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Preface

Together neuroscience and computing are driving forces for research and innovation.
They enable new insights into the brain’s complexity as well as biological information
processing and lay ground for progress in future computing. Making use of this collab-
orative effort by bringing together relevant key players in the field of neuroscience and
future computing, the workshop on Brain-Inspired Computing (BrainComp) aims to shed
a light on the digital transformation of neuroscience by high performance computing
(HPC).

The International Workshop on Brain-Inspired Computing, held in Cetraro, Italy,
during July 15–19, 2019, was jointly organized by the Human Brain Project, the
University of Calabria, the University of Groningen, and the Research Centre Juelich. A
highlight of this workshop edition was the BrainComp Young Researchers Competition
in which young researchers were invited to solve neuroscientific problems by using HPC
resources that were kindly provided by leading European HPC centers. The workshop
proceedings include contributions from renowned scientists and early career researchers
who participated in the workshop. It includes research on brain atlasing, multi-scale
models and simulation, and HPC as well as data infrastructures for neuroscience, as
well as artificial and natural neural architectures. All submissions were evaluated in a
single-blind review process. The acceptance rate for BrainComp 2019 was 100%.
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Thomas Lippert
Nicolai Petkov
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Machine Learning and Deep Learning
Approaches in Human Brain Mapping



A High-Resolution Model of the Human
Entorhinal Cortex in the ‘BigBrain’ – Use Case

for Machine Learning and 3D Analyses

Sabrina Behuet1(B), Sebastian Bludau1, Olga Kedo1, Christian Schiffer1,2,
Timo Dickscheid1,2, Andrea Brandstetter1, Philippe Massicotte3,

Mona Omidyeganeh3,4, Alan Evans4, and Katrin Amunts1,5

1 Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
s.behuet@fz-juelich.de

2 Helmholtz AI, Research Centre Jülich, Jülich, Germany
3 National Research Council of Canada (NRC), Ottawa, Canada

4 Department of Neurology and Neurosurgery, Montréal Neurological Institute (MNI),
McGill University, Montréal, Canada

5 C. and O. Vogt Institute of Brain Research, Medical Faculty, Heinrich-Heine University,
Düsseldorf, Germany

Abstract. The ‘BigBrain’ is a high-resolution data set of the human brain that
enables three-dimensional (3D) analyses with a 20 μm spatial resolution at nearly
cellular level. We use this data set to explore pre-α (cell) islands of layer 2 in
the entorhinal cortex (EC), which are early affected in Alzheimer’s disease and
have therefore been the focus of research for many years. They appear mostly
in a round and elongated shape as shown in microscopic studies. Some studies
suggested that islands may be interconnected based on analyses of their shape
and size in two-dimensional (2D) space. Here, we characterized morphological
features (shape, size, and distribution) of pre-α islands in the ‘BigBrain’, based
on 3D-reconstructions of gapless series of cell-body-stained sections. The EC
was annotated manually, and a machine-learning tool was trained to identify and
segment islands with subsequent visualization using high-performance computing
(HPC). Islands were visualized as 3D surfaces and their geometry was analyzed.
Their morphology was complex: they appeared to be composed of interconnected
islands of different types found in 2D histological sections of EC, with various
shapes in 3D. Differences in the rostral-to-caudal part of EC were identified by
specific distribution and size of islands, with implications for connectivity and
function of the EC. 3D compactness analysis found more round and complex
islands than elongated ones. The present study represents a use case for studying
large microscopic data sets. It provides reference data for studies, e.g. investigating
neurodegenerative diseases, where specific alterations in layer 2 were previously
reported.

Keywords: Entorhinal cortex · Pre-α islands · ‘BigBrain’ · Machine-learning ·
3D visualization · Large data sets
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1 Introduction

The ‘BigBrain’ model represents a three-dimensional (3D)-reconstructed data set at
histological sections with a spatial resolution of 20 μm isotropic [1]. It is based on
a series of 7404 images of histological sections, where each was scanned originally
with an in-plane resolution of 10 μm, down-sampled to 20 μm, resulting in a total
data size of 1 TByte [1]. This data set and model represents a unique high-resolution
anatomical reference for applications from neuroimaging, modeling and simulation,
neurophysiology as well as for research on artificial neuronal networks (for an overview
of recent research see https://bigbrainproject.org/hiball.html). At the same time, the
‘BigBrain’ is both a research target and a tool to set up workflows for analyzing large data
sets, where methods from artificial intelligence (AI), e.g. machine learning, are part of
advanced workflows running on the supercomputers to advance our understanding of the
complexity of the brain. Along this line of reasoning, we here address the microstructural
organization of the human entorhinal cortex (EC).

The EC is a brain area of the mesial temporal cortex and occupies the rostral part of
the parahippocampal gyrus (PhG) (Fig. 1). A unique feature of this part of the so-called
periallocortex is the Substratum dissecans, an almost cell-free sublayer [2–6]. It extends
parallel to the cortical surface in the midst of the cortex, macroscopically often separating
EC into an inner and an outer principal layer [3, 5]. The most prominent feature of EC
is layer 2 (or Stratum stellare [4]), which is composed of neurons clustered into groups
with different numbers of neurons and different shapes and sizes, the so-called pre-α
islands [3, 5] (Fig. 1). The surrounding tissue (‘neuropil’) separates the pre-α islands
from each other. Their morphology can presently only be studied in two-dimensional
(2D) histological sections of postmortem brain with a spatial resolution that is much
higher than that of magnetic resonance imaging (MRI).

Based on histological studies, the shape of pre-α islands was described as elongated
in the rostral and medial part of EC, and round in the caudal extent [2]. This variability
of pre-α islands in layer 2 combined with the specific cytoarchitectonic features of other
layers along the extent of EC led to a partition of this brain area into several subareas
[2, 7, 8]. For example, Brodmann (1909) [7] identified areas (BA)28a and BA28b, while
Braak and Braak (1992) [8] defined a medial, lateral, and central subarea.

Layer 2 and its pre-α islands are involved in the so-called perforant pathway that sup-
ports the processing of spatial memory and context information [9]. Significant decrease
of its pre-α cells [10] among other alterations are found in the early stages of Alzheimer’s
disease (AD) and may underline early symptoms such as mild cognitive deficits and
spatial disorientation. This makes them an interesting research target for the research of
AD, but also other neurodegenerative and psychiatric diseases (e.g. Parkinson’s disease,
schizophrenia) [8, 11].

Previous studies indicated a rather complex morphology of pre-α islands as these
islands were connected by “bridges” in different types of sections [8, 12] and section
planes [13]. For example, the latter study noted immunolabeled “bridges” in the inter-
stices (spaces between two cell islands) that appeared to connect two islands. However,
these morphological analyses were limited to only one section plane (e.g. by using either
flat, tangential, or sagittal sections) and were therefore not able to follow the progression
of pre-α islands in the other planes to fully characterize their shape and size.

https://bigbrainproject.org/hiball.html
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Fig. 1. Coronal sections of the human ‘BigBrain’ model (20 μm isotropic resolution) of the EC
(on the left) and its cytoarchitecture (1 μm in-plane resolution) in its rostral (A), intermediate (B),
and caudal part (C) (on the right). Dark contours: EC in the left hemisphere, light contour: right
EC. Note the different types of pre-α islands (elongated, round, and complex) in layer 2 (white
dotted lines). Section numbers and position in the ‘BigBrain’ are shown in the upper left corner.
Layers of the EC indicated by Arabic numerals. Abbreviations: AmbG, Ambient gyrus; PhG,
Parahippocampal gyrus; HIP, Hippocampus. Layers of EC [4]: 1, Layer 1 (Stratum moleculare); 2,
Layer 2 (Stratum stellare); 3, Layer 3 (Stratum pyramidale); 3 diss and 4 diss, Substrata dissecantia;
4, Layer 4 (Stratum magnocellulare); 5, Layer 5 (Stratum parvocellulare); 6, Layer 6 (Stratum
multiforme). * in B: clusters of the superficial layer 3.
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Therefore, the aim of the present study was to combine established and state-of-the-
art data sets and tools into a workflow for a comprehensive analysis of the morphology of
layer 2 pre-α islands in their reconstructed 3D environment. Specifically, this study aims
(i) to characterize the morphology of the pre-α islands of layer 2 and their distribution
along the longitudinal axis of the EC, and (ii) to measure and analyze distributional
features of pre-α islands (‘gradients’ based on intensity measurements) and their shape
(‘compactness’) in the human EC.

Based on the high-resolution 3D ‘BigBrain’ model, the left and right EC were anno-
tated, followed by the generation of 3D surface meshes in Atelier3D (A3D, National
Research Council of Canada, Canada, [14]), a software that was optimized to visualize
and annotate the very large data set of the reconstructed ‘BigBrain’ model. Subsequent
machine-learning based analysis was used to distinguish between pre-α islands and
background. Data analysis and visualization of the pre-α islands were performed on
cropped annotated parts of the whole brain sections of the ‘BigBrain’ [1]. The visualiza-
tion of the EC with its pre-α islands in the ‘BigBrain’ data set was performed using the
supercomputer JURECA at Jülich Supercomputing Centre (JSC) [15]. Combined they
enabled the visualization and in-depth analysis of the pre-α islands, their sizes, shapes,
and underlying gray values in the reconstructed environment of the complete EC and
the entire human brain.

2 Material and Methods

2.1 Histological Processing and 3D-Reconstruction of ‘BigBrain’

In accordance with ethical requirements, a post-mortem human brain of a 65-year old
male body donor with no medical history of neurological or mental illness was acquired
during an autopsy performed under the body donor program of the University of Düssel-
dorf [1] (#4863). The brain was sectioned in the coronal plane (slice thickness: 20 μm)
and stained for cell bodies using modified silver staining. 7404 sections were acquired
and digitized with an in-plane resolution of 10 μm, then down-sampled to 20 μm and 3D-
reconstructed, resulting in an isotropic resolution of 20 μm and a data set of about 1 TByte
[1]. In addition, histological sections were digitized with high throughput bright-field
microscopes (TissueScope LE120, Huron Digital Pathology), resulting in an in-plane
resolution of 1 μm, which was used to verify the results at high-resolution. The image
size for the latter was about 8–10 GByte per brain section image (8bit, bigtif format,
uncompressed).

2.2 Border Definition and Annotation of the EC in A3D

The analysis of EC and adjacent regions was performed in high-resolution (1 μm) sec-
tions of the ‘BigBrain’ available in MicroDraw (The Institut Pasteur, Paris, France,
https://github.com/r03ert0/microdraw) (Fig. 2). The cytoarchitectonic criteria for iden-
tifying the borders were based on previous cytoarchitectonic mappings of EC in ten
post-mortem brains [16] according to criteria in literature [2, 17–21]. The EC was anno-
tated in the images of the 3D-reconstructed ‘BigBrain’ (20 μm isotropic resolution)

https://github.com/r03ert0/microdraw
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Fig. 2. Sequence and input/output data of the used programs. The rounded boxes indicate software
tools, while square boxes indicate the main processing steps. Hexagons indicate plug-ins used
in ImageJ (U.S. National Institutes of Health, USA) [24], while the half-square/angular boxes
show the results of each process. The respective programs were used online in a browser, on a
Windows operating system, on a Unix operating system, and in an HPC environment. Border
identification in Microdraw (The Institut Pasteur, Paris, France, https://github.com/r03ert0/mic
rodraw) was performed in sections of the ‘BigBrain’ with an in-plane resolution of 1 μm, while
all other steps were performed in 3D based on the 3D-reconstructed ‘BigBrain’ sections with an
isotropic resolution of 20 μm.

[1] using A3D [14] (Fig. 3). A3D was adapted in the framework of the international
collaboration project ‘BigBrain’ to visualize and annotate the spatial data of the 3D
reconstructed histological ‘BigBrain’ data set (https://bigbrainproject.org/hiball.html).
As a result, 77 annotations in the left hemisphere (ID3, blue/dark) and 92 annotations in
the right hemisphere (ID2, green/light) were obtained (Figs. 2 and 3). In general, every
25th section was annotated, but in cases where the 3D geometry, e.g. the thickness and
total surface area of EC, changed considerably between the gaps of 25 sections, addi-
tional annotations were performed in every fifth section. A3D was then used to create
gapless 3D structures from the original 2D annotations.

This resulted in individual 3D surface meshes of the EC of each hemisphere, com-
puted in A3D (Fig. 2). The surfaces were checked for artifacts, iteratively adjusted, and
corrected. The rough edges on the painted surfaces are delicately smoothed locally using
normalized curvature operators in the normal direction [22, 23]. The smoothing method
is applied on the 3D surfaces preserving their specific structures. This smoothing retains
the area of the 3D triangular mesh as well as the volume inside the surface. It also avoids
moving too far from the drawn points based on thresholds. Subsequently, the 3D Carte-
sian coordinates of EC surface contours were exported to be processed in MATLAB®
(MathWorks, USA), with x-coordinates indicating the mediolateral (sagittal) axis, y-
coordinates the dorsoventral (horizontal) axis, and the z-coordinates the rostrocaudal
(coronal) axis (Fig. 3).

https://github.com/r03ert0/microdraw
https://bigbrainproject.org/hiball.html
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Fig. 3. Overview of the reconstructed sagittal, original coronal, and reconstructed horizontal
section planes, as well as of the ‘3D view – volume’ (bottom right) of the ‘BigBrain’ in A3D. EC
of the left hemisphere dark, right hemisphere light. The EC is visualized as corresponding surfaces
within the 3D ‘BigBrain’ model, with the surfaces magnified in the cutout for better visualization.

The coordinates of the surfaces resulted in dense binary masks of the EC and its
pre-α islands. Furthermore, the coordinates were used to crop smaller parts of the whole
brain images including EC (Fig. 2). In total, 1065 images for the left and 1063 images for
the right hemisphere were cropped, resulting in a data set of about 1.2 GByte. Finally, a
3D median filter (r = 2px) was used to reduce the signal-to-noise ratio and emphasize
the pre-α island boundaries.

2.3 Segmentation of Pre-α Islands in Ilastik

Segmentation of pre-α islands of the left and the right hemisphere was performed sepa-
rately using the machine-learning based ‘Pixel Classification’ workflow of ilastik (Euro-
pean Molecular Biology Laboratory, Heidelberg, Germany) [25] (Fig. 2). After loading
the cropped EC image stacks from A3D (20 μm isotropic resolution) and selecting all
available descriptive image filters as features, a ‘training’ based on the Random Forest
classifier was performed using training labeling for the classes background (Fig. 4, light)
and pre-α islands (Fig. 4, dark). In total, training was performed per hemisphere on six-
teen coronal (every 50th to 100th section), eight sagittal (every 100th section), and six
horizontal (every 50th section) cropped EC sections. The 37 features include descriptors
of pixel intensity (Gaussian Smoothing), edge-ness (Laplacian of Gaussian, Gaussian
Gradient Magnitude, and Difference of Gaussians), and texture (Structure Tensor Eigen-
values, Hessian of Gaussian Eigenvalues) including their respective scales (σ: 0.3 (only
Gaussian Smoothing), 0.7, 1, 1.6, 3.5, 5, and 10). The Random Forest classifier uses an
ensemble of numerous individual decision trees, and here 100 trees were used, with a
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class prediction made for each tree individually (the class with the most votes being the
prediction of the model) [25]. After completion of the training, segmented image stacks
for the left hemisphere (1065 images, 8 bit, 898 × 712 pixels, 641 MByte) and right
hemisphere (1063 images, 8 bit, 898 × 640 pixels, 583 MByte) of EC were exported
(Fig. 4).

Fig. 4. Segmentation of pre-α islands in ilastik (here section number 700, left hemisphere). Train-
ing was performed with cropped EC images (left image), which were labeled (middle image) for
the classes background (light) and pre-α islands (dark). The completion of the training resulted in
segmented images (right image) showing the pre-α islands (dark) and background (light).

2.4 Analysis of Pre-α Islands in ImageJ

ImageJ was used to automatically quantify and describe the properties of the pre-α
islands segmented with ilastik (Fig. 2). The detected pre-α islands were individually
labeled and determined by their centroid coordinates. The analysis of the segmented
pre-α islands in their 3D environment allowed to extract a set of parameters (e.g. 3D
coordinates, volume, and compactness).

The compactness (range between 0 and 1) describes the ratio of pre-α islands volume
and the smallest possible surrounding sphere including the individual pre-α islands. A
value of 1 corresponds to a sphere and lower values to more complex structures.

Additionally, mean, mode, and standard deviation of the gray values were taken
from the original ‘BigBrain’ images (8 bit, 20 μm resolution, unprocessed) at the cor-
responding positions of the segmented island. Cell islands that were smaller than five
voxels (voxel size 20 μm isotropic) were removed based on the definition of islands as
structures of three or more clustered neurons.

Finally, the mean gray values were inverted (x̄(gray value) = 256-value), which
resulted in lower and higher mean values corresponding to lower and higher cell-packing
densities, respectively. Gradients of these gray values were plotted along the three main
axes of the brain. Pearson correlations were computed including squared correlation
coefficients, and the correlations were analyzed for significance. To exclude a possible
bias of the gray level gradients due to the histological staining or the global correction
of the intensities of the ‘BigBrain’ data set, the gray levels of the entire entorhinal cortex
without the pre-α-islands were additionally determined. The pre-α islands of the cropped
EC images were 3D visualized using the ImageJ ‘3D viewer’ plug-in.
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2.5 Visualization of the EC and the Included Pre-α Islands in the Context
of the Entire ‘BigBrain’ Data Set

To visualize the EC and the included pre-α islands in the context of the entire ‘BigBrain’
data set, 2D segmentation images of both structures were stacked along the rostrocaudal
axis to create 3D volumes (Fig. 2). These were subsequently converted to a custom data
format which can be displayed in the interactive 3D atlas viewer of the Human Brain
Project [26] hosted by the EBRAINS infrastructure (https://ebrains.eu/).

In addition, 3D triangular surface meshes (left hemisphere (ID3): 1886051 points
and 3781098 triangles for islands, 2854912 points and 5709820 triangles for EC; right
hemisphere (ID2): 1680293 points and 3369782 triangles for islands, 2743662 points and
5487320 triangles for EC) were extracted from the volumes using the marching cubes
algorithm [27] to visualize the 3D appearance of the structures. Due to the large size
of the data set of the EC in the whole BigBrain context (~37 GByte stack size, 6572 ×
1064 × 5711 voxels), which did not allow for post-processing on classical desktop PCs,
surface extraction was performed by subdividing the volumes into 3D chunks, which
were then processed in parallel using the supercomputer system JURECA [15] at Jülich
Supercomputing Centre (JSC).

3 Results

3.1 Overview of the Layers of the EC

The EC consists of six layers and almost cell free Substrata dissecantia (3 diss (external
layer), 4 diss (internal layer) Figs. 1B, 5 and 6). Layer 2 harbored large stellate cells
(modified pyramidal cells), forming pre-α islands of different size and shape, separated
by neuropil.

In layer 3, pyramidal cells clustered into columns in the intermediate part of EC
(Fig. 1B). The Substrata dissecantia continued in parallel to the pial surface: The rostral
part of EC revealed only the external Substratum dissecans (3 diss) (Figs. 5 and 6),
whereas the intermediate and caudal portions of EC showed both 3 diss and 4 diss
(Fig. 1B–C). Layer 4 showed large and darkly stained neurons and was clearly visible
along the rostrocaudal extent of EC. No clear border was visible between layer 5 and
layer 6 as they often seemed to intermingle (Fig. 1B–C). The border between layer 6 and
the white matter was distinct only in the intermediate to caudal parts of EC (Fig. 1B–C),
but not rostrally.

Layer 2, Substrata dissecantia, and layer 4 of EC were specific to EC, but not to
the neighboring structures. EC has borders with the amygdalopiriform transition area
(APir), hippocampal-amygdaloid transition area (HATA), the parasubiculum (PaS), and
BA35a (Figs. 5 and 6).

https://ebrains.eu/
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Fig. 5. 3D surface model of EC of the left hemisphere as computed in A3D (upper part of each
frame) and corresponding annotation in coronal cytoarchitectonic section (lower image in each
frame) from the rostral (top left) to the caudal (bottom right) extent of EC. The crosshairs in the
cytoarchitectonic section show the exact position of the annotated EC within the 3D-reconstructed
EC. The sagittal, horizontal, and coronal lines of the crosshairs correspond to the mediolateral,
dorsoventral, and rostrocaudal plane, and the Cartesian x, y, and z coordinates, respectively. The
EC has different neighboring areas along the rostrocaudal extent. Section numbers in the bottom
right corner. Abbreviation: AmbG, ambient gyrus; APir, amygdalopiriform transition area; BA35a,
Brodmann area 35a; EC, entorhinal cortex; HATA, hippocampal-amygdaloid transition area; PaS,
parasubiculum [16]. *, incised and downward protruding cortex
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Fig. 6. 3D surface model of EC of the right hemisphere (designation as above for Fig. 5). *,
intrarhinal sulcus [28]

3.2 Cytoarchitecture of Layer 2 (Pre-α Islands) and Modifications Along
the Rostrocaudal Extent

The rostral part of EC showed the smallest (often narrow) pre-α islands separated from
each other by little gaps (Fig. 1A). Neurons within the islands were more densely packed
than in the rest of the EC. In the intermediate part of EC, pre-α islands were characterized
by the largest size and the largest gap from the neighboring islands (Fig. 1B). In the caudal
part of EC, pre-α islands were the most variable in their density and size (Fig. 1C). The
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three parts of EC differed from each other by the type of the predominantly found islands:
small and round islands were found in the rostral part (which also showed a few narrow,
elongated islands, Fig. 1A), elongated in the intermediate part, and round in the caudal
part.

3.3 Surface and Morphological Features of Pre-α Islands in EC

Annotations for each hemisphere were stacked, smoothed while keeping the volume
constant and visualized as 3D surfaces in A3D (Figs. 2, 5 and 6). On both sites, the
EC shows the broadest extent in its intermediate part, while it becomes more compact
in the most rostral and most caudal parts (Figs. 5 and 6). The peek in the intermediate
part of EC belongs to the AmbG that is ventrally limited from the PhcG of EC by the
intrarhinal sulcus [28]. The intrarhinal sulcus is clearly visible in the right hemisphere,
where it can also be identified in the coronal sections (see asterisk in Fig. 6), while in the
left hemisphere it was shallow (Fig. 5). The cortex of the left hemisphere was slightly
damaged during the sectioning process of the paraffine embedded brain (see asterisk in
Fig. 5). Therefore, an elevation of the surface could be observed in the 3D model (Fig. 5).
This did not, however, affect the quality of the annotations and surface extractions of
EC, as well as subsequent segmentation and analysis of pre-α islands (Fig. 7).

Fig. 7. Visualization of pre-α island surfaces in the EC: left and right hemispheres. The asterisks
in the left hemisphere indicate regions with cutting artifacts: *, small cuts in the cortex; **, artifact
of the digitally repaired 3D reconstruction of ‘BigBrain’; ***, incised and downward protruding
cortex. Abbreviation: AmbG, ambient gyrus

The 3D models of pre-α islands revealed a variety of different shapes. Three main
groups were identified according to their measured compactness: round, elongated, and
complex islands (Figs. 7 and 9). The comparison of the various shapes of the complex
islands in 3D and the shapes seen in 2D histological sections indicated that the complex
islands were composed of interconnected round and elongated ones that compose layer
2 of EC.
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The pre-α island surfaces showed further structural differentiation (based on dis-
tribution, size, and shape of the islands) between the rostral, intermediate, and caudal
parts of EC (Fig. 7). The rostral part showed the smallest and most densely packed pre-α
islands of predominantly elongated and round shape. The intermediate part of EC was
less densely packed than in its rostral part and revealed the largest islands with the widest
gaps between them. In addition to elongated and round islands, the intermediate part
showed the largest number of complex islands. The caudal part of EC included round
and complex islands, which were larger and less densely packed than in the rostral part
of EC, but more densely packed and smaller than in its intermediate part.

3.4 Number and Distribution of Pre-α Islands

In total, 2045 pre-α islands in the left and 1841 pre-α islands in the right hemisphere
were found. In the following, a gradient of pre-α islands corresponds to the mean gray
values for each pre-α islands as a correlate of their cell-packing density (Fig. 8).

The medial versus lateral gradient of pre-α islands indicated that the cell-packing
density was higher in the lateral than in the medial EC, for both the left (slope = 0.0058;
R2 = 0.0158) and right hemispheres (slope = −0.018; R2 = 0.12).

Regarding the dorsal to ventral gradient of pre-α islands, a slight increase in the
cell-packing density was observed in the left hemisphere (slope = 0.0198; R2 = 0.0741)
and a minimal decrease in the right hemisphere (slope = −0.006; R2 = 0.0075).

Finally, the gradient from caudal to rostral showed a slight decrease in cell-packing
density in both the left (slope = −0.0018; R2 = 0.0015) and right (slope = −0.0049;
R2 = 0.0176) hemispheres. All correlations were significant (p < 0.05), except the
correlation along the dorsal-ventral axis of the left hemisphere, which did not reach
significance (p = 0.0840).

The analysis of compactness showed that the morphology of pre-α islands varied
between elongated, complex, and round, whereby the transitions between them were
rather smooth (Fig. 9). Moreover, the histograms were left-skewed, indicating that
there were more round and complex than elongated islands in EC of both hemispheres.
Finally, the distribution of the different types of islands was highly comparable in both
hemispheres.

The data are publicly available as part of the multilevel human brain atlas in the
EBRAINS infrastructure and can be explored interactively in the EBRAINS 3D atlas
viewer (https://atlases.ebrains.eu/viewer).

https://atlases.ebrains.eu/viewer
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Fig. 8. Gradients of pre-α islands in EC, represented as mean gray values per pre-α islands, as
a correlate of the cell-packing density within each island. Each ball (dark gray, left hemisphere;
light gray, right hemisphere) represents a 3D centroid, thus a pre-α island. Medial versus lateral
gradient: Note the difference between the hemispheres. Since the surfaces for each hemisphere
were extracted separately and the values are sorted by their x-coordinates, the mean gray values
in the left hemisphere are indicated from lateral to medial (outside to inside), while in the right
hemisphere they are indicated from medial to lateral (inside to outside). Dorsal to ventral gradient:
Note a longer line related to the left hemisphere, which is a reflection of an incised and downwards
protruding cortex in the intermediate and caudal parts of the left EC (see asterisk in Figs. 5 and
7). Caudal to rostral gradient: Note that the z-coordinate goes from the most caudal (posterior)
to the most rostral (anterior) coordinate.
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Fig. 9. Histogram indicating the frequency of compactness (from 0.12 to 1 in steps of 0.04) of
pre-α islands in the left hemisphere (in total 2045 pre-α islands; upper histogram) and in the
right hemisphere (in total 1841 pre-α islands; lower histogram) of the ‘BigBrain’ EC. For the left
hemisphere, three examples are given for the different types of pre-α islands: one elongated (range
of compactness (0.32, 0.36]), one complex (range of compactness (0.60, 0.64]) and one round
(range of compactness (0.92, 0.96]) island.
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4 Discussion

Based on the high-resolution data set of the 3D-reconstructed ‘BigBrain’ [1], we created
a workflow that allowed a comprehensive analysis of the individual morphology and
distribution of pre-α islands in layer 2 of the EC, by using existing and new software
tools. The visualization and annotation software A3D was used to annotate the EC in
both hemispheres, followed by the preparation of cropped EC images in MATLAB®.
The machine-learning based ‘Pixel Classification’ tool of ilastik [25] was trained to
identify and segment pre-α islands. ImageJ [24] was used to visualize the 3D surface
of the segmented pre-α islands and to analyze individual pre-α islands in their spatial
extent, including intensity and geometric measurements. Finally, whole brain section
masks of the EC and the included pre-α islands were used to visualize the results in
its native 3D environment employing marching cubes algorithm at the supercomputer
system JURECA [15] at Jülich Supercomputing Centre (JSC). The required programs
and the input and output files generated in each case are shown as a flowchart in Fig. 2.

The applications shown here using the ‘BigBrain’ data set enable a better understand-
ing of the morphology of pre-α islands and a description of their underlying cytoarchi-
tecture. Although pre-α islands exist only in the EC, there are other brain areas that show
structures of distinct morphology. For example, the cell clusters of the amygdalopiriform
transition area, for which our workflow, i.e. the annotation in A3D, labeling of structures
in ilastik, and their 3D visualization in ImageJ, could be applied or adapted.

By focusing on the morphological characteristics of pre-α islands in the ‘BigBrain’
model, numerous islands of a specific shape were analyzed. Compactness analysis, per-
formed for the first time at high-resolution in 3D space, revealed round and complex
islands as the predominant island types. In addition, 3D characterization of pre-α islands
using the ‘BigBrain’ model allowed the identification of differences based on the dis-
tribution, size, and shape of islands in the rostral, intermediate, and caudal part of EC.
Here, the largest number of complex islands was observed in the intermediate part of EC.
Previous approaches indicated the complexity of the pre-α islands by reporting “bridges”
[8, 12, 13]. However, the analysis of complex islands based on 2D images is complicated
and error-prone because they do not allow following islands between sectional planes.
Thus, classical histological 2D analysis can only provide a limited description of the 3D
shape and size of pre-α islands. As a result, the number of complex islands observed in
2D sections is lower than the number obtained from 3D analyses.

Regarding interhemispheric differences in the layer 2 characteristics, the present
study found more pre-α islands in the left than in the right hemisphere by comparing the
numbers of 3D centroids (i.e. pre-α islands) that were exported from ImageJ. Although
this result is based on only one human brain, it is supported by a previous study that
found a higher number of pre-α neurons in the left than in the right EC, in 18 out of 22
human brains analyzed [21].

To our knowledge, density gradients based on intensity measurements, in particular,
gray values corresponding to the cell packing densities, of all pre-α islands embedded in
layer 2 of EC have not been discussed or raised in previous studies. Nevertheless, pre-
vious cytoarchitectonic and immunohistochemical studies are in support of the present
results on the rostral to caudal increase of cell packing density. Heinsen et al., 1994
[21], observed such a gradient on the basis of sections Nissl-stained with gallocyanin,
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whereas Beall and Lewis (1992) [29] described increases towards the caudal extent of EC
based on light transmittance of phosphorylated neurofilament protein immunoreactivi-
ties. Interestingly, anatomical and electrophysiological studies regarding the hippocam-
pus provided evidence for a gradient along its dorsoventral axis in rodents, while gene
expression studies indicated distinct functional domains with often clearly demarcated
borders [30]. These observations led to the conclusion that the well-known view that
spatial navigation and memory, and thus cognitive functions, are mediated in the dorsal
(or posterior) parts of the hippocampus, whereas emotional responses are mediated in
its ventral (or anterior) part, should be reconsidered. It is now proposed that hippocam-
pal functional gradients may be superimposed on distinct functional domains at both
the anatomical and mRNA levels [30]. Regarding the functional topography of the EC,
Navarro Schröder et al., 2015 [31], performed a high-field functional MRI study (at 7 T)
in which two groups of independent participants were presented with either images of
scenes (for spatial stimuli) or images of objects (for non-spatial stimuli). They showed
evidence of functional division along the anteroposterior axis, as the anterior EC showed
higher responses to non-spatial stimuli and the posterior EC showed higher responses to
spatial stimuli. It would be interesting to investigate whether there is a functional gradi-
ent along the rostrocaudal (anteroposterior) axis of EC that correlates with the density
gradients we found in the present study. Finally, whether these then correlate with the
proposed gradients along the hippocampal long axis.

