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Fig. 5.15: Approximation of a binary matrix D with two overlapping biclusters (top) applying NMF
(second from above) and the factorizations resulting from thresholding the factor matrices to binary
matrices in elementary algebra (second from below) and Boolean algebra (below). Biclusters are
highlighted.

1. Optimize the following objective with proximal gradient descent:
min 1D - YX " |* + A(AQ0, 1) + Ay (AY), 1)

s.t. X € RTT Y e RV, (5.34)

That is, perform the PALM update steps from Equations 5.29 and 5.30 for F(X, Y) =
|D - YX T ||?> and the regularizing functions

dx(X) = A (A(X), 1), $y(Y) = Ay(A(Y), 1).

2. Return the binary matrices that result from a suitable thresholding operation of the
relaxed result. That is, perform a grid search on the set T = {0,0.05,0.1,...,1}:

(px py) = argmin{[D - 6,,(Y) ® 6, (X )|* | px, py € T}
Px>Py
(X, ) = (6,: (X), 0,; (Y1)

The matrix or vector 1 indicates a constant one matrix, whose dimensionality can be
inferred from context. The Frobenius inner product (A(X), 1) = i A(X;s) sums the
penalization terms over all matrix entries. As a default value, we employ a natural
choice for the regularization weight Ax = Ay = 1.

The procedure of PAL-TILING describes the general framework for the optimization
of the Boolean matrix factorization error. Recent contributions in the field of Boolean
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matrix factorization also incorporate a mechanism to automatically determine the rank
of the factorization. To this end, objective functions other than the approximation error
in Frobenius norm are commonly optimized in BMF. So far, we have proposed two
approaches to facilitate the optimization with PAL-TILING. The rank determination
can be integrated into an outer loop of PAL-TILING, where the models of various ranks
are compared. One approach uses the well-established Minimum Description Length
(MDL) principle to determine the rank as the one yielding the minimum description
length of the model. Here, the objective in Boolean algebra is the employed description
length [310]. The other approach is to optimize the Boolean approximation error, and to
conduct statistical tests on the probability that at least one of the clusters is generated
by noise [311].

5.4.6 BROCCOLI - Optimizing Tri-Factorization Biclusterings

While the final thresholding step for the optimization of Boolean factorizations is
needed to translate the fuzzy clustering structure to the Boolean algebra, the bicluster-
ing models of checkerboard and block-diagonal clustering use the elementary algebra
matrix product. As a result, the relaxed formulation of the objective with the nonbinary
penalization terms in Equation 5.34 will have the same optimizers as the corresponding
binary matrix factorization objective (cf. Table 5.9), if the penalizing weights Ax and Ay
are large enough.

After every gradient descent step of one of the cluster indicator matrices, the prox-
operator is applied and pushes the matrix towards binary values. Hence, if the nonbi-
nary penalization weights Ax and Ay are large enough, then we will get binary matrices
after a couple of iterations. However, in this case, we also risk converging to a local
optimum close to the initialization. This would make our method even more sensitive
to the initialization than it already is due to the nonconvexity of the objective. In turn,
if we choose a value for A that is too small, then the optimum of the penalized objective
might not return binary matrices. We circumvent these issues by gradually increasing
the regularization weights throughout the optimization process. In addition, we employ
individual regularization weights. To this end, we introduce the regularization weights
as optimization parameters that are as large as possible in the optimal solution. We
achieve this by subtracting the sum of the regularization parameters (Ay, 1) + (4y, 1)
from the objective function value (cf. Equation 5.35).

Algorithm Specification 2 (Broccoli). Given a data matrix D € R¥N*? and a biclustering
optimization problem, such as

min D - YCx |2 + ¢c(C) st.Y € {0, 1", X € {0, 1}%7, C e R™.

1. Optimize the following objective with proximal gradient descent:
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min D - YCX T |2 + (Ax, AX) = 1) + (Ay, A(Y) = 1) + ¢c(C)
Aod,
s.t. (Ax)is, (Ay)js < Ay forall1<i<d, 1<j<N, 1<s<r.
Y e RV X e R®T, Ce R (5.35)

That is, perform the PALM update steps in an alternating fashion for X,C, Ax, Y, C, and
at last for Ay. Where F(X, Y, C) = ||D - wd |2, and the regularizing functions

Px(X) = (Ax, A(X)) dy(Y) = (4, A(Y))

The parameter A; in Equation 5.35 is employed as a placeholder for the maximally
required regularization weights Ay and Ay such that the optimizing factor matrices Y
and X of Equation 5.35 are binary. Bounding the regularization weights above by the
parameter A, ensures that the objective in Equation 5.35 is well-defined. However, we
do not need to determine the parameter A, in practice.

The parameter matrices Ax and Ay are the regularization weights of the non-binary
penalization terms A(X) and A(Y). The Frobenius inner product

(A, AX) = AisAKis)

sums the elementwise penalization terms weighted by the parameters A.

The implementation details of the BROCCOLI optimization scheme can be found
in Hess, Pio, Hochstenbach, and Ceci [312]. In contrast to the Boolean factorization
framework PAL-TILING, the initialization plays an important role for BRoccoLI. Instead
of the vanilla PALM optimization method, BRoccOLI employs stochastic proximal
gradient descent [187].

5.4.7 Experiments

We highlight here a few results from the applications of the PAL-TILING instance
PRIMP [310] and the BRoccoLI implementation using a nonnegative matrix factoriza-
tion for initialization [312]. More experiments than the ones displayed here can be
found in the corresponding literature [309, 310, 311, 312].

We compare the PAL-TILING instance PRIMP (henceforth indicated as PAL-TILING)
with the available implementations of the BMF methods PANDA+'3, MDL4BMF'4, and
NASsAU.*#

We compare BROCCOLI with six competitors: two methods based on a nonnegative
relaxation (henceforth denoted by N [447] and NN [165]), two methods based on an

13 http://hpc.isti.cnr.it/~claudio/web/archives/20131113/index.html.
14 http://people.mpi-inf.mpg.de/~skaraev/.
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orthogonal relaxation (henceforth denoted by O [725] and OO [165]) and the biclustering
methods FaBIA [318] and FLoc [716]. Since N, NN, O and OO return fuzzy membership
values for each observation, we binarize the result for comparison purposes. For each
sample (observation or feature) we set the top-k fuzzy cluster indicator values to one,
where k is the number of ground truth clusters the sample belongs to. Note that in
this way we provide our competitors with additional background knowledge, that is
not available in real-world scenarios. The goal is to estimate how good the clustering,
derived from a relaxed result, could potentially be, if supported by additional knowledge
(e.g., from domain experts).

Quality Metrics We quantify how well a computed cluster indicator matrix matches
the ground truth by an adaptation of the micro-averaged F;-measure, known from multi-
class classification tasks. We compute a one-to-one matching 7 between computed and
ground truth clustering and compute the average F;-measure of the matched clusters.
That is,

1¢ \ 1¢ \
Fy = T ZFl(Y-s, Y--ry(s))’ Fy= 7 ZFl(X-ty X»rx(t))'
s=1 t=1

We return the average F;-score of the feature and observation clusters:
F= %(F v + Fx).

The F1-measure has values between zero and one. The closer it approaches one, the
more the computed clustering matches the ground truth. The plots that display the
F-measure indicate its average value with error bars having the length of twice the
standard deviation.

5.4.8 Synthetic Dataset Experiments

PAL-Tiling We generate data matrices according to the scheme established by Karaev,
Miettinen, and Vreeken [356], Lucchese, Orlando, and Perego [451], and Miettinen
and Vreeken [492]. We generate (1600 x 500) and (1000 x 800) dimensional datasets
as outlined by Hess, Morik, and Piatkowski [310]. Given dimensions d, N, and noise
parameter p, a factorization of rank r” = 25 is generated by uniformly randomly drawing
each tile (X', Y) from all tiles of size |X’s| € [0.01d, 0.1d] and |Y’| € [0.01N, 0.1N].
Finally, each bit entry (Y © X*T)]-,- is flipped with probability p.

We compare the effects of the matrix dimensions and aggregate results over 10
generated matrices with dimensions 1000 x 800 and 1600 x 500. Figure 5.16 plots the
Fi-measure and the rank of the returned BMF against the percentage of noise. NASSAU
particularly strongly underestimates the rank for the 1600 x 500 dimensional matrices.
Here, NASSAU returns close or equal to zero tiles, even if the noise is low. This effect can
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Fig. 5.16: Variation of Bernoulli noise parameter p for 1000 x 800 and 1600 x 500 dimensional data.
Comparison of F;-measures (the higher the better) and the estimated rank of the calculated Boolean
matrix factorization (the closer to 25 the better) for varying levels of noise, i.e., p is indicated on the
x-axis (best viewed in color).

actually be alleviated if we transpose the matrix, which makes NASSAU perform similar
to MDL4BMF, yet with a stronger tendency to underestimate the rank. We observe
that all algorithms tend to underestimate the rank the more the noise increases. This
culminates in the replication of almost none of the tiles at the highest noise level for
the algorithms PANDA+ and NASSAU. PANDA+ yields correct rank estimations up to a
noise of 15 %, but its fluctuating F-measure indicates that planted tiles are not correctly
recovered after all. MDL4BMF shows a robust behavior. Its suitable rank estimations
up to a noise of 15 % are mirrored in a high F-measure. PAL-TILING is characterized by
overall high values in the F-measure. The experiments demonstrate a high robustness
of the proposed BMF optimization scheme PAL-TILING to noise on synthetic data.

Broccoli For the biclusterings generated by a tri-factorization, we create a set of
synthetic clusterings with overlap and outliers by sampling every cluster indicator
matrix by a Bernoulli distribution. Entry X;, and Y} is equal to one with probability g =
0.2. Thereby, we ensure that a cluster contains at least 1% of the data points/features,
that are exclusively assigned to this particular cluster. The core matrix is sampled as a
sparse matrix containing uniformly distributed values Cs; € [0, 5]. The probability that
a non-diagonal element is not equal to zero is equal to 1/r. The data matrix is generated
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Fig. 5.17: Variation of the Gaussian noise parameter o, comparison of F-measures (the higher the
better) for 300 x 200 data matrices with three row- and column-clusters and 1000 x 800 data matrices
with five row- and column-clusters.

by adding random Gaussian noise to the ground truth factorization:
* * T
D}'i = [Y]CXI + e)'i]207

where €j; ~ N(0, 0) and the operator [-].o projects negative values to zero. We gen-
erate for every noise variance ¢ € {0,0.2,0.4,...,2} and dimensionality (N, d) €
{(300, 200), (1000, 800)} five datasets. For the smaller 300 x 200 dataset, we choose
arank of r = 3 and for the larger 1000 x 800 dataset, we choose a rank of r = 5.

In Figure 5.17, we plot the F;-measure against the Gaussian noise parameter ¢. The
maximum value of ¢ is 2.0. For ¢ = 2, roughly 1/3 of the noise samples are larger than
or equal to 1.0, and about 2/3 of all noise samples have an absolute value larger than or
equal to 1.0 in expectation. We see that throughout the increase of the noise parameter,
BRroccoLI attains a high F-measure, close to 1.0, which slightly drops when the noise
variance exceeds 1.0. The methods N, NN, O, and OO, which are based on orthogonal
and nonnegative relaxations seem largely unaffected by the noise parameter, and attain
on average an F;-score between 0.7 and 0.8. FABIA and FLOC attain the lowest F;-score
of all competitors, where the F-score of FABIA has a tendency to increase with the noise
parameter up to 0.7. This is possibly due to the fact that FAB1a and FLoc do not explicitly
handle the possible presence of noise in the data.
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5.4.9 Qualitative Experiments

PAL-Tiling In this experiment, we explore how the algorithms relate to their actual
cognition of structure and noise, and illustrate what their biclusters look like. Image
data allows us to visually inspect the resulting factorizations and to intuitively assess
the captured relevant sub-structures.

We employ a standard representation of images: the RGB888 pixel format. Each
of the w x h pixels is represented by 24 bits, using 8 bits per color (red, green and
blue). In order to convert an image into a set of observations, we divide it into blocks
(patches) of 4 x 4 pixels, resulting in a total of ¥ x % observations per image. We
adopt this representation from computer vision, where image patches are a standard
preprocessing step for raw pixel data [340]. Within each block, let (7, g, b); x denote the
pixel at row [ and column k, wherer, g, b € {0, 1}8 are the 8-bit binary representation
of its red, green, and blue color values. We model the concatenation of all 16 pixels
within one block as one observation

[(r’ 8, b)l,l; (ry 8, b)l,Z’ (r, 8, b)1,3’ (ry 8, b)l,ln (r’ 8, b)2,19 ey (ry 8, b)4,4] (5~36)

which has a length of 24 - 16 = 384 bits.

This way, we process a selection of “aliens” from the classic game Space Invaders.
Reconstruction results and top-4 patterns of the Space Invaders image are shown in
Figure 5.18. All methods reconstruct at least the shape of the aliens. In terms of color,
however, the results diverge. PANDA+ and NASSAU interpret all colors as negative noise
effects on the color white; white has a binary representation of 24 ones. PAL-TILING
and MDL4BMF reconstruct all three colors of the original image, yet the reconstruction
of MpL4BMF exhibits injections of white blocks. Hence, only PAL-TILING is capable of
reconstructing the color information correctly.

Having a look at derived biclusters, the greedy processes of PANDA+ and NASSAU
become particularly apparent: PANDA+ and NASSAU overload the first factor with all
the shape information. The remaining factors reduce the quantitative reconstruction
error, but have no deeper interpretation. MDL4BMF tries to model one type of alien by
each bicluster. Although this would result in a reasonable description of the image,
the actual extraction of tiles suffers from the greedy implementation. For example,
we can see that the first tile captures information about the yellow aliens as well as
strayed parts of other aliens. This unfortunate allocation of tiles results in the injection
of white blocks in the reconstruction image. PAL-TILING separates by its tiles the three
basic color channels that are actually used to mix the colors that appear in the original
image. The results of this qualitative experiment illustrate the benefits of a non-greedy
minimization procedure.
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Fig. 5.18: Reconstructions of the Space Invaders image and visualizations of the top-4 outer prod-
ucts. Best viewed in color.

(PANDA+) (MDL4BMF) (NASSAU)

(PAL-TILING)
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Fig. 5.19: Illustration of derived word-clusters by the method OO on the 20 Newsgroups dataset. The
size of a word reflects its weight in the corresponding cluster (X.s).

Broccoli We perform a qualitative inspection of the results by means of the 20 News-
groups dataset.?”> The 20 Newsgroups dataset is a collection of posts belonging to one
of twenty topics that are hierarchically organized. We process the textual data as a
data matrix, reflecting for N = 11 314 posts the term-frequency of d = 6643 lemma-
tized words. We apply the methods BrRoccoLl, NN, and OO to derive r = 20 row- and
column-clusters. FABIA and FLOC were not able to successfully process such a large
dataset.

The obtained column-clusters (the feature clusters that in this case are clusters of
words) are shown in Figures 5.19-5.20. We display here only the fuzzy cluster indicators
of the orthogonal relaxation method 0O; the results from NN were very similar [312]. The
size of word i in the wordcloud of a fuzzy cluster s corresponds to the assigned weight
Xis = 0. Inturn, the binary word-indicators of BRoccoLI are visualized such that the size
of a word in the cloud is proportional to the inverse of the number of clusters the word
is assigned to. That is, those words that are unique to the respective cluster are larger
than those words which are assigned to multiple clusters. Looking at the visualizations

15 http://qwone.com/~jason/20Newsgroups/.
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Fig. 5.20: Illustration of derived word-clusters by Broccoli on the 20 Newsgroups dataset. The size of
a word reflects its weight in the corresponding cluster (X.s).

of clusters, we see that the word max pops up prominently in many clusters. The word
max obtains comparably very high term frequencies. The average term frequency of
aword is equal to 1.59, and 99 % of all words have a term frequency smaller than or
equal to 8. The word max occurs in 149 posts and obtains term frequencies in [1, 800].
Hence, the word max attains exceptionally high term frequencies in a few posts and
exhibits therewith a special role. The unusual high term frequency of the word max is
handled differently among the clustering methods. While OO gives a high weight to
this word in almost all clusters, BRoccoLI ignores the high frequency of this word. This
demonstrates the more modular approach of biclustering with binary cluster-indicator
matrices and a robustness to outliers.

We can detect meaningful clusters that address a specific topic for all clustering
methods. Comparing the addressed topics among the clustering methods, we see that
BroccoL provides a distinctive view on the dataset, identifying, for example, a religion
cluster that is not featured by the method OO. Hence, although BROCCOLI’s optimization
makes use of a relaxed objective, its results still offer another view on the data with
respect to that provided by the relaxed counterparts.
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5.4.10 Applications, Impact, and Future Work

In this work, we have reviewed the optimization methods for clusterings that have a
matrix factorization objective. Our comparison of popular clustering objectives has
shown that the majority of methods is designed to find partitioning clusters, adhering
to the EXCLUSIVITY CONSTRAINT: every point is assigned to exactly one cluster. Suitable
adaptations of Lloyd’s algorithm guarantee the convergence to a local optimum of the
objective function subject to the partitioning and particularly binary constraints. This
offers an undeniable advantage over other practical alternatives that relax the binary
constraint or heuristics. The major drawback of relaxing approaches is the discretiza-
tion step, in which theoretical guarantees, which might be provided for solutions of
the relaxed objective, are usually lost. However, the exclusivity constraint, enabling
the alternating minimization according to Lloyd, is not feasible in some applications.
Overlapping and nonexhaustive clusterings are more likely to represent the true model
when it comes among other things to the clustering of text or genomic data. In this
case, the theoretical foundation regarding the efficient optimization of corresponding
objectives is leaky.

We have proposed a general optimization framework for overlapping clusterings
by means of proximal alternating minimization. In particular, we have proposed two
approaches to optimize biclustering objectives, where the exclusivity assumption is
most often inept. The method PAL-TILING is designed for the optimization of a Boolean
matrix factorization, which is used to derive overlapping and non-exhaustive clusters
of binary data. The method BroccoLi is designed for a biclustering of real-valued data,
based on a tri-factorization.

Our experimental analysis highlights the power of the proposed optimization
approach on two instances: the MDL-based BMF method PRIMP (denoted here as
PAL-TILING) [310] and the NMF initialization of the BRoccoLI framework [312]. Our
experiments on synthetic data indicate in particular the robustness of our proposed op-
timization approach to noise, amount of overlap, and number of outliers (cf. Figures 5.16
and 5.17). Our qualitative inspection of found clusters indicates the meaningfulness of
the found clusters (cf. Figures 5.20 and 5.18).

This makes PAL-TILING and BRoccoLI a theoretically founded, practically well-
performing and flexible approach that has the potential to spark further research on the
optimization of non-exclusive clusterings in particular, and on the learning of discrete
structures in general.

Future Work The proposed optimization approaches are flexible and have the poten-
tial to found a standard method for the optimization of clustering structures based on
matrix factorization that does not require the exclusivity assumption. Note, that many
popular clustering methods are based on (or can be viewed as) a matrix factorization:
k-means, spectral clustering, and variants of deep clustering. In addition, techniques to
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cope with specific data characteristics in matrix factorization can easily be transferred
to the optimization scheme adopted in PAL-TILING and BROCCOLI.

In addition, nonconvex optimization is an ongoing field of research. There are
stochastic [163, 187], accelerated [427], and inertial [581] variants of the PALM optimiza-
tion scheme. That is, the power of the proposed optimization framework grows with the
research on the underlying optimization schemes. An analysis of proposed nonconvex
optimization schemes for the optimization subject to binary constraints and clusterings
in particular, would be a topic of further research.



