trail and (l # r)δo:l # r∨C·δ an anno-
tated ground literal that is β-false in Γ for a given β. A refutation P from
Γ and l # r is a reduction chain [I1, ..., Im] from Γ, (l # r)δo:l # r∨C·δ such that
(sm#tm)σm = s �≈ s for some s. We assume refutations to be minimal, i.e.,
if any rewrite step Ik, k < m is removed from the refutation, it is no longer a
refutation.

3.1 The SCL(EQ) Inference Rules

We can now define the rules of our calculus based on the previous definitions.
A state is a six-tuple (Γ ;N ;U ;β; k;D) similar to the SCL calculus, where Γ a
sequence of annotated ground literals, N and U the sets of initial and learned
clauses, β is a ground term such that for all L ∈ Γ it holds L ≺T β, k is
the decision level, and D a status that is �, ⊥ or a closure C ·σ. Before we
propagate or decide any literal, we make sure that it is irreducible in the current
trail. Together with the design of ≺Γ ∗ this eventually enables rewriting as a
simplification rule.

Propagate
(Γ ;N ;U ;β; k;�) ⇒SCL(EQ) (Γ, sm#tmσ

k:(sm#tm∨Cm)·σm
m ;N ;U ;β; k;�)

provided there is a C ∈ (N ∪U), σ grounding for C, C = C0∨C1∨L, Γ |= ¬C0σ,
C1σ = Lσ∨ ...∨Lσ, C1 = L1 ∨ ...∨Ln, μ = mgu(L1, ..., Ln, L) Lσ is β-undefined
in Γ , (C0 ∨ L)μσ ≺T β, σ is irreducible by conv(Γ), [I1, . . . , Im] is a reduction
chain application from Γ to Lσk:(L∨C0)μ·σ where Im = (sm#tm·σm, sm#tm ∨
Cm·σm, Ij , Ik, pm).

Note that the definition of Propagate also includes the case where Lσ is
irreducible by Γ . In this case L = sm#tm and m = 1. The rule Decide below,
is similar to Propagate, except for the subclause C0 which must be β-undefined
or β-true in Γ , i.e., Propagate cannot be applied and the decision literal is
annotated by a tautology.

Decide
(Γ ;N ;U ;β; k;�) ⇒SCL(EQ) (Γ, sm#tmσ

k+1:(sm#tm∨comp(sm#tm))·σm
m ;N ;U ;

β; k + 1;�)
provided there is a C ∈ (N ∪ U), σ grounding for C, C = C0 ∨ L, C0σ is
β-undefined or β-true in Γ , Lσ is β-undefined in Γ , (C0 ∨ L)σ ≺T β, σ is
irreducible by conv(Γ), [I1, . . . , Im] is a reduction chain application from Γ to
Lσk+1:L∨C0·σ where Im = (sm#tm·σm, sm#tm ∨ Cm·σm, Ij , Ik, pm).

238 H. Leidinger and C. Weidenbach

Conflict
(Γ ;N ;U ;β; k;�)⇒SCL(EQ) (Γ ;N ;U ;β; k;D)
provided there is a D′ ∈ (N ∪ U), σ grounding for D′, D′σ is β-false in Γ , σ is
irreducible by conv(Γ), D = ⊥ if D′σ is of level 0 and D = D′·σ otherwise.

For the non-equational case, when a conflict clause is found by an SCL calcu-
lus [14,18], the complements of its first-order ground literals are contained in the
trail. For equational literals this is not the case, in general. The proof showing
D to be β-false with respect to Γ is a rewrite proof with respect to conv(Γ).
This proof needs to be analyzed to eventually perform paramodulation steps on
D or to replace D by a ≺Γ ∗ smaller β-false clause showing up in the proof.

Skip
(Γ,Kl:C·τ , Lk:C′·τ ′

;N ;U ;β; k;D ·σ)⇒SCL(EQ) (Γ,Kl:C·τ ;N ;U ;β; l;D ·σ) if
Dσ is β-false in Γ,Kl:C·τ .

The Explore-Refutation rule is the FOL with Equality counterpart to the
resolve rule in CDCL or SCL. While in CDCL or SCL complementary literals of
the conflict clause are present on the trail and can directly be used for resolution
steps, this needs a generalization for FOL with Equality. Here, in general, we need
to look at (rewriting) refutations of the conflict clause and pick an appropriate
clause from the refutation as the next conflict clause.

Explore-Refutation
(Γ,L;N ;U ;β; k; (D∨s # t)·σ)) ⇒SCL(EQ) (Γ,L;N ;U ;β; k; (sj#tj∨Cj)·σj)

if (s # t)σ is strictly ≺Γ ∗ maximal in (D ∨ s # t)σ, L is the defining literal of
(s # t)σ, [I1, ..., Im] is a refutation from Γ and (s # t)σ, Ij = (sj#tj ·σj , (sj#tj ∨
Cj)·σj , Il, Ik, pj), 1 ≤ j ≤ m, (sj # tj ∨ Cj)σj ≺Γ ∗ (D ∨ s # t)σ, (sj#tj ∨ Cj)σj

is β-false in Γ .

Factorize
(Γ ;N ;U ;β; k; (D ∨ L ∨ L′) · σ) ⇒SCL(EQ) (Γ ;N ;U ;β; k; (D ∨ L)μ · σ)
provided Lσ = L′σ, and μ = mgu(L,L′).

Equality-Resolution
(Γ ;N ;U ;β; k; (D ∨ s �≈ s′)·σ)⇒SCL(EQ) (Γ ;N ;U ;β; k;Dμ ·σ)
provided sσ = s′σ, μ = mgu(s, s′).

Backtrack
(Γ,K, Γ ′;N ;U ;β; k; (D ∨ L) · σ)⇒SCL(EQ) (Γ ;N ;U ∪ {D ∨ L};β; j − i;�)
provided Dσ is of level i′ where i′ < k, K is of level j and Γ,K the minimal trail
subsequence such that there is a grounding substitution τ with (D ∨ L)τ β-false
in Γ,K but not in Γ ; i = 1 if K is a decision literal and i = 0 otherwise.

Grow
(Γ ;N ;U ;β; k;�) ⇒SCL(EQ) (ε;N ;U ;β′; 0;�)
provided β ≺T β′.

SCL(EQ): SCL for First-Order Logic with Equality 239

In addition to soundness and completeness of the SCL(EQ) rules their
tractability in practice is an important property for a successful implementa-
tion. In particular, finding propagating literals or detecting a false clause under
some grounding. It turns out that these operations are NP-complete, similar to
first-order subsumption which has been shown to be tractable in practice.

Lemma 17. Assume that all ground terms t with t ≺T β for any β are poly-
nomial in the size of β. Then testing Propagate (Conflict) is NP-Complete, i.e.,
the problem of checking for a given clause C whether there exists a grounding
substitution σ such that Cσ propagates (is false) is NP-Complete.

Example 18 (SCL(EQ) vs. Superposition: Saturation). Consider the following
clauses:

N := {C1 := c ≈ d ∨ D,C2 := a ≈ b ∨ c �≈ d,C3 := f(a) �≈ f(b) ∨ g(c) �≈ g(d)}
where again we assume a KBO with all symbols having weight one, precedence
d ≺ c ≺ b ≺ a ≺ g ≺ f and β := f(f(g(a))). Suppose that we first decide
c ≈ d and then propagate a ≈ b: Γ = [c ≈ d1:c≈d∨c �≈d, a ≈ b1:C2]. Now we have a
conflict with C3. Explore-Refutation applied to the conflict clause C3 results in a
paramodulation inference between C3 and C2. Another application of Equality-
Resolution gives us the new conflict clause C4 := c �≈ d∨g(c) �≈ g(d). Now we can
Skip the last literal on the trail, which gives us Γ = [c ≈ d1:c≈d∨c �≈d]. Another
application of the Explore-Refutation rule to C4 using the decision justification
clause followed by Equality-Resolution and Factorize gives us C5 := c �≈ d. Thus
with SCL(EQ) the following clauses remain:

C ′
1 = D C5 = c �≈ d

C3 = f(a) �≈ f(b) ∨ g(c) �≈ g(d)

where we derived C ′
1 out of C1 by subsumption resolution [33] using C5. Actually,

subsumption resolution is compatible with the general redundancy notion of
SCL(EQ), see Lemma 25. Now we consider the same example with superposition
and the very same ordering (Ni is the clause set of the previous step and N0 the
initial clause set N).

N0 ⇒Sup(C2,C3) N1 ∪ {C4 := c �≈ d ∨ g(c) �≈ g(d)}
⇒Sup(C1,C4) N2 ∪ {C5 := c �≈ d ∨ D} ⇒Sup(C1,C5) N3 ∪ {C6 := D}

Thus superposition ends up with the following clauses:

C2 = a ≈ b ∨ c �≈ d C3 = f(a) �≈ f(b) ∨ g(c) �≈ g(d)
C4 = c �≈ d ∨ g(c) �≈ g(d) C6 = D

The superposition calculus generates more and larger clauses.

Example 19 (SCL(EQ) vs. Superposition: Refutation). Suppose the following set
of clauses: N := {C1 := f(x) �≈ a ∨ f(x) ≈ b, C2 := f(f(y)) ≈ y, C3 := a �≈ b}
where again we assume a KBO with all symbols having weight one, precedence

240 H. Leidinger and C. Weidenbach

b ≺ a ≺ f and β := f(f(f(a))). A long refutation by the superposition calculus
results in the following (Ni is the clause set of the previous step and N0 the
initial clause set N):

N0 ⇒Sup(C1,C2) N1 ∪ {C4 := y �≈ a ∨ f(f(y)) ≈ b}
⇒Sup(C1,C4) N2 ∪ {C5 := a �≈ b ∨ f(f(y)) ≈ b ∨ y �≈ a}
⇒Sup(C2,C5) N3 ∪ {C6 := a �≈ b ∨ b ≈ y ∨ y �≈ a}
⇒Sup(C2,C4) N4 ∪ {C7 := y ≈ b ∨ y �≈ a}
⇒EqRes(C7) N5 ∪ {C8 := a ≈ b} ⇒Sup(C3,C8) N6 ∪ {⊥}

The shortest refutation by the superposition calculus is as follows:

N0 ⇒Sup(C1,C2) N1 ∪ {C4 := y �≈ a ∨ f(f(y)) ≈ b}
⇒Sup(C2,C4) N2 ∪ {C5 := y ≈ b ∨ y �≈ a}
⇒EqRes(C5) N3 ∪ {C6 := a ≈ b} ⇒Sup(C3,C6) N4 ∪ {⊥}

In SCL(EQ) on the other hand we would always first propagate a �≈ b, f(f(a)) ≈
a and f(f(b)) ≈ b. As soon as a �≈ b and f(f(a)) ≈ a are propagated we have a
conflict with C1{x → f(a)}. So suppose in the worst case we propagate:

Γ := [a �≈ b0:a�≈b, f(f(b)) ≈ b0:(f(f(y))≈y){y→b}, f(f(a)) ≈ a0:(f(f(y))≈y){y→a}]

Now we have a conflict with C1{x → f(a)}. Since there is no decision literal on
the trail, Conflict rule immediately returns ⊥ and we are done.

4 Soundness and Completeness

In this section we show soundness and refutational completeness of SCL(EQ)
under the assumption of a regular run. We provide the definition of a regular run
and show that for a regular run all learned clauses are non-redundant according
to our trail induced ordering. We start with the definition of a sound state.

Definition 20. A state (Γ ;N ;U ;β; k;D) is sound if the following conditions
hold:

1. Γ is a consistent sequence of annotated literals,
2. for each decomposition Γ = Γ1, Lσi:(C∨L)·σ, Γ2 where Lσ is a propagated lit-

eral, we have that Cσ is β-false in Γ1, Lσ is β-undefined in Γ1 and irreducible
by conv(Γ1), N ∪ U |= (C ∨ L) and (C ∨ L)σ ≺T β,

3. for each decomposition Γ = Γ1, Lσi:(L∨comp(L))·σ, Γ2 where Lσ is a decision
literal, we have that Lσ is β-undefined in Γ1 and irreducible by conv(Γ1),
N ∪ U |= (L ∨ comp(L)) and (L ∨ comp(L))σ ≺T β,

4. N |= U ,
5. if D = C ·σ, then Cσ is β-false in Γ , N ∪ U |= C,

Lemma 21. The initial state (ε;N ; ∅;β; 0;�) is sound.

Definition 22. A run is a sequence of applications of SCL(EQ) rules starting
from the initial state.

SCL(EQ): SCL for First-Order Logic with Equality 241

Theorem 23. Assume a state (Γ ;N ;U ;β; k;D) resulting from a run. Then
(Γ ;N ;U ;β; k;D) is sound.

Next, we give the definition of a regular run. Intuitively speaking, in a regular
run we are always allowed to do decisions except if

1. a literal can be propagated before the first decision and
2. the negation of a literal can be propagated.

To ensure non-redundant learning we enforce at least one application of Skip
during conflict resolution except for the special case of a conflict after a decision.

Definition 24 (Regular Run). A run is called regular if

1. the rules Conflict and Factorize have precedence over all other rules,
2. If k = 0 in a state (Γ ;N ;U ;β; k;D), then Propagate has precedence over

Decide,
3. If an annotated literal Lk:C·σ could be added by an application of Propagate

on Γ in a state (Γ ;N ;U ;β; k;D) and C ∈ N ∪ U , then the annotated literal
comp(L)k+1:C′·σ′

is not added by Decide on Γ ,
4. during conflict resolution Skip is applied at least once, except if Conflict is

applied immediately after an application of Decide.
5. if Conflict is applied immediately after an application of Decide, then Back-

track is only applied in a state (Γ,L′;N ;U ;β; k;D·σ) if Lσ = comp(L′) for
some L ∈ D.

Now we show that any learned clause in a regular run is non-redundant
according to our trail induced ordering.

Lemma 25 (Non-Redundant Clause Learning). Let N be a clause set.
The clauses learned during a regular run in SCL(EQ) are not redundant with
respect to ≺Γ ∗ and N ∪ U . For the trail only non-redundant clauses need to be
considered.

The proof of Lemma 25 is based on the fact that conflict resolution eventually
produces a clause smaller then the original conflict clause with respect to ≺Γ ∗ .
All simplifications, e.g., contextual rewriting, as defined in [2,20,33,35–37], are
therefore compatible with Lemma 25 and may be applied to the newly learned
clause as long as they respect the induced trail ordering. In detail, let Γ be the
trail before the application of rule Backtrack. The newly learned clause can be
simplified according to the induced trail ordering ≺Γ ∗ as long as the simplified
clause is smaller with respect to ≺Γ ∗ .

Another important consequence of Lemma 25 is that newly learned clauses
need not to be considered for redundancy. Furthermore, the SCL(EQ) calculus
always terminates, Lemma 33, because there only finitely many non-redundant
clauses with respect to a fixed β.

For dynamic redundancy, we have to consider the fact that the induced trail
ordering changes. At this level, only redundancy criteria and simplifications that

242 H. Leidinger and C. Weidenbach

are compatible with all induced trail orderings may be applied. Due to the
construction of the induced trail ordering, it is compatible with ≺T for unit
clauses.

Lemma 26 (Unit Rewriting). Assume a state (Γ ;N ;U ;β; k;D) resulting
from a regular run where the current level k > 0 and a unit clause l ≈ r ∈ N .
Now assume a clause C ∨ L[l′]p ∈ N such that l′ = lμ for some matcher μ. Now
assume some arbitrary grounding substitutions σ′ for C ∨L[l′]p, σ for l ≈ r such
that lσ = l′σ′ and rσ ≺T lσ. Then (C ∨ L[rμσσ′]p)σ′ ≺Γ ∗ (C ∨ L[l′]p)σ′.

In addition, any notion that is based on a literal subset relationship is also
compatible with ordering changes. The standard example is subsumption.

Lemma 27. Let C,D be two clauses. If there exists a substitution σ such that
Cσ ⊂ D, then D is redundant with respect to C and any ≺Γ ∗ .

The notion of redundancy, Definition 1, only supports a strict subset relation
for Lemma 27, similar to the superposition calculus. However, the newly gener-
ated clauses of SCL(EQ) are the result of paramodulation inferences [28]. In a
recent contribution to dynamic, abstract redundancy [32] it is shown that also
the non-strict subset relation in Lemma 27, i.e., Cσ ⊆ D, preserves completeness.

If all stuck states, see below Definition 28, with respect to a fixed β are visited
before increasing β then this provides a simple dynamic fairness strategy.

When unit reduction or any other form of supported rewriting is applied to
clauses smaller than the current β, it can be applied independently from the
current trail. If, however, unit reduction is applied to clauses larger than the
current β then the calculus must do a restart to its initial state, in particular
the trail must be emptied, as for otherwise rewriting may result generating a
conflict that did not exist with respect to the current trail before the rewriting.
This is analogous to a restart in CDCL once a propositional unit clause is derived
and used for simplification. More formally, we add the following new Restart rule
to the calculus to reset the trail to its initial state after a unit reduction.

Restart
(Γ ;N ;U ;β; k;�) ⇒SCL(EQ) (ε;N ;U ;β; 0;�)

Next we show refutation completeness of SCL(EQ). To achieve this we first
give a definition of a stuck state. Then we show that stuck states only occur if
all ground literals L ≺T β are β-defined in Γ and not during conflict resolution.
Finally we show that conflict resolution will always result in an application of
Backtrack. This allows us to show termination (without application of Grow)
and refutational completeness.

Definition 28 (Stuck State). A state (Γ ;N ;U ;β; k;D) is called stuck if
D �= ⊥ and none of the rules of the calculus, except for Grow, is applicable.

Lemma 29 (Form of Stuck States). If a regular run (without rule Grow)
ends in a stuck state (Γ ;N ;U ;β; k;D), then D = � and all ground literals
Lσ ≺T β, where L ∨ C ∈ (N ∪ U) are β-defined in Γ .

