

DEVOPS FOR TRUSTWORTHY

SMART IOT SYSTEMS

NICOLAS FERRY, HUI SONG

ANDREAS METZGER

AND ERKUDEN RIOS

(Editors)

Published, sold and distributed by:

now Publishers Inc.

PO Box 1024

Hanover, MA 02339

United States

Tel. +1-781-985-4510

www.nowpublishers.com

sales@nowpublishers.com

Outside North America:

now Publishers Inc.

PO Box 179

2600 AD Delft

The Netherlands

Tel. +31-6-51115274

ISBN: 978-1-68083-824-4

E-ISBN: 978-1-68083-825-1

DOI: 10.1561/9781680838251

Copyright © 2021 Nicolas Ferry, Hui Song, Andreas Metzger and Erkuden Rios

Suggested citation: Nicolas Ferry, Hui Song, Andreas Metzger and Erkuden Rios (eds.). (2021).

DevOps for Trustworthy Smart IoT Systems. Boston–Delft: Now Publishers

The work will be available online open access and governed by the Creative Commons

“Attribution-Non Commercial” License (CC BY-NC), according to https://creativecommons.org/

licenses/by-nc/4.0/

Funded by the European
Union (EU) as part of the
Horizon 2020 program

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/

Table of Contents

Foreword x

Glossary xiii

Chapter 1 Introduction 1
By Erkuden Rios, Nicolas Ferry, Hui Song and Andreas Metzger

References . 4

Chapter 2 The ENACT Approach 6
By Nicolas Ferry, Hui Song, Erkuden Rios and Andreas Metzger

2.1 ENACT Enablers to Deliver DevOps for SIS 8
2.1.1 Enablers for the Development Phase . 8
2.1.2 Enablers for the Deployment Phase . 10
2.1.3 Enablers for Operation Phase . 11
2.1.4 Focus of the Different Enablers . 13

2.2 Architecture of the ENACT Framework . 13
2.3 Improving SIS Trustworthiness . 15
2.4 Evaluation and Validation: the ENACT use Cases 17

2.4.1 The Smart Building use Case . 17
2.4.2 The Intelligent Transport System use Case . 18
2.4.3 The eHealth use Case . 19

2.5 Conclusion . 20
References . 21

iii

iv Table of Contents

Chapter 3 Privacy Issues Control in Continuous Risk
Management 23

By Victor Muntés-Mulero, Jacek Dominiak, Elena González-Vidal,
Guillaume Mockly, Yuliya Miadzvetskaya and Tommaso Crepax

3.1 Introduction . 23
3.2 Previous Work . 25

3.2.1 LINDDUN Methodology . 25
3.2.2 Automated Vulnerability Detector . 26
3.2.3 Common Weaknesses Enumeration (CWE) 26
3.2.4 Common Attack Pattern Enumeration and Classification

(CAPEC) . 26
3.2.5 GDPR Enforcement Tracker . 26

3.3 Extending Risk Rating Methodology for Privacy 27
3.3.1 Risk Appraisal and Risk Assessment . 27
3.3.2 A GDPR-friendly, OWASP-Based Privacy Risk Estimation

System . 28
3.3.3 Likelihood . 30
3.3.4 Impact . 31
3.3.5 Summing up . 36

3.4 Connecting Engineer-driven Privacy Practices with GDPR 36
3.4.1 Initial Considerations . 37
3.4.2 Linkability . 38
3.4.3 Identifiability . 40
3.4.4 Non-repudiation . 41
3.4.5 Detectability . 42
3.4.6 Disclosure of Information . 42
3.4.7 Unawareness . 43
3.4.8 Non-compliance . 43

3.5 Privacy-Related Risk Knowledge Base . 44
3.5.1 Definition of Concepts to be Stored in the Knowledge Base 44

3.6 IoT Use Cases Description . 47
3.6.1 Connected Vehicles . 47
3.6.2 Practical Implementation Aspects . 48

3.7 Risk Management Enabler Evaluation . 49
3.7.1 Analysis of the Extended OWASP Risk Rating Methodology 52
3.7.2 Connecting the use Case with GDPR . 53

3.8 Conclusions and Future Work . 55
Acknowledgements . 56
References . 56

Table of Contents v

Chapter 4 Model-based Continuous Deployment of SIS 59

By Nicolas Ferry, Hui Song, Rustem Dautov, Phu Nguyen
and Franck Chauvel

4.1 Introduction . 59
4.2 The State of the Art . 61

4.2.1 On the Deployment at the Device Layer . 61
4.2.2 On the Deployment at the Fleet Layer . 63

4.3 Overview of the ENACT Deployment Bundle 65
4.3.1 GENESIS . 66
4.3.2 DivEnact . 68

4.4 Trustworthy Deployment . 70
4.4.1 Deploying Availability Mechanisms . 70

4.4.1.1 Using built-in components on top of docker 71
4.4.1.2 Using docker swarm . 76
4.4.1.3 Limitations . 77

4.4.2 GENESIS for Continuous Deployment Supporting DevSecOps . . 78
4.4.2.1 GENESIS for the specification and deployment of

security components . 78
4.4.2.2 The DevSecOps support for the continuous

enhancement of security mechanisms 81
4.4.3 Software Diversity Within IoT Fleet . 86

4.5 Conclusions . 89
References . 90

Chapter 5 A DevOps Toolchain for Managing Actuation Conflicts
in Smart IoT Systems 94

By Gérald Rocher, Thibaut Gonnin, Franck Dechavanne,
Stéphane Lavirotte and Jean-Yves Tigli

5.1 Introduction . 94
5.1.1 SIS Actuation Challenges . 95
5.1.2 DevOps Still Lacks the Tools to Meet These Challenges 95
5.1.3 An End-to-end DevOps Toolchain . 96

5.2 Overview of the SIS Actuation Conflict Management Toolset 96
5.2.1 Beyond the State of the Art . 98
5.2.2 Actuation Conflict Management Workflow 99

5.3 Overview of the SIS Behaviour Monitoring and Analysis Toolset . 102
5.3.1 Beyond the State of the Art . 104
5.3.2 Behavioural Drift Assessment Tool . 104
5.3.3 Behavioural Drift Analysis Tool . 106

5.4 Smart Home Use-Case and Illustration . 109
5.4.1 Smart Home use Case Description . 110

vi Table of Contents

5.4.2 Software Development (Devs, Cycle 1) . 111
5.4.3 System Operations (Ops, Cycle 1) . 112
5.4.4 Software Development (Devs, Cycle 2) . 115
5.4.5 System Operations (Ops, Cycle 2) . 118

5.5 Conclusion and Future Works . 118
References . 119

Chapter 6 Online Reinforcement Learning for Self-Adaptive Smart
IoT Systems 123

By Alexander Palm, Felix Feit and Andreas Metzger
6.1 Introduction . 123
6.2 Fundamentals . 124

6.2.1 Self-adaptive Software Systems . 125
6.2.2 Reinforcement Learning . 125

6.3 OLE: Policy-based Online Reinforcement Learning 126
6.3.1 Overview of Our Approach . 126
6.3.2 Prototypical Realization . 128

6.4 Validation in the Smart Building Domain . 129
6.4.1 Experimental Setup. 129
6.4.2 Problem Formalization as MDP . 130
6.4.3 Results . 131

6.5 Explaining Adaption Decisions via Reward Decomposition 135
6.6 Synergies with Behavioural Drift Analysis . 137
6.7 Conclusion and Outlook . 138
References . 139

Chapter 7 Security of Smart IoT Systems 142

By Erkuden Rios, Eider Iturbe, Angel Rego, Saturnino Martinez,
Anne Gallon, Christophe Guionneau and Arezki Slimani

7.1 Introduction . 142
7.2 Built-in Security in IoT Platforms . 143

7.2.1 Security-by-Design in IoT Platforms . 143
7.2.1.1 Custom code of security controls in the KPs 144
7.2.1.2 Basic SecurityChecker in the core of the KPs. 146
7.2.1.3 External SecurityChecker called from the core of

the KPs . 147
7.2.2 Reaction to Cyber Incidents and Anomalies 148

7.3 Continuous Monitoring and Detection in IoT System Operation 151
7.3.1 Architecture and Main Capabilities . 152
7.3.2 Validation . 160

7.3.2.1 Smart Home System . 160
7.3.2.2 Intelligent Transport System . 161

Table of Contents vii

7.4 Context-aware Access Control . 161
7.4.1 Purpose . 161
7.4.2 Background: Industry Standards of Access Control Protocols 162
7.4.3 A Solution for a Context-aware Access Control Approach for

IoT . 164
7.4.4 Architecture . 165
7.4.5 Integrating the Context-aware Access Control Tool 167
7.4.6 Main Innovation . 170

7.5 Conclusion . 170
References . 171

Chapter 8 Validation, Verification and Root-Cause Analysis 173

By Luong Nguyen, Vinh Hoa La, Wissam Mallouli
and Edgardo Montes de Oca

8.1 Motivation . 173
8.2 Test and Simulation (TaS) . 176

8.2.1 Overview and Approach . 176
8.2.1.1 Smart IoT system components . 176
8.2.1.2 Simulating a smart information system (SIS) 177
8.2.1.3 The TaS enabler’s global approach and architecture 178

8.2.2 Simulation of a Smart IoT System . 180
8.2.2.1 The simulation of sensor . 180
8.2.2.2 The simulation of actuator . 181
8.2.2.3 The simulation of an IoT device . 183
8.2.2.4 The simulation of a network topology 183
8.2.2.5 The communication between the TaS enabler and

the system under test . 184
8.2.3 The Testing of a SIS . 184

8.2.3.1 The testing methodologies . 185
8.2.3.2 The testbeds . 188
8.2.3.3 The data recorder and digital twins concept 190
8.2.3.4 The regular and malicious data generator 190
8.2.3.5 Automatic testing . 192
8.2.3.6 The evaluation module . 194

8.2.4 Implementation . 194
8.2.4.1 The test and simulation (TaS) docker image 194
8.2.4.2 Basic APIs . 195

8.2.5 Evaluation . 195
8.2.5.1 Itelligent train system. 195
8.2.5.2 E-Health system . 195
8.2.5.3 Smart home system . 196

viii Table of Contents

8.3 Root-Cause Analysis (RCA) . 198
8.3.1 Data Collection . 199
8.3.2 Data Processing . 201

8.3.2.1 Attribute selection . 201
8.3.2.2 Data normalisation. 202
8.3.2.3 Similarity calculation . 202

8.3.3 Reaction and Visualization . 204
8.3.4 Evaluation . 204

8.3.4.1 Performance evaluation with generated testing data 204
8.3.4.2 Evaluation on a real IoT Testbed . 207

8.4 Conclusion . 211
References . 212

Chapter 9 SIS-based eHealth Application: The Tellu Use Case 214
By Arnor Solberg, Oscar Zanutto and Franck Fleurey

9.1 From Chronic to Pro-active Care . 214
9.2 e-Health and m-Health for the Digital Evolution of Services 216
9.3 H2020 ENACT Project Pilot Testing Experience 218

9.3.1 ENACT Pilot Scenarios on Smart Building and eHealth Impact . 218
9.3.2 Technical Overview of the eHealth Case Study 220

Reference . 223

Chapter 10 Intelligent Transport System: The Indra Use Case 224
By Francisco Parrilla, Sergio Jiménez Gómez, Modris Greitans
and Janis Judvaitis

10.1 Introduction . 224
10.2 Rationale . 225
10.3 Use Case Implementation . 228

10.3.1 Edge . 229
10.3.2 Gateway . 233
10.3.3 Cloud . 233

10.4 DevOps of ITS System Powered by ENACT Tools 234
10.4.1 Security Monitoring (S&P Mon&Con) . 234
10.4.2 Automatic Deployment – GeneSIS . 236
10.4.3 Testing and Simulation . 236
10.4.4 Actuation Conflict Management (ACM) . 238
10.4.5 Behavioral Drift Analysis (BDA) . 238
10.4.6 Root Cause Analysis (RCA). 239

10.5 Conclusion . 240
Reference . 240

Table of Contents ix

Chapter 11 Smart Building: The Tecnalia KUBIK Use Case 241
By Miguel Ángel Antón, Rubén Mulero, Sheila Puente, Larraitz Aranburu
and Sarah Noyé

11.1 Introduction . 241
11.2 The KUBIK Smart Building . 243
11.3 Technical Architecture . 245
11.4 KUBIK as an Experimental Platform for the ENACT Scenarios . . 252

11.4.1 Scenario 1: Thermal Comfort Control – Heating Design 252
11.4.2 Scenario 2: Thermal Comfort Control – Conflict in Heating

Actuator Use . 253
11.4.3 Scenario 3: Luminosity Comfort Control – Indirect Conflict

in Luminosity Level Actuation . 254
11.4.4 Scenario 4: Smart Building Alerts for User Comfort 256
11.4.5 Scenario 5: Thermal Comfort Control – Self-optimizing

Controller Design . 257
11.5 Conclusion . 257
References . 258

Chapter 12 Looking Ahead 259
By Andreas Metzger, Cristóbal Costa Soria, Juan Garbajosa,
Ana M. Moreno, Daniel Pakkala, Jukka Rantala, Valère Robin,
Jukka Saarinen, Bjørn Skjellaug, Hui Song, Mike Surridge, Tuomo Tuikka,
Josef Urban and Thorsten Weyer

12.1 Introduction . 259
12.2 Research and Innovation Opportunities . 260

12.2.1 Software-driven Integration of KDT Applications 260
12.2.1.1 Managing complexity, dynamics, and uncertainty of

KDT applications . 261
12.2.2 Leveraging Spatial Computing for KDT Applications 262
12.2.3 Sustainable and Energy-efficient KDT Applications 263

12.3 Conclusion . 264
References . 264

Index . 265

About the Editors . 268

Contributing Authors . 270

Foreword

Explosive growth in devices and software connected to the internet has led to cur-
rent estimates of 46 billion “things” connecting and integrating on the internet.
Increasing numbers of applications are being facilitated by the use of technology
attached to the internet as part of this Internet of Things (IoT). The scale of IoT has
inevitably led to the increasing complexity of any solution. Theoretical solutions
must quickly give way to pragmatic technology. Smart IoT Systems (SIS) have a
highly distributed infrastructure that relies on a wide range of topologies includ-
ing, but not restricted to, cloud computing, edge computing, and closed or open
networks. It requires tools and technology that are reliable, robust, adaptable and
secure. Improvements in software, methodology, AI, data-analysis and decision-
making are leading to practical applications that will improve the target systems in
which they are implemented. The ENACT project indicates that there are many
feature and functionality gaps in both the applications and enablers present in this
environment and aims to close some of the significant gaps.

The ENACT project has been funded by the European Commission under its
H2020 program. The project consortium consists of twelve member organisations
spread across the EU as a whole. The funding has allowed the research and devel-
opment of three toolkits covering trustworthiness, continuous development and
agile operation. The emphasis of the toolkits is to build applications quickly and
maintain those applications as the application target’s circumstances change. The
development of the toolkits has benefitted from the research excellence that has
pervaded all stages of the project.

Proof of concept use cases will support the development and testing of the toolk-
its. Use cases that are significant in scope and demonstrate the challenges to be met
by the project researchers have been chosen and are discussed in this book. The three

x

Foreword xi

case study domains are in the domains of eHealth, Smart buildings and Intelligent
Transport Systems.

In the context of eHealth both wellness and preventative medicine programs are
being seen as the best direction for the ever-growing healthcare sector. Instead of
reactive medicine proactive medicine is now the preferred approach supported by
the use of technology to move beyond health and disease monitoring to a contin-
uum of support for the healthy to maintain their wellbeing. This is individualised
by the use of machine learning and activation of AI systems capable of making
diagnostic forecasts based on data collected.

In the post Covid 19 world smart buildings will become more pervasive, provid-
ing the facilities to monitor not just temperature and light but air quality, security
and general health and wellbeing of the building users. Air quality monitors should
be able to detect any airborne viruses, extract them or direct the airflow away from
users. Individualised warnings or cautions should ensure that only people who are
vulnerable or who are possibly threatened by poor air quality can be warned or
relocated.

Intelligent transport systems are slowly being developed that take advantage of
IoT devices to monitor and manage areas of the transport environment that were
not previously managed. Autonomous cars use a variety of sensing and analytical
tools to create a world view in which they can operate. Rail services also need to
understand the context in which they move. Failed signals or unhitched rolling
stock can pose an immediate danger on the track. The physical infrastructure of a
rail system uses resources that take time to be implemented but the human machine
interface of equipment/driver/passenger/bystander is adapting all the time. Predic-
tion of component or train integrity failures will ensure a more secure and safe
solution. Adaptable systems will enhance delivery and business models.

Each of these case studies needs tools for developing applications quickly, ensure
that the optimum infrastructure can be built, managed and maintained. The whole
environment must be able to adapt to changes rapidly and required updates or
new applications can be delivered quickly and simply integrated into the whole
infrastructure. The Dev-Ops philosophy is one of the foundations of the project
and will support rapid and agile development and continuous delivery that can be
demonstrated in these case studies.

I have been researching and writing about innovation and solutions develop-
ment for many years and am familiar with the pragmatic research and demonstra-
tions that are part of the European Commission framework programs. I attended
the ENACT project kick-off meeting and later as a member of the project advisory
board attended project reviews. The project case studies are in domains that I am
familiar with from my work on automation and collaborative robotics. The domain

xii Foreword

specific problems in the use cases can be resolved with the general toolkits devel-
oped by the project and will aid decision making, development, deployment and
maintenance. This book contains detailed and well written chapters that cover the
most important areas of the project. The progress made in the project is excellent
and I have been able to observe their progress over the project’s duration. In my
experience it is always difficult to manage such a large project, but the consortium
has managed this well. This book has many interesting topics but I found that
the book chapter on “Looking Ahead” was most interesting as it highlights future
issues with integration and customisation of applications, an area that has been at
the heart of my own work over many years. The authors clear view of what still
remains to be done and the potential for further research is insightful.

Peter Matthews
31st March 2021

Glossary

A

ACM - Actuation Conflict Management. 9, 10, 18, 97, 98, 100–103, 111–114,
116–119, 226, 229, 238, 253–255

AGG - Attributed Graph Grammar. 97

AI - Artificial Intelligence. 152, 154, 170

API - Application Programming Interface. 69, 79, 83, 89, 146, 164, 165, 170, 194,
195, 250, 260

AVD - Automatic Vulnerability Detector. 26, 49

B

BDA - Behavioral Drift Analysis. 11, 18, 119, 137, 226, 229, 238–240, 256

C

C-ITS - Cooperative Intelligent Transportation System. 47, 49, 50, 52

CAAC - Context-Aware Access Control . 12, 162, 166

CAPEC - Common Attack Pattern Enumeration and Classification. 26, 44, 47, 49,
52

CMW - Communication MiddleWare. 230–233

CPS - Cyber Physical System. 16

CWE - Common Weakness Enumeration. 26, 44, 46, 47, 49, 52

xiii

xiv Glossary

D

DBN - Dynamic Bayesian Networks. 105

DevOps - Development and Operation. 2, 3, 6–20, 59, 60, 64, 67, 77–81, 83, 85,
86, 89, 95–99, 101, 103, 104, 109, 110, 118, 119, 170, 175, 188, 193, 195,
196, 198, 218, 221–223, 225–227, 229, 233–235, 237, 239, 240, 242, 259

DEVS - Discrete EVent system Specification formalism. 97

DevSecOps - Development, Security, and Operation. 59, 60, 78, 81, 84–86

DFD - Data Flow Diagram. 25, 26, 44–46

DMI - Driver Machine Interface. 232

DPIA - Data Protection Impact Assessment. 28, 29

DPO - Data Protection Officer. 31

DS - Data Subject. 24–43, 46, 47, 49, 50, 52, 53, 55

E

ECA - Electronic Clearing Service. 117

F

FSM - Finite State Machines. 101

G

GDPR - General Data Protection Regulation. 9, 20, 24–30, 36–44, 46, 49, 53–56

GNSS - Global Navigation Satellite System. 230, 231

H

HVAC - Heating, Ventilation and Air-Conditioning . 18, 123, 129, 130, 133, 136,
138, 252, 254

I

IaC - Infrastructure as Code. 60, 63

IAM - Identity and Access Management. 162

ICT - Information and Communication Technology. 64, 215, 216, 262

Glossary xv

ID - Identifier. 49–54, 208

IDE - Integrated Development Environment. 79, 253

IEC - International Electrotechnical Commission. 1, 152

IOHMM - Input/output Hidden Markov Model . 105, 106, 108, 138

IOI - Items Of Interest. 38, 40, 42

IoT - Internet of Things. 1–4, 6–14, 16–18, 20, 23–25, 47, 54–56, 59–70,
78–84, 86, 89, 94–98, 102, 104, 110, 118, 123, 138, 139, 142–145,
147–162, 164, 165, 170, 171, 173–181, 183–185, 187, 188, 190, 192, 193,
199, 201, 207–209, 211, 212, 218, 221–223, 226, 228, 234–236, 240–244,
247–249, 252–257, 259, 264

ISO - Information Systems and Organizations. 152

IT - Information Technology. 52, 62, 161, 162, 170, 218

ITS - Intelligent Transportation System. 4, 17, 94, 95, 195, 199, 204, 232–237, 239

K

KDT - Key Digital Technologies. 259–264

KP - Knowledge Processor. 144–151, 157, 158, 160

L

LINDDUN - Linkability, Identifiability, Non-repudiation, Detectability, Disclosure
of Information, Unawareness, and Non-compliance. 24, 25, 27, 36–38, 42,
44–46, 49, 51, 56

M

MAC - Media Access Control . 235

MDE - Model-Driven Engineering . 61, 101, 117

MDP - Markov Decision Process. 128–130, 137

MFCC - Mel-Frequency Cepstral Coefficient. 112, 113

Mon&Con - Monitoring and Control . 152, 226, 232, 234

MQTT - Message Queuing Telemetry Transport. 110, 154, 155, 181, 183, 184, 188,
199, 204, 222, 248–250

xvi Glossary

MUSA - MUlti-cloud Secure Applications. 24

MVC - Model – View – Controller. 68

N

NAS - Network Attached Storage. 110

NIST - National Institute of Standards and Technology. 15, 31, 151

O

OLE - Online Learning Enabler. 11, 126, 257

OWASP - Open Web Application Security Project. 24, 25, 27–33, 49, 52–54

P

PDP - Policy Decision Point. 163

PDP4E - Privacy and Data Protection Engineering . 24, 44, 46, 49, 56

PEP - Policy Enforcement Point. 163

PHG - Personal Health Gateway. 19, 20, 221, 223

PII - Personally Identifiable Information. 16

R

RCA - Route Cause Analysis. 12, 13, 96, 175, 198–212, 227, 239, 240

REST - Representational State Transfer. 164, 194, 250

RFID - Radio Frequency Identification. 230–232

RL - Reinforcement Learning . 123–138

S

S&P - Security and Privacy. 152, 226, 232–235, 240

SCA - Software Communications Architecture. 62, 63

SDR - Software-Defined Radio. 62

SIB - Semantic Information Broker. 144

Glossary xvii

SIS - Smart IoT System. 1–4, 6–12, 14–20, 23, 24, 47, 59–61, 65–67, 70, 71,
78–81, 89, 94–97, 99, 101–108, 110, 112–114, 118, 119, 123, 124, 129,
138, 142, 143, 148, 149, 151–156, 159–161, 170, 171, 177–180, 183, 184,
190, 196, 198, 199

SLR - Systematic Literature Review. 63

SMT - Satisfactory Modulo Theories. 64, 65

SSAP - Source Service Access Point. 144, 145

T

TaS - Test and Simulation. 10, 18, 174–181, 183–185, 187–197, 211, 212

TBM - Transferable Belief Model . 105

TMS - Train Management Systems. 226

U

UML - Unified Modelling Language. 44

V

VPN - Virtual Private Network. 51

W

WAM - Web Access Manager. 162, 167–170

WIMAC - Workflow and Interaction Model for Actuation Conflict management. 97

WSAN - Wireless Sensor Actuator Network. 229

WSN - Wireless Sensor Network. 195, 226, 230–232

WTI - Wireless Train Integrity. 225, 227, 229

X

XACML - eXtensible Access Control Markup Language. 162–164

Z

ZCR - Zero Crossing Rate. 113

DOI: 10.1561/9781680838251.ch1

Chapter 1

Introduction

By Erkuden Rios, Nicolas Ferry, Hui Song and Andreas Metzger

Internet of Things (IoT) systems are evolving towards what we denote as Smart
IoT Systems (SIS) – i.e., systems involving not only sensors but also actuators with
control loops distributed all across the IoT, Edge and Cloud infrastructure.

However, the capacity in building novel and innovative SIS faces specific chal-
lenges, that entail (i) how to efficiently build and operate new value-added software
across IoT, edge and cloud infrastructures, (ii) how to close the loop of sensing and
actuation, and (iii) how to establish trustworthiness in these systems. Whilst point
(iv) is already critical in classical IoT systems: according to the IEC report on smart
and secure IoT platforms [5], security, trust, privacy and identity management are
major challenges in today’s IoT systems, this is all the more exacerbated when actu-
ators are involved.

One of the fundamental research questions concerning these issues is: “how can
we tame the complexity of developing and operating smart IoT systems, which

1

http://dx.doi.org/10.1561/9781680838251.ch1

2 Introduction

Figure 1.1. The generic DevOps life-cycle model.

(i) consist of software running on all types of resources along the IoT-edge-cloud
continuum, (ii) involve sensors and actuators and (iii) need to be trustworthy?”.
The answer to these questions has formed the core of the Horizon 2020 project
ENACT [1, 3]. The overall ambition of ENACT was to expand current DevOps
methods and solutions to support the development and operation of trustworthy
Smart IoT Systems.

DevOps has established itself as a software development life-cycle model that
encourages developers to continuously patch, update, or bring new features to the
system under operation without sacrificing quality [8]. By enabling DevOps in the
realm of SIS, ENACT not only facilitates the development and operation of SIS
but also enables the continuous and agile evolution of SIS, which is necessary to
adapt the system to changes in its environment, including such as newly appearing
trustworthiness threats. ENACT supports DevOps practices during the develop-
ment and operation of trustworthy smart IoT systems by offering software tools,
called “enablers”, for each of the seven stages of the DevOps life-cycle model as
depicted in Figure 1.1.

• Plan: ENACT supports privacy and security risk assessment enabling the
risk-driven planning of IoT systems development cycles as well as the smooth
transition towards the code stage.

• Code: First, ENACT evolves recent advances of the ThingML language and
generators to support modelling of system behaviours and generation of
code executable across the whole IoT, edge and cloud continuum. Second,
ENACT provides a model-based solution to automatically identify and solve
conflicts when multiple applications manage actuators.

• Test: Targeting the constraints related to the distribution and infrastructure
of IoT systems, ENACT enables continuous testing of SIS in an environment
by emulating and simulating IoT and Edge infrastructures.

Introduction 3

• Release and Deploy: ENACT provides novel deployment modelling lan-
guages and the corresponding execution engines to support the continuous
and automatic fleet deployment, by assigning multiple deployments to many
devices in the fleet, without human interaction. It enables deployment from
the IoT to the cloud ends with security as a first-class concern.

• Operate: ENACT provides enablers for the automatic adaptation of IoT
systems based on their run-time context, including smart preventive secu-
rity mechanisms such as access control. In addition, ENACT offers machine
learning capabilities at runtime in order to deliver self-adaptive SIS. Such
automatic self-adaptation addresses the issue that the management complex-
ity of open-context IoT systems exceeds the capacity of human operation
teams, and by this, improve the trustworthiness of the smart IoT system exe-
cution.

• Monitor: ENACT has delivered innovative mechanisms to observe and anal-
ysis (i) the status of a SIS including security and privacy aspects at all the net-
work, system, and application levels, (ii) failures, (iii) the overall effectiveness
of the SIS in reaching its goals.

ENACT was part of a cluster of related H2020 projects all contributing to IoT
security [2]. Among the eight projects that formed the cluster, two are most notably
related to ENACT and share common objectives. The Semiotics project1 also con-
siders SIS with a specific focus on the management of actuators. The project pro-
poses a pattern-driven framework, built upon existing IoT platforms, to enable
and guarantee secure and dependable actuation and semi-autonomic behaviour in
IoT applications. While not specifically focusing on DevOps, one of the technical
objectives of the Brain-IoT project2 was to facilitate the rapid model-based devel-
opment, integration, and deployment of interoperable IoT solutions that support
smart cooperative behaviour involving actuation in IoT scenarios.

This book describes the ENACT project outcomes (cf. Figure 1.2) and how they
solve major challenges in the DevOps of trustworthy SIS. The overall approach pur-
sued in the ENACT project is introduced in Chapter 2, and the chapters following
afterwards detail the outcomes of ENACT. In Chapter 3 the privacy and security
risk assessment and management in SIS is discussed, and the ENACT enabler deal-
ing with risks is presented. Chapter 4 is focused on deployment support offered by
ENACT and the deployment and diversification methods and enablers are detailed
therein. Chapter 5 deals with the issues of actuation conflict resolution in SIS that

1. https://www.semiotics-project.eu

2. http://www.brain-iot.eu

https://www.semiotics-project.eu
http://www.brain-iot.eu

4 Introduction

Figure 1.2. ENACT project results.

include actuators, and how to detect and analyse behaviour deviations at SIS opera-
tion from those designed when building the SIS. In Chapter 6 reinforcement learn-
ing techniques are studied as the ENACT approach for continuously ensuring and
improving the quality of SIS during operations. Chapter 7 explains all the details
of the ENACT support to security aspects of SIS, including context-aware access
control enabler, security monitoring enabler, as well as security control through
capabilities embedded in IoT platforms. Chapter 8 describes the ENACT enablers
dedicated to the SIS verification and validation activities, including the support
to testing, simulation and root cause analysis. Chapters 9, 10 and 11 explain the
real IoT system use cases where the ENACT enablers were validated, dedicated to
eHealth, Intelligent Transport Systems (ITS) and Smart Buildings domains, respec-
tively. Chapter 12 concludes the book with an outlook on future research challenges
and opportunities.