6 Hardware-Aware Execution

Efficient learning has been the focus of research for decades. Many studies explore
various software/hardware techniques to improve the efficiency of learning process
while preserving the accuracy of the derived learning models. Along with the various
demands of applications nowadays, from simple like image recognition to advanced
like fundamental steering, how to deploy learned models and execute them efficiently
has been of key interests in the industry. Considering various resource constraints such
as throughput, timeliness, and energy consumption imposed by the targeted scenarios
and the adopted hardware platforms, most machine learning techniques, which often
rely on high-performance computers and clusters, must be carefully redesigned to fulfill
the assigned missions at edge devices while addressing the efficiency of resource usage.

To this end, we summarize in this chapter relevant research conducted in CRC
876, which is oriented to the awareness of hardware execution, and supplement two
external contributions to cover a broader spectrum of this research direction. Unlike
most existing techniques for executing neural networks on Field-Programmable Gate
Arrays (FPGAs), we focus on the of learning, which is actually more computationally
demanding (see Section 6.1). In addition, we exploit modern graphics processing units
(GPUs) for efficient database query processing (see Section 6.2) and study how paral-
lelization on multicore systems should be deployed for accelerating extreme multi-label
classification (see Section 6.3). At the end, we present our RAMBO framework, which
can efficiently optimize machine learning models even on heterogeneous distributed
systems (see Section 6.4). The mentioned techniques in this chapter tend to reveal differ-
ent perspectives to achieve efficient learning on various hardware platforms. Although
it is not possible to cover all relevant techniques, the introduced insights should clearly
reveal that a proper usage of hardware can be very effective, especially for the efficiency
of learning process.

en Access. © 2023 the author(s), publishe e Gruyter. | A5 is work is licensed under the
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6.1 FPGA-Based Backpropagation Engine for Feed-Forward Neural
Networks

Wayne Luk
Ce Guo

Abstract: Feed-Forward Networks (FFNs), or multilayer perceptrons, are fundamental
network structures for deep learning. Although feed-forward networks are structurally
uncomplicated, their training procedure is computationally expensive. It is challenging
to design customized hardware for training due to the diversity of operations in forward-
and backward-propagation processes. In this contribution, we present an approach to
train such networks using Field-Programmable Gate Arrays (FPGAs). This approach
facilitates the design of reconfigurable architectures by reusing the same set of hard-
ware resources for different operations in backpropagation. In our empirical study,
a prototype implementation of the architecture on a Xilinx UltraScale+ VU9P FPGA
achieves up to a 5.2 times speedup over the PyTorch platform running on 8 threads on
a workstation with two Intel Xeon E5-2643 v4 CPUs.

6.1.1 Introduction

The majority of FPGA-based deep learning architectures are for inference procedures,
which makes predictions using pre-trained networks. However, training is a compu-
tationally demanding procedure that limits the application of deep neural networks.
Backpropagation is the core process in the training procedure of neural networks.
This contribution discusses an FPGA-based architecture for backpropagation for Feed-
Forward Networks (FFNs). An FFN consists of multiple layers of connected nodes. Each
node in a layer takes the weighted sum of the activation signals from the previous layer
and generates an activation signal by evaluating a nonlinear activation function.

We study FFNs for two reasons. First, as stand-alone models, they are useful in learn-
ing problems with unstructured information such as non-image and non-sequential
data. For instance, in the event classification problem for the Higgs boson [3], the cor-
relation between attributes are difficult to capture with other neural networks such
as Convolutional Neural Networks (CNNs), while FFNs can provide decent accuracy.
Second, as deep network components, FFNs usually appear as the decision-maker in
convolutional neural networks; they also serve as generators and discriminators in
Generative Adversarial Networks (GANs) [266].

Although FFNs appear less complicated than other neural types of neural networks,
training FFNs efficiently on FPGAs is challenging. For instance, in convolutional neural
networks, a layer of nodes may share a small set of parameters. This parameter-sharing



6.1 FPGA-Based Backpropagation Engine for Feed-Forward Neural Networks = 251

property naturally reduces on-chip memory usage. However, FFNs do not have similar

properties as each connection between a pair of nodes carries a unique scalar parameter,

resulting in a high memory bandwidth usage.

Unlike research in general hardware design for neural network training like [431]
and [374], we pay attention to the features and limitations of reconfigurable hardware.
The following summarizes the challenges that we face.

1. Challenge of diverse arithmetic operations. The hardware resources on an FPGA
chip stay unchanged while the arithmetic operations frequently change during
backpropagation. To reuse the hardware resources and minimize the overhead for
reconfiguration, it is desirable to design multifunctional hardware modules that
support multiple operations without runtime reconfiguration.

2. Challenge of hardware adaptability. The size of the network and hardware resources
vary greatly in different applications. A proper hardware design should be adaptive
to all reasonable network sizes and hardware platforms.

3. Challenge of complex control logic. When a multifunctional hardware module sup-
ports more operations, the control logic becomes more complicated. In particular,
it is challenging to define a set of commands to control the hardware modules to
collaborate at different stages in backpropagation.

It is difficult to find off-the-shelf solutions because most existing systems for gradient
computation and training run on CPUs and GPUs. The novel aspects covered in this
contribution include the following:

1. Reuse of hardware resources for different operations. We extend the multifunc-
tional multiplication block in [278] to allow different operations to share the same
set of hardware resources without runtime reconfiguration, which addresses the
challenge of diverse arithmetic operations. In addition, the resource usage of the
architecture is independent of the network layout, which addresses the challenge
of hardware adaptability.

2. Commands to control the hardware. To use the same set of hardware resources for
different operations without significant loss of efficiency, it is necessary to find a
proper set of commands to control the hardware. We define a small set of commands
in this section, addressing the challenge of complex control logic.

3. Empirical evaluation. We conduct experiments to compare an experimental imple-
mentation of the hardware on an FPGA platform with the PyTorch deep learning
framework running on CPUs and GPUs.

6.1.2 Background and Related Work

This section provides a short introduction to Feed-forward networks and and their
hardware-based training approaches.
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Fig. 6.1: An example feed-forward network.

6.1.2.1 Feed-Forward Networks and Backpropagation

A feed-forward network contains nodes arranged in layers. For instance, Figure 6.1
shows a layout of an FFN with three layers of nodes and two layers of connections. Each
node in the input layer feeds a feature of the data point to the network. All nodes in
layer [ receive signals from all nodes in the previous layer (I - 1) and produce an output
signal in the form of a vector. The generation of output signal involves two steps. The
first step is to calculate the weighted-sum vector:

t = WX (6.1)

where X is a vector containing the output of all nodes in layer /; and W;_; is a matrix
of real numbers specifying N; weight vectors. The second step is to produce an output
signal x; with

X; = fact(t;) (6.2)

where f,t(+) is a non-linear function defined on real vectors.

It is necessary to specify the weights W = {W, ... W;_;} before using the network
to make predictions. One may find out the weights using data via training. A training
algorithm searches for a set of weights that fits a dataset D with respect to an error
measure E(W, D). An efficient training algorithm typically updates the parameter set
using the gradient

JE(W, D)

VW = aiw (6.3)

to minimize the error on the training data. The de facto method to compute the gradient
VW is backpropagation [422].

An episode of backpropagation includes a forward pass and a backward pass of
signals. In the forward pass, the network takes a data point and computes a prediction
following the direction of the network. In the backward pass, the network propagates
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an error signal in the opposite direction to compute the gradient. Note that the back-
propagation process does not include the optimization algorithm, which uses gradients
to update the weights [421].

The backpropagation process is computationally demanding. The sheer amount of
network parameters results in problems in the algorithms and hardware. With regard to
algorithms, the high dimensionality of the parameter space slows down the convergence
of the optimization procedure. As a result, the optimization algorithm needs to invoke
a large number of backpropagation episodes before obtaining an accurate network
model. With regard to hardware, parameters consume considerable memory space and
10 bandwidth during computation because the nodes do not share parameters.

The Graphics Processing Unit (GPU) is arguably the most widely-used hardware
platform to implement training algorithms for neural networks. The GPU platform
provides high performance with relatively low hardware costs and a short design cycle.
However, trends in the development of machine learning suggest that FPGAs may
become more promising than GPUs for two reasons. First, more neural networks will
be based on customized data types, especially quantized numbers [326]. GPUs can
natively support only a limited number of data types. By contrast, FPGAs can support
customized data types efficiently. Second, the performance gap between GPUs and
FPGAs is narrowing fast [541]. In particular, the size of on-chip memory, clock speed,
number of hardware DSP units, memory bandwidth, and the process technology of
FPGAs have significantly advanced.

6.1.2.2 Reconfigurable Computing for Neural Network Training

Among the statistical models for classification and regression, neural networks are
some of the most popular candidates for reconfigurable acceleration [488]. Because
we focus on the training process, we do not cover the hardware engines that only
perform inference. Reviews that cover inference engines include [408, 497, 500, 546].
The first type of solutions is the acceleration of the training process of general-purpose
neural network architectures. Eldredge and Hutchings [198] divide the backpropagation
algorithm into three stages and design hardware for each stage separately. During the
training process, the hardware performs a runtime reconfiguration at the beginning
of each stage. Paul and Rajopadhye [558] propose a systolic backpropagation engine
that avoids the runtime reconfiguration. In their design, all calculations in a complete
background procedure are mapped to hardware. Murugan et al. [522] designs a training
architecture for a network with five nodes. An implementation on a Xilinx Virtex-E FPGA
runs at 5.332 MHz. Li and Pedram [437] propose a coarse-grain architecture mainly to
implement the matrix multiplication operations in training. Langhammer and Pasca
[417] discuss architectures that evaluate common activation functions with different
approximation methods. Kim et al. [374] present the DeepTrain platform to perform
energy-efficient training for various types of deep networks. The DeepTrain platform
offers tools to generate sequences of operations for the hardware architecture using
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network descriptions extracted from the TensorFlow deep learning framework. Maeda
and Tada [458] propose a training engine for neural networks using the simultaneous
perturbation rule [457] to avoid the gradient computation in the training process.

The second type of solutions is the design and optimization of hardware-oriented
neural network structures. A popular network structure in this category is the Block-
based Neural Network (BbNN). Moon and Kong [502] first propose the BbNN and im-
plement the prediction facility on the FPGA platform. A BbNN connects a collection
of neutron blocks. A neutron block carries four numeric I/O ports. Each I/O port may
serve as either an input port or an output port. An output port provides an activation
signal computed from the input signals on the same neutron block. Jiang et al. [344,
345, 346] study the training process of the BbNN using evolutionary algorithms on the
CPU platform. The idea behind their training approach is to encode the topology of
the network and the configuration of the neural blocks into a vector so that an evo-
lutionary algorithm may improve the network by manipulating the vector. Merchant
and Peterson [488] make it possible to train the block-based neural networks on the
FPGA platform. The third type of solutions is the customization of domain-specific or
problem-specific neural networks. A representative neural network structure in this
category is the convolutional neural network. The convolutional neural network [403]
is a feed-forward network structure inspired by the visual cortex of animals. The major
application of CNNs is image recognition [403]. The reconfigurable acceleration solu-
tions for CNNs usually take advantages of the unique properties of structured data.
Farabet et al. [212] propose an FPGA-based RISC processor that matches basic opera-
tions in the CNN. The processor uses a description of a pre-trained CNN in the form of
a sequence of instructions to make predictions. A useful observation in this section
is that a proper reduction of the precision of image operations results only in a little
negative impact on the predictive accuracy. However, the precision reduction may save
a considerable amount of hardware resources. Further optimizations [428, 684, 734]
have made FPGA devices faster and more energy efficient than CPUs and GPUs. Zhao et
al. [744] propose the first stand-alone training engine for CNNs using a streaming data
path. The data path contains a collection of parameterized modules. The organization
of these modules changes over time with the runtime reconfiguration, which enables
the data path to train different layers of a network. In addition to CNNs, FPGA-based
reinforcement learning methods have emerged in recent years. Shao and Luk [625]
present an architecture trust region policy optimization, which allow robots or agents
to efficiently learn policies by interacting with an environment. An implementation on
an Intel Stratix-V FPGA achieves up to a 20 times speedup against a 6-thread software
reference on an Intel Core i7-5930K CPU running at 3.5 GHz. Gankidi et al. [240] design
a Q-learning architecture for a planetary robot. An implementation of the architecture
on an Xilinx Virtex-7 FPGA achieves 43 times speedup compared to an Intel 6-gen i5
CPU running at 2.3 GHz.
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6.1.3 Architecture for Backpropagation

This section presents the hardware architecture of the backpropagation engine and
automated generation of control sequences. During a backpropagation process, two
major operations consume the majority of execution time.

1. Linear combination. A node takes the linear combination of the outputs from all
nodes in the previous layer. In the forward pass, the operation combines activation
signals. In the backward pass, the operation combines error signals and computes
gradients.

2. Non-linear function evaluation. A node evaluates a real-valued non-linear function.
In the forward pass, the operation evaluates an activation function. In the backward
pass, the operation evaluates the derivative of the activation function.

The two major operations are computationally demanding because their time com-
plexity depends on the network layout [421]. Specifically, the time spent on linear
combination grows linearly with the number of network parameters. By contrast, the
time spent on function evaluation grows linearly with the number of nodes in the
network. Other operations in backpropagation are less computationally expensive than
the two major operations. For instance, it is necessary to compare the actual label of the
training data and the prediction to calculate the initial error signal for the backward
pass. However, the comparison runs only once in a backpropagation episode, and the
calculation typically has linear complexity regarding the data dimension.

The two major operations are fundamentally different regarding arithmetic opera-
tions. A straightforward way to customize hardware architecture is to create separate
arithmetic modules for both operations [437]. However, the sequential dependencies
between the calculations allow only the execution of one type of operation at the same
time. Therefore, when the arithmetic module for one operation is active, the correspond-
ing arithmetic modules work with a full load, but the modules for all other operations
are idle. In other words, only a small fraction of logic units work, resulting in wastage of
hardware resources. Admittedly, it is possible to prepare separate bitstreams such that
each operation takes all hardware resources [198, 744]. However, it is necessary to recon-
figure the hardware to switch between operations. Frequent runtime reconfiguration
may take a considerable amount of execution time.

We design a hardware block that works for all backpropagation operations. Our ob-
jective is to allow different operations to share as many arithmetic facilities as possible.
We use a command sequence to dynamically switch between operations by adjusting
the behavior of a small subset of arithmetic units without incurring runtime reconfig-
uration. Figure 6.2 shows the top-level diagram of the architecture, which supports
both linear combination and function evaluation. Major components include the buffer
crosshar and the arithmetic block.

—  The buffer crossbar communicates with two buffers. At any time, the buffer control
signal from the command specifies a source buffer and a target buffer. The crossbar
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Fig. 6.2: Top-level diagram of the backpropagation engine.

reads a vector from the source vector and passes the vector to the arithmetic block.
The crossbar also accumulates the output vector from the arithmetic block to the
target buffer.

— The arithmetic block extends the multifunctional multiplication block proposed
in [278]. The modifier in the arithmetic block corresponds to the overrider in [278].
This block has two execution modes: the linear mode, which multiplies a matrix by
a vector, and the function evaluation mode, which evaluates a non-linear function
for all elements in the vector. Our extension includes the gradient accumulator
and the row-sum module. A binary signal from the command controls whether
the multiplier accumulates the entry-wise products to the gradient. The entrywise
multiplier feeds its results to a row-sum module which calculates the sum of each
row in the linear mode.

The arithmetic module switches to the linear mode for linear combination. The core
calculation for a linear combination operation is to evaluate a vector of weighted sums
using a b-dimensional input vector x and a b x b weight matrix W. We evaluate an
approximate version in the form of a piecewise linear function.

The architecture addresses two challenges in Section 1. First, the components and
their connections are independent of the operation. As a result, it is unnecessary to
perform a runtime reconfiguration when the operation changes, which addresses the
challenge of diverse arithmetic operations. Second, the resource usage is independent
of the layout of the network. Therefore, it is possible to scale the architecture for dif-
ferent hardware platforms to control cost or power consumption, which addresses the
challenge of hardware adaptability.

One may follow the design flow illustrated in Figure 6.3 to apply the architecture to
a backpropagation task. The design flow includes hardware customization and com-
mand sequence generation. Hardware customization is the process to set two design
parameters. One design parameter is the batch size b, which determines the size of
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Fig. 6.3: Design flow.

Tab. 6.1: Memory traffic (number of data entries per command).

Operation ME Inward Outward
Data load 0 bg 0
Linear combination for forward pass 0 b? 0
Function evaluation for forward pass: batch 0..(U - 2) 1 b2 0
Function evaluation for forward pass: batch (U - 1) 1 b? b
Linear combination for backward pass: node error 0 b? 0
Linear combination for backward pass: gradient output 0 b b?
Function evaluation for backward pass 0 0 0

the entrywise multiplier. A larger b allows the entrywise multiplier to process more
multiplications in parallel for a single data point. The other parameter is the degree of
data parallelism g, which determines the number of data points processed in parallel.
After customization, the architecture has g arithmetic blocks. Each arithmetic block
contains a modifier, an entrywise multiplier, and a row-sum module. Each entrywise
multiplier includes b x b scalar multipliers. After filling the design parameters to the
hardware description, it is possible to generate a bitstream to program the reconfig-
urable hardware using the synthesis toolchain. Command sequences generation is the
process that produces a sequence of commands from the layout of the network.

The memory bandwidth usage of the hardware depends on the operation and
the hardware parameters. For ease of discussion, we assume that all data entries in
the feature matrix, network parameters, and gradients have the same width. We may
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measure the memory traffic by the number of data entries transmitted per command.
Table 6.1 summarizes the memory traffic for different operations.

6.1.4 Collaboration of Components

In this section, we explain how the components collaborate to execute different opera-
tions in backpropagation. The modifier in the arithmetic block determines whether the
system performs linear combination or non-linear function evaluation.

— The modifier switches to the linear mode for linear combination. The core cal-
culation for a linear combination operation is straightforward. In particular, the
arithmetic block evaluates a vector of weighted sums using a b-dimensional input
vector x and a b x b weight.

— The modifier switches to the function evaluation mode for non-linear function eval-
uation. Rather than evaluating an activation function following its mathematical
definition, the arithmetic block evaluates an approximate version in the form of a
piecewise linear function.

Before running the hardware, it is necessary to define a list of commands to control
the hardware architecture. We briefly discuss a set of commands that can be used to
perform backpropagation in a straightforward manner. This command set addresses
the challenge of complex control logic discussed in Section 1. We first describe two
commands that read and write the same buffer including data load and memory reset.
We then present the commands for linear combination and function evaluation where
the arithmetic block read and write different buffers.

The architecture supports two commands that operate on a single buffer. The first
command sets the addressed location in the target buffer to zero. As the arithmetic
block always accumulates to the target buffer, it is necessary to initialize N; entries in
the target buffer to zero to ensure correct calculation. A command to reset a memory
location needs to set the source buffer to be the same as the target buffer and point both
addresses to the location to reset. The parameter memory provides a b x b negative
identity matrix. With these settings, the output of the row-sum module is the opposite
of the original value —-x;. The accumulation of the value back to the target memory
location resets the content to zero. The second command loads d dimensions from g
data points to the target location. The memory crossbar directly reads a data point from
the data stream, ignoring the output of the arithmetic block.

The other two commands operate on two buffers. The first command is for the
linear combination operation. In each batch, the arithmetic block takes b signals as the
input and begins to propagate the signals to b nodes in the adjacent layer in parallel.
The second command is for the function evaluation operation. Each modifier takes a
copy of the variable and evaluates the piecewise linear function that approximates the
activation function.
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Tab. 6.2: Resource usage.