Previous cytoarchitectonic studies subdivided the EC based on the differences found
in all layers (into two subareas in Brodmann (1909) [7] to eight subareas in Insausti
et al., 1995, 2017 [2, 17]). However, the present study describes the heterogeneity of
pre-α islands at the level confined to one layer, layer 2. In the intermediate and caudal
parts of EC, we identified conspicuous islands of different shapes (our complex islands)
in addition to the island types described by Insausti et al., 1995 [2]. These islands were
not clearly separated from each other and appeared to be composed of interconnected
islands of other types, resulting in a complex morphology. Braak and Braak (1992) [8]
identified three major subareas (medial, lateral, and central), based on specific features
of entorhinal layers in different parts of EC. The authors considered bipartition of pre-
α and pre-β layer (layer 2 and 3 of Zilles (1987) [4]) as a criterion for the medial
subarea which covered the ambient gyrus. Moreover, a characteristic tripartition of the
pri-α layer (layer 4 of Zilles (1987) [4]) marked their central subarea, which covered
a part of the parahippocampal gyrus [8]. In contrast, based on the distribution of pre-α
islands, the present study suggests that the ambient gyrus partly comprises the rostral
and intermediate parts of EC.

However, since only one ‘BigBrain’ was analyzed as a use case in the present study,
but 3D-reconstructions of two other ‘BigBrains’ are currently under development, we
intend to apply our workflow to these ‘BigBrain’ models. This will facilitate visualization
of pre-α island surfaces and further descriptive analyses, but could also enable quan-
titative analysis of possible EC subareas. Further application of the method presented
here to other high-resolution brain models will also allow continued investigation of the
interindividual variability of pre-α islands at the highest resolution level.

Taken together, the present study demonstrated a new workflow for data analysis and
visualization of EC and its embedded pre-α islands using machine-learning based and
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image data analysis tools. With these tools, we demonstrated new characteristics of the
human EC and pre-α islands embedded therein, in particular the existence of complex
islands and the rostral to caudal cell-packing density gradient. As pre-α cells of EC are
involved in the functionally important perforant pathway, it becomes clear why it is so
important to understand the natural structure of EC in order to detect possible changes
during aging and in neuro-/psychiatric diseases. The results of this study will be made
available to the neuroscientific community via the research infrastructure EBRAINS and
will be linked to the multilevel human brain atlas of EBRAINS. The representation of the
surfaces of the EC and the islands contained therein is of particular interest to a broad
readership. The first-time visualization of these microscopic structures in the context
of the entire brain represents an important bridge between basic research and possible
medical applications, as it is common in medicine to view the brain in its natural three-
dimensional environment. Our current results could provide a reference model for future
studies of neurodegenerative and psychiatric diseases such as Alzheimer’s, Parkinson’s,
and schizophrenia.
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Abstract. The human lateral geniculate body (LGB) with its six sickle shaped
layers (lam) represents the principal thalamic relay nucleus for the visual system.
Cytoarchitectonic analysis serves as the groundtruth for multimodal approaches
and studies exploring its function. This technique, however, requires experienced
knowledge about human neuroanatomy and is costly in terms of time. Here we
mapped the six layers of the LGB manually in serial, histological sections of the
BigBrain, a high-resolution model of the human brain, whereby their extent was
manually labeled in every 30th section in both hemispheres. These maps were
then used to train a deep learning algorithm in order to predict the borders on
sections in-between these sections. These delineations needed to be performed
in 1 μm scans of the tissue sections, for which no exact cross-section alignment
is available. Due to the size and number of analyzed sections, this requires to
employ high-performance computing. Based on the serial section delineations,
high-resolution 3D reconstruction was performed at 20 μm isotropic resolution
of the BigBrain model. The 3D reconstruction shows the shape of the human
LGB and its sublayers for the first time at cellular precision. It represents a use
case to study other complex structures, to visualize their shape and relationship to
neighboring structures. Finally, our results could provide reference data of the LGB
for modeling and simulation to investigate the dynamics of signal transduction in
the visual system.

Keywords: Lateral geniculate body (LGB) · Corpus geniculatum laterale
(CGL) · BigBrain · Deep learning · 3D reconstruction · Cytoarchitecture

1 Introduction

The lateral geniculate body (LGB, lat. Corpus geniculatum laterale, from now on LGB)
plays a key role in visual perception. Together with the medial geniculate body, which
is involved in auditive processing, both nuclei constitute the metathalamus. The LGB is
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located on the ventral surface of the brain. It mainly receives connections from the retina
via the optic tract, but also from layer 6 of the visual cortex and the reticular nucleus
of the thalamus [1]. The most prominent efferent projections reach the primary visual
cortex, i.e. Brodmann’s area 17 (or area V1, or hOc1 [2]; via the optic radiation (Fig. 1
top image) [1]. The human LGB consists of six layers. The two most ventrally located
layers (layers 1 and 2) consist of larger neurons and are known as magnocellular, while
layers 3 to 6 are parvocellular layers (Fig. 1 bottom image). Koniocellular neurons are
located in between those laminae.

Fig. 1. The human visual pathway (top
image). The location of the lateral geniculate
body (LGB) is marked by the black rectangle.
Six layers of the LGB (bottom image) describ-
ing contralateral projections depicted in green
and ipsilateral projections in red. Created with
BioRender.com (Color figure online)

Layers 2, 3 and 5 receive fibers from
the ipsilateral eye, whereas layers 1, 4 and 6
receive fibers from the contralateral eye [3].
I.e., each layer receives information from
one eye only. Later on, the information will
be merged to be processed and interpreted
as a binocular image in the visual cortex [4].
Approximately 80% of the retinal informa-
tion derive from midget ganglion cells and
are transferred to the parvocellular neurons
in the LGB in layers 3 to 6. These small
neurons are specialized in object and detail
recognition due to their ability of generating
a high spatial resolution and red-green color
vision [4]. Midget cells are characterized
as small, color-sensitive slow adapting cells
from the retina, contrary to parasol cells.
Retinal parasol cells send impulses to the
bigger magnocellular layers 1 and 2, which
are functional for time resolution and hence
for the perception of position and movement
[5]. Non-Midget-non-Parasol ganglion cells
from the retina project to koniocellular neu-
rons of the LGB, which further project to the
primary visual cortex, similarly to the parvo-
and magnocellular systems. Since the LGB
transfers retinal information directly to the
primary visual cortex via the optic radiation,
it is also defined as first-order relay [1]. The
koniocellular neurons most probably play a
role in color perception [4]. The middle part
of the LGB in coronal sections is called the
hilum, and the taperings at the medial and
lateral ends of the LGB are called the medial
and lateral horn of the LGB, respectively [6].

Lesions in the LGB can affect the function of the visual pathway. For example,
patients suffering from multiple sclerosis or Alzheimer’s disease show a general volume
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loss of the LGB, indicating in the latter case a significant relation between degeneration
of the LGB and amyloid-β pathology [7, 8]. After loss of visual experience due to an
injury of the primary visual cortex but with an intact LGB, certain visual information
processing still exists. This phenomenon discovered by functional magnetic resonance
imaging (fMRI) is called blindsight [9].

This work aims to map the LGB and its layers at microscopical resolution, to provide
reference data for studies targeting the LGB in the living human brain, to develop a use
case enabling the combination of expert annotations based on cytoarchitectonic criteria
in a subset of sections with deep learning in order to increase the number of delineated
sections. A 3D reconstruction of the human LGB in both hemispheres of the BigBrain
dataset was computed and visualized [10].

2 Materials and Methods

2.1 Histology

The BigBrain (65-year-old male) comes from the body donor program of the Anatomical
Institute of Düsseldorf in accordance to legal and ethical requirements. Prior to histo-
logical processing MRI images were taken (1.5 T, Siemens Medical Systems GmbH,
Erlangen, Germany) in order to provide a reference volume for subsequent image regis-
tration. Histological processing was previously described in detail [10, 11]. In short, the
brain was fixed in 4% buffered formalin, embedded in paraffin and cut in coronal plane,
each Sect. 20 μm thick. Every section – of total 7404 – was mounted and silver stained
for cell bodies. The sections were digitized using a TISSUEscope™ LE120 Scanner
(Huron Digital Pathology) [10]. The spatial resolution of the images is 1 μm in-plane,
the average size of the images is 10 GByte per section.

2.2 Manual Analysis and Reference Mapping of Histological Sections

High-resolution images were analyzed and manually delineated using SectionTracer, an
online tool written in JavaScript [12]. Borders of the LGB and its six layers were traced
in 16 sections per hemisphere, i.e. every 30th image at a distance of 600 μm.

The human LGB is surrounded by white matter, i.e. fiber tracts, and could therefore
be clearly distinguished from its neighboring structures: the thalamus was found dorso-
medially from the LGB while the medial geniculate body was located medially. At rostral
levels the LGB was completely surrounded by white matter.

The borders of the six layers of the LGB were identified based on differences in the
cytoarchitecture (Fig. 2). Magno- and parvocellular layers were mainly distinguished
according to their cell-size and -density. The pale koniocellular neurons served as main
indicators for the borders between the different layers of the LGB. Wherever these criteria
were not sufficient, i.e. where two parvocellular layers were not separated by a konio-
cellular lamina, cytoarchitectonic criteria such as size, shape, density and distribution of
neurons were applied. Borders were drawn where the cytoarchitectonic pattern changed.
Layers were numbered according to their position, starting from the most ventral layer
1 at the brain surface, increasing to the uppermost dorsal layer 6.
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Fig. 2. Shape and borders of the six layers (labeled by different colors and numbers) of the human
lateral geniculate body (LGB) on coronal sections. Upper row shows a comparison between manual
expert mapping (a) and the prediction of the CNN (b). The location of the LGB on the coronal
section is shown in (c). One caudal (d) and one rostral section (e) indicate different shapes of the
LGB at different levels of sectioning. Scale bars: a–b, c–e 1 mm, c 20 mm. Scalebar magnification
in a: 50 μm.

The volumes of the LGB and its layers were measured using Cavalieri’s principle.
A shrinkage factor of 1,931 was used for calculations in order to consider the shrinkage
occurring during histological processing, the fixation, respectively [13].

The layers were then 3D reconstructed and transferred to the BigBrain space, which
has a spatial resolution of 20 μm isotropic [12]. Results were visualized using the
software ParaView [14, 15].

2.3 Training of the Deep-Learning Algorithm to Predict Missing Delineations

A convolutional neural network (CNN) was trained to classify each image pixel accord-
ing to each lamina of the LGB. Network architecture and training procedure were
based on Schiffer et al. [16], as they have been used successfully to aid mapping of
cytoarchitectonic areas in several cortical brain regions [17–20].

The workflow uses a U-shape architecture for brain area segmentation with two
encoder branches capturing the input data at different spatial scales. Training and pre-
diction was controlled by the web-based interface of the tool, and performed remotely on
the supercomputer JURECA [21] at Jülich Supercomputing Centre (JSC). The training
time on the HPC system was around 70 min.
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After training, the CNN was applied to automatically classify layers of LGB in
sections without annotations. Automatically created annotations were quality-checked to
exclude misclassified sections. Annotations were then non-linearly transformed [22] into
the 3D reconstructed BigBrain space [10]. Previously excluded sections were replaced
by interpolation [23]. Finally, the marching cubes algorithm [24] was applied to extract
a surface mesh for each layer of LGB. This 3D reconstruction step is not part of the
tool provided by [16], but it follows directly the experimental protocol for the BigBrain
dataset described therein.

3 Results

3.1 Cytoarchitectonic Mapping Based on Expert Annotations and Deep Learning

The analysis of the LGB allowed to identify six layers, partially different in shape and
size (Fig. 2). The two ventral layers contained magnocellular neurons of triangular and
multiform shapes and differed significantly in the cytoarchitecture from the parvocellular
layers 3–6. Layers 1 and 2 were thinner and more elongated; contained round and oval
shaped neurons. Layers 3 and 6 were most prominent and were reached over a larger
distance than the other two layers of the parvocellular part. Layer 5 was the shortest and
least developed layer with respect to its mediolateral extent. On most sections, the layers
were separated by a white koniocellular line, characterized by a low cell density. On a
few sections, layers 1 and 4 as well as 4 and 6 were connected. The same was true for
layers 2 and 3 as well as 3 and 5, where the koniocellular lines were lacking (Fig. 2a,
black arrow). Although layers 1 and 2 were the thinnest structures, the magnocellular
neurons are clearly visible, due to the magnocellular neurons (Fig. 2a, inset). Layers 3
to 6, on the other hand, were composed of smaller and more densely packed cells. The
neurons on the lateral and medial horn of the LGB in each layer were loosely packed,
while the neurons at the hilum were denser.

In total, 13 sections were labeled by an expert in the left hemisphere and 11 sections
in the right hemisphere, with a distance of 0.6 mm. The LGB of the left hemisphere
was found and processed by the CNN on 366 sections (rostro-caudal extent 7.3 mm)
and on 293 coronal sections (extent of 5.9 mm) of the right hemisphere. For comparison
between the expert annotation and the prediction of the CNN see Fig. 2a and b.
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3.2 High-Resolution 3D Reconstruction

The exact location of the human LGB is depicted in the BigBrain model in Fig. 3a.
A high-resolution 3D reconstruction was performed to get a deeper insight into the
complex shape of the human LGB. The prominent hilum and the elongated lateral horn
are characteristic for the shape of the human LGB (Fig. 3b). In more detail, the dorsal
surface of the LGB is mainly covered by layers 4, 5 and 6. Layer 4 is more prominent
at the hilum and the medial horn (Fig. 3b), while layer 3 is most prominent at the lateral
horn (Fig. 3c). Most parts of the ventral surface of the LGB are covered by layer 1
medially and by layer 2 laterally (Fig. 3c).

3.3 Volumes of Layers

The total volumes of the LGB, after consideration of the shrinkage factor, are 120.5 mm3

on the left, and 113.2 mm3 on the right hemisphere (Table 1). The parvocellular layers are
bigger than the magnocellular layers. The total volume of the LGB is 141.2 on the left,
and 132.2 mm3 on the right hemisphere. It contains the six layers, but also koniocellular
layers and blood vessels, which are not included in the volumes of the single layers.

Table 1. Volumes (in mm3) of each of the layer of the lateral geniculate body (LGB) in both
hemispheres, sum of layers 1–6, and total volume.

LGB Left [mm3] Right [mm3]

Layer 1 10.2 7.8

Layer 2 8.3 7.4

Layer 3 28.5 27.4

Layer 4 25.9 21.3

Layer 5 20.2 21.8

Layer 6 27.4 27.5

� of layers 1–6 120.5 113.2

Total 141.2 132.2
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Fig. 3. 3D reconstruction of the lateral geniculate body (LGB). (a) Localization of the left lateral
geniculate body (LGB) in the BigBrain model. (b-c) Surface of the reconstructed left and right
LGB revealing its specific shape and its different layers. (b) dorso-caudal view (c) ventro-rostral
view. Abbreviations: d = dorsal, l = lateral, m = medial, v = ventral.
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4 Discussion and Conclusion

This study presents the first application for mapping a complex subcortical gray matter
structure, the LGB, combining an expert-based and a deep-learning approach, resulting
in a high-resolution 3D reconstruction of the LGB in the BigBrain template. It shows,
for the first time, the shape of the individual six layers in 3D space while previous
information was mainly obtained from 2D sections. The maps are publicly available
in the EBRAINS multilevel human brain atlas (https://ebrains.eu/service/human-brain-
atlas), where they can be explored in an interactive 3D viewer (https://interactive-vie
wer.apps.hbp.eu/saneUrl/BigBrain_LGB) and can be found under the DOI: https://doi.
org/10.25493/33Z0-BX.

Due to the large size of the human brain, subcortical nuclei such as the LGB and
cortical areas are found in tens to hundreds to thousands of sections, in dependence on
the size of the structure. To map a structure manually in every section using traditional
methods becomes impossible when structures are complex or large. As an alternative
option, the extent of the structures can be interpolated. The drawback of this method
is that images have to be 3D reconstructed before further processing [16]. Herein, we
provide a use case using a semi-automated prediction of borders supported by deep
learning. The algorithm learns from manually annotated borders and is able to use this
knowledge for annotating the same area in previously unseen sections. Since it directly
interprets the texture and brain topology, it is much more precise than a 3D interpolation
in the reconstructed space and allows to use unregistered single sections.

Due to the large number of images and large size of the sections, training and appli-
cation of the CNN was performed on the supercomputer system JURECA [18] at Jülich
Supercomputing Centre (JSC). The use of high-performance computers becomes even
more relevant when larger structures are being analyzed in whole brain sections. While
computation in the LGB was completed in 2 h, comparable computations for the thala-
mus, for example, would take 50 h. Existing work on automatic classification of cytoar-
chitectonic cortical areas [16] also indicate that computational effort increases consid-
erably when trying to automatically identify larger brain regions with more complex
cytoarchitectonic and morphological properties.

Our findings of the total volume of the LGB, shrinkage factor included, is in line with
previous findings. Andrews and colleagues reported mean LGB volumes of 121 mm3 for
the right and 115 mm3 for the left hemisphere; the variance was quite high and ranged
from 91.1 to 157 mm3 for both hemispheres [25]. Further investigations in additional
brains in the future would help to better understand intersubject variability in terms of
the size and/or shape of the LGB.

High-resolution mapping data of the LGB may open a broad field of applications.
For example, routine Magnetic Resonance Imaging (MRI) studies often lack sufficient
contrast and/or spatial resolution and could benefit from such atlas data. Current studies
on the implementation of electrically stimulated prostheses in the visual cortex aim
to restore part of the vision in blind people by multiple stimulations of electrodes to
percept light [26, 27], where such maps could be applied in the future to increase the
localization accuracy. The investigation of the pathomechanisms of diseases where the
visual pathway is affected, such as Multiple Sclerosis or glaucoma could be supported by
the maps [28, 29]. The maps provide input data for modelling and simulation of different

https://ebrains.eu/service/human-brain-atlas
https://interactive-viewer.apps.hbp.eu/saneUrl/BigBrain_LGB
https://doi.org/10.25493/33Z0-BX
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types of neurons, neuronal pathways or networks using platforms like The Virtual Brain
[30]. With respect to basic neuroscience, the visualization and differentiation of the
layers is expected to contribute to a more in-depth analysis of information processing in
visual pathways. The present approach provides a use case for application in other brain
areas and brains of other species enabling a fast and detailed prediction of the extent
of small and complex structures, including visualization and volume analyses, with a
minimum of manual effort and time expenditure.

Acknowledgements. This project has received funding from the European Union’s Horizon
2020 Framework Programme for Research and Innovation under the Specific Grant Agreement
No. 945539 (Human Brain Project SGA3). This work was also funded by Helmholtz Associ-
ation’s Initiative and Networking Fund through the Helmholtz International BigBrain Analyt-
ics and Learning Laboratory (HIBALL) under the Helmholtz International Lab grant agreement
InterLabs-0015. Computing time was granted through JARA on the supercomputer JURECA at
Jülich Supercomputing Centre (JSC).

References

1. Sherman, S.M., Guillery, R.W.: The role of the thalamus in the flow of information to the
cortex. Philos Trans. R. Soc. B Biol. Sci. 357(1428), 1695–1708 (2002). https://doi.org/10.
1098/rstb.2002.1161

2. Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., Zilles, K.: Brodmann’s areas 17
and 18 brought into stereotaxic space - where and how variable? Neuroimage 11(1), 66–84
(2000). https://doi.org/10.1006/nimg.1999.0516

3. Duggan, W.F.: Anatomy of the eye and orbit. Arch. Ophthalmol. 10(5), 723–724 (1933).
https://doi.org/10.1001/archopht.1933.00830060147017

4. Eiber, C.D., et al.: Receptive field properties of koniocellular on/off neurons in the lateral
geniculate nucleus of marmoset monkeys. J. Neurosci. 38(48), 10384–10398 (2018). https://
doi.org/10.1523/JNEUROSCI.1679-18.2018

5. Purves, D.: Neuroscience, 5th edn. Sinauer Associates Inc., Sunderland (2012)
6. Prasad, S., Galetta, S.L.: Anatomy and physiology of the afferent visual system. Handbook

of Clinical Neurology, vol. 102 (2011)
7. Papadopoulou, A., et al.: Damage of the lateral geniculate nucleus in MS. Neurology 92(19),

e2240–e2249 (2019). https://doi.org/10.1212/WNL.0000000000007450
8. Erskine, D., et al.: Changes to the lateral geniculate nucleus in Alzheimer’s disease but not

dementia with Lewy bodies. Neuropathol. Appl. Neurobiol. 42(4), 366–376 (2016). https://
doi.org/10.1111/nan.12249

9. Schmid, M.C., et al.: Blindsight depends on the lateral geniculate nucleus. Nature 466(7304),
373–377 (2010). https://doi.org/10.1038/nature09179

10. Amunts, K., et al.: BigBrain: an ultrahigh-resolution 3D human brain model. Science (80-)
340(6139), 1472–1475 (2013). https://doi.org/10.1126/science.1235381

11. Amunts, K., Zilles, K.: Architectonic mapping of the human brain beyond Brodmann. Neuron
88(6), 1086–1107 (2015). https://doi.org/10.1016/j.neuron.2015.12.001

12. Amunts, K., Mohlberg, H., Bludau, S., Zilles, K.: Julich-Brain: a 3D probabilistic atlas of the
human brain’s cytoarchitecture. Science (80-) 369(6506), 988–992 (2020). https://doi.org/10.
1126/science.abb4588

https://doi.org/10.1098/rstb.2002.1161
https://doi.org/10.1006/nimg.1999.0516
https://doi.org/10.1001/archopht.1933.00830060147017
https://doi.org/10.1523/JNEUROSCI.1679-18.2018
https://doi.org/10.1212/WNL.0000000000007450
https://doi.org/10.1111/nan.12249
https://doi.org/10.1038/nature09179
https://doi.org/10.1126/science.1235381
https://doi.org/10.1016/j.neuron.2015.12.001
https://doi.org/10.1126/science.abb4588


Deep Learning-Supported Cytoarchitectonic Mapping 31

13. Amunts, K., Schleicher, A., Zilles, K.: Cytoarchitecture of the cerebral cortex-more than local-
ization. Neuroimage 37(4), 1061–1065 (2007). https://doi.org/10.1016/j.neuroimage.2007.
02.037

14. Ahrens, J., Geveci, B., Law, C.: ParaView: an end-user tool for large data visualization. www.
paraview.org. Accessed 11 Feb 2021

15. The ParaView Guide | ParaView. https://www.paraview.org/paraview-guide/. Accessed Feb
11 2021

16. Schiffer, C., et al.: Convolutional neural networks for cytoarchitectonic brain mapping at large
scale, November 2020. http://arxiv.org/abs/2011.12857. Accessed 20 Dec 2020

17. EBRAINS - Ultrahigh resolution 3D cytoarchitectonic map of Area hOc1 (V1, 17, CalcS)
created by a Deep-Learning assisted workflow. https://search.kg.ebrains.eu/instances/Dataset/
696d6062-3b86-498f-9ca6-e4d67b433396. Accessed 6 Mar 2021

18. EBRAINS - Ultrahigh resolution 3D cytoarchitectonic map of Area hOc2 (V2, 18) created by a
Deep-Learning assisted workflow. https://search.kg.ebrains.eu/instances/Dataset/63093617-
9b72-45f5-88e6-f648ad05ae79. Accessed 6 Mar 2021

19. EBRAINS - Ultrahigh resolution 3D cytoarchitectonic map of Area hOc3v (LingG) created by
a Deep-Learning assisted workflow. https://search.kg.ebrains.eu/instances/Dataset/f746514d-
b79a-48e2-9c07-39f7c62459cf. Accessed 6 Mar 2021

20. EBRAINS - Ultrahigh resolution 3D cytoarchitectonic map of Area hOc5 (LOC) created by
a Deep-Learning assisted workflow. https://search.kg.ebrains.eu/instances/Dataset/ea8fb74b-
0ecc-4801-9522-b4c2cb2a2a5c. Accessed 6 Mar 2021

21. Krause, D., Thörnig, P.: JURECA: modular supercomputer at Jülich Supercomputing Centre.
J. Large-Scale Res. Facil. JLSRF 4, A132 (2018). https://doi.org/10.17815/jlsrf-4-121-1

22. Omidyeganeh, M., et al.: Non-linear registration of 1 μm histology sections into 3D 20 μm
BigBrain space (2020)

23. Schober, M., Axer, M., Huysegoms, M., Schubert, N., Amunts, K., Dickscheid, T.: Morphing
image masks for stacked histological sections using laplace’s equation. In: Tolxdorff, T.,
Deserno, T.M., Handels, H., Meinzer, H.-P. (eds.) Bildverarbeitung für die Medizin 2016. I,
pp. 146–151. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49465-3_27

24. Lewiner, T., Lopes, H., Ilson Vieira, A.W., Tavares, G.: Efficient implementation of Marching
Cubes’ cases with topological guarantees. J. Graph. Tools 8(2), 1–15 (2003)

25. Andrews, T.J., Halpern, S.D., Purves, D.: Correlated size variations in human visual cortex,
lateral geniculate nucleus, and optic tract. J. Neurosci. 17(8), 2859–2868 (1997). https://doi.
org/10.1523/jneurosci.17-08-02859.1997

26. Chen, X., Wang, F., Fernandez, E., Roelfsema, P.R.: Shape perception via a high-channel-
count neuroprosthesis in monkey visual cortex. Science 370(6521), 1191–1196 (2020). https://
doi.org/10.1126/science.abd7435

27. Mirochnik, R.M., Pezaris, J.S.: Contemporary approaches to visual prostheses. Mil. Med.
Res. 6(1), 1–9 (2019). https://doi.org/10.1186/s40779-019-0206-9

28. Nuzzi, R., Dallorto, L., Rolle, T.: Changes of visual pathway and brain connectivity in glau-
coma: a systematic review. Front. Neurosci. 12(May), 363 (2018). https://doi.org/10.3389/
fnins.2018.00363

29. Sepulcre, J., et al.: Contribution of white matter lesions to gray matter atrophy in multiple
sclerosis evidence from voxel-based analysis of T1 lesions in the visual pathway. Arch. Neurol.
66(2), 173–179 (2009). https://doi.org/10.1001/archneurol.2008.562

30. Schirner, M., et al.: Brain modelling as a service: the virtual brain on EBRAINS, February
2021. http://arxiv.org/abs/2102.05888. Accessed 1 June 2021

https://doi.org/10.1016/j.neuroimage.2007.02.037
http://www.paraview.org
https://www.paraview.org/paraview-guide/
http://arxiv.org/abs/2011.12857
https://search.kg.ebrains.eu/instances/Dataset/696d6062-3b86-498f-9ca6-e4d67b433396
https://search.kg.ebrains.eu/instances/Dataset/63093617-9b72-45f5-88e6-f648ad05ae79
https://search.kg.ebrains.eu/instances/Dataset/f746514d-b79a-48e2-9c07-39f7c62459cf
https://search.kg.ebrains.eu/instances/Dataset/ea8fb74b-0ecc-4801-9522-b4c2cb2a2a5c
https://doi.org/10.17815/jlsrf-4-121-1
https://doi.org/10.1007/978-3-662-49465-3_27
https://doi.org/10.1523/jneurosci.17-08-02859.1997
https://doi.org/10.1126/science.abd7435
https://doi.org/10.1186/s40779-019-0206-9
https://doi.org/10.3389/fnins.2018.00363
https://doi.org/10.1001/archneurol.2008.562
http://arxiv.org/abs/2102.05888


32 A. Brandstetter et al.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/


Brain Modelling and Simulation



Computational Modelling of Cerebellar
Magnetic Stimulation: The Effect

of Washout

Alberto Antonietti1,2(B) , Claudia Casellato2 , Egidio D’Angelo2,3 ,
and Alessandra Pedrocchi1

1 Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
alberto.antonietti@polimi.it

2 University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
3 IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy

Abstract. Nowadays, clinicians have multiple tools that they can use
to stimulate the brain, by means of electric or magnetic fields that can
interfere with the bio-electrical behaviour of neurons. However, it is still
unclear which are the neural mechanisms that are involved and how the
external stimulation changes the neural responses at network-level. In
this paper, we have exploited the simulations carried out using a spiking
neural network model, which reconstructed the cerebellar system, to shed
light on the underlying mechanisms of cerebellar Transcranial Magnetic
Stimulation affecting specific task behaviour. Namely, two computational
studies have been merged and compared. The two studies employed a
very similar experimental protocol: a first session of Pavlovian associa-
tive conditioning, the administration of the TMS (effective or sham), a
washout period, and a second session of Pavlovian associative condition-
ing. In one study, the washout period between the two sessions was long
(1 week), while the other study foresaw a very short washout (15 min).
Computational models suggested a mechanistic explanation for the TMS
effect on the cerebellum. In this work, we have found that the duration of
the washout strongly changes the modification of plasticity mechanisms
in the cerebellar network, then reflected in the learning behaviour.

Keywords: Brain simulation · Cerebellum · Spiking Neural
Networks · TMS · Neurostimulation

1 Cerebellar Transcranial Magnetic Stimulation

Transcranial magnetic stimulation (TMS) is a noninvasive technique that can be
used to study, diagnose, or treat neural pathologies. A coil induces a magnetic
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field that generates an electric field in the brain tissue. The electric field directly
interferes with nervous system functions by changing the electrical behaviour of
neurons.

Among the different protocols that are available for TMS, continuous theta-
burst stimulation is usually delivered to influence long-term plasticity changes.
The stimulation protocol can consist of pulse bursts 50 Hz repeated every 200 ms,
given in a continuous train lasting tens of seconds. The stimulation intensity is
calibrated using the active motor threshold, defined as the lowest intensity stably
evoking motor-evoked potentials. Common values for the stimulation amplitudes
for theta-burst TMS range between 0.5 and 0.7 kV, generating a peak magnetic
field of ∼1 T reaching a depth of 20–30 mm from the scalp surface [13].

Cerebellar TMS foresees the administration of the stimulation over one cere-
bellar hemisphere or the cerebellar vermis, and it can be used during cerebellar-
driven protocols to interfere with the learning processes at neural level. It has
been shown that cerebellar TMS stimulation influences the learning processes,
but the underlying mechanisms are still unconfirmed [7,10,12,16].

In order to better understand the effects of cerebellar TMS, both experimen-
tal and computational approaches have been used in the last years.

2 Experimental Protocols

Monaco and colleagues [13,14] have employed TMS stimulation on human partic-
ipants between two sessions of eyeblink conditioning protocol (EBC), a temporal
associative task in which the subject learns, thanks to cerebellar plasticity, the
precise timing associations between two stimuli. In EBC, the participant learns
the association between a neutral conditioned stimulus (e.g., a sound) and a
following unconditioned stimulus, eliciting an eyeblink (e.g., an electric shock
near the eye). Initially, subjects respond with a reflexive eyelid closure, following
the unconditioned stimulus. Along with learning of this association, participants
start to express a Conditioned Response (CR), anticipating the unconditioned
stimulus.

The two EBC studies [13,14] have common features, such as the presence of
two consecutive sessions of EBC (session1 and session2), each one composed
of 6 blocks of acquisition, where two stimuli were provided to the subject, and
one block of extinction, where only one stimulus was provided to the subject. In
the acquisition phase, the subject learns the timing association between the two
stimuli, thus exhibiting an increasing percentage of correct CRs. In the extinction
phase, the subject unlearns the association between the two stimuli, since the
second one no more follows the first one. In both studies, an effective or a sham
cerebellar TMS stimulation was administered at the end of the first session. The
studies aimed at investigating the behavioural differences between the TMS and
the control (sham) groups in the second session.