References

[1] ENACT Consortium. ENACT: Development, Operation, and Quality Assurance
of Trustworthy Smart IoT Systems, 2018. URL: https://cordis.europa.eu/project/
id/780351.

https://cordis.europa.eu/project/id/780351
https://cordis.europa.eu/project/id/780351

References 5

[2] Enrico Ferrera et al. “IoT European security and privacy projects: Integration,
architectures and interoperability. In: Next Generation Internet of Things. Dis-
tributed Intelligence at the Edge and Human Machine-to-Machine Cooperation
(2018).

[3] Nicolas Ferry et al. “ENACT: Development, operation, and quality assurance
of trustworthy Smart IoT Systems”. In International Workshop on Software Engi-
neering Aspects of Continuous Development and New Paradigms of Software Pro-
duction and Deployment. Springer. 2018, pp. 112–127.

[4] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley Professional,
2010. ISBN: 860-1401501176.

[5] IEC. IEC White Paper: IoT 2020: Smart and secure IoT platform. IEC report,
2019. URL: https://basecamp.iec.ch/download/iec-white-paper-iot-2020-sm
art-and-secure-iot-platform/.

https://basecamp.iec.ch/download/iec-white-paper-iot-2020-smart-and-secure-iot-platform/
https://basecamp.iec.ch/download/iec-white-paper-iot-2020-smart-and-secure-iot-platform/

DOI: 10.1561/9781680838251.ch2

Chapter 2

The ENACT Approach

By Nicolas Ferry, Hui Song, Erkuden Rios and Andreas Metzger

Smart IoT Systems (SIS) are the next generation of IoT systems that span across the
complete computing continuum, from IoT via Edge/Fog to the Cloud, with local
data analytics, decision making, and actuators involved. Software plays a key role in
such systems. The systems’ increased complexity, the unpredictability of their envi-
ronment, as well as the changes in their requirements and infrastructure are many
factors that can result in new threats hindering their trustworthiness. The proper
functioning and correctness of such systems is critical especially when they control
actuators that can have a direct impact on the physical world. The ability of these
systems to continuously evolve and adapt to these changes is decisive to ensure and
increase their trustworthiness, quality and user experience. Currently, DevOps is
the mainstream practice in the software and Cloud industry to foster continuous

6

http://dx.doi.org/10.1561/9781680838251.ch2

The ENACT Approach 7

evolution of software systems. DevOps promotes a rapid and efficient value deliv-
ery to the market, through a tight collaboration between the developers and the
teams that deploy and operate the software systems. DevOps seeks to decrease the
gap between product design and its operation by introducing software design and
development practices and approaches to the operation domain and vice versa [8].

When the ENACT project was created in 2017, there was no DevOps support
for trustworthy Smart IoT Systems [12, 34]. Even if DevOps is not bound to any
application domain, many challenges appear when the IoT intersects with DevOps,
in particular, due to the lack of key enabling tools. ENACT focused specifically on
the following three challenges [3].

The first key challenge, as opposed to Cloud environments which are relatively
reliable and homogeneous, is the wide diversity that characterizes SIS, not only in
terms of hardware but also in terms of their software stack. There is typically a lack
of coherent languages, abstractions, security and privacy solutions that can be used
to support development and the orchestration of software and their deployment
across heterogeneous devices.

Second, SIS are by nature massively distributed on top of a highly heteroge-
neous and geographically-distributed infrastructure, which means that software is
more complex to apprehend, develop, operate, and maintain than on top of Cloud
infrastructures. Each device has a unique operational context, in terms of hardware
capacity, end-user preference, exposure to security risks, role in the whole data flow,
connection to sensors and actuators, etc. This context is dynamic and often unpre-
dictable, e.g., the volume of data may change, the network connectivity among
devices can be unstable. Therefore, the management and operation of each software
module, e.g., where to place it, when to deploy it, how to configure it, and how to
monitor it, etc, needs to be handled individually and continuously to fit its unique
and evolving context. For large scale SIS which can include thousands of devices,
handling each device individually inevitably leads to enormous operational effort
and cost, which, as identified by Gartner, “can easily exceed the project’s financial
benefits.”1

Third, SIS can have an impact on the physical world through actuators. There
is a need to properly manage these actuators and to ensure that such systems and
in particular the software deployed on these systems always work within safe oper-
ational boundaries. Only a few approaches exist in the literature focusing on the
management of actuation conflicts, and none are meant to be used in a DevOps
context.

1. https://www.gartner.com/en/newsroom/press-releases/2018-12-03-gartner-says-the-future-of-it-infrastruct
ure-is-always-on-always-available-everywhere

https://www.gartner.com/en/newsroom/press-releases/2018-12-03-gartner-says-the-future-of-it-infrastructure-is-always-on-always-available-everywhere
https://www.gartner.com/en/newsroom/press-releases/2018-12-03-gartner-says-the-future-of-it-infrastructure-is-always-on-always-available-everywhere

8 The ENACT Approach

These key challenges had to be addressed to enable DevOps for trustworthy
Smart IoT Systems. In this chapter we present how the overall approach followed in
the ENACT project proposes to evolve existing DevOps methods and techniques
to support the development and operation of Smart IoT Systems, which (i) are
distributed, (ii) involve sensors and actuators and (iii) need to be trustworthy (i.e.,
trustworthiness refers to the preservation of security, privacy, reliability, resilience,
and safety [13]).

The remainder of the chapter is organized as follows. Section 2.1 introduces
the overall ENACT approach and lists the enablers that will form the core con-
tribution of ENACT supporting the DevOps of SIS. Section 2.1.4 details how
these enablers can be organized together to form a comprehensive and continuous
DevOps Framework. Section 2.2 summarizes how the developed solutions facili-
tate the development and operation of SIS that are trustworthy. Finally, Section 2.3
reports on the three use cases of the project and how they supported validation of
the ENACT enablers.

2.1 ENACT Enablers to Deliver DevOps for SIS

To foster the adoption of DevOps practices in the realm of SIS, ENACT’s approach
is to deliver a set of enablers (i.e., tools and services) that support the continu-
ous development, evolution and operation of SIS. These enablers are designed to
integrate with DevOps, Cloud, and Edge services and are loosely coupled, pro-
viding SIS providers with the ability to pick the enablers that best fit their needs.
In other words, it is not necessary to gather the whole ENACT framework to ben-
efit from one or more of these enablers, and these can be integrated as part of exist-
ing DevOps pipelines. As depicted in Figure 2.1, the different enablers contribute
to different stages within the DevOps life-cycle and, overall, the ENACT Frame-
work contributes to all the DevOps stages. In the following we provide an overview
for each of the enablers, which are detailed in the remaining chapters of this
book.

2.1.1 Enablers for the Development Phase

The following three enablers provide specific support for the development of trust-
worthy SIS.

Risk Management enabler: This enabler provides concepts and tools for the
agile, context-aware, and risk-driven decision support and mechanisms for appli-
cation developers and operators to support the continuous delivery of trustwor-
thy SIS [12]. By leveraging the evidences collectors provided by the enabler,

ENACT Enablers to Deliver DevOps for SIS 9

Figure 2.1. Contribution of the ENACT tools to the DevOps lifecycle.

organizations use it not only to assess risks but also to monitor and control treat-
ment implementation and effectiveness during the development and operation of
SIS, enabling the treatment of security and privacy risks together and making them
actionable for software engineers. This makes this enabler the first DevOps-enabled
continuous risk control solution, improving software development and operation
organizations’ awareness on risks. In addition, it facilitates compliance with stan-
dards such as ISO 27001 and regulations such as GDPR, in near real-time. Further
details about this enabler can be found in Chapter 3.

ThingML: ThingML [4] is an open source IoT framework that includes a language
and a set of generators to support the modelling of system behaviours and their
automatic derivation across heterogeneous and distributed devices at the IoT and
edge end. The ThingML code generation framework has been used to generate code
in different languages, targeting around 10 different target platforms (ranging from
tiny 8 bit microcontrollers to servers). A challenge for approaches such as ThingML
is how to properly log, monitor and debug the generated programs. Indeed, to fully
benefit from the approach, such logging should be performed by relating to the
concepts of the original abstraction level. To address this challenge, ThingML has
been extended with an automated,platform-independent and easy to use logging
mechanism to ThingML developers. This logging approach aims at providing log
information about the execution of their ThingML programs, in terms of ThingML
concepts being executed.

Actuation Conflict Management enabler (ACM): Actuation conflicts can occur
when concurrent applications have a shared access to an actuator and when
actuators produce actions within a common physical and local environment, whose

10 The ENACT Approach

effects are contradictory. This enabler supports the identification and resolution
of direct and indirect actuation conflicts as part of a DevOps pipeline in a plat-
form independent and technology agnostic way [6]. DevOps team can integrate
the ACM solution as part of their DevOps pipeline to detect automatically direct
and indirect actuation conflicts in a complex SIS. Off-the-shelf actuation conflict
managers are automatically injected into the SIS. New actuation managers can be
designed using a tool-supported domain-specific modelling language and checked
against logical and temporal properties. While traditionally, the management of
actuation conflicts is handled at the code level, the ACM enabler applies over and
abstract representation of the SIS that is decoupled from its detailed code enabling
the detection, analysis and resolution of actuation conflicts as part of a typical
DevOps process. Verification mechanisms ensure the conflict management solu-
tion injected into the SIS satisfies temporal and logical properties making DevOps
teams confident to place it in the system. Further details about this enabler can be
found in Chapter 5.

Test and Simulation enabler (TaS): Software testing is a crucial step of any soft-
ware development process, especially in DevOps. Having access to a production-
like environment that reproduces the same conditions where a piece of software
would run is usually tricky or close to being an impossible task. This is exacer-
bated in IoT environments where (i) developers need to test their applications to
ensure trustworthiness requirements, including scalability, are met, and (ii) build-
ing a large-scale testbed that includes a realistic physical infrastructure of devices
and sensors can quickly be expensive. The test and simulation enabler provides a
light-weight, user-friendly approach for simulating large number of IoT devices
and cyber-attacks, in order to set up the testing environment and test SIS in a cost-
effective way. The enabler goes beyond the state of the art on sensor and actuation
simulation solutions that typically reproduce how the devices behave according to
the physical environment. Instead, it focuses on the pure software simulation, by
reproducing how devices interact with software in the IoT system.

2.1.2 Enablers for the Deployment Phase

Within the DevOps life-cycle, deployment is typically the activity that bridges
development and operation activities. The following two enablers provide specific
support for the deployment of trustworthy SIS.

Orchestration and Continuous Deployment enabler (GeneSIS): This enabler,
also known as GeneSIS, supports the automatic deployment of software, together
with the attached security mechanisms, across the computing continuum from IoT,
Edge to Cloud [20]. Developers use a declarative modelling language to specify

ENACT Enablers to Deliver DevOps for SIS 11

what software components and security mechanisms they want to deploy, and the
engine automatically deploys them into the resources in the computing continuum,
continuously monitoring the deployment status. The GeneSIS modelling language
is independent of the underlying technologies, i.e., GeneSIS can deploy compo-
nents anywhere in the IoT-Edge-Cloud continuum: from microcontrollers with-
out direct Internet access to virtual machines running in the Cloud. It also includes
security mechanisms as first-class modeling elements thus promoting security-by-
design. Further details about this enabler can be found in Chapter 4.

Fleet Management and Diversity enabler (DivEnact): This enabler, also known
as DivEnact, supports automatic software deployment for IoT applications that
comprise a large fleet of devices, and maintains software diversity among the
fleet [44]. It provides DevOps teams with a mean to deploy a new software ver-
sion into the abstract fleet, without worrying about what exact devices are in the
fleet, their contexts, and whether they are online or not. DivEnact maintains the
devices and their contexts in the fleet, the software variants, and assign the variants
to the appropriate devices depending on their contexts. Further details about this
enabler can be found in Chapter 4.

2.1.3 Enablers for Operation Phase

Finally, the following four enablers focus on supporting the operation and moni-
toring of SIS.

Behavioral Drift Analysis enabler (BDA): The complex nature of the cyber-
physical environment in which a SIS operate makes it impossible for DevOps teams
to predict if, once under operation, the system will behave as expected during devel-
opment. For instance, many unanticipated surrounding physical processes may dis-
rupt and hamper the SIS from achieving its goal. The Behavioral Drift Analysis
enabler provides a novel way to overcome this issue by shifting the monitoring and
analysis from the internal of the system to its context by observing and analysing
the effects of the commands sent to the actuators on the cyber-physical context
of the SIS [29]. This makes the approach generic an applicable to any SIS inde-
pendently of its implementation and it makes it non-invasive in the sense that it
does not require any modification of the applications. DevOps teams can use this
enabler during operation as a monitoring solution to detect symptoms indicating
that the effects of the system on its environment are no longer as expected and to
understand this loss of effectiveness. Further details about this enabler can be found
in Chapter 5.

Online Learning enabler (OLE): To develop a self-adaptive SIS, software engi-
neers have to create self-adaptation logic encoding when the SIS should execute

12 The ENACT Approach

which adaptation actions. However, developing self-adaptation logic may be dif-
ficult due to design time uncertainty; e.g., anticipating all potential environment
changes at design time is, in most cases, infeasible. In addition, due to simplified
design assumptions, the precise effect of an adaptation action may not be known,
making it difficult to accurately determine how the SIS should adapt itself. The
Online Learning Enabler addresses these challenges by leveraging modern machine
learning algorithms during the operation phase [16]. In particular, the enabler
uses reinforcement learning to address design time uncertainty by learning suitable
adaptation actions through interactions with the environment at run time.

Security and Privacy Control and Monitoring enabler (S&P): This enabler is
a one-stop solution for the near real-time monitoring and control of security- and
privacy-related anomalies across multiple layers of Smart IoT Systems, from things,
devices, Edge to Cloud. DevOps teams use the S&P enabler for controlling data
protection and secure communications all along the lifecycle of the SIS, through
continuous monitoring of security metrics, and automatic detection and feedback
for subsequent DevOps loops. The enabler uses machine learning to correlate data
captured by multiple probes or monitoring agents deployed in different layers, in
order to offer a holistic view of the SIS and enable the detection of sophisticated
attacks. The tool has a flexible architecture to adapt to the different information
availability and the specific types of anomalies, and is fully elastic for the rapid
scaling of the target systems. Further details about this enabler can be found in
Chapter 6.

Context-Aware-Access Control (CAAC): Context-Aware-Access Control provides
a unified access control of all the IoT actors from administrators, end-users, and
services, to devices, and dynamically adapts the authorization according to the
changing context [23]. It is a SaaS solution that can be integrated into the IoT
applications, and provides a user-friendly authentication interface. The solution
ensures the data is only exposed to authorized users and devices. It supports the
applications in adapting the authorizations according to context changes, without
requiring developers to modify the code. This is done by adding dynamicity to the
OAuth 2.0 standard protocol to make the provided authorizations responsive to the
context, injecting contextual risk levels as dynamic attributes in the authorization
mechanisms. Further details about this enabler can be found in Chapter 6.

Root Cause Analysis enabler (RCA): Understanding the origin of a failure in a
SIS is a complex and time consuming task. This is in particular due to the fact
that these systems are large, vastly heterogeneous as well as widely distributed. This
enabler observes the symptoms of the IoT systems, such as loss of messages, delay

Architecture of the ENACT Framework 13

of response, etc. and automatically diagnoses the root cause, such as device fail-
ures or broken networks. DevOps teams can thus use the RCA enabler during the
operation of their IoT application in order to receive alarms when there are inci-
dents. The alarms will include details about the origin and possibly the reason of
the accident as well as targeted instruction about how to fix the incidents. Instead
of relying on human experts to exhaust all the causal connections between inci-
dents and symptoms, the Root Cause Analysis tool builds this knowledge itself, by
recording the typical incidents and their symptoms. During runtime, it compares
the similarity between the observed symptoms with the recorded ones in the library
to identify the possible incidents. Further details about this enabler can be found
in Chapter 6.

2.1.4 Focus of the Different Enablers

In real cases, a large scale IoT system usually comprises many duplicates of the
same or similar sub-systems, which contain a relatively smaller number of nodes.
A typical example is the eHealth use case (see Chapter 9). In the eHealth use case,
a remote patient monitoring system aims at supporting thousands of patients, and
each patient is provided with a sub-system that includes one gateway and several
sensors. These sub-systems are similar to each other, in terms of architecture, soft-
ware and configurations. Under such setups, the DevOps of Smart IoT Systems
usually includes two complementary activities: (i) the development, testing and
optimization of the functionality within one sample sub-system, and (ii) the oper-
ation of the system of systems, with many duplicates of the sample sub-system.

The ENACT enablers naturally have different focuses. While the Risk Man-
agement, test and simulation, security and privacy control enablers and DivEnact
are solutions that can be used at the system-of-systems level, the other enablers are
aimed for the sub-system level. Yet, it is worth noting that the tools that system-of-
systems enablers can also be applied at the scale of one sub-system.

2.2 Architecture of the ENACT Framework

The set of ENACT enablers introduced above form the ENACT DevOps Frame-
work. Below we detail the architecture of this framework as well as the relationships
between the enablers within this framework.

Figure 2.2 depicts the overall architecture of the ENACT Framework. It is a
multi-layer architecture composed of 4 layers hierarchically organized plus one
crosscutting layer. In the following we detail each of these layers. It is worth not-
ing that Figures 2.1 and 2.2 are complementary in explaining the relationships

14 The ENACT Approach

Figure 2.2. The ENACT architecture.

and complementarity of the enablers. The former details the contribution of the
enablers within a DevOps pipeline while the later details how they can be integrated
within a comprehensive Framework for the development and operation of SIS.

From the most abstract to the most concrete (i.e., from the farthest to the closest
to the running system), the layers are described as follows:

1. Evolution & Adaptation Improvement Layer: This layer provides the
mechanisms to continuously improve and manage the development and
operation processes of trustworthy SIS. On the one hand, the Risk Manage-
ment enabler helps organizations to analyze the architecture of their Smart
IoT Systems and detecting potential vulnerabilities and the associated risk (in
particular related to security and privacy aspects) and propose related miti-
gation actions. On the other hand, the Online Learning enabler focuses on
improving the behaviour of the adaptation engine that will support the oper-
ation of trustworthy SIS. This tool typically relates to the Operate stage of
the DevOps process. In general, the improvement layer provides feedback
and knowledge to all the other DevOps stages with the aim to improve the
development and operation of trustworthy SIS. Thus, in this architecture,
information from this layer are provided to the evolution and adaptation
management layer with the aim to improve it.

2. Evolution & Adaptation Management Layer: This layer first embeds a set
of editors to specify the behaviours as well as the orchestration and deploy-
ment of SIS across IoT, Edge and Cloud infrastructure. These editors inte-
grate with mechanisms to maximize and control the trustworthiness of the

Improving SIS Trustworthiness 15

system. All together, these components cover activities in both the Dev and
Ops parts of a DevOps process and in particular to the code, build and oper-
ate stages. The activities performed at this layer are strongly affected by the
inputs from the improvement layer.

3. Evolution & Adaptation Enactment Layer: This layer bridges the gap
between development and operation as its goal is to enact the deployment
and adaptation actions decided at the Evolution & Adaptation Management
Layer. The mechanisms of this layer monitor and manage the deployment of
the running system.

4. Environment Layer: This layer consists of the running system together with
the environment and infrastructure in which it executes. This includes both
production and testing environments.

5. Monitoring and Analytics Layer: This layer is orthogonal and feeds the
other four. The enablers at this layer are supporting the monitoring stage of
the DevOps process and typically aim at providing feedback from Ops to
Dev. More precisely, this layer provides mechanisms to monitor the status of
the system and of its environment. This includes mechanisms to monitor the
security and privacy of a SIS. In addition, it performs analytic tasks provid-
ing: (i) high level notifications with insights on ongoing security issues, (ii)
diagnostics and recommendations on system’s failures, and (iii) feedback on
the behavioural drift of SIS (i.e., system is functioning but not delivering the
expected behaviour).

2.3 Improving SIS Trustworthiness

In this section we first summarize the contributions of the enablers in terms of
supporting the development and operation of trustworthy SIS.

Based on the NIST definition of trustworthiness for Cyber Physical Sys-
tems [13], within ENACT, we adopt the following definition of trustworthiness
and its different properties: “Trustworthiness refers to the preservation of security,
privacy, safety, reliability, and resilience of SIS”.

We adopt the following definitions of the different properties:

• Security refers to the preservation of confidentiality, integrity and availability
of information [9].

– Integrity is the property of protecting the accuracy and completeness of
information [1].

– Confidentiality is the property that information is not made available or
disclosed to unauthorized individuals, entities, or processes [1].

16 The ENACT Approach

– Availability is the property of information being accessible and usable
upon demand by an authorized entity [1].

• Privacy refers to the protection of personally identifiable information
(PII) [10]. PII refers to any information that (a) can be used to identify the
PII principal to whom such information relates, or (b) is or might be directly
or indirectly linked to a PII principal.

• Safety refers to the ability of the cyber-physical system (CPS) to ensure the
absence of catastrophic consequences on the life, health, property, or data of
CPS stakeholders and the physical environment [13].

• Reliability refers to the ability of the CPS to deliver stable and predictable
performance in expected conditions [13].

• Resilience refers to the ability of the CPS to withstand instability, unexpected
conditions, and gracefully return to predictable, but possibly degraded, per-
formance [13].

Figure 2.3 summarizes how each individual ENACT enabler contributes to the
development and operation of trustworthiness of SIS. It is also worth noting that
the support offered by the ENACT enablers to the DevOps of SIS is, by itself, a
major contribution for supporting the trustworthiness aspect. Indeed, the adoption
of the DevOps principles and practices in the field of the IoT is decisive to enable
the continuous and agile evolution of SIS, which is necessary to adapt the system
to newly appearing trustworthiness threats and to ensure its overall quality.

Some enablers are marked as indirectly contributing to the privacy property.
This is because the support for security provided by these enablers also contributes

Figure 2.3. ENACT contribution to SIS trustworthiness.

Evaluation and Validation: the ENACT use Cases 17

preserving the privacy of a SIS. The same applies to the safety property, the contri-
butions of the enablers on security, privacy, reliability and resilience properties are
important to help ensuring the safety of a SIS.

The enablers from the monitoring and analytics layer of the ENACT DevOps
Framework (i.e., security and privacy monitoring, behavioural drift analysis, and
root cause analysis) are considering security, privacy, reliability and resilience
aspects. It is worth noting that these tools are complementary: On the one hand, the
security and privacy monitoring enabler focuses on observing symptoms of security
and privacy issues, and the behavioural drift analysis enabler focus on symptoms of
reliability and resiliency issues. On the other hand, the root cause analysis focuses
on understanding the causes of these symptoms.

2.4 Evaluation and Validation: the ENACT use Cases

The general applicability of the ENACT enablers was validated and demonstrated
in the context of three use cases: Smart Building, Intelligent Transport System
(ITS), and eHealth. Each of these use cases represent different application domains,
all facing specific trustworthiness challenges as depicted in Figure 2.4.

2.4.1 The Smart Building use Case

The first use case explored and validated ENACT in the domain of Smart Build-
ings, i.e., Smart IoT Systems that make use of Smart Building sensors, actuators
and services. The use case leveraged the Kubik test facility,2 which is a three floors
smart building owned by Tecnalia and designed for testing and research. Kubik

Figure 2.4. ENACT use cases and project partners in charge of the use cases.

2. https://www.tecnalia.com/images/stories/Catalogos/CAT_KUBIK_EN_dobles.pdf

https://www.tecnalia.com/images/stories/Catalogos/CAT_KUBIK_EN_dobles.pdf

18 The ENACT Approach

offers SIS providers with a flexible framework not only to explore the opportuni-
ties offered by a rich ecosystem of sensors and actuators when designing novel IoT
solutions but also to test and make experiments with the SIS resulting from this
design in a real infrastructure. Thus, the smart building use case helped us validat-
ing our ENACT enablers in the early design stage of a SIS. During the project,
several applications dedicated to aspects such as energy efficiency or user comfort
were designed, developed and tested in Kubik. This context introduced specific
DevOps and trustworthiness requirements that motivated the use of the some of
the ENACT enablers.

For SIS providers it is especially important in this early design phase being able
to quickly deploy and test the different applications and services that will compose
or extend the existing SIS and thus run on IoT, Edge and Cloud infrastructure.
The GeneSIS and TaS enablers aim at supporting DevOps teams in such activities.

Smart Building systems are typically composed of several applications control-
ling different actuation devices within the building (e.g., HVAC, roller shutters,
lights, TVs). In such a setting, it is of paramount importance to make sure the
actuators are properly managed as to control their effects on the environment (i.e.,
applications are behaving as expected). On the one hand, while it can be assumed
that one application in isolation has a proper control over the actuators it applies,
from the SIS perspective this assumption does not sustain as several applications
may concurrently control shared actuators. Without proper mechanisms to handle
such situation, the behavior of the actuator can quickly become unpredictable and
possibly harmful. The ACM enabler aim at support the design of such actuation
conflict handling mechanisms. On the other hand, indirectly, one actuator, possi-
bly managed by an application, may hinder the effectiveness of another, managed
by another application. Avoiding such loss of effectiveness is a complex task, which,
without proper support, requires a deep analysis of the applications under opera-
tions. The BDA enabler propose to relieve developers from such a task, whilst the
ACM enabler help mitigating the problem.

As in many other domains, smart buildings typically expose a broad attack sur-
face and their security must not be an afterthought. The S&P Monitoring and
control enabler provide a means to observe the security of the SIS and support
security by design.

More details about the use case can be found in Chapter 11.

2.4.2 The Intelligent Transport System use Case

The second use case explored and validated ENACT in the domain of Intelli-
gent Transport Systems, in particular exploring how SIS could be used for train
integrity control. INDRA, as the system integrator, needs to continuously evaluate

Evaluation and Validation: the ENACT use Cases 19

the subsystems with both software and hardware from their suppliers (i.e., EDI
and BOSC in this project), and adjust the design and implementation of their
main services accordingly in order to maximize the integration of the subsystems.
DevOps guarantees the effectiveness of the integration process, and provides real-
time feedback to both the integrator and the suppliers as reference for subsequent
development activities. The ENACT enablers were thus exploited in the use case at
a stage where the focus was on understanding how best the hardware and the soft-
ware can integrate, and if the integrated solution fits requirements for the solution
to be scaled in production.

In particular, key challenges included to understand (i) how the software per-
forms on the gateway and handles failures as well as (ii) how the overall SIS scales
as, in the long term, the number of gateways and sensors is aimed to grow up to
thousands of nodes.

To understand how the software performs on the gateway the first step was to
actually deploy it. The use case exploited GeneSIS for this. The later was integrated
as part of the Indra delivery pipeline, making sure that, when a new version of the
software is ready, it is only deployed if the train is in a state where such maintenance
activity is authorized. The second step was to monitor the system under operation
and to report and analyse any failure. Because there can be many reason from which
a problem in the software may originate, the use case leveraged the Root Cause
Analysis enabler to guide DevOps engineers through a faster understanding of the
problem.

For the testing of the solution at scale, building a testbed consisting of real devices
was not an option as each individual gateway is already expensive. Instead, the
approach selected was to build a hybrid testing environment combining a few real
devices with simulated sensors and gateways. In such context, to make the tests as
relevant and realistic as possible, the simulated devices must be able to replay real
data from real scenarios as well as to inject erroneous data providing a means to
evaluate how the system performs when operating properly and when error occurs.
The Test and Simulation enablers perfectly fits these requirements and was a natural
choice for Indra to evaluate their solution. The enabler was used to record real
data from the system, simulate large infrastructure composed of several hundreds
of nodes, and test the system accordingly, sometimes also simulating errors and
attacks.

More details about the use case can be found in Chapter 10.

2.4.3 The eHealth use Case

The third use case explored a solution for remote patient monitoring and assis-
tance that leverage a Personal Health Gateways (PHG) installed in patients’ homes.

20 The ENACT Approach

The PHG is at the core of the service as it integrates and controls various types of
sensors and medical devices (e.g., blood pressure meter, fall detection sensors, glu-
cose meter, video surveillance, indoor and out-door location tracking, etc.), and
ensure that the right data are provided to the various stakeholders and to the inte-
grated systems. The services running on the gateway needs to be customized to
patient and family needs and requirements. This eHealth solution was partially
developed within ENACT and is now in production with a large set of PHGs in
production.

For eHealth systems, security and privacy are of paramount importance and
compliance to GDPR and ISO 27001 is mandatory. As a result, risks must be care-
fully analysed and the necessary security and privacy mechanisms must be imple-
mented on the medical gateway and secure communications with the Tellu Cloud
platform need to be ensured. For instance, no data can be stored or processed on
the gateways without strong gateway authentication and without enforcing a strong
binding between the patient and the gateway. Before ENACT, no solution in the
market fitted Tellu needs, preventing the migration of services to their medical gate-
way and thus hindering the full exploitation of the gateways. The Context-Aware
Access Control enabler is the first solution to address this challenge. In comple-
ment, the Risk Management enabler provided Tellu with a mean to continuously
perform the required risk analysis but also facilitating its reporting.