SCL(EQ): SCL for First-Order Logic with Equality 243

Lemma 30. Suppose a sound state (Γ ;N ;U ;β; k;D) resulting from a regular
run where D �∈ {�,⊥}. If Backtrack is not applicable then any set of applications
of Explore-Refutation, Skip, Factorize, Equality-Resolution will finally result
in a sound state (Γ ′;N ;U ;β; k;D′), where D′ ≺Γ ∗ D. Then Backtrack will be
finally applicable.

Corollary 31 (Satisfiable Clause Sets). Let N be a satisfiable clause set.
Then any regular run without rule Grow will end in a stuck state, for any β.

Thus a stuck state can be seen as an indication for a satisfiable clause set.
Of course, it remains to be investigated whether the clause set is actually satisfi-
able. Superposition is one of the strongest approaches to detect satisfiability and
constitutes a decision procedure for many decidable first-order fragments [4,19].
Now given a stuck state and some specific ordering such as KBO, LPO, or some
polynomial ordering [17], it is decidable whether the ordering can be instantiated
from a stuck state such that Γ coincides with the superposition model operator
on the ground terms smaller than β. In this case it can be effectively checked
whether the clauses derived so far are actually saturated by the superposition
calculus with respect to this specific ordering. In this sense, SCL(EQ) has the
same power to decide satisfiability of first-order clause sets than superposition.

Definition 32. A regular run terminates in a state (Γ ;N ;U ;β; k;D) if D = �
and no rule is applicable, or D = ⊥.

Lemma 33. Let N be a set of clauses and β be a ground term. Then any regular
run that never uses Grow terminates.

Lemma 34. If a regular run reaches the state (Γ ;N ;U ;β; k;⊥) then N is unsat-
isfiable.

Theorem 35 (Refutational Completeness). Let N be an unsatisfiable
clause set, and ≺T a desired term ordering. For any ground term β where
gnd≺T β(N) is unsatisfiable, any regular SCL(EQ) run without rule Grow will
terminate by deriving ⊥.

5 Discussion

We presented SCL(EQ), a new sound and complete calculus for reasoning in first-
order logic with equality. We will now discuss some of its aspects and present
ideas for future work beyond the scope of this paper.

The trail induced ordering, Definition 9, is the result of letting the calculus
follow the logical structure of the clause set on the literal level and at the same
time supporting rewriting at the term level. It can already be seen by examples on
ground clauses over (in)equations over constants that this combination requires
a layered approach as suggested by Definition 9, see [24].

In case the calculus runs into a stuck state, i.e., the current trail is a model
for the set of considered ground instances, then the trail information can be

244 H. Leidinger and C. Weidenbach

effectively used for a guided continuation. For example, in order to use the trail
to certify a model, the trail literals can be used to guide the design of a lifted
ordering for the clauses with variables such that propagated trail literals are
maximal in respective clauses. Then it could be checked by superposition, if the
current clause is saturated by such an ordering. If this is not the case, then
there must be a superposition inference larger than the current β, thus giving
a hint on how to extend β. Another possibility is to try to extend the finite
set of ground terms considered in a stuck state to the infinite set of all ground
terms by building extended equivalence classes following patterns that ensure
decidability of clause testing, similar to the ideas in [14]. If this fails, then again
this information can be used to find an appropriate extension term β for rule
Grow.

In contrast to superposition, SCL(EQ) does also inferences below variable
level. Inferences in SCL(EQ) are guided by a false clause with respect to a
partial model assumption represented by the trail. Due to this guidance and the
different style of reasoning this does not result in an explosion in the number of
possibly inferred clauses but also rather in the derivation of more general clauses,
see [24].

Currently, the reasoning with solely positive equations is done on and with
respect to the trail. It is well-known that also inferences from this type of rea-
soning can be used to speed up the overall reasoning process. The SCL(EQ)
calculus already provides all information for such a type of reasoning, because it
computes the justification clauses for trail reasoning via rewriting inferences. By
an assessment of the quality of these clauses, e.g., their reduction potential with
respect to trail literals, they could also be added, independently from resolving
a conflict.

The trail reasoning is currently defined with respect to rewriting. It could
also be performed by congruence closure [26].

Towards an implementation, the aspect of how to find interesting ground
decision or propagation literals for the trail can be treated similar to CDCL [11,
21,25,29]. A simple heuristic may be used from the start, like counting the
number of instance relationships of some ground literal with respect to the clause
set, but later on a bonus system can focus the search towards the structure of the
clause sets. Ground literals involved in a conflict or the process of learning a new
clause get a bonus or preference. The regular strategy requires the propagation of
all ground unit clauses smaller than β. For an implementation a propagation of
the (explicit and implicit) unit clauses with variables to the trail will be a better
choice. This complicates the implementation of refutation proofs and rewriting
(congruence closure), but because every reasoning is layered by a ground term
β this can still be efficiently done.

Acknowledgments. This work was partly funded by DFG grant 389792660 as part
of TRR 248, see https://perspicuous-computing.science. We thank the anonymous
reviewers and Martin Desharnais for their thorough reading, detailed comments, and
corrections.

https://perspicuous-computing.science

SCL(EQ): SCL for First-Order Logic with Equality 245

References

1. Alagi, G., Weidenbach, C.: NRCL - a model building approach to the Bernays-
Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI),
vol. 9322, pp. 69–84. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24246-0 5

2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Log. Comput. 4(3), 217–247 (1994)

3. Bachmair, L., Ganzinger, H., Voronkov, A.: Elimination of equality via transforma-
tion with ordering constraints. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998.
LNCS, vol. 1421, pp. 175–190. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0054259

4. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as
a decision procedure for the monadic class with equality. In: Gottlob, G., Leitsch,
A., Mundici, D. (eds.) KGC 1993. LNCS, vol. 713, pp. 83–96. Springer, Heidelberg
(1993). https://doi.org/10.1007/BFb0022557

5. Baumgartner, P.: Hyper tableau — the next generation. In: de Swart, H. (ed.)
TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 60–76. Springer, Heidelberg
(1998). https://doi.org/10.1007/3-540-69778-0 14

6. Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution cal-
culus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246,
pp. 572–586. Springer, Heidelberg (2006). https://doi.org/10.1007/11916277 39

7. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper tableaux with equality. In: Pfen-
ning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 492–507. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73595-3 36

8. Baumgartner, P., Pelzer, B., Tinelli, C.: Model evolution with equality-revised and
implemented. J. Symb. Comput. 47(9), 1011–1045 (2012)

9. Baumgartner, P., Tinelli, C.: The model evolution calculus with equality. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 392–408. Springer,
Heidelberg (2005). https://doi.org/10.1007/11532231 29

10. Baumgartner, P., Waldmann, U.: Superposition and model evolution combined. In:
Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 17–34. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2 2

11. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

12. Bonacina, M.P., Furbach, U., Sofronie-Stokkermans, V.: On First-Order Model-
Based Reasoning. In: Mart́ı-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic,
Rewriting, and Concurrency. LNCS, vol. 9200, pp. 181–204. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23165-5 8

13. Bonacina, M.P., Plaisted, D.A.: SGGS theorem proving: an exposition. In: Schulz,
S., Moura, L.D., Konev, B. (eds.) PAAR-2014. 4th Workshop on Practical Aspects
of Automated Reasoning. EPiC Series in Computing, vol. 31, pp. 25–38. EasyChair
(2015)

14. Bromberger, M., Fiori, A., Weidenbach, C.: Deciding the Bernays-Schoenfinkel
fragment over bounded difference constraints by simple clause learning over the-
ories. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol.
12597, pp. 511–533. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67067-2 23

https://doi.org/10.1007/978-3-319-24246-0_5
https://doi.org/10.1007/978-3-319-24246-0_5
https://doi.org/10.1007/BFb0054259
https://doi.org/10.1007/BFb0054259
https://doi.org/10.1007/BFb0022557
https://doi.org/10.1007/3-540-69778-0_14
https://doi.org/10.1007/11916277_39
https://doi.org/10.1007/978-3-540-73595-3_36
https://doi.org/10.1007/11532231_29
https://doi.org/10.1007/978-3-642-02959-2_2
https://doi.org/10.1007/978-3-319-23165-5_8
https://doi.org/10.1007/978-3-030-67067-2_23
https://doi.org/10.1007/978-3-030-67067-2_23

246 H. Leidinger and C. Weidenbach

15. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

16. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
(JACM) 7(3), 201–215 (1960)

17. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. I, chap. 9, pp. 535–610. Elsevier (2001)

18. Fiori, A., Weidenbach, C.: SCL clause learning from simple models. In: Fontaine, P.
(ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 233–249. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29436-6 14

19. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded
fragment with equality. In: LICS, pp. 295–304 (1999)

20. Gleiss, B., Kovács, L., Rath, J.: Subsumption demodulation in first-order theo-
rem proving. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12166, pp. 297–315. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51074-9 17

21. Bayardo, R.J., Schrag, R.: Using CSP look-back techniques to solve exceptionally
hard SAT instances. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 46–60.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61551-2 65

22. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated
reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS,
vol. 7797, pp. 239–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37651-1 10

23. Korovin, K., Sticksel, C.: iProver-Eq: an instantiation-based theorem prover with
equality. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp.
196–202. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-
1 17

24. Leidinger, H., Weidenbach, C.: SCL(EQ): SCL for first-order logic with equality
(2022). arXiv: 2205.08297

25. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Proceedings of the Design Automation Conference,
pp. 530–535. ACM (2001)

26. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J.
ACM 27(2), 356–364 (1980)

27. Plaisted, D.A., Zhu, Y.: Ordered semantic hyper-linking. J. Autom. Reason. 25(3),
167–217 (2000)

28. Robinson, G., Wos, L.: Paramodulation and theorem-proving in first-order theories
with equality. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4, pp. 135–150
(1969)

29. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: International Conference on Computer Aided Design, ICCAD, pp. 220–227.
IEEE Computer Society Press (1996)

30. Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF
to th0, TPTP v6.4.0. J. Autom. Reasoning 59(4), 483–502 (2017)

31. Teucke, A.: An approximation and refinement approach to first-order automated
reasoning. Doctoral thesis, Saarland University (2018)

32. Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive frame-
work for saturation theorem proving. In: Peltier, N., Sofronie-Stokkermans, V.
(eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 316–334. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-51074-9 18

https://doi.org/10.1007/978-3-030-29436-6_14
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/3-540-61551-2_65
https://doi.org/10.1007/978-3-642-37651-1_10
https://doi.org/10.1007/978-3-642-37651-1_10
https://doi.org/10.1007/978-3-642-14203-1_17
https://doi.org/10.1007/978-3-642-14203-1_17
http://arxiv.org/abs/2205.08297
https://doi.org/10.1007/978-3-030-51074-9_18

SCL(EQ): SCL for First-Order Logic with Equality 247

33. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, chap. 27, pp. 1965–
2012. Elsevier (2001)

34. Weidenbach, C.: Automated reasoning building blocks. In: Meyer, R., Platzer,
A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 172–188.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6 12

35. Weidenbach, C., Wischnewski, P.: Contextual rewriting in SPASS. In:
PAAR/ESHOL. CEUR Workshop Proceedings, vol. 373, pp. 115–124. Australien,
Sydney (2008)

36. Weidenbach, C., Wischnewski, P.: Subterm contextual rewriting. AI Commun.
23(2–3), 97–109 (2010)

37. Wischnewski, P.: Effcient Reasoning Procedures for Complex First-Order Theories.
Ph.D. thesis, Saarland University, November 2012

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-23506-6_12
http://creativecommons.org/licenses/by/4.0/

Term Orderings for Non-reachability
of (Conditional) Rewriting

Akihisa Yamada(B)

National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

akihisa.yamada@aist.go.jp

Abstract. We propose generalizations of reduction pairs, well-establis-
hed techniques for proving termination of term rewriting, in order to
prove unsatisfiability of reachability (infeasibility) in plain and condi-
tional term rewriting. We adapt the weighted path order, a merger of the
Knuth–Bendix order and the lexicographic path order, into the proposed
framework. The proposed approach is implemented in the termination
prover NaTT, and the strength of our approach is demonstrated through
examples and experiments.

1 Introduction

In the research area of term rewriting, among the most well-studied topics are
termination, confluence, and reachability analyses.

In termination analysis, a crucial task used to be to design reduction orders,
well-founded orderings over terms that are closed under contexts and sub-
stitutions. Well-known examples of such orderings include the Knuth–Bendix
ordering [14], polynomial interpretations [18], multiset/lexicographic path order-
ing [4,13], and matrix interpretations [5]. The dependency pair framework gen-
eralized reduction orders into reduction pairs [2,9,12], and there are a number
of implementations that automatically find reduction pairs, e.g., AProVE [7],
TTT2 [16], MU-TERM [11], NaTT [35], competing in the International Termina-
tion Competition [8].

Traditional reachability analysis (cf. [6]) has been concerned with the pos-
sibility of rewriting a given source term s to a target t, where variables in the
terms are treated as constants. There is an increasing need for solving a more
general question: is it possible to instantiate variables so that the instance of s
rewrites to the instance of t? Let us illustrate the problem with an elementary
example.

Example 1. Consider the following TRS encoding addition of natural numbers:

Radd := { add(0, y) → y , add(s(x), y) → s(add(x , y)) }

The reachability constraint add(s(x), y) � y represents the possibility of rewrit-
ing from add(s(x), y) to y , where variables x and y can be arbitrary terms.

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 248–267, 2022.
https://doi.org/10.1007/978-3-031-10769-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_15&domain=pdf
http://orcid.org/0000-0001-8872-2240
https://doi.org/10.1007/978-3-031-10769-6_15

Term Orderings for Non-reachability of (Conditional) Rewriting 249

This (un)satisfiability problem of reachability, also called (in)feasibility, plays
important roles in termination [24] and confluence analyses of (conditional)
rewriting [21]. A tool competition dedicated for this problem has been founded
as the infeasibility (INF) category in the International Confluence Competition
(CoCo) since 2019 [25].

In this paper, we propose a new method for proving unsatisfiability of reach-
ability, using the term ordering techniques developed for termination analysis.
Specifically, in Sect. 3, we first generalize reduction pairs to rewrite pairs, and
show that they can be used for proving unsatisfiability of reachability. We further
generalize the notion to co-rewrite pairs, yielding a sound and complete method.
The power of the proposed method is demonstrated by importing (relaxed)
semantic term orderings from termination analysis.

In order to import also syntactic term orderings, in Sect. 4 we identify a
condition when the weighted path order (WPO) [36] forms a rewrite pair. Since
KBO and LPO are instances of WPO, we see that these orderings can also be
used in our method. In Sect. 5 we also present how to derive co-rewrite pairs
from WPO.

In Sect. 6, we adapt the approach into conditional rewriting. Section 7 reports
on the implementation and experiments conducted on examples in the paper and
the benchmark set of CoCo 2021.

Related Work Our rewrite pairs are essentially Aoto’s discrimination pairs [1]
which are closed under substitutions. On way of disproving confluence, Aoto
introduced discrimination pairs and used them in proving non-joinability. The
joinability of terms s and t is expressed as ∃u. s →∗

R u ←∗
R t, while the current

paper is concerned with ∃θ. sθ →∗
R tθ. As substitutions are not considered,

discrimination pairs do not need closure under substitutions, and Aoto’s insights
are mainly for dealing with the reverse rewriting ←∗

R.
Lucas and Gutiérrez [19] proposed reducing infeasibility to the model finding

of first-order logic. Our formulations especially in Sect. 6 are similar to theirs.
A crucial difference is that, while they encode the closure properties and order
properties into logical formulas and delegate these tasks to the background the-
ory solvers, we ensure these properties by means of reduction pairs, for which
well-established techniques exist in the literature.

Sternagel and Yamada [30] proposed a framework for analyzing reachability
by combining basic logical manipulations, and Gutiérrez and Lucas [10] proposed
another framework, similar to the dependency pair framework. The present work
focuses on atomic analysis techniques, and is orthogonal to these efforts of com-
bining techniques.

2 Preliminaries

We assume familiarity with term rewriting, cf. [3] or [32]. For a binary relation
denoted by a symbol like �, we denote its dual relation by � and the negated
relation by ��. Relation composition is denoted by ◦.

250 A. Yamada

Throughout the paper we fix a set V of variable symbols. A signature is
a set F of function symbols, where each f ∈ F is associated with its arity,
the number of arguments. The set of terms built from F and V is denoted by
T (F ,V), where a term is either in V or of form f(s1, . . . , sn) where f ∈ F is
n-ary and s1, . . . , sn ∈ T (F ,V). Given a term s ∈ T (F ,V) and a substitution
θ : V → T (F ,V), sθ denotes the term obtained from s by replacing every variable
x by θ(x). A context is a term C ∈ T (F ,V ∪ {�}) where a special variable �
occurs exactly once. Given s ∈ T (F ,V), we denote by C[s] the term obtained
by replacing � by s in C.

A relation � over terms is closed under substitutions (resp. contexts) iff s � t
implies sθ � tθ for any substitution θ (resp. C[s] � C[t] for any context C).
Relations over terms that are closed under contexts and substitutions are called
rewrite relations. Rewrite relations which are also preorders are called rewrite
preorders, and those which are strict orders are rewrite orders. Well-founded
rewrite orders are called reduction orders.

A term rewrite system (TRS) R is a (usually finite) relation over terms, where
each 〈l, r〉 ∈ R is called a rewrite rule and written l → r. We do not require
the usual assumption that l /∈ V and variables occurring in r must occur in l.
The rewrite step →R induced by TRS R is the least rewrite relation containing
R. Its reflexive transitive closure is denoted by →∗

R, which is the least rewrite
preorder containing R.

A reachability atom is a pair of terms s and t, written s � t. We say that
s � t is R-satisfiable iff sθ →∗

R tθ for some θ, and R-unsatisfiable otherwise.

