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on the transition system ΥK leads to a state Mn such that the tuple �t = b is in
the set ANS(q,Kn = (T ,A,S,Mn)) for q the query

q[x] = S3::Bucket(x) ∧ Must
(∃y, z. bucketSSEncryption(x, y) ∧

bucketKey(y, z) ∧ enableKeyRotation(z, true)
)

It is easy to see that the following three sequences of grounded actions are
valid plans from K to (b, q):

π1 = enableKeyRotation(k)
π2 = createKey(k1) · enableKeyRotation(k1) · putBucketEncryption(b, k1)
π3 = deleteBucketEncryption(b, k) · createKey(k1) · enableKeyRotation(k1)·

putBucketEncryption(b, k1)

If, for example, a bucket was only allowed to have one encryption (by means
of a functional axiom in S), then π2 would not be a valid plan, as it would
generate an inconsistent run leading to a state Mi that is not open-consistent
w.r.t. S.

Lemma 3. The plan existence problem for a finite transition system ΥK gener-
ated by a DL-LiteF core-closed knowledge base K and a set of actions Act, over
a finite domain of objects D, reduces to graph reachability over a graph whose
number of states is at most exponential in the size of D.

The Plan Synthesis Problem. We now focus on the problem of finding plans
that satisfy a given condition. As discussed in the previous paragraph, we are
mostly driven by query answering; in particular, by conditions corresponding
to a tuple (of objects from our starting deployment configuration) satisfying a
given requirement expressed as a Must/May query. Clearly, this problem is
meaningful in our application of interest because it corresponds to finding a set
of potential sequences of changes that would allow one to reach a configuration
satisfying (resp., not satisfying) one, or more, security mitigations (resp., vul-
nerabilities). We concentrate on DL-LiteF core-closed knowledge bases and their
generated finite transition systems, where potential fresh objects are drawn from
a fixed set D. We are interested in sequences of grounded actions that are min-
imal and ignore sequences that extend these. We sometimes call such minimal
sequences simple plans. A plan π from an initial core-closed knowledge base K
to a goal condition b is minimal (or simple) iff there does not exist a plan π′

(from the same initial K to the same goal condition b) s.t. π = π′ · σ, for σ a
non-empty suffix of grounded actions.

In Algorithm 1, we present a depth-first search algorithm that, starting from
K, searches for all simple plans that achieve a given target query membership
condition. The transition system ΥK is computed, and stored, on the fly in the
Successors sub-procedure and the graph is explored in a depth-first search traver-
sal fashion.
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Algorithm 1: FindPlans(K,D,Act,
〈
�t, q

〉
)

Inputs : A ccKB K = (T ,A,S,M0), a domain D, a set of actions Act
and a pair

〈
�t, q

〉
of an answer tuple and a Must/May query

Output: A possibly empty set Π of consistent simple plans

1 def FindPlans ( K,D,Act,
〈
�t, q

〉
):

2 Π := ∅;
3 S := ⊥;
4 AllPlanSearch(M0, ε, ∅,K,D,Act,

〈
�t, q

〉
) ;

5 return Π;

6 def AllPlanSearch ( M, π, V,K,D,Act,
〈
�t, q

〉
):

7 if M ∈ V then
8 return;

9 if �t ∈ ANS(q, 〈T ,A,S,M〉) then
10 Π := Π ∪ {π};
11 return;

12 Q := ∅;

13 foreach
〈
γ�θ,M′

〉
∈ Successors(M,Act,D) do

14 Q.push(
〈
γ�θ,M′

〉
);

15 V := V ∪ {M};
16 while Q �= ∅ do

17

〈
γ�θ,M′

〉
= Q.pop();

18 AllPlanSearch(M′, π · γ�θ, V,K,D,Act,
〈
�t, q

〉
);

19 V := V � {M};
20 return;

21 def Successors (M,Act,D):
22 if S[M] is defined then
23 return S[M];

24 N := ∅;
25 foreach γ ∈ Act, �θ ∈ Dar(γ) do
26 M′ := Tγ�θ(M);
27 if M′is fully satisfiable then

28 N := N ∪ {
〈
γ�θ,M′

〉
}

29 S[M] := N ;
30 return N ;

We note that the condition �t ∈ ANS(q, 〈T ,A,S,M〉) (line 9) could be
replaced by any other query satisfiability condition and that one could easily
rewrite the algorithm to be parameterized by a more general boolean goal. For



296 C. Cauli et al.

example, the condition that a given tuple �t is not an answer to a query q over
the analyzed state, with the query q representing an undesired configuration,
or a boolean formula over multiple query membership assertions. We also note
that Algorithm 1 could be simplified to return only one simple plan, if a plan
exists, or NULL, if a plan does not exist, thus solving the so-called plan generation
problem. We refer the reader to the full version of this paper [16] containing the
plan generation algorithm (full version, Appendix A.1) and the proofs of Theo-
rem 2 and 3 below (full version, Appendices A.2 and A3, respectively).

Theorem 2 (Minimal Plan Synthesis Correctness). Let K be a DL-LiteF

core-closed knowledge base, D be a fixed finite domain, Act be a set of ungrounded
action labels, and

〈
�t, q

〉
be a goal. Then a plan π is returned by the algorithm

FindPlans(K,D,Act,
〈
�t, q

〉
) if and only if π is a minimal plan from K to

〈
�t, q

〉
.

Theorem 3 (Minimal Plan Synthesis Complexity). The FindPlans algo-
rithm runs in polynomial time in the size of M and exponential time in size
of D.

7 Related Work

The syntax of the action language that we presented in this paper is similar to
that of [1,12,13]. Differently from their work, we disallow complex action effects
to be nested inside conditional statements, and we define basic action effects that
consist purely in the addition and deletion of concept and role M-assertions.
Thus, our actions are much less general than those used in their framework.
The semantics of their action language is defined in terms of changes applied to
instances, and the action effects are captured and encoded through a variant of
ALCHOIQ called ALCHOIQbr. In our work, instead, the execution of an action
updates a portion of the core-closed knowledge base K—the core M, which is
interpreted under a close-world assumption and can be seen as a partial assign-
ment for the interpretations that are models of K. Since we directly manipulate
M, the semantics of our actions is more similar to that of [21] and, in general, to
ABox updates [22,23]. Like the frameworks introduced in [9–11,20], our actions
are parameterized and when combined with a core-closed knowledge base gener-
ate a transition system. In [11], the authors focus on a variant of Knowledge and
Action Bases [21] called Explicit-Input KABs (eKABs); in particular, on finite
and on state-bounded eKABs, for which planning existence is decidable. Our
generated transition systems are an adaptation of the work done in Description
Logic based Dynamic Systems, KABs, and eKABs to our setting of core-closed
knowledge bases. In [24], the authors address decidability of the plan existence
problem for logics that are subset of ALCOI. Their action language is similar
to the one presented in this paper; including pre-conditions, in the form of a
set of ABox assertions, post-conditions, in the form of basic addition or removal
of assertions, concatenation, and input parameters. In [11], the plan synthesis
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problem is discussed also for lightweight description logics. Relying on the FOL-
reducibility of DL-LiteA, it is shown that plan synthesis over DL-LiteA can be
compiled into an ADL planning problem [25]. This does not seem possible in our
case, as not all necessary tests over core-closed knowledge bases are known to be
FOL-reducible. In [10] and [9], the authors concentrate on verifying and synthe-
sizing temporal properties expressed in a variant of μ-calculus over description
logic based dynamic systems, both problems are relevant in our application sce-
nario and we will consider them in future works.

8 Conclusion

We focused on the problem of analyzing cloud infrastructure encoded as descrip-
tion logic knowledge bases combining complete and incomplete information.
From a practical standpoint, we concentrated on formalizing and foreseeing the
impact of potential changes pre-deployment. We introduced an action language
to encode mutating actions, whose semantics is given in terms of changes induced
to the complete portion of the knowledge base. We defined the static verifica-
tion problem as the problem of deciding whether the execution of an action, no
matter the specific parameters passed, always preserves a set of properties of
the knowledge base. We characterized the complexity of the problem and pro-
vided procedural steps to solve it. We then focused on three formulations of the
classical AI planning problem: namely, plan existence, generation, and synthesis.
In our setting, the planning problem is formulated with respect to the transi-
tion system arising from the combination of a core-closed knowledge base and
a set of actions; goals are given in terms of one, or more, Must/May conjunc-
tive query membership assertion; and plans of interest are simple sequences of
parameterized actions.
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Abstract. Our goal is to develop a logic-based component for hybrid –
machine learning plus logic – commonsense question answering systems.
The paper presents an implementation GK of default logic for handling
rules with exceptions in unrestricted first order knowledge bases. GK is
built on top of our existing automated reasoning system with confidence
calculation capabilities. To overcome the problem of undecidability of
checking potential exceptions, GK performs delayed recursive checks with
diminishing time limits. These are combined with the taxonomy-based
priorities for defaults and numerical confidences.

1 Introduction

The problem of handling uncertainty is one of the critical issues when considering
the use of logic for automating commonsense reasoning. Most of the facts and
rules people use in their daily lives are uncertain. There are many types of
uncertainty, like fuzziness (is a person somewhat tall or very tall), confidence
(how certain does some fact seem) and exceptions (birds can typically fly, but
penguins, ostriches etc., can not). Some of these uncertainties, like fuzziness
and confidence, can be represented numerically, while others, like rules with
exceptions, are discrete. In [18] we present the design and implementation of
the CONFER framework for extending existing automated reasoning systems
with confidence calculation capabilities. In the current paper we present the
implementation called GK for default logic [13], built by further extending the
CONFER implementation. Importantly, we design a novel practical framework
for implementing default logic for the full, undecidable first order logic on the
basis of a conventional resolution prover.

1.1 Default Logic

Default logic was introduced in 1980 by R. Reiter [13] to model one aspect of
common-sense reasoning: rules with exceptions. It has remained one of the most
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well-known logic-based mechanisms devoted to this goal, with the circumscrip-
tion by J. McCarthy and the autoepistemic logic being the early alternatives.
Several similar systems have been proposed later, like defeasible logic [11].

Default logic [13] extends classical logic with default rules of the form

α(x) : β1(x), ...βn(x)
γ(x)

where a precondition α(x), justifications β1(x), ...βn(x) and a consequent γ(x)
are first order predicate calculus formulas whose free variables are among
x = x1, ..., xm. For every tuple of individuals t = t1, ..., tn, if the precondition α(t)
is derivable and none of the negated justifications ¬β(t) are derivable from a given
knowledge base KB, then the consequent γ(t) can be derived from KB. Differ-
ently from classical and most other logics, default logic is non-monotonic: adding
new assumptions can make some previously derivable formulas non-derivable.

As investigated in [7], the interpretation of quantifiers in default rules can
lead to several versions of default logic. We follow the original interpretation
of Reiter in [13] which requires the use of Skolemization in a specific manner
over default rules. For example, a default rule: ∃xP (x) � ∃xP (x) should be
interpreted as : P (c) � P (c), where c is a Skolem constant.

Consider a typical example for default logic: birds can normally fly, but pen-
guins cannot fly. The classical logic part

penguin(p) & bird(b) & ∀x.penguin(x) ⇒ bird(x) & ∀x.penguin(x) ⇒ ¬fly(x).

is extended with the default rule bird(x) : fly(x) � fly(x). From here we can
derive that an arbitrary bird b can fly, but a penguin p cannot. The default
rule cannot be applied to p, since a contradiction is derivable from fly(p). This
argument cannot be easily modelled using numerical confidences: the probability
of an arbitrary living bird being able to fly is relatively high, while the penguins
form a specific subset of birds, for which this probability is zero.

Another well-known example – Nixon’s triangle – introduces the prob-
lem of multiple extensions and sceptical vs credulous entailment: the classical
facts republican(nixon) & quaker(nixon) extended with two mutually exclud-
ing default rules republican(x) : ¬pacifist(x) � ¬pacifist(x) and quaker(x) :
pacifist(x) � pacifist(x). The credulous entailment allows giving different priori-
ties to the default rules and accepts different sets (extensions) of consequences, if
there is a way to assign priorities so that all the consequences in an extension can
be derived. The sceptical entailment requires that a consequence is present in all
extensions. GK follows the latter interpretation, but allows explicit priorities to
be assigned to the default rules.

The concept of priorities for default rules has been well investigated, with
several mechanisms proposed. G. Brewka argues in [4] that “for realistic applica-
tions involving default reasoning it is necessary to reason about the priorities of
defaults” and introduces an ordering of defaults based on specificity: default rules
for a more specific class of objects should take priority over rules for more gen-
eral classes. For example, since birds (who typically do fly) are physical objects
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and physical objects typically do not fly, we have contradictory default rules
describing the flying capability of arbitrary birds. Since birds are a subset of
physical objects, the flying rule of birds should have a higher priority than the
non-flying rule of physical objects.

1.2 Undecidability, Grounding and Implementations

Perhaps the most significant problem standing in the way of automating default
logic is undecidability of the applicability of rules. Indeed, in order to apply a
default rule, we must prove that the justifications do not lead to a contradic-
tion with the rest of the knowledge base KB. For full first order logic this is
undecidable. Hence, the standard approach for handling default logic has been
creating a large ground instance KBg of the KB, and then performing decidable
propositional reasoning on the KBg.

Almost all the existing implementations of default logic like DeReS [5], DLV2
[1] or CLINGO [8], with the noteworthy exception of s(CASP) [2], follow the
same principle. More generally, the field of Answer Set Programming (ASP), see
[10], is devoted to this approach. As an exception, the s(CASP) system [2] solves
queries without the grounding step and is thus better suited for large domains.
It is noteworthy that the s(CASP) system has been used in [9] for automating
common sense reasoning for autonomous driving with the help of default rules.
However, s(CASP) is a logic programming system, not a universal automated
reasoner. For example, when we add a rule bird(father(X)) :- bird(X) to
the formulation of the above birds example in s(CASP), the search does not
terminate, apparently due to the infinitely growing nesting of terms.

While ASP systems are very well suited for specific kinds of problems over a
small finite domain, grounding becomes infeasible for large first order knowledge
bases (KB in the following), in particular when the domain is infinite and nested
terms can be derived from the KB. The approach described in this paper accepts
the lack of logical omniscience and performs delayed recursive checking of excep-
tions with diminishing time limits directly on non-grounded clauses, combined
with the taxonomy-based priorities for defaults and numerical confidences.

2 Algorithms

Our approach of implementing default rules in GK for first order logic is to
delay justification checking until a first-order proof is found and then perform
recursively deepening checks with diminishing time limits. Thus, our system first
produces a potentially large number of different candidate proofs and then enters
a recursive checking phase. The idea of delaying justification checking is already
present in the original paper of R. Reiter [13], where he uses linear resolution
and delayed checks as the main machinery of his proofs. The results produced by
GK thus depend on the time limits and are not stable. Showing specific fixpoint
properties of the algorithm is not in the scope of our paper.



GK: Default Logic for Commonsense Reasoning 303

A practical question for implementation is the actual representation of default
rules and making the rules fit the first-order proof search machinery. To this
end we introduce blocker atoms which are similar to the justification indexes of
Reiter.

In the following we will assume that the underlying first order reasoner uses
the resolution method, see [3] for details. The rest of the paper assumes famil-
iarity with the basic concepts, terminology and algorithms of the resolution
method.

2.1 Background: Queries and Answers

We assume our system is presented with a question in one of two forms: (1) Is
the statement Q true? (2) Find values V for existentially bound variables in Q
so that Q is true. For simplicity’s sake we will assume that the statement Q is in
the prefix form, i.e., no quantifiers occur in the scope of other logical connectives.

In the second case, it could be that several different value vectors can be
assigned to the variables, essentially giving different answers. We also note that
an answer could be a disjunction, giving possible options instead of a single
definite answer.

A widely used machinery in resolution-based theorem provers for extracting
values of existentially bound variables in Q is to use a special answer predicate,
converting a question statement Q to a formula ∃X(Q(X)&¬answer(X)) for
a tuple of existentially quantified variables X in Q [6]. Whenever a clause is
derived which consists of only answer predicates, it is treated as a contradiction
(essentially, answer) and the arguments of the answer predicate are returned as
the values looked for. A common convention is to call such clauses answer clauses.
We will require that the proof search does not stop whenever an answer clause
is found, but will continue to look for new answer clauses until a predetermined
time limit is reached. See [16] for a framework of extracting multiple answers.

We also assume that queries take a general form (KB&A) ⇒ Q where KB is a
commonsense knowledge base, A is an optional set of precondition statements for
this particular question and Q is a question statement. The whole general query
form is negated and converted to clauses, i.e., disjunctions of literals (positive or
negative atoms). We will call the clauses stemming from the question statement
question clauses.

2.2 Blocker Atoms and Justification Checking

Without loss of generality we assume that the precondition and consequent for-
mulas α and γ in default rules are clauses and justifications β1, ..., βn are lit-
erals, i.e. positive or negative atoms: α : β1, ...βn � γ. Complex formulas can
be encoded with a new predicate over the free variables of the formula and an
equivalence of the new atom with the formula. Recall that Reiter assumes that
the default rules are Skolemized.

We encode a default rule as a clause by concatenating into one clause the pre-
condition and consequent clauses α(x) and γ(x) and blocker atoms block(¬β1),
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..., block(¬βn) where each justification βi is either a positive or a negative atom.
The negation ¬ is used since we prefer to speak about blockers and not justifi-
catons. For example, the “birds can fly” default rule is represented as a clause

¬bird(X) ∨ fly(X) ∨ block(0, neg(fly(X)))

where X is a variable and neg(fly(X)) encodes the negated justification. The first
argument of the blocker (0 above) encodes priority information covered in the
next section.

A proof of a question clause is a clause containing only answer atoms and
blocker atoms. In the justification checking phase the system attempts to prove
each decoded second blocker argument ¬βi in turn: the proof is considered
invalid if some of ¬βi can be proved and this checking-proof itself is valid. If
we pose a question fly(X) ⇒ answer(X) to the system to be proved (see the
earlier example), we get two different answers: answer(p) ∨ block(neg(fly(p))
and answer(b) ∨ block(neg(fly(b)). Checking the first of these means trying to
prove ¬fly(p) which succeeds, hence the first answer is invalid. Checking the
second answer we try to prove ¬fly(b) which fails, hence the answer is valid.

Notice that the contents ¬βi of blockers, just like answer clauses, have a role
of collecting substitutions during the proof search: this enables us to disregard
the order in which the clauses are used, i.e. both top-down, bottom-up and mixed
proof search strategies can be used.

Importantly, blockers are used during the subsumption checks similarly to
ordinary literals. A clause C1 with fewer or more general literals than C2 is
hence always preferred to C2, given that (a) the literals of C1 subsume C2,
disregarding the priority arguments of blockers, and (b) the priority arguments
of corresponding blocker literals in C1 are equal or stronger than these of C2.
When combined with the uncertainty and inconsistency handling mechanisms of
CONFER, the subsumption restrictions of the latter also apply. There are also
other differences to ordinary literals. First, we prohibit the application of equality
(demodulation or paramodulation) to the contents of blocker atoms during proof
search. Second, we discard clauses containing mutually contradictory blockers
(assuming the decoding of the second argument) like we would discard ordinary
tautologies.

2.3 Priorities, Recursion and Infinite Branches

Default rule priorities are critical for the practical encoding of commonsense
knowledge. The usage of priorities in proof search is simple: when checking a
blocker with a given priority, it is not allowed to use default rules with a lower
priority. We encode priority information as a first argument of the blocker literal,
offering several ways to determine priority: either as an integer, a taxonomy class
number, a string in a taxonomy or a combination of these with an integer.

For automatically using specificity we employ taxonomy classes: a class has
a higher prirority than those above it on the taxonomy branch. We have built a
topologically sorted acyclic graph of English words using the WordNet taxonomy
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along with an efficient algorithm for quick priority checks during proof search.
Taxonomy classes are indicated with a special term like $(61598). Alternatively
one can use an actual English word like $(“bird”) which is automatically rec-
ognized to be more specific than, say, $(“object”). To enable more fine-grained
priorities, an integer can be added to the term like $(“bird”, 2) generating a
lexicographic order.

The recursive check for the non-provability of blockers can go arbitrarily deep,
except for the time limits. Our algorithm allocates N seconds for the whole proof
search and spends half of N for looking for different proofs and answers for the
query, with the other half split evenly for each answer. Again, the time allocated
for checking an answer is split evenly between the blockers in the answer. Each
such time snippet is again split between a search for the proof of the blocker, and
if found, for recursively checking the validity of this proof. Once the allocated
time is below a given threshold (currently one millisecond) the proof is assumed
to be not found.

Answers given by the system depend on the amount of time given, the search
strategy chosen etc. For example, consider the Nixon triangle presented earlier,
with two contradictory default rules. In case the priorities of these rules are equal
and we allow defaults with the same priority to be used for checking an answer
containing a blocker, the recursive check terminates only because of a time limit,
which is unpredictable. Hence, we may sometimes get one answer and sometimes
another. In order to increase both stability and efficiency, GK checks the blockers
in the search nodes above, and terminates with failure in cases nonterminating
loops are detected. Therefore GK always gives a sceptical result to the Nixon
triangle: neither pacifist(nixon) nor ¬pacifist(nixon) is proven.

3 Confidences and Inconsistencies

GK integrates the exception-handling algorithms described in the previous
chapter with the algorithms designed for handling inconsistent KB-s and numeric
confidences assigned to clauses, previously presented as a CONFER framework in
[18]. The framework is built on the resolution method. It calculates the estimates
for the confidences of derived clauses, using both (a) the decreasing confidence of
a conjunction of clauses as performed by the resolution and paramodulation rule,
and (b) the increasing confidence of a disjunction of clauses for cumulating evi-
dence. CONFER handles inconsistent KB-s by requiring the proofs of answers to
contain the clauses stemming from the question posed. It performs searches both
for the question and its negation and returns the resulting confidence calculated
as a difference of the confidences found by these two searches.

The integrated algorithm is more complex than the one we previously
described. Whenever the algorithms of the previous chapter speak about “prov-
ing”, the system actually performs two independent searches – one for the pos-
itive and one for the negated goal – with the confidences calculated for both
of these. A blocker is considered to be proved in case the resulting confidence
is over a pre-determined configurable threshold, by default 0.5. Blocker proofs
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must also contain the clause built from the blocker. Thus, the whole search tree
for a query consists of two types of interleaved layers: positive/negative confi-
dence searches and blocker checking searches, the latter type potentially making
the tree arbitrarily deep up to the minimal time limit threshold.

4 Implementation and Experiments

The described algorithms are implemented by the first author as a software
system GK available at https://logictools.org/gk/. GK is written in C on top of
our implementation of the CONFER framework [18] which is built on top of a
high-performance resolution prover GKC [17] (see https://github.com/tammet/
gkc) for conventional first order logic. Thus GK inherits most of the capabilities
and algorithms of GKC.

A tutorial and a set of default logic example problems along with proofs
from GK are also available at http://logictools.org/gk. GK is able to quickly
solve nontrivial problems built by extending classic default logic examples. It
is also able to solve classification problems combining exception and cumulative
evidence and problems with dynamic situations using fluents, including planning
problems. We have built a very large integrated knowledge base from the Quasi-
modo [14] and ConceptNet [15] knowledge bases, converting these to default logic
plus confidences. GK is able to solve simple problems using this large knowledge
base along with the Wordnet taxonomy for specificity: see the referenced web
page for examples.

The following small example illustrates the fundamental difference of GK
from the existing ASP systems for default logic. The standard penguins and
birds example presented above in the ASP syntax is

bird(b1).
penguin(p1).
bird(X) :- penguin(X).
flies(X) :- bird(X), not -flies(X).
-flies(X) :- penguin(X).

Both GK and the ASP systems clingo 5.4.0, dlv 2.1.1 and s(CASP) 0.21.10.09
give an expected answer to the queries flies(b1) and flies(p1). However,
when we add the rules

bird(father(X)) :- bird(X).
penguin(father(X)) :- penguin(X).

none of these ASP systems terminate for these queries, while GK does solve
the queries as expected. Notably, as pointed out by the author of s(CASP), this
system does terminate for the reformulation of the same problem with the two
replacement rules

flies(X) :- bird(X), not abs(X).
abs(X) :- penguin(X).

https://logictools.org/gk/
https://github.com/tammet/gkc
https://github.com/tammet/gkc
http://logictools.org/gk
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while clingo and dlv do not terminate. When we instead add the facts and rules

father(b1,b2).
father(p1,p2).
...
father(bN-1,bN).
father(pN-1,pN).

ancestor(X,Y):- father(X,Y).
ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y).

for a large N , s(CASP) does not terminate and clingo and dlv become slow for
flies(b1): ca 8 s for N = 500 and ca 1 min for N = 1000 on a laptop with a
10-th generation i7 processor. GK solves the same question with N = 1000 under
half a second and with N = 100000 under three seconds: the latter problem size
is clearly out of scope of the capabilities of existing ASP systems.

We have previously shown that the confidence handling mechanisms in CON-
FER may slow down proof search for certain types of problems, but do not have
a strong negative effect on very large commonsense CYC [12] problems in the
TPTP problem collection. Differently from CONFER, the algorithms for default
logic described above do not substantially modify the resolution method imple-
mentation of pure first order logic search, thus the performance of these parts
of GK are mostly the same as of GKC. The ability to give a correct answer to a
query during a given time limit depends on the performance of these components,
and not on the overall recursively branching algorithm.

5 Summary and Future Work

We have presented algorithms and an implementation of an automated reason-
ing system for default logic on the basis of unrestricted first order logic and a
resolution method. While there are several systems able to solve default logic or
similar nonmonotonic logic problems, these are built on the basis of answer set
programming and are normally based on grounding. We are not aware of other
full first order logic reasoning systems for default logic, and neither of systems
integrating confidences and inconsistency-handling with rules with exceptions.

Future work is planned on three directions: adding features to the solver,
proving several useful properties of the algorithms and incorporating the solver
into a commonsense reasoning system able to handle nontrivial tasks posed in
natural language. The work on incorporating similarity-based reasoning into GK
and building a suitable semantic parser for natural language is currently ongoing.
We are particularly interested in exploring practical ways to integrate GK with
the machine learning techniques for natural language.
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Abstract. To give concise explanations for a conclusion obtained by
reasoning over ontologies, justifications have been proposed as minimal
subsets of an ontology that entail the given conclusion. Even though
computing one justification can be done in polynomial time for tractable
Description Logics such as EL+, computing all justifications is compli-
cated and often challenging for real-world ontologies. In this paper, based
on a graph representation of EL+-ontologies, we propose a new set of
inference rules (called H-rules) and take advantage of them for provid-
ing a new method of computing all justifications for a given conclusion.
The advantage of our setting is that most of the time, it reduces the
number of inferences (generated by H-rules) required to derive a given
conclusion. This accelerates the enumeration of justifications relying on
these inferences. We validate our approach by running real-world ontol-
ogy experiments. Our graph-based approach outperforms PULi [14], the
state-of-the-art algorithm, in most of cases.

1 Introduction

Ontologies provide structured representations of domain knowledge that are suit-
able for AI reasoning. They are used in various domains, including medicine,
biology, and finance. In the domain of ontologies, one of the interesting topics is
to provide explanations of reasoning conclusions. To this end, justifications have
been proposed to offer users a brief explanation for a given conclusion. Comput-
ing justifications has been widely explored for different tasks, for instance for
debugging ontologies [1,9,11] and computing ontology modules [6]. Extracting
just one justification can be easy for tractable ontologies, such as EL+ [17]. For
instance, we can find one justification by deleting unnecessary axioms one by
one. However, there may exist more than one justification for a given conclu-
sion. Computing all such justifications is computationally complex and reveals
itself to be a challenging problem [18].

There are mainly two different approaches [17] to compute all justifications
for a given conclusion, the black-box approach and the glass-box approach.
The black-box approach [11] relies only on a reasoner and, as such, can be
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used for ontologies in any existing Description Logics. For example, a simple
(naive) black-box approach would check all the subsets of the ontology using an
existing reasoner and then filter the subset-minimal ones (i.e., justifications).
Many advanced and optimized black-box algorithms have been proposed since
2007 [10]. Meanwhile, the glass-box approaches have achieved better perfor-
mances over certain specific ontology languages (such as EL+-ontology) by going
deep into the reasoning process. Among them, the class of SAT-based methods
[1–3,14,16] performs the best. The main idea developed by SAT-based methods
is to trace, in a first step, a complete set of inferences (complete set for short)
that contribute to the derivation of a given conclusion, and then, in a second step,
to use SAT-tools or resolution to extract all justifications from these inferences.
A detailed example is provided in Sect. 4.1.

In the real world, ontologies are always huge. For instance, the SnomedCT
ontology contains more than 300,000 axioms. Thus, the traced complete set can
be large, which could make it challenging to extract the justifications over them.
Several techniques could be applied to reduce the size of the traced complete set,
like the locality-based modules [8] and the goal-directed tracing algorithm [12].
One of their shared ideas is to identify, for a given conclusion, a particular part of
the ontology relevant for the extraction of justifications. For example, the state-
of-the-art algorithm, PULi [14], uses a goal-directed tracing algorithm. However,
even for PULi, a simple ontology O = {Ai � Ai+1 | 1 ≤ i ≤ n − 1} with the
conclusion A0 � An leads to a complete set containing n− 1 inferences. This set
can not be reduced further even with the previously mentioned optimizations.
From this observation, we decided to explore a new SAT-based glass-box method
to handle such situations better.

Now, let us look carefully at the ontology O above, and let us regard each
Ai as a graph node NAi

. Then we are able to construct, for O, a directed graph
whose edges are of the form NAi

→ NAi+1 . It turns out that all the justifications
for the conclusion A0 � An are extracted from all the paths from NA0 to NAn

,
and here we have only one such path. We can easily extend this idea on EL+-
ontology because most of the EL+-axioms can be interpreted as direct edges
except one case (i.e., A ≡ B1�· · ·�Bn), for which we need a hyperedge (for more
details see Definition 3). However, for more expressive ontologies, this translation
becomes more complicated. For example, it is hard to map ALC-axioms to edges
as those axioms may contain negation or disjunction of concepts.

This example inspired us to explore a hypergraph representation of the ontol-
ogy and reformulate inferences and justifications. Roughly, our inferences are
built from elementary paths of the hypergraph and lead to particular paths
called H-paths. Then, computing all the justifications for a given conclusion
is made using such H-paths. For the previous ontology O and the conclusion
A0 � An, our complete set is reduced to only two inferences (no matter the
value of n) corresponding to the unique path from NA0 to NAn

. The source
of improvement provided by our method is twofold. On the one hand, it comes
from the fact that elementary paths are pre-computed while extracting the infer-
ences and that existing algorithms like depth-first search can efficiently compute
such paths. On the other hand, yet as a consequence, decreasing the size of the
complete sets of inferences leads to smaller inputs for the SAT-based algorithm
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extracting justifications from the complete set (recall here that our method is a
SAT-based glass-box method).

The paper is organized as follows. Section 2 introduces preliminary defini-
tions and notions. In Sect. 3, we associate a hypergraph representation to EL+-
ontology and introduce a new set of inference rules, called H-rules, that generate
our inferences. In Sect. 4, we develop the algorithm minH, which compute justifi-
cations based on our inferences. Section 5 shows experimental results and Sect. 6
summarizes our work.

2 Preliminaries

2.1 EL+-Ontology

Given sets of atomic concepts NC = {A,B, · · · } and atomic roles NR =
{r, s, t, · · · }, the set of EL+concepts C and axioms α are built by the follow-
ing grammar rules:

C ::= � | A | C � C | ∃r.C, a ::= C � C | C ≡ C | r � s | r1 ◦ · · · ◦ rn � s.

A EL+-ontology O is a finite set of EL+-axioms. An interpretation I =
(
I , ·I) of O consists of a non-empty set 
I and a mapping from atomic
concepts A ∈ NC to a subset AI ⊆ 
I and from roles r ∈ NR to a sub-
set rI ⊆ 
I × 
I . For a concept C built from the grammar rules, we define
CI inductively by: (�)I = 
I , (C � D)I = CI ∩ DI , (∃r.C)I = {a ∈ 
I |
∃b, (a, b) ∈ rI , b ∈ CI}, (r◦s)I = {(a, b) ∈ 
I ×
I | ∃c, (a, c) ∈ rI , (c, b) ∈ sI}.
An interpretation is a model of O if it is compatible with all axioms in
O, i.e., for all C � D,C ≡ D, r � s, r1 ◦ · · · ◦ rn � s ∈ O, we have
CI ⊆ DI , CI = DI , rI ⊆ sI , (r1 ◦ · · · ◦ rn)I ⊆ sI , respectively. We say O |= a
where α is an axiom iff each model of O is compatible with α. A concept A is
subsumed by B w.r.t. O if O |= A � B.

Next, we use A,B, · · · , G (possibly with subscripts) to denote atomic con-
cepts and we use X,Y,Z (possibly with subscripts) to denote atomic concepts
A, · · · , G, or complex concepts ∃r.A, · · · , ∃r.G.

We assume that ontologies are normalized. A EL+-ontology O is normalized
if all its axioms are of the form A ≡ B1 � · · · � Bm, A � B1 � · · · � Bm, A ≡
∃r.B,A � ∃r.B, r � s, or r ◦ s � t, where A,B,Bi ∈ NC , and r, s, t ∈ NR. Every
EL+-ontology can be normalised in polynomial time by introducing new atomic
concepts and atomic roles.

Example 1. The following set of axioms is a EL+-ontology:
O = { a1:A � D, a2:D � ∃r.E, a3:E � F, a4:B ≡ ∃t.F, a5:r � t, a6:G ≡
C � B , a7:C � A}.

It is clear that O |= A � ∃r.E as for all models I, we have AI ⊆ DI by the
axiom a1 and DI ⊆ (∃r.E)I by a2.
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Table 1. Inference rules over EL+-ontology.

R1 :
A�A1, · · ·, A�An, A1�A2� · · · �An�B

A�B

R2 :
A�A1, A1�∃r.B

A�∃r.B
R3 :

A � ∃r.B1, B1 � B2, ∃r.B2�B

A � B

R4 :
A0�∃r1.A1, · · ·, An−1�∃rn.An, r1◦ · · · ◦rn�r

A0�∃r.An

2.2 Inference, Support and Justification

Given a EL+-ontology O, a major reasoning task over O is classification, which
aims at finding all subsumptions O |= A � B for atomic concepts A,B occurring
in O. Generally, it can be solved by applying inferences recursively over O [5].

An inference ρ is a pair 〈ρpre, ρcon〉 whose premise set ρpre consists of EL+-
axioms and conclusion ρcon is a single EL+-axiom. As usual, a sequence of
inferences ρ1, · · · , ρn is a derivation of an axiom α from O if ρn

con = α and for
any β ∈ ρi

pre, 1 ≤ i ≤ n, we have β ∈ O or β = ρj
con for some j < i.

As usual, inference rules are used to generate inferences. For instance,
Table 1 [1,5] shows a set of inference rules for EL+-ontologies. Next, we use
O � A � B to denote that A � B is derivable from O using inferences generated
by the rules in Table 1. The set of inference rules in Table 1 is sound and complete
for classification [5], i.e., O |= A � B iff O � A � B for any A,B ∈ NC .

A support of A � B over O is a sub-ontology O′ ⊆ O such that O′ |= A � B.
The justifications for A � B are subset-minimal supports of A � B. We denote
the collection of all justifications for A � B w.r.t. O by JO(A � B).

We say S is a complete set (of inferences) for A � B if for any justifications
O′ of A � B, we can derive A � B from O′ using only the inferences in S.

Example 2 (Example 1 cont’d). Before applying inference rules, axioms in
O are preprocessed in order to be compatible with Table 1. For example, a4 is
replaced by B � ∃t.F and ∃t.F � B. Then, according to the inference rules of
Table 1, we may produce the following inferences: ρ = 〈{A � D,D � ∃r.E}, A �
∃r.E〉, ρ′ = 〈{A � ∃r.E, r � t}, A � ∃t.E〉 and ρ′′ = 〈{A � ∃t.E,E � F,∃t.F �
B}, A � B〉 generated by rule R2, R4 and R3 respectively. Then O � A � B
since A � B is derivable from O by the sequence ρ, ρ′, ρ′′.

Notice that O′ = {a1, a2, a3, a4, a5} is a support for A � B, and thus, any
superset O′′ of O′ is a support of A � B. O′ is also one of the justifications for
A � B as for any O′′′ ⊂ O′, we have O′′′ �|= A � B. Moreover, here the three
inferences ρ, ρ′, ρ′′ provide a complete set for A � B.

3 Hypergraph-Based Inference Rules

3.1 H-Inferences

In general, a (directed) hypergraph G = (V, E) is defined by a set of nodes V and
a set of hyperedges E [4,7]. A hyperedge is of the form e = (S1, S2), S1, S2 ⊆ V.
In this paper, a hypergraph is associated to an ontology as follows:
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Definition 3. For a given EL+-ontology O, the associated hypergraph is GO =
(VO, EO) where (i) the set of nodes VO = {NA, Nr, N∃r.A | A ∈ NC , r ∈ NR} and
(ii) the set of edges EO is defined by f(O) where f is the multi-valued mapping
shown in Fig. 1. Given a hyperedge e of EO, the inverse image of e, f−1(e), is
defined in the obvious manner. For a set E of hyperedges, f−1(E) = ∪e∈Ef−1(e).

Fig. 1. Definition of f (left) and graphical illustrations of f(α) (right)

Notice that, the hyperedges associated with A ≡ B1 � · · · � Bm are (i) the
hyperedge ({NB1 , · · · , NBm

}, {NA}) and (2) of course, the edges corresponding
to A � B1 � · · · � Bm.

Example 4 (Example 1 cont’d). The hypergraph GO for O is shown in
Fig. 2, where e0 = ({NC}, {NA}), e1 = ({NA}, {ND}), e2 = ({ND}, {N∃r.E}),
etc. Also, f−1(e0) = C � A, f−1(e1) = A � D, and f−1(e2) = D � ∃r.E, etc.

Fig. 2. The hypergraph associated with the ontology O.

As for graphs, a path (next called regular path) from nodes N1 to N2 in a
hypergraph is a sequence of edges:

e0 = (S0
1 , S0

2), e1 = (S1
1 , S1

2), · · · , en = (Sn
1 , Sn

2 ) (1)

where N1 ∈ S0
1 , N2 ∈ Sn

2 and Si−1
2 =Si

1, 1 ≤ i ≤ n. Next, the existence of a
regular path from NX to NY in a hypergraph GO is denoted NX � NY . Now,
we introduce hypergraph-based inferences which are based on the existence of
regular paths as follows:
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Table 2. H-rules over GO = (VO, EO).

H0 :
NX�NY

NX
h�NY

H2 :
NX

h�N∃r.B1 , NB1
h�NB2 , N∃r.B2�NY

NX
h�NY

H1 :
NX

h�NB1 , · · · , NX
h�NBm , NA�NY , e

NX
h�NY

: e=({NB1 , · · · , NBm}, {NA})∈EO

H3 :
NX

h�N∃r.A1 , NA1
h�N∃s.A2 , N∃t.A2�NY , e

NX
h�NY

: e=({Nr, Ns}, {Ns, Nt})∈EO

Definition 5. Given a hypergraph GO, Table 2 gives a set of inference rules
called H-rules. Inferences based on H-rules are called H-inferences. Next, we
denote by O �h NX

h� NY (or simply NX
h� NY ) the fact that NX

h� NY can
be derived from GO using the H-inferences.

Example 6 (Example 4 cont’d). As shown in Fig. 2, we have NA � N∃r.E,
NE � NF , N∃r.F � NB from the existence of regular paths. Then we can
derive NA

h� NB from GO by the H-rules H0, H0 and H2 which generate the H-
inferences ρ1, ρ2, ρ3, where ρ1 = 〈{NA � N∃r.E}, NA

h� N∃r.E〉, ρ2 = 〈{NE �
NF }, NE

h� NF 〉 and ρ3 = 〈{NA
h� N∃r.E , NE

h� NF , N∃r.F � NB}, NA
h�

NB〉, respectively.

Note that the first rule H0, the initialization rule, makes regular paths the
elementary components of H-rules. Moreover, Proposition 7 formally states that,
in our H-inference system, we do not need to add the transitive inference rule:

NX
h� NZ , NZ

h� NY

NX
h� NY

.

Proposition 7. If O �h NX
h� NZ and O �h NZ

h� NY then O �h NX
h� NY .

3.2 Completeness and Soundness of H-Inferences

The following result is the main result of this section. It states the equivalence
of NX

h� NY derivation (by Table 2) and ontology entailment for X � Y , and
thus states that our H-rules are sound and complete for EL+-ontology.

Theorem 8. If O is an EL+-ontology, then O |= X � Y iff O �h NX
h� NY ,

where X,Y are concepts of either form A or ∃r.B.

Proof. “⇐” is obvious by induction over Table 2 and the fact that NX � NY

implies O |= X � Y , so we only need to prove the direction “⇒”.
Assume that O |= X � Y . We consider two cases:
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Case 1. We assume O � X � Y 1. Let d(X,Y ) be the length of one shortest
derivation of X � Y from O using Table 1. We prove “⇒” by induction on
d(X,Y ).

– Assume d(X,Y ) = 0. In this case O must contain axioms of the form X ≡
Y � · · · or X � Y � · · · . Clearly we have NX � NY thus O �h NX

h� NY .
– Assuming “⇒” holds when d(X,Y ) < k, let us prove “⇒” holds for

d(X,Y ) = k. Suppose ρlast is the last inference in one shortest derivation of
X � Y using Table 1. Two cases arise:
1. Assume ρlast is generated by R1(n > 1),R3 or R4(n = 2). For example,

assume ρlast = 〈{X � ∃r.B1, B1 � B2,∃r.B2 � Y },X � Y 〉 comes from
R3. We have d(X,∃r.B1), d(B1, B2), d(∃r.B2, Y ) < k because their cor-
responding subsumptions can be derived without ρlast. By the assump-
tion O �h NX

h� N∃r.B1 , NB1

h� NB2 , N∃r.B2

h� NY . Then we have
O �h NX

h� N∃r.B2 by first deriving NX
h� N∃r.B1 , NB1

h� NB2 , and
then applying H-inference:

ρnew = 〈{NX
h� N∃r.B1 , NB1

h�NB2 , N∃r.B2 � N∃r.B2}, NX
h� N∃r.B2〉.

Then O �h NX
h� NY by Proposition 7 since O �h NX

h�
N∃r.B2 , N∃r.B2

h� NB . The argument also holds for R1(n > 1)(or
R4(n = 2)) by applying H1 (or H3) instead of H2.

2. Assume ρlast is generated by R1(n = 1),R2 or R4(n = 1). Then, in each
case, we have ρlast has the form 〈{X � Z,Z � Y },X � Y 〉. As in
case 1, we have d(X,Z), d(Z, Y ) < k. By the assumption, O �h NX

h�
NZ , NZ

h� NY , then O �h NX
h� NY by Proposition 7.

Case 2. If O � X � Y does not hold, then X or Y is not atomic. In this case,
we introduce new axioms A ≡ X, B ≡ Y with new atomic concepts A,B and
denote the extended ontology by O′. Clearly, O′ |= A � B and thus O′ � A � B

since Table 1 is sound and complete. Therefore, we have O′ �h NA
h� NB by the

same arguments as above. Now, notice that GO′ is obtained from GO by adding
4 edges: ({NA}, {NX}), ({NX}, {NA}), ({NB}, {NY }) and ({NY }, {NB}), thus
we have O′ �h NA

h�NB iff O �h NX
h� NY .

3.3 Extracting Justifications from GO

Now, we formally define H-paths as a hypergraph representation of classical
derivations based on H-rules. The reader should pay attention to the fact that
H-paths are not classical hyperpaths [7]. Next, for the sake of homogeneity, we
consider a regular path from NX to NY as the set of its edges and denote it as
PX,Y .
1 The reader should recall that the equivalence (O |= X � Y iff O � X � Y ) only

holds when X and Y are atomic concepts wrt. the inference system presented in
Table 1.
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Definition 9 (H-paths). In the hypergraph GO, an H-path HX,Y from NX to
NY is a set of edges recursively generated by the following composition rules:

0. A regular path PX,Y is an H-path from NX to NY ;
1. If e = ({NB1 , · · · , NBm

}, {NA}) ∈ VO, if HX,Bi
are H-paths for i = 1..m,

and if PA,Y is a regular path, then HX,B1 ∪ · · · ∪ HX,Bm
∪ PA,Y ∪ {e} is an

H-path from NX to NY ;
2. If HX,∃r.B1 ,HB1,B2 are H-paths and P∃r.B2,Y is a regular path, then HX,∃r.B1∪

HB1,B2 ∪ P∃r.B2,Y is an H-path from NX to NY ;
3. If e = ({Nr, Ns}, {Ns, Nt}) ∈ VO, if HX,∃r.A1 ,HA1,∃s.A2 are H-paths and if

P∃t.A2,B is a regular path, then HX,∃r.A1 ∪ HA1,∃s.A2 ∪ P∃t.A2,B ∪ {e} is an
H-path from NX to NY .

Fig. 3. Structure of H-paths from NX to NY

Figure 3 gives an illustration of H-paths: the blue arrows � correspond to
regular paths, and the red ones h� to H-paths. It is straightforward to compare
composition rules building H-paths with H-rules building derivations in Table 2.
One may also consider H-paths as deviation-trees with leaves corresponding to
the edges in GO. However, our approach provides a more direct characterization
of justifications as shown in Theorem 10.

We say that an H-path HX,Y is minimal if there is no H-path H ′
X,Y such

that H ′
X,Y ⊂ HX,Y .

Now, we are ready to explain how H-paths and justifications are related. We
can compute justifications from minimal H-paths as stated below:

Theorem 10. Given X,Y of either form A or ∃r.B. Let

S = {f−1(HX,Y ) | HX,Y is a minimal H-path from NX to NY }.

Then JO(X � Y ) = {s ∈ S | s′ �⊂ s,∀s′ ∈ S}. That is, all justifications for
X � Y are the minimal subsets in S.
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Proof. For any justification O′ of X � Y , there exists a minimal H-path HX,Y

such that O′ = f−1(HX,Y ). The reason is that, since O′ |= X � Y , there
exists an H-path HX,Y from NX to NY on GO′ by Theorem 8. Without loss of
generality, we can assume HX,Y is minimal on GO′ , then it is also minimal on
GO since GO′ is a sub-graph of GO. We have O′ = f−1(HX,Y ) because otherwise
there exists O′′

� O′ such that O′′ = f−1(HX,Y ), and thus O′′ |= X � Y by
Theorem 8 again. Therefore, O′ is not a justification. Contradiction.

Now, we know S contains all justifications for X � Y . Moreover,
f−1(HX,Y ) |= X � Y for any H-path HX,Y . Therefore, we have JO(X � Y ) =
{s ∈ S | s′ �⊂ s,∀s′ ∈ S} by the definition of justifications.

Example 11. (Example 4 cont’d). The regular paths from NA to N∃r.E and
from NE to NF produce two H-paths HA,∃rE = {e1, e2, e3} and HE,F = {e4}.
Then, applying the third composition rule with HA,∃rE ,HE,F and P∃r.F,B =
{e6}, we get HA,B = {e1, e2, e3, e4, e6}, which is the unique H-path from NA to
NB. Thus, by Theorem 10, we have {α1, α2, α3, α4, α5}, the only justification for
A � B.

4 Implementation: Computing Justifications

4.1 SAT-Based Method

In this section, we describe briefly how PULi [14], the state-of-the-art glass-
box algorithm, proceeds. Given an ontology O, computing JO(X � Y ) is done
through 2 steps: (1) tracing a complete set for X � Y , (2) using resolution to
extract the justifications from the complete set. The following example illustrates
both steps:

Example 12 (Example 1 cont’d). Let us compute JO(G � D) using PULi’s
method.

1. Using the goal-directed tracing algorithm in [12], the first step produces a
complete set of inferences2 {ρ1, ρ2} for G � D, where ρ1 = 〈{G � C,C �
A}, G � A〉, ρ2 = 〈{G � A,A � D}, G � D〉.

2. This step is again composed of two parts:
(a) The first part proceeds to the translation of the inferences into clauses.

Let us denote p1:G � C, p2:C � A, p3:A � D, p4:G � A, p5:G � D.
Here the literals p1, p2, p3 (with a bar) are called answer literals as they
correspond to the axioms a6, a7, a1 in O. Thus, we obtain C = {¬p1 ∨
¬p2 ∨ p4,¬p4 ∨ ¬p3 ∨ p5} by rewriting the inferences ρ1, ρ2 as clauses.

(b) Secondly, a new clause ¬p5 is added to C, where p5 corresponds to the
conclusion G � D, and resolution is applied over C. The set of all justi-
fications JO(G � D) is obtained by considering (i) the clauses formed of

2 For the sake of simplicity, we use the inference rules in Table 1 although PULi uses
a slightly different set of inference rules [13].
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Algorithm 1: minH
input : X�Y
output: J: JO(X�Y ).

1 J ← ∅;

2 U ← CompleteH(NX
h�NY );

3 min hpaths ← resolution(clauses(U));
4 for h ∈ min hpaths do
5 if f−1(h’) �⊂ f−1(h) for any h’ ∈ min hpaths then
6 J.add(f−1(h))
7 end

8 end

answer literals only and (ii) among them keeping the minimal ones3. In
this example, after the resolution phase, the only clause that consists of
merely answer literals is ¬p1∨¬p2∨¬p3. Thus, the set of all justifications
is JO(G � D) = {{a1, a6, a7}}.

Our method for computing justifications follows the same steps as PULi
although here the major difference is that the first step computes a complete set
of H-inferences instead of a complete set of inferences wrt. Table 1.

4.2 Computing Justification by Minimal H-Paths

In this section, given an ontology O and its associated hypergraph GO, we present
minH (Algorithm 1) that computes all justifications for X0 � Y0 using the min-
imal H-paths from NX0 to NY0 over GO. The algorithm minH proceeds in two
steps described below.

Step 1. First, at Line 2, minH computes a complete set of inferences U for
NX0

h� NY0 using CompleteH (See Algorithm 2). Here, U is complete in the
sense that for any H-path HX,Y , we can derive NX

h� NY using inferences in U
from the edge set HX,Y . CompleteH computes U as follows:

– Line 3–12 of Algorithm 2: The recursive application of trace one turn
(See Algorithm 3) outputs the set of all H-inferences whose conclusion is the
given input NX1

h� NY1 ;
– Line 13–17 of Algorithm 2: Let path be the depth-first search algorithm

that computes all regular paths from NX to NY in GO with input (NX , NY ).
Intuitively, the purpose is to shift inferences from regular paths to edges.

Step 2. Then Algorithm minH computes all justifications for X0 � Y0 as follows:

3 Here a clause c is smaller than c1 if all the literals of c are in c1.
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Algorithm 2: CompleteH

input : NX
h�NY

output: U : a complete set of inferences for NX
h�NY .

1 U , history, Q ← ∅ ; // Q is a queue

2 Q.add(NX
h�NY );

3 while Q �= ∅ do

4 NX1
h�NY1 ← Q.takeNext();

5 history.add(NX1
h�NY1);

6 U ← U ⋃
trace one turn(NX1

h�NY1);

7 for NX2
h�NY2 appearing in trace one turn(NX1

h�NY1) do

8 if NX2
h�NY2 �∈ history and NX2

h�NY2 �∈ Q then

9 Q.add(NX2
h�NY2)

10 end

11 end

12 end
13 for NX2�NY2 appearing in U do
14 for p={e1, e2, · · · , en} ∈path(NX2 , NY2) do
15 U .add(〈{e1, e2, · · · , en}, NX2�NY2〉);
16 end

17 end

– Line 3 of Algorithm 1: It computes all minimal H-paths from NX0 to NY0

using resolution, which is developed by PULi4, over the clauses generated
from U as illustrated in Sect. 4.1. Here, a literal p is associated with each
edge e, each NX

h� NY , and each NX � NY in U . The answer literals are
those associated with edges.

– Line 4–8 of Algorithm 1: It computes justifications by mapping back all
the minimal H-paths and select the subset-minimal sets as stated in Theorem
10.

Example 13 (Example 4 cont’d). Assume X0 = G and Y0 = D are the input
of minH. Then at line 2 of minH, we have U = {ρ1, ρ2}, where ρ1 = 〈{NG �
ND}, NG

h� ND〉 is H-inference obtained by CompleteH (line 3–12) and ρ2 =
〈{e0, e1, e8}, NG � ND〉 is produced from regular paths obtained by CompleteH

(line 13–17). Let us denote p0:e0, p1:e1, p2:e8 as answer literals and p3:NG �
ND, p4:NG

h� ND. Then clauses(U) = {¬p3 ∨ p4, ¬p0 ∨ ¬p1 ∨ ¬p2 ∨ p3}.
By resolution over clauses(U), we obtain min hpaths= {{e0, e1, e8}} at line

3 of minH. Then the output of minH is J= {{a1, a6, a7}}, which is the set of all
justifications for G � D.

4 Available at https://github.com/liveontologies/pinpointing-experiments.

https://github.com/liveontologies/pinpointing-experiments
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Algorithm 3: trace one turn

input : NX
h�NY

output: the set result of all H-inferences whose conclusion is NX
h�NY .

1 result ← ∅;

2 P1(X, Y ) ← {({NB1 , · · ·, NBm}, {NA}) ∈ EO | O|=X�A�Y };
3 for ({NB1 , · · ·, NBm}, {NA}) ∈ P1(X, Y ) do
4 if path(NA, NY )�= ∅ or Y =A then

5 result.add(〈{NX
h�NB1 , · · · , NX

h�NBm , NA�NY }, NX
h�NY 〉) ;

6 end

7 end

8 P2(X, Y ) ← {(r, B1, B2) | O|=X�∃r.B1, B1�B2, ∃r.B2�Y };
9 for (r, B1, B2) ∈ P2(X, Y ) do

10 if path(N∃r.B2 , NY )�= ∅ or Y =∃r.B2 then

11 result.add(〈{NX
h�N∃r.B1 , NB1

h�NB2 , N∃r.B2�NY }, NX
h�NY 〉);

12 end

13 end

14 P3(X, Y ) ← {(r, s, t, A1, A2) | r◦s�t∈O, O|=X�∃r.A1, A1�∃s.A2, ∃t.A2�Y };
for (r, s, t, A1, A2) ∈ P3(X, Y ) do

15 if path(N∃t.A2 , NY )�= ∅ or Y =∃t.A2 then

16 result.add(〈{NX
h�N∃r.A1 , NA1

h�N∃s.A2 , N∃t.A2�NY , ({Nr, Nt}, {Ns, Nt})},

{Ns, Nt})}, NX
h�NY 〉);

17 end

18 end

4.3 Optimization

Below we present two optimizations that have been implemented in order to
accelerate the computation of all justifications.

1. In Algorithm 3, for the H-inference added at Line 5, we require that there
exists at least one regular path from NA to NY that does not contain an edge
ei = ({NA}, {NBi

}) for some 1 ≤ i ≤ m. Otherwise, as shown in Fig. 4, H-
paths corresponding to this H-inference are not minimal, as they all contain
one H-path from NX to NY of the form HX,Bi

∪ (PA,Y − {ei}). In the same
spirit, we require that the H-path from NX to NBi

does not pass by NA.
2. If we have an H-path HA,B = HA,∃r.B1 ∪ HB1,B2 ∪ P∃r.B2,B where

HA,∃r.B1 = HA,∃r.C ∪ HC,B1 . (2)

then HC,B2 = HC,B1∪HB1,B2 is also an H-path and HA,B = HA,∃r.C∪HC,B2∪
P∃r.B2,B . The two different ways to decompose HA,B above are already con-

sidered in Line 8 when executing Algorithm3 with the input NA
h� NB . It

means that the decomposition (2) is redundant. We can avoid such redun-
dancy by requiring ∃r.B2 �= Y at Line 11.
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Fig. 4. Illustration of Optimization 1

5 Experiments

To evaluate and validate our approach, we compare minH5 with PULi [14], the
state-of-the-art algorithm for computing justifications at this moment. Both
methods compute all justifications based on resolution but with different infer-
ence rules generated in different ways. PULi uses a complete set (next denoted
by elk) generated by the ELK reasoner [13], which uses inference rules slightly
different from those in Table 1. Our method uses the complete set U generated
by Step 1 of minH, described in Sect. 4.2. To analyze the performance of our
setting, we make the following two measures: (1) we compare the size of elk with
that of U , (2) we compare the time cost of PULi with that of minH. All the
experiments were conducted on a machine with an INTEL Xeon 2.6 GHz and
128 GiB of RAM.

The experiments were processed with four different ontologies6: go-plus,
galen7, SnomedCT (version Jan. 2015 and Jan. 2021). All the non-EL+ axioms
are deleted. Here, go-plus, galen7 are the same ontologies used in [14]. We denote
the four ontologies above by go-plus, galen7, snt2015 and snt2021. The number of
axioms, concepts, relations, and queries for each ontology are shown in Table 3.

Next a query refers to a direct subsumption7 A � B. In our experiments,
for the four ontologies, the set of all justifications JO(A � B) is computed for
each query A � B. A query A � B is called trivial iff all minimal H-paths from
NA to NB are regular paths, otherwise, the query is non-trivial.

Comparing Complete Sets: U vs. elk. We summarize our results in Table 4
and Fig. 5. Table 4 shows that on all four ontologies, U is much smaller than elk
on average. Especially on galen7, the difference between elk and U is even up
to 50 times. The gap is even more significant for the median value since a large
part of the queries is trivial. However, the gap is much smaller for the maximal
number. On snt2021, the largest U in size is three times larger than that of elk.

5 A prototype is available at https://gitlab.lisn.upsaclay.fr/yang/minH.
6 Available at https://osf.io/9sj8n/, https://www.snomed.org/.
7 i.e., O |= A � B and there is no other atomic concept A′ such that O |= A �

A′, A′ � B. Direct subsumptions can be computed by a reasoner supporting ontology
classification.

https://gitlab.lisn.upsaclay.fr/yang/minH
https://osf.io/9sj8n/
https://www.snomed.org/
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Table 3. Summary of sizes of the input ontologies.

go-plus galen7 snt2015 snt2021

#axioms 105557 44475 311466 362638

#concepts 57173 28482 311480 361226

#roles 157 964 58 132

#queries 90443 91332 461854 566797

Table 4. Summary of size of elk, U .

go-plus galen7 snt2015 snt2021

elk average 166.9 3602.0 114.7 67.3

median 43.0 3648.0 10.0 31.0

max 7919.0 81501.0 2357 2226

U average 34.2 74.6 29.4 19.4

median 4.0 5.0 1.0 3.0

max 7772 24103 2002 6452

#non-trivial query 50272 62470 195082 304321

In Fig. 5, for a given query, if the complete set elk contains fewer inference
rules than U , the corresponding blue point is below the red line. The percentage
of such cases are: 0.34% for go-plus, 0.066% for galen7, 0.79% for snt2015, and
1.01% for snt2021. It means that for most of the queries, the corresponding U is
smaller than elk.

As shown in Table 4 and in Fig. 5, sometimes minH generates bigger complete
set U than PULi. It may happen when, for example, there might be exponen-
tially many different regular paths occurring in the computation process of minH.
Therefore, minH could produce a huge complete set. Also, U can be bigger than
elk when all the regular paths involved are simple. For example, if all regular
paths contain only one edge, then the complete set U includes many clauses
of the form ¬pe ∨ pNA�NB

, which happens because H-rules use regular paths.
Indeed, the clause ¬pe ∨ pNA�NB

is redundant since we can omit this clause by
replacing pNA�NB

by pe. For elk, this does not happen.

Comparing Time Cost: minH vs. PULi. In the following, we only compare
the time cost on non-trivial queries. For trivial queries, all H-path are regular
paths. Thus all the justifications have already been enumerated by path in minH.
It is also easy to compute all the justifications for trivial queries for PULi.

We set a limit of 60 s for each query. The timed-out queries contribute of 60 s
to the total time cost. To compare minH with PULi, we test all three different
strategies, threshold, top down, bottom up of the resolution algorithm proposed
in [14]. We summarize in Table 5 the total time cost (top) and the timed-out
queries (bottom). Figure 6 gives the comparisons over queries that are successful
for both minH and PULi.
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(a) go-plus (b) galen7

(c) snt2015 (d) snt2021

Fig. 5. Each blue point has coordinate (log(#|U|), log(#|elk|)), where U , elk are gen-
erated from a non-trivial query, the red line is x = y. (Color figure online)

As shown in Table 5, when using the threshold strategy, minH is more time
consuming in total (+5%) on snt2021, and minH has more timed-out queries
than PULi on snt2015 and snt2021. This is in part due to the fact that U is
larger than elk for relatively many queries on snt2015 and snt2021 as shown in
Fig. 5. For the remaining 11 cases, minH performs better than PULi in terms of
total time cost and the number of timed-out queries. Especially on galen7, the
gap between the two methods is even up to ten times for the total time cost.
We can see from Table 5 that the threshold strategy performs the best for PULi
on all four ontologies. This strategy is also the best strategy for minH except for
galen7, for which the bottom up strategy is the best with minH.

For each strategy detailed in Fig. 6, the black curve (the ordered time costs
of minH on successful queries) is always below the red curve (the ordered time
costs of PULi on successful queries) for all the ontologies. This suggests that
minH spends less time over successful queries. Also, most of the green points are
below the red lines, which suggests that minH performs better than PULi most of
the time for a given query. In some cases, we can see that PULi is more efficient
than minH. One of the reasons might be as follows. Note that when computing
justifications by resolution, we have to compare two different clauses and delete
the redundant one (i.e., the non-minimal one). When regular paths are big, minH
might be time consuming because of these comparisons.
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(a) go-plus

(b) galen7

(c) snt2015

(d) snt2021

Fig. 6. For each line, the left, middle and right charts correspond to threshold, top
down, bottom up strategies respectively. The y-axis is the log value of time(s). The red
(resp. black) curve presents the ascending ordered (log value of) time cost of PULi (resp.
minH). For a green point (x, y), ey is the time cost of minH for the query corresponding
to the red line point (x, y′). (Color figure online)
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Table 5. Total time cost and number of timed-out queries.

threshold top down bottom up

total times(s)
(PULi/minH)

go-plus 8482.7/7350.3 16352.3/8935.6 73629.1/17950.9

galen7 10796.2/3681.4 43372.9/10607.9 36300.9/3156.3

snt2015 1956.8/973.5 13650.7/1107.6 15058.3/11392.2

snt2021 2116.1/2222.6 11573.9/2361.6 19402.1/17154.9

timed-out queries
(PULi/minH/both)

go-plus 116/103 /93 202/117/114 935/223/223

galen7 48/43/43 370/123/120 228/38/38

snt2015 0/3/0 49/3/3 96/88/83

snt2021 2/8/1 39/9/9 144/133/128

6 Conclusion

In this paper, we introduce and investigate a new set of sound and complete
inference rules based on a hypergraph representation of ontologies. We design the
algorithm minH that leverages these inference rules to compute all justifications
for a given conclusion. The key of the performance of our method is that regular
paths are used as elementary components of H-paths and this leads to reducing
the size of complete sets because (1) rules are more compact than standard
ones, (2) redundant inferences are captured and eliminated by regular paths
(see Sect. 4.3). The efficiency of the algorithm minH has been validated by our
experiments showing that it outperforms PULi in most of the cases.

There are still many possible extensions and applications of the hypergraph
approach. For instance, to get even more compact inference rules, we could
extend the notion of regular path to a more general one that will encapsulate the
inference rule H2 in the same way as regular paths are encapsulated in H-rules.
Moreover, we will try to apply our approach for other tasks like classification
and to compute logical differences [15].
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3. Arif, M.F., Menćıa, C., Marques-Silva, J.: Efficient MUS enumeration of horn for-
mulae with applications to axiom pinpointing. In: Heule, M., Weaver, S. (eds.)
SAT 2015. LNCS, vol. 9340, pp. 324–342. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-24318-4 24

4. Ausiello, G., Laura, L.: Directed hypergraphs: introduction and fundamental
algorithms-a survey. Theor. Comput. Sci. 658, 293–306 (2017)

https://doi.org/10.1007/978-3-319-40970-2_32
https://doi.org/10.1007/978-3-319-24489-1_17
https://doi.org/10.1007/978-3-319-24489-1_17
https://doi.org/10.1007/978-3-319-24318-4_24
https://doi.org/10.1007/978-3-319-24318-4_24


Hypergraph-Based Inference Rules 327

5. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI, vol. 5, pp.
364–369 (2005)

6. Chen, J., Ludwig, M., Ma, Y., Walther, D.: Zooming in on ontologies: minimal
modules and best excerpts. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol.
10587, pp. 173–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68288-4 11

7. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and appli-
cations. Discret. Appl. Math. 42(2–3), 177–201 (1993)

8. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies:
theory and practice. J. Artif. Intell. Res. 31, 273–318 (2008)
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Abstract. Choice logics constitute a family of propositional logics and
are used for the representation of preferences, with especially qualita-
tive choice logic (QCL) being an established formalism with numerous
applications in artificial intelligence. While computational properties and
applications of choice logics have been studied in the literature, only few
results are known about the proof-theoretic aspects of their use. We pro-
pose a sound and complete sequent calculus for preferred model entail-
ment in QCL, where a formula F is entailed by a QCL-theory T if F
is true in all preferred models of T . The calculus is based on labeled
sequent and refutation calculi, and can be easily adapted for different
purposes. For instance, using the calculus as a cornerstone, calculi for
other choice logics such as conjunctive choice logic (CCL) can be obtained
in a straightforward way.

1 Introduction

Choice logics are propositional logics for the representation of alternative options
for problem solutions [4]. These logics add new connectives to classical propo-
sitional logic that allow for the formalization of ranked options. A prominent
example is qualitative choice logic (QCL for short) [7], which adds the con-
nective ordered disjunction #»× to classical propositional logic. Intuitively, A

#»×B
means that if possible A, but if A is not possible than at least B. The semantics
of a choice logic induce a preference ordering over the models of a formula.

As choice logics are well suited for preference handling, they have a multitude
of applications in AI such as logic programming [8], alert correlation [3], or
database querying [13]. But while computational properties and applications of
choice logics have been studied in the literature, only few results are known
about the proof-theoretic aspects of their use. In particular, there is no proof
system capable of deriving valid sentences containing choice operators. In this
paper we propose a sound and complete calculus for preferred model entailment
in QCL that can easily be generalized to other choice logics.

Entailment in choice logics is non-monotonic: conclusions that have been
drawn might not be derivable in light of new information. It is therefore not
surprising that choice logics are related to other non-monotonic formalisms. For
c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 331–349, 2022.
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instance, it is known [7] that QCL can capture propositional circumscription
and that, if additional symbols in the language are admitted, circumscription
can be used to generate models corresponding to the inclusion-preferred QCL
models up to the additional atoms. We do not intend to use this translation of
our choice logic formulas (or sequents) in order to employ an existing calculus
for circumscription, for instance [5].

Instead, we define calculi in sequent format directly for choice logics, which
are different from existing non-monotonic logics in the way non-monotonicity
is introduced. Specifically, the non-standard part of our logics is a new logi-
cal connective which is fully embedded in the logical language. For this reason,
calculi for choice logics also differ from most other calculi for non-monotonic
logics: our calculi do not use non-standard inference rules as in default logic,
modal operators expressing consistency or belief as in autoepistemic logic, or
predicates whose extensions are minimized as in circumscription. However, one
method that can also be applied to choice logics is the use of a refutation calculus
(also known as rejection or antisequent calculus) axiomatising invalid formulas,
i.e., non-theorems. Refutation calculi for non-monotonic logics were used in [5].
Specifically, by combining a refutation calculus with an appropriate sequent cal-
culus, elegant proof systems for the central non-monotonic formalisms of default
logic [16], autoepistemic logic [15], and circumscription [14] were obtained. How-
ever, to apply this idea to choice logics, we have to take another facet of their
semantics into account.

With choice logics, we are working in a setting similar to many-valued log-
ics. Interpretations ascribe a natural number called satisfaction degree to choice
logic formulas. Preferred models of a formula are then those models with the
least degree. There are several kinds of sequent calculus systems for many-valued
logics, where the representation as a hypersequent calculus [1,10] plays a promi-
nent role. However, there are crucial differences between choice logics and many-
valued logics in the usual sense. Firstly, choice logic interpretations are classical,
i.e., they set propositional variables to either true or false. Secondly, non-classical
satisfaction degrees only arise when choice connectives, e.g. ordered disjunction
in QCL, occur in a formula. Thirdly, when applying a choice connective ◦ to two
formulas A and B, the degree of A ◦ B does not only depend on the degrees of
A and B, but also on the maximum degrees that A and B can possibly assume.
Therefore, techniques used in proof systems for conventional many-valued logics
can not be applied directly to choice logics.

In [11] a sequent calculus based system for reasoning with contrary-to-duty
obligations was introduced, where a non-classical connective was defined to cap-
ture the notion of reparational obligation, which is in force only when a violation
of a norm occurs. This is related to the ordered disjunction in QCL, however,
based on the intended use in [11] the system was defined only for the occurrence
of the new connective on the right side of the sequent sign. We aim for a proof
system for reasoning with choice logic operators, and to deduce formulas from
choice logic formulas. Thus, we need a calculus with left and right inference rules.
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To obtain such a calculus we combine the idea of a refutation calculus with
methods developed for multi-valued logics in a novel way. First, we develop a
(monotonic) sequent calculus for reasoning about satisfaction degrees using a
labeled calculus, a method developed for (finite) many-valued logics [2,9,12].
Secondly, we define a labeled refutation calculus for reasoning about invalidity
in terms of satisfaction degrees. Finally, we join both calculi to obtain a sequent
calculus for the non-monotonic entailment of QCL. To this end, we introduce a
new, non-monotonic inference rule that has sequents of the two labeled calculi
as premises and formalizes degree minimization.

The rest of this paper is organized as follows. In the next section we present
the basic notions of choice logics and introduce the most prominent choice logics
QCL and CCL (conjunctive choice logic). In Sect. 3 we develop a labeled sequent
calculus for propositional logic extended by the QCL connective #»×. This calculus
is shown to be sound and complete and already can be used to derive interesting
sentences containing choice operators. In Sect. 4 we extend the previously defined
sequent calculus with an appropriate refutation calculus and non-monotonic rea-
soning, to capture entailment in QCL. The developed methodology for QCL can
be extended to other choice logics as well. In particular we show in Sect. 5 how
the calculi can be adapted for CCL.

2 Choice Logics

First, we formally define the notion of choice logics in accordance with the choice
logic framework of [4] before giving concrete examples in the form of QCL and
CCL. Finally, we define preferred model entailment.

Definition 1. Let U denote the alphabet of propositional variables. The set of
choice connectives CL of a choice logic L is a finite set of symbols such that
CL ∩{¬,∧,∨} = ∅. The set FL of formulas of L is defined inductively as follows:
(i) a ∈ FL for all a ∈ U ; (ii) if F ∈ FL, then (¬F ) ∈ FL; (iii) if F,G ∈ FL,
then (F ◦ G) ∈ FL for ◦ ∈ ({∧,∨} ∪ CL).

For example, CQCL = { #»×} and ((a #»×c) ∧ (b #»×c)) ∈ FQCL. Formulas that do not
contain a choice connective are referred to as classical formulas.

The semantics of a choice logic is given by two functions, satisfaction degree
and optionality. The satisfaction degree of a formula given an interpretation
is either a natural number or ∞. The lower this degree, the more preferable
the interpretation. The optionality of a formula describes the maximum finite
satisfaction degree that this formula can be ascribed, and is used to penalize
non-satisfaction.

Definition 2. The optionality of a choice connective ◦ ∈ CL in a choice logic L
is given by a function opt◦

L : N
2 → N such that opt◦

L(k, �) ≤ (k + 1) · (� + 1) for
all k, � ∈ N. The optionality of an L-formula is given via optL : FL → N with
(i) optL(a) = 1 for every a ∈ U ; (ii) optL(¬F ) = 1; (iii) optL(F∧G) = optL(F∨
G) = max (optL(F ), optL(G)); (iv) optL(F ◦ G) = opt◦

L(optL(F ), optL(G)) for
every choice connective ◦ ∈ CL.
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The optionality of a classical formula is always 1. Note that, for any choice
connective ◦, the optionality of F ◦ G is bounded such that optL(F ◦ G) ≤
(optL(F ) + 1) · (optL(G) + 1). In the following, we write N for (N ∪ {∞}).

Definition 3. The satisfaction degree of a choice connective ◦ ∈ CL in a choice
logic L is given by a function deg◦

L : N
2 × N

2 → N such that deg◦
L(k, �,m, n) ≤

opt◦
L(k, �) or deg◦

L(k, �,m, n) = ∞ for all k, � ∈ N and all m,n ∈ N. The satis-
faction degree of an L-formula under an interpretation I ⊆ U is given via the
function degL : 2U × FL → N with

1. degL(I, a) = 1 if a ∈ I, degL(I, a) = ∞ otherwise for every a ∈ U ;
2. degL(I,¬F ) = 1 if degL(I, F ) = ∞, degL(I,¬F ) = ∞ otherwise;
3. degL(I, F ∧ G) = max (degL(I, F ), degL(I, G));
4. degL(I, F ∨ G) = min(degL(I, F ), degL(I, G));
5. degL(I, F ◦ G) = deg◦

L(optL(F ), optL(G), degL(I, F ), degL(I, G)), ◦ ∈ CL.

We also write I |=L
m F for degL(I, F ) = m. If m < ∞, we say that I satisfies F

(to a finite degree), and if m = ∞, then I does not satisfy F . If F is a classical
formula, then I |=L

1 F ⇐⇒ I |= F and I |=L
∞ F ⇐⇒ I �|= F . The symbols �

and ⊥ are shorthand for the formulas (a∨¬a) and (a∧¬a), where a can be any
variable. We have optL(�) = optL(⊥) = 1, degL(I,�) = 1 and degL(I,⊥) = ∞
for any interpretation I in every choice logic.

Models and preferred models of formulas are defined in the following way:

Definition 4. Let L be a choice logic, I an interpretation, and F an L-
formula. I is a model of F , written as I ∈ ModL(F ), if degL(I, F ) < ∞.
I is a preferred model of F , written as I ∈ Prf L(F ), if I ∈ ModL(F ) and
degL(I, F ) ≤ degL(J , F ) for all other interpretations J .

Moreover, we define the notion of classical counterparts for choice connectives.

Definition 5. Let L be a choice logic. The classical counterpart of a choice
connective ◦ ∈ CL is the classical binary connective � such that, for all atoms
a and b, degL(I, a ◦ b) < ∞ ⇐⇒ I |= a � b. The classical counterpart of an
L-formula F is denoted as cp(F ) and is obtained by replacing all occurrences of
choice connectives in F by their classical counterparts.

A natural property of known choice logics is that choice connectives can be
replaced by their classical counterpart without affecting satisfiability, meaning
that degL(I, F ) < ∞ ⇐⇒ I |= cp(F ) holds for all L-formulas F .

So far we introduced choice logics in a quite abstract way. We now introduce
two particular instantiations, namely QCL, the first and most prominent choice
logic in the literature, and CCL, which introduces a connective #»� called ordered
conjunction in place of QCL’s ordered disjunction.
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Definition 6. QCL is the choice logic such that CQCL = { #»×}, and, if k =
optQCL(F ), � = optQCL(G), m = degQCL(I, F ), and n = degQCL(I, G), then

optQCL(F #»×G) = opt
#»×
QCL(k, �) = k + �, and

degQCL(I, F
#»×G) = deg

#»×
QCL(k, �,m, n) =

⎧
⎪⎨

⎪⎩

m if m < ∞;
n + k if m = ∞, n < ∞;
∞ otherwise.

In the above definition, we can see how optionality is used to penalize non-
satisfaction: given a QCL-formula F

#»×G and an interpretation I, if I satis-
fies F (to some finite degree), then degQCL(I, F

#»×G) = degQCL(I, F ); if I
does not satisfy F , then degQCL(I, F

#»×G) = optQCL(F ) + degQCL(I, G). Since
degQCL(I, F ) ≤ optQCL(F ), interpretations that satisfy F result in a lower
degree, i.e., are more preferable, compared to interpretations that do not sat-
isfy F . Let us take a look at a concrete example:

Example 1. Consider the QCL-formula F = (a #»×c) ∧ (b #»×c). Note that the clas-
sical counterpart of #»× is ∨, i.e., cp(F ) = (a∨ c)∧ (b∨ c). Thus, {c}, {a, b}, {a, c},
{b, c}, {a, b, c} ∈ ModQCL(F ). Of these models, {a, b} and {a, b, c} satisfy F to
a degree of 1 while {c}, {a, c}, and {b, c} satisfy F to a degree of 2. Therefore,
{a, b}, {a, b, c} ∈ Prf QCL(F ).

Next, we define CCL. Note that we follow the revised definition of CCL [4], which
differs from the initial specification1. Intuitively, given a CCL-formula F

#»�G it
is best to satisfy both F and G, but also acceptable to satisfy only F .

Definition 7. CCL is the choice logic such that CCCL = { #»�}, and, if k =
optCCL(F ), � = optCCL(G), m = degCCL(I, F ), and n = degCCL(I, G), then

optCCL(F #»�G) = k + �, and

degCCL(I, F
#»�G) =

⎧
⎪⎨

⎪⎩

n if m = 1, n < ∞;
m + � if m < ∞ and (m > 1 or n = ∞);
∞ otherwise.

Example 2. Consider the CCL-formula G = (a #»�c) ∧ (b #»�c). Note that the clas-
sical counterpart of #»� is the first projection, i.e., cp(G) = a ∧ b. Thus, {a, b},
{a, b, c} ∈ ModCCL(G). Of these models, {a, b, c} satisfies G to a degree of 1
while {a, b} satisfies G to a degree of 2. Therefore, {a, b, c} ∈ Prf CCL(G).

If L is a choice logic, then a set of L-formulas is called an L-theory. An
L-theory T entails a classical formula F , written as T |∼ F , if F is true in
all preferred models of T . However, we first need to define what the preferred
models of a choice logic theory are. There are several approaches for this. In the
original QCL paper [7], a lexicographic and an inclusion-based approach were
introduced.
1 It seems that, under the initial definition of CCL, a

#»�b is always ascribed a degree
of 1 or ∞, i.e., non-classical degrees can not be obtained (cf. Definition 8 in [6]).
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Definition 8. Let L be a choice logic, I an interpretation, and T an L-theory.
I ∈ ModL(T ) if degL(I, F ) < ∞ for all F ∈ T . Ik

L(T ) denotes the set of formulas
in T satisfied to a degree of k by I, i.e., Ik

L(T ) = {F ∈ T | degL(I, F ) = k}.
– I is a lexicographically preferred model of T , written as I ∈ Prf lex

L (T ), if
I ∈ ModL(T ) and if there is no J ∈ ModL(T ) such that, for some k ∈ N and
all l < k, |Ik

L(T )| < |J k
L (T )| and |Il

L(T )| = |J l
L(T )| holds.

– I is an inclusion-based preferred model of T , written as I ∈ Prf inc
L (T ), if

I ∈ ModL(T ) and if there is no J ∈ ModL(T ) such that, for some k ∈ N and
all l < k, Ik

L(T ) ⊂ J k
L (T ) and Il

L(T ) = J l
L(T ) holds.

In our calculus for preferred model entailment we focus on the lexicographic
approach, but it will become clear how it can be adapted to other preferred model
semantics (see Sect. 4). We now formally define preferred model entailment:

Definition 9. Let L be a choice logic, T an L-theory, S a classical theory, and
σ ∈ {lex , inc}. T |∼σ

L S if for all I ∈ Prf σ
L(T ) there is F ∈ S such that I |= F .

Example 3. Consider the QCL-theory T = {¬(a∧b), a #»×c, b
#»×c}. Then {c}, {a, c},

{b, c} ∈ ModQCL(T ). Note that, because of ¬(a∧b), a model of T can not satisfy
both a

#»×c and b
#»×c to a degree of 1. Specifically,

{a, c}1
QCL(T ) = {¬(a ∧ b), a #»×c} and {a, c}2

QCL(T ) = {b
#»×c},

{b, c}1
QCL(T ) = {¬(a ∧ b), b #»×c} and {b, c}2

QCL(T ) = {a
#»×c},

{c}1
QCL(T ) = {¬(a ∧ b)} and {c}2

QCL(T ) = {a
#»×c, b

#»×c}.

Thus, {a, c}, {b, c} ∈ Prf lex
QCL(T ) but {c} �∈ Prf lex

QCL(T ). It can be concluded that
T |∼lex

QCL c ∧ (a ∨ b). However, T �|∼ lex
QCLa and T �|∼ lex

QCLb.

It is easy to see that preferred model entailment is non-monotonic. For example,
{a

#»×b} |∼lex
QCL a but {a

#»×b,¬a} �|∼ lex
QCLa.

3 The Sequent Calculus L[QCL]

As a first step towards a calculus for preferred model entailment, we propose a
labeled calculus [2,12] for reasoning about the satisfaction degrees of QCL formu-
las in sequent format and prove its soundness and completeness. One advantage
of the sequent calculus format is having symmetrical left and right rules for all
connectives, in particular for the choice connectives. This is in contrast to the
representation of ordered disjunction in the calculus for deontic logic [11], in
which only right-hand side rules are considered.

As the calculus will be concerned with satisfaction degrees rather than pre-
ferred models, we need to define entailment in terms of satisfaction degrees. To
this end, the formulas occurring in the sequents of our calculus are labeled with
natural numbers, i.e., they are of the form (A)k, where A is a choice logic formula
and k ∈ N. (A)k is satisfied by those interpretations that satisfy A to a degree of
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k. Instead of labeling formulas with degree ∞ we use the negated formula, i.e.,
instead of (A)∞ we use (¬A)1. We observe that (A)k for optL(A) > k can never
have a model. We will deal with such formulas by replacing them with (⊥)1. For
classical formulas, we may write A for (A)1.

Definition 10. Let (A1)k1 , . . . , (Am)km
and (B1)l1 , . . . , (Bn)ln be labeled QCL-

formulas. (A1)k1 , . . . , (Am)km
� (B1)l1 , . . . , (Bn)ln is a labeled QCL-sequent.

Γ � Δ is valid iff every interpretation that satisfies all labeled formulas in Γ
to the degree specified by the label also satisfies at least one labeled formula in Δ
to the degree specified by the label.

Note that entailment in terms of satisfaction degrees, as defined above, is mon-
tonic. Frequently we will write (A)<k as shorthand for (A)1, . . . , (A)k−1 and
(A)>k for (A)k+1, . . . , (A)optQCL(A), (¬A)1. Moreover, 〈Γ, (A)i � Δ〉i<k denotes
the sequence of sequents

Γ, (A)1 � Δ . . . Γ, (A)k−1 � Δ.

Analogously, 〈Γ, (A)i � Δ〉i>k stands for the sequence of sequents Γ, (A)k+1 �
Δ . . . Γ, (A)optQCL(A) � Δ Γ, (¬A)1 � Δ.

We define the sequent calculus L[QCL] over labeled sequents below. In addi-
tion to introducing inference rules for #»× we have to modify the inference rules
for conjunction and disjunction of propositional LK. The idea behind the ∨-left
rule is that a model M of (A)k is only a model of (A ∨ B)k if there is no l < k
s.t. M is a model of (B)l. Therefore, every model of (A∨B)k is a model of Δ iff

– every model of (A)k is a model of Δ or of some (B)l with l < k,
– every model of (B)k is a model of Δ or of some (A)l with l < k.

Essentially the same idea works for ∧-left but with l > k. For the ∨-right rule,
in order for every model of Γ to be a model of (A ∨ B)k, every model of Γ must
either be a model of (A)k or of (B)k and no model of Γ can be a model of (A)l

for l < k, i.e., Γ, (A)l � ⊥. Similarly for ∧-right.

Definition 11 (L[QCL]). The axioms of L[QCL] are of the form (p)1 � (p)1 for
propositional variables p. The inference rules are given below. For the structural
and logical rules, whenever a labeled formula (F )k appears in the conclusion of
an inference rule it holds that k ≤ optL(F ).

The structural rules are:
Γ � Δ

wl
Γ, (A)k � Δ

Γ � Δ wr
Γ � (A)k,Δ

Γ, (A)k, (A)k � Δ
cl

Γ, (A)k � Δ

Γ � (A)k, (A)k,Δ
cr

Γ � (A)k,Δ

The logical rules are:
Γ � (cp(A))1,Δ ¬l
Γ, (¬A)1 � Δ

Γ, (cp(A))1 � Δ ¬r
Γ � (¬A)1,Δ

Γ, (A)k � (B)<k,Δ Γ, (B)k � (A)<k,Δ ∨l
Γ, (A ∨ B)k � Δ

〈Γ, (A)i � Δ〉i<k 〈Γ, (B)i � Δ〉i<k Γ � (A)k, (B)k,Δ ∨r
Γ � (A ∨ B)k,Δ
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Γ, (A)k � (B)>k,Δ Γ, (B)k � (A)>k,Δ ∧l
Γ, (A ∧ B)k � Δ

〈Γ, (A)i � Δ〉i>k 〈Γ, (B)i � Δ〉i>k Γ � (A)k, (B)k,Δ ∧r
Γ � (A ∧ B)k,Δ

The rules for ordered disjunction, with k ≤ optL(A) and l ≤ optL(B), are:

Γ, (A)k � Δ
#»×l1

Γ, (A #»×B)k � Δ

Γ, (B)l, (¬A)1 � Δ
#»×l2

Γ, (A #»×B)optQCL(A)+l � Δ

Γ � (A)k,Δ
#»×r1

Γ � (A #»×B)k,Δ

Γ � (¬A)1,Δ Γ � (B)l,Δ #»×r2
Γ � (A #»×B)optQCL(A)+l,Δ

The degree overflow rules2, with k ∈ N, are:
Γ,⊥ � Δ

dol
Γ, (A)optQCL(A)+k � Δ

Γ � Δ dor
Γ � (A)optQCL(A)+k,Δ

Observe that the modified ∧ and ∨ inference rules correspond to the ∧ and ∨
inference rules of propositional LK in case we are dealing only with classical
formulas. Our ∧-left rule splits the proof-tree unnecessarily for classical theories,
and the ∧-right rule adds an unnecessary third condition Γ � A,B,Δ. These
additional conditions are necessary when dealing with non-classical formulas.

The intuition behind the degree overflow rules is that we sometimes need to
fix invalid sequences, i.e., sequences in which a formula F is assigned a label k
with optQCL(F ) < k < ∞.

Example 4. The following is an L[QCL]-proof of a valid sequent.3

...

b ∨ c, ¬a, b � a ∧ b, a ∧ c, b #»×l2
b ∨ c, (a

#»×b)2 � a ∧ b, a ∧ c, b ¬r
(a

#»×b)2 � ¬(b
#»×c), a ∧ b, a ∧ c, b

...

a ∨ b, ¬b, c � a ∧ b, a ∧ c, b #»×l2
a ∨ b, (b

#»×c)2 � a ∧ b, a ∧ c, b ¬r
(b

#»×c)2 � ¬(a
#»×b), a ∧ b, a ∧ c, b ∧l

((a
#»×b) ∧ (b

#»×c))2 � a ∧ b, a ∧ c, b ¬l¬(a ∧ b), ((a
#»×b) ∧ (b

#»×c))2 � a ∧ c, b

Example 5. The following proof shows how the ∧r-rule can introduce more than
three premises. Note that we make use of the dol-rule in the leftmost branch.

...
a, b,⊥ �

dol
a, b, (a)2 �

...
a, b,¬a �

...
a, b, c,¬b � #»×l2

a, b, (b #»×c)2 �

...
a, b � b ∨ c ¬l

a, b,¬(b #»×c) �

...
a, b � a, b #»×r1

a, b � a, (b #»×c)1 ∧r
a, b � (a ∧ (b #»×c))1

We now show soundness and completeness of L[QCL].
2 dol/dor stands for degree overflow left/right.
3 Note that, once we reach sequents containing only classical formulas, we do not

continue the proof. However, it can be verified that the classical sequents on the left
and right branch are provable in this case. Moreover, given a formula (A)1 with a
label of 1, the label is often omitted for readability.
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Proposition 1. L[QCL] is sound.

Proof. We show for all rules that they are sound.

– For (ax) and the structural rules this is clearly the case.
– (¬r) and (¬l): follows from the fact that degQCL(I, F ) < ∞ ⇐⇒ I |= cp(F )

for all QCL-formulas F .
– (∨l): Assume that the conclusion of the rule is not valid, i.e., there is a model

M of Γ and (A ∨ B)k that is not a model of Δ. Then, M satisfies either A or
B to degree k and neither to a degree smaller than k. Assume M satisfies A
to a degree of k, the other case is symmetric. Then M is a model of Γ and
(A)k but, by assumption, neither of Δ nor of (B)j for any j < k. Hence at
least one of the premises is not valid. Analogously for (∧l).

– (∨r): Assume there is a model M of Γ that is not a model of Δ or of (A∨B)k.
There are two possible cases why M is not a model of (A∨B)k: (1) M satisfies
neither A nor B to degree k. But then the premise Γ � (A)k, (B)k,Δ is not
valid as M is also not a model of Δ by assumption. (2) M satisfies either A or
B to a degree smaller than k. Assume that M satisfies A to degree j < k (the
other case is symmetric). Then the premise Γ, (A)j � Δ is not valid. Indeed,
M is a model of Γ and (A)j but not of Δ. Analogously for (∧r).

– ( #»×l1) and ( #»×r1): follows from the fact that (A)k has the same models as
(A #»×B)k for k ≤ optL(A).

– ( #»×l2): Assume the conclusion of the rule is not valid and let M be the model
witnessing this. Then M is a model of (A #»×B)optQCL(A)+l. By definition, M
satisfies B to degree l and is not a model of A. However, then it is also a
model of Γ , (B)l and (¬A)1, which means that the premise is not valid.

– ( #»×r2). Assume that both premises are valid, i.e., every model of Γ is either a
model of Δ or of (¬A)1 and (B)l with l ≤ optL(B). Now, by definition, any
model that is not a model of A (and hence a model of (¬A)1) and of (B)l

satisfies A
#»×B to degree optQCL(A)+ l. Therefore, every model of Γ is either

a model of Δ or of (A #»×B)optQCL(A)+l, which means that the conclusion of
the rule is valid.

– (dol): Γ,⊥ has no models, i.e., the premise Γ,⊥ � Δ is valid. Crucially, the
sequent Γ, (A)optQCL(A)+k has no models as well since A cannot be satisfied
to a degree m with optL(A) < m < ∞. (dor) is clearly sound. ��

Proposition 2. L[QCL] is complete.

Proof. We show this by induction over the (aggregated) formula complexity of
the non-classical formulas.

– For the base case, we observed that if all formulas are classical and labeled
with 1, then all our rules reduce to the classical sequent calculus, which is
known to be complete. Moreover, we observe that (A)1 is equivalent to A.
Hence, we can turn labeled atoms into classical atoms.

– Assume that a sequent of the form Γ, (A)optQCL(A)+k � Δ with k ∈ N is valid.
Since Γ,⊥ has no models, Γ,⊥ � Δ is valid and, by the induction hypothesis,
provable. Thus, Γ, (A)optQCL(A)+k � Δ is provable using the (dol) rule.
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– Assume that a sequent Γ � (A)optQCL(A)+k,Δ is valid. (A)optQCL(A)+k can not
be satisfied, i.e., Γ � Δ is valid and, by the induction hypothesis, provable.
Therefore, Γ � (A)optQCL(A)+k,Δ is provable using the (dor) rule.

– Assume that a sequent of the form Γ � (¬A)1,Δ is valid. Then every model
of Γ is either a model of (¬A)1 or of Δ. In other words, every model of Γ that
is not a model of (¬A)1 (i.e., is model of cp(A)) is a model of Δ. Therefore,
every interpretation that is a model of both Γ and cp(A) must be a model
of Δ. It follows that Γ, cp(A) � Δ is valid and, by the induction hypothesis,
provable. Thus, Γ � (¬A)1,Δ is provable using the (¬r) rule. Similarly for
Γ, (¬A)1 � Δ.

– Assume that a sequent of the form Γ, (A∨B)k � Δ is valid, with k ≤ optL(A∨
B). We claim that then both Γ, (A)k � (B)<k,Δ and Γ, (B)k � (A)<k,Δ are
valid. Assume to the contrary that Γ, (A)k � (B)<k,Δ is not valid (the other
case is symmetric). Then, there is a model M of Γ and (A)k that is neither
a model of (B)<k nor of Δ. But then M is also a model of Γ and (A ∨ B)k,
but not of Δ, which contradicts the assumption that Γ, (A∨B)k � Δ is valid.
Therefore, both Γ, (A)k � (B)<k,Δ and Γ, (B)k � (A)<k,Δ are valid and,
by the induction hypothesis, provable. This means that Γ, (A ∨ B)k � Δ is
provable by (∨l). Similarly for a sequent of the form Γ, (A ∧ B)k � Δ.

– Assume that a sequent of the form Γ � (A ∨ B)k,Δ is valid, with k ≤
optL(A ∨ B). We claim that then for all i < k the sequents Γ, (A)i � Δ and
Γ, (B)i � Δ and Γ � (A)k, (B)k,Δ are valid. Assume by contradiction that
there is an i < k s.t. Γ, (A)i � Δ is not valid. Then, there is a model M of
Γ and (A)i that is not a model of Δ. However, then M is a model of Γ but
neither of Δ nor of (A ∨ B)k (as M satisfies A ∨ B to degree i �= k), which
contradicts our assumption that Γ � (A∨B)k,Δ is valid. The case that there
is an i < k s.t. Γ, (B)i � Δ is not valid is symmetric. Finally, we assume that
Γ � (A)k, (B)k,Δ is not valid. Then, there is a model M of Γ that is not a
model of (A)k, (B)k or Δ. Then, M is model of Γ but neither of Δ nor of
(A ∨ B)k, contradicting our assumption. Therefore, all sequents listed above
must be valid, and, by the induction hypothesis, Γ � (A∨B)k,Δ is provable.
Similarly for a sequent of the form Γ � (A ∧ B)k,Δ.

– Assume that a sequent of the form Γ, (A #»×B)k � Δ with k ≤ optQCL(A) is
valid. Then Γ, (A)k � Δ is also valid since (A #»×B)k and (A)k have the same
models if k ≤ optQCL(A). By the induction hypothesis Γ, (A #»×B)k � Δ is
provable. Analogously for sequents of the form Γ � (A #»×B)k,Δ.

– Assume that a sequent of the form Γ, (A #»×B)optQCL(A)+l � Δ is valid, with
l ≤ optL(B). We claim that the sequent Γ, (B)l,¬A � Δ is then also valid.
Indeed, if M is a model of Γ , (B)l and ¬A, then it is also a model of Γ and
(A #»×B)optQCL(A)+l. Hence, by assumption, M must be a model of Δ. From
this, we can conclude as before that Γ, (A #»×B)optQCL(A)+l � Δ is provable.

– Assume that a sequent of the form Γ � (A #»×B)optQCL(A)+l,Δ is valid, with
l ≤ optL(B). We claim that then also the sequents Γ � ¬A,Δ and Γ �
(B)l,Δ are valid. Assume by contradiction that the first sequent is not valid.
This means that there is a model M of Γ that is not a model of either ¬A
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nor of Δ. However, then M is a model of A and therefore satisfies A
#»×B

to a degree smaller than optQCL(A). This contradicts our assumption that
Γ � (A #»×B)optQCL(A)+l,Δ is valid. Assume now that the second sequent is
not valid, i.e., that there is a model M of Γ that is neither a model of (B)l

nor of Δ. Then, M cannot be a model of (A #»×B)optQCL(A)+l and we again
have a contradiction to our assumption. As before, it follows by the induction
hypothesis that Γ � (A #»×B)optQCL(A)+l,Δ is provable. ��

So far we have not introduced a cut rule, and as we have shown our calculus
is complete without such a rule. However, it is easy to see that we have cut-
admissibility, i.e., L[QCL] can be extended by:

Γ � (A)k, Δ Γ ′, (A)k � Δ′
cut

Γ, Γ ′ � Δ, Δ′

Another aspect of our calculus that should be mentioned is that, although
L[QCL] is cut-free, we do not have the subformula property. This is especially
obvious when looking at the rules for negation, where we use the classical coun-
terpart cp(A) of QCL-formulas. For example, ¬(a #»×b) in the conclusion of the
¬-left rule becomes cp(a #»×b) = a ∨ b in the premise.

While we believe that L[QCL] is interesting in its own right, the question
of how we can use it to obtain a calculus for preferred model entailment arises.
Essentially, we have to add a rule that allows us to go from standard to pre-
ferred model inferences. As a first approach we consider theories Γ ∪{A} with Γ
consisting only of classical formulas and A being a QCL-formula. In this simple
case, preferred models of Γ ∪ {A} are those models of Γ ∪ {A} that satisfy A to
the smallest possible degree. One might add the following rule to L[QCL]:

〈Γ, (A)i � ⊥〉i<k Γ, (A)k � Δ |∼naive
Γ, A |∼lex

QCL Δ

Intuitively, the above rule states that, if there are no interpretations that sat-
isfy Γ while also satisfying A to a degree lower than k, and if Δ follows from
all models of Γ, (A)k, then Δ is entailed by the preferred models of Γ ∪ {A}.
However, the obtained calculus L[QCL] + |∼naive derives invalid sequents.

Example 6. The invalid entailment ¬a, a
#»×b |∼lex

QCL a can be derived via |∼naive .

a � a
wl¬a, a � a #»×l1¬a, (a

#»×b)1 � a |∼naive¬a, a
#»×b |∼lex

QCL a

What is missing is an assertion that Γ, (A)k is satisfiable. Unfortunately, this
can not be formulated in L[QCL]. A way of addressing this problem is to define
a refutation calculus, as has been done for other non-monotonic logics [5].



342 M. Bernreiter et al.

4 Calculus for Preferred Model Entailment

We now introduce a calculus for preferred model entailment. However, as argued
above, we first need to introduce the refutation calculus L[QCL]−. In the liter-
ature, a rejection method for first-order logic with equality was first introduced
in [17] and proved complete w.r.t. finite model theory. Our refutation calculus
is based on a simpler rejection method for propositional logic defined in [5].
Using the refutation calculus, we prove that (A)k is satisfiable by deriving the
antisequent (A)k � ⊥.

Definition 12. A labeled QCL-antisequent is denoted by Γ � Δ and it is valid
if and only if the corresponding labeled QCL-sequent Γ � Δ is not valid, i.e., if
at least one model that satisfies all formulas in Γ to the degree specified by the
label satisfies no formula in Δ to the degree specified by the label.

Below we give a definition of the refutation calculus L[QCL]−. Note that most
rules coincide with their counterparts in L[QCL]. Binary rules are translated
into two rules; one inference rule per premise. (∨r) and (∧l) in L[QCL] have an
unbounded number of premises, but due to their structure they can be translated
into three inference rules. For (∧r) we need to introduce two extra rules for the
case that either A or B is not satisfied.

Definition 13 (L[QCL]−). The axioms of L[QCL]− are of the form Γ � Δ,
where Γ and Δ are disjoint sets of atoms and ⊥ �∈ Γ . The inference rules of
L[QCL]− are given below. Whenever a labeled formula (F )k appears in the con-
clusion of an inference rule it holds that k ≤ optL(F ).

The logical rules are:
Γ, (cp(A))1 � Δ

� ¬r
Γ � (¬A)1,Δ

Γ � (cp(A))1,Δ
� ¬l

Γ, (¬A)1 � Δ

Γ, (A)k � (B)<k,Δ
� ∨l1

Γ, (A ∨ B)k � Δ

Γ, (B)k � (A)<k,Δ
� ∨l2

Γ, (A ∨ B)k � Δ

Γ, (A)i � Δ
� ∨r1

Γ � (A ∨ B)k,Δ

Γ, (B)i � Δ
� ∨r2

Γ � (A ∨ B)k,Δ

Γ � (A)k, (B)k,Δ
� ∨r3

Γ � (A ∨ B)k,Δ

where i < k.
Γ, (A)k � (B)>k,Δ

� ∧l1
Γ, (A ∧ B)k � Δ

Γ, (B)k � (A)>k,Δ
� ∧l2

Γ, (A ∧ B)k � Δ

Γ, (A)i � Δ
� ∧r1

Γ � (A ∧ B)k,Δ

Γ, (¬A)1 � Δ
� ∧r2

Γ � (A ∧ B)k,Δ

Γ, (B)i � Δ
� ∧r3

Γ � (A ∧ B)k,Δ

Γ, (¬B)1 � Δ
� ∧r4

Γ � (A ∧ B)k,Δ

Γ � (A)k, (B)k,Δ
� ∧r5

Γ � (A ∧ B)k,Δ

where i > k.

The rules for ordered disjunction, with k ≤ optL(A) and l ≤ optL(B), are:

Γ, (A)k � Δ
�

#»×l1
Γ, (A #»×B)k � Δ

Γ, (B)l, (¬A)1 � Δ
�

#»×l2
Γ, (A #»×B)optQCL(A)+l � Δ

Γ � (A)k,Δ
�

#»×r1
Γ � (A #»×B)k,Δ

Γ � (¬A)1,Δ
�

#»×r2
Γ � (A #»×B)optQCL(A)+l,Δ

Γ � (B)l,Δ
�

#»×r3
Γ � (A #»×B)optQCL(A)+l,Δ
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The degree overflow rules, with k ∈ N, are:
Γ,⊥ � Δ

� dol
Γ, (A)optQCL(A)+k � Δ

Γ � Δ
� dor

Γ � (A)optQCL(A)+k,Δ

Example 7. The following is related to Example 4 and shows that the sequent
¬(a ∧ b), ((a #»×b) ∧ (b #»×c))2 is satisfiable.

...

(a ∨ b), c, ¬b � a ∧ b, ⊥
�

#»×l2
(a ∨ b), (b

#»×c)2 � a ∧ b, ⊥
� ¬r

(b
#»×c)2 � ¬(a

#»×b), a ∧ b, ⊥
� ∧l2

((a
#»×b) ∧ (b

#»×c))2 � a ∧ b, ⊥
� ¬l¬(a ∧ b), ((a

#»×b) ∧ (b
#»×c))2 � ⊥

Note that the interpretation {a, c} witnesses (a ∨ b), c,¬b � a ∧ b,⊥.

Proposition 3. L[QCL]− is sound.

Proof. The soundness of the negation rules is straightforward. The soundness of
the rules ( #»×l1), ( #»×l2) and ( #»×r1) follows by the same argument as for L[QCL].
For the remaining rules, it is easy to check that the same model witnessing the
validity of the premise also witnesses the validity of the conclusion. ��
Proposition 4. L[QCL]− is complete.

Proof. We show completeness by an induction over the (aggregated) formula
complexity. Assume Γ � Δ is valid, i.e. Γ � Δ is not valid. Now, there must be a
rule in L[QCL] for which Γ � Δ is the conclusion. By the soundness of L[QCL],
this implies that at least one of the premises Γ ∗ � Δ∗ is not valid. However, then
Γ ∗

� Δ∗ is valid and, by induction, also provable. Now, by the construction of
L[QCL]−, there is a rule that allows us to derive Γ � Δ from Γ ∗

� Δ∗. ��
So far no cut-rule has been introduced for L[QCL]−, and indeed, a counterpart of
the cut rule would not be sound. One possibility is to introduce a contrapositive
of cut as described by Bonatti and Olivetti [5]. Again, it is easy to see that this
rule is admissible in our calculus:

Γ � Δ Γ, (A)k � Δ
cut2

Γ � (A)k, Δ

We are now ready to combine L[QCL] and L[QCL]− by defining an inference rule
that allows us to go from labeled sequents to non-monotonic inferences. Again,
we first consider the case where Γ is classical and A is a choice logic formula.
The preferred model inference rule is:

〈Γ, (A)i � ⊥〉i<k Γ, (A)k � ⊥ Γ, (A)k � Δ |∼simple
Γ, A |∼lex

QCL Δ
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Intuitively, the premises 〈Γ, (A)i � ⊥〉i<k along with Γ, (A)k � ⊥ ensure that
models satisfying A to a degree of k are preferred, while the premise Γ, (A)k � Δ
ensures that Δ is entailed by those preferred models.

Example 8. The valid entailment ¬(a∧b), (a #»×b)∧(b #»×c) |∼lex
QCL a∧c, b is provable

by choosing k = 2:

(ϕ1)

Γ, ((a
#»×b) ∧ (b

#»×c))1 � ⊥
(ϕ2)

Γ, ((a
#»×b) ∧ (b

#»×c))2 � ⊥
(ϕ3)

Γ, ((a
#»×b) ∧ (b

#»×c))2 � Δ |∼simple
Γ, (a

#»×b) ∧ (b
#»×c) |∼lex

QCL Δ

with Γ = ¬(a∧ b) and Δ = a∧ c, b. ϕ3 is the L[QCL]-proof from Example 4 and
ϕ2 is the L[QCL]−-proof from Example 7. ϕ1 is not shown explicitly, but it can
be verified that the corresponding sequent is provable.

We extend |∼simple to the more general case, where more than one non-classical
formula may be present, to obtain a calculus for preferred model entailment. An
additional rule |∼unsat is needed in case a theory is classically unsatisfiable.

Definition 14 (L[QCL]lex|∼ ). Let ≤l be the order on vectors in N
k defined by

– v <l w if there is some n ∈ N such that v has more entries of value n and
for all 1 ≤ m < n both vectors have the same number of entries of value m.

– v =l w if, for all n ∈ N, v and w have the same number of entries of value n.

L[QCL]lex|∼ consists of the axioms and rules of L[QCL] and L[QCL]− plus the
following rules, where v,w ∈ N

k, Γ consists of only classical formulas, and
every Ai with 1 ≤ i ≤ k is a QCL-formula:

〈Γ, (A1)w1 , . . . , (Ak)wk
� ⊥〉w <v Γ, (A1)v1 , . . . , (Ak)vk

� ⊥ 〈Γ, (A1)w1 , . . . , (Ak)wk
� Δ〉w =v

|∼lex
Γ, A1, . . . , Ak |∼lex

QCL Δ

Γ, cp(A1), . . . , cp(Ak) � ⊥
|∼unsat

Γ, A1, . . . , Ak |∼lex
QCL Δ

We first provide a small example and then show soundness and completeness.

Example 9. Consider the valid entailment ¬(a ∧ b), (a #»×b), (b #»×c) |∼lex
QCL a ∧ c, b

similar to Example 8, but with the information that we require (a #»×b) and (b #»×c)
encoded as separate formulas. It is not possible to satisfy all formulas on the left
to a degree of 1. Rather, it is optimal to either satisfy (¬(a∧b))1, (a

#»×b)1, (b
#»×c)2

or, alternatively, (¬(a ∧ b))1, (a
#»×b)2, (b

#»×c)1. We choose v = (1, 1, 2), with w =
(1, 1, 1) being the only vector w s.t. w < v. Thus, we get

.

.

.

Γ, (a
#»×b)1, (b

#»×c)1 � ⊥

.

.

.

Γ, (a
#»×b)1, (b

#»×c)2 � ⊥

.

.

.

Γ, (a
#»×b)1, (b

#»×c)2 � Δ

.

.

.

Γ, (a
#»×b)2, (b

#»×c)1 � Δ
|∼lex

Γ, (a
#»×b), (b

#»×c) |∼lex
QCL Δ

with Γ = ¬(a ∧ b) and Δ = a ∧ c, b. It can be verified that indeed all branches
are provable, but we do not show this explicitly here.
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Proposition 5. L[QCL]lex|∼ is sound.

Proof. Consider first the |∼lex -rule and assume that all premises are derivable.
By the soundness of L[QCL] and L[QCL]− they are also valid. From the first
set of premises 〈Γ, (A1)w1 , . . . , (Ak)wk

� ⊥〉w<v we can conclude that if there is
some model M of Γ that satisfies Ai to a degree of vi for all 1 ≤ i ≤ k, then
M ∈ Prf lex

QCL(Γ ∪ {A1, . . . , Ak}). The premise Γ, (A1)v1 , . . . , (Ak)vk
� ⊥ ensures

that there is such a model M . By the last set of premises 〈Γ, (A1)w1 , . . . , (Ak)wk
�

Δ〉w=v , we can conclude that all models of Γ ∪ {A1, . . . , Ak} that are equally
as preferred as M , i.e., all M ′ ∈ Prf lex

QCL(Γ ∪ {A1, . . . , Ak}), satisfy at least one
formula in Δ. Therefore, Γ,A1, . . . , Ak |∼lex

QCL Δ is valid.
Now consider the |∼unsat -rule and assume that Γ, cp(A1), . . . , cp(Ak) � ⊥ is

derivable and therefore valid. Thus, Γ∪{A1, . . . , Ak} has no models and therefore
also no preferred models. Then Γ,A1, . . . , Ak |∼lex

QCL Δ is valid. ��

Proposition 6. L[QCL]lex|∼ is complete.

Proof. Assume that Γ,A1, . . . , Ak |∼lex
QCL Δ is valid. If Γ ∪{A1, . . . , Ak} is unsat-

isfiable then Γ, cp(A1), . . . , cp(Ak) � ⊥ is valid, i.e., we can apply the |∼unsat -
rule. Now consider the case that Γ ∪{A1, . . . , Ak} is satisfiable and assume that
some preferred model M of Γ ∪ {A1, . . . , Ak} satisfies Ai to a degree of vi for
all 1 ≤ i ≤ k. Then, we claim that all premises of the rule are valid and, by the
completeness of L[QCL] and L[QCL]−, also derivable.

Assume by contradiction that one of the premises is not valid. First, consider
the case that Γ, (A1)w1 , . . . , (Ak)wk

� ⊥ is not valid for some w < w. Then there
is a model M ′ of Γ that satisfies Ai to a degree of wi for all 1 ≤ i ≤ k. However,
this contradicts the assumption that M is a preferred model of Γ ∪{A1, . . . , Ak}.

Next, assume that Γ, (A1)v1 , . . . , (Ak)vk
� ⊥ is not valid. However, M satisfies

Γ, (A1)v1 , . . . , (Ak)vk
and does not satisfy ⊥. Contradiction.

Finally, we assume that Γ, (A1)w1 , . . . , (Ak)wk
� Δ is not valid for some

w = v. Then, there is a model M ′ of Γ that satisfies Ai to a degree of wi for all
1 ≤ i ≤ k but does not satisfy any formula in Δ. But M ′ is a preferred model of
Γ ∪ {A1, . . . , Ak}, which contradicts Γ,A1, . . . , Ak |∼lex

QCL Δ being valid. ��
In this paper, we focused on the lexicographic semantics for preferred models of
choice logic theories. However, rules for other semantics, e.g. a rule |∼inc for the
inclusion based approach (cf. Definition 8), can be obtained by simply adapting
the way in which vectors over N

k are compared (cf. Definition 14).

5 Beyond QCL

QCL was the first choice logic to be described [7], and applications concerned
with QCL and ordered disjunction have been discussed in the literature [3,8,13].
For this reason, the main focus in this paper lies with QCL. However, as we
have seen in Sect. 2, CCL and its ordered conjunction show that interesting
logics similar to QCL exist. We will now demonstrate that L[QCL] can easily be
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adapted for other choice logics. In particular, we introduce L[CCL] in which the
rules of L[QCL] for the classical connectives can be retained. All that is needed is
to replace the #»×-rules by appropriate rules for the choice connective #»� of CCL.

Definition 15 (L[CCL]). L[CCL] is L[QCL], except that the #»×-rules are
replaced by the following #»�-rules:

Γ, (A)1, (B)k � Δ
#»�l1

Γ, (A #»�B)k � Δ

Γ, (A)l, (¬B)1 � Δ
#»�l2

Γ, (A #»�B)optCCL(B)+l � Δ

Γ, (A)m � Δ
#»�l3

Γ, (A #»�B)optCCL(B)+m � Δ

Γ � (A)1,Δ Γ � (B)k,Δ
#»�r1

Γ � (A #»�B)k,Δ

Γ � (A)l,Δ Γ � (¬B)1,Δ #»�r2
Γ � (A #»�B)optCCL(B)+l,Δ

Γ � (A)m,Δ
#»�r3

Γ � (A #»�B)optCCL(B)+m,Δ

where k ≤ optCCL(B), l ≤ optCCL(A), and 1 < m ≤ optCCL(A).

Note that, given Γ, (A #»�B)optCCL(B)+m � Δ with 1 < m ≤ optCCL(A), we need
to guess whether #»�l2 or #»�l3 has to be applied. We do not define L[CCL]− here,
but the necessary rules for #»� can be inferred from the #»�-rules of L[CCL] in a
similar way to how L[QCL]− was derived from L[QCL].

Proposition 7. L[CCL] is sound.

Proof. We consider the newly introduced rules.

– For #»�l1,
#»�l2, and #»�l3 this follows directly from the definition of CCL.

– ( #»�r1). Assume both premises are valid, i.e., every model of Γ is a model of Δ
or of (A)1 and (B)k with k ≤ optL(B). By definition, any model that satisfies
(A)1 and (B)k satisfies A

#»�B to degree k. Thus, every model of Γ is a model
of Δ or of (A #»�B)k, which means the conclusion of the rule is valid.

– ( #»�r2). Assume both premises are valid, i.e., every model of Γ is either a
model of Δ or of (A)l and (¬B)1 with l ≤ optCCL(A). By definition, any
model that satisfies (A)l and does not satisfy B (and hence satisfies (¬B)1)
satisfies A

#»�B to degree optCCL(B) + l.
– ( #»�r3). Assume that the premise is valid, i.e., every model of Γ is either

a model of Δ or of (A)m with 1 < m ≤ optCCL(A). By definition, any
model that satisfies (A)m, regardless of what degree this model ascribes to
B, satisfies A

#»�B to degree optCCL(B) + m. ��
Proposition 8. L[CCL] is complete.

Proof. We adapt the induction of the proof of Proposition 2:

– Assume that a sequent of the form Γ, (A #»�B)k � Δ is valid, with k ≤ optL(B).
All models that satisfy (A #»�B)k must satisfy A to a degree of 1 and B to a
degree of k. Thus, Γ, (A)1, (B)k � Δ is valid, and, by the induction hypothesis,
Γ, (A #»�B)k � Δ is provable. Similarly for the cases Γ, (A #»�B)optCCL(B)+l � Δ

with l ≤ optCCL(A), and Γ, (A #»�B)optCCL(B)+m � Δ with 1 < m ≤
optCCL(A).
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– Assume that a sequent of the form Γ � (A #»�B)k,Δ is valid, with k ≤ optL(B).
We claim that then Γ � (A)1,Δ and Γ � (B)k,Δ are valid. Assume, for the
sake of a contradiction, that the first sequent is not valid. This means that
there is a model M of Γ that is neither a model of (A)1 nor of Δ. However,
then M satisfies A

#»�B to a degree higher than optCCL(B). This contradicts
the assumption that Γ � (A #»�B)k,Δ is valid. Assume now that the second
sequent is not valid, i.e., that there is a model M of Γ that is neither a model
of (B)k nor of Δ. Then M cannot be a model of (A #»�B)k, contradicting
the assumption. As before, it follows by the induction hypothesis that Γ �
(A #»�B)k,Δ is provable. Similarly for the cases Γ � (A #»�B)optCCL(B)+l,Δ with
l ≤ optCCL(A), and Γ � (A #»�B)optCCL(B)+m,Δ with 1 < m ≤ optCCL(A). ��

We are confident that our methods can be adapted not only for QCL and CCL,
but for numerous other instantiations of the choice logic framework defined in
Sect. 2. We mention here lexicographic choice logic (LCL) [4], in which A #»� B
expresses that it is best to satisfy A and B, second best to satisfy only A, third
best to satisfy only B, and unacceptable to satisfy neither.

Moreover, note that the inference rules |∼lex and |∼unsat (cf. Definition 14) do
not depend on any specific choice logic. Thus, once labeled calculi are developed
for a choice logic, a calculus for preferred model entailment follows immediately.

6 Conclusion

In this paper we introduce a sound and complete sequent calculus for preferred
model entailment in QCL. This non-monotonic calculus is built on two calculi:
a monotonic labeled sequent calculus and a corresponding refutation calculus.

Our systems are modular and can easily be adapted: on the one hand, calculi
for choice logics other than QCL can be obtained by introducing suitable rules for
the choice connectives of the new logic, as exemplified with our calculus for CCL;
on the other hand, a non-monotonic calculus for preferred model semantics other
than the lexicographic semantics can be obtained by adapting the inference rule
|∼lex which transitions from preferred model entailment to the labeled calculi.

Our work contributes to the line of research on non-monotonic sequent calculi
that make use of refutation systems [5]. Our system is the first proof calculus
for choice logics, which have been studied mainly from the viewpoint of their
computational properties [4] and their potential applications [3,8,13] so far.

Regarding future work, we aim to investigate the proof complexity of our
calculi, and how this complexity might depend on which choice logic or preferred
model semantics is considered. Also, calculi for other choice logics such as LCL
could be explicitly defined, as was done with CCL in Sect. 5.
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Abstract. Lash is a higher-order automated theorem prover created as
a fork of the theorem prover Satallax. The basic underlying calculus of
Satallax is a ground tableau calculus whose rules only use shallow infor-
mation about the terms and formulas taking part in the rule. Lash uses
new, efficient C representations of vital structures and operations. Most
importantly, Lash uses a C representation of (normal) terms with per-
fect sharing along with a C implementation of normalizing substitutions.
We describe the ways in which Lash differs from Satallax and the perfor-
mance improvement of Lash over Satallax when used with analogous flag
settings. With a 10 s timeout Lash outperforms Satallax on a collection
TH0 problems from the TPTP. We conclude with ideas for continuing
the development of Lash.

Keywords: Higher-order logic · Automated reasoning · TPTP

1 Introduction

Satallax [4,7] is an automated theorem prover for higher-order logic that was a
top competitor in the THF division of CASC [10] for most of the 2010s. The basic
calculus of Satallax is a complete ground tableau calculus [2,5,6]. In recent years
the top systems of the THF division of CASC are primarily based on resolution
and superposition [3,8,11]. At the moment it is an open question whether there
is a research and development path via which a tableau based prover could again
become competitive. As a first step towards answering this question we have cre-
ated a fork of Satallax, called Lash, focused on giving efficient C implementations
of data structures and operations needed for search in the basic calculus.

Satallax was partly competitive due to (optional) additions that went beyond
the basic calculus. Three of the most successful additions were the use of higher-
order pattern clauses during search, the use of higher-order unification as a
heuristic to suggest instantiations at function types and the use of the first-
order theorem prover E as a backend to try to prove the first-order part of the
current state is already unsatisfiable. Satallax includes flags that can be used to
activate or deactivate such additions so that search only uses the basic calculus.
They are deactivated by default. Satallax has three representations of terms in
Ocaml. The basic calculus rules use the primary representation. Higher-order
c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 350–358, 2022.
https://doi.org/10.1007/978-3-031-10769-6_21
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unification and pattern clauses make use of a representation that includes a
case for metavariables to be instantiated. Communication with E uses a third
representation restricted to first-order terms and formulas. When only the basic
calculus is used, only the primary representation is needed.

Assuming only the basic calculus is used only limited information about
(normal) terms is needed during the search. Typically we only need to know the
outer structure of the principal formulas of each rule, and so the full term does
not need to be traversed. In some cases Satallax either implicitly or explicitly
traverses the term. The implicit cases are when a rule needs to know if two
terms are equal. In Satallax, Ocaml’s equality is used to test for equality of
terms, implicitly relying on a recursion over the term. The explicit cases are
quantifier rules that instantiate with either a term or a fresh constant. In the
former case we may also need to normalize the result after instantiating with a
term.

In order to give an optimized implementation of the basic calculus we have
created a new theorem prover, Lash1, by forking a recent version of Satallax
(Satallax 3.4), the last version that won the THF division of CASC (in 2019).
Generally speaking, we have removed all the additional code that goes beyond
the basic calculus. In particular we do not need terms with metavariables since we
support neither pattern clauses nor higher-order unification in Lash. Likewise we
do not need a special representation for first-order terms and formulas since Lash
does not communicate with E. We have added efficient C implementations of
(normal) terms with perfect sharing. Additionally we have added new efficient C
implementations of priority queues and the association of formulas with integers
(to communicate with MiniSat). To measure the speedup given by the new parts
of the implementation we have run Satallax 3.4 using flag settings that only
use the basic calculus and Lash 1.0 using the same flag settings. We have also
compared Lash to Satallax 3.4 using Satallax’s default strategy with a timeout of
10 s, and have found that Lash 1.0 outperforms Satallax with this short timeout
even when Satallax is using the optional additions (including calling E). We
describe the changes and present a number of examples for which the changes
lead to a significant speedup.

2 Preliminaries

We will presume a familiarity with simple type theory and only give a quick
description to make our use of notation clear, largely following [6]. We assume a
set of base types, one of which is the type o of propositions (also called booleans),
and the rest we refer to as sorts. We use α, β to range over sorts and σ, τ to range
over types. The only types other than base types are function types στ , which
can be thought of as the type of functions from σ to τ .

All terms have a unique type and are inductively defined as (typed) variables,
(typed) constants, well-typed applications (t s) and λ-abstractions (λx.t). We
1 Lash 1.0 along with accompanying material is available at http://grid01.ciirc.cvut.

cz/∼chad/ijcar2022lash/.
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also include the logical constant ⊥ as a term of type o, terms (of type o) of the
form (s ⇒ t) (implications) and (∀x.t) (universal quantifiers) where s, t have
type o and terms (of type o) of the form (s =σ t) where s, t have a common
type σ. We also include choice constants εσ of (σo)σ at each type σ. We write
¬t for t ⇒ ⊥ and (s �=σ t) for (s =σ t ⇒ ⊥). We omit type parentheses and type
annotations except where they are needed for clarity. Terms of type o are also
called propositions. We also use �, ∨,∧,∃ with the understanding that these are
notations for equivalent propositions in the set of terms above.

We assume terms are equal if they are the same up to α-conversion of bound
variables (using de Bruijn indices in the implementation). We write [s] for the
βη-normal form of s.

The tableau calculi of [6] (without choice) and [2] (with choice) define when
a branch is refutable. A branch is a finite set of normal propositions. We let A
range over branches and write A, s for the branch A∪{s}. We will not give a full
calculus, but will instead discuss a few of the rules with surprising properties.
Before doing so we emphasize rules that are not in the calculus. There is no
cut rule stating that if A, s and A,¬s are refutable, then A is refutable. (During
search such a rule would require synthesizing the cut formula s.) There is also no
rule stating that if the branch A, (s = t), [ps], [pt] is refutable, then A, (s = t), [ps]
is refutable (where s, t have type σ and p is a term of type σo). That is, there is
no rule for rewriting into arbitrarily deep positions using equations.

All the tableau rules only need to examine the outer structure to test if they
apply (when searching backwards for a refutation). When applying the rule,
new formulas are constructed and added to the branch (or potentially multiple
branches, each a subgoal to be refuted). An example is the confrontation rule,
the only rule involving positive equations. The confrontation rule states that if
s =α t and u �=α v are on a branch A (where α is a sort), then we can refute
A by refuting A, s �= u, t �= u and A, s �= v, t �= v. A similar rule is the mating
rule, which states that if ps1 . . . sn and ¬pt1 . . . tn are on a branch A (where
p is a constant of type σ1 · · · σno), then we can refute A by refuting each of
the branches A, si �= ti for each i ∈ {1, . . . , n}. The mating rule demonstrates
how disequations can appear on a branch even if the original branch to refute
contained no reference to equality at all. One way a branch can be closed is if
s �= s is on the branch. In an implementation, this means an equality check is
done for s and t whenever a disequation s �= t is added to the branch. In Satallax
this requires Ocaml to traverse the terms. In Lash this only requires comparing
the unique integer ids the implementation assigns to the terms.

The disequations generated on a branch play an important role. Terms (of
sort α) occuring on one side of a disequation on a branch are called discrimi-
nating terms. The rule for instantiating a quantified formula ∀x.t (where x has
sort α) is restricted to instantiating with discriminating terms (or a default term
if no terms of sort α are discriminating). During search in Satallax this means
there is a finite set of permitted instantiations (at sort α) and this set grows as
disequations are produced. Note that, unlike most automated theorem provers,
the instantiations do not arise from unification. In Satallax (and Lash) when
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∀x.t is being processed it is instantiated with all previously processed instanti-
ations. When a new instantiation is produced, previously processed universally
quantified propositions are instantiated with it. When ∀x.t is instantiated with
s, then [(λx.t)s] is added to the branch. Such an instantiation is the important
case where the new formula involves term traversals: both for substitution and
normalization. In Satallax the substitution and normalization require multiple
term traversals. In Lash we have used normalizing substitutions and memorized
previous computations, minimizing the number of term traversals. The need
to instantiate arises when processing either a universally quantified proposition
(giving a new quantifier to instantiate) or a disequation at a sort (giving new
discriminating terms).

We discuss a small example both Satallax and Lash can easily prove. We
briefly describe what both do in order to give the flavor of the procedure and
(hopefully) prevent readers from assuming the provers behave too similarly from
readers based on other calculi (e.g., resolution).

Example SEV241^5 from TPTP v7.5.0 [9] (X5201A from Tps [1]) contains a
minor amount of features going beyond first-order logic. The statement to prove
is

∀x.U x ∧ W x ⇒ ∀S.(S = U ∨ S = W ) ⇒ Sx.

Here U and W are constants of type αo, x is a variable of type α and S is a
variable of type αo. The higher-order aspects of this problem are the quantifier
for S (though this could be circumvented by making S a constant like U and W )
and the equations between predicates (though these could be circumvented by
replacing S = U by ∀y.Sy ⇔ Uy and replacing S = W similarly). The tableau
rules effectively do both during search.

Satallax never clausifies. The formula above is negated and assumed. We will
informally describe tableau rules as splitting the problem into subgoals, though
this is technically mediated through MiniSat (where the set of MiniSat clauses
is unsatisfiable when all branches are closed). Tableau rules are applied until
the problem involves a constant c (for x), a constant S′ for S and assumptions
U c, W c, S′ = U ∨ S′ = W and ¬S′c on the branch. The disjunction is
internally S′ �= U ⇒ S′ = W and the implication rule splits the problem into
two branches, one with S′ = U and one with S′ = W . Both branches are solved
in analogous ways and we only describe the S′ = U branch. Since S′ = U is an
equation at function type, the relevant rule adds ∀y.S′y = Uy to the branch.
Since there are no disequations on the branch, there is no instantiation available
for ∀y.S′y = Uy. In such a case, a default instantiation is created and used. That
is, a default constant d (of sort α) is generated and we instantiate with this d,
giving S′d =o Ud. The rule for equations at type o splits into two subgoals: one
branch with S′d and Ud and another with ¬S′d and ¬Ud. On the first branch
we mate S′d with ¬S′c adding the disequation d �= c to the branch. This makes c
available as an instantiation for ∀y.S′y = Uy. After instantiating with c the rest
of the subcase is straightforward. In the other subgoal we mate U c with ¬Ud
giving the disequation c �= d. Again, c becomes available as an instantiation and
the rest of the subcase is straightforward.
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3 Terms with Perfect Sharing

Lash represents normal terms as C structures, with a unique integer id assigned
to each term. The structure contains a tag indicating which kind of term is
represented, a number that is used to either indicate the de Bruijn index (for
a variable), the name (for a constant), or the type (for a λ-abstraction, a uni-
versal quantifier, a choice operator, or an equation). Two pointers (optionally)
point to relevant subterms in each case. In addition the structure maintains
the information of which de Bruijn indices are free in the term (with de Bruijn
indices limited to a maximum of 255). Knowing the free de Bruijn indices of
terms makes recognizing potential η-redexes possible without traversing the λ-
abstraction. Likewise it is possible to determine when shifting and substitution
of de Bruijn indices would not affect a term, avoiding the need to traverse the
term.