This eHealth solution was partially developed within ENACT and is now in
production with a large set of PHGs in production. Each gateway should be config-
ured to best fit (i) patient and family needs and requirements, and (ii) its operation
context, including the set of sensors and medical devices connected to it. When
dealing with a large fleet of gateways, the service provider (Tellu) cannot afford to
operate and configure each Personal Health Gateway manually as this could easily
overwhelm their operation teams, resulting in a service that is not scalable. The
DivEnact enabler aim at addressing this challenge.

More details about the use case can be found in Chapter 9.

2.5 Conclusion

This chapter provided an overview of the ENACT approach to help the reader
better apprehend the next chapters of the book. The focus was in particular on
(i) the different enablers offered by ENACT for supporting DevOps for SIS, (ii)
the ENACT Framework showing how the enablers may be combined, as well as
(iii) the validation of these results in the context of realistic use cases from differ-
ent IoT domains. Details about the enablers and use cases, such as scientific basis,
implementation, application, and effect, can be found in the following chapters.

References 21

References

[1] Matt Bishop. “Computer security: Art and science. 2003”. In: Westford, MA:
Addison Wesley Professional (2003), pp. 4–12.

[2] Nicolas Ferry et al. “Continuous Deployment of Trustworthy Smart IoT Sys-
tems”. In: The Journal of Object Technology (2020).

[3] Nicolas Ferry et al. “ENACT: Development, operation, and quality assurance
of trustworthy Smart IoT Systems”. In International Workshop on Software
Engineering Aspects of Continuous Development and New Paradigms of Software
Production and Deployment. Springer. 2018, pp. 112–127.

[4] Franck Fleurey and Brice Morin. “ThingML: A generative approach to
engineer heterogeneous and distributed systems”. In: 2017 IEEE Interna-
tional Conference on Software Architecture Workshops (ICSAW). IEEE. 2017.
pp. 185–188.

[5] Anne Gallon et al. “Making the Internet of Things More Reliable Thanks to
Dynamic Access Control”. In: Security and Privacy in the Internet of Things:
Challenges and Solutions 27 (2020), p. 61.

[6] Thibaut Gonnin et al. “Actuation Conflict Management Enabler for DevOps
in IoT”. In 10th International Conference on the Internet of Things Companion.
2020, pp. 1–4.

[7] Edward R Griffor et al. “Framework for cyber-physical systems: Volume 2,
working group reports”. In: (2017).

[8] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley Professional,
2010. ISBN: 860-1401501176.

[9] J ISO. “ISO/IEC 27000: 2012, information technology-security techniques-
information security management systems-overview and vocabulary”. In:
International Organization for Standardization (2012).

[10] J ISO. “ISO/IEC, 29100.2011 Information technology-security techniques-
privacy framework”. In: International Organization for Standardization
(2011).

[11] Victor Muntés-Mulero et al. Model-driven Evidence-based Privacy Risk Con-
trol in Trustworthy Smart IoT Systems”. In: (2019).

[12] NESSI. SOFTWARE CONTINUUM: Recommendations for ICT Work Pro-
gramme 2018+. NESSI report. 2016.

[13] Alexander Palm, Andreas Metzger, and Klaus Pohl. “Online reinforcement
learning for self-adaptive information systems”. In: International Conference
on Advanced Information Systems Engineering. Springer, 2020, pp. 169–184.

22 The ENACT Approach

[14] Gérald Rocher et al. “An IOHMM-Based Framework to Investigate Drift in
Effectiveness of IoT-Based Systems”. In: Sensors 21.2 (2021), p. 527.

[15] Hui Song et al. “Model-based fleet deployment of edge computing applica-
tions”. In: Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems. 2020, pp. 132–142.

[16] Antero Taivalsaari and Tommi Mikkonen. “A roadmap to the programmable
world: software challenges in the IoT era”. In: IEEE Software 34.1 (2017),
pp. 72–80.

DOI: 10.1561/9781680838251.ch3

Chapter 3

Privacy Issues Control in Continuous Risk
Management

By Victor Muntés-Mulero, Jacek Dominiak, Elena González-Vidal,
Guillaume Mockly, Yuliya Miadzvetskaya and Tommaso Crepax

3.1 Introduction

In order to fully exploit the potential of IoT, it is crucial to facilitate the creation
and operation of trustworthy Smart IoT Systems or, for short, trustworthy SIS.
The different dimensions of trust for IoT systems were described by Yan et al. [22]
concluding that risk management is an essential piece to guarantee trustworthi-
ness. Markets in the need of trustworthy SIS, such as Smart Vehicles, Smart Grids
or eHealth, are just flourishing and businesses will be continuously adapting to
new technologies. In this context, poor risk management together with a reactive
strategy usually forces companies to continuously re-factor application architec-
tures to improve software quality and security, incurring high re-implementation
costs [2]. Besides, there is a lack of solutions to support continuous control of
risks. In general, organizations struggle to collect valuable evidence to control
on actual effectiveness of the mitigation actions defined during risk management

23

http://dx.doi.org/10.1561/9781680838251.ch3

24 Privacy Issues Control in Continuous Risk Management

process. In addition, many organizations use manual procedures based on using
spreadsheets, by departments and locally [1]. This approach becomes quickly inef-
ficient as projects or teams grow.

In the ENACT project, the Risk Management enabler is an evolution of the
MUSA (H2020 Project No. 644429) Risk Management tool. While the tool cre-
ated in the MUSA project focused in assessing risks and mitigation actions of Cloud
Security based primarily on security related risks, ENACT enabler has evolved
towards trustworthy SIS. While MUSA risk management tool explored risks related
to the use of cloud services and recommended cloud services to be leverage from
the system, ENACT enabler is able to consume the whole architecture of a SIS,
expressed in GeneSIS, and find any type of vulnerabilities related to entities, pro-
cesses, data store or data flows in the system. The basic risk management method-
ology the enabler is based on is described in [12] and, during the project, the risk
management enabler has been effective embedded in the software development life-
cycle both from a Dev and Ops perspective. Besides, although automated vulnera-
bility detection is also discussed in [11], the details on how to create a knowledge
base to support the detection are not discussed.

In parallel, GDPR discusses data protection by design and by default, remarking
that it is essential to consider privacy from the beginning of any software develop-
ment process to address related issues successfully. This is specially important for
trustworthy SIS, since many IoT technologies are still under evolution and mixing
legal requirements with a deep technical understanding is challenging. Therefore,
including privacy aspects in a continuous risk management process is not straight-
forward.

Previous work related to this enabler, made in collaboration with the PDP4E
project (H2020 Project No. 787034), is focused on showing how we embedded
privacy-related risks explicitly through the combined use of models for both the
architecture and the data flow implemented on the components of the architec-
ture [12]. We achieve this by enabling the use of the information that is typically
collected from the infrastructure to control security, thanks to the link that LIND-
DUN [21] establishes between privacy and security threats in STRIDE [16]. How-
ever, relevant aspects such as risk severity assessment is unclear, since most risk rating
methodologies such as OWASP Risk Rating methodology are focused on security
rather than privacy. As a consequence, impact assessment is usually focused on pro-
tecting the components of the system or the organization rather than data subject
(DS) rights or other privacy-related principles.

Besides, even when it is possible to detect risks related to privacy from an engi-
neering perspective (for instance based on LINDDUN) there is not a clear link
between these and the main assets to be protected described in GDPR, includ-
ing GDPR principles and DS rights. This makes it difficult for an organization

Previous Work 25

to declare how they stand in front of GDPR in terms of risk control. While this
issue is not exclusively relevant for IoT systems, it is essential to guarantee trust-
worthiness, specially when IoT devices are involved and the complexity of the
architecture of the system grows, together with the attack surface. Because of this,
we found it essential to guarantee an explicit analysis of privacy challenges in this
book.

In this chapter, we focus on the missing pieces mentioned above, namely:

1. Extension of the impact assessment methodology to enable a more privacy-
friendly assessment.

2. Discussion about the mapping of engineer-related aspects with higher level
concepts in GDPR such as principles and rights.

3. Creation of a knowledge base to enable automated vulnerability detection.
4. Evaluation of the enabler in an IoT-based use case scenario related to smart

vehicles.

This chapter is organized as follows: Section 3.2 provides a brief description of
some previous work used through the chapter to found its main contributions.
Section 3.3 proposes an extension to the OWASP Risk Rating methodology. Then,
Section 3.4 discusses the relationship between LINDDUN threats and GDPR-
friendly vocabulary related to data processing principles and DS rights. Section 3.6
describes an IoT use case related to smart vehicles where trustworthiness is essential
and we discuss the concepts presented in the previous sections. Finally, we draw
some conclusions related to the contributions of the chapter.

3.2 Previous Work

3.2.1 LINDDUN Methodology

LINDDUN is a threat modelling methodology that encourages risk analysts to
address privacy risks affecting end-users of the application or system. This method-
ology provides some guidance to identify and categorize threats under a set of gen-
eral risks (Linkability, Identifiability, Non-repudiation, Detectability, Disclosure of
information, Unawareness, and Non-compliance). LINDDUN is sometimes con-
sidered the privacy-oriented alternative to the STRIDE framework [16]. In fact,
LINDDUN threats are described in the so-called LINDDUN trees which are
explicitly connected to STRIDE threats trees. LINDDUN methodology requires
to formalize the functionality of the system and its dependencies with respect to
personal data. In such sense, LINDDUN proposed the usage of the Data Flow
Diagrams (DFD) [4]. The notation of a DFD is based upon 4 distinct element

26 Privacy Issues Control in Continuous Risk Management

types: (i) an external entity (i.e., end-users or third-party services that are exter-
nal to the system), (ii) a data flow (explains data propagation and dependencies
between all the functional components), (iii) a data store (i.e., a passive container
of information) and (iv) a process (i.e., a computation unit).

3.2.2 Automated Vulnerability Detector

In order to facilitate an effective identification of privacy-related risks, it is impor-
tant to make it easy for our enabler users to detect the vulnerabilities that expose
the system to attacks that may violate DSs’ rights. For that, we created an Auto-
matic Vulnerability Detector (AVD) [11]. An AVD starts out from a set of DFDs
to describe a software system under development. Based on these DFDs, it is able
to detect potential vulnerabilities to kick off the risk analysis process. As explained,
the AVD relies on a list of conditions that need to hold for a vulnerability to be
effective. These conditions will need to be defined and stored in the Knowledge
Base for the correct performance of the AVD.

3.2.3 Common Weaknesses Enumeration (CWE)

According to their website,1 CWE™ is a community-developed list of software
and hardware weakness types. It serves as a common language, a measuring stick
for security tools, and as a baseline for weakness identification, mitigation, and
prevention efforts.

3.2.4 Common Attack Pattern Enumeration and Classification
(CAPEC)

According to their website,2 CAPEC™ helps by providing a comprehensive dictio-
nary of known patterns of attack employed by adversaries to exploit known weak-
nesses in cyber-enabled capabilities. It can be used by analysts, developers, testers,
and educators to advance community understanding and enhance defences.

3.2.5 GDPR Enforcement Tracker

According to their website,3 the CMS Law GDPR Enforcement Tracker is an
overview of fines and penalties which data protection authorities within the EU

1. CWE – Common Weakness Enumeration (mitre.org): https://cwe.mitre.org/

2. CAPEC – Common Attack Pattern Enumeration and Classification (CAPEC) (mitre.org): https://capec.
mitre.org/

3. GDPR Enforcement Tracker – list of GDPR fines: https://www.enforcementtracker.com/

https://cwe.mitre.org/
https://capec.mitre.org/
https://capec.mitre.org/
https://www.enforcementtracker.com/

Extending Risk Rating Methodology for Privacy 27

have imposed under the EU General Data Protection Regulation (GDPR). Our aim
is to keep this list as up-to-date as possible. The list does not list any fines imposed
under national/non-European laws, under non-data protection laws (e.g. competi-
tion laws/electronic communication laws) and under “old” pre-GDPR laws.

3.3 Extending Risk Rating Methodology for Privacy

The ENACT Risk Management enabler uses LINDDUN as the baseline for pri-
vacy threat modelling. LINDDUN, just like any other modelling system based on
STRIDE, has the issue that, once you automate the threat elicitation process, it
returns as output an enormous amount of potential threats. Therefore, engineers
need to identify in a given system what are, among a pool of many, the threats that
actually need mitigation. At this point, we resort to risk assessment to prioritize the
risks to mitigate.

Among the many risk assessment methodologies, the ENACT Risk Manage-
ment enabler is based on the risk rating methodology of OWASP [20], a widely
tested and accepted risk rating methodology for security. Unfortunately, the secu-
rity nature of OWASP implies that the objectives it aims to achieve only partially
intersect, but do not fully align, with those of privacy engineering. On the one
hand, in ‘traditional’ security, the risk assessment is mainly carried out on behalf
and benefit of the organization. Simply put, if the organization faces economic
losses, the impact is deemed negative. Differently, in privacy and data protection,
the assessment is made on behalf and interest of the DS, meaning that even if the
organization can profit, the impact is negative if the DS suffers from a violation of its
rights and freedoms. On the other hand, even though privacy engineering objectives
of predictability, manageability and disassociability are in line with GDPR princi-
ples, we nonetheless acknowledge the existence of ontological differences between
engineering objectives and privacy legal principles.

With all this in mind, the aim is to ensure that the use of OWASP does not
undermine the protection of personal data. To do so, it is necessary to check up to
which point OWASP’s methods address legal requirements and, when needed, to
customize them for privacy compliance.

3.3.1 Risk Appraisal and Risk Assessment

From a practical perspective, should a controller wish to process personal data, it is
required by article 35, paragraph 1 GDPR to make two assessments. First, it has to
assess whether the type of processing to be carried out is “likely to result in a high
risk to the rights and freedoms of natural persons”, which we call “Risk Appraisal”.

28 Privacy Issues Control in Continuous Risk Management

Should the outcome of the Risk Appraisal be positive, then a second assessment
is in order, this time on the “impact of the envisaged processing operation” – also
known as Data Protection Impact Assessment, or DPIA. The Article 29 Working
Party released official guidelines on how to conduct both [13]. It shall be noted
that, both stages consider the overall risk value from the perspective of risk analysis
(i.e. encompassing both what we term as ‘likelihood’ and as ‘impact’, regardless the
different wording employed by the GDPR), albeit the former does so in a shallower
and more abstract way.

3.3.2 A GDPR-friendly, OWASP-Based Privacy Risk Estimation
System

DPIAs and Risk Appraisals are functionally dependent on privacy risk assessments.
For this reason, we thought it would be twice as useful to propose an effective
privacy risk rating system to underpin either of them. For the privacy risk rating
system to be GDPR friendly, we look into what the GDPR requires in regards to
DPIAs and Risk Appraisals and extrapolate concepts to use as factors.

The law is not clear in determining whether the concepts that are critical to the
initial Risk Appraisal and the risk assessments are different. For example, recital 84
GDPR states that aspects to consider for risk evaluation are origin, nature, partic-
ularity and severity, but does not clarify whether such aspects only relate to risk
assessment or also to Risk Appraisal. In addition, the WP29 is of the opinion that
controllers have a constant obligation to implement measures to manage privacy
risks:

‘The mere fact that the conditions triggering the obligation to carry out DPIA have
not been met does not, however, diminish controllers’ general obligation to implement
measures to appropriately manage risks for the rights and freedoms of DSs. In practice,
this means that controllers must continuously assess the risks created by their processing
activities in order to identify when a type of processing is “likely to result in a high risk
to the rights and freedoms of natural persons”.

The ambiguity of the law on one side, and a more functional approach towards
risk assessment on the other, not only seem to allow for, but to encourage that
risk management be continuously active in parallel to the data processing activity.
In our case, this translates into the chance to use the same tool for Risk Appraisal,
risk assessment and even to check whether there are residual risks after the DPIA
is conducted. Consequently, since our study provides for a more granular analysis
of privacy risks, it can discover issues at earlier stages of the process, and is partially
automated, it can be used repetitively by the data controller to track and manage
changing privacy risks over time.

Extending Risk Rating Methodology for Privacy 29

The GDPR key in relation to DPIAs is article 35 paragraphs 1, 3 and 4, together
with a number of recitals giving insights on what the law considers important to
determine the severity of a risk, namely 71, 75, 76, 84, 89, 91, 92, and 116. By a
combined reading of article 35 and the recitals, the WP29 extrapolated 9 processing
operations as ‘likely to result in a high risk’ for the DS. If two or more of the
following coexist, then the high risk is likely to occur and, thus, a DPIA is in order.

The processing operations are:

1. Personal evaluation or scoring of the DS, including profiling and predicting;
2. Automated decision-making that significantly affects the DS;
3. Systematic monitoring that results in observation, monitoring, or controlling

of DSs;
4. Processing of sensitive or highly personal data;
5. Data processed on a large scale, considering number of DSs, volume and

range of data, duration of activity and geographical extent;
6. Matching or combining data-sets;
7. Vulnerable DSs, when there is a power imbalance between the controller and

the subject who is unable to consent or object to the processing;
8. New technology or innovative use of technology or organizational solutions;
9. Processing prevents a DS to exercise its rights, enter into contracts or make

use of services.

Rather than systematizing privacy risk assessments, the GDPR gives a number
of rules scattered among articles and recitals on how to understand what to con-
sider while evaluating the severity of privacy risks. Similarly do the Guidelines of
the WP29, which only better refine the categories of data processing operations
considered ‘high risk’. Therefore, one has to resort to the privacy engineering aca-
demic scholarship to find attempts to systematize privacy risk assessments that can
help quantifying privacy risk factors.

Methodologically, the difficulty that any expert encounters when estimating risk
values depends on that their factors, namely likelihood and impact, are impossible
to quantify with precision. Only a few scholars have tried to lay the theoretical
foundations for such assessment, and it is in fact from the studies of the building
blocks of privacy risk metrics by Wagner and Boiten 2018 [19] that we start our
exercise of combining the requirements of the GDPR, their interpretations by the
WP29, and OWASP risk rating.

Our aim is to model a privacy risk rating system on the basis of the data process-
ing operations considered ‘high risk’ by the WP29, with the further trust that such
system will guarantee a high level of compliance with GDPR requirements.

In the next sections we put forward our solutions to address the issues of esti-
mating risk likelihood and impact.

30 Privacy Issues Control in Continuous Risk Management

3.3.3 Likelihood

The calculation of likelihood is one that risk methodologies take at best as rough
estimate, mostly because risks may or may not materialize due to a number
of unforeseeable circumstances, as well as their probability of occurrence being
stretched over an uncertain amount of time. Moreover, it is hard to determine com-
plexity, variation and hiding of multiple root causes and consequences associated
to each risk.

The imprecision of likelihood measurements does not put the privacy risk assess-
ment to a halt. In fact, from a functional perspective, risk severity — labelled on
a scale “from low to high” — provides enough data to inform risk management
decisions in compliance with GDPR requirements. Nevertheless, a more accurate
quantification of likelihood is important because the privacy controls that will be
used for the mitigation of privacy threats will most likely decrease risks’ likelihood,
rather than impact [19].

The OWASP likelihood estimation methodology considers two sets of factors,
the first being threat agents and their characteristics, and the second being vulnera-
bilities. Different threat agents, or attackers, are analysed on the basis of their poten-
tial skills, motives, opportunities and size. The idea behind such differentiation is that,
for instance, attackers coming from the inside of an organization may have more
opportunities in terms of access than outside attackers, yet be less skilled in terms
of hacking abilities.

Privacy and security risks are different in nature, but the analysis for determining
their likelihood seems, at first sight, similar. In fact, the determination of likelihood
is only similar for those privacy risks that share analogous characteristics with secu-
rity risks. Consequently, such privacy risks’ likelihood is rated on the basis of how
easily can a vulnerability be discovered and exploited by an identified threat agent,
how many threat agents of the same type know about the vulnerability (i.e., aware-
ness), and what intrusion detection measures are put in place against exploits by
threat agents. Visibly, OWASP’s determination of likelihood is fundamentally con-
nected to threat agents, fact that depends on OWASP being designed on security
attacks.

Regrettably, what OWASP does not consider is that threats may not be caused
by a willing threat agent. In fact, there are privacy risks that lie outside the attacker-
type scheme. As far as data protection is concerned, the controller organization
itself can be considered as an attacker from which the DS shall be protected. Upon
this assumption, many privacy-by-design and minimization concepts are rooted.

Bearing in mind the mentioned difference between ‘traditional’ security and pri-
vacy risk assessments, back to the comparison with OWASP, the threat agents in
the privacy case are still the same individuals as in security, that is organization

Extending Risk Rating Methodology for Privacy 31

employees, executives, etc.; however, for a given risk, they will have different
motives, such as the exploitation of the DSs’ personal data for economic advan-
tage – more a matter of privacy than security [10].

Harms, both for security and privacy, can be caused by a poorly designed pol-
icy within an organization, the careless work of a DPO, or even the use of a badly
designed tool for risk estimation. All these events increase the likelihood of materi-
alization of adverse effects on the rights and freedoms of the DS, which the NIST
defines “problematic data action”, an “operation that a system is performing on
personally identifiable information, that could cause an adverse effect or a problem
for individuals [3].

Accordingly, the likelihood of problematic data actions cannot be quantified
just over the characteristics of what may not be an attack. Therefore, the NIST
suggests that, within a specific context, controllers take DSs’ perceptions of which
data actions they consider problematic through customer demographics, focus
groups, surveys, etc. Once a list of problematic data actions is created, it should
be possible to determine the likelihood of their happening. If, for instance, in
one specific area, DSs have indicated “destruction of personal data due to earth-
quake” as problematic data action, the controller should be able to determine
the likelihood of an earthquake happening. Similarly, if the DSs have identi-
fied “ambiguity of privacy policy wording”, a controller should be able to regis-
ter how many times did such unwanted events happen in its organization. Such
problematic data actions can be monitored and quantified, and with them their
likelihood.

A rating can be created to determine whether data actions that are perceived as
problematic happen in the real world in a fashion that is rare to unlikely (1 to 3),
possible to likely (4 to 6), or almost certain to certain (7 to 9). The mentioned levels
mimic those of OWASP, where the likelihood of a security risk happening is rated
as low (1 to 3), medium (4 to 6) or high (7 to 9).

3.3.4 Impact

In comparison to security, it is the use of OWASP to quantify the impact of privacy
risks on DSs that presents the most substantial differences. Such differences, in
turn, imply equivalent adjustments to the privacy risk rating system. Keeping the
framework of OWASP as baseline, we combine it with the impact factors, categories
and dimensions of Wagner and Boiten, mentioned before. To every impact category
of Wagner and Boiten, namely, harm, scale, sensitivity and expectation, we map the
key aspects of WP29’s processing operations. To appreciate the varying impact of
each of the four categories, we will do a simple exercise of analysing one category
while keeping the other three constant.

32 Privacy Issues Control in Continuous Risk Management

OWASP divides the impacts of an attack into two categories, namely ‘technical
impact’ on application, data, and functions, and ‘business impact’ on the orga-
nization. In regards to technical impacts, OWASP lists the loss of confidentiality,
integrity, availability and accountability as factors. Evidently fundamental to secu-
rity, such factors also have repercussions on privacy so long as the confidential,
incorrupted, available and accountable information are personally identifiable. This
means that, the four technical factors in OWASP for privacy are similar to, but have
a much restricted material scope that excludes all data other than personal.

Harm. In regards to business impacts on the organization, it is crucial to understand
that “only individuals — not agencies can directly experience a privacy problem” [3].
This means that each individual has a different perception of the harm caused by
one problematic data action, and that such perception may also vary depending on
the context.

The most important consequence of the personal nature of impacts is that it
makes them very challenging to quantify consistently. NISTIR 8062 does not
address the problem of quantification of harms directly, but suggests instead that
businesses (or organizations) use costs, such as reputational or legal costs incurred
for legal compliance, as proxies for the quantification of individuals’ impacts. Wag-
ner and Boyten suggest a different solution, that is either using a Likert scale (called
‘perceived harm’) or, as a proxy, the amount of damage that a court would be likely
to grant (called ‘damages awarded’) [19].

Although non-optimal, the measure of harm from the standpoint of a DS is
arguably to average scales similar to Likert’s. An organization willing to understand
the perceived harm to the DS involved in its systems should answer the following
questions: “How much do you think that this problematic privacy action would
harm the DSs related to your system? Not at all to moderately (0 to 3), considerably
to significantly (4 to 6), highly to irreparably (7 to 9)”.

The scales solve the problem of defining and finding a common metrics to harms
of different nature, such as reputational harm, financial harm, etc. We suggest orga-
nizations to conduct a survey with their DSs to get a better understanding of how
much the dreadful event would impact them. The averaging of the Likert scales
comes to solve the problem that harm is felt differently among DSs, and it is thus
impossible to tailor its measuring to each DS involved in a problematic data action.

It is safe to say that all high risk operations can be mapped to the cate-
gory of harm. This is due to that, if no harm were to be inflicted to the DS,
the related risk would not exist. We can take as examples the following cate-
gories: automated decision-making that significantly affects the DS, because it
may bring to discrimination and exclusion, which are harms that are person-
ally felt differently from one DS to another; systematic monitoring, because the

Extending Risk Rating Methodology for Privacy 33

knowledge of being constantly monitored is also perceived differently by differ-
ent DSs, and may affect their behaviour accordingly; vulnerable DS, because the
power imbalance between the controller and the DS is greater when the lat-
ter is a child, an employee, a mentally ill person, an elderly, an asylum seeker,
a patient, or another category of people who are unable to consent or oppose
to processing due to relational or personal circumstances; processing prevents
a DS to exercise its rights, because, e.g., the inability to enter into an insur-
ance contract has different implications depending on the denied person, who
not only may personally perceive the denial differently, but also be objectively
awarded different damages by a court depending on the circumstances of the
case.

Scale. To Wagner and Boiten, between two problematic data actions that affect (a)
the same type of data (e.g., medical data), which belong to (b) equally harmed DSs
(that is, DS who would feel the same personal harm as well as would be awarded
the same amount of damages by a court) with (c) the same expectation of privacy,
the one with the greater impact is that which affects the larger number of people.

Thanks to the processing operation ‘data processed on a large scale’, we are able to
extend the scale category to a second dimension that is, volume of data. As regards
to volume, the processing of more data items has a bigger impact than that of fewer
data items: considering two data-sets, A and B, which contain exactly the same
personal data belonging to the exact same people, the action of replicating multiple
times and in different places data-set A would have a bigger impact on the DSs,
because the chance for unlawful processing is likewise multiplied, or because more
personal data are anyhow more demanding to protect.

Measuring scale is perhaps the easiest quantification among the impacts cate-
gories, because the number of DS involved and the volume of data are all objective,
ordinal numbers that are either known, or so can be through data analytics. It is
possible to use a specific category in OWASP called ‘Privacy Violation’ that com-
bines the dimensions of volume and number of persons by measuring how much
personally identifiable information could be disclosed by one particular process-
ing activity. OWASP lists a number of options, and gives to each option an impact
rating (in brackets), from 0 to 10: one individual (3), hundreds of people (5), thou-
sands of people (7), millions of people (9).

Sensitivity. Keeping other impact categories constant, the more sensitive the pro-
cessed personal data, the higher the impact on the DS. The law gives exceptional
attention to data that, because of their nature, are considered special, namely: data
revealing racial or ethnic origin, political opinions, religious or philosophical beliefs,
or trade union membership; genetic data and biometric data used for the purpose
of uniquely identifying a natural person; data concerning health; data concerning

34 Privacy Issues Control in Continuous Risk Management

a natural person’s sex life or sexual orientation; and data related to criminal convic-
tions or offenses.

Additionally, the WP29 lists a number of data types that should be considered
sensitive because they increase the risk to rights and freedoms [13] (Sensitive data
or data of a highly personal nature): “personal data linked to household and private
activities (such as electronic communications whose confidentiality should be pro-
tected), or because they impact the exercise of a fundamental right (such as location
data whose collection questions the freedom of movement) or because their viola-
tion clearly involves serious impacts in the DS’s daily life (such as financial data that
might be used for payment fraud)”.

Processing operations involving all such data are considered ‘high risk’ but,
unfortunately, there is no way to objectively determine which of these special data
types have a bigger impact on the DS without considering the context and purposes
of use. However, on the one hand, the law gives sensitive data a greater weight
compared to non sensitive personal data and, on the other, it is safe to say that,
between two processing activities of the same volume about the same person, that
which includes the most categories of special data types must have a bigger impact.
For these reasons, Wagner and Boiten suggest to use the number of different data
types as means to measure sensitivity.

One measuring rating for sensitivity could be created by answering the question:
how sensitive is the processed personal data? The options, with related impact rating
in brackets (from 1 to 10), could be: not in the list [13] of sensitive data types (2);
Not in the list, but could be easily used to predict sensitive data (5), Matches 1
category in the list (7), Matches 2 or more categories in the list (10).

Expectation. DSs have reasonable expectations about how their personal data will
be handled by a controller. For instance, when consent is given as legal basis for
processing, a DS should be able to predict what will happen to its data; simi-
larly, a DS managing privacy settings to decide what types of cookies is a web-
site allowed to use, or what information can it share with third parties, has an
expectation on that only those cookies will be stored, and only those specific
information be shared with predetermined third parties. Once the expectation is
set, it is possible to determine to what extent has the actual processing deviated
from it.

Processing operations involving evaluation or scoring of DSs are generally pre-
cursory to profiling, or to some forms of behavioural prediction. They are consid-
ered high risk because often leading to one or more of the other high risk processing
operations, such as discriminating DSs on the basis of their personal vulnerability,
race or other sensitive data, automated decision-making significantly affecting the
DS, or preventing DSs to exercise rights or enter contracts. For this reasons, between

Extending Risk Rating Methodology for Privacy 35

two collections of personal data, the one collection based on which a profile is cre-
ated has a bigger impact on the DS.