There are some minor discrepancies between the two experimental protocols
(see Table 1), but the most important one is the washout period between the
first and the second session of EBC: a long one (i.e., 1 week) in Monaco et al.
2014 [13], and a short one (i.e., 15 min) in Monaco et al. 2018 [14].
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Table 1. Details of the two EBC experimental protocols

Property Monaco et al. 2014 Monaco et al. 2018

Number of subjects for each group 11 12

Number of groups 2 3

Stimulated hemisphere Right Right or left

Number of trials per block 10 11

Inter-stimulus interval 600 ms 400 ms

Washout period 1 week 15 min

In both experimental datasets, changes in the learning and unlearning trajec-
tories of CRs between the TMS and the control groups were observed. Namely,
with a long washout, the TMS group showed impairment in the extinction phase
of session2 (from block 6 to block 7), where the unlearning resulted in being
slowed down (Fig. 1.A). With a short washout, the TMS groups (right or left
stimulated hemisphere) showed a less effective relearning phase at the beginning
of acquisition (block 1 of session2) and, again, a slowed down unlearning during
the extinction phase (Fig. 1.B).

Overall, the findings from both experimental studies suggested that TMS can
impair memory consolidation processes in the cerebellum, possibly by interfering
with memory transfer from the cerebellar cortex to deeper structures. However,
due to the noninvasive nature of TMS investigation, it was possible to only
speculate about the putative mechanisms underlying the behavioural differences.
To have a greater insight about the neural processes involved by the TMS, a
computational approach was used in two previous works [1,3].

3 Computational Modelling

Historically, computational models of the brain have been widely used to acquire
new knowledge that cannot be obtained from physiological studies and abstract
theories. These models proved to be a powerful tool that can support the other
approaches in tackling the complex problem of understanding how the brain
works. Spiking Neural Networks (SNNs) have been used to mimic the neural
organization, employing single units (i.e., the neurons) organized and connected
similarly to the relative biological structures [4,9].

Recently, a detailed spiking neural network model of the cerebellar microcir-
cuit proved able to reproduce multiple cerebellar-driven tasks [5], among which
the EBC paradigm [2]. Having been validated, the SNN model was challenged
to fit the two experimental datasets recorded by Monaco and colleagues from
human subjects [13,14], with a long [1] or a short washout [3]. In both studies,
the SNN model was able to capture the specific alterations in the second EBC
session caused by TMS interference. Indeed, TMS affected motor response evolu-
tion along task repetitions, and we inferred the underpinning plasticity changes
over the whole network.
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Fig. 1. CR percentages in experimental and modelling studies. A) Box-plots of CR
percentages along the seven blocks of the EBC protocol with a long washout (1 week)
between session1 and session2. Left panel: session1, Central panel: session2 with
sham TMS, Right panel: session2 with effective TMS. Boxes represent the upper and
lower quartiles, the whiskers identify the range, and the red lines represent median
values. Black boxes represent experimental data from [13] and blue boxes represent
modelling data from [1] B) Box-plots of CR percentages along the seven blocks of the
EBC protocol with a short washout (15 min) between session1 and session2. Grey
boxes represent experimental data from [14], and white boxes represent modelling data
from [3]. (Color figure online)

The SNN cerebellar microcircuit was populated with leaky Integrate&Fire
neurons, distinguishing between different neural groups. Mossy Fibers (MFs),
the input neurons of the system, encode the first (conditioned) stimulus. In fact,
it has been shown that these neurons encode the state of the system (e.g., the
presence of a certain sound). Granular Cells (GrCs) represent in a sparse way
the input from the MFs. Inferior Olive neurons (IOs), the other input to the sys-
tem, encode the second (unconditioned) stimulus, since this neural population
is active in presence of pain. Purkinje Cells (PCs) integrate the sparse infor-
mation coming from the GrCs through the Parallel Fibers (PFs), while Deep
Cerebellar Nuclei (DCNs), the only output of the cerebellar microcomplex, acti-
vate the motor response (i.e., the anticipatory CR). While the network structure
and connectivity are the same in the two computational studies (Fig. 2), the
number of neurons for each population is different, as reported in Table 2, since
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the SNN used in Antonietti et al. 2018 is three-times larger than the one used
in Antonietti et al. 2016. Both studies used EDLUT simulator environment to
perform the neural simulations [17].

The connectivity between the different neural populations follows the same
rules. MFs send projections to the GrCs, each GrC receives input from 4 MFs;
IOs send one-to-one teaching connections to PCs; DCNs receive both excitatory

Fig. 2. Spiking Neural Network model used to simulate the cerebellar circuit. Both
computational studies [1,3] used the same network architecture, but with a different
number of neurons for each neural population (see Table 2). Circles represent neurons
and lines represent synaptic connections. Plasticity sites are marked by orange labels.
The first (conditioned) stimulus is encoded by MFs, while the second (unconditioned)
is encoded by IOs. The activity of DCNs is the network output and generates CRs.
(Color figure online)

Table 2. Number of neurons and synapses of the SNNs cerebellar models

Neural population Antonietti et al. 2016 Antonietti et al. 2018

MFs 100 300

GrCs 2000 6000

IOs 12 36

PCs 12 36

DCNs 6 18

Synaptic connection

MF-GrC (static) 8000 24000

PF-PC (plastic) 19164 172806

IO-PC (static) 12 36

MF-DCN (plastic) 600 5400

PC-DCN (plastic) 12 36
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inputs directly from MFs and inhibitory synapses from PCs. The SNN models
has three plasticity sites, at cortical level (PF-PC) and at nuclear level, between
MF-DCN and PC-DCN, all based on different kinds of Spike-Timing Dependent
Plasticity (STDP) [6,11]. PF-PC plasticity is modulated by IO activity, MF-
DCN by PC activity, while PC-DCN is a standard unsupervised STDP learn-
ing, depending only on the difference between the pre- and post-synaptic firing
times [8,15,18]. Each learning rule encompasses two different plasticity mech-
anisms: Long Term Depression (LTD), decreasing the synapse strength, and
Long Term Potentiation (LTP), strengthening the connection. Therefore, each
plasticity site can be characterized by two constants that regulate the amount
of synaptic change. These constants cannot be directly computed from physio-
logical data; as a result, we have treated those as free parameters of the SNN
model, to be optimized according to the desired behaviour. The two computa-
tional studies employed evolutionary algorithms to identify the best six parame-
ters (PF-PC LTP, PF-PC LTD, MF-DCN LTP, MF-DCN LTD, PC-DCN LTP,
and PC-DCN LTD) in each experimental condition (session1, session2sham, and
session2TMS).

Employing realistic SNN models, Antonietti and colleagues have shown how
closed-loop simulations can be successfully used to fit real experimental datasets.
Thus, the changes in the model parameters in the different sessions of the pro-
tocol unveil how microcircuit mechanisms let implicitly emerge healthy and
altered behavioural functions. In this work, we have analyzed the data gen-
erated by experimental and computational studies, in order to clarify the role of
the washout period, the main difference between the two datasets.

4 Comparative Analysis

The elements analyzed in the present study are the learning and unlearning
trajectories (i.e., the variation in CR percentage between blocks) and the values
of LTP and LTD parameters at the three plasticity sites that yielded to different
behaviours in the simulations.

The two computational studies have already demonstrated that the behav-
ioural response generated by the model in each block was a good representation
of the experimental recordings. Figure 1 shows that the CRs generated by the
model (blue boxes in Panel A, white boxes in Panel B) were comparable with
the experimental results (black boxes in Panel A, grey boxes in Panel B). The
degree of variability of the experimental data was higher than the computational
studies, but a certain degree of variability was maintained. The variability in the
results generated by SNN models was due to the fact that multiple combinations
of LTP and LTD parameters have been considered. In fact, the evolutionary algo-
rithm identified a family of optimal parameter combinations, leading to similar
performances.

For the short washout protocol, two distinct TMS groups were identified, one
receiving a stimulation of the left cerebellar hemisphere, the other one receiving
the stimulation on the right hemisphere. Since there were no significant differ-
ences between the CRs recorded from the two groups, in the present study, the
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results of both groups have been merged in a single TMS group, then compared
to the sham group. In this way, we can make a direct comparison between the
two studies, considering only two groups: sham vs TMS.

We focused our analysis on the two salient phases that were changed in
session2 for the TMS group with respect to the sham group. Namely, the fast
acquisition (from zero to block 1, Fig. 3.A) and the extinction (from block 6 to
block 7, Fig. 3.B). After a prolonged washout, the percentage of CRs acquired
in the first block did not differ between the sham and the TMS groups. On the
other hand, TMS slowed down the fast learning phase when a short washout
interleaved the two EBC sessions (73% sham, 54.5% TMS, Fig. 3.A).

Conversely, the TMS administration interfered with the extinction phase
after both long and short washouts. In fact, with a long washout the TMS group
decreased the percentage of CRs of only −30% [−40 −10], while the sham group
unlearnt faster −50% [−60 −40]. The same behaviour was observed with a short
washout, where the extinction rate was −36% [−55 −27] in TMS group and
−55% [−64 −45] in the sham group.

Fig. 3. Comparison of learning and unlearning rates in session1, session2sham, and
session2TMS . A) Fast learning rates, i.e., increase in CRs in the first acquisition block
with long (left) or short (right) washouts. B) Unlearn rates, i.e. decrease in CRs from
the last block of extinction (block 6) to the extinction (block 7). Boxes represent the
upper and lower quartiles, the whiskers identify the range, and the red lines represent
median values. Blue boxes represent modelling data from [1] and white boxes represent
modelling data from [3]. (Color figure online)

Summarizing, the TMS affected both the fast acquisition and the extinction
only with a short washout, while it impacted only the extinction phase with a
long washout. We have then analyzed the LTP and LTD parameters of the SNN
distributed plasticity that generated this different behaviour.

Figure 4 illustrates the overall variations of LTP and LTD parameters for
the cortical plasticity (PF-PC, Panel A) and the nuclear plasticities (MF-DCN,
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Fig. 4. Changes for LTP and LTD Parameter at the Three Different Plasticity Sites:
A) PF-PC, B) MF-DCN, and C) PC-DCN. The left column represents box-plots of
the parameter change in session2 for the TMS group with respect to the parameter
values for the sham group. Boxes represent the upper and lower quartiles, the whiskers
identify the range, and the red lines represent median values. Blue boxes represent
modelling data from [1] and white boxes represent modelling data from [3]. The right
column presents a synthesis of the parameter changes (LTP and LTD) and the overall
effect on the CR generation. Plus/minus symbols indicate qualitatively the amount of
increase/decrease of the parameter in the TMS group or an increase/decrease in CR
percentage generation. Equal symbols indicate negligible changes. (Color figure online)
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Panel B, and PC-DCN, Panel C). The left column reports the percentage vari-
ation of the LTP and LTD parameters in the TMS group with respect to the
sham group. An increased LTP parameter implicates a stronger potentiation of
the synapses, while an increased LTD parameter entails a stronger weakening.
The right column summarizes the combined effect of LTP and LTD changes and
their effect on the CR generation process, that can be favoured or hindered.

Considering the PF-PC plasticity, it is possible to observe that while the
LTD constant was not influenced by the TMS stimulation, the LTP parameter
was decreased with a long washout and increased with a short one. This cause
an increased and a decreased generation of CRs in the long and short washout
case, respectively.

Considering the nuclear plasticities, the changes were limited for both LTP
and LTD parameters in the long washout case. On the other hand, the changes
were evident for the short washout case, where the variations of LTP and LTD
parameters moved in favour of a generation of CRs. In fact, the LTD of the
excitatory MF-DCN synapses was decreased, while the LTD of the inhibitory
PC-DCN synapses was strongly increased. As a result, more excitatory inputs
from the MFs and a weaker inhibition from the PCs increased the firing rate of
DCN, thus generating more CRs.

5 Discussion and Conclusions

The analysis of LTP and LTD parameters showed that changes in behaviour with
short and long washout are due to different rate in the rules driving synaptic
modifications.

In particular, it can be observed that the administration of TMS followed by
a prolonged washout caused a significant modification of the cortical plasticity
only, with minor involvement of nuclear plasticities. Besides, the decrease of
the PF-PC LTP parameter was in favour of a generation of CRs, therefore the
fast acquisition in session2TMS was not impaired since the SNN expressed a
high number of CRs, but this change impacted the extinction phase, where
suppression of CRs was required.

In the case of a short washout, the parameters changed in a completely differ-
ent way. First of all, it has been observed an involvement of both the cortical and
the nuclear sites. While the cortical plasticity expressed a higher value of LTP,
thus hindering CRs generation, the LTP and LTD constants of nuclear plastici-
ties moved toward values that promoted CRs. As a matter of fact, the cortical
and the nuclear mechanisms worked in opposite directions. This is the reason
why, in the short washout case, both the learning and unlearning phases were
impaired. The learning phase was slowed down by a weaker PF-PC response,
while the reduced extinction was due to a higher DCN activity caused by the
nuclear plasticities.

We can, therefore, conclude that the duration of the washout after the TMS
administration is a crucial variable that can change the reorganization of plas-
ticity and neural dynamics in the cerebellum. Since the TMS induces an elec-
trical field in the most superficial areas of the tissue, the cortical plasticity is
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the one primarily involved, as reflected by major changes concerning its LTP
mechanisms (increasing or decreasing the potentiation effectiveness). However,
if sufficient recovery time is granted, the TMS effect is limited to the cerebellar
cortex and does not interfere with deeper systems (i.e., nuclear plasticities) and
memory transfer. Viceversa, if the inter-session pause after TMS perturbation
is shortened, the cortical impairment in the acquisition phase triggers a com-
pensatory effect of the nuclear plasticities, that try to favour CRs generation,
but on a longer time-scale. Then, the nuclear compensation becomes an obstacle
during the extinction phase.

It is important to highlight that the effect of TMS is more evident for the
short washout, both in the experimental and computational studies. In fact,
session2sham and session2TMS experimental data for the long washout proto-
col show high variability during the acquisition blocks. At the same time, the
computational model fit those blocks with less fidelity. The second EBC ses-
sion after a long washout suffers from the interference of the neural activity and
synaptic changes that naturally happen during one week of participants’ life,
where external stimuli and internal processes can disrupt or modify cerebellar
memory formation and consolidation.

This work carried out a retrospective analysis and a comparison of TMS-
perturbed EBC paradigms that present some differences both from the experi-
mental protocol (see Sect. 2, Table 1) and the related computational studies (see
Sect. 3, Table 2). However, we believe that this comparative analysis provides
a summary of the mechanistic explanations that can be derived from the inter-
pretation of the SNN model parameters, highlighting the effects of the washout
period in studies that foresee the administration of (cerebellar) TMS on human
participants.

Data Availability. Datasets and Codes to reproduce the findings and fig-
ures reported in this paper is publicly available at Harvard Dataverse (DOI:
10.7910/DVN/9HPEV4).
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Abstract. We are entering an age of ‘big’ computational neuroscience,
in which neural network models are increasing in size and in numbers
of underlying data sets. Consolidating the zoo of models into large-scale
models simultaneously consistent with a wide range of data is only pos-
sible through the effort of large teams, which can be spread across mul-
tiple research institutions. To ensure that computational neuroscientists
can build on each other’s work, it is important to make models pub-
licly available as well-documented code. This chapter describes such an
open-source model, which relates the connectivity structure of all vision-
related cortical areas of the macaque monkey with their resting-state
dynamics. We give a brief overview of how to use the executable model
specification, which employs NEST as simulation engine, and show its
runtime scaling. The solutions found serve as an example for organizing
the workflow of future models from the raw experimental data to the
visualization of the results, expose the challenges, and give guidance for
the construction of an ICT infrastructure for neuroscience.

Keywords: Computational neuroscience · Spiking neural networks ·
Primate cortex · Simulations · Strong scaling · Reproducibility ·
Reusability · Complexity barrier

1 Introduction

With the availability of ever more powerful supercomputers, simulation codes
that can efficiently make use of these resources (e.g., [1]), and large, system-
atized data sets on brain architecture, connectivity, neuron properties, genetics,
c© The Author(s) 2021
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transcriptomics, and receptor densities [2–10], the time is ripe for creating large-
scale models of brain circuitry and dynamics.

We recently published a spiking model of all vision-related areas of macaque
cortex, relating the network structure to the multi-scale resting-state activity
[11,12]. The model simultaneously accounts for the parallel spiking activity of
populations of neurons and for the functional connectivity as measured with
resting-state functional magnetic resonance imaging (fMRI). As a spiking net-
work model with the full density of neurons and synapses in each local micro-
circuit, yet covering a large part of the cerebral cortex, it is unique in bringing
together realistic microscopic and macroscopic activity.

Rather than as a finished product, the model is intended as a platform for
further investigations and developments, for instance to study the origin of oscil-
lations [13], to add function [14], or to go toward models of human cortex [15].

To support reuse and further developments by others we have made the entire
executable workflow available, from anatomical data to analysis and visualiza-
tion. Here we provide a brief summary of the model, followed by an overview
over the workflow components, along with a few typical usage examples.

The model is implemented in NEST [16] and can be executed using a high-
performance compute (HPC) cluster or supercomputer. We provide correspond-
ing strong scaling results to give an indication of the necessary resources and
optimal parallelization.

2 Overview of the Multi-Area Model

The multi-area model describes all 32 vision-related areas in one hemisphere of
macaque cortex in the parcellation of Felleman and Van Essen [17]. Each area
is represented by a layered spiking network model of a 1 mm2 microcircuit [18],
adjusted to the area- and layer-specific numbers of neurons and laminar thick-
nesses. Layers 2/3, 4, 5, and 6 each have an excitatory and an inhibitory population
of integrate-and-fire neurons. To minimize downscaling distortions [19], the local
circuits contain the full density of neurons and synapses. This brings the total size
of the network to ∼4 million neurons and ∼24 billion synapses. All neurons receive
an independent Poisson drive to represent the non-modeled parts of the brain.

The inter-area connectivity is based on axonal tracing data from the CoCo-
Mac database on the existence and laminar patterns of connections [4], along
with quantitative tracing data also indicating the numbers of source neurons in
each area and their supragranular or infragranular location [22,23]. These data
are complemented with statistical predictions (‘predictive connectomics’) to fill
in the missing values, based on cortical architecture (neuron densities, laminar
thicknesses) and inter-area distances [24]. Figure 1 shows the resulting connec-
tivity at the level of areas, layers, and populations. A semi-analytical mean-field
method adjusts the data-based connectivity slightly in order to bring the firing
rates into biologically plausible ranges [25].

By increasing the synaptic strengths of the inter-area connections, slow activ-
ity fluctuations, present in experimental recordings but not in the isolated micro-
circuit, are reproduced. In particular, the system needs to be poised right below
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Fig. 1. Overview of the connectivity of the multi-area model as determined from anatom-
ical data and predictive connectomics. A Area-level connectivity. The weighted and
directed graph of the number of outgoing synapses per neuron (out-degrees) between
each pair of areas is clustered using the map equation method [20]. Green, early visual
areas; dark blue, ventral stream areas; purple, frontal areas; red, dorsal stream areas; light
red, superior temporal polysensory areas; light blue, mixed cluster. Black arrows show
within-cluster connections, gray arrows between-cluster connections. B Population-level
connection probabilities (the probability of at least one synapse between a pair of neu-
rons from the given populations). C Hierarchically resolved average laminar patterns of
the numbers of incoming synapses per neuron (in-degrees). Hierarchical relationships are
defined based on fractions of supragranular labeled neurons (SLN) from retrograde trac-
ing experiments [21]: feedforward, SLN > 0.65; lateral, 0.35 ≤ SLN ≤ 0.65; feedback,
SLN < 0.35. The connections emanate from excitatory neurons and are sent to both
excitatory and inhibitory neurons. For further details see [11].
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an instability between a low-activity and a high-activity state in order to capture
the experimental observations. The spectrum of the fluctuations and the distribu-
tion of single-neuron spike rates in primary visual cortex (V1) are close to those
in lightly anesthetized macaque monkeys. At the same synaptic strengths where
the parallel spiking activity of V1 neurons is most realistic, also the inter-area
functional connectivity is most similar to macaque fMRI resting-state functional
connectivity.

3 The Multi-Area Model Workflow

The multi-area model code is available via https://inm-6.github.io/multi-area-
model/ and covers the full digitized workflow from the raw experimental data to
simulation, analysis, and visualization. The model can thus be cloned to obtain
a local version, or forked to build on top of it. The implementation language
is Python, the open-source scripting language the field of computational neuro-
science has agreed on [26]. The online documentation provides all information
needed to instantiate and run the model. The tool Snakemake [27] is used to
specify the interdependencies between all the scripts and execute them in the
right order to reproduce the figures of the papers on the model’s anatomy [11],
dynamics [12], and stabilization based on mean-field theory [25] (see Fig. 2).

Fig. 2. Visualization of a Snakemake workflow. The interdependencies between
the scripts reproducing the figures in [12], visualized as a directed acyclic graph. The
label of a node corresponds to the name of the script.

Furthermore, if one of the files in the workflow is adjusted, Snakemake enables
executing only that file and the ones that depend on it anew. A tutorial video
(https://www.youtube.com/watch?v=YsH3BcyZBcU) gives a brief overview of
the model, explains the structure of the code, and shows how to run a basic
simulation.

https://inm-6.github.io/multi-area-model/
https://inm-6.github.io/multi-area-model/
https://www.youtube.com/watch?v=YsH3BcyZBcU
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4 Example Usage

One main property delivered by the multi-area model is the population-, layer-,
and area-specific connectivity for all vision-related areas in one hemisphere of
macaque cortex. We here describe how to obtain the two available versions
of this connectivity: 1) based directly on the anatomical data plus predic-
tive connectomics that fills in the missing values; 2) after slight adjustments
in the connectivity in order to arrive at plausible firing rates in the model.
We also refer to this procedure as ‘stabilization’ because obtaining plausible
activity entails enhancing the size of the basin of attraction of the low-activity
state, i.e., increasing its global stability. An example how to use the mean-field
method developed in [25] for this purpose is provided in the model repository:
figures/SchueckerSchmidt2017/stabilization.py. The method adjusts the number
of incoming connections per neuron (in-degree). The script exports the adjusted
matrix of all in-degrees as a NumPy [28] file; to have the matrix properly anno-
tated one can instantiate the MultiAreaModel class with the exported matrix
specified in the connection parameters as K_stable. Afterwards, one can access
the connectivity using the instantiation M of the MultiAreaModel class: M.K for
the in-degrees or M.synapses for the total number of synapses between each pair
of populations. To obtain the connectivity without stabilization, it is sufficient
to instantiate the MultiAreaModel class without specifying K_stable.

Performing a simulation of the full multi-area model requires a significant
amount of compute resources. To allow for smaller simulations, it is possi-
ble to simulate only a subset of the areas. In this case, the non-simulated
areas can be replaced by Poisson processes with a specified rate. To this end,
the options replace_non_simulated_areas and replace_cc_input_source in
connection_params have to be set to ‘het_poisson_stat’ and the path to a
JSON file containing the rates of the non-simulated areas. Lastly, the simulated
areas have to be specified as a list, for instance

sim_params[‘areas_simulated ’] = [‘V1’, ‘V2’],

before the MultiAreaModel class is instantiated. A simple example how to deploy
a simulation is given in run example fullscale.py; the effect of replacing areas by
Poisson processes is shown in Fig. 3 .

5 Strong Scaling

The limiting factor dictating the necessary compute resources for simulating the
multi-area model is the available memory. Approximately 1 TB is needed for
instantiating the network alone. To ensure sufficient memory for the model, the
simulation has to be distributed across multiple nodes.

We simulated the model using NEST 2.14 [29] on the JURECA supercom-
puter in Jülich, which provides 1872 compute nodes equipped with two Intel
Xeon E5-2680 v3 Haswell CPUs per node. Each CPU has 12 cores running at
2.5 GHz. The standard compute node provides 128 GB of memory of which 96

https://github.com/INM-6/multi-area-model/blob/master/figures/SchueckerSchmidt2017/stabilization.py
https://github.com/INM-6/multi-area-model/blob/master/run_example_fullscale.py
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Fig. 3. Simulating subsets of the multi-area model. Bottom panels, spiking activ-
ity of excitatory (blue) and inhibitory (red) neurons in all layers of area V1 where in
A and B a subset of areas is replaced by Poisson processes. Top panels, sketches visu-
alizing which areas were simulated (white spotlights); the colors therein correspond
to different clusters: lower visual (green), ventral stream (dark blue), dorsal stream
(red), superior temporal polysensory (light red), mixed cluster (light blue), and frontal
(purple). If all areas besides V1 are replaced by Poisson processes (A), the activity
displays no temporal structure. Simulating a subset of ten areas (B) slightly increases
the activity but does not give rise to a temporal structure, either. Only the simulation
of the full model (C) produces a clear temporal structure in the activity. Parameters
identical to [12, Fig. 5].

Fig. 4. Strong scaling of the multi-area model. The contributions of different
phases to the total simulation time and state propagation for 12 to 200 compute nodes
for 1 s of biological time. Each data point consists of three random network realiza-
tions, with error bar showing the standard deviation of measurements. A The main
contributions to the total time are network construction and state propagation. B The
state propagation is dominated by three phases: the communication, update, and spike
delivery phase. Adding more compute resources while keeping network size the same
(strong scaling) decreases the latter two but increases the absolute and relative con-
tribution of the communication phase. The combined contributions are minimized at
a real-time factor of 31 (black horizontal line). Parameters identical to [12, Fig. 5].
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GB are guaranteed to be available for the running application. Thus, on this
machine, the multi-area model needs at least 11 nodes.

Having established the minimal hardware requirements, we are interested in
the runtime of the simulation depending on the compute resources. We quantify
the proximity of the time required for state propagation to biological real time
by the real-time factor Tsim/Tbio. Carrying out a strong scaling experiment, the
problem size stays fixed and we increase the number of compute nodes from
12 to 200, thus reducing the load per node. In our simulations we use 6 MPI
processes per node and 4 threads per MPI process, as we found this hybrid
parallelization to perform better than other combinations of threading and MPI
parallelism (data not shown). In particular during the construction phase, hybrid
parallelization outperformed pure threading by a large margin. The threads are
pinned to the cores and jemalloc is used as a memory allocator ([30], see [31]
for the relevance of the allocator for NEST). In each run, we simulate 10 s of
biological time.

In Fig. 4A the total runtime and its main contributions, network construc-
tion and state propagation, are shown. The contribution of state propagation is
averaged to 1 s of biological time. The main share of the time is taken up by
network construction. During this phase the neurons and synapses are created
and connected, while during state propagation the dynamics of the model is sim-
ulated. The time spent in the former phase is fixed, as it is independent of the
specified biological time, whereas the time spent propagating the state depends
on the specified biological time and the state of the network. Depending on the
initial conditions and the random Poisson input, the network exhibits higher or
lower activity, affecting the time spent propagating the state. Hence, the ratio of
both phases should not be taken at face value. In some cases, longer simulations
are of interest, increasing the relevance of the time spent propagating the state.
Thus, it is interesting to know how different components of the state propagation
algorithm contribute to this phase.

The three main phases during state propagation are: update of neuronal
states, communication between MPI processes, and delivery of spikes to the tar-
get neurons within each target MPI process. Figure 4B shows the contributions
of these phases to the real-time factor. Adding more compute resources brings
down the contributions of the update and delivery phases and increases the
time consumption of communication. Especially the delivery of spikes is heav-
ily dependent on the network activity. At 160 nodes, a real-time factor of 31 is
achieved (mean spike rate 14.1 spikes/s). This slowdown compared to real time
enables researchers to study the dynamics of the multi-area model over suffi-
ciently long periods, for example in detailed correlation analyses, but systematic
investigations of plasticity and learning would still profit from further progress.

In order to test the influence of the communication rate on the time required
for state propagation, we carried out a simulation of a two-population balanced
random network [32] which has been used in previous publications on neuronal
network simulation technology [1,31,33–36]. We use the same parameters as in
[1], but replace connections governed by spike-timing dependent plasticity by
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static connections. In addition we set the numbers of neurons and synapses to
match those in the multi-area model (resulting mean spike rate 12.9 spikes/s).
The communication interval is determined by the minimum delay, as the spikes
can be buffered over the duration of this delay while maintaining causality [37].
The multi-area model has a minimum delay of 0.1 ms, whereas the balanced
random network has a uniform delay of 1.5 ms, so that communication occurs 15
times less often. Using 160 nodes and the same configurations as before, we find
a real-time factor of 17. Here, 80% of the time is spent delivering the spikes to
the target neurons locally on each process, whereas only 1% of the time is spent
on MPI communication. Forcing the two-population model to communicate in
0.1 ms intervals by adding a synapse of corresponding delay and zero weight
indeed requires the same absolute time for MPI communication as in the multi-
area model. The real-time factor increases to 34, significantly larger than for the
multi-area model. The increase is entirely due to a longer spike delivery phase.
How the efficiency of spike delivery is determined by the network activity remains
to be answered by future investigations. Possibly relevant factors are the wide
distribution of spike rates in the multi-area model compared to the narrow one in
the two-population model, and the different synchronization patterns of neuronal
activity in the two models. In summary, less frequent MPI communication shifts
the bottleneck to another software component while almost halving the total
runtime. This opens up the possibility of speeding up the simulation even more
through optimized algorithms for spike delivery on each target process.

6 Conclusions

The usefulness of large-scale data-driven brain models is often questioned [38–
40], as their high complexity limits ready insights into mechanisms underlying
their dynamics, large numbers of parameters and a lack of testing of models with
new data may lead to overfitting and poor generalization, and function does not
emerge magically by putting the microscopic building blocks together. However,
this argument can also be turned around. It seems that in recent years the com-
plexity of the majority of models and thereby their scope of explained brain
functions is not increasing anymore. One reason is that elegant publications on
minimal models explaining a single phenomenon are often also end points in
that they have no explanatory power beyond their immediate scope. It remains
unclear how the proposed mechanisms interact with other mechanisms realized
in the same brain structure, and how such models can be used as building blocks
for larger models giving a more complete picture of brain function. The powerful
approach of minimal models from physics needs to be integrated with the sys-
tems perspective of biology. To achieve models able to make accurate predictions
for a broad range of questions, the zoo of available models of individual brain
regions and hypothesized mechanisms needs to be consolidated into large-scale
models tested on numerous benchmarks on multiple scales [41]. Having an accu-
rate, if complex, model of the brain that generates reliable predictions enables in
silico experiments, for instance to predict treatment outcomes for neurological
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conditions, potentially even for individual subjects [42]. Furthermore, combin-
ing the bottom-up, data-driven approach with a top-down, functional approach
allows models to be equipped with information processing capabilities. Creating
such accurate, integrative models will require overcoming the complexity barrier
computational neuroscience is facing. Without progress in the software tools
supporting collaborative model development and the expressive digital repre-
sentation of models and the required workflows, reproducibility and reusability
cannot be maintained for more complex models.

On the technical side, simulation codes like NEST have matured to generic
simulation engines for a wide range of models. Recent developments in the simu-
lation technology of NEST have considerably sped up the state propagation and
reduced the memory footprint [1] of large-scale network models. The rapid state
propagation causes the network construction phase to take up a large fraction of
the simulation time for simulations of short to medium duration. Furthermore,
the fact that hybrid parallelization currently performs better than pure thread-
ing during the construction phase indicates that the code still spends time on
the Python interpreter level and does not yet optimally make use of memory
locality. For these reasons, speeding up network construction should be a focus
of future work.

Our strong scaling results show that communication starts to dominate at
an intermediate number of nodes, so that the further speed-up in the solution of
the neuron equations cannot be fully exploited. Therefore, it would be desirable
to develop methods for further limiting the time required for communication,
for instance by distributing the neurons across the processes according to the
modular structure of the neuronal network [43], as opposed to the current round-
robin distribution. The longer delays between areas compared to within areas
would then allow less frequent MPI communication, by buffering the spikes for
the duration of the delay [37,43]. A major fraction of time is then spent in the
spike delivery phase. Here an algorithm needs to transfer the spikes arriving at
the compute node to their target neurons. It is our hope that in future a better
understanding of the interplay between the intrinsically random access pattern
and memory architecture will lead to more effective algorithms.