Resource Total Used Percentage
Logic utilization 1182240 382256 32.33%
DSP blocks 6840 4105 60.01 %
Block memory (BRAM18) 4320 1292 29.91%
Block memory (URAM) 960 150 15.63 %

6.1.5 Evaluation

We empirically evaluate the architecture in this section by comparing an FPGA im-
plementation of the architecture and the PyTorch machine learning platform on a
dual-CPU workstation.

6.1.5.1 Experiment Settings

We compare our architecture running on an FPGA-based acceleration card with a CPU
implementation running on a multicore CPU. The architecture runs on a Xilinx Ul-
traScale+ VU9P FPGA with 16 nm technology. We run the FPGA chip at 120 MHz. The
architecture executes command sequence to g = 16 data instances in parallel with
dimensional batch size b = 8. Table 6.2 shows the resource usage of the implementation.
The software implementation runs on the PyTorch 1.0 machine learning platform run-
ning on a workstation with two Intel Xeon E5-2643 v4 CPUs and 128 GB DDR4 memory.
The process technology of the CPUs is 14 nm, which is slightly more advanced than the
FPGA. The workstation has 12 physical cores supporting 24 threads in total. The base
frequency of the CPU cores is 3.4 GHz, and the maximum turbo frequency is 3.8 GHz.

We consider two representative types of network layouts in the experiments. We
call them bucket-shaped networks and cone-shaped networks respectively for ease of
discussion. In a “bucket-shaped” network, all layers contain an identical number of
nodes. These networks usually appear in stand-alone classifiers, generative models, and
reinforcement learning. In a “cone-shaped” network, a hidden layer has no more nodes
than its previous layer. These networks learn compressed features and representation
as each layer introduces information loss in a controlled manner.

Table 6.3 shows the test cases we designed using network layouts similar to those
in real-world applications. We test two activation functions—rectifier linear function
(relu) and the hyperbolic tangent function (tanh)-for each layout. Due to the alignment
requirement of our hardware platform, we round the size of each layer to the next
multiple of 32. We also produce challenging test cases for each application by linearly
scaling the size of all layers. Specifically, the design of test cases is as follows.

— The experiments with “bucket-shaped” networks include 12 test cases. Test cases

BO and B1 correspond to the network structure for reinforcement learning in [276].

The network has 2 hidden layers with 200 nodes in each layer. Test cases B2 and B3
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correspond to a study of traffic-flow prediction [454]. The network with the largest
layer size contains 3 layers of hidden nodes with 400 nodes in each layer. Test cases
B4 and B5 correspond to the network in the generative adversarial networks in
[23]. The network contains 4 hidden layers with 512 nodes in each layer. Test cases
B6-B11 are challenging versions for BO—B5, where the layer size of each case is 8
times that of the original version.

— The experiments with “cone-shaped” networks include 8 test cases. Test cases CO
and C1 correspond to the stacked autoencoder in [713]. The network has two hidden
layers containing 400 and 225 hidden nodes, respectively. Test cases C2 and C3
correspond to the denoising autoencoder for speech data recognition in [221]. The
network contains two hidden layers, one with 1000 nodes and another with 500.
Test cases C4—C7 are challenging versions for CO—C3, where the layer size of each
case is 4 times that of the original version.

We use randomly generated data and network parameters to test the efficiency of the
system. Assuming that the function evaluation procedure takes the same time for differ-
ent inputs, the total execution time for each backpropagation process is independent of
the data distribution and the network parameters. In other words, given the same data
size, the total execution time should stay unchanged regardless of the data source. As a
result, using randomly generated data and network parameters facilitates experiments
with various data sizes without affecting observations. The number of data instances
for each test case is 22°. In each test case, we calculate the gradient with respect to 100
sets of weights.

6.1.5.2 Results and Discussion

Table 6.3 records the experimental results. In this table, the benchmark column records
the numbers of data instances; the ‘CPU-1T’, ‘CPU-4T’, and ‘CPU-8T’ columns contain
the execution times in seconds for the corresponding implementation. The ‘SU’ columns
give the speedup of the FPGA implementation over the CPU with 1 thread, 4 threads,
and 8 threads, respectively.

The architecture discussed in this contribution is faster than the CPU system in all
but one test case. In the tests with bucket-shaped networks, the architecture achieves
up to a 9.4, 5.4, and 5.2 times speedup compared with the software reference on 1, 4,
and 8 threads. In the tests with cone-shaped networks, the architecture achieves up
to a 7.8, 4.6, and 4.7 times speedup compared with the software reference on 1, 4, and
8 threads. In addition to the overall speed advantage of the architecture, we have the
following additional observations:

1. The software implementation scales poorly with the number of threads. The soft-
ware running 4 threads achieves only around 2 times speedup against a single
thread. The speed advantage on 8 threads over 4 threads is insignificant. In test
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Tab. 6.3: Execution time (seconds) and speedup.

ID Layers Activation CPU-1T CPU-4T CPU-8T FPGA SU-1T SU-4T SU-8T
BO 224x2 tanh 0.285 0.219 0.155 0.071 4.0 3.1 2.2
B1 224x2 relu 0.181 0.104 0.090 0.071 2.5 1.5 1.3
B2 416x3 tanh 0.731 0.356 0.274  0.105 7.0 3.4 2.6
B3 416x3 relu 0.521 0.202 0.162 0.104 5.0 1.9 1.6
B4 512x4 tanh 1.020 0.504 0.430 0.138 7.4 3.7 3.1
B5 512x4 relu 0.786 0.320 0.235 0.137 5.7 2.3 1.7
B6 1792x2 tanh 4.102 2.493 2.109 0.615 6.7 4.1 3.4
B7 1792x2 relu 3.715 2.163 1.820 0.615 6.0 3.5 3.0
B8 3328x3 tanh 21.758 13.120 13.176 2.576 8.4 5.1 5.1
B9 3328x3 relu 20.827 13.783 12.400 2.574 8.1 5.4 4.8
B10 4096x4 tanh 45.501 24.847 25.286 4.822 9.4 5.2 5.2
B11 4096x4 relu 44.755 24.036 24.320 4.817 9.3 5.0 5.0
Cco 416,256 tanh 0.179 0.125 0.167 0.089 2.0 1.4 1.9
C1 416,256 relu 0.137 0.086 0.102 0.087 1.6 1.0 1.2
C2 1024,512 tanh 0.577 0.339 0.421 0.169 3.4 2.0 2.5
c3 1024,512 relu 0.494 0.266 0.299 0.169 2.9 1.6 1.8
C4 1664,1024 tanh 2.092 1.189 1.259 0.375 5.6 3.2 3.4
C5 1664,1024 relu 2.121 1.104 1.021 0.375 5.7 2.9 2.7
Cé6 4096,2048 tanh 13.467 7.997 8.147 1.732 7.8 4.6 4.7
c7 4096,2048 relu 13.207 7.643 7.636 1.725 7.7 4.4 4.4

cases B10 and B11, the software running on 8 threads is even slower than when
running on 4 threads.

The software is more sensitive to the selection of the activation function than the
architecture. With the same network layout, the software tends to be faster with
the rectifier linear function than with the hyperbolic tangent function. The speed
advantage is especially significant when the software runs on 4 and 8 threads. This
observation confirms the speed advantage of the rectifier linear function on CPUs
[255]. By contrast, the architecture on FPGA evaluates any activation using the
same number of commands. Therefore, the execution time of the architecture for a
given layout is independent of the activation function.

The experimental implementation achieves slightly higher speedup with larger
networks that carry more network parameters. For instance, in the experiments
with bucket-shaped networks with the ‘tanh’ function, the speedup over 8 threads
rises from 2.2 to 5.2 while the layer size expands from 224 to 4096. An exception of
the observation is that architecture achieves high speedup against a single CPU
thread in test case BO. A possible reason for the exception is that artifacts such as
memory initialization for both software and hardware take significant time when
the network is small. In this case, the comparison is less reliable than it is in other
tests.
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Besides the observations above, we have two conjectures based on the hardware design
and the experimental results. First, the speed of the architecture will grow if more DSP
blocks are available. The arithmetic block contains b?g scalar multipliers in parallel.
Our synthesis tool implements these multipliers mainly with DSP blocks. Therefore, DSP
blocks become the critical resource for the design, as shown in Table 6.2. The number
of data points processed in parallel grows linearly with the number of multipliers. As
a result, when more DSP blocks are available, we may set a larger g to deploy more
multipliers to improve the speed. Second, given the same set of hardware resources, our
architecture can process networks with more nodes and parameters than some existing
solutions such as [558] and [522] for two reasons. One reason is that the number of
multipliers is independent of the network layout. The other reason is that the on-chip
memory only needs to keep the activation and error signals for two adjacent layers.

6.1.6 Conclusions

We presented a hardware architecture to perform backpropagation for training multi-
layer perceptrons. The key to acceleration is to reuse the same set of hardware resources
to process different operations involved in backpropagation. Our architecture does
not incur runtime reconfiguration when switching between operations. The hardware
resource usage is independent of the network layout. A prototype implementation of
the architecture on a Xilinx UltraScale+ VU9P FPGA achieves up to 5.2 times speedup
over PyTorch running on 8 threads on a workstation with two Intel Xeon E5-2643 v4
CPUs.
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6.2 Processor-Specific Code Transformation

Henning Funke
Jens Teubner

Abstract: During the last decade, the compilation of database queries to machine code
has emerged as a very efficient alternative to classical, interpretation-based query
processing modes [529]. Compiled code can better utilize advanced features of modern
CPU instruction sets; avoid interpretation overhead; and—most importantly—minimize
data I/O (e.g., to main memory).

This success story raises the hope that compilation strategies can be lifted to non-
standard architectures, such as GPUs or other accelerators, as well as to support other
data-intensive processing tasks. However, as we shall see in this section, the data-
parallel nature of the devices is at odds with established techniques in query com-
pilation, resulting in massive resource under-utilization if compilation strategies are
applied too naively.

As a remedy, we propose two novel mechanisms that re-establish compute efficiency
of compiled code on data-parallel hardware: Lane Refill and Push-Down Parallelism
are “virtual operators” that participate in optimization and code generation just like
true query operators (making our approach seamlessly integrate with existing systems).
At runtime, they compensate for lurking resource under-utilization by adapting par-
allelization strategies on-the-go. The outcome is a resource utilization that is close
to the hardware’s maximum, while causing negligible overhead even in unfavorable
situations.

Lane Refill and Push-Down Parallelism are part of our compiler platform DogQC,
which leverages modern graphics processors for efficient database query processing.

6.2.1 Data-Parallel Processing Models

Data-parallel processing models are a particularly promising way to max out the achiev-
able compute performance within the constraints of hardware technology (power and
heat dissipation). Instead of dedicating chip resources to control flow management,
data-parallel architectures target throughput. For instance, executing an instruction
for 32 fields at a time can reduce the control flow management work by a factor of 32,
when compared with a scalar execution.
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6.2.1.1 Divergence in Data-Parallel Architectures

GPUs are a popular incarnation of this idea, and spectacular performance results
have been reported in various application domains. However, actually leveraging the
available hardware resources in a beneficial way can be challenging. Divergence effects,
which may arise whenever data is not perfectly regular, may compromise the benefits.

In this section, we will look at mechanisms to combat performance penalties that
may result from divergence effects. To understand the divergence problem, let us con-
sider the execution of a database query, as illustrated here in Figure 6.4 for Query Q10
from the TPC-H benchmark set. A query compiler will attempt to compile the plan
region into a straight-line sequence of code, i.e., a pipeline. The motivation to do so
is to propagate tuples within registers rather than spilling data to (slow) memory.

During execution, not all lineitem tuples will actually traverse the full pipeline.
Some tuples might instead be eliminated by operators such as filter ¢ or join x. If this
happens, a sequential processor will immediately abort the pipeline, continue with the
next input item, and hence keep CPU efficiency at peak.

Data-parallel execution back-ends, by contrast, do not have the option of aborting
a pipeline early, unless all tuples in the same batch of work are eliminated.

Figure 6.5 illustrates this effect for a GPU-based back-end (assuming a batch—or

“warp”—size of eight for illustration purposes). In some warp iteration, only warp lanes
1, 5, and 7 might have passed the filter g, leaving the five remaining warp lanes inactive
(indicated as dashed arrows - - ). The following join de-activates another two warp
lanes, bringing GPU efficiency down to /s in this example.
The resulting GPU under-utilization is even worse in real settings. To scan a lineitem
table with 150 million rows, actual GPUs will require 5 million warp iterations, each
consisting of 32 warp lanes. Although o filters out about 2/3 of all rows, it is extremely
unlikely that all lanes within a warp become inactive. Therefore, (almost) all 5 million
warp iterations proceed into the join operator x. Only 1% of the remaining rows find
a match during the join. In an actual dataset, 2.9 million rows remain after the join,
but they are spread across 1.1 million warp iterations. Ideally, the projection 7 and
aggregation aggr operators could have been processed by only 2.9 M/32 = 90K warp
iterations. In other words, state-of-the-art query compilation techniques will leave 92 %
of the GPU’s processing capacity unused.
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Fig. 6.5: GPU under-utilization due to filter divergence.

6.2.1.2 DogQC: A Database Query Compiler for GPUs

GPU code generated by our query compiler DogQC* leverages Lane Refill and Push-Down
Parallelism techniques to counter divergence effects like the ones illustrated above. In
the rest of this section, we will give a high-level idea of the Lane Refill and Push-Down
Parallelism techniques (Sections 6.2.2 and 6.2.3), then report on experimental results
for DogQC (Section 6.2.4), and wrap up in Section 6.2.5. More details on the Lane Refill
and Push-Down Parallelism mechanisms can be found in the respective full paper [237].

6.2.2 Lane Refill Technique

Divergence effects (here: filter divergence) are a consequence of the SIMT (“single in-
struction, multiple threads”) execution paradigm embodied in all modern graphics
processors. A number of threads (or lanes, typically 32 of them) are grouped into a warp.
During execution, all lanes within a warp execute the same GPU instruction.

The SIMT model encounters a problem whenever some lanes or data elements need
a different amount or kind of processing than others. In such situations, control flows
will diverge. Since all lanes within a warp still execute the same instruction, lanes will
be turned inactive and their computation result will be discarded. As illustrated above,
this can result in resource under-utilization.

To illustrate the severity of this effect, we instrumented the query plan shown earlier
(Figure 6.5) to monitor warp utilization at the plan point marked with a magnifying
glass Q. Figure 6.6 shows a histogram on the number of warps that have passed this

1 https://github.com/Henning1/dogqc.
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Fig. 6.7: Lane Refill: tuples from three low-activity iterations are suspended to the refill buffer and
resumed for full lane activity in the fourth iteration.

plan stage with a warp utilization of 1, ..., 32 active lanes. It is easy to see that only a
fraction of the available compute capacity is used; in most warps, only one or two out
of 32 warp lanes performed actual work.

6.2.2.1 Balance Operators and Refill Buffers
To combat the situation, DogQC injects balance operators into the relational query
plan. Code generated for these operators detects warp under-utilization at runtime.
Whenever utilization drops below a configured threshold, the state of all remaining
active lanes is suspended to a refill buffer and the pipeline starts over with a fresh set of
input tuples.

Figure 6.7 illustrates this for three successive warp iterations @ through Q. Since
only 2, 1, and 3 lanes remained active in these iterations (respectively), their state is
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Fig. 6.8: Lane activity profile with lane refill buffer to consolidate filter divergence.

flushed to the refill buffer. After flushing, each of those warp iterations is terminated
and processing starts over with the next set of input tuples.

6.2.2.2 Refilling

As soon as a sufficient number of lane states have been stored to the refill buffer, the
buffer can be used to refill lanes that have become inactive. This time, the under-utilized
warp iteration is not terminated but continues processing with full utilization after
refilling. This is visualized in Step @ of Figure 6.7. Here, only two out of eight warp
lanes remained active after the downstream join operator. Using the refill buffer, the
remaining six warp lanes can be filled with useful work, resulting in full warp utilization
upstream.

Implementationwise, flushing and refilling are backed up in DogQC by CUDA’s
__ballot_sync, __popc (“population count”), and shuffling primitives. These primitives
are highly efficient; balance operators will cause little overhead even when only a few
warps go below the utilization threshold.

6.2.2.3 Effect of Lane Refill

Lane Refill brings warp utilization back to a high compute efficiency. Following the
balancing operator, all executed warps (except for the last warp in each grid block) are
guaranteed to have a warp utilization above the configured threshold.

In Figure 6.8, this is illustrated with a histogram for the same plan point that we
profiled earlier (Figure 6.6), but this time with a balance operator applied. The histogram
confirms that (a) (almost) no warps exist with a utilization below 26 lanes (the threshold
we configured); and (b) the total number of executed warps has dropped by a factor of
about 10. In terms of overall execution performance, lane refill will improve execution
times by about 2 — 3x for the example plan shown in Figure 6.5.
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Fig. 6.9: Expansion divergence. Here, some rows in the probe-side relation will find more join part-
ners on the probe side than on the other side.

6.2.3 Push-Down Parallelism Technique

DogQC’s Push-Down Parallelism technique addresses another flavor of divergence that
may arise orthogonally to the aforementioned filter divergence. Expansion divergence
is the effect when a different amount of work is needed to process each of the items
within a warp. Database join operations are a common situation where this effect arises.
Figure 6.9 on the right illustrates the effect. Probe side tuples coming from the right
may find a different number of join partners each. Specifically, in the example, lane 6
will have significantly more tuples to process than the remaining warp lanes. In such a
situation, existing query compilers will process all matches of a single probe-side tuple
within the same warp lane. In the example, execution times would be dominated by
the sequential processing of all matches for lane 6.

Push-Down Parallelism mitigates the situation by parallelizing the processing of the
matches of a single probe-side tuple across the available warp lanes. To this end, the
execution state of probe-side lanes is broadcast over lanes, as illustrated in Figure 6.10.
Build-side matches are partitioned across. Again, we leverage efficient CUDA primi-
tives, such as __ballot_sync and __shf1_sync (“shuffle sync”). Please refer to [237] for
details.

As illustrated in Figures 6.11 and 6.12, Push-Down Parallelism improves lane uti-
lization and reduces the overall number of iterations needed to complete the query.
Lane Refill and Push-Down Parallelism complement one another, and Figure 6.9 shows
an example where both flavors of divergence co-exist. Another typical occurrence of
expansion divergence is the processing of variable-length data, strings in particular. If
possible, DogQC will parallelize the processing of strings across warp lanes to improve
resource utilization.
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Fig. 6.13: Execution times of DogQC for TPC-H benchmark queries (scale factor 25). The divergence
optimizations improve query performance.

6.2.4 Evaluation

With DogQC, we provide a query compiler with a wide range of SQL functionality,
sufficient to support all queries from the TPC-H benchmark set. Here we use DogQC
and the database domain to illustrate the aforementioned anti-divergence mechanisms,
which could equally be applied to other data-intensive tasks, including those related to
machine learning.

6.2.4.1 TPC-H Performance
To assess the benefits of measures to contain divergence, we performed a series of
measurements with the TPC-H benchmark set. Our measurements were based on an
NVIDIA RTX2080 GPU with 46 Streaming Multiprocessors and 8 GB GPU memory,
installed in a host system with an Intel i7-9800X GPU and 32 GB of main memory. As a
reference, we compared DogQC with the hybrid CPU/GPU system OmniSci [545].

Our benchmark results are depicted in Figure 6.13. For each of the 22 TPC-H queries,
the bars indicate the query execution time assuming that the dataset is resident in GPU
memory.
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For OmniSci, we report the total wall clock time needed to execute the query as well
as the amount of time spent on GPU processing. OmniSci is a hybrid execution engine
in which both CPU and GPU will be used to jointly answer the query. As can be seen
in Figure 6.13, several queries can, in fact, not benefit much from GPU in OmniSci.
Also note that OmniSci could successfully execute only 13 of the 22 TPC-H benchmark
queries. DogQC, by contrast, can run all 22 TPC-H queries entirely on the GPU, with
execution times that are up to 86x faster than those of OmniSci.