3 Term Orderings for Non-reachability

Reduction pairs constitute the core ingredient in proving termination with
dependency pairs. Just as rewrite orders generalize reduction orders, we first
introduce the notion of “rewrite pairs” by removing the well-foundedness
assumption of reduction pairs.

Definition 1 (rewrite pair). We call a pair 〈�,�〉 of relations an order pair
if � is a preorder, � is irreflexive, � ⊆ �, and � ◦ � ◦ � ⊆ �. A rewrite pair
is an order pair 〈�,�〉 over terms such that both � and � are closed under
substitutions and � is closed under contexts. It is called a reduction pair if
moreover � is well-founded.

Standard definitions of reduction pairs put less order-like assumptions than
the above definition, but the above (more natural) assumptions do not lose the
generality of previous definitions [34]. Due to these assumptions, our rewrite pair
satisfies the assumption of discrimination pairs [1].

The following statement is our first observation: a rewrite pair can prove
non-reachability.

Theorem 1. If 〈�,�〉 is a rewrite pair, R ⊆ � and s � t, then s � t is
R-unsatisfiable.

Term Orderings for Non-reachability of (Conditional) Rewriting 251

A similar observation has been made [20, Theorem 11], where well-
foundedness is assumed instead of irreflexivity. Note that irreflexivity is essential:
if s � s for some s, then we have s � s but s � s is R-satisfiable.

The proof of Theorem1 will be postponed until more general Theorem2 will
be obtained. Instead, we start with utilizing Theorem1 by generalizing a classical
way of defining reduction pairs: the semantic approach [23].

Definition 2 (model). An F-algebra A = 〈A, [·]〉 specifies a set A called the
carrier and an interpretation [f] : An → A to each n-ary f ∈ F . The evaluation
of a term s under assignment α : V → A is defined as usual and denoted by [s]α.

A related/preordered F-algebra 〈A,�〉 = 〈A, [·],�〉 consists of an F-algebra
and a relation/preorder � on A. Given α : V → A, we write [s � t]α to mean
[s]α � [t]α. We write A |= s � t if [s � t]α holds for every α : V → A. We
say 〈A,�〉 is a (relational) model of a TRS R if A |= l � r for every l →
r ∈ R. We say 〈A,�〉 is monotone if ai � a′

i implies [f](a1, . . . , ai, . . . , an) �
[f](a1, . . . , a

′
i, . . . , an) for arbitrary a1, . . . , an, a′

i ∈ A and n-ary f ∈ F .

The notion of relational models is due to van Oostrom [28]. In this paper,
we simply call them models. Models in terms of equational theory are models
〈A,=〉 in the above definition, where monotonicity is inherent. Quasi-models of
Zantema [37] are preordered (or partially ordered) monotone models. Theorem1
can be reformulated in the semantic manner as follows:

Corollary 1. If 〈≥, >〉 is an order pair, 〈A,≥〉 is a monotone model of R, and
A |= s < t, then s � t is R-unsatisfiable.

Note that Corollary 1 does not demand well-foundedness on >. In particular,
one can employ models over negative numbers (or equivalently, positive numbers
with the order pair 〈≤, <〉).
Example 2. Consider again the TRS Radd of Example 1. The monotone ordered
F-algebra 〈Z≤0, [·],≥〉 defined by

[add](x, y) = x + y [s](x) = x − 1 [0] = 0

is a model of Radd: Whenever x, y ∈ Z≤0, we have

[add]([0], y) = y [add]([s](x), y) = x + y − 1 = [s]([add](x, y))

Now we can conclude that the reachability constraint add(s(x), y) � y is Radd-
unsatisfiable by 〈Z≤0, [·]〉 |= add(s(x), y) < y : Whenever x, y ∈ Z≤0, we have

[add]([s](x), y) = x + y − 1 < y

Observe that in Theorem 1, � occurs only in the dual form �. Hence we
now directly analyze the condition which � and � should satisfy to prove non-
reachability, and this gives a sound and complete method.

252 A. Yamada

Definition 3 (co-rewrite pair). We call a pair 〈�,�〉 of relations over terms
a co-rewrite pair, if � is a rewrite preorder, � is closed under substitutions, and
� ∩ � = ∅.
Theorem 2. s � t is R-unsatisfiable if and only if there exists a co-rewrite
pair 〈�,�〉 such that R ⊆ � and s � t.

Proof. For the “if” direction, suppose on the contrary that sθ →∗
R tθ for some θ.

Since � is a rewrite preorder containing R and →∗
R is the least of such, we must

have sθ � tθ. On the other hand, since s � t and � is closed under substitutions,
we have sθ � tθ. This is not possible since � ∪ � = ∅.

For the “only if” direction, take →∗
R as � and define � by s � t iff s � t is

R-unsatisfiable. Then clearly � is closed under substitutions, →∗
R ∩ � = ∅, and

R ⊆ →∗
R. ��

Theorem 2 can be more concisely reformulated in the model-oriented manner,
as the greatest choice of � can be specified: s � t iff A |= s � t.

Corollary 2. s � t is R-unsatisfiable if and only if there exists a monotone
preordered model 〈A,≥〉 of R such that A |= s � t.

Corollary 2 is useful when models over non-totally ordered carriers are con-
sidered. There are important methods (for termination) that crucially rely on
such carriers: the matrix interpretations [5], or more generally the tuple inter-
pretations [15,34].

Example 3. Consider the following TRS, where the first rule is from [5]:

Rmat = { f(f(x)) → f(g(f(x))), f(x) → x }

The preordered {f, g}-algebra 〈N2, [·],≥〉 defined by

[f]
(

x
y

)
=

(
x + y + 1

y + 1

)
[g]

(
x
y

)
=

(
x + 1

0

)

is a model of Rmat, where ≥ is extended pointwise over N2. Indeed, the first rule
is oriented as the following calculation demonstrates:

[f]
(

[f]
(

x
y

))
=

(
x + 2y + 3

y + 2

) ≥
≥

(
x + y + 3

1

)
= [f]

(
[g]

(
[f]

(
x
y

)))

and the second rule can be easily checked. Now we prove that x � g(x) is Rmat-
unsatisfiable by Corollary 2. Indeed, 〈N2, [·]〉 |= x � g(x) is shown as follows:

(
x
y

)
�

≥
(

x + 1
0

)
= [g]

(
x
y

)

for any x, y ∈ N. Note also that Theorem 1 is not applicable, since 〈N2, [·]〉 /|=
x < g(x) due to the second coordinate.

Term Orderings for Non-reachability of (Conditional) Rewriting 253

We conclude the section by proving Theorem1 via Theorem 2.

Proof (of Theorem 1). We show that 〈�,�〉 form a co-rewrite pair when 〈�,�〉
is a rewrite pair. It suffices to show that � ∩ � = ∅. To this end, suppose on the
contrary that s � t � s. By compatibility, we have s � s, which contradicts the
irreflexivity of �. ��

4 Weighted Path Order for Non-reachability

The previous section was concerned with the semantic approach towards obtain-
ing (co-)rewrite pairs. In this section we focus on the syntactic approach. We
choose the weighted path order (WPO), which subsumes both the lexicographic
path order (LPO) and the Knuth-Bendix order (KBO), so the result of this
section applies to these more well-known methods. The multiset path order [4]
can also be subsumed [29], but we omit this extension to keep the presentation
simple. WPO is induced by three ingredients: an F-algebra; a precedence order-
ing over function symbols; and a (partial) status, which controls the recursive
behavior of the ordering.

Definition 4 (partial status). A partial status π specifies for each n-ary f ∈
F a list π(f) ∈ {1, . . . , n}∗, also seen as a set, of its argument positions. We say
π is total if 1, . . . , n ∈ π(f) whenever f is n-ary. When π(f) = [i1, . . . , im], we
denote [si1 , . . . , sim

] by πf (s1, . . . , sn).

For instance, the empty status π(f) = [] allows WPO to subsume weakly
monotone interpretations [36, Section 4.1]. We allow positions to be duplicated,
following [33].

Definition 5 (WPO [36]). Let π be a partial status, A an F-algebra, and
〈≥, >〉 and 〈�,�〉 be pairs of relations on A and F , respectively. The weighted
path order WPO(π,A,≥, >,�,�), or WPO(A) or even WPO for short, is the
pair 〈�WPO,�WPO〉 of relations over terms defined as follows: s �WPO t iff

1. A |= s > t or
2. A |= s ≥ t and

(a) s = f(s1, . . . , sn), si �WPO t for some i ∈ π(f);
(b) s = f(s1, . . . , sn), t = g(t1, . . . , tm), s �WPO tj for every j ∈ π(g) and

i. f � g, or
ii. f � g and πf (s1, . . . , sn) �lex

WPO πg(t1, . . . , tm).

The relation �WPO is defined similarly, but with �lex
WPO instead of �lex

WPO in (2b-ii)
and the following subcase is added in case 2:

(c) s = t ∈ V.

Here 〈�lex
P ,�lex

P 〉 denotes the lexicographic extension of a pair P = 〈�P ,�P 〉 of
relations, defined by: [s1, . . . , sn] �()

lex
P [t1, . . . , tm] iff

254 A. Yamada

– m = 0 and n ≥() 0, or
– m,n > 0 and s1 > t1 or both s1 �P t1 and [s2, . . . , sn] �()

lex
P [t2, . . . , tm].

LPO is WPO induced by a total status π and a trivial F-algebra as A,
and is written LPO. Allowing partial statuses corresponds to applying argument
filters [2,17] (except for collapsing ones). KBO is a special case of WPO where
π is total and A is induced by an admissible weight function.

For termination analysis, a precondition for WPO to be a reduction pair is
crucial. In this work, we only need it to be a rewrite pair; that is, well-foundedness
is not necessary. Thus, for instance, it is possible to have x �WPO f(x) by
[f](x) = x−1. This explains why s ∈ V is permitted in case 1, which might look
useless to those who are already familiar with termination analysis.

We formulate the main claim of this section as follows.

Definition 6 (π-simplicity). We say a related F-algebra 〈A, [·],≥〉 is π-
simple1 for a partial status π iff [f](a1, . . . , an) ≥ ai for arbitrary n-ary f ∈ F ,
a1, . . . , an ∈ A, and i ∈ π(f).

Proposition 1. If 〈≥, >〉 and 〈�,�〉 are order pairs on A and F , and 〈A,≥〉
is monotone and π-simple, then 〈�WPO,�WPO〉 is a rewrite pair.

Under these conditions, it is known that �WPO is closed under contexts and
�WPO is compatible with �WPO [36, Lemmas 7, 10, 13]. Later in this section we
prove other properties necessary for Proposition 1, for which the claims in [36]
must be generalized for the purpose of this paper.

The benefit of having syntax-aware methods can be easily observed by recall-
ing why we have them in termination analysis.

Example 4 ([13]). Consider the TRS RA consisting of the following rules:

A(0, y) → s(y) A(s(x), 0) → A(x , s(0)) A(s(x), s(y)) → A(x ,A(s(x), y))

and suppose that a monotone {A, s, 0}-algebra 〈N, [·],≥〉 is a model of RA. Then,
denoting the Ackermann function by A, we have

[A]([s]m(0), [s]n(0)) ≥ [s]A(m,n)(0) (1)

Now consider proving the obvious fact that x � s(x) is RA-unsatisfiable. This
requires 〈N, [·]〉 |= x < s(x), and then [s]n(0) ≥ n by an inductive argument.
This is not possible if [A] is primitive recursive (e.g., a polynomial), since (1)
with [s]A(m,n)(0) ≥ A(m,n) contradicts the well-known fact that the Ackermann
function has no primitive-recursive bound.

On the other hand, LPO with A � s satisfies RA ⊆ �LPO (⊆ �LPO) and
x �LPO s(x). Thus Theorem 1 with 〈�,�〉 = 〈�LPO,�LPO〉 proves that x � s(x)
is RA-unsatisfiable, thanks to Proposition 1 and Theorem 1.
1 Such a property would be called inflationary in the mathematics literature. In the

term rewriting, the word simple has been used (see, e.g., [32]) in accordance with
simplification orders.

Term Orderings for Non-reachability of (Conditional) Rewriting 255

Example 5. Consider the TRS consisting of the following rules:

Rkbo := { f(g(x)) → g(f(f(x))), g(x) → x }

WPO (or KBO) induced by A = 〈N, [·]〉 and precedence 〈�,�〉 such that

[f](x) = x [g](x) = x + 1 f � g

satisfies Rkbo ⊆ �WPO. Thus, for instance g(x) � g(f(x)) is Rkbo-unsatisfiable
by Theorem 1. On the other hand, let 〈A, [·],≥〉 with A ⊆ Z be a model of Rkbo.
Using the idea of [38, Proposition 11], one can show [f](x) ≤ x. Hence, Corollary 2
with models over a subset of integers cannot handle the problem. LPO orients
the first rule from right to left and hence cannot handle the problem either.

The power of WPO can also be easily verified, by considering

Rwpo := Rkbo ∪ { f(h(x)) → h(h(f(x))), f(x) → x }

By extending the above WPO with [h](x) = x and f � h, which does not fall
into the class of KBO anymore,2 we can prove, e.g., that f(x) � f(h(x)) is
R-unsatisfiable. None of the above mentioned methods can handle this problem.

The rest of this section is dedicated for proving Proposition 1. Similar results
are present in [36], but they make implicit assumptions such as that ≥ and � are
preorders. In this paper we need more essential assumptions as we will consider
non-transitive relations in the next section.

First we reprove the reflexivity of �WPO. The proof also serves as a basis for
the more complicated irreflexivity proof.

Lemma 1. If both ≥ and � are reflexive and 〈A,≥〉 is π-simple, then

1. i ∈ π(f) implies f(s1, . . . , sn) �WPO si, and
2. s �WPO s, i.e., �WPO is reflexive.

Proof. As s �WPO s is trivial when s ∈ V, we assume s = f(s1, . . . , sn) and
prove the two claims by induction on the structure of s. For the first claim, by
π-simplicity, for any α we have [s]α = [f]([s1]α, . . . , [sn]α) ≥ [si]α, and hence
A |= s ≥ si. By the second claim of induction hypothesis we have si �WPO si,
and thus s �WPO si follows by (2a) of Definition 5. Next we show s �WPO s
holds by (2b-ii). Indeed, A |= s ≥ s follows from the reflexivity of ≥; s �WPO

si for every i ∈ π(f) as shown above; f � f as � is reflexive; and finally,
πf (s1, . . . , sn) �lex

WPO πf (s1, . . . , sn) is due to induction hypothesis and the fact
that lexicographic extension preserves reflexivity. ��

Using reflexivity, we can show that both �WPO and �WPO are closed under
substitutions. This result will be reused in Sect. 5, where it will be essential that
neither ≥ nor > need be transitive.

2 When [h] is the identity. KBO requires h � f for any f .

256 A. Yamada

Lemma 2. If both ≥ and � are reflexive and 〈A,≥〉 is π-simple, then both
�WPO and �WPO are closed under substitutions.

Proof. We prove by induction on s and t that s �WPO t implies sθ �WPO tθ and
that s �WPO t implies sθ �WPO tθ. We prove the first claim by case analysis on
how s �WPO t is derived. The other claim is analogous, without case (2c) below.

1. A |= s > t: Then we have A |= sθ > tθ and thus sθ �WPO tθ by case 1.
2. A |= s ≥ t: Then we have A |= sθ ≥ tθ. There are the following subcases.

(a) s = f(s1, . . . , sn) and si �WPO t for some i ∈ π(f): In this case, we
know siθ �WPO tθ by induction hypothesis on s. Thus (2a) concludes
sθ �WPO tθ.

(b) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and s �WPO tj for every j ∈ π(g): By
induction hypothesis on t, we have sθ �WPO tjθ. So the precondition of
(2b) for sθ �WPO tθ is satisfied. There are the following subcases:
i. f � g: Then (2b-i) concludes.
ii. f � g and πf (s1, . . . , sn) �lex

WPO πg(t1, . . . , tm): Then by induction
hypothesis we have πf (s1θ, . . . , snθ) �lex

WPO πg(t1θ, . . . , tmθ), and thus
(2b-ii) concludes.

(c) s = t ∈ V: Then we have sθ �WPO tθ by Lemma 1. ��
Irreflexivity of �WPO is less obvious to have. In fact, [36] uses well-foundedness

to claim it. Here we identify more essential conditions.

Lemma 3. If 〈≥, >〉 is an order pair on A, and � is irreflexive on F , and
〈A,≥〉 is π-simple, then �WPO is irreflexive.

Proof. We show s ��WPO s for every s by induction on the structure of s. This
is clear if s ∈ V, so consider s = f(s1, . . . , sn). Since > is irreflexive, we have
A /|= s > s, and thus s �WPO s cannot be due to case 1 of Definition 5. As � is
irreflexive on F , f � f and thus (2b-i) is not possible, either. Thanks to induction
hypothesis and the fact that lexicographic extension preserves irreflexivity, we
have πf (s1, . . . , sn) ��lex

WPO πf (s1, . . . , sn), and thus (2b-ii) is not possible either.
The remaining (2a) is more involving. To show si ��WPO f(s1, . . . , sn) for any

i ∈ π(f), we prove the following more general claim: s′ �+
π s implies s′ ��WPO s,

where �π denotes the least relation such that si �π f(s1, . . . , sn) if i ∈ π(f).
This claim is proved by induction on s′. Due to the simplicity assumption, we
have A |= s ≥ s′ for every s′ �π s, and this generalizes for every s′ �+

π s by
easy induction and the transitivity of ≥. Thus we cannot have A |= s′ > s, since
A |= s ≥ s′ > s contradicts the assumption that 〈≥, >〉 is an order pair. This
tells us that s′ �WPO s cannot be due to case 1. Case (2a) is not applicable
thanks to (inner) induction hypothesis on s′. Case (2b) is not possible either,
since s′ ��WPO s′ thanks to (outer) induction hypothesis on s. This concludes
s′ ��WPO s for any s′ �+

π s, and in particular si ��WPO s for any i ∈ π(f),
refuting the last possibility for s �WPO s to hold. ��

Term Orderings for Non-reachability of (Conditional) Rewriting 257

5 Co-WPO

The preceding section demonstrated how to use WPO as a rewrite pair in The-
orem 1. In this section we show how to use WPO in combination with Theo-
rem 2, that is, when � = �WPO, what � should be. We show that �WPO, where
WPO := WPO(π,A, ≮, �, ⊀, ��), serves the purpose.