While the publication of the model code in a public repository enables down-
loading and executing the code, this requires setting up the simulation on the
chosen HPC system, which may be nontrivial, and the HPC resources have to
be available to the research group in the first place. Therefore, it would be
desirable to link computing resources to the repository, enabling the code to be
executed directly from it. The ICT infrastructure for neuroscience (EBRAINS)
being created by the European Human Brain Project (HBP) has made first steps
in this direction. A preliminary version of a digital workflow for the collaborative
development of reproducible and reusable models was evaluated in [44]. Next to
finding a concrete solution for the multi-area model at hand, the purpose of the
present study was to extend the previous work and obtain a clearer picture of the
requirements on collaborative model development and the digital representation
of workflows. From the present perspective it seems effective not to reimplement



56 S. J. van Albada et al.

the functionality of advanced code development platforms like GitHub in the
HBP infrastructure but to build a bridge enabling execution of the models and
storage of the results. An essential feature will be that the model repository
remains portable by abstractions from any machine specific instructions and
authorization information.

The microcircuit building block for this model [18] has found strong resonance
in the computational neuroscience community, having already inspired multiple
follow-up studies [45–52]. The multi-area model of monkey cortex developed by
Schmidt et al. [11,12] and described here has a somewhat higher threshold for
reuse, due to its greater complexity and specificity. Nevertheless, it has already
been ported to a single GPU using connectivity generated on the fly each time a
spike is triggered, thereby trading memory storage and retrieval for computation,
which is possible in this case because the synapses are static [53]. We hope
that the technologies presented here push the complexity barrier of neuroscience
modeling a bit further out, such that the model will find a wide uptake and
serve as a scaffold for generating an ever more complete and realistic picture of
cortical structure, dynamics, and function.
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1 Jülich Supercomputing Centre (JSC) - Forschungszentrum Jülich GmbH,
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Abstract. The precise simulation of the human brain requires coupling
different models in order to cover the different physiological and func-
tional aspects of this extremely complex organ. Each of this brain mod-
els is implemented following specific mathematical and programming
approaches, potentially leading to diverging computational behaviour
and requirements. Such situation is the typical use case that can benefit
from the Modular Supercomputing Architecture (MSA), which organizes
heterogeneous computing resources at system level. This architecture
and its corresponding software environment enable to run each part of
an application or a workflow on the best suited hardware.

This paper presents the MSA concept covering current hardware and
software implementations, and describes how the neuroscientific work-
flow resulting of coupling the codes NEST and Arbor is being prepared
to exploit the MSA.

Keywords: Modular Supercomputing Architecture · MSA ·
Heterogeneous computer architectures · DEEP projects · Accelerators ·
Workflow · Neuroscience · Arbor · NEST

1 Introduction

Since the construction of the first cluster computer in the nineties [1], intercon-
necting a large number of commodity, general-purpose processors has become the
most popular approach to build High-Performance Computing (HPC) systems.
In recent years, these traditionally homogeneous clusters are being substituted
by heterogeneous configurations employing a variety of acceleration technologies.
c© The Author(s) 2021
K. Amunts et al. (Eds.): BrainComp 2019, LNCS 12339, pp. 63–80, 2021.
https://doi.org/10.1007/978-3-030-82427-3_5
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Computing devices are considered as accelerators when they have been
designed to perform specific operations very fast. In principle, such definition
would apply even to individual execution units within the CPU, such as tensor
cores or advanced vector registers. However, in this paper we denote as accelera-
tors only those out-of-package devices made of a very large number of relatively
simple compute cores. Under this definition, the most frequently used example
of an accelerator is a graphic processing unit (GPU). As their name says, GPUs
were originally developed to very efficiently render and visualize graphics, but
today their compute performance is also employed to perform floating point and
tensor operations in all kinds of applications. Since accelerators are designed
to execute auxiliary operations, they frequently depend on a CPU (considered
as its host) to carry out important actions such as booting the accelerator and
enabling it to communicate through the cluster-level high-speed network.

Accelerators rely on exploiting parallelism to compute, as their large number
of compute cores/units are operated at relatively low frequencies. In consequence,
they are able to achieve high peak-performances using less power than standard
CPUs. Their energy efficiency – expressed through a high Flop/Watt ratio – is in
fact the main reason for the success of accelerators in HPC. Clusters with accel-
erators are generally more energy-efficient than those without, and this difference
becomes a major cost-factor in the operation of very large-scale platforms.

With regards to the system-level architectures of accelerated clusters, one
can observe that typically one, two or more accelerators are integrated inside
a node connected to a general purpose CPU via a PCIe interface. This node
configuration is then multiplied several thousands of times, and the CPUs are
interconnected with each other via some high-speed network. Recently, intercon-
nection of the GPUs within the node has become possible, improving the ability
to exchange data between them. In consequence the trend goes towards GPU-
islands with four, six or even more GPUs per node. The negative consequence is
a dramatic growth in compute power inside the accelerated-node, which is not
compensated with a proportional increase in inter-node communication band-
width. Therefore, though the scaling inside the node improves, the system-level
scaling of codes is impeded by the imbalanced compute-to-communication capa-
bilities between nodes.

The traditional programming model for node-level accelerated clusters is to
run the main program in the host CPUs and offload compute-intensive kernels to
the accelerators. For the large problems tackled by HPC, multi-node executions
require exchanging data between the parts of the application running on the host
and the accelerator. However, the static assignment of accelerators to CPUs
within the node, added to the additional communication latencies that apply
when inter-accelerator communication is executed through the host – what today
is not always necessarily the case anymore –, limits the scalability and flexibility
of this node-level heterogeneous cluster concept.

For example: an application running on a cluster with four GPUs per node
might fully exploit the host CPUs but use only one of the GPUs attached to
each one of them. In such case it will be hardly possible for other applications
to use these free devices, as access needs to go through the CPU, which is busy.
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In consequence, in this example almost 3/4 of the computation power of the
system will remain idle. Obviously such situation would be avoided if the system
is deployed with exactly the amount of accelerators per node required by the
applications that will run on it. However, finding the right static configuration
for all the users of the HPC system becomes impossible since the application
portfolio is getting more and more diverse.

Today, the users of HPC systems employ codes ranging from high-scale,
tightly coupled simulations, to high-performance data analytics (HPDA) and
deep learning (DL). In fact, not only the applications are very different from
each other, but even the workflows from individual users combine codes with
very diverse requirements.

This is particularly the case in neuroscience, which aims at better under-
standing the behaviour of the possibly most complex organ in nature: the human
brain. The huge scale spans (from nanometers to centimeters), the complexity of
the involved physical and biological effects, and the tight interrelation between
all of these aspects require the combination of various codes in order to reproduce
the behaviour of the brain with some accuracy. All these codes present generally
different requirements, making the overall usage scenario a natural candidate for
using the a Modular Supercomputing Architecture (MSA).

The particular case addressed by this paper is the coupling of NEST and
Arbor, two neuroscientific codes that can together bring a deep insight in the
functions of the human brain. NEST simulations of large-scale networks of simple
integrate-and-fire type model neurons are memory-bound due to the communica-
tion and memory accesses required to reproduce the exchange of neuronal signals,
which dominate the total runtime [23]. Therefore, NEST runs best on general
purpose clusters. On the other hand, Arbor simulates multi-compartment neu-
rons with a very high computational cost per neuron and is therefore compute-
bound, making it the ideal candidate to run on accelerators. The coupling of both
codes could therefore profit from an MSA system in which CPU and accelerator
resources can be reserved and allocated independently.

This paper explains the MSA and how a neuroscientific workflow combining
the codes NEST and Arbor aims at employing it. Section 2 explains the architec-
ture concept, while Sect. 3 and 4 describe current hardware platforms and their
software environment. Section 5 describes the above-mentioned Nest-Arbor neu-
roscientific workflow, and the paper is summarized in Sect. 6.

2 The Modular Supercomputing Architecture (MSA)

The Modular Supercomputing Architecture (MSA) developed at the Jülich
Supercomputing Centre (JSC) within the series of EU-funded DEEP projects [2,
3] aims at providing cost-effective computing capabilities fitting the needs of a
wide range of computational sciences [4,5].

The MSA segregates heterogeneous resources and implements heterogeneity
at system level, instead of node level (see Fig. 1). In its simplest configuration (the
so-called cluster-booster approach [6]), a cluster made of general purpose CPUs
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Fig. 1. Sketch of the modular supercomputing architecture. Note that this diagram
reflects the general concept and does not represent any specific computer. Example
modules: Cluster (CN : Cluster node), Booster (BN : Booster node), Data Analytics
(AN : Analytics node), Neuromorphic (NN : Neuromorphic node), and Quantum (QN :
Quantum node). For a schema of the MSA realization in the DEEP-EST prototype see
Fig. 3, left.

is attached to a cluster of accelerators (the booster). In the latter accelerators are
considered and operated as first-class computing devices. Furthermore, nodes on
cluster and booster can be allocated independently and according to the needs
of each application, so that no resources are blocked by allocating others.

In the first hardware realizations of the cluster-booster concept (e.g.
JURECA, see Sect. 3.1), the booster used many-core processors that could boot
and communicate through the system-level network without relying on host-
CPUs. Fully autonomous accelerators are ideal for the MSA, as they enable
scaling-up the cluster and the booster independently. In particular, the energy-
efficient booster can be built at very large size (e.g. exascale), while the cluster
is kept at a relatively small size to cover the needs of low-scaling parts of the
applications without impacting on the overall power consumption of the sys-
tem. Note that this is not possible in the traditional accelerated-node approach,
where increasing the number of accelerators implies a proportional increase in
the amount of general-purpose CPUs due to the static assignment between both.

Unfortunately, today’s GPUs still rely on a host-CPU and cannot be operated
autonomously. Still, the booster philosophy can be kept if one employs a low-power
(and computationally weak) CPU, reducing its role to the orchestration and oper-
ation of the attached GPU(s). In this case, even if the number of CPUs increases
when scaling-up the system, their contribution to the overall power consumption
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is very small. Another key goal of the booster is achieving a good intra-node and
inter-node communication-to-computation balance. If the selected GPU is com-
putationally very strong, it might be beneficial to keep a low number of them per
node (eventually only one), in order to fully exploit all its bandwidth towards the
network. These kind of considerations are crucial to achieve the goal of the booster:
good system balance and energy-efficient scalability at system level.

Note, however, that the MSA is much more general than the cluster-booster
concept, which is very much focused on matching the different concurrency levels
in applications. In the same way as the cluster provides hardware support to
run the low/medium scalable part of codes while the booster does the same for
highly-scalable codes, some applications need different acceleration technologies
and varying sizes of memory devices and capacities. The MSA aims at fulfilling
the needs of very diverse application requirements by interconnecting a variety
of compute modules. Each module is a multi-node system of potentially large
side, designed with specific hardware configurations that target a part of the
application portfolio.

Fig. 2. Distribution of three different (hypothetical) workflows on an MSA system.
See in Fig. 5 the mapping on the DEEP-EST prototype of the neuroscientific workflow
matter of this paper.

One of the goals with MSA is to enable application developers to distribute
their codes over a diversity of modules, such that each part of their workflows
runs on the most suitable hardware (see Fig. 2). A further goal is to facilitate
the adoption of new computing technologies in HPC. Therefore – though not yet
implemented in existing platforms – the concept includes the option of integrat-
ing future technologies such as neuromorphic and quantum computing, providing
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seamless integration into a traditional HPC environment in order to enable their
use in scientific workflows.

3 Current Hardware Platforms

Several MSA platforms have been deployed at JSC. Here two systems are
described, showing how the architecture itself evolves with time employing the
newest available technologies.

3.1 JURECA Cluster-Booster

In November 2017, with the deployment of its booster module, the JURECA
cluster-booster system became the first modular supercomputer worldwide to
be listed in the Top 500 list, reaching position 29 with the Linpack benchmark
running over both partitions [7]. Both modules can obviously be operated sepa-
rately, but what makes JURECA unique is that complex applications can also
run across both, using it as one MSA system.

While the cluster uses multicore processors (Intel Xeon Haswell) and
100 Gb/s Mellanox (EDR) InfiniBand, the booster uses multi-core processors
(Intel Xeon Phi KNL) and 100 Gb/s Intel Omni-Path. Bridging the two dif-
ferent high-speed network technologies is possible in JURECA through a cus-
tomized development in the ParTec ParaStation Software Suite [8,9], which is
continuously researched and optimized.

3.2 DEEP-EST Prototype

The DEEP-EST project has built an MSA-prototype with three compute mod-
ules: cluster module (CM), extreme scale booster (ESB), and data analytics
module (DAM) – see Fig. 3. The main hardware characteristics of each module
are detailed in Table 1. It is worth noting that, unlike in JURECA, the DEEP-
EST booster is built using an GPU attached to an x86 CPU. As mentioned in
Sect. 2, the role of this host-CPU is reduced to an auxiliary function and it is
not intended to employ it for application computing.

The DAM module is intended to run the parts of applications dealing with large
amounts of data. Therefore, the DAM is provided with very large memory capac-
ity, combining both volatile and non-volatile technologies. Codes that can particu-
larly profit from such capabilities are those performing data-analytics, or running
machine learning or deep learning algorithms. The latter benefit also from accel-
eration devices containing tensor cores and support for mixed precision. For this
reason, the DAM contains both NVIDIA GPUs and Intel Stratix10 FPGA units.
With its variety of components the DAM is the module offering maximal flexibil-
ity. This comes at the prize of a higher energy consumption. However, since the
DAM is only used for small-scale problems its node-number can be kept low.

Additional to the three compute modules, the DEEP-EST prototype contains
two storage modules: the all-flash storage module (AFSM) and the hard-disk
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Fig. 3. Schema and picture of the DEEP-EST prototype at JSC (as of March 2021,
fully installed).

Table 1. Key hardware features of the DEEP-EST MSA prototype.

DEEP-EST CM DAM ESB

Time of deployment 2019 2019 2020

Node count 50 16 75

CPU type Intel Xeon 6146 Intel Xeon 8260M Intel Xeon 4215

CPU codename Skylake Cascade Lake Cascade Lake

Cores @ frequency 12 @ 3.2GHz 24 @ 2.4GHz 8 @ 2.5GHz

Accelerators per node n.a 1× Nvidia V100 GPU 1× Nvidia V100 GPU

1× Intel Stratix10 FPGA

DDRA4 capacity 192 GB 384 GB 48 GB

HBM capacity n.a 32 GB (GPU) 32 GB (GPU)

Node max. mem BW 256 GB/s 900 Gb/s (GPU) 900 GB/s (GPU)

NVM capacity n.a 2/3 TB n.a

NVMe/SATA SSD 512 GB 3 TB 250 GB

Power/node 500W 1600W 500W

Cooling warm-water Air Warm-water

Network technology EDR-IB (100 Gb/s) EXTOLL (100 Gb/s) EDR-IB (100 Gb/s)

Ethernet (40 Gb/s) EXTOLL (100 Gb/s)

Topology Fat-tree Switched 2D-torus tree/grid

based scalable storage module (SSSM), to enable fast I/O, run the file system
and provide external storage capabilities.

All the compute and storage modules have been already installed and are up-
and-running at JSC. The DEEP-EST prototype continues in operation beyond
the end of the EU-funding time-frame and runs in near-production environment.
It is being used for further development of the software stack and programming
model of MSA systems in the DEEP-SEA project [2], as well as to run applica-
tion tests to evaluate the benefits of its architecture and the functionality of its
software stack.
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4 Software Environment

The previous section showed how the MSA can be realized with very different
hardware components. In fact, one could consider any heterogeneous computer as
an MSA-system, as long as it can be operated in such a way that individual appli-
cations can run over various kinds of nodes, and these can be scheduled and allo-
cated according to diverse application needs. Therefore, one could argue that the
MSA is more a software infrastructure enabling the dynamic operation of a het-
erogeneous computer, rather than the hardware architecture of the system itself.

The MSA software stack enables application developers to map the intrinsic
scalability patterns of their applications and workflows onto the hardware: highly
parallel code parts run on the large-scale, energy-efficient booster, while less
scalable code parts can profit from the high single-thread performance of the
cluster, or from the high memory capacity of the data-analytics module. Users
can freely decide how many nodes to use in each module, so that the highest
application efficiency and system usage can be achieved [10].

4.1 Scheduling

The scheduling software used in the current MSA systems is SLURM [11]. Hard-
ware heterogeneity is supported with SLURM’s job-pack functionality, which
provides semantics to express the amount of nodes to be reserved in each par-
tition of an heterogeneous platform. The same annotation enables a user to run
his/her workflow across nodes on different modules of an MSA system. However,
in its current implementation SLURM statically reserves all nodes for the whole
duration of the job, regardless of the fact that they are continuously used or
not. For example, for a workflow performing pre-processing on the cluster and
running then a long simulation on the booster, the nodes on the cluster will
be kept reserved (and idle) until the simulation finishes in the booster. This is
certainly not the wished behaviour on the MSA.

Extensions to the SLURM scheduler are therefore being implemented, aiming
at reserving and releasing nodes for a job-pack when necessary. The DEEP-EST
implementation relies on a new ---delay switch, which can be used to inform
the scheduler of the time-span between the start of one and the next job in a
job-pack. Based on this information, the reservation of the second module can
be started when it is actually needed, and not before. Further extensions to the
scheduling and resource managing system for MSA are envisioned within the
DEEP-SEA project.

4.2 Programming Environment

In order to facilitate portability, the MSA software stack aims at supporting
the hardware complexity, while providing all the needed functionality and facing
the application developers with the well-established interfaces and programming
models that they know and use in other HPC systems. Therefore, the MSA
programming paradigm is based on MPI. To support MSA-systems employing
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different network technologies in different modules (such as JURECA) a gateway
protocol has been developed [12]. For application developers, this protocol is fully
transparent and hidden behind the MPI library.

The simplest way of running an application on an MSA system is using only
one module. Monolithic, highly scalable codes will actually likely run this way.
On the other hand, codes that perform multi-physics or multi-scale simulations
can run across compute modules and exchange data between them via MPI.
This is the scenario displayed in Fig. 4, where an MPI application running on
the cluster spawns part of its code to the booster.

Fig. 4. Scheme of an MPI application running on the cluster and spawning part of its
code to the booster.

MPI codes can be distributed over the MSA employing any of the collective
instructions in the MPI standard allowing to connect two MPI Comm World()
with each other. For instance, a subset of MPI tasks can collectively spawn a new
MPI Comm World() to another module via the instruction MPI Comm Spawn(). Its
inter-communicator connects the children to the parent processes and enables
transferring data between them. Similarly, two MPI Comm World() running on
different MSA modules can be connected with each other via the instruction
MPI Connect(). Furthermore, an MPI Comm World() can be split into two by
using MPI Split() and then send each one to a different module.

Arguably, splitting an MPI programm across modules is the most difficult way
of using an MSA system. Distributing workflows is much simpler since one does
not need to take care of the MPI communicators. In general, workflows use differ-
ent codes used to execute different actions after (or in parallel) to each other. For
example, a user may need to pre-process data before running a long simulation,
then perform data-reduction, and ultimately visualize the final result. Running
these codes on different modules consists simply on indicating to the scheduler on
which nodes to execute each step. In the SLURM language a workflow is named
a job-pack (see Sect. 4.1), and a set of SLURM instructions enables running each
step on a different partition of module of an heterogeneous system.

Between the codes of a workflow data is currently transferred via the file-
system, which means that it is written onto the external storage in one step,
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and then re-read in the next workflow-step. Taking into account the time and
power consumed in such write-read operations, this approach is not necessarily
the fastest, and certainly not the most scalable. Because of that, the DEEP-EST
project has investigated the potential implementation and benefits of directly
transferring data between workflow steps via MPI. The data can reside directly
at the node-memories or be stored in new kind of network-attached memory
devices [13].

5 Neuroscience Workflow on MSA

Computational neuroscience, in its attempt to better understand the human
brain via simulations, uses both multi-scale applications and complex workflows,
and should therefore profit from the MSA concept. To prove it, the DEEP-EST
project has studied the use of MSA for a neuroscientific workflow in which NEST
and Arbor (described in Sects. 5.1 and 5.2, respectively) are the main compo-
nents. A schema of the workflow distribution on the DEEP-EST prototype is
given in Fig. 5.

Fig. 5. Distribution of the neuroscientific workflow (NEST, Arbor) on the architecture
of the DEEP-EST prototype.

Brain function involves the interaction of neurons located in different brain
areas. Therefore, spiking neural network models representing multiple brain
areas are becoming more and more popular in Computational Neuroscience. The
multi-area model [14] is an early brain-scale model at the resolution of single neu-
rons that incorporates experimental data defining the connections between neu-
rons, called synapses. It comprises approximately four million highly simplified



Modular Supercomputing 73

model neurons and on average 6000 incoming synapses per neuron. Recording
all neuronal activity – called spikes – for the entire duration of a simulation
could easily reach the terabyte data-volume range. Interpreting such data in a
meaningful way is even more challenging, also because experimental techniques
currently can only record spike activity of a small proportion of neurons in a
brain area, limiting the experimental data available for comparison to simula-
tion results.

Neuroscientists therefore also record mesoscale signals such as local field
potentials (LFP): A single micro-electrode or an array of micro-electrodes is
inserted into the brain tissue in order to record the electrical activity, especially
input currents, of all neurons in a volume roughly 1 mm in diameter. Due to the
use of highly simplified point neurons in, e.g., the multi-area model [14], LFP
signals cannot be obtained directly from simulations of that or similar models.

The Python package LFPy1 enables the calculation of local field potentials
by driving simulations of uncoupled compartmental neuron models by the spike
output of point neuron network models [16]. This multi-scale simulation thus
allows for the comparison of LFP signals from brain-scale network models to
experimental data. As the simulation of brain-scale point neuron networks and
uncoupled compartmental neuron models create very different computational
loads, the prediction of LFPs from brain-scale models presents an important
neuroscience application for MSA systems such as the DEEP-EST prototype
(see Sect. 3.2).

With this target neuroscience application in mind we have investigated the
limits to NEST-Arbor co-simulation on the DEEP-EST prototype. Figure 6 illus-
trates the concept, while Sect. 5.1 and Sect. 5.2 describe the involved simulators
NEST2 and Arbor3, respectively. The overall runtime of the multi-scale simula-
tion depends on the individual runtimes of the simulators and the latency of the
frequent collective MPI communication between CM and ESB.

5.1 NEST

NEST is a simulator for spiking neural network models that focuses on the
dynamics, size and structure of neural systems. In such networks neuron models
are typically simple: they do not account for any neuronal morphology and the
dynamics is governed by a small number of coupled differential equations, which
in some cases can even be exactly integrated [17]. This enables the simulation
of large-scale networks, where each compute node hosts many neurons and their
incoming synapses. As in biologically realistic models of the cortex each neuron
connects to a few thousand other neurons, an inherent bottleneck of the simula-
tion of such networks is the frequent communication of neuronal signals (spikes)
between compute nodes and the delivery of the spikes to their local targets.

Large-scale neural network simulations with NEST make use of a hybrid par-
allelization scheme combining MPI and OpenMP threads, where users typically
1 lfpy.readthedocs.io; github.com/LFPy/LFPy.
2 nest-simulator.org; nest-simulator.readthedocs.io; github.com/nest/nest-simulator.
3 arbor.readthedocs.io; github.com/arbor-sim/arbor.

http://www.lfpy.readthedocs.io
http://www.github.com/LFPy/LFPy
https://www.nest-simulator.org/
https://nest-simulator.readthedocs.io/en/v3.0/
http://github.com/nest/nest-simulator
http://arbor.readthedocs.io/
http://github.com/arbor-sim/arbor
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Fig. 6. Multi-scale simulation of a brain-scale network and concurrent calculation of
LFPs as the target neuroscience application on the DEEP-EST prototype, requiring
frequent transfer of neuronal activity data from the cluster module (CM) to the extreme
scale booster (ESB) through collective MPI communication. Right: Simulation of the
multi-area model [14] at single-neuron level resolution on the CM using NEST. Each
area is represented by an adapted microcircuit model [15] with area- and layer-specific
population sizes. Blue triangles and red dots in the magnified microcircuit-model illus-
tration indicate two different types of neurons and their varying population sizes across
layers. Connectivity between areas is based on experimental data and varies depending
on source and target area as indicated by the connectivity matrix. Adapted from Fig. 1
and Fig. 4D in [14]. Left: Simulation of one of the areas at sub-neuronal resolution using
Arbor on the ESB, and continuous calculation of LFPs using LFPy. Morphologies of
the multi-compartment neuron models are based on experimental data. Neurons are
not connected as all spike input is obtained from the multi-area model simulation on
CM. Adapted from Fig. 1 in [16]

define the network models and steer the simulations through the Python based
interface PyNEST [18]. A variety of neuron and synapse models are already
included in NEST but it also offers the possibility to define custom models
using the domain specific language NESTML [19]. NEST has an interface to
the Multi-Simulator Coordinator (MUSIC) [20], which enables multi-scale sim-
ulations. Besides, NEST’s refactored recording infrastructure [21] facilitates the
definition of communication interfaces to other simulators such as Arbor. The
NEST code is open source. All contributions to the code-base undergo review
and are automatically tested by a continuous integration system running the
NEST testsuite [22].

NEST is a simulator with versatile applications: from interactive explorations
of small-scale networks on laptops to simulations of brain-scale networks on
supercomputers. With the introduction of the 5g simulation kernel [23,24] the
scalability of NEST has extended even further with respect to both runtime and
memory usage, see Fig. 5.1.
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Fig. 7. Weak scaling of the NEST HPC benchmark on JUQUEEN for the current and
the previous simulation kernel (NEST 5g and 4g, respectively). CPU time and memory
usage per compute node for a network simulation for 1 s of biological real time, where
each compute node hosts 18, 000 neurons with 11, 250 incoming synapses per neuron;
64% of all synapses have dynamically changing weights. Simulations were performed
using 1 MPI process per compute node and 8 threads per MPI process. Adapted from
Fig. 7 in [23].

The roadmap for the development of the simulation technology is defined
by the NEST Initiative4. Current work comprises performance profiling and
redesign of the algorithms underlying spike communication and spike delivery,
and the development of more efficient ways of handling neuronal populations.
This enables faster construction and simulation of highly structured networks
such as the multi-area model (Fig. 7).

5.2 Arbor

Arbor is a performance-portable library for simulation of large networks of
morphologically-detailed neurons on modern high-performance computing sys-
tems [25,26]. Arbor simulates networks of spiking neurons, particularly multi-
compartment neurons. In these networks, the interaction between cells is con-
veyed by spikes and gap junctions and the multi-compartment neurons are char-
acterized by axonal delays, synaptic functions and cable trees. Each cell is mod-
elled as a branching, one-dimensional electrical system with dynamics derived
from the balance of transmembrane currents with axial currents that travel
through the intracellular medium, and with ion channels and synapses repre-
sented by additional current sources. Arbor additionally models leaky integrate-
and-fire cells and proxy spike sources.

The Arbor library is an active open source project, written in C++14 and
CUDA using an open development model. It can scale from laptops to the largest
HPC clusters using MPI. The on-node implementation is specialized for GPUs,
vectorized multicore, and Intel KNL with a modular design for enabling exten-
sibility to new computer architectures, and employs specific optimizations for
these GPU and CPU implementations. The GPU is deployed for updating cur-
rents and integrating gating variables using an optimized parallel GPU solver for
4 nest-initiative.org.

http://nest-initiative.org/
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sparse matrices with an optimized memory layout and reduced memory access.
In detail, the GPU solver uses fine grained parallelization with one dendrite
branch per thread, and a cell distribution into CUDA blocks to avoid global
synchronization. In the simulation setup work balancing per thread avoids idle
threads by sorting all submatrices on a level in a block by size. To maximize
the utilization of the GPU memory bandwidth the memory layout is optimized
by storing data in an interleaved format for each branch. Memory read access is
reduced by storing only one parent compartment for each branch (Fig. 8).
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Fig. 8. Performance of Arbor. Left : Single node wall time of Arbor running on Piz Daint
multicore, GPU and Tave KNL. Right : The single node speedup of Arbor running on
Piz Daint multicore and GPU relative to NEURON on multicore. Adapted from Fig. 5
in [14].

By implementing the design goals of scalability, extensibility and performance
portability, Arbor is an order of magnitude more efficient than existing simula-
tion engines [25]. Arbor does this without sacrificing ease of use and flexibility.
Arbor’s single node speedup performance has been analyzed using a randomly
connected network benchmark employing CSCS’ Piz Daint multicore, GPU and
KNL clusters. For more than 4,000 cells the GPU is utilized enough to run the
benchmark more efficiently in terms of the wall time than on multicore or KNL
(Fig. 5.2, left panel). Compared to NEURON [27], the most widely used software
for general simulation of networks of multi-compartment cells, Arbor is 5–10×
faster for fewer than 128 cells, and for more than 256 cells it is over 20× faster
(Fig. 5.2, right panel).

Benchmarking and validation of Arbor and other simulators can be performed
with the NSuite performance and validation testing suite5 which is on-going
work in Arbor development. Full support for the SONATA [28] model exchange
format is under active development, as well as a Python API. Arbor will provide
APIs for integration with other tools and simulators, including co-simulation
with NEST. On a technical level a NEST-Arbor two-way coupled co-simulation
imply some specific challenges, e.g., enabling injection of external spikes, as well
as new initiation steps to align time delays and the number of external cells.
5 nsuite.readthedocs.io; github.com/arbor-sim/nsuite.

http://www.nsuite.readthedocs.io
http://www.github.com/arbor-sim/nsuite
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6 Summary

The Modular Supercomputing Architecture (MSA) proposes a new philosophy
for the integration and use of heterogeneous computing resources. Instead of
regarding acceleration devices as intra-node entities and using them to speed-up
very concrete kernels of the codes executed on general-purpose host-CPUs, the
MSA strives for operating accelerators as first-class, autonomous compute ele-
ments. The MSA segregates the heterogeneous resources into individual modules,
each one being a multi-node platform of potentially large size tailored to specific
kinds or parts of applications. Each module can be sized differently, according
to the energy efficiency of the hardware and the needs of the users. At the same
time, applications and workflows can be distributed over different modules using
the overarching MSA software environment, enabling each step to be executed
on the best suited hardware.

The field of Computational Neuroscience is already preparing to employ the
MSA approach, targeting the DEEP-EST prototype with a workflow that com-
bines the codes NEST and Arbor. This multi-scale neuronal network simula-
tion connects two types of neuronal simulations that are fundamentally different
in computational load, memory access behaviour, and communication require-
ments.

A simulation of the multi-area model with NEST is not particularly com-
putationally costly as it involves only the update of simple model neurons. In
such large-scale network simulations it is rather the frequent and unpredictable
exchange of neuronal signals that imposes stress on MPI communication and
memory access, and thus dominates the total runtime. The cluster module is
therefore best suited for this type of simulation.

For the Arbor simulation of multi-compartment neurons the computational
costs per neuron are much higher than for a large-scale point-neuron network
simulated with NEST. At the same time, the communication of spikes is of
minor importance for the overall runtime of the Arbor simulation because it is
much smaller in terms of number of neurons. In the planned application, the
compartmental neurons are not even connected and communication of neuronal
signals within Arbor is thus not required. Therefore, the Arbor simulation is more
compute bound and can benefit from the GPUs of the DEEP-EST booster.