6.2.5 Summary

In this research, we put the processing capabilities of data-parallel co-processors for
non-uniform, data-intensive workloads to the test. DogQC introduces techniques that
allow us to gracefully align parallel processing units with work items, even when
problems are heavily skewed. We observe that Lane Refill and Push-Down Parallelism
are able to increase processing efficiency for these non-uniform workloads, sometimes
with dramatic effects on processing throughput.

Existing query coprocessors typically avoid imbalances by working on a uniform
surrogate (such as dictionary keys or materialization barriers). This has led to the
perception that GPUs have limited capabilities of processing irregular problems. DogQC
avoids the overhead of maintaining such additional data structures and instead restores
balance during non-uniform processing.

Here we showcase Lane Refill and Push-Down Parallelism based on an application
to database query processing. Compared with state-of-the-art platforms, our prototype
DogQC achieves better resource utilization, a bigger functionality range, and better
runtime performance on realistic benchmarks. Looking ahead, our anti-divergence
measures could be applicable to many machine learning scenarios, especially when
the problems involved are heavily skewed and/or depend on non-linear computations.
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6.3 Extreme Multicore Classification

Erik Schultheis
Rohit Babbar

Abstract: There are classification problems, such as assigning categories to a Wikipedia
article, where the possible set of labels is very large, numbering in the millions. Some-
what surprisingly, these so-called Extreme-Multilabel Classification (XMC) problems
can be solved quite successfully by applying a linear classifier to each label individually.
This decomposition into binary problems is called a one-vs-rest reduction. As these
problems are completely independent, the reduced task is embarrassingly parallel and
can be trivially spread across multiple cores and nodes. After training, the model can
be sparsified by culling small weights to only require a fraction of the memory and
computational power for prediction on new samples.

6.3.1 Introduction to Extreme Multilabel Classification

Extreme Multi-label Classification (XMC) refers to supervised learning with a large target
label set where each training/test instance is labeled with a small subset of relevant
labels. Machine learning problems consisting of hundreds of thousands of labels are
common in various domains such as annotating web-scale encyclopedias [585], hash-
tag suggestion in social media [171], and image-classification [168]. For instance, all
Wikipedia pages are tagged with a small set of relevant labels that are chosen from more
than a million possible tags in the collection. It has been demonstrated that, in addition
to automatic labelling, the framework of XMC can be leveraged to effectively address
learning problems arising in recommendation systems, ranking, and web-advertising [9,
585].

Notation and Setup Let the training data D := {(X(l), y), ..., &W, yW ))} consist

of input feature vectors ) € X C R? and respective output vectors y¥ € Y := {0, 1}™
such that y%i) = 1 iff the I-th label belongs to the training instance x. The feature
vectors form the rows of the feature matrix X. In XMC settings, the cardinality m of the
set of target labels, the dimension of the input d, and the size of the dataset N can all
be of the order of hundreds of thousands or even millions.

For text data, the input can be represented by term-frequency inverse-document-
frequency (tf-idf) features. In that case, the dimensionality of the feature space is
determined by the size of the vocabulary, and for each text x € X the feature x; is
nonzero only if the corresponding word appears in the text. As a result, the input
features are highly sparse. The magnitude of the feature is determined by how often
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Fig. 6.14: Label frequency in XMLC datasets. X-axis shows the label rank when sorted by the fre-
quency of positive instances and Y-axis gives the number.

the word appears in the document and in the entire corpus. For details on tf-idf, see,
e.g., Manning, Raghavan, and Schiitze [463].

Similarly, for any given instance x® only a small subset of the labels will be relevant,
Ilv?||1 < m. Additionally, the number of instances for which a label is relevant is very
imbalanced: Few labels will be relevant to many instances, but most labels will apply
only to an extremely small fraction. This gives rise to a long-tailed label distribution,
as shown in Figure 6.14. The labels with very few positives are called tail labels. The
characteristics of well-known benchmark datasets in XMC are presented in Table 6.4.

In traditional multi-label classification, the goal is to learn a multi-label classifier
in the form of a vector-valued output function h : RY > {0, 1}™. In XMC, one often
wants to restrict the classifier to predict a fixed number of labels because, say, a web
interface might have a fixed number of slots in which to suggest related searches. This
leads to classification functions hy : R » Y, := {y € Y : ||ly||1 = k}. Such a function is
typically constructed by first learning a score function r : R? » R™, and then taking
the k highest-scoring labels as the prediction.

Evaluation Metrics Due to the extreme sparsity in the label vector, metrics such as
accuracy are not informative in the case of XMC. Instead, one typically uses metrics that
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Tab. 6.4: Multi-label datasets from XMC repository [50]. APpL and ALpP represent average points per
label and average labels per point, respectively.

Dataset #Training  #Features  #Labels APpL  ALpP

AmazonCat-13K 1186 239 203882 13330 448.6 5.0
AmazonCat-14K | 4398050 597540 14588 1330.1 3.5

Amazon-670K 490 449 135909 670091 4.0 5.5
Wiki10-31K 14146 101938 30938 8.5 18.6
Delicious-200K 196 606 782585 205443 72.3 75.5

WikiLSHTC-325K | 1778351 1617899 325056 17.5 3.2
Wikipedia-500K 1813391 2381304 501070 24.8 4.8

focus on the k predicted labels. Most commonly used are precision at k, denoted P@k,
and normalized Discounted Cumulative Gain, denoted nDCG@k [50]. Let R™ > § = r(x)
be the predicted scores for an instance with corresponding label vector y. These metrics
are defined by

o1
P@KY.9)=2 D W (6.4)
lerank,(y)
min(k, |y
wosek D =Y mmen/ e

where rank;(y) returns the k largest indices of y ranked in descending order, and R,
gives the ordering of the I’th index. Note that unlike P@k, nDCG@k takes into account
the ranking of the correctly predicted labels. For instance, if there is only one of the
five labels that is correctly predicted, then P@5 gives the same score if the correctly
predicted label is at rank 1 or rank 5. By contrast, nDCG@5 gives a higher score if it is
predicted at rank 1 and the lowest non-zero score at rank 5.

6.3.2 Parallel Training of Linear One-vs-Rest Models

The P@k (Equation 6.4) and nDCG@k (Equation 6.5) metrics introduced above are
non-differentiable and thus not directly usable in typical gradient-based empirical-risk-
minimization procedures. However, it can be shown that in order to achieve optimal
predictions for precision at k, one only needs to train the scoring function r in such
a way that the scores are strictly monotone transformations of the labels’ marginals
[486]. Therefore, one can train the classifier by independently applying a classification-
calibrated? loss /pc, such as binary cross entropy or (squared) hinge loss, to each label

2 See e.g. Bartlett, Jordan, and McAuliffe [44]. Intuitively, this means that a classifier that minimizes
£pc also minimizes the binary 0-1 loss.
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individually. Therefore, the training objective is given by

w33 (#0(x7)). €

i=1 =1

Such a decomposition is called the One-vs-Rest (or One-vs-All) reduction.

Objective Functions for Linear One-vs-Rest This expression becomes particularly
favorable if the scoring function r is linear. In that case, the minimization task decom-
poses into m completely independent subtasks

N
. : (i) DT (D
vl e [m]: vgll)lellkd ;&x (J’z XV w ) (6.7)
i=

Due to the embarrassingly parallel nature of the training tasks, the computation can
easily scale to use thousands of compute cores. A scalable implementation of this
method yielding state-of-the-art prediction performance was demonstrated via the
DiSMEC algorithm [30], which is a multi-label wrapper around the Liblinear solver [210].
In DiSMEC, the underlying binary loss is the squared hinge loss with an additional I,
regularization term. Its objective is

N
L 2
vl e [m]: min. <|w(1)|§ +c E (max(o, 1- sf’)x(’)Tw(D)) ) , (6.8)
wieRrs i-1

where ¢ € R, is the parameter to control the trade-off between empirical error and the
model complexity and sgi) = 2y§i) - 1is the label represented as {+1, -1}.

A similar method is ProXML [29], which switches the I, regularization for l; regu-
larization in order to induce robustness to l.. perturbations in the input samples. This
robustness is particularly helpful for tail labels, which have very few positive training

instances. The objective of ProXML thus is

N L 2
vl e [m]: min. (|w(l)|1 + CZ (max(O, 1- sg')x(’)Twm)) ) . (6.9)

() ¢ Rd
wleR i1

Suppose for now that we have a method A : (X, s) » w available to solve these indi-
vidual problems efficiently in a single thread. (This will be discussed in Section 6.3.3).
Then the following framework can be used to scale the training process to multiple
cores and nodes:

Two-Level Parallelization The distributed training for the optimization problems
defined by equations (6.8) and (6.9) is implemented using a two-layer parallelization
architecture. At the top level, labels are separated into batches of, say, M = 1000, which
can be processed independently in parallel on available compute nodes, or sequentially



276 —— 6 Hardware-Aware Execution

if the number of batches exceeds the number of nodes. On each node, training of a
batch of M labels is parallelized using multiple threads, which forms the second layer
of parallelization.

After each w'? is trained, weights of small magnitude are pruned to reduce overall
model size drastically, often by more than 99 %. Since this can be performed as soon as
wg) has been computed, there is no need to store the complete dense model, even for a
single batch, which reduces the RAM requirements for the algorithm. Unfortunately,
in typical sparse matrix formats such as compressed sparse row/column matrices,
insertion of new values cannot be done by multiple threads in parallel, because it might
require reallocation and the shifting of data in other parts of the matrix. For this reason,
we represent the sparse weight matrix as an array of independently allocated sparse
vectors that can be written to independently.

The two-layer distributed training framework is summarized in Algorithm 4.

Algorithm 4: Framework for hardware-aware embarrassingly parallel train-
ing in DiSMEC and ProXML solvers. The iterations of both loops are indepen-
dent and can thus be run in parallel.
Input: Training data D = {(x(l), y(l)) e (xW, y(N ))} in sparse representation,
input dimensionality d, label set {1...m}, batch size M
Output: Learnt matrix W € R®™ in sparse format
// 1st parallelization; independent nodes
1 for {b=0; b < |§;]|+1; b++} do
2 Load single copy of feature matrix X into main memory
3 Prepare array W, of M sparse vectors
// 2nd parallelization; independent threads
4 for {I=bxM;l<(b+1)xM; l++} do

5 Generate binary sign vector s = {+1, -1}V,
6 train weight vector w(*l) on a single core using A(X, s(”),
7 Prune small weights in w(®

8 return Wy 5,
9 return W

An advantage of the two-level parallelization over just running m instances of an off-
the-shelf solver for binary problems is that the feature matrix X can be shared for all
training jobs running on the same node. This allows us to keep the entire dataset, which
may be several gigabytes in size, in main memory. However, on modern CPUs with a
large number of cores, or on nodes with a two-socket configuration, this might cause
problems due to Non-Uniform Memory Access (NUMA). In such a system, the overall
RAM is partitioned into regions, called NUMA domains. Even though all cores in the
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Fig. 6.15: NUMA memory in a dual-socket 64-core AMD Rome 7H12 system. Each CCD contains 8
cores, and each core has fastest access only to the memory within its own NUMA domain, marked
with dashed lines. Image by CSC - IT Center for Science under CC-BY-4.0.

system can access the entirety of the memory, access latencies to the different domains
vary depending on the distance of the core to the domain. An example of a NUMA setup
is given in Figure 6.15.

In such a setup, a single copy of the feature matrix would be accessed by all cores
on the system, quickly bottlenecking the memory bus and preventing the program from
making efficient use of the available CPU cores. This can be mitigated by pinning threads
to their CPU cores and replicating the feature matrix once per NUMA domain. In this
way, each thread can read the feature matrix from its local domain, reducing latency,
and the memory reads are spread out across different memory modules, improving
throughput. In order to achieve this, the outer parallelization layer has to be performed
not over physical nodes but over NUMA domains.

6.3.3 Second-Order Optimization Using Conjugate Gradients

The objective Equation 6.8 can be minimized in batch mode using second-order opti-
mization. Compared with the popular (stochastic) gradient descent strategy, second-
order optimization can take the curvature of the loss landscape into account and thus
converges to the minimum in much fewer iterations. However, the computations for each
single iteration are much more involved, as the second-order information is encoded in
the potentially very large Hessian matrix. Fortunately, it is possible to implement this
procedure without ever actually forming the Hessian, as will be described below.


https://github.com/CSCfi/csc-user-guide/blob/fe8263a94437cb4a1d300917a9cc234dd2ea84c6/docs/img/mahti_node.png
https://github.com/CSCfi/csc-user-guide
https://github.com/CSCfi/csc-user-guide/blob/master/LICENSE.txt
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Dropping the label index, we can write

N
Rplw] =ww+¢ > tsn (s,-x(i)Tw) , (6.10)
i=1
where /gy is the squared hinge loss

tsu(r) = max(0, 1 - r)?. (6.11)

Note that this objective function is convex. As a consequence, the optimizer will con-
verge to the global optimum regardless of the starting point.

Determining the Descent Direction The main idea of second-order optimization is
to approximate the objective locally using its quadratic Taylor approximation

Rp[w + 8] = Rp[w] + VRp[w]d + 0.58"V2 Rp[w]8. (6.12)

Therefore, the step 8+, which is ideal, i.e. which leads to the minimum, in this approxi-
mation can be calculated by solving the linear system

V2 Rp[w]6+ = ~VRp[w]. (6.13)

For Equation 6.8, the gradient and Hessian have a simple structural form [239, 368]

N
VRp[w] = 2w+ ¢ Z - (six(i)Tw) $;X (6.14)
i-1
V2Rp[w] = 21+ cX'DX, (6.15)
where I is the identity matrix, X = [x(V, ..., x™]7 is the data matrix, and D is diagonal

with entries Dj; = £gp(s;x"Tw).

The Hessian matrix has size N x N, and thus would be far too large to be stored in
memory. Fortunately, Equation 6.13 can be solved using a conjugate-gradient procedure,
which requires only Hessian-vector products. These can be calculated efficiently through

V2 Rp[wl]é = 26 + cX'DX8, (6.16)

because X is a very sparse matrix. In practice, Equation 6.13 is only solved approximately,
drastically reducing the number of conjugate-gradient iterations, and thus Hessian-
vector products, that need to be calculated.

Determining the Step-Size The resulting step vector 6 might be outside the region
in which the quadratic approximation (see Equation 6.13) accurately models the true
risk landscape Rp[w]. Therefore, a step-size mechanism is needed usually either by
using a trust region or by doing a line search.



6.3 Extreme Multicore Classification = 279

Due to the linear nature of the ranking function r(x; w) = x'w, the line search can be
implemented efficiently by using

;W +A8) = X'w + Aw' & (6.17)
|w+A8[|% = |w||% + 2Aw"8 + 1287 5. (6.18)

By caching the values of ||w]||3, w'8, 678, x'w and x'8, the cost of evaluating the loss
for any value of A after the first evaluation drops to O(N) evaluations of /sy and the
corresponding additions and multiplications of the cached values in Equations 6.17
and 6.18.

Implicit Hard-Instance Mining in Hinge Losses When using the squared hinge
loss (see Equation 6.11) for /sy, the loss and all its derivatives become zero once the
sample is classified correctly with a sufficient margin3 sx'w > 1. Consequently, the
corresponding entries in the diagonal matrix D in Equation 6.16 become zero. This
means that in the product X"DX, the feature matrix X can be replaced with a much
smaller matrix X that contains only the examples that are not classified correctly with
a margin. Denote with & := {i € [N] : 5;x)Tw < 1} the set of indices of examples with
nonzero loss (the hard instances), then X = [x? : i € €]T.

As a consequence, the full feature matrix X is only needed once per step to deter-
mine the gradient V Rp[w], D, and the hard examples €. Afterwards, each CG iteration
only requires the reduced matrix X. This can be interpreted as an implicit hard instance
mining step that is performed at the beginning of each step. As the weight vector w
approaches the optimal weights wx, most instances will have sufficient margin, and
only few hard instances remain, |£| < N (cf. Figure 6.16). Therefore, later iterations
require significantly less computation time than earlier ones. In fact, by using an initial
vector wy for which the hard-example set A is already small can speed up the overall
computation time tremendously, as discussed below.

6.3.4 Further Performance Improvements

Mean-Separating Initialization A simple attempt to improve the initial weight vector
is to chose a hyperplane that separates the means of the positive and negative instances
for that label. Denote P := {x® : i € [N],y® = 1} and x := N ), x?, then the

means are 1 N)_( |fP|f)
5= L Y%,  f.= NE-IPID (6.19)
P= gy 2 N 7|

3 The margin of an instance denotes how far its score is from the classification boundary. An instance
with a margin of 0 is classified correctly, but the slightest perturbation of its features or the classifier’s
weights could change the classification.
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Fig. 6.16: Sparsity of the Hessian calculation |€|/N (left) and average duration of each optimization
iteration (right) over the index of the iteration for zero and mean-separating initialization.

As x only need be calculated once for the dataset, and p can be computed quickly due
to the data imbalance |P| < N, these values can be computed efficiently.

This procedure can be viewed as an extreme case of data summarization (cf. Chap-
ter 3), in which the entire dataset is reduced to just two instances. The idea is now to
solve this very small classification problem, and use its solution as the starting point for
solving the full problem. This will be particularly useful if the simple solution already
classifies many of the easy negative instances correctly, as the set of hard examples &
will be small in such a case.

For two data points, the classification problem can be solved explicitly, and we
call its result the mean-separating initialization (msi) vector Wy,;. This vector is the
minimum-norm vector that attains pre-specified margins u. for classifying the two data
points. As a consequence, it lies in the plane spanned by X and p, and is characterized
by the following equations:

Wpsi = ax + ﬁl_) s (6.20)
P Wi = Moy, AW = 4. (6.21)
Heuristically, values p+ = +1, u- = -2 work well, and are based on the rationale that

negative samples cover a larger volume in the instance space, and thus the initial
decision boundary should be closer to the mean of the positives than to the mean of
the negatives.

The efficacy of this method can be seen from Figure 6.16, which evaluates the two
initialization strategies on the AmazonCat-13k [478] dataset using an AMD Rome 7H12
CPU.* The data shows that
— starting from a zero initial vector, the fraction of nonzeros starts at 100 % and

decreases as the training progresses;

4 Computational resources provided by CSC - IT Center for Science, Finland.
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— starting from a mean-separating initial vector, the sparsity is already high in the
beginning; and

- increased sparsity translates to significant reductions in computation time and
corresponding energy savings.

In terms of wall-clock training duration twc, the speedup that can be achieved by
switching from 0 to Wy, defined as twc(0)/ twc(Wysi), lies between 150 % and 500 %
as shown in Table 6.5.

Feature-Sorting A large portion of the computation time is spent on calculating the
initial margins X"w at the beginning of each iteration. Because X is a sparse matrix,
this computation has low arithmetic density, and because the feature dimension is
typically very large, the vector w does not fit into the L2-cache. These two properties
mean that this operation is severely memory-bound.

The caching behavior of w can be improved significantly by making use of the
dataset characteristic — in particular the fact that typical XMC tf-idf datasets have a long-
tailed distribution in the feature vector, meaning that some features have a large amount
of non-zero entries, but most features have few non-zeros[29]. By sorting the feature
indices according to the frequency of their occurrence, the corresponding entries in w
are brought closer together in the address space, thus improving the caching behaviour.

While this has no effect on the scaling of the performance with the thread count, it
does induce an absolute speedup, as indicated by the dashed lines in Figure 6.17.