Systematic monitoring of DSs with the purposes of observing, monitoring
and controlling has a different impact on each DS. People tend to change their
behaviour according to whether they know of being constantly monitored (so called
‘chilling effect’ [18]), and governments as well as private companies exploit more
or less obtrusive technologies as means of control. When systematic monitoring is
undetectable, personal data may be collected in circumstances where DSs may not
be aware of who is collecting their data, how they will be used, and that personal
data is being collected in the first place. When technologies for systematic monitor-
ing are purposefully non obtrusive, the expectation of privacy of the DSs are very
high and, thus, any type of personal data processing inherently diverges from such
expectation.

Matching or combining data-sets of an unaware DS is an intrinsic violation of
the principle of purpose limitation. Given a specific set of personal data, the DS
should always be able to predict the consequences of a specific type of processing.
The combination of multiple data-sets, thanks to data analytics, can reveal personal
information that were not deemed to be shared within the principal processing, or
even create new personal data [9]; both of the outcomes exceed the DS’s expectation
of privacy.

DSs have expectations on how a technology or a process will manage their per-
sonal data given the information they have on that technology at the time of collec-
tion. Therefore, innovative uses, or new technological or organizational solutions
for data processing exceed such expectations unless the DS was put in the position
to agree on the new means of processing. Given two processing operations on the
same data of the same DS, the one using new technologies or solutions has a bigger
impact.

To quantify the impact of exceeded expectation it is critical to first set a baseline
and, to do so, we welcome Wagner and Boiten’s suggestion to use Solove’s taxonomy
of privacy [17]. Based on the typically American concept of expectation of privacy,
Solove’s taxonomy is useful to determine what a DS expects from a data processing
activity from the moment of collection, to dissemination, through management
and storage. The divergence between the expected and actual means of process-
ing, expected and actual types of created and shared data, and expected and actual
consequences of processing can be measured by counting the number of exceeded
categories of processing (collection, storage, dissemination, etc.) or, more granu-
larly, by referring to the metrics we already used in other impact categories. This
means that, for exceeded expectations on the types of processed data, one can refer
to the higher sensitivity of the personal data, their bigger volume, the more severe
personal or objective harm, and so on.

36 Privacy Issues Control in Continuous Risk Management

Another way to conduct such measuring is by considering that, as a general rule,
the deviation from expectation gets bigger every time that the personal data, col-
lected for a specific purpose, are reprocessed, re-used, re-analyzed, re-combined,
etc. However, an engineer may not be able to count that, as the code may be
implemented by several people. Therefore, we follow Solove’s taxonomy and focus
on expected intrusiveness into DS’s life through the following question: “Con-
sidering that a potential system may collect, analyse, process and disseminate
information, what is, in the eye of a DS, your system expected to do with the
information?”. Collect, analyse, process and disseminate information (2); Only dis-
seminate information (4); Process, without disseminating information (6); Only
collect information (9)”. The idea is, the less the user expects the system to do
with the information, the farther it will be from their expectation if a breach
happens.

3.3.5 Summing up

To assess likelihood, a controller could determine in what fashion do data actions
that are perceived as problematic by a DS happen in the real world. To assess
impact, there are 4 categories to consider: harm, calculated on the controller’s esti-
mation of the damages to its specific categories of DSs; scale, calculated on the
basis of how many individuals are involved in the processing activity; sensitivity,
measured depending on whether the processed data belong to one or more of the
categories identified by the WP29 as “high risk”; and expectations, calculated on
the (un)expected intrusiveness of the data processing into a DS’s private life, from
the perspective of the data controller.

3.4 Connecting Engineer-driven Privacy Practices
with GDPR

Despite the fact that the GDPR is a legal text and LINDDUN is an engineering
method, an attempt can be made to align LINDDUN and the GDPR in order
to bridge the existing gap between legal and technical practices and, thus, address
the demands of privacy engineering community of, first, translating legal jargon of
rights, values and principles into notions and tools that engineers are more familiar
with, such as threat trees, data flow diagrams, etc.; and second, of operationalizing
the GDPR, particularly in the the detection of the privacy threats and the elicitation
of the associated mitigation strategies.

Connecting Engineer-driven Privacy Practices with GDPR 37

3.4.1 Initial Considerations

We start by remarking some initial considerations about the relationship between
LINDDUN and GDPR.

Linkability (L), identifiability (I), detectability (D), and to some extent non-
repudiation (Nr) are all pointing out to the existence of personal data, since the
occurrence of one of these threats could lead to the identification of a natural per-
son. According to the European legislation, the anonymous information does not
require protection for compliance with the principles of data protection. Anony-
mous data do not relate to an identified or identifiable natural person and are there-
fore considered non-personal. However, “in this era of big data, full anonymity is
hard, if not impossible, and even more advanced anonymity techniques cannot
guarantee full anonymity when data are linkable” [8]. The threat of linkability may
necessitate a further analysis since it cannot be established without context whether
the linkability of two items of interest would allow the identification of a natural
person and, thus, qualify as personal data.

Linkability might lead to identifiability (i.e. linking data to an identity).
Once the DS is identified or is identifiable, the information qualifies as personal
data and triggers the applicability of GDPR.

Information disclosure links to arguably all principles of GDPR art. 5. In fact,
when personal data are disclosed to non-authorised parties they are no longer under
the control of the DS nor of the responsibility of the controller/processor, which
means that all the procedural and substantial safeguards provided by art. 5 and
related rights are exposed to risk of violation. Personal data shall be processed in
such a manner that ensures appropriate security, including protection against unau-
thorised or unlawful processing, alteration or accidental loss.

Unawareness is linked to principles related to information requirements, as well
as to the procedural enjoyment of the DS rights. Not only shall the DS be given
all the information about data processing activities, but more importantly she has
to be made aware that any processing of her personal data is happening. Unaware-
ness links to the principle of lawful processing, insofar as the DS cannot consent
to processing she is unaware of; same applies to any other right she is entitled to
enjoy by active personal request (e.g., right to information, access, rectification,
erasure, etc.).

Non-compliance threat could be associated with data protection by design
requirement, accountability obligation under Article 24 GDPR, such as adopting
appropriate technical and organisational measures ensuring the GDPR compliance
or adopting internal privacy policies. For the most part we can speak about gen-
eral GDPR non-compliance resulting in a pyramid of sanctions: from warnings to
sanctions as a last resort.

38 Privacy Issues Control in Continuous Risk Management

In this subsection, we provide the description of each LINDDUN threat cate-
gory and its relation with the GDPR.

3.4.2 Linkability

Linkability means “being able to sufficiently distinguish whether 2 IOI (items of
interest) are linked or not, even without knowing the actual identity of the subject
of the linkable IOI”. Pfitzmann and Hansen give the following definition: “un-
linkability of two or more items of interest (IOIs, e.g., subjects, messages, actions,
etc.) from an attacker’s perspective means that within the system (comprising these
and possibly other items), the attacker cannot sufficiently distinguish whether these
IOIs are related or not” [15]. For instance, unlinkablity of a message sender/recipi-
ent to a message sent or received or unlinkability of a relationship between a sender
and a recipient [15]. Unlinkability is one of prerequisites of anonymity. Neverthe-
less, failing unlinkability will not necessarily eliminate anonymity, but will decrease
its strength [15].

From a legal perspective, linkability means that the failure to hide the link
between different actions, identities or pieces of information could potentially result
in the unexpected personal data processing. For instance, the Article 29 WP pro-
vides for the following example: Titius has these fingerprints, this object has been
touched by someone with these fingerprints and these fingerprints correspond to
Titius, therefore this object has been touched by Titius [14]. Thus, linkability
allowed to establish a link between one piece of information and the individual.
The linking of different pieces of information can result in the misuse of the per-
sonal data by third parties. Such misuse can be caused by the failure to implement
the necessary controls to ensure an appropriate level of protection of personal data
(e.g., failed anonymization). If the controller is not aware of the personal data pro-
cessing operation due to the failed anonymization, it will not be able to comply
with the GDPR data processing principles and, thus, will fail to ensure the respect
for DSs’ rights. Thus, linkability may result in the violation of a number of the
personal data processing principles and of DSs’ rights listed in the GDPR.

Relationship with personal data processing principles. First, the principle of
lawfulness will be violated since there will be no lawful grounds for processing, as
provided in Article 6 of the GDPR. Second, the principle of transparency will not
be complied with, because DS will not be informed about the processing activities
over their data. The DS might not be even aware at all that such personal data have
been collected, used, consulted or otherwise processed and what is the extent of this
processing.

Third, the purpose limitation principle will be also jeopardized since the con-
troller, unable to establish the existence of personal data, will not be able to ensure

Connecting Engineer-driven Privacy Practices with GDPR 39

that the data collection is limited to “specified, explicit and legitimate purposes”
(Article 5(1)(b) GDPR). Moreover, in this case the controller will be collecting
personal data without knowing itself how and when these data will be used, since
in its system the data are not identified as personal.

Moreover, the data minimisation and storage limitation principles will be also
violated since the unawareness about the personal data mere existence will prevent
controllers from establishing whether the same purpose can be achieved with a
narrower amount of personal data and for a shorter retention period.

The inability to establish that the personal data exist in the system or that a third
party can establish links between different pieces of information and, consequently,
guess the existence of such data, will prevent us from ensuring that the data are
accurate and kept up to date. As a result, controllers will not be able to ensure
accuracy at all stages of collecting and processing of personal data and take every
reasonable step to ensure that inaccurate data are erased or rectified without delay.
Thus, contrary to the principle of accuracy, controllers will not make sure that
outdated data are eliminated, or that data are correctly interpreted.

The compliance with the principle of integrity and confidentiality will be also
jeopardized since the processing of the data, deemed as non-personal, will not
be as secure as required for the personal data processing, “including protection
against unauthorised or unlawful processing and against accidental loss, destruction
or damage, using appropriate technical or organisational measures” (Art. 5(1)(f)
GDPR) . This will result in a lack of appropriate controls to prevent unauthorised
access to the personal data as well as implement systemic quality controls in order to
ensure that an appropriate level of security is reached. Moreover, the personal data
will not be validated (e.g. using hashes), which might lead to some negative conse-
quences, such as inability to guarantee its integrity and, consequently, the accuracy
of that data.

According to the principle of accountability, the controller shall be responsible
for, and be able to demonstrate compliance with, principles relating to processing
of personal data and listed in Article 5 of the GDPR. The non-respect for one of
these principles will trigger the accountability obligation.

Relationship with DS rights. Since linkability in many cases is undetected
because the personal data is not recognized as such and is not traceable in the sys-
tem, the controller will not comply with information obligation, as substantiated
in Articles 13-14. Thus, DSs will be deprived of the right to obtain information
about the processing activities over their data, the identity and the contact details
of the controller, the purposes of the processing, the categories of the data and
their recipients, and how the data are being controlled, monitored or used fur-
ther. The information obligation is the essential first step setting out the stage
towards the exercise of other DSs’ rights. Neither right of access, nor right to

40 Privacy Issues Control in Continuous Risk Management

rectification or erasure of personal data, nor restriction or objecting to their pro-
cessing will be possible unless the DS knows the personal data is processed by the
controller.

3.4.3 Identifiability

“Identifiability of a subject from an attacker’s perspective means that the attacker
can sufficiently identify the subject within a set of subjects.” [15] Identity can be
explained and defined as the opposite of anonymity and the opposite of unlinka-
bility [15]. In a positive wording, identifiability enables both to be identifiable as
well as to link IOIs. The less is known about the linking to a subject, the stronger
is the anonymity. The anonymity decreases with a growing linking [15].

The definition of identifiability provided in the technical literature seems not
to be totally in line with the legal understanding of an identifiable natural per-
son. While both the legal and technical literature recognise pseudonimisation as
one of the techniques decreasing the likelihood of identifiability, the GDPR takes
a stricter stance on pseudonimised data. For instance, Recital 26 GDPR sets out
that “pseudonimised personal data, which could be attributed to a natural person
by the use of additional information should be considered to be information on an
identifiable natural person”. And, thus, such data will be treated as personal under
the GDPR, since pseudonym means that it is possible to backtrack to the indi-
vidual and discover individual’s identity. At the same time, the technical literature
admits the flawlessness and high linkability potential of pseudonimised data, but
still seems to treat pseudonimity as a concept in a slight opposition to identifiabil-
ity [8]. “Whereas anonymity and identifiability (or accountability) are the extremes
with respect to linkability to subjects, pseudonymity is the entire field between and
including these extremes” [21].

In addition the concept of identifiability is not that straightforward. For instance,
the GDPR provides a non-exhaustive list of identifiers in Article 4, such as a name,
an identification number, location data, an online identifier or to one or more fac-
tors specific to the physical, physiological, genetic, mental, economic, cultural or
social identity of that natural person. “The natural person is “identifiable” when,
although the person has not been identified yet, it is possible to do it” [14]. But the
likelihood of identifiability should be analysed on a case-by-case basis. For instance,
a very common name will not necessarily allow to single out one particular person
from the whole of a country’s population [14], but can achieve the identification
of a pupil in the classroom. In addition, the name, combined with some additional
information can also allow the identification of someone as a result of this “unique
combination” set. Even a very descriptive information can identify someone, i.e.
someone wearing a red hat at the bus stop at a particular moment.

Connecting Engineer-driven Privacy Practices with GDPR 41

The identifiability is a dynamic process and, while it may not be possible to
identify someone today with all the available means, it may happen at a later stage
due to a technological progress. To determine whether an individual is identifi-
able, Recital 26 GDPR underlines, “account should be taken of all the means
reasonably likely to be used, such as singling out, either by the controller or by
another person to identify the natural person directly or indirect”. The likeli-
hood of identification must be assessed in light of “objective factors, such as the
costs of and the amount of time required for identification, taking into consid-
eration the available technology at the time of the processing and technological
developments”.

Since identifiability is closely related to linkability, it will affect the same GDPR
principles and DSs’ rights.

3.4.4 Non-repudiation

Non-repudiation is the opposite of plausible deniability. Plausible deniability from
an attacker’s perspective means that she cannot prove a user knows, has done or has
said something [21]. While the goal of non-repudiation is to provide irrefutable
evidence concerning the occurrence or non-occurrence of an event, it must be
admitted that some participants may desire that there is no irrefutable evidence con-
cerning a disputed event or action [21]. Wuyts provides for some concrete examples
where non-repudiation is a privacy threat. For instance, e-commerce applications,
where the vendor can later use the signed receipt by the buyer as evidence that
the user received the item. For other applications similarly users may desire plau-
sible deniability in order to ensure that there will be no record to demonstrate the
communication event.

In an attempt to single out the most linkable GDPR principles with non-
repudiation, we came to the conclusion that non-compliance with integrity and
confidentiality requirements might lead to the loss of control over the personal data
and increase the probability that unauthorized parties can access it. Logically, the
controller will be held accountable for such incidents and for lack of appropriate
confidentiality strategies. We consider that right to be forgotten and right to rectifi-
cation are intrinsically linked with plausible deniability, since they allow for ex ante
rectification of the personal data inaccuracies and the possibility to ask for erasure
of those data, which are no longer necessary for the purposes for which it was col-
lected or where such purpose ceases to exist, or where the DS withdraws consent on
which the processing is based. Thus, right to be forgotten and right to rectification
will prevent a priori the third parties from getting access to the information, which
the DS considers as inaccurate or compromising. Nevertheless, as provided in Arti-
cle 17 GDPR some exceptions might apply to the exercise of the right to erasure,

42 Privacy Issues Control in Continuous Risk Management

including the situations where there is a need to strike a right balance between
public interests, freedom of expression and other competing rights and legitimate
interests. In addition, Deng et al. notes with regard to plausible deniability that
it ensures that “an instance of communication between computer systems leaves
behind no unequivocal evidence of its having taken place” [5]. Thus, in relation to
the right to be forgotten and right to rectification, one might ask whether the con-
troller should store requests for personal data erasure or rectification. And would not
such storage be detrimental to plausible deniability? Thus, the right balance should
be again struck between accountability obligations and DSs’ legitimate interests.

In addition, in order to guarantee plausible deniability the data controller may
decide to make the data less accurate to “cover user’s tracks”. While the GDPR
requires to keep the personal data up to date and ensure that inaccurate data
are erased or rectified without delay, plausible deniability may require a different
approach towards accuracy. On one hand, the accuracy of personal data should not
be compromised, on the other hand, making personal data less discernible from the
outside may be necessary for ensuring plausible deniability.

3.4.5 Detectability

“Undetectability of an item of interest (IOI) from an attacker’s perspective means
that the attacker cannot sufficiently distinguish whether it exists or not. If we con-
sider messages as IOIs, this means that messages are not sufficiently discernible
from, e.g., random noise” [15]. The difference between unlinkability and unde-
tectability is the following: in unlinkability, the IOI itself is not protected, but
only its relationship to the subject or other IOIs is protected. For undetectabil-
ity, the IOIs are protected as such [21]. Undetectability consists in, for instance,
hiding the user’s activities or location [21]. Undetectability in the past was referred
as unobservability. However, since unobservability comprises both anonymity and
undetectability, LINDDUN method focuses on undetectability.

Detectability threat is strongly related to the context. It is impossible to establish
without further details whether detectability of one particular activity can lead to
identifiability of an individual. But if we assume that detectability results in an
identifiability of a natural person, the scope of the GDPR will be triggered in a
similar way to linkability and identifiability.

3.4.6 Disclosure of Information

Information Disclosure is the exposure of information to individuals who are not
supposed to have access to it. Principles of integrity and confidentiality will be the
most relevant to guarantee the security of the personal data processing. While Wuyts

Connecting Engineer-driven Privacy Practices with GDPR 43

considers confidentiality as a security property, she highlights also its importance
for preserving privacy properties, such as anonymity and unlinkability [21].

Similarly to linkability, information disclosure will also trigger all personal data
processing related principles, since the data could be further collected, stored by
third parties without specific purpose and without informing the DS. Thus, data
minimisation and storage limitation principles cannot be complied with either.
In addition, the accuracy of the personal data can be also jeopardized.

3.4.7 Unawareness

Unawareness occurs when a user is unaware of the information she is supplying to
the system, and the consequences of her acts of sharing. In the era of digitalisation
users tend to provide excessive information resulting in a loss of control of their
personal information. Thus, awareness aims at ensuring that users are aware of
their personal data and that only the minimum necessary information should be
collected [21].

Unawareness points out to the violation of fairness and transparency require-
ments, since the DS is not informed of all the risks related to the personal data
processing and was not provided all the information required in relation to their
personal data processing. Unawareness also leads to the fact that the DS provides
more personal information than required, and thus, the principles of data minimi-
sation and purpose limitation are violated [21].

3.4.8 Non-compliance

Non-compliance is related to legislation, policy and consent and implies that
the DS should be informed by the controller about the system’s privacy policy
and allows the DS to specify consent [21]. Wuyts gives some examples of non-
compliance, such as incorrect privacy policies provided to the user or when the
policy rules are incorrectly managed by the system administrator [21].

Wuyts notes that policy specifies one or more rules with respect to data pro-
tection and these are general rules determined by the stakeholders of the system;
consent specifies one or more data protection rules and is determined by the user
and only relate to the data regarding this specific user [21]. From a legal perspec-
tive, while the processing of personal data can be based on DS’s consent, lawfulness
of the processing is not limited to consent as a lawful ground for data processing
activities. The GDPR provides for 5 additional legal grounds where the processing
of personal data is not based on consent (Art. 6 GDPR).

When it comes to policy, Wuyts mentions compliance with internal policies of
the company. However, compliance with internal policies of the company will not

44 Privacy Issues Control in Continuous Risk Management

be enough if those policies are not correct, lack detail or are not user friendly with
regard to privacy notices provided. Thus, non-compliance with policies should be
related to broader issues covering also some external requirements and legal frame-
work applying to controllers.

Non-compliance threat, as described in LINDDUN, seems to be too generic
and lacks in precision. Its current wording suggests that all the data protection
related legal frameworks will be triggered. However, eliminating this threat is easier
said than done, since the legal compliance is like shooting at a moving target, as it
continuously changes while you are working on it.

3.5 Privacy-Related Risk Knowledge Base

In this section we briefly describe the knowledge base created in ENACT and
PDP4E projects. This knowledge base is the baseline for the recommendations
provided in the risk management enabler, as well as the main database for the Auto-
mated Vulnerability Detector described in Section 3.2.

The proposed knowledge base is founded on the LINDDUN methodology to
frame privacy-related threats, as well as on STRIDE to cover security issues. We
use the threat trees proposed in LINDDUN as the starting point to populate our
knowledge base. We connect the content of our knowledge base to public con-
tent in the Common Weaknesses Enumeration (CWE) list. Besides, we also lever-
age information from the Common Attack Pattern Enumeration and Classification
(CAPEC) dictionary, through their link from CWE. In addition, our knowledge
base contains information to facilitate the link of its content to known fines and
penalties which data protection authorities within the EU have imposed under the
GDPR.

3.5.1 Definition of Concepts to be Stored in the Knowledge
Base

Figure 3.1 presents the class diagram published in [12] to model risk management
concepts to allow to control privacy risks using DFDs. In particular, we consider
each element of a DFD (Entity, Data Flow, Data Store and Process) a specific asset,
according to LINDDUN methodology. This diagram is inspired by the UML dia-
gram presented by Gupta et al. [8].

Based on this class diagram, our knowledge base will contain the following infor-
mation:

• LINDDUN threat category: Our knowledge base will classify all vulner-
abilities depending on one of the LINDDUN threat categories, namely,

Privacy-Related Risk Knowledge Base 45

Figure 3.1. Class diagram to model risk management concepts using DFDs to describe

system functionality [12].

Linkability, Identifiability, Non-repudiation, Detectability, Disclosure of
information, Unawareness and Non-compliance. Note that LINDDUN is
remarked because of the focus on this chapter on security issues. However,
the knowledge base also uses STRIDE threats to classify privacy and security
issues.

• Type of DFD component: we allow to express vulnerabilities of each of the
four different types of components considered in a DFD, namely, entity, data
flow, data store and process.

• Vulnerability information: We store information about vulnerabilities.
This will include information such as a unique identifier, a short title, a longer
description, etc. As mentioned before we will also need to store the conditions
that are considered for a particular vulnerability to be relevant.

• Threat information: In order to simplify the information, we do not explicitly
store the information about unwanted incidents, but we directly store the
potential threats that may exploit a particular vulnerability.

• Control/Treatment information: we create a collection of controls that can be
used as potential treatments to mitigate risks related to specific vulnerabilities
and threats.

Based on this, in Figure 3.2, we describe the schema that represents the data
schema of the information stored in this knowledge base.

The central concept of the schema is the Vulnerability. Vulnerabilities are con-
nected to threats and threats are connected to controls. These link between these
three types of elements constitutes the backbone of any risk management tool to
provide options related to vulnerabilities and related threats and controls or miti-
gation actions. As explained in [11], vulnerabilities are also related to conditions.
Besides, our knowledge base allows to establish dependencies among conditions.
A certain condition may only make sense if another condition holds. For instance,
let us assume a condition with id c1 that evaluates the following question: “Does

46 Privacy Issues Control in Continuous Risk Management

Figure 3.2. Knowledge base schema.

this entity represent a DS or a proxy to DSs?” From a privacy perspective, if c1 is
true then other conditions may be relevant such as for instance “Does this entity
need to be authenticated to execute this DFD?” or “Are credentials of this entity
shared with any potentially untrustworthy receiver entity?”. So, the relevance of
conditions may depend on the evaluation of other conditions.

Besides, vulnerabilities are related to other vulnerabilities. In reality, inspired by
STRIDE and LINDDUN, we have also created and extended threat trees in the
knowledge base. Therefore, a vulnerability may be decomposed in more detailed
vulnerabilities in a structure shaped like a tree. Relation VulnerabilityDependency
represents the link between vulnerabilities in the tree. Vulnerability relation is also
related to Label relation and CWEitem relation. The first link represents keywords
related to the vulnerabilities that we will need later on to look for cases in the GDPR
Enforcement Tracker.4 This way, we will be able to show actual cases of GDPR
enforcement in cases related to this type of vulnerability. For instance, “Information
disclosure of a process” may be labelled with “Confidentiality” label or vulnerability
named “Data is not encrypted” may be labelled as “Encryption”. The actual map-
ping between cases and labels has been implemented in the PDP4E project. The
second link corresponds to a manual exercise to connect the STRIDE vulnerabili-
ties with CWE items. When the link is established, our enabler uses the url stored

4. www.enforcementtracker.com

www.enforcementtracker.com

IoT Use Cases Description 47

in the database for each CWE item and scans online information to automatically
detect mitigation actions and add them as controls in the Control relation. We also
follow links to the CAPEC database related to attack patterns related with that vul-
nerability and store the information in the Threat relation and potential connected
mitigation actions in the Control relation.

3.6 IoT Use Cases Description

Risk Management enables building trustworthy systems. Especially when consid-
ering SIS because of the way multiple independent devices connect together and
exchange data. To illustrate this, the following section will describe the kind of
challenges found in an IoT use case in terms of privacy risks for a DS. Privacy is
specially challenging in IoT systems, not only because IoT systems rely on technol-
ogy that is still not mature and in continuous evolution, but also because the higher
integration of devices in the physical world makes those devices actual proxies to
DS. For instance, the location of a device may easily act as a mechanism to deduce
the location of a DS. For this purpose, following we describe a use case which is
particularly relevant under this point of view.

3.6.1 Connected Vehicles

In this section we present an IoT-related use case focused on communications
between vehicles and other vehicles or the road infrastructure, also called V2X.
More specifically, the use case focused on the Cooperative Awareness Messages
protocol [6], a part of the Cooperative Intelligent Transportation System (C-ITS)
ecosystem which aims to make the different actors of road infrastructure share infor-
mation on vehicle status, traffic, road works, etc... This protocol specifies how vehi-
cles can share data about their position and status, like speed or heading, with other
vehicles around them. This type of communication is of particular interest for the
development of advanced driver-assistance systems (ADAS) as well as autonomous
vehicle. It allows a vehicle to build a map of its surrounding and track nearby vehi-
cles to anticipate possible incidents.

We chose to consider this system because it highlights a potential loss of control
of data related to a DS, which can lead to significant privacy issues. The V2X net-
work on which the CAM messages are transmitted is a local radio network. Because
this system aims to inform other participants in the neighborhood about the sta-
tus of the vehicle, messages are broadcast to every station capable of listening to the
network. A consequence of broadcasting is that these messages cannot be encrypted
with anything else than a key shared among all participants. As a result, the data

48 Privacy Issues Control in Continuous Risk Management

they carry can effectively be read by any station with access to the network without
control of the sender.

Because the data received from these messages can be used to trigger warnings
to drivers or even collision avoidance systems, it is necessary to ensure that they
come from a reliable source. One of the mechanisms deployed to this end is the
use of cryptographic signatures to authenticate the messages. When signing a mes-
sage, a vehicle uses a pair of cryptographic keys provided by an external authority
trusted by every participant of the network. This signature shows that they have
been authorized to send messages and the receivers will be able to trust the data
they send.

If used in a privately-owned vehicle, this system can raise issues about the privacy
of the owner. First, to provide the information about the vehicle, a lot of parameters
are collected by the equipment which generates those messages. Those parameters
show when and where the vehicle has been driven, but also give information about
the behaviour of the driver, like the speed of the vehicle. If these parameters were
recorded and stored for analysis, they could be used to determine the driving habits
of the owner. On top of that, because of the signature they carry, it can be possible
to classify the messages by which vehicle has sent them. This could make mass
recording of messages a source of personal data leakage if a link between a signature
and specific vehicles can be made.

Relevant attack scenarios

The CAM system could be used in different ways which have consequences on
the privacy of the owner of the vehicle. For example, it could be used to tail a
specific vehicle, or the data collected inside the transmission equipment could be
harvested by a malicious entity. For the purpose of this demonstration, we will use
an attack scenario that leverages the signatures used to authenticate vehicles to track
the behaviour of a specific vehicle. This scenario could be carried out by recording
messages thanks to stations deployed across the road infrastructure. Because the
vehicle is registered to a specific owner, such a record would allow to get the trip
history of the owner and determine his usual destinations. The time at which the
messages are emitted can also be used to build his schedule, the additional informa-
tion on vehicle status like speed, light status, brake indicator can be used to analyse
his driving profile. This data could be, for example, used by insurance companies to
determine fees, or to show that an individual goes regularly to a political meeting.

3.6.2 Practical Implementation Aspects

All the contributions presented in this chapter have been implemented in the lat-
est version of the ENACT Risk Management enabler in collaboration with the

Risk Management Enabler Evaluation 49

PDP4E project. In particular, the enabler includes the extended version of the
OWASP Risk Rating methodology presented in Section 3.3. Specifically, the ques-
tions suggested for impact analysis have been added to the enabler. Besides, the
mapping between LINDDUN threat categories and GDPR data processing prin-
ciples and DS rights have been embedded in the enabler. The enabler has a GDPR-
based dashboard that allows to understand the overall level of risk for each principle
and DS rights, based on the status of each risk detected in the enabler. Finally, the
knowledge base described in 3.5 has been also embedded in the enabler, this enables
not only the automated detection of vulnerabilities, but also benefiting from open
databases such as CWE or CAPEC.

3.7 Risk Management Enabler Evaluation

This section aims to demonstrate the usage of the enabler on the connected vehicle
use case. The enabler is evaluated based on its ability to help the user identify privacy
risks in the use case and suggest meaningful treatments to manage them. The results
are also compared with the way these issues are currently handled to demonstrate
how adequate the enabler with respect to real world constraints.