The installation of the DEEP-EST prototype has been completed with the
deployment of its third and last module – the booster – in early 2020. NEST and
Arbor have been adapted to run on the prototype, to show the benefits of execut-
ing an important neuroscientific workflow across the modules of an MSA plat-
form. Adaptations to NEST and Arbor include the development of correspond-
ing interfaces for spike exchange between the simulators, using MPI laying the
groundwork for the neuroscience workflow (Sect. 5). Co-simulation benchmarks
show that spiking network simulations with NEST running on the cluster module
can be extended such that spikes generated in NEST drive compartmental neu-
rons simulated with Arbor on the booster module without runtime penalty [29].
Moreover, the simulation time of NEST has been significantly reduced by opti-
mizing the spike-delivery algorithm hiding memory fetch latency [29], which
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contributes to more efficient co-simulation. We consider the optimizations a gen-
erally useful contribution to large-scale network simulation as they are applicable
to other simulators for pulse-coupled networks with high connection degrees.
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pleiter@kth.se

Abstract. The Human Brain Project (HBP) (https://humanbrainpro
ject.eu/) is a large-scale flagship project funded by the European Com-
mission with the goal of establishing a research infrastructure for brain
science. This research infrastructure is currently being realised and will
be called EBRAINS (https://ebrains.eu/). The wide ranging EBRAINS
services for the brain research communities require diverse access, pro-
cessing and storage capabilities. As a result, it will strongly rely on e-
infrastructure services. The HBP led to the creation of Fenix (https://
fenix-ri.eu/), a collaboration of five European supercomputing cen-
tres, who are providing a set of federated e-infrastructure services to
EBRAINS. The Fenix architecture has been designed to uniquely address
the need for a wide spectrum of services, from high performance com-
puting (HPC) to on-demand cloud technologies to identity and access
federation, for facilitating ease of access and usage of distributed e-
infrastructure resources. In this article we describe the underlying con-
cepts for an audience of computational science end-users and develop-
ers of domain-specific applications, workflows and platforms services. To
exemplify the use of Fenix, we will discuss selected use cases demonstrat-
ing how brain researchers can use the offered infrastructure services and
describe how access to these resources can be obtained.

Keywords: Fenix · Human brain project · Distributed
e-infrastructures

1 Introduction

Today, advances in addressing grand challenges depend on the ability of
researchers coming from different geographic regions to effectively collaborate
c© The Author(s) 2021
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and having flexible access to distributed e-infrastructure services. Fenix supports
the former and provides the latter as it enables researchers, e.g., to collaborate on
data curation, aggregation and sharing by providing federated storage sources
as well as to use high-capability resources like High Performance Computing
(HPC) systems.

The brain research community is a diverse community that applies a large
variety of methods. It is thus not surprising that the requirements concerning
e-infrastructure services are rather diverse. While some teams need massively-
parallel HPC systems for large-scale simulations, others are producing extreme-
scale data sets and employ advanced and potentially compute-intensive data
analysis techniques. Given the size of the data sets, data analysis and making
these data sets available to the wider community needs to be done in such a
way that data transport can be avoided. This does not only help reducing costs
or improving performance, in a number of cases this is mandatory given the
involved amount of data. Yet other research teams perform computational and
data analysis tasks requiring compute resources at smaller scale, but need to do
this in an interactive manner.

Fenix is creating an infrastructure layer comprising services that are federated
in a rather lightweight fashion. It is designed such that quite different types
of compute services ranging from HPC to Cloud as well as different types of
data repositories can be integrated. This initiative is realised by five European
supercomputing centres, namely BSC in Spain, CEA in France, CINECA in
Italy, CSCS in Switzerland, and JSC in Germany. Fenix is organised in such a
way that other resource providers may join in the future.

This paper is organised as follows: In the next section we introduce the general
concepts that led to the architecture of Fenix. In Sect. 3 we provide details on
the Fenix services and discuss in Sect. 4 how EBRAINS services can make use
of these. In Sect. 5 we describe how resources are allocated to users from HBP,
before providing a summary and outlook in Sect. 6.

2 Fenix Concept

The current architecture of Fenix is based on the general consideration that a
clear separation between an infrastructure service layer and a platform service
layer is beneficial. Such a layered approach is commonly used for creating Cloud
infrastructures (see, e.g., [2]), where the terms Infrastructure-as-a-Service (IaaS)
and Platform-as-a-Service (PaaS) are widely used.

For Fenix we prefer to use the terms infrastructure service layer and platform
service layer. The platform service layer encompasses all services that are specific
for a given research domain. They are not necessarily useful for other domains or
would require significant adaptations. A typical example are web-based portals,
such as the EBRAINS Collaboratory1. While such portals are needed for almost
any research infrastructure, their organisation is highly domain specific. The

1 https://wiki.ebrains.eu.

https://wiki.ebrains.eu
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infrastructure service layer includes a set of services that allow implementing
these platform services and are sufficiently generic for being useful for differ-
ent research communities. One example are machines for deploying any of the
aforementioned portal services, which are typically offered in a virtualised envi-
ronment. Using Virtual Machine (VM) technology allows for better exploitation
of the hardware resources as a larger number of VMs, which typically only need
the resources of a few CPU cores, can be deployed within a single physical
machine.

The infrastructure services are organised such that they can be provided
by multiple, geographically distributed resource providers. While this approach
adds the complexity related to the federation of these services, the approach has
a number of important benefits, which we will discuss below.

Most of the end-users are not expected to use the Fenix infrastructure ser-
vices directly, but rather connect to the platform services that are deployed on
top of these infrastructure services as shown in Fig. 1. For specialist users there
is, however, the option to directly access the infrastructure services. An exam-
ple are users performing simulations on massively-parallel HPC systems, who
typically directly access these systems to compile and execute their simulation
applications.

The layered approach has multiple benefits. In general, a layered approach
and the resulting separation of concerns helps to manage complexity. From the
perspective of the platform service providers, the abstraction of an infrastruc-
ture service layer can help improving sustainability and performance due to the
distributed nature of the infrastructure service layer, involving multiple infras-
tructure resource providers. Resource providers can be replaced, for instance
when funding conditions change, or the number of resource providers could
be changed according to the needs of the platform service layer. Furthermore,
platform service providers are enabled to improve on resilience by replicating
their services over multiple sites. Another benefit of a distributed infrastruc-
ture is improved data locality. With a larger number of infrastructure resource
providers, the probability that storage resources are available in geographic prox-
imity of the data source increases. From the perspective of the infrastructure
service providers, the layered approach has the benefit that it allows the consol-
idation of their service offerings when supporting multiple science communities.
Finally, it creates opportunities for improving the utilisation of the offered hard-
ware resources.

3 Fenix Compute and Data Services

In this section we provide an overview of the current service portfolio offered by
Fenix, which was developed on the basis of an analysis of today’s needs of the
brain research communities. With other communities starting to use Fenix, the
current portfolio of services is anticipated to change.
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Fig. 1. Overview of the Fenix architecture as described in Sect. 2. Details on the infras-
tructure services are provided in Sect. 3.

The Scalable Compute Services (SCC) abstract large-scale computing
resources. These are HPC systems with a larger number of compute nodes with
1–2 CPUs and possibly additional compute accelerators like GPUs. SCC services
can be used for running highly parallel simulation applications, but are also suit-
able for data analysis tasks, involving extreme-scale data sets. SCC resources are
managed by a batch queuing system, which schedules jobs such that hardware
utilisation is optimised.

As an increasing demand for interactive access to compute resources is
observed, Fenix introduces Interactive Compute Services (IAC) services. These
allow end-users to obtain ad-hoc access to single compute nodes where interac-
tive frameworks like Jupyter are offered. Typical usage scenarios are interactive
analyses, visualisations, and steering of simulations running on SCC.

VM services offer access to on-demand virtualised machines. The prime use
case for this service is the deployment of platform services running in a “24/7”
mode, for instance web-based portal services.

To cope and comply with different and in parts incompatible needs and
requirements, Fenix introduces two classes of data repositories. An Archival Data
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Repository (ADR) is a storage system for long-term storage of data objects in a
shareable manner. Such data repositories must therefore feature a standardised
interface with easy to install clients and allow for federation. Mechanisms sup-
porting flexible and fine-grained access control are another important feature.
Fenix decided for the widely used Cloud object storage interface Swift2.

Unlike an ARD, an Active Data Repository (ADR) is not a federated data
repository that is relatively openly accessible from outside a data centre. An ACD
is meant to be used for storing (copies of) private data sets and will typically
offer 10 − 100× more bandwidth as well as significantly lower latency. Such
features are important for data repositories connected to SCC services. A typical
implementation of an ACD is based on a parallel file system with a POSIX
interface like Lustre3 or Spectrum Scale4.

Both types of data repositories will be connected through a Data Mover
service that will allow to asynchronously copy or move data back and forth.

It is important to note that the different services have different security
requirements. Some of them, like SCC, IAC and ACD, are realised in an HPC
environment with tightly restricted access policies. VM services are deployed
in a Cloud environment with an open connectivity. This will, e.g., allow users
unknown to the data centre with weak or no credentials to connect to the plat-
form services deployed on such resources. An ARD is connected to both environ-
ments and thus can serve as a bridge between both worlds. Other connections
between services deployed in different environments are subject to negotiations
to identify the right balance between the realisation of advanced workflows and
security concerns.

Except for these restrictions, Fenix allows to combine the use of different ser-
vices at different locations within a single project. This is a significant advantage
compared to similar service offerings in Europe. Achieving this depends on the
following prerequisites:

– All services must be integrated into a single Authentication and Authorisation
Infrastructure (AAI) such that a user can connect with the same credentials
to any service offered at any Fenix site.

– Resource management must be centralised such that both, a Fenix user as
well as a Fenix resource provider, have an overview of the resources that are
still available or have already been consumed.

– For coherent management of access control, a central service is needed that
makes the necessary attributes available.

At the time of writing this article, a first version of the AAI is being put in
operation, while the central resource management and attribute service, which
is called FURMS, is still under development.

While the Fenix service portfolio is provided using general-purpose hardware
technologies, the concept described in this section also allows for provisioning

2 https://wiki.openstack.org/wiki/Swift.
3 https://lustre.org/.
4 https://www.ibm.com/products/spectrum-scale.
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of infrastructure services, using special-purpose hardware solutions. Within the
HBP there are, e.g., ongoing efforts to integrate neuromorphic computing ser-
vices that are provided on the BrainScales [8] and SpiNNaker [4] systems at the
Universities of Heidelberg and Manchester, respectively.

4 Selected EBRAINS Services

In this section we introduce a selected set of EBRAINS services and discuss how
these can make use of Fenix services.

The EBRAINS Brain Simulation Platform comprises a suite of software tools
and workflows for collaborative brain research that allow researchers to recon-
struct and simulate detailed models of brain areas. This includes, e.g., simulators
like NEST [5] and Neuron [7] as well as the neurophysiology data analysis tools
package Elephant [3]. A simple workflow using Fenix services is shown in Fig. 2:

1. The input model data is assumed to be stored in ARD #1 and is copied to
an ACD from where it is accessible to the SCC service.

2. The simulations are executed using the SCC service, which reads the input
data from and writes the output data to the ACD.

3. After completing the simulation, the final data products can be published by
copying the data to ARD #2.

HPC environment

ACD

SCC

ARD #1 ARD #2

Fig. 2. Example for a brain simulation flow using Fenix services.

Next, we consider a more complex example related to the EBRAINS Brain
Atlases. EBRAINS aims to provide access to a new generation of 3-dimensional
reference atlases of the human and rodent brain, which are defined at different
scales and modalities. These atlases are based on histological data obtained from
brain images (see, e.g., [1]). A complex workflow is required to first analyse and
interpret the images as well as to integrate this data (see, e.g., [6]) and to later
make the Brain Atlas as well as primary and secondary data products available
to others. A possible realisation of such a workflow is shown in Fig. 3, which can
be mapped to Fenix services as follows:
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1. The primary data products are generated in a lab and stored in an ARD.
2. SCC services allow processing of extreme-scale data sets as they occur in

the case of images with a resolution of O(1µm), and facilitate the use of
compute-intensive data analysis steps. To allow for fast access to the data, it
will typically be staged from an ARD to an ACD. The resulting data products
can be published after writing them into an ARD.

3. Multiple analysis steps using SCC services may follow.
4. Final data products may be explored interactively using IAC services.
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Microscope Assembly

Segmentation

Registration
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Mapping

Viewer

Metadata

Fig. 3. Schematic view of a possible workflow for creating a Brain Atlas using Fenix
services.

5 Resource Allocation

Part of the resources provided by Fenix are dedicated to HBP research and
EBRAINS services as well as related research projects. A so-called programmatic
access model allows to provide these resources to a research community (here the
brain research community represented by HBP), with the latter being responsible
for the allocation of the resources to projects proposed by researchers from that
community.

The HBP allocates the resources based on a peer-review mechanism that
follows principles established by PRACE5. Such a mechanism is widely used for
making HPC resources available as it helps to ensure expensive resources being
used for excellent science. The principles mandate, among other requirements,
the peer-review process to be transparent and clear to all relevant stakeholders.
Furthermore, the process must be fair such that all proposals are evaluated solely
on merit and potential high impact on European and international science and
economy.

Applicants interested in using Fenix resources for brain research can, at any
time, submit a proposal. After a technical review by Fenix resource providers,

5 https://prace-ri.eu/hpc-access/project-access/project-access-the-peer-review-proc
ess/.

https://prace-ri.eu/hpc-access/project-access/project-access-the-peer-review-process/
https://prace-ri.eu/hpc-access/project-access/project-access-the-peer-review-process/
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the EBRAINS Infrastructure Allocation Committee (IAC) is responsible for con-
ducting or managing the scientific assessment in case of small- or large-scale
resource requests, respectively. Based on the outcome of the review, the IAC can
in the case of small-scale projects decide itself on whether to approve or reject a
proposal. In the case of large-scale projects, the IAC prepares a decision-making
proposal for the Directorate of the HBP.

6 Summary and Outlook

Fenix is an initiative that is realising a broad set of federated infrastructure
services. The approach is based on a generic concept that aims for a separa-
tion of infrastructure and platform services. While the former are generic and
of use for a variety of research communities, the latter are research domain spe-
cific. The approach allows research communities to establish distributed research
infrastructures adapted to their needs. The brain research community is the key
driver for Fenix and two examples of how this community can leverage services
and resources from Fenix have been discussed. Similar efforts towards IT-based,
distributed research infrastructures can, however, also be observed for other sci-
ence communities.

The HBP has established mechanisms for allocating resources offered by
Fenix, which is open for researchers from HBP but also for brain researchers
at large. Other scientists can also apply for Fenix resources through regular calls
for proposals managed by PRACE.
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Abstract. In recent years, Independent Component Analysis (ICA) has
successfully been applied to remove noise and artifacts in images obtained
from Three-dimensional Polarized Light Imaging (3D-PLI) at the meso-
scale (i.e., 64 µm). Here, we present an automatic denoising procedure
for gray matter regions that allows to apply the ICA also to microscopic
images, with reasonable computational effort. Apart from an automatic
segmentation of gray matter regions, we applied the denoising procedure
to several 3D-PLI images from a rat and a vervet monkey brain section.

1 Introduction

Studying the structure and function of the brain requires dedicated imaging
techniques, allowing to map the highly complex nerve fiber architecture both
with high resolution and over long distances. The neuroimaging technique Three-
dimensional Polarized Light Imaging (3D-PLI) [1,2] was designed to reconstruct
the three-dimensional orientations of nerve fibers in whole brain sections with
micrometer resolution.

To remove noise and artifacts in 3D-PLI images, Independent Component
Analysis (ICA) has successfully been used [10–12]. However, the ICA has only
been applied to mesoscopic images with a resolution of 64µm pixel size and not
to microscopic images with a resolution of 1.33 µm pixel size so far. In order
to resolve single nerve fibers, e.g. in the cerebral cortex, such a microscopic
resolution is required. Light scattering, thermal effects, inhomogeneity of optical
elements, or simply dust on the used filters are noise sources, which combined
with the weak birefringence 3D-PLI signal in cortical areas inevitably lead to a
low signal-to-noise ratio (SNR) and reconstruction errors.

Identifying and removing these noise components in microscopic 3D-PLI
images is very challenging. The amount of data that has to be processed is
extremely large and the sampling has to be done differently as compared to
mesoscopic images. When applying the developed ICA method on microscopic
c© The Author(s) 2021
K. Amunts et al. (Eds.): BrainComp 2019, LNCS 12339, pp. 90–102, 2021.
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images, the characteristic differences of the signal strengths in white matter and
gray matter brain regions need to be taken into account. As the birefringence 3D-
PLI signal of densly packed nerve fibers (i.e., fiber bundles) of the white matter
proceeding within the sectioning plane are very strong and show a higher SNR
than the less dense fiber tracts present in the gray matter, the denoising proce-
dure needs only to be applied in regions of gray matter, which massively reduces
the required computing time.

Here, we present an automatic ICA denoising procedure for gray matter
areas in microscopic 3D-PLI images. It consists of an automatic segmentation
of gray matter, followed by a data-parallel ICA artifact removal with automatic
classification of noise and signal activations.

2 Methods

2.1 Preparation of Brain Sections

Brain sections from a Wistar rat (3 months old, male) and a vervet monkey (2.4
years old, male) were selected for evaluation.1 The brains were removed from the
skull within 24 h after death, fixed in a buffered solution of 4 % formaldehyde for
several weeks, cryo-protected with 2% DMSO and a solution of 20% glycerin,
deeply frozen, and cut along the coronal plane into sections of 60µm with a
cryostat microtome (Polycut CM 3500, Leica, Microsystems, Germany). The
resulting brain sections were mounted onto a glass slide each, embedded in a
solution of 20% glycerin, cover-slipped, sealed with lacquer, and measured with
3D-PLI up to one day afterwards.

2.2 Three-Dimensional Polarized Light Imaging (3D-PLI)

3D-PLI reconstructs the nerve fiber architecture of the brain with micrometer
resolution. By transmitting linearly polarized light through unstained histologi-
cal brain sections and analyzing the transmitted light with a circular analyzer,
the birefringence of the brain section is measured, thus providing information
about the three-dimensional orientations of the highly birefringent nerve fibers
(myelinated axons) in the tissue [1,2]. The 3D-PLI measurements were performed
with the same setup as described in [23] (LMP-1, Taorad GmbH, Germany),
using incoherent green light with a wavelength of about 550 nm. During the

1 All animal procedures have been approved by the institutional animal welfare com-
mittee at Forschungszentrum Jülich GmbH, Germany, and are in accordance with
European Union guidelines for the use and care of laboratory animals. The vervet
monkey brain was obtained when the animal was sacrificed to reduce the size of the
colony, where it was maintained in accordance with the guidelines of the Directive
2010/63/eu of the European Parliament and of the Council on the protection of ani-
mals used for scientific purposes or the Wake Forest Institutional Animal Care and
Use Committee IACUC #A11-219. Euthanasia procedures conformed to the AVMA
Guidelines for the Euthanasia of Animals.
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measurement, the direction of polarization of the incoming light was rotated by
ρ = {0◦, 10◦, . . . , 170◦} and the transmitted light behind the circular analyzer
was recorded by a CCD camera (Qimaging Retiga 4000R) for each rotation
angle, yielding a series of N = 18 images. The pixel size in object space was
about 1.33 µm. For each image pixel, the measured intensity values form a sinu-
soidal light intensity profile (PLI-signal, I(ρ)). The average value of the signal,
i. e. the polarization-independent transmitted light intensity, is called transmit-
tance and is a measure for tissue absorption and scattering (highly scattering
tissue components such as nerve fibers appear dark in the transmittance image).
The amplitude of the normalized signal is called retardation and indicates the
strength of birefringence of the tissue. It is related to the out-of-plane angles
of the nerve fibers in the brain section (in-plane nerve fibers show very high
birefringence, while out-of-plane nerve fibers show much less [22]). The phase
of the signal indicates the in-plane direction angle of the nerve fibers. Com-
bining in-plane and out-of-plane angles, 3D-PLI allows to reconstruct the full
three-dimensional orientations of the nerve fibers.

2.3 Segmentation of White and Gray Matter

Morphologically, brain tissue consists of two different tissue types: Gray matter
and white matter. Gray matter contains various components, such as neuronal
cell bodies, dendrites, synapses, glial cells, blood capillaries as well as myelinated
and unmyelinated axons. Most of the gray matter regions are located at the outer
surface of the brain (cortex), but also inner parts of the brain (i.e., sub-cortical
nuclei) contain islands of gray matter. White matter is mainly composed of
myelinated and unmyelinated axons. The largest portion of myelinated axons is
located in the white matter.

For the ICA method presented here, it is necessary to consider gray matter
regions separately from white matter regions.2 In the following, we present a
fully automated procedure to generate masks of white and gray matter.

As nerve fibers (myelinated axons) are highly birefringent, all regions with
high birefringence signals (i. e. large retardation values r > rthres in the 3D-PLI
measurement, cf. Fig. 1(a) in orange) can be considered as white matter. (The
determination of threshold values such as rthres will be described below.) On the
other hand, regions with low birefringence signals (r < rthres, Fig. 1(a) in blue)
do not necessarily belong to gray matter, because regions with a small number
of myelinated fibers, crossing nerve fibers, and nerve fibers that point out of the
brain section (out-of-plane fibers) also yield low birefringence signals [22].

Studies by Menzel et al. [20] have shown that regions with crossing nerve
fibers and regions with in-plane parallel nerve fibers yield similar transmittance
values IT, while regions with out-of-plane nerve fibers show lower transmittance
values. Gray matter regions, on the other hand, show notably higher trans-
mittance values. Hence, we can use the transmittance value in the region with
2 Note that we here define white matter as all regions (/image pixels) that contain

myelinated nerve fibers. Anatomically, some of these regions might be known as gray
matter because they only contain a small amount of myelinated nerve fibers.
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maximum retardation Irmax as a reference value (we expect that this region con-
tains mostly in-plane parallel nerve fibers) and can then define all regions with
similar or lower transmittance values as white matter (0 < IT � Irmax, contain-
ing crossing and out-of-plane fibers). All other brain regions are considered to be
gray matter. To separate brain tissue from background, we make use of the fact
that the transmittance in the recorded images is expected to be much higher
outside of the tissue than within the tissue (IT > Ilower, cf. Fig. 1(b) in gray).

To enable an automated segmentation into white and gray matter regions, we
consider the retardation and transmittance histograms (consisting of 128 bins,
see Fig. 1 on top). Before computing the transmittance histogram, the values are
normalized to [0, 1] and a median filter with circular kernel (radius of 10 pixels)
is applied to the image to reduce noise. While the retardation histogram shows
usually only a single peak at very low retardation values (caused by background
and gray matter), the transmittance histogram shows one peak for low transmit-
tance values (white matter), another peak for larger transmittance values (gray
matter), and a third peak for high transmittance values (background).

To compute the threshold value rthres (Iupper), we determine the point of
maximum curvature behind (before) the biggest peak in the retardation (trans-
mittance) histogram, i. e. the position for which the angle difference between two
neighboring data points becomes minimal. To ensure that the point of maximum
curvature belongs to the onset of the biggest peak (and not to some other peak
or outlier), we take the full width at half maximum (FWHM) of the peak into
account and only search within 10× FWHM behind the retardation peak and
2.5× FWHM before the transmittance peak, taking the different forms of the
histograms into account.

To compute Irmax, the region with the maximum retardation value is deter-
mined. To ensure that the region belongs to a white matter region and is not an
outlier caused by noise, we use the Connected Components algorithm from the
OpenCV library [4] (block-based binary algorithm using binary decision trees
[6]) with eightfold connectivity. We mark all pixels with maximum retardation
value and count the number of pixels in the largest connected region. If the num-
ber is at least 512, we select this region as reference. If the number is lower, we
reduce the maximum retardation value iteratively by 0.01, until we find such a
region. In this reference region, we compute the average value in the normalized
transmittance image (Irmax, see red vertical line in Fig. 1(b)). This value can be
used as first estimate to separate white from gray matter. To define the border
more precisely, we use the point of maximum curvature between Irmax and Iupper

as new threshold value Ilower.
Taking all this into account, we can compute the masks for white and gray

matter as follows:

White Matter: (0 < IT < Ilower) ∨ (r > rthres), (1)
Gray Matter: (Ilower ≤ IT ≤ Iupper) ∧ (r ≤ rthres). (2)

All image pixels that fulfill Eq. 1 (Eq. 2) are considered as white (gray) matter,
see Fig. 1(b) in white. All other image pixels are considered as background.
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Fig. 1. Mask generation for white and gray matter, shown exemplary for a coronal
vervet monkey brain section. (a,b) Top: Histograms of retardation and transmittance
images obtained from a 3D-PLI measurement (128 bins in [0,1]); the determined thresh-
old values are marked by vertical dashed lines. Bottom: Image pixels with values belong-
ing to the orange, blue, and gray shaded regions in the histograms are marked in the
respective colors. (c) Masks for white and gray matter, computed using the threshold
values defined in the histograms on top. (Color figure online)

2.4 Independent Component Analysis (ICA)

The ICA belongs to the group of Blind Source Separation (BSS) techniques and
can be used for data decomposition to find statistically independent components
in a mixture of signals [17]. ICA has been applied to various artifact removal
tasks, e. g. ocular artifact removal in electroencephalography [13], cardiac arti-
fact removal in magnetoencephalography [5], and noise-signal-discrimination in
functional magnetic resonance imaging [21].
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In 3D-PLI, a data set consists of a series of N images (one for each rotation
angle). To avoid that the background interferes with the decomposition, each
image is divided into background and our region of interest (ROI) with the latter
containing M pixels. The measurements are flattened and centered to obtain a
zero-mean data array X with the dimension N × M . The decomposition into
sources S with the shape N × M requires that the data can be represented as
a linear mixture of independent signals without additional additive noise, that
there exist sufficient samples for every extracted feature (general advise is to
keep k ·N2 ≥ M with k ∈ {1, 2, 3, . . . }), and that the distribution of the sources
is non-Gaussian. With these prerequisites, the problem can be stated as

X = AS, (3)

where A is the so-called mixing matrix with the dimension N × N and is
yet unknown. Because S and A are both unknown, it is impossible to make
a prediction about sign or amplitude of the basis vectors of A. Furthermore,
we have no knowledge about the number of components in our data set, so we
assume that the complexity of the data can be mapped by N features.

Prior to performing the ICA, the data array X is whitened by making use of
a Principle Component Analysis (PCA) [24] to lower the degrees of freedom to
N(N − 1)/2 [17]. The ICA then estimates W ≈ A−1 by maximizing the entropy
as in Infomax-based ICA [3] or by maximizing a measure of non-Gaussianity as
in FastICA [15,16]. We then obtain

WX = C ≈ S, (4)

with the component vector C. We find the activation profiles of the Compo-
nents in W−1 as basis vectors. It was shown that 3D-PLI signals contain sub- as
well as super-Gaussian independent components, therefore FastICA or Extended
Infomax [19], an extension of the Infomax algorithm, can be used. This work uses
the Extended-Infomax Implementation of the MNE-Toolbox [14].

2.5 Automatic Noise Removal with ICA

The activation profiles given by the ICA can be distinguished into two categories:
noise activation profile and signal activation profile. Because we know the PLI-
signal shape from theory, we know the shape of the basis vectors we are looking
for in our mixing matrix W−1 ≈ A. A simple classification problem is visualized
in Fig. 2. The sinusoidal shaped activations are the ones to keep and we want to
drop the activations that resemble random distributions.

The automatic identification is realized by fitting the expected (theoreti-
cal) function to each of the N activations. As identification measure, the mean
squared error (MSE) is calculated for every fit and compared to the mean of all
MSE values. When the MSE of the i-th fit is smaller than 1/10 of the mean of
all MSE values, we assume that the activation belongs to a signal component.
Otherwise, we assume that the activation belongs to a noise component.
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Fig. 2. Archetypal signal discrimination for ICA artifact removal: (a) sinusoidal PLI-
signal activation, (b) random PLI-noise activation from e. g. thermal noise or light
scattering.

After the detection of all noise activations, we construct a denoised mixing
matrix W−1

d ≈ Ad by just zeroing out the respective column:

W−1
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(5)
The denoised data array Xd can then be obtained by remixing the previously

unmixed components:

W−1
d C = W−1

d WX = Xd. (6)

Estimation of Signal Enhancement. The noise reduction of the artifact
removal is measured with a weighted chi-square statistic introduced by [10].
It is based on the reduced chi-squared statistic defined by

χ2 =
1
ν

N∑
i=1

(I(ρi) − f(ρi))2

σ(x, y, ρ)2
, (7)

with ν for the degrees of freedom, N the number samples (here measure-
ment angles), I(ρi) the measured light intensity for an angle, f(ρi) the expected
function, and σ(x, y, ρ) the standard error for every image point and angle. This
statistic is applied to both noisy and denoised data leading to χ2

raw and χ2
ICA. We

denote the quotient of these two measures by relative Goodness of Fit (rGoF).
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In case one component is missing and the denoised signal is inherently different,
an additional weighting factor ω defined by

ω =
1
ν

N∑
i=1

(f(ρi) − f∗(ρi))2

σ(x, y, ρ)2
(8)

is included in the denominator, which penalizes large deviations between the
expected function of the noisy signal f(ρi) and the expected function of the
denoised signal f∗(ρi). The so obtained measure is denoted by weighted relative
Goodness of Fit (wrGoF):

wrGoF =
rGoF

ω
=

χ2
raw

χ2
ICA · ω

, (9)

where wrGoF > 1 is associated with a signal improvement while wrGoF < 1
is associated with a signal degradation.

Parallelization Concept. The parallelization is implemented by distributing
the workload of the ICA problem equally in N parts to N workers via the
Message Passing Interface (MPI) with mpi4py [7–9]. Every n-th element is sent
to the n-th worker. After converging the result of all workers is collected and
fused to the end result.

3 Results

The denoising procedure was applied to 22 brain sections (14 coronal rat brain
sections and 9 coronal vervet brain sections). Every section was masked with
a gray matter mask (as described in Subsect. 2.3) to remove background and
white matter areas. In all cases, three components of interest were found, each
with a sinusoidal activation function. The signal activations were kept and the
noise activations were automatically removed. The resulting components and
activations are shown exemplary for rat brain section no. 100 in Fig. 3.

The amount of wrGoF values are in all sections greater than one (>99.9%)
and mostly greater than ten (>99%). A spatial distribution of the values is
shown in Fig. 4 for the rat brain section (right) and a vervet brain section (left).
In Fig. 5, three selected intensity profiles are shown for the rat brain section.
Each individual profile shows an improvement and the denoised profile describes
the measurement in a smooth way and is not influenced by outliers.
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Fig. 3. Independent Components Ci for rat brain section no. 100 with their associ-
ated activations Ai. The noise components are in the first and second row, the signal
components are in the last row.

Fig. 4. Signal enhancement in a brain section visualized via the wrGoF measure. Left:
wrGoF-map of vervet brain section no. 627. Right: wrGoF-map of rat brain section
no. 100.

The alternating parallelization approach achieves a linear speedup of up to 12
cores (i. e. half of the cores on a node on the JURECA supercomputer [18]). The
usage of all cores on the node only improves the speedup by two additional units
as seen in Fig. 6. Overall, a weak scaling can be observed. While four nodes give
a speedup of factor 2 with respect to one node, six nodes only offer a speedup of
2.5. For a complete vervet brain section (sample size ∼ 108 pixels), the run time
of the denoising routine for a single worker is about five hours. Using a whole
node lowers this to half an hour, and using four nodes lowers the run time to
15 min.

This scaling behavior is the same for the rat and the vervet brain sections.
Furthermore, the number of workers and therefore the number of partial ICA
problems do not interfere with the quality of the denoising process. The percent-
age of wrGoF values greater than one (>99.9%) or greater than ten (>99%) are
not influenced by the amount of parallelism.
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Fig. 5. Signal enhancement by the ICA denoising procedure shown for rat brain section
no. 100: The image on the upper left shows the transmittance of the brain section for
gray matter (background and white matter are displayed in black). The graphs show the
intensity profiles of three selected areas (colored dots in transmittance image) before
and after the denoising procedure.