In Ocaml only the unique integer id is directly revealed and this is sufficient
to test for equality of terms. Hash tables are used to uniquely assign types
to integers and strings (for names) to integers and these integers are used to
interface with the C code. Various functions are used in the Ocaml-C interface to
request the construction of (normal) terms. For example, given the two Ocaml
integer ids i and j corresponding to terms s and t, the function mk norm ap
given i and j will return an integer k corresponding to the normal term [s t].
The C implementation recognizes if s is a λ-abstraction and performs all βη-
reductions to obtain a normal term. Additionally, the C implementation treats
terms as graphs with perfect sharing, and additionally caches previous operations
(including substitutions and de Bruijn shifting) to prevent recomputation.

In addition to the low-level C term reimplementation, we have also provided a
number of other low-level functionalities replacing the slower parts of the Ocaml
code. This includes low-level priority queues, as well as C code used to associate
the integers representing normal propositions with integers that are used to
communicate with MiniSat. The MiniSat integers are nonzero and satisfy the
property that minus on integers corresponds to negation of propositions.

4 Results and Examples

The first mode in the default schedule for Satallax 3.1 is mode213. This mode
activates one feature that goes beyond the basic calculus: pattern clauses. Addi-
tionally the mode sets a flag that tries to split the initial goal into several indepen-
dent subgoals before beginning the search proper. Through experimentation we
have found that setting a flag (common to both Satallax and Lash) to essentially
prevent MiniSat from searching (i.e., only using MiniSat to recognize contradic-
tions that are evident without search) often improves the performance. We have
created a modified mode mode213d that deactivates these additions (and delays
the use of MiniSat) so that Satallax and Lash will have a similar (and often the
same) search space. (Sometimes the search spaces differ due to differences in the
way Satallax and Lash enumerate instantiations for function types, an issue we



Lash 1.0 (System Description) 355

Table 1. Lash vs. Satallax on 2053 TH0 Problems.

Prover Problems Solved

Lash 1501 (73%)

Satallax (with E) 1487 (72%)

Satallax (without E) 1445 (70%)

Satallax (Lash Schedule) 1412 (69%)

will not focus on here.) We have also run Lash with many variants of Satallax
modes with similar modifications. From such test runs we have created a 10 s
schedule consisting of 5 modes.

To give a general comparison of Satallax and Lash we have run both on 2053
TH0 problems from a recent release of the TPTP [9] (7.5.0). We initially selected
all problems with TPTP status of Theorem or Unsatisfiable (so they should be
provable in principle) without polymorphism (or similar extensions of TH0). We
additionally removed a few problems that could not be parsed by Satallax 3.4
and removed a few hundred problems big enough to activate SINE in Satallax
3.4.

We ran Lash for 10 s with its default schedule over this problem set. For
comparison, we have run Satallax 3.4 for 10 s in three different ways: using the
Lash schedule (since the flag settings make sense for both systems) and using
Satallax 3.4’s default schedule both with and without access to E [12]. The
results are reported in Table 1. It is already promising that Lash has the ability
to slightly outperform Satallax even when Satallax is allowed to call E.

To get a clearer view of the improvement we discuss a few specific examples.
TPTP problem NUM638^1 (part of Theorem 3 from the Automath formal-

ization of Landau’s book) is about the natural numbers (starting from 1). The
problem assumes a successor function s is injective and that every number other
than 1 has a predecessor. An abstract notion of existence is used by having
a constant some of type (ιo)o about which no extra assumptions are made,
so the assumption is formally ∀x.x �= 1 ⇒ some(λu.x = su). For a fixed n,
n �= 1 is assumed and the conjecture to prove is the negation of the implication
(∀xy.n = sx ⇒ n = sy ⇒ x = y) ⇒ ¬(some(λu.n = su)). The implication is
assumed and the search must rule out the negation of the antecedent (i.e., that
n has two predecessors) and the succedent (that n has no predecessor). Satallax
and Lash both take 3911 steps to prove this example. With mode213d, Lash
completes the search in 0.4 s while Satallax requires almost 29 s.

TPTP problem SEV108^5 (SIX_THEOREM from Tps [1]) corresponds to prov-
ing the Ramsey number R(3,3) is at most 6. The problem assumes there is a
symmetric binary relation R (the edge relation of a graph with the sort as ver-
tices) and there are (at least) 6 distinct elements. The conclusion is that there
are either 3 distinct elements all of which are R-related or 3 distinct elements
none of which are R-related. Satallax and Lash can solve the problem in 14129
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steps with mode mode213d. Satallax proves the theorem in 0.153 s while Lash
proves the theorem in the same number of steps but in 0.046 s.

The difference is more impressive if we consider the modified problem of
proving R(3, 4) is at most 9. That is, we assume there are (at least) 9 distinct
elements and modify the second disjunct of the conclusion to be that there are
4 distinct elements none of which are R-related. Satallax and Lash both use
186127 steps to find the proof. For Satallax this takes 44 s while for Lash this
takes 5.5 s.

The TPTP problem SYO506^1 is about an if-then-else operator. The problem
has a constant c of type oιιι. Instead of giving axioms indicating c behaves as
an if-then-else operator, the conjecture is given as a disjunction:

(∀xy.c (x = y) x y = y) ∨ ¬(∀xy.c � x y = x) ∨ ¬(∀xy.c ⊥ x y = y).

After negating the conjecture and applying the first few tableau rules the branch
will contain the propositions ∀xy.c � x y = x, ∀xy.c ⊥ x y = y and the
disequation c (d = e) d e �= e for fresh d and e of type ι. In principle the rules
for if-then-else given in [2] could be used to solve the problem without using
the universally quantified formulas (other than to justify that c is an if-then-
else operator). However, these are not implemented in Satallax or Lash. Instead
search proceeds as usual via the basic underlying procedure. Both Satallax and
Lash can prove the example using modes mode0c1 in 32704 steps. Satallax
performs the search in 9.8 s while Lash completes the search in 0.2 s.

In addition to the examples considered above, we have constructed a family of
examples intended to demonstrate the power of the shared term representation
and caching of operations. Let cons have type ιιι and nil have type ι. For each
natural number n, consider the proposition Cn given by

n (λx.cons x x) (cons nil nil) = cons (n (λx.cons x x) nil) (n (λx.cons x x) nil)

where n is the appropriately typed Church numeral. Proving the proposition
Cn does not require any search and merely requires the prover to normalize
the conjecture and note the two sides have the same normal form. However, this
normal form on both sides will be a complete binary tree of depth n+1. We have
run Lash and Satallax on Cn with n ∈ {20, 21, 22, 23, 24} using mode mode213d.
Lash solves all five problems in the same amount of time, less than 0.02 s for
each. Satallax takes 4 s, 8 s, 16 s, 32 s and 64 s. As expected, since Satallax is
not using a shared representation, the computation time exponentially increases
with respect to n.

5 Conclusion and Future Work

We have used Lash as a vehicle to demonstrate that giving a more efficient imple-
mentation of the underlying tableau calculus of Satallax can lead to significant
performance improvements. An obvious possible extension of Lash would be to
implement pattern clauses, higher-order unification and the ability to call E.
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While we may do this, our current plans are to focus on directions that further
diverge from the development path followed by Satallax.

Interesting theoretical work would be to modify the underlying calculus
(while maintaining completeness). For example the rules of the calculus might
be able to be further restricted based on orderings of ground terms. On the other
hand, new rules might be added to support a variety of constants with special
properties. This was already done for constants that satisfy axioms indicating
the constant is a choice, description or if-then-else operator [2]. Suppose a con-
stant r of type ιιo is known to be reflexive due to a formula ∀x.r x x being
on the branch. One could avoid ever instantiating this universally quantified
formula by simply including a tableau rule that extends a branch with s �= t
whenever ¬r s t is on the branch. Similar rules could operationalize other spe-
cial cases of universally quantified formulas, e.g., formulas giving symmetry or
transitivity of a relation. A modification of the usual completeness proof would
be required to prove completeness of the calculus with these additional rules
(and with the restriction disallowing instantiating the corresponding universally
quantified formulas).

Finally the C representation of terms could be extended to include precom-
puted special features. Just as the current implementation knows which de Brui-
jns are free in the term (without traversing the term), a future implementation
could know other features of the term without requiring traversal. Such features
could be used to guide the search.
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Abstract. We describe Goéland, an automated theorem prover for first-
order logic that relies on a concurrent search procedure to find tableau
proofs, with concurrent processes corresponding to individual branches of
the tableau. Since branch closure may require instantiating free variables
shared across branches, processes communicate via channels to exchange
information about substitutions used for closure. We present the proof
search procedure and its implementation, as well as experimental results
obtained on problems from the TPTP library.

Keywords: Automated Theorem Proving · Tableaux · Concurrency

1 Introduction

Although clausal proof techniques have enjoyed success in automated theo-
rem proving, some applications benefit from reasoning on unaltered formulas
(rather than Skolemized clauses), while others require the production of proofs
in a sequent calculus. These roles are fulfilled by provers based on the tableau
method [17], as initially designed by Beth and Hintikka [2,13]. For first-order
logic, efficient handling of universal formulas is typically achieved with free vari-
ables that are instantiated only when needed to close a branch. This step is said
to be destructive because it may affect open branches sharing variables. This
causes fairness (and consequently, completeness) issues, as illustrated in Fig. 1.
In this example, exploring the left branch produces a substitution that prevents
direct closure of the right branch. Reintroducing the original quantified formula
with a different free variable is not sufficient to close the right branch, because an
applicable δ-rule creates a new Skolem symbol that will result in a different but
equally problematic substitution every time a left branch is explored. Thus, sys-
tematically exploring the left branch before the right leads to non-termination of
the search. Conversely, exploring the right branch first produces a substitution
(which instantiates the free variable X with a rather than b) that closes both
branches.

Concurrent computing offers a way to implement a proof search procedure
that explores branches simultaneously. Such a procedure can compare closing
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Fig. 1. Incompleteness caused by unfair selection of branches

substitutions to detect (dis)agreements between branches, and consequently
either close branches early, or restart proof attempts with limited backtrack-
ing. The simultaneous exploration of branches is handled by the concurrency
system, either by interleaving computations through scheduling, or by execut-
ing tasks in parallel if the hardware resources allow it. A concurrent procedure
naturally lends itself to parallel execution, allowing us to take advantage of
multi-core architectures for efficient first-order theorem proving. Thus, concur-
rency provides an elegant and efficient solution to proof search with free variable
tableaux.

In this paper, we describe a concurrent destructive proof search procedure
for first-order analytic tableaux (Sect. 2) and its implementation in a tool called
Goéland, as well as its evaluation on problems from the TPTP library [19] and
comparison to other state-of-the-art provers (Sect. 3).

Related Work. A lot of research has been carried out on the parallelization of
proof search procedures [4], often focusing primarily on parallel execution and
performance. In contrast, we use concurrency not only as a way to take advan-
tage of multi-core architectures, but also as an algorithmic device that is useful
even for sequential execution (with interleaved threads). Some concurrent and
parallel approaches focus more distinctly on the exploration of the search space,
either by dividing the search space between processes (distributed search) or by
using processes with different search plans on the same space (multi search) [3].
These approaches can be performed either by heterogeneous systems that rely on
cooperation between systems with different inference systems [1,8,12], or homo-
geneous systems where all deductive processes use the same inference system.
According to this classification, the technique presented here is a homogeneous
system that performs a distributed search. Concurrent tableaux provers include
the model-elimination provers CPTheo [12] and Partheo [18], and the higher-
order prover Hot [15], which notably uses concurrency to deal with fairness issues
arising from the non-terminating nature of higher-order unification. Lastly, con-
currency has been used as the basis of a generic framework to present various
proof strategies [10] or allow distributed calculations over a network [21].
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2 Concurrent Proof Search

Free Variable Tableaux. Goéland attempts to build a refutation proof for a first-
order formula, i.e., a closed tableau for its negation, using a standard free-variable
tableau calculus [11]. The calculus is composed of α-, γ- and δ-rules that extend
a branch with one formula, β-rules that divide a branch by extending it with
two formulas, and a �-rule that closes a branch. γ-rules deal with universally-
quantified formulas by introducing a formula with a free variable. A free variable
is not universally quantified, but is instead a placeholder for some term instanti-
ation, typically determined upon branch closure. δ-rules deal with existentially-
quantified formulas by introducing a formula with a Skolem function symbol
that takes as arguments the free variables in the branch. This ensures freshness
of the Skolem symbol independently of variable instantiation.

The branch closure rule applies to a branch carrying atomic formulas P and
Q such that, for some substitution σ, σ(P ) = σ(¬Q). In that case, σ is applied
to all branches. That rule is consequently destructive: applying a substitution
to close one branch may modify another, removing the possibility to close it
immediately. A tableau is closed when all its branches are closed. Closing a
tableau can thus be seen as providing a global unifier that closes all branches.

Semantics for Concurrency. Goéland relies on a concurrent search procedure. In
order to present this procedure, we use a simple While language augmented
with instructions for concurrency, in the style of CSP [14]. Each process has its
own variable store, as well as a collection of process identifiers used for com-
munication: πparent denotes the identifier of a process’s parent, while Πchildren

denotes the collection of identifiers of active children of that process. Given a
process identifier π and an expression e, the command π ! e is used to send an
asynchronous message with the value e to the process identified by π. Conversely,
the command π ?x blocks the execution until the process identified by π sends a
message, which is stored in the variable x. Lastly, the instruction start creates
a new process that executes a function with some given arguments, while the
instruction kill interrupts the execution of a process according to its identifier.

Proof Search Procedure. The proof search is carried out concurrently by processes
corresponding to branches of the tableau. Processes are started upon application
of a β-rule, one for each new branch. Communications between processes take
two forms: a process may send a set of closing substitutions for its branch to
its parent, or a parent may send a substitution (that closes one of its children’s
branch) to the other children. The proof search is performed by the proofSearch,
waitForParent, and waitForChildren procedures (described in Procedures 1,
2, and 3, respectively).

The proofSearch procedure initiates the proof search for a branch. It first
attempts to apply the closure rule. A closing substitution is called local to a
process if its domain includes only free variables introduced by this process or
one of its descendants (i.e., if the variables do not occur higher in the proof tree).
If one of the closing substitutions is local to the process, it is reported and the
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Procedure 1: proofSearch

Data: a tableau T
1 begin
2 var Θ ← applyClosingRule(T ) ;
3 for θ ∈ Θ do
4 if isLocal(θ) then
5 πparent ! {θ}
6 return

7 if Θ �= ∅ then
8 πparent ! Θ
9 waitForParent(T, Θ)

10 else if applicableAlphaRule(T ) then
11 proofSearch(applyAlphaRule(T ))
12 else if applicableDeltaRule(T ) then
13 proofSearch(applyDeltaRule(T ))
14 else if applicableBetaRule(T ) then
15 for T ′ ∈ applyBetaRule(T ) do
16 start proofSearch(T ′)

17 waitForChildren(T, ∅, ∅)

18 else if applicableGammaRule(T ) then
19 proofSearch(applyGammaRule(T ))
20 else
21 πparent ! ∅

process terminates. If only non-local closing substitutions are found, they are
reported and the process executes waitForParent. Otherwise, the procedure
applies tableau expansion rules according to the priority: α ≺ δ ≺ β ≺ γ.
If a β-rule is applied, new processes are started, and each of them executes
proofSearch on the newly created branch, while the current process executes
waitForChildren.

The waitForParent procedure is executed by a process after it has found
closing non-local substitutions. Such substitutions may prevent closure in other
branches. In these cases, the parent will eventually send another candidate sub-
stitution. waitForParent waits until such a substitution is received, and triggers
a new step of proof search. The process may also be terminated by its parent
(via the kill instruction) during the execution of this procedure, if one of the
substitutions previously sent by the process leads to closing the parent’s branch.

The waitForChildren procedure is executed by a process after the applica-
tion of a β-rule and the creation of child processes. The set of substitutions sent
by each child is stored in a map subst (Line 2), initially undefined everywhere
(f⊥). This procedure closes the branch (Line 13) if there exists a substitution
θ that agrees with one closing substitution of each child process, i.e., for each
child process, the process has reported a substitution σ such that σ(X) = θ(X)
for any variable X in the domain of σ. If no such substitution can be found
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Procedure 2: waitForParent
Data: a tableau T , a set Θsent of substitutions sent by this process to its parent

1 begin
2 πparent ? σ
3 if σ ∈ Θsent then
4 πparent ! σ
5 waitForParent(T, Θsent)

6 else
7 proofSearch(σ(T ))

after all the children have closed their branches, then one closing substitution
σ ∈ subst is picked arbitrarily (Line 18) and sent to all the children (which are
at that point executing waitForParent) to restart their proof attempts. With
the additional constraint of the substitution σ, the new proof attempts may fail,
hence the necessity for backtracking among candidate substitutions Θbacktrack

(Line 5 and 6). At the end, if all the substitutions were tried and failed, the
process sends a failure message (symbolized by ∅) to its parent.

Thus, concurrency and backtracking are used to prevent incompleteness
resulting from unfair instantiation of free variables. Another potential source
of unfairness is the γ-rule, when applied more than once to a universal formula
(reintroduction). This may be needed to find a refutation, but unbounded rein-
troductions would lead to unfairness. Iterative deepening [16] is used to guard
against this: a bound limits the number of reintroductions on any single branch,
and if no proof is found, the bound is increased and the proof search restarted.

Figure 2 illustrates the interactions between processes for the problem in
Fig. 1, and shows how concurrency helps ensure fairness. It describes the par-
ent process, in the top box, and below, the two children processes created upon
application of the β-rule. Dotted lines separate successive states of a process
(i.e., Procedures 1, 2 and 3 seen above), while arrows and boxes represent sub-
stitution exchanges. The number above each arrow indicates the chronology of
the interactions. After both children have returned a substitution (1), the par-
ent arbitrarily chooses one of them, starting with X �→ b, and sends it to the
children (2). Since this substitution prevents closure in the right branch (3), the
parent later backtracks and sends the other substitution X �→ a (4), allowing
both children (5) and then the parent to close successfully.

3 Implementation and Experimental Results

Implementation. The procedures presented in Sect. 2 are implemented in the
Goéland prover1 using the Go language. Go supports concurrency and paral-
lelism, based on lightweight execution threads called goroutines [20]. Goroutines

1 Available at: https://github.com/GoelandProver/Goeland/releases/tag/v1.0.0-beta.

https://github.com/GoelandProver/Goeland/releases/tag/v1.0.0-beta
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Procedure 3: waitForChildren
Data: a tableau T , a set Θsent of substitutions sent by this process to its

parent, a set Θbacktrack of substitutions used for backtracking
1 begin
2 var subst ← f⊥
3 while ∃π ∈ Πchildren. subst[π] = ⊥ do
4 π ? subst[π]
5 if subst[π] = ∅ then
6 if ∃θ ∈ Θbacktrack then
7 for π ∈ Πchildren do π ! θ;
8 waitForChildren(T, Θsent, Θbacktrack \ {θ})

9 else
10 for π ∈ Πchildren do kill π;
11 πparent ! ∅
12 return

13 if ∃θ, agreement(θ, subst) then
14 πparent ! {θ}
15 for π ∈ Πchildren do kill π;
16 waitForParent(T, Θsent ∪ {θ})

17 else
18 σ ← choice(subst)
19 for π ∈ Πchildren do π ! σ;
20 waitForChildren(T, Θsent, Θbacktrack ∪ ⋃

π subst[π] \ {σ}))

are executed according to a so-called hybrid threading (or M : N) model: M
goroutines are executed over N effective threads and scheduling is managed by
both the Go runtime and the operating system. This threading model allows
the execution of a large number of goroutines with a reasonable consumption
of system resources. Goroutines use channels to exchange messages, so that the
implementation is close to the presentation of Sect. 2.

Goéland has, for the time being, no dedicated mechanism for equality rea-
soning. However, we have implemented an extension that implements deduction
modulo theory [9], i.e., transforms axioms into rewrite rules over propositions and
terms. Deduction modulo theory has proved very useful to improve proof search
when integrated into usual automated proof techniques [5], and also produces
excellent results with manually-defined rewrite rules [6,7]. In Goéland, deduction
modulo theory selects some axioms on the basis of a simple syntactic criterion
and replaces them by rewrite rules.

Experimental Results. We evaluated Goéland on two problems categories with
FOF theorems in the TPTP library (v7.4.0): syntactic problems without equal-
ity (SYN) and problems of set theory (SET). The former was chosen for its
elementary nature, whereas the latter was picked primarily to evaluate the per-
formance of the deduction modulo theory, as the axioms of set theory are good
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Fig. 2. Proof search and resulting proof for P (a) ∧ ¬P (b) ∧ ∀x.(P (x) ⇔ ∀y.P (y))

targets for rewriting. We compared the results with those of five other provers:
tableau-based provers Zenon (v0.8.5), Princess (v2021-05-10) and LeoIII (v1.6),
as well as saturation-based provers E (v2.6) and Vampire (v4.6.1). Experiments
were executed on a computer equipped with an Intel Xeon E5-2680 v4 2.4GHz
2×14-core processor and 128 GB of memory. Each proof attempt was limited to
300 s. Table 1 and Fig. 3 report the results. Table 1 shows the number of problems
solved by each prover, the cumulative time, and the number of problems solved
by a given prover but not by Goéland (+) and conversely (−). Figure 3 presents
the cumulative time required to solve the number of problems.

As can be observed, the results of Goéland are comparable to, or slightly
better than those of other tableau-based provers on problems from SYN, while
saturation theorem provers achieve the best results. On this category, the axioms
do not trigger deduction modulo theory rewriting rules, hence the similar results
of Goéland and Goéland+DMT. On SET, Goéland+DMT obtains significantly bet-
ter results than other tableau-based provers. This confirms the previous results
on the performance of deduction modulo theory for set theory [6,7].
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Table 1. Experimental results over the TPTP library

SYN (263 problems) SET (464 problems)

Goéland 199 (190 s) 150 (4659 s)

Goéland+DMT 199 (196 s) (+0, −0) 278 (1292 s) (+142, −14)

Zenon 256 (67 s) (+60, −3) 150 (562 s) (+75, −75)

Princess 195 (189 s) (+1, −5) 258 (1168 s) (+141, −33)

LeoIII 195 (268 s) (+1, −5) 177 (2925 s) (+77, −50)

E 261 (168 s) (+62, −0) 363 (2377 s) (+223, −10)

Vampire 262 (13 s) (+63, −0) 321 (4122 s) (+188, −17)

Fig. 3. Cumulative time per problem solved between Goéland, Goéland+DMT(GDMT),
Zenon, Princess, LeoIII, E, and Vampire

4 Conclusion

We have presented a concurrent proof search procedure for tableaux in first-
order logic with the aim of ensuring a fair exploration of the search space. This
procedure has been implemented in the prover Goéland. This tool is still in an
early stage, and (with the exception of deduction modulo theory) implements
only the most basic functionalities, yet empirical results are encouraging. We
plan on adding functionalities such as equality reasoning, arithmetic reasoning,
and support for polymorphism to Goéland, which should increase its usability
and performance. The integration of these functionalities in the context of a
concurrent prover seems to be a promising line of research. Further investigation
is also needed to prove the fairness, and therefore completeness, of our procedure.
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Abstract. A code X is not primitivity preserving if there is a primitive
list w ∈ listsX whose concatenation is imprimitive. We formalize a
full characterization of such codes in the binary case in the proof assis-
tant Isabelle/HOL. Part of the formalization, interesting on its own, is
a description of {x, y}-interpretations of the square xx if |y| ≤ |x|. We
also provide a formalized parametric solution of the related equation
xjyk = z�.

1 Introduction

Consider two words abba and b. It is possible to concatenate (several copies of)
them as b ·abba ·b, and obtain a power of a third word, namely a square bab ·bab
of bab. In this paper, we completely describe all ways how this can happen for
two words, and formalize it in Isabelle/HOL.

The corresponding theory has a long history. The question can be formulated
as solving equations in three variables of the special form W (x, y) = z� where
the left hand side is a sequence of x’s and y’s, and � ≥ 2. The seminal result in
this direction is the paper by R. C. Lyndon and M.-P. Schützenberger [10] from
1962, which solves in a more general setting of free groups the equation xjyk = z�

with 2 ≤ j, k, �. It was followed, in 1967, by a partial answer to our question by
A. Lentin and M.-P. Schützenberger [9]. A complete characterization of monoids
generated by three words was provided by L. G. Budkina and Al. A. Markov
in 1973 [4]. The characterization was later, in 1976, reproved in a different way
by Lentin’s student J.-P. Spehner in his Ph.D. thesis [14], which even explicitly
mentions the answer to the present question. See also a comparison of the two
classifications by T. Harju and D. Nowotka [7]. In 1985, the result was again
reproved by E. Barbin-Le Rest and M. Le Rest [1], this time specifically focusing
on our question. Their paper contains a characterization of binary interpretations
of a square as a crucial tool. The latter combinatorial result is interesting on its
own, but is very little known. In addition to the fact that, as far as we know,
the proof is not available in English, it has to be reconstructed from Théorème
2.1 and Lemme 3.1 in [1], it is long, technical and little structured, with many
c© The Author(s) 2022
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intuitive steps that have to be clarified. It is symptomatic, for example, that
Maňuch [11] cites the claim as essentially equivalent to his desired result but
nevertheless provides a different, shorter but similarly technical proof.

The fact that several authors opted to provide their own proof of the already
known result, and that even a weaker result was republished as new shows that
the existing proof was not considered sufficiently convincing and approachable.
This makes the topic a perfect candidate for formalization. The proof we present
here naturally contains some ideas of the proof from [1] but is significantly dif-
ferent. Our main objective was to follow the basic methodological requirement
of a good formalization, namely to identify claims that are needed in the proof
and formulate them as separate lemmas and as generally as possible so that
they can be reused not only in the proof but also later. Moreover, the formal-
ization naturally forced us to consider carefully the overall strategy of the proof
(which is rather lost behind technical details of published works on this topic).
Under Isabelle’s pressure we eventually arrived at a hopefully clear proof struc-
ture which includes a simple, but probably innovative use of the idea of “gluing”
words. The analysis of the proof is therefore another, and we believe the most
important contribution of our formalization, in addition to the mere certainty
that there are no gaps in the proof.

In addition, we provide a complete parametric solution of the equation xkyj =
z� for arbitrary j, k and �, a classification which is not very difficult, but maybe
too complicated to be useful in a mere unverified paper form.

The formalization presented here is an organic part of a larger project of
formalization of combinatorics of words (see an introductory description in [8]).
We are not aware of a similar formalization project in any proof assistant. The
existence of the underlying library, which in turn extends the theories of “List”
and “HOL-Library.Sublist” from the standard Isabelle distribution, critically
contributes to a smooth formalization which is getting fairly close to the way
a human paper proof would look like, outsourcing technicalities to the (reusable)
background. We accompany claims in this text with names of their formalized
counterparts.

2 Basic Facts and Notation

Let Σ be an arbitrary set. Lists (i.e. finite sequences) [x1, x2, . . . , xn] of elements
xi ∈ Σ are called words over Σ. The set of all words over Σ is usually denoted
as Σ∗, using the Kleene star. A notorious ambivalence of this notation is related
to the situation when we consider a set of words X ⊂ Σ∗, and are interested in
lists over X. They should be denoted as elements of X∗. However, X∗ usually
means something else (in the theory of rational languages), namely the set of all
words in Σ∗ generated by the set X. To avoid the confusion, we will therefore
follow the notation used in the formalization in Isabelle, and write listsX
instead, to make clear that the entries of an element of listsX are themselves
words. In order to further help to distinguish words over the basic alphabet
from lists over a set of words, we shall use boldface variables for the latter.
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In particular, it is important to keep in mind the difference between a letter
a and the word [a] of length one, the distinction which is usually glossed over
lightly in the literature on combinatorics on words. The set of words over Σ
generated by X is then denoted as 〈X〉. The (associative) binary operation of
concatenation of two words u and v is denoted by u · v. We prefer this algebraic
notation to the Isabelle’s original @. Moreover, we shall often omit the dot as
usual. If u = [x1, x2, . . . , xn] ∈ listsX is a list of words, then we write concatu
for x1 · x2 · · · xn. We write ε for the empty list, and uk for the concatenation of
k copies of u (we use u@k in the formalization). We write u ≤p v, u <p v,
u ≤s v, u <s v, and u ≤f v to denote that u is a prefix, a strict prefix, suffix,
strict suffix and factor (that is, a contiguous sublist) respectively. A word is
primitive if it is nonempty and not a power of a shorter word. Otherwise, we call
it imprimitive. Each nonempty word w is a power of a unique primitive word
ρw, its primitive root. A nonempty word r is a periodic root of a word w if
w ≤p r ·w. This is equivalent to w being a prefix of the right infinite power of r,
denoted rω. Note that we deal with finite words only, and we use the notation
rω only as a convenient shortcut for “a sufficiently long power of r”. Two words
u and v are conjugate, we write u ∼ v, if u = rq and v = qr for some words
r and q. Note that conjugation is an equivalence whose classes are also called
cyclic words. A word u is a cyclic factor of w if it is a factor of some conjugate
of w. A set of words X is a code if its elements do not satisfy any nontrivial
relation, that is, they are a basis of a free semigroup. For a two-element set
{x, y}, this is equivalent to x and y being non-commuting, i.e., xy 	= yx, and/or
to ρ x 	= ρ y. An important characterization of a semigroup S of words to be free
is the stability condition which is the implication u, v, uz, zv ∈ S =⇒ z ∈ S. The
longest common prefix of u and v is denoted by u ∧p v. If {x, y} is a (binary)
code, then (x · w) ∧p (y · w′) = xy ∧p yx for any w,w′ ∈ 〈{x, y}〉 sufficiently
long. We explain some elementary facts from combinatorics on words used in
this article in more detail in Sect. 8.

3 Main Theorem

Let us introduce the central definition of the paper.

Definition 1. We say that a set X of words is primitivity preserving if there
is no word w ∈ listsX such that

– |w| ≥ 2;
– w is primitive; and
– concatw is imprimitive.

Note that our definition does not take into account singletons w = [x]. In
particular, X can be primitivity preserving even if some x ∈ X is imprimitive.
Nevertheless, in the binary case, we will also provide some information about
the cases when one or both elements of the code have to be primitive.

In [12], V. Mitrana formulates the primitivity of a set in terms of morphisms,
and shows that X is primitivity preserving if and only if it is the minimal set of
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generators of a “pure monoid”, cf. [3, p. 276]. This brings about a wider concept
of morphisms preserving a given property, most classically square-freeness, see
for example a characterization of square-free morphisms over three letters by M.
Crochemore [5].

The target claim of our formalization is the following characterization of
words witnessing that a binary code is not primitivity preserving:

Theorem 1 (bin imprim code). Let B = {x, y} be a code that is not prim-
itivity preserving. Then there are integers j ≥ 1 and k ≥ 1, with k = 1 or
j = 1, such that the following conditions are equivalent for any w ∈ listsB
with |w| ≥ 2:

– w is primitive, and concatw is imprimitive
– w is conjugate with [x]j [y]k.

Moreover, assuming |y| ≤ |x|,
– if j ≥ 2, then j = 2 and k = 1, and both x and y are primitive;
– if k ≥ 2, then j = 1 and x is primitive.

Proof. Let w be a word witnessing that B is not primitivity preserving. That is,
|w| ≥ 2, w is primitive, and concatw is imprimitive. Since [x]j [y]k and [y]k[x]j

are conjugate, we can suppose, without loss of generality, that |y| ≤ |x|.
First, we want to show that w is conjugate with [x]j [y]k for some j, k ≥ 1

such that k = 1 or j = 1. Since w is primitive and of length at least two, it
contains both x and y. If it contains one of these letters exactly once, then w is
clearly conjugate with [x]j [y]k for j = 1 or k = 1. Therefore, the difficult part
is to show that no primitive w with concatw imprimitive can contain both
letters at least twice. This is the main task of the rest of the paper, which is
finally accomplished by Theorem 4 claiming that words that contain at least two
occurrences of x are conjugate with [x, x, y]. To complete the proof of the first
part of the theorem, it remains to show that j and k do not depend on w. This
follows from Lemma 1.

Note that the imprimitivity of concatw induces the equality xjyk = z�

for some z and � ≥ 2. The already mentioned seminal result of Lyndon and
Schützenberger shows that j and k cannot be simultaneously at least two, since
otherwise x and y commute. For the same reason, considering its primitive root,
the word y is primitive if j ≥ 2. Similarly, x is primitive if k ≥ 2. The primitivity
of x when j = 2 is a part of Theorem 4. �

We start by giving a complete parametric solution of the equation xjyk = z�

in the following theorem. This will eventually yield, after the proof of Theorem
1 is completed, a full description of not primitivity preserving binary codes.
Since the equation is mirror symmetric, we omit symmetric cases by assuming
|y| ≤ |x|.
Theorem 2 (LS parametric solution). Let � ≥ 2, j, k ≥ 1 and |y| ≤ |x|.

The equality xjyk = z� holds if and only if one of the following cases takes
place:
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A. There exists a word r, and integers m,n, t ≥ 0 such that

mj + nk = t�, and

x = rm, y = rn, z = rt;

B. j = k = 1 and there exist non-commuting words r and q, and integers
m,n ≥ 0 such that

m + n + 1 = �, and
x = (rq)mr, y = q(rq)n, z = rq;

C. j = � = 2, k = 1 and there exist non-commuting words r and q and an
integer m ≥ 2 such that

x = (rq)mr, y = qrrq, z = (rq)mrrq;

D. j = 1 and k ≥ 2 and there exist non-commuting words r and q such that

x = (qrk)�−1q, y = r, z = qrk;

E. j = 1 and k ≥ 2 and there are non-commuting words r and q, an integer
m ≥ 1 such that

x = (qr(r(qr)m)k−1)�−2qr(r(qr)m)k−2rq, y = r(qr)m, z = qr(r(qr)m)k−1.

Proof. If x and y commute, then all three words commute, hence they are a
power of a common word. A length argument yields the solution A.

Assume now that {x, y} is a code. Then no pair of words x, y and z commutes.
We have shown in the overview of the proof of Theorem 1 that j = 1 or k = 1
by the Lyndon-Schützenberger theorem. The solution is then split into several
cases.

Case 1 : j = k = 1.
Let m and r be such that zmr = x with r a strict prefix of z. By setting z = rq,
we obtain the solution B with n = � − m − 1.

Case 2 : j ≥ 2, k = 1.
Since |y| ≤ |x| and � ≥ 2, we have

2|z| ≤ |z�| = |xj | + |y| < 2|xj |,
so z is a strict prefix of xj .

As xj has periodic roots both z and x, and z does not commute with x, the
Periodicity lemma implies |xj | < |z| + |x|. That is, z = xj−1u, xj = zv and
x = uv for some nonempty words u and v. As v is a prefix of z, it is also a prefix
of x. Therefore, we have

x = uv = vu′

for some word u′. This is a well known conjugation equality which implies u = rq,
u′ = qr and v = (rq)nr for some words r, q and an integer n ≥ 0.
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We have
j|x| + |y| = |xjy| = |z�| = �(j − 1)|x| + �|u|,

and thus |y| = (�j − � − j)|x| + �|u|. Since |y| ≤ |x|, |u| > 0, j ≥ 2, and � ≥ 2, it
follows that �j − � − j = 0, which implies j = l = 2. We therefore have x2y = z2

and x2 = zv, hence vy = z.
Combining u = rq, u′ = qr, and v = (rq)nr with x = vu′, z = xj−1u = xu =

vu′u, and vy = z, we obtain the solution C with m = n + 1. The assumption
|y| ≤ |x| implies m ≥ 2.

Case 3 : j = 1, k ≥ 2, yk≤sz.
We have z = qyk for some word q. Noticing that x = z�−1q yields the solution
D.

Case 4 : j = 1, k ≥ 2, z <s yk.
This case is analogous to the second part of Case 2. Using the Periodicity lemma,
we obtain uyk−1 = z, yk = vz, and y = vu with nonempty u and v. As v is a
suffix of z, it is also a suffix of y, and we have y = vu = u′v for some u′. Plugging
the solution of the last conjugation equality, namely u′ = rq, u = qr, v = (rq)nr,
into y = u′v, z = uyk−1 and z�−1 = xv gives the solution E with m = n + 1.

Finally, the words r and q do not commute since x and y, which are generated
by r and q, do not commute.

The proof is completed by a direct verification of the converse. �
We now show that, for a given not primitivity preserving binary code, there

is a unique pair of exponents (j, k) such that xjyk is imprimitive.

Lemma 1 (LS unique). Let B = {x, y} be a code. Assume j, k, j′, k′ ≥ 1. If
both xjyk and xj′

yk′
are imprimitive, then j = j′ and k = k′.

Proof. Let z1, z2 be primitive words and �, �′ ≥ 2 be such that

xjyk = z�
1 and xj′

yk′
= z�′

2 . (1)

Since B is a code, the words x and y do not commute. We proceed by contra-
diction.

Case 1 : First, assume that j = j′ and k 	= k′.
Let, without loss of generality, k < k′. From (1) we obtain z�

1y
k′−k = z�′

2 . The
case k′ − k ≥ 2 is impossible due to the Lyndon-Schützenberger theorem. Hence
k′ − k = 1. This is another place where the formalization triggered a sim-
ple and nice general lemma (easily provable by the Periodicity lemma) which
will turn out to be useful also in the proof of Theorem 4. Namely, the lemma
imprim_ext_suf_comm claims that if both uv, and uvv are imprimitive, then u
and v commute. We apply this lemma to u = xjyk−1 and v = y, obtaining a
contradiction with the assumption that x and y do not commute.

Case 2. The case k = k′ and j 	= j′ is symmetric to Case 1.

Case 3. Let finally j 	= j′ and k 	= k′. The Lyndon-Schützenberger theorem
implies that either j or k is one, and similarly either j′ or k′ is one. We can
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therefore assume that k = j′ = 1 and k′, j ≥ 2. Moreover, we can assume that
|y| ≤ |x|. Indeed, in the opposite case, we can consider the words ykxj and yk′

xj′

instead, which are also both imprimitive.
Theorem 2 now allows only the case C for the equality xjy = z�

1. We therefore
have j = � = 2 and x = (rq)mr, y = qrrq for an integer m ≥ 2 and some non-
commuting words r and q. Since y = qrrq is a suffix of z�

2, this implies that z2

and rq do not commute. Consider the word x · qr = (rq)mrqr, which is a prefix
of xy, and therefore also of z�

2. This means that x · qr has two periodic roots,
namely rq and z2, and the Periodicity lemma implies that |x · qr| < |rq| + |z2|.
Hence x is shorter than z2. The equality xyk′

= z�′
2 , with �′ ≥ 2, now implies

on one hand that rqrq is a prefix of z2, and on the other hand that z2 is a
suffix of yk′

. It follows that rqrq is a factor of (qrrq)k. Hence rqrq and qrrq are
conjugate, thus they both have a period of length |rq|, which implies qr = rq.
This is a contradiction. �

The rest of the paper, and therefore also of the proof of Theorem 1, is orga-
nized as follows. In Sect. 4, we introduce a general theory of interpretations,
which is behind the main idea of the proof, and apply it to the (relatively simple)
case of a binary code with words of the same length. In Sect. 5 we characterize
the unique disjoint extendable {x, y}-interpretation of the square of the longer
word x. This is a result of independent interest, and also the cornerstone of
the proof of Theorem 1 which is completed in Sect. 6 by showing that a word
containing at least two x’s witnessing that {x, y} is not primitivity preserving is
conjugate with [x, x, y].

4 Interpretations and the Main Idea

Let X be a code, let u be a factor of concatw for some w ∈ listsX. The
natural question is to decide how u can be produced as a factor of words from
X, or, in other words, how it can be interpreted in terms of X. This motivates
the following definition.

Definition 2. Let X be a set of words over Σ. We say that the triple (p, s,w) ∈
Σ∗ × Σ∗ × listsX is an X-interpretation of a word u ∈ Σ∗ if

– w is nonempty;
– p · u · s = concatw;
– p <p hdw and
– s <s lastw.

The definition is illustrated by the following figure, where w = [w1, w2, w3, w4]:

u
w1 w2 w3 w4

p s

The second condition of the definition motivates the notation p u s ∼I w for the
situation when (p, s,w) is an X-interpretation of u.
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Remark 1. For sake of historical reference, we remark that our definition of X-
interpretation differs from the one used in [1]. Their formulation of the situa-
tion depicted by the above figure would be that u is interpreted by the triple
(s′, w2 · w3, p

′) where p · s′ = w1 and p′ · s = w4. This is less convenient for two
reasons. First, the decomposition of w2 · w3 into [w2, w3] is only implicit here
(and even ambiguous if X is not a code). Second, while it is required that the
the words p′ and s′ are a prefix and a suffix, respectively, of an element from X,
the identity of that element is left open, and has to be specified separately.

If u is a nonempty element of 〈X〉 and u = concatu for u ∈ listsX,
then the X-interpretation ε u ε ∼I u is called trivial. Note that the trivial X-
interpretation is unique if X is a code.

As nontrivial X-interpretations of elements from 〈X〉 are of particular inter-
est, the following two concepts are useful.

Definition 3. An X-interpretation p u s ∼I w of u = concatu is called

– disjoint if concatw′ 	= p · concatu′ whenever w′ ≤p w and u′ ≤p u.
– extendable if p ≤s wp and s ≤p ws for some elements wp, ws ∈ 〈X〉.

Note that a disjoint X-interpretation is not trivial, and that being disjoint
is relative to a chosen factorization u of u (which is nevertheless unique if X is
a code).

The definitions above are naturally motivated by the main idea of the
characterization of sets X that do not preserve primitivity, which dates back
to Lentin and Schützenberger [9]. If w is primitive, while concatw is imprim-
itive, say concatw = zk, k ≥ 2, then the shift by z provides a nontrivial and
extendable X-interpretation of concatw. (In fact, k−1 such nontrivial interpre-
tations). Moreover, the following lemma, formulated in a more general setting
of two words w1 and w2, implies that the X-interpretation is disjoint if X is a
code.

Lemma 2 (shift interpret, shift disjoint). Let X be a code. Let
w1,w2 ∈ listsX be such that z · concatw1 = concatw2 · z where z /∈ 〈X〉.
Then z · concatv1 	= concatv2, whenever v1 ≤p wn

1 and v2 ≤p wn
2 , n ∈ N.

In particular, concatu has a disjoint extendable X-interpretation for any
prefix u of w1.

The excluded possibility is illustrated by the following figure.

concatw1 concatw1

concatw2 concatw2

z
z

concatv1

concatv2
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Proof. First, note that z ·concatwn
1 = concatwn

2 ·z for any n. Let wn
1 = v1 ·v′

1

and wn
2 = v2 · v′

2. If z · concatv1 = concatv2, then also concatv′
2 · z =

concatv′
1. This contradicts z /∈ 〈X〉 by the stability condition.

An extendable X-interpretation of u is induced by the fact that concatu is
covered by concat(w2 · w2). The interpretation is disjoint by the first part of
the proof. �
In order to apply the above lemma to the imprimitive concatw = zk of a
primitive w, set w1 = w2 = w. The assumption z /∈ 〈X〉 follows from the
primitivity of w: indeed, if z = concat z, with z ∈ listsX, then w = zk since
B is a code.

We first apply the main idea to a relatively simple case of nontrivial {x, y}-
interpretation of the word x · y where x and y are of the same length.

Lemma 3 (uniform square interp). Let B = {x, y} be a code with |x| = |y|.
Let p (x · y) s ∼I v be a nontrivial B-interpretation. Then v = [x, y, x] or
v = [y, x, y] and x · y is imprimitive.

Proof. From p · x · y · s = concatv, it follows, by a length argument, that |v| is
three. A straightforward way to prove the claim is to consider all eight possible
candidates. In each case, it is then a routine few line proof that shows that x = y,
unless v = [x, y, x] or v = [y, x, y], which we omit. In the latter cases, x · y is a
nontrivial factor of its square (x · y) · (x · y), which yields the imprimitivity of
x · y. �
The previous (sketch of the) proof nicely illustrates on a small scale the advan-
tages of formalization. It is not necessary to choose between a tedious elementary
proof for sake of completeness on one hand, and the suspicion that something
was missed on the other hand (leaving aside that the same suspicion typically
remains even after the tedious proof). A bit ironically, the most difficult part
of the formalization is to show that v is indeed of length three, which needs no
further justification in a human proof.

We have the following corollary which is a variant of Theorem 4, and also
illustrates the main idea of its proof.

Lemma 4 (bin imprim not conjug). Let B = {x, y} be a binary code with
|x| = |y|. If w ∈ listsB is such that |w| ≥ 2, w is primitive, and concatw is
imprimitive, then x and y are not conjugate.

Proof. Since w is primitive and of length at least two, it contains both letters
x and y. Therefore, it has either [x, y] or [y, x] as a factor. The imprimitivity of
concatw yields a nontrivial B-interpretation of x · y, which implies that x · y is
not primitive by Lemma 3.

Let x and y be conjugate, and let x = r ·q and y = q ·r. Since x ·y = r ·q ·q ·r
is imprimitive, also r · r · q · q is imprimitive. Then r and q commute by the
theorem of Lyndon and Schützenberger, a contradiction with x 	= y. �
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5 Binary Interpretation of a Square

Let B = {x, y} be a code such that |y| ≤ |x|. In accordance with the main
idea, the core technical component of the proof is the description of the disjoint
extendable B-interpretations of the square x2. This is a very nice result which is
relatively simple to state but difficult to prove, and which is valuable on its own.
As we mentioned already, it can be obtained from Théorème 2.1 and Lemme 3.1
in [1].

Theorem 3 (square interp ext.sq ext interp). Let B = {x, y} be a code
such that |y| ≤ |x|, both x and y are primitive, and x and y are not conjugate.

Let p (x · x) s ∼I w be a disjoint extendable B-interpretation. Then

w = [x, y, x], s · p = y, p · x = x · s.

In order to appreciate the theorem, note that the definition of interpretation
implies

p · x · x · s = x · y · x,

hence x · y · x = (p · x)2. This will turn out to be the only way how primitivity
may not be preserved if x occurs at least twice in w. Here is an example with
x = 01010 and y = 1001:

0 1 0 1 0 1 0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0 1 0 1 0 1 0

Proof. By the definition of a disjoint interpretation, we have p·x·x·s = concatw,
where p 	= ε and s 	= ε. A length argument implies that w has length at least
three. Since a primitive word is not a nontrivial factor of its square, we have
w = [hdw] · [y]k · [lastw], with k ≥ 1. Since the interpretation is disjoint, we
can split the equality into p · x = hdw · ym · u and x · s = v · y� · lastw, where
y = u · v, both u and v are nonempty, and k = � + m + 1. We want to show
hdw = lastw = x and m = � = 0. The situation is mirror symmetric so we
can solve cases two at a time.

If hdw = lastw = y, then powers of x and y share a factor of length at
least |x| + |y|. Since they are primitive, this implies that they are conjugate, a
contradiction. The same argument applies when � ≥ 1 and hdw = y (if m ≥ 1
and lastw = y respectively). Therefore, in order to prove hdw = lastw = x,
it remains to exclude the case hdw = y, � = 0 and lastw = x (lastw = y,
m = 0 and hdw = x respectively). This is covered by one of the technical
lemmas that we single out:

Lemma 5 (pref suf pers short). Let x ≤p v·x, x ≤s p·u·v·u and |x| > |v · u|
with p ∈ 〈{u, v}〉. Then u · v = v · u.
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This lemma indeed excludes the case we wanted to exclude, since the con-
clusion implies that y is not primitive. We skip the proof of the lemma here and
make instead an informal comment. Note that v is a period root of x. In other
words, x is a factor of vω. Therefore, with the stronger assumption that v ·u ·v is
a factor of x, the conclusion follows easily by the familiar principle that v being
a factor of vω “synchronizes” primitive roots of v. Lemma 5 then exemplifies
one of the virtues of formalization, which makes it easy to generalize auxiliary
lemmas, often just by following the most natural proof and checking its minimal
necessary assumptions.

Now we have hdw = lastw = x, hence p·x = x·ym ·u and x·s = v·y� ·x. The
natural way to describe this scenario is to observe that x has both the (prefix)
period root v · y�, and the suffix period root ym · u. Using again Lemma 5, we
exclude situations when � = 0 and m ≥ 1 (m = 0 and � ≥ 1 resp.). It therefore
remains to deal with the case when both m and � are positive. We divide this
into four lemmas according to the size of the overlap the prefix v · y� and the
suffix ym · u have in x. More exactly, the cases are:

–
∣
∣v · y�

∣
∣ + |ym · u| ≤ |x|

– |x| <
∣
∣v · y�

∣
∣ + |ym · u| ≤ |x| + |u|

– |x| + |u| <
∣
∣v · y�

∣
∣ + |ym · u| < |x| + |u · v|

– |x| + |u · v| ≤ ∣
∣v · y�

∣
∣ + |ym · u|

and they are solved by an auxiliary lemma each. The first three cases yield
that u and v commute, the first one being a straightforward application of the
Periodicity lemma. The last one is also straightforward application of the “syn-
chronization” idea. It implies that x · x is a factor of yω, a contradiction with
the assumption that x and y are primitive and not conjugate. Consequently, the
technical, tedious part of the whole proof is concentrated in lemmas dealing with
the second, and the third case (see lemmas short_overlap and medium_overlap
in the theory Binary_Square_Interpretation.thy). The corresponding proofs
are further analyzed and decomposed into more elementary claims in the for-
malization, where further details can be found.

This completes the proof of w = [x, y, x]. A byproduct of the proof is the
description of words x, y, p and s. Namely, there are non-commuting words r
and t, and integers m, k and � such that

x = (rt)m+1 · r, y = (tr)k+1 · (rt)�+1, p = (rt)k+1, s = (tr)�+1 .

The second claim of the present theorem, that is, y = s · p is then equivalent to
k = �, and it is an easy consequence of the assumption that the interpretation
is extendable. �

6 The Witness with Two x’s

In this section, we characterize words witnessing that {x, y} is not primitivity
preserving and containing at least two x’s.
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Theorem 4 (bin imprim longer twice). Let B = {x, y} be a code such that
|y| ≤ |x|. Let w ∈ lists {x, y} be a primitive word which contains x at least
twice such that concatw is imprimitive.

Then w ∼ [x, x, y] and both x and y are primitive.

We divide the proof in three steps.

The Core Case. We first prove the claim with two additional assumptions
which will be subsequently removed. Namely, the following lemma shows how
the knowledge about the B-interpretation of x · x from the previous section is
used. The additional assumptions are displayed as items.

Lemma 6 (bin imprim primitive). Let B = {x, y} be a code with |y| ≤ |x|
where

– both x and y are primitive,

and let w ∈ listsB be primitive such that concatw is imprimitive, and

– [x, x] is a cyclic factor of w.

Then w ∼ [x, x, y].

Proof. Choosing a suitable conjugate of w, we can suppose, without loss of
generality, that [x, x] is a prefix of w. Now, we want to show w = [x, x, y].
Proceed by contradiction and assume w 	= [x, x, y]. Since w is primitive, this
implies w · [x, x, y] 	= [x, x, y] · w.

By Lemma 4, we know that x and y are not conjugate. Let concatw = zk,
2 ≤ k and z primitive. Lemma 2 yields a disjoint extendable B-interpretation of
(concatw)2. In particular, the induced disjoint extendable B-interpretation of
the prefix x · x is of the form p (x · x) s ∼I [x, y, x] by Theorem 3:

z x x
x xy concatw

concatw
p s

s p

Let p be the prefix of w such that concatp · p = z. Then

concat(p · [x, y]) = z · (x · p), concat [x, x, y] = (x · p)2, concatw = zk,

and we want to show z = xp, which will imply concat([x, x, y] ·w) = concat(w ·
[x, x, y]), hence w = [x, x, y] since {x, y} is a code, and both w and [x, x, y] are
primitive.

Again, proceed by contradiction, and assume z 	= xp. Then, since both z and
x ·p are primitive, they do not commute. We now have two binary codes, namely
{w, [x, x, y]} and {z, xp}. The following two equalities, (2) and (3) exploit the
fundamental property of longest common prefixes of elements of binary codes
mentioned in Sect. 2. In particular, we need the following lemma:
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Lemma 7 (bin code lcp concat). Let X = {u0, u1} be a binary code, and
let z0, z1 ∈ listsX be such that concat z0 and concat z1 are not prefix-
comparable. Then

(concat z0) ∧p (concat z1) = concat(z0 ∧p z1) · (u0 ∧ u1).

See Sect. 8 for more comments on this property. Denote αz,xp = z · xp ∧p xp · z.
Then also αz,xp = zk · (xp)2 ∧p (xp)2 · zk. Similarly, let αx,y = x · y ∧p y · x. Then
Lemma 7 yields

αz,xp = concat(w · [x, x, y]) ∧p concat([x, x, y] · w)
= concat(w · [x, x, y] ∧p [x, x, y] · w) · αx,y

(2)

and also

z · αz,xp =concat(w · p · [x, y]) ∧p concat(p · [x, y] · w)
=concat(w · p · [x, y] ∧p p · [x, y] · w) · αx,y.

(3)

Denote

v1 = w · [x, x, y] ∧p [x, x, y] · w, v2 = w · p · [x, y] ∧p p · [x, y] · w.

From (2) and (3) we now have z · concatv1 = concatv2. Since v1 and v2 are
prefixes of some wn, we have a contradiction with Lemma 2. �
Dropping the Primitivity Assumption. We first deal with the situation
when x and y are not primitive. A natural idea is to consider the primitive
roots of x and y instead of x and y. This means that we replace the word w
with Rw, where R is the morphism mapping [x] to [ρ x]ex and [y] to [ρ y]ey

where x = (ρ x)ex and y = (ρ y)ey . For example, if x = abab and y = aa, and
w = [x, y, x] = [abab, aa, abab], then Rw = [ab, ab, a, a, ab, ab].

Let us check which hypotheses of Lemma 6 are satisfied in the new setting,
that is, for the code {ρ x, ρ y} and the word Rw. The following facts are not
difficult to see.

– concatw = concat(Rw);
– if [c, c], c ∈ {x, y}, is a cyclic factor w, then [ρ c, ρ c] is a cyclic factor of Rw.

The next required property:

– if w is primitive, then Rw is primitive;

deserves more attention. It triggered another little theory of our formalization
which can be found in locale sings_code. Note that it fits well into our context,
since the claim is that R is a primitivity preserving morphism, which implies
that its image on the singletons [x] and [y] forms a primitivity preserving set of
words, see theorem code.roots_prim_morph.

Consequently, the only missing hypothesis preventing the use of Lemma 6 is
|y| ≤ |x| since it may happen that |ρ x| < |ρ y|. In order to solve this difficulty,
we shall ignore for a while the length difference between x and y, and obtain the
following intermediate lemma.
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Lemma 8 (bin imprim both squares, bin imprim both squares prim). Let
B = {x, y} be a code, and let w ∈ listsB be a primitive word such that
concatw is imprimitive. Then w cannot contain both [x, x] and [y, y] as cyclic
factors.

Proof. Assume that w contains both [x, x] and [y, y] as cyclic factors.
Consider the word Rw and the code {ρ x, ρ y}. Since Rw contains both

[ρ x, ρ x] and [ρ y, ρ y], Lemma 6 implies that Rw is conjugate either with the
word [ρ x, ρ x, ρ y] or with [ρ y, ρ y, ρ x], which is a contradiction with the assumed
presence of both squares. �

Concluding the Proof by Gluing. It remains to deal with the existence of
squares. We use an idea that is our main innovation with respect to the proof
from [1], and contributes significantly to the reduction of length of the proof, and
hopefully also to its increased clarity. Let w be a list over a set of words X. The
idea is to choose one of the words, say u ∈ X, and to concatenate (or “glue”)
blocks of u’s to words following them. For example, if w = [u, v, u, u, z, u, z],
then the resulting list is [uv, uuz, uz]. This procedure is in the general case well
defined on lists whose last “letter” is not the chosen one and it leads to a new
alphabet {ui · v | v 	= u} which is a code if and only if X is. This idea is used
in an elegant proof of the Graph lemma (see [8] and [2]). In the binary case,
which is of interest here, if w in addition does not contain a square of a letter,
say [x, x], then the new code {x · y, y} is again binary. Moreover, the resulting
glued list w′ has the same concatenation, and it is primitive if (and only if) w
is. Note that gluing is in this case closely related to the Nielsen transformation
y �→ x−1y known from the theory of automorphisms of free groups.

Induction on |w| now easily leads to the proof of Theorem 4.

Proof (of Theorem 4). If w contains y at most once, then we are left with the
equation xj · y = z�, � ≥ 2. The equality j = 2 follows from the Periodicity
lemma, see Case 2 in the proof of Theorem 2.

Assume for contradiction that y occurs at least twice in w. Lemma 8 implies
that at least one square, [x, x] or [y, y] is missing as a cyclic factor. Let {x′, y′} =
{x, y} be such that [x′, x′] is not a cyclic factor of w. We can therefore perform the
gluing operation, and obtain a new, strictly shorter word w′ ∈ lists {x′ ·y′, y′}.
The longer element x′ · y′ occurs at least twice in w′, since the number of its
occurrences in w′ is the same as the number of occurrences of x′ in w, the
latter word containing both letters at least twice by assumption. Moreover, w′

is primitive, and concatw′ = concatw is imprimitive. Therefore, by induction
on |w|, we have w′ ∼ [x′ · y′, x′ · y′, y′]. In order to show that this is not possible
we can successfully reuse the lemma imprim_ext_suf_comm mentioned in the
proof of Lemma 1, this time for u = x′y′x′ and v = y′. The words u and v do
not commute because x′ and y′ do not commute. Since uv is imprimitive, the
word uvv ∼ concatw′ is primitive. �

This also completes the proof of our main target, Theorem 1.
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7 Additional Notes on the Formalization

The formalization is a part of an evolving combinatorics on words formalization
project. It relies on its backbone session, called CoW, a version of which is also
available in the Archive of Formal Proofs [15]. This session covers basics con-
cepts in combinatorics on words including the Periodicity lemma. An overview
is available in [8].

The evolution of the parent session CoW continued along with the pre-
sented results and its latest stable version is available at our repository [16].
The main results are part of another Isabelle session CoW Equations, which,
as the name suggests, aims at dealing with word equations. We have greatly
expanded its elementary theory Equations Basic.thy which provides auxiliary
lemmas and definitions related to word equations. Noticeably, it contains the
definition factor interpretation (Definition 2) and related facts.

Two dedicated theories were created: Binary Square Interpretation.thy
and Binary Code Imprimitive.thy. The first contains lemmas and locales deal-
ing with {x, y}-interpretation of the square xx (for |y| ≤ |x|), culminating in
Theorem 3. The latter contains Theorems 1 and 4.

Another outcome was an expansion of formalized results related to the
Lyndon-Schützenberger theorem. This result, along with many useful corollaries,
was already part of the backbone session CoW, and it was newly supplemented
with the parametric solution of the equation xjyk = z�, specifically Theorem 2
and Lemma 1. This formalization is now part of CoW Equations in the theory
Lyndon Schutzenberger.thy.

Similarly, the formalization of the main results triggered a substantial expan-
sion of existing support for the idea of gluing as mentioned in Sect. 6. Its reworked
version is now in a separate theory called Glued Codes.thy (which is part of the
session CoW Graph Lemma).

Let us give a few concrete highlights of the formalization. A very useful
tool, which is part of the CoW session, is the reversed attribute. The attribute
produces a symmetrical fact where the symmetry is induced by the mapping rev,
i.e., the mapping which reverses the order of elements in a list. For instance, the
fact stating that if p is a prefix of v, then p a prefix of v · w, is transformed by
the reversed attribute into the fact saying that if s is suffix of v, then s is a suffix
of w · v. The attribute relies on ad hoc defined rules which induce the symmetry.
In the example, the main reversal rule is

(rev u ≤ p rev v) = u ≤ s v.

The attribute is used frequently in the present formalization. For instance, Fig. 1
shows the formalization of the proof of Cases 1 and 2 of Theorem 1. Namely,
the proof of Case 2 is smoothly deduced from the lemma that deals with Case 1,
avoiding writing down the same proof again up to symmetry. See [13] for more
details on the symmetry and the attribute reversed.

To be able to use this attribute fully in the formalization of main results, it
needed to be extended to be able to deal with elements of type ′a list list,
as the constant factor_interpretation is of the function type over this exact
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Fig. 1. Highlights from the formalization in Isabelle/HOL.

type. The new theories of the session CoW Equations contain almost 50 uses of
this attribute.

The second highlight of the formalization is the use of simple but useful
proof methods. The first method, called primitivity_inspection, is able to
show primitivity or imprimitivity of a given word.

Another method named list_inspection is used to deal with claims that
consist of straightforward verification of some property for a set of words given
by their length and alphabet. For instance, this method painlessly concludes
the proof of lemma bin_imprim_both_squares_prim. The method divides the
goal into eight easy subgoals corresponding to eight possible words. All goals are
then discharged by simp_all.

The last method we want to mention is mismatch. It is designed to prove that
two words commute using the property of a binary code mentioned in Sect. 2
and explained in Sect. 8. Namely, if a product of words from {x, y} starting with
x shares a prefix of length at least |xy| with another product of words from
{x, y}, this time starting with y, then x and y commute. Examples of usage of
the attribute reversed and all three methods are given in Fig. 1.

8 Appendix: Background Results in Combinatorics
on Words

A periodic root r of w need not be primitive, but it is always possible to consider
the corresponding primitive root ρ r, which is also a periodic root of w. Note that
any word has infinitely many periodic roots since we allow r to be longer than
w. Nevertheless, a word can have more than one period even if we consider
only periods shorter than |w|. Such a possibility is controlled by the Periodicity
lemma, often called the Theorem of Fine and Wilf (see [6]):
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Lemma 9 (per lemma comm). If w has a period u and v, i.e., w ≤p uw and
w ≤p vw, with |u| + |v| − gcd(|u|, |v|) ≤ |w|, then uv = vu.

Usually, the weaker test |u| + |v| ≤ |w| is sufficient to indicate that u and v
commute.

Conjugation u ∼ v is characterized as follows:

Lemma 10 (conjugation). If uz = zv for nonempty u, then there exists words
r and q and an integer k such that u = rq, v = qr and z = (rq)kr.

We have said that w has a periodic root r if it is a prefix of rω. If w is a factor,
not necessarily a prefix, of rω, then it has a periodic root which is a conjugate of
r. In particular, if |u| = |v|, then u ∼ v is equivalent to u and v being mutually
factors of a power of the other word.

Commutation of two words is characterized as follows:

Lemma 11 (comm). xy = yx if and only if x = tk and y = tm for some word t
and some integers k,m ≥ 0.

Since every nonempty word has a (unique) primitive root, the word t can be
chosen primitive (k or m can be chosen 0 if x or y is empty).

We often use the following theorem, called “the theorem of Lyndon and
Schützenberger”:

Theorem 5 (Lyndon Schutzenberger). If xjyk = z� with j ≥ 2, k ≥ 2 and
� ≥ 2, then the words x, y and z commute.

A crucial property of a primitive word t is that it cannot be a nontrivial
factor of its own square. For a general word u, the equality u · u = p · u · s with
nonempty p and s implies that all three words p, s, u commute, that is, have a
common primitive root t. This can be seen by writing u = tk, and noticing that
the presence of a nontrivial factor u inside uu can be obtained exclusively by a
shift by several t’s. This idea is often described as “synchronization”.

Let x and y be two words that do not commute. The longest common prefix
of xy and yx is denoted α. Let cx and cy be the letter following α in xy and
yx respectively. A crucial property of α is that it is a prefix of any sufficiently
long word in 〈{x, y}〉. Moreover, if w = [u1, u2, . . . , un] ∈ lists {x, y} is such
that concatw is longer than α, then α · [cx] is a prefix of concatw if u1 = x
and α · [cy] is a prefix of concatw if u1 = y. That is why the length of α is
sometimes called “the decoding delay” of the binary code {x, y}. Note that the
property indeed in particular implies that {x, y} is a code, that is, it does not
satisfy any nontrivial relation. It is also behind our method mismatch. Finally,
using this property, the proof of Lemma 7 is straightforward.
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Abstract. We describe a system that detects an invariance in a logical
formula expressing a math problem and simplifies it by eliminating vari-
ables utilizing the invariance. Pre-defined function and predicate symbols
in the problem representation language are associated with algebraically
indexed types, which signify their invariance property. A Hindley-Milner
style type reconstruction algorithm is derived for detecting the invariance
of a problem. In the experiment, the invariance-based formula simplifi-
cation significantly enhanced the performance of a problem solver based
on quantifier-elimination for real-closed fields, especially on the problems
taken from the International Mathematical Olympiads.

1 Introduction

It is very common to find an argument marked by the phrase “without loss of
generality” (w.l.o.g.) in a mathematical proof by human. An argument of this
kind is most often based on the symmetry or the invariance in the problem [9].

Suppose that we are going to prove, by an algebraic method, that the three
median lines of a triangle meet at a point (Fig. 1). Six real variables are needed
to represent three points on a plane. Since the concepts of ‘median lines’ and
‘meeting at a point’ are translation-invariant, we may fix one of the corners at
the origin. Furthermore, because these concepts are also invariant under any
invertible linear map, we may fix the other two points to, e.g., (1, 0) and (0, 1).
Thus, all six variables were eliminated and the task of proof became much easier.

W.l.o.g. arguments may thus have strong impact on the efficiency of inference.
It has drawn attention in several research areas including the relative strength of
proof systems (e.g., [2,3,12,20]), propositional SAT (e.g., [1,6,8,17,19]), proof
assistants [9], and algebraic methods for geometry problem solving [7,10].

Among others, Iwane and Anai [10] share exactly the same objective with
us; both aim at solving geometry problems stated in natural language, using
an algebraic method as the backend. Logical formulas resulted from mechanical
translation of problem text tend to be huge and very redundant, while the com-
putational cost of algebraic methods is generally quite sensitive to the size of
the input measured by, e.g., the number of variables. Simplification of the input
formula is hence a mandatory part of such a problem-solving system.

c© The Author(s) 2022
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Fig. 1. Variable Elimination w.l.o.g. by Invariance

Iwane and Anai’s method operates on the first-order formula of real-closed
fields (RCFs), i.e., a quantified boolean combination of equalities and inequalities
between polynomials. They proposed to detect the invariance of a problem by
testing the invariance of the polynomials under translation, scaling, and rotation.
While being conceptually simple, it amounts to discover the geometric property
of the problem solely by its algebraic representation. The detection of rotational
invariance is especially problematic because, to test that on a system of polyno-
mials, one needs to identify all the pairs (or triples) of variables that originate
from the x and y (and z) coordinates of the same points. Thus their algorithm
for 2D rotational invariance already incurs a search among a large number of
possibilities and they left the detection of 3D rotational invariance untouched.
Davenport [7] also suggests essentially the same method.

In this paper, we propose to detect the invariance in a more high-level lan-
guage than that of RCF. We use algebraically indexed types (AITs) proposed by
Atkey et al. [4] as the representation language. In AIT, each symbol in a formula
has a type with indices. An indexed-type of a function indicates that its output
undergoes the same or a related transformation as the input. The invariances
of the functions are combined via type reconstruction and an invariance in a
problem is detected.

The contribution of the current paper is summarized as follows:

1. A type reconstruction algorithm for AIT is derived. Atkey et al. [4] laid out
the formalism of AIT but did not provide a type inference/reconstruction
algorithm. We devised, for a version of AIT, a type reconstruction algorithm
that is based on semantic unification in the theory of transformation groups.

2. A set of variable elimination rules are worked out. Type reconstruction in AIT
discerns a more fine-grained notion of invariance than previous approaches.
We derived a set of elimination rules that covers all cases.

3. The practicality of the proposed method is verified; it significantly enhanced
the performance of a problem solver based on quantifier elimination for RCF,
especially on the problems from International Mathematical Olympiads.

In the rest of the paper, we first introduce a math problem solver, on which
the proposed method was implemented, and summarize the formalism of AIT.
We then detail the type reconstruction procedure and the variable elimination
rules. We finally present the experimental results and conclude the paper.
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Fig. 2. Overview of Todai Robot Math Problem Solver

Fig. 3. Example of Manually Formalized Problem (IMO 2012, Problem 5)

2 Todai Robot Math Solver and Problem Library

This work is a part of the development of the Todai Robot Math Problem Solver
(henceforth ToroboMath) [13–16]. Figure 2 presents an overview of the system.
ToroboMath is targeted at solving pre-university math problems. Our long-
term goal is to develop a system that solves problems stated in natural language.

The natural language processing (NLP) module of the system accepts a prob-
lem text and derives its logical representation through syntactic analysis. Cur-
rently, it produces a correct logical form for around 50% of sentences [13], which
is not high enough to cover a wide variety of problems. Although the motiva-
tion behind the current work is to cope with the huge formulas produced by the
NLP module, we instead used a library of manually formalized problems for the
evaluation of the formula simplification procedure.

The problem library has been developed along with the ToroboMath sys-
tem. It contains approximately one thousand math problems collected from
several sources including the International Mathematical Olympiads (IMOs).
Figure 3 presents a problem that was taken from IMO 2012.

The problems in the library are manually encoded in a polymorphic higher-
order language, which is the same language as the output of the NLP module.
Table 1 lists some of its primitive types. The language includes a large set of
predicate and function symbols that are tailored for formalizing pre-university
math problems. Currently, 1387 symbols are defined using 2808 axioms. Figure 4
provides an example of the axioms that defines the predicate maximum.
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Table 1. Example of Primitive Types

truth values Bool

numbers Z (integers), Q (rationals),

R (reals), C (complex)

vectors 2d.Vec, 3d.Vec

geometric objects 2d.Shape, 3d.Shape

angles 2d.Angle, 3d.Angle

sets and lists SetOf(α), ListOf(α)

Fig. 4. Example of Axiom

The problem solving module of the ToroboMath accepts a formalized
problem and iteratively rewrites it using: (1) basic transformations such as
∀x.(x = α → φ(x)) ⇔ φ(α) and beta-reduction, (2) simplification of expres-
sions such as polynomial division and integration by computer algebra systems
(CASs), and (3) the axioms that define the predicate and function symbols.

Once the rewritten formula is in the language of real-closed fields (RCFs)
or Peano arithmetic, it is handed to a solver for the theory. For RCF formu-
las, we use an implementation of the quantifier-elimination (QE) procedure for
RCF based on cylindrical algebraic decomposition. Finally, we solve the resulting
quantifier-free formula with CASs and obtain the answer. The time complexity
of RCF-QE is quite high; it is doubly exponential in the number of variables [5].
Hence, the simplification of the formula before RCF-QE is a crucial step.

3 Algebraically Indexed Types

This section summarizes the framework of AIT. We refrain from presenting it in
full generality and describe its application to geometry ([4, §2]) with the restric-
tion we made on it in incorporating it into the type system of ToroboMath.

In AIT, some of the primitive types have associated indices. An index rep-
resents a transformation on the object of that type. For instance, in Vec〈B, t〉,
the index B stands for an invertible linear transformation and t stands for a
translation. The index variables bound by universal quantifiers signify that a
function of that type is invariant under any transformations indicated by the
indices, e.g.,

midpoint : ∀B:GL2.∀t:T2. Vec〈B, t〉 → Vec〈B, t〉 → Vec〈B, t〉.

The type of midpoint certifies that, when two points P and Q undergo an
arbitrary affine transformation, the midpoint of P and Q moves accordingly.

3.1 Sort and Index Expression

The sort of an index signifies the kind of transformations represented by the
index. We assume the set Sort of index sorts includes GLk (k = 1, 2, 3) (general
linear transformations), Ok (k = 2, 3) (orthogonal transformations), and Tk (k =
2, 3) (translations). In the type of midpoint, B is of sort GL2 and t is of sort T2.
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An index expression is composed of index variables and index operators.
In the current paper, we use the following operators: 〈+,−, 0〉 are addition,
negation, and unit of Tk (k = 2, 3); 〈 · , −1, 1〉 are multiplication, inverse, and unit
of GLk and Ok; det is the determinant; | · | is the absolute value. An index context
Δ is a list of index variables paired with their sorts: Δ = i1:S1, i2:S2, . . . , in:Sn.
The well-sortedness of an index expression e of sort S, written Δ � e : S, is
defined analogously to the well-typedness in simple type theory.

3.2 Type, Term, and Typing Judgement

The set of primitive types, PrimType = {Bool, R, 2d.Vec, 3d.Vec, 2d.Shape,
. . . }, is the same as that in the language of ToroboMath. A function tyArity:
PrimType → Sort∗ specifies the number and sorts of indices appropriate for
the primitive types: e.g., tyArity(2d.Vec) = (GL2,T2).

A judgement Δ � A type means that type A is well-formed and well-indexed
with respect to an index context Δ. Here are the derivation rules:

X ∈ PrimType tyArity(X) = (S1, . . . , Sm) {Δ � ej : Sj}1≤j≤m

Δ � X〈e1, . . . , em〉 type
TyPrim

Δ � A type Δ � B type

Δ � A → B type
TyArr

Δ, i:S � A type

Δ � ∀i:S.A type
TyForall

While Atkey et al.’s system is formulated in the style of System F, we allow
the quantifiers only at the outermost (prenex) position. The restriction permits
an efficient type reconstruction algorithm analogous to Hindley-Milner’s, while
being expressive enough to capture the invariance of the pre-defined functions
in ToroboMath and the invariance in the majority of math problems.

The well-typedness of a term M , written Δ;Γ � M : A, is judged with respect
to an index context Δ and a typing context Γ = x1 : A1, . . . , xn : An. A typing
context is a list of variables with their types. A special context Γops consists of the
pre-defined symbols and their types, e.g., + : ∀s:GL1. R〈s〉 → R〈s〉 → R〈s〉 ∈ Γops.
We assume Γops is always available in the typing derivation and suppress it in
a judgement. The typing rules are analogous to those for lambda calculus with
rank-1 polymorphism except for TyEQ:

x : A ∈ Γ

Δ; Γ � x : A
Var

Δ; Γ � M : ∀i:S.A Δ � e:S

Δ; Γ � M : A{i �→ e} UnivInst
Δ; Γ, x : A � M : B

Δ; Γ � λx.M : A → B
Abs

Δ; Γ � M : A → B Δ; Γ � N : A

Δ; Γ � MN : B
App

Δ; Γ � M : A Δ � A ≡ B

Δ; Γ � M : B
TyEQ

In the Abs and App rules, the meta-variables A and B only designate a type
without quantifiers. In the UnivInst rule, A{i 	→ e} is the result of substituting
e for i in A. The ‘polymorphism’ of the types with quantifiers hence takes place
only when a pre-defined symbol (e.g., midpoint) enters a derivation via the Var
rule and then the bound index variable is instantiated via the UnivInst rule.
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The type equivalence judgement Δ � A ≡ B in the TyEQ rule equates two
types involving semantically equivalent index expressions; thus, e.g., s:GL1 �
R〈s · s−1〉 ≡ R〈1〉 and O:O2 � R〈|det O|〉 ≡ R〈1〉.

3.3 Index Erasure Semantics and Transformational Interpretation

The abstraction theorem for AIT [4] enables us to know the invariance of a term
by its type. The theorem relates two kinds of interpretations of types and terms:
index erasure semantics and relational interpretations. We will restate the the-
orem with what we here call transformational interpretations (t-interpretations
hereafter), instead of the relational interpretations. It suffices for the purpose of
justifying our algorithm and makes it easier to grasp the idea of the theorem.

The index-erasure semantics of a primitive type X〈e1, . . . , en〉 is determined
only by X. We thus write �X〈e1, . . . , en〉� = �X�. The interpretation �X� is
the set of mathematical objects intended for the type: e.g., �2d.Vec〈B, t〉� =
�2d.Vec� = R2 and �R〈s〉� = �R� = R. The index-erasure semantics of a non-
primitive type is determined by the type structure: �A → B� = �A� → �B� and
�∀i:S. T � = �T �.

The index-erasure semantics of a typing context Γ = x1:T1, . . . , xn:Tn is the
direct product of the domains of the variables: �Γ � = �T1� × · · · × �Tn�. The
erasure semantics of a term Δ;Γ � M : A is a function of the values assigned to
its free variables: �M� : �Γ � → �A� and defined as usual (see, e.g., [18,21]).

The t-interpretation of a type T, denoted by �T�, is a function from the assign-
ments to the index variables to a transformation on �T�. To be precise, we first
define the semantics of index context Δ = i1:S1, . . . , in:Sn as the direct product
of the interpretation of the sorts: �Δ� = �S1� × · · · × �Sn�, where �S1�, . . . , �Sn�
are the intended sets of transformations: e.g., �GL2� = GL2 and �T2� = T2. The
interpretation of an index expression e of sort S is a function �e� : �Δ� → �S�
that is determined by the structure of the expression; for ρ ∈ �Δ�,

�f(e1, . . . , en)�(ρ) = �f�(�e1�(ρ), . . . , �en�(ρ)), �ik�(ρ) = ρ(ik),

where, in the last equation, we regard ρ ∈ �Δ� as a function from index variables
to their values. The index operations det and | · | are interpreted as intended.

The t-interpretation of a primitive type X〈e1, . . . , en〉 is then determined by
X and the structures of the index expressions e1, . . . , en. The t-interpretation
of Vec and Shape is the affine transformation of vectors and geometric objects
parametrized by ρ ∈ �Δ�; for index expressions β:GL2 and τ :T2,

�Vec〈β, τ〉�(ρ) : R2  x 	→ M�β�(ρ)x + v�τ�(ρ) ∈ R2

�Shape〈β, τ〉�(ρ) : P(R2)  S 	→ {M�β�(ρ)x + v�τ�(ρ) | x ∈ S} ∈ P(R2),

where M�β�(ρ) and v�τ�(ρ) are the representation matrix and vector of �β�(ρ) and
�t�(ρ), and P(R2) denotes the power set of R2. Similarly, for the real numbers,

�R〈σ〉�(ρ) : R  x 	→ �σ�(ρ)x ∈ R.
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That is, �R〈σ〉�(ρ) is a change of scale with the scaling factor determined by the
expression σ:GL1 and the assignment ρ. For a primitive type X with no indices,
its t-interpretation is the identity map on �X�: i.e., �X�(ρ) = id
X�.

The t-interpretation of a function type A → B is a higher-order function that
maps a (mathematical) function f : �A� → �B� to another function on the same
domain and codomain such that: �A → B�(ρ)(f) = �B�(ρ) ◦ f ◦ (�A�(ρ))−1. It is
easy to check that this interpretation is compatible with currying. Equivalently,
we may say that if g = �A → B�(ρ)(f), then f and g are in the commutative
relation g ◦ �A�(ρ) = �B�(ρ) ◦ f . The typing derivation in AIT is a way to ‘pull
out’ the effect of transformation �A�(ρ) on a free variable deep inside a term by
combining such commutative relations.

The t-interpretation of a fully-quantified type is the identity map on its era-
sure semantics: �∀i1:S1. . . . ∀in:Sn. T � = id
T�. We don’t define that of partially-
quantified types because we don’t need it to state the abstraction theorem.

3.4 Abstraction Theorem

The abstraction theorem for AIT enables us to detect the invariance of (the
erasure-semantics of) a term under a certain set of transformations on its free
variables. We first define the t-interpretation of the typing context Γ = x1 :
T1, . . . , xn : Tn as a simultaneous transformation of η = (v1, . . . , vn) ∈ �Γ �:

�Γ �(ρ) : �Γ �  η 	→ �Γ �(ρ) ◦ η = (�T1�(ρ) ◦ v1, . . . , �Tn�(ρ) ◦ vn) ∈ �Γ � .

We now present a version of the abstraction theorem, restricted to the case of a
term of quantifier-free type and restated with the t-interpretation:

Theorem 1 (Abstraction [4], restated using transformational interpretation).
If A is a quantifier-free type and Δ;Γ � M : A, then for all ρ ∈ �Δ� and all
η ∈ �Γ �, we have �A�(ρ) ◦ �M� (η) = �M� (�Γ �(ρ) ◦ η).

Here we provide two easy corollaries of the theorem. The first one is utilized
to eliminate variables from a formula while preserving the equivalence.

Corollary 1. If Δ;x1 : T1, . . . , xn : Tn � φ(x1, . . . , xn) : Bool, then for all
ρ ∈ �Δ�, we have φ(x1, . . . , xn) ⇔ φ(�T1�(ρ) ◦ x1, . . . , �Tn�(ρ) ◦ xn).

This is by the abstraction theorem and the fact �Bool�(ρ) = id
Bool� for any ρ.
It indicates that, without loss of generality, we may ‘fix’ some of the variables
to, e.g., zeros by appropriately choosing ρ.

The second corollary is for providing more intuition about the theorem.

Corollary 2. If ε; ε � λx1. . . . .λxn. f(x1, . . . , xn) : ∀Δ. T1 → · · · → Tn → T0

then, for all ρ ∈ �Δ� and all vi ∈ �Ti� (i = 1, . . . , n),

�T0�(ρ) ◦ �f� (v1, . . . , vn) = �f� (�T1�(ρ) ◦ v1, . . . , �Tn�(ρ) ◦ vn).

In the statement, ∀Δ signifies the universal quantification over all index variables
in Δ. By this corollary, for instance, we can tell from the type of midpoint that,
for all x1, x2 ∈ R2 and for all g ∈ GL2 and t ∈ T2,

�midpoint� (Mgx1 + vt,Mgx2 + vt) = Mg �midpoint� (x1, x2) + vt.
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3.5 Restriction on the Index Expressions of Sort GLk/Ok (k ≥ 2)

We found that the type reconstruction in AIT is far more straightforward when
we assume an index expression of sort GLk or Ok (k ≥ 2) includes at most
one index variable of sort GLk or Ok that is not in the determinant operator.
Assuming this, any expression e of sort GLk or Ok can be written in the form of

e =
∏

i∈I

swi
i ·

∏

i∈I

|si|xi ·
∏

j∈J

det(Bj)yj ·
∏

j∈J

|det(Bj)|zj · Bδ
0 ,

where {si}i∈I are of sort GL1, {B0}∪{Bj}j∈J are of sort GLk or Ok, wi, xi, yj , zj ∈
Z, and δ ∈ {0, 1}. We henceforth say an expression e in the above form satisfies
the head variable property and call B0 the head variable of e.

Empirically, this restriction is not too restrictive; as far as we are aware of,
the invariance of all the pre-defined functions and predicates in ToroboMath
is expressible with an indexed-type satisfying this.

4 Invariance Detection Through Type Reconstruction

We need type reconstruction in AIT for two purposes: to infer the invariance of
the pre-defined symbols in ToroboMath and to infer the invariance in a math
problem. To this end, we only have to derive the judgement Δ;Γ � φ : Bool
where φ is either a defining axiom of a symbol or a formula of a problem. For
a pre-defined symbol s, by a judgement Δ; s : T, · · · � φ : Bool, we know s
is of type T and it has the invariance signified by T . For a problem φ, by the
judgement Δ;x1 : T1, . . . , xn : Tn � φ : Bool, we know the invariance of φ under
the transformation on the free variables x1, . . . , xn according to �T1�, . . . , �Tn�.

Since all types are in prenex form, we can find the typing derivation by
a procedure analogous to the Hindley-Milner (H-M) algorithm. It consists of
two steps: deriving equations among index expressions, and solving them. The
procedure for solving the equations in T2/T3 is essentially the same as in the
type inference for Kennedy’s unit-of-measure types [11], which is a precursor of
AIT. Further development is required to solve the equations in GL2/GL3, even
under the restriction on the form of index expressions mentioned in Sect. 3.5,
due to the existence of the index operations | · | and det.

4.1 Equation Derivation

We first assign a type variable αi for each subterm ti in φ. Then, for a subterm ti
in the form tjtk (i.e., application of tj to tk), we have the equation αj = αk → αi.
The case for a subterm ti in the form of λx.tj is also analogous to H-M and we
omit it here. For a leaf term (i.e., a variable) ti, if it is one of the pre-defined
symbols and ti : ∀i1:S1. . . . ∀in:Sn.T ∈ Γops, we set αi = T{i1 	→ β1, . . . , in 	→
βn}, where {i1 	→ β1, . . . , in 	→ βn} stands for the substitution of fresh variables
β1, . . . , βn for i1, . . . , in. By solving the equations for the type and index variables
{αi} and {βj}, we reconstruct the most general indexed-types of all the subterms.
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For example, consider the following axiom defining perpendicular:

∀v1.∀v2.(perpendicular(v1, v2) ←→ inner-prod(v1, v2) = 0),

and suppose that inner-prod is in Γops. We are going to reconstruct the type
of perpendicular. The type of inner-prod is

inner-prod : ∀s1, s2:GL1. ∀O:O2. Vec〈s1O, 0〉 → Vec〈s2O, 0〉 → R〈s1 · s2〉

and it is instantiated as inner-prod : Vec〈s1O, 0〉 → Vec〈s2O, 0〉 → R〈s1 · s2〉
where s1, s2, and O are fresh variables. Since the type of perpendicular in the
non-AIT version of our language is Vec → Vec → Bool, we set fresh variables to
all indices in the primitive types and have:

perpendicular : Vec〈β1, τ1〉 → Vec〈β2, τ2〉 → Bool.

Since perpendicular is applied to v1 and v2, the types of v1 and v2 are
equated to Vec〈β1, τ1〉 and Vec〈β2, τ2〉. Additionally, since inner-prod is also
applied to v1 and v2, we have the following equations:

Vec〈s1O, 0〉 = Vec〈β1, τ1〉, Vec〈s2O, 0〉 = Vec〈β2, τ2〉 (4.1)

If we have an equation between the same primitive type, by unifying both sides of
the equation, in turn we have one or more equations between index expressions,
i.e., if we have X〈e1, . . . , em〉 = X〈e′

1, . . . , e
′
m〉, then we have: e1 = e′

1, . . . , em =
e′
m. For Eq. (4.1), we hence have s1O = β1, s2O = β2, 0 = τ1, and 0 = τ2.

Thus, by recursively unifying all the equated types, we are left with a system of
equations between index expressions.

4.2 Equation Solving

To solve the derived equations between index expressions, we need to depart
from the analogy with the H-M algorithm. Namely, instead of applying syn-
tactic unification, we need semantic unification, i.e., we solve the equations as
simultaneous equations in the transformation groups.

We first order the equations with respect to the sort of the equated expres-
sions. We then process them in the order T2/T3 → GL2/GL3 → GL1 as follows.1

First, since equations of sort T2/T3 are always in the form of
∑

i aiti =
0 (ai ∈ Z), where {ti} are variables of sort Tk (k ∈ {2, 3}), we can solve the
equations as is the case with a linear homogeneous system. Although the solution
may involve rational coefficients as in ti =

∑
j

nij

mij
tj (nij ,mij ∈ Z), we can clear

the denominators by introducing new variables t′j such that tj = lcm{mij}i · t′j .
Next, by the head variable property, equations of sort GL2/GL3 (henceforth

GL≥2) are always in the form of σ1B1 = σ2B2, where σ1 and σ2 are index

1 In this subsection, GL2, GL3, O2, and O3 are collectively denoted as GL2/GL3 or GL≥2.
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expressions of sort GL1, and B1 and B2 are the head variables of sort GL≥2. We
decompose these equations according to Table 2, which summarizes the following
argument: Let E denote the identity transformation. Since σ1B1 = σ2B2 ⇐⇒
σ−1

1 σ2E = B1B
−1
2 , there must be some s ∈ GL1 such that B1B

−1
2 = sE and

σ−1
1 σ2 = s. Furthermore, by the superset-subset relation between the sorts of

B1 and B2, e.g., O2 ⊂ GL2 for B1 : O2 and B2 : GL2, we can express one of the
broader sort with the other as a parameter.

The algorithm for GL≥2 equations works as follows. First, we initialize the
set of solution with the empty substitution: S ← {}. For each GL≥2 equation
σ1B1 = σ2B2, we look up Table 2 and find the GL≥2 solution Bi 	→ sBj and one
or more new GL1 equations. We populate the current set of GL1 equations with
the new ones, and apply the solution Bi 	→ sBj to all the remaining GL1 and
GL≥2 equations. We also compose the GL2 solution Bi 	→ sBj with the current
solution set: S ← S ◦ {Bi 	→ sBj}.

By processing all GL≥2 equations as above, we are left with a partial solution
S and a system of GL1 equations, each of which is in the following form:

∏

i∈I

swi
i ·

∏

i∈I

|si|xi ·
∏

j∈J

det(Bj)yj ·
∏

j∈J

|det(Bj)|zj = 1 (wi, xi, yj , zj ∈ Z),

where we assume about I and J that {si}i∈I are all the GL1 variables, {Bj}j∈J

are all the remaining GL≥2 variables, and I ∩ J = ∅. Letting ui = si · |si|−1,
vi = |si|, uj = det(Bj) · |det(Bj)|−1, and vi = |det(Bj)|, we have si = uivi and
det(Bj) = ujvj for all i ∈ I and j ∈ J . By using them, we have

∏

i

uwi
i ·

∏

i

vwi+xi
i ·

∏

j

u
yj

j ·
∏

j

v
yj+zj

j = 1.

Since ui, uj ∈ {+1,−1} and vi, vj > 0 for all i and j, we know the above equation
is equivalent to the following two equations:

∏

i

uwi
i ·

∏

j

u
yj

j = 1,
∏

i

vwi+xi
i ·

∏

j

v
yj+zj

j = 1.

We thus have two systems of equations, one in {+1,−1} and the other in R>0.
Now we temporarily rewrite the solution with ui and vi: S ← S ◦{si 	→ uivi}i∈I .

First consider the system in R>0. As long as there remains an equation
involving a variable vi, which originates from a GL1 variable, we solve it for vi

and compose the solution vi 	→
∏

i′ �=i v
pi′
i′ ·

∏
j v

qj

j with S while applying it to the
remaining equations. The denominators of fractional exponents (i.e., pi′ , qj ∈
Q\Z) can be cleared similarly to the case of Tk equations. If all the equations in
R>0 are solved this way, then S is the most general solution. Otherwise, there
remain one or more equations of the form

∏
j∈J ′ |det Bj |dj = 1 for some J ′ ⊂ J

and {dj}j∈J ′ . This is the only case where we may miss some invariance of a
formula; in general, we cannot express the most general solution to this equation
only with the index variables of sort GLk and Ok. We make a compromise here
and are satisfied with a less general solution S ◦{Bj 	→ E}j∈J ′ . Fortunately, this
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Table 2. Decomposition of GL2/GL3 equation σiBi = σjBj (s: a fresh variable)

Combination of head variables Solution in GLk Equations in GL1

Bi = Bj none σi = σj

Bi : Ok ∧ Bj = E Bi �→ sE sσi = σj , |s| = 1

Bi : GLk ∧ Bj = E Bi �→ sE sσi = σj

Bi : Ok ∧ Bj : Ok Bi �→ sBj sσi = σj , |s| = 1

Bi : GLk ∧ Bj : Ok Bi �→ sBj sσi = σj

Bi : GLk ∧ Bj : GLk Bi �→ sBj sσi = σj

does not frequently happen in practice. We made this compromise only on three
out of 533 problems used in the experiment. We expect that having more sorts,
e.g., SL±

k = {M ∈ GLk | |det M | = 1}, in the language of index expressions
might be of help here, but leave it as a future work.

The system in {+1,−1} is processed analogously to that in R>0. Finally, by
restoring {ui, vi}i∈I and {uj , vj}j∈J in the solution S to their original forms,
e.g., ui 	→ si · |si|−1, we have a solution to the initial set of equations in terms
of the variables of sort GLk and Ok.

4.3 Type Reconstruction for Pre-defined Symbols with Axioms

We incrementally determined the indexed-types of the pre-defined symbols
according to the hierarchy of their definitions. We first constructed a directed
acyclic graph wherein the nodes are the pre-defined symbols and the edges repre-
sent the dependency between their definitions. We manually assigned an indexed-
type to the symbols without defining axioms (e.g., + : R → R → R) and initialized
Γops with them. We then reconstructed the indexed-types of other symbols in
a topological order of the graph. After the reconstruction of the type of each
symbol, we added the symbol with its inferred type to Γops.

For some of the symbols, type reconstruction does not go as well as we hope.
For example, the following axiom defines the symbol midpoint:

∀p1, p2.(midpoint(p1, p2) =
1
2

· (p1 + p2)).

At the beginning of the type reconstruction of midpoint, the types of the symbols
in the axiom are instantiated as follows:

midpoint : Vec〈β1, τ1〉 → Vec〈β2, τ2〉 → Vec〈β3, τ3〉
· : R〈s1〉 → Vec〈B1, 0〉 → Vec〈s1B1, 0〉
+ : Vec〈B2, t1〉 → Vec〈B2, t2〉 → Vec〈B2, t1 + t2〉.

The derived equations between the index expressions are as follows:

{B2 = β1, B2 = β2, B1 = B2, β3 = s1B1, s1 = 1, t1 = τ1, t2 = τ2, 0 = t1 + t2, τ3 = 0}.
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By solving these equations, we obtain the indexed-type of midpoint as follows:

midpoint : ∀B1:GL2. ∀t1:T2. Vec〈B1, t1〉 → Vec〈B1,−t1〉 → Vec〈B1, 0〉.

This type indicates that the midpoint of any two points P and Q remains the
same when we move P and Q respectively to P + t1 and Q − t1 for any t1 ∈ R2.
While it is not wrong, the following type is more useful for our purpose:

midpoint : ∀B:GL2. ∀t:T2. Vec〈B, t〉 → Vec〈B, t〉 → Vec〈B, t〉. (1)

To such symbols, we manually assigned a more appropriate type.2

In the current system, 945 symbols have a type that includes indices. We
manually assigned the types to 255 symbols that have no defining axioms. For 203
symbols we manually overwrote the inferred type as in the case of midpoint. The
types of the remaining 487 symbols were derived through the type reconstruction.

5 Variable Elimination Based on Invariance

In this section, we first provide an example of the variable elimination procedure
based on invariance. We then describe the top-level algorithm of the variable
elimination, which takes a formula as input and eliminates some of the quantified
variables in it by utilizing the invariance indicated by an index variable. We
finally list the elimination rule for each sort of index variable.

5.1 Example of Variable Elimination Based on Invariance

Let us consider again the proof of the existence of the centroid of a triangle. For
triangle ABC, the configuration of the midpoints P,Q,R of the three sides and
the centroid G is described by the following formula:

ψ(A,B,C, P,Q,R,G) :=

⎛

⎝
P = midpoint(B,C) ∧ on(G, segment(A,P )) ∧
Q = midpoint(C,A) ∧ on(G, segment(B,Q)) ∧
R = midpoint(A,B) ∧ on(G, segment(C,R))

⎞

⎠

where on(X,Y ) stands for the inclusion of point X in a geometric object Y ,
and segment(X,Y ) stands for the line segment between points X and Y . Let φ
denote the existence of the centroid (and the three midpoints):

φ(A,B,C) := ∃G. ∃P. ∃Q. ∃R. ψ(A,B,C, P,Q,R,G).

Our goal is to prove ∀A. ∀B. ∀C. φ(A,B,C).
2 The awkwardness of the type inferred for midpoint is a price for the efficiency of

type reconstruction; it is due to the fact that we ignore the linear space structure of
T2 (and also, we do not posit T1(� R) as the second index of type R). Otherwise,
the type reconstruction comes closer to a search for an invariance on the algebraic
representation of the problems and the defining axioms. Hence 1/2 ∗ (t + t) = t is
not deduced for t : T2, which is necessary to infer the type in Eq. (1).
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The functions midpoint, on, and segment are invariant under translations
and general linear transformations. The reconstruction algorithm hence derives

β : GL2, τ : T2 ; A : Vec〈β, τ〉, B : Vec〈β, τ〉, C : Vec〈β, τ〉 � φ(A,B,C) : Bool.

By the abstraction theorem, this judgement implies the invariance of the
proposition φ(A,B,C) under arbitrary affine transformations:

∀g ∈ GL2. ∀t ∈ T2. ∀A,B,C. φ(A,B,C) ⇔ φ(t ◦ g ◦ A, t ◦ g ◦ B, t ◦ g ◦ C).

First, by considering the case of g being identity, we have

∀t ∈ T2. ∀A,B,C. φ(A,B,C) ⇔ φ(t ◦ A, t ◦ B, t ◦ C). (2)

By using this, we are going to verify ∀B,C. φ(0, B,C) ⇔ ∀A,B,C. φ(A,B,C),
by which we know that we only have to prove ∀B,C. φ(0, B,C).

Suppose that ∀B,C. φ(0, B,C) holds. Since T2 acts transitively on R2, for
any A ∈ R2, there exists t ∈ T2 such that t ◦ 0 = A. Furthermore, for any
B,C ∈ R2, by instantiating ∀B,C. φ(0, B,C) with B 	→ t−1◦B and C 	→ t−1◦C,
we have φ(0, t−1 ◦B, t−1 ◦C). By Eq. (2), we obtain φ(t◦0, t◦t−1 ◦B, t◦t−1 ◦C),
which is equivalent to φ(A,B,C). Since A,B,C were arbitrary, we proved

∀B,C. φ(0, B,C) ⇒ ∀A,B,C. φ(A,B,C).

The converse is trivial. We thus proved ∀B,C. φ(0, B,C) ⇔ ∀A,B,
C. φ(A,B,C).

The simplified formula, ∀B,C. φ(0, B,C), is still invariant under the simul-
taneous action of GL2 on B and C. Hence, by applying the type reconstruction
again, we have β : GL2 ; B : Vec〈β, 0〉, C : Vec〈β, 0〉 � φ(0, B,C) : Bool. It
implies the following invariance: ∀g ∈ GL2. ∀B,C. φ(0, B,C) ⇔ φ(0, g◦B, g◦C).

We now utilize it to eliminate the remaining variables B and C. Although it
is tempting to ‘fix’ B and C respectively at, e.g., e1 := (1, 0) and e2 := (0, 1), it
incurs some loss of generality. For instance, when B is at the origin, there is no
way to move B to e1 by any g ∈ GL2. We consider four cases:

1. B and C are linearly independent,
2. B �= 0, and B and C are linearly dependent,
3. C �= 0, and B and C are linearly dependent, and
4. B and C are both at the origin.

For each of these cases, we can find a suitable transformation in GL2 as follows:

1. There exists g1 ∈ GL2 s.t. g1 ◦ B = e1 and g1 ◦ C = e2,
2. There exist g2 ∈ GL2 and r ∈ R s.t. g2 ◦ B = e1 and g2 ◦ C = re1,
3. There exist g3 ∈ GL2 and r′ ∈ R s.t. g3 ◦ C = e1 and g3 ◦ B = r′e1, and
4. We only have to know whether or not φ(0,0,0) holds.

By a similar argument to the one for the translation-invariance, we have

∀B,C. φ(0, B,C) ⇔ φ(0, e1, e2)∧∀r. φ(0, e1, re1)∧∀r′. φ(0, r′e1, e1)∧φ(0,0,0).

Thus, we eliminated all four coordinate values (i.e., x and y coordinates for B
and C) in the first and the last case and three of them in the other two cases.



Simplification via Invariance Detection 401

5.2 Variable Elimination Algorithm

The variable elimination algorithm works as follows. We traverse the formula of
a problem in a top-down order and, for each subformula in the form of

Qx1.Qx2. · · · Qxn. φ(x1, x2, . . . , xn,y) (Q ∈ {∀,∃})

where y = y1, . . . , ym are the free variables, we apply the type reconstruction
procedure to φ(x1, x2, . . . , xn,y) and derive a judgement Δ;Γ, x1:T1, . . . , xn:Tn �
φ(x1, . . . , xn,y) : Bool. We then choose an index variable i that appears at least
once in T1, . . . , Tn but in none of the types of y. It means the transformation
signified by i acts on some of {x1, . . . , xn} but on none of y. We select from
{x1, . . . , xn} one or more variables whose types include i and are of the form R〈σ〉
or Vec〈β, τ〉. Suppose that we select x1, . . . , xl. Then we know the judgement
Δ;Γ, x1:T1, . . . , xl:Tl � Qxl+1. · · · Qxn. φ(x1, . . . , xn,y) : Bool also holds. We
then eliminate (or add restriction on) the bound variables x1, . . . , xl by one of
the lemmas in Sect. 5.3 according to the sort of i. After the elimination, the
procedure is recursively applied to the resulting formula and its subformulas.

5.3 Variable Elimination Rules

We now present how to eliminate variables based on a judgement of the form

Δ;Γ, x1 : T1, . . . , xn : Tn � ψ(x1, . . . , xn,y) : Bool

where T1, . . . , Tn include no other variables than i; Γ = y1:U1, . . . , ym:Um is a
typing context for y = y1, . . . , ym; and U1 . . . , Um do not include i. Note that
we can obtain a judgement of this form by the procedure in Sect. 5.2 and by
substituting the unity of appropriate sorts for all index variables other than i in
T1, . . . , Tn.

We provide the variable elimination rules as lemmas, one for each sort of i.
They state the rules for variables bound by ∀. The rules for ∃ are analogous.
In stating the lemma, we suppress Δ and Γ in the judgement and y in ψ for
brevity but we still assume the above-mentioned condition hold.

Some complication arises due to the fact that if k �= l, then Tk and Tl may
be indexed with different expressions of i. We thus need to consider poten-
tially different transformations �T1�(i), . . . , �Tn�(i) applied simultaneously on
x1, . . . , xn. Please refer to supplementary material on the first author’s web page
for a general argument behind the rules and the proofs of the lemmas (https://
researchmap.jp/mtzk/?lang=en).

Tk: The following lemma states that, as we saw in Sect. 5.1, we have only to
consider the truth of a formula ψ(x) at x = 0 if ψ(x) is translation-invariant.

Lemma 1. If x : Vec〈1, τ(t)〉 � ψ(x) : Bool holds for t : Tk (t ∈ {2, 3}), then
∀x. ψ(x) ⇔ ψ(0).

O2: The following lemma means that we may assume x is on the x-axis if ψ(x)
is invariant under rotation and reflection.

https://researchmap.jp/mtzk/?lang=en
https://researchmap.jp/mtzk/?lang=en
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Lemma 2. If x : Vec〈β(O), 0〉 � ψ(x) : Bool holds for O : O2, then ∀x. ψ(x) ⇔
∀r. ψ(re1).

O3: A judgement in the following form implies different kinds of invariance
according to β1 and β2:

x1 : Vec〈β1(O), 0〉, x2 : Vec〈β2(O), 0〉 � ψ(x1, x2) : Bool. (3)

In any case, we may assume x1 is on the x-axis and x2 is on the xy-plane for
proving ∀x1, x2. ψ(x1, x2), as stated in the following lemma.

Lemma 3. If judgement (3) holds for O : O3, then

∀x1. ∀x2. ψ(x1, x2) ⇔ ∀p, q, r ∈ R. ψ(pe1, qe1 + re2).

GL1: For s : GL1, a judgement x : R〈σ(s)〉 � ψ(x) : Bool implies, either

– ψ(x) is invariant under change of sign, i.e., ψ(x) ⇔ ψ(−x),
– ψ(x) is invariant under positive scaling, i.e., ψ(x) ⇔ ψ(fx) for all f > 0, or
– ψ(x) is invariant under arbitrary scaling, i.e., ψ(x) ⇔ ψ(fx) for all f �= 0.

The form of σ determines the type of invariance. The following lemma summa-
rizes how we can eliminate or restrict a variable for these cases.

Lemma 4. Let σ(s) = se · |s|f (e �= 0 or f �= 0) and suppose a judgement
x : R〈σ(s)〉 � ψ(s) : Bool holds for s : GL1. We have three cases:

1. if e + f = 0, then ∀x. ψ(x) ⇔ ∀x ≥ 0. ψ(x), otherwise,
2. if e is an even number, then ∀x. ψ(x) ⇔ ψ(1) ∧ ψ(0) ∧ ψ(−1), and
3. if e is an odd number, then ∀x. ψ(x) ⇔ ψ(1) ∧ ψ(0).

GL2 For B : GL2, a judgement in the following form implies different kinds of
invariance of ψ(x1, x2) depending on the form of β1 and β2:

x1 : Vec〈β1(B), 0〉, x2 : Vec〈β2(B), 0〉 � ψ(x1, x2). (4)

The following lemma summarizes how we eliminate the variables in each case.

Lemma 5. Let βj(B) = det(B)ej · |det(B)|fj ·B and gj = ej +fj (j ∈ {1, 2}). If
judgement (4) holds, then, letting ψ0 := ψ(0,0) ∧ ∀r. ψ(re1, e1) ∧ ∀r. ψ(e1, re1)
and Ψ := ∀x1. ∀x2. ψ(x1, x2), the following equivalences hold:

1. If g1 + g2 + 1 = 0 and
– if e1 + e2 is an even number, then Ψ ⇔ ψ0 ∧ ψ(e1, e2)
– if e1 + e2 is an odd number, then Ψ ⇔ ψ0 ∧ ψ(e1, e2) ∧ ψ(e1,−e2)

2. If g1 + g2 + 1 �= 0, then Ψ ⇔ ψ0 ∧ ∀r. ψ(re1, e2).

A similar lemma holds for the invariances indicated by an index variable of sort
GL3. We refrain from presenting it for space reasons.
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Table 3. Results on All RCF Problems
in ToroboMath Benchmark

Division/#Prblms AlgIdx Baseline

Solved Time Solved Time

IMO 116 28% 51.7s 16% 19.7s

Univ 243 69% 22.1s 62% 26.8s

Chart 174 68% 9.7s 62% 12.0s

All 533 60% 20.5s 52% 20.6s

Table 4. Results on RCF Problems with
Invariance Detected and Variable Elimi-
nated

Division/#Prblms AlgIdx Baseline Speed

Solved Time Solved Time up

IMO 77 19% 91.3s 1% 3.6s 23%

Univ 49 57% 31.0s 33% 62.7s 495%

Chart 77 49% 14.3s 36% 26.0s 529%

All 203 40% 34.3s 22% 38.5s 505%

Fig. 5. Comparison of Elapsed Time with and without the Invariance Detection based
on AITs (Left: All Problems; Right: Problems Solved within 60 s)

6 Experiment

We evaluated the effectiveness of the proposed method on the pre-university
math problems in the ToroboMath benchmark. We used a subset of the prob-
lems that can be naturally expressible (by human) in the language of RCF.
Most of them are either in geometry or algebra. Note that the formalization was
done in the language introduced in Sect. 2 but not directly in the language of
RCF. The problems are divided according to the source of the problems; IMO
problems were taken from past International Mathematical Olympiads, Univ
problems were from entrance exams of Japanese universities, and Chart prob-
lems were from a popular math practice book series. Please refer to another
paper [16] on the ToroboMath benchmark for the details of the problems.

The type reconstruction and formula simplification procedures presented in
Sect. 4 and Sect. 5 were implemented as a pre-processor of the formalized prob-
lems. The time spent for the preprocessing was almost negligible (0.76 s per
problem on average) compared to that for solving the problems.

We compared the ToroboMath system with and without the pre-processor
(respectively called AlgIdx and Baseline below). The Baseline system is
equipped with Iwane and Anai’s invariance detection and simplification algorithm
[10] that operates on the language of RCF while AlgIdx is not with it. Thus, our
evaluation shall reveal the advantage of detecting and exploiting the invariance of
the problem expressed in a language that directly encodes its geometric meaning.
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Table 5. Percentage of Problems from
which one or more Variables are Elimi-
nated by the Rule for each Sort

GL1 T2 O2 GL2 T3 O3 GL3 any

22.3 27.4 26.1 1.7 6.6 7.5 0.0 38.1

Table 6. Most Frequent Invariance Types
Detected and Eliminated

Table 3 presents the results on all problems. The solver was run on each
problem with a time limit of 600 s. The table lists the number of problems, the
percentages of the problems solved within the time limit, and the average wall-
clock time spent on the solved problems. The number of the solved problems is
significantly increased in the IMO division. A modest improvement is observed
in the other two divisions. Table 4 presents the results only on the problems in
which at least one variable was eliminated by AlgIdx. The effect of the proposed
method is quite clearly observed across all problem divisions and especially on
IMO. On IMO, the average elapsed time on the problems solved by AlgIdx is
longer than that by Baseline; it is because more difficult problems were solved
by AlgIdx within the time limit. In fact, the average speed-up by AlgIdx (last
column in Table 4) is around 500% on Univ and Chart; i.e., on the problems
solved by both, AlgIdx output the answer five times faster than Baseline.

A curious fact is that both AlgIdx and Baseline tended to need more time
to solve the problems on which an invariance was detected and eliminated by
AlgIdx (i.e., Time in Table 4) than the average over all solved problems (Time
in Table 3). It suggests that a problem having an invariance, or equivalently a
symmetry, is harder for automatic solvers than those without it.

Figure 5 shows a comparison of the elapsed time for each problem. Each
point represents a problem, and the x and y coordinates respectively indicate
the elapsed time to solve (or to timeout) by Baseline and AlgIdx. We can
see many problems that were not solved by Baseline within 600 s were solved
within 300 s by AlgIdx. The speed-up is also observed on easier problems (those
solved in 60 s) as can be seen in the right panel of Fig. 5.

Table 5 lists the fraction of problems on which one or more variables are
eliminated based on the invariance indicated by an index variable of each sort.
Table 6 provides the distribution of the combination of the sorts of invariances
detected and eliminated by AlgIdx.

7 Conclusion

A method for automating w.l.o.g. arguments on geometry problems has been
presented. It detects an invariance in a problem through type reconstruction in
AIT and simplifies the problem utilizing the invariance. It was especially effective
on harder problems including past IMO problems. Our future work includes the
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exploration for a more elaborate language of the index expressions that captures
various kind of invariance while keeping the type inference amenable.

References

1. Aloul, F.A., Sakallah, K.A., Markov, I.L.: Efficient symmetry breaking for boolean
satisfiability. In: Proceedings of the 18th International Joint Conference on Artifi-
cial Intelligence, IJCAI 2003, pp. 271–276 (2003)

2. Arai, N.H.: Tractability of cut-free Gentzen type propositional calculus with per-
mutation inference. Theoret. Comput. Sci. 170(1), 129–144 (1996)

3. Arai, N.H., Urquhart, A.: Local symmetries in propositional logic. In: Dyckhoff, R.
(ed.) TABLEAUX 2000. LNCS (LNAI), vol. 1847, pp. 40–51. Springer, Heidelberg
(2000). https://doi.org/10.1007/10722086 3

4. Atkey, R., Johann, P., Kennedy, A.: Abstraction and invariance for algebraically
indexed types. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2013, pp. 87–100 (2013)

5. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylin-
drical algebraic decomposition. In: Proceedings of the 2007 International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC 2007, pp. 54–60 (2007)

6. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking pred-
icates for search problems. In: Proceedings of the Fifth International Conference
on Principles of Knowledge Representation and Reasoning, KR 1996, pp. 148–159
(1996)

7. Davenport, J.H.: What does “without loss of generality” mean, and how do we
detect it. Math. Comput. Sci. 11(3), 297–303 (2017)

8. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static sym-
metry breaking for SAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 104–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40970-2 8

9. Harrison, J.: Without loss of generality. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 43–59. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03359-9 3

10. Iwane, H., Anai, H.: Formula simplification for real quantifier elimination using
geometric invariance. In: Proceedings of the 2017 ACM on International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC 2017, pp. 213–220 (2017)

11. Kennedy, A.: Types for units-of-measure: theory and practice. In: Horváth, Z.,
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Abstract. We discuss the results of our work on heuristics for gen-
erating minimal synthetic tableaux. We present this proof method for
classical propositional logic and its implementation in Haskell. Based on
mathematical insights and exploratory data analysis we define heuris-
tics that allows building a tableau of optimal or nearly optimal size.
The proposed heuristics has been first tested on a data set with over
200,000 short formulas (length 12), then on 900 formulas of length 23.
We describe the results of data analysis and examine some tendencies.
We also confront our approach with the pigeonhole principle.

Keywords: Synthetic tableau · Minimal tableau · Data analysis ·
Proof-search heuristics · Haskell · Pigeonhole principle

1 Introduction

The method of synthetic tableaux (ST, for short) is a proof method based entirely
on direct reasoning but yet designed in a tableau format. The basic idea is that
all the laws of logic, and only laws of logic, can be derived directly by cases
from parts of some partition of the whole logical space. Hence an ST-proof
of a formula typically starts with a division between ‘p-cases’ and ‘¬p-cases’
and continues with further divisions, if necessary. Further process of derivation
consists in applying the so-called synthesizing rules that build complex formulas
from their parts—subformulas and/or their negations. For example, if p holds,
then every implication with p in the succedent holds, ‘q → p’ in particular; then
also ‘p → (q → p)’ holds by the same argument. If ¬p is the case, then every
implication with p in the antecedent holds, thus ‘p → (q → p)’ is settled. This
kind of reasoning proves that ‘p → (q → p)’ holds in every possible case (unless
we reject tertium non datur in the partition of the logical space). There are
no indirect assumptions, no reductio ad absurdum, no assumptions that need to
be discharged. The ST method needs no labels, no derivation of a normal form
(clausal form) is required.
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In the case of Classical Propositional Logic (CPL, for short) the method may
be viewed as a formalization of the truth-tables method. The assumption that
p amounts to considering all Boolean valuations that make p true; considering
¬p exhausts the logical space. The number of cases to be considered corresponds
to the number of branches of an ST, and it clearly depends on the number of
distinct propositional variables in a formula, thus the upper bound for complexity
of an ST-search is the complexity of the truth-tables method. In the worst case
this is exponential with respect to the number of variables, but for some classes
of formulas truth-tables behave better than standard analytic tableaux (see [4–7]
for this diagnosis). However, the method of ST can perform better than truth-
tables, as shown by the example of ‘p → (q → p)’, where we do not need to
partition the space of valuations against the q/¬q cases.1 The question, obviously,
is how much better? The considerations presented in this paper aim at developing
a quasi -experimental framework for answering it.

The ST method was introduced in [19], then extended to some non-classical
logics in [20,22]. An adjustment to the first-order level was presented in [14].
There were also interesting applications of the method in the domain of abduc-
tion: [12,13]. On the propositional level, the ST method is both a proof- and
model-checking method, which means that one can examine satisfiability of a
formula A (equivalently, validity of ¬A) and its falsifiability (equivalently, incon-
sistency of ¬A) at the same time. Normally, one needs to derive a clausal form of
both A and ¬A to check the two dual semantic cases (satisfiability and validity)
with one of the quick methods, while the ST-system is designed to examine both
of them. Wisely used, this property can contribute to limiting the increase in
complexity in verification of semantic properties.

For the purpose of optimization of the ST method we created a heuristics that
leads to construction of a variable ordering—a task similar to the one performed
in research on Ordered Binary Decision Diagrams (OBDDs), and, generally, in
Boolean satisfiability problem (SAT) [8,15]. In Sect. 3 we sketch a comparison
of STs to OBDDs. Let us stress at this point, however, that the aim of our anal-
ysis remains proof-theoretical—the ST method is a ‘full-blooded’ proof method
working on formulas of arbitrary representation. It was already adjusted to first-
order and to some non-classical logics, and has a large scope of applications
beyond satisfiability checking of clausal forms.

The optimization methods that we present are based on exploratory data
analysis performed on millions of tableaux. Some aspects of the analysis are also
discussed in the paper. The data are available on https://ddsuam.wordpress.
com/software-and-data/.

Here is a plan of what follows. The next section introduces the ST method,
Sect. 3 compares STs with analytic tableaux and with BDDs, and Sect. 4 presents
the implementation in Haskell. In Sect. 5 we introduce the mathematical concepts

1 On a side note, it is easy to show that the ST system is polynomially equivalent to
system KE introduced in [4], as both systems contain cut. What is more, there is
a strict analogy between the ST method and the inverse method (see [4,16]). The
relation between ST and KI was examined by us in detail in Sect. 2 of [14].

https://ddsuam.wordpress.com/software-and-data/
https://ddsuam.wordpress.com/software-and-data/
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needed to analyse heuristics of small tableaux generation. In Sect. 6 we describe
the analysed data, and in Sect. 7—the obtained results. Section 8 confronts our
approach with the pigeonhole principle, and Sect. 9 indicates plans for further
research.

2 The Method of Synthetic Tableaux

Language. Let LCPL stand for the language of CPL with negation, ¬, and impli-
cation, →. Var = {p, q, r, . . . , pi, . . .} is the set of propositional variables and
‘Form’ stands for the set of all formulas of the language, where the notion of
formula is understood in a standard way. A,B,C . . . will be used for formulas
of LCPL. Propositional variables and their negations are called literals. Length
of a formula A is understood as the number of occurrences of characters in A,
parentheses excluded.

Let A ∈ Form. We define the notion of a component of A as follows. (i) A is a
component of A. (ii) If A is of the form ‘¬¬B’, then B is a component of A. (iii) If
A is of the form ‘B → C’, then ‘¬B’ and C are components of A. (iv) If A is of the
form ‘¬(B → C)’, then B and ‘¬C’ are components of A. (v) If C is a component
of B and B is a component of A, then C is a component of A. (vi) Nothing else
is a component of A. By ‘Comp(A)’ we mean the set of all components of A.
For example, Comp( p → (q → p) ) = {p → (q → p),¬p, q → p,¬q, p}. As we
can see, component of a formula is not the same as subformula of a formula; ¬q
is not a subformula of the law of antecedent, q is, but it is not its component.
Components refer to uniform notation as defined by Smullyan (see [18]) which
is very convenient to use with a larger alphabet. Let us also observe that the
association of Comp(A) with a Hintikka set is quite natural, although Comp(A)
need not be consistent. In the sequel we shall also use ‘Comp±(A)’ as a short for
‘Comp(A) ∪ Comp(¬A)’.

Rules. The system of ST consists of the set of rules (see Table 1) and the notion
of proof (see Definition 2). The rules can be applied in the construction of an ST
for a formula A on the proviso that (a) the premises already occur on a given
branch, (b) the conclusion (conclusions, in the case of (cut)) of a particular
application of the rule belongs (both belong) to Comp±(A). The only branching
rule, called (cut) by analogy to its famous sequent-calculus formulation, is at the
same time the only rule that needs no premises, hence every ST starts with an
application of this rule. If its application creates branches with pi and ¬pi, then
we say that the rule was applied with respect to pi.

One of the nice properties of this method is that it is easy to keep every
branch consistent : it is sufficient to restrict the applications of (cut), so that on
every branch (cut) is applied with respect to a given variable pi at most once.
This warrants that pi,¬pi never occur together on the same branch.

The notion of a proof is formalized by that of a tree. If T is a labelled tree,
then by XT we mean the set of its nodes, and by rT we mean its root. Moreover,
ηT is used for a function assigning labels to the nodes in XT .
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Table 1. Rules of the ST system for LCPL

(r1→) (r2→) (r3→) (r¬) (cut)

A

pi ¬pi
¬A B ¬B A

A → B A → B ¬(A → B) ¬¬A

Definition 1 (synthetic tableau). A synthetic tableau for a formula A is
a finite labelled tree T generated by the above rules, such that ηT : X\{rT } −→
Comp±(A) and each leaf is labelled with A or with ¬A.

T is called consistent if the applications of (cut) are subject to the restriction
defined above: there are no two applications of (cut) on the same branch with
respect to the same variable.

T is called regular provided that literals are introduced in the same order on
each branch, otherwise T is called irregular.

Finally, T is called canonical, if, first, it is consistent and regular, and second,
it starts with an introduction of all possible literals by (cut) and only after that
the other rules are applied on the created branches.

In the above definition we have used the notion of literals introduced in the
same order on each branch. It seems sufficiently intuitive at the moment, so we
postpone the clarification of this notion until the end of this section.

Definition 2 (proof in ST system). A synthetic tableau T for a formula
A is a proof of A in the ST system iff each leaf of T is labelled with A.

Theorem 1. (soundness and completeness, see [21]). A formula A is valid
in CPL iff A has a proof in the ST-system.

Example 1. Below we present two different STs for one formula: B = p → (q →
p). Each of them is consistent and regular. Also, each of them is a proof of the
formula in the ST system.

T1 : T2 :

1. p
2. q → p

3. p → (q → p)

4. ¬p
5. p → (q → p)

1. q

2. p
3. q → p

4. B

5. ¬p
6. B

7. ¬q
8. q → p

9. B

In T1: 2 comes from 1 by r2
→, similarly 3 comes from 2 by r2

→. 5 comes from
4 by r1

→. In T2: nothing can be derived from 1, hence the application of (cut)
wrt p is the only possible move. The numbering of the nodes is not part of the
ST.
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There are at least two important size measures used with respect to trees: the
number of nodes and the number of branches. As witnessed by our data, there
is a very high overall correlation between the two measures, we have thus used
only one of them—the number of branches—in further analysis. Among various
STs for the same formula there can be those of smaller, and those of bigger size.
An ST of a minimal size is called optimal. In the above example, T1 is an optimal
ST for B. Let us also observe that there can be many STs for a formula of the
same size, in particular, there can be many optimal STs.

Example 2. Two possible canonical synthetic tableaux for B = p → (q → p).
Each of them is regular, consistent, but clearly not optimal (cf. T1).

T3 : T4 :

p

q
q → p

B

¬q
q → p

B

¬p

q
B

¬q
B

q

p
q → p

B

¬p
B

¬q

p
q → p

B

¬p
B

In the case of formulas with at most two distinct variables regularity is a triv-
ial property. Here comes an example with three variables.

Example 3. T5 is an irregular ST for formula C = (p → ¬q) → ¬(r → p),
i.e. variables are introduced in various orders on different branches. T6 is an
example of an inconsistent ST for C, i.e. there are two applications of (cut) on
one branch with respect to p, which results in a branch carrying both p and ¬p
(the blue one). The whole right subtree of T5, starting with ¬p, is repeated twice
in T6, where it is symbolized with letter T ∗. Let us observe that ¬¬(r → p) is
a component of ¬C due to clause (iv) defining the concept of component.

T5 : T6 :

p
r → p

¬¬(r → p)

q
¬¬q

¬(p → ¬q)
C

¬q
p → ¬q

¬C

¬p
p → ¬q

¬¬(p → ¬q)

r
¬(r → p)

C

¬r
r → p

¬¬(r → p)
¬C

p
r → p

¬¬(r → p)

p

q
¬¬q

¬(p → ¬q)
C

¬q
p → ¬q

¬C

¬p
T ∗

¬p
T ∗

On the level of CPL we can use only consistent STs while still having a com-
plete calculus (for details see [19,21]). An analogue of closing a branch of an
analytic tableau for formula A is, in the case of an ST, ending a branch with
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A synthesized. And the fact that an ST for A has a consistent branch ending
with ¬A witnesses satisfiability of ¬A. The situation concerning consistency of
branches is slightly different, however, in the formalization of first-order logic
presented in [14], as a restriction of the calculus to consistent STs produces an
incomplete formalization.

Finally, let us introduce some auxiliary terminology to be used in the sequel.
Suppose T is an ST for a formula A and B is a branch of T . Literals occur on B in
an order set by the applications of (cut), suppose that it is 〈±p1, . . . ,±pn〉, where
‘±’ is a negation sign or no sign. In this situation we call sequence o = 〈p1, . . . , pn〉
the order on B. It can happen that o contains all variables that occur in A, or
that some of them are missing. Suppose that q1, . . . , qm are all of (and only) the
distinct variables occurring in A. Each permutation of q1, . . . , qm will be called
an instruction for a branch of an ST for A. Further, we will say that the order
o on B complies with an instruction I iff either o = I, or o constitutes a proper
initial segment of I. Finally, I is an instruction for the construction of T , if I
is a set of instructions for branches of an ST for A such that for each branch of
T , the order on the branch complies with some element of I.

Let us observe that in the case of a regular ST the set containing one instruc-
tion for a branch makes the whole instruction for the ST, as the instruction
describes all the branches. Let us turn to examples. T5 from Example 3 has
four branches with the following orders (from the left): 〈p, q〉, 〈p, q〉, 〈p, r〉, 〈p, r〉.
On the other hand, there are six permutations of p, q, r, and hence six possible
instructions for branches of an arbitrary ST for the discussed formula. Order
〈p, q〉 complies with instruction 〈p, q, r〉, and order 〈p, r〉 complies with instruc-
tion 〈p, r, q〉. The set {〈p, q, r〉, 〈p, r, q〉} is an instruction for the construction of
an ST for C, more specifically, it is an instruction for the construction of T5.

3 ST, Analytic Tableaux, BDDs, and SAT Solvers

The analogy between STs and analytic tableaux sketched in the last paragraph
of the previous section breaks in two points. First, let us repeat: the ST method
is both a satisfiability checker and a validity checker at once, just like a truth
table is. Second, the analogy breaks on complexity issues. In the case of analytic
tableaux the order of decomposing compound formulas is the key to a minimal
tableau. In the case of STs, the key to an optimized use of the method is a clever
choice of variables introduced on each branch.

The main similarity between STs and Binary Decision Diagrams (BDDs, see
e.g. [8,15]) is that both methods involve branching on variables. The main differ-
ences concern the representation they work on and their aims: firstly, STs con-
stitute a proof method, whereas BDDs are compact representations of Boolean
formulas, used mainly for practical aims such as design of electronic circuits
(VLSI design); secondly, ST applies to logical formulas, whereas construction
of BDDs may start with different representations of Boolean functions, usually
circuits or Boolean formulas.

The structure of the constructed tree is also slightly different in the two
approaches: in BDDs the inner nodes correspond to variables with outgoing
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edges labelled with 1 or 0; in STs, on the other hand, inner nodes are labelled
with literals or more complex formulas. The terminal nodes of a BDD (also called
sinks, labelled with 1 or 0) indicate the value of a Boolean function calculated
for the arguments introduced along the path from the root, whereas the leaves
of an ST carry a synthesized formula (the initial one or its negation). In addition
to that, the methods differ in terms of the construction process: in case of BDDs,
tree structures are first generated and then reduced to a more compact form using
the elimination and merging rules; the STs, in turn, are built ‘already reduced’.
However, the interpretation of the outcome of both constructions is analogous.
Firstly, for a formula A with n distinct variables p1, . . . , pn and the associated
Boolean function fA = fA(x1, . . . , xn), the following fact holds: If a branch of an
ST containing literals from a set L ends with A or ¬A synthesized (which means
that assuming that the literals from L are true is sufficient to calculate the value
of A), then the two mentioned reduction rules can be used in a BDD for fA,
so that the route that contains the variables occurring in L followed by edges
labelled according to the signs in L can be directed to a terminal node (sink).
For example, if A can be synthesized on a branch with literals ¬p1, p2 and ¬p3,
then fA(0, 1, 0, x4, . . . , xn) = 1 for all values of the variables y ∈ {x4, . . . , xn}
and so the route in the associated BDD containing the variables x1, x2 and x3

followed by the edges labelled with 0, 1 and 0, respectively, leads directly to the
sink labelled with 1.