Figure 3.3 presents the Data Flow Diagram used to support the attack scenario
described in the previous section. It features two main processes: Key Provisioning
and C-ITS App. The Key provisioning process is in charge of generating the key
used by the vehicle to sign the messages it will send. The C-ITS App is collecting
information on the vehicle position and status from the GPS and sensors to generate
the messages, sign them and send them to the CAM network.

In the attack scenario, we consider the possibility of recording messages sent to
the network. This corresponds to the data flow sending signed messages between
the C-ITS process and the CAM Network entity.

The Risk Management enabler allows providing information on the role of these
elements through the questionnaire described in [11] and used to fit the Automated
Vulnerability Detector (AVD), presented in Section 3.2. This questionnaire con-
tains the conditions used to discriminate the relevance of potential vulnerabilities
and it is stored in the knowledge base, as described in Subsection 3.5. Table 3.1
gives some examples of questions that the user has to answer.

In particular, the question related to anonymous communication triggers several
vulnerabilities based on the threat trees defined by LINDDUN. We now analyze
a particular example based on the linkability of a data flow threat tree defined,
presented in Figure 3.4. Those vulnerabilities are presented in Table 3.2. The vul-
nerabilities on linkability based on computer or session ID are both similar to the
potential privacy issue of using the vehicle signature to track it. In this case, the

50 Privacy Issues Control in Continuous Risk Management

Figure 3.3. Data flow diagram of the C-ITS use case.

Table 3.1. Sample questions.

Type of Element Question Answer

Data Flow Is the communication channel wireless? Yes

Are messages sent through this data flow encrypted? No

Is anonymous communication used? No

Entity Does this entity represent a DS or a proxy to DSs? No

Could this entity be or become untrustworthy (now
or in the future)?

Yes

public key used for the signature serves as the ID linking together different mes-
sages, posing a privacy threat as an attacker may be able to continuously monitor
a vehicle, and using other means to finally identify the driver, learn detailed infor-
mation about her location, movements, habits, etc…

From a pure security point of view these privacy vulnerabilities would probably
not be highlighted. On the contrary, they are probably desirable in some way as
being able to trace the origin of a communication helps avoiding security issues
related to repudiation or authentication, which is the reason why this signature has
been added to the messages.

Risk Management Enabler Evaluation 51

Figure 3.4. LINDDUN threat tree for linkability in data flows from https://www.linddun.

org/linkability

Table 3.2. Privacy vulnerabilities detected.

Vulnerability LINDDUN Property Category Associated Risk

Based on
computer ID

Linkability Non-anonymous
Communication
traced to entity

The data flow can be linked on
computer ID and an attacker
could link the ID to a person.

Based on
session ID

Linkability Non-anonymous
Communication
traced to entity

The data flow can be linked on
session ID and an attacker
could link the ID to a person.

Based on
behavioural
patterns

Linkability Non-anonymous
Communication
traced to entity

Packet Counting Attacks,
Timing attacks

If we consider more specifically the risk where data flows share a computer ID
that can be linked to a person, the following controls are proposed by the Risk
Management enabler:

• Use tunneling through a Virtual Private Network (VPN). This control
aims at hiding the actual sender by using the exit point of the VPN as a
public address. The messages can still be linked together but linking to the
sender is harder.

• Randomizing the computer ID. This control uses unpredictable identifiers
to break the link between messages. It may still be possible to link an identifier
to a person but only the messages sent with this identifier will be impacted.

• Use temporary identifiers which can be reused by different individuals
across different periods of time. This control hides the origin of messages

https://www.linddun.org/linkability
https://www.linddun.org/linkability

52 Privacy Issues Control in Continuous Risk Management

among the different participants. Both identifying the sender and linking the
messages together is harder.

Out of these controls, the solution chosen to address this linkability issue in the
described C-ITS use case is to randomly choose identifiers, called pseudonyms, in
a pool assigned to a vehicle. This approach is also described in [7] and corresponds
to the “Randomizing the computer ID” control described before as it makes it
more difficult to link different messages by introducing randomness when choos-
ing the pseudonym. This results in a more complex overall system as these identi-
fiers will also need to be certified by a trusted authority but achieves a compromise
between the security and privacy requirements. As an example, the ETSI Tech-
nical Report[7] also mentions the possibility of exchanging pseudonyms between
vehicles. However, because multiple senders could be associated with the same
pseudonym, this exchange would prevent law enforcement as access to the iden-
tity of a sender would not be available when required in an investigation. As the
pseudonym scheme still allows for limited disclosure of identity, the impact on DSs
is kept to a minimum while still addressing security requirements.

With this example, we demonstrated a full iteration of the risk management
cycle, going from a guided identification of vulnerabilities to the selection of treat-
ments. As shown the privacy risks identified and treatments selected are consistent
with real privacy issues identified and discussed in the context of C-ITS systems.
The knowledge base, being based on CWE and CAPEC, is definitely more suited
for more classic IT systems than C-ITS systems in the way it describes issues
and treatments so issues more specific to the domain considered are likely to be
missed. For example being able to send forged messages could lead to traffic disrup-
tion. However, despite these shortcomings, it is still able to manage fairly specific
issues.

The screenshot from Figure 3.5 shows how the enabler helps its user by offering
direct access to potential risks and controls from the selection of vulnerabilities. This
presentation allows to have a better view of potential consequences of a vulnerabil-
ities, it also saves the engineer’s time by grouping together the relevant information
about a vulnerability and its associated risks.

3.7.1 Analysis of the Extended OWASP Risk Rating
Methodology

In this section, we will evaluate how the modified OWASP risk appraisal method
described before can help having a better view of the impact of a risk on privacy.
This analysis will focus on the impact evaluation part because likelihood evaluation
has not been modified.

Risk Management Enabler Evaluation 53

Figure 3.5. Screenshot from the risk management enabler showing the presentation of

risks and controls.

Taking the example of the Identification based on machine ID risks that was con-
sidered before, with the classic OWASP methodology, the impact would be evalu-
ated as presented in Table 3.3. This results in a technical impact of 3 and a business
impact of 4.75. We choose the maximum of both categories as the final impact
which gives a 4.75 impact score. This corresponds to a Medium rating according
to the scales defined in the OWASP methodology.

Following, Table 3.4 presents the evaluation of the new categories introduced to
measure impact on the DS. By reorganizing the previous score to take into account
that the Privacy violation factor is now in the Privacy impact category and it is
renamed as Scale according to Section 3.3, we get a technical impact of 3, business
impact of 3.33, and privacy impact of 7. The new impact score is 7 which is a High
rating.

As expected, the privacy-oriented factors indicate a significant potential impact
for the privacy of a person using this system. Considering each impact category
separately and using the score of the most important one as the final impact avoids
minimising the contribution of a category if the others are rated low. This is an
important aspect as security and privacy can be at odds with each other and the
apparition of compensation mechanisms where one low-rated aspect could reduce
the overall impact and undermine the proper assessment of risks.

3.7.2 Connecting the use Case with GDPR

Besides, the Risk Management enabler will establish a link with respect to GDPR
principles and DS rights. This is an important benefit as, to our knowledge, it is

54 Privacy Issues Control in Continuous Risk Management

Table 3.3. OWASP evaluation of the identification by machine ID risk.

Factor Value Justification

Technical Impact

Loss of confidentiality 1 The data sent through this data flow is not encrypted
therefore it is not confidential

Loss of integrity 1 The integrity of the data is not affected by this risk

Loss of availability 1 The availability of either this communication or the
CAM service is affected by this risk

Loss of accountability 9 The threat agent can listen passively to the network

Business Impact

Financial damage 1 No financial damage will come directly to the maker of
the system by exploiting the risk.

Reputation damage 5 Exploiting the risk can lead customers to be suspicious
of using the system

Non-compliance 4 The system does not take into account privacy concerns
like anonymity so it does not comply with GDPR, but
it complies with technical specifications which also do
not take into account privacy.

Privacy violation 9 The number of people affected can be measured in the
millions

Table 3.4. Extended OWASP impact evaluation of the identification by machine ID risk.

Factor Value Justification

Harm 7 The information collected can be used to track the movements of
a person. It can also be used to profile its driving style which
could be used by insurance companies.

Sensitivity 5 Knowing where a person went can help deduce a political or
religious affiliation

Expectation 7 The expectation on the CAM system is that messages are only
processed locally by the surrounding vehicles and is not
disseminated beyond the neighbourhood

the first tool that allows to map technical risks and controls with GDPR concepts,
which are established from a legal perspective.

In the particular IoT use case presented above in this section, linkability issues
have been detected related to the particular attack scenario under analysis. How-
ever, it is not straightforward to understand and explain, in front of a potential

Conclusions and Future Work 55

Figure 3.6. Example of dashboard the risk status categorized by GDPR principles and

DS rights.

explicit audit, what are the practical steps that we are considering from a technical
perspective, to protect DS rights and GDPR principles, a part from a vague under-
standing that the mentioned threat may affect confidentiality.

Once the risks are detected and the mitigation actions selected, we can mark risks
as mitigated if their severity was considered high enough and controls are deemed
sufficient to accept the residual risk.

Thanks to the analysis performed in Section 3.4, we are able to connect linka-
bility threats to different related GDPR principles such as lawfulness, transparency,
purpose limitation, data minimisation, storage limitation, accuracy, integrity and
confidentiality or accountability. Also, they can be connected to DS rights such as
rights to be informed, of access, to data portability, to rectification, to be forgot-
ten, to restriction of processing, to object and not to be subject to a decision based
solely on automated processing. Omitting the responsibility for adequately man-
aging these privacy-related risks, as the IoT system architect and developer, goes
against GDPR and may involve harm to users and other DSs as well as penalties.

The Risk Management enabler will help users to control the impact from GDPR
perspective, showing a GDPR-specific dashboard that may specify the level of miti-
gation of risks related to each GDPR principle and DS right. An example is depicted
in Figure 3.6.

3.8 Conclusions and Future Work

In many cases, security and privacy are conflicting requirements. While security has
been largely explored for decades, privacy is a much more immature area. This is

56 Privacy Issues Control in Continuous Risk Management

specially true when we try to control privacy in digital ecosystems based on newer
and evolving technologies such as in the case of IoT systems.

In this chapter we have contributed to eliminate different roadblocks to achieve
a better control of privacy through risk management. One of these is the capacity
to improve risk assessment under the scope of privacy, essential for IoT systems, but
also in general for any type of digital system. A second one is the capacity to connect
the management of technical risks controlled by architects, developers and risks
analysts based on privacy-related threat analysis methodologies like LINDDUN,
with current legal frameworks to protect privacy such as GDPR. In particular, the
level of connectivity between the GDPR concepts and LINDDUN threat categories
is very large since they rely on different vocabulary and it is difficult to establish a
1:1 relationship between concepts. This interdisciplinary exercise is one of the first
attempts to bridge the existing gap between the legal approach towards privacy risks
and engineers approach towards privacy risks.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreements No. 780351 and
No. 787034.

References

[1] Atif Ahmad, Justin Hadgkiss, and Anthonie B Ruighaver. “Incident response
teams–challenges in supporting the organisational security function”. Com-
puters & Security 31.5 (2012), pp. 643–652.

[2] Barry Boehm and Richard Turner. Balancing agility and discipline: A guide for
the perplexed, portable documents. Addison-Wesley Professional, 2003.

[3] Sean Brooks et al. An introduction to privacy engineering and risk management in
federal systems. US Department of Commerce, National Institute of Standards
and Technology, 2017.

[4] Tom DeMarco. “Structure analysis and system specification”. In: Pioneers and
Their Contributions to Software Engineering. Springer, 1979, pp. 255–288.

[5] Mina Deng Deng et al. “A privacy threat analysis framework: support-
ing the elicitation and fulfillment of privacy requirements”. In: 16 (2011),
pp. 3–32.

[6] ETSI EN 302 637-2 V1. 3.1-Intelligent Transport Systems (ITS); Vehicular
Communications; Basic Set of Applications; Part 2: Specification of Cooperative

References 57

Awareness Basic Service, 2014. URL: https://www.etsi.org/deliver/etsi_en/
302600_302699/30263702/01.03.01_30/en_30263702v010301v.pdf .

[7] ETSI TR 103 415 V1.1.1-Intelligent Transport Systems (ITS); Security; Pre-
standardization study on pseudonym change management, 2018. URL: https://
www.etsi.org/deliver/etsi_tr/103400_103499/103415/01.01.01_60/tr_1034
15v010101p. pdf.

[8] Smrati Gupta et al. “Risk-driven framework for decision support in cloud ser-
vice selection”. In: 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. IEEE. 2015, pp. 545–554.

[9] Mireille Hildebrandt. Smart technologies and the end (s) of law: novel entangle-
ments of law and technology. Edward Elgar Publishing, 2015.

[10] Susan Eva Landau. Listening in: Cybersecurity in an insecure age. Yale University
Press, 2017.

[11] Victor Muntés-Mulero et al. “Enabling Continuous Privacy Risk Management
in IoT Systems”. In: Security Risk Management for the Internet of Things: Tech-
nologies and Techniques for IoT Security, Privacy and Data Protection. Edited by
John Soldatos. Now Publishers, 2020.

[12] Victor Muntés-Mulero et al. “Model-driven Evidence-based Privacy Risk Con-
trol in Trustworthy Smart IoT Systems”. In: (2019).

[13] Data Protection Working Party. Guidelines on Data Protection Impact Assess-
ment (DPIA) and determining whether processing is “likely to result in a high
risk” for the purposes of Regulation 2016/679, 2017.

[14] The Article 29 Working Party. “Opinion 4/2007 on the concept of personal
data”. 01248/07/EN WP 136.

[15] Andreas Pfitzmann and Marit Hansen. “A terminology for talking about pri-
vacy by data minimization: Anonymity, unlinkability, undetectability, unob-
servability, pseudonymity, and identity management”. In: (2010).

[16] Adam Shostack. Threat modeling: Designing for security. John Wiley & Sons,
2014.

[17] Daniel J Solove. “A taxonomy of privacy”. In: U. Pa. L. Rev. 154 (2005),
p. 477.

[18] Elizabeth Stoycheff et al. “Privacy and the Panopticon: Online mass surveil-
lance’s deterrence and chilling effects”. In: New media & society 21.3 (2019),
pp. 602–619.

[19] Isabel Wagner and Eerke Boiten. “Privacy risk assessment: from art to science,
by metrics”. In: Data Privacy Management, Cryptocurrencies and Blockchain
Technology. Springer, 2018, pp. 225–241.

[20] Jeff Williams. “Owasp risk rating methodology”. In: Library Cata-
log: owasp.org. url: https:// owasp.org/www-community/OWASP_Risk_Rating_
Methodology (besucht am 05. 06. 2020), (2020).

https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.03.01_30/en_30263702v010301v.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.03.01_30/en_30263702v010301v.pdf
https://www.etsi.org/deliver/etsi_tr/103400_103499/103415/01.01.01_60/tr_103415v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103400_103499/103415/01.01.01_60/tr_103415v010101p.pdf
https://www.etsi.org/deliver/etsi_tr/103400_103499/103415/01.01.01_60/tr_103415v010101p.pdf
https://owasp.org/www-community/OWASP_ Risk_Rating_Methodology
https://owasp.org/www-community/OWASP_ Risk_Rating_Methodology

58 Privacy Issues Control in Continuous Risk Management

[21] Kim Wuyts. “Privacy Threats in Software Architectures”. In: (2015).
[22] Zheng Yan, Peng Zhang, and Athanasios V. Vasilakos. “A survey on trust man-

agement for Internet of Things”. In: Journal of network and computer applica-
tions, 42, (2014), pp. 120–134.

DOI: 10.1561/9781680838251.ch4

Chapter 4

Model-based Continuous
Deployment of SIS

By Nicolas Ferry, Hui Song, Rustem Dautov, Phu Nguyen
and Franck Chauvel

4.1 Introduction

Smart IoT Systems (SIS) are characterized by the presence of software deployed
along the entire IoT-Edge-Cloud continuum. Software defines the behaviour of the
SIS, and such behavior keeps evolving during the entire system life cycle following
the ever-changing system context. This evolution may be realized as self-adaptation
(such as the use of online learning for dynamic adaptation, as elaborated in Chap-
ter 6) or manual reconfiguration of the existing software, but, very often, it requires
releasing new versions of software. On the one hand, this evolution characteristic
of SIS is typically conflicting with the traditional IoT systems vision consisting
of devices with immutable code, once deployed at the factories. There must be
new approaches for supporting the evolution of SIS. DevOps, on the other hand,
promotes the idea of continuously delivering new software updates. Indeed, the
DevOps movement promotes an iterative and incremental approach enabling the
continuous evolution of software systems. Embracing DevOps can support the
continuous evolution of SIS and improve their trustworthiness (e.g., security).
As an evolution of the DevOps movement, DevSecOps [30] promotes security
as an aspect that must be carefully considered in all the development and oper-
ation phases for the continuous evolution of systems to be secure. However, how

59

http://dx.doi.org/10.1561/9781680838251.ch4

60 Model-based Continuous Deployment of SIS

to effectively deploy the software update to the computing continuum is a main
obstacle to enable DevOps or DevSecOps for SIS as it requires the capability of
continuous deployment of software at all levels.

Continuous and automatic software deployment is still an open question for SIS,
especially at the Edge and IoT ends. The state-of-the-art Infrastructure as Code
(IaC) solutions are established on a clear specification about which part of the soft-
ware goes to which types of resources. This is based on the assumption that in
the Cloud it is easy to obtain the exact computing resources as required. However,
this assumption is not valid on the Edge and IoT levels. A typical SIS in produc-
tion often contains hundreds or thousands of heterogeneous and distributed devices
(also known as a fleet of IoT/Edge devices1), each of which has a unique context, while
their connectivity and quality are not always guaranteed. The major challenges are
as follows:

• How to automate the deployment of software on heterogeneous devices pos-
sibly with limited or no direct Internet access?

• How to manage variants of the software which fit different types or contexts
of Edge or IoT devices in the fleet?

• How to ensure the trustworthiness of the deployed software whilst the quality
of the underlying resources are not guaranteed?

In the ENACT project, we focus on the problem of automatic software develop-
ment for SIS, and our research attempts to address these challenges resulted in two
complementary prototype tools for the deployment of SIS at two different layers:
(i) GENESIS targets at the device layer, providing a unified way to deploy software
on heterogeneous devices, including those without direct internet connection; (ii)
DivEnact targets at the fleet layer, allowing developers to deploy software into the
abstract fleet as a whole instead of focusing on concrete individual devices. The
tool maintains the software variants and assigns them automatically to the devices
according to their contexts. With trustworthiness (e.g., security) being a concern
cross-cutting both layers, our tools provide solutions that contribute making the
deployment and the SIS trustworthy. At the device layer, we support the specifi-
cation and deployment of security and privacy mechanisms together with the SIS
software in a DevSecOps fashion. Moreover, we provide the novel rolling deployment
method to guarantee the availability of the deployed software as well as to handle
errors during a deployment, i.e., in addition to the main software, we also deploy a

1. Similar to a fleet of vehicles in a transportation company, a fleet of devices are owned by the same application
providers and distributed to different places or users. Devices in a fleet conduct relatively independent tasks,
whilst coordinated by the application provider from a global perspective.

The State of the Art 61

backup copy which will replace the main one when necessary without delay. At the
fleet level, we maintain the software diversity within the fleet for security purposes.

Model-Driven Engineering (MDE) is the scientific basis underlying both
GENESIS and DivEnact. MDE is a branch of software engineering that aims at
improving the productivity and cost-effectiveness of software development by shift-
ing the paradigm from code-centric to model-centric. It has shown to be effective in
supporting design activities [42]. This approach, which is commonly summarised
as “model once, generate anywhere”, is particularly relevant to tame the complexity
of developing heterogeneous systems such as SIS. Models and modelling languages
as the main artefacts of the development process enable developers to work at a
high level of abstraction by focusing on deployment concerns rather than imple-
mentation details.

This chapter is organized as follows. Section 4.2 provides an overview of the cur-
rent state of the art and of the practice for the automatic deployment of SIS. Sec-
tion 4.3 introduces our solutions for the automatic deployment of SIS, first describ-
ing how they can be integrated in order to form a coherent deployment bundle and
then detailing each our two enablers: GENESIS and DivENACT. Section 4.4 focus
on the support offered by our solutions to ensure the trustworthiness deployment
of SIS. Finally, Section 4.5 draws some conclusions.

4.2 The State of the Art

Software deployment has been evolving from deployment of component-based
commercial desktop software [39], deployment of component-based distributed
applications [25], to deployment on Cloud resources, and more recently deploy-
ment for IoT systems along the entire IoT-Edge-Cloud continuum. Even though
some core concepts from deployment of component-based applications such as
capability, port in [25] can be inherited for deployment on Cloud or IoT resources,
they need to be tailored and customized to fully address the specificities of these
environments.

4.2.1 On the Deployment at the Device Layer

For some years now, multiple tools have been available on the market to support
the deployment and configuration of software systems, e.g., Puppet,2 Chef.3 These
tools were first defined as configuration management tools aiming at automating

2. https://puppet.com/

3. https://www.chef.io/chef/

https://puppet.com/
https://www.chef.io/chef/

62 Model-based Continuous Deployment of SIS

the installation and configuration of software systems on traditional IT infrastruc-
ture. Recently, they have been extended to offer specific support for deployment on
Cloud resources. Meanwhile, new tools emerged and were designed for deployment
of Cloud-based systems or even multi-Cloud systems (i.e., systems deployed across
multiple Clouds from different providers) such as CloudMF [19], OpenTOSCA
[43], Cloudify,4 and Brooklyn.5 Those are tailored to provision and manage virtual
machines or PaaS solutions. In addition, similar tools focus on the management
and orchestration of containers, e.g., Docker Compose,6 Kubernetes.7 As opposed
to hypervisor virtual machines, containers leverage lightweight virtualization tech-
nology, which executes directly on the operating system of the host. As a result,
the container engine shares and exploits a lot of resources offered by the operating
system thus reducing containers’ footprint. These characteristics make container
technologies suitable not only for the Cloud, but also for Edge devices [13].

Besides, a few tools, such as Resin.io (Balena)8 and ioFog,9 are specifically
designed for the IoT. In particular, Resin.io provides mechanisms for (i) the auto-
mated deployment of code on devices, (ii) the management of a fleet of devices,
and (iii) the monitoring of the status of these devices. Resin.io supports the fol-
lowing continuous deployment process. Once the code of the software component
is pushed to the Git server of the Resin.io Cloud, it is built in an environment
that matches the targeted hosting device(s) (e.g., ARM for a Raspberry Pi) and a
Docker image is created before being deployed on the hosting device(s). However,
Resin.io offers limited support for the deployment and management of software
components on tiny devices that cannot host containers.

Regarding the deployment of elements of hardware and software that are to oper-
ate in harmony within a networked system, the Software Communications Archi-
tecture (SCA) [1] and IoT deployment share some basic concepts. The SCA is an
open architecture that specifies a standardized infrastructure for a software-defined
radio (SDR). However, the SDR SCA specification requires an SCA-compliant
system for elements of hardware and software to operate within. In other words,
the SCA is tightly tied to the specific needs for standardizing the development
of SDRs, which is much less heterogeneous than the IoT domain in terms of

4. http://cloudify.co/

5. https://brooklyn.apache.org

6. https://docs.docker.com/compose/

7. https://kubernetes.io

8. https://www.balena.io/

9. https://iofog.org/

http://cloudify.co/
https://brooklyn.apache.org
https://docs.docker.com/compose/
https://kubernetes.io
https://www.balena.io/
https://iofog.org/

The State of the Art 63

communication means, systems of systems, which may span all the layers of Cloud,
Edge, IoT devices. Moreover, the SCA does not have any concept about supporting
the deployment on devices not directly accessible.

In [34], we conducted a systematic literature review (SLR) to systematically study
a set of 17 primary studies of orchestration and deployment specifically for the IoT.
We found a sharp increase in the number of primary studies published in two-
three recent years. We also found that most approaches do not really support the
IoT deployment and orchestration at low-level IoT devices. As for the continuous
deployment tools mentioned before, these approaches mainly focus on the deploy-
ment of software systems over edge and Cloud infrastructures whilst little support
is offered for the IoT space. When this feature is available, it is often assumed that a
specific bootstrap is installed and running on the IoT device. A bootstrap is a basic
executable program on a device, or a run-time environment, which the system in
charge of the deployment rely on (e.g., Docker engine). Approaches such as Calvin
run-time [28], WComp [27], or D-LITE [10], D-NR [24] all rely on their specific
run-time environment where mechanisms such as dynamic component loading or
class loading are typically used. There is a lack of addressing the trustworthy aspects
and advanced support in the deployment and orchestration of the IoT.

To the best of our knowledge, none of the approaches and tools aforementioned
have specifically been designed for supporting deployment over the whole IoT,
Edge, and Cloud infrastructure. In particular, they do not provide support for
deploying software components on IoT devices with no direct or limited access
to internet. In addition, we also identified they do not offer support for including
security concerns as core concepts in the tool and/or language.

4.2.2 On the Deployment at the Fleet Layer

While all these solutions discussed above are focusing on the deployment of a soft-
ware system, they typically do not offer specific support for the management of a
fleet of devices or a fleet of systems, which basically consists in managing large set
of deployments with those solutions.

To the best of our knowledge, there is no effective solution to this fleet deploy-
ment problem. The start-of-the-art Infrastructure as Code (IaC) tools automate
the deployment of one application on one device, or a predefined set of devices,
but lack the support for distributing multiple variants across a large fleet. They
also do not provide sufficient automated support for updating devices with con-
strained resources and limited (or none) Internet connectivity [34]. Such embedded
and microcontroller-enabled devices traditionally have been flashed with ‘one-off ’
firmware not intended to be updated in the future, but they are not often seen
as active contributors to the common pool of shared computing resources, which

64 Model-based Continuous Deployment of SIS

can be iteratively assigned and deployed with updated firmware. This has also led
to the so-called concept of IoT-edge-cloud computing continuum, where comput-
ing and storage tasks are distributed across all three levels. On the other hand, the
mainstream IoT/Edge fleet management platforms offer tools to maintain multi-
ple deployments, the fleet of devices, and their contexts, but developers still need
to manually designate which deployment goes to which device.

Another relevant reference architecture for deploying component-based appli-
cations into heterogeneous distributed target systems is described in [37]. In par-
ticular, the proposed architecture includes the concept of Planner – a component
responsible for matching software requirements to available platform resources and
deciding whether a component is compatible with a device. These existing specifi-
cations remain implementation-agnostic and only describe the high-level concepts.
Software diversity is a new dimension of architecture-level properties, which is both
a result of the hardware heterogeneity and a method toward more secure system.
The fleet deployment approach provides a implementation-level support to our
theoretical approaches towards a more diverse software [29, 45].

The assignment problem (such as assigning software components to the devices
in an IoT fleet) frequently appears in ICT scenarios, where some resources
need to be allocated to available nodes, often taking into consideration various
context-specific characteristics [38, 40]. The research community has come up
with multiple algorithms, ranging in their computational complexity, complete-
ness, preciseness, etc. Many of these approaches treat assignment as a collection of
constraints, which need to be satisfied in order to find an optimal solution in the
given circumstances [2, 7]. The approaches based on Satisfiability Modulo Theories
(SMT) are specifically popular and efficient due to their expressively and rich mod-
elling language [8]. In this respect, a relevant approach that also makes use of SMT
and Z3 Solver is described by Pradhan et al. [41]. The authors introduce orchestra-
tion middleware, which continuously evaluates available resources on Edge nodes
and re-deploys software accordingly. Similar goal is pursued by Vogler et al. in [46],
where authors report on a workload balancer for distributing software components
at the Edge. Multiple approaches specifically focus on the autonomic and wireless
nature of IoT devices and contribute to energy-efficient resource allocation, where
the primary criterion for software deployment is energy efficiency [47]. A main
obstacle for using SMT in practice is the gap between real platforms and the math-
ematical model.

Model-based techniques are often used to support DevOps. Combemale
et al. [12] present an approach to use a continuum of models from design to run-
time to accelerate the DevOps processes in the context of cyber-physical systems.
Artavc et al. [3] uses deployment models on multiple Cloud environments, which
is a promising way to support the smooth transition of software from testing to

Overview of the ENACT Deployment Bundle 65

production environments. Looking at approaches targeted at particular application
domains, Bucchiarone et al. [9] use multi-level modelling to automate the deploy-
ment of gaming systems. In [16, 17], the authors apply model-driven design space
exploration techniques to the automotive domain and demonstrate how different
variants of embedded software are identified as more beneficial in different con-
texts, depending on the optimisation objective and subject to multiple constraints
in place. To solve this optimisation problem, the authors also employ the SMT
techniques and the Z3 solver implementation.

4.3 Overview of the ENACT Deployment Bundle

The ENACT approach to automatic software deployment is implemented as a pro-
totype deployment bundle with two enablers, i.e., GENESIS and DivEnact, support-
ing automatic deployment at the device and fleet layers, respectively.

Figure 4.1 illustrates how the ENACT deployment bundle is used in a typical
SIS. The illustrative SIS has six subsystems, each of which is in charge of a particular
business task, such as serving a user, monitoring a room, etc. Such a subsystem is
usually composed by at least one edge device and several IoT devices such as sensors
and actuators. For the sake of simplicity, we do not show all the IoT devices. These
subsystems form the fleet of this SIS. Since each subsystem contains one main edge
device as the main contact point, or gateway with the back-end service, we also refer
to such fleet as an edge fleet. A fleet is normally distributed, with the edge devices
(together with its IoT devices) serving different customers or tenants, and deployed
in different locations. The developers often maintain one or several edge devices at
their own premises for testing or trial purposes.

Figure 4.1. The ENACT deployment bundle.