Fig. 6. Scaling behavior of the ICA denoising procedure. Left: Intra-node scaling
behavior for 1–24 Cores. Right: Global scaling behavior.
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4 Discussion

In this work, an automatic denoising procedure for 3D-PLI data based on Inde-
pendent Component Analysis (ICA) for high-resolution PM data (with 1.33 µm
pixel size) was presented. Previous works studied the denoising of low-resolution
LAP data (with 64µm pixel size) [10–12], but the application on PM data
was limited due to computational and memory constraints and was not fully
automatic. Furthermore, the existing solutions were not suitable for a high-
throughput workflow because masks for tissue had to be manually created or
adjusted.

To overcome these limitations, three key steps had to been taken: The first
step was to develop an automatic segmentation of brain tissue into white and
gray matter, so that the ICA can work targeted on the noisy gray matter. The
second step was an automatic detection of signal components in the ICA acti-
vations. The investigated brain sections showed good separability by a simple
MSE measure. The zeroing of noisy components was straightforward to imple-
ment. Due to the fast convergence and easy separability, there was no need
for constraints which would only complicate the procedure and add expensive
hyperparameter training as in [10]. The third step was to parallelize the ICA in
a pleasingly parallel manner to evenly distribute the workload and ensure that
each worker receive similar statistics. This showed a weak, but significant scaling
as shown in Fig. 6.

The obtained results for the wrGoF measure were consistently better than the
ICA denoising for LAP data presented in [10,11]. The values were not influenced
by the amount of parallelism. The amount of wrGoF values are in all brain
sections greater than one (>99.9%) and mostly greater than ten (>99%). Overall,
the results are very promising for high-throughput denoising of high-resolution
3D-PLI sections.
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Abstract. The study of the visual system of the brain has attracted
the attention and interest of many neuro-scientists, that derived compu-
tational models of some types of neuron that compose it. These findings
inspired researchers in image processing and computer vision to deploy
such models to solve problems of visual data processing.

In this paper, we review approaches for image processing and com-
puter vision, the design of which is based on neuro-scientific findings
about the functions of some neurons in the visual cortex. Furthermore,
we analyze the connection between the hierarchical organization of the
visual system of the brain and the structure of Convolutional Networks
(ConvNets). We pay particular attention to the mechanisms of inhibition
of the responses of some neurons, which provide the visual system with
improved stability to changing input stimuli, and discuss their imple-
mentation in image processing operators and in ConvNets.

Keywords: Brain-inspired computing · Image processing · Inhibition

1 Introduction

The development of the visual system of humans takes a number of phases, which
include tuning the synaptic connections between neurons in the different areas
devoted to the processing of different visual stimuli. In newborns, for instance,
many connections between the Lateral Geniculate Nucleus (LGN), which is the
first part of the brain devoted to visual processing, and the area V1 of the visual
cortex are not formed yet. Similarly, the connections between neurons in the
area V1 and subsequent areas start developing after the first month of life.

The tuning process of the receptive fields of the neurons of the visual sys-
tem and the development of their inter-connected network can be compared to
the training process of Artificial Neural Networks (ANNs). Since the beginning
of their development, indeed, the design of ANNs has been largely inspired by
the way the brain works, i.e. processing information via a network of neurons
organized in a hierarchical fashion. Despite the resemblance of the Rosenblatt’s
perceptron with the physiological structure of a neuron, there is no actual rela-
tion between the processing of ANNs and the neural processes in the brain.
c© The Author(s) 2021
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Many researchers in computer vision and image processing found inspira-
tions from neuro-physiological studies of the visual system of the brain to design
novel computational models that could process visual data. In 1959, Hubel and
Wiesel carried out experiments on the visual cortex of cats and demonstrated
the existence of the simple cells, which are neurons with an elongated receptive
field. Their primary function is to detect edges and lines. Originally, the simple
cells were modeled using Gabor functions [11,24] and used in image processing
and computer vision applications, especially for texture description and analy-
sis [16]. Subsequently, Hubel and Wiesel precised that simple cells receive inputs
from certain co-linear configurations of the circular receptive field of neurons in
the LGN [20]. Computational models based on Gabor functions were not able
to describe all the properties of simple cells and ignored the contribution of
LGN neurons for the processing of visual stimulti. In [4], a computational model
based on the combination of the responses of Difference-of-Gaussians functions,
which modeled the LGN receptive fields, was proposed. It achieved better con-
tour detection performance than models based on Gabor functions and showed
more properties of the simple cells in area V1 of the visual system of the brain,
such as contrast invariant orientation tuning and cross orientation suppression.

Artificial neural networks (ANNs) and, in particular, convolutional neural
networks (ConvNets) received much attention and showed some similarities with
the visual system of the brain especially regarding its hierarchical organization.
Although the training of neural network is formulated as an optimization prob-
lem and does not relate with biological processes, in [25] it was shown that the
convolutional kernels learned in the first layer of AlexNet resembled the Gabor
functions that were used to model the receptive field of neurons in the area V1
of the visual system. Similarly, unsupervised approaches for image analysis like
Independet Component Analysis also learned features for image processing that
resemble the Gabor-like receptive fields of neurons in area V1 [18].

Neuro-scientific and neuro-physiological studies of the mechanisms and sys-
tems that our brains uses to process external inputs have influenced also the
developement of other branches of pattern recognition and artificial intelligence,
such as sound signal processing. Patterson et al., in 1986, modeled the response
of the cochlea membrane in the inner auditory system as a bank of Gamma-
tone filters [33]. They called Gammatonegram the result of the processing of
an input signal by a Gammatone filter bank. Similarly to the spectogram, the
Gammatonegram is a time-frequency representation of the sound in which the
energy distribution over time and specific bandwidths is described. Parts of
higher energy intensity correspond to regions of the cochlea membrane that
vibrates more according to the energy of the mechanical sound pressure waves
that hit the outer part of the auditory system. This model was exploited in
[45–47] as input to a trainable feature extractor, the design of which was inspired
by the activation of the inner hair cells, placed behind the cochlea, which convert
the vibration into electrical stimuli on the auditory nerve.

This paper focuses on the relation between neuro-scientific studies and
progress in Computer Vision and Image Processing, providing an overview of
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methods and aspects that concern detection and processing of low-level features
in images until more complex computations in convolutional networks.

2 Brain-Inspired Processing of Visual Data

One of the pioneering architectures for image processing and computer vision
inspired by knowledge of the brain processes of vision was the neocognitron
network [13]. It modeled the hierarchical arrangement of the visual system of the
brain by layers of S- and C-cell components, which are computational models of
the simple and complex cells discovered by Hubel and Wiesel [20]. The weights
of the neocognitron network were learned via an unsupervised training process,
based on self-organizing maps. This training resulted in a hierarchy of S- and
C-cell units that resembled the organization of the human visual system.

In the following of the section, some of these approaches are discussed, and
part of the focus is given to the phenomena of inhibition that contribute to
increase the selectivity of neurons to specific visual stimuli and how they are
embedded in operators for processing of visual data.

2.1 Edge and Line Detection

Simple cells in area V1 of the visual cortex receive inputs from LGN cells in the
thalamus of the brain and have the function of detecting elongated structures
that contain high contrast information. The receptive fields of LGN cells are
modeled by on- and off-center Difference-of-Gaussians (DoG) functions, while
those of simple cells are modeled as co-linear arrangement of DoG functions.
Originally, simple cells were modeled with Gabor functions, bypassing the con-
tribution of the LGN cells. Computational models based on Gabor filters were
used for contour and line detection and included in hierarchical architectures for
object detection [36] and face recognition [34] tasks.

Although Gabor filters were used, initially, to model the simple cell receptive
fields [24], they did not reproduce certain properties, such as contrast invari-
ant orientation tuning and cross orientation suppression. These properties were
achieved by a non-linear model, named CORF (Combination of Receptive Fields)
for contour detection [4]. It is based on the combination of co-linearly aligned
DoG functions, modeling the way simple cells combine the response of LGN
cells. A mechanism for tolerance to curvature of lines and contours, based on
a non-linear blurring, was proposed in the CORF model to improve the results
when deployed in image processing pipelines.

An implementation of CORF, named (B-)COSFIRE (Combination of Shifted
Filter Responses), where B- stands for bar-selective, was demonstrated to be
successful for the detection of thick lines in images and applied to blood vessel
delineation in retinal images (see Fig. 1) [7,41], road and river segmentation
in aerial images [44], crack detection in pavement images [38]. An example of
the response map computed by a B-COSFIRE filter and its thresholded binary
map are shown in Fig. 1b and Fig. 1c, respectively. A curved receptive field was
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configured in [35], to detect high curvature points of the retinal vessel tree. In
[40,42], the authors demonstrated that a bank of B-COSFIRE filters, configured
to delineate lines of different thickness, can be used as feature extractors and
combined with a classifier to perform complex decisions.

Fig. 1. (a) Example retinal image, the (b) response of the B-COSFIRE filter and (c)
the corresponding binary map.

2.2 Object(-part) Detection

The response of neurons in area V1 are forwarded for further processing to
neurons in areas V2 an V4 of the visual cortex, which are tuned to respond to sets
of curved segments or vertices of some preferred orientation and badnwidth [32].
These properties can be interpreted as functions for detection of parts of objects.

Based on the principle of combining the responses of line and edge detectors
at different orientations and with a certain spatial arrangement, an implemen-
tation of the COSFIRE model that takes as input a bank of Gabor filters of
different orientation was released [3]. In this case, the receptive fields of neurons
in area V1 that give input to those in area V4 were modeled by means of Gabor
functions. However, a hierarchical structure of COSFIRE models can be real-
ized for more complex tasks like object recognition or scene understanding [5].
The COSFIRE model of neurons in area V4 can be trained to detect parts of
object and used in applications of object recognition. In Fig. 2, we show some
examples of the parts of objects on which V4-COSFIRE models are trained.
The light-blue ellipses indicate the location and the orientation at which the
V1-like neuron responses are considered and their combination models a part of
the object of interest. The configured models can be used to recognize parts of
objects in other images or together in a filter-bank to extract feature vectors to
be used in combination with a classifier.

2.3 Inhibition for Image Processing

One important aspect of the visual processes that happens in the visual system is
the mechanism of inhibition. The receptive field of a simple cell, known as ‘clas-
sical receptive field’ [19], is composed of an excitatory and an inhibitory region.
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Fig. 2. The configured COSFIRE filters are represented by the set of light blue ellipses
in the top row, whose orientation indicates the preferred orientation of the Gabor filter.
In the bottom row, the part of the object that the corresponding COSFIRE filter is
able to detect (figure from [3]). (Color figure online)

Many simple cells are know to receive push-pull (or antiphase) inhibition [21].
This form of inhibition happens when visual stimuli of given orientation and
opposite polarity evoke responses of opposite sign [10,12,31]. Furthermore, it
is known to be the most diffuse form of inhibition in the visual cortex [1]. In
practice, for a stimulus of given polarity the response of the inhibitory receptive
field suppresses the response of the excitatory receptive field.

This phenomenon was implemented in the CORF operator and it was demon-
strated to be beneficial for improving contour detection in presence of texture [6].
More recently, the effect of the push-pull inhibition was shown to increase the
robustness of line detection to various types of noise and textured background:
a novel RUSTICO (Robust Inhibition-augmented curvilinear operator) opera-
tor was proposed in [37,39]. It was shown to be very effective for line detection
in presence of noise and texture. RUSTICO is designed as an extension of the
B-COSFIRE filter for line detection, by including an inhibitory component. In
Fig. 3a and Fig. 3b, an aerial image of a river and the corresponding ground-truth
are shown. The binary response map produced by RUSTICO (Fig. 3d) shows a
more complete reconstruction of the line pattern of interest, i.e. the river, than
that in the binary map produced by B-COSFIRE (Fig. 3c).

Fig. 3. (a) Aerial image of a river and (b) the ground truth of the river area. The (c)
binary response map obtained by the B-COSFIRE filter is more noisy and contains
less of the detected river patterns than the (d) binary response map of RUSTICO.
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Another phenomenon of inhibition found in the visual cortex is the surround
suppression. It consists of neurons, whose response is suppressed by that of
neighbor neurons in the surrounding of their receptive field [9,49]. The cells
that exhibit this type of inhibition have a non-classical receptive field (NCRF).
Practically, this means that the response to a certain stimulus can be influenced
by the presence of similar stimuli in the surrounding of the receptive field. This
mechanism of surround suppression was included in image processing operators
to extend the Canny edge detector [14], a Gabor filter based contour detector [15]
and in an operator with a butterfly-shaped receptive field [50].

More recently, the push-pull inhibition and surround suppression were com-
bined in a single operator for contour detection, which outperformed its coun-
terpart operators with single or none inhibition mechanism [30].

3 Convolutional Networks for Visual Data Processing

Convolutional Neural Networks (ConvNets) became the de facto standard for
image processing and computer vision, because of their effectiveness in deal-
ing with various visual recognition tasks. Successful applications of ConvNets
are image and object recognition [17], semantic segmentation [8], place recogni-
tion [2,27], image generation and image-to-image translation [22], among others.

ConvNets are based on convolution operations and exploit the characteristic
of locality of the patterns of interest. This means that the value at a certain pixel
location of a response map is detemined by the linear combination of the values
of a small neighborhood of the corresponding pixel in the input image. From this
perspective, ConvNets can be considered as a regularized version of multi-layer
perceptron (MLP) networks. The fully-connectedness means that each neuron at
a certain layer receives input from all the neurons in the previous layer. In a Con-
vNet, instead, each neuron (i.e. a convolution kernel) has a very limited number
of inputs, and it slides over the input signal to compute its response. Although a
single convolution catches local proprieties of the input signal in small-size neigh-
boroods, the hierarchical organization of ConvNets allows to assemble more and
more complex patterns in subsequent steps.

The hierarchical organization of ConvNets, which arranges a stack of con-
volutional layers, non-linear activation functions and sub-sampling operations
resembles the hierarchy of the visual system of the brain. Speculations of this
type were reinforced by the results obtained by the AlexNet network [25]. On top
of the improvement of the classification accuracy by a large margin with respect
to previous approaches, it was shown that the filters learned in the first layer
of AlexNet resembled Gabor-like receptive fields (see Fig. 4), which are accepted
computational models of neurons in the area V1 of the visual system of the
brain [29]. Hence, in the first layer of AlexNet edge and elongated structures of
different bandwidth are detected. The interpretations consist in that in subse-
quent layers, the detected edge and line patterns are combined into corner-like
structures, similarly to the area V2 and V4 of the visual cortex, and into parts
of objects (anterior and posterior TEO).
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Fig. 4. Visualization of the convolutional kernels learned in the first layer of AlexNet.

The convolutions used in ConvNet architectures are linear operators and
are not able to fully model some non-linear properties of the neurons in the
visual cortex, e.g. response saturation or cross-orientation suppression. In [51],
quadradic convolutions, in the form of Volterra kernels, were investigated and
deployed as substitute of the convolution operations in existing architectures.
This type of convolutions is more suited for a better approximation of the profile
of the receptive fields of some neurons in the visual system. The approach was
extended in [23], in which quadratic convolutional kernels contributed to reduce
the depth, i.e. the total number of convolutional layers, of existing architectures
while keeping the detection and classification performance of the corresponding
deeper original networks.

On the one hand, the use of quadratic convolutions is justified by the closer
connection with the function of the receptive field of the complex cells in the
visual system, and contributed to a relatively small increase of performance. On
the other hand, they require a much larger number of parameters to be learned,
slowing down the training and increasing the complexity of the functions to
be learned. In [51], indeed, due to computational limits, only the first layer of
convolutions was replaced by Volterra kernels.

Another type of non-linear unit was proposed in [28], which incorporate the
framework of the COSFIRE model of the neurons in the area V4 of the visual
system into a new type of layer for ConvNets. The response of this layer is
computed by combining the response maps of local simpler features according
to a spatial structure that is determined in an automatic configuration step.
During the training of the network, the CNN-COSFIRE layer can be configured
to detect a certain arrangement of local features, so allowing for a larger receptive
field that can catch non-local characteristics of the patterns of interest, such as
parts of or entire objects. It was successfully demonstrated in applications of
object detection and place recognition where few training samples are available.

3.1 Inhibition in Convolutional Networks

ConvNets learn representations, disentangling complex features of the training
data. Inhibition is believed to be a mechanism for regularization and stability of
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the processes that happens in the visual system [26], and forms of inhibition are
learned in ConvNets as well [48].

AlexNet deployed a layer called Local Response Normalizer (LRN), which
implemented a surround suppression mechanism called lateral inhibition. This
type of inhibition creates a form of competition among neurons in a local neigh-
boround. The LRN builds on the idea of enhancing peak responses and penalizing
flat ones on the feature map, making relevant features stand out more clearly.
Thus, in the implementation, high local responses of one convolutional kernel
inhibit weaker responses of other convolutional kernels in the same local neigh-
bourhood. This serves as a form of regularization of the network and improves
recognition performance.

In [43], a new type of layer that implements the push-pull inhibition mech-
anism was proposed, which can be used as a substitute of the convolutional
layer. The push-pull layer can be trained with back-propagation of the gradient
of the error and is interchangeable with any convolutional layer in the network.
However, as it is inspired by neuroscientific evidence of inhibition mechanisms
that occur in the early stages of the visual cortex, it was deployed as a sub-
stitute of the first convolutional layer only [43]. Using the push-pull layer in
ConvNet architectures achieves better performance on image classification tasks
when dealing with images that have been corrupted with noise or other types of
artefacts (e.g. jpeg compression, blur, contrast changes and so on). Furthermore,
when deploying the push-pull layer in ConvNets instead of a convolutional layer,
the number of parameters to learn does not increase.

4 Conclusions

The research fields of image processing and computer vision were influenced by
discoveries and progress in the understanding of the functions of neurons in the
visual system. Computational models of different types of neurons formalized
by neuro-physiological studies of their responses to visual stimuli have been
deployed for image processing, especially related to low-level tasks such as line
and contour detection.

In this paper, we reviewed the developments of edge and contour detec-
tion algorithms influenced by progress made in the understanding of the visual
processes that occur in the visual cortex. We paid large attention to the impor-
tance that inhibitory mechanisms, namely push-pull inhibition and surround
suppression, have on the robustness of the processing of visual stimuli in noisy
and textured scenes. Furthermore, we covered the connections that neuro-
physiological findings have with the development of Convolutional Networks
and how inhibitory phenomena were explicitly implemented in the architecture
of these networks with the aim of improving their stability to varying input
stimuli.
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Abstract. Recent research on face analysis has demonstrated the rich-
ness of information embedded in feature vectors extracted from a deep
convolutional neural network. Even though deep learning achieved a very
high performance on several challenging visual tasks, such as determin-
ing the identity, age, gender and race, it still lacks a well grounded theory
which allows to properly understand the processes taking place inside the
network layers. Therefore, most of the underlying processes are unknown
and not easy to control. On the other hand, the human visual system fol-
lows a well understood process in analyzing a scene or an object, such as
a face. The direction of the eye gaze is repeatedly directed, through pur-
posively planned saccadic movements, towards salient regions to capture
several details. In this paper we propose to capitalize on the knowledge of
the saccadic human visual processes to design a system to predict facial
attributes embedding a biologically-inspired network architecture, the
HMAX. The architecture is tailored to predict attributes with different
textural information and conveying different semantic meaning, such as
attributes related and unrelated to the subject’s identity. Salient points
on the face are extracted from the outputs of the S2 layer of the HMAX
architecture and fed to a local texture characterization module based on
LBP (Local Binary Pattern). The resulting feature vector is used to per-
form a binary classification on a set of pre-defined visual attributes. The
devised system allows to distill a very informative, yet robust, represen-
tation of the imaged faces, allowing to obtain high performance but with
a much simpler architecture as compared to a deep convolutional neural
network. Several experiments performed on publicly available, challeng-
ing, large datasets demonstrate the validity of the proposed approach.

1 Introduction

In the last decade, soft biometric traits have been widely used for person identifi-
cation because of the robustness to noise, non-intrusiveness, and privacy preser-
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vation. In the last years Deep learning approaches have been proposed also to
extract soft-biometric attributes from face images. However, the high perfor-
mance achieved are always paired with the requirement for high computational
power and a large dataset for training. Liu et al. [1] proposed a method based
on two CNNs which are trained for face localization (LNet) and attributes pre-
diction (ANet). The top network layer, FC is exploited to learn identity-related
features, such as the gender and race. Layers C3 and C4 are exploited to extract
Identity-unrelated attributes, such as the facial expression, wearing hat and sun-
glasses. Samangouei et al. [2–4] proposed a CNN architecture suitable for mobile
devices, which is based on the analysis of face parts. Recently, Dhar et al. [5]
considered the usefulness of the outputs of the internal layers of two deep con-
volutional networks, Resnet 101 and Inception Resnet v2, for the prediction of
facial attributes. Izadi [6] proposed the fusion of the extracted facial attributes
with the face image to perform face recognition on a shared CNN architecture.
Recently different works [7,8] proved that the final representation computed by
a deep convolutional neural network embeds information not only about iden-
tity but also on the head pose and illumination. In this paper we propose to
extract information from internal layer corresponding to HMAX network with
the purpose of predicting different facial attributes. The HMAX model, which
has been developed before deep learning took over in many computer vision
problems, demonstrated the feasibility of a biologically-inspired neural architec-
ture for face recognition. The model was tested on several publicly available
databases such as LFW, PubFig and SURF-W [9] providing results at the state
of the art. In [10], a new C3EF layer, inspired by the ventral and dorsal streams
of the visual cortex, has been added to perform view-independent face recogni-
tion. Hu [11] proposed a version of the HMAX model, named ’sparse HMAX’,
addressing the local-to-global structure of the hierarchy, where the S2 bases are
learned by sparse coding. In this paper we propose a novel hybrid system based
on the HMAX network architecture. The outputs of the internal S2 layer are
used as the seeds for extracting interest regions which are then used to generate
the feature vector for the classification of the facial attributes. The following
issues are addressed:

• How the salient feature points extracted from the HMAX architecture can
improve the prediction of facial attributes.

• To which extent the devised system can be applied to predict different kinds
of facial attributes.

• What is the robustness of an attentitive visual system to variations in head
pose, lighting and facial expression.

2 Prediction of Facial Attributes

Most of the time celebrities or familiar people are remembered because of their
special hair style, accessories or even clothes. This daily life concept is exploited
by soft biometrics, or general visual attributes. These attributes can add signif-
icant information to face images and are quite robust to image degradation and



118 S. Khellat-Kihel et al.

changes in appearance. For this purpose, the internal S2 layer of the HMAX is
used to detect the most salient points on the subject’s face. The Linear Binary
Pattern feature extractor is exploited to build a local description of the image
texture around the selected points. The feature vectors computed for each salient
point are concatenated to produce a global feature vector to characterize the face
image. The obtained feature vector is fed to a SVM binary classifier to predict
several visual attributes. In Fig. 1 the general architecture of the proposed frame-
work is shown.

Fig. 1. Proposed hybrid system for the prediction of facial attributes.

2.1 The Hierarchical HMAX Network

HMAX is an hierarchical system that closely follows the organization of visual
cortex and builds an increasingly complex and invariant feature representation by
alternating between a template matching and max pooling [12]. As the network
structure is fixed, a limited number of training examples is required for learning.
The computational process is hierarchical and it is also invariant to position,
scale and view-point. Along the hierarchy, the size of the receptive fields and
the complexity of their optimal stimuli increases. The model consists of four
computational layers, where simple ‘S’ units alternate with complex ‘C’ units.

The first layer S1 in the HMAX network consists of a bank of Gabor filters
applied to the full resolution image. The response to a particular filter G, of
layer S, at the pixel position (X,Y) is given by:

The first layer of the HMAX model ‘S1’ consists of a bank of Gabor fil-
ter, the following steps are implemented in (Fig. 2): The Image (at finest scale)
is [256 * 256 * 1]. In each image intensity, four Gabor filters are applied over
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Fig. 2. General architecture of the HMAX model.

each pixel position. The result of S1 layer (at finest scale) is [246 * 246 * 4]. The
response of a patch of pixels X to a particular S1 filter G is given by:

R(X,Y ) =
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The size of the Gabor filter is 11 × 11 and it is formulated as:

G(x, y) = exp(
−(x2γ2Y 2)

2σ2
)cos(

2π

λ
X) (2)

Where X = xcosθ−ysinθ and Y= xsinθ+ycosθ. x and y vary between −5 and
5, and θ varies between 0 and π. The parameters ρ (aspect ratio), σ (effective
width), and λ (wavelengh) are set to 0.3, 4.5 and 5.6, respectively. For the local
invariance (C1) layer, a local maximum is computed for each orientation. They
also perform a subsampling by a factor of 5 in both the X and Y directions
[13]. In the intermediate feature layer (S2 level), the response for each C1 grid
position is computed. Each feature is tuned to a preferred pattern as stimulus.
Starting from an image of size 256× 256 pixels, the final S2 layer is a vector of
dimension 44 × 44 × 400. The response is obtained using:

R(X,P ) = exp(
||X − P | |2

σ2
) (3)

The last layer of the architecture is the Global Invariance layer (C2). The max-
imum response to each intermediate feature over all (X, Y) positions and all
scales are calculated. The result is a characteristic vector that will be used for
classification. For the implementation of the HMAX model we use the tool pro-
posed in [13] As the final layer (C2) is the features vector that corresponds to
maximums obtained from each S2 output, which are 400 characteristics. These
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maximum correspond to a certain locations (best coordinates) that are the max-
imal responses for each patch and image. These coordinates are accumulated and
projected into the original faces images and used as interest points.

2.2 Local Texture Description Based on LBP

LBP is a type of visual descriptor used for classification in computer vision. The
idea of the texture extraction using LBP is to give to each pixel a code which
depends on the gray scale of its neighbors. The gray scale of the central pixel
(ic) is compared to its neighbors in the following formula:

LBP (xc, yc) =
P∑

n=0

s(in − ic)2n X =

{

0, x < 0
1, x >= 0

(4)

The LBP code of the current pixel is produced by concatenating the 8 values to
construct a binary code. The center of each window corresponds to the interest
points obtained from HMAX.

2.3 Binary Classification with Support Vector Machines

The SVMs are groups of learning techniques that are designated to solve prob-
lems of discrimination, i.e. to decide to which class a pattern belongs, or of
regression, i.e. to predict the numerical value of a variable. The success of this
method is defined by solid mathematical bases. The main objective of the SVM
is like the perceptron principle but it consists not only into finding an hyper
plan that separates perfectly the classes but also to find the optimal one that
can separate perfectly the classes by maximizing the margin. They project the
data in space of characteristics by using non-linear functions. In this space it
builds the optimal hyper plan which separates the transformed data. The prin-
cipal idea is to build a linear separation surface in the space of the characteristics
which corresponds to a non-linear surface in the space entry (Figure 3 presents
this non-linear transformation).

The Support Vector Machines approach passes through two steps: The train
that consists of searching an optimal hyper plan of separation by maximizing
the margin, with the resolution of a quadratic program and determination of

Fig. 3. The non linearity.
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the Lagrange multipliers [14]. The test, after the determination of the Lagrange
multipliers, it applies the decision function to the test examples to determinate
the class [14]. The classification is conducted by using the SVM-KM toolbox [15]
and by considering a Gamma value of 1e-7 and penalty parameter of the error
term C = 100 while we use Gaussian kernel.

3 Experimental Results

Several publicly available large datasets have been used for testing the proposed
architecture. The CelebFaces Attributes Dataset (CelebA) [1] is a large-scale face
attributes dataset with more than 200K celebrity images each is notated with 40
attributes. The images in CelebA dataset include large variations in appearance
such as pose and background. It contains 10.177 identities having 20 images in
average. The CelebA does not overlap with LFW dataset identities. We also use
the LFW dataset [16] which is a large dataset, real-world face dataset consist-
ing of 13.000 images of faces collected from internet. These images are taken
in completely uncontrolled situations. This dataset contains variations in pose,
lighting, expression, camera, imaging conditions. CelebA and LFW were inten-
sively used in the recent proposed work in the litterature for the aim to predict
facial attributes. The PubFig dataset [19] has been used to test the sensitivity
to variations in pose, illumination and facial expression. The PubFig dataset is
a large, real-world face dataset (including both celebrities and politicians) con-
sisting of 58797 images of 200 subjects collected from the internet. The PubFig
dataset is both larger and deeper, on average 300 images per individual than
previous seen dataset. These images are taken in completely uncontrolled situ-
ations. This database contains variations in pose, lighting, expression, camera,
imaging conditions. The PubFig dataset is similar to LFW dataset. However,
the PubFig dataset has enough examples per each subject.

Experiment 1: The first experiment consists of the facial attributes prediction
using the Labeled Faces in the Wild (LFW) and the CelebFaces dataset. Table 1
and Table 2 represent the facial attributes prediction results using CelebA and
LFW accordingly. In this experiment we propose also to compare our proposed
system (internal layer) for attributes prediction with the top layers corresponding
to HMAX, VGG, Alexnet and ResNet-50. Alexnet is a convolutional neural net-
work that is trained on more than a million images from the ImageNet database
[19]. The network is 8 layers deep and it can classify the images into 1000 object
categories [20,21]. The network has an image input size of 227-by-227. ResNet-
50 is also a CNN framework trained with the images from ImageNet [19]. It is
50 layers deep with an input size of 224-by-224. But unlike Alexnet, Resnet-50
layers are organised in residual blocks. With each block encompassing of at-least
3 CNN layers (1 × 1; 3 × 3; and 1× 1 convolutions) followed by a shortcut con-
nection. VGG is a convolutional neural network that is trained on more than a
million images from the ImageNet database. The network is 16 layers deep and
can classify images into 1000 object categories, such as keyboard, mouse, pencil,
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and many animals. As a result, the network has learned rich feature representa-
tions for a wide range of images [20]. This experiment is for the aim to compare
between the proposed system that is based on internal layer and the final layers
corresponding to the HMAX, VGG, Alexnet and Resnet-50.

Experiment 2: In the second experiment we propose to compare the obtained
results on LFW and CelebA faces with some recent obtained results in the state
of the art such as FaceTracer [17], PANDA [18], LNets+ANet [3] and Shared
CNN proposed in [8]. Table 3 and Table 4 represent the results on LFW and
CelebA datasets respectively. The aim of this experiment is to compare our
proposed hybrid architecture with recently proposed systems in the litterature
based on DNNs.

Experiment 3: In the third experiment, we test the PubFig dataset as it con-
tains a large number of images per each subject. We study the efficiency of our
proposed system on pose variation, faces under different illumination and expres-
sion. As the PubFig dataset contains images from the web a lot of them are not
available, for this reason we construct a database composed of 54 subjects with
8942 images. Table 5 represents the obtained results which were compared also
with Alexnet, VGG and Resnet-50 features.