The Memory-Bottleneck On machines with many cores, the performance of the
computations presented here is memory-bound. This can be seen in Figure 6.17, where
despite the embarrassingly parallel nature of the computations, the performance scales
sublinearly once a certain core count is exceeded.

In the specific case of running the computations on a 2-socket AMD Rome 7H12 (64
cores per CPU, cf. Figure 6.15) machine, Figure 6.17 shows almost perfect scaling from 8
threads, corresponding to 1 thread per NUMA node, up to 32 threads, corresponding to
one thread per L3 cache. For higher thread counts, the speedup saturates and in some
cases more threads may even be disadvantageous to performance.

In addition to the memory bottleneck, there will be a thermal/power bottleneck
involved. The used CPU has a base clock of 2.6 GHz, but if only a few cores are used
the clock frequency may be increased up to 3.3 GHz.® This indicates that even without
the memory bottleneck, the expected performance increase of 128 cores over 16 cores
would be less than 16x. This shows that the sublinear scaling cannot be explained by

5 Given that the computations are memory-bound, even when running with 128 cores the execution
ports of the CPU will be idle for a significant amount of time. Only moderate downclocking to ~ 3.18 GHz
occurred in our setup.
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Fig. 6.17: Relative speedup for increasing thread counts using both original and reordered features
for the first 10,000 labels of the Wikipedia-500k [50] dataset (left) and for the AmazonCat-13 [478]
dataset (right). The dashed line shows the speedup of reordered features, normalized to the com-
putation time with original features. The dotted line indicates perfect scaling. The (non-parallel)
portion of the program run-time that is spent parsing the input dataset has been subtracted from the
timings presented here.

Tab. 6.5: Training time (in hours) for zero and mean-separating initialization, as well as the number
of non-zero weights (NNZ) after pruning (in millions) and their fraction. The experiments were run on
a two-socket AMD Rome 7H12 machine.

Dataset ‘ Zero  MSI Speedup ‘ NNZ  Fraction
Wiki10-31k 0.05 0.03 164 % 114  3.62%
Amazoncat-13k 0.33 0.09 353 % 75 2.78%
Amazoncat-14k 1.31 0.39 339 % 110 1.26 %
WikiTitles-500k 5.34  1.19 451% 83 0.09%
Amazon-670k 6.82 1.36 503 % 405 0.44%
Delicious-200k 7.84 4.73 166% | 1175 0.73%
WikiLSHTC-350k | 18.52  5.17 358 % 434  0.08%
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Tab. 6.6: Results of DiISMEC in comparison with the state-of-the art results as reported in March 2022
in Bhatia, Dahiya, Jain, Prabhu, and Varma [50], for selected XMC datasets.

Dataset/Metric  DiSMEC SOTA Method SOTA

Amazon-670K - - -

P@1 44.7  LightXML 49.1
P@3 39.7  LightXML 43.8
P@5 36.1 LightXML 39.9
AmazonCat-13K - = -
P@1 93.4  LightXML 96.8
P@3 79.1  LightXML 84.0
P@5 64.1 LightXML 68.7
Wikipedia-500K - - -
P@1 70.2  AttentionXML 82.7
P@3 50.6  AttentionXML 63.8
P@5 39.7 AttentionXML 50.4
EURLex-4K - = —
P@1 82.4  APLC-XLNet 87.7
P@3 68.5 APLC-XLNet 74.6
P@5 57.7  APLC-XLNet 62.3

reduced clock frequencies alone; rather, another resource, such as memory bandwidth,
is also limiting performance.

6.3.4.1 Comparison With Deep Learning Methods

As shown in Table 6.6, the DiISMEC instantiation of the embarrassingly parallelizable
one-vs-rest framework described in Algorithm 4 can be a competitive baseline. Its per-
formance is not significantly worse in comparison to the state-of-the-art deep learning
methods, which typically employ transformers encoders [174]. Unlike the deep learning
models that require careful hyper-parameter tuning, the linear binary classification
underlying DiSMEC is more readily interpretable and well-understood from a theoreti-
cal viewpoint. For sparse tf-idf data representation, linear XMC classifiers also work at
par with tree-based approaches [371, 584] and those involving dense low-dimensional
label embeddings [51, 279].

6.3.5 Summary and Outlook

In this section we presented linear classification algorithms for extreme multi-label
classification. The linear model makes the training parallelize perfectly across different
labels, though in practice the scaling levels out with too many cores in a single node.
This is because even though the training itself does not require any communication
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or synchronization between the threads, the different cores within a machine still
compete for resources such as memory access. By placing a copy of the feature matrix
in each NUMA domain, it can be ensured that each CPU can read its data from a part
of the memory that it has fastest access to, and the load on the memory interface
is spread out across the different NUMA domains. Additionally, by reordering the
columns in the sparse feature matrix, data locality and, accordingly, cache efficacy
can be improved. An implementation that combines techniques can be found at https:
//doi.org/10.5281/zenodo.6699587. For further discussion on the interaction between
machine learning and the memory hierarchy, see Chapter 7.

The amount of work required to train the linear classifier for the highly imbalanced
data typical for XMC can be drastically reduced by starting the weights from a good
initialization. One way to find such a weight vector is to reduce the dataset to just
two training instances, the centers of masses of the positive and negative training
points in the original dataset, which can be calculated efficiently. By initializing the
full training procedure with a weight vector that separates this summarized data, one
can capitalize on the speedup of the conjugate-gradient optimizer due to implicit hard-
instance mining of the hinge loss. This procedure can be seen as a variation of the
sketch-and-solve principle introduced in Section 3.2. The main difference is that here
the solution based on the sketch is used to initialize the full training, and thus no
compromise in accuracy is made.

The presentation in the book is focused on the computational and implementation
challenges of XMC problems. However, the scale of the label space also leads to interest-
ing statistical consequences such as a long-tailed label distribution and corresponding
data-scarcity for tail labels, as well as incomplete training data with missing labels. For
a discussion of these issues, see the works of Babbar and Schélkopf [29], Jain, Prabhu,
and Varma [336], and Qaraei, Schultheis, Gupta, and Babbar [587].


https://doi.org/10.5281/zenodo.6699587
https://doi.org/10.5281/zenodo.6699587
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6.4 Optimization of ML on Modern Multicore Systems

Helena Kotthaus
Peter Marwedel

Abstract: This section demonstrates how the integration of knowledge about underlying
hardware platforms and learning algorithms can provide results that would not be
feasible by using the knowledge of only one type. In particular, this section presents
the optimization of ML algorithms on multicore systems, and in this way addresses
the same type of architectures as in Section 6.3. The optimization is based on resource-
aware scheduling strategies for parallel machine learning algorithms. The focus is on
Model-Based Optimization (MBO), also known as Bayesian optimization, which is an
ML algorithm with huge resource demands, including a large number of computational
jobs. Execution times of these jobs are estimated in order to enable their scheduling
on parallel processors. The section demonstrates that this scheduling enables the
processing of larger problem sizes within a given time budget and reduces the end-to-
end wall-clock time for a constant problem size.

6.4.1 Motivation

The notion of resource-constrained systems is typically associated with small, inte-
grated, and special-purpose devices exhibiting limitations with respect to, say, compu-
tational power, size, or battery life in embedded and cyber-physical systems. However,
reducing the understanding of resource restriction to systems of this kind is not sensi-
ble. In fact, even high-performance computers and clusters can suffer from resource
constraints when solving highly challenging problems that require massive amounts of
resources [166, 666]. Therefore, it makes sense to consider resource constraints also for
applications typically executed on larger systems.

Here, this is shown for the case of parallel MBO. MBO is a state-of-the-art global
optimization method for black-box functions that are expensive to evaluate. To reduce
the number of necessary evaluations of the black-box function, conventional MBO
uses an iteratively refined regression model on a set of already evaluated configura-
tions to approximate the objective function. However, such approaches neglect the
heterogeneous resource requirements for evaluating different configurations in the
model space, which often leads to inefficient resource utilization. This calls for new
resource-aware scheduling strategies to efficiently map configurations to the underlying
parallel architecture in accordance with their resource demands. In contrast to classical
scheduling problems, the scheduling for MBO needs to interact with the configura-
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tion proposal mechanism to select configurations with suitable resource demands for
parallel evaluation.

The fundamentals and related approaches of parallel MBO are presented in Sec-
tion 6.4.2. An overview of the RAMBO (Resource-Aware MBO) framework including the
resource-aware scheduling strategies, as well as the corresponding evaluation results
on homogeneous multiprocessor cluster systems, is given in Section 6.4.3. Section 6.4.4
proposes a concept for resource-aware scheduling strategies on heterogeneous embed-
ded systems. The results are shown in Section 6.4.5.

6.4.2 Fundamentals and State of the Art for Parallel MBO

In machine learning, selecting the best algorithms for a given optimization problem and
simultaneously tuning the corresponding hyperparameters of these algorithms can be
very computationally intensive. Many strategies for hyperparameter optimization have
been developed. (For an overview see, e.g., [55]). Hyperparameter optimization refers
to finding the best configuration 6 of a model, e.g., for a prediction problem a model
with high predictive performance on an independent test set. When the evaluation of a
single configuration already requires high resources, e.g., a very long runtime, then
very wasteful optimization methods like evolutionary algorithms are not applicable. A
popular approach for algorithm selection is F-racing [448], where a population of con-
figurations is racing against each other and underperforming candidates are iteratively
eliminated. This approach also requires many evaluations, at least in the early stage of
the algorithm.

An established alternative in the situation of expensive time constraints is Model-
Based Optimization (MBO), also known as Bayesian optimization, a state-of-the-art
technique for expensive black-box optimization. In this optimization process, an un-
known function, say, a machine learning algorithm, is evaluated to find the parameter
configuration with the highest quality of the output measured by a given performance
criterion within a limited time budget. This process is computationally challenging due
to the huge parameter space that needs to be contemplated, and can result in extremely
long response times. For this reason it is desirable to reduce the optimization time
while maintaining the prediction quality, i.e., 8" := argmingcof(6) for a search space
6 and an evaluation f(0) of the black-box with input 8 € © [348]. Aiming to reduce
the number of evaluations of f required to find the best configuration 8", we used an
iteratively refined and updated regression model (surrogate model), which attempts to
approximate the black-box function by predicting f(6) based on previous evaluations
of f. During each iteration, a so-called infill criterion (acquisition function) proposes
new promising configurations for evaluation.

In its original formulation, the MBO algorithm operates purely sequentially, propos-
ing one configuration to be evaluated after the other [348]. For applications such as
hyperparameter tuning for machine learning algorithms or computer simulations, the
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parallelization of MBO has become of an increasingly interesting approach to reduce
the overall execution time [288]. In order to propose multiple points (configurations)
simultaneously in a parallel MBO setting, several modifications to the infill criteria or
the general technique have been suggested. The modifications result in multiple config-
urations being proposed in each iteration [54, 254, 328]. The number of simultaneously
proposed configurations is typically chosen to match the number of available CPU cores.
However, these modifications in general neglect the heterogeneous resource require-
ments for evaluating different configurations in parallel. Depending on the parameter
configuration of the applied machine learning algorithm, resource requirements such
as CPU utilization or memory footprint usage can vary heavily [666].

The most important parallel extensions of MBO update the regression model either
synchronously or asynchronously. Both variants are based on different infill criteria
and have different advantages and drawbacks.

Synchronous Execution To allow for parallelization with a synchronous model
update, infill criteria and techniques that propose multiple configurations in each
iteration (constant liar, Kriging believer, qEI [254], qLCB [328], MOI-MBO [54]) have been
suggested. Multi-point proposals are able to detive g configuration proposals xJ, . . . , x;
simultaneously instead of only proposing one configuration x* from a surrogate model.
Here, the model is updated after all evaluations within one iteration are finished. Hutter
et al. [328] introduced the qLCB criterion, which is an extension of the single-point LCB
criterion using an exponentially distributed random variable to generate g different
candidate proposals by drawing random values of A; ~ Exp(A) (j = 1, ..., q) from the
exponential distribution:

qLCB(x, A;) = i(x) - A;3(x) with A; ~ Exp(A). (6.22)

The A variable guides the exploration-exploitation trade-off. Sampling multiple different
A; might result in different “good” configurations by varying the impact of the standard
deviation term.

Another popular multi-point infill criterion is the qEI criterion [254], which directly
optimizes the single-point EI criterion over q points. As the computation of EI uses
Monte Carlo sampling, it is quite expensive [136]. Therefore, a less expensive alternative,
the Kriging believer approach [254], is often chosen. Here, the first configuration is
proposed based on the standard single-point EI criterion. Its posterior mean value is
treated as a real value of f to refit the surrogate, penalizing the surrounding region with
a lower standard deviation for the next point proposal using EI again. This is repeated
until g proposals are generated.

The above mentioned multi-point infill criteria can cause inefficient resource uti-
lization when the parallel executed evaluations have heterogeneous execution times.
Before new configurations are proposed, the results of all evaluations within one it-
eration are gathered to update the model. Thus the slowest evaluation becomes the
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bottleneck, and all other parallel worker processes idle after finishing their evaluation
before a new MBO iteration can start. However, performing the model updates only
once per MBO iteration also leads to less computation overhead. Varying the execution
times of parallel evaluations have already been addressed by Snoek et al. [635], who
suggest that these be modelled with an additional surrogate, leading to an “expected
improvement per second” favoring less expensive configurations. The resource-aware
scheduling strategies for parallel MBO presented in this section also use regression
models to estimate resource requirements, but instead of adapting the infill criterion,
they use them to guide the scheduling of parallel evaluations. The goal is to guide MBO
to interesting regions in a faster and resource-efficient way without directly favoring
less expensive configurations.

Asynchronous Execution To avoid CPU idling, asynchronous execution replaces
the evaluation of multiple configurations in batches, and the synchronous refitting of
the model by refitting the model after each evaluation. Here, the number of worker
processes equals the number of available CPU cores, but each worker proposes the
next point for evaluation independently, even if configurations xy,,s, are currently
under evaluation on other CPU cores. The main challenge is to avoid evaluations of
very similar configurations by modifying the infill criterion to deal with points that are
currently under evaluation. The fast Kriging believer approach [254], which is based on
EI (also used for multi-point proposals), can be applied to block these regions.

Another approach assessing pending values is the Expected EI (EEI) [253, 339, 635].
Here, the unknown value of f(xy,y) is integrated out by calculating the expected value
of ypusy via Monte Carlo sampling, which is, similar to qEI, computationally demanding.
For each Monte Carlo iteration, values y; pusys - - - s ¥y, busy are drawn from the posterior
distribution of the surrogate regression model at X1 pysy, - - - » Xp;, busy» With p denoting
the number of pending evaluations. These values are combined with the set of already
known evaluations and used to fit the surrogate model. The EEI can then simply be
calculated by averaging the individual expected improvement values, which are formed
by each Monte Carlo sample (ng;,, denotes the number of Monte Carlo iterations):

Ngim
1

Z EL(x) (6.23)
i=1

Nsim “-

EEI(x) =

Besides the advantage of an increased CPU utilization, asynchronous execution can
also cause additional runtime overhead due to the higher number of model updates
and the computational costs for new point proposals, especially when the number
of available CPU cores increases. Furthermore, the heterogeneous execution times of
job configurations can lead to very similar point proposals due to model updates that
are based on similar histories. Instead of using asynchronous execution to efficiently
utilize parallel computer architectures, the new approach presented in this section
uses the synchronous execution combined with resource-aware scheduling. The next
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section includes a comparison of this approach (RAMBO) [385, 389, 390, 666] with the
synchronous and asynchronous parallel variants of MBO described above.

6.4.3 Resource-Aware Scheduling Strategies

To enable the interaction between resource-aware scheduling strategies and the general
MBO process, the RAMBO framework is proposed. Its foundations are based on the
m1rMBO library [53]. The framework shown in Figure 6.18 aims to resource-efficiently
reduce the end-to-end wall clock time needed by parallel MBO, and thus converge to
the optimal configuration more rapidly. RAMBO consists of three main steps:

System
Description:
#CPUs
#Memory

Job Utility Estimator * Infill-Criterion

MBO Method

~

Job Profite:
#Resource

el - Mapping Method offfe #Eﬁgﬁ;‘ds
Feedback e (Tt~
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~
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~

Scheduling

Fig. 6.18: Key steps (shown in blue) in the Resource-Aware Model-Based Optimization Framework
[385]: building a regression model, selection of evaluation jobs, and job scheduling. Asynchronous
execution (dashed line) and synchronous execution (solid lines) are possible.

First, a previously initialized regression model is built by the MBO method. Simulta-
neously, a job utility estimator creates profiles for the evaluations of configurations
(jobs) by means of an additional regression model. These job profiles include runtime
estimates, which are used as an input for the respective scheduling strategy later on. In
conventional synchronous MBO approaches, such runtime estimates are not available.
Hence, the slowest evaluation becomes a bottleneck within one MBO iteration, and the
already finished parallel worker processes remain idle. As a consequence, the feedback
of all idling processes and hence the model update is delayed.

The second step, i.e., the job selection, follows the MBO principles for configuration
proposals. Typically, an infill criterion such as qLCB in equation (6.22) is used to propose
configurations offering a proper compromise between the predicted outputs (exploit)
and the uncertainty about the search space region (explore), i.e., that have a high
potential to optimize the quality of the regression model. To this end, RAMBO provides
mechanisms to interact with the job proposal mechanism by postponing or skipping
suggested configurations that are deemed to be insufficiently promising or exhibit
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unsuitable job profiles. As part of this process, a knapsack-based heuristic can be
applied to select the most promising and suitable configurations.

Finally, a configurable scheduling strategy allocates the jobs to the available re-
sources (system description) according to their particular resource demands. In addi-
tion, an execution priority based on the infill criterion is required to ensure that the
model is updated i) with the most promising configurations and ii) as soon as possible.
This model update follows the synchronous approach, i.e., it is performed when the
results of all jobs executed within one MBO iteration are gathered. In a nutshell, the
regression model is iteratively updated based on the results of all previous iterations
until the runtime budget is exhausted.

Priorities for Job Selection To model the usefulness of a candidate for the objective
function, Kriging is used as a surrogate regression model, and qLCB (6.22) is used as a
multi-point infill criterion to generate a set of job proposals. Compared with the multi-
point proposal qEI [254], the qLCB criterion is more suitable since it is able to propose
a set of independent candidates. qLCB can simultaneously generate g candidates by
drawing g random values of A; ~ Exp(A) (j = 1, ..., q) from the exponential distribu-
tion. Each A; results in a different trade-off between exploitation (A; |) and exploration
(4; 1), and thus leads to a different optimal configuration x; after solving

x; = argmxin [LCB(x, ;)] = argmxin [y(x) - 4;5(x)] , (6.24)

where y(x) denotes the posterior mean and 5(x) denotes the root of the posterior stan-
dard deviation of the surrogate model at point x.

Since the set of proposed candidates x; cannot be directly ordered by how promis-
ing a candidate is, an additional order is introduced to guide the search for the best
candidate towards more promising areas. Therefore, the highest priority is given to the
candidate x; that was proposed using the smallest value of A; and is thus closest to the
optimum (exploitation). The priority for each job is defined as p; := -A;.

However, qLCB does not include a penalty for the proximity of selected configu-
rations, which might become a problem if the number of parallel evaluations is high.
Therefore, the Euclidean distance is used to reprioritize p; to p;, encouraging the selec-
tion of configurations that are more scattered in the domain space.