66 Model-based Continuous Deployment of SIS

GENESIS supports the automatic deployment within a local subsystem, for exam-
ple the deployment on the devices located on the developers’ side. In such case,
the developers can directly interact with the GENESIS engine hosted on the local
edge device, and use it as the bridge to further deploy required code to the associ-
ated IoT devices. In the development phase, developers define a deployment model
in the GENESIS modelling language specifying which software artefacts should
be deployed onto which devices. Once the development phase completed, in the
deployment phase, the same deployment model, or a slightly modified one, will be
provided to the GENESIS deployment engine, running either on a local machine or
the edge device. The engine will install or update the software artefacts according
to the deployment model.

DivEnact handles a different automatic deployment problem at the fleet level.
When the developers want to release the new version of their application to pro-
duction, they need to deploy software artefacts to all the devices on the users’ sites.
They cannot extend the deployment model to include every device in the fleet,
because such a huge model is not maintainable, especially when the devices keep
joining and exiting the fleet. Instead, since each user has a subsystem similar to the
one at the developers’ side, the developers can provide the deployment models they
developed in the previous phase for the local subsystem to DivEnact. The latter
maintains the list of all subsystems, and sends the deployment model to the devices
before invoking the GENESIS engine running on the edge device of the subsystem,
to eventually deploy the software artefacts according to the deployment model.
Within a fleet, the subsystems have different contexts, such as the device capacity,
the connectivity, the user preferences, etc., and developers need multiple variants of
their software to fit different contexts. DivEnact accepts multiple deployment mod-
els representing different software variants and configurations, coming for a series
of releases, and automatically assign them to the proper subsystems. For the sake
of availability, we recommend running the main service of DivEnact in the Cloud,
with a light-weight DivEnact broker running on edge devices of each subsystem.

Next, we present GENESIS and DivEnact, detailing their main innovations as
well as how they contribute ensuring the trustworthiness of SIS.

4.3.1 GENESIS

GENESIS enables the continuous orchestration and deployment of Smart IoT Sys-
tems throughout the IoT-Edge-Cloud continuum. Given a description of a deploy-
ment topology, GENESIS deploys and configures the needed software components,
by connecting to the hardware (or software) nodes. This topology, the so-called
deployment model, only prescribes what components must be deployed, how a
single component can be deployed, and how they connect to each other. GENESIS

Overview of the ENACT Deployment Bundle 67

automatically derives how to deploy them. Therefore, GENESIS is composed of two
key components: (i) a domain-specific modelling language for specifying deploy-
ment models, and (ii) an execution engine to enact the provisioning, deployment
and adaptation of a SIS. We refer the reader to [20] for more details about the
GENESIS modelling language.

The target user groups of GENESIS are mainly DevOps engineers, software devel-
opers, and software architects. The GENESIS modelling language has been con-
ceived so the deployment model can act as a touch point between development
and operation activities. DevOps teams can use it to deploy either in development,
staging or production environments. It is also worth noting a deployment model
written using the GENESIS modelling language is independent of the underlying
technologies, i.e., GENESIS can deploy components anywhere in the IoT-Edge-
Cloud continuum: from microcontrollers without direct Internet access to virtual
machines running in the Cloud.

The main task of the GENESIS deployment engine is to reconcile two views of
the system: the deployment model given by the user, and the current state of the
running infrastructure, assuming that software components may already be running
on the infrastructure, for example, as a result of a system upgrade. To reconcile
these two views, the GENESIS deployment engine adheres to the “models@runtime”
architectural pattern [6]. It compares these two views and deduces what changes the
adaptation engine must carry out on the running infrastructure to align it with the
prescription, i.e., the deployment model given by the user. After the deployment,
the engine synchronizes the current GENESIS model with the actual deployment
result. Such synchronization will ensure that all the tools in future DevOps cycles
will leverage an up-to-date deployment model.

The GENESIS deployment engine is non-invasive, meaning it does not require
any GENESIS bootstrap or agent running on a target device to deploy software
on it. However, when decided by the DevOps engineer, the GENESIS deployment
engine can deploy on a target device a monitoring agent. This agent is an instance
of netdata10 and provides information about the performance and health status of
a device, including data about software components it hosts.

Finally, the deployment engine can delegate parts of its activities to deployment
agents running in the field. It is not always possible for the GENESIS deployment
engine to directly deploy software on all hosts. For instances, tiny devices do not
always have direct access to the Internet or even the necessary facilities for remote
access (in such case, the access to the Internet is typically granted via a gateway)
or for specific reasons (e.g., security) the deployment of software components can

10. https://github.com/netdata/netdata

https://github.com/netdata/netdata

68 Model-based Continuous Deployment of SIS

only be performed via a local connection (e.g., a physical connection via a serial
port). In such case, the actual deployment of the software on the device has to be
delegated to the gateway locally connected to the device. The GENESIS deployment
agent aims at addressing this issue. It is generated dynamically by GENESIS based on
the artefact to be deployed and its target host, and is implemented as a Node-RED
application. We refer the reader to [20, 21] for more details.

GENESIS comes with a set of predefined component types that can be seamlessly
instantiated in deployment models. In addition, GENESIS embeds a plugin mech-
anism that enables the dynamic loading of new component types. A components
type repository is scanned by the GENESIS execution engine before each deploy-
ment ensuring all available types are loaded before a deployment model is analyzed
and deployed.

4.3.2 DivEnact

While GENESIS focus on the deployment of a single system, DivEnact, the
diversity-oriented fleet deployment enabler, is an implementation of our concept
of fleet deployment. Fleet deployment is an automatic software deployment support
for IoT/Edge applications, which allows developers to deploy software artefacts
onto a fleet of devices as an abstract whole, without concerning about the con-
crete devices and their contexts in the fleet. The automatic fleet deployment tool,
such as DivEnact, will maintain the devices and their contexts in the fleet, the soft-
ware variants, and assign the variants to the appropriate devices depending on their
contexts.

DivEnact utilizes Azure IoT Edge to maintain a list of edge devices, together
with their contexts and run-time status. Developers provide DivEnact with a set of
deployment models (typically GENESIS models), each of which specifies a partic-
ular software artefact, together with the specification about how to configure and
deploy it on an Edge device. In order to facilitate the definition of similar deploy-
ment models, we also introduce the concept of deployment templates and variants.
A template defines the common parts among a number of deployment models, and
a variant further instantiates the template as a deployment model. A common use
case for this is to define a deployment model for a particular software, and then
use variants to represent the different versions of this software. After receiving all
the deployment models, DivEnact automatically assigns them to the list of edge
devices, and enacts the deployment model on each edge devices to finalize the local
deployment.

Figure 4.2 illustrates the technical architecture of the DivEnact tool. The DivE-
nact tool is designed and implemented following the established Model-View-
Controller (MVC) design pattern for client-server application systems.

Overview of the ENACT Deployment Bundle 69

Figure 4.2. The architecture of DivEnact.

The DivEnact knowledge base stores various deployment- and fleet-related
artefacts and is modified by the DivEnact back-end upon the user input received
through the graphical user interface. The modification actions (CRUD – create,
read, update, delete) are implemented on top of standard APIs and libraries. The
model itself is spread across the following three repositories. MongoDB database
is installed locally, along with a DivEnact instance, and serves to store information
about templates and variants unique to each application system. There is a cen-
tralised repository in CouchDB for storing various ENACT artefacts, including
deployment models used by DivEnact. In particular, the CouchDB database stores
previously designed GENESIS deployment models that are to be enacted on low-
level IoT devices as part of the “last mile deployment”. Azure IoT Hub Cloud portal
keeps track of registered devices in the fleet and existing deployments. The infor-
mation obtained from the hub reflects the current state of all the devices through
continuously updated digital twins, as well as deployments applied to these devices
(i.e., software modules currently deployed and running on each device).

The DivEnact graphical user interface remains the main point of interaction
with the user. The main functionality is structured across several functions, i.e., the
editing and maintenance of templates, variants, deployment models, devices and
the assignment.

The back end of the DivEnact tool is implemented in Node.js. It receives REST-
ful requests originating from the user’s graphical interface and manipulates the
data model accordingly. It also interacts with the Azure IoT Hub API to update
some information about the devices in the fleet and trigger deployments. The back

70 Model-based Continuous Deployment of SIS

end also implements the actual diversification functionality (described in the next
subsections) by receiving the input model from the user and passing it to the under-
lying Python script. Upon execution, the calculated solution is passed back to the
user for the final approval.

The main function of the back end is the automatic assignment of deployment
models into the list of devices, considering the constraints, the deployment pref-
erences, the resource optimization, etc. We have implemented two experimental
assignment approaches, using constraint solving and resource assignment theories
as the back end mechanisms. The details of these two approaches can be found in
our recent publications [15, 44].

4.4 Trustworthy Deployment

As explained before, ensuring the trustworthiness of the deployment and of the SIS
is critical and challenging. It is a concern that crosscuts both the device or at fleet
layers. In the following we detail how GENESIS and DivEnact help addressing this
challenge. Our effort is concentrated on three complementary directions, i.e., how
to increase the availability of deployed system; how to automatically deploy the
required security mechanisms together with the application; and how to maintain
the software diversity across the whole fleet.

4.4.1 Deploying Availability Mechanisms

Availability refers to “the ability of the system to mask or repair faults such as the
cumulative service outage period does not exceed a required value over a specified
time interval” [4, p. 174]. Availability is a primary concern for business stakehold-
ers because service interruptions often translate into money loss. The failure of an
electricity meter for instance may affect the capacity of the electricity company to
properly bill its customers.

Availability, as any extra-functional requirements, does not affect the system
function, but rather affects its architecture. Building high-availability systems
requires additional components to detect, repair, or even prevent faults, such as
monitors, watchdogs, replicas, or voting mechanisms to name a few. Availability
tactics are now well documented, so we refer the reader to [4, Chap. 5] for an
introduction.

Many things can go wrong in Smart IoT Systems, including incorrect algo-
rithms, network failure and delays, hardware failure, etc. In the following, we focus
on scheduled outages, which are interruptions of service needed because of soft-
ware upgrade, and internal faults, which are faults that occur because of defects

Trustworthy Deployment 71

in the source code of the components. In other words, the availability support we
present hereafter contributes (i) improving trustworthiness of a SIS by maximis-
ing its availability (by minimizing downtime during upgrades); and (ii) improving
deployment trustworthiness by modifying a system and its deployment only if the
deployment process is successful (i.e., old version of a software is removed only if
the new version is up and running).

We extended GENESIS with the ability to deploy mechanisms that cope with
these two kinds of fault. To mask internal faults, GENESIS deploys multiple
instances of the same service/component (so called replicas) behind a proxy. When
one replica fails, the proxy can query another replica. To mask scheduled outages,
GENESIS provides zero-downtime upgrades. We leverage the same architecture and
deploys the new version (behind the proxy) before to decommission the older one.
That way, there is always a replica available and upgrades do not affect availability.

Modern execution platforms such as Docker or AWS already implement vari-
ous availability mechanisms, and, they have strategies for both scheduled outages
and fault-tolerance. Docker Swarm for instance performs zero-downtime upgrades
by deploying new services instances before to decommission the older ones. The
challenge is that, from a deployment perspective, the availability tactics are tightly
coupled to the underlying execution platform. Changing platform requires chang-
ing the deployment configuration.

To decouple availability from deployment platform, GENESIS captures these
deployment tactics independently of the underlying platform. If the platform
already provides mechanisms (such as Docker Swarm), GENESIS uses those, other-
wise it deploys built-in components to implement the selected tactics. In the fol-
lowing, we illustrate three scenarios that show how GENESIS copes with scheduled
outages and internal faults.

1. Initial Deployment: GENESIS deploys the system following the availability
tactics selected by the user.

2. Internal Fault: A fault occurs in the system and we explain how the mecha-
nisms that GENESIS has deployed deal with that fault, so that it is not visible
to the end-user.

3. Zero-downtime Upgrades: The user requests the deployment of a new ver-
sion of the system and we illustrate how GENESIS leverage the underlying
mechanisms to minimize service disruption.

4.4.1.1 Using built-in components on top of docker

By default, GENESIS does not make any assumption of the capability of the plat-
form where it should install a component. It could be a very fully featured platform
such as Docker Swarm (see Section 4.4.1.2) or simply an operating system offering

72 Model-based Continuous Deployment of SIS

remote access (through SSH, Telnet, etc.). We detail here the later case, that is when
the host is a bare OS. Recall that GENESIS uses two strategies to improve availabil-
ity: Replication to deal with internal faults, and zero-downtime deployment to deal
with scheduled outages. To implement these two strategies, we need three capabil-
ities that are provided by additional components:

• Routing, that is, the capability of redirecting incoming traffic to a selected
replica. Network proxies provide this and in GENESIS, we selected Nginx.

• Error detection, that is, the capability to proactively detect replicas that have
failed (for whatever reasons). We used a watchdog, that is a component that
periodically connects to the replicas and runs a so-called “health check”. The
health check is an application specific behaviour that confirms that the repli-
cas is up and running. It could be requesting a predefined resource using
HTTP, checking the status or OS-level services, or any other “quick-check”.
In GENESIS, we have implemented simple watchdogs using Shell scripts and
CRON tasks.

• Spatial isolation, that is, the capability to deploy multiple instances of the same
application with guarantees that they can access external resources (network
port, files on disks, etc.) without stepping on each other. GENESIS uses con-
tainers (i.e. Docker in the current implementation) to ensure spatial isolation
of replicas, but other container technologies such as LXC apply.

Scenario 1: Initial Deployment

The first step is for GENESIS to ensure that the underlying host offers “spatial iso-
lation” guarantees. To do so, GENESIS first installs Docker as container offer such
guarantees. Figure 4.3 below illustrates how GENESIS interacts with the host to
install docker and to create a “replicable image” of the software stack.

Given a component to deploy, GENESIS first connects to the host through SSH
and installs Docker (Step 1). Then GENESIS configures Docker in remote mode
so that other components (including itself) can access it through the network.
Then, GENESIS creates a new temporary container (by default, using the image
“debian:10-slim”) and installs the underlying software stack. To do this, GENESIS
traverses the underlying software stack and installs all underlying components by
triggering the associated SSH commands into the container (Step 6, 7 and 8). Once
the stack is installed and configured, GENESIS converts it to a separate Docker
image, that it later uses to install multiple replicas (Step 9). Finally, GENESIS destroy
the temporary container. At this stage, GENESIS has enforced spatial isolation, and
can then proceeds with replication and zero-downtime upgrades.

Once Docker is operational and the component to install is available as a
Docker image, GENESIS proceeds with the two remaining capabilities, namely

Trustworthy Deployment 73

Figure 4.3. Automatically converting SSH resources into a Docker image. GeneSIS con-

nects to the host, and execute all SSH commands into a new container, which it then

saves as a new “ready to use” image.

detecting errors and routing as shown on Figure 4.4. First GENESIS installs the
proxy component through Docker (Step 1 and 2). Then, it installs the watchdog
and configures it with the endpoints of the Docker host, the proxy and with the
number of replicas to maintain (Step 2 and 3). For each missing replica, the watch-
dog requests Docker to provision a new instance of the image built in Scenario 1
and then the watchdog start checking the health of each replica periodically (Step
6 and 7). As soon as a replica is detected as healthy, the watchdog registers it to the
proxy (Step 8), which uses it process user requests (Step 9 and 10).

Scenario 2: Fault tolerance

We now turn to the second scenario where one replica fails and we explain on
Figure 4.5 how the watchdog detects and reacts to such a failure. The main mech-
anism to detect failure is the health check. Since a health check is an application-
dependent behaviour, the user must provide it as a script to be executed periodically

74 Model-based Continuous Deployment of SIS

Figure 4.4. Configuring watchdogs and proxies to improve availability.

by the watchdog. GENESIS defines the interface of the health check script as fol-
lows. The health check must accept the endpoint of the replica to query as its sole
input parameter and must output the replica status in return through its exit code:
Zero if the replica is healthy and any other value otherwise. This gives the user the
capability to integrate any application-specific health check logic. The listing below
shows one such health check script based on the HTTP status code, returned by a
service.

1 #!/ bin/bash
2 ENDPOINT="${1} "
3 response=$(curl - -write -out ’%{http_code} ’ - - s i l ent - -output /dev/ nul l "

${ENDPOINT}")
4 i f ["${response}" != 200]
5 then
6 exit 1
7 f i

Listing 4.1. A Sample health-check script.

Trustworthy Deployment 75

Figure 4.5. Masking internal faults to improve availability.

Note that this architecture can only detect replicas’ failure as fast as the watchdog
waits between two health checks. Besides, for the failure to be invisible to the user,
there must at least two replicas, for the proxy to switch between them as soon as a
delegation fails. Finally, transient phenomena such as network delays may be mis-
taken for replica failures and lead to unnecessary starts and stops of the container.

Scenario 3: Zero-downtime Upgrades

Finally, GENESIS leverages these proxy and watchdog to guarantee zero-downtime
upgrades, as shown on Figure 4.6.

When the user requests an upgrade, that is the deployment of a new version,
GENESIS first builds a new docker image of the software stack, including this new
version. We described this process in Figure 15. Once this new image is ready,
GENESIS request the watchdog to perform the upgrade (Step 2). The watchdog
thus provisions new instance of the new version (Steps 3 and 4) and, once these
new replicas are operational, the watchdog registers them to the proxy (Steps 4, 5, 6
and 7). At that stage, incoming requests from the user are still delegated to the older
version (Steps 8 and 9). Only once all replicas of the new version is operational, then
the watchdog starts to decommission the older versions (Steps 10 and 11).

76 Model-based Continuous Deployment of SIS

Figure 4.6. Using proxy and watchdog to guarantee zero-downtime upgrades.

4.4.1.2 Using docker swarm

In many cases, developers do not choose the platform on which their software runs:
It may result from organizations’ policies, customer requirements, etc. Platform
such as Kubernetes, Docker Swarm or Rancher for instance all implement availabil-
ity tactics, including replication and zero-downtime releases. Should the user use
such platform, GENESIS can exploit these native features to ensure fault-tolerance
and zero-downtime upgrades. Docker swarm already implements routing among
multiple replicas and fault detection. GENESIS therefore delegates these features to
Docker Swarm. We briefly example how GENESIS handles our three scenarios using
Docker Swarm.

Scenario 1: Initial deployment

This step is the simplest as we assume here that the host already runs Docker Swarm
and that it therefore already guarantees spatial isolation. Here, GENESIS simply
requests Docker Swarm to deploy the given number of replicas of a given Docker
image.

Trustworthy Deployment 77

Scenario 2: Fault tolerance

This is also fully transparent from the GENESIS standpoint. When GENESIS del-
egates the deployment to Docker Swarm it specifies the number of replicas and
the health check script to be used to detect faults. It is docker swarm that period-
ically checks the replicas status, provisions new ones if some have failed and route
incoming requests accordingly.

Scenario 3: Zero-downtime redeployment

Further Docker Swarm also offers various strategies to upgrade a service (i.e., the
set of replicas in Docker Swarm parlance). Among many options, Docker Swarm
lets the user specify the “update order”. If this order is “stop-first”, then Docker
Swarm first stops all the replicas of the older version, and only then starts pro-
visioning replica for the new version. By contrast, if the update-order is “start-
first”, then Docker Swarm provisions all new replicas before to decommissions, as
GENESIS would do without Docker Swarm (see Figure 18). This “start-first” option
let Docker Swarm minimize service interruptions.

4.4.1.3 Limitations

The support for availability tactics in GENESIS is limited to Docker platform,
although the general principle applies regardless of the underlying technology and
other can extend GENESIS and support other technologies. In addition, there are
other types of faults that the current tactics cannot deal with. Hardware failure for
instance would take down the whole host and therefore all the replicas at once.
To tackle hardware failure, replication would have encompassed hardware, but
this goes beyond GENESIS whose mission is to provide platform agnostic deploy-
ment. Nevertheless, using the ENACT framework, the Root Cause Analysis enabler
can be used to monitor and identify such failures and DevOps engineers can use
GENESIS to migrate the software components on a new host, benefiting from
its platform independence. Programming faults are also not dealt with. Because
GENESIS is oblivious to the inner working of the components it deploys, all repli-
cas are similar and fail in a similar manner. For instance, if a defect in the code
lead to a fault of one replica (say because of invalid user input), then all replicas
will exhibit this fault. Only diversification techniques [5] could help having repli-
cas whose behaviours differ from one another, and that exhibit different failure
profiles.

Improving availability from a pure deployment perspective, as GENESIS pro-
vides, is bound to stateless components that can be easily replicated. Replicating
a component that persists state requires some modification of its code. Either we
separate its state from its application logic (using a local database, for instance) and

78 Model-based Continuous Deployment of SIS

we ensure that all replica can access this single data source. Alternatively, each repli-
cas also have its own local copy but we must now define a strategy to ensure the
correct and timely synchronization of the multiple copies of the state, and possible
conflicts. Modern database engines offer such mechanisms and would need to be
integrated with GeneSIS in an ad-hoc manner. Edge platforms however often only
pass data further on to Cloud services, and are thus likely to be stateless, or can
simply leverage a local database as a cache, a strategy that the GeneSIS availability
mechanisms handles.

Finally, on an Edge platform there are resources that cannot be replicated and
that would require further investigation. A serial link for instance cannot be shared
between replicas and, in this case, dedicated, application-specific logic must be in
place to ensure consistent behaviour between all the replicas.

4.4.2 GENESIS for Continuous Deployment Supporting
DevSecOps

GENESIS empowers a DevOps team to cope with security and privacy concerns of
SIS as it natively offers support for including, as part of the deployment models,
concepts to express security and privacy requirements and for the automatic deploy-
ment of the associated security mechanisms [20]. More importantly, GENESIS
enables the continuous enhancement of security controls in a DevSecOps cycle to
keep security mechanisms up-to-date and well-aligned with the evolution of SIS,
as well as addressing IoT security risks that are always evolving.

In this sub-section, we present the latest development of GENESIS for better sup-
porting the continuous deployment and enhancement of security controls that can
refine or override the associated (default) security and privacy mechanisms of the
IoT platforms such as SMOOL [9] or FIWARE [11]. Such security mechanisms are
further elaborated in Chapter 7. More specifically, GENESIS provides a generic way
for a DevOps team to extend such existing security mechanisms with other (third-
party) security mechanisms to provide enhanced security controls in a DevSecOps
fashion.

4.4.2.1 GENESIS for the specification and deployment of security

components

To better support DevSecOps, GENESIS promotes specifying security mecha-
nisms as explicit elements in the deployment model, instead of hidden (and thus
tightly coupled) in the source code, so that developers can see and change the
security mechanisms in the deployment model level. This includes specifying
security requirements and capabilities, and supporting the deployment of secu-
rity mechanisms as components reusable in different scenarios. Compared to the

Trustworthy Deployment 79

previous GENESIS version reported in [21], we have built a new library of off-the-
shelf security components that can be selected for instantiating in the deployment
model. More importantly, we provide DevOps teams with mechanisms to configure
security components and inject fine-grained security policies into deployment com-
ponents (without modifying their business logic), enabling their seamless integra-
tion with third party security mechanisms (services, libraries, etc.). These supports
can ease the development, integration, and deployment of SIS with continuously
enhanced security mechanisms (see Section 4.4.2.2).

GENESIS supports the deployment of security components as any other software
components in the way that their deployment and configuration can be defined via
exposed APIs and configuration files. A security component to be deployed together
with an IoT application can be declared in GENESIS with “security capabilities” in
a provided port. A required port of a software component that requires a match-
ing security capability can be bound with the provided port of the security com-
ponent that provides such security capability. Before enacting a deployment, the
GENESIS deployment engine validates the correctness of the provided deployment
model. In particular, it ensures that the required “security capabilities” match the
provided ones.

GENESIS allows specifying the deployment of security mechanisms and policies
built on top of IoT platforms. We present here its application to the SMOOL IoT
platform, which is used in our ENACT project. Similar approach can be applied
to other IoT platforms. At the development phase (as well as at the deployment
phase presented below), GENESIS provides the support to relieve developers from
manually specifying and maintaining security monitoring and control mechanisms
in the code of a SMOOL client. Instead, a developer can define its own SMOOL
client, focusing on its business logic. We integrated the SMOOL client wizard with
ThingML11. As a result, a single Eclipse IDE can be used to generate the code of
a SMOOL client, which can then be directly used as part of a ThingML program.
The proper Maven manifests are automatically created facilitating the building and
release of the desired application. This means that the DevOps team can quickly
develop the business logic of the SIS based on the SMOOL platform, including nec-
essary security mechanisms. DevOps teams can define SMOOL clients that lever-
age built-in security properties to check and enforce security concepts on messages
requiring security controls.

The SMOOL’s default security enforcement can be done with the
SMOOL clients built-in security metadata checker to verify messages exchanged

11. https://github.com/TelluIoT/ThingML

https://github.com/TelluIoT/ThingML

80 Model-based Continuous Deployment of SIS

among them. In cases where a deeper control is needed, a specialised security meta-
data checker can be included in SMOOL clients, with additional privileges to watch
and process the security metadata in messages exchanged, in the same way it is
done with business logic concepts such as sensed temperature or gas values. This
provides a fine-grained control on critical messages that may have a significant secu-
rity impact in the IoT system such as orders to actuators. More precisely, a client
code can conduct security checks based on policies to be fulfilled by ontology con-
cepts by using any of these options: (i) the default security metadata checker (for
minimal configuration), (ii) a custom security metadata checker implemented in
the development phase (for full control of security), and (iii) a custom security
metadata checker for integration with external security services. Whatever security
options, GENESIS provides support for easily configuring the security mechanisms
and how they should be integrated and deployed with the SIS. Thanks to ThingML,
GENESIS provides advanced support for the three options.

To support the first option, GENESIS enables the DevOps team to specify explic-
itly the default security policy that must be enforced by the Security checker. To
support the second option, where the DevOps team can implement its own ad-hoc
security checker, GENESIS provides the means to automatically inject this security
checker into the code of the component to be deployed and to rebuild the compo-
nent automatically. More precisely, when deploying this security component, the
GENESIS deployment engine injects the security policy into the ThingML code of
the SMOOL client. This code injection is done before GENESIS triggers the com-
pilation of this code to generate the actual implementation of the SMOOL client
with the corresponding security policy.

To support the third option, GENESIS not only injects the security checker code
that integrates with a third party security solution (e.g., Casbin12 or the Context-
aware Access Control mechanism [23], or a “gatekeeper” in [33]) but it can also
deploy the latter. At the deployment phase, a SMOOL client can be deployed by
GENESIS as any other software components. Once the SMOOL client has been
developed, the developer can specify how to deploy it together with the security and
monitoring mechanisms that should apply to its SMOOL client. GENESIS will then
inject within the SMOOL client the necessary code to perform the security checks
before actually deploying it. To do so, we created a generic security component
that represents a SMOOL client as a deployable artefact. This client can follow any
of the security check options discussed above and is implemented with ThingML
code, which integrates (i) the necessary SMOOL libraries, (ii) the SMOOL client
business logic, (iii) and the security logic. The main rationale behind this choice is

12. https://casbin.org/

https://casbin.org/

Trustworthy Deployment 81

the following. ThingML offers an extra abstraction layer that provides the ability to
wrap the code and dependencies that compose a SMOOL client and to inject into
it the necessary security code. In addition, it provides GENESIS with a standard and
platform-independent procedure to generate, compile, configure, and deploy the
implementation of the security mechanisms. A similar approach could be applied
to other IoT platforms. In this way, GENESIS allows DevOps teams to reconfigure
and update security mechanisms by design, in line with the evolution of IoT appli-
cations and the development of security and privacy risks. In the next section, we
present more details on the DevSecOps support.

4.4.2.2 The DevSecOps support for the continuous enhancement

of security mechanisms

SIS typically expose a broad attack surface and their security must not be an
afterthought [22]. The ability to continuously evolve and adapt these systems to
their dynamic environment is decisive to ensure and increase their trustworthiness,
quality, and user experience. This includes security mechanisms, which must evolve
along with the SIS, continuously fixing security defects and dealing with new secu-
rity threats [32, 35]. Following the DevSecOps principles [30], there is an urgent
need for supporting the continuous deployment of SIS, including security mecha-
nisms, over IoT, Edge, and Cloud infrastructures [1]. The DevOps movement pro-
motes an iterative and incremental approach enabling the continuous evolution of
software systems. As an evolution of the DevOps movement, DevSecOps promotes
security as an aspect that must be carefully considered in all the development and
operation phases for the continuous evolution of systems to be secure.

In this section, we present how GENESIS can enable the continuous enhance-
ment of security controls in a DevSecOps cycle: from development to operation.
GENESIS also supports the adaptation of the system having enhanced security
mechanisms or updated security policies with minimal impact on the already deliv-
ered and under operation. Our approach [18, 20, 21] for the continuous deploy-
ment of SIS with enhanced security mechanisms can serve the DevOps team in
both adaptation and evolution of the SIS. First, GENESIS supports for evolving SIS
with updated security mechanisms according to a new development cycle. Second,
GENESIS supports for adapting security enforcement to improve how the IoT sys-
tem operates securely. This DevSecOps support leverages the GENESIS ’ necessary
mechanisms, interfaces, and abstractions to dynamically adapt the deployment and
configuration of a SIS as presented earlier. We elaborate more on the two kinds of
DevSecOps support in the following paragraphs.