From the obtained results (Table 1, Table 2), one can see clearly that the
LFW dataset obtain better results with our hybrid system comparing to the
CelebA and this is mainly due to the fact that we used CelebA faces in nonuni-
form order for the identities because the CelebA is composed of thousand of
identities with twenty images per identity in average, these twenty images are
dispatched randomly in the data; however, in the LFW database all the images
corresponding to the same subject are in a successive order. Our proposed system
demonstrate a comparable efficiency with the pretrained Deep Neural Networks
(VGG, Alexnet and Resnet-50) in the same time surpass the obtained results
with the features obtained from the final layer C2 corresponding to HMAX.
Some facial attributes such as ‘Attractive’, ‘Gray Hair’, ‘Male’, ‘Mustache’ were
well predicted using our model comparing to the pretrained DCNNs. In addi-
tion, our proposed biological system shows good performances comparing to the
proposed models in the state of the art [3,8,17,18] specially on identity facial
attributes. These identity-based facial attributes such as ‘gender’, ‘hair color’,
‘nose’ and ‘lips shape’, ‘chubby’ and ‘Blad’ can add meaningful information
for face identification. Additionally, the proposed hybrid attention-based system
achieve a comparable results with the final layers of VGG, AlexNet, ResNet-50
and HMAX. Another advantage is that our model use different locations to pre-
dict the whole attributes faces. However, LNets-ANets [1] use different layers
to predict different kind of attributes, also [3] consider the fusion of different
and specific regions from the face to detect a specific facial attribute. In the
latest case we may not find all facial regions available specially with different
poses on mobile devices. Even though the PubFig is very challenging database
with variation in pose, illumination and expression, our proposed approach can
distinguish between frontal and dark lighting images.
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Table 1. Facial attributes prediction accuracies on LFW.

Attribute HMAX VGG Alexnet Resnet Ours

5 o Clock Shadow 79.5 93 95.5 97.5 95

Arched Eyebrows 91 98.5 98.5 99.5 96

Attractive 76 95 96 93.5 96.5

Bags Under Eyes 86 92 95.5 96 91

Bald 95 99 98 98.5 95

Bangs 83 96.5 97 97.5 90

Big Lips 66 92.5 92.5 89.5 88

Big Nose 94.5 99.5 99 99.5 88

Black hair 99.5 99.5 99.5 99.5 86

Blond hair 100 100 99.5 100 93

Blurry 72.5 97 96 97 92

Brown hair 99.5 100 99.5 99.5 89

Bushy Eyebrows 84.5 95 96 96 86

Chubby 96.5 97.5 99.5 99.5 90

Double Chin 88.5 94.5 98.5 99 96

Eyeglasses 74.5 93 95 95 92

Goatee 84.5 97.5 97.5 97.5 91

Gray Hair 45.5 32.5 27.5 24 91

Heavy Makeup 99 100 98 99.5 91

High Cheekbones 72.5 96 96 95 88

Male 55 56.5 57 64 91

Mouth Slightly Open 45 46.5 46 34.5 91

Mustache 70 85.5 87.5 88 91

Narrow Eyes 81.5 83 91 88.5 88

No Beard 85.5 95.5 98.5 98.5 91

Oval face 88 98.5 97.5 97.5 91

Pale Skin 99 99.5 99.5 100 89

Pointy Nose 71 93 92 95 90

Receding Hairline 66.5 89.5 91 77.5 90

Rosy Cheeks 99 99 99 99 91

Sideburns 80 93.5 96.5 96 93

Smiling 88 96.5 96.5 97 94

Straight Hair 87 95.5 98.5 96.5 93

Wavy hair 75.5 88.5 94.5 94.5 89

Wearing Earings 86.5 96.5 96 97 92

Wearing Hat 68 91 93.5 89.5 88

Wearing Lipstick 91 99 98.5 97.5 90

Wearing Necklace 72 93 98 97 88

Wearing Necktie 99 98 99.5 99.5 93

Young 100 100 100 100 88
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Table 2. Facial attributes prediction accuracies on CelebA.

Attribute HMAX VGG Alexnet Resnet Ours

5 o Clock Shadow 85.4 88.2 88.2 88.2 91.5

Arched Eyebrows 96.8 77.2 77.6 76 60.5

Attractive 71.2 77.6 77.2 75.6 59.5

Bags Under Eyes 71.8 79.6 79.8 78.6 74

Bald 97.4 97.4 97.4 97.4 99.5

Bangs 81.8 87.2 87 88.8 82.5

Big Lips 64.6 75.2 75.4 74.6 60

Big Nose 70.4 78 77.4 77 74

Black hair 69.6 75.6 75.6 77.6 85

Blond hair 80.8 86.8 84.4 88 80.5

Blurry 93.8 94 93.6 93.6 99.5

Brown hair 71.4 78 78.4 77.4 81

Bushy Eyebrows 78 83.4 83.4 83 86

Chubby 92.6 95.8 95.4 95.4 96.5

Double Chin 94.4 95.6 95 95.4 97.5

Eyeglasses 91.4 97.8 97.6 96 97.5

Goatee 91.2 92.4 92 92.4 97.5

Gray Hair 93.6 94.2 93.8 94 98

Heavy Makeup 75.2 82.2 80.6 83.8 59.5

High Cheekbones 62.8 73 68.2 73.8 64.5

Male 73.6 79.6 81 84 83.5

Mouth Slightly Open 55.6 62 62.4 66.2 50

Mustache 94.8 95.6 95.6 95.2 96.5

Narrow Eyes 82.4 89.2 89 89.2 87

No Beard 81.4 84.4 83.4 84.6 91

Oval face 64.4 71.2 71.4 71 94.5

Pale Skin 95.6 96.8 96.2 96.6 98.5

Pointy Nose 66.6 72.6 72.2 71 67

Receding Hairline 91.2 94.8 95 94.6 95.5

Rosy Cheeks 92.4 94.2 94 94.2 85

Sideburns 92.6 93.6 93.2 93.6 96

Smiling 62.6 71 68.2 75.2 58

Straight Hair 73.6 81 81.2 81 84

Wavy hair 66.4 66.8 65.8 71.8 64.5

Wearing Earings 72.4 82 80.6 82.2 57

Wearing Hat 95 97 96.4 97.4 99

Wearing Lipstick 75 82.8 80.8 85.8 74

Wearing Necklace 79 86.4 85.6 86.2 77

Wearing Necktie 86.4 91.4 91.2 91.4 97.5

Young 73.6 80 79.6 76.8 81
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Table 3. Comparaison of the attribute prediction frameworks on LFW

Bald Big Lips Big Nose Chubby Male Black Hair Blond Hair

FaceTracer 77 68 73 67 84 76 88

PANDA 84 73 79 69 92 87 94

LNets-ANet 88 75 81 73 94 90 97

Shared CNN 90 65 75 62 94 80 88

Our model 91 88 86 96 91 93 92

Table 4. Comparaison of the attribute prediction frameworks on CelebAFaces

Bald Big Lips Big Nose Chubby Male Black Hair Blond Hair

FaceTracer 89 64 74 86 91 70 80

PANDA 96 67 75 86 97 85 93

LNets-ANet 98 68 78 91 98 88 95

Shared CNN 97 67 79 91 99 75 84

Our model 99.5 60 74 96.5 83.5 85 80.5

Table 5. Comparison of the attribute prediction on PubFig database

Pose Lighting Expression

HMAX features 60 61 50.3

VGG features 70.40 70.7 48.1

Alexnet features 70.8 69.7 49.7

Resnet features 71 69.9 51.5

Ours 70.9 70.9 51.4

4 Conclusion

In this paper a visual attention-based system have been proposed to predict
the facial attributes. This hybrid system allows a biological hierarchical net-
work ‘HMAX’ to look into a particular salient regions of the input faces in the
same time reduce the complexity by discarding the irrelevant information. These
regions were introduced to LBP with the aim of extracting texture feature around
these interest points extracted with HMAX. This proposed framework shows a
promising results comparing to Deep Neural Networks architectures. The success
of the hybrid architecture is due not only to the biological vision perception but
also to the possibility and flexibility of this approach to learn and treat small
amount of data and predict different facial attributes. By surpassing these issues
we can solve the main problem of DCNNs that require large amount of data
for training. The proposed approach can add a good impact on face recognition
as it can predict the most challenging real-world scenario (different background,
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pose variation, illumination, expression) that can degrade significantly the face
recognition performances.
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Abstract. The exchange of ideas between computer science and sta-
tistical physics has advanced the understanding of machine learning
and inference significantly. This interdisciplinary approach is currently
regaining momentum due to the revived interest in neural networks and
deep learning. Methods borrowed from statistical mechanics complement
other approaches to the theory of computational and statistical learning.
In this brief review, we outline and illustrate some of the basic concepts.
We exemplify the role of the statistical physics approach in terms of a
particularly important contribution: the computation of typical learn-
ing curves in student teacher scenarios of supervised learning. Two, by
now classical examples from the literature illustrate the approach: the
learning of a linearly separable rule by a perceptron with continuous
and with discrete weights, respectively. We address these prototypical
problems in terms of the simplifying limit of stochastic training at high
formal temperature and obtain the corresponding learning curves.

1 Introduction

At least two major developments have led to the regained popularity of machine
learning in general and neural networks in particular [1–6]. Most importantly, the
ever-increasing availability of training data from various domains and contexts
have made possible the training of very powerful systems such as deep neural
networks [4–6]. At the same time, the computational power necessary for the
data driven adaptation and optimization of such systems, has become available.

Several concepts that had been developed earlier, some of them even decades
ago, could be realized and applied successfully in practice only recently. Examples
and further references can be found in [4–6]. In addition, novel computational
techniques and important modifications of the considered systems have con-
tributed to this success. This includes the use of pre-trained networks, sophisti-
cated regularization techniques, weight sharing in convolutional neural networks,
or the use of alternative activation functions [4–8].

While the relevance and success of the methods are widely recognized, sev-
eral authors note that the theoretical understanding does not yet parallel the
c© The Author(s) 2021
K. Amunts et al. (Eds.): BrainComp 2019, LNCS 12339, pp. 128–142, 2021.
https://doi.org/10.1007/978-3-030-82427-3_10
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practical advances of the field, see for instance [9–13] in the context of deep
learning. It is certainly desirable to strengthen and put forward the theoreti-
cal investigation of machine learning processes in general and deep learning in
particular. The development of novel concepts and the design and optimization
of practical training prescriptions would greatly benefit from better theoretical
understanding. This concerns, for instance, mathematical and statistical foun-
dations, the dynamics of training, and insights into the expected generalization
ability of learning systems.

Concepts borrowed from statistical mechanics have been applied in many
areas beyond the scope of traditional physics. In particular, analytical and com-
putational approaches developed for the study of complex physical systems can
be exploited within computer science and statistics. A prominent example is
the use of Markov chain Monte Carlo methods [14], which exploit mathematical
analogies between stochastic optimization and the statistical physics of systems
with many degrees of freedom. Similarly, analytical methods which had been
developed for the analysis of disordered systems [15], have been applied in this
context.

A somewhat surprising and very inspiring analogy was pointed out by John
Hopfield [16]: the conceptual similarity of simple dynamical neural networks with
models of disordered magnetic materials [15]. It attracted considerable interest
in neural networks and related systems within the physics community. Initially,
the analysis of thermal equilibrium states in so-called attractor neural networks
was in the center of interest [1,16,17]. However, the same concepts were applied
successfully to the investigation of learning and synaptic plasticity in neural
networks. Elizabeth Gardner’s pioneering work [18,19] paved the way for the
theory of learning in a large variety of machine learning scenarios, including the
supervised training of feedforward neural networks, methods of unsupervised
data analysis, and more general inference problems, see [20–22] for reviews.

A variety of analytical tools and modelling frameworks have been developed
and applied successfully to, for instance, the study of supervised learning in the
context of regression and classification tasks. Mostly, relatively simple and shal-
low feedforward neural networks have been analysed [20–22]. Frequently, these
training processes are modelled in the frame of a student and teacher scenario.
There, a specific neural network, the teacher, is assumed to define the target task,
e.g. a classification scheme. A student network is trained from a set of exam-
ples provided by the teacher and parameterizes a data driven hypothesis about
the target rule. This allows to explicitly control the complexity of the target
rule and of the learning system in the model. Moreover the performance of the
trained system can be quantified in terms of its similarity and agreement with
the teacher network. Learning can be interpreted as the stochastic optimization
of many degrees of freedem, which motivates possible training algorithms based
on statistical mechanics ideas. Also, analytical tools for the study of large sys-
tems in (formal) thermal equilibrium situations can be used, which describe the
model in terms of a few macroscopic quantities, only. Frequently, these so-called
order parameters appear naturally when analysing student teacher scenarios.
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Ultimately, methods developed in the theory of disordered systems allow for
the investigation of typical properties of the learning system. This concerns, for
instance, the computation of learning curves as an outcome of the stochastic
training process on average over the assumed randomness in the example data.

The successful applications of these concepts include, among other relevant
topics, the highly interesting phenomenon of symmetry breaking phase transi-
tions which result in discontinuous learning curves: Frequently, the success of
training is found to depend critically on the number of available examples or
other model parameters [20–25]. Currently, the interest in this type of analysis
is gaining momentum again in the context of deep learning and other popular
learning paradigms, see [26–31] for examples.

In the following section, we briefly outline and illustrate the statistical physics
of student teacher scenarios in supervised learning. We present two variants of
a simple and by now classical example: the learning of a linearly separable rule
with a perceptron network with continuous or discrete weights, respectively. The
perceptron has been discussed extensively in the literature and serves as a pro-
totypical system for the understanding of machine learning processes, see e.g.
[1,20–22]. For the sake of brevity, we focus on a particularly simplifying approach,
the consideration of stochastic training in the limit of high (formal) tempera-
ture. It was introduced and applied to perceptron training in [22]. Despite its
conceptual simplicity and mathematical ease, this example illustrates the basic
concepts very well and yields non-trivial results and insights into the learning
process.

This contribution is based on a tutorial talk at the Workshop on Brain
Inspired Computing, BrainComp 2019. It is obviously far from providing a com-
plete overview of the statistical physics of learning. The intention is to attract
the reader’s attention in terms of selected example applications of the approach
and to provide references as a starting point for further exploration of this highly
relevant area of research.

2 Statistical Physics of Learning: Learning Curves

Typically, the statistical physics based computation of learning curves in super-
vised learning proceeds along the following steps:

1) A student and teacher scenario is defined, which parameterizes the target rule
and fixes the complexity of the student hypothesis.

2) It is assumed that training examples and test instances are generated accord-
ing to a specific input density, while target labels are provided by the teacher
network.

3) The study of large systems in the thermodynamic limit allows to describe
systems in terms of relatively few macroscopic quantities or order parameters.

4) The outcome of stochastic training processes is interpreted as a formal ther-
mal equilibrium, in which thermal averages can be considered.
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5) An additional disorder average over a randomly generated set of training
data is performed in order to obtain typical results independent of the actual
training set.

The following sections illustrate the above points in the context of learn-
ing a linearly separable rule [20–22], before two concrete example scenarios are
analysed in Sect. 2.6.

2.1 Learning a Linearly Separable Rule: Student and Teacher

We consider the supervised learning of a linearly separable classification of N -
dimensional data. In our model, the target rule is defined through a teacher
perceptron with fixed weight vectors w∗ ∈ R

N and output

S∗(ξ) = sign [w∗ · ξ] = ±1 for any ξ ∈ R
N. (1)

Here, the feature vector ξ represents N numerical inputs to the system and S∗

corresponds to the correct output. The teacher weight vector parametrizes an
(N − 1)-dim. hyperplane which separates positive from negative responses.

We note that the norm |w∗| of the weights is irrelevant for the perceptron
response (1). Throughout the following, we therefore consider normalized teacher
weights with w∗ · w∗ = N.

In the learning scenario, information about the rule is only available in the
form of a data set which comprises P examples:

D = {ξμ, S∗(ξμ)}μ=1,2,...,P . (2)

Here we assume that the labels S∗μ = S∗(ξμ) provided in D are reliable and
represent the rule (1) faithfully. We refrain from considering corruption by dif-
ferent forms of noise, for simplicity, and refer the reader to the literature for the
corresponding extensions of the analysis [20,21].

A second simple perceptron serves as the student network in our model. Its
adaptive weights w ∈ RN parameterize a linearly separable function

S(ξ) = sign [w · ξ] . (3)

The weight vector w is chosen in a data-driven training process which is based
on the available data D and corresponds to the student hypothesis about the
unknown target. As a consequence of the invariance

sign [ (λw) · ξ] = sign[w · ξ] for arbitrary λ > 0

we will also consider normalized student weights with w ·w = N in the following.

2.2 The Density of Input Data

In realistic learning situations it is expected that the density of input features
is correlated with the actual task to a certain extent. In real world classifica-
tion problems, for instance, one would expect a more or less pronounced cluster
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structure which reflects the class memberships already. Clustered or more gen-
erally structured input densities have been considered in the statistical physics
literature, see [26] for a recent discussion and further references. Here, however,
we follow the most frequent approach and resort to the simplifying assumption
of an isotropic input density which generates input vectors independently. In
a sense, this constitutes a worst case in which the only information about the
target rule is contained in the assigned training labels S∗(ξ), while no gap or
region of low density in feature space marks the class boundaries.

Specifically, we assume that components of example vectors ξμ in D consist
of independent, identically distributed (i.i.d.) random quantities with means and
covariances 〈

ξμ
j

〉
= 0,

〈
ξμ
j ξν

k

〉
= δμν δjk (4)

with the Kronecker symbol δmn =1 if m �=n and δmm =0.

2.3 Generalization Error and the Perceptron Order Parameter

The performance of a given weight vector w in the student teacher model can
be evaluated with respect to a test input ξ /∈ D. If we assume that the test input
follows the same statistics as the training examples, i.e.

〈ξj〉 = 0, 〈ξjξk〉 = δjk, (5)

we can define the so-called generalization error as the expectation value

εg(w,w∗) = 〈ε (S(ξ, S∗(ξ))〉 where ε(S, S∗) =
{

1 if S �= S∗

0 else, (6)

serves as a binary error measure. Hence, the generalization error quantifies the
probability for disagreement between student and teacher for a random input
vector. It is instructive to work out εg explicitly under the assumption of i.i.d.
inputs. To this end, we consider the arguments of the threshold function in
student and teacher perceptron:

x = w · ξ/
√

N and x∗ = w∗ · ξ/
√

N.

Assuming that the random input vector ξ satisfies Eq. (5), x and x∗ corre-
spond to sums of N random quantities. By means of the Central Limit Theorem
(CLT) there density is given by a two-dim. Gaussian, which is fully specified by
first and second moments. These can be obtained immediately as

〈x〉 = 〈x∗〉 = 0,
〈
x2

〉
=

1
N

∑

i,j

wi wj 〈ξiξj〉 =
w2

N
= 1,

〈
(x∗)2

〉
=

(w∗)2

N
= 1

and 〈xx∗〉 =
1
N

∑

i,j

wi w∗
j 〈ξiξj〉 =

w · w∗

N
≡ R, (7)

where we have exploited the normalization of weight vectors. The covariance
〈xx∗〉 is given by the scalar product of student and teacher weights. The moments
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(7) fully specify the two-dimensional normal density P (x, x∗) and we obtain the
generalization error as the probability of observing xx∗ < 0:

εg(w,w∗) =
[∫ 0

−∞

∫ ∞

0

+
∫ ∞

0

∫ 0

−∞

]
P (x, x∗)dxdx∗ =

1
π

arccos(R). (8)

This result can be obtained immediately by an intuitive argument: The probabil-
ity for a random vector ξ to fall into the hypersegments between the hyperplanes
defined by w and w∗ is directly given by ∠ (w,w∗) /π which corresponds to the
right hand side of Eq. (8).

In the following, the overlap R = w ·w∗/N plays the role of an order param-
eter. This macroscopic quantity summarizes essential properties of the N micro-
scopic degrees of freedom, i.e. the adaptive student weights wj . It is also the
central quantity in the following analysis of the training outcome.

2.4 Training as a Stochastic Process and Thermal Equilibrium

The outcome of any practical training process will clearly depend on the actual
choice of an algorithm and its parameters that is used to infer a suitable weight
vector w from a given data set D. Generically, the training process is guided by a
cost function, such as the quadratic deviation of the student output from the tar-
get in regression systems or the number of incorrect responses in a classification
problem.

Frequently, gradient based methods can be used for the optimization of con-
tinuous weights w ∈ R

N , often incorporating some form of noise as in the popular
stochastic gradient descent. The search for optimal weights in a discrete space
with, e.g., w ∈ {−1,+1}N could be performed by means of a Metropolis Monte
Carlo method, as an example.

The degree to which the system is forced to approach the actual minimum of
the cost function is controlled implicitly or explicitly in the training algorithm.
Example control parameters are the learning rate in gradient descent or the
temperature parameter in Metropolis like schemes. In the statistical physics
approach to learning, this concept is taken into account by considering a formal
thermal equilibrium situation as outlined below.

In the context of the perceptron student teacher scenario we consider a cost
function of the form

H(w) =
P∑

μ=1

ε(Sμ, S∗μ) with Sμ = sign[w · ξμ], S∗μ = sign[w∗ · ξμ]. (9)

With the binary error measure of Eq. (6), the cost function represents the number
of disagreements between student and teacher for a given data set.

Without referring to a particular training prescription we can describe the
outcome of suitable stochastic procedures in terms of a Gibbs-Boltzmann density
of weight vectors

Peq(w) =
e−βH(w)

Z
with Z =

∫
dμ(w) e−βH(w). (10)
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It describes a canonical ensemble of trained networks in thermal equilibrium at
formal inverse temperature β = 1/T . The cost function E(w) plays the role of
the energy of state w and the normalization Z is known as the partition function.
The measure dμ(w) is implicitly understood to incorporate restrictions of the
N -dimensional integration such as the normalization w2 = N . Similarly, Z can
be written as a sum over all possible weight configurations for systems with
w ∈ {−1,+1}N .

In the limit β → ∞, T → 0, only the groundstate with minimal energy can be
observed in the ensemble, as any other state will have an exponentially smaller
Peq. On the contrary, for β → 0, T → ∞, the energy becomes irrelevant and
every state Peq can occur with the same probability. In general, the parameter
β controls the mean energy of the system which can be written as a thermal
average of the form

〈H〉β =
∫

dμ(w)H(w)
e−βH(w)

Z
= − ∂

∂β
ln Z. (11)

Quite generally, thermal averages can be written as appropriate derivatives of
the so-called free energy F = − 1

β ln Z, which is also in the center of the following
analysis. Introducing the microcanonical entropy S(E) we can rewrite

Z =
∫

dE e−βE+S(E) where S(E) = ln
∫

dμ(w) δ[H(w) − E] (12)

with the Dirac delta-function δ[. . .]. For large systems in the thermodynamic
limit N → ∞ we assume that entropy and energy are extensive, i.e. that S = N s
and E = N e with e, s = O(1). A saddle-point integration yields

lim
N→∞

(− ln Z/N) = βF/N = β e − s(e) (13)

where the right hand side βF/N has to be evaluated in its minimum with respect
to e for a given β.

2.5 Disorder Average and High-Temperature Limit

The consideration of a formal thermal equilibrium in the previous section refers
to a particular data set D, since the energy function H(w) is defined with respect
to the given example data. In order to obtain typical results independent of
the particularities of a specific data set, an additional average over randomly
generated D has to be performed.

In the simplest case, we consider data sets which comprise P independent
vectors ξμ with i.i.d. components that obey (4). Hence the corresponding density
factorizes over examples μ = 1, 2, . . . P and components j = 1, 2, . . . N of the
feature vectors in D.

The randomness in D can be interpreted as an external disorder which deter-
mines the actual energy function H(w) and the corresponding thermal equilib-
rium. In addition to the thermal average discussed in the previous section, the
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associated quenched average is denoted as 〈. . .〉D. Quantities of interest have to
be studied in terms of appropriate averages of the form 〈〈. . .〉β〉D which can be
derived from the quenched free energy

〈F 〉
D

= − 〈ln Z〉
D

/
β.

The computation of 〈ln Z〉
D

is, in general, quite involved and requires the appli-
cation of sophisticated methods such as the replica trick [1,15,20–22].

We refrain from discussing the conceptual difficulties and mathematical sub-
tleties of the replica approach. Instead we resort to a very much simplifying limit,
which has been presented and discussed in [22]. In the extreme setting of learning
at high formal temperature with β → 0, the so-called annealed approximation

〈ln Z〉
D

≈ ln 〈Z〉
D

becomes exact and can be exploited to obtain the typical training outcome [20–
22]. Note that in this limit also

〈Z〉
D

=
〈∫

dμ(w)e−βH(w)

〉

D

=
∫

dμ(w)e−β〈H(w)〉D with

〈H(w)〉D =
P∑

μ=1

〈
ε(Sμ, S∗μ)

〉

D

= P εg.〉D. (14)

Here we make use of the fact that the i.i.d. random examples in D contribute
the same average error which is given by εg. It is expressed as a function of the
order parameter R in Eq. (8). We can now perform a saddle point integration in
analogy to Eqs. (12, 13) to obtain

lim
N→∞

(− ln〈Z〉D/N) = β〈F 〉D/N =
βP

N
εg(R) − s(R). (15)

Again, the right hand side has to be evaluated in its minimum, now with respect
to the characteristic order parameter R of the system. The entropy term

s(R) =
1
N

ln
∫

dμ(w)δ[w · w∗ − NR] (16)

can be obtained analytically by an additional saddle point integration making use
of the integral representation of the δ-function [1,20–22]. Since s(R) depends on
potential constraints on the weight vectors as represented by dμ(w), we postpone
the computation to the following sections.

In order to obtain meaningful results from the minimization with respect to
R in Eq. (15), we have to assume that the number of examples P scales like

P = α N/β with α = O(1). (17)

Obviously, P should be proportional to the number N of adaptive weights in
the system, which is consistent with an extensive energy. In addition, P has to
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α = 1.0
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α = 3.0
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Fig. 1. The quenched free energy βf as a function of the order parameter R in the
training scenario with spherical student and teacher perceptron, cf. Sect. 2.6. From left
to right, the rescaled numbers of examples are α = 1.0, 3.0 and 5.0, respectively.

grow like β−1 in the high temperature limit. The weak role of the energy in
this limit has to be compensated for by an increased number of example data.
In layman’s terms: “Almost nothing is learned from infinitely many examples”.
This also makes plausible the identification of the energy with the generalization
error. The space of possible input vectors is sampled so well that training set
performance and generalization behavior become indistinguishable.

Finally, the quenched free energy per weight, f = 〈F 〉D/N of the perceptron
model in the high temperature limit has the form

βf = α εg(R) − s(R), (18)

where α plays the role of an effective temperature parameter, which couples the
number of examples and the formal temperature of the training process. These
quantities cannot be varied independently within the simplifying limit β → 0 in
combination with P/N ∝ β−1.

2.6 Two Concrete Examples

Despite the significant simplifications and scaling assumptions, it is possible to
obtain non-trivial, interesting results also in the high temperature limit. Very
often, more sophisticated approaches, such as the replica method or the annealed
approximation for finite training temperatures, confirm the results for β → 0
qualitatively. Therefore, the simplified treatment has often been used to obtain
first, useful insights into the qualitative properties of various learning scenarios.
In this brief review, we restrict the discussion to two well-known results for
simple model situations. Both concern the training of a simple perceptron in a
student teacher scenario. Originally the models were treated in [22] and they have
been revisited in several reviews, for instance, [20,21]. We reproduce the results
here as particularly illustrative examples for the statistical physics approach to
learning.
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R

α

εg

α

Fig. 2. Typical learning curves of the perceptron with continuous weights in the student
teacher scenario, see Sect. 2.6. The left panel shows R(α), the right panel displays the
corresponding generalization error εg(α).

The Perceptron with Continuous Weights
Here we consider a student teacher scenario where the student weight vector
w ∈ R

N is normalized (w2 = N) but otherwise unrestricted.
The generalization error as a function of the student teacher overlap R is

given in Eq. (8). The corresponding entropy, Eq. (16), can be obtained by means
of a saddle point integration. Alternatively, one can interpret eNs as the volume
of an (N −1)-dimensional hypersphere in weight space with radius

√
1 − R2, see

[21] for the geometrical argument. One obtains

s(R) =
1
2

ln(1 − R2) + const., (19)

where the additive constant does not depend on R. Apart from such irrelevant
terms, we obtain the quenched free energy in the limit β → 0 as

βf = α
1
π

arccos R − 1
2

ln(1 − R2). (20)

In absence of training data, α = 0, the maximum of the entropy term in R = 0
governs the behavior of the system. In the high-dimensional feature space, the
student weight vector is expected to be orthogonal to the unknown w∗.

The free energy is displayed in Fig. 1 for three different values of α. As α
is increased, we observe that the minimum of βf is found in larger, positive
values of R, reflecting the knowledge about the rule as inferred from the set of
examples.

The student teacher overlap R(α) that corresponds to the minimum of βf is
displayed in Fig. 2 (left panel). In this simple case, it can be obtained analytically
from the necessary condition for the presence of a minimum:

∂βf

∂R
= 0 ⇒ R(α) =

α√
α2 + π2

. (21)

By means of Eq. (8) this result translates into a learning curve εg(α), which is
shown in the right panel of Fig. 2. One can show that large training sets facilitate
perfect generalization with
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βf
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α = 1.5

βf
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α = 1.8

βf

R

α = 2.2

Fig. 3. The quenched free energy βf as a function of the order parameter R in the
training scenario with Ising student and teacher perceptron, cf. Sect. 2.6. In the leftmost
panel the rescaled numbers of examples is α = 1.5 < αc, where R = 1 constitutes a
local minimum while a state with 0 < R < 1 is thermodynamically stable. In the center
panel with α = 1.8 > αc, here perfect generalization with R = 1 corresponds to the
global minimum. The rightmost panel displays βf for α = 2.2 > αd where R = 1
constitutes its only minimum.

R(α) ≈ 1 − π2

2α2
and εg(α) ≈ 1

α
for α → ∞. (22)

It is interesting to note that the basic asymptotic α-dependences are recov-
ered in the more sophisticated application of the annealed approximation or the
replica formalism [22]. Obviously, an explicit temperature dependence and the
correct prefactors cannot be obtained in the simplifying limit.

The Perceptron with Discrete Weights
As an interesting exercise we also revisit the model with discrete student weights
[22]. The term Ising perceptron has been coined for the model with weights
w ∈ {−1, 1}N [21,22]. Note that the assumed normalization w2 = N is trivially
satisfied. Moreover, the generalization error is also given by Eq. (8) since its
derivation does not depend on details of the weight space.

The corresponding entropy can be obtained by a simple counting argument:
In order to obtain an overlap

∑
j wjw

∗
j = NR, a number of N(R + 1)/2 com-

ponents must satisfy wj = w∗
j while for N(R − 1)/2 we have wj = −w∗

j . The
associated entropy of mixing is given by the familiar form

s(R) = −
(

1 + R

2

)
ln

(
1 + R

2

)
−

(
1 − R

2

)
ln

(
1 − R

2

)
. (23)

The resulting free energy (18) as a function of R is displayed in Fig. 3 for three
different values of α.

For all α > 0, βf displays a local minimum in R = 1 with f(R = 1) = 0. For
small α, however, a deeper minimum can be found with an overlap 0 < R < 1.
This is exemplified for α = 1.5 in the leftmost panel of Fig. 3. The global mininum
of βf determines the thermodynamically stable state of the system.
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R

α

εg

α

Fig. 4. Learning of the Ising perceptron with discrete weights in the student teacher sce-
nario, see Sect. 2.6. The left panel shows R(α), the right panel displays the correspond-
ing generalization error εg(α). States corresponding to local minima of βf are marked
by dashed lines, while solid lines mark the thermodynamically stable global minima.
Vertical dotted and solid lines correspond to the critical αc ≈ 1.69 and αd ≈ 2.08,
respectively.

For training sets with α larger than a critical value αc ≈ 1.69, the state with
R = 1 constitutes the global minimum. A competing configuration with R < 1
persists as a local minimum, but becomes unstable for α > αd ≈ 2.08, see the
center and rightmost panel of Fig. 3.

The learning curves R(α) and εg(α) reflect the specific α-dependence of βf
in terms of a discontinuous phase transition. In Fig. 4, the solid lines mark the
thermodynamically stable state in terms of R(α) (left panel) and εg(α) (right
panel). Dashed lines correspond to local minima of βf and the characteristic
values αc and αd are marked by the dotted and solid vertical lines, respectively.