However, possibility of applying the reduction procedures for a BDD does
not always correspond to the possibility of reducing an ST. For example, the
reduced BDD for formula p ∨ (q ∧ ¬q) consists of the single node labelled with
p with two edges directed straight to the sinks 1 and 0; on the other hand,
construction of an ST for the formula requires introducing q following the literal
¬p. This observation suggests that ST, in general, have greater size than the
reduced BDDs.

Strong similarity of the two methods is also illustrated by the fact that they
both allow the construction of a disjunctive normal form (DNF) of the logical
or Boolean formula to which they were applied. In the case of ST, DNF is the
disjunction of conjunctions of literals that appear on branches finished with
the formula synthesized. The smaller the ST, the smaller the DNF. Things are
analogous with BDDs.

Due to complexity issues, research on BDDs centers on ordered binary deci-
sion diagrams (OBDDs), in which different variables appear in the same order
on all paths from the root. A number of heuristics have been proposed in order
to construct a variable ordering that will lead to the smallest OBDDs, using
characteristics of the different types of representation of Boolean function (for
example, for circuits, topological characteristics have been used for that pur-
pose). OBDDs are clearly analogous to regular STs, the construction of which
also requires finding a good variable ordering, leading to a smaller ST. We sup-
pose that our methodology can also be used to find orderings for OBDDs by
expressing Boolean functions as logical formulas. It is not clear to us whether
the OBDDs methodology can be used in our framework.
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Let us move on to other comparisons, this time with a lesser degree of detail.
It is very instructive to compare the ST method to SAT-solvers, as their effec-
tiveness is undeniably impressive nowadays2. The ST method does not aim at
challenging this effectiveness. Let us explain, however, in what aspect the ST
method can still be viewed as a computationally attractive alternative to a SAT
solver. The latter produces an answer to question about satisfiability, sometimes
producing also examples of satisfying valuations and/or counting the satisfy-
ing valuations. In order to obtain an answer to another question—that about
validity—one needs to ask about satisfiability of the initial problem negated. As
we stressed above, the ST method answers the two questions at once, providing
at the same time a description of classes of valuations satisfying and not satis-
fying the initial formula. Hence one ST is worth two SAT-checks together with
a rough model counting.

Another interesting point concerns clausal forms. The method of ST does
not require derivation of clausal form, but the applications of the rules of the
system, defined via α-, β-notation, reflects the breaking of a formula into its
components, and thus, in a way, leads to a definition of a normal form (a DNF,
as we mentioned above). But this is not to say that an ST needs a full conversion
to DNF. In this respect the ST method is rather similar to non-clausal theorem
provers (e.g. non-clausal resolution, see [9,17]).

Let us finish this section with a summary of the ST method. Formally, it
is a proof method with many applications beyond the realm of CPL. In the
area of CPL, semantically speaking, it is both satisfiability and validity checker,
displaying semantic properties of a formula like a truth table does, but amenable
to work more efficiently (in terms of the number of branches) than the latter
method. The key to this efficiency is in the order of variables introduced in an
ST. In what follows we present a method of construction of such variable orders
and examine our approach in an experimental setting.

4 Implementation

The main functionality of the implementation described in this section is a con-
struction of an ST for a formula according to an instruction provided by the
user. If required, it can also produce all possible instructions for a given formula
and build all STs according to them. In our research we have mainly used the
second possibility.

The implemented algorithm generates non-canonical, possibly irregular STs.
Let us start with some basics. There are three main datatypes employed. Stan-
dard, recursively defined formula type, For, used to represent propositional for-
mulas; Monad Maybe Formula, MF, consisting of Just Formula and Nothing—
used to express the fact that the synthesis of a given formula on a given branch
was successful (Just) or not (Nothing). To represent an ST we use type of trees
imported from Data.Tree. Thus every ST can be represented as Tree [MF]

2 See [23, p. 2021]: contemporary SAT solvers can often handle practical instances with
millions of variables and constraints.
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[Tree [MF]], that is a tree labelled by lists of MF. We employed such a gen-
eral structure having in mind possible extensions to non-classical logics (for CPL
a binary tree is sufficient). The algorithm generating all possible ST for a given
formula consists of the following steps:

1. We start by performing a few operations on the goal-formula A:
(a) a list of all components of A and all components of ¬A, and a separate

list of the variables occurring in A (atoms A) is generated;
(b) the first list is sorted in such a way that all components of a given formula

in that list precede it (sort A).
2. After this initial step, based on the list atoms A, all possible instructions for

the construction of an ST for A are generated (allRules (atoms A)).
3. For each instruction from allRules (atoms A) we build an ST using the

following strategy, called ‘compulsory’:
(a) after each introduction of a literal (by (cut)) we try to synthesize (by the

other rules) as many formulas from sort A as possible;
(b) if no synthesizing rule is applicable we look into the instruction to intro-

duce an appropriate literal and we go back to (a). Let us note that T1,
T2, T5 are constructed according to this strategy.

4. Lastly, we generate a CSV file containing some basic information about each
generated tree: int.al. the number of nodes and whether the tree is a proof.

Please observe that the length of a single branch is linear in the size of a formula;
this follows from the fact that sort A contains only the components of A. On
the other hand, an ‘outburst’ of computational complexity enters on the level
of the number of STs. In general, if k is the number of distinct variables in a
formula A, then for k = 3 there are 12 different canonical STs, for k = 4 and
k = 5 this number is, respectively, 576 and 1,688,800. In the case of k = 6 the
number of canonical STs per formula exceeds 1012 and this approach is no longer
feasible3.

The Haskell implementation together with necessary documentation is avail-
able on https://ddsuam.wordpress.com/software-and-data/.

5 dp-Measure and the Rest of Our Toolbox

As we have already observed, in order to construct an optimal ST for a given
formula one needs to make a clever choice of the literals to start with. The
following function was defined to facilitate the smart choices. It assigns a rational
value from the interval 〈0; 1〉 to each occurrence of a literal in a syntactic tree for

3 It can be shown (e.g. by mathematical induction) that for formulas with k different
variables, the total number of canonical STs is given by the following explicit formula:

k∏

i=1

(k − i + 1)2
i−1

.

.

https://ddsuam.wordpress.com/software-and-data/
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formula A (in fact, it assigns the values to all elements of Comp(A)). Intuitively,
the value reflects the derivative power of the literal in synthesizing A.

The first case of the equation in Definition 3 is to make the function full
(=total) on Form × Form, it also corresponds with the intended meaning of the
defined measure: if B /∈ Comp(A), then B is of no use in deriving A. The second
case expresses the starting point: to calculate the values of dp(A,B) for atomic
B, one needs to assign 1 = dp(A,A); then the value is propagated down along
the branches of a formula’s syntactic tree. Dividing the value a by 2 in the
fourth line reflects the fact that both components of an α-formula are needed to
synthesize the formula. In order to use the measure, we need to calculate it for
both A and ¬A; this follows from the fact that we do not know whether A or
¬A will be synthesized on a given branch.

Definition 3. dp : Form × Form −→ 〈0; 1〉

dp( A,B ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if B 	∈ Comp(A),
1 if B = A,

a if dp( A,¬¬B ) = a,
a
2 if B ∈ {C,¬D} and dp( A,¬(C → D) ) = a,

a if B ∈ {¬C,D} and dp( A,C → D ) = a.

Example 4. A visualization of calculating dp for formulas B,C from Examples
2, 3 and for D = (p → ¬p) → p.

p → (q → p)1

¬p1 q → p1

¬q1 p1

¬(p → (q → p))1

p 1
2

¬(q → p) 1
2

q 1
4

¬p 1
4

(p → ¬q) → ¬(r → p)1

¬(p → ¬q)1

p 1
2

¬¬q 1
2

q 1
2

¬(r → p)1

r 1
2

¬p 1
2

¬((p → ¬q) → ¬(r → p))1

p → ¬q 1
2

¬p 1
2

¬q 1
2

¬¬(r → p) 1
2

r → p 1
2

¬r 1
2

p 1
2

(p → ¬p) → p1

¬(p → ¬p)1

p 1
2

¬¬p 1
2

p 1
2

p1

¬((p → ¬p) → p)1

p → ¬p 1
2

¬p 1
2

¬p 1
2

¬p 1
2

As one can see from Example 4, the effect of applying the dp measure to
a formula and its negation is a number of values that need to be aggregated
in order to obtain a clear instruction for an ST construction. However, some
conclusions can be drawn already from the above example. It seems clear that
the value dp( p → (q → p), p ) = 1 corresponds to the fact that p is sufficient to
synthesize the whole formula (as witnessed by T1, see Example 1). So is the case
with ¬p. On the other hand, even if ¬q is sufficient to synthesize the formula, q is
not (see T2, Example 1), hence the choice between p and q is plain. But it seems
to be the only obvious choice at the moment. In the case of the second formula,
every literal gets the same value: 0.5. What is more, in the case of longer formulas
a situation depicted by the rightmost syntactic trees is very likely to happen:
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we obtain dp(D, p) = 0.5 twice (since dp works on occurrences of literals), and
dp(¬D,¬p) = 0.5 three times.

In the aggregation of the dp-values we use the parametrised Hamacher s-
norm, defined for a, b ∈ 〈0; 1〉 as follows:

a sλ b =
a + b − ab − (1 − λ)ab

1 − (1 − λ)ab

for which we have taken λ = 0.1, as the value turned out to give the best results.
Hamacher s-norm can be seen as a fuzzy alternative; it is commutative and
associative, hence it is straightforward to extend its application to an arbitrary
finite number of arguments. For a = b = c = 0.5 we obtain:

a sλ b ≈ 0.677, and (a sλ b) sλ c ≈ 0.768

The value of this norm is calculated for a formula A and a literal l by taking
the dp-values dp(A, l) for each occurrence l in the syntactic tree of A. This
value will be denoted as ‘h(A, l)’; in case there is only one value dp(A, l), we
take h(A, l) = dp(A, l). Hence, referring to the above Example 4, we have e.g.
h(B, p) = 1, h(¬B,¬p) = 0.25, h(¬D,¬p) ≈ 0.768.

Finally, function H is defined for variables, not their occurrences, in formula
A as follows:

H(A, pi) =
max(h(A, pi), h(¬A, pi)) + max(h(A,¬pi), h(¬A,¬pi))

2

The important property of this apparatus is that for a, b < 1 we have a s0.1 b >
max{a, b}, and thus h(A, l) and H(A, pi) are sensitive to the number of aggre-
gated elements. Another desirable feature of the introduced functions is that
h(A, pi) = 1 indicates that one can synthesize A on a branch starting with pi

without further applications of (cut); furthermore, H(A, pi) = 1 indicates that
both pi and ¬pi have this property.

Let us stress that the values of dp, h and H are very easy to calculate.
Given a formula A, we need to assign a dp-value to each of its components,
and the number of components is linear in the length of A. On the other hand,
the information gained by these calculations is sometimes not sufficient. The
assignment dp(A, pi) = 2−m says only that A can be built from pi and m other
components of A, but it gives us no clue as to which components are needed.
In Example 4, H works perfectly, as we have H(B, p) = 1 and H(B, q) = 0.625,
hence H indicates the following instruction of construction of an ST: {〈p, q〉}.
Unfortunately, in the case of formula C we have H(C, p) = H(C, q) = H(C, r) =
0.5, hence a more sophisticated solution is needed.

6 Data

At the very beginning of the process of data generation we faced the following
general problem: how to make any conclusive inferences about an infinite pop-
ulation (all Form) on the basis of finite data? Considering the methodological
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problems connected with applying classical statistical inference methods in this
context, we limited our analysis to descriptive statistics, exploratory analysis
and testing. To make this as informative as possible, we took a ‘big data’ app-
roach: for every formula we generated all possible STs, differing in the order of
applications of (cut) on particular branches. In addition to that, where it was
feasible, we generated all possible formulas falling under some syntactical spec-
ifications. The approach is aimed at testing different optimisation methods as
well as exploring data in search for patterns and new hypotheses. The knowl-
edge gained in this way is further used on samples of longer formulas to examine
tendencies.

From now on we use l for the length of a formula, k for the number of distinct
variables occurring in a formula, and n for the number of all occurrences of
variables (leaves, if we think of formulas as trees). On the first stage we examined
a dataset containing all possible STs for formulas with l = 12 and k � 4. There
are over 33 million of different STs already for these modest values; for larger
k the data to analyse was simply too big. We generated 242,265 formulas, from
which we have later removed those with k � 2 and/or k = n, as the results for
them where not interesting. In the case of further datasets we also generated all
possible STs, but the formulas were longer and they were randomly generated4.
And so we considered (i) 400 formulas with l = 23, k = 3, (ii) 400 formulas with
l = 23, k = 4, (iii) 100 formulas with l = 23, k = 5. In all cases 9 � n � 12;
this value is to be combined with the occurrences of negations in a formula—the
smaller n, the more occurrences of negation.

Having all possible STs for a formula generated, we could simply check what
is the optimal ST’ size for this formula. The idea was to look for possible rela-
tions between, on the one hand, instructions producing the small STs, and, on
the other hand, properties of formulas that are easy to calculate, like dp or
numbers of occurrences of variables. The first dataset included only relatively
small formulas; however, with all possible formulas of a given type available, it
was possible e.g. to track various types of ‘unusual’ behaviour of formulas and
all possible problematic issues regarding the optimisation methods, which could
remain unnoticed if only random samples of formulas were generated. In case
of randomly generated formulas the ‘special’ or ‘difficult’ types of formulas may
not be tracked (as the probability of drawing them may be small), but instead
we have an idea of an ‘average’ formula, or average behaviour of the optimisation
methods. By generating all the STs, in turn, we gained access to full information
not only about the regular but also irregular STs, which is the basis for indicating
the set of optimal STs and the evaluation of the optimisation methods.

7 Data Analysis and a Discussion of Results

In this section we present some results of analyses performed on our data. The
main purpose of the analyses is to test the effectiveness of the function H in terms
4 The algorithm of generating random formulas is described in [11]. The author pre-

pared also the Haskell implementation of the algorithm. See https://github.com/
kiryk/random-for.

https://github.com/kiryk/random-for
https://github.com/kiryk/random-for
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Fig. 1. Distribution of the difference between the size of a maximal and that of a min-
imal ST for formulas with k = 4, 5.

of indicating a small ST. Moreover, we performed different types of exploratory
analysis on the data, aiming at understanding the variation of size among all
STs for different formulas, and how it relates to the effectiveness of H.

Most results will be presented for the five combinations of the values of l and
k in our data, that is, l = 12, k ∈ {3, 4} and l = 23, k ∈ {3, 4, 5}; however, some
results will be presented with the values of k = 3 and k = 4 grouped together
(where the difference between them is insignificant) and the charts are presented
only for k � 4.

We will examine the variation of size among STs using a range statistic:
by range of the size of ST for a formula A (ST range, for short) we mean the
difference between an ST of maximal and minimal size; this value indicates the
possible room for optimization. The maximal-size ST is bounded by the size of
a canonical ST for a given formula; its size depends only on k. For k = 4 a
canonical ST has 16 branches, for k = 5 it is 32 branches.

The histograms on Fig. 1 present the distributions of ST range for formulas
with k = 4 and k = 5. The rightmost bar in the histogram for l = 23, k = 5 says
that for 5 (among 100) formulas there are STs with only two branches, where
the maximal STs for these formulas have 32 branches. We can also read from the
histograms that for formulas with k = 4 the ST range of some formulas is equal
to 0 (7.9% of formulas with l = 12 and 3.5% with l = 23), which means that
all STs have the same size. We have decided to exclude these formulas from the
results of tests of efficiency of H, as the formulas leave no room for optimization.
However, as can be seen on the histogram, there were no formulas of this kind
among those with k = 5. This indicates that with the increase of k the internal
differentiation of the set of STs for a formula increases as well, leading to a
smaller share of formulas with small ST range.

Two more measures relating to the distribution of the size of ST may be of
interest. Firstly, the share of formulas for which no regular ST is of optimal size—
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Table 2. Row A: the share of formulas that do not have a regular ST of optimal size.
Row B: the share of optimal STs among all STs for a formula; this was first calculated
for each formula, then averaged over all formulas in a given set.

k = 3 k = 4 k = 5

l = 12 l = 23 l = 12 l = 23 l = 23

A 1.5% 1.1% 4.9% 3.3% 8.0%

B 31.7% 31.8% 17.3% 17.4% 10.0%

it indicates how wrong we can be in pointing to only the regular STs. Secondly,
the percentage share of optimal STs among all STs for a given formula. The
latter gives an idea what is the chance of picking an optimal ST at random.
Table 2 presents both values for formulas depending on k and l (let us recall
that formulas with ST range equal to 0 are excluded from the analysis). In both
cases we can see clearly a tendency with growing k. As was to be expected, the
table shows that the average share of optimal STs depends on the value of k
rather than the size of the formula. This is understandable—as the number of
branches depends on k only, the length of a formula translates to the length of
branches, and the latter is linear in the former. In a way, this explains why the
results are almost identical when the size of STs is calculated in terms of nodes
rather than branches (as we mentioned above, the overall correlation between
the two measures makes the choice between them irrelevant).

We can categorise the output of the function H into three main classes. In the
first case, the values assigned to variables by H strictly order the variables, which
results in one specific instruction of construction of a regular ST. The general
score of such unique indications was very high: 70.9% for formulas with l = 12,
92.0% for l = 23, k = 3, 4, and 72.0% for k = 5. The second possibility is when
H assigns the same value to each variable; in this case we gain no information
at all (let us recall that we have excluded the only cases that could justify such
assignments, that is, the formulas for which each ST is of the same size). The
share of such formulas in our datasets was small: 0.6% for l = 12, 0.1% for
l = 23, k = 3, 4 and 0% for k = 5, suggesting that it tends to fall with k rising.
The third possibility is that the ordering is not strict, yet some information is
gained. In this case for some, but not all, variables the value of H is the same.

The methodology used to asses effectiveness of H is quite simple. We assume
that every indication must be a single regular instruction, hence we use additional
criteria in case of formulas of the second and third kind described, in order to
obtain a strict ordering. If H outputs the same value for some variables, we first
order the variables by the number of occurrences in the formula; if the ordering
is still not strict, we give priority to variables for which the sum of depths for all
occurrences of literals in the syntactic tree is smaller; finally, where the above
criteria do not provide a strict ordering, the order is chosen at random.

We used three evaluating functions to asses the quality of indications. Each
function takes as arguments a formula and the ST for this formula indicated by
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Table 3. The third column gives the number of formulas satisfying the characteristic
presented in the first and the second column. The further three columns display values
averaged on the sets. F1 indicates how often we indicate an optimal ST. F2 reports
the mistake of our indication calculated as the difference of sizes between the indi-
cated ST and an optimal one. Finally, POT indicates proximity to an optimal ST in a
standardized way.

k l no of formulas F1 F2 POT

3 12 113,190 0.935 0.089 0.974

23 400 0.923 0.104 0.966

4 12 53,130 0.859 0.286 0.966

23 400 0.836 0.297 0.960

5 23 100 0.75 0.52 0.971

our heuristics. The first function (F1 in Table 3) outputs 1 if the indicated ST
is of optimal size, 0 otherwise. The second function (F2 in Table 3) outputs the
difference between the size of the indicated ST and the optimal size. The third
function is called proximity to optimal tableau, POTA in symbols:

POTA(T ) = 1 − |T | − minA

maxA − minA

where T is the ST for formula A indicated by H, |T | is the size of T , maxA is
the size of an ST for A of maximal size, and minA is the size of an optimal ST
for A. Later on we skip the relativization to A. Let us observe that the value
|T |−min

max−min represents a mistake in indication relative to the ST range of a formula,
and in this sense POTA can be considered as a standardized measure of the
quality of indication. Finally, values of each of the three evaluating functions
were calculated for sets of formulas, by taking average values over all formulas
in the set.

The results of the three functions presented in Table 3 show that optimal STs
are indicated less often for formulas with greater k; however, the POT values
seem to remain stable across all data, indicating that, on average, proximity of
the indicated ST to the optimal ones does not depend on k or l.

Further analysis showed that the factor that most influenced the efficiency of
our methodology was whether there is at least one value 1 among the dp-values
of literals for a formula A. We shall write ‘Max(dp) = 1’ if this is the case,
and ‘Max(dp) < 1’ otherwise (we skip the relativisation to A for simplicity).
For formulas with Max(dp) = 1, results of the evaluating functions were much
better; for example, the value of the POT function for formulas with l = 12 was
0.979 if Max(dp) = 1, and 0.814 for those with Max(dp) < 1; in case of formulas
with l = 23, k = 3, 4 those values were 0.968 and 0.869, respectively, and for
formulas with l = 23, k = 5 it was 0.974 and 0.901, respectively. This shows
that our methodology works significantly worse if Max(dp) < 1; on the other
hand, if Max(dp) = 1, the dp measure works very well. It should also be pointed
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Fig. 2. Distribution of the difference between indicated and optimal ST in relation
to ST-range. Every point corresponds to a formula, the points are slightly jittered in
order to improve readibility. Each chart corresponds to different data, formulas k = 3
are excluded; additionally the colour indicates whether Max(dp) = 1 for a formula.

out that the difference between the POT values for both groups is smaller for
formulas with greater l and k. Figure 2 presents a scatter plot that gives an
idea of the whole distribution of the values of the POT function in relation to
the ST range. Each formula on the plot is represented by a point, the colours
additionally indicating whether Max(dp) < 1. The chart suggests, similarly as
Table 3, that the method works well as the values of l and k rise for formulas,
indicating STs that are on average equally close to the optimal ones.

One can point at two possible explanations of the fact that our methodology
works worse for formulas with Max(dp) < 1. Firstly, if e.g., dp(A, p) = 2−m,
we only obtain the information that, except for p, m more occurrences of com-
ponents of A are required in order to synthesize the whole formula. Secondly,
the function H neglects the complex dependencies between the various aggre-
gated occurrences of a given variable, taking into account only the number of
occurrences of literals in an aggregated group. However, considering very low
computational complexity of the method based on the dp values and the func-
tion H, the outlined framework seems to provide good heuristics for indicating
small STs. Methods that would reflect more aspects of the complex structure of
logical formulas would likely require much more computational resources.

On a final note, we would like to add that exploration of the data allowed
us to study properties of formulas that went beyond the scope of the optimi-
sation of ST. The data was used in a similar way as in so called Experimental
Mathematics, where numerous instances are analysed and visualized in order to
e.g. gain insight, search for new patterns and relationships, test conjectures and
introduce new concepts (see e.g. [1]).
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Table 4. The pigeonhole principle

PHPm the size of ST

m k l indicated by H minimal canonical ST

1 2 7 3 3 4

2 6 34 15 11 64

3 12 90 99 43 4096

4 20 184 783 189 220

8 The Pigeonhole Principle

At the end we consider the propositional version of the principle introduced by
Cook and Reckhow in [3, p. 43]. In the field of proof complexity the principle
was used to prove that resolution is intractable, that is, any resolution proof of
the propositional pigeonhole principle must be of exponential size (wrt the size
of the formula). This has been proved by Haken in [10], see also[2].

Here is PHPm in the propositional version:
∧

0�i�m

∨
0�j<m

pi,j →
∨

0�i<n�m

∨
0�j<m

(pi,j ∧ pn,j)

where
∧

and
∨

stand for generalized conjunction, disjunction (respectively) with
the range indicated beneath.

The pigeonhole principle is constructed in a perfect symmetry of the roles
played by the consecutive variables. Each variable has the same number of occur-
rences in the formula, and each of them gets the same value under H, they also
have occurrences at the same depth of a syntactic tree. All this means that in our
account we can only suggest a random, regular ST. However, it is worth noticing
that, first, H behaves consistently with the structure of the formula, and second,
the result is still attractive. In Table 4 the fourth column presents the size of the
ST indicated by our heuristics, that is, in fact, generated by random ordering of
variables. It is to be contrasted with the number 2k in the last column describing
the size of a canonical ST for the formula, which is at the same time the number
of rows in a truth table for the formula. The minimal STs for the formulas were
found with pen and paper and they are irregular.

9 Summary and Further Work

We presented a proof method of Synthetic Tableaux for CPL and explained
how the efficiency of tableau construction depends on the choices of variables
to apply (cut) to. We defined possible algorithms to choose the variables and
experimentally tested their efficiency.

Our plan for the next research is well defined and it is to implement heuristics
amenable to produce instructions for irregular STs. We have an algorithm, yet
untested.
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As far as proof-theoretical aims are concerned, the next task is to extend and
adjust the framework to the first-order level based on the already described ST
system for first-order logic [14]. We also wish to examine the efficiency of our
indications on propositional non-classical logics for which the ST method exists
(see [20,22]). In the area of data analysis another possible step would be to
perform more complex statistical analysis using e.g. machine learning methods.
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Abstract. We introduce a paraconsistent modal logic KG2, based on
Gödel logic with coimplication (bi-Gödel logic) expanded with a De Mor-
gan negation ¬. We use the logic to formalise reasoning with graded,
incomplete and inconsistent information. Semantics of KG2 is two-
dimensional: we interpret KG2 on crisp frames with two valuations v1

and v2, connected via ¬, that assign to each formula two values from
the real-valued interval [0, 1]. The first (resp., second) valuation encodes
the positive (resp., negative) information the state gives to a statement.
We obtain that KG2 is strictly more expressive than the classical modal
logic K by proving that finitely branching frames are definable and by
establishing a faithful embedding of K into KG2. We also construct a con-
straint tableau calculus for KG2 over finitely branching frames, establish
its decidability and provide a complexity evaluation.

Keywords: Constraint tableaux · Gödel logic · Two-dimensional
logics · Modal logics

1 Introduction

People believe in many things. Sometimes, they even have contradictory beliefs.
Sometimes, they believe in one statement more than in the other. However, if
a person has contradictory beliefs, they are not bound to believe in anything.
Likewise, believing in φ strictly more than in χ makes one believe in φ completely.
These properties of beliefs are natural, and yet hardly expressible in the classical
modal logic. In this paper, we present a two-dimensional modal logic based on
Gödel logic that can formalise beliefs taking these traits into account.

Two-Dimensional Treatment of Uncertainty. Belnap-Dunn four-valued
logic (BD, or First Degree Entailment—FDE) [4,16,34] can be used to formalise
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reasoning with both incomplete and inconsistent information. In BD, formulas
are evaluated on the De Morgan algebra 4 (Fig. 1, left) where the four values
{t, f, b, n} encode the information available about the formula: true, false, both
true and false, neither true nor false. b and n thus represent inconsistent and
incomplete information, respectively. It is important to note that the values
represent the available information about the statement, not its intrinsic truth or
falsity. Furthermore, this approach essentially treats evidence for a statement (its
positive support) as being independent of evidence against it (negative support)
which allows to differentiate between ‘absence of evidence’ and the ‘evidence of
absence’. The BD negation ¬ then swaps positive and negative supports.

Fig. 1. 4 (left) and its continuous extension [0, 1]� (right). (x, y) ≤[0,1]� (x′, y′) iff
x ≤ x′ and y ≥ y′.

The information regarding a statement, however, might itself be not crisp—
after all, our sources are not always completely reliable. Thus, to capture the
uncertainty, we extend 4 to the lattice [0, 1]� (Fig. 1, right). [0, 1]� is a twist
product (cf, [37] for definitions) of [0, 1] with itself: the order on the second
coordinate is reversed w.r.t. the order on the first coordinate. This captures the
intuition behind the usual ‘truth’ (upwards) order: an agent is more certain in
χ than in φ when the evidence for χ is stronger than the evidence for φ while
the evidence against χ is weaker than the evidence against φ.

Note that [0, 1]� is a bilattice whose left-to-right order can be interpreted as
the information order. This links the logics we consider to bilattice logics applied
to reasoning in AI in [19] and then studied further in [24,35].

Comparing Beliefs. Uncertainty is manifested not only in the non-crisp char-
acter of the information. An agent might often lack the capacity to establish the
concrete numerical value that represents their certainty in a given statement.
Indeed, ‘I am 43% certain that the wallet is Paula’s’ does not sound natural. On
the other hand, it is reasonable to assume that the agents’ beliefs can be com-
pared in most contexts: neither ‘I am more confident that the wallet is Paula’s
than that the wallet is Quentin’s’, nor ‘Alice is more certain than Britney that
Claire loves pistachio ice cream’ require us to give a concrete numerical repre-
sentation to the (un)certainty.

These considerations lead us to choosing the two-dimensional relative of the
Gödel logic dubbed G2 as the propositional fragment of our logic. G2 was intro-
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duced in [5] and is, in fact, an extension of Moisil’s logic1 from [31] with the
prelinearity axiom (p → q) ∨ (q → p). As in the original Gödel logic G, the
validity of a formula in G2 depends not on the values of its constituent variables
but on the relative order between them. In this sense, G is a logic of comparative
truth. Thus, as we treat positive and negative supports of a given statement
independently, G2 is a logic of comparative truth and falsity. Note that while the
values of two statements may not be comparable (say, p is evaluated as (0.5, 0.3)
and q as (0, 0)), the coordinates of the values always are. We will see in Sect. 2,
how we can formalise statements comparing agents’ beliefs.

The sources available to the agents as well as the references between these
sources can be represented as states in a Kripke model and its accessibility rela-
tion, respectively. It is important to mention that we account for the possibility
that a source can give us contradictory information regarding some statement.
Still, we want our reasoning with such information to be non-trivial. This is
reflected by the fact that (p∧¬p) → q is not valid in G2. Thus, the logic (treated
as a set of valid formulas) lacks the explosion principle. In this sense, we call
G2 and its modal expansions ‘paraconsistent’. This links our approach to other
paraconsistent fuzzy logics such as the ones discussed in [17].

To reason with the information provided by the sources, we introduce two
interdefinable modalities—� and ♦—interpreted as infima and suprema w.r.t.
the upwards order on [0, 1]�. We mostly assume (unless stated otherwise) that
accessibility relations in models are crisp. Intuitively, it means that the sources
are either accessible or not (and, likewise, either refer to the other ones, or not).

Broader Context. This paper is a part of the project introduced in [6] and
carried on in [5] aiming to develop a modular logical framework for reasoning
based on uncertain, incomplete and inconsistent information. We model agents
who build their epistemic attitudes (like beliefs) based on information aggregated
from multiple sources. � and ♦ can be then viewed as two simple aggregation
strategies: a pessimistic one (the infimum of positive support and the supremum
of the negative support), and an optimistic one (the dual strategy), respectively.
They can be defined via one another using ¬ in the expected manner: �φ stands
for ¬♦¬φ and ♦φ for ¬�¬φ. In this paper, in contrast to [15] and [6], we do
allow for modalities to nest.

The other part of our motivation comes from the work on modal Gödel
logic (GK—in the notation of [36]) equipped with relational semantics [12,13,
36]. There, the authors develop proof and model theory of modal expansions
of G interpreted over frames with both crisp and fuzzy accessibility relations.
In particular, it was shown that the �-fragment2 of GK lacks the finite model
property (FMP) w.r.t. fuzzy frames while the ♦-fragment has FMP3 only w.r.t.
fuzzy (but not crisp) frames. Furthermore, both � and ♦ fragments of GK are
PSPACE-complete [28,29].

1 This logic was introduced several times: by Wansing [38] as I4C4 and then by Leit-
geb [27] as HYPE. Cf. [33] for a recent and more detailed discussion.

2 Note that � and ♦ are not interdefinable in GK—cf. [36, Lemma 6.1] for details.
3 There is, however, a semantics in [11] w.r.t. which bi-modal GK has FMP.
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Description Gödel logics, a notational version of modal logics, have found
their use the field of knowledge representation [8–10], in particular, in the repre-
sentation of vague or uncertain data which is not possible in the classical ontolo-
gies. In this respect, our paper provides a further extension of representable data
types as we model not only vague reasoning but also non-trivial reasoning with
inconsistent information.

In the present paper, we are expanding the language with the Gödel coimpli-
cation � to allow for the formalisation of statements expressing that an agent is
strictly more confident in one statement than in another one (cf. Sect. 2 for the
details). Furthermore, the presence of ¬ will allow us to simplify the frame defin-
ability. Still, we will show that our logic is a conservative extension of GKc—the
modal Gödel logic of crisp frames from [36] in the language with both � and ♦.

Logics. We are discussing many logics obtained from the propositional Gödel
logic G. Our main interest is in the logic we denote KG2. It can be produced from
G in several ways: (1) adding De Morgan negation ¬ to obtain G2 (in which case
φ�φ′ can be defined as ¬(¬φ′ → ¬φ)) and then further expanding the language
with � or ♦; (2) adding � or Δ (Baaz’ delta) to G, then both � and ♦ thus
acquiring KbiG4 (modal bi-Gödel logic) which is further enriched with ¬. These
and other relations are given on Fig. 2.

Fig. 2. Logics in the article. ff stands for ‘permitting fuzzy frames’. Subscripts on
arrows denote language expansions. / stands for ‘or’ and comma for ‘and’.

Plan of the Paper. The remainder of the paper is structured as follows. In
Sect. 2, we define bi-Gödel algebras and use them to present KbiG (on both
fuzzy and crisp frames) and then KG2 (on crisp frames), show how to formalise
statements where beliefs of agents are compared, and prove some semantical
properties. In Sect. 3, we show that ♦ fragment of KbiGf (KbiG on fuzzy frames)
lacks finite model property. We then present a finitely branching fragment of
KG2 (KG2

fb) and argue for its use in representation of agents’ beliefs. In Sect. 4,
we design a constraint tableaux calculus for KG2

fb which we use to obtain the
complexity results. Finally, in Sect. 5 we discuss further lines of research.
4 To the best of our knowledge, the only work on bi-Gödel (symmetric Gödel) modal

logic is [20]. There, the authors propose an expansion of biG with � and ♦ equipped
with proof-theoretic interpretation and provide its algebraic semantics.
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2 Language and Semantics

In this section, we present semantics for KbiG (modal bi-Gödel logic) over both
fuzzy and crisp frames and the one for KG2 over crisp frames. Let Var be a count-
able set of propositional variables. The language biL¬�,♦ is defined via the fol-
lowing grammar.

φ := p ∈ Var | ¬φ | (φ ∧ φ) | (φ ∨ φ) | (φ → φ) | (φ � φ) | �φ | ♦φ

Two constants, 0 and 1, can be introduced in the traditional fashion: 0 := p� p,
1 := p → p. Likewise, the Gödel negation can be also defined as expected:
∼φ := φ → 0. The ¬-less fragment of biL¬�,♦ is denoted with biL�,♦.

To facilitate the presentation, we introduce bi-Gödel algebras.

Definition 1. The bi-Gödel algebra [0, 1]G = ([0, 1], 0, 1,∧G,∨G,→G,�G) is
defined as follows: for all a, b ∈ [0, 1], the standard operations are given by
a ∧G b := min(a, b), a ∨G b := max(a, b),

a →G b =

{
1, if a ≤ b

b else,
b �G a =

{
0, if b ≤ a

b else.

Definition 2.

– A fuzzy frame is a tuple F = 〈W,R〉 with W 
= ∅ and R : W × W → [0, 1].
– A crisp frame is a tuple F = 〈W,R〉 with W 
= ∅ and R ⊆ W × W .

Definition 3 (KbiG models). A KbiG model is a tuple M = 〈W,R, v〉 with
〈W,R〉 being a (crisp or fuzzy) frame, and v : Var × W → [0, 1]. v (a valuation)
is extended on complex biL�,♦ formulas as follows:

v(φ ◦ φ′, w) = v(φ,w) ◦G v(φ′, w). (◦ ∈ {∧,∨,→,�})

The interpretation of modal formulas on fuzzy frames is as follows:

v(�φ,w) = inf
w′∈W

{wRw′ →G v(φ,w′)}, v(♦φ,w) = sup
w′∈W

{wRw′ ∧G v(φ,w′)}.

On crisp frames, the interpretation is simpler (here, inf(∅)=1 and sup(∅)=0):

v(�φ,w) = inf{v(φ,w′) : wRw′}, v(♦φ,w) = sup{v(φ,w′) : wRw′}.

We say that φ ∈ biL�,♦ is KbiG valid on frame F (denote, F |=KbiG φ) iff for
any w ∈ F, it holds that v(φ,w) = 1 for any model M on F.

Note that the definitions of validity in GKc and GK coincide with those in KbiG
and KbiGf if we consider the �-free fragment of biL�,♦.

As we have already mentioned, on crisp frames, the accessibility relation can
be understood as availability of (trusted or reliable) sources. In fuzzy frames, it
can be thought of as the degree of trust one has in a source. Then, ♦φ represents
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the search for evidence from trusted sources that supports φ: v(♦φ, t) > 0 iff
there is t′ s.t. tRt′ > 0 and v(φ, t′) > 0, i.e., there must be a source t′ to
which t has positive degree of trust and that has at least some certainty in φ.
On the other hand, if no source is trusted by t (i.e., tRu = 0 for all u), then
v(♦φ, t) = 0. Likewise, �χ can be construed as the search of evidence against χ
given by trusted sources: v(�χ, t) < 1 iff there is a source t′ that gives to χ less
certainty than t gives trust to t′. In other words, if t trusts no sources, or if all
sources have at least as high confidence in χ as t has in them, then t fails to find
a trustworthy enough counterexample.

Definition 4 (KG2 models). A KG2 model is a tuple M = 〈W,R, v1, v2〉 with
〈W,R〉 being a crisp frame, and v1, v2 : Var × W → [0, 1]. The valuations which
we interpret as support of truth and support of falsity, respectively, are extended
on complex formulas as expected.

v1(¬φ,w) = v2(φ,w) v2(¬φ,w) = v1(φ,w)
v1(φ ∧ φ′, w) = v1(φ,w) ∧G v1(φ′, w) v2(φ ∧ φ′, w) = v2(φ,w) ∨G v2(φ′, w)
v1(φ ∨ φ′, w) = v1(φ,w) ∨G v1(φ′, w) v2(φ ∨ φ′, w) = v2(φ,w) ∧G v2(φ′, w)

v1(φ → φ′, w) = v1(φ,w)→G v1(φ′, w) v2(φ → φ′, w) = v2(φ′, w) �G v2(φ,w)
v1(φ � φ′, w) = v1(φ,w) �G v1(φ′, w) v2(φ � φ′, w) = v2(φ′, w)→G v2(φ,w)

v1(�φ,w) = inf{v1(φ,w′) : wRw′} v2(�φ,w) = sup{v2(φ,w′) : wRw′}
v1(♦φ,w) = sup{v1(φ,w′) : wRw′} v2(♦φ,w) = inf{v2(φ,w′) : wRw′}

We say that φ ∈ biL¬�,♦ is KG2 valid on frame F (F |=KG2 φ) iff for any
w ∈ F, it holds that v1(φ,w) = 1 and v2(φ,w) = 0 for any model M on F.

Convention 1. In what follows, we will denote a pair of valuations 〈v1, v2〉 just
with v if there is no risk of confusion. Furthermore, for each frame F and each
w ∈ F, we denote

R(w) = {w′ : wRw′ = 1}, (for fuzzy frames)
R(w) = {w′ : wRw′}. (for crisp frames)

Convention 2. We will further denote with KbiG the set of all formulas KbiG-
valid on all crisp frames; KbiGf the set of all formulas KbiG-valid on all fuzzy
frames; and KG2—the set of all formulas KG2 valid on all crisp frames.

Before proceeding to establish some semantical properties, let us make two
remarks. First, neither � nor ♦ are trivialised by contradictions: in contrast to
K, �(p∧¬p) → �q is not KG2 valid, and neither is ♦(p∧¬p) → ♦q. Intuitively,
this means that one can have contradictory but non-trivial beliefs. Second, we
can formalise statements of comparative belief such as the ones we have already
given before:

wallet: I am more confident that the wallet is Paula’s than that the wallet
is Quentin’s.
ice cream: Alice is more certain than Britney that Claire loves pistachio
ice cream.
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For this, consider the following defined operators.

Δτ := ∼(1 � τ) (1)

Δ¬φ := ∼(1 � φ) ∧ ¬∼∼(1 � φ) (2)

It is clear that for any τ ∈ biL�,♦ and φ ∈ biL¬�,♦ interpreted on KbiG and KG2

models, respectively, it holds that

v(Δτ,w) =

{
1 if v(τ, w) = 1
0 otherwise,

v(Δ¬φ,w) =

{
(1, 0) if v(φ,w) = (1, 0)
(0, 1) otherwise.

(3)

Now we can define formulas that express order relations between values of two
formulas both for KbiG and KG2.

For KbiG they look as follows:

v(τ, w) ≤ v(τ ′, w) iff v(Δ(τ → τ ′), w) = 1,

v(τ, w) > v(τ ′, w) iff v (∼Δ(τ ′ → τ), w) = 1.

In KG2, the orders are defined in a more complicated way:

v(φ,w) ≤ v(φ′, w) iff v(Δ¬(φ → φ′), w) = (1, 0),
v(φ,w) > v(φ′, w) iff v(Δ¬(φ′ → φ) ∧ ∼Δ¬(φ → φ′), w) = (1, 0).

Observe, first, that both in KbiG and KG2 the relation ‘the value of τ (φ) is less
or equal to the value of τ ′ (φ′)’ is defined as ‘τ → τ ′ (φ → φ′) has the designated
value’. In KbiG, the strict order is just a negation of the non-strict order since all
values are comparable. On the other hand, in contrast to KbiG, the strict order
in KG2 is not a simple negation of the non-strict order since KG2 is essentially
two-dimensional. We provide further details in Remark 2.

Finally, we can formalise wallet as follows. We interpret ‘I am confident’ as �
and substitute ‘the wallet is Paula’s’ with p, and ‘the wallet is Quentin’s’ with q.
Now, we just use the definition of > in biL¬�,♦ to get

Δ¬(�p → �q) ∧ ∼Δ¬(�q → �p). (4)

For ice cream, we need two different modalities: �a and �b for Alice and Brittney,
respectively. Replacing ‘Alice loves pistachio ice cream’ with p, we get

Δ¬(�ap → �bp) ∧ ∼Δ¬(�bp → �ap). (5)

Remark 1. Δ is called Baaz’ delta (cf., e.g. [3] for more details). Intuitively, Δτ
can be interpreted as ‘τ has the designated value’ and acts much like a necessity
modality: if τ is KbiG valid, then so is Δτ ; moreover, Δ(p → q) → (Δp → Δq)
is valid. Furthermore, Δ and � can be defined via one another in KbiG, thus the
addition of Δ to G makes it more expressive and allows to define both strict and
non-strict orders.
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Remark 2. Recall that we mentioned in Sect. 1 that an agent should usually be
able to compare their beliefs in different statements: this is reflected by the fact
that Δ(p → q) ∨ Δ(q → p) is KbiG valid. It can be counter-intuitive if the
contents of beliefs have nothing in common, however.

This drawback is avoided if we treat support of truth and support of falsity
independently. Here is where a difference between KbiG and KG2 lies. In KG2,
we can only compare the values of formulas coordinate-wise, whence Δ¬(p →
q)∨Δ¬(q → p) is not KG2 valid. E.g., if we set v(p,w) = (0.7, 0.6) and v(q, w) =
(0.4, 0.2), v(p,w) and v(q, w) will not be comparable w.r.t. the truth (upward)
order on [0, 1]�.

We end this section with establishing some useful semantical properties.

Proposition 1. F |=KG2 φ iff for any model M on F and any w∈F, v1(φ,w)=1.

Proof. The ‘if’ direction is evident from the definition of validity. We show the
‘only if’ part. It suffices to show that the following statement holds for any φ
and w ∈ F:

for any v(p,w) = (x, y), let v∗(p,w) = (1−y, 1−x). Then v(φ,w) = (x, y)
iff v∗(φ,w) = (1 − y, 1 − x).

We proceed by induction on φ. The proof of propositional cases is identical to
the one in [5, Proposition 5]. We consider only the case of φ = �ψ since � and
♦ are interdefinable.

Let v(�ψ,w) = (x, y). Then inf{v1(ψ,w′) : wRw′} = x, and sup{v2(ψ,w′) :
wRw′} = y. Now, we apply the induction hypothesis to ψ, and thus if v(ψ, s) =
(x′, y′), then v∗(ψ, s) = (1−y′, 1−x′) for any s ∈ R(w). But then inf{v∗

1(ψ,w′) :
wRw′} = 1 − y, and sup{v∗

2(ψ,w′) : wRw′} = 1 − x as required.
Now, assume that v1(φ,w) = 1 for any v1 and w. We can show that v2(φ,w)=

0 for any w and v2. Assume for contradiction that v2(φ,w)=y>0 but v1(φ,w)=
1. Then, v∗(φ)=(1−y, 1−1)=(1−y, 0). But since y>0, v∗(φ) 
=(1, 0).

Proposition 2.

1. Let φ be a formula over {0,∧,∨,→,�,♦}. Then, F |=GK φ iff F |=KbiGf φ
and F |=GKc φ iff F |=KbiG φ, for any F.

2. Let φ ∈ biL�,♦. Then, F |=KbiG φ iff F |=KG2 φ, for any crisp F.

Proof. 1. follows directly from the semantic conditions of Definition 3. We con-
sider 2. The ‘only if’ direction is straightforward since the semantic conditions
of v1 in KG2 models and v in KbiG models coincide. The ‘if’ direction follows
from Proposition 1: if φ is valid on F, then v(φ,w) = 1 for any w ∈ F and any v
on F. But then, v1(φ,w) = 1 for any w ∈ F. Hence, F |=KG2 φ.

3 Model-Theoretic Properties of KG2

In the previous section, we have seen how the addition of � allowed us to formalise
statements considering comparison of beliefs. Here, we will show that both �
and ♦ fragments of KbiG, and hence KG2, are strictly more expressive than the
classical modal logic K, i.e. that they can define all classically definable classes
of crisp frames as well as some undefinable ones.
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Definition 5 (Frame definability). Let Σ be a set of formulas. Σ defines
a class of frames K in a logic L iff it holds that F ∈ K iff F |=L Σ.

The next statement follows from Proposition 2 since K can be faithfully embed-
ded in GKc by substituting each variable p with ∼∼p (cf. [28,29] for details).

Theorem 1. Let K be a class of frames definable in K. Then, K is definable in
KbiG and KG2.

Theorem 2. 1. Let F be crisp. Then F is finitely branching (i.e., R(w) is finite
for every w ∈ F) iff F |=KbiG 1 � ♦((p � q) ∧ q).

2. Let F be fuzzy. Then F is finitely branching and sup{wRw′ : wRw′ < 1} < 1
for all w ∈ F iff F |=KbiG 1 � ♦((p � q) ∧ q).

Proof. We show the case of fuzzy frames since the crisp ones can be tackled
in the same manner. Assume that F is finitely branching and that sup{wRw′ :
wRw′ <1} < 1 for all w ∈ F. It suffices to show that v(♦((p � q) ∧ q), w) < 1 for
all w ∈ F. First of all, observe that there is no w′ ∈ F s.t. v((p � q) ∧ q, w′) = 1.
It is clear that sup

wRw′<1
{v((p � q) ∧ q, w′) ∧G wRw′} < 1 and that

sup{v((p � q) ∧ q, w′) : wRw′ = 1} = max{v((p � q) ∧ q, w′) : wRw′ = 1} < 1

since R(w) is finite. But then v(♦((p � q) ∧ q), w) < 1 as required.
For the converse, either (1) R(w) is infinite for some w, or (2) sup{wRw′ :

wRw′ < 1} = 1 for some w. For (1), set v(p,w′) = 1 for every w′ ∈ R(w). Now
let W ′ ⊆ R(w) and W ′ = {wi : i ∈ {1, 2, . . .}}. We set v(q, wi) = i

i+1 . It is easy
to see that sup{v(q, wi) : wi ∈ W ′} = 1 and that v((p � q) ∧ q, wi) = v(q, wi).
Therefore, v(1 � ♦((p � q) ∧ q), w) = 0.

For (2), we let v(p,w′) = 1 and further, v(q, w′) = wRw′ for all w′ ∈ F. Now
since sup{wRw′ : wRw′ < 1} = 1 and v(((p�q)∧q), w′) = v(q, w′) for all w′ ∈ F,
it follows that v(♦((p � q) ∧ q), w) = 1, whence v(1 � ♦((p � q) ∧ q), w) = 0.

Remark 3. The obvious corollary of Theorem 2 is the lack of FMP for the ♦-
fragment of KbiGf5 since ♦((p � q) ∧ q) in never true in a finite model. This
differentiates KbiGf from GK since the ♦-fragment of GK has FMP [12, Theo-
rem 7.1]. Moreover, one can define finitely branching frames in � fragments of
GK and GKc. Indeed, ∼∼�(p ∨ ∼p) serves as such definition.

Corollary 1. KG2 and both � and ♦ fragments of KbiG are strictly more
expressive than K.

Proof. From Theorems 1 and 2 since K is complete both w.r.t. all frames and
all finitely branching frames. The result for KG2 follows since it is conservative
over KbiG (Proposition 2).

5 Bi-modal KbiGf lacks have FMP since it is a conservative extension of GK.
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These results show us that addition of � greatly enhances the expressive power
of our logic. Here it is instructive to remind ourselves that classical epistemic
logics are usually complete w.r.t. finitely branching frames (cf. [18] for details).
It is reasonable since for practical reasoning, agents cannot consider infinitely
many alternatives. In our case, however, if we wish to use KbiG and KG2 for
knowledge representation, we need to impose finite branching explicitly.

Furthermore, allowing for infinitely branching frames in KbiG or KG2 leads to
counter-intuitive consequences. In particular, it is possible that v(�φ,w) = (0, 1)
even though there are no w′, w′′ ∈ R(w) s.t. v1(φ,w′) = 0 or v2(φ,w′′) = 1. In
other words, there is no source that decisively falsifies φ, furthermore, all sources
have some evidence for φ, and yet we somehow believe that φ is completely
false and untrue. Dually, it is possible that v(♦φ,w) = (1, 0) although there
are no w′, w′′ ∈ R(w) s.t. v1(φ,w′) = 1 or v2(φ,w′′) = 0. Even though ♦ is an
‘optimistic’ aggregation, it should not ignore the fact that all sources have some
evidence against φ but none supports it completely.

Of course, this situation is impossible if we consider only finitely branching
frames for infima and suprema will become minima and maxima. There, all
values of modal formulas will be witnessed by some accessible states in the
following sense. For ♥ ∈ {�,♦}, i ∈ {1, 2}, if vi(♥φ,w) = x, then there is
w′ ∈ R(w) s.t. vi(φ,w′) = x. Intuitively speaking, finitely branching frames
represent the situation when our degree of certainty in some statement is based
uniquely on the data given by the sources.

Convention 3. We will further use KbiGfb and KG2
fb to denote the sets of all

biL�,♦ and biL¬�,♦ formulas valid on finitely branching crisp frames.

Observe, moreover, that � and ♦ are still undefinable via one another in biL�,♦.
The proof is the same as that of [36, Lemma 6.1].

Proposition 3. � and ♦ are not interdefinable in KbiGfb.

Corollary 2.

1. � and ♦ are not interdefinable in KbiG, KbiGf
fb, and KbiGf .

2. Both � and ♦ fragments of KbiG are more expressive than K.

In the remainder of the paper, we are going to provide a complete proof system
for KG2

fb (and hence, KbiGfb), and establish its decidability and complexity as
well as finite model property. Note, however, that the latter is not entirely for
granted. In fact, several expected ways of defining filtration (cf. [7,14] for more
details thereon) fail.

Let Σ ⊆ biL�,♦ be closed under subformulas. If we want to have filtration
for KbiGfb, there are three intuitive ways to define ∼Σ on the carrier of a model
that is supposed to relate states satisfying the same formulas.

1. w ∼1
Σ w′ iff v(φ,w) = v(φ,w′) for all φ ∈ Σ.

2. w ∼2
Σ w′ iff v(φ,w) = 1 ⇔ v(φ,w′) = 1 for all φ ∈ Σ.

3. w ∼3
Σ w′ iff v(φ,w) ≤ v(φ′, w) ⇔ v(φ,w′) ≤ v(φ′, w′) for all φ, φ′ ∈Σ∪{0,1}.
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Consider the model on Fig. 3 and two formulas:

φ≤ := ∼∼(p → ♦p) φ> := ∼∼(p � ♦p)

Now let Σ to be the set of all subformulas of φ≤ ∧ φ>.
First of all, it is clear that v(φ≤ ∧ φ>, w) = 1 for any w ∈ M. Observe now

that all states in M are distinct w.r.t. ∼1
Σ . Thus, the first way of constructing

the carrier of the new model does not give the FMP.

Fig. 3. v(p, wn) = 1
n+1

As regards to ∼2
Σ and ∼3

Σ , one can check that for any w,w′ ∈ M, it holds that
w ∼2

Σ w′ and w ∼3
Σ w′. So, if we construct a filtration of M using equivalence

classes of either of these two relations, the carrier of the resulting model is going
to be finite. Even more so, it is going to be a singleton.

However, we can show that there is no finite model N = 〈U, S, e〉 s.t.

∀s ∈ N : v(φ≤ ∧ φ>, s) = 1.

Indeed, e(φ≤, t) = 1 iff e(p, t′) > 0 for some t′ ∈ S(t), while e(φ>, t) = 1 iff
v(p, t) > v(p, t′) for any t′ ∈ S(t). Now, if U is finite, we have two options: either
(1) there is u ∈ U s.t. R(u) = ∅, or (2) U contains a finite S-cycle.

For (1), note that v(♦p, u) = 0, and we have two options: if e(p, u) = 0, then
e(φ>, u) = 0; if, on the other hand, e(p, u) > 0, then e(φ≤, u) = 0. For (2),
assume w.l.o.g. that the S-cycle looks as follows: u0Su1Su2 . . . SunSu0.

If e(p, u0)=0, e(φ>, u0)=0, so e(p, u0)>0. Furthermore, e(p, ui)>e(p, ui+1).
Otherwise, again, e(φ>, ui) = 0. But then we have e(φ>, ui) = 0.

But this means that ∼2
Σ and ∼3

Σ do not preserve truth of formulas from w
to [w]Σ , i.e., neither of these two relations can be used to define filtration. Thus,
in order to explicitly prove the finite model property and establish complexity
evaluations for KbiGfb and KG2

fb, we will provide a tableaux calculus. It will also
serve as a decision procedure for satisfiability and validity of formulas.

4 Tableaux for KG2
fb

Usually, proof theory for modal and many-valued logics is presented in one of the
following several forms. The first one is a Hilbert-style axiomatisation as given in
e.g. [23] for the propositional Gödel logic and in [12,13,36] for its modal expan-
sions. Hilbert calculi are useful for establishing frame correspondence results as
well as for showing that one logic extends another one in the same language. On
the other hand, their completeness proofs might be quite complicated, and the
proof-search not at all straightforward. Second, there are non-labelled sequent
and hyper-sequent calculi (cf. [30] for the propositional proof systems and [28,29]
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for the modal hypersequent calculi). With regards to modal logics, completeness
proofs of (hyper)sequent calculi often provide the answer for the decidability
problem. Furthermore, the proof search can be quite straightforwardly automa-
tised provided that the calculus is cut-free.

Finally, there are proof systems that directly incorporate semantics: in par-
ticular, tableaux (e.g., the ones for Gödel logics [2] and tableaux for �Lukasiewicz
description logic [25]) and labelled sequent calculi (cf., e.g. [32] for labelled
sequent calculi for classical modal logics). Because of the calculi’s nature, their
completeness proofs are usually simple. Besides, the calculi serve as a decision
procedure that either establishes that the given formula is valid or provides an
explicit countermodel.

Our tableaux system T (
KG2

fb

)
is a straightforward modal expansion of con-

straint tableaux for G2 presented in [5]. It is inspired by constraint tableaux
for �Lukasiewicz logics from [21,22] (but cf. [26] for an approach similar to ours)
which we modify with two-sorted labels corresponding to the support of truth
and support of falsity in the model. This idea comes from tableaux for the
Belnap—Dunn logic by D’Agostino [1]. Moreover, since KG2

fb is a conservative
extension of KbiGfb, our calculus can be used for that logic as well if we apply
only the rules that govern the support of truth of biL�,♦ formulas.

Definition 6 (T (
KG2

fb

)
). We fix a set of state-labels W and let �∈{<,�} and

�∈{>,�}. Let further w∈W, x∈{1, 2}, φ∈biL¬�,♦, and c∈{0, 1}. A structure
is either w :x :φ or c. We denote the set of structures with Str.

We define a constraint tableau as a downward branching tree whose branches
are sets containing the following types of entries:

– relational constraints of the form wRw′ with w,w′ ∈ W;
– structural constraints of the form X � X′ with X,X′ ∈ Str.

Each branch can be extended by an application of a rule6 from Fig. 4 or Fig. 5.
A tableau’s branch B is closed iff one of the following conditions applies:

– the transitive closure of B under � contains X < X;
– 0 � 1 ∈ B, or X > 1 ∈ B, or X < 0 ∈ B.

A tableau is closed iff all its branches are closed. We say that there is a tableau
proof of φ iff there is a closed tableau starting from the constraint w :1 :φ < 1.

An open branch B is complete iff the following condition is met.

* If all premises of a rule occur on B, then its one conclusion7 occurs on B.

Remark 4. Note that due to Proposition 1, we need to check only one valuation
of φ to verify its validity.

Convention 4 (Interpretation of constraints). The following table gives
the interpretations of structural constraints on the example of �.
6 If X < 1 and X < X′ (or 0 < X′ and X < X′) occur on B, then the rules are applied

only to X < X′.
7 Note that branching rules have two conclusions.
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Fig. 4. Propositional rules of T (
KG2

fb

)
. Bars denote branching.
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entry interpretation
w : 1 :φ � w′ : 2 :φ′ v1(φ,w) ≤ v2(φ′, w′)

w :2 :φ � c v2(φ,w) ≤ c with c ∈ {0, 1}

As one can see from Fig. 4 and Fig. 5, the rules follow the semantical conditions
from Definition 4. Let us discuss →1� and �1 � in more details.

The premise of →1� is interpreted as v1(φ → φ′, w) � x. To decompose the
implication, we check two options: either x = 1 (then, the value of φ → φ′ is
arbitrary) or x < 1. In the second case, we use the semantics to obtain that
v1(φ′, w) � x and v1(φ,w) > v1(φ′, w).

Fig. 5. Modal rules of T (
KG2

fb

)
. w′′ is fresh on the branch.

In order to apply �1 � to w :1 :�φ � X, we introduce a new state w′′ that is
seen by w. Since we work in a finite branching model, w′′ can witness the value
of �φ. Thus, we add w′′ :1 :φ � X.

We also provide an example of how our tableaux work. On Fig. 6, one can
see a successful proof on the left and a failed proof on the right.

Fig. 6. × indicates closed branches; � indicates complete open branches.
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Definition 7 (Branch realisation). We say that a model M = 〈W,R, v1, v2〉
with W = {w : w occurs on B} and R = {〈w,w′〉 : wRw′ ∈ B} realises a branch
B of a tree iff the following conditions are met.

– vx(φ,w) ≤ vx′(φ′, w′) for any w : x : φ � w′ : x′ : φ′ ∈ B with x,x′ ∈ {1, 2}.
– vx(φ,w) ≤ c for any w : x : φ � c ∈ B with c ∈ {0, 1}.
Theorem 3 (Completeness). φ is KG2

fb valid iff it has a T (KG2
fb) proof.

Proof. We consider only the KG2
fb case since KbiGfb can be handled the same

way. For soundness, we check that if the premise of the rule is realised, then so is
at least one of its conclusions. We consider the cases of →1� and �1 �. Assume
that w : 1 : φ → φ′ � X is realised and assume w.l.o.g. that X = u : 2 : ψ. It is
clear that either v2(ψ, u) = 1 or v2(ψ, u) < 1. In the first case, X � 1 is realised.
In the second case, we have that v1(φ,w) > v1(φ′, w) and v1(φ′, w) � v2(ψ, u).
Thus, X < 1, w : 1 : φ > w : 1 : φ′, and w : 1 : φ′ � u : 1 : ψ are realised as well, as
required.

For �1 �, assume that w :1 : �φ�X is realised and assume w.l.o.g. that X =
u : 2 :ψ. Thus, v1(�φ,w) � v2(ψ, u) Then, since the model is finitely branching,
there is an accessible state w′′ s.t. v1(φ,w) � v2(ψ, u). Thus, w′′ : 1 : φ � X is
realised too.

As no closed branch is realisable, the result follows.
For completeness, we show that every complete open branch B is realisable.

We construct the model as follows. We let W = {w : w occurs in B}, and set
R = {〈w,w′〉 : wRw′ ∈ B}. Now, it remains to construct the suitable valuations.

For i ∈ {1, 2}, if w : i : p � 1 ∈ B, we set vi(p,w) = 1. If w : i : p � 0 ∈ B,
we set vi(p,w) = 0. To set the values of the remaining variables q1, . . . , qn, we
proceed as follows. Denote B+ the transitive closure of B under � and let

[w :x :qi]=

⎧
⎨

⎩
w′ :x′ :qj

∣
∣
∣
∣
∣∣

w :x :qi � w′ :x′ :qj ∈ B+ and w :x :qi <w′ :x′ :qj /∈ B+

or
w :x :qi � w′ :x′ :qj ∈ B+ and w :x :qi >w′ :x′ :qj /∈ B+

⎫
⎬

⎭

It is clear that there are at most 2 · n · |W | [w : x : qi]’s since the only possible
loop in B+ is wi1 :x : r � . . . � wi1 :x : r, but in such a loop all elements belong
to [wi1 :x :r]. We put [w :x :qi] ≺ [w′ :x′ :qj ] iff there are wk :x :r ∈ [w :x :qi] and
w′

k :x′ :r′ ∈ [w′ :x′ :qj ] s.t. wk :x :r < w′
k :x′ :r′ ∈ B+.

We now set the valuation of these variables as follows

vx(qi, w) =
|{[w′ :x′ :q′] | [w′ :x′ :q′] ≺ [w :x :qi]}|

2 · n · |W |
Note that if some φ contains s but B+ contains no inequality with it, the above
definition ensures that s is going to be evaluated at 0. Thus, all constraints
containing only variables are satisfied.

It remains to show that all other constraints are satisfied. For that, we prove
that if at least one conclusion of the rule is satisfied, then so is the premise. The
propositional cases are straightforward and can be tackled in the same manner
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as in [5, Theorem 2]. We consider only the case of ♦2 �. Assume w.l.o.g. that
�=� and X = u : 1 : ψ. Since B is complete, if w : 2 : ♦φ � u : 1 : ψ ∈ B, then
for any w′ s.t. wRw′ ∈ B, we have w′ : 2 : φ � u : 1 : ψ ∈ B, and all of them are
realised by M. But then w : 2 :♦φ � u :1 :ψ is realised too, as required.

Theorem 4.

1. Let φ ∈ biL¬�,♦ be not KG2
fb valid, and let |φ| denote the number of symbols in

it. Then there is a model M of the size O(|φ||φ|) and depth O(|φ|) and w ∈ M
s.t. v1(φ,w) 
= 1.

2. KG2
fb validity and satisfiability8 are PSPACE-complete.

Proof. We begin with 1. By Theorem 3, if φ is not KG2
fb valid, we can build

a falsifying model using tableaux. It is also clear from the rules on Fig. 5 that
the depth of the constructed model is bounded from above by the maximal
number of nested modalities in φ. The width of the model is bounded by the
maximal number of modalities on the same level of nesting. The sharpness of the
bound is obtained using the embedding of K into KG2

fb since K is complete w.r.t.
finitely branching models and it is possible to force shallow trees of exponential
size in K (cf., e.g. [7, §6.7]). The embedding also entails PSPACE-hardness. It
remains to tackle membership.

First, observe from the proof of Theorem 3 that φ(p1, . . . , pn) is satisfiable
(falsifiable) on M = 〈W,R, v1, v2〉 iff there are v1 and v2 that give variables values
from V =

{
0, 1

2·n·|W | , . . . ,
2·n·|W |−1
2·n·|W | , 1

}
under which φ is satisfied (falsified).

As we mentioned, |W | is bounded from above by kk+1 with k being the
number of modalities in φ. Therefore, we replace structural constraints with
labelled formulas of the form w : i :φ=v (v ∈ V) avoiding comparisons of values
of formulas in different states. As expected, we close the branch if it contains
w : i :ψ=v and w : i :ψ=v′ for v 
= v′.

Now we replace the rules with the new ones that work with labelled formulas
instead of structural constraints. Below, we give as an example new rules for →
and ♦9 (with |V| = m + 1):

w :1 :φ → φ′ =1

w :1 :φ = 0
∣
∣
∣
∣
w :1 :φ= 1

m+1

w :1 :φ′ = 1
m+1

∣
∣
∣
∣
w :1 :φ= 1

m+1

w :1 :φ′ = 2
m+1

∣
∣
∣
∣ . . .

∣
∣
∣
∣
w :1 :φ= m−1

m+1

w :1 :φ′ = m
m+1

∣
∣
∣
∣ w :1 :φ′ =1

w :1 :♦φ= r
m+1

wRw′′;w′′ :1 :φ= r
m+1

w :1 :♦φ= r
m+1 ;wRw′

w′ :1 :φ=0 | . . . | w′ :1 :φ= r−1
m+1

8 Satisfiability and falsifiability (non-validity) are reducible to each other using �: φ
is satisfiable iff ∼∼(φ � 0) is falsifiable; φ is falsifiable iff ∼∼(1 � φ) is satisfiable.

9 Intuitively, for a value 1 > v > 0 of ♦φ at w, we add a new state that witnesses v,
and for a state on the branch, we guess a value smaller than v. Other modal rules
can be rewritten similarly.
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We now show how to build a satisfying model for φ using polynomial space.
We begin with w0 : 1 : φ = 1 and start applying propositional rules (first, those
that do not require branching). If we implement a branching rule, we pick one
branch and work only with it: either until the branch is closed, in which case
we pick another one; until no more rules are applicable (then, the model is
constructed); or until we need to apply a modal rule to proceed. At this stage,
we need to store only the subformulas of φ with labels denoting their value at w0.

Now we guess a modal formula (say, w0 : 2 :�χ= 1
m+1 ) whose decomposition

requires an introduction of a new state (w1) and apply this rule. Then we apply
all modal rules that use w0Rw1 as a premise (again, if those require branching,
we guess only one branch) and start from the beginning with the propositional
rules. If we reach a contradiction, the branch is closed. Again, the only new
entries to store are subformulas of φ (now, with fewer modalities), their values
at w1, and a relational term w0Rw1. Since the depth of the model is O(|φ|) and
since we work with modal formulas one by one, we need to store subformulas of
φ with their values O(|φ|) times, so, we need only O(|φ|2) space.

Finally, if no rule is applicable and there is no contradiction, we mark w0 :
2 : �χ = 1

m+1 as ‘safe’. Now we delete all entries of the tableau below it and
pick another unmarked modal formula that requires an introduction of a new
state. Dealing with these one by one allows us to construct the model branch by
branch. But since the length of each branch of the model is bounded by O(|φ|)
and since we delete branches of the model once they are shown to contain no
contradictions, we need only polynomial space.

We end the section with two simple observations. First, Theorems 3 and 4
are applicable both to KbiGfb and KG2

fb because the latter is conservative over
the former. Secondly, since KG2 and KbiG are conservative over GKc and since
K can be embedded in GKc, the lower bounds on complexity of a classical modal
logic of some class of frames K and G2 modal logic of K will coincide.

5 Concluding Remarks

In this paper, we developed a crisp modal expansion of the two-dimensional
Gödel logic G2 as well as an expansion of bi-Gödel logic with � and ♦ both for
crisp and fuzzy frames. We also established their connections with modal Gödel
logics, and gave a complexity analysis of their finitely branching fragments.

The following steps are: to study the proof theory of KG2 and KG2
fb: both

in the form of Hilbert-style and sequent calculi; establish the decidability (or
lack thereof) for the case of KG2. Moreover, two-dimensional treatment of infor-
mation invites for different modalities, e.g. those formalising aggregation strate-
gies given in [6]—in particular, the cautious one (where the agent takes min-
ima/infima of both positive and negative supports of a given statement) and
the confident one (whereby the maxima/suprema are taken). Last but not least,
while in this paper we assumed that our access to sources is crisp, one can argue
that the degree of our bias towards the given source can be formalised via fuzzy
frames. Thus, it would be instructive to construct a fuzzy version of KG2.
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In a broader perspective, we plan to provide a general treatment of two-
dimensional modal logics of uncertainty. Indeed, within our project [5,6], we are
formalising reasoning with heterogeneous and possibly incomplete and inconsis-
tent information (such as crisp or fuzzy data, personal beliefs, etc.) in a modular
fashion. This modularity is required because different contexts should be treated
with different logics—indeed, not only the information itself can be of various
nature but the reasoning strategies of different agents even applied to the same
data are not necessarily the same either. Thus, since we wish to account for this
diversity, we should be able to combine different logics in our approach.
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Abstract. Adding multi-modalities (called subexponentials) to linear logic
enhances its power as a logical framework, which has been extensively used in
the specification of e.g. proof systems, programming languages and bigraphs. Ini-
tially, subexponentials allowed for classical, linear, affine or relevant behaviors.
Recently, this framework was enhanced so to allow for commutativity as well.
In this work, we close the cycle by considering associativity. We show that the
resulting system (acLLΣ) admits the (multi)cut rule, and we prove two undecid-
ability results for fragments/variations of acLLΣ .

1 Introduction

Resource aware logics have been object of passionate study for quite some time now.
The motivations for this passion vary: resource consciousness are adequate for mod-
eling steps of computation; logics have interesting algebraic semantics; calculi have
nice proof theoretic properties; multi-modalities allow for the specification of several
behaviors; there are many interesting applications in linguistics, etc.

With this variety of subjects, applications and views, it is not surprising that dif-
ferent groups developed different systems based on different principles. For example,
the Lambek calculus (L) [29] was introduced for mathematical modeling of natural lan-
guage syntax, and it extends a basic categorial grammar [3,4] by a concatenation oper-
ator. Linear logic (LL) [16], originally discovered by Girard from a semantical analysis
of the models of polymorphic λ-calculus, turned out to be a refinement of classical and
intuitionistic logic, having the dualities of the former and constructive properties of the
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latter. The key point is the presence of the modalities !, ?, called exponentials in LL. In
the intuitionistic version of LL, denoted by ILL, only the ! exponential is present.

L and LL were compared in [2], when Abrusci showed that Lambek cal-
culus coincides with a variant of the non-commutative, multiplicative version of
ILL [41]. This correspondence can be lifted for considering also the additive connec-
tives: Full (multiplicative-additive) Lambek calculus FL relates to non-commutative
multiplicative-additive version of ILL, here denoted by cLL.

In this paper we propose the sequent based system acLLΣ , a conservative extension
of cLL, where associativity is allowed only for formulas marked with a special kind of
modality, determined by a subexponential signature Σ. The notation adopted is mod-
ular, uniform and scalable, in the sense that many well known systems will appear as
fragments or special cases of acLLΣ , by only modifying the signature Σ. The core frag-
ment of acLLΣ (i.e., without the subexponentials) corresponds to the non-associative
version of full Lambek calculus, FNL [8].1

The language of acLLΣ consists of a denumerable infinite set of propositional vari-
ables {p, q, r, . . .}, the unities {1,�}, the binary connectives for additive conjunc-
tion and disjunction {&,⊕}, the non-commutative multiplicative conjunction ⊗, the
non-commutative linear implications {→,←}, and the unary subexponentials !i, with i
belonging to a pre-ordered set of labels (I,�).

Roughly speaking, subexponentials [13] are substructural multi-modalities. In LL,
! A indicates that the linear formula A behaves classically, that is, it can be contracted
and weakened. Labeling ! with indices allows moving one step further: The set I can
be partitioned so that, in !iA, A can be contracted and/or weakened. This allows for
two other types of behavior (other than classical or linear): affine (only weakening) or
relevant (only contraction). Pre-ordering the labels (together with an upward closeness
requirement) guarantees cut-elimination [42]. But then, why consider only weakening
and contraction? Why not also take into account other structural properties, like com-
mutativity or associativity? In [20,21] commutativity was added to the picture, so that
in !iA, A can be contracted, weakened, classical or linear, but it may also commute with
the neighbor formula. In this work we consider the last missing part: Associativity.

Smoothly extending cLL to allow consideration of the non-associative case is
non trivial. This requires a structural recasting/reframing of sequents: we pass from
sets/multisets to lists in the non-commutative case, onto trees in the case of non-
associativity [28]. As a consequence, the inference rules should act deeply over formu-
las in tree-structured sequents, which can be tricky in the presence of modalities [17].

On the other side, the multi-modal Lambek calculus introduced in [35,45] and
extended/compiled/implemented in [18,36–38]2 use different families of connectives
and contexts, distinguished by means of indices, or modes. Contexts are indexed binary
trees, with formulas built from the indexed adjoint connectives {→i,←i} and ⊗i (e.g.

1 The multiplicative fragment of acLLΣ is the non-associative version of Lambek’s calculus, NL,
introduced by Lambek himself in [30]. Both the associative calculus L and the non-associative
calculus NL have their advantages and disadvantages for the analysis of natural language syn-
tax, as we discuss in more detail in Sect. 2.2.

2 The Grail family of theorem provers [37] works with a variety of modern type-logical frame-
works, including multimodal type-logical grammars.
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(A →i B, (C ⊗j D,H)k)i). Each mode has its own set of logical rules (following
the same rule scheme), and different structural features can be combined via the mode
information on the formulas. This gives to the resulting system a multi-modal flavor,
but it also results in a language of binary connectives, determined by the modes. This
forces an unfortunate second level synchronization between implications and tensor,
and modalities act over whole sequents, not on single formulas.

In order to attribute particular resource management properties to individual
resources, in [27,33] explicit (classical) multi-modalities �i,�i were proposed. While
such unary modalities were inspired in LL exponentials, the resemblance stops there.
First of all, the logical connectives come together with structural constructors for con-
texts, which turns �i,�i into truncated forms of product and implication.

Second, �i,�i have a temporal behavior, in the sense that ��F ⇒ F and F ⇒��F , which are not provable in LL using the “natural interpretation” � = ?, � = !.
In this paper, multi-modality is totally local, given by the subexponentials. The

signature Σ contains the pre-ordered set of labels, together with a function stating which
axioms, among weakening, contraction, exchange and associativity, are assumed for
each label. Sequents will have a nested structure, corresponding to trees of formulas.
And rules will be applied deeply in such structures. This not only gives the LL based
system a more modern presentation (based on nested systems, like e.g. in [10,15]),
but it also brings the notation closer to the one adopted by the Lambek community,
like in [25]. Finally, it also uniformly extends several LL based systems present in the
literature, as Example 8 in the next section shows.

Designing a good system serves more than simple pure proof-theoretic interests:
Well behaved, neat proof systems can be used in order to approach several impor-
tant problems, such as interpolation, complexity and decidability. And decidability of
extensions/variants/fragments of L and LL is a fascinating subject of study, since the
presence or absence of substructural properties/connectives may completely change the
outcome. Indeed, it is well known that LL is undecidable [32], but adding weakening
(affine LL) turns the system decidable [24], while removing the additives (MELL –
multiplicative, exponential LL) reaches the border of knowledge: It is a long standing
open problem [50]. Non-associativity also alters decidability and complexity: L is NP-
complete [47], while NL is decidable in polynomial time [1,6]. Finally, the number of
subexponentials also plays a role in decision problems: MELL with two subexponentials
is undecidable [9].

In this work, we will present two undecidability results, all orbiting (but not encom-
passing) MELL/FNL. First, we show that acLLΣ containing the multiplicatives ⊗,→,
the additive ⊕ and one classical subexponential (allowing contraction and weakening)
is undecidable. This is a refinement of the unpublished result by Tanaka [51], which
states that FNL plus one fully-powered subexponential is undecidable.

In the second undecidability result, we keep two subexponentials, but with a min-
imalist configuration: the implicational fragment of the logic plus two subexponen-
tials: the “main” one allowing for contraction, exchange, and associativity (weakening
is optional), and an “auxiliary” one allowing only associativity. This is a variation of
Chaudhuri’s result (in the non-associative, non-commutative case), making use of fewer
connectives (tensor is not needed) and less powerful subexponentials.
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Table 1. Acronyms/decidability of systems mentioned in the paper.

Acronym System Decidable?

L Lambek calculus ✓

LL (propositional) linear logic ✗

ILL intuitionistic LL ✗

MALL multiplicative-additive LL ✓

iMALL intuitionistic MALL ✓

FL full (multiplicative-additive) L ✓

cLL non-commutative iMALL ✓

acLLΣ non-commutative, non-associative ILL with subexponentials –

NL non-associative L ✓

FNL full (multiplicative-additive) NL ✓

MELL multiplicative-exponential LL unknown

SDML simply dependent multimodal linear logics –

SMALCΣ FL with subexponentials –

The rest of the paper is organized as follows: Sect. 2 presents the system acLLΣ ,
showing that it has the cut-elimination property and presenting an example in linguis-
tics; Sect. 3 shows the undecidability results; and Sect. 4 concludes the paper.

We have placed, in Table 1, the acronyms for and decidability of all considered
systems. Decidability for the cases marked with “−” depends on the signature Σ.

2 A Nested System for Non-associativity

Similar to modal connectives, the exponential ! in ILL is not canonical [13], in the sense
that if i 	= j then !iF 	≡ !jF . Intuitively, this means that we can mark the exponential
with labels taken from a set I organized in a pre-order � (i.e., reflexive and transitive),
obtaining (possibly infinitely-many) exponentials (!i for i ∈ I). Also as in multi-modal
systems, the pre-order determines the provability relation: for a general formula F , !bF
implies !aF iff a � b.

The algebraic structure of subexponentials, combined with their intrinsic structural
property allow for the proposal of rich linear logic based frameworks. This opened a
venue for proposing different multi-modal substructural logical systems, that encoun-
tered a number of different applications. Originally [42], subexponentials could assume
only weakening and contraction axioms:

C : !iF → !iF ⊗ !iF W : !iF → 1

This allows the specification of systems with multiple contexts, which may be repre-
sented by sets or multisets of formulas [44], as well as the specification and verification
of concurrent systems [43], and biological systems [46]. In [20,21], non-commutative
systems allowing commutative subexponentials were presented:

E : (!iF ) ⊗ G ≡ G ⊗ (!iF )
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and this has many applications, e.g., in linguistics [21].
In this work, we will present a non-commutative, non-associative linear logic based

system, and add the possibility of assuming associativity3

A1 : !iF ⊗ (G ⊗ H) ≡ (!iF ⊗ G) ⊗ H A2 : (G ⊗ H) ⊗ !iF ≡ G ⊗ (H ⊗ !iF )

as well as commutativity and other structural properties.
We start by presenting an adaption of simply dependent multimodal linear logics

(SDML) appearing in [31] to the non-associative/commutative case.
The language of non-commutative SDML is that of (propositional intuitionistic)

linear logic with subexponentials [21] supplied with the left residual; or similarly, that
of FL with subexponentials. Non-associative contexts will be organized via binary trees,
here called structures.

Definition 1 (Structured sequents). Structures are formulas or pairs containing
structures:

Γ,Δ := F | (Γ, Γ )

where the constructors may be empty but never a singleton.

An n-ary context Γ
{

1
}

. . .
{

n
}

is a context that contains n pairwise distinct num-

bered holes { } wherever a formula may otherwise occur. Given n contexts Γ1, . . . , Γn,

we write Γ{Γ1} · · · {Γn} for the context where the k-th hole in Γ
{

1
}

. . .
{

n
}

has been

replaced by Γk (for 1 ≤ k ≤ n). If Γk = ∅ the hole is removed.
A structured sequent (or simply sequent) has the form Γ ⇒ F where Γ is a structure

and F is a formula.

Example 2. Structures are binary trees, with formulas as leaves and commas as nodes.
The structure !iA, (B,C) represents the tree below left, while (!iA,B), C represents
the tree below right

,

!iA ,

B C

,

,

!iA B

C

Definition 3 (SDML). LetA be a set of axioms. A (non-associative/commutative) sim-
ply dependent multimodal logical system (SDML) is given by a triple Σ = (I,�, f),
where I is a set of indices, (I,�) is a pre-order, and f is a mapping from I to 2A.

If Σ is a SDML, then the logic described by Σ has the modality !i for every i ∈ I ,
with the rules of FNL depicted in Fig. 1, together with rules for the axioms f(i) and
the interaction axioms !jA → !iA for every i, j ∈ I with i � j. Finally, every SDML
is assumed to be upwardly closed w.r.t. �, that is, if i � j then f(i) ⊆ f(j) for all
i, j ∈ I .

3 Note that the implemented rules in Fig. 2 reflect the left to right direction of such axioms only.
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Figure 2 presents the structured system acLLΣ , for the logic described by the SDML
determined by Σ, with A = {C,W,A1,A2,E} where, in the subexponential rule for
S ∈ A, the respective s ∈ I is such that S ∈ f(s) (e.g. the subexponential symbol e
indicates that E ∈ f(e)). We will denote by !AxΔ the fact that the structure Δ contains
only banged formulas as leaves, each of them assuming the axiom Ax.

As an economic notation, we will write ↑ i for the upset of the index i, i.e., the set
{j ∈ I : i � j}. We extend this notation to structures in the following way. Let Γ
be a structure containing only banged formulas as leaves. If such formulas admit the
multiset partition

{!jF ∈ Γ : i � j} ∪ {!kF ∈ Γ : i 	� k and W ∈ f(k)}
then Γ ↑i is the structure obtained from Γ by easing the formulas in the second com-
ponent of the partition (equivalently, the substructure of Γ formed with all and only
formulas of the first component of the partition). Otherwise, Γ ↑i is undefined.

Example 4. Let Γ = (!iA, (!jB, !kC)) be represented below left, i � j but i 	� k, and
W ∈ f(k). Then Γ ↑i = (!iA, !jB) is depicted below right

,

!iA ,

!jB !kC

,

!iA !jB

Observe that, if W /∈ f(k), then Γ ↑i cannot be built. In this case, any derivation of
Γ ⇒ !i(A ⊗ B) cannot start with an application of the promotion rule !iR (similarly to
how promotion in ILL cannot be applied in the presence of non-classical contexts). In
this case, if A,B are atomic, this sequent would not be provable.

Example 5. The use of subexponentials to deal with associativity can be illustrated by
the prefixing sequent A → B ⇒ (C → A) → (C → B): It is not provable for an
arbitrary formula C, but if C = !aC ′, then

!aC ′ ⇒ !aC ′ init
A ⇒ A

init
B ⇒ B

init

(A,A → B) ⇒ B
→ L

((!aC ′, (!aC ′ → A)), (A → B)) ⇒ B
→ L

(!aC ′, ((!aC ′ → A), (A → B))) ⇒ B
A1

((!aC ′ → A), (A → B)) ⇒ !aC ′ → B
→ R

A → B ⇒ (!aC ′ → A) → (!aC ′ → B)
→ R

2.1 Cut-Elimination

When it comes to the proof of cut-elimination for acLLΣ , the cut reductions for the
propositional connectives follow the standard steps for similar systems such as, e.g.,
Moot and Retoré’s system NL� in [38, Chapter 5.2.2]. The case of structural rules, on
the other hand, should be treated with care.
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Fig. 1. Structured system FNL for non-associative, full Lambek calculus.

Fig. 2. Structured system acLLΣ for the logic described by Σ.

Theorem 6. If the sequent Γ ⇒ F is provable in acLLΣ , then it has a proof with no
instances of the rule mcut.

Proof. The most representative cases of cut reductions involving subexponentials are
detailed next. In order to simplify the notation, when possible, the mcut rule is presented
in its simple form, with an 1-ary context.

Case !a: Suppose that

π1

Δ↑a
1 ⇒ F

Δ1 ⇒ !aF
!aR

π2

Γ{(!aF,Δ2),Δ3)} ⇒ G

Γ{(!aF, (Δ2,Δ3))} ⇒ G
A1

Γ{(Δ1, (Δ2,Δ3))} ⇒ G
mcut

Since axioms are upwardly closed w.r.t. �, it must be the case that Δ↑a
1 con-

tains only formulas marked with subexponentials allowing associativity. All
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the other formulas in Δ1 can be weakened; this is guaranteed by the applica-
tion of the rule !aR in π1. Hence the derivation above reduces to

π1

Δ↑a
1 ⇒ F

Δ↑a
1 ⇒ !aF

!aR π2

Γ{(!aF,Δ2),Δ3)} ⇒ G

Γ
{

((Δ↑a
1 ,Δ2),Δ3)

}
⇒ G

mcut

Γ
{

(Δ↑a
1 , (Δ2,Δ3))

}
⇒ G

A1

Γ{(Δ1, (Δ2,Δ3))} ⇒ G
W

Case !c: Suppose that

π1

Δ↑c ⇒ F
Δ ⇒ !cF !cR

π2

Γ{!cF} . . . {!cF} . . . {!cF} ⇒ G

Γ{ } . . . {!cF} . . . { } ⇒ G
C

Γ{ } . . . {Δ} . . . { } ⇒ G
mcut

Since Δ↑c contains only formulas marked with subexponentials allowing con-
traction, the derivation above reduces to

π1

Δ↑c ⇒ F

Δ↑c ⇒ !cF
!cR π2

Γ{!cF} . . . {!cF} . . . {!cF} ⇒ G

Γ
{
Δ↑c} . . . {Δ↑c} . . . {Δ↑c} ⇒ G

mcut

Γ{ } . . . {Δ↑c} . . . { } ⇒ G
C

Γ{ } . . . {Δ} . . . { } ⇒ G
W

Observe that here, as usual, the multicut rule is needed in order to reduce the
cut complexity.

Case !iR: Suppose that

π1

Δ↑i ⇒ F

Δ ⇒ !iF
!iR

π2(
Γ
{
!iF

})↑j ⇒ G

Γ
{
!iF

} ⇒ !jG
!jR

Γ{Δ} ⇒ !jG
mcut

If j 	� i, then it should be the case that W ∈ f(i) and
(
Γ
{
!iF

})↑j
=

Γ{ }↑j , since !iF will be weakened in the application of rule !jR. Hence, all
formulas in Δ can be weakened as well and the reduction is

π2

Γ{ }↑j ⇒ G

Γ{ } ⇒ !jG
!jR

Γ{Δ} ⇒ !jG
W
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On the other hand, if j � i, by transitivity all the formulas in Δ↑i also have
this property (implying that Δ↑i is a substructure of Δ↑j), and the rest of
formulas of Δ can be weakened. Hence the derivation above reduces to

π1

Δ↑i ⇒ F

Δ↑j ⇒ !iF
!iR

π2(
Γ
{
!iF

})↑j ⇒ G

(Γ{Δ})↑j ⇒ G

Γ{Δ} ⇒ !jG
!jR

The other cases for subexponentials are similar or simpler. ��
The next examples illustrate what we mean by acLLΣ being a “conservative exten-

sion” of subsystems and variants. Indeed, although we remove structural properties of
the core LL, subexponentials allow them to be added back, either locally or globally.

Example 7 (Structural variants of iMALL). Adding combinations of contraction C and
/ or weakening W for arbitrary formulas to additive-multiplicative intuitionistic linear
logic (iMALL) yields, respectively, propositional intuitionistic logic ILP = iMALL +
{C,W}, and the intuitionistic versions of affine linear logic aLL = iMALL + W and
relevant logic R = iMALL + C. For the sake of presentation we overload the notation
and use the connectives of linear logic also for these logics. In order to embed the
logics above into acLLΣ , let α ∈ {ILP, aLL,R} and consider modalities !α with f(α) =
{E,A1,A2} ∪A where A ⊆ {C,W} is the set of axioms whose corresponding rules
are in α. The translation τα prefixes every subformula with the modality !α. For L ∈
{ILP, aLL,R} it is then straightforward to show that a structured sequent S is cut-free
derivable in L iff its translation τα(S) is cut-free derivable in the logic described by
({α},�, f) with � the obvious relation, and f as given above.

Example 8 (Structural variants of FNL). Following the same script as above and start-
ing from FNL:

– considering f(α) = A ⊆ {E,A1,A2};
• IfA = {A1,A2}, then we obtain the system FL;
• IfA = {E,A1,A2} then the resulting system corresponds to iMALL.
• Adding C,W as options to A will result the affine/relevant versions of the sys-

tems above.
– in a pre-order (I,�), if f(i) = {A1,A2}∪Ai whereAi ⊆ {E,C,W} for each i ∈ I ,

then the resulting system corresponds to SMALCΣ in [21] (that is, the extension of
FL with subexponentials).

2.2 An Example in Linguistics

Since its inception, Lambek calculus [29] has been applied to the modeling of natu-
ral language syntax by means of categorial grammars. In a categorial grammar, each
word is assigned one or several Lambek formulas, which serve as syntactic categories.
For a simple example, John and Mary are assigned np (“noun phrase”) and loves gets
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(np → s) ← np. Here s stands for “sentence”, and loves is a transitive verb, which
lacks noun phrases on both sides to become a sentence. Grammatical validity of “John
loves Mary” is supported by derivability of the sequent np, (np → s) ← np, np ⇒ s.
Notice that this derivability keeps valid also in the non-associative setting, if the correct
nested structure is provided: (np, ((np → s) ← np, np)) ⇒ s.

The original Lambek calculus L is associative. In some cases, however, associativity
leads to over-generation, i.e., validation of grammatically incorrect sentences. Lambek
himself realized this and proposed the non-associative calculus NL in [30]. We will
illustrate this issue with the example given in [38, Sect. 4.2.2]. The syntactic category
assignment is as follows (where n stands for “noun”):

Words Types
the np ← n

Hulk n
is (np → s) ← (n ← n)

green, incredible n ← n

With this assignment, sentences “The Hulk is green” and “The Hulk is incredible”
are correctly marked as valid, by deriving the sequent

(np ← n, n), ((np → s) ← (n ← n), n ← n) ⇒ s

However, in the associative setting the sequent for the phrase “The Hulk is green
incredible,” which is grammatically incorrect, also becomes derivable:

np ← n, n, (np → s) ← (n ← n), n ← n, n ← n ⇒ s,

essentially due to derivability of n ← n, n ← n ⇒ n ← n.
In other situations, however, associativity is useful. Standard examples include han-

dling of dependent clauses, e.g., “the girl whom John loves,” which is validated as a
noun phrase by the following derivable sequent:

np ← n, n, (n → n) ← (s ← np), np, (np → s) ← np ⇒ np

Here (n → n) ← (s ← np) is the syntactic category for who.
Our subexponential extension of NL, however, handles this case using local asso-

ciativity instead of the global one. Namely, the category for whom now becomes
(n → n) ← (s ← !anp), where !a is a subexponential which allows the A2 rule,
and the following sequent is happily derivable:

np ← n, (n, ((n → n) ← (s ← !anp), (np, (np → s) ← np))) ⇒ np

The necessity of this more fine-grained control of associativity, instead of a global
associativity rule, is seen via a combination of these examples. Namely, we talk about
sentences like “The superhero whom Hawkeye killed was incredible” and “... was
green”. With !a, each of them is handled in the same way as the previous examples:

(np ← n, (n, ((n → n) ← (s ← !anp), (np, (np → s) ← np)))),

((np → s) ← (n ← n), n ← n) ⇒ s.
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On one hand, without !a this sequent cannot be derived in the non-associative sys-
tem. On the other hand, if we make the system globally associative, it would validate
incorrect sentences like “The superhero whom Hawkeye killed was green incredible.”

3 Some Undecidability Results

Non-associativity makes a significant difference in decidability and complexity matters.
For example, while L is NP-complete [47], NL is decidable in polynomial time [1,14].

For our system acLLΣ , its decidability or undecidability depends on its signature
Σ. In fact, we have a family of different systems acLLΣ , with Σ as a parameter. Recall
that the subexponential signature Σ controls not just the number of subexponentials
and the preorder among them. More importantly, it dictates, for each subexponential,
which structural rules this subexponential licenses. If for every i ∈ I we have C /∈ f(s),
that is, no subexponential allows contraction, then acLLΣ is clearly decidable, since the
cut-free proof search space is finite. Therefore, for undecidability it is necessary to have
at least one subexponential which allows contraction.

For a non-associative system with only one fully-powered exponential modality
s (that is, f(s) = {E,C,W,A1,A2}), undecidability was proven in a preprint by
Tanaka [51], based on Chvalovský’s [11] result on undecidability of the finitary con-
sequence relation in FNL.

In this section, we prove two undecidability results. The first one is a refinement
of Tanaka’s result: We establish undecidability with at least one subexponential which
allows contraction and weakening (commutativity/associativity are optional), in a sub-
system containing only the additive connective ⊕ and the multiplicatives ⊗ and →.

The second undecidability result is for the minimalistic, purely multiplicative frag-
ment, which includes only → (not even ⊗). As a trade-off, however, it requires two
subexponentials: the “main” one, which allows contraction, exchange, and associativity
(weakening is optional), and an “auxiliary” one, which allows only associativity.

It should be noted that this undecidability result is orthogonal to Tanaka’s [51],
and the proof technique is essentially different. Indeed, Chvalovský’s undecidability
theorem does not hold for the non-associative Lambek calculus without additives, where
the consequence relation is decidable [7].

Finally, we observe that if the intersection of these systems is decidable (which
is still an open question), then our two undecidability results are incomparable: we
have two undecidable fragments of acLLΣ , but their common part, which includes only
divisions and one exponential, would be decidable.

3.1 Undecidability with Additives and One Subexponential

We are going to derive the next theorem from undecidability of the finitary consequence
relation in FNL [11]. Recall that FNL is, in fact, the fragment of acLLΣ without subex-
ponentials (that is, with an empty I).

Theorem 9. If there exists such s ∈ I that f(s) ⊇ {C,W}, then the derivability prob-
lem in acLLΣ is undecidable. Moreover, this holds for the fragment with only ⊗, →,
⊕, !s.
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In fact, using C and W, one can also derive A1, A2, E1, and E2. Therefore, if
f(s) ⊇ {C,W}, then !s is actually a full-power exponential modality. (In the proof
of Theorem 9 below, we use only W and C rules, in order to avoid confusion.) How-
ever, Theorem 9 does not directly follow from undecidability of propositional linear
logic [32], because here the basic system is non-associative and non-commutative,
while linear logic is both associative and commutative. Thus, we need a different encod-
ing for undecidability.

Let Φ be a finite set of FNL sequents. By FNL(Φ) let us denote FNL extended by
adding sequents from Φ as additional (non-logical) axioms. In general, FNL(Φ) does
not enjoy cut-elimination, so mcut is kept as a rule of inference in FNL(Φ). A sequent
Γ ⇒ F is called a consequence of Φ if this sequent is derivable in FNL(Φ).

Theorem 10 (Chvalovský [11]). The consequence relation in FNL is undecidable, that
is, there exists no algorithm which, given Φ and Γ ⇒ F , determines whether Γ ⇒ F
is a consequence of Φ. Moreover, undecidability keeps valid when Φ and Γ ⇒ F are
built from variables using only ⊗ and ⊕.

Now, in order to prove Theorem 9, we internalize Φ into the sequent using !s,
assuming f(s) ⊇ {C,W}.

First we notice that we may suppose, without loss of generality, that all sequents in
Φ are of the form ⇒ A, that is, have empty antecedents. Namely, each sequent of the
form Π ⇒ B can be replaced by ⇒ (

⊗
Π) → B, where

⊗
Π is obtained from Π by

replacing each comma with ⊗. Indeed, these sequents are derivable from one another:
from Π ⇒ B to ⇒ (

⊗
Π) → B we apply a sequence of ⊗L followed by → R, and

for the other direction we apply a series of cuts, first with (
⊗

Π, (
⊗

Π) → B) ⇒ B,
and then with (F,G) ⇒ F ⊗ G several times, for the corresponding subformulas of⊗

Π . The following embedding lemma (“modalized deduction theorem”) holds.

Lemma 11. The sequent Γ ⇒ F is a consequence of Φ = { ⇒ A1, . . . , ⇒ An} if
and only if the sequent

(
(. . . ((!sA1, !sA2), !sA3), . . . , !sAn), Γ

) ⇒ F is derivable in
acLLΣ .

Proof. Let us denote (. . . ((!sA1, !sA2), !sA3), . . . , !sAn) by !Φ. Notice that C and W
can be applied to !Φ as a whole; this is easily proven by induction on n.

For the “only if” direction let us take the derivation of Γ ⇒ F in FNL(Φ) (with
cuts) and replace each sequent of the form Δ ⇒ G in it with (!Φ,Δ) ⇒ G, and each
sequent of the form ⇒ G with !Φ ⇒ G. The translations of non-logical axioms from Φ
are derived as follows:

Ai ⇒ Ai
init

!sAi ⇒ Ai
der

!Φ ⇒ Ai
W, n − 1 times

Translations of axioms init and 1R are derived from the corresponding original
axioms by W, n times; �R remains valid.
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Rules ⊗L, ⊕L, ⊕Ri, &Li, &R, and 1L remain valid. For → L, ← L, and mcut we
contract !Φ as a whole:

(!Φ, Δ) ⇒ F (!Φ, Γ{G}) ⇒ H

(!Φ, Γ{((!Φ, Δ), F → G)}) ⇒ H
→ L

(!Φ, Γ{(Δ, F → G)}) ⇒ H
C

(!Φ, Δ) ⇒ F (!Φ, Γ{F} . . . {F}) ⇒ C

(!Φ, Γ{(!Φ, Δ)} . . . {(!Φ, Δ)}) ⇒ C
mcut

(!Φ, Γ{Δ} . . . {Δ}) ⇒ C
C

For ⊗R, → R, and ← R, we combine contraction and weakening:

(!Φ, Γ1) ⇒ F (!Φ, Γ2) ⇒ G

((!Φ, Γ1), (!Φ, Γ2)) ⇒ F ⊗ G
⊗R

(!Φ, ((!Φ, Γ1), (!Φ, Γ2))) ⇒ F ⊗ G
W

(!Φ, (Γ1, Γ2)) ⇒ F ⊗ G
C

(!Φ, (F, Γ )) ⇒ G

(!Φ, (F, (!Φ, Γ )) ⇒ G
W

(F, (!Φ, Γ )) ⇒ G
C

(!Φ, Γ ) ⇒ F → G
→ R

Notice that our original derivation was in FNL(Φ), so it does not include rules
operating subexponentials.

For the “if” direction we take a cut-free proof of (!Φ, Γ ) ⇒ F in acLLΣ and erase
all formulas which include the subexponential. In the resulting derivation tree all rules
and axioms, except those which operate !s, remain valid. Structural rules for !s trivialize
(since the !-formula was erased). The !sR rule could not have been used, since we do
not have positive occurrences of !sF , and our proof is cut-free.

Finally, der translates into
Γ{Ai} ⇒ G

Γ{} ⇒ G

This is modeled by cut with one of the sequents from Φ:

⇒ Ai Γ{Ai} ⇒ G

Γ{} ⇒ G
mcut

Thus, we get a correct derivation in FNL(Φ). ��
Theorem 10 and Lemma 11 immediately yield Theorem 9.

3.2 Undecidability Without Additives and with Two Subexponentials

Theorem 12. If there are a, c ∈ I such that f(a) = {A1,A2} and f(c) ⊇
{C,E,A1,A2}, then the derivability problem in acLLΣ is undecidable. Moreover, this
holds for the fragment with only →, !a, and !c.

Remember from Example 8 that SMALCΣ [21] denotes the extension of FL with subex-
ponentials. The undecidability theorem above is proved by encoding the one-division
fragment of SMALCΣ containing one exponential c such that f(c) ⊇ {C,E}. It turns
out that that such a system is undecidable.

Theorem 13 (Kanovich et al. [22,23]). If there exists such c ∈ I that f(c) ⊇ {C,E},
then the derivability problem in SMALCΣ is undecidable. Moreover, this holds for the
fragment with only → and !c.
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Observe that SMALCΣ can be obtained from acLLΣ by adding “global” associativ-
ity rules:

Γ{((Δ1,Δ2),Δ3)} ⇒ G

Γ{(Δ1, (Δ2,Δ3))} ⇒ G

Γ{(Δ1, (Δ2,Δ3))} ⇒ G

Γ{((Δ1,Δ2),Δ3)} ⇒ G

The usual formulation of SMALCΣ , of course, uses sequences of formulas instead
of nested structures as antecedents. The alternative formulation, however, would be
more convenient for us now. It will be also convenient for us to regard all subexponen-
tials in SMALCΣ to be associative, that is, f(s) ⊇ {A1,A2} for each s ∈ I .

In order to embed SMALCΣ into acLLΣ , we define two translations, A!− and A!+,
by mutual recursion:

z!− = !az z!+ = z where z is a variable,1, or �
(A → B)!− = !a(A!+ → B!−) (A → B)!+ = A!− → B!+

(B ← A)!− = !a(B!− ← A!+) (B ← A)!+ = B!+ ← A!−

(A � B)!− = !a(A!− � B!−) (A � B)!+ = A!+ � B!+ where � ∈ {⊗, ⊕, &}
(!sA)!− = !s(A!−) (!sA)!+ = !s(A!+)

Informally, our translation adds a !a over any formula (not only over atoms) of
negative polarity, unless this formula was already marked with a !s. Thus, all formulae
in antecedents would begin with either the new subexponential !a or one of the old
subexponentials !s, and all these subexponentials allow associativity rules A1 and A2.

Lemma 14. A sequent A1, . . . , An ⇒ B is derivable in SMALCΣ if and only if its
translation (. . . (A!−

1 , A!−
2 ), . . . , A!−

n ) ⇒ B!+ is derivable in acLLΣ .

Proof. For the “only if” part, let us first note that each formula A!−
i is of the form !sF

and A1,A2 ∈ f(s). Indeed, either s is an “old” subexponential label (for which we
added A1,A2) or s = a. Thus brackets can be freely rearranged in the antecedent.

Now we take a cut-free proof of A1, . . . , An ⇒ B in SMALCΣ and replace each
sequent in it with its translation. Right rules for connectives other than subexponentials,
i.e., ⊗R, ⊕Ri, &R, → R, and ← R, remain valid as they are, up to rearranging brackets
in antecedents. For !iR, we notice that the translation of a formula of the form !jF ,
where j � i, is also a formula of the form !jF ′. Thus, this rule also remains valid.
The same holds for the dereliction rule der, because (!iF )!− is exactly !i(F !−). Finally,
the “old” structural rules (exchange, contraction, weakening) also remain valid (up to
rearranging of brackets), since !iF gets translated into !i(F !−), which enjoys the same
structural rules.

For the other left rules, we need to derelict !a first, and then perform the corre-
sponding rule application. Rearrangement of brackets, if needed, is performed below
dereliction or above the application of the rule in question.

The “if” part is easier. Given a derivation of (. . . (A!−
1 , A!−

2 ), . . . , A!−
n ) ⇒ B!+ in

acLLΣ , we erase !a everywhere, and consider it as a derivation in SMALCΣ . Associa-
tivity rules for the erased !a (which are the only structural rules for this subexponential)
keep valid, because now associativity is global. Dereliction and right introduction for
!a trivialize. All other rules, which do not operate !a, remain as they are. Thus, we get
a derivation of A1, . . . , An ⇒ B in SMALCΣ , since erasing !a makes our translations
just identical. ��
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4 Related Work and Conclusion

In this paper, we have presented acLLΣ , a sequent-based system for non-associative,
non-commutative linear logic with subexponentials. Starting form FNL, we modu-
larly and uniformly added rules for exchange, associativity, weakening and contraction,
which can be applied with the subexponentials having with the respective features. This
allows for the application of structural rules locally, and it conservatively extends well
known systems in the literature, continuing the path of controlling structural properties
started by Girard himself [16].

Another approach to combining associative and non-associative behavior in
Lambek-style grammars is the framework of the Lambek calculus with brackets by
Morrill [39,40] and Moortgat [34]. The bracket approach is dual to ours: there the
base system is associative, and brackets, which are controlled by bracket modalities,
introduce local non-associativity. Both the associative Lambek calculus and the non-
associative Lambek calculus can be embedded into the Lambek calculus with brackets:
the former is just by design of the system and the latter was shown by Kurtonina [26]
by constructing a translation.

From the point of view of generative power, however, the (associative) Lambek
calculus with brackets is weaker than the non-associative system with subexponentials,
which is presented in this paper. Namely, as shown by Kanazawa [19], grammars based
on the Lambek calculus with brackets can generate only context-free languages. In
contrast, grammars based on our system with subexponentials go beyond context-free
languages, even when no subexponential allows contraction (subexponentials allowing
contraction may lead to undecidability, as shown in the last section).

As a quick example, let us consider a subexponential !ae which allows both asso-
ciativity (A1 and A2) and exchange (E). If we put this subexponential over any
(sub)formula, the system becomes associative and commutative. Using this system, one
can describe the non context-free language MIX3, which contains all non-empty words
over {a, b, c}, in which the numbers of a, b, and c are equal. Indeed, MIX3 is the per-
mutation closure of the language {(abc)n | n ≥ 1}. The latter is regular, therefore
context-free, and therefore definable by a Lambek grammar. The ability of our system
to go beyond context-free languages is important from the point of view of applications,
since there are known linguistic phenomena which are essentially non-context-free [49].

Regarding decidability, let us compare our results with the more well-known asso-
ciative non-commutative and associative commutative cases.

In the associative and commutative case the situation is as follows. In the pres-
ence of additives, the system is known to be undecidable with one exponential modal-
ity [32]. Without additives, we get MELL, the (un)decidability of which is a well-known
open problem [50]. However, with two subexponentials MELL again becomes undecid-
able [9]. Thus, we have the same trade-off as in our non-associative non-commutative
case: for undecidability one needs either additives, or two subexponentials.

Our results help to shed some light in the (un)decidability problem for the spectrum
of logical systems surrounding MELL/FNL, allowing for a fine-grained analysis of the
problem, specially the trade-offs on connectives and subexponentials for guaranteeing
(un)decidability.
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There is a lot to be done from now on. First of all, we would like to analyze better
the minimalist fragment of acLLΣ containing only implication and one fully-powered
subexponential, as it seems to be crucial for understanding the lower bound of unde-
cidability (or the upper bound of decidability). Second, one should definitely explore
more the use of acLLΣ in modeling natural language syntax. The examples in Sect. 2.2
show how to locally combine sentences with different grammatical characteristics, and
the MIX3 example above illustrates how that can be of importance. That is, it would
be interesting to have a formal study about acLLΣ and categorial grammars. Third, we
plan to investigate the connections between our work and Adjoint logic [48] as well as
with Display calculus [5,12]. Finally, we intend to study proof-theoretic properties of
acLLΣ , such as normalization of proofs (e.g. via focusing) and interpolation.

Acknowledgements. We are grateful for the useful suggestions from the anonymous referees.
We would like to thank L. Beklemishev, M. Moortgat, and C. Retoré for their inspiring and
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Abstract. A four-valued semantics for the modal logic K is introduced.
Possible worlds are replaced by a hierarchy of four-valued valuations,
where the valuations of the first level correspond to valuations that
are legal w.r.t. a basic non-deterministic matrix, and each level further
restricts its set of valuations. The semantics is proven to be effective, and
to precisely capture derivations in a sequent calculus for K of a certain
form. Similar results are then obtained for the modal logic KT, by simply
deleting one of the truth values.

1 Introduction

Propositional modal logics extend classical logic with modalities, intuitively
interpreted as necessity, knowledge, or temporal operators. Such extensions have
several applications in computer science and artificial intelligence (see, e.g.,
[7,9,13]).

The most common and successful semantic framework for modal logics is the
so called possible worlds semantics, in which each world is equipped with a two-
valued valuation, and the semantic constraints regarding the modal operators
consider the valuations in accessible worlds. While this has been the gold stan-
dard for modal logic semantics for many years, alternative semantic frameworks
have been proposed. One of these approaches, initiated by Kearns [10], is based
on an infinite sequence of sets of valuations in a non-deterministic many-valued
semantics. Since then, several non-deterministic many-valued semantics, with-
out possible worlds, were developed for modal logics (see, e.g., [4,8,12,14]). The
current paper is a part of that body of work. Having an alternative semantic
framework for modal logics, different than the common possible worlds seman-
tics, has the potential of exposing new intuitions and understandings of modal
logics, and also to form the basis to new decision procedures.

Our main contribution is a four-valued semantics for the modal logic K. The
key characteristic of the semantics that we present is effectiveness: when checking
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for the entailment of a formula ϕ from a set Γ of formulas in K, it suffices to
only consider partial models, defined over the subformulas of Γ and ϕ. To the
best of our knowledge, this is the first effective Nmatrices-based semantics for
K. Such a semantics has the potential of being subject to reductions to classical
satisfiability [3], as it is based on finite-valued truth tables, and thus improving
the performance of solvers for modal logic by utilizing off-the-shelf SAT solvers.
Another advantage of this semantics is that it precisely captures derivations in a
sequent calculus for K that admit a certain property. Following Kearns, models
of this semantics are based on the concept of levels—valuations of level 0 are
the ordinary valuations of Nmatrices, while each level m > 0 introduces more
constraints. We show that valuations of level m correspond to derivations in
the calculus whose largest number of applications of the rule that correspond to
the axiom (K) in any branch of the derivation is at most m. Our restrictions
between the levels are more complex than the original restrictions in Kearns’
work, in order to obtain effectiveness. Another precise correspondence between
the semantics and the proof system that we prove, is between the domains of
valuations and the formulas allowed to be used in derivations.

Finally, we observe that by deleting one of the truth values, a three-valued
semantics for the modal logic KT is obtained, which is similar to the one pre-
sented in [8]. Like the case of K, the resulting semantics is effective, and tightly
correspond to derivations in a sequent calculus for KT.

Outline. The paper is organized as follows: Sect. 2 reviews standard notions in
non-deterministic matrices. In Sect. 3, we present our semantics for the modal
logic K, as well as the sequent calculus our investigation will be based on, which
is coupled with the notion of (K)-depth of derivations. In Sect. 4, we prove
soundness and completeness theorems between the sequent calculus and the
semantics. In Sect. 5, we prove that the semantics that we provide is effective,
not only for deciding entailment, but also for producing countermodels when an
entailment does not hold. In Sect. 6 we establish similar results for the modal
logic KT. We conclude with §7, where directions for future research are outlined.

Related Work. In [10], Kearns initiated the study of modal semantics without
possible worlds. This work was recently revisited by Skurt and Omori [14], who
generalized Kearns’ work and reframed his framework within the framework of
logical Non-deterministic matrices. As indicated in [14], it was not clear how to
make this semantics effective, as it requires checking truth values of infinitely
many formulas when considering the validity of a given formula (see, e.g., Remark
42 of [14]). In [4], Coniglio et al. develop a similar framework for modal logics,
and some bound over the formulas that need to be considered was achieved.
However, in [5], the authors clarified that it is unclear how to effectively use the
resulting semantics. A semantics based on Nmatrices for the modal logics KT
and S4 was presented in [8] by Grätz, that includes a method to extend a partial
model in that semantics into a total one, which results in an effective semantics.
We chose here to focus on K, which is a weaker logic, forming a common basis
to all other normal modal logics. By deleting one out of four truth values, we
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obtain corresponding results for KT as well. The semantics that we present here
is similar in nature to the one presented in [8], however: (i) the truth tables
are different, as we intentionally enforced the many-valued tables of the classical
connectives to be obtained by a straightforward duplication of truth values from
the original two-valued truth tables; and (ii) the semantic condition for levels of
valuations that we define here is inductive, where each level relies on lower levels
(thus refraining from a definition of a more cyclic nature as the one in [8], that is
better understood operationally). A variant of the semantics from [14] was also
introduced and studied in [12], but without considering the ability to perform
effective automated reasoning but instead focusing on infinite valuations rather
than on partial ones. A complete proof theoretic characterization in terms of
sequent calculi to the various levels of valuations was not given in any of the
above works. Also, an effective semantics for K, which is the most basic modal
logic, was not given in any of the above works.

Non-deterministic matrices were introduced in [2], and have since became
a useful tool for investigating non-classical logics and proof systems (see [1]
for a survey). They generalize (deterministic) matrices [15] by allowing a non-
deterministic choice of truth values in the truth tables. Like matrices, Nmatrices
enjoy the semantic analyticity property, which allows one to extend a partial
valuation into a full one. Our semantic framework can be viewed as a further
refinement of non-deterministic matrices, namely restricted non-deterministic
matrices, introduced in [6].

2 Preliminaries

In this section we provide the necessary definitions about Nmatrices following [1].
We assume a propositional language L with countably infinitely many atomic
variables p1, p2, . . .. When there is no room for confusion, we identify L with its
set of well-formed formulas (e.g., when writing ϕ ∈ L). We write sub(ϕ) for the
set of subformulas of a formula ϕ. This notation is extended to sets of formulas
in the natural way.

Valuations. In the context of a set V of “truth values”, a valuation is a function
v from some domain Dom(v) ⊆ L to V. For a set F ⊆ L, an F-valuation
is a valuation with domain F . (In particular, an L-valuation is defined on all
formulas.) For X ⊆ V, we write v−1[X] for the set {ϕ | v(ϕ) ∈ X}. For x ∈ V,
we also write v−1[x] for the set {ϕ | v(ϕ) = x}.

Definition 1. Let D ⊆ V be a set of “designated truth values”. A valuation v
D-satisfies a formula ϕ, denoted by v |=D ϕ, if v(ϕ) ∈ D. For a set Σ of formulas,
we write v |=D Σ if v |=D ϕ for every ϕ ∈ Σ.

Notation 2. Let D ⊆ V be a set of designated truth values and V be a set of
valuations. For sets L,R of formulas, we write L �V

D R if for every v ∈ V, v |=D L
implies that v |=D ϕ for some ϕ ∈ R. We omit L or R in this notation when they
are empty (e.g., when writing �V

D R), and set parentheses for singletons (e.g.,
when writing L �V

D ϕ).
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Nmatrices. An Nmatrix M for L is a triple of the form 〈V,D,O〉, where V is a
set of truth values, D ⊆ V is a set of designated truth values, and O is a function
assigning a truth table Vn → P (V)\ {∅} to every n-ary connective 	 of L (which
assigns a set of possible values to each tuple of values). In the context of an
Nmatrix M = 〈V,D,O〉, we often denote O(	) by 	̃.

An F-valuation v is M -legal if v(ϕ) ∈ pos-val(ϕ,M, v) for every formula
ϕ ∈ F whose immediate subformulas are contained in F , where pos-val(ϕ,M, v)
is defined by:

1. pos-val(p,M, v) = V for every atomic formula p.
2. pos-val(	(ψ1, . . . , ψn),M, v) = 	̃(v(ψ1), . . . , v(ψn)) for every non-atomic for-

mula 	(ψ1, . . . , ψn).

In other words, there is no restriction regarding the values assigned to atomic
formulas, whereas the values of compound formulas should respect the truth
tables.

Lemma 1 ([1]). Let F ⊆ L be a set closed under subformulas and M an
Nmatrix for L. Then every M -legal F-valuation v can be extended to an M -legal
L-valuation.

3 The Modal Logic K

In this section we introduce a novel effective semantics for the model logic K.
We first present a known proof system for this logic (Sect. 3.1), and then our
semantics (Sect. 3.2). From here on, we assume that the language L consists
of the connectives ⊃, ∧, ∨, ¬ and � with their usual arities. The standard ♦
operator can be defined as a macro ♦ϕ

def= ¬�¬ϕ. Obviously, using De-Morgan
rules, fewer connectives can be used. However, we chose this set of connectives in
order to have a primitive language rich enough for the examples that we include
along the paper.

3.1 Proof System

Figure 1 presents a Gentzen-style calculus, denoted by GK, for the modal logic
K that was proven to be equivalent to the original formulation of the logic as a
Hilbert system (see, e.g., [16]). We take sequents to be pairs 〈Γ,Δ〉 of finite sets
of formulas. For readability, we write Γ ⇒ Δ instead of 〈Γ,Δ〉 and use standard
notations such as Γ, ϕ ⇒ ψ instead of (Γ ∪ {ϕ}) ⇒ {ψ}.

The (cut) rule is included in GK for convenience, but applications of (cut)
can be eliminated from derivations (see, e.g., [11]). Since the focus of this paper
is semantics rather than cut-elimination, we allow ourselves to use cut freely and
do not distinguish derivations that use it from derivations that do not. We write
�GK

Γ ⇒ Δ if there is a derivation of a sequent Γ ⇒ Δ in the calculus GK.
In the sequel, we provide a semantic characterization of �GK

. It is based on
a more refined notion of derivability that takes into account: (i) the set F of
formulas used in the derivation; and (ii) the (K)-depth of the derivation, as
defined next.
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Fig. 1. The sequent calculus GK

Definition 3. A derivation of a sequent Γ ⇒ Δ in GK is a tree in which the
nodes are labeled with sequents, the root is labeled with Γ ⇒ Δ, and every node
is the result of an application of some rule of GK where the premises are the labels
of its children in the tree. A derivation is called an F-derivation if it employs
only sequents composed of formulas from F . The (K)-depth of a derivation is
the maximal number of applications of rule (K) in any of the branches of the
derivation.

Notation 4. We write �F,m
GK

Γ ⇒ Δ if there is a derivation of Γ ⇒ Δ in GK

in which only F-sequents occur and that has (K)-depth at most m. We drop F
from this notation when F = L; and drop m to dismiss the restriction regarding
the (K)-depth.

Example 1. Let ϕ
def= �(p1 ∧ p2) ⊃ (�p1 ∧ �p2) and F = sub(ϕ). The following

is a derivation of ⇒ ϕ in GK that only uses F-formulas and has (K)-depth of 1
(though the number of applications of (K) in the derivation is 2):

p1, p2 ⇒ p1
(id)

p1 ∧ p2 ⇒ p1
(∧ ⇒)

�(p1 ∧ p2) ⇒ �p1
(K)

p1, p2 ⇒ p2
(id)

p1 ∧ p2 ⇒ p2
(∧ ⇒)

�(p1 ∧ p2) ⇒ �p2
(K)

�(p1 ∧ p2) ⇒ �p1 ∧ �p2
(⇒ ∧)

⇒ �(p1 ∧ p2) ⊃ �p1 ∧ �p2
(⇒⊃)

3.2 Semantics

The semantics is based on a four-valued Nmatrix stratified with “levels”, where
for every m, legal valuations of level m + 1 are a subset of legal valuations of
level m. The underlying Nmatrix, denoted by MK, is obtained by duplicating
the classical truth values. Thus, the sets of truth values and of designated truth
values are given by:

V4
def= {T, t, f,F} D def= {T, t}
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The truth tables are as follows (we have D = {f,F}):

x⊃̃y T t F f

T D D D D
t D D D D
F D D D D
f D D D D

x∧̃y T t F f

T D D D D
t D D D D
F D D D D
f D D D D

x∨̃y T t F f

T D D D D
t D D D D
F D D D D
f D D D D

x ¬̃x

T D
t D
F D
f D

x �̃x

T D
t D
F D
f D

We employ the following notations for subsets of truth values:

TF
def= {T,F} tf

def= {t, f}

For the classical connectives, the truth tables of MK treat t just like T, and
f just like F, and are essentially two-valued—the result is either D or D, and it
depends solely on whether the inputs are elements of D or D. Thus, for the lan-
guage without �, this Nmatrix provides a (non-economic) four-valued semantics
for classical logic.

While the output for � is also always D or D, it differentiates between T
(that results in D) and t (that results in D), and similarly between F and f. In
fact, this table is captured by the condition: �̃(x) ∈ D iff x ∈ TF.

Example 2. Let F = sub(ϕ) where ϕ is the formula from Example 1. The fol-
lowing valuation v is an F-valuation that is MK-legal:

v(p1) = v(p2) = f v(p1 ∧ p2) = F v(�p1) = v(�p2) = v(�p1 ∧ �p2) = F

v(�(p1 ∧ p2)) = T v(�(p1 ∧ p2) ⊃ (�p1 ∧ �p2)) = F

To show that it is MK-legal, one needs to verify that v(ψ) ∈ pos-val(ψ,MK, v)
for each ψ ∈ F . For example, v(p1) = f ∈ V4 = pos-val(p1,MK, v). As another
example, since v(p1) = f, we have that pos-val(�p1,MK, v) = �̃(f) = {F, f}, and
hence v(�p1) = F ∈ pos-val(�p1,MK, v). Notice that v does not satisfy ϕ.

The truth table for � can be understood via “possible worlds” intuition. Our
four truth values are intuitively captured as follows, assuming a given formula
ψ and a world w:

– T: ψ holds in w and in every world accessible from w;
– t: ψ holds in w but it does not hold in some world accessible from w;
– F: ψ does not hold in w but does hold in every world accessible from w; and
– f: ψ does not hold in w and it does not hold in some world accessible from w.

In the possible worlds semantics, �ψ holds in some world w iff ψ holds in every
world that is accessible from w, which intuitively explains the table for �. Note
that non-determinism is inherent here. For example, if ψ holds in w and in every
world accessible from w (i.e., ψ has value T), we know that �ψ holds in w, but
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we do not know whether �ψ holds in every world accessible from w (thus �ψ
has value T or t).

Now, the Nmatrix MK by itself is not adequate for the modal logic K (as
Examples 1 and 2 demonstrate). What is missing is the relation between the
choices we make to resolve non-determinism for different formulas. Continuing
with the possible worlds intuition, we observe that if a formula ϕ follows from a
set of formulas Σ that hold in all accessible worlds (i.e., ϕ follows from formulas
whose truth value is T or F), then ϕ itself should hold in all accessible worlds
(i.e., ϕ’s truth value should be T or F). Directly encoding this condition requires
us to consider a set V of MK-legal F-valuations for which the following holds
(recall Notation 2 from Sect. 2):

∀v ∈ V.∀ϕ ∈ F . (v−1[TF] �V

D ϕ =⇒ v(ϕ) ∈ TF) (necessitation)

In turn, to obtain completeness we take a maximal set V that satisfies the
necessitation condition. While it is possible to define this set of valuations as the
greatest fixpoint of necessitation, following previous work, we find it convenient
to reach this set using “levels”:

Definition 5. The set V
F,m
K is inductively defined as follows:

– V
F,0
K is the set of MK-legal F-valuations.

– V
F,m+1
K

def=
{

v ∈ V
F,m
K | ∀ϕ ∈ F . v−1[TF] �V

F,m
K

D ϕ =⇒ v(ϕ) ∈ TF
}

We also define:

VF
K

def=
⋂

m≥0

V
F,m
K Vm

K
def= V

L,m
K VK

def=
⋂

m≥0

V
L,m
K

Similarly to the idea originated by Kearns in [10], valuations are partitioned
into levels, which are inductively defined. The first level, V

F,0
K , consists solely of

the MK-legal valuations with domain F . For each m > 0, the m’th level is defined
as a subset of the (m − 1)’th level, with an additional constraint: a valuation v
from level m − 1 remains in level m, only if every formula ϕ ∈ F entailed (at
the m − 1 level) from the set of formulas that were assigned a value from TF
by v, is itself assigned a value from TF by v. As we show below, in the “end”
of this process, by taking

⋂
m≥0 V

F,m
K , one obtains the greatest set V satisfying

the necessitation condition

Remark 1. The necessitation condition is similar to the one provided in [8] to the
modal logics KT and S4. In contrast, the condition from [4,10,14] is simpler and
does not involve v−1[TF] at all, but also does not give rise to decision procedures.

Example 3. Following Example 2, while the formula ϕ is not satisfied by all
valuations in V

F,0
K , it is satisfied by all valuations in V

F,m
K for every m > 0. In

particular, the valuation v from Example 2 is not in V
F,1
K : we have p1∧p2 �V

F,0
K

D p1

and v(p1 ∧ p2) = F (so p1 ∧ p2 ∈ v−1[TF]), but v(p1) = f /∈ TF.
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For each set F ⊆ L and m ≥ 0, we obtain a consequence relation �V
F,m
K

D
between sets of F-formulas. Disregarding m, we also obtain the relation �V

F
K

D
(for every F), which we will show to be sound and complete for K. We note that
all these relations are compact. The proof of the following theorem relies on the
completeness theorems that we prove in Sect. 4.

Theorem 1 (Compactness).

1. For every m ≥ 0, if L �V
F,m
K

D R, then Γ �V
F,m
K

D Δ for some finite Γ ⊆ L and
Δ ⊆ R.

2. If L �V
F
K

D R, then Γ �V
F
K

D Δ for some finite Γ ⊆ L and Δ ⊆ R.

Now, to show that VF
K is indeed the largest set V of MK-legal F-valuations

that satisfies necessitation, we use the following two lemmas. The first is a general
construction that relies only on the use of finite-valued valuation functions.

Lemma 2. Let v0, v1, v2, . . . be an infinite sequence of valuations over a common
domain F . Then, there exists some v such that for every finite set F ′ ⊆ F of
formulas and m ≥ 0, we have v|F ′ = vk|F ′ for some k ≥ m.

Proof (Outline). First, if F is finite, then there is only a finite number of F-
valuations, and there must exists some F-valuation vm that occurs infinitely
often in the sequence v0, v1, . . .. We take v = vm, and the required property triv-
ially holds. Now, assume that F is infinite, and let ϕ0, ϕ1, . . . be an enumeration
of the formulas in F . For every i ≥ 0, let Fi = {ϕ0, . . . , ϕi}. We construct a
sequence of infinite sets A0, A1, . . . ⊆ N such that:

– For every i ≥ 0, Ai+1 ⊆ Ai.
– For every 0 ≤ j ≤ i, a ∈ Aj , and b ∈ Ai, va(ϕj) = vb(ϕj).

To do so, take some infinite set A0 ⊆ N such that va(ϕ0) = vb(ϕ0) for every
a, b ∈ A0 (such set must exist since we have a finite number of truth values).
Then, given Ai, we let Ai+1 be some infinite subset of Ai such that va(ϕi+1) =
vb(ϕi+1) for every a, b ∈ Ai+1. The valuation v is defined by v(ϕi) = va(ϕi) for
some a ∈ Ai. The properties of the Ai’s ensure that v is well defined, and it can
be shown that it also satisfies the required property. ��

Using Lemma 2 and the compactness property, we can show the following:

Lemma 3. Let v0, v1, . . . be a sequence of valuations over a common domain F
such that vm ∈ V

F,m
K for every m ≥ 0. Then, there exists some v ∈ VF

K such
that for every ϕ ∈ F , v(ϕ) = vm(ϕ) for some m ≥ 0.

Proof (Outline). By Lemma 2, there exists some v such that for every finite set
F ′ of formulas, v|F ′ = vm|F ′ for some m ≥ 0. It is easy to verify that v satisfies
the required properties. In particular, one shows that v ∈ V

F,m
K for every m ≥ 0

by induction on m. In that proof we use Theorem 1 to obtain a finite Γ ⊆ v−1[TF]

such that Γ �V
F,m−1
K

D ϕ from the assumption that v−1[TF] �V
F,m−1
K

D ϕ. Then, the
above property of v is applied with F ′ = Γ ∪ {ϕ}. ��
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Now, our characterization theorem easily follows:

Theorem 2. The set VF
K is the largest set V of MK-legal F-valuations that sat-

isfies necessitation.