Proposition 2. If 〈≥, >〉 and 〈�,�〉 are order pairs on A and F , 〈A,≥〉 is
π-simple and monotone, then 〈�WPO,�WPO〉 is a co-rewrite pair.

When 〈A,≥〉 is not total, Example 3 also demonstrates that using Proposi-
tion 2 with Theorem 2 is more powerful than using Proposition 1 in combination
with Theorem 1, by taking π(f) = [] for every f . At the time of writing, how-
ever, it is unclear to the author if the difference still exists when 〈A,≥〉 is totally
ordered but 〈F ,�〉 is not. Nevertheless we will clearly see the merit of Proposi-
tion 2 under the setting of conditional rewriting in the next section.

The remainder of this section proves Proposition 2. Unfortunately, WPO does
not satisfy many important properties of WPO, mostly due to the fact that 〈≮, �〉
is not even an order pair. Nevertheless, Lemma 2 is applicable to �WPO and gives
the following fact:

Lemma 4. If 〈≥, >〉 is an order pair on A, 〈A,≥〉 is π-simple, and � is irreflex-
ive, then �WPO is closed under substitutions.

Proof. We apply Lemma 2 to WPO. To this end, we need to prove the following:

– 〈A, ≮〉 is π-simple: Suppose on the contrary one had [f](a1, . . . , an) < ai with
i ∈ π(f). Due to the simplicity assumption, we have [f](a1, . . . , an) ≥ ai. By
compatibility we must have ai < ai, contradicting irreflexivity.

– ≮ and ⊀ are reflexive: This follows from the irreflexivity of < and ≺. ��
The remaining task is to show that �WPO ∩ �WPO = ∅. Due to the mutual

inductive definition of WPO, we need to simultaneously prove the property for
the other combination: �WPO ∩ �WPO = ∅.

Definition 7. We say that two pairs P = 〈�P ,�P 〉 and Q = 〈�Q,�Q〉 of
relations are co-compatible iff �P ∩ �Q = �P ∩ �Q = ∅.

The next claim is a justification for the word “compatible” in Definition 7.
Here the compatibility assumption of order pairs is crucial.

Proposition 3. An order pair 〈�,�〉 is co-compatible with itself.

Proof. Suppose on the contrary that a � b and b � a. Then we have a � a by
compatibility, contradicting the irreflexivity of �. ��
Lemma 5. If P = 〈�P ,�P 〉 and Q = 〈�Q,�Q〉 are co-compatible pairs of
relations, then 〈�lex

P ,�lex
P 〉 and 〈�lex

Q ,�lex
Q 〉 are co-compatible.

258 A. Yamada

Proof. Let us assume that both

[s1, . . . , sn] �lex
P [t1, . . . , tm] (2)

[s1, . . . , sn] �lex
Q [t1, . . . , tm] (3)

hold and derive a contradiction. The other part �lex
P ∩ �lex

Q is analogous. We
proceed by induction on the length of [s1, . . . , sn]. If n = 0, then (2) demands
m = 0 but (3) demands m > 0. Hence we have n > 0, and then (3) demands
m > 0. If s1 �P t1 then by assumption we have s1 ��Q t1 but (3) demands
s1 �Q t1 (or s1 �Q t1). Hence (2) is due to s1 �P t1 and [s2, . . . , sn] �lex

P

[t2, . . . , tm]. By assumption we have s1 ��Q t1, so (3) is due to s1 �Q t1 and
[s2, . . . , sn] �lex

Q [t2, . . . , tm]. We derive a contradiction by induction hypothesis.
��

We arrive at the main lemma for WPO.

Lemma 6. If 〈≥, >〉 and 〈�,�〉 are order pairs on A and F , and 〈A,≥〉 is
π-simple, then WPO and WPO are co-compatible.

Proof. We show that neither s �WPO t∧ s �WPO t nor s �WPO t∧ s �WPO t hold
for any s and t, by induction on the structure of s and then t. Let us assume
s �WPO t and prove s ��WPO t. The other claim is analogous. We proceed by case
analysis on the derivation of s �WPO t.

1. A |= s > t: Then s �WPO t cannot hold as it demands A |= s ≯ t (or s � t).
2. A |= s ≥ t: Then A |= s � t cannot happen and thus s �WPO t must be due

to case 2 of Definition 5. There are the following subcases for s �WPO t:
(a) s = f(s1, . . . , sn), si �WPO t for some i ∈ π(f): By induction hypothesis

on s, we have si ��WPO t, and thus s �WPO t can only be due to (2a). So
t = g(t1, . . . , tm) and s �WPO tj for some j ∈ π(g). Then s ��WPO tj by
induction hypothesis on t. On the contrary we must have s �WPO tj : By
Lemma 1–1. we have s �WPO si �WPO t �WPO tj and hence s �WPO tj as
〈�WPO,�WPO〉 is an order pair.

(b) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and s �WPO tj for every j ∈ π(g):
By induction hypothesis on t, we have s ��WPO tj for any j ∈ π(g). Thus
s �WPO t must be due to (2b). We proceed by further considering the
following two possibilities.
i. f � g: As neither f � g nor f �� g hold, s �WPO t is not possible.
ii. f � g and πf (s1, . . . , sn) �lex

WPO πg(t1, . . . , sm): As f �� g does not
hold, (2b-i) is not applicable to have s �WPO t. By Lemma 5 and
induction hypothesis, we have πf (s1, . . . , sn) ��lex

WPO
πg(t1, . . . , tm) and

thus (2b-ii) is also not applicable, either.
(c) s = t ∈ V: Then clearly s �WPO t cannot hold. ��

Term Orderings for Non-reachability of (Conditional) Rewriting 259

6 Conditional Rewriting

Conditional term rewriting (cf. [27]) is an extension of term rewriting so that
rewrite rules can be guarded by conditions. We are interested in the “oriented”
variants, as they naturally correspond to functional programming concepts such
as where clauses of Haskell or when clauses of OCaml.

A conditional rewrite rule l → r ⇐ φ consists of terms l and r, and a list
φ of pairs of terms. We may omit “⇐ []” and write s1 � t1, . . . , sn � tn
for [〈s1, t1〉, . . . , 〈sn, tn〉]. A conditional TRS (CTRS) R is a set of conditional
rewrite rules. A CTRS R yields the rewrite preorder →∗

R by the following deriva-
tion rules [22]:

s →∗
R s

Refl
s →R t t →∗

R u

s →∗
R u

Trans

si →R s′
i

f(s1, . . . , si, . . . , sn) →R f(s1, . . . , s
′
i, . . . , sn)

Mono

s1θ →∗
R t1θ · · · snθ →∗

R tnθ

lθ →R rθ
Rule if (l → r ⇐ s1 � t1, . . . , sn � tn) ∈ R

To approximate reachability with respect to CTRSs by means of (co-)rewrite
pairs, one needs to be careful when dealing with conditions.

Example 6. Consider the following CTRS:

Rfg := { f(x) → x , g(x) → y ⇐ f(x) � y }

and a reachability atom g(x) � f(x). One might expect that a rewrite preorder
� such that

f(x) � x g(x) � y if f(x) � y

can over-approximate →∗
Rfg

, but this is unfortunately false. For instance, any
LPO satisfies the above constraints: f(x) �LPO x as LPO is a simplification order,
and the second constraints also vacuously holds as the condition f(x) �LPO y is
false. However, it is unsound to conclude that g(x) � f(x) is Rfg-unsatisfiable
even if g(x) �LPO f(x): by setting f � g one can have g(x) �LPO f(x) and
g(x) �LPO f(x), but g(x) →Rfg

f(x).

A solution is to use co-rewrite pairs already for dealing with conditions.

Proposition 4. If 〈�,�〉 is a co-rewrite pair, (l → r ⇐ φ) ∈ R implies l � r
or u � v for some u � v ∈ φ, and s � t, then s � t is R-unsatisfiable.

Proof. We show that s →∗
R t implies s � t. This is sufficient, since, then sθ →∗

R
tθ implies sθ � tθ, while s � t demands sθ � tθ, which is not possible since
� ∩ � = ∅. The claim is proved by induction on the derivation of s →∗

R t.

– Refl: Since � is reflexive, we have s � s.

260 A. Yamada

– Trans: We have s →R t and t →∗
R u as premises, and s � t and t � u by

induction hypothesis. Since � is transitive we conclude s � u.
– Mono: We have si →R s′

i as a premise and si � s′
i by induction

hypothesis. Since � is closed under contexts, we get f(s1, . . . , si, . . . , sn) �
f(s1, . . . , s

′
i, . . . , sn).

– Rule: We have (l → r ⇐ s1 � t1, . . . , sn � tn) ∈ R, and for every i ∈
{1, . . . , n} have siθ →∗

R tiθ as a premise and siθ � tiθ by induction hypothe-
sis. Since � ∩ � = ∅, we get siθ �� tiθ. Since � is closed under substitutions,
we conclude si �� ti for every i ∈ {1, . . . , n}. By assumption, this entails l � r,
and since � is closed under substitution, we conclude lθ � rθ. ��

Example 7. Consider the following singleton CTRS:

Rab := { a → b ⇐ b � a }

Proposition 4 combined with LPO or WPO induced by a partial precedence such
that a �� b and b �� a proves that a � b is Rab-unsatisfiable: Clearly b �LPO a
and a �LPO b by case (2b-i) of Definition 5. On the other hand, Proposition 4
with the term ordering induced by a totally ordered algebra 〈A,≥〉 cannot solve
the problem, since A |= a � b implies A |= b ≥ a by totality, which then demands
A |= a ≥ b to satisfy the assumption of Proposition 4. For the same reason, WPO
induced by a totally ordered algebra and a total precedence cannot handle the
problem either.

Note that the condition of the rule in Rab is unsatisfiable, and this is one of
the two cases where Proposition 4 is effective. The other case is when a condition
can be ignored. Proposition 4 is incomplete when conditions are essential, as in
Example 6. For dealing with essential conditional rules, the variable binding in
a rule should be taken into account. At this point, a model-oriented formulation
(a la [19]) seems more suitable.

Definition 8 (model of CTRS). We extend the notation [s � t]α of Def-
inition 2 to [φ]α for an arbitrary Boolean formula φ with the single binary
predicate � in the obvious manner. We say A = 〈A, [·]〉 validates φ, written
A |= φ, iff [φ]α for every α : V → A. We say a related F-algebra 〈A,�〉 is
a model of a CTRS R iff3 A |= l � r ∨ s1 �� t1 ∨ · · · ∨ sn �� tn for every
(l → r ⇐ s1 � t1, . . . , sn � tn) ∈ R.

Besides minor simplifications (e.g., we do not need two predicates as we
are only concerned with reachability in many steps in this paper), the major
difference with [19] is that here we do not encode the monotonicity or order
axioms into logical formulas (using R of [19]). Instead, we impose these properties
as meta-level assumptions over models.

Theorem 3. For a CTRS R, s � t is R-unsatisfiable if and only if there exists
a monotone preordered model 〈A,≥〉 of R such that A |= s � t.

3 Here the formula s �� t is a shorthand for ¬ s � t.

Term Orderings for Non-reachability of (Conditional) Rewriting 261

Proof. We start with the “if” direction. Let 〈A,≥〉 be a monotone preordered
model of R. As in Proposition 4, it suffices to show that s →∗

R t implies A |=
s ≥ t. The claim is proved by induction on the derivation of s →∗

R t.

– Refl: Since ≥ is reflexive, we have A |= s ≥ s.
– Trans: We have s →R t and t →∗

R u as premises, and A |= s ≥ t and A |=
t ≥ u by induction hypothesis. Since ≥ is transitive we conclude A |= s ≥ u.

– Mono: We have si →R s′
i as a premise and A |= si ≥ s′

i by induction
hypothesis. Since 〈A,≥〉 is monotone, we get A |= f(s1, . . . , si, . . . , sn) ≥
f(s1, . . . , s

′
i, . . . , sn).

– Rule: We have (l → r ⇐ s1 � t1, . . . , sn � tn) ∈ R, and for every i ∈
{1, . . . , n} have siθ →∗

R tiθ as a premise and A |= siθ ≥ tiθ by induction
hypothesis. Since 〈A,≥〉 is a model of R, and by the fact that validity is
closed under substitutions, we have A |= lθ ≥ rθ∨s1θ � t1θ∨· · ·∨snθ � tnθ.
Together with the induction hypotheses we conclude A |= lθ ≥ rθ.

Next consider the “only if” direction. We show that 〈T (F ,V) ,→∗
R〉 is a model

of R, that is, for every (l → r ⇐ s1 � t1, . . . , sn � tn) ∈ R, we show T (F ,V) |=
l →∗

R r ∨ s1 �→∗
R t1 ∨ · · · ∨ sn �→∗

R tn. This means lθ →∗
R rθ for every θ : V →

T (F ,V) such that s1θ →∗
R t1θ, . . . , snθ →∗

R tnθ, which is immediate by Rule.
The fact that →∗

R is a preorder and closed under contexts is also immediate.
Finally, s � t being R-unsatisfiable means that sθ �→∗

R tθ for any θ : V →
T (F ,V), that is, T (F ,V) |= s �→∗

R t. ��
Putting implementation issues aside, it is trivial to use semantic (termina-

tion) methods in Theorem 3.

Example 8. Consider again the CTRS Rfg of Example 6. The monotone ordered
{f, g}-algebra 〈N, [·],≥〉 defined by

[f](x) = x [g](x) = x + 1

is a model of Rfg, since for arbitrary x, y ∈ N, we have

[f](x) ≥ x [g](x) = x + 1 ≥ y ∨ [f](x) = x � y

Then, with Theorem 3 we can show that f(x) � g(x) is Rfg-unsatisfiable, as
[f](x) = x � x + 1 = [g](x) for every x ∈ N.

To use WPO(A) in combination with Theorem 3, we need to validate formulas
with predicate �WPO(A) in the term algebra T (F ,V). We encode these formulas
into formulas with predicates ≥ and >, which are then interpreted in A.

Definition 9 (formal WPO). Let 〈≥, >〉 and 〈�,�〉 be pairs of relations
over some set and over F , respectively, and let π be a partial status. We define
wpo(π,≥, >,�,�) or wpo for short to be the pair 〈�wpo,�wpo〉, where for terms
s, t ∈ T (F ,V), s �wpo t and s �wpo t are Boolean formulas defined as follows:

s �wpo t := s > t ∨ (s ≥ t ∧ φ)

262 A. Yamada

where φ is False if s ∈ V and is
∨

i∈π(f) si �wpo t ∨ ψ if s = f(s1, . . . , sn), and
ψ is False if t ∈ V and is

∧
j∈π(g)

s �wpo tj ∧
(
f � g ∨

(
f � g ∧ πf (s1, . . . , sn) �lex

wpo πg(t1, . . . , tm)
))

if t = g(t1, . . . , tm). Formula s �wpo t is defined analogously, except that φ is
True if s = t ∈ V, and �lex

wpo in formula ψ is replaced by �lex
wpo.

We omit an easy proof that verifies that wpo encodes WPO:

Lemma 7. s �()WPO(A) t iff A |= s �()wpo t.

Note carefully that s ��WPO(A) t is A /|= s �wpo t but not A |= s ��wpo t. Hence we
ensure s ��WPO(A) t by A |= s �wpo t, where wpo denotes wpo(π, ≮, �, ⊀, ��).

Theorem 4. If R is a CTRS, 〈≥, >〉 and 〈�,�〉 are order pairs on A and F ,
〈A,≥〉 is π-simple and monotone, A |= l �wpo r ∨ u1 �wpo v1 ∨ · · · ∨ un �wpo vn

for every (l → r ⇐ u1 � v1, . . . , un � vn) ∈ R, and A |= s �wpo t, then s � t
is R-unsatisfiable.

Proof. We apply Theorem 3. To this end, we first show that 〈T (F ,V) ,�WPO(A)〉
is a monotone preordered model of R. Monotonicity and preorderedness are due
to Proposition 1. For being a model, let (l → r ⇐ u1 � v1, . . . , un � vn) ∈ R.
Due to assumption and Lemma 7, we have l �WPO(A) r ∨ u1 �WPO(A) v1 ∨ · · · ∨
un �WPO(A) vn. Due to Lemmas 2 and 4, we get lθ �WPO(A) rθ ∨ u1θ �WPO(A)

v1θ ∨ · · · ∨ unθ �WPO(A) vnθ for every θ : V → T (F ,V). With Proposition 2 we
conclude T (F ,V) |= l �WPO(A) r∨u1 ��WPO(A) v1 ∨· · ·∨un ��WPO(A) vn. Finally,
we need T (F ,V) |= s ��WPO(A) t, i.e., sθ ��WPO(A) tθ for any θ : V → T (F ,V). As
we assume s �WPO(A) t, by Lemma 4 we have sθ �WPO(A) tθ. By Proposition 2
we conclude sθ ��WPO(A) tθ. ��

7 Experiments

The proposed methods are implemented in the termination prover NaTT [35],
available at https://www.trs.cm.is.nagoya-u.ac.jp/NaTT/.