First, GENESIS supports for evolving SIS with updated security mechanisms
according to a new development cycle. In this line of adaptation, the SIS in opera-
tion is evolving with new business logic components or even new physical devices

82 Model-based Continuous Deployment of SIS

Figure 4.7. An initial version of a smart home system (deployment view).

being added resulting in the need for enhancing security mechanisms accordingly.
We demonstrate this support using a smart home simulation called HomeIO.13

More details on the deployment demo using the HomeIO simulation can be found
in this video.14 In the smart home system, there are IoT applications (e.g., UserCom-
fortApp) that get access to sensors’ data (e.g., temperature) from the smart home to
make decisions and send commands to control the actuators, e.g., window blinds.
The applications interact with the smart home devices and services via the SMOOL
platform (in the middle of Fig. 4.7). GENESIS can easily support for the deploy-
ment of components that are either built on top of the existing IoT platforms like
SMOOL or are independent of any IoT platform because of its generic approach for
specifying deployment components. However, to make GENESIS even more useful
in practice, we have developed GENESIS to ease the integration of IoT platform-
specific components (e.g., SMOOL clients) and IoT platform-independent com-
ponents (e.g., third-party security mechanisms like Casbin presented below) from
development to operation.

In the initial version of the smart home system, there is the EnergyEfficiency appli-
cation, which gets access to sensors’ data to make decisions for energy efficiency
and send commands to control the actuators, e.g., window blinds. In particular,
it maximizes the exploitation of daylights and regulates the in-door temperature
whilst minimizing the energy consumption. If the room is bright because of day-
light, it will switch off the LED-lights, and vice versa. On the other hand, if the
room temperature is high, the application may need to close the window blinds to

13. https://realgames.co/home-io/

14. https://youtu.be/yQ9XYWu-EZM

https://realgames.co/home-io/
https://youtu.be/yQ9XYWu-EZM

Trustworthy Deployment 83

prevent sunlight heating the room. The EnergyEfficiency application interacts with
the smart home devices via the SMOOL platform. There are two notable secu-
rity mechanisms associated in this first version of the smart home. The first one
is a secure API gateway (Express Gateway15) that allows secure remote API access
to the EnergyEfficiency application. The second one is a SecurityEnforcer by default
of the SMOOL middleware that enforcing the security check for the data passing
through, e.g., only allowing genuine actuation commands to be sent to the actu-
ators of the smart home. The latest version of GENESIS has provided a built-in
support to ease the specification of the Express API Gateway in the deployment
model. Adding a new instance of Express API Gateway is easy. The remaining
work for the DevOps team is to specify the configuration files of the API gate-
way, which define how the API of the EnergyEfficiency application can be securely
accessed.

In IoT platforms like SMOOL, there are often default security enforcements.
For example, the actuation orders must be checked before they are actually sent
to the actuators. This check (embedded in the SMOOL2HOMEIO component,
Fig. 4.7) makes sure only genuine actuation commands can be sent to the actuators.
In other words, the SMOOL platform allows to check for actuation commands
with valid security tokens. All the IoT apps must send actuation commands with
valid security tokens.

However, during the evolution of the smart building system, new applications
can be added, and new physical devices can also be added. In the subsequent devel-
opment cycle, another application called UserComfortApp has been added to the
smart home system. Moreover, the smart home system can also have new IoT
devices such as AirQualitySensor or SmartDisplay as shown in Fig. 4.8.

New security requirements come up because the smart building system must
control which apps can access which actuators. This means that more fine-grained
security control must be introduced, which may not be available in the IoT plat-
form. GENESIS should support for seamlessly integrating new (third-party) security
mechanisms into the IoT platforms. In this new development cycle, not only that
the secure API gateway must be updated with a new configuration file, but also the
DevOps team needs to introduce a new security mechanism that can enhance the
fine-grained control of how different applications can access to the sensors and
actuators of the smart home system. GENESIS has a generic support for seamlessly
integrating and deploying any advanced security mechanism together with the IoT
platform in use, e.g., the SMOOL platform. More specifically, in this example,
the DevOps team develop an access control mechanism based on an open source

15. https://www.express-gateway.io/

https://www.express-gateway.io/

84 Model-based Continuous Deployment of SIS

Figure 4.8. New applications and new IoT devices can be added in a development cycle.

Figure 4.9. An enhanced security control has been added.

framework called jCasbin,16 and then specify the integration point with the IoT
platform in use (with GENESIS support, see Fig. 4.9). During the deployment pro-
cess, GENESIS compiles the integration code before orchestrating the deployment
of the integrated components.

To enable such DevSecOps adaptation support, GENESIS not only provides the
modelling language embedded in a web UI for specifying the components of such
IoT platforms, but also the reconfiguration and rebuild of these components (for
integrating new security mechanisms with the IoT platform) before deployment
(for adaptation or for a new development cycle). For example, in the SMOOL

16. https://casbin.org/

https://casbin.org/

Trustworthy Deployment 85

Figure 4.10. An enhanced security control has been added.

platform, each SMOOL producer or consumer is associated with a security checker
for checking the security key of sensor data or actuation commands. GENESIS allows
updating the configuration of the security checker (e.g., by injecting new config-
uration to overwrite the default one), and automatically rebuilding the SMOOL
producer or consumer including the reconfigured security checker. By doing so,
GENESIS enables the DevOps team to make reconfiguration or redevelopment and
redeployment easily for the evolution of SMOOL producers or consumers includ-
ing security checkers. Figure 4.10 shows an example of the GENESIS’s UI for extend-
ing the SecurityChecker (in SMOOL2HOMEIO) to become a security enforcement
point of the external access control service. Thanks to ThingML support within
GENESIS, the extended SecurityChecker is compiled in the SMOOL2HOMEIO
component for a new version of SMOOL2HOMEIO to be deployed that works
as a security enforcement point of the external access control service.

This approach is what we call the DevSecOps adaptation support for the co-
evolution of business logic components and the security mechanisms. This means

86 Model-based Continuous Deployment of SIS

that when new business logic components require security mechanisms to evolve,
GENESIS can support for the adaptation, even including the integration of the IoT
platform with other (third-party) security mechanisms.

After the successful deployment, GENESIS allows dynamic adaptations that can
be triggered at any point, manually or automatically for adapting security enforce-
ment to improve how the IoT system operates securely. In this line of adaptation,
new security policies or configurations can be updated dynamically for the security
mechanisms that are in operation. For example, the role-based access control policy
can be easily updated according to new requirements. The trigger of such adapta-
tion can be manually, but also can be automatically from a risk assessment process
or after a reasoning process of actuation conflict management.

In summary, with the support from GENESIS, the DevOps team can develop
a new version of the smart home system together with enhanced security mecha-
nisms according to its evolution. The deployment of this new development cycle
can be triggered manually from GENESIS’s GUI. After the successful deployment,
GENESIS also allows dynamic adaptations that can be triggered at any point, man-
ually or automatically for adapting security enforcement to improve how the IoT
system operates securely. In both ways presented so far, GENESIS allows DevSecOps
teams to reconfigure and update security mechanisms by design, in line with the
evolution of IoT applications and the development of security and privacy risks.

It is important to note that in this chapter we have not addressed the security of
the build and deployment pipeline itself. The security of this pipeline is critical to
protect the integrity of the code and the systems being deployed. For the production
environment, GENESIS must adhere to the secure deployment practice.17 One of
the main principles in secure deployment is to support automatic testing as part of
the deployments to gain confidence in the security of the code (see Section 8.2 for
Test and Simulation).

4.4.3 Software Diversity Within IoT Fleet

Software diversity in an IoT fleet, i.e., deploying variants of software on different
devices, creates a moving target for malicious attacks, and therefore improves the
overall security of the system. The DivEnact tool assigns the available variants to
the fleet of devices and maintains the balance between the variants. The remaining
questions is how to obtain functionally-equivalent variants.

The ENACT IoT diversity-by-design tool takes as input a single deployment
or behaviour specification and generates multiple diverse specifications. Within a
DevOps context, it is important and necessary to keep the diversity generation fully

17. https://owaspsamm.org/model/implementation/secure-deployment/

https://owaspsamm.org/model/implementation/secure-deployment/

Trustworthy Deployment 87

automatic, instead of relying on developer’s manual effort to diversify systems (such
as the traditional N-Version Programming approach). Developers can focus on a
single line of code to achieve frequent iteration, and the diversification tool, as part
of automatic building step, will generate diversified versions automatically [14].

Automated diversity is a promising means of mitigating the consequences of a
security breach. However, current automated diversity techniques operate on indi-
vidual processes, leveraging mechanisms available at the lower levels of the software
stack (in operating systems and compilers), yielding a limited amount of diver-
sity. In this section, we present a novel approach for the automated synthesis of
diversified protocols between processes. This approach builds on (i) abstraction,
where the original protocol is modelled by a set of communicating state machines,
(ii) automated synthesis, applying mutation operators onto those protocols, which
produces semantically-equivalent, yet phenotypically-different protocols, and (iii)
automated implementation of these protocols through code generation.

The tool is currently in an experimental stage. Automatic diversity of communi-
cation protocols is a novel technology, yet without convincing implementation and
applications, to the best of our knowledge. Therefore, our focus is currently on the
theoretical feasibility of the idea and the experimental evaluation of its effects. In
the next step, we will improve the user experience of the tool and its applicability
to practical scenarios.

Mass-produced software applications denote clonal applications, with thousands
or millions of identical siblings. Think of, for example, a popular mobile application
installed on millions of mobile phones, or software embedded into a widely-used
connected device. To mitigate the risks of such large mono-cultures, diversity is
typically automatically introduced either in a generic way, typically at the OS level,
oblivious of the actual logic and semantics of the software, or in some very specific
places, typically low-level libraries reused across applications, in order to improve
security. This leaves most of the actual business logic unchanged, unaffected by
the diversity. In addition, diversity often affects individual processes, but leaves the
communication between processes intact.

A more holistic approach to diversity is challenging. Consider a typical client-
server application, where multiple clients interact with a server, and where each
client has a different implementation, and a different way of communicating with
the server. This would significantly hinder a hacker, be it a human being or a
machine, when attempting to generalize an attack through all possible protocols.
This would make large-scale exploits a time-consuming and costly endeavour for
hackers. Yet, the engineering, e.g., the production, maintenance and integration,
of such levels of diversity raises several challenges. How to ensure that each imple-
mentation still behaves as specified? How to ensure that each client is still able
to communicate with the server, without information loss or distortion? How to

88 Model-based Continuous Deployment of SIS

ensure that different clients are fundamentally (i.e., sufficiently) different, and not
merely cosmetically different? How to keep the development and operation costs
of a diversified system significantly lower than the cost of mitigating large scale
attacks?

We have seen that abstraction, synthesis and automated implementation can
yield a convincing solution to introduce a wide diversity into protocols, for example
between a device and a gateway, or a web/mobile app and a server. This approach:

• abstracts protocols into (i) a structural view describing the messages to be
exchanged, and (ii) a behavioral view based on state machines describing how
those messages are exchanged between the participants, including sequencing
and timing.

• combines and applies a number of atomic mutations to this protocol model,
yielding a large number of diversified protocols, which operate differently,
still with the same semantics.

• automatically implements protocols, diversified or not, by generating fully
operational code targeting C, Go, Java and JavaScript, able to run on a wide
range of platforms.

Our empirical assessment indicated that this approach implies a reasonable over-
head in terms of execution time, memory consumption and bandwidth, fully com-
patible with the requirements of mass-produced software. We also showed that this
approach could generate a significant amount of diversity. Our assumption was that
this diversity would contribute to the diversity-stability hypothesis, i.e., this would
make the whole ecosystem more robust by making it less likely for an exploit to
propagate to the whole population. In other words, if the protocol between a spe-
cific client and the server could be observed, analysed and eventually understood,
this would not systematically imply that all other diversified protocols could be
understood following the very same procedure. In this section, we briefly describe
the mechanisms and the corresponding tools we developed to automatically gener-
ate the diverse protocols. Technical details and the experiment results can be found
in our conference paper [29].

Our approach relies on ThingML [26] for the specification of protocols.
ThingML provides a way to formalize the messages involved in protocols, in a com-
parable way to what Protocol Buffer proposes. In addition, ThingML provides a
mean to formalize the behavior of protocols through state machines. ThingML
specifications are both human-readable and machine-readable, which makes it
possible to analyse protocols at a high-level of abstraction and to fully automate
the implementation of those protocols through code generation. In the next-sub-
section, we present relevant aspects of ThingML on our motivating example.

Conclusions 89

We model communication protocols as a set of communicating state-machines,
encapsulated into components. A protocol typically involves two roles: (i) a client,
i.e., a device, a web-browser or a mobile app, and (ii) a server, i.e., a gateway or a
Cloud back-end. The clients and the server need to agree on a common API. Since
communication is typically asynchronous in a distributed system, the common API
is specified as a set of messages. Next, this API is imported by the client component
and the server component, and the messages are organized into ports.

The ultimate goal of our approach is to diversify the wire image of protocols.
Diversifying the wire image of protocols basically means shuffling the sequence of
bytes exchanged over the network e.g., turning the payloads while ensuring the
interoperability between the client and the server.

4.5 Conclusions

This chapter summarizes our effort in the ENACT project towards automatic
software deployment for Smart IoT Systems. Automatic deployment is a corner-
stone of DevOps, as it connects development with operation, and ensures that
changes on the software will be placed into the production in a correct and
prompt way.

Although there are already mature deployment solutions for Cloud computing
in the market, automatic deployment for smart IoT systems is still an open problem.
The main challenges are from two fundamental characters of smart IoT systems:
First, an IoT application involves software running at all types of resources along
the Cloud-Edge-IoT continuum, and it is difficult to provide a consistent way to
support the deployment on all those different types of resources. Second, an IoT
application in the production stage usually contains many subsystems of Edge and
IoT devices, each of which serves a particular user or manages a particular part of
the physical world. It is difficult to deploy a new change on the software to all those
subsystems regardless of the different contexts and status among them.

During the ENACT project, we conducted research aiming at these two chal-
lenges, resulting in two ENACT enablers, namely GENESIS and DivEnact. We
briefly introduced how these enablers work, both as individual tools and as an inte-
grated deployment bundle for the automatic deployment of SIS. More details about
the theories, implementations and use cases can be founded in our recent publica-
tions [15, 44]. In this chapter, we focused on the mechanisms and practices of using
these tools to ensure the trustworthiness of the deployment software, including the
availability of software components on unstable resources, the deployment support
of security and privacy mechanisms, and the automatic generation and maintenance
of software diversity towards a more secure systems.

90 Model-based Continuous Deployment of SIS

In the next step, we will extend the concepts and implementation of auto-
matic deployment into the more general edge computing domain, providing an
engineering solution for the core problem of edge computing, i.e., the distribu-
tion and offloading of computation among the complex and dynamic resources.
Currently, the deployment is driven by manually define deployment models which
embeds the resource allocation and the constraints about software-device mapping.
An important future plan is to introduce intelligence into automatic deployment,
which learns from historical deployments and their effects to automatically assign
software parts to the proper resources.

References

[1] C. R. Aguayo Gonzalez, C. B. Dietrich, and J. H. Reed. “Understanding the
software communications architecture”. In: IEEE Communications Magazine
47.9 (2009), pp. 50–57.

[2] Carlos Ansótegui et al. “Satisfiability modulo theories: An efficient approach
for the resource-constrained project scheduling problem”. In: Ninth Sympo-
sium of Abstraction, Reformulation, and Approximation, 2011.

[3] Matej Arta et al. “Model-driven continuous deployment for quality devops”.
In: Proceedings of the 2nd International Workshop on Quality-Aware DevOps.
2016, pp. 40–41.

[4] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
3rd. Addison-Wesley Professional, 2012. ISBN: 0321815734.

[5] Benoit Baudry and Martin Monperrus. “The Multiple Facets of Software
Diversity: Recent Developments in Year 2000 and Beyond”. In: ACM Comput.
Surv. 48.1 (Sept. 2015). ISSN: 0360-0300. DOI: 10.1145/2807593. URL:
https://doi.org/10.1145/2807593.

[6] Gordon S. Blair, Nelly Bencomo, and Robert B. France. “Models@run.time”.
In: IEEE Computer 42.10 (2009), pp. 22–27.

[7] Miquel Bofill et al. “Solving constraint satisfaction problems with SAT mod-
ulo theories”. In: Constraints 17.3 (2012), pp. 273–303.

[8] Maria Paola Bonacina, Stéphane Graham-Lengrand, and Natarajan Shankar.
“Satisfiability modulo theories and assignments”. In: International Conference
on Automated Deduction. Springer. 2017, pp. 42–59.

[9] Antonio Bucchiarone, Antonio Cicchetti, and Annapaola Marconi. “Exploit-
ing multi-level modelling for designing and deploying gameful systems”. In:
2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems (MODELS). IEEE. 2019, pp. 34–44.

[10] Sylvain Cherrier et al. “D-lite: Distributed logic for internet of things services”.
In: 2011 International Conference on and 4th International Conference on Cyber,
Physical and Social Computing. IEEE. 2011, pp. 16–24.

https://doi.org/10.1145/2807593

References 91

[11] F. Cirillo et al. “A Standard-Based Open Source IoT Platform: FIWARE.
In: IEEE Internet of Things Magazine 2.3 (2019), pp. 12–18. DOI:
10.1109/IOTM.0001.1800022.

[12] Benoit Combemale and Manuel Wimmer. “Towards a Model-Based DevOps
for Cyber-Physical Systems”. In: Software Engineering Aspects of Continuous
Development, 2019.

[13] Rustem Dautov and Hui Song. “Towards Agile Management of Containerised
Software at the Edge”. In: 2020 IEEE Conference on Industrial Cyberphysical
Systems (ICPS). Vol. 1. IEEE. 2020, pp. 263–268.

[14] Rustem Dautov and Hui Song. “Towards IoT Diversity via Automated Fleet
Management”. In: MDE4IoT/ModComp@ MoDELS. 2019, pp. 47–54.

[15] Rustem Dautov, Hui Song, and Nicolas Ferry. “A Light-Weight Approach to
Software Assignment at the Edge”. In: 2020 IEEE/ACM 13th International
Conference on Utility and Cloud Computing (UCC). IEEE. 2020, pp. 380–385.

[16] Johannes Eder et al. “Bringing DSE to life: exploring the design space of an
industrial automotive use case”. In: 2017 ACM/IEEE 20th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS). IEEE.
2017, pp. 270–280.

[17] Johannes Eder et al. “From deployment to platform exploration: automatic
synthesis of distributed automotive hardware architectures”. In: Proceedings
of the 21th ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems. 2018, pp. 438–446.

[18] Nicolas Ferry and Phu H. Nguyen. “Towards Model-Based Continuous
Deployment of Secure IoT Systems”. In: 2019 ACM/IEEE 22nd International
Conference on Model Driven Engineering Languages and Systems Companion
(MODELS-C). 2019, pp. 613–618.

[19] Nicolas Ferry et al. “CloudMF: Model-Driven Management of Multi-Cloud
Applications”. In: ACM Transactions on Internet Technology (TOIT) 18.2
(2018), p. 16.

[20] Nicolas Ferry et al. “Continuous Deployment of Trustworthy Smart IoT Sys-
tems”. In: The Journal of Object Technology (2020).

[21] Nicolas Ferry et al. “Genesis: Continuous orchestration and deployment of
smart IoT systems”. In: 2019 IEEE 43rd Annual Computer Software and Appli-
cations Conference (COMPSAC). Vol. 1. IEEE. 2019, pp. 870–875.

[22] M. Frustaci et al. “Evaluating Critical Security Issues of the IoT World: Present
and Future Challenges”. In: IEEE Internet of Things Journal 5.4 (2018),
pp. 2483–2495. DOI: 10.1109/JIOT.2017.2767291.

[23] Anne Gallon et al. “Making the Internet of Things More Reliable Thanks to
Dynamic Access Control”. In: Security and Privacy in the Internet of Things:
Challenges and Solutions 27 (2020), p. 61.

92 Model-based Continuous Deployment of SIS

[24] Nam Ky Giang et al. “Developing IoT applications in the fog: a distributed
dataflow approach”. In: Internet of Things (IoT), 2015 5th International Con-
ference on the. IEEE. 2015, pp. 155–162.

[25] Object Management Group. “Deployment and Configuration of Compo-
nent-based Distributed Applications Specification”. In: OMG Available Spec-
ification Version 4.0 formal/06-04-02 (2006).

[26] Nicolas Harrand et al. “ThingML: A Language and Code Generation Frame-
work for Heterogeneous Targets”. In: Proceedings of the ACM/IEEE 19th
International Conference on Model Driven Engineering Languages and Systems.
MODELS 16. Saint-malo, France: Association for Computing Machinery,
2016, pp. 125–135. ISBN: 9781450343213.

[27] Stéphane Lavirotte et al. “A generic service oriented software platform to
design ambient intelligent systems”. In: Proceedings of the 2015 ACM Inter-
national Conference on Pervasive and Ubiquitous Computing. ACM. 2015,
pp. 281–284.

[28] Amardeep Mehta et al. “Calvin Constrained-A Framework for IoT Applica-
tions in Heterogeneous Environments”. In: 37th International Conference on
Distributed Computing Systems. IEEE. 2017, pp. 1063–1073.

[29] Brice Morin et al. “Engineering software diversity: A model-based approach
to systematically diversify communications”. In: Proceedings of the 21th
ACM/IEEE International Conference on Model Driven Engineering Languages
and Systems. 2018, pp. 155–165.

[30] Håvard Myrbakken and Ricardo Colomo-Palacios. “DevSecOps: A Multivo-
cal Literature Review”. In: Software Process Improvement and Capability Deter-
mination. Ed. by Antonia Mas et al. Cham: Springer International Publishing,
2017, pp. 17–29. ISBN: 978-3-319-67383-7.

[31] NESSI. Cyber physical systems: Opportunities and challenges for soft- ware, ser-
vices, cloud and data. NESSI White paper. 2015.

[32] P. H. Nguyen et al. “SoSPa: A system of Security design Patterns for System-
atically engineering secure systems”. In: 2015 ACM/IEEE 18th International
Conference on Model Driven Engineering Languages and Systems (MODELS).
2015, pp. 246–255. DOI: 10.1109/MODELS.2015.7338255.

[33] Phu H. Nguyen, Phu H. Phung, and Hong-Linh Truong. “A Security Pol-
icy Enforcement Framework for Controlling IoT Tenant Applications in
the Edge”. In: Proceedings of the 8th International Conference on the Inter-
net of Things, IOT 18. Santa Barbara, California, USA: ACM, 2018. ISBN:
9781450365642.

[34] Phu H. Nguyen et al. “Advances in deployment and orchestration approaches
for IoT – A systematic review”. In: 2019 IEEE International Congress On Inter-
net of Things (ICIOT). Milan, Italy: IEEE, 2019, pp. 53–60.

References 93

[35] Phu H. Nguyen et al. “An extensive systematic review on the Model-Driven
Development of Secure Systems”. In: Information and Software Technology
68 (2015), pp. 62–81. ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.
infsof.2015.08.006. URL: http://www.sciencedirect.com/science/article/pii/
S0950584915001482.

[36] Adrian Noguero, Angel Rego, and Stefan Schuster. “Towards a Smart Appli-
cations Development Framework”. In: Social Media and Publicity 27 (2014).
URL: https://bitbucket.org/jasonjxm/smool,%202011-2020.

[37] OMG. Deployment and Configuration of Component-based Distributed Appli-
cations Specification, v4.0. Tech. rep. Object Management Group, Inc., 2006.
URL: https://www.omg.org/spec/DEPL/4.0/PDF.

[38] Temel Öncan. “A survey of the generalized assignment problem and its
applications”. In: INFOR: Information Systems and Operational Research 45.3
(2007), pp. 123–141.

[39] Allen Parrish, Brandon Dixon, and David Cordes. “A conceptual foundation
for component-based software deployment”. In: Journal of Systems and Soft-
ware 57.3 (2001), pp. 193–200. ISSN: 0164-1212.

[40] David W Pentico. “Assignment problems: A golden anniversary survey”. In:
European Journal of Operational Research 176.2 (2007), pp. 774–793.

[41] Subhav Pradhan et al. “Chariot: Goal-driven orchestration middleware for
resilient IoT systems”. In: ACM Transactions on Cyber-Physical Systems 2.3
(2018), pp. 1–37.

[42] Davide Di Ruscio, Richard F. Paige, and Alfonso Pierantonio, eds. Special issue
on Success Stories in Model Driven Engineering. Vol. 89, Part B. Elsevier, 2014.

[43] Ana C Franco da Silva et al. “OpenTOSCA for IoT: automating the deploy-
ment of IoT applications based on the mosquitto message broker”. In: Pro-
ceedings of the 6th International Conference on the Internet of Things. ACM.
2016, pp. 181–182.

[44] Hui Song et al. “Model-based fleet deployment of edge computing applica-
tions”. In: Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems. 2020, pp. 132–142.

[45] Hui Song et al. “On architectural diversity of dynamic adaptive systems”. In:
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 2. IEEE. 2015, pp. 595–598.

[46] Michael Vögler et al. “A scalable framework for provisioning large-scale IoT
deployments”. In: ACM Transactions on Internet Technology (TOIT) 16.2
(2016) pp. 1–20.

[47] Changsheng You et al. “Energy-efficient resource allocation for mobile-edge
computation offloading”. In: IEEE Transactions on Wireless Communications
16.3 (2016) 1397–1411.

https://doi.org/10.1016/j.infsof.2015.08.006
https://doi.org/10.1016/j.infsof.2015.08.006
http://www.sciencedirect.com/science/article/pii/S0950584915001482
http://www.sciencedirect.com/science/article/pii/S0950584915001482
https://bitbucket.org/jasonjxm/smool,%202011-2020
https://www.omg.org/spec/DEPL/4.0/PDF

DOI: 10.1561/9781680838251.ch5

Chapter 5

A DevOps Toolchain for Managing
Actuation Conflicts in Smart IoT Systems

By Gérald Rocher, Thibaut Gonnin, Franck Dechavanne,
Stéphane Lavirotte and Jean-Yves Tigli

5.1 Introduction

To assist users in their daily lives, Smart IoT Systems (SIS) have long been lim-
ited to the exploitation of environmental information; the use of ‘smart objects’
was mainly motivated by their ability to collect these information from sensors.
However, in many areas such as home automation, factory 4.0, Intelligent Trans-
portation Systems (ITS), etc., SIS are no longer limited to collecting sensor data
to infer actionable information, they also interact with the physical environment
through actuators. This evolution brings new challenges that the scientific com-
munity has to meet in collaboration with industrial players, as evidenced by the
numerous calls from the European Commission, in which the ENACT project is
part of: “Most of the today’s IoT systems are however mainly focused on sensors, whereas
in the future actuation and smart behaviour will be the key points. Platforms should
provide connectivity and intelligence, actuation and control features” [9], p. 100.

94

http://dx.doi.org/10.1561/9781680838251.ch5

Introduction 95

5.1.1 SIS Actuation Challenges

By physically interacting with their environment through actuators, SIS become
critical; in the absence of end-to-end human control (utopian in complex oper-
ational contexts such as ITS, etc.), they have immediate impacts on the physical
environment with all the social and economical risks that this may entail. At design-
time, these applications must be conceived to formally prevent any undesirable
effect in the physical environment, whether caused by sending contradictory or
simultaneous commands to the actuators. At run-time, it is yet necessary to ensure
that the effects produced in the physical environment are in line with the expecta-
tions. Indeed, the lack of a perfect model of the physical environment (of a complex
nature) prevents designers from fully predicting the effects of the commands sent
to the actuators; effects that are therefore likely to be hampered by possibly disrup-
tive surrounding physical processes. These challenges bring with them heightened
concerns about trustworthiness of SIS which includes, among others, safety and reli-
ability aspects. As defined in [13], safety concerns are related to the ability of SIS
to prevent catastrophic consequences for humans and the physical environment;
reliability concerns are related to the ability of SIS to deliver predictable perfor-
mance in expected conditions. While the DevOps methodology is part of the good
practices in software development and is applicable to SIS limited to merely collect
sensor data, it requires new tools in the realm of trustworthy SIS, both at Dev and
Ops Times.

5.1.2 DevOps Still Lacks the Tools to Meet These Challenges

While the DevOps approach is not specific to a particular field of applications,
many challenges arise when it comes to applying it to the field of SIS. DevOps prac-
tices are therefore still far from being fully adopted in their development, notably
due to a lack of key enabling tools [1, 34]. Among these key tools, those capa-
ble of taking into account SIS operating in open and complex environments and
requiring continuous testing at run-time (i.e., in-situ) beyond the tests traditionally
conducted on emulated and simulated infrastructures, are missing [1]. In general,
there is a lack of tools that address the trustworthiness of SIS, which, as far as this
chapter is concerned, is about safety and reliability aspects, exacerbated by the abil-
ity of SIS to act in the physical environment through actuators. A study of the
literature around the actuation problem [19] shows that, without even consider-
ing the DevOps approach, this problem is still in its infancy in the IoT field and
therefore still open. Moreover, the approaches proposed in the literature for man-
aging actuation in SIS are often (1) monolithic, they do not or hardly meet the best
practices advocated by the DevOps approach; (2) applied to controlled operational
environments; they have a software vision of the problem by focusing on the com-
mands sent to the actuators more than on the effects they produce [29].

96 A DevOps Toolchain for Managing Actuation Conflicts

The work carried out as part of the ENACT European project and described
throughout this chapter aims to fill this gap by proposing a toolchain meant to
be integrated into the DevOps framework and meeting end-to-end SIS actuation
challenges.

5.1.3 An End-to-end DevOps Toolchain

The contribution is built around two complementary toolsets, deployed through-
out the DevOps life-cycle phases. This combination of tools aims to improve the
trustworthiness of SIS within a framework which, as advocated by the DevOps
approach, creates synergies and foster communication between development and
operations activities.