First, a set of ¢ > m configurations is sampled from the qLCB criterion. These
configurations are then hierarchically clustered by their distance in the domain space
of the objective function using the complete linkage method. The procedure starts with
the configuration that has previously been assigned the highest priority and assigns
it to the first position in the list of selected jobs J. For each following step i > 2, all
candidates are split into i clusters according to the hierarchical clustering. Of these i
clusters the i — 1 clusters that already contain candidates with assigned positions are
discarded, leaving one cluster. The position i in J is assigned to the job with the highest
priority within this cluster. This goes on until all g candidates have assigned positions.
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Thereby an ordering following the hierarchy induced by the clustering is generated.
Finally, new priorities p; are assigned based on the order of 7, i.e. the first job inJ gets
the highest priority g and the last job gets the priority 1.

As a result, the set of candidates contains batches of jobs with similar priority,
which are spread in the domain space. The priorities serve as input for the scheduling,
which groups the g jobs to m CPU cores using the runtime estimates £.

Resource Utility Estimation The runtime estimates of the set of jobs proposed in
each MBO iteration are needed for the scheduling to avoid the execution of jobs with
high runtime variances and thus to reduce idling worker processes. This is accomplished
by using an additional regression model. As for the MBO algorithm itself, the runtime
of a job is predicted in each iteration based on the runtimes of all previously evaluated
jobs to build the runtime model of the black-box function. For the model, Kriging is
used for homogeneous CPU systems since the runtime is expected to be a continuous
function. For parallel architectures with heterogeneous CPUs, Random Forest is used
for the model instead. Here, the runtime of a job is estimated for different CPU types
(as described in Section 6.4.4). The accuracy of the runtime estimation also influences
the scheduling decision. Therefore the runtime estimation quality is also included in
the evaluation results.

Knapsack-Based Scheduling Strategy The goal of the knapsack-based scheduling
strategy is also to reduce the CPU idle time on the workers while acquiring the feedback
of the workers in the shortest possible time to avoid model update delay. Here the qL.CB
multi-point infill criterion is used to form a set of jobs J = {1, ..., g} that should be
executed on the available CPU cores K = {1, ..., m}. The estimated runtime is given
by fj and the corresponding priority by p; for each job proposal. The time bound for
each MBO iteration (deadline) is defined by the runtime of the highest prioritized job.
The goal is to maximize the profit, given by the priorities, of parallel job executions
within each MBO iteration. To solve this problem, we apply the O — 1 multiple knapsack
algorithm for global optimization routines [62]. Here, the knapsacks are the available
CPU cores and their capacity is the maximally allowed computing time, defined by
the runtime of the job with the highest priority. The items are the jobs J, their weights
are the estimated runtimes f}-, and their values are the priorities p;. Accordingsly, the
capacity for each CPU core is ¢;-, with j* := argmax; p;. To select the best subset of jobs,
the algorithm maximizes the profit Q:

Q = Zzijkj, (625)

jeJ kek

It is the sum of priorities of the selected jobs, under the restriction of the capacity

?j* > Z szkj vk € K (626)
j€J
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per CPU. The restriction with the decision variable ¢;; € {0, 1} s.t.

12 cyvjel, o€ {0,1} (6.27)
kek

ensures that a job j is at most mapped to one CPU.

The job with the highest priority defines the time bound (deadline) fj* and is thus
mapped to the first CPU core k = 1 exclusively, while single jobs with higher execution
times are directly discarded (discarded jobs will be proposed again in the next MBO
iteration if they are promising enough). Then, the knapsack algorithm is applied to
assign the remaining candidates in J to the remaining m — 1 CPU cores. This leads to the
best subset of ] that can be run in parallel, minimizing the delay of the model update.
If a CPU core is left without a job, the regression model can be optionally queried for
a job with an estimated runtime smaller or equal to f]-~ to fill the gaps. Jobs having
an estimated runtime shorter than the deadline, however, can lead to idle times if no
other job can be executed within the time remaining until the next model update. The
idle time resulting from suboptimal resource usage can be additionally exploited by
enabling preemption and migration. More precisely, allowing jobs to be preempted and
migrated to other cores provides the opportunity to fill unused time slots within an
MBO iteration with high-priority jobs that would be skipped otherwise. Thus a larger
set of jobs can be executed. The details of RAMBO’s flexible migration mechanisms are
described in [389].

Evaluation To evaluate the resource-aware MBO scheduling strategies included in
the RAMBO framework, a comparison with different synchronous and asynchronous
parallel MBO approaches was performed. The comparison included two asynchronously
executed MBO strategies [253, 338] aiming to use all available CPU time to solve the
optimization problem in parallel. Both of them used Kriging as a surrogate, with the
EEI criterion 6.23 [339] and the Kriging believer [254] criterion. In Kotthaus et al. [390],
RAMBO was also compared with a third asynchronous execution strategy, which is
included in the SMAC (Sequential Model-based Algorithm Configuration) tool [329],
using a random forest surrogate. The results showed that RAMBO and the two other
asynchronous execution strategies always converged faster to the optimum compared
to SMAC, which is why SMAC is not included in the following presentation. Besides
the comparison with the asynchronous strategies, the following presentation also
includes two synchronously executed MBO approaches. One of them used the gLCB
multi-point infill criterion 6.22 and the other used the gEI criterion [254]. All parallel
MBO approaches including the new RAMBO approach were evaluated on a set of
established continuous synthetic functions combined with simulated execution times
to ensure a fair and disturbance-free environment.

The usage of synthetic functions ruled out technical problems emerging on multi-
user systems (swapping, network congestion, CPU cycle stealing, other users occupying
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fast caches, etc.). Furthermore, synthetic functions eased the evaluation of MBO ap-

proaches on different difficulty levels. Two different categories of objective functions

(implemented in the R library smoof [66]) were considered:

1. Functions with a smooth surface: rosenbrock(d) and bohachevsky(d) with dimen-
sion d = 2, 5, 10, which are likely to be fitted well by MBO.

2. Highly multimodal functions: ackley(d) and rastrigin(d) (d = 2, 5, 10), for which
MBO is expected to have problems achieving good results.

For each objective function, a 2-, 5- and 10-dimensional version were used, each of
which was optimized using 4 and 16 CPU cores in parallel to investigate scalability.
Figure 6.19 visualizes the synthetic test functions for d = 2 [385].

(a) Bohachevsky (b) Rosenbrock

(c) Ackley (d) Rastrigin

Fig. 6.19: Synthetic test functions used for the evaluation for d = 2. (a) and (b) show a smooth
surface; (c) and (d) are highly multimodal [385].

Since synthetic functions are illustrative test functions, they have no significant
runtime. Therefore, these functions were also used to simulate different runtime
behaviors. For each benchmark two different synthetic functions were combined. One
determines the number of seconds it would take to calculate the objective value of
the other function. For example, for the combination rastrigin(2).rosenbrock(2)
it would require rosenbrock(2)(x) seconds to retrieve the desired objective value
rastrigin(2)(x) for an arbitrary proposed configuration x. Technically, the benchmark
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sleeps rosenbrock(2)(x) seconds before returning the objective value. The runtime was
simulated with either rosenbrock(d) or rastrigin(d), and all combinations of the four
objective functions were analyzed except where the objective and the time function
were identical. For the unification of the input space, values from the input space of
the objective function were mapped to the input space of the function that simulated
the runtime behavior. The output of the runtime functions were scaled to return values
between 5 minutes to 60 minutes.

To examine how fast the parallel approaches converge to the optima of the bench-
mark functions within a limited time budget, the distance between the best found
configuration at time t and a predefined target value (optimal configuration) was mea-
sured. This measurement reflects the accuracy of the receptive MBO approach within
the given time budget. To make this measurement comparable for all objective func-
tions, the function values were scaled to [0, 1]. Here, O is the target value, defined as
the best configuration y reached by any optimization approach within the given time
budget. The upper bound 1 is the best y found in the initial set of already evaluated
configurations, and is identical for all approaches per given benchmark. Both values
were averaged over 10 repetitions. If an optimization needs 2 hours to reach an accuracy
of 0.5, this means that within 2 hours half of the way to the best configuration 0 has
been accomplished, after starting at 1. The differences between the approaches were
compared at the three accuracy levels 0.5, 0.1, and 0.01. The optimizations were re-
peated 10 times and conducted on m = 4 and m = 16 CPUs to examine scalability. Time
budgets were 4 hours for 4 CPU cores and 2 hours for 16 CPU cores in total, including
all computational overhead and CPU idling. All experiments were executed on a Docker
Swarm cluster using the R library batchtools [415]. The initial set was generated by
latin hypercube sampling [481] with n = 4 - d configurations, and all of the following
optimizations start with the same initial set in all 10 repetitions:

— rs: Random search, served as a base-line.

—  gLCB: Synchronously executed MBO using qLCB where in each MBO iteration g = m
configurations were proposed.

— ei.bel: Synchronously executed approach using Kriging believer where in each

MBO iteration m configuration were proposed.

— asyn.ei.bel: Asynchronously executed MBO using Kriging believer.

— asyn.eei: Asynchronously executed MBO using EEI (100 Monte Carlo iterations).

— rambo: New synchronously executed MBO using qLCB with job priority refinement
and the knapsack-based resource-aware scheduling strategy, g = 8 - m candidates
proposed in each iteration.

Optimizations gLCB and ei.bel are implemented in the R library m1rMBO [53]. Opti-
mizations asyn.eei, asyn.ei.bel and rambo are also based on m1rMBO. For all MBO ap-
proaches, a Kriging model was used from the library DiceKriging [605] with a Matern%-
kernel [474] and a nugget effect of 1078 - Var(y), where y denotes the vector of all
observed function outcomes.
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The quality of resource-aware scheduling depends on the accuracy of the resource
estimation. Without reliable runtime predictions, the scheduler is unable to optimize
for efficient utilization. The runtime for all benchmarks was simulated with either
rosenbrock(d) or rastrigin(d). Figure 6.20 shows an example where the runtime
estimation for the rosenbrock(5) time function works well (left part). Here, the residual
values for the runtime estimation of the evaluated configurations decrease over time.
However, the runtime prediction for rastrigin(5) (right part) is imprecise. For the 2-
and 10-dimensional versions, the results are similar.

%’\ bohachevsky.rosenbrock_5d ‘ bohachevsky.rastrigin_5d
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Fig. 6.20: Residuals of the runtime estimation over time for the rosenbrock(5) and rastrigin(5) time
functions on 4 CPU cores combined with bohachevsky(5) as the objective function. Positive values
indicate an overestimated runtime and negative values indicate an underestimation [385].

This encourages us to consider separate scenarios where runtime estimation has a high
quality (rosenbrock(-)), and scenarios where runtime estimation is usually error-prone
(rastrigin(-))s. In the following, we will focus on the scenario with high resource
estimation quality. The evaluation results of the scenario with low runtime estima-
tion quality can be found in [385] and are further optimized by a flexible scheduling
mechanism [389].

Box plots for the time required to reach the three different accuracy levels in 10 rep-
etitions within a budget of 4 hours on 4 CPU cores are shown in Figure 6.21, and within
a budget of 2 hours on 16 CPU cores in Figure 6.22. The faster an approach reaches the
desired accuracy level, the lower the box and the better the approach. If an approach
was unable to reach an accuracy level within the given time budget, the respective time
budget plus a penalty of 1000 s is entered. Table 6.7 lists the aggregated ranks over all
objective functions, grouped by approach, accuracy level, and number of CPU cores.
For this computation, the approaches are ranked with regard to their performance for
each repetition and benchmark before they are aggregated with the mean. If there are
ties in Figures 6.21 and 6.21 (e.g., if an accuracy level was not reached), all values are
assigned the worst possible rank. The benchmarks indicate an overall advantage of the
new resource-aware MBO algorithm rambo. On average, rambo is always fastest. rambo
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Fig. 6.21: Execution times on 4 cores as a function of the accuracy level for different objective func-
tions using the time function rosenbrock(-) [385]. Execution times are low for moderate accuracy
levels and favourable for RAMBO (shown in blue).

is closely followed by the asynchronous MBO variant asyn.ei.bel for accuracy levels
0.5 and 0.1 on 4 CPU cores but the lead becomes more clear on 16 CPU cores, especially
for the highest accuracy level 0.01.

In comparison with the conventional synchronous MBO approaches ei.bel and
gLCB, rambo, asyn.eei, and asyn.ei.bel reach the given accuracy levels in shorter
time on 16 CPU cores. This is especially true for objective functions that are highly
multimodal and thus hard to model (ackley(:), rastrigin(-)) by the surrogate, as seen
in Figure 6.22.

Table 6.7 shows that the less expensive asyn. ei . bel approach performs better than
the computationally demanding asyn.eei on 16 CPUs. On 4 CPUs the synchronous
gLCB approach is faster than the asynchronous approaches for the highest accuracy
level 0.01. This result is influenced by the good performance of qLCB on functions with
a smooth surface, as can be seen in Figure 6.21 in the 5- and 10-dimensional version of
the bohachevsky(-) benchmark. When comparing the performance of the approaches for
the 2-dimensional versus the 10-dimensional versions of the benchmarks, Figure 6.22
shows that the rambo approach outperforms all other approaches at higher dimensional
problems compared with lower dimensions.
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Fig. 6.22: Execution times on 16 cores as a function of the accuracy level for different objective
functions using the time function rosenbrock(-) [385].

Figure 6.23 exemplarily visualizes the mapping of the parallel configuration evaluations
(jobs) for all MBO approaches on 16 CPU cores for the 5d versions of the benchmarks.
Each gray box represents the execution time of a job on the respective CPU. The gaps
represent CPU idle time. For the synchronously executed MBO approaches rambo, qLCB,
and ei.bel, the vertical lines represent the end of an MBO iteration. Red boxes indicate
that the CPU is busy with a point proposal.

The necessity of a resource estimation for jobs with varying runtimes is obvious
because the synchronous variants gLCB and ei . bel can cause long idle times by queuing
jobs together with large runtime differences. The scheduling in rambo manages to reduce
this idle time. This effect of efficient resource utilization increases with the number of
CPUs. rambo reaches nearly the same effective resource utilization as the asynchronous
approaches and at the same time reaches the accuracy level fastest. The Monte Carlo
approach asyn.eei generates a high computational overhead as indicated by the red
boxes, which reduces the effective number of evaluations. Here, the overhead for a
new point proposal sometimes needs the same amount of time as the job evaluation.
Idling occurs because the calculation of the EEI is encouraged to wait for ongoing EEI
calculations to include their proposals. This overhead also increases with the number
of evaluated points. By contrast, asyn.ei.bel has comparably low overhead and thus
basically no idle time. This seems to be an advantage for asyn.ei.bel on 16 CPU cores,
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Tab. 6.7: Execution times for accuracy levels 0.5, 0.1, 0.01 averaged over all benchmarks with the
rosenbrock(-) time function on 4 and 16 CPU cores with a time budget of 4 hours and 2 hours, respec-
tively [385]. Relative ranks within a column are included in parentheses.

4 CPUs 16 CPUs

Algorithm 0.5 0.1 0.01 0.5 0.1 0.01

asyn.eei 3.53(3) 391(3) 4.91(3) | 3.64(3) 430(3) 5.30(03)
asyn.ei.bel | 3.21(2) 3.66(2) 5.04(4) | 2.93(2) 3.31(2) 4.48(2)
rambo 2.47(1) 3.40(1) 4.23(1) | 2.54(1) 2.98(1) 3.72(1)
ei.bel 3.64(4) 436(5) 5.31(5 | 3.81(4) 4.57(4) 5.70(5)
qLCB 4.02(5) 4.24(4) 4.83(2) | 4.27(5) 5.04(5) 5.40(4)
rs 5.57(6) 5.89(6) 5.89(6) | 5.17(6) 5.71(6) 5.82(6)

where on average it performs better on all accuracy levels than the computationally
demanding asyn.eei, especially for higher dimensional problems.

Observations rambo outperforms the conventional synchronous MBO. The resource
utilization obtained by the scheduling in rambo leads to faster and better results, es-
pecially when it comes to increasing problem dimensions (configurable parameters)
and increasing numbers of available CPU cores. On average, rambo converges faster to
the optimum than all considered asynchronous approaches. This indicates that the
resource utilization obtained by the RAMBO approach improves MBO, especially when
the number of available CPU cores increases. Predictable runtimes can be assumed
for real applications like hyperparameter optimization for machine learning methods,
even if the runtime estimation quality is difficult to determine in advance. The results
also suggest that, on some setups, the choice of the infill criterion determines the
parallelization strategy for better performance.

6.4.4 Scheduling Strategies for Heterogeneous Architectures

As described in Section 6.4.3, the resource-aware scheduling for MBO uses two inputs:
the estimated resource utilization and the priority of the proposed candidates. While the
priority of a candidate is computed as described above, the estimation of the resource
utilization needs to be enhanced for heterogeneous systems.

Resource Estimation for Heterogeneous Systems The regression model used to
estimate the execution times of the candidates was previously based on Kriging; now
Random Forest is applied instead. Random Forest is more suitable for heterogeneous
systems since the job execution times build up a discontinuous model due to the
additional categorical variable that represents the processor type. The regression model
now needs to estimate the runtime ?,- for each candidate in the proposed set of jobs J =
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Fig. 6.23: Scheduling of MBO algorithms: Time shown on x-axis and mapping of candidates to
m = 16 CPU cores on y-axis. Each gray box is a job. Each red box represents the overhead of the
point proposal. The gaps represent CPU idle time [385].

{1, ..., q} and for each available CPU core K = {1, ..., m}. This is required since the
execution of a job is processor-dependent. If the underlying heterogeneous architecture
is known, the number of runtime estimates per job can be reduced to the number of
different processor types. Thus the runtime of a job j € J is predicted for each available
processor type k € K in each MBO iteration based on the runtime of all previously
evaluated jobs to build the runtime model of the black-box function and is therefore
denoted as ;.

Knapsack-Based Scheduling To apply the 0 — 1 multiple knapsack algorithm for
scheduling on heterogeneous architectures, the original formulation from Section 6.4.3
needs to be extended. Now the items representing the jobs J have different weights, rep-
resented by the different runtime estimates f]-k per processor type k. Since the capacity
of the CPU cores is now heterogeneous, a reformulation is needed. For this purpose, a
ratio variable representing an approximated ratio of the runtime differences produced
by the different processor types is introduced.

To minimize the delay of the model update with the results of the most promising
candidate, the job with the highest priority j* := argmax; p; is now always placed on
the CPU core k™ := argminy ¢« leading to the shortest estimated runtime for j. The
capacity for the remaining CPUs, and thus the time bound for each MBO iteration, is
accordingly defined by the shortest estimated runtime of the highest prioritized job
?k*]«. We introduce the ratio variable #;- il fk]« representing the runtime difference of the
highest prioritized job on the remaining k CPU cores.
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The assumption that runtimes on different CPU types differ by a constant factor goes
back to the uniform processor model described by Pinedo, which is a simplified model
of real hardware [579]. For example, one CPU might offer vector instructions that some
jobs benefit from, whereas others make no use of them. Instead of relying on statically
precomputed ratios (such as those derived from the ratio of CPU frequencies), the
selected job j* is used as the “benchmark” for comparing CPU speeds in a given MBO
iteration, under the assumption that in this iteration the speed on CPU k differs from
k" by a factor of £+ /;;-. The formulation of the restriction of the capacities for the
remaining CPU cores is thus as follows, while the rest of the knapsack algorithm remains
as described in Section 6.4.3:

R t N
tk*j' Ak.] > Z tk”jcki vk € K. (628)

kj jeJ

Here, the estimated execution times of the remaining candidates on the fastest CPU
core t ; on the right-hand side of equation 6.28 is expected to be approximately similar
to the estimated runtime of a job on the remaining CPU cores fki, multiplied by the ratio
variable:

. o b
B~ By=Ll vk e K,Vj €. (6.29)

b
This formulation is needed to reduce the number of weights (number of runtime es-
timates per CPU type) per item j to a single weight #;- j in order to apply the original

knapsack algorithm.