Internally, NaTT reduces the problem of finding an algebra A that make
〈A,≥〉 a model of a TRS R (or �WPO(A)⊆ R) into a satisfiability modulo theory
(SMT) problem, which is then solved by the backend SMT solver z3 [26]. The
implementation of Theorem1 and Corollary 1 is a trivial adaptation from the
termination methods. Cororllary 2 is also trivial for totally ordered carriers, since
A |= s � t is equivalent to A |= s < t. Matrix/tuple interpretations are also easy,
since A |= (a1, . . . , an) � (b1, . . . , bn) is equivalent to A |= a1 < b1∨· · ·∨an < bn.
Theorem 2 with WPO is obtained by parametrizing WPO.

https://www.trs.cm.is.nagoya-u.ac.jp/NaTT/

Term Orderings for Non-reachability of (Conditional) Rewriting 263

Table 1. Experimental results.

TRS CTRS

Method Radd Rmat RA Rkbo Rwpo COPS(15) Rab Rfg COPS(126)

Sum 6 	 15

Sum+ 6 	 24

Sum− 	 5 28

Mat 	 6 	 	 25 (TO:88)

LPO 	 5 	 19

WPO(Sum) 	 	 6 	 	 15

WPO(Sum+) 	 	 6 	 	 25 (TO:29)

WPO(Sum−) 6 	 15

infChecker 	 	 13 	 	 51+42 (TO:25)

CO3 	 5 	 20

NaTT 2.1 3 19

NaTT 2.2 	 	 	 	 	 6 (TO:4) 	 	 31 (TO:79)

Theorem 3 needs some tricks. In the unconditional case, finding a desired
algebra A can be encoded into SMT over quantifier-free linear arithmetic for
a large class of A [36]. For the conditional case, we need to find (∃) parame-
ters that validates (∀) a disjunctive clause. Farkas’ lemma would reduce such a
problem into quantifier-free SMT, but then the resulting problem is nonlinear.
Experimentally, we observe that our backend z3 performs better on quantified
linear arithmetic than quantifier-free nonlinear arithmetic, and hence we choose
to leave the ∀ quantifiers.

We conducted experiments using the examples presented in the paper and
the examples in the INF category of the standard benchmark set COPS. The
execution environment is StarExec [31] with the same settings as CoCo 2019.

Many COPS examples contain conjunctive reachability constraints of form
s1 � t1∧· · ·∧sn � tn. In this experiment we naively collapsed such a constraint
into tp(s1, . . . , sn) � tp(t1, . . . , tn) by introducing a fresh function symbol tp.
Two benchmarks exceed the scope of oriented CTRSs, on which NaTT immedi-
ately gives up.

As co-rewrite pairs we tested algebras Sum, Sum+, Sum−, Mat, LPO,
and WPO. The basic algebra Sum = 〈Z, [·]〉 is given by [f](x1, . . . , xn) =
c0 +

∑n
i=1 ci · xi, where c0 ∈ Z, c1, . . . , cn ∈ {0, 1}. Similarly Sum+ and Sum−

are defined, where the ranges of c0, which also determine the carrier, are N and
Z≤0, respectively. The algebra Mat represents the 2D matrix interpretations.

Table 1 presents the results. For TRSs, we can observe that our proposed
methods advance the state of the art, in the sense that they prove new examples
that no tool previously participated in CoCo could handle. As there are only 15
TRS examples in the INF category of COPS 2021, we could not derive interesting
observations there. Taking CTRS examples into account, we see Sum is not as

264 A. Yamada

good as Sum+ or Sum−, while the carrier is bigger (Z versus N or Z≤0). This
phenomenon is explained as follows: For the latter two one knows variables are
bounded by 0 (from below or above), and hence one can have Sum+ |= x ≥ a
or Sum− |= a ≥ x by [a] = 0. Neither is possible when the carrier is unbounded.
This observation also suggests another choice of carriers that are bounded from
below and above, which is left for future work.

From the figures in CTRS examples, Sum− performs the best among our
methods. However, Mat and WPO(Sum+) solve more examples if TRS examples
are counted. It does not seem appropriate yet to judge practical significance from
these experiments.

Finally, we implemented as the default strategy of NaTT 2.2 the sequential
application of Sum−, LPO, WPO(Sum+), and Mat after the test NaTT already
have implemented. There improvement over previous NaTT 2.1 should be clear,
although the number of timeouts (indicated by “TO:”) is significant.

8 Conclusion

We proposed generalizations of termination techniques that can prove unsatisfia-
bility of reachability, both for term rewriting and for conditional term rewriting.
We implemented the approach in the termination prover NaTT, and experimen-
tally evaluated the significance of the proposed approach.

The implementation focused on evaluating the proposed methods separately.
The only implemented way of combining their power is a naive one: apply the
tests one by one while they fail. For future work, it will be interesting to incor-
porate the proposed method into the existing frameworks [10,30].

Acknowledgments. The author would like to thank Kiraku Shintani for the technical
help with the COPS database system. I would also like to thank Nao Hirokawa, Salvador
Lucas, Naoki Nishida, and Sarah Winkler for discussions, and the anonymous reviewers
for their detailed comments that improved the presentation of the paper.

References

1. Aoto, T.: Disproving confluence of term rewriting systems by interpretation and
ordering. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS
(LNAI), vol. 8152, pp. 311–326. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40885-4 22

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
Theor. Compt. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-
3975(99)00207-8

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

4. Dershowitz, N.: Orderings for term-rewriting systems. Theor. Compt. Sci. 17(3),
279–301 (1982). https://doi.org/10.1016/0304-3975(82)90026-3

5. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008). https://
doi.org/10.1007/s10817-007-9087-9

https://doi.org/10.1007/978-3-642-40885-4_22
https://doi.org/10.1007/978-3-642-40885-4_22
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1007/s10817-007-9087-9
https://doi.org/10.1007/s10817-007-9087-9

Term Orderings for Non-reachability of (Conditional) Rewriting 265

6. Feuillade, G., Genet, T., Tong, V.V.T.: Reachability analysis over term rewrit-
ing systems. J. Autom. Reasoning 33, 341–383 (2004). https://doi.org/10.1007/
s10817-004-6246-0

7. Giesl, J., et al.: Proving termination of programs automatically with AProVE. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562,
pp. 184–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-
6 13

8. Giesl, J., Rubio, A., Sternagel, C., Waldmann, J., Yamada, A.: The termination and
complexity competition. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.)
TACAS 2019. LNCS, vol. 11429, pp. 156–166. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17502-3 10

9. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006). https://doi.org/10.
1007/s10817-006-9057-7

10. Gutiérrez, R., Lucas, S.: Automatically proving and disproving feasibility condi-
tions. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 416–435. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 27

11. Gutiérrez, R., Lucas, S.: mu-term: verify termination properties automatically
(system description). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020.
LNCS (LNAI), vol. 12167, pp. 436–447. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-51054-1 28

12. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Inf. Com-
put. 199(1–2), 172–199 (2005). https://doi.org/10.1016/j.ic.2004.10.004

13. Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980).
unpublished note

14. Knuth, D.E., Bendix, P.: Simple word problems in universal algebras. In: Compu-
tational Problems in Abstract Algebra, pp. 263–297. Pergamon Press, New York
(1970). https://doi.org/10.1016/B978-0-08-012975-4.50028-X

15. Kop, C., Vale, D.: Tuple interpretations for higher-order complexity. In: Kobayashi,
N. (ed.) FSCD 2021. LIPIcs, vol. 195, pp. 31:1–31:22. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.FSCD.2021.31

16. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02348-4 21

17. Kusakari, K., Nakamura, M., Toyama, Y.: Argument filtering transformation. In:
Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 47–61. Springer, Heidelberg
(1999). https://doi.org/10.1007/10704567 3

18. Lankford, D.: Canonical algebraic simplification in computational logic. Technical
report ATP-25, University of Texas (1975)

19. Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term
rewriting. Inf. Process. Lett. 136, 90–95 (2018). https://doi.org/10.1016/j.ipl.2018.
04.002

20. Lucas, S., Meseguer, J.: 2D dependency pairs for proving operational termination of
CTRSs. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 195–212. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-12904-4 11

21. Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of
conditional term rewriting systems. J. Log. Algebraic Methods Program. 86(1),
236–268 (2017). https://doi.org/10.1016/j.jlamp.2016.03.003

https://doi.org/10.1007/s10817-004-6246-0
https://doi.org/10.1007/s10817-004-6246-0
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1007/978-3-030-51054-1_28
https://doi.org/10.1016/j.ic.2004.10.004
https://doi.org/10.1016/B978-0-08-012975-4.50028-X
https://doi.org/10.4230/LIPIcs.FSCD.2021.31
https://doi.org/10.1007/978-3-642-02348-4_21
https://doi.org/10.1007/10704567_3
https://doi.org/10.1016/j.ipl.2018.04.002
https://doi.org/10.1016/j.ipl.2018.04.002
https://doi.org/10.1007/978-3-319-12904-4_11
https://doi.org/10.1016/j.jlamp.2016.03.003

266 A. Yamada

22. Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for
conditional rewrite systems. part I: definition and basic processors. J. Comput.
Syst. Sci. 96, 74–106 (2018). https://doi.org/10.1016/j.jcss.2018.04.002

23. Manna, Z., Ness, S.: Termination of Markov algorithms (1969). unpublished
manuscript

24. Middeldorp, A.: Approximating dependency graphs using tree automata tech-
niques. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083,
pp. 593–610. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45744-
5 49

25. Middeldorp, A., Nagele, J., Shintani, K.: CoCo 2019: report on the eighth con-
fluence competition. Int. J. Softw. Tools Technol. Transfer 23(6), 905–916 (2021).
https://doi.org/10.1007/s10009-021-00620-4

26. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

27. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002).
https://doi.org/10.1007/978-1-4757-3661-8

28. Oostrom, V.: Sub-Birkhoff. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004.
LNCS, vol. 2998, pp. 180–195. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24754-8 14

29. Sternagel, C., Thiemann, R., Yamada, A.: A formalization of weighted path orders
and recursive path orders. Arch. Formal Proofs (2021). https://isa-afp.org/entries/
Weighted Path Order.html, Formal proof development

30. Sternagel, C., Yamada, A.: Reachability analysis for termination and confluence
of rewriting. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp.
262–278. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0 15

31. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure
for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014.
LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08587-6 28

32. TeReSe: Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

33. Thiemann, R., Schöpf, J., Sternagel, C., Yamada, A.: Certifying the weighted path
order (invited talk). In: Ariola, Z.M. (ed.) FSCD 2020. LIPIcs, vol. 167, pp. 4:1–
4:20. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2020).
https://doi.org/10.4230/LIPIcs.FSCD.2020.4

34. Yamada, A.: Multi-dimensional interpretations for termination of term rewriting.
In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp.
273–290. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5 16

35. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G.
(ed.) RTA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08918-8 32

36. Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving.
Sci. Comput. Program. 111, 110–134 (2015). https://doi.org/10.1016/j.scico.2014.
07.009

37. Zantema, H.: Termination of term rewriting by semantic labelling. Fundam. Infor-
maticae 24(1/2), 89–105 (1995). https://doi.org/10.3233/FI-1995-24124

38. Zantema, H.: The termination hierarchy for term rewriting. Appl. Algebr. Eng.
Comm. Compt. 12(1/2), 3–19 (2001). https://doi.org/10.1007/s002000100061

https://doi.org/10.1016/j.jcss.2018.04.002
https://doi.org/10.1007/3-540-45744-5_49
https://doi.org/10.1007/3-540-45744-5_49
https://doi.org/10.1007/s10009-021-00620-4
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/978-3-540-24754-8_14
https://doi.org/10.1007/978-3-540-24754-8_14
https://isa-afp.org/entries/Weighted_Path_Order.html
https://isa-afp.org/entries/Weighted_Path_Order.html
https://doi.org/10.1007/978-3-030-17462-0_15
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.4230/LIPIcs.FSCD.2020.4
https://doi.org/10.1007/978-3-030-79876-5_16
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1007/978-3-319-08918-8_32
https://doi.org/10.1016/j.scico.2014.07.009
https://doi.org/10.1016/j.scico.2014.07.009
https://doi.org/10.3233/FI-1995-24124
https://doi.org/10.1007/s002000100061

Term Orderings for Non-reachability of (Conditional) Rewriting 267

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Knowledge Representation
and Justification

Evonne: Interactive Proof Visualization
for Description Logics
(System Description)

Christian Alrabbaa1(B) , Franz Baader1(B) , Stefan Borgwardt1(B) ,
Raimund Dachselt2(B) , Patrick Koopmann1(B) , and Julián Méndez2(B)

1 Institute of Theoretical Computer Science, TU Dresden, Dresden, Germany
{christian.alrabbaa,franz.baader,stefan.borgwardt,

patrick.koopmann}@tu-dresden.de
2 Interactive Media Lab Dresden, TU Dresden, Dresden, Germany

{raimund.dachselt,julian.mendez2}@tu-dresden.de

Abstract. Explanations for description logic (DL) entailments provide
important support for the maintenance of large ontologies. The “justifica-
tions” usually employed for this purpose in ontology editors pinpoint the
parts of the ontology responsible for a given entailment. Proofs for entail-
ments make the intermediate reasoning steps explicit, and thus explain
how a consequence can actually be derived. We present an interactive
system for exploring description logic proofs, called Evonne, which visu-
alizes proofs of consequences for ontologies written in expressive DLs. We
describe the methods used for computing those proofs, together with a
feature called signature-based proof condensation. Moreover, we evaluate
the quality of generated proofs using real ontologies.

1 Introduction

Proofs generated by Automated Reasoning (AR) systems are sometimes pre-
sented to humans in textual form to convince them of the correctness of a the-
orem [9,11], but more often employed as certificates that can automatically be
checked [20]. In contrast to the AR setting, where very long proofs may be
needed to derive a deep mathematical theorem from very few axioms, DL-based
ontologies are often very large, but proofs of a single consequence are usually of
a more manageable size. For this reason, the standard method of explanation
in description logic [8] has long been to compute so-called justifications, which
point out a minimal set of source statements responsible for an entailment of
interest. For example, the ontology editor Protégé1 supports the computation of
justifications since 2008 [12], which is very useful when working with large DL
ontologies. Nevertheless, it is often not obvious why a given consequence actually
follows from such a justification [13]. Recently, this explanation capability has
been extended towards showing full proofs with intermediate reasoning steps,
but this is restricted to ontologies written in the lightweight DLs supported by
the Elk reasoner [15,16], and the graphical presentation of proofs is very basic.
1 https://protege.stanford.edu/.

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 271–280, 2022.
https://doi.org/10.1007/978-3-031-10769-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_16&domain=pdf
http://orcid.org/0000-0002-2925-1765
http://orcid.org/0000-0002-4049-221X
http://orcid.org/0000-0003-0924-8478
http://orcid.org/0000-0002-2176-876X
http://orcid.org/0000-0001-5999-2583
http://orcid.org/0000-0003-1029-7656
https://protege.stanford.edu/
https://doi.org/10.1007/978-3-031-10769-6_16

272 C. Alrabbaa et al.

In this paper, we present Evonne as an interactive system, for exploring DL
proofs for description logic entailments, using the methods for computing small
proofs presented in [3,5]. Initial prototypes of Evonne were presented in [6,10],
but since then, many improvements were implemented. While Evonne does
more than just visualizing proofs, this paper focuses on the proof component
of Evonne: specifically, we give a brief overview of the interface for exploring
proofs, describe the proof generation methods implemented in the back-end,
and present an experimental evaluation of these proofs generation methods in
terms of proof size and run time. The improved back-end uses Java libraries
that extract proofs using various methods, such as from the Elk calculus, or
forgetting-based proofs [3] using the forgetting tools Lethe [17] and Fame [21] in
a black-box fashion. The new front-end is visually more appealing than the pro-
totypes presented in [6,10], and allows to inspect and explore proofs using various
interaction techniques, such as zooming and panning, collapsing and expanding,
text manipulation, and compactness adjustments. Additional features include
the minimization of the generated proofs according to various measures and the
possibility to select a known signature that is used to automatically hide parts
of the proofs that are assumed to be obvious for users with certain previous
knowledge. Our evaluation shows that proof sizes can be significantly reduced
in this way, making the proofs more user-friendly. Evonne can be tried and
downloaded at https://imld.de/evonne. The version of Evonne described here,
as well as the data and scripts used in our experiments, can be found at [2].

2 Preliminaries

We recall some relevant notions for DLs; for a detailed introduction, see [8]. DLs
are decidable fragments of first-order logic (FOL) with a special, variable-free syn-
tax, and that use only unary and binary predicates, called concept names and role
names, respectively. These can be used to build complex concepts, which corre-
spond to first-order formulas with one free variable, and axioms corresponding to
first-order sentences. Which kinds of concepts and axioms can be built depends on
the expressivity of the used DL. Here we mainly consider the light-weight DL ELH
and the more expressive ALCH. We have the usual notion of FOL entailment
O |= α of an axiom α from a finite set of axioms O, called an ontology. of special
interest are entailments of atomic CIs (concept inclusions) of the form A � B,
where A and B are concept names. Following [3], we define proofs of O |= α as
finite, acyclic, directed hypergraphs, where vertices v are labeled with axioms �(v)
and hyperedges are of the form (S, d), with S a set of vertices and d a vertex such
that {�(v) | v ∈ S} |= �(d); the leaves of a proof must be labeled by elements of O
and the root by α. In this paper, all proofs are trees, i.e. no vertex can appear in
the first component of multiple hyperedges (see Fig. 1).

3 The Graphical User Interface

The user interface of Evonne is implemented as a web application. To support
users in understanding large proofs, they are offered various layout options and

https://imld.de/evonne

Interactive Proof Visualization for DLs 273

Fig. 1. Overview of Evonne - a condensed proof in the bidirectional layout

interaction components. The proof visualization is linked to a second view show-
ing the context of the proof in a relevant subset of the ontology. In this ontology
view, interactions between axioms are visualized, so that users can understand
the context of axioms occurring in the proof. The user can also examine possible
ways to eliminate unwanted entailments in the ontology view. The focus of this
system description, however, is on the proof component: we describe how the
proofs are generated and how users can interact with the proof visualization.
For details on the ontology view, we refer the reader to the workshop paper [6],
where we also describe how Evonne supports ontology repair.