At design-time (Dev), a complete toolset is developed for identifying and locally
resolving actuation conflicts [12], i.e., (a) preventing contradictory or simultane-
ous commands to be sent to actuators (direct conflicts), (b) preventing, as much as
it can be, antagonistic effects to occur in the physical environment (indirect con-
flicts). At run-time (Ops), a first tool observes specific environmental features and
quantitatively assesses the effectiveness of the SIS, i.e., for the extent to which it
produces the expected effects. A second tool is meant to analyse drifts in effective-
ness. It makes clear the symptoms of the drifts in effectiveness, providing guidance
to designers to help them investigate their possible root causes. Within the frame-
work of the ENACT project, other investigation tools may be used to complement
this latter tool, such as, for instance, the Root Cause Analysis (RCA) (Section 8.3)
toolset. The analysis resulting from these tools then trigger a new design phase,
closing the DevOps life-cycle loop.

The rest of the chapter is organized as follows. Section 5.2 describes the SIS
actuation management toolset along with the workflow (Section 5.2.2) involved
in the identification and resolution of direct and indirect actuation conflicts. Sec-
tion 5.3 describes the behavioural drift assessment (Section 5.3.2) and analysis (Sec-
tion 5.3.3) toolset. Section 5.4 demonstrates, throughout a smart-home use-case
described in Section 5.4.1, the complementarity and relevancy of both toolset as
part of the DevOps life-cycle. This use-case involves two consecutive DevOps cycles
to converge towards a SIS with satisfactory behaviour.

5.2 Overview of the SIS Actuation Conflict Management
Toolset

IoT devices, at the edge of SIS infrastructures, have long been leveraged for their
capacity at gathering environmental data from sensors, paving the way for decision
making support systems covering a broad range of application domains from smart-
health, smart-city to smart-grid, Factory 4.0, etc. just to name a few. However,

Overview of the SIS Actuation Conflict Management Toolset 97

beyond merely gathering data from sensors, new challenges arise as soon as it comes
to leverage IoT devices to interact with the physical environment through actuators
that turn commands received from SIS into physical effects. One of these challenges
concerns the actuation conflict management. Such conflicts are likely to occur when
different applications compete for accessing (1) shared actuators at the edge of the
IoT infrastructure (direct conflicts), e.g., simultaneously applying ON and OFF to
a light bulb, and/or (2) shared physical properties (indirect conflicts), i.e., turning
ON both a cooler and a heater in the same room.

The actuation conflict management challenge goes beyond the technologi-
cal challenge that shared multi-layered IoT infrastructures usually meet by, for
instance, providing sensors with access control mechanisms. Indeed, besides this
technological challenge, actuation conflict management also poses a semantical
challenge; accounting for the locality of the actuators and the physical properties
they act on is here essential. In the realm of trustworthy SIS, actuation conflict man-
agement is of paramount importance. Designers must prevent SIS from producing
any undesirable effects in the physical environment, whether it is caused by sending
contradictory or simultaneous commands to the actuators. To this end, designers
must be provided with decision support tools that can assist them in identifying
and resolving direct and indirect actuation conflicts, and in deploying relevant, yet
robust and safe Actuation Conflict Managers (ACM).

In the sequel, a complete toolset for identifying and resolving actuation conflicts
is introduced. This toolset consists of three stages throughout the DevOps life-cycle,
as described in Fig. 5.1).

Underlying the tools for actuation conflict identification and resolution, a
meta-model, denoted Workflow and Interaction Model for Actuation Conflict
management (WIMAC), is used to build a structural model of the SIS upon deploy-
ment, implementation and physical environment models (phase 1 in Fig. 5.1) [27].
WIMAC provides a modelling language for describing inter-relationships between
SIS software components and actuators at the edge of the infrastructure along with
their effects on the physical environment.

On the basis of the structural model, potential direct and indirect actua-
tion conflicts are identified (phase 2 in Fig. 5.1). Actuation conflict identi-
fication is based on Attributed Graph Grammar (AGG) rules [18] meant to
detect conflicting patterns; actuation conflict resolution is based on AGG rewrit-
ing rules meant to instantiate local ACMs. DevOps approach aims to provide
continuous and rapid software deployment capabilities. In accordance with this
approach, a set of pre-configured off-the-shelf and ready-to-use ACMs are offered to
designers.

Third, besides off-the-shelf ACMs, a complete formal verification flow is pro-
posed in the Discrete EVent system Specification formalism (DEVS) [39] for

98 A DevOps Toolchain for Managing Actuation Conflicts

Figure 5.1. Usage of Actuation Conflict Management (ACM) tool-set throughout the

DevOps life-cycle.

designing and verifying reusable custom ACMs, covering different implementation
strategies at the edge of the infrastructure (phase 3 in Fig. 5.1).

Finally, the WIMAC-based structural model, with ACMs instantiated, is trans-
formed back to deployment and implementation models (phase 4 in Fig. 5.1).

5.2.1 Beyond the State of the Art

The problem of identifying and resolving IoT-based systems actuation conflicts is
still in its infancy. While most of the existing solutions focus on the identification
and the resolution of direct actuation conflicts (a legacy of the technical challenge
mentioned above), few focus on identifying and resolving indirect ones [19, 21].
Moreover, the solutions proposed in the literature raise two main problems when it
comes to applying them to the DevOps framework; (1) most of them require an a
priori knowledge on the system components and the rules governing their evolution
[33]; (2) the solutions proposed are thereby monolithic, they implement global
identification and resolution mechanisms not easily reusable (e.g., [2, 21, 22]).

In [24], authors recognize that interactions between IoT devices are an increas-
ing cause of safety and security violations whose detection “[…] requires a holistic
view of installed apps, component devices, their configurations, and more importantly,

Overview of the SIS Actuation Conflict Management Toolset 99

how they interact”. This is the approach followed by the SIS actuation conflict man-
agement toolset presented in the sequel.

5.2.2 Actuation Conflict Management Workflow

The actuation conflict management workflow is depicted in Fig. 5.2.
DevOps approach provides designers with deployment and implementation

models from which it is possible to extract the structural interactions between
the SIS software components down to the devices and the actuators they embed.
To identify indirect conflicts, however, it is necessary to describe the effects that the
actuators produce in the environment in which they operate. Unless each actuator
is accompanied by semantic annotations, these descriptions have to be provided by
the designers, using a model of the physical environment.

From these models, an holistic description model is generated. This model is
built on a metamodel called WIMAC (Workflow and Interaction Model for Actu-
ation Conflict management). This metamodel (Fig. 5.3) provides a language to
describe (1) the inter-relationships between software components, down to the

Figure 5.2. Actuation conflicts identification and resolution workflow.

100 A DevOps Toolchain for Managing Actuation Conflicts

Figure 5.3. WIMAC meta-model.

actuators at the edge of the infrastructure as well as (2), the effects that the actu-
ators produce in the physical environment in which they operate. The WIMAC
metamodel main entities are the following:

1. SoftwareComponents are black-box components. They conceptualize sin-
gle applications or composite applications described through implementa-
tion models (e.g., Node-RED1 flow). The actuation conflict management
solution proposed in the sequel is based solely on the structural links that exist
between software components for inferring their interrelationships, identify-
ing and resolving potential conflicts.

2. ActionComponents are SoftwareComponents controlling actuators,
3. PhysicalSystems are spatially delimited physical entities whose properties

can be changed by ActionComponents (e.g. the temperature in the kitchen).

Relying on the WIMAC-based model, potential direct and indirect actuation
conflict points can be identified and monitoring ACMs instantiated locally. This
first step is automatically achieved through a set of predefined Attributed Graph
Grammar (AGG) rules [18] in the form of attributed graphs. These rules define (1)
conflict patterns to be identified in the WIMAC-based model and (2) associated

1. https://nodered.org

https://nodered.org

Overview of the SIS Actuation Conflict Management Toolset 101

Figure 5.4. Example of AGG identification and rewriting rules for direct (left) and indirect

(right) actuation conflicts.

graph transformations to be applied on the model so as to instantiate monitoring
ACMs (Fig. 5.4).

DevOps approach aims to provide continuous and rapid deployment capabili-
ties. To support this objective, a set of off-the-shelf generic ACMs are proposed to
designers thereby, replacing dummy ACMs with relevant concrete ones. Although
this approach requires designers to take responsibility on the ACMs to be instan-
tiated before applications are deployed, it has several advantages. (1) it helps rein-
forcing SIS trustworthiness, specifically as actuation conflict management implies
some semantic background humans are better able to grasp considering SIS com-
plexity globally; (2) this is all the more important as ACMs are instantiated locally,
addressing points of potential conflict in the design. The advantage here is that
software components are regarded as black boxes, ACMs do not change their logic.

While off-the-shelf reusable ACMs are relevant for resolving common actuation
conflicts, they may not be suitable for some particular cases. To address this concern,
state-of-the-art Model Driven Engineering (MDE) tools are leveraged, allowing
designers to develop custom, yet robust and safe ACMs, throughout a two-level
design workflow (Fig. 5.5).

At the first level, logic of the custom ACMs are defined through Finite State
Machines (FSM) built on the basis Event-Condition-Action rules. These concep-
tual models allow logical properties (e.g. completeness, safety, liveness, etc.) to be
formally verified using state-of-the-art methodologies [3].

At the second level, implementation models allow temporal properties to be
formally verified by applying different asynchronous timing strategies. Implemen-
tation models are proposed to be described through the DEVS formalism (Discrete
EVent system Specification)[39]. This formalism brings key advantages in the realm
of trustworthy SIS and DevOps.

1. DEVS atomic models allow to encapsulate conceptual models into DEVS
Atomic models, coupled with synchronizers that can implement different

102 A DevOps Toolchain for Managing Actuation Conflicts

Figure 5.5. Custom ACM design workflow.

timing strategies on the inputs of the FSM and targeting different hard-
ware platforms. This approach is particularly relevant considering that SIS
software components are likely to be deployed on resource-constrained plat-
forms at the edge of the IoT infrastructure, governed by asynchronous events
relative to wireless communication protocols, computational capabilities,
etc. [35]. Several modelling and simulation tools are available to facilitate
this process [6, 25, 36],

2. It provides a common representation to different discrete event modelling
formalisms (including Petri Nets, FSM, etc.) [41]. Designers are therefore
not bounded to a particular modelling framework when designing custom
ACMs.

3. DEVS Atomic models, once verified for temporal properties, can be trans-
lated into any high-level programming language (e.g., C, C++, C#, etc.)
and compiled for further deployment. This allows to build a library
of reusable off-the-shelf DEVS-based ACM software components (a.k.a.,
DEVS kernels) targeting different implementation strategies (i.e., hardware
platforms).

5.3 Overview of the SIS Behaviour Monitoring
and Analysis Toolset

While, during the development phase, the ACM tool allows for the identifica-
tion, analysis and resolution of actuation conflicts, it remains, however, based on
the global architecture of the SIS and its operational environment, i.e., and is

Overview of the SIS Behaviour Monitoring and Analysis Toolset 103

therefore based on a priori acquired knowledge. However, by interacting with the
physical environment through actuators, SIS inherits the complex nature of this
open environment. Thus, assuming that the knowledge acquired a priori is com-
plete and immutable is illusory, no matter how complicated the associated models
may be; an infinite number of unexpected physical processes are likely to disrupt,
at any time, operation of the SIS. In the realm of trustworthy SIS, the ACM tool
alone thus cannot meet the concerns of reliability and safety. It is therefore neces-
sary to complement this tool with a systemic approach, required to the modelling
of complex SIS [30].

Without being able to predict the behaviour of SIS in their design phase, a
DevOps tool-set is developed for analysing SIS behavioural drifts at run-time
(Fig. 5.6). The aim of the first tool described in the sequel is to quantitatively
assess SIS effectiveness at run-time, i.e., the extent to which the effects produced
in the physical environment are legitimate (phase 2 in Fig. 5.6). It is no longer
a question of describing the global architecture of the SIS, but of describing a

Figure 5.6. Usage of the Behavioural Drift Analysis (BDA) tool-set throughout the

DevOps life-cycle.

104 A DevOps Toolchain for Managing Actuation Conflicts

model of the effects they have to legitimately produce in the physical environ-
ment in different contexts (phase 1 in Fig. 5.6). However, being quantitative in
nature, the effectiveness assessment is difficult to interpret by humans and does
not allow for creating synergies and fostering communication between develop-
ment and operations activities, as advocated by the DevOps approach. Indeed,
from the designers’ point of view, while the effectiveness assessment allows the
detection of unexpected and/or abnormal behaviour at run-time, it does not allow
their causes to be identified. Thereby, this hampers a new DevOps cycle from
being initiated rapidly so as to implement the corrective actions required. To
address this concern, a second tool is presented in the sequel. This tool (phase 3 in
Fig. 5.6), produces a model of the behaviour observed in the field and compares
this model with the model of the legitimate behaviour produced in phase 1. This
results in a dissimilarity graph between both models which, without identifying the
causes of the drifts in effectiveness, sheds light on the symptoms likely to explain
them [29].

5.3.1 Beyond the State of the Art

The problem raised in this research, and the solution described in the sequel,
concerns the detection, identification and intelligible representation of the symp-
toms characterizing SIS abnormal behaviours, for the purpose of empirical analysis.
A recent systematic literature review carried out on the anomaly detection, analysis
and prediction techniques in IoT environments [10], corroborates fairly well the
novelty of the approach proposed in this work and the impacts it can have in the
SIS community. Indeed, authors found gaps in the visualization of anomalies in
IoT-based systems. They conclude that new methods and approaches are needed
to represent intuitively IoT-based systems for analytical purposes. This is what the
solution described in the sequel is all about.

5.3.2 Behavioural Drift Assessment Tool

Current software engineering approaches, which include formal testing and ver-
ification methodologies, claim for predictability. However, “in practice, analytical
modelling is increasingly proving inadequate, whenever it is agreed that one is not sure
that something cannot be forgotten (the hypothesis of closing the model), that objective
evidence is only evident in a given ideology (…), in other words, whenever one has to
make the assumption that the phenomenon modelled is not complicated but complex”
[20] p. 19.

SIS, by their interaction with the open physical environment, are complex sys-
tems; At best, can we hope to get as close as possible to the desired behaviour

Overview of the SIS Behaviour Monitoring and Analysis Toolset 105

without reaching it exactly: “[…] as soon as a system is open there is no optimum
and any equilibrium is in interaction with its environment” [31]. As a result, while
the formal testing and verification methods still need to be conducted at design-
time, they are not sufficient; the effectiveness of the SIS, i.e., the extent to which
SIS behave as expected, must also be continuously evaluated at run-time.

Analytical modelling being inadequate, SIS effectiveness assessment has to rely
on a systemic model of the physical effects they are legitimate to produce in the
physical environment [30]. In the sequel, it is proposed to build this model in
the framework of the Input/Output Hidden Markov Models (IOHMM) [4]. This
framework is broadly used in behavioural modelling approaches [14, 40] where it
has many advantages [37]; (1) it is an explainable graphical model [15] part of the
Dynamic Bayesian Networks (DBN) family; (2) it formalizes conditional dependen-
cies between the effects and their stimuli (i.e., contextual input, events); (3) it handles
tolerances on expectations that may reflect randomness of some expected behaviours
(through probability theory) or epistemic gaps in SIS knowledge (through the
possibility theory and the Transferable Belief Model (TBM), an extension of the
Dempster-Shafer evidence theory).

Formally, an IOHMM is defined by the tuple < Q, Eπ, A, EB > where:

• Q = {x1, x2, . . . , xN }, N ∈ N, is the finite set of hidden states where x(k)
denotes the hidden state at time k ∈ N,

• Eπ = (π1, π2, . . . , πN)
T is the initial state distribution vector where πi

denotes the likelihood of the state i to be the first state of a state sequence,2

• A is the N × N state transition matrix, where each element ai j of the matrix
is an n-dimensional input distribution (1 ≤ i, j ≤ N). Thus, ai j (Eu) =
p(x(k+1) = j |x(k) = i, Eu(k) = Eu) denotes the likelihood of transitioning
to state x(k+1) = j at time k + 1, given the current state x(k) = i and the
contextual input vector Eu(k) = Eu ∈ Rn at time k. The function p has here
to be understood in the general framework of the uncertainty theory. While
most of the hidden Markov-based models are defined in the probabilistic
framework (i.e., p is a measure of probability), the model is also compatible
with the possibility theory [28], the imprecise probabilities [11], etc.

• EB = (b1, b2, . . . , bN)
T is the state emission vector, where each element bi

(1 ≤ i ≤ N) is an m-dimensional output distribution. bi (Ey) = p(Ey(k) =
Ey|x(k) = i) denotes the likelihood of observing the output vector Ey(k) =
Ey ∈ Rm at time k, i.e., the physical effects produced, while being in the state
x(k) = i . The output observation Ey(k) at time k only depends on the state
x(k) at time k.

2. In this work, we assume that the elements πi of Eπ are equally probable, i.e., equal to 1
N .

106 A DevOps Toolchain for Managing Actuation Conflicts

Figure 5.7. Possibilistic IOHMM model describing the legitimate effects that a luminosity

control system must produce.

This model serves as a basis for efficient solutions to several inference prob-
lems [26]. Among these problems, the problem of inferring the likelihood of an
observation sequence (i.e., p((Eu(k), Ey(k))K

k=1)) to have been generated by the model
(filtering), is particularly close to the one of assessing SIS effectiveness whose solu-
tion is given by the forward algorithm, here below in its (qualitative) possibilistic
form where the function p is a measure of possibility denoted by 5:

1. Initialization – ∀x ∈ Q:

α(1)(x) = min
(
πx ,5(Ey(1)|x)

)
(5.1)

2. Induction – ∀x, x ′ ∈ Q, ∀2 ≤ k ≤ K :

α(k)(x) = min

(
max
x ′∈Q

(
min

[
α(k−1)(x ′),5(x |x ′, Eu(k−1))

])
,5(Ey(k)|x)

)
(5.2)

3. Termination

5
(
(Eu(k), Ey(k))K

k=1

)
= max

x∈Q
(α(K)(x)) (5.3)

An example is depicted in Fig. 5.7. The model describes the legitimate effects
that a luminosity control system must produce where tolerances on expectations are
described through distributions of possibility as depicted in Fig. 5.8. Here, Eu corre-
sponds to the value of a presence sensor, Ey corresponds to the value of a luminosity
sensor.

5.3.3 Behavioural Drift Analysis Tool

On the basis of the IOHMM model and field observations, the effectiveness
assessment allows the detection of behavioural drifts, consequence of unexpected

Overview of the SIS Behaviour Monitoring and Analysis Toolset 107

Figure 5.8. Distributions of possibility defining tolerances on expectations of the model

depicted in Fig. 5.7.

Figure 5.9. Effectiveness assessment results obtained on the model depicted in
Fig. 5.7 from synthetic observations applied to the forward algorithm.

behaviours, whether legitimate or not. It complements the formal testing and veri-
fication approaches carried out at design-time. However, while the model underly-
ing this evaluation is explainable, the same does not apply to the evaluation itself.
Indeed, as a quantitative evaluation, it does not provide designers with informa-
tion that would support them in understanding the reasons for its drifts, limiting
de facto their ability to quickly take corrective actions and mitigate risks. The tool
described in the sequel is meant to fill this gap.

108 A DevOps Toolchain for Managing Actuation Conflicts

This tool is mainly based on a generic clustering-based algorithm meant to learn
IOHMM structure (states and state transitions) and parameters (distributions)
from field observations. This algorithm consists in segmenting Eu and Ey observa-
tion spaces into a finite number of relevant regions such that each region represents
respectively an input context and a discrete state, i.e., it is assumed that there exists
a bijection between state and observation spaces [32], thereby taking advantage of
understanding the structure of the IOHMM from the observation space [16].

Considering the observation sequence (Eu(k), Ey(k))K
k=1, the algorithm works as

follows (detailed in [29]):

1. Get the set Y of clusters from (Ey(k))K
k=1 such that each observation Ey(k) is

associated to a cluster Yi (i.e., a state), i ∈ |Y|
2. Get the set U of clusters from (Eu(k))K

k=1 such that each observation Eu(k) is
associated to a cluster U j (i.e., an input context), j ∈ |U |

3. Get distribution parameters of Bi from {Ey} associated to Yi
4. Get the state-transition matrix A

a. the sequence of clusters (Y(k))K
k=1 obtained from (Ey(k))K

k=1 defines the
valid state-transitions Ai i ′(h), i, i ′ ∈ |Y|, h ∈ U

b. Ai i ′(h) distribution parameters, h ∈ U , are computed from {Eu} ∈ h.

On the basis of this algorithm, a framework is proposed for investigating drifts
in effectiveness of SIS. This framework conceptually takes place in two steps as
depicted in Figure 5.10.

1 The learning algorithm is fed with observations corresponding to the effects
expected to be produced by a SIS in different contexts, leading to the learn-
ing of a model of its legitimate behaviour.

Figure 5.10. Steps to implement the proposed approach.

Smart Home Use-Case and Illustration 109

2 This model is complemented with real-world observations, leading to the
learning of a model of the observed behaviour. Then, on the basis of these
models, an algorithm is developed to build a directed dissimilarity graph
that makes clear the differences between both models, thereby helping
designers direct their research and identify the possible causes of drifts in
effectiveness.

Let us consider an observation sequence corresponding to the legitimate
behaviour, defined by (Eu?(k), Ey

?
(k))

K
k=1, followed by an observation sequence cor-

responding to real-world observations, (Eu(k), Ey(k))Gk=K+1. The algorithm works as
follows (detailed in [29]):

1. Get the set Y of clusters from (Ey(k))Gk=1
2. Get the set U of clusters from (Eu(k))Gk=1
3. Get the set Y? ⊂ Y of clusters associated to (Ey?(k))

K
k=1

4. Get the set U? ⊂ U of clusters associated to (Eu?(k))
K
(k=1)

F Yi /∈ Y?, i ∈ |Y| corresponds to unexpected states.
F Ui /∈ U?, i ∈ |U| corresponds to unexpected contextual input.

5. The sequence of clusters obtained from (Ey(k))K
k=1 defines legitimate state-

transitions A?i i ′(h), i, i ′ ∈ |Y?|, h ∈ U?. Also, the sequence of clusters
obtained from (Ey(k))Gk=K+1 defines observed state-transitions Ai i ′(h), i, i ′ ∈
|Y|, h ∈ U.
F State-transitions Ai i ′(.) defined in the state-transition matrix A but not
defined in the state-transition matrix A? correspond to unexpected state-
transitions.
F State-transitions Ai i ′(h) defined in the state-transition matrix A and in
the state-transition matrix A? with h /∈ U? correspond to unexpected state-
transitions (i.e., are triggered by unexpected contextual input).

6. Plot the dissimilarity graph where expected states (nodes) and state-
transitions (edges) are coloured in green while unexpected ones are coloured
in red as depicted in Fig. 5.10.

The dissimilarity graph, without identifying the causes of the drifts in effective-
ness, sheds light on the symptoms likely to explain them.

5.4 Smart Home Use-Case and Illustration

The purpose of this section is to illustrate the toolset presented in this chapter and
its benefits throughout DevOps life cycles. The illustration is carried out on a real

110 A DevOps Toolchain for Managing Actuation Conflicts

world smart-home scenario, providing the reader with technical details and key
results.

5.4.1 Smart Home use Case Description

The experimentation is built upon the widely spread three-layer IoT architec-
ture [17]. The first layer (Perception Layer) at the edge of the infrastructure consists
of 57 IoT devices providing up to 319 parameters including 249 sensor/actua-
tor whose values/states are updated on a regular basis on a centralized time series
database (Synology DS418 Network Attached Storage (NAS) + InfluxDB [23]).
IoT devices part of this infrastructure layer are mainly consumer electronics devices
(e.g., Netatmo devices, Neato vacuum cleaner, LG TV, etc.), complemented with
custom IoT devices based on Arduino Uno/Nano and Raspberry Pi equipped with
sensors and actuators targeting specific purposes. The second layer (Network layer)
enables data transmission and processing, throughout the different IoT wireless
communication protocols (Wifi, ZWave [38], etc.). OpenHab [5] and MQTT
middlewares provide this layer with the functionalities required for the illustra-
tion. Finally, the third layer (Application layer) consists in several software compo-
nents controlling actuators and processing sensor data. These software components
(along with middlewares) are encapsulated into docker containers hosted on com-
putational resources (Raspberry Pi) at the edge of the infrastructure.

To illustrate SIS actuation conflict management (Paragraph 5.2) and behavioural
assessment/drift analysis (Paragraph 5.3) toolsets, the following devices are used; a
smart phone, a TV along with its remote control, a light bulb, an Amazon echo
smart speaker and an autonomous smart vacuum cleaner. These devices are all
located in the living-room and are implemented as part of a scenario focusing on
inhabitants well-being. In this scenario, user-comfort is driven by luminosity and
sound physical properties.

A first application set (UserComfortApps) is dedicated to give sensor data access
to decision making algorithms (App_Lum and App_RC_TV) that respectively con-
trol (1) the luminosity level by acting on the roller shutters and the light bulb and
(2) the sound by acting on the TV remote controller and the Amazon echo smart
speaker. A second application set (i.e. CommunicationCenterApps) is deployed,
creating a home-working environment where the focus is put on controlling sound
sources so as to prevent home workers to be disturbed during phone calls or video
conferences (e.g., App_Phone_TV mutes TV while a phone call is in progress).
All applications are implemented through Node-RED flows.

To illustrate the toolsets proposed within the DevOps approach, a scenario with
two DevOps cycles has been defined, each cycle covering the development and the
operational stages.

Smart Home Use-Case and Illustration 111

Figure 5.11. Smart Home use case setup.

5.4.2 Software Development (Devs, Cycle 1)

At this stage, the aforementioned software components are designed and developed
(Fig. 5.12). Before deploying the whole system, the toolset developed for identify-
ing and resolving actuation conflicts (Paragraph 5.2.2) is applied on the WIMAC
model built from deployment, implementation and physical environment models.
Designers specify the physical environment model by linking ActionComponents

to the PhysicalProperty they act on. At this point, a potential direct actuation con-
flict is identified on App_RC_TV and App_Phone_TV; these applications being
meant to control the TV sound source (Fig. 5.13).

The management of this direct actuation conflict is straightforward, applications
merely send a Boolean value to a shared actuator (ActionComponent). The devel-
oper can then select, among the available off-the-shelf ACMs, the one relevant to
resolve this generic conflict type (here, a simple OR logic ACM has to be instanti-
ated between both software components (App_Phone_TV and App_RC_TV) and
the actuator they act on (TV)). Once the selected ACM is instantiated into the

112 A DevOps Toolchain for Managing Actuation Conflicts

Figure 5.12. Excerpt of App_Phone_TV and App_RC_TV structural inter-relationships,

as described in the WIMAC model, without environment model description.

Figure 5.13. Excerpt of App_Phone_TV and App_RC_TV structural inter-relationships,

as described in the WIMAC model with environment model description and the direct

ACM instantiated.

WIMAC model, a new deployment model is generated from WIMAC and pushed
to GeneSIS which concretizes the deployment.

5.4.3 System Operations (Ops, Cycle 1)

Throughout the execution of the SIS, the effects produced in the physical envi-
ronment are observed and, thanks to the behavioural drift assessment toolset, the
effectiveness of the SIS is measured from a model of the legitimate behaviour it has
to comply with (Fig. 5.14).

The model of the legitimate behaviour is built upon a set of sound features com-
puted from a microphone signal. Output observations (expected effects to be pro-
duced by the SIS) are then characterized by a Mel-Frequency Cepstral Coefficient3

3. https://en.wikipedia.org/wiki/Mel-frequency_cepstrum

https://en.wikipedia.org/wiki/Mel-frequency_cepstrum

Smart Home Use-Case and Illustration 113

Figure 5.14. Possibilistic model of the legitimate behaviour. States are defined by the

operating status of the TV and the communication status (i.e., OFF/ON means TV:ON,

COM:OFF). The configuration ON/ON is not legitimate, the direct ACM instantiated is

supposed to mute the TV while a communication is in progress.

(MFCCs) and the Zero Crossing Rate4 (ZCR) sound features. These sound features
lead a good segmentation of the observation space thereby, allow identifying device
states on the basis of the sound they emit. Contextual inputs are characterized by
the operating status of the TV and the communication status.

As depicted in Fig. 5.15, the ACM instantiated during the design phase ful-
fils its role and prevents the TV to operate while a communication is in progress.
No behavioural drift is therefore reported.

While the SIS operates, free of unexpected effects produced in the physical
environment, an autonomous smart vacuum cleaner moving around in the house,
bursts into the living-room. By operating in the living-room, this device produces
unexpected sounds leading behavioural drifts to occur (Fig. 5.16).

From the designers’ point of view, the quantitative effectiveness assessment is not
informative on the reasons for the drifts in effectiveness observed. At that point,
the behavioural drift analysis tool (Paragraph 5.3.2 and 5.3.3) is leveraged to guide
designers and help them correlate the symptoms of the drifts in effectiveness to
various events (Fig. 5.17).

On the basis of the dissimilarity graph depicted in Fig. 5.17, designers can infer
that drifts in effectiveness are the result of the smart vacuum cleaner unexpectedly

4. https://en.wikipedia.org/wiki/Zero-crossing_rate

https://en.wikipedia.org/wiki/Zero-crossing_rate

114 A DevOps Toolchain for Managing Actuation Conflicts

Figure 5.15. Observations from the field corresponding to the legitimate behaviour. The

ACM instantiated during the development phase fulfils its role (green part of the graph)

and no drift is reported here, the SIS behaves as expected.

(but legitimately) operating in the living-room and producing conflicting noise.
This device was unforeseen by designers in the initial model of the legitimate
behaviour. Moreover, this device has to be controlled so as to be integrated into
the user-well being control strategy and prevent indirect conflicts to occur on the
sound physical property.