Evaluation The effectiveness of the heterogeneous RAMBO approach is evaluated by
targeting the ARM big.LITTLE architecture® of the Odroid-XU3 platform,” which is also
commonly found in mobile devices. This platform is equipped with four “big” Cortex
A15 CPUs (quad-core) with a frequency that can be scaled up to 2.0 GHz and four “little”
Cortex A7 CPUs that have about half the processor speed (1.4 GHz). The Odroid-XU3
platform also includes a Mali-T628 GPU (not considered here) and 2 GB of main memory.
For the evaluation of RAMBO on heterogeneous processing architectures, not only the
runtime that is needed to find the best possible configuration is examined but also the
energy consumption. This is accomplished by reading from the power measurement
sensors INA231 offered by the Odroid-XU3 platform, which report energy consumption
for both processor types as well as for the RAM and the GPU. To measure the energy and
power consumption of the resource-aware scheduling strategy and its competing MBO
approaches, a so-called Relay Reader [526] is used to read out the sensor data in regular

6 ARM big.LITTLE Technology: https://developer.arm.com/technologies/big-little (accessed Feb. 22nd,
2022).

7 Odroid-XU3: https://developer.arm.com/graphics/development- platforms/odroid-xu3 (accessed Feb.
22nd, 2022).
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intervals of approximately one second via threads for both CPU types. These threads
are executed on separate CPUs and do not influence the runtime measurements.

The experimental setup consists of a subset of the setup described in Section 6.4.3.
RAMBO is compared with the conventional synchronous MBO approach using the qLCB
multi-point infill criterion and with the asynchronous MBO approach, which aims to ex-
ploit all available CPU time to solve the optimization problem in parallel and using the
Kriging believer criterion [254]. All MBO approaches are evaluated on the 2-dimensional
versions of the synthetic functions and executed on 4 CPU cores. The runtime of the ob-
jective functions was previously simulated by sleeping for a given time, determined via
an additional synthetic function that represented the runtime behavior of the respective
objective function. For the power consumption measurements, a real computation is
needed. This is accomplished by repeatedly executing a function that draws random
numbers. The runtime of this real computation is still controlled via an additional
synthetic function that defines the number of repetitions and simulates the time that is
needed for calculating the objective value. For the synthetic function that simulates the
runtime of the objective functions, the rosenbrock(d) function is used, since it delivers
a more reliable runtime estimation than rastrigin(d) (see Figure 6.20). The output of
the rosenbrock(2) function is scaled to return values from 5 min to 50 min. The MBO
approaches run for 2 hours on m = 4 CPU cores, and include all computation overhead
and CPU idling. The initial set is generated as with the homogeneous experiments by
using the latin hypercube sampling [481] with n = 4 * d configurations. All approaches
start with the same initial set in all 10 repetitions.

Tab. 6.8: Ranking for accuracy levels 0.5, 0.1, 0.01 averaged over all problems with rosenbrock(2)
time function on 4 CPU cores with a time budget of 2 hours [385].

Algorithm 0.5 0.1 0.01

rambo 1.90(1) 1.77(1) 1.90(1)
asyn.ei.bel 2.07(2) 2.43(2) 2.63(2)
qgLCB 2.67(3) 2.63(3) 2.70(03)

Table 6.8 lists the aggregated ranks over all 2-dimensional objective functions, grouped
by accuracy level. As described in Section 6.4.3, the approaches are ranked with regard
to their performance for each of the 10 repetitions and for each benchmark before they
are aggregated into the mean. Figure 6.24 shows the corresponding box plots for the
time required to reach the three different accuracy levels, as described in Section 6.4.3.
The faster an approach reaches the desired accuracy level, the lower the displayed box
and the better the approach.

The benchmarks indicate an overall advantage of the new knapsack-based algo-
rithm for heterogeneous systems, especially for the highest accuracy level 0.01. On
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Fig. 6.24: Execution time as a function of the accuracy level for the 2-dimensional objective functions
using time function rosenbrock(2) (lower is better) [385].

average, rambo is always fastest in reaching each of the three accuracy levels, and thus
converges faster to the optimum in the time budget of 2 hours. In comparison with
rambo, the conventional synchronous MBO approach gLCB is unable to reach the accu-
racy level 0.01 for the rastrigin(2) and ackley(2) functions in all 10 repetitions (see
Figure 6.24). The same can be said about the asynchronous MBO approach asy.ei.bel
for the bohachevsky(2) and rastrigin(2) functions.

Figure 6.25 shows the box plots for the energy consumption over all 10 repetitions
for each benchmark on each CPU type (upper part, Cortex A7, and Cortex A15) and over
all CPUs (lower part, combined). Low boxes indicate a small energy consumption. The
results indicate that rambo consumes more energy than the default gLCB approach on the
“slow” Cortex A7 CPU cores, while it consumes less energy on the “fast” Cortex A15 CPU
cores. In comparison with the asy.ei.bel approach, rambo manages to consume less
energy on the “slow” Cortex A7 CPU cores. The reason for the higher energy consumption
of rambo compared with the synchronous gLCB approach on the “slow” Cortex A7 cores
(see upper part of Figure 6.25) lies in the resource-aware scheduling strategy, which is
able to utilize the less energy consuming A7 CPU cores more efficiently by mapping jobs
to specific cores. Furthermore, only jobs with a runtime smaller or equal to the job with
the highest priority are executed within one MBO iteration. Accordingly, longer running
jobs with a lower optimization potential are discarded and more MBO iterations can
be performed in the given time budget. By contrast, qLCB is not able to map jobs to
specific CPU cores; it starts four jobs on the 4 available CPU cores that were proposed
by the infill criterion in each MBO iteration, without respect to the heterogeneity of the
underlying architecture and the job execution times.

Another contributing factor to the higher energy consumption of the gqL.CB approach
is that it executes more jobs on the more energy-consuming A15 CPU cores due to
the OS scheduling. Within one MBO iteration, the OS scheduler migrates jobs from a
“slow” A7 CPU to a “fast” A15 CPU for cases where a job on a fast CPU finishes earlier
than a job on a slow CPU. This speeds up computation and thus executes more MBO-
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Fig. 6.25: Energy consumption in k) on the two A15 CPUs (2.0 GHz), the two A7 CPUs (1.4 GHz), and
combined consumption on both CPU types across all 10 repetitions for each objective function, with
rosenbrock(2) time function and a time budget of 2 hours (lower is better) [385].

iterations. Hence, qLCB has nearly no idle time on the A15 CPU cores. However, the
conventional synchronous approach only performs approximately half as many MBO
iterations as rambo. In general, rambo executed more job evaluations in the given time
than both competing MBO approaches. However, the combined energy consumption on
all four CPU cores depicted in the lower part of Figure 6.25 shows that rambo consumes
approximately the same amount of energy as qLCB, while it consumes less energy than
asy.ei.bel for the bohachevsky(2) and ackley(2) benchmark functions.

The asynchronous asy.ei.bel approach in most cases consumes more energy
than rambo since it has nearly no CPU idle time. However, it still converges more slowly
to the optimum. The reason for this is that rambo selects more promising candidates
with shorter runtimes since it executes only jobs with a runtime shorter than or equal
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to the most promising candidate, and thus aims to find the cheapest way of evaluations
through the model.

Overall, the results show that the resource utilization obtained by the scheduling
for heterogeneous architectures in rambo enables MBO to converge faster to the optimum
without consuming more energy resources than the competing approaches.

6.4.5 Summary: Resource-Aware Scheduling for ML on Multicores

We presented resource-aware scheduling strategies for parallel machine learning algo-
rithms on multicore systems. The resource-aware model-based optimization framework
RAMBO was introduced and evaluated. RAMBO can fully use the potential of parallel
architectures. This was accomplished with an estimation model for the runtimes of
each evaluation of a black-box function to guide the scheduling of configurations to
available resources. In addition, an execution priority reflecting the estimated profit
of a black-box evaluation was used to guide MBO to interesting regions in a faster,
resource-efficient way without directly favoring less expensive configurations. The eval-
uation results showed that RAMBO converged faster to the optimum than the existing
parallel approaches. RAMBO was especially efficient for complex high-dimensional
problems, and strongly improved upon the existing approaches in terms of scalability
when the number of available CPU cores was increased. Overall, it was shown that
the integration of knowledge from the theory of using the underlying hardware (like
scheduling) with knowledge about machine learning algorithms achieved results that
would not have been feasible without crossing the boundaries of traditional knowledge
areas.

6.4.6 Conclusion
The advantage of linking information on underlying hardware platforms with algorith-

mic knowledge is assumed to exist not only in this particular case. Lowering the walls
between disciplines is likely to provide benefits in other cases as well.
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Due to the involvement of massive data and the growing size of trained models, most
machine learning techniques are memory intensive. As one of essential components
in the von Neumann architectures widely used nowadays, memory is a well-known
bottleneck on the execution time, particularly due to the “Memory Wall” problem. That
is to say, the access time of memory is way larger than the processor cycle time. In
addition, the energy and power consumption required by the memory are known to be
significant in the overall system. On embedded systems, which is the focus of this book,
such design constraints are amplified and impose great challenges for machine learning
techniques. Although the emerging non-volatile memories appear to be promising
because of their attractive features, e.g., low leakage power, high density, and low
unit costs, they also bring up new design constraints like higher error rates, which
might degrade the performance of machine learning techniques. To this end, several
optimization and architecture-aware approaches have been proposed to improve the
usage of memory and enhance the reliability of learning algorithms.

In this chapter, several techniques are briefly introduced to tackle some of the afore-
mentioned issues related to memory. By leveraging the application-specific knowledge,
we demonstrate that the memory footprint can be effectively reduced (see Section 7.1).
Given learning models, we can further optimize the memory layout proactively in the
model implementation to favor the underlying cache memories with a probabilistic
perspective (see Section 7.3). Last but not the least, learning models can be reliable with
unreliable memories if we take bit errors into account during the training phase (see
Section 7.2). Overall, this chapter tends to suggest that the design constraints of underly-
ing memory can be handled in a post-optimization fashion, within the implementation
of learning models, or even earlier at the training phase. The insights presented in this
chapter should remain highly relevant in upcoming years, and become more important
for future applications along with emerging memory technologies and their new design
constraints.

en Access. © 2023 the author(s), publishe e Gruyter. | A5 is work is licensed under the
8 Open A © he author(s), published by De Gruyter. [(c) AN This work is li d under th

Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-007



306 = 7 Memory Awareness

7.1 Efficient Memory Footprint Reduction

Helena Kotthaus
Peter Marwedel

Abstract: This section discusses optimization approaches for the efficient memory
footprint reduction of machine learning algorithms that are written in the GNU R pro-
gramming language. The presented optimization strategies target the memory manage-
ment layer between the R interpreter and the operating system and reduce the memory
overhead for large data structures by ensuring that memory will only be allocated for
memory pages that are definitely required. The proposed approaches use additional
information from the runtime environment, e.g., the short-term usage pattern of a
memory block, to guide optimization. The evaluation is based on statistical machine
learning algorithms. When the memory consumption hits the point that the OS starts to
swap out memory, optimization strategies are able to speed up computation by several
orders of magnitude.

7.1.1 Motivation

In order to execute machine learning algorithms on resource-constrained devices, it is
important to make efficient use of the available resources. These resources include pro-
cessors (including runtime), memories, communication bandwidth, and energy. This
book includes sample optimization algorithms aiming to achieve resource efficiency.
In particular, Chapters 6 to 9 present such sample optimizations. The current section
demonstrates the optimization potential memories as resources. Ideally, memories
have an infinite capacity, but their size can have a relevant impact on the applicabil-
ity of certain techniques. This is especially true for resource-constrained embedded
systems. The current section focuses on the efficient use of memories for machine learn-
ing algorithms written in the R language. The R language is used for many machine
learning applications and, therefore, it is considered here. As shown in [387, 503], the
R environment has several drawbacks leading to slow and memory-inefficient program
execution. In R programs, most data structures are vectors. When the size of a vector
is above a certain threshold, the R interpreter allocates a large vector. For each large
vector, a dedicated block of memory is allocated, potentially spanning multiple pages.
These pages, even when unused, take up memory. When the amount of memory re-
quired for computations exceeds the physical memory available to the application, the
execution is drastically slowed by frequent page swaps that require I/O, a phenomenon
also known as “thrashing”. The performance penalty due to thrashing might render
complex computations entirely infeasible.
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The current contribution is based on the work of Kotthaus et al. [383, 385, 386]. Sec-
tion 7.1.2 provides a survey of related work and explains the fundamentals of R’s memory
management. Section 7.1.3 discusses the page-sharing strategies for efficient memory
utilization of R machine learning algorithms. Finally, Section 7.1.4 presents the evalua-
tion results and concludes with a summary.

7.1.2 Related Work and Fundamentals: Memory Footprint Reduction and the R
Environment

Related Work - Memory Footprint Reduction The memory optimizations presented
in Section 7.1.3 work on a layer between the R interpreter environment and the OS.
This enables the optimization of arbitrary R applications, especially memory-hungry
machine learning applications, with only small modifications to the R interpreter and
without requiring application changes. Thus in the following, the related system-level
approaches for reducing memory utilization will be discussed.

In general, related work on utilizing main memory more efficiently can be catego-
rized into two groups: memory compression approaches, often influenced by embedded
systems resource constraints, and memory deduplication, which is mostly used in vir-
tualization.

Memory compression tries to reduce the swapping activity of a system by compress-
ing memory contents instead of swapping pages to the secondary storage. Compression
approaches share the drawback that a significant amount of processor time is spent on
compressing and decompressing memory contents.

By contrast, memory deduplication reduces the memory overhead by mapping
virtual pages with identical contents to a single physical page. This is often beneficial
in virtualized environments where large amounts of read-only memory, such as shared
libraries, are used in multiple virtual machines [626]. However, deduplication can
introduce significant computational overhead, since the contents of pages have to be
scanned periodically in order to identify pages with identical content. An often used
implementation of deduplication that has been the subject of multiple improvements
is available in Linux as the Kernel Samepage Merging (KSM) [22]. KSM has also been
optimized in [133] by introducing a classification scheme based on access characteristics,
comparing only pages within the same class to reduce the overhead of page scanning. A
memory trace-based evaluation of different deduplication and compression approaches
is presented by Deng et al. [169], showing that deduplication yields better results than
memory compression.

Sharing memory pages within a single process appears to be a rarely-used concept:
on Linux, it is automatically used to map a set of newly allocated virtual pages to a
single physical page filled with null bytes. This can cause performance issues in high-
performance environments since each write to any newly allocated page will trigger
a page fault. Here, an enhancement by Valat et al. [678] was proposed that avoids
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unnecessary page removal when the application knows that it will overwrite a page in
the near future. A language-level version of this copy-on-write technique, operating on
objects instead of memory pages, is sometimes implemented using reference counters
[665]. The R language also implements a copy-on-write scheme. Here, the complete
object (potentially spanning multiple pages) is copied when it is modified, resulting in
page duplications for partial modifications.

0S level optimizations lack knowledge about the specific memory behavior of the
runtime environment. Although some information can be used to improve the time
needed to detect duplicates, the application-specific knowledge of why the data was
copied in the first place is ignored. By contrast, the memory optimization presented
in Section 7.1.3 employs specific knowledge about the interpreter state to reduce the
number of pages that need to be scanned for identical content and proactively avoids
the main sources of identical-content pages from object allocation and duplication by
optimizing the copy-on-write mechanism for partial object modification.

Fundamentals - The R Environment The lifecycle of an object, (e.g., a vector data
structure) in the R runtime environment starts with its allocation. In R, vectors are
assumed to consist of a contiguous block of (virtual) memory. Depending on the size of
the object, the R interpreter uses a system of multiple memory pools for vector objects
with a data size of up to 128 B. For larger vectors, memory is allocated directly via the
malloc C library function instead of pooling the allocations. This reduces the memory
fragmentation when many small objects are created and some of them are released. The
R language does not require the programmer to explicitly manage memory; a garbage
collection is needed to automatically free memory. The garbage collector in R is a mark-
and-sweep, non-moving, generational collector. It can be manually triggered, but it
also starts automatically when the interpreter is in danger of running out of heap space.

The R interpreter ensures that an allocated object is always initialized—either by
explicit initialization or implicitly by writing the results of a computation to it. After
the object is allocated and initialized, it can be used as input for various R functions
such as the plus operator. The fact that functions can modify an object, in conjunction
with R implementing call-by-value semantics, means that objects need to be copied
when being passed to a function. However, at this point a copy-on-write optimization
is triggered: copying an object is done by merely sharing the reference; the actual copy
is delayed until the object is modified (if at all). The interpreter now has two references
to the same object, which may be modified later. When this modification happens, the
copy process is triggered and a full copy of the affected object, potentially spanning
multiple pages, is created using the interpreter-internal duplicate function. This is
illustrated in Figure 7.1.

On the left-hand side, a large R vector object consisting of a header H and four pages
A to D is shown both in virtual memory on the top (marked with dotted lines) and its
corresponding allocated physical memory on the bottom (solid lines). On the right-hand



7.1 Efficient Memory Footprint Reduction =——— 309

R-Object
virtual oo
memory "o iHiAIBiCID: - :
A duplicate + write A
physical
memory - [HI[A[[B][C][D] - - [H][A[[e][c[[o] [H][A[[B][x][B] ---

unnecessary duplication

Fig. 7.1: Example of the copy-on-write mechanism in the R interpreter. R copies (duplicates) at object
level instead of page level granularity [385].

side, the situation after a duplication that was triggered by a write access is shown. Now
there are two R objects, shown in the virtual memory on top and their corresponding
physical memory on the bottom. In one of the copies, page C was modified and is
now marked as X, and the copy has its own header H’. Although unmodified, the R
interpreter needs to use additional memory to create duplicates of pages A, B, and D
(marked in gray) since it assumes that objects are organized as contiguous blocks of
memory and thus it has to duplicate at object-level granularity.

The memory optimization presented in this contribution has the goal of reducing
this memory overhead by copying only parts of the object, sharing the same mem-
ory pages between multiple objects as long as they are not modified. This scheme is
transparent to the interpreter’s memory management including the garbage collec-
tion, requiring only small changes in memory allocation and freeing, as well as in the
duplicate function. This optimization will be presented in the next section.

7.1.3 Memory Footprint Reduction via Page Sharing Strategies

Different optimization strategies are combined for the efficient memory footprint reduc-
tion of machine learning algorithms implemented in the R language. The first strategy
that proactively avoids the duplication of memory pages is based on optimizing the
allocation and duplication mechanisms of the R interpreter. This approach is further
refined by a second strategy using static annotations to reduce the optimization over-
head and by dynamic refinement using a page content analysis for page deduplication
to increase the amount of shared memory.

Page Duplication Avoidance Asshown in the previous section, the R interpreter can
only allocate complete objects that potentially span multiple pages. The first part of the
memory optimization is based on the object allocation mechanism of R. To enable the
allocation and thus the sharing of memory at page-level granularity instead of object
granularity, a custom memory allocator is employed when a large vector has to be allo-
cated, as shown in Figure 7.2. When the internal function of the R interpreter allocVector
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is called to allocate a large vector, the optimized interpreter selects between the custom
allocator to share memory on page granularity or the default malloc function if this
is not required. In both cases, the allocated memory is accessible within the address
space of the R interpreter. The custom allocator uses a memory management scheme

-
custom | custom & §
alloc heap Lo
allocVector % @
default | standard ¢
> — O
malloc heap x ©
.