Proof (Outline). To prove that VF
K satisfies necessitation, one needs to prove

that if v−1[TF] �V
F
K

D ϕ, then also v−1[TF] �V
F,m
K

D ϕ for some m ≥ 0. This is done
using Lemma 3. For maximality, given a set V, we assume by contradiction that
there is some m such that V �⊆ V

F,m
K , take a minimal such m, and show that it

cannot be 0. Then, from V ⊆ VF
K m − 1, it follows that actually V ⊆ V

F,m
K , and

thus we obtain a contradiction. ��

Finite Domain. By definition we have V
F,0
K ⊇ V

F,1
K ⊇ V

F,2
K ⊇ . . . (and so,

�V
F,0
K

D ⊆ �V
F,1
K

D ⊆ �V
F,2
K

D ⊆ . . .). Next, we show that when F is finite, then this
sequence must converge.

Lemma 4. Suppose that V
F,m
K = V

F,m+1
K for some m ≥ 0. Then, VF

K = V
F,m
K .

Lemma 5. For a finite set F of formulas, VF
K = V

F,4|F|
K .

Proof. The left-to-right inclusion follows from our definitions. For the right-to-
left inclusion, note that by Lemma 4, V

F,m
K = V

F,m+1
K implies that V

F,m
K = V

F,k
K

for every k ≥ m. Thus, it suffices to show that V
F,m
K = V

F,m+1
K for some 0 ≤

m ≤ 4|F| +1. Indeed, otherwise we have V
F,0
K ⊃ V

F,1
K ⊃ V

F,2
K ⊃ . . . ⊃ V

F,4|F|+1
K ,

but this is impossible since there are only 4|F| functions from F to V4. ��

Optimized Tables. Starting from level 1, the condition on valuations allows us
to refine the truth tables of MK, and reduce the search space for countermodels.
For instance, since ψ �V

F,0
K

D ϕ ⊃ ψ (for every F with {ψ,ϕ, ϕ ⊃ ψ} ⊆ F), at level
1 we have that if ψ ∈ v−1[TF], then v(ϕ ⊃ ψ) ∈ TF. This allows us to remove
t and f from the first and third columns (when y ∈ TF) in the table presenting
⊃̃. The following entailments (at level 0), all with a single occurrence of some
connective, lead to similar refinements, resulting in the optimized tables below
for ⊃, ∧ and ∨:

ϕ,ϕ ⊃ ψ �V
F,0
K

D ψ ϕ,ψ �V
F,0
K

D ϕ ∧ ψ ϕ ∧ ψ �V
F,0
K

D ϕ ϕ ∧ ψ �V
F,0
K

D ψ

ϕ �V
F,0
K

D ϕ ∨ ψ ψ �V
F,0
K

D ϕ ∨ ψ

x⊃̃y T t F f

T {T} {t} {F} {f}
t {T} D {F} D
F {T} {t} {T} {t}
f {T} D {T} D

x∧̃y T t F f

T {T} {t} {F} {f}
t {t} {t} {f} {f}
F {F} {f} {F} {f}
f {f} {f} {f} {f}

x∨̃y T t F f

T {T} {T} {T} {T}
t {T} D {T} D
F {T} {T} {F} {F}
f {T} D {F} D
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We note that level 1 valuations are not fully captured by these tables. For
example, they must assign T to every formula of the form ϕ ⊃ ϕ, while the
table above allows also t when v(ϕ) ∈ tf. A decision procedure for K can benefit
from relying on these optimized tables instead of the original ones, starting from
level 1.

4 Soundness and Completeness

In this section we establish the soundness and completeness of the proposed
semantics. For that matter, we first extend the notion of satisfaction to sequents:

Definition 6. An F-valuation v D-satisfies an F-sequent Γ ⇒ Δ, denoted by
v |=D Γ ⇒ Δ, if v �|=D ϕ for some ϕ ∈ Γ or v |=D ϕ for some ϕ ∈ Δ.

To prove soundness, we first note that except for (K), the soundness of each
derivation rule easily follows from the Nmatrix semantics:

Lemma 6 (Local Soundness). Consider an application of a rule of GK other
than (K) deriving a sequent Γ ⇒ Δ from sequents Γ1 ⇒ Δ1, . . . , Γn ⇒ Δn, such
that Γ ∪ Γ1 ∪ . . . ∪ Γn ∪ Δ ∪ Δ1 ∪ . . . ∪ Δn ⊆ F . Let v ∈ V

F,m
K for some m ≥ 0.

If v |=D Γi ⇒ Δi for every 1 ≤ i ≤ n, then v |=D Γ ⇒ Δ.

For (K), we make use of the level requirement, and prove the following
lemma.

Lemma 7 (Soundness of (K)). Suppose that Γ ∪ �Γ ∪ {ϕ,�ϕ} ⊆ F , and

Γ �V
F,m−1
K

D ϕ. Then, �Γ �V
F,m
K

D �ϕ.

Proof. Let v ∈ V
F,m
K such that v |=D �Γ . We prove that v |=D �ϕ. By the

truth table of �, we have that v(ψ) ∈ TF for every ψ ∈ Γ , and we need to
show that v(ϕ) ∈ TF. Since v(ψ) ∈ TF for every ψ ∈ Γ , we have Γ ⊆ v−1[TF].

Since Γ �V
F,m−1
K

D ϕ, we have v−1[TF] �V
F,m−1
K

D ϕ. Since v ∈ V
F,m
K , it follows that

v(ϕ) ∈ TF. ��

The above two lemmas together establish soundness, and from soundness for
each level, we easily derive soundness for arbitrary (K)-depth.

Theorem 3 (Soundness for m). If �F,m
GK

Γ ⇒ Δ, then Γ �V
F,m
K

D Δ.

Theorem 4 (Soundness without m). If �F
GK

Γ ⇒ Δ, then Γ �V
F
K

D Δ.

By taking F = L in Theorem 4 we get that if �GK
Γ ⇒ Δ, then Γ �VK

D Δ.

Next, we prove the following two completeness theorems:

Theorem 5 (Completeness for m). Let F ⊆ L closed under subformulas

and Γ ⇒ Δ an F-sequent. If Γ �V
F,m
K

D Δ, then �F,m
GK

Γ ⇒ Δ.
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Theorem 6 (Completeness without m). Let F ⊆ L closed under subfor-

mulas and Γ ⇒ Δ an F-sequent. If Γ �V
F
K

D Δ, then �F
GK

Γ ⇒ Δ.

In fact, since F may be infinite, we need to prove stronger theorems than
Theorems 5 and 6, that incorporate infinite sequents.

Definition 7. An ω-sequent is a pair 〈L,R〉, denoted by L ⇒ R, such that L and
R are (possibly infinite) sets of formulas. We write �F,m

GK
L ⇒ R if �F,m

GK
Γ ⇒ Δ

for some finite Γ ⊆ L and Δ ⊆ R.

Other notions for sequents (e.g., being an F-sequent) are extended to ω-
sequents in the obvious way. In particular, v |=D L ⇒ R if v(ψ) /∈ D for some
ψ ∈ L or v(ψ) ∈ D for some ψ ∈ R.

Theorem 7 (ω-Completeness for m). Let F ⊆ L closed under subformulas

and L ⇒ R an ω-F-sequent. If L �V
F,m
K

D R, then �F,m
GK

L ⇒ R.

Theorem 8 (ω-Completeness without m). Let F ⊆ L closed under subfor-

mulas and L ⇒ R an ω-F-sequent. If L �V
F
K

D R, then �F
GK

L ⇒ R.

Theorem 5 is a consequence of Theorem 7. Indeed, by Theorem 7, Γ �V
F,m
K

D Δ

implies that �F,m
GK

Γ ′ ⇒ Δ′ for some (finite) Γ ′ ⊆ Γ and Δ′ ⊆ Δ. Using (weak),
we obtain that �F,m

GK
Γ ⇒ Δ. Similarly, Theorem 6 is a consequence of Theorem

8. Also, using Lemma 3, we obtain Theorem 8 from Theorem 7. Hence in the
remainder of this section we focus on the proof of Theorem 7.

Proof of Theorem 7. We start by defining maximal and consistent ω-sequents,
and proving their existence.

Definition 8 (Maximal and consistent ω-sequent). Let F ⊆ L and m ≥ 0.
An F-ω-sequent L ⇒ R is called:

1. F-maximal if F ⊆ L ∪ R.
2. 〈GK,F ,m〉-consistent if ��F,m

GK
L ⇒ R.

3. 〈GK,F ,m〉-maximal-consistent (in short, 〈GK,F ,m〉-max-con) if it is F-
maximal and 〈GK,F ,m〉-consistent.

Lemma 8. Let F ⊆ L and L ⇒ R an F-ω-sequent. Suppose that ��F,m
GK

L ⇒ R.
Then, there exist sets LMC(GK,F,m,L⇒R) and RMC(GK,F,m,L⇒R) such that the
following hold:

– L ⊆ LMC(GK,F,m,L⇒R) and R ⊆ RMC(GK,F,m,L⇒R).
– LMC(GK,F,m,L⇒R) ∪ RMC(GK,F,m,L⇒R) ⊆ F .
– LMC(GK,F,m,L⇒R) ⇒ RMC(GK,F,m,L⇒R) is 〈GK,F ,m〉-max-con.

Thus, given an underivable ω-sequent, we can extend it to a 〈GK,F ,m〉-max-
con ω-sequent. This ω-sequent induces the canonical countermodel, as defined
next.
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Algorithm 1. Deciding Γ �VK

D ϕ.
1: F ← sub(Γ ∪ {ϕ})
2: m ← 4|F|

3: for v ∈ V
F,m
K do

4: if v |=D Γ and v �|=D ϕ then
5: return (“NO”, v)

6: return “YES”

Notation 9. We denote the set {ψ ∈ F | �ψ ∈ X} by BX
F .

Definition 10. Suppose that L � R = F . The canonical model w.r.t. L ⇒ R,
F , and m, denoted by v(F , L ⇒ R,m), is the F-valuation defined as follows (in
λ notation):

For m = 0:

λϕ ∈ F .

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T ϕ ∈ L and �ϕ ∈ L

t ϕ ∈ L and �ϕ /∈ L

F ϕ ∈ R and �ϕ ∈ L

f ϕ ∈ R and �ϕ /∈ L

For m > 0:

λϕ ∈ F .

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T ϕ ∈ L and �F,m−1
GK

BL
F ⇒ ϕ

t ϕ ∈ L and ��F,m−1
GK

BL
F ⇒ ϕ

F ϕ ∈ R and �F,m−1
GK

BL
F ⇒ ϕ

f ϕ ∈ R and ��F,m−1
GK

BL
F ⇒ ϕ

Clearly, v(F , L ⇒ R,m) �|=D L ⇒ R. The proof of Theorem 7 is done by
induction on m, and then carries on by showing that if L ⇒ R is 〈GK,F ,m〉-
max-con, then v(F , L ⇒ R,m) belongs to V

F,m
K for every m.

Concretely, let v
def= v(F , L ⇒ R,m). We show that v ∈ V

F,k
K for every k ≤ m

by induction on k. The base case k = 0 is straightforward. For k > 0, we
have v ∈ V

F,k−1
K by the induction hypothesis. Let ϕ ∈ F , and suppose that

v−1[TF] �V
F,k−1
K

D ϕ. To show that v(ϕ) ∈ TF, we prove that �F,m−1
GK

BL
F ⇒ ϕ.

By the outer induction hypothesis (regarding the completeness theorem itself),

v−1[TF] �V
F,k−1
K

D ϕ implies that �F,k−1
GK

v−1[TF] ⇒ ϕ, which implies that �F,m−1
GK

v−1[TF] ⇒ ϕ. Hence, there is a finite set {ϕ1, . . . , ϕn} ⊆ v−1[TF] such that
�F,m−1

GK
{ϕ1, . . . , ϕn} ⇒ ϕ. For every 1 ≤ i ≤ n, since ϕi ∈ v−1[TF], we have

that �F,m−1
GK

BL
F ⇒ ϕi and hence �F,m−1

GK
Γi ⇒ ϕi for some Γi ⊆ BL

F . Using
n applications of (cut) on these sequents and �F,m−1

GK
{ϕ1, . . . , ϕn} ⇒ ϕ, we

obtain that �F,m−1
GK

Γ1, . . . , Γn ⇒ ϕ, and so �F,m−1
GK

BL
F ⇒ ϕ.

5 Effectiveness of the Semantics

In this section we study the effectiveness of the semantics introduced in Defini-
tion 5 for deciding �MK

. Roughly speaking, a semantic framework is said to be
effective if it induces a decision procedure that decides its underlying logic.

Consider Algorithm 1. Given a finite set Γ of formulas and a formula ϕ, it
checks whether any valuations in V

F,m
K is a countermodel. The correctness of

this algorithm relies on the analyticity of GK, namely:
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Lemma 9 ([11]). If �GK
Γ ⇒ Δ, then �sub(Γ∪{ϕ})

GK
Γ ⇒ Δ.

Using Lemma 9, we show that the algorithm is correct.

Lemma 10. Algorithm 1 always terminates, and returns “YES” iff Γ �VK

D ϕ.

Proof. Termination follows from the fact that V
F,m
K is finite. Suppose that the

result is “YES” and assume for contradiction that Γ ��VK

D ϕ. Hence, there exists
some u ∈ VK such that u |=D Γ and u �|=D ϕ. Consider v

def= u|F . Then, v ∈
VF
K ⊆ V

F,m
K , which contradicts the fact that the algorithm returns “YES”. Now,

suppose that the result is “NO”. Then, there exists some v ∈ V
F,m
K such that

v |=D Γ and v �|=D ϕ. By Lemma 5, v ∈ VF
K . Hence, Γ ��V

F
K

D ϕ. By Theorem 3,
we have ��F

GK
Γ ⇒ ϕ. By Lemma 9, we have ��GK

Γ ⇒ ϕ. By Theorem 6, we have
Γ ��VK

D ϕ. ��

Lemma 10 shows that Algorithm 1 is a decision procedure for �MK
, when

ignoring the additional output provided in Line 5. However, it is typical in appli-
cations that a “YES” or “NO” answer is not enough, and often it is expected
that a “NO” result is accompanied with a countermodel. Algorithm 1 returns a
valuation v in case the answer is “NO”, but Lemma 10 does not ensure that v
is indeed a countermodel for Γ �VK

D ϕ. The issue is that the valuation v from the
proof of Lemma 10 witnesses the fact that ��VK

D only in a non-constructive way.
Indeed, using the soundness and completeness theorems, we are able to deduce
that v′ |=D Γ and v′ �|=D ϕ for some v′ ∈ VK, but the relation between v and v′ is
unclear. Most importantly, it is not clear whether v and v′ agree on F-formulas.
In the remainder of this section we prove that v′ extends v, and so the returned
countermodel of Line 5 can be trusted.

We say that a valuation v′ extends a valuation v if Dom(v) ⊆ Dom(v′) and
v′(ϕ) = v(ϕ) for every ϕ ∈ Dom(v) (identifying functions with sets of pairs,
this means v ⊆ v′). Clearly, for a Dom(v)-formula ψ we have that v′ |=D ψ iff
v |=D ψ. We first show how to extend a given valuation v ∈ V

F,m
K by a single

formula ψ such that sub(ψ)\ {ψ} ⊆ F , obtaining a valuation v′ ∈ V
F∪{ψ},m
K that

agrees with v on all formulas in F .

Lemma 11. Let m ≥ 0, F ⊆ L, and v ∈ V
F,m
K . Let ψ ∈ L\F such that

sub(ψ)\ {ψ} ⊆ F . Then, v can be extended to some v′ ∈ V
F∪{ψ},m
K .

We sketch the proof of Lemma 11.
When m = 0, v′ exists from Lemma 1. For m > 0, we define v′ as follows:1

v′ def
= λϕ ∈ F ∪ {ψ} .

⎧
⎪⎪⎨

⎪⎪⎩

v(ϕ) ϕ ∈ F
min(pos-val(ψ, MK, v) ∩ TF) ϕ = ψ ∧ v−1[TF] �V

F∪{ψ},m−1
K

D ψ

min(pos-val(ψ, MK, v) ∩ tf) otherwise

1 The use of min here assumes an arbitrary order on truth values. It is used here only
to choose some element from a non-empty set of truth values.
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The proof of Lemma 11 then carries on by showing that v′ ∈ V
F∪{ψ},m
K .

Next, Lemma 11 is used in order to extend partial valuations into total ones.

Lemma 12. Let v ∈ V
F,m
K for some F closed under subformulas. Then, v can

be extended to some v′ ∈ Vm
K .

Finally, Lemmas 3 and 12 can be used in order to extend any partial valuation
in VF

K into a total one.

Lemma 13. Let v ∈ VF
K for some set F closed under subformulas. Then, v can

be extended to some v′ ∈ VK.

We conclude by showing that when Algorithm 1 returns (“NO”, v), then v
is a finite representation of a true countermodel for Γ �MK

ϕ.

Corollary 1. If Γ ��VK

D ϕ. Then Algorithm 1 returns (“NO”, v) for some v for
which there exists v′ ∈ VK such that v = v′|sub(Γ∪{ϕ}), v′ |=D Γ , and v′ �|=D ϕ.

Proof. Suppose that Γ ��VK

D ϕ. Then by Lemma 10, Algorithm 1 does not return
“YES”. Therefore, it returns (“NO”, v) for some v ∈ V

F,m
K such that v |=D Γ

and v �|=D ϕ, where F = sub(Γ ∪ {ϕ}) and m = 4|F|. By Lemma 5, v ∈ VKF .
By Lemma 13, v can be extended to some v′ ∈ VK. Therefore, v = v′|sub(Γ∪{ϕ}),
v′ |=D Γ , and v′ �|=D ϕ. ��

Remark 2. Notice that in scenarios where model generation is not important,
m can be set to a much smaller number in Line 2 of Algorithm 1, namely, the
“modal depth” of the input.2 The reason for that is that for such m, it can be
shown that �F,m

GK
Γ ⇒ ϕ iff �F

GK
Γ ⇒ ϕ, by reasoning about the applications of

rule (K). Using the soundness and completeness theorems, we can get Γ �V
F,m
K

D ϕ

iff Γ �V
F
K

D ϕ, and so limiting to such m is enough. Notice however, that we do not
necessarily get V

F,m
K = VF

K for such m, and so the valuation returned in Line 5
might not be an element of VF

K .

6 The Modal Logic KT

In this section we obtain similar results for the modal logic KT. First, the calculus
GKT is obtained from GK by adding the following rule (see, e.g., [16]):

(T )
Γ, ϕ ⇒ Δ

Γ,�ϕ ⇒ Δ

Derivations are defined as before. (In particular, the (K)-depth of a derivation
still depends on applications of rule (K), not of rule (T ).) We write �F,m

GKT
Γ ⇒ Δ

2 The modal depth of an atomic formula p is 0. The modal depth of �ϕ is the modal
depth of ϕ plus 1. The modal depth of 	(ϕ1, . . . , ϕn) for 	 �= � is the maximum
among the modal depths of ϕ1, . . . , ϕn.
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if there is a derivation of Γ ⇒ Δ in GKT in which only F-sequents occur and that
has (K)-depth at most m.

Next, we consider the semantics. For a valuation v ∈ VK to respect rule (T ),
we must have that if v |=D Γ, ϕ ⇒ Δ, then v |=D Γ,�ϕ ⇒ Δ. In particular,
when v �|=D Γ ⇒ Δ, we get that if v(ϕ) /∈ D, then v(�ϕ) /∈ D. Now, if v(ϕ) = F,
then v(�ϕ) ∈ D according to the truth table of � in MK. But, we must have
v(�ϕ) /∈ D. This leads us to remove F from MK.

We thus obtain the following Nmatrix MKT: The sets of truth values and of
designated truth values are given by3

V3
def= {T, t, f} D def= {T, t}

and the truth tables are as follows:

x⊃̃y T t f

T D D {f}
t D D {f}
f D D D

x∧̃y T t f

T D D {f}
t D D {f}
f {f} {f} {f}

x∨̃y T t f

T D D D
t D D D
f D D {f}

x ¬̃x

T {f}
t {f}
f D

x �̃x

T D
t {f}
f {f}

Again, one may gain intuition from the possible worlds semantics. There,
the logic KT is characterized by frames with reflexive accessibility relation. Thus,
for instance, if ψ holds in w but not in some world accessible from w (i.e., ψ
has value t), we know that �ψ does not hold in w, and the reflexivity of the
accessibility relation implies that �ψ does not hold in some world accessible
from w (thus �ψ has value f).

Example 4. Let ϕ
def= ��(p1 ∧ p2) ⊃ �p1 and F def= sub(ϕ). The sequent ⇒ ϕ has

a derivation in GKT using only F formulas of (K)-depth of 1. However, it is not
satisfied by all MKT-legal F-valuations. For example, the following valuation is
an MKT-legal valuation that does not satisfy ϕ:

v(p1) = v(p2) = t v(�p1) = f

v(p1 ∧ p2) = v(�(p1 ∧ p2)) = v(��(p1 ∧ p2)) = T v(ϕ) = f

Next, we define the levels of valuations for MKT. These are obtained from
Definition 5 by removing the value F:

Definition 11. The set V
F,m
KT is recursively defined as follows:

– V
F,0
KT is the set of MKT-legal F-valuations.

– V
F,m+1
KT

def=
{

v ∈ V
F,m
KT | ∀ϕ ∈ F . v−1[T] �V

F,m
KT

D ϕ =⇒ v(ϕ) = T
}

We also define:

VF
KT

def=
⋂

m≥0

V
F,m
KT Vm

KT
def= V

L,m
KT VKT

def=
⋂

m≥0

V
L,m
KT

3 In this section we denote the set {T} by TF.
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Example 5. Following Example 4, we note that for every v ∈ V
F,m
KT with m > 0,

we have v |=D ϕ. In particular, the valuation v from Example 4 does not belong

to V
F,m
KT : �(p1 ∧ p2) ∈ v−1[T], �(p1 ∧ p2) �V

F,0
KT

D p1, but v(p1) = t.

Similarly to Theorem 2, the levels of valuations converge to a maximal set
that satisfies the following condition:

∀v ∈ V.∀ϕ ∈ F . v−1[T] �V

D ϕ =⇒ v(ϕ) = T (necessitationKT)

Theorem 9. The set VF
KT is the largest set V of MKT-legal F-valuations that

satisfies necessitationKT.

The proof of Theorem 9 is analogous to that of Theorem 2.

Remark 3. The necessitationKT condition is equivalent to the one given in [8],
except that the underlying truth table is different. Theorem 9 proves that our
gradual way of defining VF

KT via levels coincides with the semantic condition
from [8].

As we demonstrated for K, starting from level 1, the condition on valuations
allows us to refine the truth tables of MKT, and reduce the search space. Simple
entailments (at level 0) lead to the optimized tables below for ⊃, ∧ and ∨:

x⊃̃y T t f

T {T} {t} {f}
t {T} D {f}
f {T} D D

x∧̃y T t f

T {T} {t} {f}
t {t} {t} {f}
f {f} {f} {f}

x∨̃y T t f

T {T} {T} {T}
t {T} D D
f {T} D {f}

Soundness and completeness for GKT are obtained analogously to GK, keeping
in mind that MKT is obtained from MK by deleting the value F. For soundness,
this is captured by the rule (T ). For completeness, the same construction of a
countermodel is performed , while rule (T ) ensures that it is three-valued.

Theorem 10 (Soundness and Completeness). Let F ⊆ L closed under
subformulas and Γ ⇒ Δ an F-sequent.

1. For every m ≥ 0, Γ �V
F,m
KT

D Δ iff �F,m
GKT

Γ ⇒ Δ.

2. Γ �V
F
KT

D Δ iff �F
GKT

Γ ⇒ Δ.

Effectiveness is also shown similarly to K. For that matter, we use the follow-
ing main lemma, whose proof is similar to Lemma 13. The only component that
is added to that proof is making sure that the constructed model is three-valued.

Lemma 14. Let v ∈ VF
KT for some set F closed under subformulas. Then, v can

be extended to some v′ ∈ VKT.

Let Algorithm 2 be obtained from Algorithm 1 by setting m to 3|F| in Line
2, and taking v ∈ V

F,m
KT in Line 3. Similarly to Lemma 10 and Corollary 1, we

get that Algorithm 2 is a model-producing decision procedure for �MKT
.
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Lemma 15. Algorithm 2 always terminates, and returns “YES” iff Γ �VKT

D ϕ.
Further, if Γ ��VKT

D ϕ, then it returns (“NO”, v) for some v for which there exists
v′ ∈ VKT such that v = v′|sub(Γ∪{ϕ}), v′ |=D Γ , and v′ �|=D ϕ.

7 Future Work

We have introduced a new semantics for the modal logic K, based on levels of
valuations in many-valued non-deterministic matrices. Our semantics is effective,
and was shown to tightly correspond to derivations in a sequent calculus for K.
We also adapted these results for the modal logic KT.

There are two main directions for future work. The first is to establish sim-
ilar semantics for other normal modal logics, such as KD, K4, S4 and S5, and to
investigate ♦ as an independent modality. The second is to analyze the complex-
ity, implement and experiment with decision procedures for K and KT based on
the proposed semantics. In particular, we plan to consider SAT-based decision
procedures that would encode this semantics in SAT, directly or iteratively.
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Abstract. The modal logic K is commonly used to represent and reason
about necessity and possibility and its extensions with combinations of
additional axioms are used to represent knowledge, belief, desires and
intentions. Here we present local reductions of all propositional modal
logics in the so-called modal cube, that is, extensions of K with arbitrary
combinations of the axioms B, D, T, 4 and 5 to a normal form comprising
a formula and the set of modal levels it occurs at. Using these reductions
we can carry out reasoning for all these logics with the theorem prover
KSP. We define benchmarks for these logics and experiment with the
reduction approach as compared to an existing resolution calculus with
specialised inference rules for the various logics.

1 Introduction

Modal logics have been used to represent and reason about mental attitudes such
as knowledge, belief, desire and intention, see for example [17,20,31]. These can
be represented using extensions of the basic modal logic K with one or more
of the axioms B (symmetry), D (seriality), T (reflexivity), 4 (transitivity) and
5 (Euclideaness). The logic K and these extensions form the so-called modal cube,
see Fig. 1. In the diagram, a line from a logic L1 to a logic L2 to its right and/or
above means that all theorems of L1 are also theorems of L2, but not vice versa.
As indicated in Fig. 1, some of the logics have the same theorems, e.g., KB5 and
KB4. Also, all logics not explicitly listed have the same theorems as KT5 aka S5.
In total there are 15 distinct logics.

While these modal logics are well-studied and a multitude of calculi and
translations to other logics exist, see, e.g., [1,3–6,9,13,14,16,18,22,41], fully
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Fig. 1. Modal Cube: Relationships between modal logics

automatic support by provers is still lacking. Early implementations covering
the full modal cube, such as Catach’s TABLEAUX system [7], are no longer
available. LoTREC 2.0 [10] supports a wide range of logics but is not intended
as an automatic theorem prover. MOIN [11] supports all the logics but the focus
is on producing human-readable proofs and countermodels for small formulae.
Other provers that go beyond just K, like MleanCoP [28] and CEGARBox [15]
only support a small subset of the 15 logics. There are also a range of transla-
tions from modal logics to first-order and higher-order logics [13,18,19,27,33].
Regarding implementations of those, SPASS [33,43] is limited to a subset of the
15 logics, while LEO-III [13,36] supports all the logics in the modal cube, but
can only solve very few of the available benchmark formulae.

KSP [23] is a modal logic theorem prover that implements both the modal-
layered resolution (MLR) calculus [25] for the modal logic K and the global
resolution (GMR) calculus [24] for all the 15 logics considered here. It also sup-
ports several refinements of resolution and a range of simplification rules. In this
paper, we give reductions of all logics of the modal cube into a normal form for
the basic modal logic K. We then compare the performance of the combination of
these reductions with the modal-layered resolution calculus to that of the global
resolution calculus on a new benchmark collection for the modal cube.

In [29] we have presented new reductions1 of the propositional modal logics
KB, KD, KT, K4, and K5 to Separated Normal Form with Sets of Modal Levels
SNFsml. SNFsml is a generalisation of the Separated Normal Form with Modal
Level, SNFml. In the latter, labelled modal clauses are used where a natural
number label refers to a particular level within a tree Kripke structure at which a
modal clause holds. In the former, a finite or infinite set of natural numbers labels
each modal clause with the intended meaning that such a modal clause is true
at every level of a tree Kripke structure contained in that set. As our prover KSP
and the modal-layered resolution calculus it implements currently only support
sets of modal clauses in SNFml, we then use a further reduction from SNFsml

1 A reduction here is a satisfiability preserving mapping between logics.
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to SNFml to obtain an automatic theorem prover for these modal logics. Where
all modal clauses are labelled with finite sets, this reduction is straightforward.
This is the case for KB, KD and KT. For K4 and K5, characterised by the axioms
�ϕ → ��ϕ and �ϕ → ��ϕ, modal clauses are in general labelled with infinite
sets. However, using a result by Massacci [21] for K4 and an analogous result
for K5 by ourselves, we are able to bound the maximal level occurring in those
labelling sets which in turn makes a reduction to SNFml possible.

Also in [29], we have shown experimentally that these reductions allow us
to reason effectively in these logics, compared to the global modal resolution
calculus [24] and to the relational and semi-functional translation built into the
first-order theorem prover SPASS 3.9 [33,38,42]. The reason that the comparison
only included a rather limited selection of provers is that these are the only ones
with built-in support for all six logics our reductions covered.

Unfortunately, we cannot simply combine our reductions for single axioms to
obtain satisfiability preserving reductions for their combinations. There are two
main reasons for this. First, our calculus does not use an explicit representation
of the accessibility relationship within a Kripke structure, which would make it
possible to reflect modal axioms via corresponding properties of that accessibil-
ity relationship. Instead, we add labelled modal clauses based on instances of the
modal axioms for �-formulae occurring in the modal formula we want to check
for satisfiability. However, if we deal with multiple modal axioms, then these
axioms might interact making it necessary to add instances that are not nec-
essary for each individual axiom. For instance, consider, the converse of axiom
B, ��ϕ → ϕ, and axiom 4, �ϕ → ��ϕ. Together they imply ��ϕ → �ϕ.
Instances of this derived axiom are necessary for completeness of a reduction
from KB4 to K, but are unsound for KB and K4 separately.

Second, our reductions attempt to keep the labelling sets minimal in size in
order to decrease the number of inferences that can be performed. Again, taking
axioms B and 4 as examples, in KB, a �-formula �ψ true at level ml in a tree-
like Kripke structure M forces ψ to be true at level ml − 1, while in K4, �ψ
true at level ml in M forces ψ to be true all levels ml′ with ml′ > ml. This is
reflected in the labelling sets we use for these two logics. However, for KB4, �ψ
true at level ml forces ψ to be true at every level in a tree-like Kripke structure
M (unless M consists only of a single world).

Since we intend to maintain these two properties of our reductions, we have to
consider each modal logic individually. As we will see, for some logics a reduction
can be obtained as the union of the existing reductions while for others we need
a logic-specific reduction to accommodate the interaction of axioms.

The structure of the paper is as follows. In Sect. 2 we recall common con-
cepts of propositional modal logic and the definition of our normal form SNFml.
Section 3 introduces our reduction for extensions of the basic modal logic K with
combinations of the axioms B, D, T, 4, and 5. Section 4 presents a transforma-
tion from SNFsml to SNFml which allows us to use the modal resolution prover
KSP to reason in all the modal logics. In Sect. 5 we compare the performance
of a combination of our reductions and the modal-layered resolution calculus
implemented in the prover KSP with resolution calculi specifically designed for
the logics under consideration as well as the prover LEO-III.
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2 Preliminaries

The language of modal logic is an extension of the language of propositional
logic with a unary modal operator � and its dual �. More precisely, given a
denumerable set of propositional symbols, P = {p, p0, q, q0, t, t0, . . .} as well as
propositional constants true and false, modal formulae are inductively defined
as follows: constants and propositional symbols are modal formulae. If ϕ and ψ
are modal formulae, then so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), �ϕ, and �ϕ.
We also assume that ∧ and ∨ are associative and commutative operators and
consider, e.g., (p∨(q∨r)) and (r∨(q∨p)) to be identical formulae. We often omit
parentheses if this does not cause confusion. By var(ϕ) we denote the set of all
propositional symbols occurring in ϕ. This function straightforwardly extends
to finite sets of modal formulae. A modal axiom (schema) is a modal formula ψ
representing the set of all instances of ψ.

A literal is either a propositional symbol or its negation; the set of literals is
denoted by LP . By ¬l we denote the complement of the literal l ∈ LP , that is, if
l is the propositional symbol p then ¬l denotes ¬p, and if l is the literal ¬p then
¬l denotes p. By |l| for l ∈ LP we denote p if l = p or l = ¬p. A modal literal is
either �l or �l, where l ∈ LP .

A (normal) modal logic is a set of modal formulae which includes all propo-
sitional tautologies, the axiom schema �(ϕ → ψ) → (�ϕ → �ψ), called the
axiom K, it is closed under modus ponens (if � ϕ and � ϕ → ψ then � ψ) and
the rule of necessitation (if � ϕ then � �ϕ).

K is the weakest modal logic, that is, the logic given by the smallest set of
modal formulae constituting a normal modal logic. By KΣ we denote an extension
of K by a set Σ of axioms.

The standard semantics of modal logics is the Kripke semantics or possible
world semantics. A Kripke frame F is an ordered pair 〈W,R〉 where W is a non-
empty set of worlds and R is a binary (accessibility) relation over W . A Kripke
structure M over P is an ordered pair 〈F, V 〉 where F is a Kripke frame and the
valuation V is a function mapping each propositional symbol in P to a subset
V (p) of W . A rooted Kripke structure is an ordered pair 〈M,w0〉 with w0 ∈ W . To
simplify notation, in the following we write 〈W,R, V 〉 and 〈W,R, V,w0〉 instead
of 〈〈W,R〉, V 〉 and 〈〈〈W,R〉, V 〉, w0〉, respectively.

Satisfaction (or truth) of a formula at a world w of a Kripke structure M =
〈W,R, V 〉 is inductively defined by:

〈M,w〉 |= true; 〈M,w〉 	|= false;
〈M,w〉 |= p iff w ∈ V (p), where p ∈ P ;
〈M,w〉 |= ¬ϕ iff 〈M,w〉 	|= ϕ;
〈M,w〉 |= (ϕ ∧ ψ) iff 〈M,w〉 |= ϕ and 〈M,w〉 |= ψ;
〈M,w〉 |= (ϕ ∨ ψ) iff 〈M,w〉 |= ϕ or 〈M,w〉 |= ψ;
〈M,w〉 |= (ϕ → ψ) iff 〈M,w〉 |= ¬ϕ or 〈M,w〉 |= ψ;
〈M,w〉 |= �ϕ iff for every v, w R v implies 〈M,v〉 |= ϕ;
〈M,w〉 |= �ϕ iff there is v, w R v and 〈M,v〉 |= ϕ.
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Table 1. Modal axioms and relational frame properties

Name Axiom Frame Property

D �ϕ → �ϕ Serial ∀v∃w.v R w

T �ϕ → ϕ Reflexive ∀w.w R w

B ϕ → ��ϕ Symmetric ∀vw.v R w → w R v

4 �ϕ → ��ϕ Transitive ∀uvw.(u R v ∧ v R w) → u R w

5 �ϕ → ��ϕ Euclidean ∀uvw.(u R v ∧ u R w) → v R w

Table 2. Rewriting Rules for Simplification

ϕ ∧ ϕ ⇒ ϕ

ϕ ∨ ϕ ⇒ ϕ

ϕ ∧ true ⇒ ϕ

ϕ ∧ ¬ϕ ⇒ false

ϕ ∨ ¬ϕ ⇒ true

ϕ ∧ false ⇒ false

�true ⇒ true

�false ⇒ false

ϕ ∨ false ⇒ ϕ

¬true ⇒ false

¬false ⇒ true

ϕ ∨ true ⇒ true

¬¬ϕ ⇒ ϕ

If 〈M,w〉 |= ϕ holds then M is a model of ϕ, ϕ is true at w in M and M
satisfies ϕ. A modal formula ϕ is satisfiable iff there exists a Kripke structure
M and a world w in M such that 〈M,w〉 |= ϕ.

We are interested in extensions of K with the modal axioms shown in Table 1
and their combinations. Each of these axioms defines a class of Kripke frames
where the accessibility relation R satisfies the first-order property stated in the
table. Combinations of axioms then define a class of Kripke frames where the
accessibility relation satisfies the combination of their corresponding properties.

Given a normal modal logic L with corresponding class of frames F, we say
a modal formula ϕ is L-satisfiable iff there exists a frame F ∈ F, a valuation V
and a world w ∈ F such that 〈F, V,w〉 |= ϕ. It is L-valid or valid in L iff for
every frame F ∈ F, every valuation V and every world w ∈ F , 〈F, V,w〉 |= ϕ. A
normal modal logic L2 is an extension of a normal modal logic L1 iff all L1-valid
formulae are also L2-valid.

A rooted Kripke structure M = 〈W,R, V,w0〉 is a rooted tree Kripke structure
iff R is a tree, that is, a directed acyclic connected graph where each node has at
most one predecessor, with root w0. It is a rooted tree Kripke model of a modal
formula ϕ iff 〈W,R, V,w0〉 |= ϕ. In a rooted tree Kripke structure with root w0

for every world wk ∈ W there is exactly one path connecting w0 and wk, the
length of that path is the modal level of wk (in M), denoted by mlM (wk).

It is well-known [17] that a modal formula ϕ is K-satisfiable iff there is a
finite rooted tree Kripke structure M = 〈F, V,w0〉 such that 〈M,w0〉 |= ϕ.

For the reductions presented in the next section we assume that any modal
formula ϕ has been simplified by exhaustively applying the rewrite rules in
Table 2, and it is in Negation Normal Form (NNF). That is, a formula where
only propositional symbols are allowed in the scope of negations. We say that
such a formula is in simplified NNF.

The reductions produce formulae in a clausal normal form, called Separated
Normal Form with Sets of Modal Levels SNFsml, introduced in [29]. The language
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of SNFsml extends that of the basic modal logic K with sets of modal levels as
labels. Clauses in SNFsml have one of the following forms:

S :
∨n

i=1 li
(literal clause)

S : l′ → �l
(positive modal clause)

S : l′ → �l
(negative modal clause)

where S ⊆ N and l, l′, li are propositional literals with 1 ≤ i ≤ n, n ∈ N. We
write � : ϕ instead of N : ϕ and such clauses are called global clauses. Positive
and negative modal clauses are together known as modal clauses.

Given a rooted tree Kripke structure M and a set S of natural numbers,
by M [S] we denote the set of worlds that are at a modal level in S, that is,
M [S] = {w ∈ W | mlM (w) ∈ S}. Then

M |= S : ϕ iff 〈M,w〉 |= ϕ for every world w ∈ M [S].

The motivation for using a set S to label clauses is that in our reductions
the formula ϕ may hold at several levels, possibly an infinite number of levels.
It therefore makes sense to label such formulae not with just a single level, but
a set of levels. The Separated Normal Form with Modal Level, SNFml, can be
seen as the special case of SNFsml where all labelling sets are singletons.

Note that if S = ∅, then M |= S : ϕ trivially holds. Also, a Kripke structure
M can satisfy S : false if there is no world w with mlM (w) ∈ S. On the other
hand, S : false with 0 ∈ S is unsatisfiable as a rooted tree Kripke structure
always has a world with modal level 0.

If M |= S : ϕ, then we say that S : ϕ holds in M or is true in M . For a set
Φ of labelled formulae, M |= Φ iff M |= S : ϕ for every S : ϕ in Φ, and we say Φ
is K-satisfiable.

We introduce some notation that will be used in the following. Let S+ =
{l+1 ∈ N | l ∈ S}, S− = {l−1 ∈ N | l ∈ S}, and S≥ = {n | n ≥ min(S)}, where
min(S) is the least element in S. Note that the restriction of the elements being
in N implies that S− cannot contain negative numbers.

3 Extensions of K

In this section we define reductions from all the logics in the modal cube to
SNFsml. We assume that the set P of propositional symbols is partitioned into
two infinite sets Q and T such that Q contains the propositional symbols of
the modal formula ϕ under consideration, and T surrogate symbols tψ for every
subformula ψ of ϕ and supplementary propositional symbols. In particular, for
every modal formula ψ we have var(ψ) ⊂ Q and there exists a propositional sym-
bol tψ ∈ T uniquely associated with ψ. These surrogate symbols serve the same
purpose as Tseitin variables [40] and Skolem predicates [30,39] in the transfor-
mation of propositional and first-order formulae, respectively, to clausal form via
structural transformation.

It turns out that given a reduction ρKΣ for KΣ with {D,T} ∩ Σ = ∅, there
is a uniform and straightforward way we can obtain a reduction for KDΣ and
KTΣ from ρKΣ . Also, the valid formulae of KDTΣ are the same as those of
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Table 3. Categorisation of modal logics in the modal cube

‘Base logics’ K KB K4 K5 KB4 K45

Extensions with D KD KDB KD4 KD5 KD45

Extensions with T KT KTB KT4 KT5

KTΣ, so we do not need to consider the case of adding both axioms to KΣ.
Similarly, the logics KT45, KDB4, KTB4 and KT5 all have the same set of valid
formulae. Therefore, as shown in Table 3, we can divide the 15 modal logics into
three categories: Six ‘base logics’, five modal logics obtained by extending a ‘base
logic’ with D, and a further four modal logics obtained by extending a ‘base logic’
with T. For four of the six ‘base logics’ (namely, K, KB, K4, and K5) we have
already devised reductions in [29], so only two (i.e., KB4 and K45) remain.

Given a modal formula ϕ in simplified NNF and L = KΣ with Σ ⊆
{B,D,T, 4, 5}, we can obtain a set ΦL of clauses in SNFsml such that ϕ is
L-satisfiable iff ΦL is K-satisfiable with ΦL = ρsml

L (ϕ) = {{0} : tϕ} ∪ ρL({0} :
tϕ → ϕ), where ρL is defined as follows:

ρL(S : t → true) = ∅
ρL(S : t → false) = {S : ¬t}

ρL(S : t → (ψ1 ∧ ψ2)) = {S : ¬t ∨ η(ψ1), S : ¬t ∨ η(ψ2)}∪ δL(S, ψ1)∪ δL(S, ψ2)
ρL(S : t → ψ) = {S : ¬t ∨ ψ}

if ψ is a disjunction of literals

ρL(S : t → (ψ1 ∨ ψ2)) = {S : ¬t ∨ η(ψ1) ∨ η(ψ2)} ∪ δL(S, ψ1) ∪ δL(S, ψ2)
if ψ1 ∨ ψ2 is not a disjunction of literals

ρL(S : t → �ψ) = {S : t → �η(ψ)} ∪ δL(S+, ψ)
ρL(S : t → �ψ) = PL(S : t → �ψ) ∪ ΔL(S : t → �ψ)

η and δL are defined as follows:

η(ψ) =

{
ψ, if ψ is a literal
tψ, otherwise

δL(S, ψ) =

{
∅, if ψ is a literal
ρL(S : tψ → ψ), otherwise

and functions PL and ΔL, are defined as shown in Table 4.
We can see in Table 4 that the reduction for KB4 has an additional SNFsml

clause � : t�ψ ∨ t�¬t�ψ
that occurs neither in the reduction for KB nor in that for

K4. It can be seen as an encoding of the derived axiom ��ψ → �ψ that follows
from the contrapositive ��ψ → ψ of B and 4 �ψ′ → ��ψ′.

For K45 we see that all the SNFsml clauses in the reduction for K5 carry over.
These clauses are already sufficient to ensure that, semantically, if t�ψ is true at
any world at a level other than 0, then t�ψ is true at every world. Consequently,
to accommodate axiom 4, it suffices to add the SNFsml clause {0} : t�ψ → �t�ψ

to ensure that this also holds for the root world at level 0.
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L PL(S : t�ψ → �ψ) ΔL(S : t�ψ → �ψ)
K S : t�ψ → �η(ψ) δL(S+, ψ)
KB S : t�ψ → �η(ψ),

S− : η(ψ) ∨ t�¬t�ψ
, S− : t�¬t�ψ

→ �¬t�ψ

δL(S− ∪ S+, ψ)

K4 S≥ : t�ψ → �η(ψ), S≥ : t�ψ → �t�ψ δL((S+)≥, ψ)
K5 � : t�ψ → �η(ψ),

� : ¬t�t�ψ
∨ t�ψ, � : t�t�ψ

→ �t�ψ,
� : ¬t�t�ψ

→ �¬t�ψ, � : t�t�ψ
→ �t�t�ψ

δL(�, ψ)

KB4 � : t�ψ → �η(ψ),
� : η(ψ) ∨ t�¬t�ψ

, � : t�ψ ∨ t�¬t�ψ
,

� : t�¬t�ψ
→ �¬t�ψ, � : t�ψ → �t�ψ

δL(�, ψ)

K45 � : t�ψ → �η(ψ), {0} : t�ψ → �t�ψ iff 0 ∈ S,
� : ¬t�t�ψ

∨ t�ψ, � : t�t�ψ
→ �t�ψ,

� : ¬t�t�ψ
→ �¬t�ψ, � : t�t�ψ

→ �t�t�ψ

δL(�, ψ)

KDΣ {lbP
KΣ(S) : t�ψ → �η(ψ)} ∪ PKΣ(S : t�ψ → �ψ) δL(lbδ

KΣ(S), ψ)
KTΣ {lbP

KΣ(S) : ¬t�ψ ∨ η(ψ)} ∪ PKΣ(S : t�ψ → �ψ) δL(lbδ
KΣ(S) ∪ S, ψ)

where lbP
KΣ and lbδ

KΣ are defined as follows

Table 4. Reduction of �-formulae, Σ ⊆ {B, 4, 5}.

L K KB K4 K5 KB4 K45

lbP
L(S) S S S≥ � � �

lbδ
L(S) S+ S− ∪ S+ (S+)≥ � � �

For reductions of KDΣ and KTΣ we have favoured the reuse of reductions
for KΣ, KD and KT over optimisation for specific logics. For example, take KBD.
Given that in a symmetric model, every world w except the root world w0 has
an R-successor, the axiom D only ‘enforces’ that w0 also has an R-successor. So,
instead of adding a clause S : t�ψ → �ψ for every clause S : t�ψ → �η(ψ) we
could just add {0} : t�ψ → �ψ iff 0 ∈ S. Similarly, in KT5, because of 5, for all
worlds w except w0 we already have wRw. So, we could again {0} : ¬t�ψ ∨η(ψ)
for every clause S : t�ψ → �η(ψ) iff 0 ∈ S.

For the KB4-unsatisfiable formula ψ1 = (¬p ∧ ���p), if we were to inde-
pendently apply the reductions for KB and K4, that is, we compute {{0} :
tψ1}∪ρKB({0} : tψ1 → ψ1)∪ρK4({0} : tψ1 → ψ1), then the result is the following
set of clauses Φ1:

(1) {0} : tψ1

(2) {0} : ¬tψ1 ∨ ¬p
(3) {0} : ¬tψ1 ∨ t���p

(4) {0} : t���p → �t��p

(5) {1} : t��p → �t�p

(6) {2}≥ : t�p → �p
(7) {2}≥ : t�p → �t�p

(8) {1} : p ∨ t�¬t�p

(9) {1} : t�¬t�p
→ �¬t�p

Clauses (1) to (5) stem from the transformation of ψ1 to SNFsml for K,
Clauses (6) and (7) stem from the reduction for 4 and Clauses (8) and (9) stem
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from the reduction for B. This set of SNFsml clauses is K-satisfiable. The clauses
imply {1} : p, but neither {1} : �p nor {0} : p which we need to obtain a
contradiction. Part of the reason is that we would need to apply the reduction
for 4 and B recursively to newly introduced surrogates for �-formulae which
in turn leads to the introduction of further surrogates and problems with the
termination of the reduction.

In contrast, the clause set Φ2 obtained by our reduction for KB4 is:

(10) {0} : tψ1

(11) {0} : ¬tψ1 ∨ ¬p
(12) {0} : ¬tψ1 ∨ t���p

(13) {0} : t���p → �t��p

(14) {1} : t��p → �t�p

(15) � : t�p → �p
(16) � : t�p → �t�p

(17) � : p ∨ t�¬t�p

(18) � : t�¬t�p
→ �¬t�p

(19) � : t�p ∨ t�¬t�p

(20) � : t�¬t�p
→ �t�¬t�p

Note Clauses (19) and (20) in Φ2 for which there are no corresponding clauses
in Φ1. Also, the set of labels of Clauses (15) to (18) are strict supersets of those
of the corresponding Clauses (6) to (9). Φ2 implies both {1} : �p and {0} : p.
The latter, together with Clauses (10) and (11), means Φ2 is K-unsatisfiable.

Theorem 1. Let ϕ be a modal formula in simplified NNF, Σ ⊆ {B,D,T, 4, 5},
and ΦKΣ = ρsml

KΣ (ϕ). Then ϕ is KΣ-satisfiable iff ΦKΣ is K-satisfiable.

Proof (Sketch). For |Σ| ≤ 1 this follows from Theorem 5 in [29].
For K45, KB4, KDΣ′, and KTΣ′ with Σ′ ⊆ {B, 4, 5} we proceed in analogy

to the proofs of Theorems 3 and 4 in [29]. Let L be one of these logics.
To show that if ϕ is L-satisfiable then ΦL is K-satisfiable, we show that

given a rooted L-model M of ϕ a small variation of the unravelling of M is a
rooted tree K-model �ML of ΦL. The main step is to define the valuation of the
additional propositional symbols tψ so that we can prove that all clauses in ΦL

hold in �ML. To show that if ΦL is K-satisfiable then ϕ is L-satisfiable, we take a
rooted tree K-model M = 〈W,R, V,w0〉 of ΦL and construct a Kripke structure
ML = 〈W,RL, V, w0〉. The relation RL is the closure of R under the relational
properties associated with the axioms of L. The proof that ML is a model of ϕ
relies on the fact that the clauses in ΦL ensure that for subformulae �ψ of ϕ, ψ
will be true at all worlds reachable via RL from a world where �ψ is true. ��

4 From SNFsml to SNFml

As KSP does not support SNFsml, in our evaluation of the effectiveness of the
reductions defined in Sect. 3, we have used a transformation from SNFsml to
SNFml. An alternative approach would be to reflect the use of SNFsml in the
calculus and re-implement the prover. Whilst we believe that redesigning the
calculus presents few problems, re-implementing KSP needs more thought in
particular how to represent infinite sets. The route we adopt here allows us to
experiment with the approach in general without having to change the prover.
For extensions of K with one or more of the axioms B, D, T such a transformation
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Table 5. Bounds on the length of prefixes in SST tableaux

Logic L Bound dbϕ
L

K,KD,KT, KB,KDB,KTB 1 + dϕ
m

K4,S4 2 + dϕ
� + nϕ

� × nϕ
�

KD4 2 + dϕ
� + (max(1, nϕ

�) × nϕ
�)

KB4,KTB4, K5,S5,K45 2 + dϕ
� + nϕ

�

KD5 2 + dϕ
� + max(1, nϕ

�)

is straightforward as the sets of modal levels occurring in the normal form of
modal formulae are all finite. Thus, instead of a single SNFsml clause S : ¬tψ ∨
ηf (ψ) we can use the finite set of SNFml clauses {ml : ¬tψ ∨ ηf (ψ) | ml ∈ S}.

For extensions of K with at least one of the axioms 4 and 5, potentially
together with other axioms, the sets of modal levels labelling clauses are in
general infinite. For each logic L it is, however, possible to define a computable
function that maps the modal formula ϕ under consideration onto a bound dbϕ

L

such that, restricting the modal levels in the normal form of ϕ by dbϕ
L, preserves

satisfiability equivalence.
To establish the bound and prove satisfiability equivalence, we need to intro-

duce the basic notions of Single Step Tableaux (SST) calculi for a modal logic L
[14,21], which uses sequences of natural numbers to prefix modal formulae in a
tableau. The SST calculus consists of a set of rules, with the (π) rule being the
only rule increasing prefixes’ lengths (i.e., σ : �ϕ/σ.n : ϕ with σ.n new on the
branch). For a logic L, an L-tableau T in the SST calculus for a modal formula
ϕ is a (binary) tree where the root of T . is labelled with 1 : ϕ, and every other
node is labelled with a prefixed formula σ : ψ obtained by application of a rule
of the calculus. A branch B is a path from the root to a leaf. A branch B is closed
if it contains either false or a propositional contradiction at the same prefix. A
tableau ”T is closed if all its branches are closed. A prefixed formula σ : ψ is
reduced for rule (r) in B if the branch B already contains the conclusion of such
rule application. By a systematic tableau construction we mean an application
of the procedure in [14, p. 374] adapted to SST rules.

For each logic L, we establish its bound by considering an L-SST calculus,
where a modal level in an SNFsml clause corresponds to the length of a prefix in
an SST tableau. The bound then either follows from an already known bound
on the length of prefixes in an SST tableau preserving correctness of the SST
calculus, or we establish such a bound ourselves. To prove satisfiability equiva-
lence, we show that, for a closed SST tableau with such a bound on the length
of prefixes in place, we can construct a resolution refutation of a set of SNFsml

or SNFml clauses with a corresponding bound on modal levels in those clauses.
For a modal formula ϕ in simplified NNF let dϕ

m be the modal depth of
ϕ, dϕ

� be the maximal nesting of �-operators not under the scope of any �

operators in ϕ, nϕ
� be the number of �-subformulae in ϕ, and nϕ

� be the number of
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�-subformulae below �-operators in ϕ. Our results for the bounds on the length
of prefixes in SST tableaux can then be summarised by the following theorem.

Theorem 2. Let L = KΣ with Σ ⊆ {B,D,T, 4, 5}. A systematic tableau con-
struction of an L-tableau for a modal formula ϕ in simplified NNF under the
following Constraints (TC1) and (TC2)

(TC1) a rule (r) of the SST calculus is only applicable to a prefixed formula
σ : ψ in a branch B if the formula is not already reduced for (r) in B;

(TC2) rule (π) of the SST calculus is only applicable to prefixed formulae σ : �ψ
with |σ| < dbϕ

L for dbϕ
L as defined in Table 5

terminates in one of following states:

(1) all branches of the constructed tableau are closed and ϕ is L-unsatisfiable or
(2) at least one branch B is not closed, no rule is still applicable to a labelled

formula in B, and ϕ is L-satisfiable.

The proof is analogous to Massacci’s [21, Section B.2]. Note that for logics KD4
and KD5, we use max(1, nϕ

�) in the calculation of the bound. That is, if nϕ
� ≥ 1

then max(1, nϕ
�) = nϕ

� and the bound is the same as for K4 and K5. Otherwise
max(1, nϕ

�) = 1, that is, the bound is the same as for a formula with a single
�-subformula below �-operators in ϕ.

For K, KD, KT, KB and KDB these bounds were already stated in [21, Tables
III and IV]. The bound for KTB follows straightforwardly from that for KB and
KDB. For KD4, Massacci [21, Tables III and IV] states the bound to be the
same as for K4. However, this is not correct for the case that the formula ϕ
contains no �-formulae, where its bound would simply be 2, independent of ϕ.
For example, the formula ���false which is KD4-unsatisfiable, does not have
a closed KD4-tableau with this bound. For the other logics the bounds are new.
As argued in [21], the bounds allow tableau decision procedures for extensions
of K with axioms 4 and 5 that do not require a loop check and are therefore of
wider interest.

Note that in KT4, ��ψ and �ψ are equivalent and so are �(ψ∧�ϑ) and �(ψ∧
ϑ). So, it makes sense to further simplify KT4 formulae using such equivalences
before computing the normal form and the bound with the benefit that it may not
only reduce the bound but also the size of the normal form. Similar equivalences
that can be used to reduce the number of modal operators in a formula also
exist for other logics, see, e.g., [8, Chapter 4].

To establish a relationship between closed tableaux and resolution refuta-
tions of a set of SNFml clauses, we formally define the modal layered resolution
calculus. Table 6 shows the inference rules of the calculus restricted to labels
occurring in our normal form. For GEN1 and GEN3, if the modal clauses in
the premises occur at the modal level ml, then the literal clause in the premises
occurs at modal level ml + 1.
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Let Φ be a set of SNFml clauses. A (resolution) derivation from Φ is a sequence
of sets Φ0, Φ1, . . . where Φ0 = Φ and, for each i > 0, Φi+1 = Φi ∪ {D}, where
D 	∈ Φi is the resolvent obtained from Φi by an application of one of the inference
rules to premises in Φi. A (resolution) refutation of Φ is a derivation Φ0, . . . , Φk,
k ∈ N, where 0 : false ∈ Φk.

To map a set of SNFsml clauses to a set of SNFml clauses, using a bound
n ∈ N on the modal levels, we define a function dbn on clauses and sets of
clauses in SNFsml as follows:

dbn(S : ϕ) = {ml : ϕ | ml ∈ S and ml ≤ n}
dbn(Φ) =

⋃
S:ϕ∈Φ dbn(S : ϕ)

Note that prefixes in SST-tableaux have a minimal length of 1 while the
minimal modal level in SNFml clauses is 0. So, a prefix of length n in a prefixed
formula corresponds to a modal level n − 1 in an SNFml clause.

The proof of the following theorem then takes advantage of the fact that we
have surrogates and associated clauses for each subformula of ϕ and proceeds
by induction over applications of rule (π).

Theorem 3. Let L = KΣ with Σ ⊆ {B,D,T, 4, 5}, ϕ be a KΣ-unsatisfiable
formula in simplified NNF, dbϕ

L be as defined in Table 5, and ΦL = ρml
L (ϕ) =

dbdbϕ
L−1(ρsml

L (ϕ)). Then there is a resolution refutation of ΦL.

Regarding the size of the encoding, we note that, ignoring the labelling sets,
the reduction ρsml

L into SNFsml is linear with respect to the size of the original
formula. The size including the labelling sets would depend on the exact repre-
sentation of those sets, in particular, of infinite sets. As those are not arbitrary,
there is still an overall polynomial bound on the size of the sets of SNFsml clauses
produced by ρsml

L . When transforming clauses from SNFsml into SNFml, we may
need to add every clause to all levels within the bounds provided by Theorem 3.
The parameters for calculating those bounds, dϕ

m, dϕ
�, nϕ

�, and nϕ
�, are all them-

selves linearly bound by the size of the formula. Thus, in the worst case, which
is S4, the size of the clause set produced by ρml

L is bounded by a polynomial of
degree 3 with respect to the size of the original formula.

It is worth pointing out that both the reduction ρsml
L of a modal formula

to SNFsml and the reduction ρml
L to SNFml are also reversible, that is, we can

reconstruct the original formula from the SNFsml and from the SNFml clause set
obtained by ρsml

L or ρml
L , respectively. This reconstruction can also be performed

in polynomial time. Thus the reduction itself does not affect the complexity
of the satisfiability problem. For instance, the satisfiability problem for S5 is
NP-complete and so is the satisfiability problem of the subclass CS5 of SNFml

clause sets that can be obtained as the result of an application of ρml
S5 to a modal

formula. However, a generic decision procedure for K will not be a complexity-
optimal decision procedure for CS5.
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Table 6. Inference rules of the MLR calculus

LRES :

ml : D ∨ l

ml : D′ ∨ ¬l

ml : D ∨ D′ MRES :

ml : l1 → �l

ml : l2 → �¬l

ml : ¬l1 ∨ ¬l2
GEN2 :

ml : l′1 → �l1

ml : l′2 → �¬l1

ml : l′3 → �l2

ml : ¬l′1 ∨ ¬l′2 ∨ ¬l′3

GEN1 :

ml : l′1 → �¬l1
...

ml : l′m → �¬lm

ml : l′ → �¬l

ml + 1 : l1 ∨ . . . ∨ lm ∨ l

ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′
GEN3 :

ml : l′1 → �¬l1
...

ml : l′m → �¬lm

ml : l′ → �l

ml + 1 : l1 ∨ . . . ∨ lm

ml : ¬l′1 ∨ . . . ∨ ¬l′m ∨ ¬l′

5 Evaluation

An empirical evaluation of the practical usefulness of the reductions we presented
in Sects. 3 and 4 faces the challenge that there is no substantive collection of
benchmark formulae for the 15 logics of the modal cube except for basic modal
logic. Catach [7] evaluates his prover on 31 modal formulae with a maximal
length of 22 and maximal modal depth of 4. They are not sufficiently challeng-
ing. The QMLTP Problem Library for First-Order Modal Logics [32] focuses on
quantified formulae and contains only a few formulae taken from the research
literature that are purely propositional and were not written for the basic modal
logic K. The Logics Workbench (LWB) benchmark collection [2] contains formu-
lae for K, KT and S4 but not for any of the other logics we consider. For each
of these three logics, the collection consists of 18 parameterised classes with 21
formulae each, plus scripts with which further formulae could be generated if
needed. All formulae in 9 classes are satisfiable and all formulae in the other 9
classes are unsatisfiable in the respective logic.

In [29] we have used the 18 classes of the LWB benchmark collection for K
to evaluate our approach for the six logics consisting of K and its extensions
with a single axiom. One drawback of using these 18 classes for other modal
logics is that formulae that are K-satisfiable are not necessarily KΣ-satisfiable
for non-empty sets Σ of additional axioms. For example, for K5, only 60 out of
180 K-satisfiable formulae were K5-satisfiable. Another drawback is that while
K-unsatisfiable formulae are also KΣ-unsatisfiable, a resolution refutation would
not necessarily involve any of the additional clauses introduced by our reduction
for KΣ. It may be that the additional clauses allow us to find a shorter refutation,
but it may just be a case of finding the same refutation in a larger search space.
It is also worth recalling that simplification alone is sufficient to determine that
all formulae in the class k lin p are K-unsatisfiable while pure literal elimination
can be used to reduce all formulae in k grz p to the same simple formula [26].
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Table 7. Logic-specific modification of unsatisfiable benchmark formulae

Logic L ψp
l

K false
KB (¬qp ∧ ��qp)
KDB (¬qp ∧ ��((�¬q′

p ∧ �q′
p) ∨ qp))

KTB (¬qp ∧ ��((¬q′
p ∧ �q′

p) ∨ qp))
KD (�¬qp ∧ �qp)
KT (¬qp ∧ �qp)
K4 (�qp ∧ ��¬qp)
K4B (¬qp ∧ ���qp)

Logic L ψp
l

KD4 (�qp ∧ ����¬qp)
K5 (�¬qp ∧ ��qp)
KD5 ((�¬qp ∧ �qp) ∨ (��q′

p ∧ �¬q′
p)

K45 (�qp ∧ ��q′
p ∧ ��(¬qp ∨ ¬q′

p))
KD45 ((�¬q′

p ∧ �q′
p) ∧

(�qp ∧ ��q′
p ∧ ��(¬qp ∨ ¬q′

p))
S4 (¬q′

p ∧ �(¬q′
p ∨ �qp) ∧ ��¬qp)

S5 ((¬qp ∧ �qp) ∨ (¬q′
p ∧ ����q′

p)

Thus, some of the classes evaluate the preprocessing capabilities of a prover but
not the actual calculus and its implementation.

We therefore propose a different approach here. The principles underlying
our approach are that (i) there should be the same number of formulae for
each logic though not necessarily the same formulae across all logics; (ii) there
should be an equal number of satisfiable and unsatisfiable formulae for each logic;
(iii) a formula that is L-unsatisfiable should only be L′-unsatisfiable for every
extension L′ of L; (iv) a formula that is L′-satisfiable should be L-satisfiable
for every extension L′ of L; (v) the formulae should belong to parameterised
classes of formulae of increasing difficulty. Note that Principles (iii) and (iv) are
intentionally not symmetric. For L-unsatisfiable formulae it should be necessary
for a prover to use the rules or clauses specific to L instead of being able to find
a refutation without those. For L-satisfiable formulae we want to maximise the
search space for a model.

For unsatisfiable formulae, we take the five LWB classes k branch p,
k path p, k ph p, k poly p, k t4p p and for each logic L in the modal cube
transform each formula in a class so that is L-unsatisfiable, but L′-satisfiable for
any logic L′ that is not an extension of L. The transformation proceeds by first
converting a formula ϕ to simplified NNF. Then for each propositional literal l
it replaces all its occurrences by (l∨ψp

L) where |l| = p and ψp
L is a modal formula

uniquely associated with p and L, resulting in a formula ϕ′. Finally, for logics
KD4 and KDB we need to add a disjunct (�q ∧ �¬q) to ϕ′, while for logics S4
and KTB we need to add a disjunct (q ∧�¬q), where q is a propositional symbol
not occurring in ϕ′. These disjuncts are unsatisfiable in the respective logics but
satisfiable in logics where D, or T, do not hold. Table 7 shows the formulae ψp

L

that we use in our evaluation. In the table, qp and q′
p are propositional variables

uniquely associated with p that do not occur in ϕ. The overall effect of this
transformation is that the resulting classes of formulae satisfy Principles (iii)
and (v).

For satisfiable formulae, we use the five classes k poly n, s4 md n, s4 ph n,
s4 path n, s4 s5 n without modification. Although the first of these classes was
designed to be K-satisfiable and the other four to be S4-satisfiable, the formulae
in those classes are satisfiable in all the logics we consider. s4 ipc n also consists
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Table 8. Benchmarking results

Logic Status Total GMR
(cneg)

GMR
(cord)

GMR
(cplain)

R+MLR
(cneg)

R+MLR
(cord)

R+MLR
(cplain)

LEO-
III+E

K S 100 84 85 77 100 100 100 0

KD S 100 84 85 77 96 100 93 0

KT S 100 70 81 50 66 68 61 0

KB S 100 58 58 29 51 64 51 0

K4 S 100 83 85 77 56 57 50 0

K5 S 100 67 60 45 36 37 26 0

KDB S 100 63 70 40 56 73 55 0

KTB S 100 58 59 38 52 57 31 0

KD4 S 100 83 85 77 52 53 46 0

KD5 S 100 73 70 61 46 47 38 0

K45 S 100 45 53 34 36 37 25 0

K4B S 100 18 19 11 23 38 15 0

KD45 S 100 67 66 56 46 47 38 0

S4 S 100 66 76 48 45 44 33 0

S5 S 100 32 28 32 32 35 24 0

All S 1500 951 980 752 793 857 686 0

K U 100 74 76 71 79 78 77 21

KD U 100 74 76 71 73 75 62 13

KT U 100 74 77 70 71 74 67 30

KB U 100 71 78 68 71 52 55 10

K4 U 100 55 52 57 41 29 35 4

K5 U 100 74 46 75 50 30 48 8

KDB U 100 73 77 71 73 52 56 8

KTB U 100 72 77 69 67 50 53 9

KD4 U 100 70 59 67 40 32 39 1

KD5 U 100 75 46 77 51 40 46 3

K45 U 100 51 37 49 16 12 8 3

K4B U 100 47 52 46 53 30 49 5

KD45 U 100 64 43 55 33 22 28 1

S4 U 100 47 68 66 45 21 23 4

S5 U 100 47 51 52 36 13 29 2

All U 1500 968 915 964 799 610 675 122

only of S5-satisfiable formulae but these appear to be insufficiently challenging
and have not been included in our benchmark set. All other classes of the LWB
benchmark classes for K and S4 are satisfiable in some of the logics, but not
in all. The five classes satisfy Principles (iv) and (v). The benchmark collection
consisting of all ten classes together then also satisfies Principles (i) and (ii).
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Another challenge for an empirical evaluation is the lack of available fully
automatic theorem provers for all 15 logics that we have already discussed in
Sect. 1. This leaves us with just three different approaches we can compare (i) the
higher-order logic prover LEO-III [12,37], with E 2.6 as external reasoner, LEO-
III+E for short, that supports a wide range of logics via semantic embedding
into higher-order logic (ii) the combination of our reductions with the modal-
layered resolution (MLR) calculus for SNFml clauses [25], R+MLR calculus for
short, implemented in the modal theorem prover KSP (iii) the global modal res-
olution (GMR) calculus, implemented in KSP, which has resolution rules for
all 15 logics [24]. For R+MLR and GMR calculi, resolution inferences between
literal clauses can either be unrestricted (cplain option), restricted by nega-
tive resolution (cneg option), or restricted by an ordering (cord option). It is
worth pointing out that negative and ordered resolution require slightly dif-
ferent transformations to the normal form that introduce additional clauses
(snf+ and snf++ options, respectively). Also, the ordering cannot be arbi-
trary [25]. For the experiments, we have used the following options: (i) input
processing: prenexing, together with simplification and pure literal elimination
(bnfsimp, prenex, early ple); (ii) preprocessing of clauses: renaming reuses
symbols (limited reuse renaming), forward and backward subsumption (fsub,
bsub) are enabled; the usable is populated with clauses whose maximal literal is
positive (populate usable, max lit positive); pure literal elimination is set
for GMR (ple) and modal level ple is set for MLR (mlple); (iii) processing: infer-
ence rules not required for completeness are also used (unit, lhs unit,mres),
the options for preprocessing of clauses are kept and clause selection takes the
shortest clause by level (shortest).

For LEO-III we provide the prover with a modal formula in the syntax it
expects plus a logic specification that tells the prover in which modal logic
the formula is meant to be solved, for example, $modal system S4. LEO-III
can collaborate with external reasoners during proof search and we have used
E 2.6 [34,35] as external reasoner and restricted LEO-III to one instance of E
running in parallel. LEO-III is implemented in Java and we have set the maxi-
mum heap size to 1 GB and the thread stack size to 64 MB for the JVM.

Table 8 shows our benchmarking results. The first three columns of the table
show the logic in which we determine the satisfiability status of each formula,
the satisfiability status of the formulae, and their number. The next six columns
then show how many of those formulae were solved by KSP with a particular
calculus and refinement. The last column shows the result for LEO-III. The
highest number or numbers are highlighted in bold. A time limit of 100 CPU
seconds was set for each formula. Benchmarking was performed on a PC with
an AMD Ryzen 5 5600X CPU @ 4.60 GHz max and 64 GB main memory using
Fedora release 34 as operating system.

While the R+MLR calculus is competitive with GMR on extensions of K
with axioms D, T and, possibly, B, the GMR calculus has better performance
on extensions with axioms 4 and 5.

On satisfiable formulae, where for all logics we use exactly the same formulae
and both resolution calculi have to saturate the set of clauses up to redundancy,
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the number of formulae solved is directly linked to the number of inferences
necessary to do so. The fact that we reduce SNFsml clauses to SNFml clauses via
the introduction of multiple copies of the same clausal formulae with different
labels clearly leads to a corresponding multiplication of the inferences that need
to be performed. LEO-III+E does not solve any of the satisfiable formulae. This
can be seen as an illustration of how important the use of additional techniques
is that can turn resolution into a decision procedure on embeddings of modal
logics into first-order logic [18,33].

On unsatisfiable formulae, where we use different formulae for each logic,
the number of formulae solved is linked to the number of inferences it takes to
find a refutation. For instance, on K it takes the GMR calculus on average 6.2
times the number of inferences to find a refutation than the R+MLR calculus.
However, for all other logics the opposite is true. On the remaining 14 logics, the
R+MLR calculus on average requires 6.5 times the number of inferences to find
a refutation than the GMR calculus. Given that the R+MLR calculus currently
uses a reduction from a modal logic to SNFsml followed by a transformation
from SNFsml to SNFml, it is difficult to discern which of the two is the major
problem. It is clear that multiple copies of the same clausal formulae are also
detrimental to proof search. LEO-III+E does reasonably well on unsatisfiable
formulae and the results clearly show the impact that additional axioms have on
its performance. It performs best for KT and K but for logics involving axioms
4 and 5 very few formulae can be solved. The external prover E finds the proof
for 121 out of the 122 modal formulae LEO-III+E can solve.

6 Conclusions

We have presented novel reductions of extensions of the modal logic K with
arbitrary combinations of the axioms B, D, T, 4, 5 to clausal normal forms
SNFsml and SNFml for K. The implementation of those reductions combined
with KSP [26], allows us to reason in all 15 logics of the modal cube in a fully
automatic way. Such support was so far extremely limited.

The transformation of sets of SNFsml to sets of SNFml relies on new results
that show that non-clausal closed tableaux in the Single Step Tableaux calculus
[14,21] can be simulated by refutations in the modal-layered resolution (MLR)
calculus for SNFml clauses [25].

We have also developed a new collection of benchmark formulae that covers
all 15 logics of the modal cube. The collection consists of classes of parameterised
and therefore scalable formulae. It contains an equal number of satisfiable and
unsatisfiable formulae for each logic and the satisfiability status of each formula is
known in advance. So far extensive collections of benchmark formulae were only
available for K with smaller collections available for KT and S4. A key feature
of the approach is that it uses the systematic modification of K-unsatisfiable
formulae to obtain unsatisfiable formulae in other logics. Thus, we could obtain
a more extensive collection by applying this approach to further collections of
benchmark formulae for K.
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The evaluation we presented shows that on most of the 15 modal logics the
combination of our reduction to SNFml with the MLR calculus does not per-
form as well as the global modal resolution (GMR) calculus, also implemented
in KSP. This contrasts with the evaluation in [29], where we only considered six
logics and used a different collection of benchmarks. We believe that the new
benchmark collection more clearly indicates weaknesses in the current approach,
in particular, the reduction from SNFsml to SNFml. It is possible that the imple-
mentation of a calculus that operates directly on sets of SNFsml clauses would
perform considerably better as it avoids the repetition of clauses with different
labels. However, it does so by using potentially infinite sets of labels which makes
an implementation challenging. We intend to explore this possibility in future
work.
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Abstract. We propose a cut-free cyclic system for Transitive Closure
Logic (TCL) based on a form of hypersequents, suitable for automated
reasoning via proof search. We show that previously proposed sequent
systems are cut-free incomplete for basic validities from Kleene Algebra
(KA) and Propositional Dynamic Logic (PDL), over standard transla-
tions. On the other hand, our system faithfully simulates known cyclic
systems for KA and PDL, thereby inheriting their completeness results.
A peculiarity of our system is its richer correctness criterion, exhibiting
‘alternating traces’ and necessitating a more intricate soundness argu-
ment than for traditional cyclic proofs.

Keywords: Cyclic proofs · Transitive Closure Logic · Hypersequents ·
Propositional Dynamic Logic

1 Introduction

Transitive Closure Logic (TCL) is the extension of first-order logic by an operator
computing the transitive closure of definable binary relations. It has been studied
by numerous authors, e.g. [15–17], and in particular has been proposed as a
foundation for the mechanisation and automation of mathematics [1].

Recently, Cohen and Rowe have proposed non-wellfounded and cyclic sys-
tems for TCL [9,11]. These systems differ from usual ones by allowing proofs to
be infinite (finitely branching) trees, rather than finite ones, under some appro-
priate global correctness condition (the ‘progressing criterion’). One particular
feature of the cyclic approach to proof theory is the facilitation of automation,
since complexity of inductive invariants is effectively traded off for a richer proof
structure. In fact this trade off has recently been made formal, cf. [3,12], and
has led to successful applications to automated reasoning, e.g. [6,7,24,26,27].

In this work we investigate the capacity of cyclic systems to automate reason-
ing in TCL. Our starting point is the demonstration of a key shortfall of Cohen
and Rowe’s system: its cut-free fragment, here called TCG, is unable to cyclically
prove even standard theorems of relational algebra, e.g. (a ∪ b)∗ = a∗(ba∗)∗ and
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(aa ∪ aba)+ ≤ a+((ba+)+ ∪ a)) (Theorem 12). An immediate consequence of
this is that cyclic proofs of TCG do not enjoy cut-admissibility (Corollary 13).
On the other hand, these (in)equations are theorems of Kleene Algebra (KA)
[18,19], a decidable theory which admits automation-via-proof-search thanks to
the recent cyclic system of Das and Pous [14].

What is more, TCL is well-known to interpret Propositional Dynamic Logic
(PDL), a modal logic whose modalities are just terms of KA, by a natural exten-
sion of the ‘standard translation’ from (multi)modal logic to first-order logic (see,
e.g., [4,5]). Incompleteness of cyclic-TCG for PDL over this translation is inher-
ited from its incompleteness for KA. This is in stark contrast to the situation for
modal logics without fixed points: the standard translation from K (and, indeed,
all logics in the ‘modal cube’) to first-order logic actually lifts to cut-free proofs
for a wide range of modal logic systems, cf. [21,22].

A closer inspection of the systems for KA and PDL reveals the stumbling
block to any simulation: these systems implicitly conduct a form of ‘deep infer-
ence’, by essentially reasoning underneath ∃ and ∧. Inspired by this observation,
we propose a form of hypersequents for predicate logic, with extra structure
admitting the deep reasoning required. We present the cut-free system HTC and
a novel notion of cyclic proof for these hypersequents. In particular, the incorpo-
ration of some deep inference at the level of the rules necessitates an ‘alternating’
trace condition corresponding to alternation in automata theory.

Our first main result is the Soundness Theorem (Theorem 23): non-
wellfounded proofs of HTC are sound for standard semantics. The proof is rather
more involved than usual soundness arguments in cyclic proof theory, due to the
richer structure of hypersequents and the corresponding progress criterion. Our
second main result is the Simulation Theorem (Theorem 28): HTC is complete
for PDL over the standard translation, by simulating a cut-free cyclic system
for the latter. This result can be seen as a formal interpretation of cyclic modal
proof theory within cyclic predicate proof theory, in the spirit of [21,22].

To simplify the exposition, we shall mostly focus on equality-free TCL and
‘identity-free’ PDL in this paper, though all our results hold also for the ‘reflexive’
extensions of both logics. We discuss these extensions in Sect. 7, and present
further insights and conclusions in Sect. 8. Full proofs and further examples not
included here (due to space constraints) can be found in [13].

2 Preliminaries

We shall work with a fixed first-order vocabulary consisting of a countable set
Pr of unary predicate symbols, written p, q, etc., and of a countable set Rel of
binary relation symbols, written a, b, etc. We shall generally reserve the word
‘predicate’ for unary and ‘relation’ for binary. We could include further relational
symbols too, of higher arity, but choose not to in order to calibrate the semantics
of both our modal and predicate settings.

We build formulas from this language differently in the modal and predicate
settings, but all our formulas may be formally evaluated within structures:
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Definition 1 (Structures). A structure M consists of a set D, called the
domain of M, which we sometimes denote by |M|; a subset pM ⊆ D for each
p ∈ Pr; and a subset aM ⊆ D × D for each a ∈ Rel.

2.1 Transitive Closure Logic

In addition to the language introduced at the beginning of this section, in the
predicate setting we further make use of a countable set of function symbols,
written f i, gj , etc. where the superscripts i, j ∈ N indicate the arity of the
function symbol and may be omitted when it is not ambiguous. Nullary function
symbols (aka constant symbols), are written c, d etc. We shall also make use of
variables, written x, y, etc., typically bound by quantifiers. Terms, written s, t,
etc., are generated as usual from variables and function symbols by function
application. A term is closed if it has no variables.

We consider the usual syntax for first-order logic formulas over our language,
with an additional operator for transitive closure (and its dual). Formally, TCL
formulas, written A,B, etc., are generated as follows:

A,B ::= p(t) | p̄(t) | a(s, t) | ā(s, t) | (A ∧ B) | (A ∨ B) | ∀xA | ∃xA |
TC (λx, y.A)(s, t) | TC (λx, y.A)(s, t)

When variables x, y are clear from context, we may write TC (A(x, y))(s, t) or
TC (A)(s, t) instead of TC (λx, y.A)(s, t), as an abuse of notation, and similarly
for TC . We may write A[t/x] for the formula obtained from A by replacing every
free occurrence of the variable x by the term t. We have included both TC and
TC as primitive operators, so that we can reduce negation to atomic formulas,
shown below. This will eventually allow a one-sided formulation of proofs.

Definition 2 (Duality). For a formula A we define its complement, Ā, by:

p(t) := p̄(t)

a(s, t) := ā(s, t)

ā(s, t) := a(s, t)

p̄(t) := p(t)

∀xA := ∃xĀ

∃xA := ∀xĀ

A ∧ B := Ā ∨ B̄

A ∨ B := Ā ∧ B̄

TC (A)(s, t) := TC (Ā)(s, t)

TC (A)(s, t) := TC (Ā)(s, t)

We shall employ standard logical abbreviations, e.g. A ⊃ B for Ā ∨ B.
We may evaluate formulas with respect to a structure, but we need additional

data for interpreting function symbols:

Definition 3 (Interpreting function symbols). Let M be a structure with
domain D. An interpretation is a map ρ that assigns to each function symbol
fn a function Dn → D. We may extend any interpretation ρ to an action on
(closed) terms by setting recursively ρ(f(t1, . . . , tn)) := ρ(f)(ρ(t1), . . . , ρ(tn)).

We only consider standard semantics in this work: TC (and TC ) is always
interpreted as the real transitive closure (and its dual) in a structure, rather
than being axiomatised by some induction (and coinduction) principle.
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Definition 4 (Semantics). Given a structure M with domain D and an inter-
pretation ρ, the judgement M, ρ |= A is defined as usual for first-order logic with
the following additional clauses for TC and TC:1

– M, ρ |= TC (A(x, y))(s, t) if there are v0, . . . , vn+1 ∈ D with ρ(s) = v0, ρ(t) =
vn+1, such that for every i ≤ n we have M, ρ |= A(vi, vi+1).

– M, ρ |= TC (A(x, y))(s, t) if for all v0, . . . , vn+1 ∈ D with ρ(s) = v0 and
ρ(t) = vn+1, there is some i ≤ n such that M, ρ |= A(vi, vi+1).

If M, ρ |= A for all M and ρ, we simply write |= A.

Remark 5 (TC and TC as least and greatest fixed points). As expected, we
have M, ρ �|= TC (A)(s, t) just if M, ρ |= TC (Ā)(s, t), and so the two operators
are semantically dual. Thus, TC and TC duly correspond to least and greatest
fixed points, respectively, satisfying in any model:

TC (A)(s, t) ⇐⇒ A(s, t) ∨ ∃x(A(s, x) ∧ TC (A)(x, t)) (1)
TC (A)(s, t) ⇐⇒ A(s, t) ∧ ∀x(A(s, x) ∨ TC (A)(x, t)) (2)

Let us point out that our TC operator is not the same as Cohen and Rowe’s
transitive ‘co-closure’ operator TC op in [10], but rather the De Morgan dual
of TC . In the presence of negation, TC and TC are indeed interdefinable, cf.
Definition 2.

2.2 Cohen-Rowe Cyclic System for TCL

Cohen and Rowe proposed in [9,11] a non-wellfounded system for TCL that
extends a usual sequent calculus LK= for first-order logic with equality and
substitution by rules for TC inspired by its characterisation as a least fixed
point, cf. (1).2 Note that the presence of the substitution rule is critical for the
notion of ‘regularity’ in predicate cyclic proof theory. The resulting notions of
non-wellfounded and cyclic proofs are formulated similarly to those for first-order
logic with (ordinary) inductive definitions [8]:

Definition 6 (Sequent system). TCG is the extension of LK= by the rules:

Γ,A(s, t)
TC0

Γ,TC (A)(s, t)

Γ,A(s, r) Γ,TC (A)(r, t)
TC1

Γ,TC (A)(s, t)

Γ,A(s, t) Γ,A(s, c),TC (A)(c, t)
TC c fresh

Γ,TC (A)(s, t)

(3)

TCG-preproofs are possibly infinite trees of sequents generated by the rules of
TCG. A preproof is regular if it has only finitely many distinct sub-preproofs.
1 Note that we are including ‘parameters from the model’ in formulas here. Formally,

this means each v ∈ D is construed as a constant symbol for which ρ(v) = v.
2 Cohen and Rowe’s system is originally called RTCG, rather using a ‘reflexive’ ver-

sion RTC of the TC operator. However this (and its rules) can be encoded (and
simulated) by defining RTC (λx, y.A)(s, t) := TC (λx, y(x = y ∨ A))(s, t).
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The notion of ‘correct’ non-wellfounded proof is obtained by a standard pro-
gressing criterion in cyclic proof theory. We shall not go into details here, being
beyond the scope of this work, but refer the reader to those original works (as
well as [13] for our current variant). Let us write �cyc for their notion of cyclic
provability using the above rules, cf. [9,11]. A standard infinite descent counter-
model argument yields:

Proposition 7 (Soundness, [9,11]). If TCG �cyc A then |= A.

In fact, this result is subsumed by our main soundness result for HTC (Theo-
rem 23) and its simulation of TCG (Theorem 19). In the presence of cut, a form
of converse of Proposition 7 holds: cyclic TCG proofs are ‘Henkin complete’,
i.e. complete for all models of a particular axiomatisation of TCL based on
(co)induction principles for TC (and TC ) [9,11]. However, the counterexample
we present in the next section implies that cut is not eliminable (Corollary 13).

3 Interlude: Motivation from PDL and Kleene Algebra

Given the TCL sequent system proposed by Cohen and Rowe, why do we propose
a hypersequential system? Our main argument is that proof search in TCG is
rather weak, to the extent that cut-free cyclic proofs are unable to simulate a
basic (cut-free) system for modal logic PDL (regardless of proof search strategy).
At least one motivation here is to ‘lift’ the standard translation from cut-free
cyclic proofs for PDL to cut-free cyclic proofs in an adequate system for TCL.

3.1 Identity-Free PDL

Identity-free propositional dynamic logic (PDL+) is a version of the modal logic
PDL without tests or identity, thereby admitting an ‘equality-free’ standard
translation into predicate logic. Formally, PDL+ formulas, written A,B, etc.,
and programs, written α, β, etc., are generated by the following grammars:

A,B ::= p | p | (A ∧ B) | (A ∨ B) | [α]A | 〈α〉A
α, β ::= a | (α;β) | (α ∪ β) | α+

We sometimes simply write αβ instead of α;β, and (α)A for a formula that is
either 〈α〉A or [α]A.

Definition 8 (Duality). For a formula A we define its complement, Ā, by:

¯̄p := p
A ∧ B := Ā ∨ B̄
A ∨ B := Ā ∧ B̄

[α]A := 〈α〉Ā
〈α〉A := [α]Ā

We evaluate PDL+ formulas using the traditional relational semantics of
modal logic, by associating each program with a binary relation in a structure.
Again, we only consider standard semantics, in the sense that the + operator is
interpreted as the real transitive closure within a structure.
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Definition 9 (Semantics). For structures M with domain D, elements v ∈
D, programs α and formulas A, we define αM ⊆ D × D and the judgement
M, v |= A as follows:

– (aM is already given in the specification of M, cf. Definition 1).
– (α;β)M := {(u, v) : there is w ∈ D s.t. (u,w) ∈ αM and (w, v) ∈ βM}.
– (α ∪ β)M := {(u, v) : (u, v) ∈ αM or (u, v) ∈ βM}.
– (α+)M := {(u, v) : there are w0, . . . , wn+1 ∈ D s.t. u = w0, v =

wn+1 and, for every i ≤ n, (wi, wi+1) ∈ αM}.
– M, v |= p if v ∈ pM.
– M, v |= p if v /∈ pM.
– M, v |= A ∧ B if M, v |= A and M, v |= B.
– M, v |= A ∨ B if M, v |= A or M, v |= B.
– M, v |= [α]A if ∀ (v, w) ∈ αM we have M, w |= A.
– M, v |= 〈α〉A if ∃ (v, w) ∈ αM with M, w |= A.

If M, v |= A for all M and v ∈ |M|, then we write |= A.

Note that we are overloading the satisfaction symbol |= here, for both PDL+

and TCL. This should never cause confusion, in particular since the two notions
of satisfaction are ‘compatible’ as we shall now see.

3.2 The Standard Translation

The so-called ‘standard translation’ of modal logic into predicate logic is induced
by reading the semantics of modal logic as first-order formulas. We now give a
natural extension of this that interprets PDL+ into TCL. At the logical level our
translation coincides with the usual one for basic modal logic; our translation of
programs, as expected, requires the TC operator to interpret the + of PDL+.

Definition 10. For PDL+ formulas A and programs α, we define the standard
translations ST(A)(x) and ST(α)(x, y) as TCL-formulas with free variables x
and x, y, resp., inductively as follows:

ST(p)(x) := p(x) ST(a)(x, y) := a(x, y)
ST(p̄)(x) := p̄(x) ST(α ∪ β)(x, y) := ST(α)(x, y) ∨ ST(β)(x, y)

ST(A ∨ B)(x) := ST(A)(x) ∨ ST(B)(x) ST(α;β)(x, y) := ∃z(ST(α)(x, z) ∧ ST(β)(z, y))
ST(A ∧ B)(x) := ST(A)(x) ∧ ST(B)(x) ST(α+)(x, y) := TC (ST(α))(x, y)
ST(〈α〉A)(x) := ∃y(ST(α)(x, y) ∧ ST(A)(y))
ST([α]A)(x) := ∀y(ST(α)(x, y) ∨ ST(A)(y))

where TC (ST(α)) is shorthand for TC (λx, y.ST(α)(x, y)).

It is routine to show that ST(A)(x) = ST(Ā)(x), by structural induction on
A, justifying our overloading of the notation Ā, in both TCL and PDL+. Yet
another advantage of using the same underlying language for both the modal and
predicate settings is that we can state the following (expected) result without
the need for encodings, following by a routine structural induction (see, e.g., [5]):

Theorem 11. For PDL+ formulas A, we have M, v |= A iff M |= ST(A)(v).
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3.3 Cohen-Rowe System is not Complete for PDL+

PDL+ admits a standard cut-free cyclic proof system LPD+ (see Sect. 6.1) which
is both sound and complete (cf. Theorem 30). However, a shortfall of TCG is that
it is unable to cut-free simulate LPD+. In fact, we can say something stronger:

Theorem 12 (Incompleteness). There exist a PDL+ formula A such that
|= A but TCG ��cyc ST(A)(x) (in the absence of cut).

This means not only that TCG is unable to locally cut-free simulate the rules
of LPD+, but also that there are some validities for which there are no cut-free
cyclic proofs at all in TCG. One example of such a formula is:

〈(aa ∪ aba)+〉p ⊃ 〈a+((ba+)+ ∪ a)〉p (4)

A detailed proof of this is found in [13], but let us briefly discuss it here. First,
the formula above is not artificial: it is derived from the well-known PDL validity
〈(a ∪ b)∗〉p ⊃ 〈a∗(ba∗)∗〉p by identity-elimination. This in turn is essentially a
theorem of relational algebra, namely (a ∪ b)∗ ≤ a∗(ba∗)∗, which is often used
to eliminate ∪ in (sums of) regular expressions. The same equation was (one of
those) used by Das and Pous in [14] to show that the sequent system LKA for
Kleene Algebra is cut-free cyclic incomplete.

The argument that TCG ��cyc ST(4)(x) is much more involved than the one
from [14], due to the fact we are working in predicate logic, but the underlying
basic idea is similar. At a very high level, the RHS of (4) (viewed as a relational
inequality) is translated to an existential formula ∃z(ST(a+)(x, z)∧ST((ba+)+ ∪
a)(z, y) that, along some branch (namely the one that always chooses aa when
decomposing the LHS of (4)) can never be instantiated while remaining valid.
This branch witnesses the non-regularity of any proof. However ST(4)(x) is cycli-
cally provable in TCG with cut, so an immediate consequence of Theorem 12 is:

Corollary 13. The class of cyclic proofs of TCG does not enjoy cut-
admissibility.

4 Hypersequent Calculus for TCL

Let us take a moment to examine why any ‘local’ simulation of LPD+ by TCG

fails, in order to motivate the main system that we shall present. The program
rules, in particular the 〈 〉-rules, require a form of deep inference to be correctly
simulated, over the standard translation. For instance, let us consider the action
of the standard translation on two rules we shall see later in LPD+ (cf. Sect. 6.1):

Γ, 〈a0〉p〈∪〉0
Γ, 〈a0 ∪ a1〉p

�
ST(Γ )(c),∃x(a0(c, x) ∧ p(x))

ST(Γ )(c),∃x((a0(c, x) ∨ a1(c, x)) ∧ p(x))

Γ, 〈a〉〈b〉p
〈;〉

Γ, 〈a; b〉p �
ST(Γ )(c),∃y(a(c, y) ∧ ∃x(b(y, x) ∧ p(x)))

ST(Γ )(c),∃x(∃y(a(c, y) ∧ b(y, x)) ∧ p(x))
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Fig. 1. Hypersequent calculus HTC. σ is a ‘substitution’ map from constants to terms
and a renaming of other function symbols and variables.

The first case above suggests that any system to which the standard translation
lifts must be able to reason underneath ∃ and ∧, so that the inference indicated
in blue is ‘accessible’ to the prover. The second case above suggests that the
existential-conjunctive meta-structure necessitated by the first case should admit
basic equivalences, in particular certain prenexing. This section is devoted to the
incorporation of these ideas (and necessities) into a bona fide proof system.

4.1 A System for Predicate Logic via Annotated Hypersequents

An annotated cedent, or simply cedent, written S, S′ etc., is an expression {Γ}x,
where Γ is a set of formulas and the annotation x is a set of variables. We
sometimes construe annotations as lists rather than sets when it is convenient,
e.g. when taking them as inputs to a function.

Each cedent may be intuitively read as a TCL formula, under the following
interpretation: fm({Γ}x1,...,xn) := ∃x1 . . . ∃xn

∧
Γ . When x = ∅ then there are

no existential quantifiers above, and when Γ = ∅ we simply identify
∧

Γ with
�. We also sometimes write simply A for the annotated cedent {A}∅.

A hypersequent, written S,S′ etc., is a set of annotated cedents. Each hyper-
sequent may be intuitively read as the disjunction of its cedents. Namely we set:
fm({Γ1}x1 , . . . , {Γn}xn) := fm({Γ1}x1) ∨ . . . ∨ fm({Γn}xn).

Definition 14 (System). The rules of HTC are given in Fig. 1. A HTC pre-
proof is a (possibly infinite) derivation tree generated by the rules of HTC. A
preproof is regular if it has only finitely many distinct subproofs.

Our hypersequential system is somewhat more refined than usual sequent
systems for predicate logic. E.g., the usual ∃ rule is decomposed into ∃ and inst,
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whereas the usual ∧ rule is decomposed into ∧ and ∪. The rules for TC and TC
are induced directly from their characterisations as fixed points in (1).

Note that the rules TC and ∀ introduce, bottom-up, the fresh function sym-
bol f , which plays the role of the Herbrand function of the corresponding ∀
quantifier: just as ∀x∃xA(x) is equisatisfiable with ∀xA(f(x)), when f is fresh,
by Skolemisation, by duality ∃x∀xA(x) is equivalid with ∃xA(f(x)), when f is
fresh, by Herbrandisation. The usual ∀ rule of the sequent calculus corresponds
to the case when x = ∅.

4.2 Non-wellfounded Hypersequent Proofs

Our notion of ancestry, as compared to traditional sequent systems, must account
for the richer structure of hypersequents:

Definition 15 (Ancestry). Fix an inference step r, as typeset in Fig. 1. A
formula C in the premiss is an immediate ancestor of a formula C ′ in the
conclusion if they have the same colour; if C,C ′ ∈ Γ then we further require
C = C ′, and if C,C ′ occur in S then C = C ′ occur in the same cedent. A cedent
S in the premiss is an immediate ancestor of a cedent S′ in the conclusion if
some formula in S is an immediate ancestor of some formula in S′.

Immediate ancestry on both formulas and cedents is a binary relation, induc-
ing a directed graph whose paths form the basis of our correctness condition:

Definition 16 ((Hyper)traces). A hypertrace is a maximal path in the graph
of immediate ancestry on cedents. A trace is a maximal path in the graph of
immediate ancestry on formulas.

Definition 17 (Progress and proofs). Fix a preproof D. A (infinite) trace
(Fi)i∈ω is progressing if there is k such that, for all i > k, Fi has the form
TC (A)(si, ti) and is infinitely often principal.3 A (infinite) hypertrace H is pro-
gressing if every infinite trace within it is progressing. A (infinite) branch is pro-
gressing if it has a progressing hypertrace. D is a proof if every infinite branch
is progressing. If, furthermore, D is regular, we call it a cyclic proof.

We write HTC �nwf S (or HTC �cyc S) if there is a proof (or cyclic proof,
respectively) of HTC of the hypersequent S.

In usual cyclic systems, checking that a regular preproof is progressing is
decidable by straightforward reduction to the universality of nondeterministic
ω-automata, with runs ‘guessing’ a progressing trace along an infinite branch.
Our notion of progress exhibits an extra quantifier alternation: we must guess an
infinite hypertrace in which every trace is progressing. Nonetheless, by appealing
to determinisation or alternation, we can still decide our progressing condition:

Proposition 18. Checking whether a HTC preproof is a proof is decidable by
reduction to universality of ω-regular languages.
3 In fact, by a simple well-foundedness argument, it is equivalent to say that (Fi)i<ω

is progressing if it is infinitely often principal for a TC -formula.
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As we mentioned earlier, cyclic proofs of HTC indeed are at least as expressive
as those of Cohen and Rowe’s system by a routine local simulation of rules:

Theorem 19 (Simulating Cohen-Rowe). If TCG �cyc A then HTC �cyc A.

4.3 Some Examples

Example 20 (Fixed point identity). The sequent {TC (a)(c, d)}∅, {TC (ā)(c, d)}∅

is finitely derivable using rule id on TC (a)(c, d) and the init rule. However we
can also cyclically reduce it to a simpler instance of id. Due to the granularity of
the inference rules of HTC, we actually have some liberty in how we implement
such a derivation. E.g., the HTC-proof below applies TC rules below TC ones,
and delays branching until the ‘end’ of proof search, which is impossible in TCG.
The only infinite branch, looping on •, is progressing by the blue hypertrace.

init

{ }∅

id

{a(c, d)}∅, {ā(c, d)}∅

init

{ }∅

id

{a(c, e)}∅, {ā(c, e)}∅

.

.

.
TC •

{TC (a)(e, d)}∅, {TC (ā)(e, d)}∅

∪
{a(c, e)}∅, {TC (a)(e, d)}∅, {ā(c, e), TC (ā)(e, d)}∅

2∪
{a(c, d), a(c, e)}∅, {a(c, d), TC (a)(e, d)}∅, {ā(c, d)}∅, {ā(c, e), TC (ā)(e, d)}∅

inst

{a(c, d), a(c, e)}∅, {a(c, d), TC (a)(e, d)}∅, {ā(c, d)}∅, {ā(c, x), TC (ā)(x, d)}x

TC

{TC (a)(c, d)}∅, {ā(c, d)}∅, {ā(c, x), TC (ā)(x, d)}x

TC •
{TC (a)(c, d)}∅, {TC (ā)(c, d)}∅

This is an example of the more general ‘rule permutations’ available in HTC,
hinting at a more flexible proof theory (we discuss this further in Sect. 8).

Example 21 (Transitivity). TC can be proved transitive by way of a cyclic proof
in TCG of the sequent TC (a)(c, d),TC (a)(d, e),TC (ā)(c, e). As in the previous
example we may mimic that proof line by line, but we give a slightly different
one that cannot directly be interpreted as a TCG proof:

init { }∅

id
a(c, d), ā(c, d)

Ex. 20

TC (ā)(d, e),TC (a)(d, e)
∪

a(c, d),TC (a)(d, e), ā(c, d),TC (ā)(d, e)
inst

a(c, d),TC (a)(d, e), {ā(c, x),TC (ā)(x, e)}x

init { }∅

id
a(c, c′), ā(c, c′)

...
TC ◦

TC (a)(c′, d),TC (a)(d, e),TC (ā)(c′, e)
∪

a(c, c′),TC (a)(c′, d),TC (a)(d, e), ā(c, e), ā(c, c′),TC (ā)(c′, e)
inst

a(c, c′),TC (a)(c′, d),TC (a)(d, e), ā(c, e), {ā(c, x),TC (ā)(x, e)}x

2∪
a(c, d), a(c, c′), a(c, d),TC (a)(c′, d),TC (a)(d, e), ā(c, e), {ā(c, x),TC (ā)(x, e)}x

TC
TC (a)(c, d),TC (a)(d, e), ā(c, e), {ā(c, x),TC (ā)(x, e)}x

TC ◦
TC (a)(c, d),TC (a)(d, e),TC (ā)(c, e)

The only infinite branch (except for that from Example 20), looping on ◦, is
progressing by the red hypertrace.

Finally, it is pertinent to revisit the ‘counterexample’ (4) that witnessed
incompleteness of TCG for PDL+. The following result is, in fact, already implied
by our later completeness result, Theorem 28, but we shall present it nonetheless:

Proposition 22. HTC �cyc ST((aa ∪ aba)+)(c, d) ⊃ ST(a+((ba+)+ ∪ a))(c, d).
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Proof. We give the required cyclic proof in Fig. 2, using the abbreviations:
α(c, d) = ST(aa∪aba)(c, d) and β(c, d) = ST((ba+)+ ∪a)(c, d). The only infinite
branch (looping on •) has progressing hypertrace is marked in blue.
Hypersequents R = {α(c, d)}∅, {α(c, d),TC (α)(e, d)}∅, {TC (a)(c, y), β(y, d)}y

and R′ = {α(c, d)}∅, {α(c, d)}∅, {TC (a)(c, y), β(y, d)}y have finitary proofs,
while P = {aba(c, e)}∅, {TC (α)(e, d)}∅, {TC (a)(c, y), β(y, d)}y has a cyclic
proof.

Fig. 2. Cyclic proof for sequent not cyclically provable by TCG.

5 Soundness of HTC

This section is devoted to the proof of the first of our main results:

Theorem 23 (Soundness). If HTC �nwf S then |= S.

The argument is quite technical due to the alternating nature of our progress
condition. In particular the treatment of traces within hypertraces requires a
more fine grained argument than usual, bespoke to our hypersequential structure.

Throughout this section, we shall fix a HTC preproof D of a hypersequent S.
For practical reasons we shall assume that D is substitution-free (at the cost of
regularity) and that each quantifier in S binds a distinct variable.4 We further
assume some structure M× and an interpretation ρ0 such that ρ0 �|= S (within
M×). Since each rule is locally sound, by contraposition we can continually
choose ‘false premisses’ to construct an infinite ‘false branch’:

Lemma 24 (Countermodel branch). There is a branch B× = (Si)i<ω of D
and an interpretation ρ× such that, with respect to M×:
4 Note that this convention means we can simply take y = x in the ∃ rule in Fig. 1.
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1. ρ× �|= Si, for all i < ω;
2. Suppose that Si concludes a TC step, as typeset in Fig. 1, and ρ× |=

TC (Ā)(s, t) [d/x]. If n is minimal such that ρ× |= Ā(di, di+1) for all i ≤ n,
ρ×(s) = d0 and ρ×(t) = dn, and n > 1, then ρ×(f)(d) = d1

5 so that
ρi+1 |= Ā(s, f(x))[d/x] and ρ× |= TC (Ā)(f(x), t)[d/x].

Unpacking this a little, our interpretation ρ× is actually defined as the limit of a
chain of ‘partial’ interpretations (ρi)i<ω, with each ρi �|= Si (within M×). Note
in particular that, by 2, whenever some TC -formula is principal, we choose ρi+1

to always assign to it a falsifying path of minimal length (if one exists at all),
with respect to the assignment to variables in its annotation. It is crucial at this
point that our definition of ρ× is parametrised by such assignments.

Let us now fix B× and ρ× as provided by the Lemma above. Moreover, let us
henceforth assume that D is a proof, i.e. it is progressing, and fix a progressing
hypertrace H = ({Γi}xi)i<ω along B×. In order to carry out an infinite descent
argument, we will need to define a particular trace along this hypertrace that
‘preserves’ falsity, bottom-up. This is delicate since the truth values of formulas
in a trace depend on the assignment of elements to variables in the annotations.
A particular issue here is the instantiation rule inst, which requires us to ‘revise’
whatever assignment of y we may have defined until that point. Thankfully, our
earlier convention on substitution-freeness and uniqueness of bound variables in
D facilitates the convergence of this process to a canonical such assignment:

Definition 25 (Assignment). We define δH :
⋃

i<ω

xi → |M×| by δH(x) :=

ρ(t) if x is instantiated by t in H; otherwise δH(x) is some arbitrary d ∈ |M×|.
Note that δH is indeed well-defined, thanks to the convention that each quan-

tifier in S binds a distinct variable. In particular we have that each variable x is
instantiated at most once along a hypertrace. Henceforth we shall simply write
ρ, δH |= A(x) instead of ρ |= A(δH(x)). Working with such an assignment ensures
that false formulas along H always have a false immediate ancestor:

Lemma 26 (Falsity through H). If ρ×, δH �|= F for some F ∈ Γi, then F
has an immediate ancestor F ′ ∈ Γi+1 with ρ×, δH �|= F ′.

In particular, regarding the inst rule of Fig. 1, note that if F ∈ Γ (y) then we
can choose F ′ = F [t/y] which, by definition of δH, has the same truth value. By
repeatedly applying this Lemma we obtain:

Proposition 27 (False trace). There exists an infinite trace τ× = (Fi)i<ω

through H such that, for all i, it holds that M×, ρ×, δH �|= Fi.

We are now ready to prove our main soundness result.

Proof (of Theorem 23, sketch). Fix the infinite trace τ× = (Fi)i<ω through H
obtained by Proposition 27. Since τ× is infinite, by definition of HTC proofs, it
5 To be clear, we here choose an arbitrary such minimal ‘Ā-path’.
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needs to be progressing, i.e., it is infinitely often TC -principal and there is some
k ∈ N s.t. for i > k we have that Fi = TC (A)(si, ti) for some terms si, ti.

To each Fi, for i > k, we associate the natural number ni measuring the
‘Ā-distance between si and ti’. Formally, ni ∈ N is least such that there
are d0, . . . , dni

∈ |M×| with ρ×(s) = d0, ρ
×(t) = dni

and, for all i < ni,
ρ×, δH |= Ā(di, di+1). Our aim is to show that (ni)i>k has no minimal element,
contradicting wellfoundness of N. For this, we establish the following two local
properties:

Fig. 3. Rules of LPD+.

1. (ni)i>k is monotone decreasing, i.e., for all i > k, we have ni+1 ≤ ni;
2. Whenever Fi is principal, we have ni+1 < ni.

So (ni)i>k is monotone decreasing, by 1, but cannot converge, by 2 and the
definition of progressing trace. Thus (ni)k<i has no minimal element, yielding
the required contradiction.

6 HTC is Complete for PDL+, Over Standard Translation

In this section we give our next main result:

Theorem 28 (Completeness for PDL+). For a PDL+ formula A, if |= A
then HTC �cyc ST(A)(c).

The proof is by a direct simulation of a cut-free cyclic system for PDL+ that is
complete. We shall briefly sketch this system below.

6.1 Circular System for PDL+

The system LPD+, given in Fig. 3, is the natural extension of the usual sequent
calculus for basic multimodal logic K by rules for programs. In Fig. 3, 〈a〉Γ is
shorthand for {〈a〉B : B ∈ Γ}. (Regular) preproofs for this system are defined
just like for HTC or TCG. The notion of ‘immediate ancestor’ is induced by the
indicated colouring: a formula C in a premiss is an immediate ancestor of a
formula C ′ in the conclusion if they have the same colour; if C,C ′ ∈ Γ then we
furthermore require C = C ′.
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Definition 29 (Non-wellfounded proofs). Fix a preproof D of a sequent Γ .
A thread is a maximal path in its graph of immediate ancestry. We say a thread
is progressing if it has a smallest infinitely often principal formula of the form
[α+]A. D is a proof if every infinite branch has a progressing thread. If D is
regular, we call it a cyclic proof and we may write LPD+ �cyc Γ .

Soundness of cyclic-LPD+ is established by a standard infinite descent argu-
ment, but is also implied by the soundness of cyclic-HTC (Theorem 23) and the
simulation we are about to give (Theorem 28), though this is somewhat overkill.
Completeness may be established by the game theoretic approach of Niwinsḱı
and Walukiewicz [23], as done by Lange [20] for PDL (with identity), or by purely
proof theoretic techniques of Studer [25]. Either way, both results follow from
a standard embedding of PDL+ into the μ-calculus and its known complete-
ness results [23,25], by way of a standard ‘proof reflection’ argument: μ-calculus
proofs of the embedding are ‘just’ step-wise embeddings of LPD+ proofs:

Theorem 30 (Soundness and completeness, [20]). Let A be a PDL+ for-
mula. |= A iff LPD+ �cyc A.

6.2 A ‘Local’ Simulation of LPD+ by HTC

In this subsection we show that LPD+-preproofs can be stepwise transformed
into HTC-proofs, with respect to the standard translation. In order to produce
this local simulation, we need a more refined version of the standard translation
that incorporates the structural elements of hypersequents.

Fix a PDL+ formula A = [α1] . . . [αn]〈β1〉 . . . 〈βm〉B, for n,m ≥ 0. The hyper-
sequent translation of A, written HT(A)(c), is defined as:

{ST(α1)(c, d1)}∅, {ST(α2)(d1, d2)}∅, . . . , {ST(αn)(dn−1, dn)}∅,

{ST(β1)(dn, y1),ST(β2)(y2, y3), . . . ,ST(βm)(ym−1, ym),ST(B)(ym)}y1,...,ym

For Γ = A1, . . . , Ak, we write HT(Γ )(c) := HT(A1)(c), . . . ,HT(Ak)(c).

Definition 31 (HT-translation). Let D be a PDL+ preproof. We shall define
a HTC preproof HT(D)(c) of the hypersequent HT(A)(c) by a local translation
of inference steps. We give only a few of the important cases here, but a full
definition can be found in [13].

– A step
B1, . . . , Bk, A

ka 〈a〉B1, . . . , 〈a〉Bk, [a]A
is translated to:

HT(B1)(c), . . . ,HT(Bk)(c),HT(A)(c)
[d/c]

HT(B1)(d), . . . ,HT(Bk)(d),HT(A)(d)
∨,∀ {CT(B1)(d)}xB1 , . . . , {CT(Bk)(d)}xBk ,HT(A)(d)

wk

{CT(B1)(d)}xB1 , . . . , {CT(Bk)(d)}xBk , {ST(a)(c, d)}∅,HT(A)(d)
∪

{CT(B1)(d)}xB1 , . . . , {ST(a)(c, d),CT(Bk)(d)}xBk , {ST(a)(c, d)}∅,HT(A)(d)
inst

{ST(a)(c, y),CT(B1)(y)}xB1 ,y, . . . , {ST(a)(c, y),CT(Bk)(y)}xBk
,y, {ST(a)(c, d)}∅,HT(A)(d)

= ..............................................................................................................................................................................................
HT(〈a〉B1)(c), . . . ,HT(〈a〉Bk)(c),HT([a]A)(c)
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where (omitted) left-premisses of ∪ steps are simply proved by wk, id, init. In this
and the following cases, we use the notation CT(A)(c) and xA for the appropriate
sets of formulas and variables forced by the definition of HT (again, see [13] for
further details).

– A 〈∪〉i step (for i = 0, 1), as typeset in Fig. 3, is translated to:

HT(Γ )(c), HT(〈αi〉A)(c)
= ..................................................................................

HT(Γ )(c), {ST(αi)(c, y), CT(A)(y)}xB,y

∨
HT(Γ )(c), {ST(α0)(c, y) ∨ ST(α1)(c, y), CT(A)(y)}xA,y

= .................................................................................................................
HT(Γ )(c), HT(〈α0 ∪ α1〉A)(c)

– A 〈; 〉 step, as typeset in Fig. 3, is translated to:

HT(Γ )(c), HT(〈α〉〈β〉A)(c)
= .............................................................................................................

HT(Γ )(c), {ST(α)(c, z), ST(α)(z, y), CT(A)(y)}xA,y,z

∧
HT(Γ )(c), {ST(α)(c, z) ∧ ST(α)(z, y), CT(A)(y)}xA,y,z

∃
HT(Γ )(c), {∃z(ST(α)(c, z) ∧ ST(α)(z, y)), CT(A)(y)}xA,y

= ......................................................................................................................
HT(Γ )(c), HT(〈α; β〉A)(c)

– A [+] step, as typeset in Fig. 3, is translated to:

E
E′

HT(Γ )(c), HT([α][α+]A)(c)
= ........................................................................................................................

HT(Γ )(c), {ST(α)(c, f)}∅, {TC (ST(α))(f, d)}∅, HT(A)(d)
∪

HT(Γ )(c), {ST(α)(c, f)}∅, {ST(α)(c, d), TC (ST(α))(f, d)}∅, HT(A)(d)
∪

HT(Γ )(c), {ST(α)(c, d), ST(α)(c, f)}∅, {ST(α)(c, d), TC (ST(α))(f, d)}∅, HT(A)(d)
TC

HT(Γ )(c), {TC (ST(α))(c, d)}∅, HT(A)(d)
= ......................................................................................

HT(Γ )(c), HT([α+]A)(c)

where E and E ′ derive HT(Γ )(c) and HT([α]A)(c), resp., using wk-steps.

Note that, formally speaking, the well-definedness of HT(D)(c) in the defi-
nition above is guaranteed by coinduction: each rule of D is translated into a
(nonempty) derivation.

Remark 32 (Deeper inference). Observe that HTC can also simulate ‘deeper’

program rules than are available in LPD+. E.g. a rule
Γ, 〈α〉〈βi〉A

Γ, 〈α〉〈β0 ∪ β1〉A may be

simulated too (similarly for [ ]). E.g. 〈a+〉〈b〉p ⊃ 〈a+〉〈b ∪ c〉p admits a finite
proof in HTC (under ST), rather than a necessarily infinite (but cyclic) one in
LPD+.

6.3 Justifying Regularity and Progress

Proposition 33. If D is regular, then so is HT(D)(c).

Proof. Notice that each rule in D is translated to a finite derivation in HT(D)(c).
Thus, if D has only finitely many distinct subproofs, then also HT(D)(c) has only
finitely many distinct subproofs.
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Proposition 34. If D is progressing, then so is HT(D)(c).

Proof (sketch). We need to show that every infinite branch of HT(D)(c) has
a progressing hypertrace. Since the HT translation is defined stepwise on the
individual steps of D, we can associate to each infinite branch B of HT(D)(c)
a unique infinite branch B′ of D. Since D is progressing, let τ = (Fi)i<ω be a
progressing thread along B′. By inspecting the rules of LPD+ (and by defini-
tion of progressing thread), for some k ∈ N, each Fi for i > k has the form:
[αi,1] · · · [αi,ni

][α+]A, for some ni ≥ 0. So, for i > k, HT(Fi)(di) has the form:

{ST(αi,1)(c, di,1)}∅, . . . , {ST(αi,ni
)(di,ni−1, di,ni

)}∅, {TC (ST(α))(di,ni
, di)}∅,HT(A)(di)

By inspection of the HT-translation (Definition 31) whenever Fi+1 is
an immediate ancestor of Fi in B′, there is a path from the cedent
{TC (ST(α))(di+1,ni+1 , di+1)}∅ to the cedent {TC (ST(α))(di,ni

, di)}∅ in the
graph of immediate ancestry along B. Thus, since τ = (Fi)i<ω is a
trace along B′, we have a (infinite) hypertrace of the form Hτ :=
({Δi,TC (ST(α))(di,ni

, di)}∅)i>k′ along B. By construction Δi = ∅ for infinitely
many i > k′, and so Hτ has just one infinite trace. Moreover, by inspection of
the [+] step in Definition 31, this trace progresses in B every time τ does in B′,
and so progresses infinitely often. Thus, H is a progressing hypertrace. Since the
choice of the branch B of D was arbitrary, we are done.

6.4 Putting it all Together

We can now finally conclude our main simulation theorem:

Proof (of Theorem 28, sketch). Let A be a PDL+ formula s.t. |= A. By the
completeness result for LPD+, Theorem 30, we have that LPD+ �cyc A, say by
a cyclic proof D. From here we construct the HTC preproof HT(D)(c) which, by
Propositions 33 and 34, is in fact a cyclic proof of HT(A)(c). Finally, we apply
some basic ∨,∧,∃,∀ steps to obtain a cyclic HTC proof of ST(A)(c).

7 Extension by Equality and Simulating Full PDL

We now briefly explain how our main results are extended to the ‘reflexive’
version of TCL. The language of HTC= allows further atomic formulas of the
form s = t and s �= t. The calculus HTC= extends HTC by the rules:

S, {Γ}x

=

S, {t = t, Γ}x

S, {Γ (s), Δ(s)}x

�=
S, {Γ (s), s �= t}x, {Δ(t)}x

The notion of immediate ancestry is colour-coded as in Definition 15, and
the resulting notions of (pre)proof, (hyper)trace and progress are as in Def-
inition 17. The simulation of Cohen and Rowe’s system TCG extends to
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their reflexive system, RTCG, by defining their operator RTC (λx, y.A)(s, t) :=
TC (λx, y.(x = y ∨ A))(s, t). Note that, while it is semantically correct to set
RTC (A)(s, t) to be s = t∨TC (A)(s, t), this encoding does not lift to the Cohen-
Rowe rules for RTC . Understanding that structures interpret = as true equality,
a modular adaptation of the soundness argument for HTC, cf. Sect. 5, yields:

Theorem 35 (Soundness of HTC=). If HTC= �nwf S then |= S.

Turning to the modal setting, PDL may be defined as the extension of PDL+

by including a program A? for each formula A. Semantically, we have (A?)M =
{(v, v) : M, v |= A}. From here we may define ε := �? and α∗ := (ε∪α)+; again,
while it is semantically correct to set α∗ = ε ∪ α+, this encoding does not lift
to the standard sequent rules for ∗. The system LPD is obtained from LPD+ by
including the rules:

Γ ,A Γ ,B
〈?〉

Γ , 〈A?〉B
Γ, Ā,B

[?]
Γ , [A?]B

Again, the notion of immediate ancestry is colour-coded as for LPD+; the result-
ing notions of (pre)proof, thread and progress are as in Definition 29. Just like
for LPD+, a standard encoding of LPD into the μ-calculus yields its soundness
and completeness, thanks to known sequent systems for the latter, cf. [23,25],
but has also been established independently [20]. Again, a modular adaptation
of the simulation of LPD+ by HTC, cf. Sect. 6, yields:

Theorem 36 (Completeness for PDL). Let A be a PDL formula. If |= A
then HTC= �cyc ST(A)(c).

8 Conclusions

In this work we proposed a novel cyclic system HTC for Transitive Closure
Logic (TCL) based on a form of hypersequents. We showed a soundness theorem
for standard semantics, requiring an argument bespoke to our hypersequents.
Our system is cut-free, rendering it suitable for automated reasoning via proof
search. We showcased its expressivity by demonstrating completeness for PDL,
over the standard translation. In particular, we demonstrated formally that such
expressivity is not available in the previously proposed system TCG of Cohen and
Rowe (Theorem 12). Our system HTC locally simulates TCG too (Theorem 19).

As far as we know, HTC is the first cyclic system employing a form of deep
inference resembling alternation in automata theory, e.g. wrt. proof checking,
cf. Proposition 18. It would be interesting to investigate the structural proof the-
ory that emerges from our notion of hypersequent. As hinted at in Examples 20
and 21, our hypersequential system exhibits more liberal rule permutations than
usual sequents, so we expect their focussing and cut-elimination behaviours to
similarly be richer, cf. [21,22]. Note however that such investigations are rather
pertinent for pure predicate logic (without TC ): focussing and cut-elimination
arguments do not typically preserve regularity of non-wellfounded proofs, cf. [2].
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Finally, our work bridges the cyclic proof theories of (identity-free) PDL and
(reflexive) TCL. With increasing interest in both modal and predicate cyclic
proof theory, it would be interesting to further develop such correspondences.

Acknowledgements. The authors would like to thank Sonia Marin, Jan Rooduijn
and Reuben Rowe for helpful discussions on matters surrounding this work.
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Abstract. Equational unification and matching are fundamental mech-
anisms in many automated deduction applications. Supporting them effi-
ciently for as wide as possible a class of equational theories, and in a
typed manner supporting type hierarchies, benefits many applications;
but this is both challenging and nontrivial. We present Maude 3.2’s effi-
cient support of these features as well as of symbolic reachability analysis
of infinite-state concurrent systems based on them.

1 Introduction
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E-unification modulo an equational theory E, it is widely used for increased
effectiveness. Since Walther’s work [47] it has been well understood that typed
E-unification, exploiting types and subtype hierarchies, can drastically reduce a
prover’s search space. Many other automated deduction applications use typed
E-unification as a key mechanism, including, inter alia: (i) constraint logic pro-
gramming, e.g., [12,23]; (ii) narrowing-based infinite-state reachability analysis
and model checking, e.g., [6,35]; (iii) cryptographic protocol analysis modulo
algebraic properties, e.g., [8,19,28]; (iv) partial evaluation, e.g., [4,5]; and (v)
SMT solving, e.g., [32,48]. The special case of typed E-matching is also a key
component in all the above areas as well as in: (vi) E-generalization (also called
anti-unification), e.g., [1,2]; and (vii) E-homeomorphic embedding, e.g., [3].

Maximizing the scope and effectiveness of typed E-unification and E-
matching means efficiently supporting as wide a class of theories E as possible.
Such efficiency crucially depends on both efficient algorithms (and their com-
binations) and —since the number of E-unifiers may be large— on computing
complete minimal sets of solutions to reduce the search space. The recent Maude
3.2 release1 provides this kind of efficient support for typed E-unification and
E-matching in three, increasingly more general classes of theories E:

1. Typed B-unification and B-matching, where B is any combination of asso-
ciativity (A) and/or commutativity (C) and/or unit element (U) axioms.

2. Typed E ∪ B-unification and matching in the user-definable infinite class of
theories E ∪B with B as in (1), and E ∪B having the finite variant property
(FVP) [13,21].

3. Typed E ∪B-unification for the infinite class of user-definable theories E ∪B
with B as in (1), and E confluent, terminating, and coherent modulo B.

For classes (1) and (2) the set of B- (resp. E ∪ B-) unifiers is always complete,
minimal and finite, except for the AwoC case when B contains an A but not C
axiom for some binary symbol f .2 The typing is order-sorted [22,29] and thus
contains many-sorted and unsorted B- (resp. E∪B-) unification as special cases.
For class (3), Maude enumerates a possibly infinite complete set of E∪B-unifiers,
with the same AwoC exception on B. We discuss new features for classes (1)–(2),
and a new narrowing modulo E ∪B-based symbolic reachability analysis feature
for infinite-state systems specified in Maude as rewrite theories (Σ,E ∪ B,R)
with equations E ∪ B in class (2) and concurrent transition rules R. In Sect. 5
we discuss various applications that can benefit from these new features.

In comparison with previous Maude tool papers reporting on new features
—the last one was [16]— the new features reported here include: (i) computing
minimal complete sets of most general B- (resp. E ∪ B-) unifiers for classes (1)
and (2) except for the AwoC case; (ii) a new E ∪ B-matching algorithm for
class (2); and (iii) a new symbolic reachability analysis for concurrent systems

1 Publicly available at http://maude.cs.illinois.edu.
2 In the AwoC case, Maude’s algorithms are optimized to favor many commonly occur-

ring cases where typed A-unification is finitary, and provides a finite set of solutions
and an incompleteness warning outside such cases (see [18]).

http://maude.cs.illinois.edu
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based on narrowing with transition rules modulo equations E ∪ B in class (2)
enjoying powerful state-space reduction capabilities based on the minimality and
completeness feature (i) and on “folding” less general symbolic states into more
general ones through subsumption. Section 3.1 shows the importance of the new
E ∪ B-matching algorithm for efficient computation of minimal E ∪ B-unifiers.

Notation, Strict-B-Coherence, and FVP. For notation involving either term
positions, p ∈ pos(t), t|p, t[t′]p, or substitutions, tθ, θμ, see [14]. Equations
(u = v) ∈ E oriented as rules (u → v) ∈ −→

E are strictly coherent modulo axioms
B iff (t =B t′ ∧ t →−→

E ,B
w) ⇒ ∃w′(t →−→

E ,B
w′ ∧ w =B w′), where t →−→

E ,B
w

iff ∃(u → v) ∈ −→
E , ∃θ, ∃p ∈ pos(t)(uθ =B t|p ∧ w = t[vθ]p). For (Σ,E ∪ B) an

equational theory with
−→
E confluent, terminating and strictly coherent modulo

B, (1) an
−→
E ,B-t-variant is a pair (v, θ) s.t. v = (tθ)!−→

E ,B
∧ θ = θ!−→

E ,B
, where

u!−→
E ,B

(resp. θ!−→
E ,B

) denotes the
−→
E ,B-normal form of u, resp. θ; (2) for

−→
E ,B-t-

variants (v, θ), (u, μ), the more general relation (v, θ) �B (u, μ) holds iff ∃γ(u =B

vγ ∧ θγ =B μ); (3) (Σ,E ∪ B) is FVP [13,21] iff any Σ-term t has a finite set
of most general

−→
E ,B-t-variants. Footnote 5 explains how FVP can be checked.

2 Complete and Minimal Order-Sorted B-Unifiers

Throughout the paper we use the following equational theory E ∪ B of the
Booleans as a running example (with self-explanatory, user-definable syntax3):

fmod BOOL-FVP is protecting TRUTH-VALUE .
op _and_ : Bool Bool -> Bool [assoc comm] .
op _xor_ : Bool Bool -> Bool [assoc comm] .
op not_ : Bool -> Bool .
op _or_ : Bool Bool -> Bool .
op _<=>_ : Bool Bool -> Bool .
vars X Y Z W : Bool .

eq X and true = X [variant] .
eq X and false = false [variant] .
eq X and X = X [variant] .
eq X and X and Y = X and Y [variant] . *** AC extension
eq X xor false = X [variant] .
eq X xor X = false [variant] .
eq X xor X xor Y = Y [variant] . *** AC extension
eq not X = X xor true [variant] .
eq X or Y = (X and Y) xor X xor Y [variant] .
eq X <=> Y = true xor X xor Y [variant] .

endfm

3 This module imports Maude’s TRUTH-VALUE module and the command “set include

BOOL off .” must be typed before the module to avoid default importation of BOOL.
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The axioms B are the associativity-commutativity (AC) axioms for xor and and
(specified with the assoc comm attributes). The equations E are terminating and
confluent modulo B [42]. To achieve strict B-coherence [30], the needed AC-
extensions [39] are added —for example, the AC-extension of X xor X = false
is X xor X xor Y = Y. The equations E for xor and and define the theory of
Boolean rings, except for the missing4 distributivity equation X and (Y xor Z)
= (X and Y) xor (X and Z). The remaining equations in E define or, not and
<=> as definitional extensions. The variant attribute declares that the equation
will be used for folding variant narrowing [21]. The theory is FVP,5 in class (2).
In this section we will consider B-unification (for B = AC) using this example.
E ∪ B-unification for the same example will be discussed in Sect. 3.