Initialization. After starting Evonne for the first time, users create a new
project, for which they specify an ontology file. They can then select an entailed
atomic CI to be explained. The user can choose between different proof meth-
ods, and optionally select a signature of known terms (cf. Sect. 4), which can be
generated using the term selection tool Protégé-TS [14].

Layout. Proofs are shown as graphs with two kinds of vertices: colored vertices
for axioms, gray ones for inference steps. By default, proofs are shown using a
tree layout. To take advantage of the width of the display when dealing with
long axioms, it is possible to show proofs in a vertical layout, placing axioms
linearly below each other, with inferences represented through edges on the side
(without the inference vertices). It is possible to automatically re-order vertices
to minimize the distance between conclusion and premises in each step. The third
layout option is the bidirectional layout (see Fig. 1), a tree layout where, initially,
the entire proof is collapsed into a magic vertex that links the conclusion directly
to its justification, and from which individual inference steps can be pulled out
and pushed back from both directions.

274 C. Alrabbaa et al.

Exploration. In all views, each vertex is equipped with multiple functionalities
for exploring a proof. For proofs generated with Elk, clicking on an inference
vertex shows the inference rule used, and the particular inference with relevant
sub-elements highlighted in different colors. Axiom vertices show different button
(, , ,) when hovered over. In the standard tree layout, users can hide sub-
proofs under an axiom . They can also reveal the previous inference step
or the entire-sub-proof . In the vertical layout, the button highlights and
explains the inference of the current axiom. In the bidirectional layout, the arrow
buttons are used for pulling inference steps out of the magic vertex, as well as
pushing them back in.

Presentation. A minimap allows users to keep track of the overall structure
of the proof, thus enriching the zooming and panning functionality. Users can
adjust width and height of proofs through the options side-bar. Long axiom
labels can be shortened in two ways: either by setting a fixed size to all vertices,
or by abbreviating names based on capital letters. Afterwards, it is possible to
restore the original labels individually.

4 Proof Generation

To obtain the proofs that are shown to the user, we implemented different proof
generation techniques, some of which were initially described in [3]. For ELH
ontologies, proofs can be generated natively by the DL reasoner Elk [16]. These
proofs use rules from the calculus described in [16]. We apply the Dijkstra-like
algorithm introduced in [4,5] to compute a minimized proof from the Elk out-
put. This minimization can be done w.r.t. different measures, such as the size,
depth, or weighted sum (where each axiom is weighted by its size), as long as
they are monotone and recursive [5]. For ontologies outside of the ELH frag-
ment, we use the forgetting-based approach originally described in [3], for which
we now implemented two alternative algorithms for computing more compact
proofs (Sect. 4.1). Finally, independently of the proof generation method, one
can specify a signature of known terms. This signature contains terminology
that the user is familiar with, so that entailments using only those terms do not
need to be explained. The condensation of proofs w.r.t. signatures is described
in Sect. 4.2.

4.1 Forgetting-Based Proofs

In a forgetting-based proof, proof steps represent inferences on concept or role
names using a forgetting operation. Given an ontology O and a predicate name x,
the result O−x of forgetting x in O does not contain any occurrences of x, while
still capturing all entailments of O that do not use x [18]. In a forgetting-based
proof, an inference takes as premises a set P of axioms and has as conclusion
some axiom α ∈ P−x (where a particular forgetting operation is used to com-
pute P−x). Intuitively, α is obtained from P by performing inferences on x. To

Interactive Proof Visualization for DLs 275

compute a forgetting-based proof, we have to forget the names occuring in the
ontology one after the other, until only the names occurring in the statement
to be proved are left. For the forgetting operation, the user can select between
two implementations: Lethe [17] (using the method supporting ALCH) and
Fame [21] (using the method supporting ALCOI). Since the space of possible
inference steps is exponentially large, it is not feasible to minimize proofs after
their computation, as we do for EL entailments, which is why we rely on heuris-
tics and search algorithms to generate small proofs. Specifically, we implemented
three methods for computing forgetting-based proofs: HEUR tries to find proofs
fast, SYMB tries to minimize the number of predicates forgotten in a proof, with
the aim of obtaining proofs of small depth, and SIZE tries to optimize the size of
the proof. The heuristic method HEUR is described in [3], and its implementation
has not been changed since then. The search methods SYMB and SIZE are new
(details can be found in the extended version [1]).

4.2 Signature-Based Proof Condensation

When inspecting a proof over a real-world ontology, different parts of the proof
will be more or less familiar to the user, depending on their knowledge about
the involved concepts or their experience with similar inference steps in the past.
For CIs between concepts for which a user has application knowledge, they may
not need to see a proof, and consequently, sub-proofs for such axioms can be
automatically hidden. We assume that the user’s knowledge is given in the form
of a known signature Σ and that axioms that contain only symbols from Σ do
not need to be explained. The effect can be seen in Fig. 1 through the “known”-
inference on the left, where Σ contains SebaceousGland and Gland. The known
signature is taken into consideration when minimizing the proofs, so that proofs
are selected for which more of the known information can be used if convenient.
This can be easily integrated into the Dijsktra approach described in [3], by
initially assigning to each axiom covered by Σ a proof with a single vertex.

5 Evaluation

For Evonne to be usable in practice, it is vital that proofs are computed effi-
ciently and that they are not too large. An experimental evaluation of minimized
proofs for EL and forgetting-based proofs obtained with Fame and Lethe is pro-
vided in [3]. We here present an evaluation of additional aspects: 1) a comparison
of the three methods for computing forgetting-based proofs, and 2) an evalua-
tion on the impact of signature-based proof condensation. All experiments were
performed on Debian Linux (Intel Core i5-4590, 3.30 GHz, 23 GB Java heap size).

5.1 Minimal Forgetting-Based Proofs

To evaluate forgetting-based proofs, we extracted ALCH “proof tasks” from the
ontologies in the 2017 snapshot of BioPortal [19]. We restricted all ontologies

276 C. Alrabbaa et al.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

HEUR

S
Y
M
B
/S
I
Z
E

Proof size

SYMB

SIZE

102 103 104 105 106
102

103

104

105

106

HEUR

S
Y
M
B
/S
I
Z
E

Run time (ms)

Fig. 2. Run times and proof sizes for different forgetting-based proof methods. Marker
size indicates how often each pattern occurred in the BioPortal snapshot. Instances
that timed out were assigned size 0.

to ALCH and collected all entailed atomic CIs α, for each of which we computed
the union U of all their justifications. We identified pairs (α,U) that were isomor-
phic modulo renaming of predicates, and kept only those patterns (α,U) that
contained at least one axiom not expressible in ELH. This was successful in 373
of the ontologies2 and resulted in 138 distinct justification patterns (α,U), repre-
senting 327 different entailments in the BioPortal snapshot. We then computed
forgetting-based proofs for U |= α with our three methods using Lethe, with a
5-minute timeout. This was successful for 325/327 entailments for the heuristic
method (HEUR), 317 for the symbol-minimizing method (SYMB), and 279 for the
size-minimizing method (SIZE). In Fig. 2 we compare the resulting proof sizes
(left) and the run times (right), using HEUR as baseline (x-axis). HEUR is indeed
faster in most cases, but SIZE reduces proof size by 5% on average compared to
HEUR, which is not the case for SYMB. Regarding proof depth (not shown in the
figure), SYMB did not outperform HEUR on average, while SIZE surprisingly yielded
an average reduction of 4% compared to HEUR. Despite this good performance of
SIZE for proof size and depth, for entailments that depend on many or complex
axioms, computation times for both SYMB and SIZE become unacceptable, while
proof generation with HEUR mostly stays in the area of seconds.

5.2 Signature-Based Proof Condensation

To evaluate how much hiding proof steps in a known signature decreases proof
size in practice, we ran experiments on the large medical ontology SNOMED CT
(International Edition, July 2020) that is mostly formulated in ELH.3 As signa-
tures we used SNOMED CT Reference Sets,4 which are restricted vocabularies
2 The other ontologies could not be processed in this way within the memory limit.
3 https://www.snomed.org/.
4 https://confluence.ihtsdotools.org/display/DOCRFSPG/2.3.+Reference+Set.

https://www.snomed.org/
https://confluence.ihtsdotools.org/display/DOCRFSPG/2.3.+Reference+Set

Interactive Proof Visualization for DLs 277

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Original

C
on

de
ns

ed
Proof Size

DEF

GPFP

GPS

IPS

0 20 40 60 80 100
0

20

40

60

80

100

Signature Coverage (%)

R
at

io
of

P
ro

of
Si

ze
(%

)

Original vs. Condensed

Fig. 3. Size of original and condensed proofs (left). Ratio of proof size depending on
the signature coverage (right).

for specific use cases. We extracted justifications similarly to the previous exper-
iment, but did not rename predicates and considered only proof tasks that use
at least 5 symbols from the signature, since otherwise no improvement can be
expected by using the signatures. For each signature, we randomly selected 500
out of 6.689.452 proof tasks (if at least 500 existed). This left the 4 reference
sets General Practitioner/Family Practitioner (GPFP), Global Patient Set (GPS),
International Patient Summary (IPS), and the one included in the SNOMED CT
distribution (DEF). For each of the resulting 2.000 proof tasks, we used Elk [16]
and our proof minimization approach to obtain (a) a proof of minimal size and
(b) a proof of minimal size after hiding the selected signature. The distribution
of proof sizes can be seen in Fig. 3. In 770/2.000 cases, a smaller proof was gener-
ated when using the signature. In 91 of these cases, the size was even be reduced
to 1, i.e. the target axiom used only the given signature and therefore nothing
else needed to be shown. In the other 679 cases with reduced size, the average
ratio of reduced size to original size was 0.68–0.93 (depending on the signature).
One can see that this ratio is correlated with the signature coverage of the origi-
nal proof (i.e. the ratio of signature symbols to total symbols in the proof), with
a weak or strong correlation depending on the signature (r between −0.26 and
−0.74). However, a substantial number of proofs with relatively high signature
coverage could still not be reduced in size at all (see the top right of the right
diagram). In summary, we can see that signature-based condensation can be
useful, but this depends on the proof task and the signature. We also conducted
experiments on the Galen ontology,5 with comparable results (see the extended
version of this paper [1]).

5 https://bioportal.bioontology.org/ontologies/GALEN.

https://bioportal.bioontology.org/ontologies/GALEN

278 C. Alrabbaa et al.

6 Conclusion

We have presented and compared the proof generation and presentation methods
used in Evonne, a visual tool for explaining entailments of DL ontologies. While
these methods produce smaller or less deep proofs, which are thus easier to
present, there is still room for improvements. Specifically, as the forgetting-based
proofs do not provide the same degree of detail as the Elk proofs, it would be
desirable to also support methods for more expressive DLs that generate proofs
with smaller inference steps. Moreover, our current evaluation focuses on proof
size and depth—to understand how well Evonne helps users to understand
DL entailments, we would also need a qualitative evaluation of the tool with
potential end-users. We are also working on explanations for non-entailments
using countermodels [7] and a plugin for the ontology editor Protégé that is
compatible with the PULi library and Proof Explanation plugin presented in [15],
which will support all proof generation methods discussed here and more.6

Acknowledgements. This work was supported by the German Research Foundation
(DFG) in Germany’s Excellence Strategy: EXC-2068, 390729961 - Cluster of Excellence
“Physics of Life” and EXC 2050/1, 390696704 - Cluster of Excellence “Centre for
Tactile Internet” (CeTI) of TU Dresden, by DFG grant 389792660 as part of TRR
248 - CPEC, by the AI competence center ScaDS.AI Dresden/Leipzig, and the DFG
Research Training Group QuantLA, GRK 1763.

References

1. Alrabbaa, C., Baader, F., Borgwardt, S., Dachselt, R., Koopmann, P., Méndez, J.:
Evonne: interactive proof visualization for description logics (system description)
- extended version (2022). https://doi.org/10.48550/ARXIV.2205.09583

2. Alrabbaa, C., Baader, F., Borgwardt, S., Dachselt, R., Koopmann, P., Méndez, J.:
Evonne: interactive proof visualization for description logics (system description)
- IJCAR22 - resources, May 2022. https://doi.org/10.5281/zenodo.6560603

3. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
small proofs for description logic entailments: theory and practice. In: Albert, E.,
Kovács, L. (eds.) Proceedings of the 23rd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR 2020). EPiC Series in
Computing, vol. 73, pp. 32–67. EasyChair (2020). https://doi.org/10.29007/nhpp

4. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: On the
complexity of finding good proofs for description logic entailments. In: Borgwardt,
S., Meyer, T. (eds.) Proceedings of the 33rd International Workshop on Description
Logics (DL 2020). CEUR Workshop Proceedings, vol. 2663. CEUR-WS.org (2020).
http://ceur-ws.org/Vol-2663/paper-1.pdf

5. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
good proofs for description logic entailments using recursive quality measures. In:
Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp. 291–308.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5 17

6 https://github.com/de-tu-dresden-inf-lat/evee.

https://doi.org/10.48550/ARXIV.2205.09583
https://doi.org/10.5281/zenodo.6560603
https://doi.org/10.29007/nhpp
http://ceur-ws.org/Vol-2663/paper-1.pdf
https://doi.org/10.1007/978-3-030-79876-5_17
https://github.com/de-tu-dresden-inf-lat/evee

Interactive Proof Visualization for DLs 279

6. Alrabbaa, C., Baader, F., Dachselt, R., Flemisch, T., Koopmann, P.: Visualising
proofs and the modular structure of ontologies to support ontology repair. In:
Borgwardt, S., Meyer, T. (eds.) Proceedings of the 33rd International Workshop
on Description Logics (DL 2020). CEUR Workshop Proceedings, vol. 2663. CEUR-
WS.org (2020). http://ceur-ws.org/Vol-2663/paper-2.pdf

7. Alrabbaa, C., Hieke, W., Turhan, A.: Counter model transformation for explaining
non-subsumption in EL. In: Beierle, C., Ragni, M., Stolzenburg, F., Thimm, M.
(eds.) Proceedings of the 7th Workshop on Formal and Cognitive Reasoning. CEUR
Workshop Proceedings, vol. 2961, pp. 9–22. CEUR-WS.org (2021). http://ceur-ws.
org/Vol-2961/paper 2.pdf

8. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017). https://doi.org/10.1017/
9781139025355

9. Fiedler, A.: Natural language proof explanation. In: Hutter, D., Stephan, W. (eds.)
Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 342–363.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32254-2 20

10. Flemisch, T., Langner, R., Alrabbaa, C., Dachselt, R.: Towards designing a tool
for understanding proofs in ontologies through combined node-link diagrams. In:
Ivanova, V., Lambrix, P., Pesquita, C., Wiens, V. (eds.) Proceedings of the Fifth
International Workshop on Visualization and Interaction for Ontologies and Linked
Data (VOILA 2020). CEUR Workshop Proceedings, vol. 2778, pp. 28–40. CEUR-
WS.org (2020). http://ceur-ws.org/Vol-2778/paper3.pdf

11. Horacek, H.: Presenting proofs in a human-oriented way. In: CADE 1999. LNCS
(LNAI), vol. 1632, pp. 142–156. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48660-7 10

12. Horridge, M., Parsia, B., Sattler, U.: Explanation of OWL entailments in Protege
4. In: Bizer, C., Joshi, A. (eds.) Proceedings of the Poster and Demonstration
Session at the 7th International Semantic Web Conference (ISWC 2008). CEUR
Workshop Proceedings, vol. 401. CEUR-WS.org (2008). http://ceur-ws.org/Vol-
401/iswc2008pd submission 47.pdf

13. Horridge, M., Parsia, B., Sattler, U.: Justification oriented proofs in OWL. In:
Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Hor-
rocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 354–369. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0 23

14. Hyland, I., Schmidt, R.A.: Protégé-TS: An OWL ontology term selection tool. In:
Borgwardt, S., Meyer, T. (eds.) Proceedings of the 33rd International Workshop
on Description Logics (DL 2020). CEUR Workshop Proceedings, vol. 2663. CEUR-
WS.org (2020). http://ceur-ws.org/Vol-2663/paper-12.pdf

15. Kazakov, Y., Klinov, P., Stupnikov, A.: Towards reusable explanation services in
protege. In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Proceedings of the 30th
International Workshop on Description Logics (DL 2017). CEUR Workshop Pro-
ceedings, vol. 1879. CEUR-WS.org (2017). http://ceur-ws.org/Vol-1879/paper31.
pdf

16. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK - from polynomial
procedures to efficient reasoning with EL ontologies. J. Autom. Reason. 53(1),
1–61 (2014). https://doi.org/10.1007/s10817-013-9296-3

17. Koopmann, P.: LETHE: forgetting and uniform interpolation for expressive
description logics. Künstliche Intell. 34(3), 381–387 (2020). https://doi.org/10.
1007/s13218-020-00655-w

http://ceur-ws.org/Vol-2663/paper-2.pdf
http://ceur-ws.org/Vol-2961/paper_2.pdf
http://ceur-ws.org/Vol-2961/paper_2.pdf
https://doi.org/10.1017/9781139025355
https://doi.org/10.1017/9781139025355
https://doi.org/10.1007/978-3-540-32254-2_20
http://ceur-ws.org/Vol-2778/paper3.pdf
https://doi.org/10.1007/3-540-48660-7_10
https://doi.org/10.1007/3-540-48660-7_10
http://ceur-ws.org/Vol-401/iswc2008pd_submission_47.pdf
http://ceur-ws.org/Vol-401/iswc2008pd_submission_47.pdf
https://doi.org/10.1007/978-3-642-17746-0_23
http://ceur-ws.org/Vol-2663/paper-12.pdf
http://ceur-ws.org/Vol-1879/paper31.pdf
http://ceur-ws.org/Vol-1879/paper31.pdf
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1007/s13218-020-00655-w
https://doi.org/10.1007/s13218-020-00655-w

280 C. Alrabbaa et al.

18. Koopmann, P., Schmidt, R.A.: Forgetting concept and role symbols in ALCH-
ontologies. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013.
LNCS, vol. 8312, pp. 552–567. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-45221-5 37

19. Matentzoglu, N., Parsia, B.: Bioportal snapshot 30.03.2017, March 2017. https://
doi.org/10.5281/zenodo.439510

20. Reger, G., Suda, M.: Checkable proofs for first-order theorem proving. In: Reger,
G., Traytel, D. (eds.) 1st International Workshop on Automated Reasoning: Chal-
lenges, Applications, Directions, Exemplary Achievements (ARCADE 2017). EPiC
Series in Computing, vol. 51, pp. 55–63. EasyChair (2017). https://doi.org/10.
29007/s6d1

21. Zhao, Y., Schmidt, R.A.: FAME: an automated tool for semantic forgetting in
expressive description logics. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.)
IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 19–27. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94205-6 2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-45221-5_37
https://doi.org/10.1007/978-3-642-45221-5_37
https://doi.org/10.5281/zenodo.439510
https://doi.org/10.5281/zenodo.439510
https://doi.org/10.29007/s6d1
https://doi.org/10.29007/s6d1
https://doi.org/10.1007/978-3-319-94205-6_2
https://doi.org/10.1007/978-3-319-94205-6_2
http://creativecommons.org/licenses/by/4.0/

Actions over Core-Closed Knowledge
Bases

Claudia Cauli1,2(B), Magdalena Ortiz3, and Nir Piterman1

1 University of Gothenburg, Gothenburg, Sweden
claudiacauli@gmail.com

2 Amazon Web Services, Seattle, USA
3 TU Wien, Vienna, Austria

Abstract. We present new results on the application of semantic- and
knowledge-based reasoning techniques to the analysis of cloud deploy-
ments. In particular, to the security of Infrastructure as Code configura-
tion files, encoded as description logic knowledge bases. We introduce an
action language to model mutating actions; that is, actions that change
the structural configuration of a given deployment by adding, modifying,
or deleting resources. We mainly focus on two problems: the problem of
determining whether the execution of an action, no matter the parame-
ters passed to it, will not cause the violation of some security requirement
(static verification), and the problem of finding sequences of actions that
would lead the deployment to a state where (un)desirable properties are
(not) satisfied (plan existence and plan synthesis). For all these problems,
we provide definitions, complexity results, and decision procedures.