The essential findings of the high temperature treatment do carry over to
the training at lower formal temperatures, qualitatively [21,22]. Most notably,
the system displays a freezing transition to perfect generalization. Furthermore,
the first order phase transition scenario will have non-trivial effects in practical
training. The existence of metastable, poorly generalizing states can delay the
success of training significantly. Related hysteresis effects with varying α have
been observed in Monte Carlo simulations of the training process, see [21] and
references therein.

3 Summary and Conclusion

This brief review merely discusses one goal of the statistical physics of learning:
the computation of typical learning curves in clear-cut model scenarios. This
type of results provide basic insight into relevant mechanisms and phenomena
which play a role in practical machine learning setups as well. The framework
provides a workshop in which to analyse, put forward and optimize training
algorithms. Moreover it offers the possibility to systematically compare different
adaptive systems, network architectures etc.

The classical examples discussed in this short tutorial concern merely the
simplest models, i.e. the learning of a linearly separable rule with a percetpron
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network. The presentation is furthermore restricted to the particularly simplify-
ing limit of training at high temperature.

In the literature, numerous studies of more complex adaptive systems, such
as layered neural networks or support vector machines can be found. Similarly,
models of unsupervised learning and related problems of data analysis and infer-
ence have been analysed. Among the many interesting extensions, we mention
only the study of symmetry breaking phase transitions in feedforward layered
neural networks.

The analysis of more realistic training at low formal temperatures requires
a much more involved mathematical treatment. A thorough discussion thereof
would be clearly beyond the scope of this brief introduction to the field. Indeed,
the theory of learning has had a very fruitful impact on the development and
understanding of sophisticated methods for the analysis of disordered systems
in general.

Apart from the equilibrium approach discussed here, statistical physics also
provides the tools to analyse non-equilibrium situations. This has helped to study
the dynamics of learning in a very similar fashion. The resulting insights directly
link to popular practical training prescriptions such as the popular stochastic
gradient descent.

Recently, the statistical physics of learning is being rediscovered and has
gained popularity again in the context of deep learning. A better theoretical
understanding of this successful machine learning framework is highly desirable.
Currently, many researchers revisit the statistical physics perspective to learning,
aiming a fundamental insights into design and performance of, for instance, deep
layered networks. A brief discussion of recent developments, challenges and open
questions, as well as further references can be found in [32].

The author is convinced that the revival of the area will contribute signif-
icantly to the further development of machine learning and data analysis in
general.
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Abstract. In the last decade, Sentiment Analysis and Affective Com-
puting have found applications in different domains. In particular, the
interest of extracting emotions in healthcare is demonstrated by the vari-
ous applications which encompass patient monitoring and adverse events
prediction. Thanks to the availability of large datasets, most of which are
extracted from social media platforms, several techniques for extracting
emotion and opinion from different modalities have been proposed, using
both unimodal and multimodal approaches. After introducing the basic
concepts related to emotion theories, mainly borrowed from social sci-
ences, the present work reviews three basic modalities used in emotion
recognition, i.e. textual, audio and video, presenting for each of these
i) some basic methodologies, ii) some among the widely used datasets
for the training of supervised algorithms and iii) briefly discussing some
deep Learning architectures. Furthermore, the paper outlines the chal-
lenges and existing resources to perform a multimodal emotion recog-
nition which may improve performances by combining at least two uni-
modal approaches. architecture to perform multimodal emotion recogni-
tion.

Keywords: Sentiment analysis · Affective computing · Text mining ·
Data mining · Neuroscience · Hardware accelerators

1 Introduction

Affect is a term widely used in psychology to describe the psychophysiological
response to stimuli, as for example emotions, while the word sentiment refers to
a more organized and highly socialized feeling, which can be summarized with
the expression “an opinion colored by emotion” [1].

Several are the studies showing how affective phenomena may influence dif-
ferent human cognitive processes such as the mechanisms of attention and infor-
mation processing, as well as the processes of judgment and decision making [2]
and communication. On the other hand, it is well known how many pathological
conditions, as for example mood disorders, are characterized by a distorted and
inconsistent emotional state [3,4].
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In humans the ability to be aware, to express and to recognize their own
and other’s emotions through communicative processes is more developed than
in other animals. This outstanding capacity reflects the additional hierarchical
levels of processing. Levels that allow learning, inference and simulation [5] and
which may constitute a crucial aspect in emulating human intelligence [6]. The
development of computational models capable of mimic the natural ability to
identify emotional states from speech, facial expressions and written messages is
a challenging topic which is gaining particular interest in recent years. The main
areas for the computational study related to the recognition of emotions are
Affective Computing and Sentiment Analysis. Historically, Affective Computing
relates to the area of Artificial Intelligence (AI) that aims at the development of
systems capable of recognizing, interpreting and simulating emotions understood
in the meaning of affect, and therefore the detection of affective human states is
more focused on different biosignals, while Sentiment Analysis aims at extracting
opinions and emotions in the sense of sentiment, and was mainly focused on
textual sources.

As a result of the popularity of social platforms, the availability of heteroge-
neous content related to opinions and emotions is increasingly growing, offering
the possibility to collect and merge the multimodal information for knowledge
extraction. Since communication among human is a mix of verbal and nonverbal
content, a system able to measure the emotional state of a person would take
advantage from a multimodal approach. For this reason, lately different efforts
in performing multimodal emotion recognition have been made.

Even though significant AI advancements, the topic continues to pose numer-
ous open challenges both in the field of research and in large industrial sectors,
due to the significant impact on marketing strategies [7], recommender systems
[8] and, recently, also in the medical and psychological field for the development
of diagnostic and therapeutic clinical decision support systems [9,10].

The present work aims to provide a general overview of the technologies and
methodologies involved in recognition of emotional states and to give an insight
into the opportunity and challenges for developing an emotion recognition system
that merges different modalities. The paper is organized as follows: in Sect. 2 the
fundamental and most accepted approaches for the scientific study of emotions
in psychological, cognitive and social science are presented. Section 3 is devoted
to discuss the basic unimodal approaches used in emotion recognition, and also
to present some existing datasets and used tools. Section 4 discusses the use of
Deep Learning (DL) in emotion recognition. In Sect. 5 the opportunities and
challenges which arises in developing a multimodal emotion recognition system
are outlined. Finally, Sect. 6 concludes the paper.

2 Emotion Theories

The difficulty of defining emotions in scientific terms is a well-known problem in
the history of psychology. Currently, there is no scientific consensus on the defini-
tion of emotion, but there are several heuristic theories which can be grouped into



Emotion Mining: from Unimodal to Multimodal Approaches 145

two different viewpoints: the “basic emotions” and the “appraisal” approaches[2].
Despite the variability of the emotional responses, which may be linked to sub-
jective, cognitive and cultural differences, basic emotions models presuppose the
existence of universal and easily recognizable psychophysiological states.

The main assumption underlying the basic emotions approach [11,12], is that
emotions belonging to the same class may vary in intensity or other dimensions,
but share not only comparable causes and stimuli of responses but also have a
biological analogy, as for example similar behavioral patterns, bodily activations
and facial expressions. This strands tends to identify this set of similar emo-
tions with the most prototypical one (for example “joy” contains “happiness”,
“enjoyment”, “pleasure”, “joyfulness”, “ecstasy”, “thrill” etc.) [13].

On the other hand, appraisal approaches [14–16] assume that emotions are
triggered by a physiological response which, unlike the basic emotions approach,
derives from an interpretation of the specific situation through personal criteria
[13]. With respect to the identification and classification of emotions, there is a
tendency to differentiate between discrete and dimensional theories of emotions.
A short description of these models will be given below.

2.1 Discrete Theories of Emotions

The models of discrete emotions are generally the most used in the field of Affec-
tive Computing, especially as regards the recognition of emotions from facial
expressions. Numerous models of discrete basic human emotions exist, differ-
ing among each other in the number and the type of identified emotions. Some
widespread criteria to identify basic emotions from non-basic ones are: 1) a uni-
versally recognizable facial expression, 2) a rapid spontaneous and automatic
recognition, 3) a unique feeling [11]. To date, the most accredited models of
discrete emotions in the scientific community refer to the theories of Arnold,
Ekman, Izard, Oatley and Johnson-Laird, Plutchik and Tomkins. Table 1 sum-
marizes the list of basic emotions for each of these theories.

Table 1. Emotions definitions.

Categorical emotion theory Identified emotions

Arnold [17] Anger, aversion, courage, dejection, desire,
despair, fear, hate, hope, love, sadness

Ekman [11] Anger, disgust, fear, joy, sadness, surprise

Izard [12] Anger, contempt, disgust, distress, fear, guilt,
interest, joy, shame, surprise

Oatley and Johnson-Laird [18] Anger, disgust, anxiety, happiness, sadness

Plutchik [19] Acceptance, anger, anticipation, disgust, joy,
fear, sadness, surprise

Tomkins [20] Anger, interest, contempt, disgust, distress, fear,
joy, shame, surprise
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Among the theories summarized in the Table 1, the one proposed by Oatley
and Johnson-Laird [18] has the difference that the existence of basic emotions
not only has biological foundations but also a semantic component. The authors
address basic emotions as “semantic primitives”, which means that humans know
they are feeling a particular emotion X but they don’t know how to define it.

In [21], an interesting work related to the evaluation of emotion theories for
computational purposes is carried out. In particular, starting from a corpus of
over 21,000 tweets, six basic emotions theories were analyzed through an iterative
clustering algorithm based on a variant of Latent Semantic Analysis to discern
which one has the most semantically distinct set of emotions. Results showed
that Ekman’s model, which is the most popular in Affective Computing, is the
one in which emotions are more semantically distinct. Then, Bann et al. [21] also
considered 21 emotions given by joining all the six different models and extracted
the optimal semantically separated basic emotion set which was proposed as a
new model of basic emotions consisting of eight emotions: Accepting, Ashamed,
Contempt, Interested, Joyful, Pleased, Sleepy, Stressed.

2.2 Dimensional Emotional Models

Although the most accredited paradigm in the field of neuroscience research states
that emotions can be divided into discrete and independent categories, numerous
dimensional models were proposed in the literature. In dimensional theories take
as and assumption that all the affective states derive from common neurophysio-
logical systems. Consequently, every emotion can be expressed as a combination
of these systems, also addressed as dimensions. Only a few are the dimensional
theories widely accepted by the scientific community, described below.

The complex model of emotions of Russell [22] is one of the first and most
well-known dimensional models. The complex model identifies two independent
dimensions: valence and arousal, represented as the two dimensions of a plane in
which 28 emotions are mapped in a circle. The arousal-nonaraousal scale mea-
sures the intensity of emotion and constitutes the vertical axis of the represen-
tation system. The points belonging to the upper semicircle are characterized
by high arousal, while the points belonging to the inferior semicircumference
are characterized by low arousal. Valence is measured by a pleasure-displeasure
scale, which measures the pleasure of an emotion. On the left semicircumfer-
ence, unpleasant emotions are represented, while on the right semi-circumference
pleasant emotions are shown [19].

Furthermore there are hybrid models, for example the Plutchik model is an
example of a model that merges the categorical and dimensional approaches. In
fact the Plutchik basic emotions represented in Table 1 only refer to the primary
Plutchik’s emotions. In fact, in his model, named “Wheel of emotions”, affective
states are represented in a structural and circocentric way. The proximity to
the center represents a greater intensity, while the eight dimensions identified
are visually represented as eight sectors inscribed in the circocentric structure
and arranged as four pairs of opposites: Joy-Sadness, Fear-Anger, Anticipation-
Surprise, Disgust-Trust.
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3 Basic Unimodal Emotion Recognition Approaches

The focus of this Section is to present the three most used modalities for the
recognition of emotions: text, images and audio. For each of the modality, the
main tasks, the existing approaches, the available datasets and the function-
alities of some existing tools in the literature will be presented. We term those
methods as “unimodal” because each one uses only a type of input data to detect
emotions.

3.1 Emotion Recognition from Textual Sources

As stated in Sect. 1, in general extracting opinions and emotions from textual
content refers to the area known as Sentiment Analysis which may be seen as
the intersection of statistical methods, Machine Learning, Information Retrieval
and Natural Language Processing.

In the foundational works of Liu, a computational definition of emotion end
sentiment is presented [23] and to date it is widely accepted among the Sentiment
Analysis research community.

According to his definition, an opinion is a quintuple (entity, entity’s feature,
sentiment, opinion holder, time) and the most basic Sentiment Analysis task is
polarity detection, whose main goal is to detect whether a text unit contains a
positive, negative, or neutral opinion, and/or also considering a “valence” score,
indicating how strongly T is positive or negative. Valence scores can be expressed
as a nominal (strong negative, weak negative, weak positive, strong positive), or
as a continuous variable, frequently belonging to a specific range (for example
[−1, 1]). Similarly, an emotion can be seen as a quintuple in which sentiment is
replaced with an emotion type. More in details, a categorical emotion type may
be expressed as the couple (emotion class, emotion intensity), where:

• the emotion class indicates the class to which the specific emotion belongs
w.r.t. a given system of basic emotions representation;

• the emotion intensity represents a “valence” score, indicating how strongly
the emotion is expressed in the given text unit.

When considering a discrete theory of emotions, a basic emotion detection
task in SA can be seen as the multiclass classification problem that, given an
input text T and a list E = [E1, · · · , Ek] of basic emotions classes, aims at
detecting whether the text T contains one emotion Ei for i = 1 · · · k and, even-
tually extracting the respective valence score vi. However, as will be shown in the
following Subsection, existing annotated emotion datasets do not contain only
basic emotions and therefore the classification problem usually is designed as a
multiclass and multilabel problem. If instead a dimensional theory of emotions is
taken into account, a basic emotion detection task may be seen as the regression
problem of assigning valence or arousal values to a text T , on the basis of its
content.
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A SA process generally follows a standard Text Mining process. Input data
are extracted from social media, or other sources converted in plain text for-
mat and pre-processed. Pre-processing methods include standard NLP and
text mining techniques such as stemming, tokenization, part of speech tagging,
entity extraction and relation extraction. For an online text, specific data pre-
processing methods include cleaning, like removing URLs, HTML tags, abbrevi-
ation expansion, emoji, and repeated characters handling. The intermediate step
of a Sentiment Analysis process is represented by the analysis module that can
follow three types of approaches, that is, supervised, unsupervised and hybrid
approach and it is based on three possible levels of analysis, i.e., document-based,
sentence-based and aspect-based [24–26].

In lexicon based approaches, the starting point is a set of words in which
for every term a given emotion or relative polarity is associated, with or with-
out a score. This set of words can be manually expanded through the use of
synonyms or antonyms following a dictionary-based approach. A major issue
of lexicon based approaches is to not take into account the specific application
domain, with a resulting low text-contextualization capability. Also statistical
and semantic methods have been used to enrich the set of annotated words, fol-
lowing a so called corpus-based approach. Despite having the advantage that the
performance does not depend on the size of the dataset, as in machine learning
approaches, a significant drawback in lexicon-based approach is that it is not
suitable for the rapid change to which the language of the web is subject. To
exploit the advantages of the two previous approaches, hybrid methodologies
that combine machine learning techniques with lexicon-based approaches have
been developed.

3.1.1 Available Textual Datasets
To identify the polarity/emotions of an input text, supervised methods need a
set of annotated data on which the model is trained. One of the challenges in
sentiment analysis is that polarity and emotions expressed in the text strongly
depend on used language, context and domain.

Most of the datasets used within the SA are manually annotated. One of the
problems related to manual annotation is that the human evaluation of “senti-
ment” is strongly conditioned by personal experiences, thoughts and beliefs. It
is estimated that different people who read a text agree on the generic “senti-
ment” contained in it only in the 60–65% of cases on average. It is therefore clear
how difficult it might be to obtain high quality datasets, reaching high values of
“inter-annotation agreement” levels, especially in the case of recognition of emo-
tions. However, the classification of polarity is the textual categorization task
that currently holds the largest number of well-noted datasets. For this reason,
in this section most of the datasets reported are mainly annotated to perform
polarity detection. Few are the datasets that can be used as a benchmark for
the evaluation of the performance of the classification algorithms.
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• IMDb is a dataset of movie reviews collected from “Internet Movie Database”
(IMDb). There are several versions of the dataset that have been collected
and annotated. The most used versions are those noted at the document level.
In particular, in the version of Pang and Lee [27], known as “Movie Review
Dataset”, there are 2000 reviews, 1000 categorized as positive and 1000 as
negative. A second dataset (called “IMDb dataset”) was annotated by Maas
et al. [28] and consists of 50,000 movie reviews. Positive polarity is associated
with the text of the review if the movie has been evaluated with more than
six stars and negative polarity otherwise.

• Stanford Twitter Sentiment (STS), also known as Sentiment 1401, is an anno-
tated dataset introduced by Go et al. [29]. The training set contains 1.6 million
tweets containing emoticons. The annotation was performed automatically by
assigning a positive label to the tweet containing positive emoticons :), :-),:),:
D, or =) and negative if it contains negative emoticons :(, :-(, o: (. However,
since the emoticons may not reflect the actual sentiment of the tweet, the
dataset has been extensively used for subjectivity classification tasks as well
as a dataset for sentiment analysis.

• Sentiment Strength Twitter Dataset (SS-Tweet). Proposed by Thelwall et al.
[30] for the evaluation of the SentiStrength tool , the dataset contains 4242
manually recorded tweets. Unlike the datasets described so far, the annotation
is ordinal, in a range −5 (extremely negative) to 5 (extremely positive).

• SemEval Datasets: SemEval (Semantic Evaluation) is a series of computa-
tional competitions of semantic analysis systems taking place annually. The
sentiment analysis task was introduced for the first time in SemEval-2013.
The dataset has been annotated with the use of Amazon Mechanical Turk2,
for a total of 15196 tweets annotated for SA task at document and aspect
level. The datasets from SemEval-2014 to SemEval-2016 are extensions of
SemEval2013. In SemEval2016 the dataset has been extended to include other
tasks, such as the quantification of tweets with the aim of estimating the dis-
tribution of tweets between classes compared to individual tweets. Finally,
the SemEval-2017 and SemEval-2018 competitions were more focused on the
categorization of affect in the Tweets. They are emotional datasets, scoring
for a single emotion, rating for a single emotion, classification among 9 emo-
tions and in addition the neutral class, scoring and valence rating (agreement
of terms of positive or negative sentiment) [31].

3.2 Affective Computing Methodologies

A generic Affective Computing process starts with one or more biosignal acquisi-
tion. Typically these include measures related to physical aspects and physiolog-
ical signals. Only the first category, whose standard modalities are facial or body
expressions (such as gestures and movements) and speech will be discussed.

After this first step, a pre-processing of these signals is needed to remove or
decrease the noise, that can be given, for example, by artifacts and, consequently,
1 http://help.sentiment140.com/for-students.
2 http://mturk.com.

http://help.sentiment140.com/for-students
http://mturk.com
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increase the Ratio between Signal and Noise (SNR). Other pre-processing tasks
are filtering and segmentation, concerning events or stimuli. A feature selection
task can be applied to perform the analysis only on a reduced feature set.

Depending on the type of analysis to be performed, different features can be
considered, for example, time (e.g., statistical analysis), frequency (e.g., Fourier
analysis), time-frequency (e.g., wavelets), or power domain (e.g., periodogram
and autoregression).

3.3 Emotion Recognition from Facial Expression

The foundational study in [32] reported that the 55% of the communication is
visual. Therefore, expressions and body gestures are considered the most obvious
and significant channels to infer affect. Ekman’s theory of basic emotion [11] is
the dominant emotion theory to classify facial expressions.

Each of the basic emotions is characterized by a series of muscular move-
ments, formalized by what is called the Facial Action Coding System (FACS)
and reported in Table 2. The Facial Action Code System (FACS) was published
by Paul Ekman and Wallace Friesen in 1978 and, subsequently, updated in 1992
and again in 2002 [33]. The FACS was widely used for experiments on the recog-
nition of emotions by the computer, from human facial expressions. This sys-
tem objectively measures the frequency and intensity of facial expressions and
deduces what is called an action unit (AU).

In order to provide a specific index for each type of movement and expres-
sion, the FACS takes into consideration 44 fundamental units named by Ekman
and Friesen “Action Units AU” which can give rise to more than 7000 possible
combinations. The total number of classified movements or characteristics is 58,
some of which are typically associated with a specific emotion, while others are
not associated with any other specific emotion.

Table 2. Description of facial expressions in relation to the six Ekman’s basic emotions
theory.

Emotion Description of facial expression

Disgust Curled nose, raised cheeks, raised upper lip, upper eyelid and lowered
eyebrows, raised lower eyelid

Anger Lowered eyebrows tending to join in the center, tensions in the upper and
lower eyelids, pressed lips

Joy Wrinkles around the eyes, upper lower eyelids and raised cheeks, corners
of the mouth stretched upwards

Sadness Inner angles of the raised eyebrows, inner angles of the upper eyelids
raised, corners of the mouth downwards

Surprise Eyebrows raised and bent upwards, eyes wide open, mouth open

Fear Raised eyebrows that tend to unite, upper eyelid raised, lower eyelid
stretched, mouth open and lips stretched outward
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Some of the most important techniques for facial expression recognition are
briefly described below:

• Active Appearance Models (AAM) [34]: they are well-known algorithms for
modeling deformable objects. The models decouple the shape and texture of
objects, using a gradient-based model adaptation approach. The most pop-
ular applications of AAM include recognition, tracking, segmentation and
synthesis.

• Active Shape Models (ASM) [35]: these are statistical models that adapt to
the data or object of an image in a manner consistent with the training data
provided. These models are mainly used to improve the automatic analysis
of images in noisy or messy environments.

• Muscle-based models [36]: these are models that consist of characteristic facial
points corresponding to the facial muscles, for detecting the movement of
facial components, such as the eyebrows, the eyes and the mouth, thus rec-
ognizing facial expressions.

• Constrained local 3D model (CLM-Z) [37] is a non-rigid face tracking model
used to trace facial features in various poses, including both depth and inten-
sity information. Non-rigid face tracking refers to points of interest in an
image, such as the tip of the nose, the corners of the eyes and lips. The CLM-
Z model can be described by the parameters p = [s, R, q, t], where s is a scale
factor, R is the rotation of the object, t represents the 2D translation and q
is the vector that describes the non-rigid variation of the q.

• GAVAM (Generalized Adaptive View-Based Appearance Model) [38] is a
probabilistic structure that combines dynamic or movement-based approaches
to track the position and orientation of the head through video sequences and
employs user-independent static approaches to detect the head position from
an image. GAVAM is considered a real-time high-precision, user-independent
algorithm for tracking the position of the head in real time.

3.4 Emotion Recognition from Speech

The analysis of expressive language consists in examining the paralinguistic char-
acteristics, that is, the aspects of verbal and non-verbal communication, such as
the tone of the voice and its intensity. The analysis can be conducted from differ-
ent points of view, including signal processing, linguistics, psychoacoustics and
speech recognition.

A first type of analysis is based on the construction of voice production
models that try to model speech (speech) considering the breathing mechanisms
and the structure of the phonatory apparatus (primarily vocal cords, mouth and
nose). A second approach involves the study of speech from the point of view
of perception that analyzes how speech is perceived and processed by the ear
and the brain. The first approach, specifically, seeks to model the production of
the item using mathematical models of the vocal tract. For the formulation of
mathematical models, the vocal tract is studied by analyzing images of the vocal
part obtained by ultrasonography, digital radiography and magnetic resonance.
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Variations in the breathing pattern, specific vocal cord shape factors can
determine variations in prosodic parameters, such as duration, intensity, funda-
mental frequency and spectral content of speech. Specifically, the fundamental
frequency is the vibration speed of the vocal cords and depends on the size and
tension of the vocal cords at a given instant of time. It can change in relation to
stress, emotion and level of intonation.

In [39] and [40] the most relevant features for the recognition of emotions like
the pitch contour, the energy of speech signals, and features related to spectral
content are described. At the linguistic level, the analysis for the recognition of
emotions involves the identification of the intonation of sentences, analysis of
effort and accent in the pronunciation of words and sentences.

3.4.1 Existing Databases of Emotional Speech

• EMODB3: The Berlin Database of Emotional Speech (EMODB) is a public
German speech database that incorporates audio files with seven emotions:
happiness, sadness, anger, fear, disgust, boredom, and neutral [41].

• SAVEE4: The Surrey Audio-Visual Expressed Emotion (SAVEE) is a public
British English speech database that has audio files with seven emotion labels:
happiness, sadness, anger, fear, disgust, surprise, and neutral [42].

• EMOVO5: is a public Italian speech database that includes audio files with
seven emotion labels: happiness, sadness, anger, fear, disgust, surprise, and
neutral [43].

4 Deep Learning Algorithms for Emotion Detection

The performance of the emotion extraction approaches presented so far is
strongly related to how data are represented. In this sense, an essential step
is feature engineering, i.e., the process that uses domain knowledge to design a
good representation of data in terms of suitable features. By taking advantage of
the large training dataset, Deep Learning Algorithm seeks to learn data repre-
sentation along with the mapping that associates each input representation to its
output. Moreover, Deep Neural Networks (DNNs) are Artificial Neural Networks
designed to have different levels of non-linear and nested operations, that have
shown to improve non-linear model tasks. The previous statements are some
of the key points explaining the popularity of Deep Neural Networks (DNNs)
and why they have increasingly been implemented also to face the problem
of emotion recognition, by achieving state-of-the-art results for a wide range of
tasks [44,45]. Several DNNs architectures have been proposed both in Sentiment
Analysis and Affective Computing, for example, Convolutional Neural Networks
(CNN) [46,47], Recurrent Neural Networks (RNNs) with or without attention
mechanism, Autoencoders [48] and also Deep Belief Networks (DBN) [48–50].
3 http://emodb.bilderbar.info/start.html.
4 http://personal.ee.surrey.ac.uk/Personal/P.Jackson/SAVEE/.
5 http://voice.fub.it/activities/corpora/emovo/index.html.

http://emodb.bilderbar.info/start.html
http://personal.ee.surrey.ac.uk/Personal/P.Jackson/SAVEE/
http://voice.fub.it/activities/corpora/emovo/index.html
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Both in Sentiment Analysis and Affective Computing, a key role is played in
capturing long-term dependencies intended for example as extracting relations
among distant words in a sentence but also as capturing temporal variations in
facial or vocal expressions. To address this problem, a particular set of RNNs
model is typically used in a practical application and are called gated recurrent
RNNs, in particular, Long Short Term Memory (LSTM) network [51]. For what
concerns textual emotion recognition, LSTMs models are the state-of-the-art
algorithm in time series predictions features, for example monitoring systems
[52]. In Face emotion recognition, Gated RNNs have been combined with CNN
to improve sequential images modelling [53].

5 Challenges and Tools for Multimodal Emotion
Recognition

Recently, the scientific community has been increasing efforts for the joint appli-
cation of Sentiment Analysis and Affective Computing techniques to create
multi-modal systems, especially for monitoring and preventing mental health.

For example, in [54], a system that combines Sentiment Analysis and Affec-
tive Computing techniques to assess a subject’s mental health is presented. In
particular, the authors proposed the use of embedded sensors in mobile devices
(such as laptops and smartphones) to trace head and eye movements, facial
expressions as well as heartbeat. Among the features useful to verify interactions
among users, the speed of typing, the number of clicks and mouse movements,
etc. were considered, starting from the assumption that a positive or negative
mood has effects on the different degrees of activity of the user. Lastly, the mon-
itoring of sentiment associated with the text, related to user posts on Twitter,
was performed using a free tool for sentiment analysis, i.e., Sentiment 140 6 and
also a prediction algorithm for images posted along with tweets was used.

The major challenges for developing an integrated system, especially in com-
bining data from integrated daily devices, can be identified in the following:

1. input data should be appropriate to the type of analysis to be made. For exam-
ple, even if smartphones allow videos with good quality, the facial expression
recognition process requires high-resolution images;

2. the choice of appropriate pre-processing, feature extraction and analysis tech-
niques to achieve good performance is mandatory;

3. the selection of the most suitable approach for integrating information
extracted from multiple sources in the system is crucial.

Concerning the last point, commonly used approaches are the following:

• Fusion at feature-level: after a first phase of pre-processing of data extracted
from different sources, all features are considered as different components of
a joined feature vector, and then classification is performed accordingly.

6 http://www.sentiment140.com/.

http://www.sentiment140.com/
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• Fusion at decision level: instead of combining features in a single vector fea-
tures as in feature-level fusion, a separate classifier for each modality is used.
The output of each classifier was treated as a classification score.

In [55], both the previous approaches were tested for integrating facial expres-
sion, speech, and textual data to build a multi-modal sentiment analysis frame-
work. The experimental results show that the accuracy of fusion at the fea-
ture level is higher than the accuracy of fusion at decision-level. Accurately, the
authors reported a precision value of 78.2% and a recall value of 77.1% for tests
relative to feature-level fusion, whereas they referred a precision value of 75.2%
and a recall value of 73.4% for decision level fusion. Another remarkable point
is that, regardless of the fusion techniques, the results show how the simulta-
neous use of video, text and audio modalities allows achieving better accuracy
than when only pairs of the three patterns are considered. Considering the app-
roach based on fusion at features level, the precision values of experiments are:
(i) 72.45% by using only visual and text-based features, (ii) 73.21% by using
visual and audio-based features and (iii) 71.15% by using audio and text-based
features.

5.1 Existing Multimodal Dataset for Emotion Recognition

• SEMAINE Database. This dataset was developed in 2007 by McKeown et
al. [56]. It is a large audiovisual database created for building agents capa-
ble of involving a person in a prolonged and emotional conversation using a
Sensitive Artificial Listener (SAL) [57] paradigm. SAL is an interaction that
involves two parts: a ‘man’ and an ‘operator’ (a machine or a person who
simulates a machine). There were 150 participants, 959 conversations, each
lasting 5 min. For the recordings, participants were asked to speak in turn to
four emotionally stereotyped characters. The characters are Prudence, which
is balanced and sensitive; Poppy, who is happy and outgoing; Spike, who is
angry and in conflict; and Obadiah, who is sad and depressive.

• Interactive emotional dyadic acquisition database (IEMOCAP). The IEMO-
CAP dataset was developed in 2008 by Busso et al. [58]. 10 actors were asked
to record their facial expressions in front of the cameras. In particular, the
dataset contains a total of 10 h of recording, each of which expresses one of
the following emotions: happiness, anger, sadness, frustration and a neutral
state.

• eNTERFACE. This dataset was developed in 2006 by Martin et al. [59] and
contains audio and video for the evaluation of algorithms for the recognition of
emotions from audio and video. The emotions labeled are: happiness, sadness,
surprise, anger, disgust and fear.

• CK++ dataset: the Cohn Kanade dataset contains facial images of 210 adults.
The participants are 18–50 years old, 81% Americans, 13% Afro Americans
and 6% of other ethnic groups; 69% females. Participants are asked to perform
23 facial expressions.
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• Belfast Database. This data set was developed in 2000 by Douglas-Cowie et al.
[57]. The database consists of audiovisual data of people discussing emotional
issues and are taken from television chat programs and religious programs.
Includes 100 speakers and 239 clips, with 1 neutral clip and 1 emotional
clip for each speaker. Two types of descriptors were provided for each clip:
dimensional and categorical, according to the different emotion approaches.

6 Conclusions

This article presented an overview of the existing approaches for extracting senti-
ment and emotion from different input modalities through the use of Sentiment
Analysis and Affective Computing techniques. In particular, audio, video and
textual data were considered and, for each input modality a pipeline of analysis,
existing datasets and tools were presented. Deep Learning approaches were also
considered and discussed. Subsequently, recent efforts and challenges to combine
these different unimodal approaches toward multimodal systems were reported.
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