For B any combination of associativity and/or commutativity and/or iden-
tity axioms, Maude’s unify command computes a complete finite set of most
general B-unifiers, except for the AwoC case. The new irredundant unify com-
mand always returns6 a finite, complete and minimal set of B-unifiers, except
for the AwoC case. The output of unify for the equation below can be found
in [10, §13].

Maude> irredundant unify X and not Y and not Z =? W and Y and not X .

Decision time: 0ms cpu (0ms real)

Unifier 1 Unifier 2

X --> #1:Bool and #2:Bool X --> #2:Bool

Z --> #1:Bool and #2:Bool Z --> #1:Bool

Y --> #1:Bool Y --> #2:Bool

W --> #2:Bool and not #1:Bool W --> not #1:Bool

3 E ∪ B-Unification and Matching for FVP Theories

It is a general result from [21] that if E ∪B is FVP and B-unification is finitary,
then E ∪ B-unification is finitary and a complete finite set of E ∪ B-unifiers
can be computed by folding variant narrowing [21]. Furthermore, assuming that
TΣ/E,s is non-empty for each sort s, a finitary E ∪ B-unification algorithm
automatically provides a decision procedure for satisfiability of any positive (the
∧,∨-fragment) quantifier-free formula ϕ in the initial algebra TΣ/E , since ϕ can
be put in DNF, and a conjunction of equalities Γ is satisfiable in TΣ/E iff Γ is
E ∪ B-unifiable.

Since for our running example BOOL-FVP the equations E∪B are FVP and B-
unification (in this case B = AC) is finitary, all this has useful consequences for
4 By missing distributivity, this theory is weaker than the theory of Boolean rings.

Nevertheless, its initial algebra TΣ/E∪B is exactly the Booleans on {true,false}
with the standard truth tables for all connectives. Thus, all equations provable in
Boolean algebra hold in TΣ/E∪B , including the missing distributivity equation.

5 This can be easily checked in Maude by checking the finiteness of the variants for
each f(X), resp. f(X, Y ), for each unary, resp. binary, symbol f in BOOL-FVP using
the get variants command; see [9] for a theoretical justification of this check.

6 Fresh variables follow the form #1:Bool.
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BOOL-FVP. Indeed, TΣ/E∪B is exactly the Booleans7 on {true,false} with the
well-known truth tables for and, xor, not, or and <=>. This means that E ∪ B-
unification provides a Boolean satisfiability decision procedure for a Boolean
expression u on such symbols, namely, u is Boolean satisfiable iff the equation
u = true is E∪B-unifiable. Furthermore, a ground assignment ρ to the variables
of u is a satisfying assignment for u iff there exists an E∪B-unifier α of u = true
and a ground substitution δ such that ρ = αδ. For the same reasons, u is a
Boolean tautology iff the equation u = false has no E ∪ B-unifiers.

A complete, finite set of E ∪ B-unifiers can be computed with Maude’s
variant unify command whenever E ∪ B is FVP, except for the AwoC case.
Instead, the new8 filtered variant unify command computes a finite, com-
plete and minimal set of E ∪ B-unifiers, which can be considerably smaller
than that computed by variant unify. For our BOOL-FVP example, filtered
variant unify gives us a Boolean satisfiability decision procedure plus a sym-
bolic specification of satisfying assignments. Such a procedure is not practical: it
cannot compete with standard SAT-solvers; but that was never our purpose: our
purpose here is to illustrate with simple examples how E ∪ B-unification works
for the infinite class of user-definable FVP theories E ∪ B, of which BOOL-FVP
is just a simple example; dozens of other examples can be found in [32].

The difference between the variant unify and the new filtered variant
unify command is illustrated with the following example; its unfiltered output
can be found in [10, §14]. Note that the single E ∪ B-unifier gives us a compact
symbolic description of this Boolean expression’s satisfying assignments.

Maude> filtered variant unify (X or Y) <=> Z =? true .
rewrites: 3224 in 12765ms cpu (14776ms real) (252 rewrites/second)

Unifier 1
X --> #1:Bool xor #2:Bool
Y --> #1:Bool
Z --> #2:Bool xor (#1:Bool and (#1:Bool xor #2:Bool))

No more unifiers.
Advisory: Filtering was complete.

The computation of a minimal set of E ∪ B-unifiers relies on filtering by E ∪ B-
matching between two E ∪ B-unifiers, as explained in the following section.

3.1 FVP E ∪ B-Matching and Minimality of E ∪ B-Unifiers

By definition, a term u E ∪ B-matches another term v iff there is a substitution
γ such that u =E∪B vγ. Besides the existing match command modulo axioms
7 Each connective’s truth table can be checked with Maude’s reduce command. Actu-

ally, need only check and and xor (other connectives are definitional extensions).
8 In Maude, different command names are used to emphasize different algorithms.

The word ‘filtered’ is used instead of ‘irredundant’ because irredundancy is not
guaranteed in the AwoC case.
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B, Maude’s new variant match command computes a complete, minimal set
of E ∪ B-matching substitutions for any FVP theory E ∪ B in class (2), except
for the AwoC case. Such an algorithm could always be derived from an E ∪ B-
unification algorithm by replacing u by u, where all variables in u are replaced
by fresh constants in u, and computing the E ∪ B-unifiers of u = v. But a more
efficient special-purpose algorithm has been designed and implemented for this
purpose. E ∪ B-matching algorithms are automatically provided by Maude for
any user-definable theory in class (2) with the variant match command.

Maude> variant match in BOOL-FVP : Z and W <=? X .
rewrites: 12 in 21ms cpu (27ms real) (545 rewrites/second)

Matcher 1 Matcher 2 Matcher 3
Z --> true Z --> X Z --> X
W --> X W --> true W --> X

This is a good moment to ask and answer a relevant question: Why is com-
puting a complete minimal set of E ∪ B-unifiers for a unification problem Γ ,
where E ∪ B is an FVP theory in class (2) except for the AwoC case, non-
trivial? We first need to explain how minimality is achieved. Suppose that α
and β are two E ∪ B-unifiers of a system of equations Γ with, say, typed vari-
ables x1, . . . , xn. We then say that α is more general than β modulo E ∪ B,
denoted α �E∪B β, iff there is a substitution γ such that for each xi, 1 ≤ i ≤ n,
γ(α(xi)) =E∪B β(xi). But this exactly means that the vector [β(x1), . . . , β(xn)]
E ∪ B-matches the vector [α(x1), . . . , α(xn)] with E ∪ B-matching substitution
γ. A complete set of E ∪ B-unifiers of Γ is by definition minimal iff for any two
different unifiers α and β in it we have α ��E∪B β and β ��E∪B α, i.e., the two
associated E ∪ B-matching problems fail.

What is nontrivial is computing a minimal complete set of E ∪ B-unifiers
efficiently. One could do so inefficiently by simulating E ∪ B-matching with E ∪
B-unification, and more efficiently by using an E∪B-matching algorithm. Maude
achieves still greater efficiency by directly computing the α �E ∪ B β relation.
The key difference between the variant unify command and the new filtered
variant unify command is that the second computes a E ∪ B-minimal set of
E∪B-unifiers of Γ using the α �E∪B β relation, whereas the first only computes
a set of B-minimal E ∪B-unifiers of Γ using the cheaper α �B β relation. There
are three ideas we use to make it fast in practice: (i) variant matching is faster
than variant unification because one side is variable-free; (ii) enumerating the
variant matchers between two variant unifiers is far more expensive than checking
existence of a matcher; and (iii) variant unifiers are discarded on-the-fly avoiding
further narrowing steps and computation.

4 Narrowing-Based Symbolic Reachability Analysis

In Maude, concurrent systems are specified in so-called system modules as rewrite
theories of the form: R = (Σ,G,R), where G is an equational theory either of the
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form B in class (1), or E∪B in classes (2) or (3), and R are the system transition
rules, specified as rewrite rules. When the theory R is topmost, meaning that the
rules R rewrite the entire state, narrowing with rules R modulo the equations
G is a complete symbolic reachability analysis method for infinite-state systems
[35]. That is, given a term u with variables −→x , representing a typically infinite
set of initial states, and another term v with variables −→y , representing a possibly
infinite set of target states, narrowing can answer the question: can an instance
of u reach an instance of v? That is, does the formula ∃−→x ,−→y u →∗ v hold in
R? Note that, if the complement of a system invariant I can be symbolically
described as the set of ground instances of terms in a set {v1, . . . , vn} of pattern
terms, then narrowing provides a semi-decision procedure for verifying whether
the system specified by R fails to satisfy I starting from an initial set of states
specified by u. Namely, I holds iff no instance of any vi can be reached from
some instance of u.

Assuming G is in class (1) or (2), Maude’s vu-narrow command implements
narrowing with R modulo G by performing G-unification at each narrowing
step. However, the number of symbolic states that need to be explored can be
infinite. This means that if no solution exists for the narrowing search, Maude
will search forever, so that only depth-bounded searches will terminate. The great
advantage of the new {fold} vu-narrow {filter,delay} command is that it
performs a powerful symbolic state space reduction by: (i) removing a newly
explored symbolic state v′ if it E ∪B-matches a previously explored state v and
replacing transition with target v′ by transitions with target v; and (ii) using
minimal sets of E ∪B-unifiers for each narrowing step and for checking common
instances between a newly explored state and the target term (ensured by words
filter and delay). This can make the entire search space finite and allow full
verification of invariants for some infinite-state systems. Consider the following
Maude specification of Lamport’s bakery protocol.

mod BAKERY is

sorts Nat LNat Nat? State WProcs Procs .

subsorts Nat LNat < Nat? . subsort WProcs < Procs .

op 0 : -> Nat .

op s : Nat -> Nat .

op [_] : Nat -> LNat . *** number-locking operator

op < wait,_> : Nat -> WProcs .

op < crit,_> : Nat -> Procs .

op mt : -> WProcs . *** empty multiset

op __ : Procs Procs -> Procs [assoc comm id: mt] . *** union

op __ : WProcs WProcs -> WProcs [assoc comm id: mt] . *** union

op _|_|_ : Nat Nat? Procs -> State .

vars n m i j k : Nat . var x? : Nat? . var PS : Procs . var WPS : WProcs .

rl [new]: m | n | PS => s(m) | n | < wait,m > PS [narrowing] .

rl [enter]: m | n | < wait,n > PS => m | [n] | < crit,n > PS [narrowing] .

rl [leave]: m | [n] | < crit,n > PS => m | s(n) | PS [narrowing] .

endm
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The states of BAKERY have the form “m | x? | PS” with m the ticket-dispensing
counter, x? the (possibly locked) counter to access the critical section, and PS a
multiset of processes either waiting or in the critical section. BAKERY is infinite-
state: [new] creates new processes, and the counters can grow unboundedly.
When a waiting process enters the critical section with [enter], the second
counter n is locked as [n]; and it is unlocked and incremented when it leaves
it with [leave]. The key invariant is mutual exclusion. Note that the term
“i | x? | < crit, j > < crit, k > PS” describes all states in the comple-
ment of mutual exclusion states. Without the fold option, narrowing does not
terminate, but with the following command we can verify that BAKERY satisfies
mutual exclusion, not just for the initial state “0 | 0 | mt”, but for the much
more general infinite set of initial states with waiting processes only “m | n |
WPS”.

Maude> {fold} vu-narrow {filter,delay}
m | n | WPS =>* i | x? | < crit, j > < crit, k > PS .

No solution.
rewrites: 4 in 1ms cpu (1ms real) (2677 rewrites/second)

The new vu-narrow {filter,delay} command can achieve dramatic state
space reductions over the previous vu-narrow command by filtering E ∪ B-
unifiers. This is illustrated by a simple cryptographic protocol example in [10,
§15] exploiting the unitary nature of unification in the exclusive-or theory [24].

5 Applications and Conclusion

Maude can be used as a meta-tool to develop new formal tools because: (i) its
underlying equational and rewriting logics are logical —and reflective meta-
logical— frameworks [7,27,46]; (ii) Maude’s efficient support of logical reflection
through its META-LEVEL module; (iii) Maude’s rewriting, search, model checking,
and strategy language features [11,15]; and (iv) Maude’s symbolic reasoning
features [15,33], the latest reported here. We refer to [11,15,31,33] for references
on various Maude-based tools. Many of them can benefit from these new features.

By way of example we mention some areas ready to reap such benefits: (1)
Formal Analysis of Cryptographic Protocols. The new features can yield substan-
tial improvements to tools such as Maude-NPA [19], Tamarin [28] and AKISS [8].
(2) Model Checking of Infinite-State Systems. The narrowing-based LTL sym-
bolic model checker reported in [6,20], and the addition of new symbolic capa-
bilities to Real-Time Maude [37,38] can both benefit from the new features. (3)
SMT Solving. In Sect. 3 we noted that FVP E∪B-unification makes satisfiability
of positive QF formulas in TΣ/E∪B decidable. Under mild conditions, this has
been extended in [32,44] to a procedure for satisfiability in TΣ/E∪B of all QF
formulas which will also benefit from the new features. (4) Theorem Proving.
The new Maude Inductive Theorem Prover under construction [34], as well as
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Maude’s Invariant Analyzer [43] and Reachability Logic Theorem Prover [45] all
use equational unification and narrowing modulo equations; so all will benefit
from the new features. (5) Theory Transformations based on equational unifi-
cation, e.g., partial evaluation [4], ground confluence methods [17] or program
termination methods [25,26] could likewise become more efficient.

In conclusion, we have presented and illustrated with examples new equa-
tional unification and matching, and symbolic reachability analysis features in
Maude 3.2. Thanks to the above-mentioned properties (i)–(iv) of Maude as a
meta-tool, we hope that this work will encourage other researchers to use Maude
and its symbolic features to develop new tools in many different logics.
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38. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time Maude. High.-
Order Symb. Comput. 20(1–2), 161–196 (2007)

39. Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational
theories. J. Assoc. Comput. Mach. 28(2), 233–264 (1981)

40. Plotkin, G.: Building-in equational theories. In: Meltzer, B., Michie, D. (eds.) 1971
Proceedings of the Seventh Annual Machine Intelligence Workshop on Machine
Intelligence 7, Edinburgh, pp. 73–90. Edinburgh University Press (1972)

41. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
Assoc. Comput. Mach. 12(1), 23–41 (1965)

42. Rocha, C., Meseguer, J.: Five isomorphic Boolean theories and four equational deci-
sion procedures. Technical report UIUCDCS-R-2007-2818, CS Department, Uni-
versity of Illinois at Urbana-Champaign, February 2007. http://hdl.handle.net/
2142/11295

43. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In: Corra-
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Abstract. The ontology of Leśniewski is commonly regarded as the
most comprehensive calculus of names and the theoretical basis of mere-
ology. However, ontology was not examined by means of proof-theoretic
methods so far. In the paper we provide a characterization of elementary
ontology as a sequent calculus satisfying desiderata usually formulated
for rules in well-behaved systems in modern structural proof theory. In
particular, the cut elimination theorem is proved and the version of sub-
formula property holds for the cut-free version.

Keywords: Leśniewski · Ontology · Calculus of Names · Sequent
Calculus · Cut Elimination

1 Introduction

The ontology of Leśniewski is a kind of calculus of names proposed as a formal-
ization of logic alternative to Fregean paradigm. Basically, it is a theory of the
binary predicate ε understood as the formalization of the Greek ‘esti’. Informally
a formula aεb is to be read as “(the) a is (a/the) b”, so in order to be true a
must be an individual name whereas b can be individual or general name. In the
original formulation Leśniewski’s ontology is the middle part of the hierarchical
structure involving also the protothetics and mereology (see the presentation in
Urbaniak [20]). Protothetics, a very general form of propositional logic, is the
basis of the overall construction. Its generality follows from the fact that, in addi-
tion to sentence variables, arbitrary sentence-functors (connectives) are allowed
as variables, and quantifiers binding all these kinds of variables are involved.
Similarly in Leśniewski’s ontology, we have a quantification over name variables
but also over arbitrary name-functors creating complex names. In consequence
we obtain very expressive logic which is then extended to mereology. The latter,
which is the most well-known ingredient of Leśniewski’s construction, is a theory
of parthood relation, which provides an alternative formalization of the theory
of classes and foundations of mathematics.

Despite of the dependence of Leśniewski’s ontology on his protothetics, we
can examine this theory, in particular its part called elementary ontology, in
isolation, as a kind of first-order theory of ε based on classical first-order logic
(FOL). Elementary ontology, in this sense, was investigated, among others, by
c© The Author(s) 2022
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S�lupecki [17] and Iwanuś [7], and we follow this line here. The expressive power
of such an approach is strongly reduced, in particular, quantifiers apply only to
name variables. One should note however that, despite of the appearances, it
is not just another elementary theory in the standard sense, since the range of
variables is not limited to individual names but admits general and even empty
names. Thus, name variables may represent not only ‘Napoleon Bonaparte’ but
also ‘an emperor’ and ‘Pegasus’. This leads to several problems concerning the
interpretation of quantifiers in ontology, encountered in the semantical treat-
ment (see e.g. Küng and Canty [8] or Rickey [16]). However, for us the problems
of proper interpretation are not important here, since we develop purely syn-
tactical formulation, which is shown to be equivalent to Leśniewski’s axiomatic
formulation.

Taking into account the importance and originality of Leśniewski’s ontol-
ogy it is interesting, if not surprising, that so far no proof-theoretic study was
offered, in particular, in terms of sequent calculus (SC). In fact, a form of natu-
ral deduction proof system was applied by many authors following the original
way of presenting proofs by Leśniewski (see, e.g. his [9–11]). However this can
hardly be treated as a proof-theoretic study of Leśniewski’s ontology but only
as a convenient way of simplifying presentation of axiomatic proofs. Ishimoto
and Kobayashi [6] introduced also a tableau system for part of (quantifier-free)
ontology – we will say more about this system later.

In this paper we present a sequent calculus for elementary ontology and focus
on its most important properties. More specifically, in Sect. 2 we briefly charac-
terise elementary ontology which will be the object of our study. In Sect. 3 we
present an adequate sequent calculus for the basic part of elementary ontology
and prove that it is equivalent with the axiomatic formulation. Then we prove
the cut elimination theorem for this calculus in Sect. 4. In the next section we
focus on the problem of extensionality and discuss some alternative formula-
tions of ontology and some of its parts, as well as the intuitionistic version of it.
Section 6 shows how the basic system can be extended with rules for new pred-
icate constants which preserve cut elimination. The problem of extension with
rules for term constants is discussed briefly in Sect. 7. A summary of obtained
results and open problems closes the paper.

2 Elementary Ontology

Roughly, in this article, by Leśniewski’s elementary ontology we mean stan-
dard FOL (in some chosen adequate formalization) with Leśniewski’s axiom
LA added. For more detailed general presentation of Leśniewski’s systems one
may consult Urbaniak [20] and for a detailed study of Leśniewski’s ontology
see Iwanuś [7] or S�lupecki [17]. In the next section we will select a particular
sequent system as representing FOL and investigate several ways of possible
representation of LA in this framework.

We will consider two languages for ontology. In both we assume a denumer-
able set of name variables. Following the well-known Gentzen’s custom we apply
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a graphical distinction between the bound variables, which will be denoted by
x, y, z, ... (possibly with subscripts), and the free variables usually called param-
eters, which will be denoted by a, b, c, .... These are the only terms we admit, and
both kinds will be called simply name variables. The basic language Lo consists
of the following vocabulary:

– connectives: ¬,∧,∨,→;
– first-order quantifiers: ∀,∃;
– predicate: ε.

As we can see, in addition to the standard logical vocabulary of FOL, the
only specific constant is a binary predicate ε with the formation rule: t ε t′ is
an atomic formula, for any terms t, t′. In what follows we will use a convention:
instead of t ε t′ we will write tt′. The complexity of formulae of Lo is defined as
the number of occurrences of logical constants, i.e. connectives and quantifiers.
Hence the complexity of atomic formulae is 0.

The language Lp, considered in Sect. 6, adds to this vocabulary a number of
unary and binary predicates: D,V, S,G,U,=,≡,≈, ε̄,⊂, �, A,E, I,O.

In Lo and Lp we have name variables, which range over all names (individ-
ual, general and empty), as the only terms. However Leśniewski considered also
complex terms built with the help of specific term-forming functors. We will
discuss briefly such extensions in the setting of sequent calculus in Sect. 7 and
notice important problems they generate for decent proof-theoretic treatment.

The only specific axiom of elementary ontology is Leśniewski’s axiom LA:

∀xy(xy ↔ ∃z(zx) ∧ ∀z(zx → zy) ∧ ∀zv(zx ∧ vx → zv))

LA→, LA← will be used to refer to the respective implications forming LA,
with dropped outer universal quantifier. Note that:

Lemma 1. The following formulae are equivalent to LA:

1. ∀xy(xy ↔ ∃z(zx ∧ zy) ∧ ∀zv(zx ∧ vx → zv))
2. ∀xy(xy ↔ ∃z(zx ∧ zy ∧ ∀v(vx → vz)))
3. ∀xy(xy ↔ ∃z(∀v(vx ↔ vz) ∧ zy))

We start with the system in the language Lo, i.e. with ε (conventionally
omitted) as the only specific predicate constant added to the standard language
of FOL.

3 Sequent Calculus

Elementary ontology will be formalised as a sequent calculus with sequents Γ ⇒
Δ which are ordered pairs of finite multisets of formulae called the antecedent
and the succedent, respectively. We will use the calculus G (after Gentzen) which
is essentially the calculus G1 of Troelstra and Schwichtenberg [19]. All necessary
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(AX) ϕ ⇒ ϕ (Cut)
Γ ⇒ Δ, ϕ ϕ, Π ⇒ Σ

Γ, Π ⇒ Δ, Σ

(W⇒)
Γ ⇒ Δ

ϕ, Γ ⇒ Δ
(⇒W )

Γ ⇒ Δ

Γ ⇒ Δ, ϕ

(C⇒)
ϕ, ϕ, Γ ⇒ Δ

ϕ, Γ ⇒ Δ
(⇒C)

Γ ⇒ Δ, ϕ, ϕ

Γ ⇒ Δ, ϕ

(¬⇒)
Γ ⇒ Δ, ϕ

¬ϕ, Γ ⇒ Δ
(⇒¬)

ϕ, Γ ⇒ Δ

Γ ⇒ Δ, ¬ϕ

(∧⇒)
ϕ, ψ, Γ ⇒ Δ

ϕ ∧ ψ,Γ ⇒ Δ
(⇒∧)

Γ ⇒ Δ, ϕ Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ ∧ ψ

(∨⇒)
ϕ, Γ ⇒ Δ ψ, Γ ⇒ Δ

ϕ ∨ ψ, Γ ⇒ Δ
(⇒∨)

Γ ⇒ Δ, ϕ, ψ

Γ ⇒ Δ, ϕ ∨ ψ

(→⇒)
Γ ⇒ Δ, ϕ ψ, Γ ⇒ Δ

ϕ → ψ, Γ ⇒ Δ
(⇒→)

ϕ, Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ → ψ

(↔⇒)
Γ⇒ Δ, ϕ, ψ ϕ, ψ, Γ⇒ Δ

ϕ↔ψ,Γ⇒ Δ
(∀⇒)

ϕ[x/b], Γ⇒ Δ

∀xϕ, Γ⇒ Δ

(⇒↔)
ϕ, Γ⇒ Δ, ψ ψ, Γ ⇒ Δ, ϕ

Γ⇒ Δ, ϕ↔ψ
(⇒∀)

Γ⇒ Δ, ϕ[x/a]
Γ⇒ Δ, ∀xϕ

(∃⇒)
ϕ[x/a], Γ⇒ Δ

∃xϕ, Γ⇒ Δ
(⇒∃)

Γ⇒ Δ, ϕ[x/b]
Γ⇒ Δ, ∃xϕ

where a is a fresh parameter (eigenvariable), not present in Γ, Δ and ϕ, whereas b is
an arbitrary parameter.

Fig. 1. Calculus G

structural rules, including cut, weakening and contraction are primitive. The
calculus G consists of the rules from Fig. 1:

Let us recall that formulae displayed in the schemata are active, whereas
the remaining ones are parametric, or form a context. In particular, all active
formulae in the premisses are called side formulae, and the one in the conclusion
is the principal formula of the respective rule application. Proofs are defined in
a standard way as finite trees with nodes labelled by sequents. The height of a
proof D of Γ ⇒ Δ is defined as the number of nodes of the longest branch in D.
�k Γ ⇒ Δ means that Γ ⇒ Δ has a proof of the height at most k.

G provides an adequate formalization of the classical pure FOL (i.e. with no
terms other than variables). However, we should remember that here terms in
quantifier rules are restricted to variables ranging over arbitrary names (includ-
ing empty and general). This means, in particular, that quantifiers do not have
an existential import, like in standard FOL.
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Let us call G+LA an extension of G with LA as an additional axiomatic
sequent. The following hold:

Lemma 2. The following sequents are provable in G+LA:
ab ⇒ ∃x(xa)
ab ⇒ ∀x(xa → xb)
ab ⇒ ∀xy(xa ∧ ya → xy)
∃x(xa),∀x(xa → xb),∀xy(xa ∧ ya → xy) ⇒ ab

The proof is obvious. In fact, these sequents together allow us to derive LA
so we could use them alternatively in a characterization of elementary ontology
on the basis of G.

G+LA is certainly an adequate formalization of elementary ontology in the
sense of S�lupecki and Iwanuś. However, from the standpoint of proof theoretic
analysis it is not an interesting form of sequent calculus and it will be used only
for showing the adequacy of our main system called GO.

To obtain the basic GO we add the following four rules to G:

(R)
aa, Γ ⇒ Δ

ab, Γ ⇒ Δ
(T )

ac, Γ ⇒ Δ

ab, bc, Γ ⇒ Δ
(S)

ba, Γ ⇒ Δ

ab, bb, Γ ⇒ Δ

(E)
da, Γ ⇒ Δ, dc dc, Γ ⇒ Δ, da ab, Γ ⇒ Δ

cb, Γ ⇒ Δ

where d in (E) is a new parameter (eigenvariable), and a, b, c are arbitrary.
The names of rules come from reflexivity, transitivity, symmetry and exten-

sionality. In case of (R) and (S) it is a kind of prefixed reflexivity and symmetry
(ab → aa, bb → (ab → ba)). Why (E) comes from extensionality will be explained
later.

We can show that GO is an adequate characterization of elementary ontology.

Theorem 1. If G+LA � Γ ⇒ Δ, then GO � Γ ⇒ Δ.

Proof. It is sufficient to prove that the axiomatic sequent LA is provable in GO.

aa ⇒ aa(R)
ab ⇒ aa(⇒ ∃)

ab ⇒ ∃x(xa)

cb ⇒ cb (T )
ca, ab ⇒ cb

(⇒→)
ab ⇒ ca → cb (⇒ ∀)

ab ⇒ ∀x(xa → xb)
(⇒ ∧)

ab ⇒ ∃x(xa) ∧ ∀x(xa → xb)

(⇒ ∧) with:

cd ⇒ cd (T )
ca, ad ⇒ cd

(S)
ca, da, aa ⇒ cd

(R)
ca, da, ab ⇒ cd

(∧ ⇒)
ab, ca ∧ da ⇒ cd

(⇒→)
ab ⇒ ca ∧ da → cd (⇒ ∀)

ab ⇒ ∀xy(xa ∧ ya → xy)
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yields LA→ after (⇒→). A proof of the converse is more complicated (for read-
ability and space-saving we ommited all applications of weakening rules neces-
sary for the application of two- and three-premiss rules; this convention will be
applied hereafter with no comments):

ca ⇒ ca

da ⇒ da ca ⇒ ca
(⇒ ∧)

da, ca ⇒ da ∧ ca dc ⇒ dc
(→⇒)

da, ca, da ∧ ca → dc ⇒ dc
(∀ ⇒)

da, ca, ∀xy(xa ∧ ya → xy) ⇒ dc

da ⇒ da
(T )

dc, ca ⇒ da ab ⇒ ab
(E)

cb, ca, ∀xy(xa ∧ ya → xy) ⇒ ab
(→⇒)

ca, ca → cb, ∀xy(xa ∧ ya → xy) ⇒ ab
(∀ ⇒)

ca, ∀x(xa → xb), ∀xy(xa ∧ ya → xy) ⇒ ab
(∃ ⇒)

∃x(xa), ∀x(xa → xb), ∀xy(xa ∧ ya → xy) ⇒ ab

It is routine to prove LA. �
Note that to prove LA→ the rules (R), (T ), (S) were sufficient, whereas in

order to derive the converse, (E) alone is not sufficient - we need (T ) again.

Theorem 2. If GO � Γ ⇒ Δ, then G+LA � Γ ⇒ Δ.

Proof. It is sufficient to prove that the four rules of GO are derivable in G+LA.
For (T ):

bc ⇒ ∀x(xb → xc)

ab ⇒ ab ac ⇒ ac (→⇒)
ab → ac, ab ⇒ ac

(∀ ⇒)∀x(xb → xc), ab ⇒ ac
(Cut)

ab, bc ⇒ ac ac, Γ ⇒ Δ
(Cut)

ab, bc, Γ ⇒ Δ

where the leftmost leaf is provable in G+LA (Lemma 2).

For (S):

bb ⇒ ∀xy(xb ∧ yb → xy)

bb ⇒ bb ab ⇒ ab (⇒ ∧)
bb, ab ⇒ bb ∧ ab ba ⇒ ba

(→⇒)
bb ∧ ab → ba, bb, ab ⇒ ba

(∀ ⇒)∀xy(xb ∧ yb → xy), bb, ab ⇒ ba
(Cut)

bb, bb, ab ⇒ ba
(C ⇒)

bb, ab ⇒ ba

where the leftmost leaf is provable in G+LA (Lemma 2). By cut with the premiss
of (S) we obtain its conclusion.

For (R):

ab ⇒ ∀xy(xa ∧ ya → xy)

ab ⇒ ∃x(xa) S
(Cut)∀xy(xa ∧ ya → xy), ∀x(xa → xa), ab ⇒ aa
(Cut)∀x(xa → xa), ab, ab ⇒ aa

(C ⇒)∀x(xa → xa), ab ⇒ aa
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where S := ∃x(xa),∀xy(xa ∧ ya → xy),∀x(xa → xa) ⇒ aa and all leaves are
provable in G+LA (Lemma 2); in particular S is the fourth sequent with b
replaced with a. By cut with ⇒ ∀x(xa → xa) and the premiss of (R) we obtain
its conclusion.

Since (R), (T ), (S) are all derivable in G+LA we use them in the proof of the
derivability of (E) to simplify matters. Note first the following three proofs with
weakenings omitted:

cc ⇒ cc(R)
cb ⇒ cc ca ⇒ ca(↔⇒)

ca ↔ cc, cb ⇒ ca
(⇒ ∃)

ca ↔ cc, cb ⇒ ∃x(xa)
(∀ ⇒) ∀x(xa ↔ xc), cb ⇒ ∃x(xa)

da ⇒ da
db ⇒ db (T )

dc, cb ⇒ db
(↔⇒)

da ↔ dc, cb, da ⇒ db
(∀ ⇒) ∀x(xa ↔ xc), cb, da ⇒ db

(⇒→) ∀x(xa ↔ xc), cb ⇒ da → db
(⇒ ∀) ∀x(xa ↔ xc), cb ⇒ ∀x(xa → xb)

and

da ⇒ da

ea ⇒ ea

de ⇒ de (T )
ce, dc ⇒ de

(S)
ec, dc, cc ⇒ de

(R ⇒)
ec, dc, cb ⇒ de

(↔⇒)
dc, ea ↔ ec, cb, ea ⇒ de

(∀ ⇒)
dc,∀x(xa ↔ xc), cb, ea ⇒ de

(↔⇒)
da ↔ dc,∀x(xa ↔ xc), cb, da, ea ⇒ de

(∀ ⇒) ∀x(xa ↔ xc),∀x(xa ↔ xc), cb, da, ea ⇒ de
(C ⇒) ∀x(xa ↔ xc), cb, da, ea ⇒ de

(∧ ⇒) ∀x(xa ↔ xc), cb, da ∧ ea ⇒ de
(⇒→) ∀x(xa ↔ xc), cb ⇒ da ∧ ea → de

(⇒ ∀) ∀x(xa ↔ xc), cb ⇒ ∀xy(xa ∧ ya → xy)

By three cuts with ∃x(xa),∀x(xa → xb),∀xy(xa ∧ ya → xy) ⇒ ab and
contractions we obtain a proof of S := ∀x(xa ↔ xc), cb ⇒ ab. Then we finish in
the following way:

da, Γ ⇒ Δ, dc dc, Γ ⇒ Δ, da
(⇒↔)

Γ ⇒ Δ, da ↔ dc
(⇒ ∀)

Γ ⇒ Δ,∀x(xa ↔ xc) S
(Cut)

cb, Γ ⇒ Δ, ab ab, Γ ⇒ Δ
(Cut)

cb, Γ ⇒ Δ
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Note that to prove derivability of (E) we need in fact the whole LA. We
elaborate on the strength of this rule in Sect. 5. �

4 Cut Elimination

The possibility of representing LA by means of these four rules makes GO a
calculus with desirable proof-theoretic properties. First of all note that for G
the cut elimination theorem holds. Since the only primitive rules for ε are all
one-sided, in the sense that principal formulae occur in the antecedents only, we
can easily extend this result to GO. We follow the general strategy of cut elim-
ination proofs applied originally for hypersequent calculi in Metcalfe, Olivetti
and Gabbay [13] but which works well also in the context of standard sequent
calculi (see Indrzejczak [5]). Such a proof has a particularly simple structure and
allows us to avoid many complexities inherent in other methods of proving cut
elimination. In particular, we avoid well known problems with contraction, since
two auxiliary lemmata deal with this problem in advance. Note first that for GO
the following result holds:

Lemma 3 (Substitution). If �k Γ ⇒ Δ, then �k Γ [a/b] ⇒ Δ[a/b].

Proof. By induction on the height of a proof. Note that (E) may require similar
relettering like (∃ ⇒) and (⇒ ∀). Note that the proof provides the height-
preserving admissibility of substitution. �

Let us assume that all proofs are regular in the sense that every parameter
a which is fresh by side condition on the respective rule must be fresh in the
entire proof, not only on the branch where the application of this rule takes
place. There is no loss of generality since every proof may be systematically
transformed into a regular one by the substitution lemma. The following notions
are crucial for the proof:

1. The cut-degree is the complexity of cut-formula ϕ, i.e. the number of connec-
tives and quantifiers occurring in ϕ; it is denoted as dϕ.

2. The proof-degree (dD) is the maximal cut-degree in D.

Remember that the complexity of atomic formulae, and consequently of cut-
and proof-degree in case of atomic cuts, is 0. The proof of the cut elimination
theorem is based on two lemmata which successively make a reduction: first on
the height of the right, and then on the height of the left premiss of cut. ϕk, Γ k

denote k > 0 occurrences of ϕ, Γ , respectively.

Lemma 4 (Right reduction). Let D1 � Γ ⇒ Δ,ϕ and D2 � ϕk,Π ⇒ Σ with
dD1, dD2 < dϕ, and ϕ principal in Γ ⇒ Δ,ϕ, then we can construct a proof D
such that D � Γ k,Π ⇒ Δk, Σ and dD < dϕ.
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Proof. By induction on the height of D2. The basis is trivial, since Γ ⇒ Δ,ϕ
is identical with Γ k,Π ⇒ Δk, Σ. The induction step requires examination of
all cases of possible derivations of ϕk,Π ⇒ Σ, and the role of the cut-formula
in the transition. In cases where all occurrences of ϕ are parametric we simply
apply the induction hypotheses to the premisses of ϕk,Π ⇒ Σ and then apply
the respective rule – it is essentially due to the context independence of almost
all rules and the regularity of proofs, which together prevent violation of side
conditions on eigenvariables. If one of the occurrences of ϕ in the premiss(es) is
a side formula of the last rule we must additionally apply weakening to restore
the missing formula before the application of the relevant rule.

In cases where one occurrence of ϕ in ϕk,Π ⇒ Σ is principal we make use of
the fact that ϕ in the left premiss is also principal; for the cases of contraction
and weakening it is trivial. Note that due to condition that ϕ is principal in the
left premiss it must be compound, since all rules introducing atomic formulae
as principal are working only in the antecedents. Hence all cases where one
occurrence of atomic ϕ in the right premiss would be introduced by means
of (R), (S), (T ), (E) are not considered in the proof of this lemma. The only
exceptions are axiomatic sequents Γ ⇒ Δ,ϕ with principal atomic ϕ, but they
do not make any harm. �
Lemma 5 (Left reduction). Let D1 � Γ ⇒ Δ,ϕk and D2 � ϕ,Π ⇒ Σ with
dD1, dD2 < dϕ, then we can construct a proof D such that D � Γ,Πk ⇒ Δ,Σk

and dD < dϕ.

Proof. By induction on the height of D1 but with some important differences.
First note that we do not require ϕ to be principal in ϕ,Π ⇒ Σ so it includes
the case with ϕ atomic. In all these cases we just apply the induction hypothesis.
This guarantees that even if an atomic cut formula was introduced in the right
premiss by one of the rules (R), (S), (T ), (E) the reduction of the height is done
only on the left premiss, and we always obtain the expected result. Now, in cases
where one occurrence of ϕ in Γ ⇒ Δ,ϕk is principal we first apply the induction
hypothesis to eliminate all other k − 1 occurrences of ϕ in premisses and then
we apply the respective rule. Since the only new occurrence of ϕ is principal we
can make use of the right reduction lemma again and obtain the result, possibly
after some applications of structural rules. �

Now we are ready to prove the cut elimination theorem:

Theorem 3. Every proof in GO can be transformed into cut-free proof.

Proof. By double induction: primary on dD and subsidiary on the number of
maximal cuts (in the basis and in the inductive step of the primary induction).
We always take the topmost maximal cut and apply Lemma 5 to it. By successive
repetition of this procedure we diminish either the degree of a proof or the
number of cuts in it until we obtain a cut-free proof. �

As a consequence of the cut elimination theorem for GO we obtain:
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Corollary 1. If � Γ ⇒ Δ, then it is provable in a proof which is closed under
subformulae of Γ ∪ Δ and atomic formulae.

So cut-free GO satisfies the form of the subformula property which holds for
several elementary theories as formalised by Negri and von Plato [14].

5 Modifications

Construction of rules which are deductively equivalent to axioms may be to
some extent automatised (see e.g. Negri and von Plato [14], Braüner [1], or
Marin, Miller, Pimentel and Volpe [12]). Still, even the choice of the version of
(equivalent) axiom which will be used for transformation, may have an impact
on the quality of obtained rules. Moreover, very often some additional tuning is
necessary to obtain rules, which are well-behaved from the proof-theoretic point
of view. In this section we will focus briefly on this problem and sketch some
alternatives.

In our adequacy proofs we referred to the original formulation of LA, since
rules (R), (T ), (S) correspond directly in a modular way to three conjuncts of
LA→. Our rule (E) however, is modelled not on LA← but rather on the suitable
implication of variant 3 of LA from Lemma 1. As a first approximation we can
obtain the rule:

Γ⇒ Δ,∃z(∀v(va ↔ vz) ∧ zb)
Γ ⇒ Δ, ab

which after further decomposition and quantifier elimination yields:

da, Γ⇒ Δ, dc dc, Γ⇒ Δ, da Γ ⇒ Δ, cb

Γ ⇒ Δ, ab

(where d is a new parameter) which is very similar to (E) but with some active
atoms in the succedents. This is troublesome for proving cut elimination if ab
is a cut formula and a principal formula of (R), (S) or (T ) in the right premiss
of cut. Fortunately, (E) is interderivable with this rule (it follows from the rule
generation theorem in Indrzejczak [5]) and has the principal formula in the
antecedent.

It is clear that if we focus on other variants then we can obtain different rules
by their decomposition. In effect note that instead of (E) we may equivalently
use the following rules based directly on LA, or on variants 2 and 1 respectively:

(ELA)
da, Γ⇒ Δ, db da, ea, Γ⇒ Δ, de ab, Γ ⇒ Δ

ca, Γ ⇒ Δ

(E2)
da, Γ⇒ Δ, dc da, Γ⇒ Δ, cd ab, Γ ⇒ Δ

ca, cb, Γ ⇒ Δ

(E1)
da, ea, Γ⇒ Δ, de ab, Γ ⇒ Δ

ca, cb, Γ,⇒ Δ

where d, e are new parameters (eigenvariables).
Note, that each of these rules, used instead of (E), yields a variant of GO for

which we can also prove cut elimination. However, as we will show by the end
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of this section, (E) seems to be optimal. Perhaps, the last one is the most eco-
nomical in the sense of branching factor. However, since its left premiss directly
corresponds to the condition ∀xy(xa ∧ ya → xy) it introduces two different new
parameters to premisses which makes it more troublesome in some respects. In
fact, if we want to reduce the branching factor it is possible to replace all these
rules by the following variants:

(E′)
da, Γ⇒ Δ, dc dc, Γ⇒ Δ, da

cb, Γ ⇒ Δ, ab

(E′
LA)

da, Γ⇒ Δ, db da, ea, Γ⇒ Δ, de

ca, Γ ⇒ Δ, ab

(E′
2)

da, Γ⇒ Δ, dc da, Γ⇒ Δ, cd

ca, cb, Γ ⇒ Δ, ab

(E′
1)

da, ea, Γ⇒ Δ, de

ca, cb, Γ ⇒ Δ, ab

with the same proviso on eigenvariables d, e. Their interderivability with the
rules stated first is easily obtained by means of the rule generation theorem too.
These rules seem to be more convenient for proof search. However, for these
primed rules cut elimination cannot be proved in the constructive way, for the
reasons mentioned above, and it is an open problem if cut-free systems with
these rules as primitive are complete.

We finish this section with stating the last reason for choosing (E). Let us
explain why (E), the most complicated specific rule of GO, was claimed to be
connected with extensionality. Consider the following two principles:

WE ∀x(xa ↔ xb) → ∀x(ax ↔ bx)
WExt ∀x(xa ↔ xb) → ∀x(ϕ(x, a) ↔ ϕ(x, b))

where ϕ(x, a) denotes arbitrary formula with at least one occurrence of x (not
bound by any quantifier within ϕ) and a.

Lemma 6. WE is equivalent to WExt.

Proof. That WE follows from WExt is obvious since the former is a specific
instance of the latter. The other direction is by induction on the complexity of
ϕ. In the basis there are just two cases: ϕ(x, a) is either xa or ax; the former is
trivial and the latter is just WE. The induction step goes like an ordinary proof
of the extensionality principle in FOL. �
Lemma 7. In G (E) is equivalent to (WE).

Proof. Note first that in G the following sequents are provable:

– ∀x(ax ↔ cx), cb ⇒ ab
– ∀x(xa ↔ xc), da ⇒ dc
– ∀x(xa ↔ xc), dc ⇒ da
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we will use them in the proofs to follow.

For derivability of (E):

da, Γ ⇒ Δ, dc dc, Γ ⇒ Δ, da
(⇒↔)

Γ ⇒ Δ, da ↔ dc
(⇒ ∀)

Γ ⇒ Δ,∀x(xa ↔ xc) D
(Cut)

Γ ⇒ Δ,∀x(ax ↔ cx) ∀x(ax ↔ cx), cb ⇒ ab
(Cut)

cb, Γ ⇒ Δ, ab

where D is a proof of ∀x(xa ↔ xc) ⇒ ∀x(ax ↔ cx) from WE and the rightmost
sequent is provable. The endsequent by cut with ab, Γ ⇒ Δ yields the conclusion
of (E).

Provability of WE in G with (E):

∀x(xa ↔ xc), da ⇒ dc ∀x(xa ↔ xc), dc ⇒ da ab ⇒ ab
(E) ∀x(xa ↔ xc), cb ⇒ ab

In the same way we prove ∀x(xa ↔ xc), ab ⇒ cb which by (⇒↔), (⇒ ∀) and
(⇒→) yields WE.

�
This shows that we can obtain the axiomatization of elementary ontology

by means of LA→ and WE (or WExt). Also instead of LA→ we can use three
axioms corresponding to our three rules (R), (S), (T ). Note that if we get rid
of (E) (or WE) we obtain a weaker version of ontology investigated by Takano
[18]. If we get rid of quantifier rules we obtain a quantifier-free version of this
system investigated by Ishimoto and Kobayashi [6].

On the basis of the specific features of sequent calculus we can obtain here
for free also the intuitionistic version of ontology. As is well known it is sufficient
to restrict the rules of G to sequents having at most one formula in the succedent
(which requires small modifications like replacement of (↔⇒) and (⇒ ∨) with
two variants having always one side formula in the succedent) to obtain the
version adequate for the intuitionistic FOL. Since all specific rules for ε can be
restricted in a similar way, we can obtain the calculus GIO for the intuitionistic
version of elementary ontology. One can easily check that all proofs showing the
adequacy of GO and the cut elimination theorem are either intuitionistically
correct or can be easily changed into such proofs. The latter remark concerns
these proofs in which the classical version of (↔⇒) required the introduction of
the second side formula into succedent by (⇒ W ); the intuitionistic two versions
of (↔⇒) do not require this step.

6 Extensions

Leśniewski and his followers were often working on ontology enriched with defi-
nitions of special predicates and name-creating functors. In this section we focus
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on a number of unary and binary predicates which are popular ontological con-
stants. Instead of adding these definitions to GO we will introduce predicates
by means of sequent rules satisfying conditions formulated for well-behaved SC
rules. Let us call Lp the language of Lo enriched with all these predicates and
GOP, the calculus with the additional rules for predicates. The definitions of the
most important unary predicates are:

Da := ∃x(xa) V a := ¬∃x(xa)
Sa := ∃x(ax) Ga := ∃xy(xa ∧ ya ∧ ¬xy)

D,V, S,G are unary predicates informing that a is denoting, empty (or void),
singular or general. D and S are Leśniewski’s ex and ob respectively. He preferred
also to apply sol(a) which we symbolize with U (for unique):

Ua := ∀xy(xa ∧ ya → xy) [or simply ¬Ga]

The additional rules for these predicates are of the form:

(D ⇒)
ba, Γ⇒ Δ

Da, Γ⇒ Δ
(⇒ D)

Γ⇒ Δ, ca

Γ⇒ Δ,Da
(S ⇒)

ab, Γ⇒ Δ

Sa, Γ⇒ Δ

(⇒ S)
Γ⇒ Δ, ac

Γ⇒ Δ,Sa
(V ⇒)

Γ⇒ Δ, ca

V a, Γ⇒ Δ
(⇒ V )

ba, Γ⇒ Δ

Γ⇒ Δ,V a

where b is new and c arbitrary in all schemata.

(G ⇒)
ba, ca, Γ⇒ Δ, bc

Ga, Γ⇒ Δ
(⇒ G)

Γ⇒ Δ, da Γ⇒ Δ, ea de, Γ ⇒ Δ

Γ⇒ Δ,Ga

(⇒ U)
ba, ca, Γ⇒ Δ, bc

Γ⇒ Δ,Ua
(U ⇒)

Γ⇒ Δ, da Γ⇒ Δ, ea de, Γ ⇒ Δ

Ua, Γ⇒ Δ

where b, c are new, and d, e are arbitrary parameters.
The binary predicates of identity, (weak and strong) coextensiveness, nonbe-

ing b, subsumption and antysubsumption are defined in the following way:

a = b := ab ∧ ba aε̄b := aa ∧ ¬ab
a ≡ b := ∀x(xa ↔ xb) a ⊂ b := ∀x(xa → xb)
a ≈ b := a ≡ b ∧ Da a � b := ∀x(xa → ¬xb)

Finally note that Aristotelian categorical sentences can be also defined in
Leśniewski’s ontology:

aAb := a ⊂ b ∧ Da aEb := a � b ∧ Da
aIb := ∃x(xa ∧ xb) aOb := ∃x(xa ∧ ¬xb)

The rules for binary predicates:

(=⇒)
ab, ba, Γ ⇒ Δ

a = b, Γ ⇒ Δ
(⇒=)

Γ ⇒ Δ, ab Γ ⇒ Δ, ba

Γ ⇒ Δ, a = b

(≡⇒)
Γ ⇒ Δ, ca, cb ca, cb, Γ ⇒ Δ

a ≡ b, Γ ⇒ Δ
(⇒≡)

da, Γ ⇒ Δ, db db, Γ ⇒ Δ, da

Γ ⇒ Δ, a ≡ b

(≈⇒)
da, Γ ⇒ Δ, ca, cb ca, cb, da, Γ ⇒ Δ

a ≈ b, Γ ⇒ Δ
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(⇒≈)
da, Γ ⇒ Δ, db db, Γ ⇒ Δ, da Γ ⇒ Δ, ca

Γ ⇒ Δ, a ≈ b

(ε̄ ⇒)
aa, Γ ⇒ Δ, ab

aε̄b, Γ ⇒ Δ
(⇒ ε̄)

Γ ⇒ Δ, aa ab, Γ ⇒ Δ

Γ ⇒ Δ, aε̄b

(⊂⇒)
Γ ⇒ Δ, ca cb, Γ ⇒ Δ

a ⊂ b, Γ ⇒ Δ
(⇒⊂)

da, Γ ⇒ Δ, db

Γ ⇒ Δ, a ⊂ b

(�⇒)
Γ ⇒ Δ, ca Γ ⇒ Δ, cb

a � b, Γ ⇒ Δ
(⇒�)

da, db, Γ ⇒ Δ

Γ ⇒ Δ, a � b

(A ⇒)
da, Γ ⇒ Δ, ca cb, da, Γ ⇒ Δ

aAb, Γ ⇒ Δ
(⇒ A)

da, Γ ⇒ Δ, db Γ ⇒ Δ, ca

Γ ⇒ Δ, aAb

(E ⇒)
da, Γ ⇒ Δ, ca da, Γ ⇒ Δ, cb

aEb, Γ ⇒ Δ
(⇒ E)

da, db, Γ ⇒ Δ Γ ⇒ Δ, ca

Γ ⇒ Δ, aEb

(I ⇒)
da, db, Γ ⇒ Δ

aIb, Γ ⇒ Δ
(⇒ I)

Γ ⇒ Δ, ca Γ ⇒ Δ, cb

Γ ⇒ Δ, aIb

(O ⇒)
da, Γ ⇒ Δ, db

aOb, Γ ⇒ Δ
(⇒ O)

Γ ⇒ Δ, ca cb, Γ ⇒ Δ

Γ ⇒ Δ, aOb

where d is new and c arbitrary (but c can be identical to d in rules for ≈, A,E).
Proofs of interderivability with equivalences corresponding to suitable defi-

nitions are trivial in most cases. We provide only one for the sake of illustration.
The hardest case is ≈.

da, ca ⇒ ca, cb da, ca, cb ⇒ cb
(≈⇒)

a ≈ b, ca ⇒ cb

da, ca ⇒ ca, cb da, ca, cb ⇒ ca

a ≈ b, cb ⇒ ca
(⇒↔)

a ≈ b ⇒ ca ↔ cb(⇒ ∀)
a ≈ b ⇒ ∀x(xa ↔ xb)

and

ca ⇒ ca, aa, ab
(⇒ ∃)

ca ⇒ ∃x(xa), aa, ab

ca, aa, ab ⇒ ca
(⇒ ∀)

ca, aa, ab ⇒ ∃x(xa)
(≈⇒)

a ≈ b ⇒ ∃x(xa)

by (⇒ ∧) yield one part. For the second:

∀x(xa ↔ xb), da ⇒ db ∀x(xa ↔ xb), db ⇒ da ca ⇒ ca
(⇒≈) ∀x(xa ↔ xb), ca ⇒ a ≈ b

(∃ ⇒) ∀x(xa ↔ xb),∃x(xa) ⇒ a ≈ b
(∧ ⇒) ∀x(xa ↔ xb) ∧ ∃x(xa) ⇒ a ≈ b

where the left and the middle premiss are obviously provable by means of (∀ ⇒),
(↔⇒). We omit proofs of the derivability of both rules in GO enriched with the
axiom ⇒ ∀x(xa ↔ xb) ∧ ∃x(xa) ↔ a ≈ b.

We treat all these predicates as new constants hence their complexity is fixed
as 1, in contrast to atomic formulae, which are of complexity 0. Of course we
can consider ontology with an arbitrary selection of these predicates according
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to the needs. Accordingly we can enrich GO also with arbitrary selection of
suitable rules for predicates. All the results holding for GOP are correct for any
subsystem. Let us list some important features of these rules and enriched GO:

1. All rules for predicates are explicit, separate and symmetric, which are usual
requirements for well-behaved rules in sequent calculi (see e.g. [5]). In this
respect they are similar to the rules for logical constants and differ from spe-
cific rules for ε which are one-sided (in the sense of having principal formulae
always in the antecedent).

2. All these new rules satisfy the subformula property in the sense that side
formulae are only atomic.

3. The substitution lemma holds for GO with any combination of the above
rules.

4. All rules are pairwise reductive, modulo substitution of terms,

We do not prove the substitution lemma, since the proof is standard, but
we comment on the last point, since cut elimination holds due to 3 and 4. The
notion of reductivity for sequent rules was introduced by Ciabattoni [2] and it
may be roughly defined as follows: A pair of introduction rules (⇒ �), (� ⇒) for
a constant � is reductive if an application of cut on cut formulae introduced by
these rules may be replaced by the series of cuts made on less complex formulae,
in particular on their subformulae. Basically it enables the reduction of cut-
degree in the proof of cut elimination. Again we illustrate the point with respect
to the most complicated case. Let us consider the application of cut with the
cut formula a ≈ b, then the left premiss of this cut was obtained by:

ca, Γ ⇒ Δ, cb cb, Γ ⇒ Δ, ca Γ ⇒ Δ, da
(⇒≈)

Γ ⇒ Δ, a ≈ b

where c is new and d is arbitrary. And the right premiss was obtained by:

ea,Π ⇒ Σ, fa, fb ea, fa, fb,Π ⇒ Σ
(≈⇒)

a ≈ b,Π ⇒ Σ

where e is new and f is arbitrary.
By the substitution lemma on the premisses of (⇒≈), (≈⇒) we obtain:

1. fa, Γ ⇒ Δ, fb
2. fb, Γ ⇒ Δ, fa
3. da,Π ⇒ Σ, fa, fb
4. da, fa, fb,Π ⇒ Σ

and we can derive:

Γ ⇒ Δ, da da,Π ⇒ Σ, fa, fb
(Cut)

Γ,Π ⇒ Δ,Σ, fa, fb fb, Γ ⇒ Δ, fa
(Cut)

Γ, Γ,Π ⇒ Δ,Δ, fa, fa
(C)

Γ,Π ⇒ Δ,Σ, fa D
(Cut)

Γ, Γ,Π,Π ⇒ Δ,Δ,Σ,Σ
(C)

Γ,Π ⇒ Δ,Σ
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where D is a similar proof of fa, Γ,Π ⇒ Δ,Σ from Γ ⇒ Δ, da, 4 and 1 by cuts
and contractions. All cuts are of lower degree than the original cut. It is routine
exercise to check that all rules for predicates are reductive and this is sufficient
for proving Lemma 4 and 5 for GOP. As a consequence we obtain:

Theorem 4. Every proof in GOP can be transformed into cut-free proof.

Since the rules are modular this holds for every subsystem based on a selec-
tion of the above rules.

7 Conclusion

Both the basic system GO and its extension GOP are cut-free and satisfy a form
of the subformula property. It shows that Leśniewski’s ontology admits standard
proof-theoretical study and allows us to obtain reasonable results. In particular,
we can prove for GO the interpolation theorem using the Maehara strategy
(see e.g. [19]) and this implies for GO other expected results like e.g. Beth’s
definability theorem. Space restrictions forbid to present it here. On the other
hand, we restricted our study to the system with simple names only, whereas
fuller study should cover also complex names built with the help of several name-
forming functors. The typical ones are the counterparts of the well-known class
operations definable in Leśniewski’s ontology in the following way:

ab̄ := aa ∧ ¬ab a(b ∩ c) := ab ∧ ac a(b ∪ c) := ab ∨ ac

It is not a problem to provide suitable rules corresponding to these definitions:

(− ⇒)
aa, Γ ⇒ Δ, ab

ab̄, Γ ⇒ Δ
(⇒ −)

ab, Γ ⇒ Δ Γ ⇒ Δ, aa

Γ ⇒ Δ, ab̄

(∩ ⇒)
ab, ac, Γ ⇒ Δ

a(b ∩ c), Γ ⇒ Δ
(⇒ ∩)

Γ ⇒ Δ, ab Γ ⇒ Δ, ac

Γ ⇒ Δ, a(b ∩ c)

(∪ ⇒)
ab, Γ ⇒ Δ ac, Γ ⇒ Δ

a(b ∪ c), Γ ⇒ Δ
(⇒ ∪)

Γ ⇒ Δ, ab, ac

Γ ⇒ Δ, a(b ∪ c)

Although their structure is similar to the rules provided for predicates in the
last section, their addition raises important problems. One is of a more general
nature and well-known: definitions of term-forming operations in ontology are
creative. Although it was intended in the original architecture of Leśniewski’s
systems, in the modern approach this is not welcome. Iwanuś [7] has shown that
the problem can be overcome by enriching elementary ontology with two axioms
corresponding to special versions of the comprehension axiom but this opens a
problem of derivability of these axioms in GO enriched with special rules.

There is also a specific problem with cut elimination for GO with added
complex terms and suitable rules. Even if they are reductive (and the rules
stated above are reductive, as a reader can check), we run into a problem with
quantifier rules. If unrestricted instantiation of terms is admitted in (⇒ ∃), (∀ ⇒)
the subformula property is lost. One can find some solutions for this problem,
for example by using two separated measures of complexity for formula-makers
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and term-makers (see e.g. [3]), or by restricting in some way the instantiation
of terms in respective quantifier rules (see e.g. [4]). The examination of these
possibilities is left for further study.

The last open problem deserving careful study is the possibility of application
for automated proof-search and obtaining semi-decision procedures (or decision
procedures for quantifier-free subsystems) on the basis of the provided sequent
calculus. In particular, due to modularity of provided rules, one could obtain in
this way decision procedures for several quantifier-free subsystems investigated
by Pietruszczak [15], or by Ishimoto and Kobayashi [6].
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11. Leśniewski, S.: Collected Works, vol. II. Surma, S., Srzednicki, J., Barnett, D.I.
Kluwer/PWN (1992)

12. Marin, S., Miller, D., Pimentel, E., Volpe, M.: From axioms to synthetic inference
rules via focusing. Ann. Pure Appl. Log. 173(5), 103091 (2022)

13. Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-1-4020-9409-5

14. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press,
Cambridge (2001)

15. Pietruszczak, A.: Quantifier-free Calculus of Names. Systems and Metatheory,
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Stud. Log. 44(1), 71–78 (1985)
19. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Oxford University Press,

Oxford (1996)
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Abstract. A strategy schedule allocates time to proof strategies that
are used in sequence in a theorem prover. We employ Bayesian statistics
to propose alternative sequences for the strategy schedule in each proof
attempt. Tested on the TPTP problem library, our method yields a time
saving of more than 50%. By extending this method to optimize the
fixed time allocations to each strategy, we obtain a notable increase in
the number of theorems proved.

Keywords: Bayesian machine learning · Strategy scheduling ·
Automated theorem proving

1 Introduction

Theorem provers have wide-ranging applications, including formal verification
of large mathematical proofs [9] and reasoning in knowledge-bases [37]. Thus,
improvements in provers that lead to more successful proofs, and savings in the
time taken to discover proofs, are desirable.

Automated theorem provers generate proofs by utilizing inference procedures
in combination with heuristic search. A specific configuration of a prover, which
may be specialized for a certain class of problems, is termed a strategy. Provers
such as E [27] can select from a portfolio of strategies to solve the goal theorem.
Furthermore, certain provers hedge their allocated proof time across a number
of proof strategies by use of a strategy schedule, which specifies a time allocation
for each strategy and the sequence in which they are used until one proves the
goal theorem. This method was pioneered in the Gandalf prover [33].

Prediction of the effectiveness of a strategy prior to a proof attempt is usually
intractable or undecidable [12]. A practical implementation must infer such a
prediction by tractable approximations. Therefore, machine learning methods
for strategy invention, selection and scheduling are actively researched. Machine
learning methods for strategy selection conditioned on the proof goal have shown
promising results [3]. Good results have also been reported for strategy synthesis
using machine learning [1]. Work on machine learning for algorithm portfolios—
which allocate resources to multiple solvers simultaneously—is also relevant to
strategy scheduling because of its similar goals. For this purpose, Silverthorn
and Miikkulainen propose latent class models [31] .
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In this work, we present a method for generating strategy schedules using
Bayesian learning with two primary goals: to reduce proving time or to prove
more theorems. We have evaluated this method for both purposes using iLean-
CoP, an intuitionistic first-order logic prover with a compact implementation
and good performance [18]. Intuitionistic logic is a non-standard form of first-
order logic, of which relatively little is known with regard to automation. It is
of interest in theoretical computer science and philosophy of mathematics [7].
Among intuitionistic provers, iLeanCoP is seen as impressive and is able to prove
a sufficient number of theorems in our benchmarks for significance testing. Its
core is implemented in around thirty lines of Prolog; such simplicity adds clarity
to interpretations of our results. Our method was benchmarked on the Thou-
sands of Problems for Theorem Provers (TPTP) problem library [32], in which
we are able to save more than 50% on proof time when aiming for the former
goal. Towards the latter goal, we are able to prove notably more theorems.

Our two primary, complementary, contributions presented here are: first, a
Bayesian machine learning model for strategy scheduling; and second, engineered
features for use in that model. The text below is organized as follows. In Sect. 2,
we introduce preliminary material used subsequently to construct a machine
learning model for strategy scheduling, described in Sects. 3–7. The data used to
train and evaluate this model are described in Sect. 8, followed by experiments,
results and conclusions in Sects. 9–12.

2 Distribution of Permutations

We model a strategy schedule using a vector of strategies, and thus all schedules
are permutations of the same.

Definition 1 (Permutation). Let M ∈ N. A permutation π ∈ NM is a vector
of indices, with πi ∈ {1, . . . , M} and ∀i �= j : πi �= πj, representing a reordering
of the components of an M -dimensional vector s to [sπ1 , sπ2 , . . . , sπM

]ᵀ.

In this text, vector-valued variables, such as π above, are in boldface, which
must change when they are indexed, like π1 for example. For probabilistic mod-
elling of schedules represented using permutations, we use the Plakett-Luce
model [14,21] to define a parametric probability distribution over permutations.

Definition 2 (Plakett-Luce distribution). The Plakett-Luce distribution
Perm(λ) with parameter λ ∈ RM

>0, has support over permutations of indices
{1, . . . , M}. For permutation Π distributed as Perm(λ),

Pr(Π = π;λ) =
M∏

j=1

λπj
∑M

u=j λπu

.

In latter sections, we use the parameter λ to assign an abstract ‘score’ to
strategies when modelling distributions over schedules. This score is particularly
useful due to the following theorem.
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Theorem 1. Let π∗ be a mode of the distribution Perm(λ), that is

π∗ = argmax
π

Pr(π;λ).

Then, λπ∗
1

� λπ∗
2

� λπ∗
3

� . . . � λπ∗
M

.

Thus, assuming λ is a vector of the score of each strategy, the highest probability
permutation indexes the strategies in decreasing order of scores. Conversely, the
highest probability permutation can be obtained efficiently by sorting the indices
of λ with respect to their corresponding values in decreasing order. Cao et al. [4]
have presented a proof of Theorem 1, and Cheng et al. [5] have discussed some
further interesting details.

Example 1. Let λ = [1, 9]ᵀ, π(1) = [1, 2]ᵀ and π(2) = [2, 1]ᵀ. Then,

Pr(Π = π(1);λ) =
λ

π
(1)
1

λ
π

(1)
1

+ λ
π

(1)
2

·
λ

π
(1)
2

λ
π

(1)
2

=
1

1 + 9
· 9
9

=
1
10

.

Similarly, Pr(Π = π(2);λ) = 9/10. ��
Theorem 2. Perm(cλ) = Perm(λ), for any scalar constant c > 0.

In other words, the Plakett-Luce distribution is invariant to the scale of the
parameter vector.

Lemma 1. Perm(exp(λ + c)) = Perm(exp(λ)), for any scalar constant c ∈ R.

Lemma 1 follows from Theorem 2, and shows the same distribution is translation
invariant if the parameter is exponentiated. Cao et al. [4] give proofs of both.

3 A Maximum Likelihood Model

We model a strategy schedule as a ranking of known strategies, where each strat-
egy is constructed by a parameter setting and time allocation. A ranking therein
is a permutation of strategies, with each strategy retaining its time allocation
irrespective of the ordering. We construct, in this section, a model for inference
of such permutations that is linear in the parameters.

Suppose we have a repository of N theorems which we test against each of
our M known strategies to build a data-set D = {(π(i),x(i))}N

i=1, where π(i)

is a desirable ordering of strategies for theorem i and x(i) is a feature vector
representation of the theorem. In Sect. 9, we detail how we instantiated D for
our experiments, which serves as an example for any other implementation. We
assume that π(i) has Plakett-Luce distribution conditioned on x(i) such that

Pr(π;x,ω) = Perm(Λ(x,ω)), (1)

where ω is a parameter the model must learn and Λ(·) is a vector-valued function
of range RM

>0. We use the notation Λ(·)i to index into the value of Λ(·). We
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represent our prover strategies with feature vectors {d(j)}M

j=1. To calculate the
score of strategy j using Λ(·)j , we specify

Λ(x(i),ω)j = exp (φ(x(i),d(j))
ᵀ
ω) (2)

to ensure that the scores are positive valued, where φ is a suitable basis expansion
function. Assuming the data is i.i.d, the likelihood of the parameter vector is
given by

L(ω) = p(D;ω) =
N∏

i=1

Pr(π(i);Λ(x(i),ω)). (3)

An ω̂ that maximizes this likelihood can then be used to forecast the distri-
bution over permutations for a new theorem x∗ by evaluating Perm(Λ(x∗, ω̂))
for all permutations. This would incur factorial complexity; however, we are
often only interested in the most likely permutation, which can be retrieved in
polynomial time. Specifically for strategy scheduling the permutation with the
highest predicted probability should reflect the orderings in the data. For this
purpose, we use Theorem 1 to find the highest probability permutation π∗ by
sorting the values of {Λ(x∗, ω̂)j}M

j=1
in descending order.

Remark 1. A method named ListNet designed to rank documents for search
queries using the Plakett-Luce distribution is evaluated by Cao et al. [4]. Their
evaluation uses a linear basis expansion. We can derive a similar construction in
our model by setting

φ(x(i),d(j)) = [x(i)ᵀ
,d(j)ᵀ

]
ᵀ
. (4)

Remark 2. The likelihood in Equation (3) can be maximized by minimizing the
negative log likelihood �(ω) = − log L(ω), which (as shown by Schäfer and
Hüllermeier [26]) is convex and therefore can be minimized using gradient-based
methods. The minima may, however, be unidentifiable due to translation invari-
ance, as demonstrated by Lemma 1. This problem is eliminated in our Bayesian
model by the use of a Gaussian prior, as explained in Sect. 4.

Example 2. Let there be N = 2 theorems and M = 2 strategies. Let the the-
orems and strategies be characterized by univariate values such that x(1) = 1,
x(2) = 2, d(1) = 1 and d(2) = 2.
Suppose strategy d(1) is ideal for theorem x(1) and strategy d(2)

for x(2), as shown on the right, where a + indicates the preferred
strategy.

d(1) d(2)

x(1) + −
x(2) − +

This is evidently an example of a parity problem [34], and hence cannot
be modelled by a simple linear expansion using the basis function mentioned
in Remark 1. A solution in this instance is to use

φ(x(i), d(j)) = x(i) · d(j).

The parameter ω is then one-dimensional, and the required training data takes
the form D = {([1, 2]ᵀ, 1), ([2, 1]ᵀ, 2)}. We find that L(w) is convex, with maxima
at ω̂ = 0.42 as shown in Fig. 1.

��
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ω̂ = 0.42
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Fig. 1. The likelihood function in Example 2.

4 Bayesian Inference

We place a Gaussian prior distribution on the parameter ω of the model
described in Sect. 3. This has two advantages: first, the posterior mode is iden-
tifiable, as noted by Johnson et al. [11] and demonstrated in Example 3 on page
7; second, the parameter is regularized. With this prior specified as the normal
distribution

ω ∼ N (m0,S0), (5)

and assuming π is independent of D given (x,ω), the posterior predictive dis-
tribution is

p(π|x∗,D) =
∫

p(π|x∗,ω)p(ω|D)dω,

which may be approximated by sampling from the posterior,

ωs ∼ p(ω|D), (6)

to obtain

p(π|x∗,D) ≈ 1
S

S∑

s=1

p(π|x∗,ωs). (7)

Given a new theorem x∗, to find the permutation of strategies with the highest
probability of success, using the approximation above would require its evalu-
ation for every permutation of π. This process incurs factorial complexity. We
instead make a Bayes point approximation [16] using the mean values of the
samples such that,

p(π|x∗,D) ≈ p(π|x∗, 〈ωs〉) using Eq. (7)
= Pr(π|Λ(x∗, 〈ωs〉)) using Eq. (1),

where 〈·〉 denotes mean value. The mean of the Plakett-Luce parameter for
Bayesian inference has been used in prior work [8] to obtain good results. Fur-
thermore, using that, the highest probability permutation can be obtained by
using Theorem 1, thereby incurring only the cost of sorting the items. This
saving is substantial when generating a strategy schedule, because it saves on
prediction time, which is important for the following reason.
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Algorithm 1. Metropolis-Hastings Algorithm
Suppose we have generated samples {ω(1), . . . , ω(i)} from the target distribution p.
Generate ω(i+1) as follows.

1: Generate candidate value ω̇ ∼ q(ω(i)), where q is the proposal distribution.
2: Evaluate r ≡ r(ω(i), ω̇) where

r(x, y) = min

{
p(y)

p(x)

q(x|y)

q(y|x)
, 1

}
.

3: Set

ω(i+1) =

{
ω̇ with probability r

ω(i) with probability 1 − r.

Remark 3. While benchmarking and in typical use, a prover is allocated a fixed
amount of time for a proof attempt, and any time taken to predict a strategy
schedule must be accounted for within this allocation. Time taken for this pre-
diction is time taken away from the prover itself which could have been invested
in the proof search. Therefore, it is essential to minimize schedule prediction
time. It is particularly wise to favour a saving in prediction time at the cost of
model optimization and training time.

Remark 4. In our implementation we set m0 = 0. This has the effect of priori-
tizing smaller weights ω in the posterior. Furthermore, we set S0 = ηI, η ∈ R,
where I is the identity matrix. Consequently, the hyperparameter η controls the
strength of the prior, since the entropy of the Gaussian prior scales linearly by
log |S0|.
Remark 5. A specialization of the Plakett-Luce distribution using the Thursto-
nian interpretation admits a Gamma distribution conjugate prior [8]. That, how-
ever, is unavailable to our model when parametrized as shown in Eq. (1).

5 Sampling

We use the Markov chain Monte Carlo (MCMC) Metropolis-Hastings algo-
rithm [38] to generate samples from the posterior distribution. In MCMC sam-
pling, one constructs a Markov chain whose stationary distribution matches the
target distribution p. For the Metropolis-Hastings algorithm, stated in Algo-
rithm 1, this chain is constructed using a proposal distribution y|x ∼ q, where q
is set to a distribution that can be conveniently sampled from.

Note that while calculating r in Algorithm 1, the normalization constant of
the target density p cancels out. This is to our advantage; to generate samples
ωs from the posterior, which is, by Eq. (3) and Eq. (5),

p(ω|D) ∝ p(D|ω)p(ω)
= L(ω)N (m0,S0), (8)
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the posterior only needs to be computed in this unnormalized form.
In this work, we choose a random walk proposal of the form

q(ω′|ω) = N (ω′|ω, Σq), (9)

and tune Σq for efficient sampling simulation. We start the simulation at a local
mode ω̂, and set N (ω̂, Σq) to approximate the local curvature of the posterior at
that point using methods by Rossi [25]. Specifically, our procedure for computing
Σq is as follows.

1. First, writing the posterior from Eq. (8) as

p(ω|D) =
1
Z

e−E(ω),

where Z is the normalization constant, we have

E(ω) = − log L(ω) − log N (m0,S0). (10)

We find a local mode ω̂ by optimizing E(ω) using a gradient-based method.
2. Then, using a Laplace approximation [2], we approximate the posterior in the

locality of this mode to

N (ω̂,H−1), where H = ∇∇E(ω)|ω̂
is the Hessian matrix of E(ω) evaluated at that local mode.

3. Finally, we set
Σq = s2 H−1

in Eq. (9), where s is used to tune all the length scales. We set this value to
s2 = 2.38 based on the results by Roberts and Rosenthal [24].

Remark 6. When calculating r in Algorithm 1 during sampling, to evaluate the
unnormalized posterior at any point ωs we compute it from Equation (10) as
exp(−E(ωs))—it is therefore the only form in which the posterior needs to be
coded in the implementation.

Example 3 (Gaussian Prior). To demonstrate the effect of using a Gaussian
prior, we build upon Example 2, with the data taking the form

D = {([1, 2]ᵀ, 1), ([2, 1]ᵀ, 2)}.

We perform basis expansion as explained in Sect. 6 with prior parameter η = 1.0,
kernel σ = 0.1 and ς = 2 centres. Thus, the model parameter is

ω = [ω1, ω2]
ᵀ
, ω ∈ R2.

The unnormalized negative log posterior E(ω1, ω2), as defined in Eq. (10), is
shown in Fig. 2b; and the negative log likelihood �(ω1, ω2) = − log L(ω1, ω2) as
mentioned in Remark 2, is shown in Fig. 2a. Note the contrast in the shape of the
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two surfaces. The minimum is along the top-right portion in Fig. 2a, which is flat
and leads to an unidentifiable point estimate, whereas in Fig. 2b, the minimum
is in a narrow region near the centre. The Gaussian prior, in informal terms, has
lifted the surface up, with an effect that increases in proportion to the distance
from the origin.
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Fig. 2. Comparison of the shape of the likelihood and the posterior functions.

6 Basis Expansion

Example 2 shows how the linear expansion in Remark 1 is ineffective even in very
simple problem instances. The maximum likelihood bilinear model presented by
Schäfer and Hüllermeier [26] is related to our model defined in Sect. 2 with
the basis performing the Kronecker (tensor) product φ(x, d) = x ⊗ d. Their
results show such an expansion produces a competitive model, but falls behind
in comparison to their non-linear model.

To model non-linear interactions between theorems and strategies, we use a
Gaussian kernel for the basis expansion.

Definition 3 (Gaussian Kernel). A Gaussian kernel κ is defined by

κ(y,z) = exp
(

−‖y − z‖2

2σ2

)

, for σ > 0.

The Gaussian kernel κ(y,z) effectively represents the inner product of y and
z in a Hilbert space whose bandwidth is controlled by σ. Smaller values of σ
correspond to a higher bandwidth, more flexible, inner product space. Larger
values of σ will reduce the kernel to a constant function, as detailed in [30].
For our ranking model, we must tune σ to balance between over-fitting and
under-performance.
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We use the Gaussian kernel for basis expansion by setting

φ(x,d) =
[
κ
(
[xᵀ,dᵀ]ᵀ, c(1)

)
, . . . , κ

(
[xᵀ,dᵀ]ᵀ, c(C)

)]ᵀ
,

where {c(i)}C

i=1 is a collection of centres. By choosing centres to be themselves
composed of theorems x(.) and strategies d(.), such that c(.) = [x(.)ᵀ

,d(.)ᵀ
]
ᵀ
, the

basis expansion above represents each data item with a non-linear inner product
against other known items.

To find the relevant subset of D from which centres should be formed, we
follow the method described in the steps below.

1. Initially, we set the collection of centres to every possible centre. That is, for
N theorems and M strategies, we produce a centre for every combination of
the two, thereby producing C = N · M centres.

2. Next, we use φ to expand every centre to produce the C × C matrix Γ such
that

Γi,j = φ(c(i))j = κ(c(i), c(j)).

3. Then, we generate a vector γ such that γi represents a score for centre c(i).
Since each centre is a combination of a theorem and a strategy, we set the
score to signify how well the strategy performs for that theorem, as detailed
in Remark 7 below.

4. Finally, we use Automatic Relevance Determination (ARD) [17] with Γ as
input and γ as the response variable. The result is a weight assignment to
each centre to signify its relevance. The highest absolute-weighted ς centres
are chosen, where ς is a parameter which decides the total number of centres.

This method is inspired by the procedure used in Relevance Vector Machines [35]
for a similar purpose.

Remark 7 (score). For a strategy that succeeds in proving a theorem, the score
for the pair is the fraction of the time allocation left unconsumed by the prover.
For an unsuccessful strategy-theorem combination, we set the score to a value
close to zero.

Remark 8 (ς). The parameter ς is another tunable parameter which, in similar
fashion to the parameter σ earlier in this section, controls the model complexity
introduced by the basis expansion. Both variables must be tuned together.

7 Model Selection and Time Allocations

From Remark 8, ς and σ are hyperparameters that control the complexity intro-
duced into our model through the Gaussian basis expansion; and Remark 4 intro-
duces η, the hyperparameter that controls the strength of the prior. The final
model is selected by tuning them. Tuning must aim to avoid overfitting to the
training data; and to maximize, during testing, either the savings in proof-search
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time or the number of theorems proved. However, we do not have a closed-form
expression relating these parameters to this aim, thus any combination of the
parameters can be judged only by testing them.

In this work we have used Bayesian optimization [29] to optimize these
hyperparameters. Bayesian optimization is a black-box parameter optimization
method that attempts to search for a global optimum within the scope of a set
resource budget. It models the optimization target as a user-specified objective
function, which maps from the parameter space to a loss metric. This model
of the objective function is constructed using Gaussian Process (GP) regres-
sion [22], using data generated by repeatedly testing the objective function.

Our specified objective function maps from the hyperparameters (ς, σ, η) to a
loss metric ξ. We use cross-validation within the training data while calculating ξ
to penalize hyperparameters that over-fit. Hyperparameters are tuned at training
time only, after which they are fixed for subsequent testing. The final test set is
never used for any hyperparameter optimization.

In the method presented thus far we are only permuting strategies with fixed
time allocations to build a sequence for a strategy schedule. In this setting, the
number of theorems proved cannot change, but the time taken to prove theorems
can be reduced. Therefore, with this aim, a useful metric for ξ is the total time
taken by the theorem prover to prove the theorems in the cross-validation test
set.

However, we can take further advantage of the hyperparameter tuning phase
to additionally tune the times allocated to each strategy, by treating these times
as hyperparameters. Therefore, for each strategy d(i) we create a hyperparameter
ν(i) ∈ (0, 1) which sets the proportion of the proof time allocated to that strategy.
We can then optimize our model to maximize the number of theorems proved;
a count of the remaining theorems is then a viable metric for ξ. Note that once
the ν(·) are set, time allocation for d(i) is fixed to ν(i), irrespective of its order
in the strategy schedule.

Remark 9. Our results include two types of experiment:

– one where the time allocations for each strategy are set to the defaults shipped
with our reference theorem prover, and so we optimize for saving proof time;
and

– another wherein we allocate time to each strategy during the hyperparam-
eter tuning phase, and so we optimize for proving the maximum number of
theorems.

8 Training Data and Feature Extraction

Our chosen theorem prover, iLeanCoP, is shipped with a fixed strategy schedule
consisting of 5 strategies. It splits the allocated proof time across the first four
strategies by 2%, 60%, 20% and 10%. However, only the first strategy is com-
plete and therefore usually expected to take up its entire time allocation. The
remaining strategies are incomplete, and may exit early on failure. Therefore,
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the fifth and final strategy, which we refer to as the fallback strategy, is allocated
all the remaining time.

Emulating iLeanCop. We have constructed a dataset by attempting to prove
every theorem in our problem library using each of these strategies individually.
With this information, the result of any proof attempt can be calculated by
emulating the behaviour of iLeanCoP. This is how we evaluate the predicted
schedules—we emulate a proof attempt by iLeanCoP using that schedule for
each theorem in the test set. For a faithful emulation of the fallback strategy, it
is always attempted last, and therefore any new schedule is only a permutation
of the first four strategies. Our experiments allocate a time of 600 s per theorem.
The dataset is built to ensure that, within this proof time, any such strategy
permutation can be emulated. We kept a timeout of 1200 s per strategy per
theorem when building the dataset, which is more than sufficient for current
experiments and gives us headroom for future experiments with longer proof
times.

Strategy Features. Each strategy in iLeanCoP consists of a time allocation
and parameter settings; the parameters are described by Otten [19]. We use a
one-hot encoding feature representation for strategies based on the parameter
setting as shown in Table 1. Another feature noting the completeness of each
strategy is also shown. Another feature (not shown in the table) contains the
time allocated to each strategy. Note the fallback strategy is used in prover
emulation but not in the schedule prediction.

Table 1. Features of the four main strategies.

Strategy Parameter Completeness

def scut cut comp(7) conj

def,scut,cut,comp(7) 1 1 1 1 0 1

def,scut,cut 1 1 1 0 0 0

conj,scut,cut 0 1 1 0 1 0

def,conj,cut 1 0 1 0 1 0

Theorem Features. The TPTP problem library contains a large, compre-
hensive collection of theorems and is designed for testing automated theorem
provers. The problems are taken from a range of domains such as Logic Cal-
culi, Algebra, Software Verification, Biology and Philosophy, and presented in
multiple logical forms. For iLeanCoP, we select the subset in first-order form,
denoted there as FOF. In version 7.1.0, there are 8157 such problems covering 43
domains. Each problem consists of a set of formulae and a goal theorem. The
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problems are of varying sizes. For example, the problem named HWV134+1 from
the Hardware Verification domain contains 128975 formulae, whilst SET703+4
from the Set Theory domain contains only 12.

We have constructed a dataset containing features extracted from the first-
order logic problems in TPTP (see Appendix A). Here, we describe how those
features were developed.

In deployment, a prover using our method to generate strategy schedules
would have to extract features from the goal theorem at the beginning of a
proof attempt. To minimize the computational overhead of feature extraction,
in keeping with our goal noted in Remark 3, we use features that can be collected
when the theorem is parsed by the prover. The collection of features developed
in this work is based on the authors’ prior experience, and later we will briefly
examine the quality of each feature to discard the uninformative ones. We extract
the following features, which are all considered candidates for the subsequent
feature selection process.

Symbol Counts: A count of the logical connectives and quantifiers. We extract
one feature per symbol by tracking lexical symbols encountered while parsing.

Quantifier Rank: The maximum depth of nesting of quantifiers.
Quantifier Count: A count of the number of quantifiers.
Mean and Maximum Function Arity: Obtained by keeping track of func-

tions during parsing.
Number of Functions: A count of the number of functions.
Quantifier Alternations: A count of the number of times the quantifiers flip

between the existential and universal. When calculated by examining only the
sequence of lexical symbols, the count may be inaccurate. An accurate count
is obtained by tracking negations during parsing while collecting quantifiers.
We extract both as candidates.

Feature Selection and Pre-processing. We examine the degree of associa-
tion between the individual theorem features described above and the speed with
which the strategies solve each theorem; for this we use the Maximal Informa-
tion Coefficient (MIC) measure [23]. For every theorem we calculate the score,
as defined in Remark 7, averaged over all strategies. This score is paired with
each feature to calculate its MIC. Most lexical symbols achieve an MIC close to
zero. We selected the features with relatively high MIC for the presented work,
and these are shown in Fig. 3.

The two features based on quantifier alternations are clearly correlated, but
both meet the above criterion for selection. Correlations can also be expected
between the other features. Furthermore, our features range over different scales.
For example, the maximal function arity in TPTP averages 2, whereas the num-
ber of predicate symbols averages 2097. It is desirable to remove these correla-
tions to alleviate any burden on the subsequent modelling phase, and to stan-
dardize the features to zero mean and unit variance to create a feature space with
similar length-scales in all dimensions. The former is achieved by decorrelation,
the latter by standardization, and both together by a sphering transformation.
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Fig. 3. MIC between selected features and scores.

We transform our extracted features as such using Zero-phase Component Anal-
ysis (ZCA), which ensures the transformed data is as close as possible to the
original [6].

Coverage. As mentioned above, we run iLeanCoP on every first-order theo-
rem in TPTP with each strategy allocated 1200 s. Although every theorem in
intuitionistic logic also holds for classical logic, the converse does not hold. For
that reason and because of the limitations of iLeanCoP, many theorems remain
unproved by any strategy. We exclude these theorems from our experiments,
leaving us with a data-set of 2240 theorems.

9 Experiments

We present two experiments in this work, as noted in Remark 9. In this section,
we describe our experimental apparatus in detail.

As noted in Sect. 8, our data contains:

– N = 2240 theorems that are usable in our experiments;
– five strategies, of which M = 4 are used to build strategy schedules since one

is a fallback strategy; and
– features x(i) of theorems where i ∈ [1, N ] and features d(j) of strategies where

j ∈ [1,M ].

This data needs to be presented to our model for training in the form of
D = {(π(i),x(i))}N

i=1, as described in Sect. 3. Since the two experiments have
slightly different goals, we specialize D according to each.

When aiming to predict schedules that minimize the time taken to prove
theorems, a natural value for π(i) is the index order that sorts strategies in
increasing amounts of time taken to prove theorem i. However, some strategies
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may fail to prove theorem i within their time allocation. In that case, we consider
the failed strategies equally bad and place them last in the ordering in π(i).
Furthermore, we create additional items (π′(i),x(i)) in D, by permuting the
positions of the failed strategies in π(i) to create multiple π′(i).

When the goal is only to prove more theorems, the strategies that succeed
are all considered equally ranked above the failed strategies. In this mode, the
successful strategies are similarly permuted in the data, in addition to those that
failed.

In each experiment, a random one-third of the N theorems are separated
into a holdout test set Ṅ , leaving behind a training set N̈ . This training set
is first used for hyperparameter tuning using BO. As explained in Sect. 7, each
hyperparameter combination is tested with five-fold cross-validation within N̈ ,
to penalize instances that overfit to N̈ . This results in estimated optimum values
for the hyperparameters. These are used to set the model, which is then trained
on N̈ and then finally evaluated on Ṅ . The whole process is repeated ten times
with new random splits Ṅ and N̈ to create one set of ten results for that
experiment.

10 Results

Each experiment, repeated ten times, is conducted in two phases: first, hyperpa-
rameter optimization; and second, model training and evaluation. The bounds
on the search space in the first phase were always the same (see Appendix A).
The holdout test set contained 747 theorems. A proof time of 600 s was emulated.

10.1 Experiment 1: Optimizing Proof Attempt Time

The results are shown in Fig. 4. The total prediction time for all 747 theorems,
averaged across the trials, is 0.14 s.

The times across proof attempts are not normally distributed, for both the
unmodified iLeanCoP schedule and the predicted ones, as confirmed by a Jarque-
Bera test. Therefore, we used the right-tailed Wilcoxon signed-rank test for a
pair-wise comparison of the times taken for each theorem by the original sched-
ule in iLeanCoP versus the predicted schedules, resulting in a p-value of less
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than 10−6 in each trial, confirming the alternate hypothesis that the reduction
in time taken to prove each theorem comes from a distribution with median
greater than zero. This confirms that the time savings are statistically signifi-
cant. Furthermore, we note from Fig. 4 a saving of more than 50% in the total
proof-time in each trial.

10.2 Experiment 2: Proving More Theorems

We set our hyperparameter search to find time allocations for strategies. The
resulting predicted schedules have gains and losses when compared to the original
schedule, as shown in the four facets of Fig. 5. However, there is a consistent gain
in the number of theorems proved and a gain of five theorems on average, evident
from the mean values in (†) and (‡).
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11 Related Work

Prior work on machine learning for algorithm selection, such as that introduced
by Leyton-Brown et al. [13], is a precursor to our work. In that topic, the machine
learning methods must perform the task of selecting a good algorithm from
within a portfolio to solve the given problem instance. Typically, as was the case
in the work by Leyton-Brown et al. [13], the learning methods predict the runtime
of all algorithms, and then pick the fastest predicted one. This line of enquiry
has been extended to select algorithms for SMT solvers—a recent example is
MachSMT by Scott et al. [28]. The machine learning models in MachSMT are
trained by considering all the portfolio members in pairs for each problem in the
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training set. This method is called pairwise ranking, which contrasts from our
method, called list-wise ranking, in which we consider the full list of portfolio
members all together.

In terms of the machine learning task, the work on scheduling solvers bears
greater similarity to our presented work. In MedleySolver, for example, Pim-
palkhare et al. [20] frame this task as a multi-armed bandit problem. They
predict a sequence of solvers as well as the time allocation for each to generate
schedules for the goal problems. MedleySolver is able to solve more problems
than any individual solver would on its own.

With an approach that contrasts with ours, Hůla et al. [10] have made use of
Graph Neural Networks (GNNs) for solver scheduling. They produce a regression
model to predict, for the given problem, the runtime of all the solvers; which
is used as the key to sort the solvers in increasing order of predicted runtime
to build a schedule. This is an example of point-wise ranking. The authors use
GNNs to automatically discover features for machine learning. They combine
this feature extraction with training of the regression model. They achieve an
increase in the number of problems solved as well as a reduction in the total
proof time. Meanwhile, our use of manual feature engineering combined with
statistical methods for selection and normalization has certain advantages. For
one, we can analyse our features and derive a subjective interpretation of their
efficacy. Additionally, our features effectively impart our domain knowledge onto
the model. Such domain knowledge may not be available in the data itself.
Manual feature engineering such as ours can be combined with automatic feature
extraction to reap the benefits of both.

12 Conclusions

We have presented a method to specialize, for the given goal theorem, the
sequence of strategies in the schedule used in each proof attempt. A Bayesian
machine learning model is trained in this method using data generated by test-
ing the prover of interest. When evaluated with the iLeanCoP prover using the
TPTP library as a benchmark, our results show a significant reduction in the
time taken to prove theorems. For theorems that are successfully proved, the
average time saving is above 50%. The prediction time is on average low enough
to have a negligible impact on the resources subtracted from the proof search
itself.

We also extend this method to optimize time allocations to each strategy.
In this setting, our results show a notable increase in the number of theorems
proved.

This work shows, by example, that Bayesian machine learning models
designed specifically to augment heuristics in theorem provers, with detailed
consideration of the computational compromises required in this setting, can
deliver substantial improvements.
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Abstract. Anti-unification aims at computing generalizations for given
terms, retaining their common structure and abstracting differences by
variables. We study quantitative anti-unification where the notion of the
common structure is relaxed into “proximal” up to the given degree with
respect to the given fuzzy proximity relation. Proximal symbols may
have different names and arities. We develop a generic set of rules for
computing minimal complete sets of approximate generalizations and
study their properties. Depending on the characterizations of proximities
between symbols and the desired forms of solutions, these rules give rise
to different versions of concrete algorithms.

Keywords: Generalization · Anti-unification · Quantiative theories ·
Fuzzy proximity relations

1 Introduction

Generalization problems play an important role in various areas of mathematics,
computer science, and artificial intelligence. Anti-unification [12,14] is a logic-
based method for computing generalizations. Being originally used for induc-
tive and analogical reasoning, some recent applications include recursion scheme
detection in functional programs [4], programming by examples in domain-
specific languages [13], learning bug-fixing from software code repositories [3,15],
automatic program repair [7], preventing bugs and misconfiguration in ser-
vices [11], linguistic structure learning for chatbots [6], to name just a few.

In most of the existing theories where anti-unification is studied, the back-
ground knowledge is assumed to be precise. Therefore, those techniques are not
suitable for reasoning with incomplete, imprecise information (which is very
common in real-world communication), where the exact equality is replaced by
its (quantitative) approximation. Fuzzy proximity and similarity relations are
notable examples of such extensions. These kinds of quantitative theories have
many useful applications, some most recent ones being related to artificial intelli-
gence, program verification, probabilistic programming, or natural language pro-
cessing. Many tasks arising in these areas require reasoning methods and compu-
tational tools that deal with quantitative information. For instance, approximate
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inductive reasoning, reasoning and programming by analogy, similarity detec-
tion in programming language statements or in natural language texts could
benefit from solving approximate generalization constraints, which is a theoreti-
cally interesting and challenging task. Investigations in this direction have been
started only recently. In [1], the authors proposed an anti-unification algorithm
for fuzzy similarity (reflexive, symmetric, min-transitive) relations, where mis-
matches are allowed not only in symbol names, but also in their arities (fully
fuzzy signatures). The algorithm from [9] is designed for fuzzy proximity (i.e.,
reflexive and symmetric) relations with mismatches only in symbol names.

In this paper, we study approximate anti-unification from a more gen-
eral perspective. The considered relations are fuzzy proximity relations. Prox-
imal symbols may have different names and arities. We consider four differ-
ent variants of relating arguments between different proximal symbols: unre-
stricted relations/functions, and correspondence (i.e. left- and right-total) rela-
tions/functions. A generic set of rules for computing minimal complete sets of
generalizations is introduced and its termination, soundness and completeness
properties are proved. From these rules, we obtain concrete algorithms that
deal with different kinds of argument relations. We also show how the existing
approximate anti-unification algorithms and their generalizations fit into this
framework.

Organization: In Sect. 2 we introduce the notation and definitions. Section 3 is
devoted to a technical notion of term set consistency and to an algorithm for
computing elements of consistent sets of terms. It is used later in the main
set of anti-unification rules, which are introduced and characterized in Sect. 4.
The concrete algorithms obtained from those rules are also described in this
section. In Sect. 5, we discuss complexity. Section 6 offers a high-level picture of
the studied problems and concludes.

An extended version of this work can be found in the technical report [8].

2 Preliminaries

Proximity Relations. Given a set S, a mapping R from S ˆ S to the real
interval [0, 1] is called a binary fuzzy relation on S. By fixing a number λ, 0 ď
λ ď 1, we can define the crisp (i.e., two-valued) counterpart of R, named the
λ-cut of R, as Rλ :“ {ps1, s2q | Rps1, s2q ě λ}. A fuzzy relation R on a set
S is called a proximity relation if it is reflexive (Rps, sq “ 1 for all s P S)
and symmetric (Rps1, s2q “ Rps2, s1q for all s1, s2 P S). A T-norm ^ is an
associative, commutative, non-decreasing binary operation on [0, 1] with 1 as
the unit element. We take minimum in the role of T-norm.

Terms and Substitutions. We consider a first-order alphabet consisting of a
set of fixed arity function symbols F and a set of variables V, which includes a spe-
cial symbol _ (the anonymous variable). The set of named (i.e., non-anonymous)
variables V\{_} is denoted by VN. When the set of variables is not explicitly
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specified, we mean V. The set of terms T pF,Vq over F and V is defined in the
standard way: t P T pF,Vq iff t is defined by the grammar t :“ x | fpt1, . . . , tnq,
where x P V and f P F is an n-ary symbol with n ě 0. Terms over T pF,VNq are
defined similarly except that all variables are taken from VN.

We denote arbitrary function symbols by f, g, h, constants by a, b, c, variables
by x, y, z, v, and terms by s, t, r. The head of a term is defined as headpxq :“ x
and headpfpt1, . . . , tnqq :“ f . For a term t, we denote with Vptq (resp. by VNptq)
the set of all variables (resp. all named variables) appearing in t. A term is called
linear if no named variable occurs in it more than once.

The deanonymization operation deanon replaces each occurrence of
the anonymous variable in a term by a fresh variable. For instance,
deanonpfp_, x, gp_qqq “ fpy′, x, gpy′′qqq, where y′ and y′′ are fresh. Hence,
deanonptq P T pF,VNq is unique up to variable renaming for all t P T pF,Vq.
deanonptq is linear iff t is linear.

The notions of term depth, term size and a position in a term are defined in
the standard way, see, e.g. [2]. By t|p we denote the subterm of t at position p
and by t[s]p a term that is obtained from t by replacing the subterm at position
p by the term s.

A substitution is a mapping from VN to T pF,VNq (i.e., without anonymous
variables), which is the identity almost everywhere. We use the Greek letters
σ, ϑ, ϕ to denote substitutions, except for the identity substitution which is writ-
ten as Id . We represent substitutions with the usual set notation. Application of
a substitution σ to a term t, denoted by tσ, is defined as _σ :“ _, xσ :“ σpxq,
fpt1, . . . , tnqσ :“ fpt1σ, . . . , tnσq. Substitution composition is defined as a com-
position of mappings. We write σϑ for the composition of σ with ϑ.

Argument Relations and Mappings. Given two sets N “ {1, . . . , n} and
M “ {1, . . . ,m}, a binary argument relation over N ˆ M is a (possibly empty)
subset of N ˆ M . We denote argument relations by ρ. An argument relation
ρ Ď N ˆ M is (i) left-total if for all i P N there exists j P M such that pi, jq P ρ;
(ii) right-total if for all j P M there exists i P N such that pi, jq P ρ. Corres-
pondence relations are those that are both left- and right-total.

An argument mapping is an argument relation that is a partial injective
function. In other words, an argument mapping π from N “ {1, . . . , n} to M “
{1, . . . , m} is a function π : In �→ Im, where In Ď N , Im Ď M and |In| “ |Im|.
Note that it can be also the empty mapping: π : H �→ H. The inverse of an
argument mapping is again an argument mapping.

Given a proximity relation R over F, we assume that for each pair of function
symbols f and g with Rpf, gq “ α > 0, where f is n-ary and g is m-ary, there is
also given an argument relation ρ over {1, . . . , n}ˆ{1, . . . , m}. We use the nota-
tion f „ρ

R,α g. These argument relations should satisfy the following conditions:
ρ is the empty relation if f or g is a constant; ρ is the identity if f “ g; f „ρ

R,α g

iff g „ρ´1

R,α f , where ρ´1 is the inverse of ρ.
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Example 1. Assume that we have four different versions of defining the notion of
author (e.g., originated from four different knowledge bases) author1pfirst-name,
middle-initial , last-nameq, author2pfirst-name, last-nameq, author3plast-name,
first-name, middle-initialq, and author4pfull -nameq. One could define the argu-
ment relations/mappings between these function symbols e.g., as follows:

author1 „{p1,1q,p3,2q}
R,0.7 author2, author1 „{p3,1q,p1,2q,p2,3q}

R,0.9 author3,

author1 „{p1,1q,p3,1q}
R,0.5 author4, author2 „{p1,2q,p2,1q}

R,0.7 author3,

author2 „{p1,1q,p2,1q}
R,0.5 author4, author3 „{p1,1q,p2,1q}

R,0.5 author4.

Proximity Relations over Terms. Each proximity relation R in this paper is
defined on F Y V such that Rpf, xq “ 0 for all f P F and x P V, and Rpx, yq “ 0
for all x ‰ y, x, y P V. We assume that R is strict : for all w1, w2 P F Y V, if
Rpw1, w2q “ 1, then w1 “ w2. Yet another assumption is that for each f P F,
its pR, λq-proximity class {g | Rpf, gq ě λ} is finite for any R and λ.

We extend such an R to terms from T pF,Vq as follows:

(a) Rpt, sq :“ 0 if Rpheadpsq, headptqq “ 0;
(b) Rpt, sq :“ 1 if t “ s and t, s P V;
(c) Rpt, sq :“ Rpf, gq ^ Rpti1 , sj1q ^ · · · ^ Rptik

, sjk
q, if t “ fpt1, . . . , tnq, s “

gps1, . . . , smq, f „ρ
R,λ g, and ρ “ {pi1, j1q, . . . , pik, jkq}.

If Rpt, sq ě λ, we write t »R,λ s. When λ “ 1, the relation »R,λ does not
depend on R due to strictness of the latter and is just the syntactic equality “.

The pR, λq-proximity class of a term t is pcR,λptq :“ {s | s »R,λ t}.

Generalizations. Given R and λ, a term r is an pR, λq-generalization of (alter-
natively, pR, λq-more general than) a term t, written as r ÀR,λ t, if there exists
a substitution σ such that deanonprqσ »R,λ deanonptq. The strict part of ÀR,λ

is denoted by ≺R,λ, i.e., r ≺R,λ t if r ÀR,λ t and not t ÀR,λ r.

Example 2. Given a proximity relation R, a cut value λ, constants a „H
R,α1

b

and b „H
R,α2

c, binary function symbols f and h, and a unary function symbol g

such that h „{p1,1q,p1,2q}
R,α3

f and h „{p1,1q}
R,α4

g with αi ě λ, 1 ď i ď 4, we have

– hpx,_q ÀR,λ hpa, xq, because hpx, x′q{x �→ a, x′ �→ x} “ hpa, xq »R,λ hpa, xq.
– hpx,_q ÀR,λ hp_, xq, because hpx, x′q{x �→ y′, x′ �→ x} “ hpy′, xq »R,λ

hpy′, xq.
– hpx, xq �ÀR,λ hp_, xq, because hpx, xq �ÀR,λ hpy′, xq.
– hpx,_q ÀR,λ fpa, cq, because hpx, x′q{x �→ b} “ hpb, x′q »R,λ fpa, cq.
– hpx,_q ÀR,λ gpcq, because hpx, x′q{x �→ c} “ hpc, x′q »R,λ gpcq.

The notion of syntactic generalization of a term is a special case of pR, λq-
generalization for λ “ 1. We write r À t to indicate that r is a syntactic gener-
alization of t. Its strict part is denoted by ≺.

Since R is strict, r À t is equivalent to deanonprqσ “ deanonptq for some σ
(note the syntactic equality here).
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Theorem 1. If r À t and t ÀR,λ s, then r ÀR,λ s.

Proof. r À t implies deanonprqσ “ deanonptq for some σ, while from t ÀR,λ s we
have deanonptqϑ »R,λ deanonpsq for some ϑ. Then deanonprqσϑ »R,λ deanonpsq,
which implies r ÀR,λ s. �

Note that r ÀR,λ t and t ÀR,λ s, in general, do not imply r ÀR,λ s due to
non-transitivity of »R,λ.

Definition 1 (Minimal complete set of pR, λq-generalizations). Given
R, λ, t1, and t2, a set of terms T is a complete set of pR, λq-generalizations of
t1 and t2 if

(a) every r P T is an pR, λq-generalization of t1 and t2,
(b) if r′ is an pR, λq-generalization of t1 and t2, then there exists r P T such

that r′ À r (note that we use syntactic generalization here).

In addition, T is minimal, if it satisfies the following property:

(c) if r, r′ P T , r ‰ r′, then neither r ≺R,λ r′ nor r′ ≺R,λ r.

A minimal complete set of pR, λq-generalizations ((R, λ)-mcsg) of two terms is
unique modulo variable renaming. The elements of the pR, λq-mcsg of t1 and t2
are called least general pR, λq-generalizations ((R, λ)-lggs) of t1 and t2.

This definition directly extends to generalizations of finitely many terms.

The problem of computing an pR, λq-generalization of terms t and s is called
the pR, λq-anti-unification problem of t and s. In anti-unification, the goal is to
compute their least general pR, λq-generalization.

The precise formulation of the anti-unification problem would be the follow-
ing: Given R, λ, t1, t2, find an pR, λq-lgg r of t1 and t2, substitutions σ1, σ2, and
the approximation degrees α1, α2 such that Rprσ1, t1q “ α1 and Rprσ2, t2q “ α2.
A minimal complete algorithm to solve this problem would compute exactly the
elements of pR, λq-mcsg of t1 and t2 together with their approximation degrees.
However, as we see below, it is problematic to solve the problem in this form.
Therefore, we will consider a slightly modified variant, taking into account anony-
mous variables in generalizations and relaxing bounds on their degrees.

We assume that the terms to be generalized are ground. It is not a restriction
because we can treat variables as constants that are close only to themselves.

Recall that the proximity class of any alphabet symbol is finite. Also, the
symbols are related to each other by finitely many argument relations. One may
think that it leads to finite proximity classes of terms, but this is not the case.
Consider, e.g., R and λ, where h »{p1,1q}

R,λ f with binary h and unary f . Then the
pR, λq-proximity class of fpaq is infinite: {fpaq} Y {hpa, tq | t P T pF,Vq}. Also,
the pR, λq-mcsg for fpaq and fpbq is infinite: {fpxq} Y {hpx, tq | t P T pF, Hq}.

Definition 2. Given the terms t1, . . . , tn, n ě 1, a position p in a term r is
called irrelevant for pR, λq-generalizing (resp. for pR, λq-proximity to) t1, . . . , tn
if r[s]p ÀR,λ ti (resp. r[s]p »R,λ ti) for all 1 ď i ď n and for all terms s.
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We say that r is a relevant pR, λq-generalization (resp. relevant pR, λq-pro-
ximal term) of t1, . . . , tn if r ÀR,λ ti (resp. r »R,λ ti) for all 1 ď i ď n and
r|p “ _ for all positions p in r that is irrelevant for generalizing (resp. for
proximity to) t1, . . . , tn. The pR, λq-relevant proximity class of t is

rpcR,λptq :“ {s | s is a relevant pR, λq-proximal term of t}.

In the example above, position 2 in hpx, tq is irrelevant for generalizing fpaq
and fpbq, and hpx,_q is one of their relevant generalizations. Note that fpxq
is also a relevant generalization of fpaq and fpbq, since it contains no irrelevant
positions. More general generalizations like, e.g., x, are relevant as well. Similarly,
position 2 in hpa, tq is irrelevant for proximity to fpaq and rpcR,λpfpaqq “ {fpaq,
hpa,_q}. Generally, rpcR,λptq is finite for any t due to the finiteness of proximity
classes of symbols and argument relations mentioned above.

Definition 3 (Minimal complete set of relevant pR, λq-generalizations).
Given R, λ, t1, and t2, a set of terms T is a complete set of relevant pR, λq-
generalizations of t1 and t2 if

(a) every element of T is a relevant pR, λq-generalization of t1 and t2, and
(b) if r is a relevant pR, λq-generalization of t1 and t2, then there exists r′ P T

such that r À r′.

The minimality property is defined as in Definition 1.

This definition directly extends to relevant generalizations of finitely many terms.
We use pR, λq-mcsrg as an abbreviation for minimal complete set of relevant
pR, λq-generalization. Like relevant proximity classes, mcsrg’s are also finite.

Lemma 1. For given R and λ, if all argument relations are correspondence
relations, then pR, λq-mcsg’s and pR, λq-proximity classes for all terms are finite.

Proof. Under correspondence relations no term contains an irrelevant position
for generalization or for proximity. �

Hence, for correspondence relations the notions of mcsg and mcsrg coincide,
as well as the notions of proximity class and relevant proximity class.

For a term r, we define its linearized version linprq as a term obtained
from r by replacing each occurrence of a named variable in r by a fresh one.
For instance, linpfpx,_, gpy, x, aq, bqq “ fpx′,_, gpy′, x′′, aq, bq, where x′, x′′, y′

are fresh variables. Linearized versions of terms are unique modulo variable
renaming.

Definition 4 (Generalization degree upper bound). Given two terms r
and t, a proximity relation R, and a λ-cut, the pR, λq-generalization degree
upper bound of r and t, denoted by gdubR,λpr, tq, is defined as follows:

Let α :“ max{Rplinprqσ, tq | σ is a substitution}. Then gdubR,λpr, tq is α if
α ě λ, and 0 otherwise.
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Intuitively, gdubR,λpr, tq “ α means that no instance of r can get closer than
α to t in R. From the definition it follows that if r ÀR,λ t, then 0 < λ �
gdubR,λpr, tq ≤ 1 and if r �ÀR,λ t, then gdubR,λpr, tq “ 0.

The upper bound computed by gdub is more relaxed than it would be if the
linearization function were not used, but this is what we will be able to compute
in our algorithms later.
Example 3. Let Rpa, bq “ 0.6, Rpb, cq “ 0.7, and λ “ 0.5. Then gdubR,λpfpx, bq,
fpa, cqq “ 0.7 and gdubR,λpfpx, xq, fpa, cqq “ gdubR,λpfpx, yq, fpa, cqq “ 1.

It is not difficult to see that if rσ »R,λ t, then Rprσ, tq ď gdubR,λpr, tq. In
Example 3, for σ “ {x �→ b} we have Rpfpx, xqσ, fpa, cqq “ Rpfpb, bq, fpa, cqq “
0.6 < gdubR,λpfpx, xq, fpa, cqq “ 1.

We compute gdubR,λpr, tq as follows: If r is a variable, then gdubR,λpr, tq “ 1.
Otherwise, if headprq „ρ

R,β headptq, then gdubR,λpr, tq “ β ^ ∧
pi,jqPρ gdubR,λpr|i,

t|jq. Otherwise, gdubR,λpr, tq “ 0.

3 Term Set Consistency

The notion of term set consistency plays an important role in the computation
of proximal generalizations. Intuitively, a set of terms is pR, λq-consistent if all
the terms in the set have a common pR, λq-proximal term. In this section, we
discuss this notion and the corresponding algorithms.
Definition 5 (Consistent set of terms). A finite set of terms T is pR, λq-
consistent if there exists a term s such that s »R,λ t for all t P T .

pR, λq-consistency of a finite term set T is equivalent to
⋂

tPT pcR,λptq ‰ H,
but we cannot use this property to decide consistency, since proximity classes of
terms can be infinite (when the argument relations are not restricted). For this
reason, we introduce the operation [ on terms as follows: (i) t [ _ “ _ [ t “ t,
(ii) fpt1, . . . , tnq [ fps1, . . . , snq “ fpt1 [ s1, . . . , tn [ snq, n ě 0. Obviously, [ is
associative (A), commutative (C), idempotent (I), and has _ as its unit element
(U). It can be extended to sets of terms: T1 [ T2 :“ {t1 [ t2 | t1 P T1, t2 P T2}. It
is easy to see that [ on sets also satisfies the ACIU properties with the set {_}
playing the role of the unit element.
Lemma 2. A finite set of terms T is pR, λq-consistent iff

Ű
tPT rpcR,λptq ‰ H.

Proof. p⇒q If s »R,λ t for all t P T , then st P rpcR,λptq, where st is obtained
from s by replacing all subterms that are irrelevant for its pR, λq-proximity to t
by _. Assume T “ {t1, . . . , tn}. Then st1 [ · · · [ stn

P Ű
tPT rpcR,λptq.

p⇐q Obvious, since s »R,λ t for s P Ű
tPT rpcR,λptq and for all t P T . �

Now we design an algorithm C that computes
Ű

tPT rpcR,λptq without actu-
ally computing rpcR,λptq for each t P T . A special version of the algorithm can
be used to decide the pR, λq-consistency of T .

The algorithm is rule-based. The rules work on states, that are pairs I; s,
where s is a term and I is a finite set of expressions of the form x in T , where
T is a finite set of terms. R and λ are given. There are two rules (Z stands for
disjoint union):
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Rem: Removing the empty set
{x in H} Z I; s “⇒ I; s{x �→ _}.

Red: Reduce a set to new sets
{x in {t1, . . . , tm}} Z I; s “⇒ {y1 in T1, . . . , yn in Tn} Y I; s{x �→ hpy1, . . . , ynq},
where m ě 1, h is an n-ary function symbol such that h „ρk

R,γk
headptkq with

γk ě λ for all 1 ď k ď m, and Ti :“ {tk|j | pi, jq P ρk, 1 ď k ď m}, 1 ď i ď n,
is the set of all those arguments of the terms t1, . . . , tm that are supposed to be
pR, λq-proximal to the i’s argument of h.

To compute
Ű

tPT rpcR,λptq, C starts with {x in T};x and applies the rules
as long as possible. Red causes branching. A state of the form H; s is called
a success state. A failure state has the form I; s, to which no rule applies and
I ‰ H. In the full derivation tree, each leaf is a either success or a failure state.

Example 4. Assume a, b, c are constants, g, f, h are function symbols with the
arities respectively 1, 2, and 3. Let λ be given and R be defined so that Rpa, bq ě
λ, Rpb, cq ě λ, h „{p1,1q,p1,2q}

R,β f , h „{p2,1q}
R,γ g with β ě λ and γ ě λ. Then

rpcR,λpfpa, cqq “ {fpa, cq, fpb, cq, fpa, bq, fpb, bq, hpb,_,_q},

rpcR,λpgpaqq “ {gpaq, gpbq, hp_, a,_q, hp_, b,_q},

and rpcR,λpfpa, cqq[rpcR,λpgpaqq “ {hpb, a,_q, hpb, b,_q}. We show how to
compute this set with C: {x in {fpa, cq, gpaq}}; x “⇒Red {y1 in {a, c}, y2 :
{a}, y3 in H}; hpy1, y2, y3q “⇒Rem {y1 in {a, c}, y2 : {a}}; hpy1, y2,_q “⇒Red
{y2 in {a}};hpb, y2,_q. Here we have two ways to apply Red to the last
state, leading to two elements of rpcR,λpfpa, cqq [ rpcR,λpgpaqq: hpb, a,_q and
hpb, b,_q.
Theorem 2. Given a finite set of terms T , the algorithm C always terminates
starting from the state {x in T};x (where x is a fresh variable). If S is the set
of success states produced at the end, we have {s | H; s P S} “ Ű

tPT rpcR,λptq.
Proof. Termination: Associate to each state {x1 in T1, . . . xn in Tn}; s the multi-
set {d1, . . . , dn}, where di is the maximum depth of terms occurring in Ti. di “ 0
if Ti “ H. Compare these multisets by the Dershowitz-Manna ordering [5]. Each
rule strictly reduces them, which implies termination.

By the definitions of rpcR,λ and [, hps1, . . . , snq P Ű
tP{t1,...,tm} rpcR,λptq iff

h „ρk

R,γk
headptkq with γk ě λ for all 1 ď k ď m and si P Ű

tPTi
rpcR,λptq, where

Ti “ {tk|j | pi, jq P ρk, 1 ď k ď m}, 1 ď i ď n. Therefore, in the Rem rule,
the instance of x (which is hpy1, . . . , ynq) is in

Ű
tP{t1,...,tm} rpcR,λptq iff for each

1 ď i ď n we can find an instance of yi in
Ű

tPTi
rpcR,λptq. If Ti is empty, it

means that the i’s argument of h is irrelevant for terms in {t1, . . . , tm} and can be
replaced by _. (Rem does it in a subsequent step.) Hence, in each success branch
of the derivation tree, the algorithm C computes one element of

Ű
tPT rpcR,λptq.

Branching at Red helps produce all elements of
Ű

tPT rpcR,λptq. �
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It is easy to see how to use C to decide the pR, λq-consistency of T : it is
enough to find one successful branch in the C-derivation tree for {x in T};x.
If there is no such branch, then T is not pR, λq-consistent. In fact, during the
derivation we can even ignore the second component of the states.

4 Solving Generalization Problems

Now we can reformulate the anti-unification problem that will be solved in the
remaining part of the paper. R is a proximity relation and λ is a cut value.

Given: R, λ, and the ground terms t1, . . . , tn, n ě 2.

Find: a set S of tuples pr, σ1, . . . , σn, α1, . . . ,αnq such that

– {r | pr, . . .q P S} is an pR, λq-mcsrg of t1, . . . , tn,
– rσi »R,λ ti and αi “ gdubR,λpr, tiq, 1 ď i ď n, for each

pr, σ1, . . . , σn, α1, . . . ,αnq P S.

(When n “ 1, this is a problem of computing a relevant proximity class of
a term.) Below we give a set of rules, from which one can obtain algorithms to
solve the anti-unification problem for four versions of argument relations:

1. The most general (unrestricted) case; see algorithm A1 below, the computed
set of generalizations is an mcsrg;

2. Correspondence relations: using the same algorithm A1, the computed set of
generalizations is an mcsg;

3. Mappings: using a dedicated algorithm A2, the computed set of generaliza-
tions is an mcsrg;

4. Correspondence mappings (bijections): using the same algorithm A2, the com-
puted set of generalizations is an mcsg.

Each of them has also the corresponding linear variant, computing minimal
complete sets of (relevant) linear pR, λq-generalizations. They are denoted by
adding the superscript lin to the corresponding algorithm name: Alin

1 and Alin
2 .

For simplicity, we formulate the algorithms for the case n “ 2. They can be
extended for arbitrary n straightforwardly.

The main data structure in these algorithms is an anti-unification triple
(AUT) x : T1 fi T2, where T1 and T2 are finite consistent sets of ground terms.
The idea is that x is a common generalization of all terms in T1 Y T2. A config-
uration is a tuple A;S; r; α1; α2, where A is a set of AUTs to be solved, S is a
set of solved AUTs (the store), r is the generalization computed so far, and the
α’s are the current approximations of generalization degree upper bounds of r
for the input terms.

Before formulating the rules, we discuss one peculiarity of approximate gen-
eralizations:

Example 5. For a given R and λ, assume Rpa, bq ě λ, Rpb, cq ě λ, h „{p1,1q,p1,2q}
R,α

f and h „{p1,1q}
R,β g, where f is binary, g, h are unary, α ě λ and β ě λ. Then
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– hpbq is an pR, λq-generalization of fpa, cq and gpaq.
– x is the only pR, λq-generalization of fpa, dq and gpaq. One may be tempted

to have h as the head of the generalization, e.g., hpxq, but x cannot be instan-
tiated by any term that would be pR, λq-close to both a and d, since in the
given R, d is pR, λq-close only to itself. Hence, there would be no instance of
hpxq that is pR, λq-close to fpa, dq. Since there is no other alternative (except
h) for the common neighbor of f and g, the generalization should be a fresh
variable x.

This example shows that generalization algorithms should take into account not
only the heads of the terms to be generalized, but also should look deeper, to
make sure that the arguments grouped together by the given argument relation
have a common neighbor. This justifies the requirement of consistency of a set
of arguments, the notion introduced in the previous section and used in the
decomposition rule below.

4.1 Anti-unification for Unrestricted Argument Relations

Algorithms Alin
1 and A1 use the rules below to transform configurations into

configurations. Given R, λ, and the ground terms t1 and t2, we create the initial
configuration {x : {t1} fi {t2}}; H;x; 1; 1 and apply the rules as long as possible.
Note that the rules preserve consistency of AUTs. The process generates a finite
complete tree of derivations, whose terminal nodes have configurations with the
first component empty. We will show how from these terminal configurations one
collects the result as required in the anti-unification problem statement.

Tri: Trivial
{x : H fi H} Z A; S; r; α1; α2 “⇒ A; S; r{x �→ _}; α1; α2.

Dec: Decomposition
{x : T1 fi T2} Z A;S; r; α1; α2 “⇒

{yi : Qi1 fi Qi2 | 1 ď i ď n} Y A;S; r{x �→ hpy1, . . . , ynq}; α1 ^ β1; α2 ^ β2,

where T1 Y T2 ‰ H; h is n-ary with n ě 0; y1, . . . , yn are fresh; and for j “ 1, 2,
if Tj “ {tj1, . . . , t

j
mj

}, then

– h „ρ
j
k

R,γj
k

headptjkq with γ
j
k ě λ for all 1 ď k ď mj and βj “ γ

j
1 ^ · · · ^ γj

mj

(note that βj “ 1 if mj “ 0),
– for all 1 ď i ď n, Qij “ Ymj

k“1{tjk|q | pi, qq P ρ
j
k} and is pR, λq-consistent.

Sol: Solving
{x : T1 fi T2} Z A; S; r; α1; α2 “⇒ A; {x : T1 fi T2} Y S; r; α1; α2,
if Tri and Dec rules are not applicable. (It means that at least one Ti ‰ H and
either there is no h as it is required in the Dec rule, or at least one Qij from Dec
is not pR, λq-consistent.)
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Let expand be an expansion operation defined for sets of AUTs as

expandpSq :“ {x :
ę

tPT1

rpcR,λptq �
ę

tPT2

rpcR,λptq | x : T1 � T2 P S}.

Exhaustive application of the three rules above leads to configurations of the
form H;S; r; α1; α2, where r is a linear term. These configurations are further
postprocessed, replacing S by expandpSq. We will use the letter E for expanded
stores. Hence, terminal configurations obtained after the exhaustive rule appli-
cation and expansion have the form H;E; r; α1; α2, where r is a linear term.1
This is what Algorithm Alin

1 stops with.
To an expanded store E “ {y1 : Q11 fi Q12, . . . , yn : Qn1 fi Qn2} we associate

two sets of substitutions ΣLpEq and ΣRpEq, defined as follows: σ P ΣLpEq (resp.
σ P ΣRpEq) iff dompσq “ {y1, . . . , yn} and yiσ P Qi1 (resp. yiσ P Qi2) for each
1 ď i ď n. We call them the sets of witness substitutions.

Configurations containing expanded stores are called expanded configurations.
From each expanded configuration C “ H;E; r; α1; α2, we construct the set
SpCq :“ {pr, σ1, σ2, α1, α2q | σ1 P ΣLpEq, σ2 P ΣRpEq}.

Given an anti-unification problem R, λ, t1 and t2, the answer computed by
Algorithm Alin

1 is the set S :“ Ym
i“1SpCiq, where C1, . . . , Cm are all of the final

expanded configurations reached by Alin
1 for R, λ, t1, and t2.2

Example 6. Assume a, b, c and d are constants with b „H
R,0.5 c, c „H

R,0.6 d, and f ,
g and h are respectively binary, ternary and quaternary function symbols with
h „{p1,1q,p3,2q,p4,2q}

R,0.7 f and h „{p1,1q,p3,3q}
R,0.8 g. For the proximity relation R given in

this way and λ “ 0.5, Algorithm Alin
1 performs the following steps to anti-unify

fpa, bq and gpa, c, dq:
{x : {fpa, bq} fi {gpa, c, dq}}; H;x; 1; 1 “⇒Dec

{x1 : {a} fi {a}, x2 : H fi H, x3 : {b} fi {d},

x4 : {b} fi H}; H;hpx1, x2, x3, x4q; 0.7; 0.8 “⇒Dec

{x2 : H fi H, x3 : {b} fi {d}, x4 : {b} fi H}; H;hpa, x2, x3, x4q; 0.7; 0.8 “⇒Tri

{x3 : {b} fi {d}, x4 : {b} fi H}; H;hpa,_, x3, x4q; 0.7; 0.8 “⇒Dec

{x4 : {b} fi H}; H;hpa,_, c, x4q; 0.5; 0.6.

Here Dec applies in two different ways, with the substitutions {x4 �→ b}
and {x4 �→ c}, leading to two final configurations: H; H;hpa,_, c, bq; 0.5; 0.6 and
H; H;hpa,_, c, cq; 0.5; 0.6. The witness substitutions are the identity substitu-
tions. We have Rphpa,_, c, bq, fpa, bqq “ 0.5, Rphpa,_, c, bq, gpa, c, dqq “ 0.6,
Rphpa,_, c, cq, fpa, bqq “ 0.5, and Rphpa,_, c, cq, gpa, c, dqq “ 0.6.

If we had h „{p1,1q,p1,2q,p4,2q}
R,0.7 f , then the algorithm would perform only the

Sol step, because in the attempt to apply Dec to the initial configuration, the set
1 Note that no side of the AUTs in E in those configurations is empty due to the

condition at the Decomposition rule requiring the Qij ’s to be pR, λq-consistent.
2 If we are interested only in linear generalizations without witness substitutions, there

is no need in computing expanded configurations in Alin
1 .
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Q11 “ {a, b} is inconsistent: rpcR,λpaq “ {a}, rpcR,λpbq “ {b, c}, and, hence,
rpcR,λpaq [ rpcR,λpbq “ H.

Algorithm A1 is obtained by further transforming the expanded configura-
tions produced by Alin

1 . This transformation is performed by applying the Merge
rule below as long as possible. Intuitively, its purpose is to make the linear gen-
eralization obtained by Alin

1 less general by merging some variables.

Mer: Merge
H; {x1 : R11 fi R12, x2 : R21 fi R22} Z E; r; α1; α2 “⇒

H; {y : Q1 fi Q2} Y E; rσ; α1; α2,

where Qi “ pR1i [ R2iq ‰ H, i “ 1, 2, y is fresh, and σ “ {x1 �→ y, x2 �→ y}.

The answer computed by A1 is defined similarly to the answer computed by Alin
1 .

Example 7. Assume a, b are constants, f1, f2, g1, and g2 are unary function
symbols, p is a binary function symbol, and h1 and h2 are ternary function
symbols. Let λ be a cut value and R be defined as fi „{p1,1q}

R,αi
hi and gi „{p1,2q}

R,βi
hi

with αi ě λ, βi ě λ, i “ 1, 2. To generalize ppf1paq, g1pbqq and ppf2paq, g2pbqq,
we use A1. The derivation starts as

{x : {ppf1paq, g1pbqq} fi {ppf2paq, g2pbqq}}; H; x; 1; 1 “⇒Dec

{y1 : {f1paq} fi {f2paq}, y2 : {g1pbq} fi {g2pbq}}; H; ppy1, y2q; 1; 1 “⇒2
Sol

H; {y1 : {f1paq} fi {f2paq}, y2 : {g1pbq} fi {g2pbq}}; ppy1, y2q; 1; 1.

At this stage, we expand the store, obtaining

H; {y1 : {f1paq, h1pa,_,_q} fi {f2paq, h2pa,_,_q},

y2 : {g1pbq, h1p_, b,_q} fi {g2pbq, h2p_, b,_q}}; ppy1, y2q; 1; 1.

If we had the standard intersection X in the Mer rule, we would not be able to
merge y1 and y2, because the obtained sets in the corresponding AUTs are dis-
joint. However, Mer uses [: we have {fipaq, hipa,_,_q} [ {gipbq, hip_, b,_q} “
{hipa, b,_q}, i “ 1, 2 and, therefore, can make the step

H; {y1 : {f1paq, h1pa,_,_q} fi {f2paq, h2pa,_,_q},

y2 : {g1pbq, h1p_, b,_q} fi {g2pbq, h2p_, b,_q}}; ppy1, y2q; 1; 1 “⇒Mer

H; {z : {h1pa, b,_q} fi {h2pa, b,_q}}; ppz, zq; 1; 1.

Indeed, if we take the witness substitutions σi “ {z �→ hipa, b,_q}, i “ 1, 2, and
apply them to the obtained generalization, we get

ppz, zqσ1 “ pph1pa, b,_q, h1pa, b,_qq »R,λ ppf1paq, g1pbqq,
ppz, zqσ2 “ pph2pa, b,_q, h2pa, b,_qq »R,λ ppf2paq, g2pbqq.

Theorem 3. Given R, λ, and the ground terms t1 and t2, Algorithm A1 ter-
minates for {x : {t1} fi {t2}}; H;x; 1; 1 and computes an answer set S such
that
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1. the set {r | pr, σ1, σ2, α1, α2q P S} is an pR, λq-mcsrg of t1 and t2,
2. for each pr, σ1, σ2, α1, α2q P S we have Rprσi, tiq ď αi “ gdubR,λpr, tiq, i “

1, 2.

Proof. Termination: Define the depth of an AUT x : {t1, . . . , tm} fi {s1, . . . ,
sn} as the depth of the term fpgpt1, . . . , tmq, hps1, . . . , snqq. The rules Tri, Dec,
and Sol strictly reduce the multiset of depths of AUTs in the first component
of the configurations. Mer strictly reduces the number of distinct variables in
generalizations. Hence, these rules cannot be applied infinitely often and A1

terminates.

In order to prove (1), we need to verify three properties:

– Soundness: If pr, σ1, σ2, α1, α2q P S, then r is a relevant pR, λq-generalization
of t1 and t2.