1 Introduction

The use of automated reasoning techniques to analyze the properties of cloud
infrastructure is gaining increasing attention [4–7,18]. Despite that, more effort
needs to be put into the modeling and verification of generic security require-
ments over cloud infrastructure pre-deployment. The availability of formal tech-
niques, providing strong security guarantees, would assist complex system-level
analyses such as threat modeling and data flow, which now require considerable
time, manual intervention, and expert domain knowledge.

We continue our research on the application of semantic-based and
knowledge-based reasoning techniques to cloud deployment Infrastructure as
Code configuration files. In [14], we reported on our experience using expressive
description logics to model and reason about Amazon Web Services’ proprietary
Infrastructure as Code framework (AWS CloudFormation). We used the rich
constructs of these logics to encode domain knowledge, simulate closed-world
reasoning, and express mitigations and exposures to security threats. Due to the
high complexity of basic tasks [3,26], we found reasoning in such a framework
to be not efficient at cloud scale. In [15], we introduced core-closed knowledge

C. Cauli—This work was done prior to joining Amazon.

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 281–299, 2022.
https://doi.org/10.1007/978-3-031-10769-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_17&domain=pdf
https://doi.org/10.1007/978-3-031-10769-6_17

282 C. Cauli et al.

bases—a lightweight description logic combining closed- and open-world rea-
soning that is tailored to model cloud infrastructure and efficiently query its
security properties. Core-closed knowledge bases enable partially-closed predi-
cates whose interpretation is closed over a core part of the knowledge base but
open elsewhere. To encode potential exposure to security threats, we studied the
query satisfiability problem and (together with the usual query entailment prob-
lem) applied it to a new class of conjunctive queries that we called Must/May
queries. We were able to answer such queries over core-closed knowledge bases in
LogSpace in data complexity and NP in combined complexity, improving the
required NExptime complexity for satisfiability over ALCOIQ (used in [14]).

Here, we enhance the quality of the analyses done over pre-deployment arti-
facts, giving users and practitioners additional precise insights on the impact
of potential changes, fixes, and general improvements to their cloud projects.
We enrich core-closed knowledge bases with the notion of core-completeness,
which is needed to ensure that updates are consistent. We define the syntax and
semantics of an action language that is expressive enough to encode mutating
API calls, i.e., operations that change a cloud deployment configuration by cre-
ating, modifying, or deleting existing resources. As part of our effort to improve
the quality of automated analysis, we also provide relevant reasoning tools to
identify and predict the consequences of these changes. To this end, we consider
procedures that determine whether the execution of a mutating action always
preserves given properties (static verification); determine whether there exists a
sequence of operations that would lead a deployment to a configuration meet-
ing certain requirements (plan existence); and find such sequences of operations
(plan synthesis).

The paper is organized as follows. In Sect. 2, we provide background on core-
closed knowledge bases, conjunctive queries, and Must/May queries. In Sect. 3,
we motivate and introduce the notion of core-completeness. In Sect. 4, we define
the action language. In Sect. 5, we describe the static verification problem and
characterize its complexity. In Sect. 6, we address the planning problem and
concentrate on the synthesis of minimal plans satisfying a given requirement
expressed using Must/May queries. We discuss related works in Sect. 7 and
conclude in Sect. 8. Results and proofs that are omitted in this paper are found
in the full version [16].

2 Background

Description logics (DLs) are a family of logics for encoding knowledge in terms of
concepts, roles, and individuals; analogous to first-order logic unary predicates,
binary predicates, and constants, respectively. Standard DL knowledge bases
(KBs) have a set of axioms, called TBox, and a set of assertions, called ABox.
The TBox contains axioms that relate to concepts and roles. The ABox contains
assertions that relate individuals to concepts and pairs of individuals to roles.
KBs are usually interpreted under the open-world assumption, meaning that the
asserted facts are not assumed to be complete.

Actions over Core-Closed Knowledge Bases 283

Core-Closed Knowledge Bases. In [15], we introduced core-closed knowledge
bases (ccKBs) as a suitable description logic formalism to encode cloud deploy-
ments. The main characteristic of ccKBs is to allow for a combination of open-
and closed-world reasoning that ensures tractability. A DL-LiteF ccKB is the
tuple K = 〈T ,A,S,M〉 built from the standard knowledge base 〈T ,A〉 and the
core system 〈S,M〉. The former encodes incomplete terminological and asser-
tional knowledge. The latter is, in turn, composed of two parts: S (also called
the SBox), containing axioms that encode the core structural specifications,
and M (also called the MBox), containing positive concept and role assertions
that encode the core configuration. Syntactically, M is similar to an ABox but,
semantically, is assumed to be complete with respect to the specifications in S.

The ccKB K is defined over the alphabets C (of concepts), R (of roles), and I
(of individuals), all partitioned into an open subset and a partially-closed subset.
That is, the set of concepts is partitioned into the open concepts CK and the
closed (specification) concepts CS ; the set of roles is partitioned into open roles
RK and closed (specification) roles RS ; and the set of individuals is partitioned
into open individuals IK and closed (model) individuals IM. We call CS and RS

core-closed predicates, or partially-closed predicates, as their extension is closed
over the core domain IM and open otherwise. In contrast, we call CK and RK

open predicates. The syntax of concept and role expressions in DL-LiteF [2,8]
is as follows:

B ::= ⊥ | A | ∃p

where A denotes a concept name and p is either a role name r or its inverse r−.
The syntax of axioms provides for the three following axioms:

B1 � B2, B1 � ¬B2, (funct p),

respectively called: positive inclusion axioms, negative inclusion axioms, and
functionality axioms. These axioms are contained in the sets S and T . To pre-
cisely denote the subsets of S and T having only axioms of a given type we use
the notation PIX , NIX , and FX , for X ∈ {S, T }, which respectively contain only
positive inclusion axioms, negative inclusion axioms, and functionality axioms.
From now on, we denote symbols from the alphabet XX with the subscript
X , and symbols from the generic alphabet X with no subscript. In core-closed
knowledge bases, axioms and assertions fall into the scope of a different set
depending on the predicates and individuals that they refer to, according to the
set definitions below.

M ⊆ {AS(aM), RS(aM, a), RS(a, aM)}
A ⊆ {AK(aK), RK(aK, bK), AS(aK), RS(aK, bK)}
S ⊆ {B1

S �B2
S , B1

S �¬B2
S , Func(PS)}

T ⊆ {B1 �B2
K, B1 �¬B2

K, Func(PK)}

In the above definition of the set M, role assertions link at least one individual
from the core domain IM (denoted as aM) to one individual from the general set

284 C. Cauli et al.

I (denoted as a). Node a could either be an individual from the open partition IK

or the closed partition IM. When a is an element from the set IK, we refer to it
as a “boundary node”, as it sits at the boundary between the core and the open
parts of the knowledge base. As mentioned earlier, M-assertions are assumed to
be complete and consistent with respect to the terminological knowledge given
in S; whereas the usual open-world assumption is made for A-assertions. The
semantics of a DL-LiteF core-closed KB is given in terms of interpretations I,
consisting of a non-empty domain ΔI and an interpretation function ·I . The
latter assigns to each concept A a subset AI of ΔI , to each role r a subset rI of
ΔI ×ΔI , and to each individual a a node aI in ΔI , and it is extended to concept
expressions in the usual way. An interpretation I is a model of an inclusion axiom
B1 � B2 if BI

1 ⊆ BI
2 . An interpretation I is a model of a membership assertion

A(a), (resp. r(a, b)) if aI ∈ AI (resp. (aI , bI) ∈ rI). We say that I models T ,
S, and A if it models all axioms or assertions contained therein. We say that I
models M, denoted I |=CWA M, when it models an M-assertion f if and only
if f ∈ M. Finally, I models K if it models T , S, A, and M. When K has at
least one model, we say that K is satisfiable.

In the remainder of this paper, we will sometimes refer to the lts interpreta-
tion of M. The lts interpretation of M, denoted lts(M), is the interpretation
(Δlts(M), ·lts(M)) defined only over concept and role names from the set CS and
RS , respectively, and over individual names from IK that appear in the scope
of M-assertions. The interpretation lts(M) is the unique model of M such that
lts(M) |=CWA M.

In the application presented in [14], description logic KBs are used to encode
machine-readable deployment files containing multiple resource declarations.
Every resource declaration has an underlying tree structure, whose leaves can
potentially link to the roots of other resource declarations. Let Ir ⊆ IM be the
set of all resource nodes, we encode their resource declarations in M, and for-
malize the resulting forest structure by partitioning M into multiple subsets
{Mi}i∈Ir , each representing a tree of assertions rooted at a resource node i (we
generally refer to constants in M as nodes). For the purpose of this work, we
will refer to core-closed knowledge bases where M is partitioned as described;
that is, ccKBs such that K = 〈T ,A,S, {Mi}i∈Ir 〉.

Conjunctive Queries. A conjunctive query (CQ) is an existentially-quantified
formula q[�x] of the form ∃�y.conj(�x, �y), where conj is a conjunction of positive
atoms and potentially inequalities. A union of conjunctive queries (UCQ) is a
disjunction of CQs. The variables in �x are called answer variables, those in �y
are the existentially-quantified query variables. A tuple �c of constants appearing
in the knowledge base K is an answer to q if for all interpretations I model
of K we have I |= q[�c]. We call these tuples the certain answers of q over K,
denoted ans(K, q), and the problem of testing whether a tuple is a certain answer
query entailment. A tuple �c of constants appearing in K satisfies q if there exists
an interpretation I model of K such that I |= q[�c]. We call these tuples the sat
answers of q over K, denoted sat−ans(K, q), and the problem of testing whether
a given tuple is a sat answer query satisfiability.

Actions over Core-Closed Knowledge Bases 285

Must/May Queries. A Must/May query ψ [15] is a Boolean combination of
nested UCQs in the scope of a Must or a May operator as follows:

ψ ::= ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | Must ϕ | May ϕ �≈

where ϕ and ϕ �≈ are unions of conjunctive queries potentially containing inequal-
ities. The reasoning needed for answering the nested queries can be decou-
pled from the reasoning needed to answer the higher-level formula: nested
queries Must ϕ are reduced to conjunctive query entailment, and nested queries
May ϕ�≈ are reduced to conjunctive query satisfiability. We denote by ANS(ψ,K)
the answers of a Must/May query ψ over the core-closed knowledge base K.

3 Core-Complete Knowledge Bases

The algorithm Consistent presented in [15] computes satisfiability of DL-LiteF

core-closed knowledge bases relying on the assumption that M is complete and
consistent with respect to S. Such an assumption effectively means that the infor-
mation contained in M is explicitly present and cannot be completed by inference.
The algorithm relies on the existence of a theoretical object, the canonical inter-
pretation, in which missing assertions can always be introduced when they are
logically implied by the positive inclusion axioms. As a matter of fact, positive
inclusion axioms are not even included in the inconsistency formula built for
the satisfiability check, as it is proven that the canonical interpretation always
satisfies them ([15], Lemma 3). When the assumption that M is consistent with
respect to S is dropped, the algorithm Consistent becomes insufficient to check
satisfiability. We illustrate this with an example.

Example 1 (Required Configuration). Let us consider the axioms constraining
the AWS resource type S3::Bucket. In particular, the S-axiom S3::Bucket �
∃loggingConfiguration prescribing that all buckets must have a required log-
ging configuration. For a set M = {S3::Bucket(b)}, according to the partially-
closed semantics of core-closed knowledge bases, the absence of an assertion
loggingConfiguration(b, x), for some x, is interpreted as the assertion being false
in M, which is therefore not consistent with respect to S. However, the algo-
rithm Consistent will check the lts interpretation of M for an empty formula (as
there are no negative inclusion or functionality axioms) and return true.

In essence, the algorithm Consistent does not compute the full satisfiability of the
whole core-closed knowledge base, but only of its open part. Satisfiability of M
with respect to the positive inclusion axioms in S needs to be checked separately.
We introduce a new notion to denote when a set M is complete with respect
to S that is distinct from the notion of consistency. Let K = 〈T ,A,S,M〉 be a
DL-LiteF core-closed knowledge base; we say that K is core-complete when M
models all positive inclusion axioms in S under a closed-world assumption; we
say that K is open-consistent when M and A model all negative inclusion and
functionality axioms in K’s negative inclusion closure. Finally, we say that K is
fully satisfiable when is both core-complete and open-consistent.

286 C. Cauli et al.

Lemma 1. In order to check full satisfiability of a DL-LiteF core-closed KB,
one simply needs to check if K is core-complete (that is, if M models all positive
axioms in S under a closed-world assumption) and if K is open-consistent (that
is, to run the algorithm Consistent).

Proof. Dropping the assumption that M is consistent w.r.t. S causes Lemma 3
from [15] to fail. In particular, the canonical interpretation of K, can(K), would
still be a model of PIT , A, and M, but may not be a model of PIS . This is
due to the construction of the canonical model that is based on the notion of
applicable axioms. In rules c5-c8 of [15] Definition 1, axioms in PIS are defined
as applicable to assertions involving open nodes aK but not to model nodes
aM in IM. As a result, if the implications of such axioms on model nodes are
not included in M itself, then they will not be included in can(K) either, and
can(K) will not be a model of PIS . On the other hand, one can easily verify
that Lemmas 1,2,4,5,6,7 and Corollary 1 would still hold as they do not rely on
the assumption. However, since it is not guaranteed anymore that M satisfies
all positive inclusion axioms from S, the if direction of [15] Theorem 1 does not
hold anymore: there can be an unsatisfiable ccKB K such that db(A)∪ lts(M) |=
cln(T ∪ S),A,M. For instance, the knowledge base from Example 1. We also
note that the negative inclusion and functionality axioms from S will be checked
anyway by the consistency formula, both on db(A) and on lts(M).

Lemma 2. Checking whether a DL-LiteF core-closed knowledge base is core-
complete can be done in polynomial time in M. As a consequence, checking full
satisfiability is also done in polynomial time in M.

Proof. One can write an algorithm that checks core-completeness by searching
for the existence of a positive inclusion axiom B1

S � B2
S ∈ PIS such that M |=

B1
S(aM) and M �|= B2

S(aM), where the relation |= is defined over DL-LiteF

concept expressions as follows:

M |=⊥(aM) ↔ false
M |=AS(aM) ↔ AS(aM)∈M
M |=∃rS(aM) ↔ ∃b. rS(aM, b)∈M
M |=∃r−S (aM) ↔ ∃b. rS(b, aM)∈M.

The knowledge base is core-complete if such a node cannot be found.

4 Actions

We now introduce a formal language to encode mutating actions. Let us remind
ourselves that, in our application of interest, the execution of a mutating action
modifies the configuration of a deployment by either adding new resource
instances, deleting existing ones, or modifying their settings. Here, we intro-
duce a framework for DL-LiteF core-closed knowledge base updates, triggered
by the execution of an action that enables all the above mentioned effects. The

Actions over Core-Closed Knowledge Bases 287

only component of the core-closed knowledge base that is modified by the action
execution is M; while T , S, and A remain unchanged. As a consequence of
updating M, actions can introduce new individuals and delete old ones, thus
updating the set IM as well. Note that this may force changes outside IM due
to the axioms in T and S. The effects of applying an action over M depend
on a set of input parameters that will be instantiated at execution time, result-
ing in different assertions being added or removed from M. As a consequence
of assertions being added, fresh individuals might be introduced in the active
domain of M, including both model nodes from IM and boundary nodes from
IB. Differently, as a consequence of assertions being removed, individuals might
be removed from the active domain of M, including model nodes from IM but
not including boundary nodes from IB . In fact, boundary nodes are owned by
the open portion of the knowledge base and are known to exist regardless of them
being used in M. We invite the reader to review the set definitions for A- and
M-assertions (Sect. 2) to note that it is indeed possible for a generic boundary
individual a involved in an M-assertion to also be involved in an A-assertion.