– Completeness: If r′ is a relevant pR, λq-generalization of t1 and t2, then there
exists pr, σ1, σ2, α1, α2q P S such that r′ À r.

– Minimality: If r and r′ belong to two tuples from S such that r ‰ r′, then
neither r ≺R,λ r′ nor r′ ≺R,λ r.

Soundness: We show that each rule transforms an pR, λq-generalization into an
pR, λq-generalization. Since we start from a most general pR, λq-generalization
of t1 and t2 (a fresh variable x), at the end of the algorithm we will get an
pR, λq-generalization of t1 and t2. We also show that in this process all irrele-
vant positions are abstracted by anonymous variables, to guarantee that each
computed generalization is relevant.

Dec: The computed h is pR, λq-close to the head of each term in T1 Y T2. Qij ’s
correspond to argument relations between h and those heads, and each Qij is
pR, λq-consistent, i.e., there exists a term that is pR, λq-close to each term in
Qij . It implies that xσ “ hpy1, . . . , ynq pR, λq-generalizes all the terms from
T1 YT2. Note that at this stage, hpy1, . . . , ynq might not yet be a relevant pR, λq-
generalization of T1 and T2: if there exists an irrelevant position 1 ď i ď n for
the pR, λq-generalization of T1 and T2, then in the new configuration we will
have an AUT yi : H fi H.

Tri: When Dec generates y : H fi H, the Tri rule replaces y by _ in the computed
generalization, making it relevant.

Sol does not change generalizations.
Mer merges AUTs whose terms have nonempty intersection of rpc’s. Hence,

we can reuse the same variable in the corresponding positions in generalizations,
i.e., Mer transforms a generalization computed so far into a less general one.

Completeness: We prove a slightly more general statement. Given two finite
consistent sets of ground terms T1 and T2, if r′ is a relevant pR, λq-generalization
for all t1 P T1 and t2 P T2, then starting from {x : T1 fi T2}; H;x; 1; 1, Algorithm
A1 computes a pr, σ1, σ2, α1, α2q such that r′ À r.

We may assume w.l.o.g. that r′ is a relevant pR, λq-lgg. Due to the transitivity
of À, completeness for such an r′ will imply it for all terms more general than r′.
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We proceed by structural induction on r′. If r′ is a (named or anonymous)
variable, the statement holds. Assume r′ “ hpr′

1, . . . , r
′
nq, T1 “ {u1, . . . , um},

and T2 “ {w1, . . . , wl}. Then h is such that h „ρi

R,βi
headpuiq for all 1 ď i ď m

and h „μj

R,γj
headpwjq for all 1 ď j ď l. Moreover, each r′

k is a relevant pR, λq-
generalization of Qk1 “ Ym

i“1{ui|q | pk, qq P ρi} and Qk2 “ Yl
j“1{wj |q | pk, qq P

μj} and, hence, Qk1 and Qk2 are pR, λq-consistent. Therefore, we can perform a
step by Dec, choosing hpy1, . . . , ykq as the generalization term and yi : Qi1 fi Qi2

as the new AUTs. By the induction hypothesis, for each 1 ď i ď n we can
compute a relevant pR, λq-generalization ri for Qi1 and Qi2 such that r′

i À ri.
If r′ is linear, then the combination of the current Dec step with the deriva-

tions that lead to those ri’s computes a tuple pr, . . .q P S, where r “ hpr1, . . . , rnq
and, hence, r′ À r.

If r′ is non-linear, assume without loss of generality that all occurrences of a
shared variable z appear as the direct arguments of h: z “ r′

k1
“ · · · “ r′

kp
for

1 ď k1 < · · · < kp ď n. Since r′ is an lgg, Qki1 and Qki2 cannot be generalized by
a non-variable term, thus, Tri and Dec are not applicable. Therefore, the AUTs
yi : Qki1 fi Qki2 would be transformed by Sol. Since all pairs Qki1 and Qki2,
1 ď i ď p, are generalized by the same variable, we have [tPQj

rpcR,λptq ‰ H,
where Qj “ Yp

i“1Qkij , j “ 1, 2. Additionally, r′
k1

, . . . , r′
kp

are all occurrences of z

in r′. Hence, the condition of Mer is satisfied and we can extend our derivation
with p ´ 1-fold application of this rule, obtaining r “ hpr1, . . . , rnq with z “
rk1 “ · · · “ rkp

, implying r′ À r.

Minimality: Alternative generalizations are obtained by branching in Dec or Mer.
If the current generalization r is transformed by Dec into two generalizations
r1 and r2 on two branches, then r1 “ h1py1, . . . , ymq and r2 “ h2pz1, . . . , znq
for some h’s, and fresh y’s and z’s. It may happen that r1 ÀR,λ r2 or vice
versa (if h1 and h2 are pR, λq-close to each other), but neither r1 ≺R,λ r2 nor
r2 ≺R,λ r1 holds. Hence, the set of generalizations computed before applying
Mer is minimal. Mer groups AUTs together maximally, and different groupings
are not comparable. Therefore, variables in generalizations are merged so that
distinct generalizations are not ≺R,λ-comparable. Hence, (1) is proven.

As for (2), for i “ 1, 2, from the construction in Dec follows Rprσi, tiq ď αi.
Mer does not change αi, thus, αi “ gdubR,λpr, tiq also holds, since the way how αi

is computed corresponds exactly to the computation of gdubR,λpr, tiq: r ÀR,λ ti
and only the decomposition changes the degree during the computation. �

The corollary below is proved similarly to Theorem 3:

Corollary 1. Given R, λ, and the ground terms t1 and t2, Algorithm Alin
1 ter-

minates for {x : {t1} fi {t2}}; H;x; 1; 1 and computes an answer set S such
that

1. the set {r | pr, σ1, σ2, α1, α2q P S} is a minimal complete set of relevant linear
pR, λq-generalizations of t1 and t2,

2. for each pr, σ1, σ2, α1, α2q P S we have Rprσi, tiq ď αi “ gdubR,λpr, tiq, i “
1, 2.
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4.2 Anti-unification with Correspondence Argument Relations

Correspondence relations make sure that for a pair of proximal symbols, no
argument is irrelevant for proximity. Left- and right-totality of those relations
guarantee that each argument of a term is close to at least one argument of its
proximal term and the inverse relation remains a correspondence relation. Con-
sequently, in the Dec rule of A1, the sets Qij never get empty. Therefore, the Tri
rule becomes obsolete and no anonymous variable appears in generalizations. As
a result, the pR, λq-mcsrg and the pR, λq-mcsg coincide, and the algorithm com-
putes a solution from which we get an pR, λq-mcsg for the given anti-unification
problem. The linear version Alin

1 works analogously.

4.3 Anti-unification with Argument Mappings

When the argument relations are mappings, we are able to design a more con-
structive method for computing generalizations and their degree bounds (Recall
that our mappings are partial injective functions, which guarantees that their
inverses are also mappings.) We denote this algorithm by A2. The configurations
stay the same as in before, but the AUTs in A will contain only empty or single-
ton sets of terms. In the store, we may still get (after the expansion) AUTs with
term sets containing more than one element. Only the Dec rule differs from its
previous counterpart, having a simpler condition:

Dec: Decomposition
{x : T1 fi T2} Z A;S; r; α1; α2 “⇒

{yi : Qi1 fi Qi2 | 1 ď i ď n} Y A;S; r{x �→ hpy1, . . . , ynq}; α1 ^ β1; α2 ^ β2,

where T1 Y T2 ‰ H; h is n-ary with n ě 0; y1, . . . , yn are fresh; for j “ 1, 2 and
for all 1 ď i ď n, if Tj “ {tj} then h „πj

R,βj
headptjq and Qij “ {tj |πjpiq}, and if

Tj “ H then βj “ 1 and Qij “ H.

This Dec rule is equivalent to the special case of Dec for argument relations
where mj ď 1. The new Qij ’s contain at most one element (due to mappings)
and, thus, are always pR, λq-consistent. Various choices of h in Dec and alterna-
tives in grouping AUTs in Mer cause branching in the same way as in A1. It is
easy to see that the counterparts of Theorem 3 hold for A2 and Alin

2 as well.
A special case of this fragment of anti-unification is anti-unification for sim-

ilarity relations in fully fuzzy signatures from [1]. Similarity relations are min-
transitive proximity relations. The position mappings in [1] can be modeled by
our argument mappings, requiring them to be total for symbols of the smaller
arity and to satisfy the similarity-specific consistency restrictions from [1].

4.4 Anti-unification with Correspondence Argument Mappings

Correspondence argument mappings are bijections between arguments of func-
tion symbols of the same arity. For such mappings, if h »π

R,λ f and h is n-ary,
then f is also n-ary and π is a permutation of p1, . . . , nq. Hence, A2 combines
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in this case the properties of A1 for correspondence relations (Sect. 4.2) and of
A2 for argument mappings (Sect. 4.3): all generalizations are relevant, computed
answer gives an mcsg of the input terms, and the algorithm works with term
sets of cardinality at most 1.

5 Remarks About the Complexity

The proximity relation R can be naturally represented as an undirected graph,
where the vertices are function symbols and an edge between them indicates that
they are proximal. Graphs induced by proximity relations are usually sparse.
Therefore we can represent them by (sorted) adjacency lists. In the adjacency
lists, we can also accommodate the argument relations and proximity degrees.

In the rest of this section we use the following notation:

– n: the size of the input (number of symbols) of the corresponding algorithms,
– Δ: the maximum degree of R considered as a graph,
– a: the maximum arity of function symbols that occur in R.
– m•n: a function defined on natural numbers m and n such that 1•n “ n and

m•n “ mn for m ‰ 1.

We assume that the given anti-unification problem is represented as a com-
pletely shared directed acyclic graph (dag). Each node of the dag has a pointer
to the adjacency list (with respect to R) of the symbol in the node.

Theorem 4. Time complexities of C and the linear versions of the generaliza-
tion algorithms are as follows:

– C for argument relations and Alin
1 : Opn · Δ · Δ•a•nq,

– C for argument mappings and Alin
2 : Opn · Δ · Δ•nq.

Proof (Sketch). In C, in the case of argument relations, an application of the Red
rule to a state I; s replaces one element of I of size m by at most a new elements,
each of them of size m ´ 1. Hence, one branch in the search tree for C, starting
from a singleton set I of size n, will have the length at most l “ ∑n´1

i“0 ai. At each
node on it there are at most Δ choices of applying Red with different h’s, which
gives the total size of the search tree to be at most

∑l´1
i“0 Δi, i.e., the number

of steps performed by C in the worst case is OpΔ•a•nq. Those different h’s are
obtained by intersecting the proximity classes of the heads of terms {t1, . . . , tm}
in the Red rule. In our graph representation of the proximity relation, proximity
classes of symbols are exactly the adjacency lists of those symbols which we
assume are sorted. Their maximal length is Δ. Hence, the work to be done at
each node of the search tree of C is to find the intersection of at most n sorted
lists, each containing at most Δ elements. It needs Opn · Δq time. It gives the
time complexity Opn · Δ · Δ•a•nq of C for the relation case.

In the mapping case, an application of the Red rule to a state I; s replaces
one element of I of size m by at most a new elements of the total size m ´ 1.
Therefore, the maximal length of a branch is n, the branching factor is Δ, and
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the amount of work at each node, like above, is Opn · Δq. Hence, the number of
steps in the worst case is OpΔ•nq and the time complexity of C is Opn ·Δ ·Δ•nq.

The fact that consistency check is incorporated in the Dec rule in Alin
1 can be

used to guide the application of this rule, using the values memoized by the pre-
vious applications of Red. The very first time, the appropriate h in Dec is chosen
arbitrarily. In any subsequent application of this rule, h is chosen according to
the result of the Red rule that has already been applied to the arguments of the
current AUT for their consistency check, as required by the condition of Dec. In
this way, the applications of Dec and Sol will correspond to the applications of
Red. There is a natural correspondence between the applications of Rem and Tri
rules. Therefore, Alin

1 will have the search tree analogous to that of C. Hence the
complexity of Alin

1 is Opn ·Δ ·Δ•a•nq. Alin
2 does not call the consistency check, but

does the same work as C and, hence, has the same complexity Opn · Δ · Δ•nq. �

6 Discussion and Conclusion

The diagram below illustrates the connections between different anti-unification
problems based on argument relations:

unrestricted relations

unrestricted mappings

correspondence relations

correspondence mappings

The arrows indicate the direction from more general problems to more spe-
cific ones. For the unrestricted cases (left column) we compute mcsrg’s. For
correspondence relations and correspondence mappings (right column), mcsg’s
are computed. (In fact, for them, the notions of mcsrg and mcsg coincide). The
algorithms for relations (upper row) are more involved than those for mappings
(lower row): Those for relations deal with AUTs containing arbitrary sets of
terms, while for mappings, those sets have cardinality at most one, thus sim-
plifying the conditions in the rules. Moreover, the two cases in the lower row
generalize the existing anti-unification problems:

– the unrestricted mappings case generalizes the problem from [1] by extending
similarity to proximity and relaxing the smaller-side-totality restriction;

– the correspondence mappings case generalizes the problem from [9] by allow-
ing permutations between arguments of proximal function symbols.

All our algorithms can be easily turned into anti-unification algorithms for
crisp tolerance relations3 by taking lambda-cuts and ignoring the computation of
the approximation degrees. Besides, they are modular and can be used to com-
pute only linear generalizations by just skipping the merging rule. We provided
complexity estimations for the algorithms that compute linear generalizations
(that often are of practical interest).
3 Tolerance: reflexive, symmetric, not necessarily transitive relation. According to

Poincaré, a fundamental notion for mathematics applied to the physical world.
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In this paper, we did not consider cases when the same pair of symbols is
related to each other by more than one argument relation. Our results can be
extended to them, that would open a way towards approximate anti-unification
modulo background theories specified by shallow collapse-free axioms. Another
interesting direction of future work would be extending our results to quantita-
tive algebras [10] that also deal with quantitative extensions of equality.

Acknowledgments. Supported by the Austrian Science Fund, project P 35530.
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Abstract. Automated theorem provers (ATPs) are today used to attack
open problems in several areas of mathematics. An ongoing project by
Kinyon and Veroff uses Prover9 to search for the proof of the Abelian
Inner Mapping (AIM) Conjecture, one of the top open conjectures in
quasigroup theory. In this work, we improve Prover9 on a benchmark
of AIM problems by neural synthesis of useful alternative formulations
of the goal. In particular, we design the 3SIL (stratified shortest solu-
tion imitation learning) method. 3SIL trains a neural predictor through
a reinforcement learning (RL) loop to propose correct rewrites of the
conjecture that guide the search.

3SIL is first developed on a simpler, Robinson arithmetic rewriting
task for which the reward structure is similar to theorem proving. There
we show that 3SIL outperforms other RL methods. Next we train 3SIL
on the AIM benchmark and show that the final trained network, deciding
what actions to take within the equational rewriting environment, proves
70.2% of problems, outperforming Waldmeister (65.5%). When we com-
bine the rewrites suggested by the network with Prover9, we prove 8.3%
more theorems than Prover9 in the same time, bringing the performance
of the combined system to 90%.

Keywords: Automated theorem proving · Machine learning

1 Introduction

Machine learning (ML) has recently proven its worth in a number of fields, rang-
ing from computer vision [17], to speech recognition [15], to playing games [28,40]
with reinforcement learning (RL) [45]. It is also increasingly applied in auto-
mated and interactive theorem proving. Learned predictors have been used for
premise selection [1] in hammers [6], to improve clause selection in saturation-
based theorem provers [9], to synthesize functions in higher-order logic [12], and
to guide connection-tableau provers [21] and interactive theorem provers [2,5,14].

Future growth of the knowledge base of mathematics and the complexity of
mathematical proofs will increase the need for proof checking and its better com-
puter support and automation. Simultaneously, the growing complexity of soft-
ware will increase the need for formal verification to prevent failure modes [10].
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Automated theorem proving and mathematics will benefit from more advanced
ML integration. One of the mathematical subfields that makes substantial use
of automated theorem provers is the field of quasigroup and loop theory [32].

1.1 Contributions

In this paper, we propose to use a neural network to suggest lemmas to the
Prover9 [25] ATP system by rewriting parts of the conjecture (Sect. 2). We test
our method on a dataset of theorems collected in the work on the Abelian Inner
Mapping (AIM) Conjecture [24] in loop theory. For this, we use the AIMLEAP
proof system [7] as a reinforcement learning environment. This setup is described
in Sect. 3. For development we used a simpler Robinson arithmetic rewriting
task (Sect. 4). With the insights derived from this and a comparison with other
methods, we describe our own 3SIL method in Sect. 5. We use a neural network to
process the state of the proving attempt, for which the architecture is described
in Sect. 6. The results on the Robinson arithmetic task are described in Sect. 7.1.
We show our results on the AIMLEAP proving task, both using our predictor
as a stand-alone prover and by suggesting lemmas to Prover9 in Sect. 7.2. Our
contributions are:

1. We propose a training method for reinforcement learning in theorem proving
settings: stratified shortest solution imitation learning (3SIL). This method
is suited to the structure of theorem proving tasks. This method and the
reasoning behind it is explained in Sect. 5.

2. We show that 3SIL outperforms other baseline RL methods on a simpler,
Robinson arithmetic rewriting task for which the reward structure is similar
to theorem proving (Sect. 7.1).

3. We show that a standalone neurally guided prover trained by the 3SIL
method outperforms the hand-engineered Waldmeister prover on the AIM-
LEAP benchmark (Sect. 7.2).

4. We show that using a neural rewriting step that suggests rephrased versions
of the conjecture to be added as lemmas improves the ATP performance on
equational problems (Sects. 2 and 7.2).

2 ATP and Suggestion of Lemmas by Neural Rewriting

Saturation-based ATPs make use of the given clause [30] algorithm, which we
briefly explain as background. A problem is expressed as a conjunction of many
initial clauses (i.e., the clausified axioms and the negated goal which is always an
equation in the AIM dataset). The algorithm starts with all the initial clauses
in the unprocessed set. We then pick a clause from this set to be the given
clause and move it to the processed set and do all inferences with the clauses in
the processed set. The newly inferred clauses are added to the unprocessed set.
This concludes one iteration of the algorithm, after which we pick a new given
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Fig. 1. Schematic representation of the proposed guidance method. In the first phase,
we run a reinforcement learning loop to propose actions that rewrite a conjecture. This
predictor is trained using the AIMLEAP proof environment. We collect the rewrites
of the LHS and RHS of the conjecture. In the second phase, we add the rewrites to
the ATP search input, to act as guidance. In this specific example, we only rewrote
the conjecture for 1 step, but the added guidance lemmas are in reality the product of
many steps in the RL loop.

clause and repeat [23]. Typically, this approach is designed to be refutationally
complete, i.e., the algorithm is guaranteed to eventually find a contradiction if
the original goal follows from the axioms.

This process can produce a lot of new clauses and the search space can
become quite large. In this work, we modify the standard loop by adding useful
lemmas to the initial clause set. These lemmas are proposed by a neural network
that was trained from zero knowledge to rewrite the left- and right-hand sides of
the initial goal to make them equal by using the axioms as the available rewrite
actions. Even though the neural rewriting might not fully succeed, the rewrites
produced by this process are likely to be useful as additional lemmas when added
to the problem. This idea is schematically represented in Fig. 1.

3 AIM Conjecture and the AIMLEAP RL Environment

Automated theorem proving has been applied in the theory surrounding the
Abelian Inner Mapping Conjecture, known as the AIM Conjecture. This is one
of the top open conjectures in quasigroup theory. Work on the conjecture has
been going on for more than a decade. Automated theorem provers use hundreds
of thousands of inference steps when run on problems from this theory.

As a testbed for our machine learning and prover guidance methods we use
a previously published dataset of problems generated by the AIM conjecture [7].
The dataset comes with a simple prover called AIMLEAP that can take machine
learning advice.1 We use this system as an RL environment. AIMLEAP keeps the
state and carries out the cursor movements (the cursor determines the location
of the rewrite) and rewrites that a neural predictor chooses.
1 https://github.com/ai4reason/aimleap.

https://github.com/ai4reason/aimleap
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The AIM conjecture concerns specific structures in loop theory [24]. A loop
is a quasigroup with an identity element. A quasigroup is a generalization of a
group that does not preserve associativity. This manifests in the presence of two
different ‘division’ operators, one left-division (\) and one right-division (/). We
briefly explain the conjecture to show the nature of the data.

For loops, three inner mapping functions (left-translation L, right-translation
R, and the mapping T) are:

L(u, x, y) := (y ∗ x)\(y ∗ (x ∗ u))
R(u, x, y) := ((u ∗ x) ∗ y)/(x ∗ y)

T (u, x) := x\(u ∗ x)

These mappings can be seen as measures of the deviation from commutativity
and associativity. The conjecture concerns the consequences of these three inner
mapping functions forming an Abelian (commutative) group. There are two more
notions, that of the associator function a and the commutator function K :

a(x, y, z) := (x ∗ (y ∗ z))\((x ∗ y) ∗ z) K(x, y) := (y ∗ x)/(x ∗ y)

From these definitions, the conjecture can be stated. There are two parts to the
conjecture. For both parts, the following equalities need to hold for all u, v, x,
y, and z :

a(a(x, y, z), u, v) = 1 a(x, a(y, z, u), v) = 1 a(x, y, a(z, u, v)) = 1

where 1 is the identity element. These are necessary, but not sufficient for the
two main parts of the conjecture. The first part of the conjecture asks whether
a loop modulo its center is a group. In this context, the center is the set of all
elements that commute with all other elements. This is the case if

K(a(x, y, z), u) = 1.

The second part of the conjecture asks whether a loop modulo its nucleus is an
Abelian group. The nucleus is the set of elements that associate with all other
elements. This is the case if

a(K(x, y), z, u) = 1 a(x,K(y, z), u) = 1 a(x, y,K(z, u)) = 1

3.1 The AIMLEAP RL Environment

Currently, work in this area is done using automated theorem provers such as
Prover9 [24,25]. This has led to some promising results, but the search space
is enormous. The main strategy for proving the AIM conjecture thus far has
been to prove weaker versions of the conjecture (using additional assumptions)
and then import crucial proof steps into the stronger version of the proof. The
Prover9 theorem prover is especially suited to this approach because of its well-
established hints mechanism [48]. The AIMLEAP dataset is derived from this



Guiding an Automated Theorem Prover with Neural Rewriting 601

Prover9 approach and contains around 3468 theorems that can be proven with
the supplied definitions and lemmas [7].

There are 177 possible actions in the AIMLEAP environment [7]. We handle
the proof state as a tree, with the root node being an equality node. Three
actions are cursor movements, where the cursor can be moved to an argument
of the current position. The other actions all rewrite the current term at the
cursor position with various axioms, definitions and lemmas that hold in the
AIM context. As an example, this is one of the theorems in the dataset (\ and
= are part of the language):

T (T (T (x, T (x, y)\1), T (x, y)\1), y) = T ((T (x, y)\1)\1, T (x, y)\1) .

The task of the machine learning predictor is to process the proof state and
recognize which actions are most likely to lead to a proof, meaning that the two
sides of the starting equation are equal according to the AIMLEAP system. The
only feedback that the environment gives is whether a proof has been found or
not: there is no intermediate reward (i.e. rewards are sparse). The ramifications
of this are further discussed in Sect. 5.1.

4 Rewriting in Robinson Arithmetic as an RL Task

To develop a machine learning method that can help solve equational theorem
proving problems, we considered a simpler arithmetic task, which also has a tree-
structured input and a sparse reward structure: the normalization of Robinson
arithmetic expressions. The task is to normalize a mathematical expression to
one specific form. This task has been implemented as a Python RL environment,
which we make available.2 The learning environment incorporates an existing
dataset, constructed by Gauthier for RL experiments in the interactive theorem
prover HOL4 [11]. Our RL setup for the task is also modeled after [11].

In more detail, the formalism that we use as an RL environment is Robinson
arithmetic (RA). RA is a simple arithmetic theory. Its language contains the
successor function S, addition + and multiplication * and one constant, the 0.
The theory considers only non-negative numbers and we only use four axioms
of RA. Numbers are represented by the constant 0 with the appropriate number
of successor functions applied to it. The task for the agent is to rewrite an
expression until there are only nodes of the successor or 0 types. Effectively, we
are asking the agent to calculate the value of the expression. As an example,
S(S(0)) + S(0), representing 2 + 1, needs to be rewritten to S(S(S(0))).

The expressions are represented as a tree data structure. Within the environ-
ment, there are seven different rewrite actions available to the agent. The four
axioms (equations) defining these actions are x + 0 = x, x + S(y) = S(x + y),
x ∗ 0 = 0 and x ∗ S(y) = (x ∗ y) + x, where the agent can apply the equations
in either direction. There is one exception: the multiplication by 0 cannot be
applied from right to left, as this would require the agent to introduce a fresh
2 https://github.com/learningeqtp/rewriteRL.

https://github.com/learningeqtp/rewriteRL
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term which is out of scope for the current work. The place where the rewrite is
applied is denoted by the location of the cursor in the expression tree.

In addition to the seven rewrite actions, the agent can move the cursor to
one of the children of the current cursor node. This gives a total number of nine
actions. Moving to a child of a node with only one child counts as moving to
the left child. After a rewriting action, the cursor is reset to the root of the
expression. More details on the actions are in the RewriteRL repository.

5 Reinforcement Learning Methods

This section describes the reinforcement learning methods, while Sect. 6 then
further explains the particular neural architectures that are trained in the RL
loops. We first briefly explain here the approaches that we used as reinforcement
learning (RL) baselines, then we go into detail about the proposed 3SIL method.

5.1 Reinforcement Learning Baselines

General RL Setup. For comparison, we used implementations of four estab-
lished reinforcement learning baseline methods. In reinforcement learning, we
consider an agent that is acting within an environment. The agent can take
actions a from the action-space A to change the state s ∈ S of the environment.
The agent can be rewarded for certain actions taken in a certain states, with
reward given by the reward function R : (S × A) → R. The behavior of the
environment is given by the state transition function P : (S × A) → S. The
history of the agent’s actions and the environments states and rewards at each
timestep t are collected in tuples (st, at, rt). For a given history of a certain
agent within an environment, we call the list of tuples (st, at, rt) describing this
history an episode. The policy function π : S → A allows the agent to decide
which action to take. The agent’s goal is to maximize the return R: the sum of
discounted rewards

∑
t≥0 γtrt, where γ is a discount factor that allows control

over how heavily rewards further in the future should be weighted. We will use
Rt when we mean R, but calculated only from rewards from timestep t on. In
the end, we are thus looking for a policy function π that maximizes the sum R
of (discounted) expected rewards [45].

In our setting, every proof attempt (in the AIM setting) or normalization
attempt (in the Robinson arithmetic setting) corresponds to an episode. The
reward structure of theorem proving is such that there is only a reward of 1 at
the end of a successful episode (i.e. a proof was found in AIM). Unsuccessful
episodes get a reward of 0 at every timestep t.

A2C. The first method, Advantage Actor-Critic, or A2C [27] contains ideas on
which the other three RL baseline methods build, so we will go into more detail
for this method, while keeping the explanation for the other methods brief. For
details we refer to the corresponding papers.



Guiding an Automated Theorem Prover with Neural Rewriting 603

A2C attempts to find suitable parameters for an agent by minimizing a loss
function consisting of two parts:

L = LA2C
policy + LA2C

value .

In addition to the policy function π, the agent has access to a value function
V : S → R, that predicts the sum of future rewards obtained when given a state.
In practice, both the policy and the value function are computed by a neural
network predictor. The parameters of the predictor are set by stochastic gradient
descent to minimize L. The set of parameters of the predictor that defines the
policy function π is named θ, while the parameters that define the value function
are named μ. The first part of the loss is the policy loss, which for one time step
has the form

LA2C
policy = − log πθ(at|st)A(st, at) ,

where A(s, a) is the advantage function. The advantage function can be formu-
lated in multiple ways, but the simplest is as Rt − Vμ(st). That is to say: the
advantage of an action in a certain state is the difference between the discounted
rewards Rt after taking that action and the value estimate of the current state.

Minimizing LA2C
policy amounts to maximizing the log probability of predicting

actions that are judged by the advantage function to lead to high reward.
The value estimates Vμ(s) for computing the advantage function are supplied

by the value predictor Vμ with parameters μ, which is trained using the loss:

LA2C
value =

1
2

(Rt − Vμ(st))
2

,

which minimizes the advantage function. The logic of this is that the value
estimate at timestep t, Vμ(st), will learn to incorporate the later rewards Rt,
ensuring that when later seeing the same state, the possible future reward will
be considered. Note that the sets of parameters θ and μ are not necessarily
disjoint (see Sect. 6).

Note how the above equations are affected if there is no non-zero reward rt

obtained at any timestep. In that case, the value function Vμ(st) will estimate
(correctly) that any state will get 0 reward, which means that the advantage
function A(s, a) will also be 0 everywhere. This means that LA2C

policy will be 0
in most cases, which will lead to no or little change in the parameters of the
predictor: learning will be very slow. This is the difficult aspect of the structure
of theorem proving: there is only reward at the end of a successful proof, and
nowhere else. This implies a possible strategy is to imitate successful episodes,
without a value function. In this case, we would only need to train a policy
function, and no approximate value function. This an aspect we explore in the
design of our own method 3SIL, which we will explain shortly.

Compared to two-player games, such as chess and go, for which many
approaches have been tailored and successfully used [41], theorem-proving has
the property that it is hard to collect useful examples to learn from, as only
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successful proofs are likely to contain useful knowledge. In chess or go, however,
one player almost always wins and the other loses, which means that we can at
least learn from the difference between the two strategies used by those players.
As an example, we executed 2 million random proof attempts on the AIMLEAP
environment, which led to 300 proofs to learn from, whereas in a two-player
setting like chess, we would get 2 million games in which one player would likely
win.

ACER. The second RL baseline method we tested in our experiments is ACER,
Actor-Critic with Experience Replay [49]. This approach can make use of data
from older episodes to train the current predictor. ACER applies corrections to
the value estimates so that data from old episodes may be used to train the
current policy. It also uses trust region policy optimization [35] to limit the size
of the policy updates. This method is included as a baseline to check if using a
larger replay buffer to update the parameters would be advantageous.

PPO. Our third RL baseline is the widely used proximal policy optimization
(PPO) algorithm [36]. It restricts the size of the parameter update to avoid
causing a large difference between the original predictor’s behavior and the
updated version’s behavior. The method is related to the above trust region
policy optimization method. In this way, PPO addresses the training instability
of many reinforcement learning approaches. It has been used in various settings,
for example complex video games [4]. With its versatility, the PPO algorithm is
well-positioned. We use the PPO algorithm with clipped objective, as in [36].

SIL-PAAC. Our final RL baseline uses only the transitions with positive advan-
tage to train on for a portion of the training procedure, to learn more from good
episodes. This was proposed as self-imitation learning (SIL) [29]. To avoid con-
fusion with the method that we are proposing, we extend the acronym to SIL-
PAAC, for positive advantage actor-critic. This algorithm outperformed A2C
on the sparse-reward task Montezuma’s Revenge (a puzzle game). As theorem
proving has a sparse reward structure, we included SIL-PAAC as a baseline.
More information about the implementations for the baselines can be found in
the Implementation Details section at the end of this work.

5.2 Stratified Shortest Solution Imitation Learning

We introduce stratified shortest solution imitation learning (3SIL) to tackle the
equational theorem proving domain. It learns to explicitly imitate the actions
taken during the shortest solutions found for each problem in the dataset. We do
this by minimizing the cross-entropy −log p(asolution|st) between the predictor
output and the actions taken in the shortest solution. This is in contrast to the
baseline methods, where value functions are used to judge the utility of decisions.

In our procedure this is not the case. Instead, we build upon the assumption
for data selection that shorter proofs are better in the context of theorem proving
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Algorithm 1. CollectEpisode
Input: problem p, policy πθ, problem history H
Generate episode by following noisy version of πθ on p
If solution, add list of tuples (s, a) to H[p]
Keep k shortest solutions in H[p]

Algorithm 2. 3SIL
Input: set of problems P, randomly initialized policy πθ, batch size B, number of
batches NB, problem history H, number of warmup episodes m, number of episodes
f , max epochs ME
Output: trained policy πθ, problem history H
for e = 0 to ME − 1 do

if e = 0 then num = m else num = f
for i = 0 to num − 1 do

CollectEpisode(sample(P), πθ, H) (Algorithm 1)
end for
for i = 0 to NB − 1 do

Sample B tuples (s, a) with uniform probability for each problem from H
Update θ to lower − ∑B

b=0 log πθ(ab|sb) by gradient descent
end for

end for

and expression normalization. In a sense, we value decisions from shorter proofs
more and explicitly imitate those transitions. We keep a history H for each
problem, where we store the current shortest solution (states seen and actions
taken) found for that problem in the training dataset. We can also store multiple
shortest solutions for each problem if there are multiple strategies for a proof
(the number of solutions kept is governed by the parameter k).

During training, in the case k = 1, we sample state-action pairs from each
problem’s current shortest solution at an equal probability (if a solution was
found). To be precise, we first randomly pick a theorem for which we have a
solution, and then randomly sample one transition from the shortest encountered
solution. This directly counters one of the phenomena that we had observed: the
training examples for the baseline methods tend to be dominated by very long
episodes (as they contribute more states and actions). This stratified sampling
method ensures that problems with short proofs get represented equally in the
training process.

The 3SIL algorithm is described in more detail in Algorithm 2. Sampling from
a noisy version of policy πθ means that actions are sampled from the predictor-
defined distribution and in 5% of cases a random valid action is selected. This
is also known as the ε-greedy policy (with ε at 0.05).

Related Methods. Our approach is similar to the imitation learning algorithm
DAGGER (Dataset Aggregation), which was used for several games [34] and
modified for branch-and-bound algorithms in [16]. The behavioral cloning (BC)
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technique used in robotics [47] also shares some elements. 3SIL significantly
differs from DAGGER and BC because it does not use an outside expert to
obtain useful data, because of the stratified sampling procedure, and because of
the selection of the shortest solutions for each problem in the training dataset.
We include as an additional baseline an implementation of behavioral cloning
(BC), where we regard proofs already encountered as coming from an expert.
We minimize cross-entropy between the actions in proofs we have found and
the predictions to train the predictor. For BC, there is no stratified sampling
or shortest solution selection, only the minimization of cross-entropy between
actions taken from recent successful solutions and the predictor’s output.

Extensions. For the AIM tasks, we introduce two other techniques, biased
sampling and episode pruning. In biased sampling, problems without a solution
in the history are sampled 5 times more during episode collection than solved
problems to accelerate progress. This was determined by testing 1, 2, 5 and 10
as sampling proportions. For episode pruning, when the agent encountered the
same state twice, we prune the episode to exclude the looping before storing the
episode. This helps the predictor learn to avoid these loops.

6 Neural Architectures

The tree-structured states representing expressions occurring during the tasks
will be processed by a neural network. The neural network takes the tree-
structured state and predicts an action to take that will bring the expression
closer to being normalized or the theorem closer to being proven.

Successor Layer 16D 0-vector

Addition Layer

Processor Network

16D 0-vector

p(action | s) V(s)

Embedding

Fig. 2. Schematic representation of the creation of a representation of an expression (an
embedding) using different neural network layers to represent different operations. The
figure depicts the creation of a numerical representation for the Robinson arithmetic
expression (S(0) + 0). Note that the successor layer and the addition layer consist of
trainable parameters, for which the values are set through gradient descent.
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There are two main components to the neural network we use: an embed-
ding tree neural network that outputs a numerical vector representing the tree-
structured proof state and a second processor network that takes this vector
representation of the state and outputs a distribution of the actions possible in
the environment.3

Tree neural networks have been used in various settings, such as natural lan-
guage processing [20] and also in Robinson arithmetic expression embedding [13].
These networks consist of smaller neural networks, each representing one of the
possible functions that occur in the expressions. For example, there will be sep-
arate networks representing addition and multiplication. The cursor is a special
unary operation node with its own network that we insert into the tree at the
current location. For each unique constant, such as the constant 0 in RA or the
identity element 1 for the AIM task, we generate a random vector (from a stan-
dard normal distribution) that will represent this leaf. In the case of the AIM
task, these vectors are parameters that can be optimized during training.

At prediction time, the numerical representation of a tree is constructed by
starting at the leaves of the tree, for which we can look up the generated vectors.
These vectors act as input to the neural networks that represent the parent node’s
operation, yielding a new vector, which now represents the subtree of the parent
node. The process repeats until there is a single vector for the entire tree after
the root node is processed (see also Fig. 2).

The neural networks representing each operation consist of a linear transfor-
mation, a non-linearity in the form of a rectified linear unit (ReLU) and another
linear transformation. In the case of binary operations, the first linear transfor-
mation will have an input dimension of 2n and an output dimension of n, where
n is the dimension of the vectors representing leaves of the tree (the internal rep-
resentation size). The weights representing these transformations are randomly
initialized at the beginning of training.

When we have obtained a single vector embedding representing the entire tree
data structure, this vector serves as the input to the predictor neural network,
which consists of three linear layers, with non-linearities (Sigmoid/ReLU) in
between these layers. The last layer has an output dimension equal to the number
of possible actions in the environment. We obtain a probability distribution over
the actions, e.g. by applying the softmax function to the output of this last layer.
In the cases where we also need a value prediction, there is a parallel last layer
that predicts the state’s value (usually referred to as a two-headed network [41]).
The internal representation size n for the Robinson arithmetic experiments is set
to 16, for the AIM task this is 32. The number of neurons in each layer (except
for the last one) of the predictor networks is 64.

In the AIM dataset task, an arbitrary number of variables can be introduced
during the proof. These are represented by untrainable random vectors. We add a
special neural network (with the same architecture as the networks representing
unary operations, so from size n to n) that processes these vectors before they are

3 In the reinforcement learning baselines that we use, this second processor network
has the additional task of predicting the value of a state.
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processed by the rest of the tree neural network embedding. The idea is that this
neural network learns to project these new variable vectors into a subspace and
that an arbitrary number of variables can be handled. The vectors are resampled
at the start of each episode, so the agent cannot learn to recognize specific
variables. This approach was partly inspired by the prime mechanism in [13], but
we use separate vectors for all variables instead of building vectors sequentially.
All our neural networks are implemented using the PyTorch library [31].

7 Experiments

We first describe our experiments on the Robinson arithmetic task, with which
we designed the properties of our 3SIL approach with the help of comparisons
with other algorithms. We then train a predictor using 3SIL on the AIMLEAP
loop theory dataset, which we evaluate both as a standalone prover within the
RL environment and as a neural guidance mechanism for the ATP Prover9.

7.1 Robinson Arithmetic Dataset

Dataset Details. The Robinson arithmetic dataset [11] is split into three dis-
tinct sets, based on the number of steps that it takes a fixed rewriting strategy
to normalize the expression. This fixed strategy, LOPL, which stands for left
outermost proof length, always rewrites the leftmost possible element. If it takes
this strategy less than 90 steps to solve the problem, it is in the low difficulty
category. Problems with a difficulty between 90 and 130 are in the medium cat-
egory and a greater difficulty than 130 leads to the high category. The high
dataset also contains problems the LOPL strategy could not solve within the
time limit. The low dataset is split into a training and testing set. We train on
the low difficulty problems, but after training we also test on problems with a
higher difficulty. Because we have a difficulty measure for this dataset, we use a
curriculum setup. We start by learning to normalize the expressions that a fixed
strategy can normalize in a small amount of steps. This setup is similar to [11].

Training Setup. The 400 problems with the lowest difficulty are the starting
point. Every time an agent reaches 95 percent success rate when evaluated on a
sample of size 400 from these problems, we add 400 more difficult problems to
set of training problems P . One iteration of the collection and training phase
is called an epoch. Agents are evaluated after every epoch. The blocks of size
400 are called levels. The number of episodes m and f are set to 1000. For 3SIL
and BC, the batch size BS is 32 and the number of batches NB is 250. The
baselines are configured so that the number of episodes and training transitions
is at least as many as the 3SIL/BC approaches. Episodes that take over 100
steps are stopped. ADAM [22] is used as an optimizer.
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Fig. 3. The level in the curriculum reached by each method. Each method was run three
times. The bold line shows the mean performance and the shaded region shows the
minimum and maximum performance. K is the number of proofs stored per problem.

Results on RA Curriculum. In Fig. 3, we show the progression through the
training curriculum for behavioral cloning (BC), the RL methods (PPO, ACER)
and two configurations of 3SIL. Behavioral cloning simply imitates actions from
successful episodes. Of the RL baselines, PPO reaches the second level in one run,
while ACER steadily solves the first level and in the best run solves around 80%
of the second level. Both methods do not learn enough solutions for the second
level to advance to the third. A2C and SIL-PAAC do not reach the second level,
so these are left out of the plot. However, they do learn to solve about 70–80% of
the first 400 problems. From these results we can conclude that the RL baselines
do not perform well on this task in our experiment. We attribute this to the
difficulty of learning a good value function due to the sparse rewards (Sect. 5.1).
Our hypothesis is that because this value estimate influences the policy updates,
the RL methods do not learn well on this task. Note that the two methods with
a trust region update mechanism, ACER and PPO, perform better than the
methods without this mechanism. From these results, it is clear that 3SIL with
1 shortest proof stored, k = 1, is the best-performing configuration. It reaches
the end of the training curriculum of about 5000 problems in 40 epochs. We
experimented with k = 3 and k = 4, but these were both worse than k = 2.

Generalization. While our approach works well on the training set, we must
check if the predictors generalize to unseen examples. Only the methods that
reached the end of the curriculum are tested. In Table 1, we show the results
of evaluating the performance of our predictors on the three different test sets:
the unseen examples from the low dataset and the unseen examples from the
medium and high datasets. Because we expect longer solutions, the episode limits
are expanded from 100 steps to 200 and 250 for the medium and high datasets
respectively. For the low and medium datasets, the second of which contains
problems with more difficult solutions than the training data, the predictors
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solve almost all test problems. For the high difficulty dataset, the performance
drops by at least 20% points. Our method outperforms the Monte Carlo Tree
Search approach used in [11] on the same datasets, which got to 0.954 on the low
dataset with 1600 iterations and 0.786 on the medium dataset (no results on the
high dataset were reported). These results indicate that this training method
might be strong enough to perform well on the AIM rewriting RL task.

Table 1. Generalization with greedy evaluation on the test set for the Robinson arith-
metic normalization tasks, shown as average success rate and standard deviation from
3 training runs. Generalization is high on the low and medium difficulty (training data
is similar to the low difficulty dataset). With high difficulty data, performance drops.

Low Medium High

3SIL (k=1) 1.00 ± 0.01 0.98 ± 0.03 0.77 ± 0.10
3SIL (k=2) 0.99 ± 0.00 0.96 ± 0.01 0.66 ± 0.08
BC 0.98 ± 0.01 0.98 ± 0.01 0.56 ± 0.05

7.2 AIM Conjecture Dataset

Training Setup. Finally, we train and evaluate 3SIL on the AIM Conjecture
dataset. We apply 3SIL (k = 1) to train predictors in the AIMLEAP environ-
ment. Ten percent of the AIM dataset is used as a hold-out test set, not seen
during training. As there is no estimate for the difficulty of the problems in terms
of the actions available to the predictor, we do not use a curriculum ordering
for these experiments. The number m of episodes collected before training is
set to 2,000,000. These random proof attempts result in about 300 proofs. The
predictor learns from these proofs and afterwards the search for new proofs is
also guided by its predictions. For the AIM experiments, episodes are stopped
after 30 steps in the AIMLEAP environment. The predictors are trained for 100
epochs. The number of collected episodes per epoch f is 10,000. The successful
proofs are stored, and the shortest proof for each theorem is kept. NB is 500 and
BS is set to 32. The number of problems with a solution in the history after each
epoch of the training run is shown in Fig. 4.

Results as a Standalone Prover. After 100 epochs, about 2500 of 3114 prob-
lems in the training dataset have a solution in their history. To test the general-
ization capability of the predictors, we inspect their performance on the holdout
test set problems. In Table 2 we compare the success rate of the trained pre-
dictors on the holdout test set with three different automated theorem provers:
E [37,38], Waldmeister [19] and Prover9. E is currently one of the best overall
automated theorem provers [44], Waldmeister is a prover specialized in memory-
efficient equational theorem proving [18] and Prover9 is the theorem prover that
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Fig. 4. The number of training problems for which a solution was encountered and
stored (cumulative). At the start of the training, the models rapidly collect more solu-
tions, but after 100 epochs, the process slows down and settles at about 2500 problems
with known solutions. The minimum, maximum and mean of three runs are shown.

is used for AIM conjecture research and the prover that the dataset was gener-
ated by. Waldmeister and E are the best performing solvers in competitions for
the relevant unit equality (UEQ) category [44].

Table 2. Theorem proving performance on the hold-out test set in fraction of problems
solved. Means and standard deviations are the results of evaluations of 3 different
predictors from 3 different training runs on the 354 unseen test set problems.

Method Success Rate

Prover9 (60 s) 0.833
E (60 s) 0.802
Predictor + AIMLEAP(60 s) 0.702 ± 0.015
Waldmeister (60 s) 0.655
Predictor + AIMLEAP (1×) 0.586 ± 0.029

The results show that a single greedy evaluation of the predictor trying to
solve the problem in the AIMLEAP environment is not as strong as the theo-
rem proving software. However, the theorem provers got 60 s of execution time,
and the execution of the predictor, including interaction with AIMLEAP, takes
on average less than 1 s. We allowed the predictor setup to use 60 s, by run-
ning attempts in AIMLEAP until the time was up, sampling actions from the
predictor’s distribution with 5% noise, instead of using greedy execution. With
this approach, the predictor setup outperforms Waldmeister.4 Figure 5 shows the
overlap between the problems solved by each prover. The diagram shows that
each theorem prover found a few solutions that no other prover could find within
4 After the initial experiments, we also evaluated Twee [42], which won the most recent

UEQ track: it can prove most of the test problems in 60 s, only failing for 1 problem.
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the time limit. Almost half of all problems from the test set that are solved are
solved by all four systems.

Fig. 5. Venn diagram of the test set problems solved by each solver with 60 s time
limit.

Results of Neural Rewriting Combined with Prover9. We also combine
the predictor with Prover9. In this setup, the predictor modifies the starting
form of the goal, for a maximum of 1 s in the AIMLEAP environment. This
produces new expressions on one or both sides of the equality. We then add, as
lemmas, equalities between the left-hand side of the goal before the predictor’s
rewriting and after each rewriting (see Fig. 1). The same is done for the right-
hand side. For each problem, this procedure yields new lemmas that are added
to the problem specification file that is given to Prover9.

Table 3. Prover9 theorem proving performance on the hold-out test set when injecting
lemmas suggested by the learned predictor. Prover9 ’s performance increases when
using the suggested lemmas.

Method Success Rate

Prover9 (1 s) 0.715
Prover9 (2 s) 0.746
Prover9 (60 s) 0.833
Rewriting (1 s) + Prover9 (1 s) 0.841 ± 0.019
Rewriting (1 s) + Prover9 (59 s) 0.902 ± 0.016
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In Table 3, it is shown that adding lemmas suggested by the rewriting actions
of the trained predictor improves the performance of Prover9. Running Prover9
for 2 s results in better performance than running it for 1 s, as expected. The
combined (1 s + 1 s) system improved on Prover9’s 2-s performance by 12.7% (=
0.841/0.746), indicating that the predictor suggests useful lemmas. Additionally,
1 s of neural rewriting combined with 59 s of Prover9 search proves almost 8.3%
(= 0.902/0.833) more theorems than Prover9 with a 60 s time limit (Table 2).

7.3 Implementation Details

All experiments for the Robinson task were run on a 16 core Intel(R) Xeon(R)
CPU E5-2670 0 @ 2.60GHz. The AIM experiments were run on a 72 core Intel(R)
Xeon(R) Gold 6140 CPU @ 2.30GHz. All calculations were done on CPU. The
PPO implementation was adapted from an existing implementation [3]. The
model was updated every 2000 timesteps, the PPO clip coefficient was set to
0.2. The learning rate was 0.002 and the discount factor γ was set to 0.99.
The ACER implementation was adapted from an available implementation [8].
The replay buffer size was 20,000. The truncation parameter was 10 and the
model was updated every 100 steps. The replay ratio was set to 4. Trust region
decay was set to 0.99 and the constraint was set to 1. The discount factor was
set to 0.99 and the learning rate to 0.001. Off-policy minibatch size was set
to 1. The A2C and SIL implementations were based on Pytorch actor-critic
example code available at the PyTorch repository [33]. For the A2C algorithm,
we experimented with two formulations of the advantage function: the 1-step
lookahead estimate (rt + γVμ(st+1)) − Vμ(st) and the Rt − Vμ(st) formulation.
However, we did not observe different performance, so we opted in the end for
the 1-step estimate favored in the original A2C publication. For SIL-PAAC, we
implemented the SIL loss on top of the A2C implementation. There is also a
prioritized replay buffer with an exponent of 0.6, as in the original paper. Each
epoch, 8000 (250 batches of size 32) transitions were taken from the prioritized
replay buffer in the SIL step of the algorithm. The size of the prioritized replay
buffer was 40,000. The critic loss weight was set to 0.01 as in the original paper.
For the 3SIL and behavioral cloning implementations, we sample 8000 transitions
(250 batches of size 32) from the replay buffer or history. For the behavioral
cloning, we used a buffer of size 40,000. An example implementation of 3SIL
can be found in the RewriteRL repository. On the Robinson arithmetic task, for
3SIL and BC, the evaluation is done greedily (always take the highest probability
actions). For the other methods, we performed experiments with both greedy and
non-greedy (sample from the predictor distribution and add 5% noise) evaluation
and show the results the best-performing setting (which in most cases was the
non-greedy evaluation, except for PPO). On the AIM task, we evaluate greedily
with 3SIL.

AIMLEAP expects a distance estimate for each applicable action. This rep-
resents the estimated distance to a proof. This behavior was converted to a
reinforcement learning setup by always setting the chosen action of the model
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to the minimum distance and all other actions to a distance larger than the
maximum proof length. Only the chosen action is then carried out.

Versions of the automated theorem provers used: Version 2.5 of E [39], the
Nov 2017 version of Prover9 [26] and the Feb 2018 version of Waldmeister [46]
and version 2.4.1 of Twee [43].

8 Conclusion and Future Work

Our experiments show that a neural rewriter, trained with the 3SIL method
that we designed, can learn to suggest useful lemmas that assist an ATP and
improve its proving performance. With the same limit of 1min, Prover9 managed
to prove close to 8.3% more theorems. Furthermore, our 3SIL training method
is powerful enough to train an equational prover from zero knowledge that can
compete with hand-engineered provers, such as Waldmeister. Our system on its
own proves 70.2% of the unseen test problems in 60s, while Waldmeister proved
65.5%.

In future work, we will apply our method to other equational reasoning tasks.
An especially interesting research direction concerns selecting which proofs to
learn from: some sub-proofs might be more general than other sub-proofs. The
incorporation of graph neural networks instead of tree neural networks may
improve the performance of the predictor, since in graph neural networks infor-
mation not only propagates from the leaves to the root, but also through all
other connections.
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Abstract. I introduce renaming-enriched sets (rensets for short), which
are algebraic structures axiomatizing fundamental properties of renam-
ing (also known as variable-for-variable substitution) on syntax with
bindings. Rensets compare favorably in some respects with the well-
known foundation based on nominal sets. In particular, renaming is a
more fundamental operator than the nominal swapping operator and
enjoys a simpler, equationally expressed relationship with the variable-
freshness predicate. Together with some natural axioms matching proper-
ties of the syntactic constructors, rensets yield a truly minimalistic char-
acterization of λ-calculus terms as an abstract datatype – one involving
an infinite set of unconditional equations, referring only to the most fun-
damental term operators: the constructors and renaming. This character-
ization yields a recursion principle, which (similarly to the case of nomi-
nal sets) can be improved by incorporating Barendregt’s variable conven-
tion. When interpreting syntax in semantic domains, my renaming-based
recursor is easier to deploy than the nominal recursor. My results have
been validated with the proof assistant Isabelle/HOL.

1 Introduction

Formal reasoning about syntax with bindings is necessary for the meta-theory
of logics, calculi and programming languages, and is notoriously error-prone.
A great deal of research has been put into formal frameworks that make the
specification of, and the reasoning about bindings more manageable.

Researchers wishing to formalize work involving syntax with bindings must
choose a paradigm for representing and manipulating syntax—typically a vari-
ant of one of the “big three”: nameful (sometimes called “nominal” reflect-
ing its best known incarnation, nominal logic [23,39]), nameless (De Bruijn)
[4,13,49,51] and higher-order abstract syntax (HOAS) [19,20,28,34,35]. Each
paradigm has distinct advantages and drawbacks compared with each of the
others, some discussed at length, e.g., in [1,9] and [25, §8.5]. And there are also
hybrid approaches, which combine some of the advantages [14,18,42,47].

A significant advantage of the nameful paradigm is that it stays close to
the way one informally defines and manipulates syntax when describing systems
in textbooks and research papers—where the binding variables are explicitly

c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 618–639, 2022.
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indicated. This can in principle ensure transparency of the formalization and
allows the formalizer to focus on the high-level ideas. However, it only works
if the technical challenge faced by the nameful paradigm is properly addressed:
enabling the seamless definition and manipulation of concepts “up to alpha-
equivalence”, i.e., in such a way that the names of the bound variables are
(present but nevertheless) inconsequential. This is particularly stringent in the
case of recursion due to the binding constructors of terms not being free, hence
not being a priori traversable recursively—in that simply writing some recursive
clauses that traverse the constructors is not a priori guaranteed to produce a
correct definition, but needs certain favorable conditions. The problem has been
addressed by researchers in the form of tailored nameful recursors [23,33,39,43,
56,57], which are theorems that identify such favorable conditions and, based
on them, guarantee the existence of functions that recurse over the non-free
constructors.

In this paper, I make a contribution to the nameful paradigm in general,
and to nameful recursion in particular. I introduce rensets, which are algebraic
structures axiomatizing the properties of renaming, also known as variable-for-
variable substitution, on terms with bindings (Sect. 3). Rensets differ from nom-
inal sets (Sect. 2.2), which form the foundation of nominal logic, by their focus
on (not necessarily injective) renaming rather than swapping (or permutation).
Similarly to nominal sets, rensets are pervasive: Not only do the variables and
terms form rensets, but so do any container-type combinations of rensets.

While lacking the pleasant symmetry of swapping, my axiomatization of
renaming has its advantages. First, renaming is more fundamental than swap-
ping because, at an abstract axiomatic level, renaming can define swapping but
not vice versa (Sect. 4). The second advantage is about the ability to define
another central operator: the variable freshness predicate. While the definability
of freshness from swapping is a signature trait of nominal logic, my renaming-
based alternative fares even better: In rensets freshness has a simple, first-
order definition (Sect. 3). This contrasts the nominal logic definition, which
involves a second-order statement about (co)finiteness of a set of variables. The
third advantage is largely a consequence of the second: Rensets enriched with
constructor-like operators facilitate an equational characterization of terms with
bindings (using an infinite set of unconditional equations), which does not seem
possible for swapping (Sect. 5.1). This produces a recursion principle (Sect. 5.2)
which, like the nominal recursor, caters for Barendregt’s variable convention,
and in some cases is easier to apply than the nominal recursor—for example
when interpreting syntax in semantic domains (Sect. 5.3).

In summary, I argue that my renaming-based axiomatization offers some
benefits that strengthen the arsenal of the nameful paradigm: a simpler repre-
sentation of freshness, a minimalistic equational characterization of terms, and
a convenient recursion principle. My results are established with high confidence
thanks to having been mechanized in Isabelle/HOL [32]. The mechanization is
available [44] from Isabelle’s Archive of Formal Proofs.

Here is the structure of the rest of this paper: Sect. 2 provides background
on terms with bindings and on nominal logic. Section 3 introduces rensets and



620 A. Popescu

describes their basic properties. Section 4 establishes a formal connection to
nominal sets. Section 5 discusses substitutive-set-based recursion. Section 6 dis-
cusses related work. A technical report [45] associated to this paper includes an
appendix with more examples and results and more background on nominal sets.

2 Background

This section recalls the terms of λ-calculus and their basic operators (Sect. 2.1),
and aspects of nominal logic including nominal sets and nominal recursion
(Sect. 2.2).

2.1 Terms with Bindings

I work with the paradigmatic syntax of (untyped) λ-calculus. However, my
results generalize routinely to syntaxes specified by arbitrary binding signatures
such as the ones in [22, §2], [39,59] or [12].

Let Var be a countably infinite set of variables, ranged over by x, y, z etc. The
set Trm of λ-terms (or terms for short), ranged over by t, t1, t2 etc., is defined
by the grammar t ::= Vr x | Ap t1 t2 | Lm x t
with the proviso that terms are equated (identified) modulo alpha-equivalence
(also known as naming equivalence). Thus, for example, if x �= z �= y then
Lm x (Ap (Vr x) (Vr z)) and Lm y (Ap (Vr y) (Vr z)) are considered to be the
same term. I will often omit Vr when writing terms, as in, e.g., Lm x x.

What the above specification means is (something equivalent to) the follow-
ing: One first defines the set PTrm of pre-terms as freely generated by the gram-
mar p ::= PVr x | PAp p1 p2 | PLm x p. Then one defines the alpha-equival-
ence relation ≡ : PTrm → PTrm → Bool inductively, proves that it is an equiv-
alence, and defines Trm by quotienting PTrm to alpha-equivalence, i.e., Trm =
PTrm/ ≡. Finally, one proves that the pre-term constructors are compatible
with ≡, and defines the term counterpart of these constructors: Vr : Var → Trm,
Ap : Trm → Trm → Trm and Lm : Var → Trm → Trm.

The above constructions are technical, but well-understood, and can be fully
automated for an arbitrary syntax with bindings (not just that of λ-calculus);
and tools such as the Isabelle/Nominal package [59,60] provide this automation,
hiding pre-terms completely from the end user. In formal and informal presenta-
tions alike, one usually prefers to forget about pre-terms, and work with terms
only. This has several advantages, including (1) being able to formalize concepts
at the right abstraction level (since in most applications the naming of bound
variables should be inconsequential) and (2) the renaming operator being well-
behaved. However, there are some difficulties that need to be overcome when
working with terms, and in this paper I focus on one of the major ones: provid-
ing recursion principles, i.e., mechanisms for defining functions by recursing over
terms. This difficulty arises essentially because, unlike in the case of pre-term
constructors, the binding constructor for terms is not free.

The main characters of my paper will be (generalizations of) some common
operations and relations on Trm, namely:
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– the constructors Vr : Var → Trm, Ap : Trm → Trm → Trm and Lm : Var →
Trm → Trm

– (capture-avoiding) renaming, also known as (capture-avoiding) substitution
of variables for variables [ / ] : Trm → Var → Var → Trm; e.g., we have
(Lm x (Ap x y)) [x/y] = Lm x′ (Ap x′ x)

– swapping [ ∧ ] : Trm → Var → Var → Trm; e.g., we have (Lm x (Ap x y)) [x∧
y] = Lm y (Ap y x)

– the free-variable operator FV : Trm → Pow(Var) (where Pow(Var) is the
powerset of Var); e.g., we have FV(Lm x (Ap y x)) = {y}

– freshness # : Var → Trm → Bool; e.g., we have x#(Lm x x); and assuming
x �= y, we have ¬ x#(Lm y x)

The free-variable and freshness operators are of course related: A variable x
is fresh for a term t (i.e., x# t) if and only if it is not free in t (i.e., x /∈ FV(t)).
The renaming operator [ / ] : Trm → Var → Var → Trm substitutes (in terms)
variables for variables, not terms for variables. (But an algebraization of term-
for-variable substitution is discussed in [45, Appendix D].)

2.2 Background on Nominal Logic

I will employ a formulation of nominal logic [38,39,57] that does not require any
special logical foundation, e.g., axiomatic nominal set theory. For simplicity, I
prefer the swapping-based formulation [38] to the equivalent permutation-based
formulation—[45, Appendix C] gives details on these two alternatives.

A pre-nominal set is a pair A = (A, [ ∧ ]) where A is a set and [ ∧ ] :
A → Perm → A is a function called the swapping operator of A satisfying the
following properties for all a ∈ A and x, x1, x2, y1, y2 ∈ Var:

Identity: a[x∧x] = a
Involution: a[x1 ∧x2][x1 ∧x2] = a

Compositionality: a[x1 ∧x2][y1 ∧y2] = a[y1 ∧y2][(x1[y1 ∧y2])∧ (x2[y1 ∧y2])]

Given a pre-nominal set A = (A, [ ∧ ]), an element a ∈ A and a set X ⊆ Var,
one says that a is supported by X if a[x∧y] = a holds for all x, y ∈ Var such that
x, y /∈ X. An element a ∈ A is called finitely supported if there exists a finite
set X ⊆ A such that a is supported by X. A nominal set is a pre-nominal set
A = (A, [ ∧ ]) such that every element of a is finitely supported. If A = (A, [ ∧ ])
is a nominal set and a ∈ A, then the smallest set X ⊆ A such that a is supported
by X exists, and is denoted by suppA a and called the support of a. One calls a
variable x fresh for a, written x# a, if x /∈ suppA a.

An alternative, more direct definition of freshness (which is preferred, e.g.,
by Isabelle/Nominal [59,60]) is provided by the following proposition:

Proposition 1. For any nominal set A = (A, [ ∧ ]) and any x ∈ Var and a ∈ A,
it holds that x# a if and only if the set {y | a[y∧x] �= a} is finite.
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Given two pre-nominal sets A = (A, [ ∧ ]) and B = (B, [ ∧ ]), the set
F = (A → B) of functions from A to B becomes a pre-nominal set F = (F, [ ∧ ])
by defining f [x∧y] to send each a ∈ A to (f(a[x∧y]))[x∧y]. F is not a nominal
set because not all functions are finitely supported (though of course one obtains
a nominal set by restricting to finitely supported functions).

The set of terms together with their swapping operator, (Trm, [ ∧ ]), forms
a nominal set, where the support of a term is precisely its set of free variables.
However, the power of nominal logic resides in the fact that not only the set of
terms, but also many other sets can be organized as nominal sets—including the
target domains of many functions one may wish to define on terms. This gives
rise to a convenient mechanism for defining functions recursively on terms:

Theorem 2 [39]. Let A = (A, [ ]) be a nominal set and let VrA : Var →
A, ApA : A → A → A and LmA : Var → A → A be some functions, all
supported by a finite set X of variables and with LmA satisfying the following
freshness condition for binders (FCB): There exists x ∈ Var such that x /∈ X
and x# LmA x a for all a ∈ A.

Then there exists a unique function f : Trm → A that is supported by X
and such that the following hold for all x ∈ Var and t1, t2, t ∈ Trm:

(i) f (Vr x) = VrA x (ii) f (Ap t1 t2) = ApA (f t1) (f t2)
(iii) f (Lm x t) = LmA x (f t) if x /∈ X

A useful feature of nominal recursion is the support for Barendregt’s famous
variable convention [8, p. 26]: “If [the terms] t1, . . . , tn occur in a certain math-
ematical context (e.g. definition, proof), then in these terms all bound variables
are chosen to be different from the free variables.” The above recursion princi-
ple adheres to this convention by fixing a finite set X of variables meant to be
free in the definition context and guaranteeing that the bound variables in the
definitional clauses are distinct from them. Formally, the target domain opera-
tors VrA, ApA and LmA are supported by X, and the clause for λ-abstraction
is conditioned by the binding variable x being outside of X. (The Barendregt
convention is also present in nominal logic via induction principles [39,58–60].)

3 Rensets

This section introduces rensets, an alternative to nominal sets that axiomatize
renaming rather than swapping or permutation.

A renaming-enriched set (renset for short) is a pair A = (A, [ / ]) where A
is a set and [ / ] : A → Var → Var → A is an operator such that the following
hold for all x, x1, x2, x3, y, y1, y2 ∈ Var and a ∈ A:

Identity: a[x/x] = a
Idempotence: If x1 �= y then a[x1/y][x2/y] = a[x1/y]

Chaining: If y �= x2 then a[y/x2][x2/x1][x3/x2] = a[y/x2][x3/x1]
Commutativity: If x2 �= y1 �= x1 �= y2 then a[x2/x1][y2/y1] = a[y2/y1][x2/x1]
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Let us call A the carrier of A and [ / ] the renaming operator of A. Similarly
to the case of terms, we think of the elements a ∈ A as some kind of variable-
bearing entities and of a[y/x] as the result of substituting x with y in a. With
this intuition, the above properties are natural: Identity says that substituting a
variable with itself has no effect. Idempotence acknowledges the fact that, after
its renaming, a variable y is no longer there, so substituting it again has no
effect. Chaining says that a chain of renamings x3/x2/x1 has the same effect
as the end-to-end renaming x3/x1 provided there is no interference from x2,
which is ensured by initially substituting x2 with some other variable y. Finally,
Commutativity allows the reordering of any two independent renamings.

Examples. (Var, [ / ]) and (Trm, [ / ]), the sets of variables and terms with
the standard renaming operator on them, form rensets. Moreover, given any
functor F on the category of sets and a renset A = (A, [ / ]), let us define the
renset F A = (F A, [ / ]) as follows: for any k ∈ F A and x, y ∈ Var, k[x/y] =
F ( [x/y]) k, where the last occurrence of F refers to the action of the functor
on morphisms. This means that one can freely build new rensets from existing
ones using container types (which are particular kinds of functors)—e.g., lists,
sets, trees etc. Another way to put it: Rensets are closed under datatype and
codatatype constructions [55].

In what follows, let us fix a renset A = (A, [ / ]). One can define the notion
of freshness of a variable for an element of a in the style of nominal logic. But
the next proposition shows that simpler formulations are available.

Proposition 3. The following are equivalent:
(1) The set {y ∈ Var | a[y/x] �= a} is finite.
(2) a[y/x] = a for all y ∈ Var. (3) a[y/x] = a for some y ∈ Var � {x}.

Let us define the predicate # : Var → A → Bool as follows: x# a, read x
is fresh for a, if either of Proposition 3’s equivalent properties holds.

Thus, points (1)–(3) above are three alternative formulations of x# a, all
referring to the lack of effect of substituting y for x, expressed as a[y/x] = a:
namely that this phenomenon affects (1) all but a finite number of variables y,
(2) all variables y, or (3) some variable y �= x. The first formulation is the most
complex of the three—it is the nominal definition, but using renaming instead
of swapping. The other two formulations do not have counterparts in nominal
logic, essentially because swapping is not as “efficient” as renaming at exposing
freshness. In particular, (3) does not have a nominal counterpart because there is
no single-swapping litmus test for freshness. The closest we can get to property
(3) in a nominal set is the following: x is fresh for a if and only a[y∧x] = a holds
for some fresh y—but this needs freshness to explain freshness!

Examples (continued). For the rensets of variables and terms, freshness
defined as above coincides with the expected operators: distinctness in the case
of variables and standard freshness in the case of terms. And applying the defini-
tion of freshness to rensets obtained using finitary container types has similarly
intuitive outcomes; for example, the freshness of a variable x for a list of items
[a1, . . . , an] means that x is fresh for each item ai in the list.
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Freshness satisfies some intuitive properties, which can be easily proved from
its definition and the renset axioms. In particular, point (2) of the next propo-
sition is the freshness-based version of the Chaining axiom.

Proposition 4. The following hold:
(1) If x# a then a[y/x] = a (2) x2 # a then a[x2/x1][x3/x2] = a[x3/x1]
(3) If z # a or z = x, and x# a or z �= y, then z # a[y/x]

4 Connection to Nominal Sets

So far I focused on consequences of the purely equational theory of rensets, with-
out making any assumption about cardinality. But after additionally postulating
a nominal-style finite support property, one can show that rensets give rise to
nominal sets—which is what I will do in this section.

Let us say that a renset A = (A, [ / ]) has the Finite Support property if,
for all a ∈ A, the set {x ∈ Var | ¬ x# a} is finite.

Let A = (A, [ / ]) be a renset satisfying Finite Support. Let us define the
swapping operator [ ∧ ] : A → Var → Var → A as follows: a[x1 ∧ x2] =
a[y/x1][x1/x2][x2/y], where y is a variable that is fresh for all the involved items,
namely y /∈ {x1, x2} and y # a. Indeed, this is how one would define swapping
from renaming on terms: using a fresh auxiliary variable y, and exploiting that
such a fresh y exists and that its choice is immaterial for the end result. The
next lemma shows that this style of definition also works abstractly, i.e., all it
needs are the renset axioms plus Finite Support.

Lemma 5. The following hold for all x1, x2 ∈ Var and a ∈ A:

(1) There exists y ∈ Var such that y /∈ {x1, x2} and y # a.
(2) For all y, y′ ∈ Var such that y /∈ {x1, x2}, y # a, y′ /∈ {x1, x2} and y′# a,

a[y/x1][x1/x2][x2/y] = a[y′/x1][x1/x2][x2/y′].

And one indeed obtains an operator satisfying the nominal axioms:

Proposition 6. If (A, [ / ]) is a renset satisfying Finite Support, then
(A, [ ∧ ]) is a nominal set. Moreover, (A, [ / ]) and (A, [ ∧ ]) have the same
notion of freshness, in that the freshness operator defined from renaming coin-
cides with that defined from swapping.

The above construction is functorial, as I detail next. Given two nominal
sets A = (A, [ ∧ ]) and B = (B, [ ∧ ]), a nominal morphism f : A → B
is a function f : A → B with the property that it commutes with swapping,
in that (f a)[x ∧ y] = f(a[x ∧ y]) for all a ∈ A and x, y ∈ Var. Nominal sets
and nominal morphisms form a category that I will denote by Nom. Similarly,
let us define a morphism f : A → B between two rensets A = (A, [ / ]) and
B = (B, [ ]) to be a function f : A → B that commutes with renaming, yielding
the category Sbs of rensets. Let us write FSbs for the full subcategory of Sbs
given by rensets that satisfy Finite Support. Let us define F : FSbs → Nom to be
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an operator on objects and morphisms that sends each finite-support renset to
the above described nominal set constructed from it, and sends each substitutive
morphism to itself.

Theorem 7. F is a functor between FSbs and Nom which is injective on objects
and full and faithful (i.e., bijective on morphisms).

One may ask whether it is also possible to make the trip back: from nominal
to rensets. The answer is negative, at least if one wants to retain the same
notion of freshness, i.e., have the freshness predicate defined in the nominal set
be identical to the one defined in the resulting renset. This is because swapping
preserves the cardinality of the support, whereas renaming must be allowed to
change it since it might perform a non-injective renaming. The following example
captures this idea:

Counterexample. Let A = (A, [ ∧ ]) be a nominal set such that all elements of
A have their support consisting of exactly two variables, x and y (with x �= y).
(For example, A can be the set of all terms with these free variables—this is
indeed a nominal subset of the term nominal set because it is closed under
swapping.) Assume for a contradiction that [ / ] is an operation on A that makes
(A, [ / ]) a renset with its induced freshness operator equal to that of A. Then,
by the definition of A, a[y/x] needs to have exactly two non-fresh variables. But
this is impossible, since by Proposition 4(3), all the variables different from y
(including x) must be fresh for a[y/x]. In particular, A is not in the image of
the functor F : FSbs → Nom, which is therefore not surjective on objects.

Thus, at an abstract algebraic level renaming can define swapping, but not
the other way around. This is not too surprising, since swapping is fundamen-
tally bijective whereas renaming is not; but it further validates our axioms for
renaming, highlighting their ability to define a well-behaved swapping.

5 Recursion Based on Rensets

Proposition 3 shows that, in rensets, renaming can define freshness using only
equality and universal or existential quantification over variables—without need-
ing any cardinality condition like in the case of swapping. As I am about to dis-
cuss, this forms the basis of a characterization of terms as the initial algebra of
an equational theory (Sect. 5.1) and an expressive recursion principle (Sect. 5.2)
that fares better than the nominal one for interpretations in semantic domains
(Sect. 5.3).

5.1 Equational Characterization of the Term Datatype

Rensets contain elements that are “term-like” in as much as there is a renam-
ing operator on them satisfying familiar properties of renaming on terms. This
similarity with terms can be strengthened by enriching rensets with operators
having arities that match those of the term constructors.

A constructor-enriched renset (CE renset for short) is a tuple A =
(A, [ / ],VrA,ApA, LmA) where:
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– (A, [ / ]) is a renset
– VrA : Var → A, ApA : A → A → A and LmA : Var → A → A are functions

such that the following hold for all a, a1, a2 ∈ A and x, y, z ∈ Var:

(S1) (VrA x)[y/z] = VrA(x[y/z])
(S2) (ApA a1 a2)[y/z] = ApA(a1[y/z]) (a2[y/z])
(S3) if x /∈ {y, z} then (LmA x a)[y/z] = LmA x (a[y/z])
(S4) (LmA x a)[y/x] = LmA x a
(S5) if z �= y then LmA x (a[z/y]) = LmA y (a[z/y][y/x])

Let us call VrA,ApA, LmA the constructors of A. (S1)–(S3) express the construc-
tors’ commutation with renaming (with capture-avoidance provisions in the case
of (S3)), (S4) the lack of effect of substituting for a bound variable, and (S5)
the possibility to rename a bound variable without changing the abstracted item
(where the inner renaming of z �= y for y ensures the freshness of the “new name”
y, hence its lack of interference with the other names in the “term-like” entity
where the renaming takes place). All these are well-known to hold for terms:

Example. Terms with renaming and the constructors, namely (Trm, [ / ],Vr,
Ap, Lm), form a CE renset which will be denoted by Trm.

As it turns out, the CE renset axioms capture exactly the term structure
Trm, via initiality. The notion of CE substitutive morphism f : A → B between
two CE rensets A = (A, [ / ],VrA,ApA, LmA) and B = (B, [ / ],VrB,ApB, LmB)
is the expected one: a function f : A → B that is a substitutive morphism and
also commutes with the constructors. Let us write SbsCE for the category of CE
rensets and morphisms.

Theorem 8. Trm is the initial CE renset, i.e., initial object in SbsCE.

Proof Idea. Let A = (A, [ / ],VrA,ApA, LmA) be a CE renset. Instead of directly
going after a function f : Trm → A, one first inductively defines a relation
R : Trm → A → Bool, with inductive clauses reflecting the desired properties
concerning the commutation with the constructors, e.g., R t a

R (Lm x t) (LmA x a)
. It

suffices to prove that R is total and functional and preserves renaming, since
that allows one to define a constructor- and renaming-preserving function (a
morphism) f by taking f t to be the unique a with R t a.

Proving that R is total is easy by standard induction on terms. Proving the
other two properties, namely functionality and preservation of renaming, is more
elaborate and requires their simultaneous proof together with a third property:
that R preserves freshness. The simultaneous three-property proof follows by a
form of “substitutive induction” on terms: Given a predicate φ : Trm → Bool,
to show ∀t ∈ Trm. φ t it suffices to show the following: (1) ∀x ∈ Var. φ (Vr x),
(2) ∀t1, t2 ∈ Trm. φ t1 &φ t2 → φ (Ap t1 t2), and (3) ∀x ∈ Var, t ∈ Trm. (∀s ∈
Trm. Con [ / ] t s → φ s) → φ (Lm x t), where Con [ / ] t s means that t is
connected to s by a chain of renamings.

Roughly speaking, R turns out to be functional because the λ-abstraction
operator on the “term-like” inhabitants of A is, thanks to the axioms of CE



Rensets and Renaming-Based Recursion for Syntax with Bindings 627

renset, at least as non-injective as (i.e., identifies at least as many items as) the
λ-abstraction operator on terms. 	


Theorem 8 is the central result of this paper, from both practical and theo-
retical perspectives. Practically, it enables a useful form of recursion on terms (as
I will discuss in the following sections). Theoretically, this is a characterization
of terms as the initial algebra of an equational theory that only the most funda-
mental term operations, namely the constructors and renaming. The equational
theory consists of the axioms of CE rensets (i.e., those of rensets plus (S1)–(S5)),
which are an infinite set of unconditional equations—for example, axiom (S5)
gives one equation for each pair of distinct variables y, z.

It is instructive to compare this characterization with the one offered by
nominal logic, namely by Theorem 2. To do this, one first needs a lemma:

Lemma 9. Let f : A → B be a function between two nominal sets A = (A, [ ∧
]) and B = (B, [ ∧ ]) and X a set of variables. Then f is supported by X if

and only if f(a[x∧y]) = (f a)[x∧y] for all x, y ∈ Var � X.

Now Theorem 2 (with the variable avoidance set X taken to be ∅) can be
rephrased as an initiality statement, as I describe below.

Let us define a constructor-enriched nominal set (CE nominal set) to be
any tuple A = (A, [ ∧ ],VrA,ApA, LmA) where (A, [ ∧ ]) is a nominal set and
VrA : Var → A, ApA : A → A → A, LmA : Var → A → A are operators on A
such that the following properties hold for all a, a1, a2 ∈ A and x, y, z ∈ Var:

(N1) (VrA x)[y∧z] = VrA(x[y∧z])
(N2) (ApA a1 a2)[y∧z] = ApA(a1[y∧z]) (a2[y∧z])
(N3) (LmA x a)[y∧z] = LmA (x[y∧z]) (a[y∧z])
(N4) x# Lm x a, i.e., {y ∈ Var | (Lm x a)[y∧x] �= Lm x a} is finite.

The notion of CE nominal morphism is defined as the expected extension
of that of nominal morphism: a function that commutes with swapping and the
constructors. Let NomCE be the category of CE nominal sets morphisms.

Theorem 10 ([39], rephrased). (Trm, [ ∧ ],Vr,Ap, Lm) is the initial CE
nominal set, i.e., the initial object in NomCE.

The above theorem indeed corresponds exactly to Theorem 2 with X = ∅:

– the conditions (N1)–(N3) in the definition of CE nominal sets correspond (via
Lemma 9) to the constructors being supported by ∅

– (N4) is the freshness condition for binders
– initiality, i.e., the existence of a unique morphism, is the same as the existence

of the unique function f : Trm → A stipulated in Theorem 2: commutation
with the constructors is the Theorem 2 conditions (i)–(iii), and commutation
with swapping means (via Lemma 9) f being supported by ∅.

Unlike the renaming-based characterization of terms (Theorem 8), the nom-
inal logic characterization (Theorem 10) is not purely equational. This is due
to a combination of two factors: (1) two of the axioms ((N4) and the Finite
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Support condition) referring to freshness and (2) the impossibility of expressing
freshness equationally from swapping. The problem seems fundamental, in that a
nominal-style characterization does not seem to be expressible purely equation-
ally. By contrast, while the freshness idea is implicit in the CE renset axioms,
the freshness predicate itself is absent from Theorem 8.

5.2 Barendregt-Enhanced Recursion Principle

While Theorem 8 already gives a recursion principle, it is possible to improve it
by incorporating Barendregt’s variable convention (in the style of Theorem 2):

Theorem 11. Let X be a finite set, (A, [ / ]) a renset and VrA : Var → A,
ApA : A → A → A and LmA : Var → A → A some functions that satisfy the
clauses (S1)–(S5) from the definition of CE renset, but only under the assumption
that x, y, z /∈ X. Then there exists a unique function f : Trm → A such that th
following hold:

(i) f (Vr x) = VrA x (ii) f (Ap t1 t2) = ApA (f t1) (f t2)
(iii) f (Lm x t) = LmA x (f t) if x /∈ X (iv) f (t[y/z]) = (f t)[y/z] if y, z /∈ X

Proof Idea. The constructions in the proof of Theorem 8 can be adapted
to avoid clashing with the finite set of variables X. For example, the
clause for λ-abstraction in the inductive definition of the relation R becomes

x�∈X R t a
R (Lm x t) (LmA x a)

and preservation of renaming and freshness are also formu-
lated to avoid X. Totality is still ensured thanks to the possibility of renaming
bound variables—in terms and inhabitants of A alike (via the modified axiom
(S5)). 	


The above theorem says that if the structure A is assumed to be “almost” a
CE set, save for additional restrictions involving the avoidance of X, then there
exists a unique “almost”-morphism—satisfying the CE substitutive morphism
conditions restricted so that the bound and renaming-participating variables
avoid X. It is the renaming-based counterpart of the nominal Theorem 2.

In regards to the relative expressiveness of these two recursion principles
(Theorems 11 and 2), it seems difficult to find an example that is definable
by one but not by the other. In particular, my principle can seamlessly define
standard nominal examples [39,40] such as the length of a term, the count-
ing of λ-abstractions or of the free-variables occurrences, and term-for-variable
substitution—[45, Appendix A] gives details. However, as I am about to discuss,
I found an important class of examples where my renaming-based principle is
significantly easier to deploy: that of interpreting syntax in semantic domains.

5.3 Extended Example: Semantic Interpretation

Semantic interpretations, also known as denotations (or denotational seman-
tics), are pervasive in the meta-theory of logics and λ-calculi, for example when
interpretating first-order logic (FOL) formulas in FOL models, or untyped or
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simply-typed λ-calculus or higher-order logic terms in specific models (such as
full-frame or Henkin models). In what follows, I will focus on λ-terms and Henkin
models, but the ideas discussed apply broadly to any kind of statically scoped
interpretation of terms or formulas involving binders.

Let D be a set and ap : D → D → D and lm : (D → D) → D be operators
modeling semantic notions of application and abstraction. An environment will
be a function ξ : Var → D. Given x, y ∈ Var and d, e ∈ D, let us write ξ〈x := d〉
for ξ updated with value d for x (i.e., acting like ξ on all variables except for x
where it returns d); and let us write ξ〈x := d, y := e〉 instead of ξ〈x := d〉〈y := e〉.

Say one wants to interpret terms in the semantic domain D in the context of
environments, i.e., define the function sem : Trm → (Var → D) → D that maps
syntactic to semantic constructs; e.g., one would like to have:

– sem (Lm x (Ap x x)) ξ = lm(d �→ ap d d) (regardless of ξ)
– sem (Lm x (Ap x y)) ξ = lm(d �→ ap d (ξ y)) (assuming x �= y)

where I use d �→ . . . to describe functions in D → D, e.g., d �→ ap d d is the
function sending every d ∈ D to ap d d.

The definition should therefore naturally go recursively by the clauses:
(1) sem (Vr x) ξ = ξ x (2) sem (Ap t1 t2) ξ = ap (sem t1 ξ) (sem t2 ξ)
(3) sem (Lm x t) ξ = lm (d �→ sem t (ξ〈x := d〉))
Of course, since Trm is not a free datatype, these clauses do not work out of

the box, i.e., do not form a definition (yet)—this is where binding-aware recursion
principles such as Theorems 11 and 2 could step in. I will next try them both.

The three clauses above already determine constructor operations VrI , ApI

and LmI on the set of interpretations, I = (Var → D) → D, namely:

– VrI : Var → I by VrI x i ξ = ξ x
– ApI : I → I → I by ApI i1 i2 ξ = ap (i1 ξ) (i2 ξ)
– LmI : Var → I → I by LmI x i ξ = lm (d �→ i (ξ〈x := d〉))

To apply the renaming-based recursion principle from Theorem 11, one must
further define a renaming operator on I. Since the only chance to successfully
apply this principle is if sem commutes with renaming, the definition should be
inspired by the question: How can sem(t[y/x]) be determined from sem t, y and
x? The answer is (4) sem (t[y/x]) ξ = (sem t) (ξ〈x := ξ y〉), yielding an operator
[ / ]I : I → Var → Var → I defined by i [y/x]I ξ = i (ξ〈x := ξ y〉).

It is not difficult to verify that I = (I, [ / ]I ,VrI ,ApI , LmI) is a CE renset—
for example, Isabelle’s automatic methods discharge all the goals. This means
Theorem 11 (or, since here one doesn’t need Barendregt’s variable convention,
already Theorem 8) is applicable, and gives us a unique function sem that com-
mutes with the constructors, i.e., satisfies clauses (1)–(3) (which are instances of
the clauses (i)–(iii) from Theorem 11), and additionally commutes with renam-
ing, i.e., satisfies clause (4) (which is an instances of the clause (iv) from Theo-
rem 11).

On the other hand, to apply nominal recursion for defining sem, one must
identify a swapping operator on I. Similarly to the case of renaming, this identifi-
cation process is guided by the goal of determining sem(t[x∧y]) from sem t, x and
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y, leading to (4’) sem (t[x∧y]) ξ = sem t (ξ〈x := ξ y, y := ξ x〉), which yields the
definition of [ ∧ ]I by i [x∧y]I ξ = i (ξ〈x := ξ y, y := ξ x〉). However, as pointed
out by Pitts [39, §6.3] (in the slightly different context of interpreting simply-
typed λ-calculus), the nominal recursor (Theorem 2) does not directly apply
(hence neither does my reformulation based on CE nominal sets, Theorem 10).
This is because, in my terminology, the structure I = (I, [ ∧ ]I ,VrI ,ApI , LmI)
is not a CE nominal set. The problematic condition is FCB (the freshness condi-
tion for binders), requiring that x #I (LmI x i) holds for all i ∈ I. Expanding the
definition of #I (the nominal definition of freshness from swapping, recalled in
Sect. 2.2) and the definitions of [ ∧ ]I and LmI , one can see that x #I (LmI x i)
means the following:
lm (d �→ i (ξ〈x := ξ y, y := ξ x〉〈x := d〉)) = lm (d �→ i (ξ〈x := d〉)), i.e.,
lm (d �→ i (ξ〈x := d, y := ξ x〉) = lm (d �→ i (ξ〈x := d〉)), holds for all but a finite
number of variables y.

The only chance for the above to be true is if i, when applied to an envi-
ronment, ignores the value of y in that environment for all but a finite number
of variables y; in other words, i only analyzes the value of a finite number of
variables in that environment—but this is not guaranteed to hold for arbitrary
elements i ∈ I. To repair this, Pitts engages in a form of induction-recursion [17],
carving out from I a smaller domain that is still large enough to interpret all
terms, then proving that both FCB and the other axioms hold for this restricted
domain. It all works out in the end, but the technicalities are quite involved.

Although FCB is not required by the renaming-based principle, note inci-
dentally that this condition would actually be true (and immediate to check) if
working with freshness defined not from swapping but from renaming. Indeed,
the renaming-based version of x #I (LmI x i) says that lm (d �→ i (ξ〈x :=
ξ y〉〈x := d〉)) = lm (d �→ i (ξ〈x := d〉)) holds for all y (or at least for some
y �= x)—which is immediate since ξ〈x := ξ y〉〈x := d〉 = ξ〈x := d〉. This further
illustrates the idea that semantic domains ‘favor’ renaming over swapping.

In conclusion, for interpreting syntax in semantic domains, my renaming-
based recursor is trivial to apply, whereas the nominal recursor requires some
fairly involved additional definitions and proofs.

6 Conclusion and Related Work

This paper introduced and studied rensets, contributing (1) theoretically, a min-
imalistic equational characterization of the datatype of terms with bindings and
(2) practically, an addition to the formal arsenal for manipulating syntax with
bindings. It is part of a longstanding line of work by myself and collabora-
tors on exploring convenient definition and reasoning principles for bindings
[25,27,43,46,47], and will be incorporated into the ongoing implementation of a
new Isabelle definitional package for binding-aware datatypes [12].

Initial Model Characterizations of the Terms Datatype. My results pro-
vide a truly elementary characterization of terms with bindings, as an “ordinary”
datatype specified by the fundamental operations only (the constructors plus
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et al. [22]
Hofmann

[29]

Pitts
[39]

Urban
et al.
[57,56]

Norrish
[33]

Popescu
&Gunter

[46]

Gheri&
Popescu

[25]

This
paper

Paradigm nameless nameful nameful nameful nameful nameful nameful
Barendregt? n/a yes yes yes no no yes
Underlying
category SetF Set Set Set Set Set Set

Required
operations/
relations

ctors,
rename,
free-vars

ctors,
perm

ctors,
perm

ctors,
swap,

free-vars

ctors,
term/var

subst,
fresh

ctors,
swap,
fresh

ctors,
rename

Required
properties

functori-
ality,

naturality

Horn
clauses,

fresh-def,
fin-supp

Horn
clauses,
fresh-def

Horn
clauses

Horn
clauses

Horn
clauses equations

Fig. 1. Initial model characterizations of the datatype of terms with bindings “ctors” =
“constructors”, “perm” = “permutation”, “fresh” = “the freshness predicate”, “fresh-
def” = “clause for defining the freshness predicate”, “fin-supp” = “Finite Support”

variable-for-variable renaming) and some equations (those defining CE rensets).
As far as specification simplicity goes, this is “the next best thing” after a com-
pletely free datatype such as those of natural numbers or lists.

Figure 1 shows previous characterizations from the literature, in which terms
with bindings are identified as an initial model (or algebra) of some kind. For
each of these, I indicate (1) the employed reasoning paradigm, (2) whether the
initiality/recursion theorem features an extension with Barendregt’s variable
convention, (3) the underlying category (from where the carriers of the models
are taken), (4) the operations and relations on terms to which the models must
provide counterparts and (5) the properties required on the models.

While some of these results enjoy elegant mathematical properties of intrinsic
value, my main interest is in the recursors they enable, specifically in the ease of
deploying these recursors. That is, I am interested in how easy it is in principle
to organize the target domain as a model of the requested type, hence obtain
the desired morphism, i.e., get the recursive definition done. By this measure,
elementary approaches relying on standard FOL-like models whose carriers are
sets rather than pre-sheaves have an advantage. Also, it seems intuitive that a
recursor is easier to apply if there are fewer operators, and fewer and structurally
simpler properties required on its models—although empirical evidence of suc-
cessfully deploying the recursor in practice should complement the simplicity
assessment, to ensure that simplicity is not sponsored by lack of expressiveness.

The first column in Fig. 1’s table contains an influential representative of the
nameless paradigm: the result obtained independently by Fiore et al. [22] and
Hofmann [29] characterizing terms as initial in the category of algebras over the
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pre-sheaf topos SetF, where F is the category of finite ordinals and functions
between them. The operators required by algebras are the constructors, as well
as the free-variable operator (implicitly as part of the separation on levels) and
the injective renamings (as part of the functorial structure). The algebra’s carrier
is required to be a functor and the constructors to be natural transformations.
There are several variations of this approach, e.g., [5,11,29], some implemented
in proof assistants, e.g., [3,4,31].

The other columns refer to initiality results that are more closely related to
mine. They take place within the nameful paradigm, and they all rely on ele-
mentary models (with set carriers). Pitts’s already discussed nominal recursor
[39] (based on previous work by Gabbay and Pitts [23]) employs the constructors
and permutation (or swapping), and requires that its models satisfy some Horn
clauses for constructors, permutation and freshness, together with the second-
order properties that (1) define freshness from swapping and (2) express Finite
Support. Urban et al.’s version [56,57] implemented in Isabelle/Nominal is an
improvement of Pitts’s in that it removes the Finite Support requirement from
the models—which is practically significant because it enables non-finitely sup-
ported target domains for recursion. Norrish’s result [33] is explicitly inspired by
nominal logic, but renounces the definability of the free-variable operator from
swapping—with the price of taking both swapping and free-variables as primi-
tives. My previous work with Gunter and Gheri takes as primitives either term-
for-variable substitution and freshness [46] or swapping and freshness [25], and
requires properties expressed by different Horn clauses (and does not explore a
Barendregt dimension, like Pitts, Urban et al. and Norrish do). My previous focus
on term-for-variable substitution [46] (as opposed to renaming, i.e., variable-for-
variable substitution) impairs expressiveness—for example, the depth of a term
is not definable using a recursor based on term-for-variable substitution because
we cannot say how term-for-variable substitution affects the depth of a term
based on its depth and that of the substitutee alone. My current result based
on rensets keeps freshness out of the primitive operators base (like nominal logic
does), and provides an unconditionally equational characterization using only
constructors and renaming. The key to achieving this minimality is the simple
expression of freshness from renaming in my axiomatization of rensets. In future
work, I plan a systematic formal comparison of the relative expressiveness of all
these nameful recursors.

Recursors in Other Paradigms. Figure 1 focuses on nameful recursors, while
only the Fiore et al./Hofmann recursor for the sake of a rough comparison with
the nameless approach. I should stress that such a comparison is necessarily
rough, since the nameless recursors do not give the same “payload” as the name-
ful ones. This is because of the handling of bound variables. In the nameless
paradigm, the λ-constructor does not explicitly take a variable as an input, as
in Lm x t, i.e., does not have type Var → Trm → Trm. Instead, the bindings
are indicated through nameless pointers to positions in a term. So the nameless
λ-constructor, let’s call it NLm, takes only a term, as in NLm t, i.e., has type
Trm → Trm or a scope-safe (polymorphic or dependently-typed) variation of this,
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e.g.,
∏

n∈F
Trmn → Trmn+1 [22,29] or

∏
α∈Type Trmα → Trmα+unit [5,11]. The λ-

constructor is of course matched by operators in the considered models, which
appears in the clauses of the functions f defined recursively on terms: Instead
of a clause of the form f (Lm x t) = 〈expression depending on x and f t〉 from
the nameful paradigm, in the nameless paradigm one gets a clause of the form
f (NLm t) = 〈expression depending on f t〉. A nameless recursor is usually eas-
ier to prove correct and easier to apply because the nameless constructor NLm
is free—whereas a nameful recursor must wrestle with the non-freeness of Lm,
handled by verifying certain properties of the target models. However, once the
definition is done, having nameful clauses pays off by allowing “textbook-style”
proofs that stay close to the informal presentation of a calculus or logic, whereas
with the nameless definition some additional index shifting bureaucracy is nec-
essary. (See [9] for a detailed discussion, and [14] for a hybrid solution.)

A comparison of nameful recursion with HOAS recursion is also generally
difficult, since major HOAS frameworks such as Abella [7], Beluga [37] or
Twelf [36] are developed within non-standard logical foundations, allowing a
λ-constructor of type (Trm → Trm) → Trm, which is not amenable to typi-
cal well-foundedness based recursion but requires some custom solutions (e.g.,
[21,50]). However, the weak HOAS variant [16,27] employs a constructor of the
form WHLm : (Var → Trm) → Trm which is recursable, and in fact yields a
free datatype, let us call it WHTrm—one generated by WHVr : Var → WHTrm,
WHAp : WHTrm → WHTrm → WHTrm and WHLm. WHTrm contains (natural
encodings of) all terms but also additional entities referred to as “exotic terms”.
Partly because of the exotic terms, this free datatype by itself is not very helpful
for recursively defining useful functions on terms. But the situation is dramati-
cally improved if one employs a variant of weak HOAS called parametric HOAS
(PHOAS) [15], i.e., takes Var not as a fixed type but as a type parameter (type
variable) and works with

∏
Var∈Type TrmVar; this enables many useful definitions

by choosing a suitable type Var (usually large enough to make the necessary dis-
tinctions) and then performing standard recursion. The functions definable in
the style of PHOAS seem to be exactly those definable via the semantic domain
interpretation pattern (Sect. 5.3): Choosing the instantiation of Var to a type
T corresponds to employing environments in Var → T . (I illustrate this at the
end of [45, Appendix A] by showing the semantic-domain version of a PHOAS
example.)

As a hybrid nameful/HOAS approach we can count Gordon and Melham’s
characterization of the datatype of terms [26], which employs the nameful con-
structors but formulates recursion treating Lm as if recursing in the weak-HOAS
datatype WHTrm. Norrish’s recursor [33] (a participant in Fig. 1) has been
inferred from Gordon and Melham’s one. Weak-HOAS recursion also has inter-
esting connections with nameless recursion: In presheaf toposes such as those
employed by Fiore et al. [22], Hofmann [29] and Ambler et al. [6], for any object
T the function space Var ⇒ T is isomorphic to the De Bruijn level shifting trans-
formation applied to T ; this effectively equates the weak-HOAS and nameless
recursors. A final cross-paradigm note: In themselves, nominal sets are not con-
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fined to the nameful paradigm; their category is equivalent [23] to the Schanuel
topos [30], which is attractive for pursuing the nameless approach.

Axiomatizations of Renaming. In his study of name-passing process calculi,
Staton [52] considers an enrichment of nominal sets with renaming (in addition
to swapping) and axiomatizes renaming with the help of the nominal (swapping-
defined) freshness predicate. He shows that the resulted category is equivalent to
the non-injective renaming counterpart of the Schanuel topos (i.e., the subcat-
egory of SetF consisting of functors that preserve pullbacks of monos). Gabbay
and Hofmann [24] provide an elementary characterization of the above category,
in terms of nominal renaming sets, which are sets equipped with a multiple-
variable-renaming action satisfying identity and composition laws, and a form
of Finite Support (FS). Nominal renaming sets seem very related to rensets
satisfying FS. Indeed, any nominal renaming set forms a FS-satisfying renset
when restricted to single-variable renaming. Conversely, I conjecture that any
FS-satisfying renset gives rise to a nominal renaming set. This correspondence
seems similar to the one between the permutation-based and swapping-based
alternative axiomatizations of nominal sets—in that the two express the same
concept up to an isomorphism of categories. In their paper, Gabbay and Hof-
mann do not study renaming-based recursion, beyond noting the availability of a
recursor stemming from the functor-category view (which, as I discussed above,
enables nameless recursion with a weak-HOAS flavor). Pitts [41] introduces nom-
inal sets with 01-substitution structure, which axiomatize substitution of one of
two possible constants for variables on top of the nominal axiomatization, and
proves that they form a category that is equivalent with that of cubical sets [10],
hence relevant for the univalent foundations [54].

Other Work. Sun [53] develops universal algebra for first-order languages with
bindings (generalizing work by Aczel [2]) and proves a completeness theorem. In
joint work with Roşu [48], I develop first-order logic and prove completeness on
top of a generic syntax with axiomatized free-variables and substitution.

Renaming Versus Swapping and Nominal Logic, Final Round. I believe
that my work complements rather than competes with nominal logic. My results
do not challenge the swapping-based approach to defining syntax (defining the
alpha-equivalence on pre-terms and quotienting to obtain terms) recommended
by nominal logic, which is more elegant than a renaming-based alternative; but
my easier-to-apply recursor can be a useful addition even on top of the nominal
substratum. Moreover, some of my constructions are explicitly inspired by the
nominal ones. For example, I started by adapting the nominal idea of defining
freshness from swapping before noticing that renaming enables a simpler formu-
lation. My formal treatment of Barendregt’s variable convention also originates
from nominal logic—as it turns out, this idea works equally well in my setting.
In fact, I came to believe that the possibility of a Barendregt enhancement is
largely orthogonal to the particularities of a binding-aware recursor. In future
work, I plan to investigate this, i.e., seek general conditions under which an
initiality principle (such as Theorems 10 and 8) is amenable to a Barendregt
enhancement (such as Theorems 2 and 11, respectively).
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Abstract. The characterizing properties of a proof-theoretical presen-
tation of a given logic may hang on the choice of proof formalism, on
the shape of the logical rules and of the sequents manipulated by a given
proof system, on the underlying notion of consequence, and even on the
expressiveness of its linguistic resources and on the logical framework into
which it is embedded. Standard (one-dimensional) logics determined by
(non-deterministic) logical matrices are known to be axiomatizable by
analytic and possibly finite proof systems as soon as they turn out to
satisfy a certain constraint of sufficient expressiveness. In this paper we
introduce a recipe for cooking up a two-dimensional logical matrix (or
B-matrix) by the combination of two (possibly partial) non-deterministic
logical matrices. We will show that such a combination may result in B-
matrices satisfying the property of sufficient expressiveness, even when
the input matrices are not sufficiently expressive in isolation, and we will
use this result to show that one-dimensional logics that are not finitely
axiomatizable may inhabit finitely axiomatizable two-dimensional logics,
becoming, thus, finitely axiomatizable by the addition of an extra dimen-
sion. We will illustrate the said construction using a well-known logic of
formal inconsistency called mCi. We will first prove that this logic is not
finitely axiomatizable by a one-dimensional (generalized) Hilbert-style
system. Then, taking advantage of a known 5-valued non-deterministic
logical matrix for this logic, we will combine it with another one, conve-
niently chosen so as to give rise to a B-matrix that is axiomatized by a
two-dimensional Hilbert-style system that is both finite and analytic.

Keywords: Hilbert-style proof systems · finite axiomatizability ·
consequence relations · non-deterministic semantics · paraconsistency

1 Introduction

A logic is commonly defined nowadays as a relation that connects collections
of formulas from a formal language and satisfies some closure properties. The
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established connections are called consecutions and each of them has two parts,
an antecedent and a succedent, the latter often being said to ‘follow from’ (or
to be a consequence of) the former. A logic may be manufactured in a number
of ways, in particular as being induced by the set of derivations justified by
the rules of inference of a given proof system. There are different kinds of proof
systems, the differences between them residing mainly in the shapes of their rules
of inference and on the way derivations are built. We will be interested here in
Hilbert-style proof systems (‘H-systems’, for short), whose rules of inference have
the same shape of the consecutions of the logic they canonically induce and whose
associated derivations consist in expanding a given antecedent by applications of
rules of inference until the desired succedent is produced. A remarkable property
of an H-system is that the logic induced by it is the least logic containing the
rules of inference of the system; in the words of [24], the system constitutes a
‘logical basis’ for the said logic.

Conventional H-systems, which we here dub ‘Set-Fmla H-systems’, do not
allow for more than one formula in the succedents of the consecutions that they
manipulate. Since [23], however, we have learned that the simple elimination of
this restriction on H-systems —that is, allowing for sets of formulas rather than
single formulas in the succedents— brings numerous advantages, among which
we mention: modularity (correspondence between rules of inference and proper-
ties satisfied by a semantical structure), analyticity (control over the resources
demanded to produce a derivation), and the automatic generation of analytic
proof systems for a wide class of logics specified by sufficiently expressive non-
deterministics semantics, with an associated straightforward proof-search pro-
cedure [13,18]. Such generalized systems, here dubbed ‘Set-Set H-systems’,
induce logics whose consecutions involve succedents consisting in a collection of
formulas, intuitively understood as ‘alternative conclusions’.

An H-system H is said to be an axiomatization for a given logic L when the
logic induced by H coincides with L. A desirable property for an axiomatization
is finiteness, namely the property of consisting on a finite collection of schematic
axioms and rules of inference. A logic having a finite axiomatization is said to
be ‘finitely based’. In the literature, one may find examples of logics having a
quite simple, finite semantic presentation, being, in contrast, not finitely based
in terms of Set-Fmla H-systems [21]. These very logics, however, when seen
as companions of logics with multiple formulas in the succedent, turn out to be
finitely based in terms of Set-Set H-systems [18]. In other words, by updating
the underlying proof-theoretical and the logical formalisms, we are able to obtain
a finite axiomatization for logics which in a more restricted setting could not be
said to be finitely based. We may compare the above mentioned movement to
the common mathematical practice of adding dimensions in order to provide
better insight on some phenomenon. A well-known example of that is given by
the Fundamental Theorem of Algebra, which provides an elegant solution to the
problem of determining the roots of polynomials over a single variable, demand-
ing only that real coefficients should be replaced by complex coefficients. Another
example, from Machine Learning, is the ‘kernel trick’ employed in support vector
machines: by increasing the dimensionality of the input space, the transformed
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data points become more easily separable by hyperplanes, making it possible to
achieve better results in classification tasks.

It is worth noting that there are logics that fail to be finitely based in terms
of Set-Set H-systems. An example of a logic designed with the sole purpose of
illustrating this possibility was provided in [18]. One of the goals of the present
work is to show that an important logic from the literature of logics of formal
inconsistency (LFIs) called mCi is also an example of this phenomenon. This
logic results from adding infinitely-many axiom schemas to the logic mbC, a logic
that is obtained by extending positive classical logic with two axiom schemas.
Incidentally, along the proof of this result, we will show that mCi is the limit of a
strictly increasing chain of LFIs extending mbC (comparable to the case of CLim

in da Costa’s hierarchy of increasingly weaker paraconsistent calculi [16]). A nat-
ural question, then, is whether we can enrich our technology, in the same vein, in
order to provide finite axiomatizations for all these logics. We answer that in the
affirmative by means of the two-dimensional frameworks developed in [11,17].
Logics, in this case, connect pairs of collections of formulas. A consecution, in
this setting, may be read as involving formulas that are accepted and those that
are not, as well as formulas that are rejected and those that are not. ‘Accep-
tance’ and ‘rejection’ are seen, thus, as two orthogonal dimensions that may
interact, making it possible, thus, to express more complex consecutions than
those expressible in one-dimensional logics. Two-dimensional H-systems, which
we call ‘Set2-Set2 H-systems’, generalize Set-Set H-systems so as to manipu-
late pairs of collections of formulas, canonically inducing two-dimensional logics
and constituting logical bases for them. Another goal of the present work is,
therefore, to show how to obtain a two-dimensional logic inhabited by a (possibly
not finitely based) one-dimensional logic of interest. More than that, the logic we
obtain will be finitely axiomatizable in terms of a Set2-Set2 analytic H-system.
The only requirements is that the one-dimensional logic of interest must have
an associated semantics in terms of a finite non-deterministic logical matrix and
that this matrix can be combined with another one through a novel procedure
that we will introduce, resulting in a two-dimensional non-deterministic matrix
(a B-matrix [9]) satisfying a certain condition of sufficient expressiveness [17].
An application of this approach will be provided here in order to produce the
first finite and analytic axiomatization of mCi.

The paper is organized as follows: Sect. 2 introduces basic terminology and
definitions regarding algebras and languages. Section 3 presents the notions of
one-dimensional logics and Set-Set H-systems. Section 4 proves that mCi is
not finitely axiomatizable by one-dimensional H-systems. Section 5 introduces
two-dimensional logics and H-systems, and describes the approach to extending
a logical matrix to a B-matrix with the goal of finding a finite two-dimensional
axiomatization for the logic associated with the former. Section 6 presents a two-
dimensional finite analytic H-system for mCi. In the final remarks, we highlight
some byproducts of our present approach and some features of the resulting
proof systems, in addition to pointing to some directions for further research.1

1 Detailed proofs of some results may be found in https://arxiv.org/abs/2205.08920.

https://arxiv.org/abs/2205.08920
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2 Preliminaries

A propositional signature is a family Σ := {Σk}k∈ω, where each Σk is a collection
of k-ary connectives. We say that Σ is finite when its base set

⋃
k∈ω Σk is

finite. A non-deterministic algebra over Σ, or simply Σ-nd-algebra, is a structure
A := 〈A, ·A〉, such that A is a non-empty collection of values called the carrier
of A, and, for each k ∈ ω and c© ∈ Σk, the multifunction c©A : Ak → P(A)
is the interpretation of c© in A. When Σ and A are finite, we say that A is
finite. When the range of all interpretations of A contains only singletons, A
is said to be a deterministic algebra over Σ, or simply a Σ-algebra, meeting
the usual definition from Universal Algebra [12]. When ∅ is not in the range
of each c©A, A is said to be total. Given a Σ-algebra A and a c© ∈ Σ1, we
let c©0

A(x) := x and c©i+1
A (x) := c©A( c©i

A(x)). A mapping v : A → B is a
homomorphism from A to B when, for all k ∈ ω, c© ∈ Σk and x1, . . . , xk ∈ A, we
have f [ c©A(x1, . . . , xk)] ⊆ c©B(f(x1), . . . , f(xk)). The set of all homomorphisms
from A to B is denoted by HomΣ(A,B). When B = A, we write EndΣ(A),
rather than HomΣ(A,A), for the set of endomorphisms on A.

Let P be a denumerable collection of propositional variables and Σ be a
propositional signature. The absolutely free Σ-algebra freely generated by P is
denoted by LΣ(P ) and called the Σ-language generated by P . The elements of
LΣ(P ) are called Σ-formulas, and those among them that are not propositional
variables are called Σ-compounds. Given Φ ⊆ LΣ(P ), we denote by Φc the set
LΣ(P )\Φ. The homomorphisms from LΣ(P ) to A are called valuations on A,
and we denote by ValΣ(A) the collection thereof. Additionally, endomorphisms
on LΣ(P ) are dubbed Σ-substitutions, and we let SubsP

Σ := EndΣ(LΣ(P )); when
there is no risk of confusion, we may omit the superscript from this notation.

Given ϕ ∈ LΣ(P ), let props(ϕ) be the set of propositional variables occurring
in ϕ. If props(ϕ) = {p1, . . . , pk}, we say that ϕ is k-ary (unary, for k = 1; binary,
for k = 2) and let ϕA : Ak → P(A) be the k-ary multifunction on A induced
by ϕ, where, for all x1, . . . , xk ∈ A, we have ϕA(x1, . . . , xk) := {v(ϕ) | v ∈
ValΣ(A) and v(pi) = xi, for 1 ≤ i ≤ k}. Moreover, given ψ1, . . . , ψk ∈ LΣ(P ),
we write ϕ(ψ1, . . . , ψk) for the Σ-formula ϕLΣ(P )(ψ1, . . . , ψk), and, where Φ ⊆
LΣ(P ) is a set of k-ary Σ-formulas, we let Φ(ψ1, . . . , ψk) := {ϕ(ψ1, . . . , ψk) | ϕ ∈
Φ}. Given ϕ ∈ LΣ(P ), by subf(ϕ) we refer to the set of subformulas of ϕ. Where
θ is a unary Σ-formula, we define the set subfθ(ϕ) as {σ(θ) | σ : P → subf(ϕ)}.
Given a set Θ ⊇ {p} of unary Σ-formulas, we set subfΘ(ϕ) :=

⋃
θ∈Θ subfθ(ϕ).

For example, if Θ = {p,¬p}, we will have subfΘ(¬(q ∨ r)) = {q, r, q ∨ r,¬(q ∨
r)} ∪ {¬q,¬r,¬(q ∨ r),¬¬(q ∨ r)}. Such generalized notion of subformulas will
be used in the next section to provide a more generous proof-theoretical concept
of analyticity.

3 One-Dimensional Consequence Relations

A Set-Set statement (or sequent) is a pair (Φ, Ψ) ∈ P(LΣ(P )) × P(LΣ(P )),
where Φ is dubbed the antecedent and Ψ the succedent. A one-dimensional con-
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sequence relation on LΣ(P ) is a collection � of Set-Set statements satisfying,
for all Φ, Ψ, Φ′, Ψ ′ ⊆ LΣ(P ),

(O) if Φ ∩ Ψ = ∅, then Φ � Ψ
(D) if Φ � Ψ , then Φ ∪ Φ′ � Ψ ∪ Ψ ′

(C) if Π ∪ Φ � Ψ ∪ Πc for all Π ⊆ LΣ(P ), then Φ � Ψ

Properties (O), (D) and (C) are called overlap, dilution and cut, respectively.
The relation � is called substitution-invariant when it satisfies, for every σ ∈
SubsΣ ,

(S) if Φ � Ψ , then σ[Φ] � σ[Ψ ]

and it is called finitary when it satisfies

(F) if Φ � Ψ , then Φf � Ψ f for some finite Φf ⊆ Φ and Ψ f ⊆ Ψ

One-dimensional consequence relations will also be referred to as one-dimen-
sional logics. Substitution-invariant finitary one-dimensional logics will be called
standard. We will denote by � the complement of �, called the compatibility
relation associated with � [10].

A Set-Fmla statement is a sequent having a single formula as consequent.
When we restrict standard consequence relations to collections of Set-Fmla
statements, we define the so-called (substitution-invariant finitary) Tarskian con-
sequence relations. Every one-dimensional consequence relation � determines a
Tarskian consequence relation � ⊆ P(LΣ(P ))×LΣ(P ), dubbed the Set-Fmla

Tarskian companion of �, such that, for all Φ ∪ {ψ} ⊆ LΣ(P ), Φ � ψ if,
and only if, Φ � {ψ}. It is well-known that the collection of all Tarskian con-
sequence relations over a fixed language constitutes a complete lattice under
set-theoretical inclusion [25]. Given a set C of such relations, we will denote by⊔

C its supremum in the latter lattice.
We present in what follows two ways of obtaining one-dimensional conse-

quence relations: one semantical, via non-deterministic logical matrices [6], and
the other proof-theoretical, via Set-Set Hilbert-style systems [18,23].

A non-deterministic Σ-matrix, or simply Σ-nd-matrix, is a structure M :=
〈A,D〉, where A is a Σ-nd-algebra, whose carrier is the set of truth-values, and
D ⊆ A is the set of designated truth-values. Such structures are also known in
the literature as ‘PNmatrices’ [7]; they generalize the so-called ‘Nmatrices’ [5],
which are Σ-nd-matrices with the restriction that A must be total. From now on,
whenever X ⊆ A, we denote A\X by X. In case A is deterministic, we simply
say that M is a Σ-matrix. Also, M is said to be finite when A is finite. Every Σ-
nd-matrix M determines a substitution-invariant one-dimensional consequence
relation over Σ, denoted by �

M
, such that Φ �

M
Ψ if, and only if, for all v ∈

ValΣ(A), v[Φ] ∩ D = ∅ or v[Ψ ] ∩ D = ∅. It is worth noting that �
M

is finitary
whenever the carrier of A is finite (the proof runs very similar to that of the
same result for Nmatrices [5, Theorem 3.15]).

A strong homomorphism between Σ-matrices M1 := 〈A1,D1〉 and M2 :=
〈A2,D2〉 is a homomorphism h between A1 and A2 such that x ∈ D1 if, and
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only if, h(x) ∈ D2. When there is a surjective strong homomorphism between
M1 and M2, we have that �

M1
= �

M2
.

Now, to the Hilbert-style systems. A (schematic) Set-Set rule of infer-
ence Rs is the collection of all substitution instances of the Set-Set statement
s, called the schema of Rs. Each r ∈ Rs is called a rule instance of Rs. A
(schematic) Set-Set H-system R is a collection of Set-Set rules of inference.
When we constrain the rule instances of R to having only singletons as succe-
dents, we obtain the conventional notion of Hilbert-style system, called here
Set-Fmla H-system.

An R-derivation in a Set-Set H-system R is a rooted directed tree t such
that every node is labelled with sets of formulas or with a discontinuation sym-
bol ∗, and in which every non-leaf node (that is, a node with child nodes) n in t
is an expansion of n by a rule instance r of R. This means that the antecedent
of r is contained in the label of n and that n has exactly one child node for
each formula ψ in the succedent of r. These child nodes are, in turn, labelled
with the same formulas as those of n plus the respective formula ψ. In case r
has an empty succedent, then n has a single child node labelled with ∗. Here we
will consider only finitary Set-Set H-systems, in which each rule instance has
finite antecedent and succedent. In such cases, we only need to consider finite
derivations. Figure 1 illustrates how derivations using only finitary rules of infer-
ence may be graphically represented. We denote by � t(n) the label of the node
n in the tree t. It is worth observing that, for Set-Fmla H-systems, derivations
are linear trees (as rule instances have a single formula in their succedents),
or, in other words, just sequences of formulas built by applications of the rule
instances, matching thus the conventional definition of Hilbert-style systems.

Φ

∗

Γ
∅

Φ

Φ, ψn. . .Φ, ψ2Φ, ψ1

Γ
ψ1,ψ2,...,ψn

Fig. 1. Graphical representation of R-derivations, for R finitary. The dashed edges and
blank circles represent other branches that may exist in the derivation. We usually
omit the formulas inherited from the parent node, exhibiting only the ones introduced
by the applied rule of inference. In both cases, we must have Γ ⊆ Φ to enable the
application of the rule.

A node n of an R-derivation t is called Δ-closed in case it is a leaf node with
� t(n) = ∗ or � t(n)∩Δ = ∅. A branch of t is Δ-closed when it ends in a Δ-closed
node. When every branch in t is Δ-closed, we say that R is itself Δ-closed. An
R-proof of a Set-Set statement (Φ, Ψ) is a Ψ -closed R-derivation t such that
� t(rt(t)) ⊆ Φ.
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Consider the binary relation �R on P(LΣ(P )) such that Φ�RΨ if, and only if,
there is an R-proof of (Φ, Ψ). This relation is the smallest substitution-invariant
one-dimensional consequence relation containing the rules of inference of R, and
it is finitary when R is finitary. Since Set-Set (and Set-Fmla) H-systems
canonically induce one-dimensional consequence relations, we may refer to them
as one-dimensional H-systems or one-dimensional axiomatizations. In case there
is a proof of (Φ, Ψ) whose nodes are labelled only with subsets of subfΘ[Φ ∪ Ψ ],
we write Φ �Θ

R Ψ . In case �R = �Θ
R , we say that R is Θ-analytic. Note that the

ordinary notion of analyticity obtains when Θ = {p}. From now on, whenever
we use the word “analytic” we will mean this extended notion of Θ-analyticity,
for some Θ implicit in the context. When the Θ happens to be important for us
or we identify any risk of confusion, we will mention it explicitly.

In [13], based on the seminal results on axiomatizability via Set-Set H-
systems by Shoesmith and Smiley [23], it was proved that any non-deterministic
logical matrix M satisfying a criterion of sufficient expressiveness is axiomatiz-
able by a Θ-analytic Set-Set Hilbert-style system, which is finite whenever M is
finite, where Θ is the set of separators for the pairs of truth-values of M. Accord-
ing to such criterion, an nd-matrix is sufficiently expressive when, for every pair
(x, y) of distinct truth-values, there is a unary formula S, called a separator for
(x, y), such that SA(x) ⊆ D and SA(y) ⊆ D, or vice-versa; in other words, when
every pair of distinct truth-values is separable in M.

We emphasize that it is essential for the above result the adoption of Set-
Set H-systems, instead of the more restricted Set-Fmla H-systems. In fact,
while two-valued matrices may always be finitely axiomatized by Set-Fmla H-
systems [22], there are sufficiently expressive three-valued deterministic matrices
[21] and even quite simple two-valued non-deterministic matrices [19] that fail to
be finitely axiomatized by Set-Fmla H-systems. When the nd-matrix at hand is
not sufficiently expressive, we may observe the same phenomenon of not having
a finite axiomatization also in terms of Set-Set H-systems, even if the said nd-
matrix is finite. The first example (and, to the best of our knowledge, the only
one in the current literature) of this fact appeared in [13], which we reproduce
here for later reference:

Example 1. Consider the signature Σ := {Σk}k∈ω such that Σ1 := {g, h} and
Σk := ∅ for all k = 1. Let M := 〈A, {a}〉 be a Σ-nd-matrix, with A := {a,b, c}
and

gA(x) =

{
{a}, if x = c
A, otherwise

hA(x) =

{
{b}, if x = b
A, otherwise

This matrix is not sufficiently expressive because there is no separator for the
pair (b, c), and [13] proved that it is not axiomatizable by a finite Set-Set
H-system, even though an infinite Set-Set system that captures it has a quite
simple description in terms of the following infinite collection of schemas:

hi(p)
p, g(p)

, for all i ∈ ω.
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In the next section, we reveal another example of this same phenomenon, this
time of the known LFI [14] called mCi. In the path of proving that this logic
is not axiomatizable by a finite Set-Set H-system, we will show that there are
infinitely many LFIs between mbC and mCi, organized in a strictly increasing
chain whose limit is mCi itself.

Before continuing, it is worth emphasizing that any given non-sufficiently
expressive nd-matrix may be conservatively extended to a sufficiently expressive
nd-matrix provided new connectives are added to the language [18]. These new
connectives have the sole purpose of separating the pairs of truth-values for which
no separator is available in the original language. The Set-Set system produced
from this extended nd-matrix can, then, be used to reason over the original
logic, since the extension is conservative. However, these new connectives, which
a priori have no meaning, are very likely to appear in derivations of consecutions
of the original logic. This might not look like an attractive option to inferentialists
who believe that purity of the schematic rules governing a given logical constant
is essential for the meaning of the latter to be coherently fixed. In the subsequent
sections, we will introduce and apply a potentially more expressive notion of logic
in order to provide a finite and analytic H-system for logics that are not finitely
axiomatizable in one dimension, while preserving their original languages.

4 The Logic mCi is Not Finitely Axiomatizable

A one-dimensional logic � over Σ is said to be ¬-paraconsistent when we have
p,¬p � q, for p, q ∈ P . Moreover, � is ¬-gently explosive in case there is a
collection ©(p) ⊆ LΣ(P ) of unary formulas such that, for some ϕ ∈ LΣ(P ), we
have ©(ϕ), ϕ � ∅; ©(ϕ),¬ϕ � ∅, and, for all ϕ ∈ LΣ(P ), ©(ϕ), ϕ,¬ϕ �∅. We
say that � is a logic of formal inconsistency (LFI) in case it is ¬-paraconsistent
yet ¬-gently explosive. In case ©(p) = {◦p}, for ◦ a (primitive or composite)
consistency connective, the logic is said also to be a C -system. In what follows,
let Σ◦ be the propositional signature such that Σ◦

1 := {¬, ◦}, Σ◦
2 := {∧,∨, ⊃},

and Σ◦
k := ∅ for all k ∈ {1, 2}.

One of the simplest C-systems is the logic mbC, which was first presented in
terms of a Set-Fmla H-system over Σ◦ obtained by extending any Set-Fmla
H-system for positive classical logic (CPL+) with the following pair of axiom
schemas:

(em) p ∨ ¬p
(bc1) ◦p⊃ (p⊃ (¬p⊃ q))

The logic mCi, in turn, is the C-system resulting from extending the H-
system for mbC with the following (infinitely many) axiom schemas [20] (the
resulting Set-Fmla H-system is denoted here by HmCi):

(ci) ¬◦p⊃ (p ∧ ¬p)
(ci)j ◦¬j◦p (for all 0 ≤ j < ω)
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A unary connective c© is said to constitute a classical negation in a one-
dimensional logic � extending CPL+ in case, for all ϕ,ψ ∈ LΣ(P ), ∅�ϕ∨ c©(ϕ)
and ∅� ϕ⊃ ( c©(ϕ)⊃ ψ). One of the main differences between mCi and mbC is
that an inconsistency connective • may be defined in the former using the para-
consistent negation, instead of a classical negation, by setting •ϕ := ¬◦ϕ [20].

Both logics above were presented in [15] in ways other than H-systems: via
tableau systems, via bivaluation semantics and via possible-translations seman-
tics. In addition, while these logics are known not to be characterizable by a
single finite deterministic matrix [20], a characteristic nd-matrix is available for
mbC [1] and a 5-valued non-deterministic logical matrix is available for mCi [2],
witnessing the importance of non-deterministic semantics in the study of non-
classical logics. Such characterizations, moreover, allow for the extraction of
sequent-style systems for these logics by the methodologies developed in [3,4].
Since mCi’s 5-valued nd-matrix will be useful for us in future sections, we recall
it below for ease of reference.

Definition 1. Let V5 := {f, F, I, T, t} and Y5 := {I, T, t}. Define the Σ◦-matrix
MmCi := 〈A5,Y5〉 such that A5 := 〈V5, ·A5〉 interprets the connectives of Σ◦

according to the following:

∧A5(x1, x2) :=

{
{f} if either x1 ∈ Y5 or x2 ∈ Y5

{I, t} otherwise

∨A5(x1, x2) :=

{
{I, t} if either x1 ∈ Y5 or x2 ∈ Y5

{f} if x1,x2 ∈ Y5

⊃ A5(x1, x2) :=

{
{I, t} if either x1 ∈ Y5 or x2 ∈ Y5

{f} if x1 ∈ Y5 and x2 ∈ Y5

f F I T t

¬A5 {I,t} {T} {I,t} {F} {f}
f F I T t

◦A5 {T} {T} {F} {T} {T}

One might be tempted to apply the axiomatization algorithm of [13] to the
finite non-deterministic logical matrix defined above to obtain a finite and ana-
lytic Set-Set system for mCi. However, it is not obvious, at first, whether this
matrix is sufficiently expressive or not (we will, in fact, prove that it is not).
In what follows, we will show now mCi is actually axiomatizable neither by a
finite Set-Fmla H-system (first part), nor by a finite Set-Set H-system (sec-
ond part); it so happens, thus, that it was not by chance that HmCi has been
originally presented with infinitely many rule schemas. For the first part, we rely
on the following general result:

Theorem 1 ([25], Theorem 2.2.8, adapted). Let be a standard Tarskian
consequence relation. Then is axiomatizable by a finite Set-Fmla H-system
if, and only if, there is no strictly increasing sequence 0 , 1 , . . . , n , . . . of stan-
dard Tarskian consequence relations such that =

⊔
i∈ω i .
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In order to apply the above theorem, we first present a family of finite Set-Fmla
H-systems that, in the sequel, will be used to provide an increasing sequence
of standard Tarskian consequence relations whose supremum is precisely mCi.
Next, we show that this sequence is stricly increasing, by employing the matrix
methodology traditionally used for showing the independence of axioms in a
proof system.

Definition 2. For each k ∈ ω, let Hk
mCi be a Set-Fmla H-system for positive

classical logic together with the schemas (em), (bc1), (ci) and (ci)j, for all 0 ≤
j ≤ k.

Since Hk
mCi may be obtained from HmCi by deleting some (infinitely many)

axioms, it is immediate that:

Proposition 1. For every k ∈ ω,
Hk

mCi

⊆ mCi .

The way we define the promised increasing sequence of consequence relations
in the next result is by taking the systems Hk

mCi with odd superscripts, namely,
we will be working with the sequence

H1
mCi

,
H3

mCi

,
H5

mCi

, . . . Excluding the cases
where k is even will facilitate, in particular, the proof of Lemma 3.

Lemma 1. For each 1 ≤ k < ω, let k :=
H2k−1

mCi

. Then 1 ⊆ 2 ⊆ . . ., and

mCi =
⊔

1≤k<ω k .

Finally, we prove that the sequence outlined in the paragraph before Lemma 1
is strictly increasing. In order to achieve this, we define, for each 1 ≤ k < ω, a
Σ◦-matrix Mk and prove that H2k−1

mCi is sound with respect to such matrix. Then,
in the second part of the proof (the “independence part”), we show that, for each
1 ≤ k < ω, Mk fails to validate the rule schema (ci)j , for j = 2k, which is present
in H

2(k+1)−1
mCi . In this way, by the contrapositive of the soundness result proved

in the first part, we will have (ci)j provable in H
2(k+1)−1
mCi while unprovable in

H2k−1
mCi . In what follows, for any k ∈ ω, we use k∗ to refer to the successor of k.

Definition 3. Let 1 ≤ k < ω. Define the 2k∗-valued Σ◦-matrix Mk := 〈Ak,Dk〉
such that Dk := {k∗ + 1, . . . , 2k∗} and Ak := 〈{1, . . . , 2k∗}, ·Ak

〉, the interpreta-
tion of Σ◦ in Ak given by the following operations:

x∨Ak
y :=

{
1 if x, y ∈ Dk

k∗ + 1 otherwise
x∧Ak

y :=

{
k∗ + 1 if x, y ∈ Dk

1 otherwise

x⊃ Ak
y :=

{
1 if x ∈ Dk and y ∈ Dk

k∗ + 1 otherwise

◦Ak
x :=

{
1 if x = 2k∗

k∗ + 1 otherwise
¬Ak

x :=

⎧
⎪⎨

⎪⎩

k∗ + 1 if x ∈ {1, 2k∗}
x + k∗ if 2 ≤ x ≤ k∗

x − (k∗ − 1) if k∗ + 1 ≤ x ≤ 2k∗ − 1
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Before continuing, we state results concerning this construction, which will be
used in the remainder of the current line of argumentation. In what follows, when
there is no risk of confusion, we omit the subscript ‘Ak’ from the interpretations
to simplify the notation.

Lemma 2. For all k ≥ 1 and 1 ≤ m ≤ 2k,

¬m
Ak

(k∗ + 1) =

{
(k∗ + 1) + m

2 , if m is even
1 + m+1

2 , otherwise

Lemma 3. For all 1 ≤ k < ω, we have
H2k∗−1

mCi

◦¬2k◦p but 
H2k−1

mCi

◦¬2k◦p.

Finally, Theorem 1, Lemma 1 and Lemma 3 give us the main result:

Theorem 2. mCi is not axiomatizable by a finite Set-Fmla H-system.

For the second part —namely, that no finite Set-Set H-system axiomatizes
mCi—, we make use of the following result:

Theorem 3 ([23], Theorem 5.37, adapted). Let � be a one-dimensional
consequence relation over a propositional signature containing the binary con-
nective ∨. Suppose that the Set-Fmla Tarskian companion of �, denoted by

� , satisfies the following property:

Φ,ϕ ∨ ψ � γ if, and only if, Φ,ϕ � γ and Φ,ψ � γ (Disj)

If a Set-Set H-system R axiomatizes �, then R may be converted into a Set-

Fmla H-system for � that is finite whenever R is finite.

It turns out that:

Lemma 4. mCi satisfies (Disj).

Proof. The non-deterministic semantics of mCi gives us that, for all ϕ,ψ ∈
LΣ◦(P ), ϕ �

MmCi
ϕ ∨ ψ; ψ �

MmCi
ϕ ∨ ψ, and ϕ ∨ ψ �

MmCi
ϕ,ψ, and such facts

easily imply (Disj).

Theorem 4. mCi is not axiomatizable by a finite Set-Set H-system.

Proof. If R were a finite Set-Set H-system for mCi, then, by Lemma 4 and
Theorem 3, it could be turned into a finite Set-Fmla H-system for this very
logic. This would contradict Theorem 2.

Finding a finite one-dimensional H-system for mCi (analytic or not) over the
same language, then, proved to be impossible. The previous result also tells us
that there is no sufficiently expressive non-deterministic matrix that character-
izes mCi (for otherwise the recipe in [13] would deliver a finite analytic Set-Set
H-system for it), and we may conclude, in particular, that:
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Corollary 1. The nd-matrix MmCi is not sufficiently expressive.

The pairs of truth-values of MmCi that seem not to be separable (at least
one of these pairs must not be, in view of the above corollary) are (t, T ) and
(f, F ). The insufficiency of expressive power to take these specific pairs of values
apart, however, would be circumvented if we had considered instead the matrix
defined below, obtained from MmCi by changing its set of designated values:

Definition 4. Let M
n
mCi := 〈A5,N5〉, where N5 := {f, I, T}.

Note that, in M
n
mCi, we have t ∈ N5, while T ∈ N5, and we have that f ∈ N5,

while F ∈ N5. Therefore, the single propositional variable p separates in M
n
mCi

the pairs (t, T ) and (f, F ). On the other hand, it is not clear now whether the
pairs (t, F ) and (f, T ) are separable in this new matrix. Nonetheless, we will
see, in the next section, how we can take advantage of the semantics of non-
deterministic B-matrices in order to combine the expressiveness of MmCi and
M

n
mCi in a very simple and intuitive manner, preserving the language and the

algebra shared by these matrices. The notion of logic induced by the resulting
structure will not be one-dimensional, as the one presented before, but rather
two-dimensional, in a sense we shall detail in a moment. We identify two impor-
tant aspects of this combination: first, the logics determined by the original
matrices can be fully recovered from the combined logic; and, second, since the
notions of H-systems and sufficient expressiveness, as well as the axiomatization
algorithm of [13], were generalized in [17], the resulting two-dimensional logic
may be algorithmically axiomatized by an analytic two-dimensional H-system
that is finite if the combining matrices are finite, provided the criterion of suffi-
cient expressiveness is satisfied after the combination. This will be the case, in
particular, when we combine MmCi and M

n
mCi. Consequently, this novel way of

combining logics provides a quite general approach for producing finite and ana-
lytic axiomatizations for logics determined by non-deterministic logical matrices
that fail to be finitely axiomatizable in one dimension; this includes the logics
from Example 1, and also mCi.

5 Two-Dimensional Logics

From now on, we will employ the symbols Y,

Y

, N and Nto informally refer to,
respectively, the cognitive attitudes of acceptance, non-acceptance, rejection and
non-rejection, collected in the set Atts := {Y,

Y

,N, N}. Given a set Φ ⊆ LΣ(P ),
we will write Φα to intuitively mean that a given agent entertains the cognitive
attitude α ∈ Atts with respect to the formulas in Φ, that is: the formulas in
ΦY will be understood as being accepted by the agent; the ones in Φ Y, as non-
accepted; the ones in ΦN, as rejected; and the ones in Φ N, as non-rejected. Where
α ∈ Atts, we let α̃ be its flipped version, that is, Ỹ :=

Y

, ˜Y

:= Y, Ñ := Nand
˜N:= N.

We refer to each as a B-statement, where
(ΦY, ΦN) is the antecedent and (Φ Y, Φ N) is the succedent. The sets in the latter
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pairs are called components. A B-consequence relation is a collection ·
· | ·

· of B-
statements satisfying:

(O2) if ΦY ∩ Φ Y= ∅ or ΦN ∩ Φ N= ∅, then Φ N

ΦY
|Φ Y

ΦN

(D2) if Ψ N

ΨY
|Ψ Y

ΨN
and Ψα ⊆ Φα for every α ∈ Atts, then Φ N

ΦY
|Φ Y

ΦN

(C2) if Ωc
S

ΩS
|Ωc

S

Ω S
for all ΦY ⊆ ΩS ⊆ Φc Yand ΦN ⊆ Ω S⊆ Φc

N, then Φ N

ΦY
|Φ Y

ΦN

A B-consequence relation is called substitution-invariant if, in addition, Φ N

ΦY
|Φ Y

ΦN

holds whenever, for every σ ∈ SubsΣ :

(S2) Ψ N

ΨY
|Ψ Y

ΨN
and Φα = σ(Ψα) for every α ∈ Atts

Moreover, a B-consequence relation is called finitary when it enjoys the property

(F2) if Φ N

ΦY
|Φ Y

ΦN
, then Φf

N

Φf
Y
|ΦfY

Φf
N
, for some finite Φf

α ⊆ Φα, and each α ∈ Atts

In what follows, B-consequence relations will also be referred to as two-dimen-
sional logics. The complement of ·

· | ·
· , sometimes called the compatibility relation

associated with ·
· | ·

· [10], will be denoted by ·
·×| ·

· . Every B-consequence relation
C := ·

· | ·
· induces one-dimensional consequence relations �C

t and �C
f , such that

ΦY�C
t Φ Yiff ∅

ΦY
|Φ Y

∅
, and ΦN�C

f Φ Niff Φ N

∅
| ∅

ΦN
. Given a one-dimensional consequence

relation �, we say that it inhabits the t-aspect of C if � = �C
t , and that it

inhabits the f-aspect of C if � = �C
f . B-consequence relations actually induce

many other (even non-Tarskian) one-dimensional notions of logics; the reader is
referred to [9,11] for a thorough presentation on this topic.

As we did for one-dimensional consequence relations, we present now realiza-
tions of B-consequence relations, first via the semantics of nd-B-matrices, then
by means of two-dimensional H-systems.

A non-deterministic B-matrix over Σ, or simply Σ-nd-B-matrix, is a struc-
ture M := 〈A,Y,N〉, where A is a Σ-nd-algebra, Y ⊆ A is the set of designated
values and N ⊆ A is the set of antidesignated values of M. For convenience, we
define

Y

:= A\Y to be the set of non-designated values, and N:= A\N to be
the set of non-antidesignated values of M. The elements of ValΣ(A) are dubbed
M-valuations. The B-entailment relation determined by M is a collection ·

· | ·
· M

of B-statements such that

(B-ent)
Φ N

ΦY
|Φ

Y

ΦN
M iff

there is no M-valuation v such that
v(Φα) ⊆ α for each α ∈ Atts,

for every ΦY, ΦN, Φ Y, Φ N⊆ LΣ(P ). Whenever Φ N

ΦY
|Φ Y

ΦN
M , we say that the B-

statement holds in M or is valid in M. An M-valuation that bears

witness to Φ N

ΦY
×| Φ Y

ΦN
M is called a countermodel for in M. One may eas-

ily check that ·
· | ·

· M is a substitution-invariant B-consequence relation, that is
finitary when A is finite. Taking C as ·

· | ·
· M , we define �M

t := �C
t and �M

f := �C
f .
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ΦY ΦN

∗

ΨY ΨN

∅ ∅

ΦY ΦN

ΦY n, ΦN. . .ΦY 1, ΦNΦY,γm ΦN. . .ΦY,γ1 ΦN

ΨY ΨN

γ1,...,γm 1,..., n

Fig. 2. Graphical representation of finite R-derivations. We emphasize that, in both
cases, we must have ΨY ⊆ ΦY and ΨN ⊆ ΦN to enable the application of the rule.

We move now to two-dimensional, or Set2-Set2, H-systems, first introduced
in [17]. A (schematic) Set2-Set2 rule of inference Rs is the collection of all sub-
stitution instances of the Set2-Set2 statement s, called the schema of Rs. Each
r ∈ Rs is said to be a rule instance of Rs. In a proof-theoretic context, rather

than writing the B-statement , we shall denote the corresponding rule

by
ΦY ‖ ΦN

Φ Y‖ Φ N
. A (schematic) Set2-Set2 H-system R is a collection of Set2-Set2

rules of inference. Set2-Set2 derivations are as in the Set-Set H-systems, but
now the nodes are labelled with pairs of sets of formulas, instead of a single set.
When applying a rule instance, each formula in the succedent produces a new
branch as before, but now the formula goes to the same component in which
it was found in the rule instance. See Fig. 2 for a general representation and
compare it with Fig. 1.

Let t be an R-derivation. A node n of t is (Ψ Y, Ψ N)-closed in case it is dis-
continued (namely, labelled with ∗) or it is a leaf node with � t(n) = (ΦY, ΦN)
and either ΦY ∩ Ψ Y = ∅ or ΦN ∩ Ψ N = ∅. A branch of t is (Ψ Y, Ψ N)-closed
when it ends in a (Ψ Y, Ψ N)-closed node. An R-derivation t is said to be (Ψ Y, Ψ N)-

closed when all of its branches are (Ψ Y, Ψ N)-closed. An R-proof of is a
(Φ Y, Φ N)-closed R-derivation t with � t(rt(t)) ⊆ (ΦY, ΦN). The definitions of the
(finitary) substitution-invariant B-consequence relation ·

· | ·
· R induced by a (fini-

tary) Set2-Set2 H-system R and Θ-analyticity are obvious generalizations of
the corresponding Set-Set definitions.

In [17], the notion of sufficient expressiveness was generalized to nd-B-
matrices. We reproduce here the main definitions for self-containment:

Definition 5. Let M := 〈A,Y,N〉 be a Σ-nd-B-matrix.

– Given X,Y ⊆ A and α ∈ {Y,N}, we say that X and Y are α-separated,
denoted by X#αY , if X ⊆ α and Y ⊆ α̃, or vice-versa.

– Given distinct truth-values x, y ∈ A, a unary formula S is a separator for
(x, y) whenever SA(x)#αSA(y) for some α ∈ {Y,N}. If there is a separator
for each pair of distinct truth-values in A, then M is said to be sufficiently
expressive.

In the same work [17], the axiomatization algorithm of [13] was also general-
ized, guaranteeing that every sufficiently expressive nd-B-matrix M is axiomati-
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zable by a Θ-analytic Set2-Set2 H-system, which is finite whenever M is finite,
where Θ is a set of separators for the pairs of truth-values of M. Note that, in
the second bullet of the above definition, a unary formula is characterized as
a separator whenever it separates a pair of truth-values according to at least
one of the distinguished sets of values. This means that having two of such sets
may allow us to separate more pairs of truth-values than having a single set,
that is, the nd-B-matrices are, in this sense, potentially more expressive than
the (one-dimensional) logical matrices.

Example 2. Let A be the Σ-nd-algebra from Example 1, and consider the nd-
B-matrix M := 〈A, {a}, {b}〉. As we know, in this matrix the pair (b, c) is not
separable if we consider only the set of designated values {a}. However, as we
have now the set {b} of antidesignated truth-values, the separation becomes evi-
dent: the propositional variable p is a separator for this pair now, since b ∈ {b}
and c ∈ {b}. The recipe from [17] produces the following Set2-Set2 axiomati-
zation for M, with only three very simple schematic rules of inference:

p ‖ p
‖

‖
f(p), p ‖ p

‖ p
‖ t(p)

By construction, the one-dimensional logic determined by the nd-matrix of
Example 1 inhabits the t-aspect of ·

· | ·
· M , thus it can be seen as being axiom-

atized by this finite and analytic two-dimensional system (contrast with the
infinite Set-Set axiomatization known for this logic provided in that same
example).

We constructed above a Σ-nd-B-matrix from two Σ-nd-matrices in such a
way that the one-dimensional logics determined by latter are fully recoverable
from the former. We formalize this construction below:

Definition 6. Let M := 〈A,D〉 and M
′ := 〈A,D′〉 be Σ-nd-matrices. The B-

product between M and M
′ is the Σ-nd-B-matrix M � M

′ := 〈A,D,D′〉.
Note that Φ �

M
Ψ iff Φ |Ψ

M�M
′ iff Φ �M	M

′
t Ψ , and Φ �

M′ Ψ iff Ψ | Φ M�M
′

iff Φ �M	M
′

f Ψ . Therefore, �
M

and �
M′ are easily recoverable from ·

· | ·
· M�M

′ ,
since they inhabit, respectively, the t-aspect and the f-aspect of the latter. One
of the applications of this novel way of putting two distinct logics together
was illustrated in that same Example 2 to produce a two-dimensional analytic
and finite axiomatization for a one-dimensional logic characterized by a Σ-nd-
matrix. As we have shown, the latter one-dimensional logic does not need to be
finitely axiomatizable by a Set-Set H-system. We present this application of
B-products with more generality below:

Proposition 2. Let M := 〈A,D〉 be a Σ-nd-matrix and suppose that U ⊆ A×A
contains all and only the pairs of distinct truth-values that fail to be separable in
M. If, for some M

′ := 〈A,D′〉, the pairs in U are separable in M
′, then M�M

′ is
sufficiently expressive (thus, axiomatizable by an analytic Set2-Set2 H-system,
that is finite whenever A is finite).
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6 A Finite and Analytic Proof System for mCi

In the spirit of Proposition 2, we define below a nd-B-matrix by combining
the matrices MmCi := 〈A5,Y5〉 and M

n
mCi := 〈A5,N5〉 introduced in Sect. 4

(Definition 1 and Definition 4):

Definition 7. Let MmCi := MmCi �M
n
mCi = 〈A5,Y5,N5〉, with Y5 := {I, T, t}

and N5 := {f, I, T}.
When we consider now both sets Y5 and N5 of designated and antidesignated

truth-values, the separation of all truth-values of A5 becomes possible, that is,
MmCi is sufficiently expressive, as guaranteed by Proposition 2. Furthermore,
notice that we have two alternatives for separating the pairs (I, t) and (I, T ):
either using the formula ¬p or the formula ◦p. With this finite sufficiently expres-
sive nd-B-matrix in hand, producing a finite {p, ◦p}-analytic two-dimensional H-
system for it is immediate by [17, Theorem 2]. Since mCi inhabits the t-aspect
of ·

· | ·
· MmCi , we may then conclude that:

Theorem 5. mCi is axiomatizable by a finite and analytic two-dimensional
H-system.

Our axiomatization recipe delivers an H-system with about 300 rule schemas.
When we simplify it using the streamlining procedures indicated in that paper,
we obtain a much more succinct and insightful presentation, with 28 rule
schemas, which we call RmCi. The full presentation of this system is given below:

q ‖
p ⊃ q ‖ ⊃ mCi

1
‖

p, p ⊃ q ‖ ⊃ mCi
2

p ⊃ q, p ‖
q ‖ ⊃ mCi

3
p ‖
q ‖ p ⊃ q

⊃ mCi
4

p ⊃ q, ◦(p ⊃ q) ‖ p ⊃ q

‖ ⊃ mCi
5

p, q ‖
p ∧ q ‖ ∧mCi

1
p ∧ q ‖

p ‖ ∧mCi
2

p ∧ q ‖
q ‖ ∧mCi

3
‖

p ∧ q ‖ p ∧ q
∧mCi

4
p∧q, ◦(p∧q) ‖ p∧q

‖ ∧mCi
5

p ‖
p ∨ q ‖ ∨mCi

1
q ‖

p ∨ q ‖ ∨mCi
2

p ∨ q ‖
p, q ‖ ∨mCi

3
‖

p, q ‖ p ∨ q
∨mCi

4
p∨q, ◦(p∨q) ‖ p∨q

‖ ∨mCi
5

◦p ‖
‖ ◦p

◦mCi
1

‖
◦◦p ‖ ◦mCi

2
‖ ◦p

◦p ‖ ◦mCi
3

‖
◦p ‖ p

◦mCi
4

‖
p ‖ ◦p

◦mCi
5

‖
‖ ¬p, p

¬mCi
1

¬p, ◦p, p ‖
‖ ¬mCi

2
¬p, p ‖

‖ p
¬mCi

3
◦¬p ‖ ¬p, p

‖ ¬mCi
4

‖ ¬p, p

¬p ‖ ¬mCi
5

‖
¬p, ◦p ‖ ¬mCi

6
‖

¬p, p ‖ ¬mCi
7

‖
◦¬p ‖ p

¬mCi
8

Note that the set of rules { c©mCi
i | c© ∈ {∧,∨, ⊃}, i ∈ {1, 2, 3}} makes it

clear that the t-aspect of the induced B-consequence relation is inhabited by a
logic extending positive classical logic, while the remaining rules for these con-
nectives involve interactions between the two dimensions. Also, rule ¬mCi

2 indi-
cates that ◦ satisfies one of the main conditions for being taken as a consistency
connective in the logic inhabiting the t-aspect. In fact, all these observations
are aligned with the fact that the logic inhabiting the t-aspect of ·

· | ·
· RmCi is

precisely mCi. See, in Fig. 3, RmCi-derivations showing that, in mCi, ¬◦p and
p∧¬p are logically equivalent and that ◦¬◦p is a theorem.



656 V. Greati and J. Marcos

p ∧ ¬p

p

¬p

◦p

∗
¬mCi

2

¬◦p

¬mCi
7

∧mCi
3

∧mCi
2

¬◦p

◦p

◦◦p

∗
¬mCi

2

◦mCi
2

¬p

p

◦p

◦◦p

∗
¬mCi

2

◦mCi
2

◦mCi
3

p

p ∧ ¬p

∧mCi
1

◦mCi
5

¬mCi
6

∅ ∅

¬◦p

p

¬◦p

◦p

◦◦p

¬mCi
2

◦mCi
2

◦mCi
3

¬mCi
5

◦¬◦p

¬mCi
8

◦¬◦p

◦mCi
4

Fig. 3. RmCi-derivations showing, respectively, that ∅

p∧¬p
|¬◦p

∅
RmCi ,

∅

¬◦p
| p∧¬p

∅
RmCi

and ∅

∅
| ◦¬◦p

∅
RmCi . Note that, for a cleaner presentation, we omit the formulas inherited

from parent nodes.

7 Concluding Remarks

In this work, we introduced a mechanism for combining two non-deterministic
logical matrices into a non-deterministic B-matrix, creating the possibility of pro-
ducing finite and analytic two-dimensional axiomatizations for one-dimensional
logics that may fail to be finitely axiomatizable in terms of one-dimensional
Hilbert-style systems. It is worth mentioning that, as proved in [17], one may
perform proof search and countermodel search over the resulting two-dimensional
systems in time at most exponential on the size of the B-statement of interest
through a straightforward proof-search algorithm.

We illustrated the above-mentioned combination mechanism with two exam-
ples, one of them corresponding to a well-known logic of formal inconsistency
called mCi. We ended up proving not only that this logic is not finitely axiom-
atizable in one dimension, but also that it is the limit of a strictly increasing
chain of LFIs extending the logic mbC. From the perspective of the study of B-
consequence relations, these examples allow us to eliminate the suspicion that a
two-dimensional H-system R may always be converted into Set-Set H-systems
for the logics inhabiting the one-dimensional aspects of ·

· | ·
· R without losing any

desirable property (in this case, finiteness of the presentation).
At first sight, the formalism of two-dimensional H-systems may be confused

with the formalism of n-sided sequents [3,4], in which the objects manipulated
by rules of inference (the so-called n-sequents) accommodate more than two sets
of formulas in their structures. The reader interested in a comparison between
these two different approaches is referred to the concluding remarks of [17].

We close with some observations regarding MmCi and the two-dimensional
H-system RmCi. A one-dimensional logic � is said to be ¬-consistent when
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ϕ,¬ϕ�∅ and ¬-determined when ∅�ϕ,¬ϕ for all ϕ ∈ LΣ(P ). A B-consequence
relation ·

· | ·
· is said to allow for gappy reasoning when ϕ×| ϕ and to allow for glutty

reasoning when ϕ×| ϕ , for some ϕ ∈ LΣ(P ). Notice that ¬-determinedness in the
logic inhabiting the t-aspect of a B-consequence relation by no means implies
the disallowance of gappy reasoning in the two-dimensional setting: we still have
F ∈ Y5∩N5, so one may both non-accept and non-reject a formula ϕ in ·

· | ·
· RmCi ,

even though non-accepting both ϕ and its negation in mCi is not possible, in
view of rule ¬mCi

7 . Similarly, the recovery of ¬-consistency achieved via ◦ in
such logic does not coincide with the gentle disallowance of glutty reasoning in
·
· | ·

· RmCi , that is, we do not have, in general, p,◦p | p
RmCi or p |◦p,p

RmCi , even
though for binary compounds both are derivable in view of rules c©mCi

5 , for
c© ∈ {∧,∨, ⊃}, and ◦mCi

1 . With these observations we hope to call attention to
the fact that B-consequence relations open the doors for further developments
concerning the study of paraconsistency (and, dually, of paracompleteness), as
well as the study of recovery operators [8].
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Abstract. Treating a saturation-based automatic theorem prover
(ATP) as a Las Vegas randomized algorithm is a way to illuminate the
chaotic nature of proof search and make it amenable to study by prob-
abilistic tools. On a series of experiments with the ATP Vampire, the
paper showcases some implications of this perspective for prover evalua-
tion.

Keywords: Saturation-based proving · Evalutation · Randomization

1 Introduction

Saturation-based proof search is known to be fragile. Even seemingly insignificant
changes in the search procedure, such as shuffling the order in which input
formulas are presented to the prover, can have a huge impact on the prover’s
running time and thus on the ability to find a proof within a given time limit.

This chaotic aspect of the prover behaviour is relatively poorly understood,
yet has obvious consequences for evaluation. A typical experimental evaluation
of a new technique T compares the number of problems solved by a baseline
run with a run enhanced by T (over an established benchmark and with a fixed
timeout). While a higher number of problems solved by the run enhanced by
T indicates a benefit of the new technique, it is hard to claim that a certain
problem P is getting solved thanks to T . It might be that T just helps the
prover get lucky on P by a complicated chain of cause and effect not related to
the technique T—and the original idea behind it—in any reasonable sense.

We propose to expose and counter the effect of chaotic behaviours by delib-
erately injecting randomness into the prover and observing the results of many
independently seeded runs. Although computationally more costly than stan-
dard evaluation, such an approach promises to bring new insights. We gain the
ability to apply the tools of probability theory and statistics to analyze the
results, assign confidences, and single out those problems that robustly benefit
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from the evaluated technique. At the same time, by observing the changes in
the corresponding runtime distributions we can even meaningfully establish the
effect of the new technique on a single problem in isolation, something that is
normally inconclusive due to the threat of chaotic fluctuations.

In this paper, we report on several experiments with a randomized version
of the ATP Vampire [9]. After explaining the method in more detail (Sect. 2),
we first demonstrate the extent in which the success of a typical Vampire
proof search strategy can be ascribed to chance (Sect. 3). Next, we use the col-
lected data to highlight the specifics of comparing two strategies probabilisti-
cally (Sect. 4). Finally, we focus on a single problem to see a chaotic behaviour
smoothened into a distribution with a high variance (Sect. 5). The paper ends
with an overview of related work (Sect. 6) and a discussion (Sect. 7).

2 Randomizing Out Chaos

Any developer of a saturation-based prover will confirm that the behaviour of a
specific proving strategy on a specific problem is extremely hard to predict, that
a typical experimental evaluation of a new technique (such as the one described
earlier) invariably leads to both gains and losses in terms of the solved problems,
and that a closer look at any of the “lost” problems often reveals just a com-
plicated chain of cause and effect that steers the prover away from the original
path (rather than a simple opportunity to improve the technique further).

These observations bring indirect evidence that the prover’s behaviour is
chaotic: A specific prover run can be likened to a single bead falling down through
the pegs of the famous Galton board1. The bead follows a deterministic trajec-
tory, but only because the code fixes every single detail of the execution, includ-
ing many which the programmer did not care about and which were left as they
are merely out of coincidence. We put forward here that any such fixed detail
(which does not contribute to an officially implemented heuristic) represents a
candidate location for randomization, since a different programmer could have
fixed the detail differently and we would still call the code essentially the same.

Implementation: We implemented randomization on top of Vampire version
4.6.1; the code is available as a separate git branch2. We divided the randomiza-
tion opportunities into three groups (governed by three new Vampire options).

Shuffling the input (-si on) randomly reorders the input formulas and,
recursively, sub-formulas under commutative logical operations. This is done
several times throughout the preprocessing pipeline, at the end of which a fin-
ished clause normal form is produced. Randomizing traversals (-rtra on) hap-
pens during saturation and consists of several randomized reorderings including:
reordering literals in a newly generated clause and in each given clause before
activation, and shuffling the order in which generated clauses are put into the

1 https://en.wikipedia.org/wiki/Galton board.
2 https://github.com/vprover/vampire/tree/randire.

https://en.wikipedia.org/wiki/Galton_board
https://github.com/vprover/vampire/tree/randire
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Fig. 1. Blue: first-order TPTP problems ordered by the decreasing probability of being
solved by the dis10 strategy within 50 billion instruction limit. Red: a cactus plot for
the same strategy, showing the dependence between a given instruction budget (y-axis)
and the number of problems on average solved within that budget (x-axis). (Color figure
online)

passive set. It also (partially) randomizes term ids, which are used as tiebreak-
ers in various term indexing operations and determine the default orientation of
equational literals in the term sharing structure. Finally, “randomized age-weight
ratio” (-rawr on) swaps the default, deterministic mechanism for choosing the
next queue to select the given clause from [13] for a randomized one (which only
respects the age-weight ratio probabilistically).

All the three options were active by default during our experiments.

3 Experiment 1: A Single-Strategy View

First, we set out to establish to what degree the performance of a Vampire
strategy can be affected by randomization. We chose the default strategy of the
prover except for the saturation algorithm, which we set to Discount, and the
age-weight ratio, set to 1:10 ( calling the strategy dis10). We ran our experiment
on the first-order problems from the TPTP library [15] version 7.5.03.

To collect our data, we repeatedly (with different seeds) ran the prover on
the problems, performing full randomization. We measured the executed instruc-
tions4 needed to successfully solve a problem and used a limit of 50 billion
instructions (which roughly corresponds to 15 s of running time on our machine5)
after which a run was declared unsuccessful. We ran the prover 10 times on each
problem and additionally as many times as required to observe the instruction
count average (over both successful and unsuccessful runs) stabilize within 1%
from any of its 10 previously recorded values6.

A summary view of the experiment is given by Fig. 1. The most important to
notice is the shaded region there, which spans 965 problems that were solved by
3 Materials accompanying the experiments can be found at https://bit.ly/3JDCwea.
4 As measured via the perf event open Linux performance monitoring feature.
5 A server with Intel(R) Xeon(R) Gold 6140 CPUs @ 2.3 GHz and 500GB RAM.
6 Utilizing all the 72 cores of our machine, such data collection took roughly 12 h.

https://bit.ly/3JDCwea
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Fig. 2. The effect of turning AVATAR off in the dis10 strategy (cf. Figure 1).

dis10 at least once but not by every run. In other words, these problems have
probability p of being solved between 0 < p < 1. This is a relatively large number
and can be compared to the 8720 “easy” problems solved by every run. The
collected data implies that 9319.1 problems are being solved on average (marked
by the left-most dashed line in Fig. 1) with a standard deviation σ = 11.7. The
latter should be an interesting indicator for prover developers: beating a baseline
by only 12 TPTP problems can easily be ascribed just to chance.

Figure 1 also contains the obligatory “cactus plot” (explained in the caption),
which—thanks to the collected data—can be constructed with the “on average”
qualifier. By definition, the plot reaches the left-most dashed line for the full
instruction budged of 50 billion. The subsequent dashed lines mark the number
of problems we would on average expect to solve by running the prover (indepen-
dently) on each problem twice, three, four and five times. This is an information
relevant for strategy scheduling: e.g., one can expect to solve whole additional
137 problems by running randomized dis10 for a second time.

Not every strategy exhibits the same degree of variability under randomiza-
tion. Observe Fig. 2 with a plot analogous to Fig. 1, but for dis10 in which the
AVATAR [16] has been turned off. The shaded area there is now much smaller
(and only spans 448 problems). The powerful AVATAR architecture is getting
convicted of making proof search more fragile and the prover less robust7.

Remark. Randomization incurs a small but measurable computational over-
head. On a single run of dis10 over the first-order TPTP (filtering out cases
that took less than 1 s to finish, to prevent distortion by rounding errors) the
observed median relative time spent randomizing on a single problem was 0.47%,
the average 0.59%, and the worse8 13.86%. Without randomization, the dis10
strategy solved 9335 TPTP problems under the 50 billion instruction limit, i.e.,
16 problems more than the average reported above. Such is the price we pay for
turning our prover into a Las Vegas randomized algorithm.

7 Another example of a strong but fragile heuristic is the lookahead literal selection
[5], which selects literals in a clause based on the current content of the active set:
dis10 enhanced with lookahead solves 9512.4 (±13.8) TPTP problems on average,
8672 problems with p = 1 and additional 1382 (!) problems with 0 < p < 1.

8 On the hard-to-parse, trivial-to-solve HWV094-1 with 361 199 clauses.
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Fig. 3. Scatter plots comparing probabilities of solving a TPTP problem by the baseline
dis10 strategy and 1) dis10 with AVATAR turned off (left), and 2) dis10 with blocked
clause elimination turned on (right). On problems marked red the respective technique
could not be applied (no splittable clauses derived / no blocked clauses eliminated).

4 Experiment 2: Comparing Two Strategies

Once randomized performance profiles of multiple strategies are collected, it is
interesting to look at two at a time. Figure 3 shows two very different scatter
plots, each comparing our baseline dis10 to its modified version in terms of the
probabilities of solving individual problems.

On the left we see the effect of turning AVATAR off. The technique affects
the proving landscape quite a lot and most problems have their mark along the
edges of the plot where at least one of the two probabilities has the extreme
value of either 0 or 1. What the plot does not show well, is how many marks end
up at the extreme corners. These are: 7896 problems easy for both, 661 easy for
AVATAR and hard without, 135 hard for AVATAR and easy without.

Such “purified”, one-sided gains and losses constitute a new interesting indi-
cator of the impact of a given technique. They should be the first to look at,
e.g., during debugging, as they represent the most extreme but robust examples
of how the new technique changes the capabilities of the prover.

The right plot is an analogous view, but now at the effect of turning on blocked
clause elimination (BCE). This is a preprocessing technique coming from the
context of propositional satisfiability [7] extended to first-order logic [8]. We see
that here most of the visible problems show up as marks along the plot’s main
diagonal, suggesting a (mostly) negligible effect of the technique. The extreme
corners hide: 8648 problems easy for both, 17 easy with BCE (11 satisfiable and
6 unsatisfiable), and 2 easy without BCE (1 satisfiable and 1 unsatisfiable).
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Fig. 4. 2D-histograms for the relative frequencies (color-scale) of how often, given a
specific awr (x-axis), solving PRO017+2 required the shown number of instructions (y-
axis). The curves in pink highlight the mean y-value for every x. The performance of
dis10 (left) and the same strategy enhanced by a goal-directed heuristic (right). (Color
figure online)

5 Experiment 3: Looking at One Problem at a Time

In their paper on age/weight shapes [13, Fig. 2], Rawson and Reger plot the
number of given-clause loops required by Vampire to solve the TPTP problem
PRO017+2 as a function of age/weight ratio (awr), a ratio specifying how often
the prover selects the next clause to activate from its age-ordered and weight-
ordered queues, respectively. The curve they obtain is quite “jiggly”, indicating
a fragile (discontinuous) dependence. Randomization allows us to smoothen the
picture and reveal new, until now hidden, (probabilistic) patterns.

The 2D-histogram in Fig. 4 (left) was obtained from 100 independently seeded
runs for each of 1200 distinct values of awr from between 1:1024 = 2−10 and
4:1 = 22. We can confirm Rawson and Reger’s observation of the best awr for
PRO017+2 lying at around 1:2. However, we can now also attempt to explain the
“jiggly-ness” of their curve: With a fragile proof search, even a slight change in
awr effectively corresponds to an independent sample from the prover’s execution
resource9 distribution, which—although changing continuously with awr—is of
a high variance for our problem (note the log-scale of the y-axis)10.

The distribution has another interesting property: At least for certain values
of awr it is distinctly multi-modal. As if the prover can either find a proof quickly
(after a lucky event?) or only after much harder effort later and almost nothing
in between. Shedding more light on this phenomenon is left for further research.

It is also very interesting to observe the change of such a 2D-histogram
when we modify the proof search strategy. Figure 4 (right) shows the effect of
turning on SInE-level split queues [3], a goal directed clause selection heuristic

9 Rawson and Reger [13] counted given-clause loops, we measure instructions.
10 Even with 100 samples for each value of awr , the mean instruction count (rendered

in pink in Fig. 4) looks jiggly towards the weight-heavy end of the plot.
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(Vampire option -slsq on). We can see that the mean instruction count gets
worse (for every tried awr value) and also the variance of the distribution dis-
tinctly increases. A curious effect of this is that we observe the shortest suc-
cessful runs with -slsq on, while we still could not recommend (in the case of
PRO017+2) this heuristic to the user. The probabilistic view makes us realize that
there are competing criteria of prover performance for which one might want to
optimize.

6 Related Work

The idea of randomizing a theorem prover is not new. Ertel [2] studied the
speedup potential of running independently seeded instances of the connection
prover SETHEO [10]. The dashed lines in our Figs. 1 and 2 capture an analogous
notion in terms of “additional problems covered” for levels of parallelism 1−5.
randoCoP [12] is a randomized version of another connection prover, leanCoP 2.0
[11]: especially in its incomplete setup, several restarts with different seeds helped
randoCoP improve over leanCoP in terms of the number of solved problems.

Gomes et al. [4] notice that randomized complete backtracking algorithms for
propositional satisfiability (SAT) lead to heavy-tailed runtime distributions on
satisfiable instances. While we have not yet analyzed the runtime distributions
coming from saturation-based first-order proof search in detail, we definitely
observed high variance also for unsatisfiable problems. Also in the domain of
SAT, Brglez et al. [1] proposed input shuffling as a way of turning solver’s runtime
into a random variable and studied the corresponding distributions.

An interesting view on the trade-offs between expected performance of a
randomized solver and the risk associated with waiting for an especially long
run to finish is given by Huberman et al. [6]. This is related to the last remark
of the previous section.

Finally, in the satisfiability modulo theories (SMT) community, input shuf-
fling, or scrambling, has been discussed as an obfuscation measure in competi-
tions [17], where it should prevent the solvers to simply look up a precomputed
answer upon recognising a previously seen problem. Notable is also the use of
randomization in solver debugging via fuzz testing [14,18].

7 Discussion

As we have seen, the behaviour of a state-of-the-art saturation-based theorem
prover is to a considerable degree chaotic and on many problems a mere per-
turbation of seemingly unimportant execution details decides about the success
or the failure of the corresponding run. While this may be seen as a sign of our
as-of-yet imperfect grasp of the technology, the author believes that an equally
plausible view is that some form of chaos is inherent and originates from the
complexity of the theorem proving task itself. (A higher-order logic proof search
is expected to exhibit an even higher degree of fragility.)

This paper has proposed randomization as a key ingredient to a prover eval-
uation method that takes the chaotic nature of proof search into account. The
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extra cost required by the repeated runs, in itself not unreasonable to pay on con-
temporary parallel hardware, seems more than compensated by the new insights
coming from the probabilistic picture that emerges. Moreover, other uses of ran-
domization are easy to imagine, such as data augmentation for machine learning
approaches or the construction of more robust strategy schedules. It feels that
we only scratched the surface of the opened-up possibilities. More research will
be needed to fully harness the potential of this perspective.
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Abstract. The long run behaviour of linear dynamical systems is often
studied by looking at eventual properties of matrices and recurrences that
underlie the system. A basic problem in this setting is as follows: given
a set of pairs of rational weights and matrices {(w1, A1), . . . , (wm, Am)},
does there exist an integer N s.t for all n ≥ N ,

∑m
i=1 wi · An

i ≥ 0 (resp.
> 0). We study this problem, its applications and its connections to linear
recurrence sequences. Our first result is that for m ≥ 2, the problem is
as hard as the ultimate positivity of linear recurrences, a long standing
open question (known to be coNP-hard). Our second result is that for any
m ≥ 1, the problem reduces to ultimate positivity of linear recurrences.
This yields upper bounds for several subclasses of matrices by exploiting
known results on linear recurrence sequences. Our third result is a general
reduction technique for a large class of problems (including the above)
from diagonalizable case to the case where the matrices are simple (have
non-repeated eigenvalues). This immediately gives a decision procedure
for our problem for diagonalizable matrices.

Keywords: Eventual properties of matrices · Ultimate Positivity ·
linear recurrence sequences

1 Introduction

The study of eventual or asymptotic properties of discrete-time linear dynam-
ical systems has long been of interest to both theoreticians and practitioners.
Questions pertaining to (un)-decidability and/or computational complexity of
predicting the long-term behaviour of such systems have been extensively stud-
ied over the last few decades. Despite significant advances, however, there remain
simple-to-state questions that have eluded answers so far. In this work, we inves-
tigate one such problem, explore its significance and links with other known
problems, and study its complexity and computability landscape.
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The time-evolution of linear dynamical systems is often modeled using lin-
ear recurrence sequences, or using sequences of powers of matrices. Asymptotic
properties of powers of matrices are therefore of central interest in the study of
linear differential systems, dynamic control theory, analysis of linear loop pro-
grams etc. (see e.g. [26,32,36,37]). The literature contains a rich body of work
on the decidability and/or computational complexity of problems related to the
long-term behaviour of such systems (see, e.g. [15,19,27,29,36,37]). A question
of significant interest in this context is whether the powers of a given matrix of
rational numbers eventually have only non-negative (resp. positive) entries. Such
matrices, also called eventually non-negative (resp. eventually positive) matri-
ces, enjoy beautiful algebraic properties ([13,16,25,38]), and have been studied
by mathematicians, control theorists and computer scientists, among others.
For example, the work of [26] investigates reachability and holdability of non-
negative states for linear differential systems – a problem in which eventually
non-negative matrices play a central role. Similarly, eventual non-negativity (or
positivity) of a matrix modeling a linear dynamical system makes it possible
to apply the elegant Perron-Frobenius theory [24,34] to analyze the long-term
behaviour of the system beyond an initial number of time steps. Another level of
complexity is added if the dynamics is controlled by a set of matrices rather than
a single one. For instance, each matrix may model a mode of the linear dynami-
cal system [23]. In a partial observation setting [22,39], we may not know which
mode the system has been started in, and hence have to reason about eventual
properties of this multi-modal system. This reduces to analyzing the sum of
powers of the per-mode matrices, as we will see.

Motivated by the above considerations, we study the problem of determining
whether a given matrix of rationals is eventually non-negative or eventually
positive and also a generalized version of this problem, wherein we ask if the
weighted sum of powers of a given set of matrices of rationals is eventually
non-negative (resp. positive). Let us formalize the general problem statement.
Given a set A = {(w1, A1), . . . (wm, Am)}, where each wi is a rational
number and each Ai is a k×k matrix of rationals, we wish to determine
if

∑m
i=1 wi · An

i has only non-negative (resp. positive) entries for all
sufficiently large values of n. We call this problem Eventually Non-Negative
(resp. Positive) Weighted Sum of Matrix Powers problem, or ENNSoM (resp.
EPSoM) for short. The eventual non-negativity (resp. positivity) of powers of a
single matrix is a special case of the above problem, where A = {(1, A)}. We call
this special case the Eventually Non-Negative (resp. Positive) Matrix problem,
or ENNMat (resp. EPMat) for short.

Given the simplicity of the ENNSoM and EPSoM problem statements, one may
be tempted to think that there ought to be simple algebraic characterizations
that tell us whether

∑m
i=1 wi · An

i is eventually non-negative or positive. But
in fact, the landscape is significantly nuanced. On one hand, a solution to the
general ENNSoM or EPSoM problem would resolve long-standing open questions
in mathematics and computer science. On the other hand, efficient algorithms
can indeed be obtained under certain well-motivated conditions. This paper is a
study of both these aspects of the problem. Our primary contributions can be
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summarized as follows. Below, we use A = {(w1, A1), . . . (wm, Am)} to define an
instance of ENNSoM or EPSoM.

1. If |A| ≥ 2, we show that both ENNSoM and EPSoM are as hard as the ultimate
non-negativity problem for linear recurrence sequences (UNNLRS, for short).
The decidability of UNNLRS is closely related to Diophantine approximations,
and remains unresolved despite extensive research (see e.g. [31]).
Since UNNLRS is coNP-hard (in fact, as hard as the decision problem for
universal theory of reals), so is ENNSoM and EPSoM, when |A| ≥ 2. Thus,
unless P = NP, we cannot hope for polynomial-time algorithms, and any
algorithm would also resolve long-standing open problems.

2. On the other hand, regardless of |A|, we show a reduction in the other direc-
tion from ENNSoM (resp. EPSoM) to UNNLRS (resp. UPLRS, the strict version
of UNNLRS). As a consequence, we get decidability and complexity bounds for
special cases of ENNSoM and EPSoM, by exploiting recent results on recurrence
sequences [30,31,35]. For example, if each matrix Ai in A is simple, i.e. has
all distinct eigenvalues, we obtain PSPACE algorithms.

3. Finally, we consider the case where Ai is diagonalizable (also called non-
defective or inhomogenous dilation map) for each (wi, Ai) ∈ A. This is a
practically useful class of matrices and strictly subsumes simple matrices. We
present a novel reduction technique for a large family of problems (includ-
ing eventual non-negativity/positivity, everywhere non-negativity/positivity
etc.) over diagonalizable matrices to the corresponding problem over simple
matrices. This yields effective decision procedures for EPSoM and ENNSoM for
diagonalizable matrices. Our reduction makes use of a novel perturbation
analysis that also has other interesting consequences.

As mentioned earlier, the eventual non-negativity and positivity problem for
single rational matrices are well-motivated in the literature, and EPMat (or EPSoM

with |A| = 1) is known to be in PTIME [25]. But for ENNMat, no decidability
results are known to the best of our knowledge. From our work, we obtain two
new results about ENNMat: (i) in general ENNMat reduces to UNNLRS and (ii) for
diagonalizable matrices, we can decide ENNMat. What is surprising (see Sect. 5)
is that the latter decidability result goes via ENNSoM, i.e. the multiple matrices
case. Thus, reasoning about sums of powers of matrices, viz. ENNSoM, is useful
even when reasoning about powers of a single matrix, viz. ENNMat.

Potential Applications of ENNSoM and EPSoM. A prime motivation for defin-
ing the generalized problem statement ENNSoM is that it is useful even when
reasoning about the single matrix case ENNMat. However and unsurprisingly,
ENNSoM and EPSoM are also well-motivated independently. Indeed, for every
application involving a linear dynamical system that reduces to ENNMat/EPMat,
there is a naturally defined aggregated version of the application involving multi-
ple independent linear dynamical systems that reduces to ENNSoM/EPSoM (e.g.,
the swarm of robots example in [3]).

Beyond this, ENNSoM/EPSoM arise naturally and directly when solving prob-
lems in different practical scenarios. Due to lack of space, we detail two applica-
tions here and describe more in the longer version of the paper [3].
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Partially Observable Multi-modal Systems. Our first example comes from
the domain of cyber-physical systems in a partially observable setting. Consider
a system (e.g. a robot) with m modes of operation, where the ith mode dynamics
is given by a linear transformation encoded as a k×k matrix of rationals, say Ai.
Thus, if the system state at (discrete) time t is represented by a k-dimensional
rational (row) vector ut, the state at time t + 1, when operating in mode i, is
given by utAi. Suppose the system chooses to operate in one of its various modes
at time 0, and then sticks to this mode at all subsequent time. Further, the initial
choice of mode is not observable, and we are only given a probability distribution
over modes for the initial choice. This is natural, for instance, if our robot (multi-
modal system) knows the terrain map and can make an initial choice of which
path (mode) to take, but cannot change its path once it has chosen. If pi is a
rational number denoting the probability of choosing mode i initially, then the
expected state at time n is given by

∑m
i=1 pi · u0An

i = u0

( ∑m
i=1 pi · An

i

)
. A

safety question in this context is whether starting from a state u0 with all non-
negative (resp. positive) components, the system is expected to eventually stay
locked in states that have all non-negative (resp. positive) components. In other
words, does u0

( ∑m
i=1 pi · An

i

)
have all non-negative (resp. positive) entries for

all sufficiently large n? Clearly, a sufficient condition for an affirmative answer
to this question is to have

∑n
i=1 pi · An

i eventually non-negative (resp. positive),
which is an instance of ENNSoM (resp. EPSoM).

Commodity Flow Networks. Consider a flow network where m different
commodities {c1, . . . , cm} use the same flow infrastructure spanning k nodes,
but have different loss/regeneration rates along different links. For every pair
of nodes i, j ∈ {1, . . . , k} and for every commodity c ∈ {c1, . . . , cm}, suppose
Ac[i, j] gives the fraction of the flow of commodity c starting from i that reaches
j through the link connecting i and j (if it exists). In general, Ac[i, j] is the
product of the fraction of the flow of commodity c starting at i that is sent along
the link to j, and the loss/regeneration rate of c as it flows in the link from i to
j. Note that Ac[i, j] can be 0 if commodity c is never sent directly from i to j, or
the commodity is lost or destroyed in flowing along the link from i to j. It can be
shown that An

c [i, j] gives the fraction of the flow of c starting from i that reaches
j after n hops through the network. If commodities keep circulating through the
network ad-infinitum, we wish to find if the network gets saturated, i.e., for all
sufficiently long enough hops through the network, there is a non-zero fraction
of some commodity that flows from i to j for every pair i, j. This is equivalent
to asking if there exists N ∈ N such that

∑m
�=1 An

c�
> 0. If different commodities

have different weights (or costs) associated, with commodity ci having the weight
wi, the above formulation asks if

∑m
�=1 w�.A

n
c�

is eventually positive, which is
effectively the EPSoM problem.

Other Related Work. Our problems of interest are different from other well-
studied problems that arise if the system is allowed to choose its mode inde-
pendently at each time step (e.g. as in Markov decision processes [5,21]). The
crucial difference stems from the fact that we require that the mode be chosen



On Eventual Properties for Weighted Sum of Powers of Matrices 675

once initially, and subsequently, the system must follow the same mode for-
ever. Thus, our problems are prima facie different from those related to general
probabilistic or weighted finite automata, where reachability of states and ques-
tions pertaining to long-run behaviour are either known to be undecidable or
have remained open for long ([6,12,17]). Even in the case of unary probabilis-
tic/weighted finite automata [1,4,8,11], reachability is known in general to be
as hard as the Skolem problem on linear recurrences – a long-standing open
problem, with decidability only known in very restricted cases. The difference
sometimes manifests itself in the simplicity/hardness of solutions. For example,
EPMat (or EPSoM with |A| = 1) is known to be in PTIME [25] (not so for ENNMat

however), whereas it is still open whether the reachability problem for unary
probabilistic/weighted automata is decidable. It is also worth remarking that
instead of the sum of powers of matrices, if we considered the product of their
powers, we would effectively be solving problems akin to the mortality problem
[9,10] (which asks whether the all-0 matrix can be reached by multiplying with
repetition from a set of matrices) – a notoriously difficult problem. The diago-
nalizable matrix restriction is a common feature in in the context of linear loop
programs (see, e.g., [7,28]), where matrices are used for updates. Finally, logics
to reason about temporal properties of linear loops have been studied, although
decidability is known only in restricted settings, e.g. when each predicate defines
a semi-algebraic set contained in some 3-dimensional subspace, or has intrinsic
dimension 1 [20].

2 Preliminaries

The symbols Q, R, A and C denote the set of rational, real, algebraic and com-
plex numbers respectively. Recall that an algebraic number is a root of a non-zero
polynomial in one variable with rational coefficients. An algebraic number can
be real or complex. We use RA to denote the set of real algebraic numbers (which
includes all rationals). The sum, difference and product of two (real) algebraic
numbers is again (real) algebraic. Furthermore, every root of a polynomial equa-
tion with (real) algebraic coefficients is again (real) algebraic. We call matrices
with all rational (resp. real algebraic or real) entries rational (resp. real algebraic
or real) matrices. We use A ∈ Qk×l (resp. A ∈ Rk×l and A ∈ RAk×l) to denote
that A is a k×l rational (resp. real and real algebraic) matrix, with rows indexed
1 through k, and columns indexed 1 through l. The entry in the ith row and jth

column of a matrix A is denoted A[i, j]. If A is a column vector (i.e. l = 1),
we often use boldface letters, viz. A, to refer to it. In such cases, we use A[i]
to denote the ith component of A, i.e. A[i, 1]. The transpose of a k × l matrix
A, denoted AT, is the l × k matrix obtained by letting AT[i, j] = A[j, i] for all
i ∈ {1, . . . l} and j ∈ {1, . . . k}. Matrix A is said to be non-negative (resp. posi-
tive) if all entries of A are non-negative (resp. positive) real numbers. Given a set
A = {(w1, A1), . . . (wm, Am)} of (weight, matrix) pairs, where each Ai ∈ Qk×k

(resp. ∈ RAk×k) and each wi ∈ Q, we use
∑

An to denote the weighted matrix
sum

∑m
i=1 wi · An

i , for every natural number n > 0. Note that
∑

An is itself a
matrix in Qk×k (resp. RAk×k).
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Definition 1. We say that A is eventually non-negative (resp. positive) iff there
is a positive integer N s.t.,

∑
An is non-negative (resp. positive) for all n ≥ N .

The ENNSoM (resp. EPSoM) problem, described in Sect. 1, can now be re-phrased
as: Given a set A of pairs of rational weights and rational k × k matrices, is A
eventually non-negative (resp. positive)? As mentioned in Sect. 1, if A = {(1, A)},
the ENNSoM (resp. EPSoM) problem is also called ENNMat (resp. EPMat). We note
that the study of ENNSoM and EPSoM with |A| = 1 is effectively the study of
ENNMat and EPMat i.e., wlog we can assume w = 1.

The characteristic polynomial of a matrix A ∈ RAk×k is given by det(A−λI),
where I denotes the k×k identity matrix. Note that this is a degree k polynomial
in λ. The roots of the characteristic polynomial are called the eigenvalues of A.
The non-zero vector solution of the equation Ax = λix, where λi is an eigenvalue
of A, is called an eigenvector of A. Although A ∈ RAk×k, in general it can
have eigenvalues λ ∈ C which are all algebraic numbers. An eigenvector is said
to be positive (resp. non-negative) if each component of the eigenvector is a
positive (resp. non-negative) rational number. A matrix is called simple if all
its eigenvalues are distinct. Further, a matrix A is called diagonalizable if there
exists an invertible matrix S and diagonal matrix D such that SDS−1 = A.

The study of weighted sum of powers of matrices is intimately related to the
study of linear recurrence sequences (LRS), as we shall see. We now present some
definitions and useful properties of LRS. For more details on LRS, the reader is
referred to the work of Everest et al. [14]. A sequence of rational numbers 〈u〉
= 〈un〉∞

n=0 is called an LRS of order k (> 0) if the nth term of the sequence,
for all n ≥ k, can be expressed using the recurrence: un = ak−1un−1 + . . . +
a1un−k−1 + a0un−k. Here, a0 (�= 0), a1, . . . , ak−1 ∈ Q are called the coefficients
of the LRS, and u0, u1, . . . , uk−1 ∈ Q are called the initial values of the LRS.
Given the coefficients and initial values, an LRS is uniquely defined. However,
the same LRS may be defined by multiple sets of coefficients and corresponding
initial values. An LRS 〈u〉 is said to be periodic with period ρ if it can be
defined by the recurrence un = un−ρ for all n ≥ ρ. Given an LRS 〈u〉, its
characteristic polynomial is p〈u〉(x) = xk − ∑k−1

i=0 aix
i. We can factorize the

characteristic polynomial as p〈u〉(x) =
∏d

j=1(x−λj)ρj , where λj is a root, called
a characteristic root of algebraic multiplicity ρj . An LRS is called simple if
ρj = 1 for all j, i.e. all characteristic roots are distinct. Let {λ1, λ2, . . . , λd}
be distinct roots of p〈u〉(x) with multiplicities ρ1, ρ2, . . . , ρd respectively. Then
the nth term of the LRS, denoted un, can be expressed as un =

∑d
j=1 qj(n)λn

j ,
where qj(x) ∈ C(x) are univariate polynomials of degree at most ρj − 1 with
complex coefficients such that

∑d
j=1 ρj = k. This representation of an LRS is

known as the exponential polynomial solution representation. It is well known
that scaling an LRS by a constant gives another LRS, and the sum and product
of two LRSs is also an LRS (Theorem 4.1 in [14]). Given an LRS 〈u〉 defined
by un = ak−1un−1 + . . . + a1un−k−1 + a0un−k, we define its companion matrix
M〈u〉 to be the k × k matrix shown in Fig. 1.
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M u =

⎢
⎢
⎢
⎢

ak−1 1 . . . 0 0
...

...
. . .

...
...

a2 0 . . . 1 0
a1 0 . . . 0 1
a0 0 . . . 0 0

⎥
⎥
⎥
⎥

Fig. 1. Companion matrix

When 〈u〉 is clear from the context, we often
omit the subscript for clarity of notation, and use
M for M〈u〉. Let u = (uk−1, . . . , u0) be a row vec-
tor containing the k initial values of the recurrence,
and let ek = (0, 0, . . . 1)T be a column vector of k
dimensions with the last element equal to 1 and the
rest set to 0s. It is easy to see that for all n ≥ 1,
uMnek gives un. Note that the eigenvalues of the
matrix M are exactly the roots of the characteristic
polynomial of the LRS 〈u〉.

For u = (uk−1, . . . , u0), we call the matrix G〈u〉 =
[

0 u
0T M〈u〉

]

the generator

matrix of the LRS 〈u〉, where 0 is a k-dimensional vector of all 0s. We omit the
subscript and use G instead of G〈u〉, when the LRS 〈u〉 is clear from the context.
It is easy to show from the above that un = Gn+1[1, k + 1] for all n ≥ 0.

We say that an LRS 〈u〉 is ultimately non-negative (resp. ultimately posi-
tive) iff there exists N > 0, such that ∀n ≥ N , un ≥ 0 (resp. un > 0)1. The
problem of determining whether a given LRS is ultimately non-negative (resp.
ultimately positive) is called the Ultimate Non-negativity (resp. Ultimate Posi-
tivity) problem for LRS. We use UNNLRS (resp. UPLRS) to refer to this problem.
It is known [19] that UNNLRS and UPLRS are polynomially inter-reducible, and
these problems have been widely studied in the literature (e.g., [27,31,32]). A
closely related problem is the Skolem problem, wherein we are given an LRS
〈u〉 and we are required to determine if there exists n ≥ 0 such that un = 0.
The relation between the Skolem problem and UNNLRS (resp. UPLRS) has been
extensively studied in the literature (e.g., [18,19,33]).

3 Hardness of Eventual Non-negativity and Positivity

In this section, we show that UNNLRS (resp. UPLRS) polynomially reduces to
ENNSoM (resp. EPSoM) when |A| ≥ 2. Since UNNLRS and UPLRS are known to be
coNP-hard (in fact, as hard as the decision problem for the universal theory of
reals Theorem 5.3 [31]), we conclude that ENNSoM and EPSoM are also coNP-hard
and at least as hard as the decision problem for the universal theory of reals,
when |A| ≥ 2. Thus, unless P = NP, there is no hope of finding polynomial-time
solutions to these problems.

Theorem 1. UNNLRS reduces to ENNSoM with |A| ≥ 2 in polynomial time.

Proof. Given an LRS 〈u〉 of order k defined by the recurrence un = ak−1un−1 +
. . . + a1un−k−1 + a0un−k and initial values u0, u1, . . . , uk−1, construct two

1 Ultimately non-negative (resp. ultimately positive) LRS, as defined by us, have also
been called ultimately positive (resp. strictly positive) LRS elsewhere in the literature
[31]. However, we choose to use terminology that is consistent across matrices and
LRS, to avoid notational confusion.
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matrices A1 and A2 such that 〈u〉 is ultimately non-negative iff (An
1 + An

2 ) is

eventually non-negative. Consider A1 =
[

0 u
0T M

]

, the generator matrix of 〈u〉

and A2 =
[

0 0
0T P

]

, where P ∈ Qk×k is constructed such that : P [i, j] ≥ |M [i, j]|.
For example P can be constructed as: P [i, j] = M [i, j] for all j ∈ [2, k] and
i ∈ [1, k] and P [i, j] = max(|a0|, |a1|, . . . , |ak−1|) + 1 for j = 1. Now consider
the sequence of matrices defined by An

1 + An
2 , for all n ≥ 1. By properties of the

generator matrix, it is easily verified that An
1 =

[
0 uMn−1

0T Mn

]

. Similarly, we get

An
2 =

[
0 0
0T Pn

]

. Therefore, An
1 + An

2 =
[

0 uMn−1

0T Pn + Mn

]

, for all n ≥ 1. Now, we

can observe that Pn + Mn is always non-negative, since P [i, j] ≥ |M [i, j]| ≥ 0
for all i, j ∈ {1, . . . k} and hence Pn[i, j] + Mn[i, j] ≥ 0 for all i, j ∈ {1, . . . k}
and n ≥ 1. Thus we conclude that A(n) = An

1 + An
2 ≥ 0 (n ≥ 1) iff 〈u〉 is

ultimately non-negative, since the elements A(n)[1, 1] . . . , A(n)[1, k + 1] consists
of (un+k−2 . . . , un, un−1) and the rest of the elements are non-negative. �	

Observe that the same reduction technique works if we are required to
use more than 2 matrices in ENNSoM. Indeed, we can construct matrices
A3, A4, . . . , Am similar to the construction of A2 in the reduction above, by
having the k × k matrix in the bottom right (see definition of A2) to have pos-
itive values greater than the maximum absolute value of every element in the
companion matrix.

A simple modification of the above proof setting A2 =
[

1 0
1T P

]

, where 1

denotes the k-dimensional vector of all 1’s gives us the corresponding hardness
result for EPSoM (see [3] for details).

Theorem 2. UPLRS reduces to EPSoM with |A| ≥ 2 in polynomial time.

We remark that for the reduction technique used in Theorems 1 and 2 to
work, we need at least two (weight, matrix) pairs in A. For explanation of why
this reduction doesn’t work when |A| = 1, we refer the reader to [3]. Having
shown the hardness of ENNSoM and EPSoM when |A| ≥ 2, we now proceed to
establish upper bounds on the computational complexity of these problems.

4 Upper Bounds on Eventual Non-negativity
and Positivity

In this section, we show that ENNSoM (resp. EPSoM) is polynomially reducible to
UNNLRS (resp. UPLRS), regardless of |A|.
Theorem 3. ENNSoM, reduces to UNNLRS in polynomial time.

The proof is in two parts. First, we show that for a single matrix A, we
can construct a linear recurrence 〈a〉 such that A is eventually non-negative iff
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〈a〉 is ultimately non-negative. Then, we show that starting from such a linear
recurrence for each matrix in A, we can construct a new LRS, say 〈a�〉, with
the property that the weighted sum of powers of the matrices in A is eventually
non-negative iff 〈a�〉 is ultimately non-negative. Our proof makes crucial use of
the following property of matrices.

Lemma 1 Adapted from Lemma 1.1 of [19]). Let A ∈ Qk×k be a rational
matrix with characteristic polynomial pA(λ) = det(A − λI). Suppose we define
the sequence 〈aij〉 for every 1 ≤ i, j ≤ k as follows: ai,j

n = An+1[i, j], for all
n ≥ 0. Then 〈ai,j〉 is an LRS of order k with characteristic polynomial pA(x)
and initial values given by aij

0 = A1[i, j], . . . aij
k−1 = Ak[i, j].

This follows from the Cayley-Hamilton Theorem and the reader is referred to [19]
for further details. From Lemma 1, it is easy to see that the LRS 〈ai,j〉 for
all 1 ≤ i, j ≤ k share the same order and characteristic polynomial (hence
the defining recurrence) and differ only in their initial values. For notational
convenience, we say that the LRS 〈ai,j〉 is generated by A[i, j].

Proposition 1. A matrix A ∈ Qk×k is eventually non-negative iff all LRS 〈ai,j〉
generated by A[i, j] for all 1 ≤ i, j ≤ k are ultimately non-negative.

The proof follows from the definition of eventually non-negative matrices and
the definition of 〈aij〉. Next we define the notion of interleaving of LRS.

Definition 2. Consider a set S = {〈ui〉 : 0 ≤ i < t} of t LRSes, each having
order k and the same characteristic polynomial. An LRS 〈v〉 is said to be the
LRS-interleaving of S iff vtn+s = us

n for all n ∈ N and 0 ≤ s < t.

Observe that, the order of 〈v〉 is tk and its initial values are given by the
interleaving of the k initial values of the LRSes 〈ui〉. Formally, the initial values
are vtj+i = ui

j for 0 ≤ i < t and 0 ≤ j < k. The characteristic polynomial p〈v〉(s)
is equal to p〈ui〉(xt).

Proposition 2. The LRS-interleaving 〈v〉 of a set of LRSes S = {〈ui〉 : 0 ≤ i <
t} is ultimately non-negative iff each LRS 〈ui〉 in S is ultimately non-negative.

Now, from the definitions of LRSes 〈ai,j〉, 〈ui〉 and 〈v〉, and from Proposi-
tions 1 and 2, we obtain the following crucial lemma.

Lemma 2. Given a matrix A ∈ Qk×k, let S = {〈ui〉 | ui
n = apq

n , where p =
�i/k� + 1, q = i mod k + 1, 0 ≤ i < k2} be the set of k2 LRSes mentioned in
Lemma 1. The LRS 〈v〉 generated by LRS-interleaving of S satisfies the following:

1. A is eventually non-negative iff 〈v〉 is ultimately non-negative.
2. p〈v〉(x) =

∏k
i=1(x

k2 − λi), where λ1, . . . λk are the (possibly repeated) eigen-
values of A.

3. vrk2+sk+t = usk+t
r = as+1,t+1

r = Ar+1[s + 1, t + 1] for all r ∈ N, 0 ≤ s, t < k.

We lift this argument from a single matrix to a weighted sum of matrices.
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Lemma 3. Given A = {(w1, A1), . . . , (wm, Am)}, there exists a linear recur-
rence 〈a�〉, such that

∑m
i=1 wiA

n
i is eventually non-negative iff 〈a�〉 is ultimately

non-negative.

Proof. For each matrix Ai in A, let 〈vi〉 be the interleaved LRS as constructed
in Lemma 2. Let wi〈vi〉 denote the scaled LRS whose nth entry is wiv

i
n for all

n ≥ 0. The LRS 〈a�〉 is obtained by adding the scaled LRSes w1〈v1〉, w2〈v2〉, . . .
wm〈vm〉. Clearly, a�

n is non-negative iff
∑m

i=1 wiv
i
n is non-negative. From the

definition of vi (see Lemma 2), we also know that for all n ≥ 0, vi
n = Ar+1

i [s +
1, t + 1], where r = �n/k2�, s = �(n mod k2)/k� and t = n mod k. Therefore,
a�

n is non-negative iff
∑m

i=1 wiA
r+1
i [s + 1, t + 1] is non-negative. It follows that

〈a�〉 is ultimately non-negative iff
∑m

i=1 wiA
n
i is eventually non-negative. �	

From Lemma 3, we can conclude the main result of this section, i.e., proof
of Theorem 3. The following corollary can be shown mutatis mutandis.

Corollary 1. EPSoM reduces to UPLRS in polynomial time.

We note that it is also possible to argue about the eventual non-negativity
(positivity) of only certain indices of the matrix using a similar argument as
above. By interleaving only the LRS’s corresponding to certain indices of the
matrices in A, we can show this problem’s equivalence with UNNLRS (UPLRS).

5 Decision Procedures for Special Cases

Since there are no known algorithms for solving UNNLRS in general, the results
of the previous section present a bleak picture for deciding ENNSoM and EPSoM.
We now show that these problems can be solved in some important special cases.

5.1 Simple Matrices and Matrices with Real Algebraic Eigenvalues

Our first positive result follows from known results for special classes of LRSes.

Theorem 4. ENNSoM and EPSoM are decidable for A = {(w1, A1), . . . (wm, Am)}
if one of the following conditions holds for all i ∈ {1, . . . m}.
1. All Ai are simple. In this case, ENNSoM and EPSoM are in PSPACE. Addition-

ally, if the rank k of all Ai is fixed, ENNSoM and EPSoM are in PTIME.
2. All eigenvalues of Ai are roots of real algebraic numbers. In this case, ENNSoM

and EPSoM are in coNPPosSLP (a complexity class in the Counting Hierarchy,
contained in PSPACE).

Proof. Suppose each Ai ∈ Qk×k, and let λi,1, . . . λi,k be the (possibly repeated)
eigenvalues of Ai. The characteristic polynomial of Ai is pAi

(x) =
∏k

j=1(x −
λi,j). Denote the LRS obtained from Ai by LRS interleaving as in Lemma 2
as 〈ai〉. By Lemma 2, we have (i) ai

rk2+sk+t = Ar+1
i [s + 1, t + 1] for all r ∈ N

and 0 ≤ s, t < k, and (ii) p〈ai〉(x) =
∏k

j=1

(
xk2 − λi,j

)
. We now define the
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scaled LRS {〈bi〉, where | bi
n = wi ai

n for all n ∈ N. Since scaling does not
change the characteristic polynomial of an LRS (refer [3] for a simple proof),
we have p〈bi〉(x) =

∏k
j=1

(
xk2 −λi,j

)
. Once the LRSes 〈b1〉, . . . 〈bm〉 are obtained

as above, we sum them to obtain the LRS 〈b�〉. Thus, for all n ∈ N, we have
b�
n =

∑m
i=1 bi

n =
∑m

i=1 wi ai
n =

∑m
i=1 wi Ar

i [s, t], where n = rk2 + sk + t, r ∈ N

and 0 ≤ s, t < k. Hence, ENNSoM (resp. EPSoM) for {(w1, A1), . . . (wm, Am)}
polynomially reduces to UNNLRS (resp. UPLRS) for 〈b�〉.

By [14], we know that the characteristic polynomial p〈b�〉(x) is the LCM of
the characteristic polynomials p〈bi〉(x) for 1 ≤ i ≤ m. If Ai are simple, there
are no repeated roots of p〈bi〉(x). If this holds for all i ∈ {1, . . . m}, there are no
repeated roots of the LCM of p〈b1〉(x), . . . p〈bm〉(x) as well. Hence, p〈b�〉(x) has
no repeated roots. Similarly, if all eigenvalues of Ai are roots of real algebraic
numbers, so are all roots of p〈bi〉(x). It follows that all roots of the LCM of
p〈b1〉(x), . . . p〈bm〉(x), i.e. p〈b�〉(x), are also roots of real algebraic numbers.

The theorem now follows from the following two known results about LRS.

1. UNNLRS (resp. UPLRS) for simple LRS is in PSPACE. Furthermore, if the LRS
is of bounded order, UNNLRS (resp. UPLRS) is in PTIME [31].

2. UNNLRS (resp. UPLRS) for LRS in which all roots of characteristic polynomial
are roots of real algebraic numbers is in coNPPosSLP [2]. �	

Remark: The technique used in [31] to decide UNNLRS (resp. UPLRS) for simple
rational LRS also works for simple LRS with real algebraic coefficients and initial
values. This allows us to generalize Theorem 4(1) to the case where all Ai’s and
wi’s are real algebraic matrices and weights respectively.

5.2 Diagonalizable Matrices

We now ask if ENNSoM and EPSoM can be decided if each matrix Ai is diagonal-
izable. Since diagonalizable matrices strictly generalize simple matrices, Theo-
rem 4(1) cannot answer this question directly, unless one perhaps looks under the
hood of the (highly non-trivial) proof of decidability of non-negativity/positivity
of simple LRSes. The main contribution of this section is a reduction that allows
us to decide ENNSoM and EPSoM for diagonalizable matrices using a black-box
decision procedure (i.e. without knowing operational details of the procedure
or details of its proof of correctness) for the corresponding problem for simple
real-algebraic matrices.

Before we proceed further, let us consider an example of a non-simple matrix
(i.e. one with repeated eigenvalues) that is diagonalizable.

A =
5 12 −6

−3 −10 6
3 12 8

Fig. 2. Diagonalizable matrix

Specifically, matrix A in Fig. 2 has eigenval-
ues 2, 2 and −1, and can be written as SDS−1,
where D is the 3 × 3 diagonal matrix with
D[1, 1] = D[2, 2] = 2 and D[3, 3] = −1, and
S is the 3 × 3 matrix with columns (−4, 1, 0)T,
(2, 0, 1)T and (−1, 1, 1)T.
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Interestingly, the reduction technique we develop applies to properties much
more general than ENNSoM and EPSoM. Formally, given a sequence of matrices
Bn defined by

∑m
i=1 wiA

n
i , we say that a property P of the sequence is positive

scaling invariant if it stays unchanged even if we scale all Ais by the same positive
real. Examples of such properties include ENNSoM, EPSoM, non-negativity and
positivity of Bn (i.e. is Bn[i, j] ≥ 0 or < 0, as the case may be, for all n ≥ 1 and
for all 1 ≤ i, j ≤ k), existence of zero (i.e. is Bn equal to the all 0-matrix for
some n ≥ 1), existence of a zero element (i.e. is Bn[i, j] = 0 for some n ≥ 1 and
some i, j ∈ {1, . . . k}), variants of the r-non-negativity (resp. r-positivity and
r-zero) problem, i.e. does there exist at least/exactly/at most r non-negative
(resp. positive/zero) elements in Bn for all n ≥ 1, for a given r ∈ [1, k]) etc. The
main result of this section is a reduction for deciding such properties, formalized
in the following theorem.

Theorem 5. The decision problem for every positive scaling invariant property
on rational diagonalizable matrices effectively reduces to the decision problem for
the property on real algebraic simple matrices.

While we defer the proof of this theorem to later in the section, an immediate
consequence of Theorem 5 and Theorem 4(1) (read with the note at the end of
Sect. 5.1) is the following result.

Corollary 2. ENNSoM and EPSoM are decidable for A = {(w1, A1), . . .
(wm, Am)} if all Ais are rational diagonalizable matrices and all wis are rational.

It is important to note that Theorem 5 yields a decision procedure for checking
any positive scaling invariant property of diagonalizable matrices from a corre-
sponding decision procedure for real algebraic simple matrices without making
any assumptions about the inner working of the latter decision procedure. Given
any black-box decision procedure for checking any positive scaling property for
a set of weighted simple matrices, our reduction tells us how a corresponding
decision procedure for checking the same property for a set of weighted diago-
nalizable matrices can be constructed. Interestingly, since diagonalizable matri-
ces have an exponential form solution with constant coefficients for exponential
terms, we can use an algorithm that exploits this specific property of the expo-
nential form (like Ouaknine and Worrell’s algorithm [31], originally proposed for
checking ultimate positivity of simple LRS) to deal with diagonalizable matrices.
However, our reduction technique is neither specific to this algorithm nor does
it rely on any special property the exponential form of the solution.

The proof of Theorem 5 crucially relies on the notion of perturbation of
diagonalizable matrices, which we introduce first. Let A be a k × k real diago-
nalizable matrix. Then, there exists an invertible k × k matrix S and a diagonal
k × k matrix D such that A = SDS−1, where S and D may have complex
entries. It follows from basic linear algebra that for every i ∈ {1, . . . k}, D[i, i] is
an eigenvalue of A and if α is an eigenvalue of A with algebraic multiplicity ρ,
then α appears exactly ρ times along the diagonal of D. Furthermore, for every
i ∈ {1, . . . k}, the ith column of S (resp. ith row of S−1) is an eigenvector of
A (resp. of AT) corresponding to the eigenvalue D[i, i], and the columns of S
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(resp. rows of S−1) form a basis of the vector space Ck. Let α1, . . . αm be the
eigenvalues of A with algebraic multiplicities ρ1, . . . ρm respectively. Wlog, we
assume that ρ1 ≥ . . . ≥ ρm and the diagonal of D is partitioned into segments
as follows: the first ρ1 entries along the diagonal are α1, the next ρ2 entries are
α2, and so on. We refer to these segments as the α1-segment, α2-segment and so
on, of diagonal of D. Formally, if κi denotes

∑i−1
j=1 ρj , the αi-segment of diagonal

of D consists of entries D[κi +1, κi +1], . . . D[κi +ρi, κi +ρi], all of which are αi.
Since A is a real matrix, its characteristic polynomial has all real coeffi-

cients and for every eigenvalue α of A (and hence of AT), its complex conjugate,
denoted α, is also an eigenvalue of A (and hence of AT) with the same algebraic
multiplicity. This allows us to define a bijection hD from {1, . . . , k} to {1, . . . k}
as follows. If D[i, i] is real, then hD(i) = i. Otherwise, let D[i, i] = α ∈ C and let
D[i, i] be the lth element in the α-segment of the diagonal of D. Then hD(i) = j,
where D[j, j] is the lth element in the α-segment of the diagonal of D. The
matrix A being real also implies that for every real eigenvalue α of A (resp. of
AT), there exists a basis of real eigenvectors of the corresponding eigenspace.
Additionally, for every non-real eigenvalue α and for every set of eigenvectors
of A (resp. of AT) that forms a basis of the eigenspace corresponding to α, the
component-wise complex conjugates of these basis vectors serve as eigenvectors
of A (resp. of AT) and form a basis of the eigenspace corresponding to α.

Using the above notation, we choose matrix S−1 (and hence S) such that
A = SDS−1 as follows. Suppose α is an eigenvalue of A (and hence of AT) with
algebraic multiplicity ρ. Let {i + 1, . . . i + ρ} be the set of indices j for which
D[j, j] = α. If α is real (resp. complex), the i + 1st, . . . i + ρth rows of S−1 are
chosen to be real (resp. complex) eigenvectors of AT that form a basis of the
eigenspace corresponding to α. Moreover, if α is complex, the hD(i + s)th row
of S−1 is chosen to be the component-wise complex conjugate of the i + sth row
of S−1, for all s ∈ {1, . . . ρ}.

Definition 3. Let A = SDS−1 be a k×k real diagonalizable matrix. We say that
E = (ε1, . . . εk) ∈ Rk is a perturbation w.r.t. D if εi �= 0 and εi = εhD(i) for all
i ∈ {1, . . . k}. Further, the E-perturbed variant of A is the matrix A′ = SD′S−1,
where D′ is the k×k diagonal matrix with D′[i, i] = εiD[i, i] for all i ∈ {1, . . . k}.
In the following, we omit ”w.r.t. D” and simply say ”E is a perturbation”, when
D is clear from the context. Clearly, A′ as defined above is a diagonalizable
matrix and its eigenvalues are given by the diagonal elements of D′.

Recall that the diagonal of D is partitioned into αi-segments, where each αi is
an eigenvalue of A = SDS−1 with algebraic multiplicity ρi. We now use a similar
idea to segment a perturbation E w.r.t. D. Specifically, the first ρ1 elements of
E constitute the α1-segment of E , the next ρ2 elements of E constitute the α2-
segment of E and so on.

Definition 4. A perturbation E = (ε1, . . . εk) is said to be segmented if the jth

element (whenever present) in every segment of E has the same value, for all
1 ≤ j ≤ ρ1. Formally, if i =

∑l−1
s=1 ρs + j and 1 ≤ j ≤ ρl ≤ ρ1, then εi = εj.
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Clearly, the first ρ1 elements of a segmented perturbation E define the whole
of E . As an example, suppose (α1, α1, α1, α2, α2, α2, α2, α3) is the diagonal of D,
where α1, α2, α2 and α3 are distinct eigenvalues of A. There are four segments
of the diagonal of D (and of E) of lengths 3, 2, 2 and 1 respectively.

Example segmented perturbations in this case are (ε1, ε2, ε3, ε1, ε2, ε1, ε2, ε1)
and (ε3, ε1, ε2, ε3, ε1, ε3, ε1, ε3). If ε1 �= ε2 or ε2 �= ε3, a perturbation that is not
segmented is Ẽ = (ε1, ε2, ε3, ε2, ε3, ε2, ε3, ε1).

Definition 5. Given a segmented perturbation E = (ε1, . . . εk) w.r.t. D, a rota-
tion of E, denoted τD(E), is the segmented perturbation E ′ = (ε′

1, . . . ε
′
k) in which

ε′
(i mod ρ1)+1 = εi for i ∈ {1, . . . ρ1}, and all other ε′

is are as in Definition 4.

Continuing with our example, if E = (ε1, ε2, ε3, ε1, ε2, ε1, ε2, ε1), then τD(E) =
(ε3, ε1, ε2, ε3, ε1, ε3, ε1, ε3), τ2

D(E) = (ε2, ε3, ε1, ε2, ε3, ε2, ε3, ε2) and τ3
D(E) = E .

Lemma 4. Let A = SDS−1 be a k × k real diagonalizable matrix with eigen-
values αi of algebraic multiplicity ρi. Let E = (ε1, . . . εk) be a segmented per-
turbation w.r.t. D such that all εjs have the same sign, and let Au denote
the τu

D(E)-perturbed variant of A for 0 ≤ u < ρ1, where τ0(E) = E. Then
An = 1(∑ρ1

j=1 εn
j

)
∑ρ1−1

u=0 An
u, for all n ≥ 1.

Proof. Let Eu denote τu
D(E) for 0 ≤ u < ρ1, and let Eu[i] denote the ith element of

Eu for 1 ≤ i ≤ k. It follows from Definitions 4 and 5 that for each i, j ∈ {1, . . . ρ1},
there is a unique u ∈ {0, . . . ρ1 − 1} such that Eu[i] = εj . Specifically, u = i − j
if i ≥ j, and u = (ρ1 − j) + i if i < j. Furthermore, Definition 4 ensures that the
above property holds not only for i ∈ {1, . . . ρ1}, but for all i ∈ {1, . . . k}.

Let Du denote the diagonal matrix with Du[i, i] = Eu[i]D[i, i] for 0 ≤ i < ρ1.
Then Dn

u is the diagonal matrix with Dn
u [i, i] =

(Eu[i]D[i, i]
)n for all n ≥ 1.

It follows from the definition of Au that An
u = S Dn

u S−1 for 0 ≤ u < ρ

and n ≥ 1. Therefore,
∑ρ1−1

u=0 An
u = S

( ∑ρ1−1
u=0 Dn

u

)
S−1. Now,

∑ρ1−1
u=0 Dn

u is
a diagonal matrix whose ith element along the diagonal is

∑ρ1−1
u=0

(Eu[i]D[i, i]
)n

=
( ∑ρ1−1

u=0 En
u [i]

)
Dn[i, i]. By virtue of the property mentioned in the previous

paragraph,
∑ρ1−1

u=0 En
u [i] =

∑ρ1
j=1 εn

j for 1 ≤ i ≤ k. Therefore,
∑ρ1−1

u=0 Dn
u =

( ∑ρ1
j=1 εn

j

)
Dn, and hence,

∑ρ1−1
u=0 An

u =
( ∑ρ1

j=1 εn
j

)
S Dn S−1 =

(∑ρ1
j=1 εn

j

)
An.

Since all εjs have the same sign and are non-zero,
( ∑ρ1

j=1 εn
j

)
is non-zero for all

n ≥ 1. It follows that An = 1(∑ρ1
j=1 εn

j

)
∑ρ1−1

u=0 An
u. �	

We are now in a position to present the proof of the main result of this
section, i.e. of Theorem 5. Our proof uses a variation of the idea used in the
proof of Lemma 4 above.

Proof of Theorem 5. Consider a set {(w1, A1), . . . (wi, Ai)} of (weight, matrix)
pairs, where each matrix Ai is in Qk×k and each wi ∈ Q. Suppose further that
each Ai = SiDiS

−1
i , where Di is a diagonal matrix with segments along the

diagonal arranged in descending order of algebraic multiplicities of the corre-
sponding eigenvalues. Let νi be the number of distinct eigenvalues of Ai, and
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let these eigenvalues be αi,1, . . . αi,νi
. Let μi be the largest algebraic multiplic-

ity among those of all eigenvalues of Ai, and let μ = lcm(μ1, . . . μm). We now
choose positive rationals ε1, . . . εμ such that (i) all εjs are distinct, and (ii) for
every i ∈ {1, . . . m}, for every distinct j, l ∈ {1, . . . νi} and for every distinct
p, q ∈ {1, . . . μ}, we have εp

εq
�= |αi,j

αi,l |. Since Q is a dense set, such a choice of
ε1, . . . εμ can always be made once all |αi,j

αi,l
|s are known, even if within finite

precision bounds.
For 1 ≤ i ≤ m, let ηi denote μ/μi. We now define ηi distinct and segmented

perturbations w.r.t. Di as follows, and denote these as Ei,1, . . . Ei,ηi
. For 1 ≤ j ≤

ηi, the first μi elements (i.e. the first segment) of Ei,j are ε(j−1)μi+1, . . . εjμi
(as

chosen in the previous paragraph), and all other elements of Ei,j are defined as in
Definition 4. For each Ei,j thus obtained, we also consider its rotations τu

Di
(Ei,j)

for 0 ≤ u < μi. For 1 ≤ j ≤ ηi and 0 ≤ u < μi, let Ai,j,u = Si Di,j,u S−1
i

denote the τu
Di

(Ei,j)-perturbed variant of Ai. It follows from Definition 3 that
if we consider the set of diagonal matrices {Di,j,u | 1 ≤ j ≤ ηi, 0 ≤ u < μi},
then for every p ∈ {1, . . . k} and for every q ∈ {1, . . . μ}, there is a unique u and
j such that Di,j,u[p, p] = εq. Specifically, j = �q/μi�. To find u, let Ei,j [p] be
the p̂th element in a segment of Ei,j , where 1 ≤ p̂ ≤ μi, and let q̂ be q mod μi.
Then, u = (p̂ − q̂) if p̂ ≥ q̂ and u = (μi − q̂) + p̂ otherwise. By our choice of
εts, we also know that for all i ∈ {1, . . . m}, for all j, l ∈ {1, . . . νi} and for all
p, q ∈ {1, . . . μ}, we have εpαi,l �= εqαi,j unless p = q and j = l. This ensures that
all Di,j,u matrices, and hence all Ai,j,us matrices, are simple, i.e. have distinct
eigenvalues.

Using the reasoning in Lemma 4, we can now show that An
i =

1(∑μ
j=1 εn

j

) × ( ∑ηi

j=1

∑μi−1
u=0 An

i,j,u

)
and so,

∑m
i=1 wiA

n
i = 1(∑μ

j=1 εn
j

) ×
( ∑m

i=1

∑ηi

j=1

∑μi−1
u=0 wiA

n
i,j,u

)
. Since all εjs are positive reals,

∑μ
j=1 εn

j is a pos-
itive real for all n ≥ 1.

Hence, for each p, q ∈ {1, . . . k},
∑m

i=1 wiA
n
i [p, q] is > 0, < 0 or = 0 if and

only if
( ∑m

i=1

∑ηi

j=1

∑μi−1
u=0 wiA

n
i,j,u[p, q]

)
is > 0, < 0 or = 0, respectively. The

only remaining helper result that is now needed to complete the proof of the
theorem is that each Ai,j,u is a real algebraic matrix. This is shown in Lemma 5,
presented at the end of this section to minimally disturb the flow of arguments.

�	
The reduction in proof of Theorem 5 can be easily encoded as an algorithm,
as shown in Algorithm 1. Further, in addition to Corollary 2, there are other
consequences of our reduction. One such result (with proof in [3]) is below.

Corollary 3. Given A = {(w1, A1), . . . (wm, Am)}, where each wi ∈ Q and Ai ∈
Qk×k is diagonalizable, and a real value ε > 0, there exists B = {(v1, B1),
. . . (vM , BM )}, where each vi ∈ Q and each Bi ∈ RAk×k is simple, such that∣
∣
∣
∑m

i=0 wiA
n
i [p, q] − ∑M

j=0 vjB
n
j [p, q]

∣
∣
∣ < εn for all p, q ∈ {1, . . . k} and all n ≥ 1.

We end this section with the promised helper result used at the end of the proof
of Theorem 5.
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Algorithm 1. Reduction procedure for diagonalizable matrices
Input: A = {(wi, Ai) : 1 ≤ i ≤ m, wi ∈ Q, Ai ∈ Qk×k and diagonalizable}
Output: B = {(vi, Bi) : 1 ≤ i ≤ t, vi ∈ Q, Bi ∈ RAk×k are simple}

s.t.
(∑m

i=1 wiA
n
i

)
= f(n)

(∑t
i=1 viB

n
i

)
, where f(n) > 0 for all n ≥ 0?

1: P ← {1}; � Initialize set of forbidden ratios of various εjs
2: for i in 1 through m do � For each matrix Ai

3: Ri ← {(αi,j , ρi,j) : αi,j is eigenvalue of Ai with algebraic multiplicity ρi,j};
4: Di ← Diagonal matrix of αi,j-segments ordered in decreasing order of ρi,j ;
5: Si ← Matrix of linearly independent eigenvectors of Ai s.t. Ai = SiDiS

−1
i ;

6: P ← P ∪ { |αi,j/αi,l| : αi,j , αi,l are eigenvalues in Ri

}
; μi ← maxj ρi,j

7: μ = lcm(μ1, . . . μm); � Count of εjs needed
8: for j in 1 through μ do � Generate all required εjs
9: Choose εj ∈ Q s.t. εj > 0 and εj �∈ {πεp : 1 ≤ p < j, π ∈ P};

10: B ← ∅; � Initialize set of (weight, simple matrix) pairs
11: for i in 1 through m do � For each matrix Ai

12: νi ← μ/μi; � Count of segmented perturbations to be rotated for Ai

13: for j in 0 through νi − 1 do � For each segmented perturbation
14: Ei,j ← Seg. perturbn. w.r.t. Di with first μi elements being

εjμi+1, . . . ε(j+1)μi
;

15: for u in 0 through μi − 1 do � For each rotation of Ei,j

16: Ai,j,u ← τu
Di

(Ei,j)-perturbed variant of A;
17: B ← B ∪ {(wi, Ai,j,u)}; � Update A′

18: return B;

Lemma 5. For every real (resp. real algebraic) diagonalizable matrix A =
SDS−1 and perturbation E ∈ Rk (resp. RAk), the E-perturbed variant of A
is a real (resp. real algebraic) diagonalizable matrix.

Proof. We first consider the case of A ∈ Rk×k and E ∈ Rk. Given a perturbation
E w.r.t. D, we first define k simple perturbations Ei (1 ≤ i ≤ k) w.r.t. D as
follows: Ei has all its components set to 1, except for the ith component, which
is set to εi. Furthermore, if D[i, i] is not real, then the hD(i)th component of Ei

is also set to εi. It is easy to see from Definition 3 that each Ei is a perturbation
w.r.t. D. Moreover, if j = hD(i), then Ej = Ei.

Let Ê = {Ei1 , . . . Eiu
} be the set of all unique perturbations w.r.t D among

E1, . . . Ek. It follows once again from Definition 3 that the E-perturbed variant of
A can be obtained by a sequence of Eij

-perturbations, where Eij
∈ Ê . Specifically,

let A0,Ê = A and Av,Ê be the Eiv
-perturbed variant of Av−1,Ê for all v ∈ {1, . . . u}.

Then, the E-perturbed variant of A is identical to Au,Ê . This shows that it suffices
to prove the lemma only for simple perturbations Ei, as defined above. We focus
on this special case below.

Let A′ = SD′S−1 be the Ei-perturbed variant of A, and let D[i, i] = α.
For every p ∈ {1, . . . k}, let ep denote the p-dimensional unit vector whose pth

component is 1. Then, A′ep gives the pth column of A′. We prove the first part of
the lemma by showing that A′ ep = (S D ′S−1) ep ∈ Rk×1 for all p ∈ {1, . . . k}.
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Let T denote D′ S−1 ep. Then T is a column vector with T[r] =
D′[r, r] S−1[r, p] for all r ∈ {1, . . . k}. Let U denote ST. By definition, U is
the pth column of the matrix A′. To compute U, recall that the rows of S−1

form a basis of Ck. Therefore, for every q ∈ {1, . . . k}, S−1 eq can be viewed as
transforming the basis of the unit vector eq to that given by the rows of S−1

(modulo possible scaling by real scalars denoting the lengths of the row vectors of
S−1). Similarly, computation of U = ST can be viewed as applying the inverse
basis transformation to T. It follows that the components of U can be obtained
by computing the dot product of T and the transformed unit vector S−1 eq, for
each q ∈ {1, . . . k}. In other words, U[q] = T · (S−1 eq). We show below that
each such U[q] is real.

By definition, U[q] =
∑k

r=1(T[r] S−1[r, q]) =
∑k

r=1(D
′[r, r] S−1[r, p] S−1

[r, q]). We consider two cases below.

– If D[i, i] = α is real, recalling the definition of D′, the expression for U[q]
simplifies to

∑k
r=1(D[r, r] S−1[r, p] S−1[r, q]) + (εi − 1) α S−1[i, p] S−1[i, q].

Note that
∑k

r=1(D[r, r] S−1[r, p] S−1[r, q]) is the qth component of the vector
(SDS−1) ep = A ep. Since A is real, so must be the qth component of A ep.
Moreover, since α is real, by our choice of S−1, both S−1[i, p] and S−1[i, q]
are real. Since εi is also real, it follows that (εi − 1) α S−1[i, p] S−1[i, q] is
real. Hence U[q] is real for all q ∈ {1, . . . k}.

– If D[i, i] = α is not real, from Definition 3, we know that D′[i, i] =
εi α and D′[hD(i), hD(i)] = εi α. The expression for U[q] then simpli-
fies to

∑k
r=1

(
D[r, r] S−1[r, p] S−1[r, q]

)
+ (εi − 1) (β + γ), where β =

α S−1[i, p] S−1[i, q] and γ = α S−1[hD(i), p] S−1[hD(i), q]. By our choice
of S−1, we know that S−1[hD(i), p] = S−1[i, p] and S−1[hD(i), q] = S−1[i, q].
Therefore, β = γ and hence (εi − 1) (β + γ) is real. By a similar argument as
in the previous case, it follows that U[q] is real for all q ∈ {1, . . . k}.

The proof when A ∈ RAk×k and E ∈ Qk follows from a similar reasoning as
above, and from the following facts about real algebraic matrices.

– If A is a real algebraic matrix, then every eigenvalue of A is either a real or
complex algebraic number.

– If A is diagonalizable, then for every real (resp. complex) algebraic eigenvalue
of A, there exists a set of real (resp. complex) algebraic eigenvectors that form
a basis of the corresponding eigenspace. �	

6 Conclusion

In this paper, we investigated eventual non-negativity and positivity for matrices
and the weighted sum of powers of matrices (ENNSoM/EPSoM). First, we showed
reductions from and to specific problems on linear recurrences, which allowed us
give complexity lower and upper bounds. Second, we developed a new and generic
perturbation-based reduction technique from simple matrices to diagonalizable
matrices, which allowed us to transfer results between these settings.
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Most of our results, that we showed in the rational setting, hold even with
real-algebraic matrices by adapting the complexity notions and depending on
corresponding results for ultimate positivity for linear recurrences and related
problems over reals. As future work, we would like to extend our techniques for
other problems of interest like the existence of a matrix power where all entries
are non-negative or zero. Finally, the line of work started here could lead to
effective algorithms and applications in varied areas ranging from control theory
systems to cyber-physical systems, where eventual properties of matrices play a
crucial role.
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Border Between Decidability and Undecidability. Technical report, Citeseer (2005)

20. Karimov, T., et al.: What’s decidable about linear loops? Proc. ACM Program.
Lang. 6(POPL), 1–25 (2022)

21. Korthikanti, V.A., Viswanathan, M., Agha, G., Kwon, Y.: Reasoning about MDPs
as transformers of probability distributions. In: QEST 2010, Seventh International
Conference on the Quantitative Evaluation of Systems, Williamsburg, Virginia,
USA, 15–18 September 2010, pp. 199–208. IEEE Computer Society (2010)

22. Lale, S., Azizzadenesheli, K., Hassibi, B., Anandkumar, A.: Logarithmic regret
bound in partially observable linear dynamical systems. Adv. Neural Inf. Process.
Syst. 33, 20876–20888 (2020)

23. Lebacque, J.P., Ma, T.Y., Khoshyaran, M.M.: The cross-entropy field for multi-
modal dynamic assignment. In: Proceedings of Traffic and Granular Flow 2009
(2009)

24. MacCluer, C.R.: The many proofs and applications of Perron’s theorem. Siam Rev.
42(3), 487–498 (2000)

25. Noutsos, D.: On Perron-Frobenius property of matrices having some negative
entries. Linear Algebra Appl. 412(2), 132–153 (2006)

26. Noutsos, D., Tsatsomeros, M.J.: Reachability and holdability of nonnegative states.
SIAM J. Matrix Anal. Appl. 30(2), 700–712 (2008)

27. Ouaknine, J.: Decision problems for linear recurrence sequences. In: G ↪asieniec, L.,
Wolter, F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 2–2. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40164-0 2

28. Ouaknine, J., Pinto, J.S., Worrell, J.: On termination of integer linear loops. In:
Indyk, R. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2015, San Diego, CA, USA, 4–6 January 2015, pp.
957–969. SIAM (2015)

29. Ouaknine, J., Worrell, J.: Decision problems for linear recurrence sequences. In:
Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 21–28.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33512-9 3

https://doi.org/10.1007/BF02760401
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1007/978-3-642-40164-0_2
https://doi.org/10.1007/978-3-642-33512-9_3


690 S. Akshay et al.

30. Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence
sequences. In: Chekuri, C. (ed.) Proceedings of the Twenty-Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA,
5–7 January 2014, pp. 366–379. SIAM (2014)

31. Ouaknine, J., Worrell, J.: Ultimate positivity is decidable for simple linear recur-
rence sequences. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8573, pp. 330–341. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43951-7 28

32. Ouaknine, J., Worrell, J.: On linear recurrence sequences and loop termination.
ACM Siglog News 2(2), 4–13 (2015)

33. Pan, V.Y., Chen, Z.Q.: The complexity of the matrix eigenproblem. In: Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC
2099, pp. 507–516, New York, NY, USA. Association for Computing Machinery
(1999)

34. Rump, S.M.: Perron-Frobenius theory for complex matrices. Linear Algebra Appl.
363, 251–273 (2003)

35. Akshay, S., Balaji, N., Vyas, N.: Complexity of Restricted Variants of Skolem
and Related Problems. In Larsen, K.G., Bodlaender, H.L., Raskin, J.F. (eds.)
42nd International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS 2017), volume 83 of Leibniz International Proceedings in Informatics
(LIPIcs), pp. 78:1–78:14, Dagstuhl, Germany. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2017)

36. Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27813-9 6

37. Zaslavsky, B.G.: Eventually nonnegative realization of difference control systems.
Dyn. Syst. Relat. Top. Adv. Ser. Dynam. Syst. 9, 573–602 (1991)

38. Zaslavsky, B.G., McDonald, J.J.: Characterization of Jordan canonical forms which
are similar to eventually nonnegative matrices with the properties of nonnegative
matrices. Linear Algebra Appl. 372, 253–285 (2003)

39. Zhang, A., et al.: Learning causal state representations of partially observable
environments. arXiv preprint arXiv:1906.10437 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-43951-7_28
https://doi.org/10.1007/978-3-662-43951-7_28
https://doi.org/10.1007/978-3-540-27813-9_6
https://doi.org/10.1007/978-3-540-27813-9_6
http://arxiv.org/abs/1906.10437
http://creativecommons.org/licenses/by/4.0/


Decision Problems in a Logic for Reasoning
About Reconfigurable Distributed Systems

Marius Bozga(B) , Lucas Bueri , and Radu Iosif

Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, 38000 Saint-Martin-d’Hères, France
marius.bozga@univ-grenoble-alpes.fr

Abstract. We consider a logic used to describe sets of configurations of dis-
tributed systems, whose network topologies can be changed at runtime, by recon-
figuration programs. The logic uses inductive definitions to describe networks
with an unbounded number of components and interactions, written using a mul-
tiplicative conjunction, reminiscent of Bunched Implications [37] and Separation
Logic [39]. We study the complexity of the satisfiability and entailment prob-
lems for the configuration logic under consideration. Additionally, we consider
the robustness property of degree boundedness (is every component involved in a
bounded number of interactions?), an ingredient for decidability of entailments.

1 Introduction

Distributed systems are increasingly used as critical parts of the infrastructure of our
digital society, as in e.g., datacenters, e-banking and social networking. In order to
address maintenance (e.g., replacement of faulty and obsolete network nodes by new
ones) and data traffic issues (e.g., managing the traffic inside a datacenter [35]), the
distributed systems community has recently put massive effort in designing algorithms
for reconfigurable systems, whose network topologies change at runtime [23]. How-
ever, dynamic reconfiguration in the form of software or network upgrades has been
recognized as one of the most important sources of cloud service outage [25].

This paper contributes to a logical framework that addresses the timely problems of
formal modeling and verification of reconfigurable distributed systems. The basic build-
ing blocks of this framework are (i) a Hoare-style program proof calculus [1] used to
write formal proofs of correctness of reconfiguration programs, and (ii) an invariant syn-
thesis method [6] that proves the safety (i.e., absence of reachable error configurations)
of the configurations defined by the assertions that annotate a reconfiguration program.
These methods are combined to prove that an initially correct distributed system cannot
reach an error state, following the execution of a given reconfiguration sequence.

The assertions of the proof calculus are written in a logic that defines infinite sets
of configurations, consisting of components (i.e., processes running on different nodes
of the network) connected by interactions (i.e., multi-party channels alongside which
messages between components are transfered). Systems that share the same architec-
tural style (e.g., pipeline, ring, star, tree, etc.) and differ by the number of components
and interactions are described using inductively defined predicates. Such configurations
can be modified either by (a) adding or removing components and interactions (recon-
figuration), or (b) changing the local states of components, by firing interactions.
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The assertion logic views components and interactions as resources, that can be
created or deleted, in the spirit of resource logics à la Bunched Implications [37], or
Separation Logic [39]. The main advantage of using resource logics is their support for
local reasoning [12]: reconfiguration actions are specified by pre- and postconditions
mentioning only the resources involved, while framing out the rest of the configuration.

The price to pay for this expressive power is the difficulty of automating the rea-
soning in these logics. This paper makes several contributions in the direction of proof
automation, by studying the complexity of the satisfiability and entailment problems,
for the configuration logic under consideration. Additionally, we study the complexity
of a robustness property [27], namely degree boundedness (is every component involved
in a bounded number of interactions?). In particular, the latter problem is used as a
prerequisite for defining a fragment with a decidable entailment problem. For space
reasons, the proofs of the technical results are given in [5].

1.1 Motivating Example

The logic studied in this paper is motivated by the need for an assertion language
that supports reasoning about dynamic reconfigurations in a distributed system. For
instance, consider a distributed system consisting of a finite (but unknown) number of
components (processes) placed in a ring, executing the same finite-state program and
communicating via interactions that connect the out port of a component to the in port
of its right neighbour, in a round-robin fashion, as in Fig. 1(a). The behavior of a com-
ponent is a machine with two states, T and H, denoting whether the component has a
token (T) or not (H). A component ci without a token may receive one, by executing a

transition H
in−→ T, simultaneously with its left neighbour c j, that executes the transition

T
out−→ H. Then, we say that the interaction (c j,out,ci, in) has fired, moving a token one

position to the right in the ring. Note that there can be more than one token, moving
independently in the system, as long as no token overtakes another token.

The token ring system is formally specified by the following inductive rules:

ringh,t(x) ← ∃y∃z . [x]@q∗ 〈x.out, z.in〉 ∗ chainh′,t ′(z,y)∗ 〈y.out, x.in〉
chainh,t(x, y) ← ∃z. [x]@q∗ 〈x.out, z.in〉 ∗ chainh′,t ′(z,y)
chain0,1(x, x) ← [x]@T chain1,0(x, x) ← [x]@H chain0,0(x, x) ← [x]

where h′ def=
{

max(h−1,0) , if q = H
h , if q = T

and t ′ def=
{

max(t −1,0) , if q = T
t , if q = H

The predicate ringh,t(x) describes a ring with at least two components, such that at least
h (resp. t) components are in state H (resp. T). The ring consists of a component x in
state q, described by the formula [x]@q, an interaction from the out port of x to the
in port of another component z, described as 〈x.out, z.in〉, a separate chain of compo-
nents stretching from z to y (chainh′,t ′(z,y)), and an interaction connecting the out port
of component y to the in port of component x (〈y.out, x.in〉). Inductively, a chain con-
sists of a component [x]@q, an interaction 〈x.out, z.in〉 and a separate chainh′,t ′(z,y).
Figure 1(b) depicts the unfolding of the inductive definition of the token ring, with the



Decision Problems in a Logic for Reasoning 693
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Fig. 1. Inductive Specification and Reconfiguration of a Token Ring

existentially quantified variables z from the above rules α-renamed to z1,z2, . . . to avoid
confusion.

A reconfiguration program takes as input a mapping of program variables to com-
ponents and executes a sequence of basic operations i.e., component/interaction cre-
ation/deletion, involving the components and interactions denoted by these variables.
For instance, the reconfiguration program in Fig. 1(c) takes as input three adjacent com-
ponents, mapped to the variables x, y and z, respectively, removes the component y
together with its left and right interactions and reconnects x directly with z. Program-
ming reconfigurations is error-prone, because the interleaving between reconfiguration
actions and interactions in a distributed system may lead to bugs that are hard to trace.
For instance, if a reconfiguration program removes the last component in state T (resp.
H) from the system, no token transfer interaction may fire and the system deadlocks.

We prove absence of such errors using a Hoare-style proof system [1], based on
the logic introduced above as assertion language. For instance, the proof from Fig.
1(c) shows that the reconfiguration sequence applied to a component y in state H (i.e.,
[y]@H) in a ring with at least h ≥ 2 components in state H and at least t ≥ 1 components
in state T leads to a ring with at least h − 1 components in state H and at least t in
state T; note that the states of the components may change during the execution of the
reconfiguration program, as tokens are moved by interactions.

The proof in Fig. 1(c) uses local axioms specifying, for each basic operation,
only those components and interactions required to avoid faulting, with a frame rule
{φ} P {ψ} ⇒ {φ∗

�

�

�

�

F } P {ψ∗F}; for readability, the frame formulæ (from the pre-
conditions of the conclusion of the frame rule applications) are enclosed in boxes.

The proof also uses the consequence rule {φ} P {ψ} ⇒ {φ′} P {ψ′} that applies if
φ′ is stronger than φ and ψ′ is weaker than ψ. The side conditions of the consequence
rule require checking the validity of the entailments ringh,t(y) |= ∃x∃z . 〈x.out, y.in〉 ∗
[y]@H∗ 〈y.out, z.in〉 ∗ chainh−1,t(z,x) and chainh−1,t(z, x)∗ 〈x.out, z.in〉 |= ringh−1,t(z),
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for all h ≥ 2 and t ≥ 1. These side conditions can be automatically discharged using the
results on the decidability of entailments given in this paper. Additionally, checking the
satisfiability of a precondition is used to detect trivially valid Hoare triples.

1.2 Related Work

Formal modeling coordinating architectures of component-based systems has received
lots of attention, with the development of architecture description languages (ADL),
such as BIP [3] or REO [2]. Many such ADLs have extensions that describe pro-
grammed reconfiguration, e.g., [19,30], classified according to the underlying formal-
ism used to define their operational semantics: process algebras [13,33], graph rewrit-
ing [32,41,44], chemical reactions [43] (see the surveys [7,11]). Unfortunately, only
few ADLs support formal verification, mainly in the flavour of runtime verification
[10,17,20,31] or finite-state model checking [14].

Parameterized verification of unbounded networks of distributed processes uses
mostly hard-coded coordinating architectures (see [4] for a survey). A first attempt at
specifying architectures by logic is the interaction logic of Konnov et al. [29], a combi-
nation of Presburger arithmetic with monadic uninterpreted function symbols, that can
describe cliques, stars and rings. More structured architectures (pipelines and trees) can
be described using a second-order extension [34]. However, these interaction logics are
undecidable and lack support for automated reasoning.

Specifying parameterized component-based systems by inductive definitions is not
new. Network grammars [26,32,40] use context-free grammar rules to describe sys-
tems with linear (pipeline, token-ring) architectures obtained by composition of an
unbounded number of processes. In contrast, we use predicates of unrestricted arities
to describe architectural styles that are, in general, more complex than trees. Moreover,
we write inductive definitions using a resource logic, suitable also for writing Hoare
logic proofs of reconfiguration programs, based on local reasoning [12].

Local reasoning about concurrent programs has been traditionally the focus of Con-
current Separation Logic (CSL), based on a parallel composition rule [36], initially
with a non-interfering (race-free) semantics [8] and later combining ideas of assume-
and rely-guarantee [28,38] with local reasoning [22,42] and abstract notions of fram-
ing [15,16,21]. However, the body of work on CSL deals almost entirely with shared-
memory multithreading programs, instead of distributed systems, which is the aim of
our work. In contrast, we develop a resource logic in which the processes do not just
share and own resources, but become mutable resources themselves.

The techniques developed in this paper are inspired by existing techniques for sim-
ilar problems in the context of Separation Logic (SL) [39]. For instance, we use an
abstract domain similar to the one defined by Brotherston et al. [9] for checking satis-
fiability of symbolic heaps in SL and reduce a fragment of the entailment problem in
our logic to SL entailment [18]. In particular, the use of existing automated reasoning
techniques for SL has pointed out several differences between the expressiveness of our
logic and that of SL. First, the configuration logic describes hypergraph structures, in
which edges are �-tuples for � ≥ 2, instead of directed graphs as in SL, where � is a
parameter of the problem: considering � to be a constant strictly decreases the com-
plexity of the problem. Second, the degree (number of hyperedges containing a given
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vertex) is unbounded, unlike in SL, where the degree of heaps is constant. Therefore,
we dedicate an entire section (Sect. 4) to the problem of deciding the existence of a
bound (and computing a cut-off) on the degree of the models of a formula, used as a
prerequisite for the encoding of the entailment problems from the configuration logic
as SL entailments.

2 Definitions

We denote by N the set of positive integers including zero. For a set A, we define A1 def= A,

Ai+1 def= Ai ×A, for all i ≥ 1, and A+ =
⋃

i≥1 Ai, where × denotes the Cartesian product.
We denote by pow(A) the powerset of A and by mpow(A) the power-multiset (set of
multisets) of A. The cardinality of a finite set A is denoted as ||A||. By writing A ⊆fin B
we mean that A is a finite subset of B. Given integers i and j, we write [i, j] for the
set {i, i+1, . . . , j}, assumed to be empty if i > j. For a tuple t = 〈t1, . . . , tn〉, we define

|t| def= n, 〈t〉i
def= ti and 〈t〉[i, j]

def= 〈ti, . . . , t j〉. By writing x = poly(y), for given x,y ∈ N, we
mean that there exists a polynomial function f : N → N, such that x ≤ f (y).

2.1 Configurations

We model distributed systems as hypergraphs, whose vertices are components (i.e., the
nodes of the network) and hyperedges are interactions (i.e., describing the way the
components communicate with each other). The components are taken from a countably
infinite set C, called the universe. We consider that each component executes its own
copy of the same behavior, represented as a finite-state machine B = (P ,Q ,−→), where
P is a finite set of ports, Q is a finite set of states and −→⊆ Q × P × Q is a transition
relation. Intuitively, each transition q

p−→ q′ of the behavior is triggerred by a visible
event, represented by the port p. For instance, the behavior of the components of the

token ring system from Fig. 1(a) is B = ({in,out},{H,T},{H
in−→ T,T

out−→ H}). The
universe C and the behavior B = (P ,Q ,−→) are fixed in the rest of this paper.

We introduce a logic for describing infinite sets of configurations of distributed
systems with unboundedly many components and interactions. A configuration is a
snapshot of the system, describing the topology of the network (i.e., the set of present
components and interactions) together with the local state of each component:

Definition 1. A configuration is a tuple γ = (C ,I ,ρ), where:

– C ⊆fin C is a finite set of components, that are present in the configuration,
– I ⊆fin (C× P )+ is a finite set of interactions, where each interaction is a sequence

(c1, p1, . . . ,cn, pn) ∈ (C×P )n that binds together the ports p1, . . . , pn of the pairwise
distinct components c1, . . . ,cn, respectively.

– ρ : C → Q is a state map associating each (possibly absent) component, a state of
the behavior B, such that the set {c ∈ C | ρ(c) = q} is infinite, for each q ∈ Q .

The last condition requires that there is an infinite pool of components in each state
q ∈ Q ; since C is infinite and Q is finite, this condition is feasible. For example, the con-
figurations of the token ring from Fig. 1(a) are ({c1, . . . ,cn},{(ci,out,c(i mod n)+1, in) |
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i ∈ [1,n]},ρ), where ρ : C → {H,T} is a state map. The ring topology is described by
the set of components {c1, . . . ,cn} and interactions {(ci,out,c(i mod n)+1, in) | i ∈ [1,n]}.

Intuitively, an interaction (c1, p1, . . . ,cn, pn) synchronizes transitions labeled by the
ports p1, . . . , pn from the behaviors (i.e., replicas of the state machine B) of c1, . . . ,cn,
respectively. Note that the components ci are not necessary part of the configuration.
The interactions are classified according to their sequence of ports, called the interac-

tion type and let Inter
def= P + be the set of interaction types; an interaction type models,

for instance, the passing of a certain kind of message (e.g., request, acknowledgement,
etc.). From an operational point of view, two interactions that differ by a permutation
of indices e.g., (c1, p1, . . . ,cn, pn) and (ci1 , pi1 , . . . ,cin , pin) such that {i1, . . . , in} = [1,n],
are equivalent, since the set of transitions is the same; nevertheless, we chose to distin-
guish them in the following, exclusively for reasons of simplicity.

Below we define the composition of configurations, as the union of disjoint sets of
components and interactions:

Definition 2. The composition of two configurations γi = (Ci,Ii,ρ), for i = 1,2, such

that C1 ∩ C2 = /0 and I1 ∩ I2 = /0, is defined as γ1 • γ2
def= (C1 ∪ C2,I1 ∪ I2,ρ). The com-

position γ1 • γ2 is undefined if C1 ∩C2 �= /0 or I1 ∩ I2 �= /0.

In analogy with graphs, the degree of a configuration is the maximum number of inter-
actions from the configuration that involve a (possibly absent) component:

Definition 3. The degree of a configuration γ = (C ,I ,ρ) is defined as δ(γ) def=
maxc∈C δc(γ), where δc(γ)

def= ||{(c1, p1, . . . ,cn, pn) ∈ I | c = ci, i ∈ [1,n]}||.
For instance, the configuration of the system from Fig. 1(a) has degree two.

2.2 Configuration Logic

Let V and A be countably infinite sets of variables and predicates, respectively. For
each predicate A ∈ A, we denote its arity by #A. The formulæ of the Configuration
Logic (CL) are described inductively by the following syntax:

φ := emp | [x] | 〈x1.p1, . . . ,xn.pn〉 | x@q | x = y | x �= y | A(x1, . . . ,x#A) | φ∗φ | ∃x . φ

where x,y,x1, . . . ∈ V, q ∈ Q and A ∈ A. A formula [x], 〈x1.p1, . . . ,xn.pn〉, x@q and
A(x1, . . . ,x#A) is called a component, interaction, state and predicate atom, respectively.
These formulæ are also referred to as atoms. The connective ∗ is called the separating

conjunction. We use the shorthand [x]@q
def= [x] ∗ x@q. For instance, the formula [x]@q ∗

[y]@q′ ∗ 〈x.out, y.in〉 ∗ 〈x.in, y.out〉 describes a configuration consisting of two distinct
components, denoted by the values of x and y, in states q and q′, respectively, and two
interactions binding the out port of one to the in port of the other component.

A formula is said to be pure if and only if it is a separating conjunction of state
atoms, equalities and disequalities. A formula with no occurrences of predicate atoms
(resp. existential quantifiers) is called predicate-free (resp. quantifier-free). A variable
is free if it does not occur within the scope of an existential quantifier ; we note fv(φ) the
set of free variables of φ. A sentence is a formula with no free variables. A substitution
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φ[x1/y1 . . .xn/yn] replaces simultaneously every free occurrence of xi by yi in φ, for all
i ∈ [1,n]. Before defining the semantics of CL formulæ, we introduce the set of inductive
definitions that assigns meaning to predicates:

Definition 4. A set of inductive definitions (SID) Δ consists of rules A(x1, . . . ,x#A) ←
φ, where x1, . . . ,x#A are pairwise distinct variables, called parameters, such that fv(φ) ⊆
{x1, . . . ,x#A}. The rule A(x1, . . . ,x#A) ← φ defines A and we denote by defΔ(A) the set
of rules from Δ that define A.

Note that having distinct parameters in a rule is without loss of generality, as e.g., a rule
A(x1,x1) ← φ can be equivalently written as A(x1,x2) ← x1 = x2 ∗ φ. As a convention,
we shall always use the names x1, . . . ,x#A for the parameters of a rule that defines A.

The semantics of CL formulæ is defined by a satisfaction relation γ |=ν
Δ φ between

configurations and formulæ. This relation is parameterized by a store ν : V → C map-
ping the free variables of a formula into components from the universe (possibly absent
from γ) and an SID Δ. We write ν[x ← c] for the store that maps x into c and agrees with
ν on all variables other than x. The definition of the satisfaction relation is by induction
on the structure of formulæ, where γ = (C ,I ,ρ) is a configuration (Definition 1):

γ |=ν
Δ emp ⇐⇒ C = /0 and I = /0

γ |=ν
Δ [x] ⇐⇒ C = {ν(x)} and I = /0

γ |=ν
Δ 〈x1.p1, . . . ,xn.pn〉 ⇐⇒ C = /0 and I = {(ν(x1), p1, . . . ,ν(xn), pn)}

γ |=ν
Δ x@q ⇐⇒ γ |=ν

Δ emp and ρ(ν(x)) = q
γ |=ν

Δ x ∼ y ⇐⇒ γ |=ν
Δ emp and ν(x) ∼ ν(y), for all ∼∈ {=, �=}

γ |=ν
Δ A(y1, . . . ,y#A) ⇐⇒ γ |=ν

Δ φ[x1/y1, . . . ,x#A/y#A], for some rule
A(x1, . . . ,x#A) ← φ from Δ

γ |=ν
Δ φ1 ∗φ2 ⇐⇒ exist γ1,γ2, such that γ = γ1 • γ2 and γi |=ν

Δ φi, for i = 1,2

γ |=ν
Δ ∃x . φ ⇐⇒ γ |=ν[x←c]

Δ φ, for some c ∈ C

If φ is a sentence, the satisfaction relation γ |=ν
Δ φ does not depend on the store, written

γ |=Δ φ, in which case we say that γ is a model of φ. If φ is a predicate-free formula, the
satisfaction relation does not depend on the SID, written γ |=ν φ. A formula φ is satisfi-
able if and only if the sentence ∃x1 . . .∃xn . φ has a model, where fv(φ) = {x1, . . . ,xn}.
A formula φ entails a formula ψ, written φ |=Δ ψ if and only if, for any configuration γ
and store ν, we have γ |=ν

Δ φ only if γ |=ν
Δ ψ.

2.3 Separation Logic

Separation Logic (SL) [39] will be used in the following to prove several technical
results concerning the decidability and complexity of certain decision problems for
CL. For self-containment reasons, we define SL below. The syntax of SL formulæ is
described by the following grammar:

φ := emp | x0 �→ (x1, . . . ,xK) | x = y | x �= y | A(x1, . . . ,x#A) | φ∗φ | ∃x . φ

where x,y,x0,x1, . . . ∈ V, A ∈ A and K ≥ 1 is an integer constant. Formulæ of SL are
interpreted over finite partial functions h : C ⇀fin CK, called heaps1, by a satisfaction
relation h �ν φ, defined inductively as follows:

1 We use the universe C here for simplicity, the definition works with any countably infinite set.
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h �ν
Δ emp ⇐⇒ h = /0

h �ν
Δ x0 �→ (x1, . . . ,xK) ⇐⇒ dom(h) = {ν(x0)} and h(ν(x0)) = 〈ν(x1), . . . ,ν(xK)〉

h �ν φ1 ∗φ2 ⇐⇒ there exist h1,h2 such that dom(h1)∩dom(h2) = /0,
h = h1 ∪h2 and hi �ν

Δ φi, for both i = 1,2

where dom(h) def= {c ∈ C | h(c) is defined} is the domain of the heap and (dis-) equali-
ties, predicate atoms and existential quantifiers are defined same as for CL.

2.4 Decision Problems

We define the decision problems that are the focus of the upcoming sections. As usual,
a decision problem is a class of yes/no queries that differ only in their input. In our case,
the input consists of an SID and one or two predicates, written between square brackets.

Definition 5. We consider the following problems, for a SID Δ and predicates A,B ∈ A:

1. Sat[Δ,A]: is the sentence ∃x1 . . .∃x#A . A(x1, . . . ,x#A) satisfiable for Δ?
2. Bnd[Δ,A]: is the set {δ(γ) | γ |=Δ ∃x1 . . .∃x#A . A(x1, . . . ,x#A)} finite?
3. Entl[Δ,A,B]: does A(x1, . . . ,x#A) |=Δ ∃x#B+1 . . .∃x#A . B(x1, . . . ,x#B) hold?

The size of a formula φ is the total number of occurrences of symbols needed to write it

down, denoted by size(φ). The size of a SID Δ is size(Δ) def= ∑A(x1,...,x#A)←φ∈Δ size(φ)+
#A+1. Other parameters of a SID Δ are:

– arity(Δ) def= max{#A | A(x1, . . . ,x#A) ← φ ∈ Δ},
– width(Δ) def= max{size(φ) | A(x1, . . . ,x#A) ← φ ∈ Δ},
– intersize(Δ) def= max{n | 〈x1.p1, . . . ,xn.pn〉 occurs in φ,A(x1, . . . ,x#A) ← φ ∈ Δ}.

For a decision problem P[Δ,A,B], we consider its (k, �)-bounded versions
P(k,�)[Δ,A,B], obtained by restricting the predicates and interaction atoms occurring
Δ to arity(Δ) ≤ k and intersize(Δ) ≤ �, respectively, where k and � are either positive
integers or infinity. We consider, for each P[Δ,A,B], the subproblems P(k,�)[Δ,A,B] cor-
responding to the three cases (1) k < ∞ and � = ∞, (2) k = ∞ and � < ∞, and (3) k = ∞
and � = ∞. As we explain next, this is because, for the decision problems considered
(Definition 5), the complexity for the case k < ∞, � < ∞ matches the one for the case
k < ∞, � = ∞.

Satisfiability (1) and entailment (3) arise naturally during verification of reconfigu-
ration programs. For instance, Sat[Δ,φ] asks whether a specification φ of a set configu-
rations (e.g., a pre-, post-condition, or a loop invariant) is empty or not (e.g., an empty
precondition typically denotes a vacuous verification condition), whereas Entl[Δ,φ,ψ]
is used as a side condition for the Hoare rule of consequence, as in e.g., the proof
from Fig. 1(c). Moreover, entailments must be proved when checking inductiveness of
a user-provided loop invariant.

The Bnd[Δ,φ] problem is used to check a necessary condition for the decidability
of entailments i.e., Entl[Δ,φ,ψ]. If Bnd[Δ,φ] has a positive answer, we can reduce the
problem Entl[Δ,φ,ψ] to an entailment problem for SL, which is always interpreted over
heaps of bounded degree [18]. Otherwise, the decidability status of the entailment prob-
lem is open, for configurations of unbounded degree, such as the one described by the
example below.
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Example 1. The following SID describes star topologies with a central controller con-
nected to an unbounded number of workers stations:

Controller(x) ←[x]∗Worker(x)
Worker(x) ←∃y . 〈x.out, y.in〉 ∗ [y]∗Worker(x) Worker(x) ← emp �

3 Satisfiability

We show that the satisfiability problem (Definition 5, point 1) is decidable, using a
method similar to the one pioneered by Brotherston et al. [9], for checking satisfiability
of inductively defined symbolic heaps in SL. We recall that a formula π is pure if and
only if it is a separating conjunction of equalities, disequalities and state atoms. In the
following, the order of terms in (dis-)equalities is not important i.e., we consider x = y
(resp. x �= y) and y = x (resp. y �= x) to be the same formula.

Definition 6. The closure cl(π) of a pure formula π is the limit of the sequence
π0,π1,π2, . . . such that π0 = π and, for each i ≥ 0, πi+1 is obtained by joining (with
∗) all of the following formulæ to πi:

– x = z, where x and z are the same variable, or x = y and y = z both occur in πi,
– x �= z, where x = y and y �= z both occur in πi, or
– y@q, where x@q and x = y both occur in πi.

Because only finitely many such formulæ can be added, the sequence of pure formulæ
from Definition 6 is bound to stabilize after polynomially many steps. A pure formula
is satisfiable if and only if its closure does not contain contradictory literals i.e., x = y
and x �= y, or x@q and x@q′, for q �= q′ ∈ Q . We write x ≈π y (resp. x �≈πy) if and only
if x = y (resp. x �= y) occurs in cl(π) and not(x ≈π y) (resp. not(x �≈πy)) whenever x ≈π y
(resp. x �≈πy) does not hold. Note that e.g., not(x ≈π y) is not the same as x �≈πy.

Base tuples constitute the abstract domain used by the algorithms for checking sat-
isfiability (point 1 of Definition 5) and boundedness (point 2 of Definition 5), defined
as follows:

Definition 7. A base tuple is a triple t = (C �,I �,π), where:

– C � ∈ mpowV is a multiset of variables denoting present components,
– I � : Inter → mpowV+ maps each interaction type τ ∈ Inter into a multiset of tuples

of variables of length |τ| each, and
– π is a pure formula.

A base tuple is called satisfiable if and only if π is satisfiable and the following hold:

1. for all x,y ∈ C �, not(x ≈π y),
2. for all τ ∈ Inter, 〈x1, . . . ,x|τ|〉,〈y1, . . . ,y|τ|〉 ∈ I �(τ), there exists i ∈ [1, |τ|] such that

not(xi ≈π yi),
3. for all τ ∈ Inter, 〈x1, . . . ,x#τ〉 ∈ I �(τ) and 1 ≤ i < j ≤ |τ|, we have not(xi ≈π x j).

We denote by SatBase the set of satisfiable base tuples.
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Intuitively, a base tuple is an abstract representation of a configuration, where compo-
nents (resp. interactions) are represented by variables (resp. tuples of variables). Note
that a base tuple (C �,I �,π) is unsatisfiable if C � (I �) contains the same variable (tuple
of variables) twice (for the same interaction type), hence the use of multisets in the
definition of base tuples. It is easy to see that checking the satisfiability of a given base
tuple (C �,I �,π) can be done in time poly(||C �||+∑τ∈Inter ||I �(τ)||+ size(π)).

We define a partial composition operation on satisfiable base tuples, as follows:

(C �
1 ,I

�
1 ,π1)⊗ (C �

2 ,I
�
2 ,π2)

def= (C �
1 ∪C �

2 ,I
�
1 ∪ I �

2 ,π1 ∗π2)

where the union of multisets is lifted to functions Inter → mpow(V+) in the usual way.
The composition operation ⊗ is undefined if (C �

1 ,I
�
1 ,π1)⊗ (C �

2 ,I
�
2 ,π2) is not satisfiable

e.g., if C �
1 ∩C �

2 �= /0, I �
1(τ)∩ I �

2(τ) �= /0, for some τ ∈ Inter, or π1 ∗π2 is not satisfiable.
Given a pure formula π and a set of variables X , the projection π↓X removes from π

all atoms α, such that fv(α) �⊆ X . The projection of a base tuple (C �,I �,π) on a variable
set X is formally defined below:

(C �,I �,π)↓X
def=

(
C � ∩X ,λτ . {〈x1, . . . ,x|τ|〉 ∈ I �(τ) | x1, . . . ,x|τ| ∈ X},cl(dist(I �)∗π)↓X

)
where dist(I �) def= ∗ τ∈Inter∗ 〈x1,...,x|τ|〉∈I �(τ)∗ 1≤i< j≤|τ| xi �= x j

The substitution operation (C �,I �,π)[x1/y1, . . . ,xn/yn] replaces simultaneously
each xi with yi in C �, I � and π, respectively. We lift the composition, projection and
substitution operations to sets of satisfiable base tuples, as usual.

Next, we define the base tuple corresponding to a quantifier- and predicate-free
formula φ = ψ ∗ π, where ψ consists of component and interaction atoms and π is pure.
Since, moreover, we are interested in those components and interactions that are visible
through a given indexed set of parameters X = {x1, . . . ,xn}, for a variable y, we denote
by {{y}}X

π the parameter xi with the least index, such that y ≈π xi, or y itself, if no such
parameter exists. We define the following sets of formulæ:

Base(φ,X) def=
{{(C �,I �,π)} , if (C �,I �,π) is satisfiable

/0 , otherwise

where C � def= {{{x}}X
π | [x] occurs in ψ}

I � def= λ〈p1, . . . , ps〉.
{〈{{y1}}X

π, . . . ,{{ys}}X
π
〉 | 〈y1.p1, . . . ,ys.ps〉 occurs in ψ

}

We consider a tuple of variables
−→
X , having a variable X (A) ranging over

pow(SatBase), for each predicate A that occurs in Δ. With these definitions, each rule
of Δ:

A(x1, . . . ,x#A) ← ∃y1 . . .∃ym . φ∗B1(z1
1, . . . ,z

1
#B1

)∗ . . .∗Bh(zh
1, . . . ,z

h
#Bh

)

where φ is a quantifier- and predicate-free formula, induces the constraint:

X (A) ⊇ (
Base(φ,{x1, . . . ,x#A})⊗

h⊗

�=1

X (B�)[x1/z�
1, . . . ,x#B�

/z�
#B�

]
)↓x1 ,...,x#A

(1)
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input output

1: initially
2: for , with quantifier- and predicate-free do

3: Base

4: while still change do
5: for do

6: if there exist then

7: Base

Fig. 2. Algorithm for the Computation of the Least Solution

Let Δ� be the set of such constraints, corresponding to the rules in Δ and let µ
−→
X .Δ�

be the tuple of least solutions of the constraint system generated from Δ, indexed by
the tuple of predicates that occur in Δ, such that µ

−→
X .Δ�(A) denotes the entry of µ

−→
X .Δ�

correponding to A. Since the composition and projection are monotonic operations,
such a least solution exists and is unique. Since SatBase is finite, the least solution can
be attained in a finite number of steps, using a Kleene iteration (see Fig. 2).