4.1 Syntax

An action is defined by a signature and a body. The signature consists of an
action name and a list of formal parameters, which will be replaced with actual
parameters at execution time. The body, or action effect, can include conditional
statements and concatenation of atomic operations over M-assertions. For exam-
ple, let α be the action act(�x) = γ; that is, the action denoted by signature act(�x)
and body γ, with signature name act, signature parameters �x, and body effect γ.
Since it contains unbound parameters, or free variables, action α is ungrounded
and needs to be instantiated with actual values in order to be executed over
a set M. In the following, we assume the existence of a set Var, of variable
names, and consider a generic input parameters substitution �θ : Var → I, which
replaces each variable name by an individual node. For simplicity, we will denote
an ungrounded action by its effect γ, and a grounded action by the composition
of its effect with an input parameter substitution γ�θ. Action effects can either
be complex or basic. The syntax of complex action effects γ and basic effects β
is constrained by the following grammar.

γ ::= ε | β · γ | [ϕ � β] · γ

β ::= ⊕x S | �x S | �xnew
S | �x

The complex action effects γ include: the empty effect (ε), the execution of
a basic effect followed by a complex one (β · γ), and the conditional execution
of a basic effect upon evaluation of a formula ϕ over the set M ([ϕ � β] · γ).
The basic action effects β include: the addition of a set S of M-assertions to the
subset Mx (⊕xS), the removal of a set S of M-assertions from the subset Mx

(�xS), the addition of a fresh subset Mxnew
containing all the M-assertions in

the set S (�xnew
S), and the removal of an existing Mx subset in its entirety

(�x). The set S, the formula ϕ, and the operators ⊕/� might contain free

288 C. Cauli et al.

variables. These variables are of two types: (1) variables that are replaced by
the grounding of the action input parameters, and (2) variables that are the
answer variables of the formula ϕ and appear in the nested effect β.

Example 2. The following is the definition of the action createBucket from the
API reference of the AWS resource type S3::Bucket. The input parameters are
two: the new bucket name “name” and the canned access control list “acl” (one
of Private, PublicRead, PublicReadWrite, AuthenticatedRead, etc.). The effect of
the action is to add a fresh subset Mx for the newly introduced individual x
containing the two assertions S3::Bucket(x) and accessControl(x, y).

createBucket(x : name, y : acl) = �x{S3::Bucket(x), accessControl(x, y)} · ε

The action needs to be instantiated by a specific parameter assignment, for
example the substitution θ = [x ← DataBucket, y ← Private], which binds
the variable x to the node DataBucket and the variable y to the node Private,
both taken from a pool of inactive nodes in I.

Action Query ϕ. The syntax introduced in the previous paragraph allows for
complex actions that conditionally execute a basic effect β depending on the
evaluation of a formula ϕ over M. This is done via the construct [ϕ � β] · γ.
The formula ϕ might have a set �y of answer variables that appear free in its body
and are then bound to concrete tuples of nodes during evaluation. The answer
tuples are in turn used to instantiate the free variables in the nested effect β.
We call ϕ the action query since we use it to select all the nodes that will be
involved in the action effect. According to the grammar below, ϕ is a boolean
combination of M-assertions potentially containing free variables.

ϕ ::= AS(t) | RS(t1, t2) | ϕ1 ∧ ϕ2 | ϕ2 ∨ ϕ2 | ¬ϕ

In particular, AS is a symbol from the set CS of partially-closed concepts;
RS is a symbol from the set RS of partially-closed roles; and t, t1, t2 are either
individual or variable names from the set I � Var, chosen in such a way that
the resulting assertion is an M-assertion. Since the formula ϕ can only refer
to M-assertions, which are interpreted under a closed semantics, its evaluation
requires looking at the content of the set M. A formula ϕ with no free variables is
a boolean formula and evaluates to either true or false. A formula ϕ with answer
variables �y and arity ar(ϕ) evaluates to all the tuples �t, of size equal the arity of
ϕ, that make the formula true in M. The free variables of ϕ can only appear in
the action β such that ϕ � β. We denote by ANS(ϕ,M) the set of answers to
the action query ϕ over M. It is easy to see that the maximum number of tuples
that could be returned by the evaluation (that is, the size of the set ANS(ϕ,M))
is bounded by |IM � IB|ar(ϕ), in turn bounded by (2|M|)2|ϕ|.

Example 3. The following example shows the encoding of the S3 API opera-
tion called deleteBucketEncryption, which requires as unique input parameter
the name of the bucket whose encryption configuration is to be deleted. Since

Actions over Core-Closed Knowledge Bases 289

a bucket can have multiple encryption configuration rules (each prescribing dif-
ferent encryption keys and algorithms to be used) we use an action query ϕ to
select all the nodes that match the assertions structure to be removed.

ϕ[y, k, z](x) = S3::Bucket(x) ∧ encrRule(x, y) ∧ SSEKey(y, k) ∧ SSEAlgo(y, z)

The query ϕ is instantiated by the specific bucket instance (which will replace
the variable x) and returns all the triples (y, k, z) of encryption rule, key, and
algorithm, respectively, which identify the assertions corresponding to the dif-
ferent encryption configurations that the bucket has. The answer variables are
then used in the action effect to instantiate the assertions to remove from Mx:

deleteBucketEncryption(x : name)
= [ϕ[y, k, z](x) � �x{encrRule(x, y),SSEKey(y, k),SSEAlgo(y, z)}] · ε

4.2 Semantics

So far, we have described the syntax of our action language and provided two
examples that showcase the encoding of real-world API calls. Now, we define the
semantics of action effects with respect to the changes that they induce over a
knowledge base. Let us recall that given a substitution �θ for the input parameters
of an action γ, we denote by γ�θ the grounded action where all the input variables
are replaced according to what prescribed by �θ. Let us also recall that the effects
of an action apply only to assertions in M and individuals from IM, and cannot
affect nodes and assertions from the open portion of the knowledge base.

The execution of a grounded action γ�θ over a DL-LiteF core-closed knowledge
base K = (T ,A,S,M), defined over the set IM of partially-closed individuals,
generates a new knowledge base Kγ�θ = (T ,A,S,Mγ�θ), defined over an updated
set of partially-closed individuals IMγ�θ

. Let S be a set of M-assertions, γ a com-
plex action, �θ an input parameter substitution, and �ρ a generic substitution that
potentially replaces all free variables in the action γ. Let �ρ1 and �ρ2 be two substi-
tutions with signature Var → I such that dom(�ρ1)∩dom(�ρ2) = ∅; we denote their
composition by �ρ1�ρ2 and define it as the new substitution such that �ρ1�ρ2(x) = a
if �ρ1(x)=a ∨ �ρ2(x)=a, and �ρ1�ρ2(x) = ⊥ if �ρ1(x)=⊥ ∧ �ρ2(x)=⊥. We formalize
the application of the grounded action γ�θ as the transformation Tγ�θ that maps

the pair
〈M, IM〉

into the new pair
〈
M′, IM′

〉
. We sometimes use the nota-

tion Tγ�θ(M) or Tγ�θ(I
M) to refer to the updated MBox or to the updated set of

model nodes, respectively. The rules for applying the transformation depend on
the structure of the action γ and are reported in Fig. 1. The transformation starts
with an initial generic substitution �ρ = �θ. As the transformation progresses, the
generic substitution �ρ can be updated only as a result of the evaluation of an
action query ϕ over M. Precisely, all the tuples �t1, ..., �tn making ϕ true in M
will be considered and composed with the current substitution �ρ generating n
fresh substitutions �ρt1, ..., �ρtn which are used in the subsequent application of
the nested effect β. Since the core M of the knowledge base K changes at every

290 C. Cauli et al.

action execution, its domain of model nodes IM changes as well. The execution
of an action γ�θ over the knowledge base K = (T ,A,S,M) with set of model
nodes IM could generate a new Kγ�θ = (T ,A,S,Mγ�θ) with a new set of model
nodes IM′ that is not core-complete or not open-consistent (see Sect. 3 for the
corresponding definitions). We illustrate two examples next.

Fig. 1. Semantic of the action language defined over the MBox M and set IM.

Example 4 (Violation of core-completeness). Consider the case where the gen-
eral specifications of the system require all objects of type bucket to have a log-
ging configuration, and an action that removes the logging configuration from
a bucket. Consider the core-closed knowledge base K where S = {S3::Bucket �
∃loggingConfiguration} and M = {S3::Bucket(b), loggingConfiguration(b, c)} (con-
sistent wrt S) and the action γ defined as

deleteLoggingConfiguration(x : name)
= [(ϕ[y](x) = S3::Bucket(x) ∧ loggingConfiguration(x, y))

� �x{loggingConfiguration(x, y)}] · ε

For the input parameter substitution �θ = [x ← b], it is easy to see that the
transformation Tγ�θ applied to M results in the update Mγ�θ = {S3::Bucket(b)},
which is not core-complete.

Example 5 (Violation of open-consistency). Consider the case where an action
application indirectly affects boundary nodes and their properties, leading to
inconsistencies in the open portion of the knowledge base. For example, when
the knowledge base prescribes that buckets used to store logs cannot be pub-
lic; however, a change in the configuration of a bucket instance causes a sec-
ond bucket (initially known to be public) to also become a log store. In
particular, this happens when the knowledge base K contains the T -axiom
∃loggingDestination− � ¬PublicBucket and the A-assertion PublicBucket(b), and

Actions over Core-Closed Knowledge Bases 291

we apply an action that introduces a new bucket storing its logs to b, defined as
follows:

createBucketWithLogging(x : name, y : log)
= �x{S3::Bucket(x), loggingDestination(x, y)}

For the input parameter substitution �θ = [x ← newBucket, y ← b], the result
of applying the transformation Tγ�θ is the set M = {S3::Bucket(newBucket),
loggingDestination(newBucket, b)} which, combined with the pre-existing and
unchanged sets T and A, causes the updated Kγ�θ to be not open-consistent.

From a practical point of view, the examples highlight the need to re-evaluate
core-completeness and open-consistency of a core-closed knowledge base after
each action execution. Detecting a violation to core-completeness signals that we
have modeled an action that is inconsistent with respect to the systems specifi-
cations, which most likely means that the action is missing something and needs
to be revised. Detecting a violation to open-consistency signals that our action,
even when consistent with respect to the specifications, introduces a change that
conflicts with other assumptions that we made about the system, and generally
indicates that we should either revise the assumptions or forbid the application
of the action. Both cases are important to consider in the development life cycle
of the core-closed KB and the action definitions.

5 Static Verification

In this section, we investigate the problem of computing whether the execution of
an action, no matter the specific instantiation, always preserves given properties
of core-closed knowledge bases. We focus on properties expressed as Must/May
queries and define the static verification problem as follows.

Definition 1 (Static Verification). Let K be a DL-LiteF core-closed knowl-
edge base, q be a Must/May query, and γ be an action with free variables from
the language presented above. Let �θ be an assignment for the input variables of
γ that transforms γ into the grounded action γ�θ. Let Kγ�θ be the DL-LiteF core-
closed knowledge base resulting from the application of the grounded action γ�θ
onto K. We say that the action γ “preserves q over K” iff for every grounded
instance γ�θ we have that ANS(q,K) = ANS(q,Kγ�θ). The static verification prob-
lem is that of determining whether an action γ is q-preserving over K.

An action γ is not q-preserving over K iff there exists a grounding �θ for
the input variables of γ such that ANS(q,K) �= ANS(q,Kγ�θ); that is, fixed
the grounding �θ there exists a tuple �t for q’s answer variables such that
�t ∈ ANS(q,K) � ANS(q,Kγ�θ) or �t ∈ ANS(q,Kγ�θ) � ANS(q,K).

Theorem 1 (Complexity of the Static Verification Problem). The static
verification problem, i.e.deciding whether an action γ is q-preserving over K, can
be decided in PTime in data complexity and ExpTime in the arities of γ and q.

292 C. Cauli et al.

Proof. The proof relies on the fact that one could: enumerate all possible assign-
ments �θ; compute the updated knowledge bases Kγ�θ; check whether these are
fully satisfiable; enumerate all tuples �t for the query q; and, finally, check whether
there exists at least one such tuple that satisfies q over K but not Kγ�θ or vice
versa. The number of assignments �θ is bounded by

(|IM � IK|+ar(γ)
)ar(γ) as it

is sufficient to replace each variable appearing in the action γ either by a known
object from IM � IK or by a fresh one. The computation of the updated Kγ�θ is
done in polynomial time in M (and is exponential in the size of the action γ) as
it may require the evaluation of an internal action query ϕ and the consecutive
re-application of the transformation for a number of tuples that is bounded by a
polynomial over the size of M. As explained in Sect. 3, checking full satisfiability
of the resulting core-closed knowledge base is also polynomial in M. The number
of tuples �t is bounded by

(|IM � IK| + ar(γ)
)ar(q) as it is enough to consider

all those tuples involving known objects plus the fresh individuals introduced
by the assignment �θ. Checking whether a tuple �t satisfies the query q over a
core-closed knowledge base is decided in LogSpace in the size of M [15] which
is, thus, also polynomial in M.

6 Planning

As discussed throughout the paper, the execution of a mutating action modi-
fies the configuration of a deployment and potentially changes its posture with
respect to a given set of requirements. In the previous two sections, we intro-
duced a language to encode mutating actions and we investigated the problem
of checking whether the application of an action preserves the properties of a
core-closed knowledge base. In this section, we investigate the plan existence
and synthesis problems; that is, the problem of deciding whether there exists
a sequence of grounded actions that leads the knowledge base to a state where
a certain requirement is met, and the problem of finding a set of such plans,
respectively. We start by defining a notion of transition system that is gen-
erated by applying actions to a core-closed knowledge base and then use this
notion to focus on the mentioned planning problems. As in classical planning,
the plan existence problem for plans computed over unbounded domains is unde-
cidable [17,19]. The undecidability proof is done via reduction from the Word
problem. The problem of deciding whether a deterministic Turing machine M
accepts a word w ∈ {0, 1}∗ is reduced to the plan existence problem. Since unde-
cidability holds even for basic action effects, we can show undecidability over an
unbounded domain by using the same encoding of [1].

Transition Systems. In the style of the work done in [10,21], the combination
of a DL-LiteF core-closed knowledge base and a set of actions can be viewed
as the transition system it generates. Intuitively, the states of the transition
system correspond to MBoxes and the transitions between states are labeled by
grounded actions. A DL-LiteF core-closed knowledge base K = (T ,A,S,M0),
defined over the possibly infinite set of individuals I (and model nodes IM

0 ⊆ I)

Actions over Core-Closed Knowledge Bases 293

and the set Act of ungrounded actions, generates the transition system (TS) ΥK =
(I, T ,A,S, Σ,M0,→) where Σ is a set of fully satisfiable (i.e., core-complete and
open-consistent) MBoxes; M0 is the initial MBox; and →⊆ Σ × LAct × Σ is a
labeled transition relation with LAct the set of all possible grounded actions.
The sets Σ and → are defined by mutual induction as the smallest sets such
that: if Mi ∈ Σ then for every grounded action γ�θ ∈ LAct such that the fresh
MBox Mi+1 resulting from the transformation Tγ�θ is core-complete and open-

consistent, we have that Mi+1 ∈ Σ and (Mi, γ�θ,Mi+1) ∈→.
Since we assume that actions have input parameters that are replaced during

execution by values from I, which contains both known objects from IM � IK

and possibly infinitely many fresh objects, the generated transition system ΥK is
generally infinite. To keep the planning problem decidable, we concentrate on a
known finite subset D ⊂ I containing all the fresh nodes and value assignments to
action variables that are of interest for our application. In the remainder of this
paper, we discuss the plan existence and synthesis problem for finite transition
systems ΥK = (D, T ,A,S, Σ,M0,→), whose states in Σ have a domain that is
also bounded by D.

The Plan Existence Problem. A plan is a sequence of grounded actions whose
execution leads to a state satisfying a given property. Let K = (T ,A,S,M0)
be a DL-LiteF core-closed knowledge base; Act be a set of ungrounded actions;
and let ΥK = (D, T ,A,S, Σ,M0,→) be its generated finite TS. Let π be a finite
sequence γ1

�θ1 · · · γn
�θn of grounded actions taken from the set LAct. We call the

sequence π consistent iff there exists a run ρ = M0
γ1�θ1−−−→ M1

γ2�θ2−−−→ · · · γn
�θn−−−→ Mn

in ΥK. Let q be a Must/May query mentioning objects from adom(K) and �t a
tuple from the set adom(K)ar(q). A consistent sequence π of grounded actions
is a plan from K to (�t, q) iff �t ∈ ANS(q,Kn = (T ,A,S,Mn)) with Mn the final
state of the run induced by π.

Definition 2 (Plan Existence). Given a DL-LiteF core-closed knowledge base
K, a tuple �t, and a Must/May query q, the plan existence problem is that of
deciding whether there exists a plan from K to (�t, q).

Example 6. Let us consider the transition system ΥK generated by the core-
closed knowledge base K = (T ,A,S,M0) having the set of partially-closed
assertions M0 defined as

{S3::Bucket(b), KMS::Key(k), bucketEncryptionRule(b, r), bucketKey(r, k),
bucketKeyEnabled(r, true), enableKeyRotation(k, false)}

and the set of action labels Act containing the actions deleteBucket, createBucket,
deleteKey, createKey, enableKeyRotation, putBucketEncryption, and deleteBucke-
tEncryption. Let us assume that we are interested in verifying the existence of a
sequence of grounded actions that when applied onto the knowledge base would
configure the bucket node b to be encrypted with a rotating key. Formally, this
is equivalent to checking the existence of a consistent plan π that when executed