We state below the main result leading to an elementary recursive algorithm for the
satisfiability problem (Theorem 1). The intuition is that, if µ

−→
X .Δ�(A) is not empty, then

it contains only satisfiable base tuples, from which a model of A(x1, . . . ,x#A) can be
built.

Lemma 1. Sat[Δ,A] has a positive answer if and only if µ
−→
X .Δ�(A) �= /0.

If the maximal arity of the predicates occurring in Δ is bound by a constant k, no
satisfiable base tuple (C �,I �,π) can have a tuple 〈y1, . . . ,y|τ|〉 ∈ I �(τ), for some τ ∈
Inter, such that |τ| > k, since all variables y1, . . . ,y|τ| are parameters denoting distinct
components (point 3 of Definition 7). Hence, the upper bound on the size of a satisfiable
base tuple is constant, in both the k < ∞, � < ∞ and k < ∞, � = ∞ cases, which are,
moreover indistinguishable complexity-wise (i.e., both are NP-complete). In contrast,
in the cases k = ∞, � < ∞ and k = ∞, � = ∞, the upper bound on the size of satisfiable
base tuples is polynomial and simply exponential in size(Δ), incurring a complexity gap
of one and two exponentials, respectively. The theorem below states the main result of
this section:

Theorem 1. Sat(k,∞)[Δ,A] is NP-complete for k ≥ 4, Sat(∞,�)[Δ,A] is EXP-complete
and Sat[Δ,A] is in 2EXP.

The upper bounds are consequences of the fact that the size of a satisfiable base tuple is
bounded by a simple exponential in the min(arity(Δ), intersize(Δ)), hence the number
of such tuples is doubly exponential in min(arity(Δ), intersize(Δ)). The lower bounds
are by a polynomial reduction from the satisfiability problem for SL [9].

Example 2. The doubly-exponential upper bound for the algorithm computing the least
solution of a system of constraints of the form (1) is necessary, in general, as illustrated
by the following worst-case example. Let n be a fixed parameter and consider the n-arity
predicates A1, . . . ,An defined by the following SID:
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Ai(x1, . . . ,xn) ← ∗ n−i
j=0 Ai+1(x1, . . . ,xi−1, [xi, . . . ,xn] j), for all i ∈ [1,n−1]

An(x1, . . . ,xn) ← 〈x1.p, . . . ,xn.p〉 An(x1, . . . ,xn) ← emp

where, for a list of variables xi, . . . ,xn and an integer j ≥ 0, we write [xi, . . . ,xn] j for
the list rotated to the left j times (e.g., [x1,x2,x3,x4,x5]2 = x3,x4,x5,x1,x2). In this
example, when starting with A1(x1, . . . ,xn) one eventually obtains predicate atoms
An(xi1 , . . . ,xin), for any permutation xi1 , . . . ,xin of x1, . . . ,xn. Since An may choose to
create or not an interaction with that permutation of variables, the total number of base

tuples generated for A1 is 2n!. That is, the fixpoint iteration generates 22O(n logn)
base

tuples, whereas the size of the input of Sat[Δ,A] is poly(n). �

4 Degree Boundedness

The boundedness problem (Definition 5, point 2) asks for the existence of a bound on
the degree (Definition 3) of the models of a sentence ∃x1 . . .∃x#A . A(x1, . . . ,x#A). Intu-
itively, the Bnd[Δ,A] problem has a negative answer if and only if there are increasingly
large unfoldings (i.e., expansions of a formula by replacement of a predicate atom with
one of its definitions) of A(x1, . . . ,x#A) repeating a rule that contains an interaction atom
involving a parameter of the rule, which is always bound to the same component. We
formalize the notion of unfolding below:

Definition 8. Given a predicate A and a sequence (r1, i1), . . . ,(rn, in) ∈ (Δ×N)+,

where r1 : A(x1, . . . ,x#A) ← φ ∈ Δ, the unfolding A(x1, . . . ,x#A)
(r1,i1)...(rn,in)
========⇒Δ ψ is

inductively defined as (1) ψ = φ if n = 1, and (2) ψ is obtained from φ by
replacing its i1-th predicate atom B(y1, . . . ,y#B) with ψ1[x1/y1, . . . ,x#B/y#B], where

B(x1, . . . ,x#B)
(r2,i2)...(rn,in)
========⇒Δ ψ1 is an unfolding, if n > 1.

We show that the Bnd[Δ,A] problem can be reduced to the existence of increasingly
large unfoldings or, equivalently, a cycle in a finite directed graph, built by a variant of
the least fixpoint iteration algorithm used to solve the satisfiability problem (Fig. 3).

Definition 9. Given satisfiable base pairs t,u ∈ SatBase and a rule from Δ:

r : A(x1, . . . ,x#A) ← ∃y1 . . .∃ym . φ∗B1(z1
1, . . . ,z

1
#B1

)∗ . . .∗Bh(zh
1, . . . ,z

h
#Bh

)

where φ is a quantifier- and predicate-free formula, we write (A, t)
(r, i)

∼∼∼∼�(B,u) if and
only if B = Bi and there exist satisfiable base tuples t1, . . . ,u = ti, . . . , th ∈ SatBase, such
that t ∈ (

Base(φ,{x1, . . . ,x#A})⊗⊗h
�=1 t�[x1/z�

1, . . . ,x#B�
/z�

#B�
]
)↓x1 ,...,x#A

. We define the
directed graph with edges labeled by pairs (r, i) ∈ Δ×N:

G(Δ) def=
({def(Δ)×SatBase},{〈(A, t),(r, i),(B,u)〉 | (A, t)

(r, i)
∼∼∼∼�(B,u)})

The graph G(Δ) is built by the algorithm in Fig. 3, a slight variation of the classical
Kleene iteration algorithm for the computation of the least solution of the constraints of
the form (1). A path (A1, t1)

(r1 , i1 )
∼∼∼∼�(A2, t2)

(r2 , i2 )
∼∼∼∼� . . .

(rn , in )
∼∼∼∼�(An, tn) in G(Δ) induces a unique
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input output

1: initially
2: for , with quantifier- and predicate-free do
3: Base

4: while V or E still change do
5: for do

6: if there exist then

7: Base

8:
9:

Fig. 3. Algorithm for the Construction of G(Δ)

unfolding A1(x1, . . . ,x#A1)
(r1,i1)...(rn,in)
========⇒Δ φ (Definition 8). Since the vertices of G(Δ)

are pairs (A, t), where t is a satisfiable base tuple and the edges of G(Δ) reflect the
construction of the base tuples from the least solution of the constraints (1), the outcome
φ of this unfolding is always a satisfiable formula.

An elementary cycle of G(Δ) is a path from some vertex (B,u) back to itself, such
that (B,u) does not occur on the path, except at its endpoints. The cycle is, moreover,
reachable from (A, t) if and only if there exists a path (A, t)

(r1 , i1 )
∼∼∼∼� . . .

(rn , in )
∼∼∼∼�(B,u) in G(Δ).

We reduce the complement of the Bnd[Δ,A] problem, namely the existence of an infinite
set of models of ∃x1 . . .∃x#A . A(x1, . . . ,x#A) of unbounded degree, to the existence of a
reachable elementary cycle in G(Δ′), where Δ′ is obtained from Δ, as described in the
following.

First, we consider, for each predicate B ∈ def(Δ), a predicate B′, of arity #B + 1,
not in def(Δ) i.e., the set of predicates for which there exists a rule in Δ. Second, for
each rule B0(x1, . . . ,x#B0) ← ∃y1 . . .∃ym . φ ∗∗ h

�=2B�(z�
1, . . . ,z

�
#B�

) ∈ Δ, where φ is a
quantifier- and predicate-free formula and iv(φ) ⊆ fv(φ) denotes the subset of variables
occurring in interaction atoms in φ, the SID Δ′ has the following rules:

B′
0(x1, . . . ,x#B0 ,x#B0+1) ← ∃y1 . . .∃ym . φ∗∗ ξ∈iv(φ)x#B0+1 �= ξ∗

∗ h
�=2B

′
�(z

�
1, . . . ,z

�
#B�

,x#B0+1) (2)

B′
0(x1, . . . ,x#B0 ,x#B0+1) ← ∃y1 . . .∃ym . φ∗ x#B0+1 = ξ∗

∗ h
�=2B

′
�(z

�
1, . . . ,z

�
#B�

,x#B0+1) (3)

for each variable ξ ∈ iv(φ), that occurs in an interaction atom in φ.

There exists a family of models (with respect to Δ) of ∃x1 . . .∃x#A . A(x1, . . . ,x#A) of
unbounded degree if and only if these are models of ∃x1 . . .∃x#A+1 . A′(x1, . . . ,x#A+1)
(with respect to Δ′) and the last parameter of each predicate B′ ∈ def(Δ′) can be mapped,
in each of the these models, to a component that occurs in unboundedly many interac-
tions. The latter condition is equivalent to the existence of an elementary cycle, con-
taining a rule of the form (3), that it, moreover, reachable from some vertex (A′, t) of
G(Δ′), for some t ∈ SatBase. This reduction is formalized below:
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Lemma 2. There exists an infinite sequence of configurations γ1,γ2, . . . such that γi |=Δ
∃x1 . . .∃x#A . A(x1, . . . ,x#A) and δ(γi) < δ(γi+1), for all i ≥ 1 if and only if G(Δ′) has an
elementary cycle containing a rule (3), reachable from a node (A′, t), for t ∈ SatBase.

The complexity result below uses a similar argument on the maximal size of (hence
the number of) base tuples as in Theorem 1, leading to similar complexity gaps:

Theorem 2. Bnd(k,∞)[Δ,A] is in co-NP, Bnd(∞,�)[Δ,A] is in EXP, Bnd[Δ,A] is in 2EXP.

Moreover, the construction of G(Δ′) allows to prove the following cut-off result:

Proposition 1. Let γ be a configuration and ν be a store, such that γ |=ν
Δ A(x1, . . . ,x#A).

If Bnd(k,�)[Δ,A] then (1) δ(γ) = poly(size(Δ)) if k < ∞, � = ∞, (2) δ(γ) = 2poly(size(Δ)) if

k = ∞, � < ∞ and (3) δ(γ) = 22poly(size(Δ))
if k = ∞, � = ∞.

5 Entailment

This section is concerned with the entailment problem Entl[Δ,A,B], that asks whether
γ |=ν

Δ ∃x#A+1 . . .∃x#B . B(x1, . . . ,x#B), for every configuration γ and store ν, such that
γ |=ν

Δ A(x1, . . . ,x#A). For instance, the proof from Fig. 1(c) relies on the following entail-
ments, that occur as the side conditions of the Hoare logic rule of consequence:

ringh,t(y) |=Δ ∃x∃z.[y]@H∗ 〈y.out, z.in〉 ∗ chainh−1,t(z,x)∗ 〈x.out, y.in〉
[z]@H∗ 〈z.out, x.in〉 ∗ chainh−1,t(x,y)∗ 〈y.out, z.in〉 |=Δ ringh,t(z)

By introducing two fresh predicates A1 and A2, defined by the rules:

A1(x1) ← ∃y∃z.[x1]@H∗〈x1.out, z.in〉 ∗ chainh−1,t(z,y)∗〈y.out, x1.in〉 (4)

A2(x1,x2) ← ∃z.[x1]@H∗ 〈x1.out, z.in〉 ∗ chainh−1,t(z,x2)∗ 〈x2.out, x1.in〉 (5)

the above entailments are equivalent to Entl[Δ, ringh,t ,A1] and Entl[Δ,A2, ringh,t ],
respectively, where Δ consists of the rules (4) and (5), together with the rules that define
the ringh,t and chainh,t predicates (Sect. 1.1).

We show that the entailment problem is undecidable, in general (Thm. 3), and
recover a decidable fragment, by means of three syntactic conditions, typically met
in our examples. These conditions use the following notion of profile:

Definition 10. The profile of a SID Δ is the pointwise greatest function λΔ : A →
pow(N), mapping each predicate A into a subset of [1,#A], such that, for each rule
A(x1, . . . ,x#A) ← φ from Δ, each atom B(y1, . . . ,y#B) from φ and each i ∈ λΔ(B), there
exists j ∈ λΔ(A), such that x j and yi are the same variable.

The profile identifies the parameters of a predicate that are always replaced by a vari-
able x1, . . . ,x#A in each unfolding of A(x1, . . . ,x#A), according to the rules in Δ; it is
computed by a greatest fixpoint iteration, in time poly(size(Δ)).

Definition 11. A rule A(x1, . . . ,x#A) ← ∃y1 . . .∃ym . φ∗∗ h
�=1B�(z�

1, . . . ,z
�
#B�

), where φ
is a quantifier- and predicate-free formula, is said to be:
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1. progressing if and only if φ = [x1] ∗ ψ, where ψ consists of interaction atoms
involving x1 and (dis-)equalities, such that

⋃h
�=1{z�

1, . . . ,z
�
#B�

} = {x2, . . . ,x#A} ∪
{y1, . . . ,ym},

2. connected if and only if, for each � ∈ [1,h] there exists an interaction atom in ψ that
contains both z�

1 and a variable from {x1}∪{xi | i ∈ λΔ(A)},
3. equationally-restricted (e-restricted) if and only if, for every disequation x �= y from

φ, we have {x,y}∩{xi | i ∈ λΔ(A)} �= /0.

A SID Δ is progressing, connected and e-restricted if and only if each rule in Δ is
progressing, connected and e-restricted, respectively.

For example, the SID consisting of the rules from Sect. 1.1, together with rules (4) and
(5) is progressing, connected and e-restricted.

We recall that defΔ(A) is the set of rules from Δ that define A and denote by def∗Δ(A)
the least superset of defΔ(A) containing the rules that define a predicate from a rule in
def∗Δ(A). The following result shows that the entailment problem becomes undecidable
as soon as the connectivity condition is even slightly lifted:

Theorem 3. Entl[Δ,A,B] is undecidable, even when Δ is progressing and e-restricted,
and only the rules in def∗Δ(A) are connected (the rules in def∗Δ(B) may be disconnected).

On the positive side, we prove that Entl[Δ,A,B] is decidable, if Δ is progressing,
connected and e-restricted, assuming further that Bnd[Δ,A] has a positive answer. In this
case, the bound on the degree of the models of A(x1, . . . ,x#A) is effectively computable,
using the algorithm from Fig. 3 (see Proposition 1 for a cut-off result) and denote by B
this bound, throughout this section.

The proof uses a reduction of Entl[Δ,A,B] to a similar problem for SL, showed to
be decidable [18]. We recall the definition of SL, interpreted over heaps h : C ⇀fin CK,
introduced in Sect. 2.3. SL rules are denoted as A(x1, . . . ,x#(A)) ← φ, where φ is a SL

formula, such that fv(φ) ⊆ {x1, . . . ,x#(A)} and SL SIDs are denoted as Δ. The profile λΔ

is defined for SL same as for CL (Definition 10).

Definition 12. A SL rule A(x1, . . . ,x#(A)) ← φ from a SID Δ is said to be:

1. progressing if and only if φ = ∃t1 . . .∃tm . x1 �→ (y1, . . . ,yK) ∗ ψ, where ψ contains
only predicate and equality atoms,

2. connected if and only if z1 ∈ {xi | i ∈ λΔ(A)}∪{y1, . . . ,yK}, for every predicate atom
B(z1, . . . ,z#(B)) from φ.

Note that the definitions of progressing and connected rules are different for SL, com-
pared to CL (Definition 11); in the rest of this section, we rely on the context to distin-
guish progressing (connected) SL rules from progressing (connected) CL rules. More-
over, e-restricted rules are defined in the same way for CL and SL (point 3 of Definition
11). A tight upper bound on the complexity of the entailment problem between SL for-
mulæ, interpreted by progressing, connected and e-restricted SIDs, is given below:

Theorem 4 ([18]). The SL entailment problem is in 22poly(width(Δ)·logsize(Δ))
, for progress-

ing, connected and e-restricted SIDs.
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The reduction of Entl[Δ,A,B] to SL entailments is based on the idea of viewing a config-
uration as a logical structure (hypergraph), represented by a undirected Gaifman graph,
in which every tuple from a relation (hyperedge) becomes a clique [24]. In a similar
vein, we encode a configuration, of degree at most B, by a heap of degree K (Definition
13), such that K is defined using the following integer function:

pos(i, j,k) def= 1+B ·
j−1

∑
�=1

|τ�|+ i · |τ j|+ k

where Inter
def= {τ1, . . . ,τM} is the set of interaction types and Q def= {q1, . . . ,qN} is the set

of states of the behavior B = (P ,Q ,−→) (Sect. 2). Here i ∈ [0,B−1] denotes an interac-
tion of type j ∈ [1,M] and k ∈ [0,N −1] denotes a state. We use M and N throughout the
rest of this section, to denote the number of interaction types and states, respectively.

For a set I of interactions, let Tuples
j
I (c) def= {〈c1, . . . ,cn〉 | (c1, p1, . . . ,cn, pn) ∈

I , τ j = 〈p1, . . . , pn〉, c ∈ {c1, . . . ,cn}} be the tuples of components from an interac-
tion of type τ j from I , that contain a given component c.

Definition 13. Given a configuration γ = (C ,I ,ρ), such that δ(γ) ≤ B, a Gaifman heap

for γ is a heap h : C ⇀fin CK, where K
def= pos(0,M +1,N), dom(h) = nodes(γ) and, for

all c0 ∈ dom(h), such that h(c0) = 〈c1, . . . ,cK〉, the following hold:

1. c1 = c0 if and only if c0 ∈ C ,
2. for all j ∈ [1,M], Tuples

j
I (c) = {c1, . . . ,cs} if and only if there exist integers 0 ≤

k1 < .. . < ks < B, such that 〈h(c0)〉inter(ki, j) = ci, for all i ∈ [1,s], where inter(i, j) def=
[pos(i−1, j,0),pos(i, j,0)] are the entries of the i-th interaction of type τ j in h(c0),

3. for all k ∈ [1,N], we have 〈h(c0)〉state(k) = c0 if and only if ρ(c0) = qk, where the

entry state(k) def= pos(0,M +1,k −1) in h(c0) corresponds to the state qk ∈ Q .

We denote by G(γ) the set of Gaifman heaps for γ.

Intuitively, if h is a Gaifman heap for γ and c0 ∈ dom(h), then the first entry of h(c0)
indicates whether c0 is present (condition 1 of Definition 13), the next B · ∑M

j=1 |τ j|
entries are used to encode the interactions of each type τ j (condition 2 of Definition 13),
whereas the last N entries are used to represent the state of the component (condition
3 of Definition 13). Note that the encoding of configurations by Gaifman heaps is not
unique: two Gaifman heaps for the same configuration may differ in the order of the
tuples from the encoding of an interaction type and the choice of the unconstrained
entries from h(c0), for each c0 ∈ dom(h). On the other hand, if two configurations have
the same Gaifman heap encoding, they must be the same configuration.

Example 3. Figure 4(b) shows a Gaifman heap for the configuration in Fig. 4(a), where
each component belongs to at most 2 interactions of type 〈out, in〉. �

We build a SL SID Δ that generates the Gaifman heaps of the models of the predicate
atoms occurring in a progressing CL SID Δ. The construction associates to each variable
x, that occurs free or bound in a rule from Δ, a unique K-tuple of variables η(x) ∈ VK,
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Fig. 4. Gaifman Heap for a Chain Configuration

that represents the image of the store value ν(x) in a Gaifman heap h i.e., h(ν(x)) =
ν(η(x)). Moreover, we consider, for each predicate symbol A ∈ def(Δ), an annotated
predicate symbol Aι of arity #Aι = (K+1) ·#A, where ι : [1,#A]× [1,M] → 2[0,B−1] is
a map associating each parameter i ∈ [1,#A] and each interaction type τ j, for j ∈ [1,M],
a set of integers ι(i, j) denoting the positions of the encodings of the interactions of type
τ j, involving the value of xi, in the models of Aι(x1, . . . ,x#A,η(x1), . . . ,η(x#A)) (point 2
of Definition 13). Then Δ contains rules of the form:

Aι(x1, . . . ,x#(A),η(x1), . . . ,η(x#(A))) ← (6)

∃y1 . . .∃ym∃η(y1) . . .∃η(ym) . ψ∗π ∗∗ h
�=1 B

�
ι�(z

�
1, . . . ,z

�
#(B�),η(z�

1), . . . ,η(z�
#(B�)))

for which Δ has a stem rule A(x1, . . . ,x#(A)) ← ∃y1 . . .∃ym . ψ∗π∗∗ h
�=1B

�(z�
1, . . . ,z

�
#B�),

where ψ∗π is a quantifier- and predicate-free formula and π is the conjunction of equal-
ities and disequalities from ψ∗π. However, not all rules (6) are considered in Δ, but only
the ones meeting the following condition:

Definition 14. A rule of the form (6) is well-formed if and only if, for each i ∈ [1,#A]
and each j ∈ [1,M], there exists a set of integers Yi, j ⊆ [0,B−1], such that:

– ||Yi, j|| = ||I j
ψ,π(xi)||, where I j

ψ,π(x) is the set of interaction atoms 〈z1.p1, . . . ,zn.pn〉
from ψ of type τ j = 〈p1, . . . , pn〉, such that zs ≈π x, for some s ∈ [1,n],

– Yi, j ⊆ ι(i, j) and ι(i, j)\Yi, j = Z j(xi), where Z j(x)
def=

⋃h
�=1

⋃#B�

k=1{ι�(k, j) | x ≈π z�
k}

is the set of positions used to encode the interactions of type τ j involving the
store value of the parameter x, in the sub-configuration corresponding to an atom
B�(z�

1, . . . ,z
�
#(B�)), for some � ∈ [1,h].

We denote by Δ the set of well-formed rules (6), such that, moreover:

ψ def= x1 �→ η(x1) ∗ ∗x∈fv(ψ) CompStatesψ(x) ∗ ∗#A
i=1 InterAtomsψ(xi), where:

CompStatesψ(x) def= ∗ [x] occurs in ψ 〈η(x)〉1 = x ∗ ∗ x@qk occurs in ψ 〈η(x)〉state(k) = x

InterAtomsψ(xi)
def= ∗M

j=1∗r j
p=1 〈η(xi)〉inter( j,k j

p) = x j
p and {k j

1, . . . ,k
j
r j} def= ι(i, j)\Z j(xi)

Here for two tuples of variables x = 〈x1, . . . ,xk〉 and y = 〈y1, . . . ,yk〉, we denote by
x = y the formula ∗ k

i=1xi = yi. Intuitively, the SL formula CompStatesψ(x) realizes
the encoding of the component and state atoms from ψ, in the sense of points (1) and
(3) from Definition 13, whereas the formula InterAtomsψ(xi) realizes the encodings of
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the interactions involving a parameter xi in the stem rule (point 2 of Definition 13). In
particular, the definition of InterAtomsψ(xi) uses the fact that the rule is well-formed.

We state below the main result of this section on the complexity of the
entailment problem. The upper bounds follow from a many-one reduction of
Entl[Δ,A,B] to the SL entailment Aι(x1, . . . ,x#A,η(x1), . . . ,η(x#A)) �Δ ∃x#B+1 . . .∃x#B

∃η(x#B+1) . . .∃η(x#B) . Bι′(x1, . . . ,x#B,η(x1), . . . ,η(x#B)), in combination with the
upper bound provided by Theorem 4, for SL entailments. If k < ∞, the complexity
is tight for CL, whereas gaps occur for k = ∞, � < ∞ and k = ∞, � = ∞, due to the cut-off
on the degree bound (Proposition 1), which impacts the size of Δ and time needed to
generate it from Δ.

Theorem 5. If Δ is progressing, connected and e-restricted and, moreover, Bnd[Δ,A]
has a positive answer, Entlk,�[Δ,A,B] is in 2EXP, Entl∞,�[Δ,A,B] is in 3EXP ∩ 2EXP-
hard, and Entl[Δ,A,B] is in 4EXP ∩ 2EXP-hard.

6 Conclusions and Future Work

We study the satisfiability and entailment problems in a logic used to write proofs of
correctness for dynamically reconfigurable distributed systems. The logic views the
components and interactions from the network as resources and reasons also about the
local states of the components. We reuse existing techniques for Separation Logic [39],
showing that our configuration logic is more expressive than SL, fact which is confirmed
by a number of complexity gaps. Closing up these gaps and finding tight complexity
classes in the more general cases is considered for future work. In particular, we aim
at lifting the boundedness assumption on the degree of the configurations that must be
considered to check the validity of entailments.
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Abstract. We present the Loop Acceleration Tool (LoAT), a powerful
tool for proving non-termination and worst-case lower bounds for pro-
grams operating on integers. It is based on the novel calculus from [10,11]
for loop acceleration, i.e., transforming loops into non-deterministic
straight-line code, and for finding non-terminating configurations. To
implement it efficiently, LoAT uses a new approach based on unsat cores.
We evaluate LoAT’s power and performance by extensive experiments.

1 Introduction

Efficiency is one of the most important properties of software. Consequently,
automated complexity analysis is of high interest to the software verification
community. Most research in this area has focused on deducing upper bounds on
the worst-case complexity of programs. In contrast, the Loop Acceleration Tool
LoAT aims to find performance bugs by deducing lower bounds on the worst-case
complexity of programs operating on integers. Since non-termination implies the
lower bound ∞, LoAT is also equipped with non-termination techniques.

LoAT is based on loop acceleration [4,5,9–11,15], which replaces loops by
non-deterministic code: The resulting program chooses a value n, representing
the number of loop iterations in the original program. To be sound, suitable
constraints on n are synthesized to ensure that the original loop allows for at
least n iterations. Moreover, the transformed program updates the program vari-
ables to the same values as n iterations of the original loop, but it does so in
a single step. To achieve that, the loop body is transformed into a closed form,
which is parameterized in n. In this way, LoAT is able to compute symbolic
under-approximations of programs, i.e., every execution path in the resulting
transformed program corresponds to a path in the original program, but not
necessarily vice versa. In contrast to many other techniques for computing under-
approximations, the symbolic approximations of LoAT cover infinitely many runs
of arbitrary length.
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Contributions: The main new feature of the novel version of LoAT presented
in this paper is the integration of the loop acceleration calculus from [10,11],
which combines different loop acceleration techniques in a modular way, into
LoAT’s framework. This enables LoAT to use the loop acceleration calculus for
the analysis of full integer programs, whereas the standalone implementation of
the calculus from [10,11] was only applicable to single loops without branching
in the body. To control the application of the calculus, we use a new technique
based on unsat cores (see Sect. 5). The new version of LoAT is evaluated in
extensive experiments. See [14] for all proofs.

2 Preliminaries

Let L ⊇ {main} be a finite set of locations, where main is the canonical start
location (i.e., the entry point of the program), and let �x := [x1, . . . , xd] be the
vector of program variables. Furthermore, let T V be a countably infinite set of
temporary variables, which are used to model non-determinism, and let sup Z :=
∞. We call an arithmetic expression e an integer expression if it evaluates to
an integer when all variables in e are instantiated by integers. LoAT analyzes
tail-recursive programs operating on integers, represented as integer transition
systems (ITSs), i.e., sets of transitions f(�x)

p−→ g(�a) [ϕ] where f, g ∈ L, the
update �a is a vector of d integer expressions over T V ∪ �x, the cost p is either an
arithmetic expression over T V ∪ �x or ∞, and the guard ϕ is a conjunction of
inequations over integer expressions with variables from T V ∪ �x.1 For example,
consider the loop on the left and the corresponding transition tloop on the right.

while x > 0 do x ← x − 1 f(x) 1−→ f(x − 1) [x > 0] (tloop)

Here, the cost 1 instructs LoAT to use the number of loop iterations as cost
measure. LoAT allows for arbitrary user defined cost measures, since the user
can choose any polynomials over the program variables as costs. LoAT synthesizes
transitions with cost ∞ to represent non-terminating runs, i.e., such transitions
are not allowed in the input.

A configuration is of the form f(�c) with f ∈ L and �c ∈ Z
d. For any entity

s /∈ L and any arithmetic expressions�b = [b1, . . . , bd], let s(�b) denote the result of
replacing each variable xi in s by bi, for all 1 ≤ i ≤ d. Moreover, Vars(s) denotes
the program variables and T V(s) denotes the temporary variables occurring in
s. For an integer transition system T , a configuration f(�c) evaluates to g(�c ′)
with cost k ∈ Z∪{∞}, written f(�c) k−→T g(�c ′), if there exist a transition f(�x)

p−→
g(�a) [ϕ] ∈ T and an instantiation of its temporary variables with integers such
that the following holds:

ϕ(�c) ∧ �c ′ = �a(�c) ∧ k = p(�c).

1 LoAT can also analyze the complexity of certain non-tail-recursive programs, see [9].
For simplicity, we restrict ourselves to tail-recursive programs in the current paper.
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As usual, we write f(�c) k→∗
T g(�c ′) if f(�c) evaluates to g(�c ′) in arbitrarily many

steps, and the sum of the costs of all steps is k. We omit the costs if they are
irrelevant. The derivation height of f(�c) is

dhT (f(�c)) := sup{k | ∃g(�c ′). f(�c) k→∗
T g(�c ′)}

and the runtime complexity of T is

rcT (n) := sup{dhT (main(c1, . . . , cd)) | |c1| + . . . + |cd| ≤ n}.

T terminates if no configuration main(�c) admits an infinite −→T -sequence and T
is finitary if no configuration main(�c) admits a −→T -sequence with cost ∞. Oth-
erwise, �c is a witness of non-termination or a witness of infinitism, respectively.
Note that termination implies finitism for ITSs where no transition has cost ∞.
However, our approach may transform non-terminating ITSs into terminating,
infinitary ITSs, as it replaces non-terminating loops by transitions with cost ∞.

3 Overview of LoAT

The goal of LoAT is to compute a lower bound on rcT or even prove non-
termination of T . To this end, it repeatedly applies program simplifications,
so-called processors. When applying them with a suitable strategy (see [8,9]),
one eventually obtains simplified transitions of the form main(�x)

p−→ f(�a) [ϕ]
where f �= main. As LoAT’s processors are sound for lower bounds (i.e., if they
transform T to T ′, then dhT ≥ dhT ′), such a simplified transition gives rise to
the lower bound Iϕ ·p on dhT (main(�x)) (where Iϕ denotes the indicator function
of ϕ, which is 1 for values where ϕ holds and 0 otherwise). This bound can be
lifted to rcT by solving a so-called limit problem, see [9].

LoAT’s processors are also sound for non-termination, as they preserve
finitism. So if p = ∞, then it suffices to prove satisfiability of ϕ to prove
infinitism, which implies non-termination of the original ITS, where transitions
with cost ∞ are forbidden (see Sect. 2). LoAT’s most important processors are:

Loop Acceleration (Sect. 4) transforms a simple loop, i.e., a single transition
f(�x)

p−→ f(�a) [ϕ], into a non-deterministic transition that can simulate several
loop iterations in one step. For example, loop acceleration transforms tloop
to

f(x) n−→ f(x − n) [x ≥ n ∧ n > 0] , (tloopn)

where n ∈ T V, i.e., the value of n can be chosen non-deterministically.
Instantiation [9, Theorem 3.12] replaces temporary variables by integer expres-

sions. For example, it could instantiate n with x in tloopn , resulting in

f(x) x−→ f(0) [x > 0] . (tloopx)
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Chaining [9, Theorem 3.18] combines two subsequent transitions into one tran-
sition. For example, chaining combines the transitions

main(x) 1−→ f(x)

and tloopx to main(x) x+1−−→ f(0) [x > 0] .

Nonterm (Sect. 6) searches for witnesses of non-termination, characterized by
a formula ψ. So it turns, e.g.,

f(x1, x2)
1−→ f(x1 − x2, x2) [x1 > 0] (tnonterm)

into f(x1, x2)
∞−→ sink(x1, x2) [x1 > 0 ∧ x2 ≤ 0]

(where sink ∈ L is fresh), as each �c ∈ Z
2 with c1 > 0 ∧ c2 ≤ 0 witnesses

non-termination of tnonterm , i.e., here ψ is x1 > 0 ∧ x2 ≤ 0.

Intuitively, LoAT uses Chaining to transform non-simple loops into simple
loops. Instantiation resolves non-determinism heuristically and thus reduces
the number of temporary variables, which is crucial for scalability. In addition
to these processors, LoAT removes transitions after processing them, as explained
in [9]. See [8,9] for heuristics and a suitable strategy to apply LoAT’s processors.

4 Modular Loop Acceleration

For Loop Acceleration, LoAT uses conditional acceleration techniques [10].
Given two formulas ξ and qϕ, and a loop with update �a, a conditional acceleration
technique yields a formula accel(ξ, qϕ,�a) which implies that ξ holds throughout
n loop iterations (i.e., ξ is an n-invariant), provided that qϕ is an n-invariant,
too. In the following, let �a0(�x) := �x and �am+1(�x) := �a(�am(�x)) = �a[�x/�am(�x)].

Definition 1 (Conditional Acceleration Technique). A function accel is
a conditional acceleration technique if the following implication holds for all
formulas ξ and qϕ with variables from T V ∪ �x, all updates �a, all n > 0, and all
instantiations of the variables with integers:

(
accel(ξ, qϕ,�a) ∧ ∀i ∈ [0, n). qϕ(�ai(�x))

)
=⇒ ∀i ∈ [0, n). ξ(�ai(�x)).

The prerequisite ∀i ∈ [0, n). qϕ(�ai(�x)) is ensured by previous acceleration
steps, i.e., qϕ is initially � (true), and it is refined by conjoining a part ξ of the
loop guard in each acceleration step. When formalizing acceleration techniques,
we only specify the result of accel for certain arguments ξ, qϕ, and �a, and assume
accel(ξ, qϕ,�a) = ⊥ (false) otherwise.
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Definition 2 (LoAT’s Conditional Acceleration Techniques [10,11]).
Increase accel inc(ξ, qϕ,�a) := ξ if |= ξ ∧ qϕ =⇒ ξ(�a)
Decrease acceldec(ξ, qϕ,�a) := ξ(�an−1(�x)) if |= ξ(�a) ∧ qϕ =⇒ ξ
Eventual Decrease accelev-dec(t > 0, qϕ,�a) := t > 0 ∧ t(�an−1(�x)) > 0

if |= (t ≥ t(�a) ∧ qϕ) =⇒ t(�a) ≥ t(�a2(�x))
Eventual Increase accelev-inc(t > 0, qϕ,�a) := t > 0 ∧ t ≤ t(�a)

if |= (t ≤ t(�a) ∧ qϕ) =⇒ t(�a) ≤ t(�a2(�x))
Fixpoint accel fp(t > 0, qϕ,�a) := t > 0 ∧

∧
x∈closure�a(t) x = x(�a)

where closure�a(t) :=
⋃

i∈N
Vars(t(�ai(�x)))

The above five techniques are taken from [10,11], where only deterministic
loops are considered (i.e., there are no temporary variables). Lifting them to
non-deterministic loops in a way that allows for exact conditional acceleration
techniques (which capture all possible program runs) is non-trivial and beyond
the scope of this paper. Thus, we sacrifice exactness and treat temporary vari-
ables like additional constant program variables whose update is the identity,
resulting in a sound under-approximation (that captures a subset of all possible
runs).

So essentially, Increase and Decrease handle inequations t > 0 in the loop
guard where t increases or decreases (weakly) monotonically when applying the
loop’s update. The canonical examples where Increase or Decrease applies are

f(x, . . .) → f(x+1, . . .) [x > 0 ∧ . . .] or f(x, . . .) → f(x−1, . . .) [x > 0 ∧ . . .] ,

respectively. Eventual Decrease applies if t never increases again once it
starts to decrease. The canonical example is f(x, y, . . .) → f(x + y, y −
1, . . .) [x > 0 ∧ . . .]. Similarly, Eventual Increase applies if t never decreases
again once it starts to increase. Fixpoint can be used for inequations t > 0 that
do not behave (eventually) monotonically. It should only be used if accel fp(t >
0, qϕ,�a) is satisfiable.

LoAT uses the acceleration calculus of [10]. It operates on acceleration prob-
lems �ψ | qϕ | ϕ̂��a, where ψ (which is initially �) is repeatedly refined. When it
stops, ψ is used as the guard of the resulting accelerated transition. The formulas
qϕ and ϕ̂ are the parts of the loop guard that have already or have not yet been
handled, respectively. So qϕ is initially �, and ϕ̂ and �a are initialized with the
guard ϕ and the update of the loop f(�x)

p−→ f(�a) [ϕ] under consideration, i.e., the
initial acceleration problem is �� | � | ϕ��a. Once ϕ̂ is �, the loop is accelerated
to f(�x)

q−→ f(�an(�x)) [ψ ∧ n > 0], where the cost q and a closed form for �an(�x) are
computed by the recurrence solver PURRS [2].

Definition 3 (Acceleration Calculus for Conjunctive Loops). The rela-
tion � on acceleration problems is defined as

accel(ξ, qϕ,�a) = ψ2

�ψ1 | qϕ | ξ ∧ ϕ̂��a � �ψ1 ∧ ψ2 | qϕ ∧ ξ | ϕ̂��a

accel is a conditional
acceleration technique
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So to accelerate a loop, one picks a not yet handled part ξ of the guard in
each step. When accelerating f(�x) −→ f(�a) [ξ] using a conditional acceleration
technique accel , one may assume ∀i ∈ [0, n). qϕ(�ai(�x)). The result of accel is
conjoined to the result ψ1 computed so far, and ξ is moved from the third to
the second component of the problem, i.e., to the already handled part of the
guard.

Example 4 (Acceleration Calculus). We show how to accelerate the loop

f(x, y) x−→ f(x − y, y) [x > 0 ∧ y ≥ 0] to

f(x, y)
(x+ y

2 )·n− y
2 ·n2

−−−−−−−−−−→ f(x − n · y, y) [y ≥ 0 ∧ x − (n − 1) · y > 0 ∧ n > 0] .

The closed form �an(x) = (x − n · y, y) can be computed via recurrence solving.
Similarly, the cost (x + y

2 ) · n − y
2 · n2 of n loop iterations is obtained by solving

the following recurrence relation (where c(n) and x(n) denote the cost and the
value of x after n applications of the transition, respectively).

c(n) = c(n−1) + x(n−1) = c(n−1) + x − (n − 1) · y and c(1) = x.

The guard is computed as follows:

�� | � | x > 0 ∧ y ≥ 0��a � �y ≥ 0 | y ≥ 0 | x > 0��a
� �y ≥ 0 ∧ x − (n − 1) · y > 0 | y ≥ 0 ∧ x > 0 | ���a .

In the 1st step, we have ξ = (y ≥ 0) and accel inc(y ≥ 0,�,�a) = (y ≥ 0). In the
2nd step, we have ξ = (x > 0) and acceldec(x > 0, y ≥ 0,�a) = (x−(n−1) ·y > 0).
So the inequation x − (n − 1) · y > 0 ensures n-invariance of x > 0.

5 Efficient Loop Acceleration Using Unsat Cores

Each attempt to apply a conditional acceleration technique other than Fix-
point requires proving an implication, which is implemented via SMT solv-
ing by proving unsatisfiability of its negation. For Fixpoint, satisfiability of
accel fp(t > 0, qϕ,�a) is checked via SMT. So even though LoAT restricts ξ to
atoms, up to Θ(m2) attempts to apply a conditional acceleration technique are
required to accelerate a loop whose guard contains m inequations using a naive
strategy (5 ·m attempts for the 1st �-step, 5 · (m−1) attempts for the 2nd step,
. . . ).

To improve efficiency, LoAT uses a novel encoding that requires just 5 · m
attempts. For any α ∈ ATimp = {inc, dec, ev -dec, ev -inc}, let encodeα(ξ, qϕ,�a)
be the implication that has to be valid in order to apply accelα, whose premise is
of the form . . .∧ qϕ. Instead of repeatedly refining qϕ, LoAT tries to prove validity2

of encodeα,ξ := encodeα(ξ, ϕ \ {ξ},�a) for each α ∈ ATimp and each ξ ∈ ϕ, where
ϕ is the (conjunctive) guard of the transition that should be accelerated. Again,

2 Here and in the following, we unify conjunctions of atoms with sets of atoms.
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proving validity of an implication is equivalent to proving unsatisfiability of its
negation. So if validity of encodeα,ξ can be shown, then SMT solvers can also
provide an unsat core for ¬encodeα,ξ.

Definition 5 (Unsat Core). Given a conjunction ψ, we call each unsatisfiable
subset of ψ an unsat core of ψ.

Theorem 6 shows that when handling an inequation ξ, one only has to require
n-invariance for the elements of ϕ\{ξ} that occur in an unsat core of ¬encodeα,ξ.
Thus, an unsat core of ¬encodeα,ξ can be used to determine which prerequisites
qϕ are needed for the inequation ξ. This information can then be used to find a
suitable order for handling the inequations of the guard. Thus, in this way one
only has to check (un)satisfiability of the 4 · m formulas ¬encodeα,ξ. If no such
order is found, then LoAT either fails to accelerate the loop under consideration,
or it resorts to using Fixpoint, as discussed below.

Theorem 6 (Unsat Core Induces �-Step). Let depsα,ξ be the intersec-
tion of ϕ \ {ξ} and an unsat core of ¬encodeα,ξ. If qϕ implies depsα,ξ, then
accelα(ξ, qϕ,�a) = accelα(ξ, ϕ \ {ξ},�a).

Example 7 (Controlling Acceleration Steps via Unsat Cores). Reconsider Exam-
ple 4. Here, LoAT would try to prove, among others, the following implications:

encodedec,x>0 = (x − y > 0 ∧ y > 0) =⇒ x > 0 (1)
encodeinc,y>0 = (y > 0 ∧ x > 0) =⇒ y > 0 (2)

To do so, it would try to prove unsatisfiability of ¬encodeα,ξ via SMT. For (1),
we get ¬encodedec,x>0 = (x − y > 0 ∧ y > 0 ∧ x ≤ 0), whose only unsat core is
¬encodedec,x>0, and its intersection with ϕ \ {x > 0} = {y > 0} is {y > 0}.

For (2), we get ¬encodeinc,y>0 = (y > 0∧x > 0∧y ≤ 0), whose minimal unsat
core is y > 0 ∧ y ≤ 0, and its intersection with ϕ \ {y > 0} = {x > 0} is empty.
So by Theorem 6, we have accel inc(y > 0,�,�a) = accel inc(y > 0, x > 0,�a).

In this way, validity of encodeα1,x>0 and encodeα2,y>0 is proven for all α1 ∈
ATimp \ {inc} and all α2 ∈ ATimp . However, the premise x ≤ x − y ∧ y > 0
of encodeev-inc,x>0 is unsatisfiable and thus a corresponding acceleration step
would yield a transition with unsatisfiable guard. To prevent that, LoAT only
uses a technique α ∈ ATimp for ξ if the premise of encodeα,ξ is satisfiable.

So for each inequation ξ from ϕ, LoAT synthesizes up to 4 potential �-steps
corresponding to accelα(ξ, depsα,ξ,�a), where α ∈ ATimp . If validity of encodeα,ξ

cannot be shown for any α ∈ ATimp , then LoAT tries to prove satisfiability of
accel fp(ξ,�,�a) to see if Fixpoint should be applied. Note that the 2nd argument
of accel fp is irrelevant, i.e., Fixpoint does not benefit from previous acceleration
steps and thus �-steps that use it do not have any dependencies.

It remains to find a suitably ordered subset S of m �-steps that constitutes
a successful �-sequence. In the following, we define AT := ATimp ∪{fp} and we
extend the definition of depsα,ξ to the case α = fp by defining deps fp,ξ := ∅.
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Lemma 8. Let C ⊆ AT × ϕ be the smallest set such that (α, ξ) ∈ C implies

(a) if α ∈ ATimp , then encodeα,ξ is valid and its premise is satisfiable,
(b) if α = fp, then accel fp(ξ,�,�a) is satisfiable, and
(c) depsα,ξ ⊆ {ξ′ | (α′, ξ′) ∈ C for some α′ ∈ AT}.
Let S := {(α, ξ) ∈ C | α ≥AT α′ for all (α′, ξ) ∈ C} where >AT is the total
order inc >AT dec >AT ev-dec >AT ev-inc >AT fp. We define (α′, ξ′) ≺ (α, ξ)
if ξ′ ∈ depsα,ξ. Then ≺ is a strict (and hence, well-founded) order on S.

The order >AT in Lemma 8 corresponds to the order proposed in [10]. Note
that the set C can be computed without further (potentially expensive) SMT
queries by a straightforward fixpoint iteration, and well-foundedness of ≺ follows
from minimality of C. For Example 7, we get

C = {(dec, x > 0), (ev -dec, x > 0)} ∪ {(α, y > 0) | α ∈ AT} and
S = {(dec, x > 0), (inc, y > 0)} with (inc, y > 0) ≺ (dec, x > 0).

Finally, we can construct a valid �-sequence via the following theorem.

Theorem 9. (Finding �-Sequences). Let S be defined as in Lemma 8 and
assume that for each ξ ∈ ϕ, there is an α ∈ AT such that (α, ξ) ∈ S. W.l.o.g.,
let ϕ =

∧m
i=1 ξi where (α1, ξ1) ≺′ . . . ≺′ (αm, ξm) for some strict total order ≺′

containing ≺, and let qϕj :=
∧j

i=1 ξi. Then for all j ∈ [0,m), we have:
�∧j

i=1 accelαi
(ξi, qϕi−1,�a)

∣
∣
∣ qϕj

∣
∣
∣
∧m

i=j+1 ξi

�

�a
�

�∧j+1
i=1 accelαi

(ξi, qϕi−1,�a)
∣
∣
∣ qϕj+1

∣
∣
∣
∧m

i=j+2 ξi

�

�a

In our example, we have ≺′ = ≺ as ≺ is total. Thus, we obtain a �-
sequence by first processing y > 0 with Increase and then processing x > 0
with Decrease.

6 Proving Non-Termination of Simple Loops

To prove non-termination, LoAT uses a variation of the calculus from Sect. 4,
see [11]. To adapt it for proving non-termination, further restrictions have to be
imposed on the conditional acceleration techniques, resulting in the notion of
conditional non-termination techniques, see [11, Def. 10]. We denote a �-step
that uses a conditional non-termination technique with �nt .

Theorem 10. (Proving Non-Termination via �nt). Let f(�x) −→ f(�a) [ϕ] ∈
T . If �� | � | ϕ��a �∗

nt �ψ | ϕ | ���a, then for every �c ∈ Z
d where ψ(�c) is satisfi-

able, the configuration f(�c) admits an infinite −→T -sequence.

The conditional non-termination techniques used by LoAT are Increase,
Eventual Increase, and Fixpoint. So non-termination proofs can be synthe-
sized while trying to accelerate a loop with very little overhead. After successfully
accelerating a loop as explained in Sect. 5, LoAT tries to find a second suitably
ordered �-sequence, where it only considers the conditional non-termination
techniques mentioned above. If LoAT succeeds, then it has found a �nt -sequence
which gives rise to a proof of non-termination via Theorem 10.
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7 Implementation, Experiments, and Conclusion

Our implementation in LoAT can parse three widely used formats for ITSs (see
[13]), and it is configurable via a minimalistic set of command-line options:

--timeout to set a timeout in seconds
--proof-level to set the verbosity of the proof output
--plain to switch from colored to monochrome proof-output
--limit-strategy to choose a strategy for solving limit problems, see [9]
--mode to choose an analysis mode for LoAT (complexity or non termination)

We evaluate three versions of LoAT: LoAT ’19 uses templates to find invari-
ants that facilitate loop acceleration for proving non-termination [8]; LoAT ’20
deduces worst-case lower bounds based on loop acceleration via metering func-
tions [9]; and LoAT ’22 applies the calculus from [10,11] as described in Sect. 5
and 6. We also include three other state-of-the-art termination tools in our eval-
uation: T2 [6], VeryMax [16], and iRankFinder [3,7]. Regarding complexity, the
only other tool for worst-case lower bounds of ITSs is LOBER [1]. However, we
do not compare with LOBER, as it only analyses (multi-path) loops instead of
full ITSs.

We use the examples from the categories Termination (1222 examples) and
Complexity of ITSs (781 examples), respectively, of the Termination Problems
Data Base [19]. All benchmarks have been performed on StarExec [18] (Intel
Xeon E5-2609, 2.40GHz, 264GB RAM [17]) with a wall clock timeout of 300 s.

By the table on the left, LoAT ’22 is the most powerful tool for non-
termination. The improvement over LoAT ’19 demonstrates that the calculus
from [10,11] is more powerful and efficient than the approach from [8]. The last
three columns show the average, the median, and the standard deviation of the
wall clock runtime, including examples where the timeout was reached.

The table on the right shows the results for complexity. The diagonal cor-
responds to examples where LoAT ’20 and LoAT ’22 yield the same result. The
entries above or below the diagonal correspond to examples where LoAT ’22 or
LoAT ’20 is better, respectively. There are 8 regressions and 79 improvements,
so the calculus from [10,11] used by LoAT ’22 is also beneficial for lower bounds.

LoAT is open source and its source code is available on GitHub [12]. See
[13,14] for details on our evaluation, related work, all proofs, and a pre-compiled
binary.
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Abstract. Definition packages in theorem provers provide users with
means of defining and organizing concepts of interest. This system
description presents a new definition package for the hybrid systems the-
orem prover KeYmaera X based on differential dynamic logic (dL). The
package adds KeYmaera X support for user-defined smooth functions
whose graphs can be implicitly characterized by dL formulas. Notably,
this makes it possible to implicitly characterize functions, such as the
exponential and trigonometric functions, as solutions of differential equa-
tions and then prove properties of those functions using dL’s differ-
ential equation reasoning principles. Trustworthiness of the package is
achieved by minimally extending KeYmaera X’s soundness-critical ker-
nel with a single axiom scheme that expands function occurrences with
their implicit characterization. Users are provided with a high-level inter-
face for defining functions and non-soundness-critical tactics that auto-
mate low-level reasoning over implicit characterizations in hybrid system
proofs.

Keywords: Definitions · Differential dynamic logic · Verification of
hybrid systems · Theorem proving

1 Introduction

KeYmaera X [7] is a theorem prover implementing differential dynamic logic
dL [17,19–21] for specifying and verifying properties of hybrid systems mixing
discrete dynamics and differential equations. Definitions enable users to express
complex theorem statements in concise terms, e.g., by modularizing hybrid sys-
tem models and their proofs [14]. Prior to this work, KeYmaera X had only one
mechanism for definition, namely, non-recursive abbreviations via uniform sub-
stitution [14,20]. This restriction meant that common and useful functions, e.g.,
the trigonometric and exponential functions, could not be directly used in KeY-
maera X, even though they can be uniquely characterized by dL formulas [17].

This system description introduces a new KeYmaera X definitional mecha-
nism where functions are implicitly defined in dL as solutions of ordinary dif-
ferential equations (ODEs). Although definition packages are available in most
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general-purpose proof assistants, our package is novel in tackling the question
of how best to support user-defined functions in the domain-specific setting for
hybrid systems. In contrast to tools with builtin support for some fixed subsets
of special functions [1,9,23]; or higher-order logics that can work with functions
via their infinitary series expansions [4], e.g., exp(t) =

∑∞
i=0

ti

i! ; our package
strikes a balance between practicality and generality by allowing users to define
and reason about any function characterizable in dL as the solution of an ODE
(Sect. 2), e.g., exp(t) solves the ODE e′ = e with initial value e(0) = 1.

Theoretically, implicit definitions strictly expand the class of ODE invariants
amenable to dL’s complete ODE invariance proof principles [22]; such invariants
play a key role in ODE safety proofs [21] (see Proposition 3). In practice, arith-
metical identities and other specifications involving user-defined functions are
proved by automatically unfolding their implicit ODE characterizations and re-
using existing KeYmaera X support for ODE reasoning (Sect. 3). The package is
designed to provide seamless integration of implicit definitions in KeYmaera X
and its usability is demonstrated on several hybrid system verification examples
drawn from the literature that involve special functions (Sect. 4).

All proofs are in the supplement [8]. The definitions package is part of KeY-
maera X with a usage guide at: http://keymaeraX.org/keymaeraXfunc/.

2 Interpreted Functions in Differential Dynamic Logic

This section briefly recalls differential dynamic logic (dL) [17,18,20,21] and
explains how its term language is extended to support implicit function defi-
nitions.

Syntax. Terms e, ẽ and formulas φ, ψ in dL are generated by the following
grammar, with variable x, rational constant c, k-ary function symbols h (for any
k ∈ N), comparison operator ∼ ∈ {=, �=,≥, >,≤, <}, and hybrid program α:

e, ẽ ::= x | c | e + ẽ | e · ẽ | h(e1, . . . , ek) (1)
φ, ψ ::= e ∼ ẽ | φ ∧ ψ | φ ∨ ψ | ¬φ | ∀xφ | ∃xφ | [α] φ | 〈α〉 φ (2)

The terms and formulas above extend the first-order language of real arith-
metic (FOLR) with the box ([α] φ) and diamond (〈α〉 φ) modality formulas which
express that all or some runs of hybrid program α satisfy postcondition φ, respec-
tively. Table 1 gives an intuitive overview of dL’s hybrid programs language for
modeling systems featuring discrete and continuous dynamics and their inter-
actions thereof. In dL’s uniform substitution calculus, function symbols h are
uninterpreted, i.e., they semantically correspond to an arbitrary (smooth) func-
tion. Such uninterpreted function symbols (along with uninterpreted predicate
and program symbols) are crucially used to give a parsimonious axiomatiza-
tion of dL based on uniform substitution [20] which, in turn, enables a trust-
worthy microkernel implementation of the logic in the theorem prover KeY-
maera X [7,16].

http://keymaeraX.org/keymaeraXfunc/
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Table 1. Syntax and informal semantics of hybrid programs

Program Behavior

?φ Stay in the current state if φ is true, otherwise abort and discard run
x := e Store the value of term e in variable x

x := ∗ Store an arbitrary real value in variable x

x′ = f(x)& Q Continuously follow ODE x′ = f(x) in domain Q for any duration ≥0

if(φ) α Run program α if φ is true, otherwise skip. Definable by ?φ; α ∪ ?¬φ

α; β Run program α, then run program β in any resulting state(s)
α ∪ β Nondeterministically run either program α or program β

α∗ Nondeterministically repeat program α for n iterations, for any n ∈ N

{α} For readability, braces are used to group and delimit hybrid programs

Hybrid program model (auxiliary variables s, c):

Hybrid program model (trigonometric functions):

safety specification:

Fig. 1. Running example of a swinging pendulum driven by an external force (left), its
hybrid program models and dL safety specification (right). Program αs uses trigono-
metric functions directly, while program α̂s uses variables s, c to implicitly track the
values of sin(θ) and cos(θ), respectively (additions in red). The implicit characteriza-
tions φsin(s, θ), φcos(c, θ) are defined in (4), (5) and are not repeated here for brevity.
(Color figure online)

Running Example. Adequate modeling of hybrid systems often requires the
use of interpreted function symbols that denote specific functions of interest.
As a running example, consider the swinging pendulum shown in Fig. 1. The
ODEs describing its continuous motion are θ′ = ω, ω′ = − g

L sin(θ) − kω, where
θ is the swing angle, ω is the angular velocity, and g, k, L are the gravita-
tional constant, coefficient of friction, and length of the rigid rod suspending
the pendulum, respectively. The hybrid program αs models an external force
that repeatedly pushes the pendulum and changes its angular velocity by a
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nondeterministically chosen value p; the guard if(. . . ) condition is designed to
ensure that the push does not cause the pendulum to swing above the horizontal
as specified by φs. Importantly, the function symbols sin, cos must denote the
usual real trigonometric functions in αs. Program α̂s shows the same pendulum
modeled in dL without the use of interpreted symbols, but instead using aux-
iliary variables s, c. Note that α̂s is cumbersome and subtle to get right: the
implicit characterizations φsin(s, θ), φcos(c, θ) from (4), (5) are lengthy and the
differential equations s′ = ωc, c′ = −ωs must be manually calculated and added
to ensure that s, c correctly track the trigonometric functions as θ evolves con-
tinuously [18,22].

Interpreted Functions. To enable extensible use of interpreted functions in
dL, the term grammar (1) is enriched with k-ary function symbols h that carry
an interpretation annotation [5,27], h�φ�, where φ ≡ φ(x0, y1, . . . , yk) is a
dL formula with free variables in x0, y1, . . . , yk and no uninterpreted symbols.
Intuitively, φ is a formula that characterizes the graph of the intended interpre-
tation for h, where y1, . . . , yk are inputs to the function and x0 is the output.
Since φ depends only on the values of its free variables, its formula semantics [[φ]]
can be equivalently viewed as a subset of Euclidean space [[φ]] ⊆ R × Rk [20,21].
The dL term semantics ν[[e]] [20,21] in a state ν is extended with a case for terms
h�φ�(e1, . . . , ek) by evaluation of the smooth C∞ function characterized by [[φ]]:

ν[[h�φ�(e1, . . . , ek)]] =

{
ĥ(ν[[e1]], . . . , ν[[ek]]) if [[φ]] graph of smooth ĥ:Rk→R

0 otherwise

This semantics says that, if the relation [[φ]] ⊆ R × Rk is the graph of some
smooth C∞ function ĥ : Rk → R, then the annotated syntactic symbol h�φ�
is interpreted semantically as ĥ. Note that the graph relation uniquely defines
ĥ (if it exists). Otherwise, h�φ� is interpreted as the constant zero function
which ensures that the term semantics remain well-defined for all terms. An
alternative is to leave the semantics of some terms (possibly) undefined, but
this would require more extensive changes to the semantics of dL and extra case
distinctions during proofs [2].

Axiomatics and Differentially-Defined Functions. To support reasoning
for implicit definitions, annotated interpretations are reified to characterization
axioms for expanding interpreted functions in the following lemma.

Lemma 1. (Function interpretation). The FI axiom (below) for dL is
sound where h is a k-ary function symbol and the formula semantics [[φ]] is
the graph of a smooth C∞ function ĥ : Rk → R.

FI e0 = h�φ�(e1, . . . , ek) ↔ φ(e0, e1, . . . , ek)

Axiom FI enables reasoning for terms h�φ�(e1, . . . , ek) through their
implicit interpretation φ, but Lemma 1 does not directly yield an implementation
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because it has a soundness-critical side condition that interpretation φ charac-
terizes the graph of a smooth C∞ function. It is possible to syntactically char-
acterize this side condition [2], e.g., the formula ∀y1, . . . , yk∃x0φ(x0, y1, . . . , yk)
expresses that the graph represented by φ has at least one output value x0 for
each input value y1, . . . , yk, but this burdens users with the task of proving this
side condition in dL before working with their desired function. The KeYmaera X
definition package opts for a middle ground between generality and ease-of-use by
implementing FI for univariate, differentially-defined functions, i.e., the interpre-
tation φ has the following shape, where x = (x0, x1, . . . , xn) abbreviates a vector
of variables, there is one input t = y1, and X = (X0,X1, . . . , Xn), T are dL terms
that do not mention any free variables, e.g., are rational constants, which have
constant value in any dL state:

φ(x0, t) ≡
〈

x1, . . . , xn := ∗;

{
x′ = −f(x, t), t′ = −1 ∪
x′ = f(x, t), t′ = 1

}〉 (
x = X ∧
t = T

)
(3)

Formula (3) says from point x0, there exists a choice of the remaining coor-
dinates x1, . . . , xn such that it is possible to follow the defining ODE either
forward x′ = f(x, t), t′ = 1 or backward x′ = −f(x, t), t′ = −1 in time to reach
the initial values x = X at time t = T . In other words, the implicitly defined
function h�φ(x0,t)� is the x0-coordinate projected solution of the ODE starting
from initial values X at initial time T . For example, the trigonometric functions
used in Fig. 1 are differentially-definable as respective projections:

φsin(s, t) ≡
〈

c := ∗;

{
s′ = −c, c′ = s, t′ = −1 ∪
s′ = c, c′ = −s, t′ = 1

}〉 (
s = 0 ∧ c = 1 ∧
t = 0

)
(4)

φcos(c, t) ≡
〈

s := ∗;

{
s′ = −c, c′ = s, t′ = −1 ∪
s′ = c, c′ = −s, t′ = 1

}〉 (
s = 0 ∧ c = 1 ∧
t = 0

)
(5)

By Picard-Lindelöf [21, Thm. 2.2], the ODE x′ = f(x, t) has a unique solution
Φ : (a, b) → Rn+1 on an open interval (a, b) for some −∞ ≤ a < b ≤ ∞.
Moreover, Φ(t) is C∞ smooth in t because the ODE right-hand sides are dL terms
with smooth interpretations [20]. Therefore, the side condition for Lemma 1
reduces to showing that Φ exists globally, i.e., it is defined on t ∈ (−∞,∞).

Lemma 2. (Smooth interpretation). If formula ∃x0φ(x0, t) is valid, φ(x0, t)
from (3) characterizes a smooth C∞ function and axiom FI is sound for φ(x0, t).

Lemma 2 enables an implementation of axiom FI in KeYmaera X that com-
bines a syntactic check (the interpretation has the shape of formula (3)) and a
side condition check (requiring users to prove existence for their interpretations).

The addition of differentially-defined functions to dL strictly increases the
deductive power of ODE invariants, a key tool in deductive ODE safety reason-
ing [21]. Intuitively, the added functions allow direct, syntactic descriptions of
invariants, e.g., the exponential or trigonometric functions, that have effective
invariance proofs using dL’s complete ODE invariance reasoning principles [22].
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Proposition 3. (Invariant expressivity). There are valid polynomial dL dif-
ferential equation safety properties which are provable using differentially-defined
function invariants but are not provable using polynomial invariants.

3 KeYmaera X Implementation

The implicit definition package adds interpretation annotations and axiom FI
based on Lemma 2 in ≈170 lines of code extensions to KeYmaera X’s soundness-
critical core [7,16]. This section focuses on non-soundness-critical usability fea-
tures provided by the package that build on those core changes.

3.1 Core-Adjacent Changes

KeYmaera X has a browser-based user interface with concrete, ASCII-based
dL syntax [14]. The package extends KeYmaera X’s parsers and pretty printers
with support for interpretation annotations h«...»(...) and users can simulta-
neously define a family of functions as respective coordinate projections of the
solution of an n-dimensional ODE (given initial conditions) with sugared syntax:

implicit Real h1(Real t), ..., hn(Real t) = {{initcond};{ODE}}

For example, the implicit definitions (4), (5) can be written with the following
sugared syntax; KeYmaera X automatically inserts the associated interpretation
annotations for the trigonometric function symbols, see the supplement [8] for a
KeYmaera X snippet of formula φs from Fig. 1 using this sugared definition.

implicit Real sin(Real t), cos(Real t)
= {{sin:=0; cos:=1;}; {sin’=cos, cos’=-sin}}

In fact, the functions sin, cos, exp are so ubiquitous in hybrid system models
that the package builds their definitions in automatically without requiring users
to write them explicitly. In addition, although arithmetic involving those func-
tions is undecidable [11,24], KeYmaera X can export those functions whenever
its external arithmetic tools have partial arithmetic support for those functions.

3.2 Intermediate and User-Level Proof Automation

The package automatically proves three important lemmas about user-defined
functions that can be transparently re-used in all subsequent proofs:

1. It proves the side condition of axiom FI using KeYmaera X’s automation
for proving sufficient duration existence of solutions for ODEs [26] which
automatically shows global existence of solutions for all affine ODEs and
some univariate nonlinear ODEs. As an example of the latter, the hyperbolic
tanh function is differentially-defined as the solution of ODE x′ = 1−x2 with
initial value x = 0 at t = 0 whose global existence is proved automatically.
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2. It proves that the functions have initial values as specified by their interpre-
tation, e.g., sin(0) = 0, cos(0) = 1, and tanh(0) = 0.

3. It proves the differential axiom [20] for each function that is used to enable
syntactic derivative calculations in dL, e.g., the differential axioms for sin, cos
are (sin(e))′ = cos(e)(e)′ and (cos(e))′ = − sin(e)(e)′, respectively. Briefly,
these axioms are automatically derived in a correct-by-construction manner
using dL’s syntactic version of the chain rule for differentials [20, Fig. 3], so
the rate of change of sin(e) is the rate of change of sin(·) with respect to its
argument e, multiplied by the rate of change of its argument (e)′.

These lemmas enable the use of differentially-defined functions with all exist-
ing ODE automation in KeYmaera X [22,26]. In particular, since differentially-
defined functions are univariate Noetherian functions, they admit complete ODE
invariance reasoning principles in dL [22] as implemented in KeYmaera X.

The package also adds specialized support for arithmetical reasoning over
differential definitions to supplement external arithmetic tools in proofs. First,
it allows users to manually prove identities and bounds using KeYmaera X’s
ODE reasoning. For example, the bound tanh(λx)2 < 1 used in the example αn

from Sect. 4 is proved by differential unfolding as follows (see supplement [8]):

� tanh(0)2 < 1 tanh(λv)2<1 � [{v′ = 1 & v ≤ x} ∪ {v′ = −1 & v ≥ x}] tanh(λv)2<1

� tanh(λx)2 < 1

This deduction step says that, to show the conclusion (below rule bar), it
suffices to prove the premises (above rule bar), i.e., the bound is true at v = 0
(left premise) and it is preserved as v is evolved forward v′ = 1 or backward
v′ = −1 along the real line until it reaches x (right premise). The left premise is
proved using the initial value lemma for tanh while the right premise is proved
by ODE invariance reasoning with the differential axiom for tanh [22].

Second, the package uses KeYmaera X’s uniform substitution mechanism [20]
to implement (untrusted) abstraction of functions with fresh variables when
solving arithmetic subgoals, e.g., the following arithmetic bound for example αn

is proved by abstraction after adding the bounds tanh(λx)2 < 1, tanh(λy)2 < 1.

Bound: x(tanh(λx) − tanh(λy)) + y(tanh(λx) + tanh(λy)) ≤ 2
√

x2 + y2

Abstracted: t2x < 1 ∧ t2y < 1 → x(tx − ty) + y(tx + ty) ≤ 2
√

x2 + y2

4 Examples

The definition package enables users to work with differentially-defined functions
in KeYmaera X, including modeling and expressing their design intuitions in
proofs. This section applies the package to verify various continuous and hybrid
system examples from the literature featuring such functions.

Discretely Driven Pendulum. The specification φs from Fig. 1 contains a discrete
loop whose safety property is proved by a loop invariant, i.e., a formula that is
preserved by the discrete and continuous dynamics in each loop iteration [21].
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The key invariant is Inv ≡ g
L (1 − cos θ) + 1

2ω2 < g
L , which expresses that the

total energy of the system (sum of potential and kinetic energy on the LHS) is
less than the energy needed to cross the horizontal (RHS). The main steps are
as follows (proofs for these steps are automated by KeYmaera X):

1. Inv →
[
if

(
1
2 (ω − p)2 < g

L cos(θ)
)

{ω := ω − p}
]
Inv, which shows that the

discrete guard only allows push p if it preserves the energy invariant, and
2. Inv →

[
{θ′ = ω, ω′ = − g

L sin(θ) − kω}
]
Inv, which shows that Inv is an energy

invariant of the pendulum’s ODE.

Neuron Interaction. The ODE αn models the interaction between a pair of neu-
rons [12]; its specification φn nests dL’s diamond and box modalities to express
that the system norm (

√
x2 + y2) is asymptotically bounded by 2τ .

αn ≡ x′ = −x

τ
+ tanh(λx) − tanh(λy), y′ = −y

τ
+ tanh(λx) + tanh(λy)

φn ≡ τ > 0 → ∀ε>0〈αn〉 [αn]
√

x2 + y2 ≤ 2τ + ε

The verification of φn uses differentially-defined functions in concert with
KeYmaera X’s symbolic ODE safety and liveness reasoning [26]. The proof uses
a decaying exponential bound

√
x2 + y2 ≤ exp(− t

τ )
√

x2
0 + y2

0+2τ(1−exp(− t
τ )),

where the constants x0, y0 are symbolic initial values for x, y at initial time t = 0,
respectively. Notably, the arithmetic subgoals from this example are all proved
using abstraction and differential unfolding (Sect. 3) without relying on external
arithmetic solver support for tanh.

Longitudinal Flight Dynamics. The differential equa-
tions αa below describe the 6th order longitudinal
motion of an airplane while climbing or descend-
ing [10,25]. The airplane adjusts its pitch angle θ
with pitch rate q, which determines its axial veloc-
ity u and vertical velocity w, and, in turn, range x
and altitude z (illustrated on the right). The physical parameters are: gravity g,
mass m, aerodynamic thrust and moment M along the lateral axis, aerodynamic
and thrust forces X,Z along x and z, respectively, and the moment of inertia
Iyy, see [10, Sect. 6.2].

αa ≡ u′ =
X

m
− g sin(θ) − qw, w′ =

Z

m
+ g cos(θ) + qu, q′ =

M

Iyy
,

x′ = cos(θ)u + sin(θ)w, z′ = − sin(θ)u + cos(θ)w, θ′ = q

The verification of specification J → [αa]J shows that the safety envelope
J ≡ J1 ∧ J2 ∧ J3 is invariant along the flow of αa with algebraic invariants Ji:

J1 ≡ Mz

Iyy
+ gθ +

(
X

m
− qw

)
cos(θ) +

(
Z

m
+ qu

)
sin(θ) = 0

J2 ≡ Mz

Iyy
−

(
Z

m
+ qu

)
cos(θ) +

(
X

m
− qw

)
sin(θ) = 0 J3 ≡ −q2 +

2Mθ

Iyy
= 0

Additional examples are available in the supplement [8], including: a bouncing
ball on a sinusoidal surface [6,13] and a robot collision avoidance model [15].
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5 Conclusion

This work presents a convenient mechanism for extending the dL term language
with differentially-defined functions, thereby furthering the class of real-world
systems amenable to modeling and formalization in KeYmaera X. Minimal
soundness-critical changes are made to the KeYmaera X kernel, which main-
tains its trustworthiness while allowing the use of newly defined functions in
concert with all existing dL hybrid systems reasoning principles implemented in
KeYmaera X. Future work could formally verify these kernel changes by extend-
ing the existing formalization of dL [3]. Further integration of external arithmetic
tools [1,9,23] will also help to broaden the classes of arithmetic sub-problems
that can be solved effectively in hybrid systems proofs.
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Abstract. There exist several results on deciding termination and com-
puting runtime bounds for triangular weakly non-linear loops (twn-loops).
We show how to use results on such subclasses of programs where com-
plexity bounds are computable within incomplete approaches for com-
plexity analysis of full integer programs. To this end, we present a novel
modular approach which computes local runtime bounds for subpro-
grams which can be transformed into twn-loops. These local runtime
bounds are then lifted to global runtime bounds for the whole program.
The power of our approach is shown by our implementation in the tool
KoAT which analyzes complexity of programs where all other state-of-
the-art tools fail.

1 Introduction

Most approaches for automated complexity analysis of programs are based
on incomplete techniques like ranking functions (see, e.g., [1–4,6,11,12,18,
20,21,31]). However, there also exist numerous results on subclasses of pro-
grams where questions concerning termination or complexity are decidable, e.g.,
[5,14,15,19,22,24,25,32,34]. In this work we consider the subclass of triangular
weakly non-linear loops (twn-loops), where there exist complete techniques for
analyzing termination and runtime complexity (we discuss the “completeness”
and decidability of these techniques below). An example for a twn-loop is:

while (x2
1+x5

3 < x2 ∧ x1 �= 0) do (x1, x2, x3) ← (−2·x1, 3·x2−2·x3
3, x3) (1)

Its guard is a propositional formula over (possibly non-linear) polynomial inequa-
tions. The update is weakly non-linear, i.e., no variable xi occurs non-linear in its
own update. Furthermore, it is triangular, i.e., we can order the variables such
that the update of any xi does not depend on the variables x1, . . . , xi−1 with
smaller indices. Then, by handling one variable after the other one can compute
a closed form which corresponds to applying the loop’s update n times. Using
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these closed forms, termination can be reduced to an existential formula over
Z [15] (whose validity is decidable for linear arithmetic and where SMT solvers
often also prove (in)validity in the non-linear case). In this way, one can show
that non-termination of twn-loops over Z is semi-decidable (and it is decidable
over the real numbers).

While termination of twn-loops over Z is not decidable, by using the closed
forms, [19] presented a “complete” complexity analysis technique. More precisely,
for every twn-loop over Z, it infers a polynomial which is an upper bound on
the runtime for all those inputs where the loop terminates. So for all (possibly
non-linear) terminating twn-loops over Z, the technique of [19] always computes
polynomial runtime bounds. In contrast, existing tools based on incomplete tech-
niques for complexity analysis often fail for programs with non-linear arithmetic.

In [6,18] we presented such an incomplete modular technique for complex-
ity analysis which uses individual ranking functions for different subprograms.
Based on this, we now introduce a novel approach to automatically infer runtime
bounds for programs possibly consisting of multiple consecutive or nested loops
by handling some subprograms as twn-loops and by using ranking functions for
others. In order to compute runtime bounds, we analyze subprograms in topolog-
ical order, i.e., in case of multiple consecutive loops, we start with the first loop
and propagate knowledge about the resulting values of variables to subsequent
loops. By inferring runtime bounds for one subprogram after the other, in the
end we obtain a bound on the runtime complexity of the whole program. We first
try to compute runtime bounds for subprograms by so-called multiphase linear
ranking functions (MΦRFs, see [3,4,18,20]). If MΦRFs do not yield a finite run-
time bound for the respective subprogram, then we use our novel twn-technique
on the unsolved parts of the subprogram. So for the first time, “complete” com-
plexity analysis techniques like [19] for subclasses of programs with non-linear
arithmetic are combined with incomplete techniques based on (linear) ranking
functions like [6,18]. Based on our approach, in future work one could integrate
“complete” techniques for further subclasses (e.g., for solvable loops [24,25,30,34]
which can be transformed into twn-loops by suitable automorphisms [15]).

Structure: After introducing preliminaries in Sect. 2, in Sect. 3 we show how
to lift a (local) runtime bound which is only sound for a subprogram to an
overall global runtime bound. In contrast to previous techniques [6,18], our lifting
approach works for any method of bound computation (not only for ranking
functions). In Sect. 4, we improve the existing results on complexity analysis of
twn- loops [14,15,19] such that they yield concrete polynomial bounds, we refine
these bounds by considering invariants, and we show how to apply these results
to full programs which contain twn-loops as subprograms. Section 5 extends
this technique to larger subprograms which can be transformed into twn-loops.
In Sect. 6 we evaluate the implementation of our approach in the complexity
analysis tool KoAT and show that one can now also successfully analyze the
runtime of programs containing non-linear arithmetic. We refer to [26] for all
proofs.
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Fig. 1. An Integer Program with a Nested Self-Loop

2 Preliminaries

This section recapitulates preliminaries for complexity analysis from [6,18].

Definition 1 (Atoms and Formulas). We fix a set V of variables. The set
of atoms A(V) consists of all inequations p1 < p2 for polynomials p1, p2 ∈ Z[V].
F(V) is the set of all propositional formulas built from atoms A(V), ∧, and ∨.

In addition to “<”, we also use “≥”, “=”, “�=”, etc., and negations “¬” which
can be simulated by formulas (e.g., p1 ≥ p2 is equivalent to p2 < p1 + 1 for
integers).

For integer programs, we use a formalism based on transitions, which also
allows us to represent while-programs like (1) easily. Our programs may have
non-deterministic branching, i.e., the guards of several applicable transitions
can be satisfied. Moreover, non-deterministic sampling is modeled by temporary
variables whose values are updated arbitrarily in each evaluation step.

Definition 2 (Integer Program). (PV,L, �0, T ) is an integer program where

• PV ⊆ V is a finite set of program variables, V\PV are temporary variables
• L is a finite set of locations with an initial location �0 ∈ L
• T is a finite set of transitions. A transition is a 4-tuple (�, ϕ, η, �′) with a start

location � ∈ L, target location �′ ∈ L \ {�0}, guard ϕ ∈ F(V), and update
function η : PV → Z[V] mapping program variables to update polynomials.

Transitions (�0, , , ) are called initial. Note that �0 has no incoming transitions.

Example 3. Consider the program in Fig. 1 with PV = {xi | 1 ≤ i ≤ 5}, L =
{�i | 0 ≤ i ≤ 3}, and T = {ti | 0 ≤ i ≤ 5}, where t5 has non-linear arithmetic
in its guard and update. We omitted trivial guards, i.e., ϕ = true, and identity
updates of the form η(v) = v. Thus, t5 corresponds to the while-program (1).

A state is a mapping σ : V → Z, Σ denotes the set of all states, and L × Σ
is the set of configurations. We also apply states to arithmetic expressions p or
formulas ϕ, where the number σ(p) resp. the Boolean value σ(ϕ) results from
replacing each variable v by σ(v). So for a state with σ(x1) = −8, σ(x2) = 55,
and σ(x3) = 1, the expression x2

1 + x5
3 evaluates to σ(x2

1 + x5
3) = 65 and the

formula ϕ = (x2
1 + x5

3 < x2) evaluates to σ(ϕ) = (65 < 55) = false. From now
on, we fix a program (PV,L, �0, T ).
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Definition 4 (Evaluation of Programs). For configurations (�, σ), (�′, σ′)
and t = (�t, ϕ, η, �′

t) ∈ T , (�, σ) →t (�′, σ′) is an evaluation step if � = �t,
�′ = �′

t, σ(ϕ) = true, and σ(η(v)) = σ′(v) for all v ∈ PV. Let →T =
⋃

t∈T →t,
where we also write → instead of →t or →T . Let (�0, σ0) →k (�k, σk) abbreviate
(�0, σ0) → . . . → (�k, σk) and let (�, σ) →∗ (�′, σ′) if (�, σ) →k (�′, σ′) for some
k ≥ 0.

So when denoting states σ as tuples (σ(x1), . . . , σ(x5)) ∈ Z
5 for the

program in Fig. 1, we have (�0, (1, 5, 7, 1, 3)) →t0 (�1, (1, 5, 7, 1, 3)) →t1

(�3, (1, 1, 3, 1, 3)) →3
t5 (�3, (1,−8, 55, 1, 3)) →t2 . . .. The runtime complexity

rc(σ0) of a program corresponds to the length of the longest evaluation starting
in the initial state σ0.

Definition 5 (Runtime Complexity). The runtime complexity is rc :Σ → N

with N = N ∪ {ω} and rc(σ0) = sup{k ∈ N | ∃(�′, σ′). (�0, σ0) →k (�′, σ′)}.

3 Computing Global Runtime Bounds

We now introduce our general approach for computing (upper) runtime bounds.
We use weakly monotonically increasing functions as bounds, since they can
easily be “composed” (i.e., if f and g increase monotonically, then so does f ◦ g).

Definition 6 (Bounds [6,18]). The set of bounds B is the smallest set with
N ⊆ B, PV ⊆ B, and {b1 + b2, b1 · b2, kb1} ⊆ B for all k ∈ N and b1, b2 ∈ B.

A bound constructed from N, PV, +, and · is polynomial. So for PV = {x, y},
we have ω, x2, x + y, 2x+y ∈ B. Here, x2 and x + y are polynomial bounds.

We measure the size of variables by their absolute values. For any σ ∈ Σ, |σ|
is the state with |σ|(v) = |σ(v)| for all v ∈ V. So if σ0 denotes the initial state,
then |σ0| maps every variable to its initial “size”, i.e., its initial absolute value.
RBglo : T → B is a global runtime bound if for each transition t and initial state
σ0 ∈ Σ, RBglo(t) evaluated in the state |σ0| over-approximates the number of
evaluations of t in any run starting in the configuration (�0, σ0). Let →∗

T ◦ →t

denote the relation where arbitrary many evaluation steps are followed by a step
with t.

Definition 7 (Global Runtime Bound [6,18]). The function RBglo : T →
B is a global runtime bound if for all t ∈ T and all states σ0 ∈ Σ we have
|σ0|(RBglo(t)) ≥ sup{k ∈ N | ∃ (�′, σ′). (�0, σ0) (→∗

T ◦ →t)k (�′, σ′)}.

For the program in Fig. 1, in Example 12 we will infer RBglo(t0) = 1,
RBglo(ti) = x4 for 1 ≤ i ≤ 4, and RBglo(t5) = 8 · x4 · x5 + 13006 · x4. By
adding the bounds for all transitions, a global runtime bound RBglo yields an
upper bound on the program’s runtime complexity. So for all σ0 ∈ Σ we have
|σ0|(

∑
t∈T RBglo(t)) ≥ rc(σ0).

For local runtime bounds, we consider the entry transitions of subsets T ′ ⊆ T .
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Definition 8 (Entry Transitions [6,18]). Let ∅ �= T ′ ⊆ T . Its entry transi-
tions are ET ′ = {t | t=(�, ϕ, η, �′)∈T \T ′ ∧ there is a transition (�′, , , )∈T ′}.

So in Fig. 1, we have ET \{t0} = {t0} and E{t5} = {t1, t4}.
In contrast to global runtime bounds, a local runtime bound RBloc : ET ′ → B

only takes a subset T ′ into account. A local run is started by an entry transition
r ∈ ET ′ followed by transitions from T ′. A local runtime bound considers a subset
T ′

> ⊆ T ′ and over-approximates the number of evaluations of any transition from
T ′

> in an arbitrary local run of the subprogram with the transitions T ′. More
precisely, for every t ∈ T ′

>, RBloc(r) over-approximates the number of applica-
tions of t in any run of T ′, if T ′ is entered via r ∈ ET ′ . However, local runtime
bounds do not consider how often an entry transition from ET ′ is evaluated or
how large a variable is when we evaluate an entry transition. To illustrate that
RBloc(r) is a bound on the number of evaluations of transitions from T ′

> after
evaluating r, we often write RBloc(→r T ′

>) instead of RBloc(r).

Definition 9 (Local Runtime Bound). Let ∅ �= T ′
> ⊆ T ′ ⊆ T . The function

RBloc : ET ′ → B is a local runtime bound for T ′
> w.r.t. T ′ if for all t ∈ T ′

>,
all r ∈ ET ′ with r = (�, , , ), and all σ ∈ Σ we have |σ|(RBloc(→r T ′

>)) ≥
sup{k ∈ N | ∃σ0, (�′, σ′). (�0, σ0) →∗

T ◦ →r (�, σ) (→∗
T ′ ◦ →t)k (�′, σ′)}.

Our approach is modular since it computes local bounds for program parts
separately. To lift local to global runtime bounds, we use size bounds SB(t, v) to
over-approximate the size (i.e., absolute value) of the variable v after evaluating t
in any run of the program. See [6] for the automatic computation of size bounds.

Definition 10 (Size Bound [6,18]). The function SB : (T × PV) → B
is a size bound if for all (t, v) ∈ T × PV and all states σ0 ∈ Σ we have
|σ0|(SB(t, v)) ≥ sup{|σ′(v)| | ∃ (�′, σ′). (�0, σ0) (→∗ ◦ →t) (�′, σ′)}.

To compute global from local runtime bounds RBloc(→r T ′
>) and size bounds

SB(r, v), Theorem 11 generalizes the approach of [6,18]. Each local run is started
by an entry transition r. Hence, we use an already computed global runtime
bound RBglo(r) to over-approximate the number of times that such a local run
is started. To over-approximate the size of each variable v when entering the local
run, we instantiate it by the size bound SB(r, v). So size bounds on previous tran-
sitions are needed to compute runtime bounds, and similarly, runtime bounds are
needed to compute size bounds in [6]. For any bound b, “b [v/SB(r, v) | v ∈ PV]”
results from b by replacing every program variable v by SB(r, v). Here, weak
monotonic increase of b ensures that the over-approximation of the variables v
in b by SB(r, v) indeed also leads to an over-approximation of b. The analysis
starts with an initial runtime bound RBglo and an initial size bound SB which
map all transitions resp. all pairs from T × PV to ω, except for the transitions t
which do not occur in cycles of T , where RBglo(t) = 1. Afterwards, RBglo and
SB are refined repeatedly, where we alternate between computing runtime and
size bounds.
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Theorem 11 (Computing Global Runtime Bounds). Let RBglo be a
global runtime bound, SB be a size bound, and ∅ �= T ′

> ⊆ T ′ ⊆ T such that
T ′ contains no initial transitions. Moreover, let RBloc be a local runtime bound
for T ′

> w.r.t. T ′. Then RB′
glo is also a global runtime bound, where for all t ∈ T

we define:

RB′
glo(t)=

{
RBglo(t), if t∈T \T ′

>∑
r∈ET ′ RBglo(r) · (RBloc(→r T ′

>) [v/SB(r, v) | v∈PV]), if t∈T ′
>

Example 12. For the example in Fig. 1, we first use T ′
> = {t2} and T ′ = T \

{t0}. With the ranking function x4 one obtains RBloc(→t0 T ′
>) = x4, since t2

decreases the value of x4 and no transition increases it. Then we can infer the
global runtime bound RBglo(t2) = RBglo(t0)·(x4 [v/SB(t0, v) | v ∈ PV]) = x4 as
RBglo(t0) = 1 (since t0 is evaluated at most once) and SB(t0, x4) = x4 (since t0
does not change any variables). Similarly, we can infer RBglo(t1) = RBglo(t3) =
RBglo(t4) = x4.

For T ′
> = T ′ = {t5}, our twn-approach in Sect. 4 will infer the local runtime

bound RBloc : E{t5} → B with RBloc(→t1 {t5}) = 4 · x2 + 3 and RBloc(→t4

{t5}) = 4 · x2 + 4 · x3
3 + 4 · x5

3 + 3 in Example 30. By Theorem 11 we obtain the
global bound

RBglo(t5) = RBglo(t1) · (RBloc(→t1 {t5})[v/SB(t1, v) | v ∈ PV]) +
RBglo(t4) · (RBloc(→t4 {t5})[v/SB(t4, v) | v ∈ PV])

= x4 · (4 · x5 + 3) + x4 · (4 · x5 + 4 · 53 + 4 · 55 + 3)
(as SB(t1, x2) = SB(t4, x2) = x5 and SB(t4, x3) = 5)

= 8 · x4 · x5 + 13006 · x4.

Thus, rc(σ0) ∈ O(n2) where n is the largest initial absolute value of all program
variables. While the approach of [6,18] was limited to local bounds resulting from
ranking functions, here we need our Theorem 11. It allows us to use both local
bounds resulting from twn-loops (for the non-linear transition t5 where tools
based on ranking functions cannot infer a bound, see Sect. 6) and local bounds
resulting from ranking functions (for t1, . . . , t4, since our twn-approach of Sect. 4
and 5 is limited to so-called simple cycles and cannot handle the full program).

In contrast to [6,18], we allow different local bounds for different entry tran-
sitions in Definition 9 and Theorem 11. Our example demonstrates that this can
indeed lead to a smaller asymptotic bound for the whole program: By distin-
guishing the cases where t5 is reached via t1 or t4, we end up with a quadratic
bound, because the local bound RBloc(→t1 {t5}) is linear and while x3 occurs
with degrees 5 and 3 in RBloc(→t4 {t5}), the size bound for x3 is constant after
t3 and t4.

To improve size and runtime bounds repeatedly, we treat the strongly con-
nected components (SCCs)1 of the program in topological order such that
1 As usual, a graph is strongly connected if there is a path from every node to every

other node. A strongly connected component is a maximal strongly connected sub-
graph.
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improved bounds for previous transitions are already available when handling
the next SCC. We first try to infer local runtime bounds by multiphase-linear
ranking functions (see [18] which also contains a heuristic for choosing T ′

> and
T ′ when using ranking functions). If ranking functions do not yield finite local
bounds for all transitions of the SCC, then we apply the twn-technique from
Sect. 4 and 5 on the remaining unbounded transitions (see Sect. 5 for choos-
ing T ′

> and T ′ in that case). Afterwards, the global runtime bound is updated
according to Theorem 11.

4 Local Runtime Bounds for Twn-Self-Loops

In Sect. 4.1 we recapitulate twn-loops and their termination in our setting. Then
in Sect. 4.2 we present a (complete) algorithm to infer polynomial runtime
bounds for all terminating twn-loops. Compared to [19], we increased its pre-
cision considerably by computing bounds that take the different roles of the
variables into account and by using over-approximations to remove monomials.
Moreover, we show how our algorithm can be used to infer local runtime bounds
for twn-loops occurring in integer programs. Section 5 will show that our algo-
rithm can also be applied to infer runtime bounds for larger cycles in programs
instead of just self-loops.

4.1 Termination of Twn-Loops

Definition 13 extends the definition of twn-loops in [15,19] by an initial transition
and an update-invariant. Here, ψ is an update-invariant if |= ψ → η(ψ) where
η is the update of the transition (i.e., invariance must hold independent of the
guard).

Definition 13. (Twn-Loop). An integer program (PV,L, �0, T ) is a triangu-
lar weakly non-linear loop (twn-loop) if PV = {x1, . . . , xd} for some d ≥ 1,
L = {�0, �}, and T = {t0, t} with t0 = (�0, ψ, id, �) and t = (�, ϕ, η, �) for some
ψ,ϕ ∈ F(PV) with |= ψ → η(ψ), where id(v) = v for all v ∈ PV, and for all
1 ≤ i ≤ d we have η(xi) = ci · xi + pi for some ci ∈ Z and some polynomial
pi ∈ Z[xi+1, . . . , xd]. We often denote the loop by (ψ,ϕ, η) and refer to ψ, ϕ, η
as its (update-) invariant, guard, and update, respectively. If ci ≥ 0 holds for all
1 ≤ i ≤ d, then the program is a non-negative triangular weakly non-linear loop
(tnn-loop).

Example 14. The program consisting of the initial transition (�0, true, id, �3) and
the self-loop t5 in Fig. 1 is a twn-loop (corresponding to the while-loop (1)). This
loop terminates as every iteration increases x2

1 by a factor of 4 whereas x2 is only
tripled. Thus, x2

1 + x5
3 eventually outgrows the value of x2.

To transform programs into twn- or tnn-form, one can combine subsequent
transitions by chaining. Here, similar to states σ, we also apply the update η to
polynomials and formulas by replacing each program variable v by η(v).
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Definition 15 (Chaining). Let t1, . . . , tn be a sequence of transitions without
temporary variables where ti = (�i, ϕi, ηi, �i+1) for all 1 ≤ i ≤ n − 1, i.e., the
target location of ti is the start location of ti+1. We may have ti = tj for i �= j,
i.e., a transition may occur several times in the sequence. Then the transition
t1 
 . . . 
 tn = (�1, ϕ, η, �n+1) results from chaining t1, . . . , tn where

ϕ = ϕ1 ∧ η1(ϕ2) ∧ η2(η1(ϕ3)) ∧ . . . ∧ ηn−1(. . . η1(ϕn) . . .)
η(v) = ηn(. . . η1(v) . . .) for all v ∈ PV, i.e., η = ηn ◦ . . . ◦ η1.

Similar to [15,19], we can restrict ourselves to tnn-loops, since chaining trans-
forms any twn-loop L into a tnn-loop L 
 L. Chaining preserves the termination
behavior, and a bound on L
L’s runtime can be transformed into a bound for L.

Lemma 16 (Chaining Preserves Asymptotic Runtime, see [19, Lemma
18]). For the twn-loop L = (ψ,ϕ, η) with the transitions t0 = (�0, ψ, id, �), t =
(�, ϕ, η, �), and runtime complexity rcL, the program L
L with the transitions t0
and t 
 t = (ψ,ϕ ∧ η(ϕ), η ◦ η) is a tnn-loop. For its runtime complexity rcL�L,
we have 2 · rcL�L(σ) ≤ rcL(σ) ≤ 2 · rcL�L(σ) + 1 for all σ ∈ Σ.

Example 17. The program of Example 14 is only a twn-loop and not a tnn-
loop as x1 occurs with a negative coefficient −2 in its own update. Hence, we
chain the loop and consider t5 
 t5. The update of t5 
 t5 is (η ◦ η)(x1) = 4 · x1,
(η ◦ η)(x2) = 9 · x2 − 8 · x3

3, and (η ◦ η)(x3) = x3. To ease the presentation, in
this example we will keep the guard ϕ instead of using ϕ ∧ η(ϕ) (ignoring η(ϕ)
in the conjunction of the guard does not decrease the runtime complexity).

Our algorithm starts with computing a closed form for the loop update,
which describes the values of the program variables after n iterations of the
loop. Formally, a tuple of arithmetic expressions cln

x = (cln
x1

, . . . , cln
xd

) over
the variables x = (x1, . . . , xd) and the distinguished variable n is a (normalized)
closed form for the update η with start value n0 ≥ 0 if for all 1 ≤ i ≤ d
and all σ : {x1, . . . , xd, n} → Z with σ(n) ≥ n0, we have σ(cln

xi
) = σ(ηn(xi)).

As shown in [14,15,19], for tnn-loops such a normalized closed form and the
start value n0 can be computed by handling one variable after the other, and
these normalized closed forms can be represented as so-called normalized poly-
exponential expressions. Here, N≥m stands for {x ∈ N | x ≥ m}.

Definition 18. (Normalized Poly-Exponential Expression [14,15,19]).
Let PV = {x1, . . . , xd}. Then we define the set of all normalized poly-exponential
expressions by NPE = {

∑�
j=1 pj · naj · bn

j

∣
∣
∣ �, aj ∈ N, pj ∈ Q[PV], bj ∈ N≥1}.

Example 19. A normalized closed form (with start value n0 = 0) for the tnn-loop
in Example 17 is cln

x1
= x1 · 4n, cln

x2
= (x2 − x3

3) · 9n + x3
3, and cln

x3
= x3.

Using the normalized closed form, similar to [15] one can represent non-
termination of a tnn-loop (ψ,ϕ, η) by the formula

∃x ∈ Z
d, m ∈ N. ∀n ∈ N≥m. ψ ∧ ϕ[x/cln

x ]. (2)
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Here, ϕ[x/cln
x ] means that each variable xi in ϕ is replaced by cln

xi
. Since ψ

is an update-invariant, if ψ holds, then ψ[x/cln
x ] holds as well for all n ≥ n0.

Hence, whenever ∀n ∈ N≥m. ψ ∧ ϕ[x/cln
x ] holds, then cl

max{n0,m}
x witnesses

non-termination. Thus, invalidity of (2) is equivalent to termination of the loop.
Normalized poly-exponential expressions have the advantage that it is always

clear which addend determines their asymptotic growth when increasing n. So
as in [15], (2) can be transformed into an existential formula and we use an SMT
solver to prove its invalidity in order to prove termination of the loop. As shown
in [15, Theorem 42], non-termination of twn-loops over Z is semi-decidable and
deciding termination is Co-NP-complete if the loop is linear and the eigenvalues
of the update matrix are rational.

4.2 Runtime Bounds for Twn-Loops via Stabilization Thresholds

As observed in [19], since the closed forms for tnn-loops are poly-exponential
expressions that are weakly monotonic in n, every tnn-loop (ψ,ϕ, η) stabilizes
for each input e ∈ Z

d. So there is a number of loop iterations (a stabilization
threshold sth(ψ,ϕ,η)(e)), such that the truth value of the loop guard ϕ does not
change anymore when performing further loop iterations. Hence, the runtime of
every terminating tnn-loop is bounded by its stabilization threshold.

Definition 20 (Stabilization Threshold). Let (ψ,ϕ, η) be a tnn-loop with
PV = {x1, . . . , xd}. For each e = (e1, . . . , ed) ∈ Z

d, let σe ∈ Σ with σe(xi) = ei

for all 1 ≤ i ≤ d. Let Ψ ⊆ Z
d such that e ∈ Ψ iff σe(ψ) holds. Then sth(ψ,ϕ,η) :

Z
d → N is the stabilization threshold of (ψ,ϕ, η) if for all e ∈ Ψ , sth(ψ,ϕ,η)(e)

is the smallest number such that σe

(
ηn(ϕ) ↔ ηsth(ψ,ϕ,η)(e)(ϕ)

)
holds for all

n ≥ sth(ψ,ϕ,η)(e).

For the tnn-loop from Example 17, it will turn out that 2 · x2 + 2 · x3
3 + 2 · x5

3 + 1
is an upper bound on its stabilization threshold, see Example 28.

To compute such upper bounds on a tnn-loop’s stabilization threshold (i.e.,
upper bounds on its runtime if the loop is terminating), we now present a con-
struction based on monotonicity thresholds, which are computable [19, Lemma
12].

Definition 21 (Monotonicity Threshold [19]). Let (b1, a1), (b2, a2) ∈ N
2

such that (b1, a1) >lex (b2, a2) (i.e., b1 > b2 or both b1 = b2 and a1 > a2). For
any k ∈ N≥1, the k-monotonicity threshold of (b1, a1) and (b2, a2) is the smallest
n0 ∈ N such that for all n ≥ n0 we have na1 · bn

1 > k · na2 · bn
2 .

For example, the 1-monotonicity threshold of (4, 0) and (3, 1) is 7 as the largest
root of f(n) = 4n − n · 3n is approximately 6.5139.

Our procedure again instantiates the variables of the loop guard ϕ by the nor-
malized closed form cln

x of the loop’s update. However, in the poly-exponential
expressions

∑�
j=1 pj · naj · bn

j resulting from ϕ[x/cln
x ], the corresponding tech-

nique of [19, Lemma 21] over-approximated the polynomials pj by a polynomial
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that did not distinguish the effects of the different variables x1, . . . , xd. Such an
over-approximation is only useful for a direct asymptotic bound on the runtime
of the twn-loop, but it is too coarse for a useful local runtime bound within the
complexity analysis of a larger program. For instance, in Example 12 it is crucial
to obtain local bounds like 4 · x2 + 4 · x3

3 + 4 · x5
3 + 3 which indicate that only

the variable x3 may influence the runtime with an exponent of 3 or 5. Thus, if
the size of x3 is bound by a constant, then the resulting global bound becomes
linear.

So we now improve precision and over-approximate the polynomials pj by
the polynomial �{p1, . . . , p�} which contains every monomial xe1

1 · . . . · xed

d of
{p1, . . . , p�}, using the absolute value of the largest coefficient with which the
monomial occurs in {p1, . . . , p�}. Thus, �{x3

3 − x5
3, x2 − x3

3} = x2 + x3
3 + x5

3. In
the following let x = (x1, . . . , xd), and for e = (e1, . . . , ed) ∈ N

d, xe denotes
xe1

1 · . . . · xed

d .

Definition 22 (Over-Approximation of Polynomials). Let p1, . . . , p� ∈
Z[x], and for all 1 ≤ j ≤ �, let Ij ⊆ (Z\{0})×N

d be the index set of the polyno-
mial pj where pj =

∑
(c,e)∈Ij

c ·xe and there are no c �= c′ with (c,e), (c′,e) ∈ Ij.
For all e ∈ N

d we define ce ∈ N with ce = max{|c| | (c,e) ∈ I1 ∪ . . . ∪ I�},
where max ∅ = 0. Then the over-approximation of p1, . . . , p� is �{p1, . . . , p�} =∑

e∈Nd ce · xe .

Clearly, �{p1, . . . , p�} indeed over-approximates the absolute value of each pj .

Corollary 23 (Soundness of �{p1, . . . , p�}). For all σ : {x1, . . . , xd} → Z

and all 1 ≤ j ≤ �, we have |σ|(�{p1, . . . , p�}) ≥ |σ(pj)|.

A drawback is that �{p1, . . . , p�} considers all monomials and to obtain
weakly monotonically increasing bounds from B, it uses the absolute values of
their coefficients. This can lead to polynomials of unnecessarily high degree. To
improve the precision of the resulting bounds, we now allow to over-approximate
the poly-exponential expressions

∑�
j=1 pj ·naj ·bn

j which result from instantiating
the variables of the loop guard by the closed form. For this over-approximation,
we take the invariant ψ of the tnn-loop into account. So while (2) showed that
update-invariants ψ can restrict the sets of possible witnesses for non-termination
and thus simplify the termination proofs of twn-loops, we now show that pre-
conditions ψ can also be useful to improve the bounds on twn-loops.

More precisely, Definition 24 allows us to replace addends p·na ·bn by p·ni ·jn

where (j, i) >lex (b, a) if the monomial p is always positive (when the precondition
ψ is fulfilled) and where (b, a) >lex (i, j) if p is always non-positive.

Definition 24 (Over-Approximation of Poly-Exponential Expressions).
Let ψ ∈ F(PV) and let npe =

∑
(p,a,b)∈Λ p · na · bn ∈ NPE where Λ is a set of

tuples (p, a, b) containing a monomial2 p and two numbers a, b ∈ N. Here, we

2 Here, we consider monomials of the form p = c · xe1
1 · . . . · xed

d with coefficients c ∈ Q.
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may have (p, a, b), (p′, a, b) ∈ Λ for p �= p′. Let Δ,Γ ⊆ Λ such that |= ψ → (p > 0)
holds for all (p, a, b) ∈ Δ and |= ψ → (p ≤ 0) holds for all (p, a, b) ∈ Γ .3 Then

�npe�ψ
Δ,Γ =

∑

(p,a,b)∈Δ�Γ
p · ni(p,a,b) · jn

(p,a,b) +
∑

(p,a,b)∈Λ\(Δ�Γ )
p · na · bn

is an over-approximation of npe if i(p,a,b), j(p,a,b) ∈ N are numbers such that
(j(p,a,b), i(p,a,b)) >lex (b, a) holds if (p, a, b) ∈ Δ and (b, a) >lex (j(p,a,b), i(p,a,b))
holds if (p, a, b) ∈ Γ . Note that i(p,a,b) or j(p,a,b) can also be 0.

Example 25. Let npe = q3 ·16n + q2 ·9n + q1 = q3 ·16n + q′
2 ·9n + q′′

2 ·9n + q′
1 + q′′

1 ,
where q3 = −x2

1, q2 = q′
2 + q′′

2 , q′
2 = x2, q′′

2 = −x3
3, q1 = q′

1 + q′′
1 , q′

1 = x3
3,

q′′
1 = −x5

3, and ψ = (x3 > 0). We can choose Δ = {(x3
3, 0, 1)} since |= ψ →

(x3
3 > 0) and Γ = {(−x5

3, 0, 1)} since |= ψ → (−x5
3 ≤ 0). Moreover, we choose

j(x3
3,0,1) = 9, i(x3

3,0,1) = 0, which is possible since (9, 0) >lex (1, 0). Similarly, we
choose j(−x5

3,0,1) = 0, i(−x5
3,0,1) = 0, since (1, 0) >lex (0, 0). Thus, we replace

x3
3 and −x5

3 by the larger addends x3
3 · 9n and 0. The motivation for the latter

is that this removes all addends with exponent 5 from npe. The motivation
for the former is that then, we have both the addends −x3

3 · 9n and x3
3 · 9n in

the expression which cancel out, i.e., this removes all addends with exponent 3.
Hence, we obtain �npe�ψ

Δ,Γ = p2 · 16n + p1 · 9n with p2 = −x2
1 and p1 = x2. To

find a suitable over-approximation which removes addends with high exponents,
our implementation uses a heuristic for the choice of Δ, Γ , i(p,a,b), and j(p,a,b).

The following lemma shows the soundness of the over-approximation
�npe�ψ

Δ,Γ .

Lemma 26 (Soundness of �npe�ψ
Δ,Γ ). Let ψ, npe, Δ, Γ , i(p,a,b), j(p,a,b), and

�npe�ψ
Δ,Γ be as in Definition 24, and let D�npe	ψ

Δ,Γ
=

max( {1-monotonicity threshold of (j(p,a,b), i(p,a,b)) and (b, a) | (p, a, b) ∈ Δ}
∪ {1-monotonicity threshold of (b, a) and (j(p,a,b), i(p,a,b)) | (p, a, b) ∈ Γ}).

Then for all e ∈ Ψ and all n ≥ D�npe	ψ
Δ,Γ

, we have σe(�npe�ψ
Δ,Γ ) ≥ σe(npe).

For any terminating tnn-loop (ψ,ϕ, η), Theorem 27 now uses the new con-
cepts of Definition 22 and 24 to compute a polynomial sth
 which is an upper
bound on the loop’s stabilization threshold (and hence, on its runtime). For any
atom α = (s1 < s2) (resp. s2 − s1 > 0) in the loop guard ϕ, let npeα ∈ NPE be
a poly-exponential expression which results from multiplying (s2 − s1)[x/cln

x ]
with the least common multiple of all denominators occurring in (s2−s1)[x/cln

x ].
Since the loop is terminating, for some of these atoms this expression will become
non-positive for large enough n and our goal is to compute bounds on their
corresponding stabilization thresholds. First, one can replace npeα by an over-
approximation �npeα�ψ′

Δ,Γ where ψ′ = (ψ ∧ ϕ) considers both the invariant ψ

3 Δ and Γ do not have to contain all such tuples, but can be (possibly empty) subsets.
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and the guard ϕ. Let Ψ ′ ⊆ Z
d such that e ∈ Ψ ′ iff σe(ψ′) holds. By Lemma

26 (i.e., σe(�npeα�ψ′
Δ,Γ ) ≥ σe(npeα) for all e ∈ Ψ ′), it suffices to compute a

bound on the stabilization threshold of �npeα�ψ′
Δ,Γ if it is always non-positive for

large enough n, because if �npeα�ψ′
Δ,Γ is non-positive, then so is npeα. We say

that an over-approximation �npeα�ψ′
Δ,Γ is eventually non-positive iff whenever

�npeα�ψ′
Δ,Γ �= npeα, then one can show that for all e ∈ Ψ ′, σe(�npeα�ψ′

Δ,Γ ) is

always non-positive for large enough n.4 Using over-approximations �npeα�ψ′
Δ,Γ

can be advantageous because �npeα�ψ′
Δ,Γ may contain less monomials than npeα

and thus, the construction � from Definition 22 can yield a polynomial of lower
degree. So although npeα’s stabilization threshold might be smaller than the one
of �npeα�ψ′

Δ,Γ , our technique might compute a smaller bound on the stabilization

threshold when considering �npeα�ψ′
Δ,Γ instead of npe.

Theorem 27 (Bound on Stabilization Threshold). Let L = (ψ,ϕ, η) be a
terminating tnn-loop, let ψ′ = (ψ ∧ ϕ), and let cln

x be a normalized closed form
for η with start value n0. For every atom α = (s1 < s2) in ϕ, let �npeα�ψ′

Δ,Γ be an
eventually non-positive over-approximation of npeα and let Dα = D�npeα	ψ′

Δ,Γ

.

If �npeα�ψ′
Δ,Γ =

∑�
j=1 pj ·naj ·bn

j with pj �= 0 for all 1 ≤ j ≤ � and (b�, a�) >lex

. . . >lex (b1, a1), then let Cα = max{1, N2,M2, . . . , N�,M�}, where we have:

Mj =

⎧
⎨

⎩

0, if bj = bj−1

1-monotonicity threshold of
(bj , aj) and (bj−1, aj−1 + 1), if bj > bj−1

Nj =

⎧
⎨

⎩

1, if j = 2
mt′, if j = 3
max{mt, mt′}, if j > 3

Here, mt′ is the (j − 2)-monotonicity threshold of (bj−1, aj−1) and (bj−2, aj−2)
and mt = max{1-monotonicity threshold of (bj−2, aj−2) and (bi, ai) | 1 ≤ i ≤
j−3}. Let Polα = {p1, . . . , p�−1}, Pol =

⋃
atom α occurs in ϕ Polα, C = max{Cα |

atom α occurs in ϕ}, D = max{Dα | atom α occurs in ϕ}, and sth
 ∈ Z[x] with
sth
 = 2 · �Pol + max{n0, C,D}. Then for all e ∈ Ψ ′, we have |σe |(sth
) ≥
sth(ψ,ϕ,η)(e). If the tnn-loop has the initial transition t0 and looping transition
t, then RBglo(t0) = 1 and RBglo(t) = sth
 is a global runtime bound for L.

Example 28. The guard ϕ of the tnn-loop in Example 17 has the atoms α =
(x2

1 + x5
3 < x2), α′ = (0 < x1), and α′′ = (0 < −x1) (since x1 �= 0 is transformed

into α′∨α′′). When instantiating the variables by the closed forms of Example 19
with start value n0 = 0, Theorem 27 computes the bound 1 on the stabilization
thresholds for α′ and α′′. So the only interesting atom is α = (0 < s2 − s1) for
s1 = x2

1 +x5
3 and s2 = x2. We get npeα = (s2 −s1)[x/cln

x ] = q3 ·16n +q2 ·9n +q1,
with qj as in Example 25.

4 This can be shown similar to the proof of (2) for (non-)termination of the loop. Thus,

we transform ∃ x ∈ Z
d, m ∈ N. ∀n ∈ N≥m. ψ′ ∧ �npeα�ψ′

Δ,Γ > 0 into an existential
formula as in [15] and try to prove its invalidity by an SMT solver.
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In the program of Fig. 1, the corresponding self-loop t5 has two entry tran-
sitions t4 and t1 which result in two tnn-loops with the update-invariants
ψ1 = true resulting from transition t4 and ψ2 = (x3 > 0) from t1. So ψ2 is
an update-invariant of t5 which always holds when reaching t5 via transition t1.

For ψ1 = true, we choose Δ = Γ = ∅, i.e., �npeα�ψ′
1

Δ,Γ = npeα. So we have
b3 = 16, b2 = 9, b1 = 1, and aj = 0 for all 1 ≤ j ≤ 3. We obtain

M2 = 0, as 0 is the 1-monotonicity threshold of (9, 0) and (1, 1)
M3 = 0, as 0 is the 1-monotonicity threshold of (16, 0) and (9, 1)

N2 = 1 and N3 = 1, as 1 is the 1-monotonicity threshold of (9, 0) and (1, 0).

Hence, we get C = Cα = max{1, N2,M2, N3,M3} = 1. So we obtain the runtime
bound sth


ψ1
= 2 ·�{q1, q2}+max{n0, Cα} = 2 ·x2 +2 ·x3

3 +2 ·x5
3 +1 for the loop

t5
t5 w.r.t. ψ1. By Lemma 16, this means that 2·sth

ψ1

+1 = 4·x2+4·x3
3+4·x5

3+3
is a runtime bound for the loop at transition t5.

For the update-invariant ψ2 = (x3 > 0), we use the over-approximation
�npeα�ψ′

2
Δ,Γ = p2 · 16n + p1 · 9n with p2 = −x2

1 and p1 = x2 from Example 25,
where ψ′

2 = (ψ2∧ϕ) implies that it is always non-positive for large enough n. Now
we obtain M2 = 0 (the 1-monotonicity threshold of (16, 0) and (9, 1)) and N2 = 1,
where C = Cα = max{1, N2,M2} = 1. Moreover, we have Dα = max{1, 0} = 1,
since

1 is the 1-monotonicity threshold of (9, 0) and (1, 0), and
0 is the 1-monotonicity threshold of (1, 0) and (0, 0).

We now get the tighter bound sth

ψ2

= 2 · �{p1} + max{n0, Cα,Dα} = 2 · x2 + 1
for t5 
 t5. So t5’s runtime bound is 2 · sth


ψ2
+1 = 4 ·x2 +3 when using invariant

ψ2.

Theorem 29 shows how the technique of Lemma 16 and Theorem 27 can
be used to compute local runtime bounds for twn-loops whenever such loops
occur within an integer program. To this end, one needs the new Theorem 11
where in contrast to [6,18] these local bounds do not have to result from ranking
functions.

To turn a self-loop t and r ∈ E{t} from a larger program P into a twn-loop
(ψ,ϕ, η), we use t’s guard ϕ and update η. To obtain an update-invariant ψ, our
implementation uses the Apron library [23] for computing invariants on a version
of the full program where we remove all entry transitions E{t} except r.5 From
the invariants computed for t, we take those that are also update-invariants of t.

Theorem 29 (Local Bounds for Twn-Loops). Let P = (PV,L, �0, T ) be
an integer program with PV ′ = {x1, . . . , xd} ⊆ PV. Let t = (�, ϕ, η, �) ∈ T with
ϕ ∈ F(PV ′), η(v) ∈ Z[PV ′] for all v ∈ PV ′, and η(v) = v for all v ∈ PV\PV ′.
For any entry transition r ∈ E{t}, let ψ ∈ F(PV ′) such that |= ψ → η(ψ) and

5 Regarding invariants for the full program in the computation of local bounds for t
is possible since in contrast to [6,18] our definition of local bounds from Definition
9 is restricted to states that are reachable from an initial configuration (�0, σ0).
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such that σ(ψ) holds whenever there is a σ0 ∈ Σ with (�0, σ0) →∗
T ◦ →r (�, σ).

If L = (ψ,ϕ, η) is a terminating tnn-loop, then let RBloc(→r {t}) = sth
, where
sth
 is defined as in Theorem 27. If L is a terminating twn-loop but no tnn-
loop, let RBloc(→r {t}) = 2 · sth
 + 1, where sth
 is the bound of Theorem 27
computed for L 
 L. Otherwise, let RBloc(→r {t}) = ω. Then RBloc is a local
runtime bound for {t} = T ′

> = T ′ in the program P.

Example 30. In Fig. 1, we consider the self-loop t5 with E{t5} = {t4, t1} and the
update-invariants ψ1 = true resp. ψ2 = (x3 > 0). For t5’s guard ϕ and update
η, both (ψi, ϕ, η) are terminating twn-loops (see Example 14), i.e., (2) is invalid.

By Theorem 29 and Example 28, RBloc with RBloc(→t4 {t5}) = 4 · x2 + 4 ·
x3

3 + 4 · x5
3 + 3 and RBloc(→t1 {t5}) = 4 · x2 + 3 is a local runtime bound for

{t5} = T ′
> = T ′ in the program of Fig. 1. As shown in Example 12, Theorem 11

then yields the global runtime bound RBglo(t5) = 8 · x4 · x5 + 13006 · x4.

5 Local Runtime Bounds for Twn-Cycles

Section 4 introduced a technique to determine local runtime bounds for twn-self-
loops in a program. To increase its applicability, we now extend it to larger
cycles. For every entry transition of the cycle, we chain the transitions of the
cycle, starting with the transition which follows the entry transition. In this way,
we obtain loops consisting of a single transition. If the chained loop is a twn-loop,
we can apply Theorem 29 to compute a local runtime bound. Any local bound
on the chained transition is also a bound on each of the original transitions.6

By Theorem 29, we obtain a bound on the number of evaluations of the
complete cycle. However, we also have to consider a partial execution which
stops before traversing the full cycle. Therefore, we increase every local runtime
bound by 1.

Note that this replacement of a cycle by a self-loop which results from chain-
ing its transitions is only sound for simple cycles. A cycle is simple if each itera-
tion through the cycle can only be done in a unique way. So the cycle must not
have any subcycles and there also must not be any indeterminisms concerning
the next transition to be taken. Formally, C = {t1, . . . , tn} ⊂ T is a simple cycle
if C does not contain temporary variables and there are pairwise different loca-
tions �1, . . . , �n such that ti = (�i, , , �i+1) for 1 ≤ i ≤ n−1 and tn = (�n, , , �1).
This ensures that if there is an evaluation with →ti

◦ →∗
C\{ti} ◦ →ti

, then the
steps with →∗

C\{ti} have the form →ti+1 ◦ . . . ◦ →tn
◦ →t1 ◦ . . . ◦ →ti−1 .

Algorithm 1 describes how to compute a local runtime bound for a simple
cycle C = {t1, . . . , tn} as above. In the loop of Line 2, we iterate over all entry
transitions r of C. If r reaches the transition ti, then in Line 3 and 4 we chain
ti 
 . . . 
 tn 
 t1 
 . . . 
 ti−1 which corresponds to one iteration of the cycle starting

6 This is sufficient for our improved definition of local bounds in Definition 9 where in
contrast to [6,18] we do not require a bound on the sum but only on each transition
in the considered set T ′. Moreover, here we again benefit from our extension to
compute individual local bounds for different entry transitions.
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Algorithm 1. Algorithm to Compute Local Runtime Bounds for Cycles
input :A program (PV, L, �0, T ) and a simple cycle C = {t1, . . . , tn} ⊂ T
output :A local runtime bound RBloc for C = T ′

> = T ′

1 Initialize RBloc: RBloc(→r C) = ω for all r ∈ EC .
2 forall r ∈ EC do
3 Let i ∈ {1, . . . , n} such that r’s target location is the start location �i of ti.
4 Let t = ti � . . . � tn � t1 � . . . � ti−1.
5 if there exists a renaming π of PV such that π(t) results in a twn-loop then
6 Set RBloc(→r C) ← π−1(1 + result of Theorem 29 on π(t) and π(r)).

7 return local runtime bound RBloc.

Fig. 2. An Integer Program with a Nested Non-Self-Loop

in ti. If a suitable renaming (and thus also reordering) of the variables turns the
chained transition into a twn-loop, then we use Theorem 29 to compute a local
runtime bound RBloc(→r C) in Lines 5 and 6. If the chained transition does not
give rise to a twn-loop, then RBloc(→r C) is ω (Line 1). In practice, to use the
twn-technique for a transition t in a program, our tool KoAT searches for those
simple cycles that contain t and where the chained cycle is a twn-loop. Among
those cycles it chooses the one with the smallest runtime bounds for its entry
transitions.

Theorem 31 (Correctness of Algorithm 1). Let P = (PV,L, �0, T ) be an
integer program and let C ⊂ T be a simple cycle in P. Then the result RBloc :
EC → B of Algorithm 1 is a local runtime bound for C = T ′

> = T ′.

Example 32. We apply Algorithm 1 on the cycle C = {t5a, t5b} of the program
in Fig. 2. C’s entry transitions t1 and t4 both end in �3. Chaining t5a and t5b

yields the transition t5 of Fig. 1, i.e., t5 = t5a 
 t5b. Thus, Algorithm 1 essentially
transforms the program of Fig. 2 into Fig. 1. As in Example 28 and 30, we obtain
RBloc(→t4 C) = 1 + (2 · sth


true + 1) = 4 · x2 + 4 · x3
3 + 4 · x5

3 + 4 and RBloc(→t1

C) = 1 + (2 · sth

x3>0 + 1) = 4 · x2 + 4, resulting in the global runtime bound

RBglo(t5a) = RBglo(t5b) = 8 · x4 · x5 + 13008 · x4, which again yields rc(σ0) ∈
O(n2).

6 Conclusion and Evaluation

We showed that results on subclasses of programs with computable complexity
bounds like [19] are not only theoretically interesting, but they have an impor-
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tant practical value. To our knowledge, our paper is the first to integrate such
results into an incomplete approach for automated complexity analysis like [6,18].
For this integration, we developed several novel contributions which extend and
improve the previous approaches in [6,18,19] substantially:

(a) We extended the concept of local runtime bounds such that they can now
depend on entry transitions (Definition 9).

(b) We generalized the computation of global runtime bounds such that one can
now lift arbitrary local bounds to global bounds (Theorem 11). In particular,
the local bounds might be due to either ranking functions or twn-loops.

(c) We improved the technique for the computation of bounds on twn-loops such
that these bounds now take the roles of the different variables into account
(Definition 22, Corollary 23, and Theorem 27).

(d) We extended the notion of twn-loops by update-invariants and developed
a new over-approximation of their closed forms which takes invariants into
account (Definition 13 and 24, Lemma 26, and Theorem 27).

(e) We extended the handling of twn-loops to twn-cycles (Theorem 31).

The need for these improvements is demonstrated by our leading example in
Fig. 1 (where the contributions (a)–(d) are needed to infer quadratic runtime
complexity) and by the example in Fig. 2 (which illustrates (e)). In this way, the
power of automated complexity analysis is increased substantially, because now
one can also infer runtime bounds for programs containing non-linear arithmetic.

To demonstrate the power of our approach, we evaluated the integration
of our new technique to infer local runtime bounds for twn-cycles in our re-
implementation of the tool KoAT (written in OCaml) and compare the results to
other state-of-the-art tools. To distinguish our re-implementation of KoAT from
the original version of the tool from [6], let KoAT1 refer to the tool from [6] and
let KoAT2 refer to our new re-implementation. KoAT2 applies a local control-
flow refinement technique [18] (using the tool iRankFinder [8]) and preprocesses
the program in the beginning, e.g., by extending the guards of transitions by
invariants inferred using the Apron library [23]. For all occurring SMT problems,
KoAT2 uses Z3 [28]. We tested the following configurations of KoAT2, which
differ in the techniques used for the computation of local runtime bounds:

• KoAT2+RF only uses linear ranking functions to compute local runtime
bounds

• KoAT2+MΦRF5 uses multiphase-linear ranking functions of depth ≤ 5
• KoAT2+TWN only uses twn-cycles to compute local runtime bounds (Algo-

rithm 1)
• KoAT2+TWN+RF uses Algorithm 1 for twn-cycles and linear ranking func-

tions
• KoAT2+TWN+MΦRF5 uses Algorithm 1 for twn-cycles and MΦRFs of depth

≤ 5

Existing approaches for automated complexity analysis are already very pow-
erful on programs that only use linear arithmetic in their guards and updates.
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Fig. 3. Evaluation on the Collection CINT+

The corresponding benchmarks for Complexity of Integer Transitions Systems
(CITS) and Complexity of C Integer Programs (CINT) from the Termination
Problems Data Base [33] which is used in the annual Termination and Com-
plexity Competition (TermComp) [17] contain almost only examples with linear
arithmetic. Here, the existing tools already infer finite runtimes for more than
89% of those examples in the collections CITS and CINT where this might7 be
possible.

The main benefit of our new integration of the twn-technique is that in this
way one can also infer finite runtime bounds for programs that contain non-linear
guards or updates. To demonstrate this, we extended both collections CITS and
CINT by 20 examples that represent typical such programs, including several
benchmarks from the literature [3,14,15,18,20,34], as well as our programs from
Fig. 1 and 2. See [27] for a detailed list and description of these examples.

Figure 3 presents our evaluation on the collection CINT+, consisting of the 484
examples from CINT and our 20 additional examples for non-linear arithmetic.
We refer to [27] for the (similar) results on the corresponding collection CITS+.

In the C programs of CINT+, all variables are interpreted as integers over Z

(i.e., without overflows). For KoAT2 and KoAT1, we used Clang [7] and llvm2kittel
[10] to transform C programs into integer transitions systems as in Definition 2.
We compare KoAT2 with KoAT1 [6] and the tools CoFloCo [11,12], MaxCore [2]
with CoFloCo in the backend, and Loopus [31]. We do not compare with RaML
[21], as it does not support programs whose complexity depends on (possibly
negative) integers (see [29]). We also do not compare with PUBS [1], because as
stated in [9] by one of its authors, CoFloCo is stronger than PUBS. For the same
reason, we only consider MaxCore with the backend CoFloCo instead of PUBS.

All tools were run inside an Ubuntu Docker container on a machine with an
AMD Ryzen 7 3700X octa-core CPU and 48GB of RAM. As in TermComp, we
applied a timeout of 5 min for every program.

In Fig. 3, the first entry in every cell denotes the number of benchmarks from
CINT+ where the respective tool inferred the corresponding bound. The number

7 The tool LoAT [13,16] proves unbounded runtime for 217 of the 781 examples from
CITS and iRankFinder [4,8] proves non-termination for 118 of 484 programs of CINT.
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in brackets is the corresponding number of benchmarks when only regarding
our 20 new examples for non-linear arithmetic. The runtime bounds computed
by the tools are compared asymptotically as functions which depend on the
largest initial absolute value n of all program variables. So for instance, there
are 26 + 231 = 257 programs in CINT+ (and 5 of them come from our new
examples) where KoAT2+TWN+MΦRF5 can show that rc(σ0) ∈ O(n) holds for
all initial states σ0 where |σ0(v)| ≤ n for all v ∈ PV. For 26 of these programs,
KoAT2+TWN+MΦRF5 can even show that rc(σ0) ∈ O(1), i.e., their runtime
complexity is constant. Overall, this configuration succeeds on 344 examples, i.e.,
“< ∞” is the number of examples where a finite bound on the runtime complexity
could be computed by the respective tool within the time limit. “AVG+(s)” is
the average runtime of the tool on successful runs in seconds, i.e., where the tool
inferred a finite time bound before reaching the timeout, whereas “AVG(s)” is
the average runtime of the tool on all runs including timeouts.

On the original benchmarks CINT where very few examples contain non-linear
arithmetic, integrating TWN into a configuration that already uses multiphase-
linear ranking functions does not increase power much: KoAT2+TWN+MΦRF5
succeeds on 344−15 = 329 such programs and KoAT2+MΦRF5 solves 328−1 =
327 examples. On the other hand, if one only has linear ranking functions, then an
improvement via our twn-technique has similar effects as an improvement with
multiphase-linear ranking functions (here, the success rate of KoAT2+MΦRF5 is
similar to KoAT2+TWN+RF which solves 341 − 15 = 326 such programs).

But the main benefit of our technique is that it also allows to successfully han-
dle examples with non-linear arithmetic. Here, our new technique is significantly
more powerful than previous ones. Other tools and configurations without TWN
in Fig. 3 solve at most 2 of the 20 new examples. In contrast, KoAT2+TWN+RF
and KoAT2+TWN+MΦRF5 both succeed on 15 of them.8 In particular, our run-
ning examples from Fig. 1 and 2 and even isolated twn-loops like t5 or t5 
 t5
from Example 14 and 17 can only be solved by KoAT2 with our twn-technique.

To summarize, our evaluations show that KoAT2 with the added twn-
technique outperforms all other configurations and tools for automated complex-
ity analysis on all considered benchmark sets (i.e., CINT+, CINT, CITS+, and
CITS) and it is the only tool which is also powerful on examples with non-linear
arithmetic.

KoAT’s source code, a binary, and a Docker image are available at https://
aprove-developers.github.io/KoAT TWN/. The website also has details on our
experiments and web interfaces to run KoAT’s configurations directly online.

Acknowledgments. We are indebted to M. Hark for many fruitful discussions about
complexity, twn-loops, and KoAT. We are grateful to S. Genaim and J. J. Doménech
for a suitable version of iRankFinder which we could use for control-flow refinement
in KoAT’s backend. Moreover, we thank A. Rubio and E. Mart́ın-Mart́ın for a static
binary of MaxCore, A. Flores-Montoya and F. Zuleger for help in running CoFloCo and
Loopus, F. Frohn for help and advice, and the reviewers for their feedback to improve
the paper.

8 One is the non-terminating leading example of [15], so at most 19 might terminate.
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