Fig. 7.2: Memory allocation scheme for dynamic page sharing [385].

similar to standard virtual memory schemes commonly used in Operating System (OS)
kernels. For ease of implementation, it is completely implemented in the user space.
The downside of such a user-space implementation is that it needs to replicate certain
data structures that are already present in the OS (e.g., for mapping virtual to physical
memory) because those OS kernel data structures are not sufficiently exposed to user
space. This replication could be avoided by implementing the optimization in the Oper-
ating system kernel (cf. [383]), but this is significantly more invasive and not applicable
in many environments where the user has no control over the Operating system kernel.
Since the user space has no direct access to physical memory, a single file located on a
RAM disk (see custom heap in Figure 7.2) is used.

The allocation of physical memory from this file is realized via a simple free-bitmap
based allocator. The file can be dynamically enlarged if needed. Mapping physical pages
into the virtual address space of the R interpreter can be accomplished by utilizing
the mmap Unix system call. For changing the access permissions of these physical
pages, the mprotect system call that modifies the settings of the memory management
unit of the processor is employed. Besides these system calls, an additional page table
is needed to enable the mapping from a virtual address to a physical address. For
simplicity reasons a hierarchical page table with the same four-level structure as used
by the processor is implemented. To enable the sharing of pages, the user space memory
management system needs to map the same physical page to multiple locations in
virtual memory. Therefore, a reference counter is required for each physical page. A
reference counter greater than 1 indicates that the page is shared between multiple
objects or multiple times within one object.

To avoid the zero-initialization of allocated large vector objects, a global shared
zeroed page is utilized. This also ensures that memory is only allocated for pages that
are actually written to at a later time. Figure 7.3 illustrates an example for this optimized
R object allocation. Here, the custom memory allocator was asked to allocate an object
with a total size of five pages. While the object has the requested size of five pages in
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Fig. 7.3: Optimized object allocation via sharing a global zeroed page [385].

virtual memory (dotted, left upper part), physically it only consists of two pages (left
lower part). Those two pages are a single non-shared page, marked with H for header
in the beginning, followed by a shared page, marked with 0, called the global zeroed
page. The numbers in small print below the physical pages are the reference counters.
The zeroed page has a reference counter of 4 since it is shared four times within the
allocated object (mapped four times into virtual memory). The shared zeroed page is
filled with zero-bytes. The concept of prepared zeroed pages is already implemented in
0S kernels. However, the standard R interpreter does not benefit from this concept since
it immediately writes to all memory that it allocates for initialization. The non-shared
initial page H is required as it will contain not just data but also the object header. The
R interpreter writes this object header to the front of the allocation area. Since it will be
updated frequently (e.g., during garbage collection), it is not shared between multiple
objects. Since the header page H is mapped only once, its reference count is 1.

The R interpreter now has the illusion that it has allocated five pages of memory,
even though only two pages are allocated physically. To sustain this illusion, the op-
timized allocation mechanism has to ensure that any write access to a virtual page
that points to a shared physical page can be detected and handled. If such a write
access is not handled correctly, it affects not only the intended virtual page but also all
virtual addresses where the same physical page is shared. Therefore, all pages with a
reference counter greater than 1 are marked as read-only, ensuring that a write access
triggers a segmentation fault. This fault is caught by a signal handler that performs the
unsharing of the affected page. To determine the affected physical page the handler
uses the virtual address of the write access. It then allocates a new page, copies the
contents of the original page to it, and replaces the page that caused the segmentation
fault with the new one. The resulting situation is shown on the right side of Figure 7.3:
one of the instances of the zeroed page that was written to was replaced with a new
page marked with X. This updates the reference count of both the zeroed page and the
newly allocated page. Since the new page is only mapped once, it can now be marked
as read-write so that further access no longer requires special handling.

As noted, the R interpreter can only copy on the object level. Thus, if an object
consists of multiple pages, parts of the copy may end up with the same content as
the original (see Figure 7.1). To avoid this, the duplicate mechanism of the interpreter
is optimized by improving the granularity of the copy from object level to page level.
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While the allocation optimization avoids the immediate allocation of pages by using
the global zeroed page, the duplicate optimization allows the reuse of already-allocated
pages of the original object instead of allocating new pages. An example of the duplicate
optimization is shown in Figure 7.4.

original

virtual
memory

physical
memory .

virtual
memory

Fig. 7.4: Optimized copy mechanism on page-level instead of object-level granularity via page
sharing [385].

The left side shows the situation before the duplication is shown: an object occupies
five virtual pages, two of which reference the global zeroed page. Unlike the original R
interpreter that would need to allocate five new pages for the copy of this object, the
optimized version reduces this to a single allocated physical page. This is shown on
the right side with the original object at the top and its copy at the bottom. Here, a
virtual-only copy of the first page that contains the object header is not created, since
the header of the copy is updated immediately by the R interpreter after the duplication.
This would otherwise trigger an unsharing of this page. To avoid the overhead of this
event, the optimized duplication immediately creates a physical copy of the header
page. Most of the pages of the original object are now mapped twice in virtual memory
and their reference counters are updated. Both the original and copy are marked as
read-only to allow for unsharing on write access.

Overall, the finer copy granularity of the optimization enables storing both the
original and copied objects from the example in just five pages of memory. By contrast,
the original R interpreter would need ten pages of memory to store the same objects.
Although the mechanisms of sharing pages during allocation and duplication described
above always result in a valid view on memory for the interpreter, there are cases where
additional overhead is caused that can be avoided by further refinements described in
the next subsection.

Static Refinement via Annotations To reduce the runtime overhead caused by
proactively avoiding page duplications, a static refinement consisting of two kinds of
annotations is applied. The first annotation is based on the expected utilization of an
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object immediately after allocation and the second annotation is based on the size of
the allocated object.

The optimized memory allocation (see Figure 7.3) reduces the memory footprint
by using a global zeroed page, assuming that not all pages of the allocated object will
be written to immediately. However, this assumption is not always valid. For instance,
(built-in) vector arithmetic functions in the R interpreter allocate a new object and
immediately write to all pages of it to store their results. This would cause a segmentation
fault for the first write of every page, triggering the memory allocation for all pages of
the object. These segmentation faults cause runtime overhead that would not occur
when allocating an object with non-shared pages.

To avoid this overhead, annotations are placed in the C source code of the R in-
terpreter built-in functions where newly allocated memory is completely overwritten
directly after allocation. Here, the custom allocator returns an object where every virtual
page references a new physical page, so no segmentation faults will be triggered by
write accesses. Although these R objects do not save memory on allocation, they still
have the opportunity for later optimizations, e.g., when they are duplicated. Currently,
the annotations for these “full-overwrite” functions need to be manually placed in the
R interpreter’s C source code by locating calls to allocVector, followed by loop struc-
tures that write to every element of the newly-allocated object. Those manually placed
annotations could also be automated by a static code analysis checking for allocation
calls followed by loops writing to the newly-allocated object.

The second annotation for reducing the runtime overhead incurred by the optimiza-
tion relates to the size of the allocated object. The R interpreter can allocate objects with
a variety of sizes, not all of which span multiple pages. The optimized custom allocator
is therefore enabled only for object sizes that indicate a potential for page sharing. Here,
the potential is limited for smaller objects. The first page of an object stores not just
data but also the frequently modified object header that is therefore never shared. Thus
R objects smaller than two pages of memory are passed to the standard, non-sharing
memory allocator. This size limit could also be used as a tunable parameter to select a
trade-off between memory savings and runtime overhead.

Dynamic Refinement via Page Contents In addition to the above-described static
refinements, an additional dynamic refinement for increasing the number of shared
pages is applied. During the execution of an R program, allocated objects are updated
with the results of calculations. Those updates can result in multiple distinct pages
with the same contents, which opens up the opportunity for sharing those pages. The
general idea of locating identical objects in a system and saving memory footprint by
reducing them to a single object is known as deduplication.

The memory optimization employs a restricted version of locating identical con-
tents. Here, the content scan only checks for pages identical to the already existing
global zeroed page. The deduplication of zeroed pages is illustrated in Figure 7.5. On the
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Fig. 7.5: Deduplication optimization for zeroed pages [385].

left side, the situation before the page content scan is shown where an object contains
two identical zero pages. One of those pages is already mapped to the global zeroed
page (shown in bold), while the other uses a separate physical page. On the right side,
the situation after deduplication is shown. Here, the content check has detected the sep-
arate copy and mapped its virtual page to the global zeroed page, freeing the memory
used for the unnecessary duplicate.

Although a general scan that is able to detect duplicated pages with arbitrary
content could be applied, such a scan would incur a significant runtime overhead (e.g.,
due to the calculation of hash values) compared to scanning just for zeroed pages.
While a scan for zeroed pages can use an early abort condition as soon as a non-zero
element is found, a scan for arbitrary content would need to check the full content of
all pages in the system. The overhead incurred by deduplication of zeroed pages is
influenced by the frequency of the content check and by the number of pages that need
to be scanned. To reduce this overhead, the scan is only activated after the completion
of a garbage collection in the interpreter. This avoids scanning the pages that would
soon be discarded and also provides a natural regulation mechanism for the frequency
of content checks, as the frequency of garbage collection depends on the memory
requirements of the executed program.

With the deduplication optimization, pages that were previously excluded from
sharing the global zeroed page, in arithmetic vector operations, say, can now be dy-
namically shared. Thus, both the static and the dynamic refinements of the memory
optimization complement each other. Details on the interaction of the refinement strate-
gies and the general page duplication avoidance strategy can be found in a separate
publication [384].

7.1.4 Evaluation: Memory Footprint Reduction Strategies

The results obtained by applying the proposed memory optimization strategies for R
to real-world machine learning benchmarks are presented in this section. Both, the
evaluation results related to the memory consumption and the runtime effects of the
page sharing optimization strategies will be discussed.
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Experimental Setup For the following experiments, a computer equipped with a
2.67 GHz Intel Core i5 M480 CPU and 6 GB of RAM, using a 64-bit version of Debian
Linux 7.0 as the operating system is used. On this system, memory pages have a size
of 4096 bytes. Although a larger page size than the system page size could be used
for the memory optimization, the same size was chosen as it is expected to maximize
the amount of memory that can be shared (using a smaller page size than the system
size is inefficient since the optimization relies on the hardware Memory Management
Unit (MMU) for efficient page access protection). To evaluate the proposed memory
optimization approach, the memory usage and runtime of the R interpreter including
the described optimizations is compared to the standard GNU R interpreter. Both the
standard as well as the optimized interpreter are compiled using GCC version 4.7.2 with
the default flags (-02) selected by the build system of R version 3.1.0.

The standard memory measurement functions for user space functions in Linux
measure only the virtual memory of a process. Since the optimization approach maps
the same physical page multiple times into virtual memory, these functions are not
sufficient for the evaluation. They are not able to measure the amount of physical
memory saved since they only count every virtual instance of a shared physical page.
Therefore, a separate memory measurement function was created. To measure the
amount of memory allocated by the default allocator, the standard allocation functions
such as malloc are overwritten with versions that track the current total amount of
memory allocated and the original functions are called afterwards. For the optimized
custom allocator, the number of physical pages that need to be reserved is directly
tracked along with the size of the memory management data structures. With these
mechanisms, the allocated physical memory can be measured accurately.

For the evaluation of the optimization, two different benchmark sets are applied.
The first set is a shorter-running set of benchmarks, selected from the R benchmark
2.5 suite [274], which was originally developed to measure the performance of various
configurations of the R interpreter (in the following denoted by GU) plus one additional
benchmark, as listed in Table 7.1. The R benchmark 2.5 suite was also applied in other
optimization approaches that focus on dynamic compilation for R [353]. To analyze if
the memory optimization is also beneficial for algorithms that already try to reduce the
memory footprint by using application-specific knowledge, the additional benchmark
glmnet is included. This benchmark utilizes an existing sparse matrix optimization
implemented as an R package. For accurate measurements, the iteration counts for the
outer loop of each benchmark were scaled to result in a runtime of approximately 1
minute with the standard R interpreter.

The second set of benchmarks is based on a set of publicly available long-running
real-world machine learning benchmarks [384], listed in Table 7.2. The choice of these
classification algorithms is based on the method’s popularity and the availability of its
implementation. The default parameters or, if available, the implementation’s internal
auto-tuning process was used to configure the algorithm parameters. The input dataset
is a 2-class classification problem and has a sufficiently large number of observations
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Tab. 7.1: Misc Benchmark Set.

Benchmark Description

GU/08a-1 Linear regression over a 3000 x 3000 matrix

GU/08a-2 FFT of 2 400 000 random values

GU/08a-3 Inverse of a 1600 x 1600 random matrix

GU/08a-4 Greatest common divisors of 400 000 pairs (recursive)
glmnet Regression using glmnet on a sparse 20 000 x 1000 matrix

Tab. 7.2: Machine learning benchmark set.

Benchmark Description

ada Boosting of classification trees

gbm Gradient boosting machine

kknn k-nearest neighbour classification

lda Linear discriminant analysis

logreg Logistic regression (binary classification
decision derived using a probability cutpoint of 0.5)

lssvm Least-squares support vector machine

naiveBayes Naive Bayes classification

randomForest  Random classification forest

rda Regularized discriminant analysis

rpart Recursive partitioning for classification trees

to achieve accurate results. The machine learning benchmarks were configured to
use a 20-fold cross-validation. The size of the input dataset (15 000 samples with 200
numeric features) was chosen to ensure that the runtime of the fastest algorithms is
approximately one minute on the standard interpreter. To allow for a better comparison
of the memory requirements, the same dataset was applied to all machine learning
algorithms.

Each benchmark was executed 10 times with the standard and the optimized
version of the R interpreter. The results are given as the arithmetic mean of these 10
executions. To make the results reproducible, the random number seed is selected as a
fixed value placed as the first statement in each of the benchmarks. Each repetition
was started in a fresh interpreter process; hence initialization costs are included in
the measurements (an expected overhead on the order of one second or less). The R
interpreter does not use adaptive optimizations. All system services that might interfere
with the measurements were disabled. Both runtime and memory usage were measured
simultaneously. For these measurements, we calculated a 95 % confidence interval and
the ratio of the means using the percentile bootstrap method. We use geometric means
here to reduce the influence of outliers.
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Memory Consumption To analyze the benefits of the page sharing optimization tech-
niques with regard to the memory consumption we evaluate the global peak memory
usage and the average memory usage of each benchmarks. The Peak usage represents
the maximum amount of memory that was consumed during execution of a bench-
mark. However, the peak memory consumption does not represent information about
changing memory usage over time, since the peak memory usage may occur only for an
instant of time depending on the benchmark. To gain a complete view of the memory
consumption the short-term peak usage is measured in intervals of 1 second, resulting
in a memory-over-time profile. The Average usage of memory is calculated as the arith-
metic mean of these 1 second measurements and used as a second indicator to allow
easier comparisons of the memory behavior.

Figure 7.6 shows the peak (Peak usage) and average (Average usage) memory con-
sumption of each benchmark running with the page-sharing optimization. The 100 %
baseline represents the standard R interpreter without optimizations. Values below
this baseline indicate relative memory savings realized by the page sharing strategies.
Error bars have been omitted as the confidence intervals were smaller than 0.5 % for all
values. The detailed values are presented in Table 7.3, including the number of pages
identified as shareable by the content check. They indicate the optimization potential
of the dynamic refinement (deduplication of zero pages).

120 T T T T T T T T T T T T T T T
110 - Peak usage I
Average usage NN
100
90 5
80 b
70 - T
60 b
50 - 5
40 b
30 - .
20 b
10 .

relative memory usage [%] (std. R = 100)

PSP ERL ISR OELE SRS
UL &@Q TN \\o(é \@ébé@‘\ NS
& 8
< <b(\

Fig. 7.6: Relative memory usage with page-sharing optimization compared with standard R (lower is
better). The 100 % baseline represents the standard R interpreter without optimizations. Geometric
means for the memory savings are 13.6 % for peak and 18.0 % for average memory usage [385].

The gain for reducing the peak memory usage (GainP) of the standard R interpreter
(StdPeak) ranges from —0.9 % for gbm to 53.8 % for Issvm. However, the negative values in
the columns GainP and GainA of Table 7.3 indicate that the page-sharing optimizations
do not gain memory savings for three of the benchmarks. Here, the peak memory



318 —— 7 Memory Awareness

Tab. 7.3: Memory Optimization Results: StdPeak — peak memory usage by the standard R interpreter;
OptPeak — peak memory usage by optimized interpreter; GainP — relative peak memory reduction
achieved by optimization; StdAvg — average memory usage by the standard interpreter; OptAvg

— average memory usage by optimized interpreter; GainA - relative average memory reduction
achieved by optimization; ZPG — number of zero pages found by the content check [385].

StdPeak OptPeak GainP StdAvg OptAvg GainA ZPG

Benchmark
[MB] [MB] [%] [MB] [MB] [%] [#]
GU/08a-1 296.2 228.1 23.0 259.6 192.2 25.9 13
GU/08a-2 131.1 131.4 -0.2 128.8 128.0 0.6 13
GU/08a-3 197.2 164.8 16.4 157.7 112.6 28.6 37919
GU/08a-4 134.2 119.7 10.8 127.2 114.6 9.9 194892
glmnet 354.9 332.8 6.2 249.5 246.0 1.4 46877
ada 187.2 170.1 9.1 156.0 126.2 19.1 2031992
gbm 191.5 193.2 -0.9 147.7 136.0 7.9 464
kknn 316.5 287.6 9.1 274.0 231.0 15.7 421
lda 216.2 208.2 3.7 184.8 175.1 5.3 20447
logreg 213.0 186.7 12.3 184.7 162.8 11.9 955
lssvm 1365.1 631.0 53.8 820.2 381.1 53.5 3972699
naiveBayes 143.6 126.2 121 80.8 81.3 -0.6 78
randomForest 565.5 520.4 8.0 390.8 242.7 37.9 1130650
rda 254.1 227.7 10.4 197.0 177.3 10.0 707
rpart 144.5 125.8 12.9 130.7 103.3 20.9 56214

consumption for two of the benchmarks (gbm, GU/@8a-2) and the average memory
consumption for one benchmark (naiveBayes) increase slightly. This is caused by the
additional data structures that are needed for the internal handling of memory pages.

For gbm, a reduction of the average memory usage by 7.9 % (GainA) is achieved. For
naiveBayes the situation is reversed: the optimization saves 12.1 % of its peak memory
usage while its average memory usage (—0.6 %) is slightly increased. Since the number
of pages recovered by deduplication (see column ZPG) is low (78), the savings of the
peak memory usage are assumed to be induced by the proactive avoidance of page
duplicates via the optimized allocation and duplication strategies. For GU/@8a-2, the
optimization was not able to save memory for peak memory usage and no meaningful
amount for the average memory usage was saved (GainA). The reason why GU/08a-2
does not gain from the optimization is that even though it uses large vectors with 2.4
million elements, it allocates a vector that is immediately filled with random numbers.
Thus, it does not profit from the optimized allocation and the content check can only
recover a low number of zero pages as shown column ZPG (13). GU/08a-2 does not use
any object duplication. Therefore, the optimized duplication has no potential for saving
memory.

Even though the page-sharing optimization results in a slight increase of peak or
average memory usage for the three benchmarks described above, all of the twelve
other benchmarks benefit from the optimization with savings in both peak and aver-
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age memory usage. We compute the geometric mean over all 15 benchmarks, thereby
avoiding the impact of outliers on the geometric mean. The result is a reduction of peak
memory usage by 13.6 % and a reduction of average memory usage by 18.0 %. Here,
the highest amount of memory that could be saved occurs in the 1ssvm benchmark
with 53.8 % for peak usage and in randomForest with 379 % for the average memory
usage. Both of these benchmarks have a high number of zero pages recovered by the
content check. Thus for those benchmarks, the reduction of the memory footprint is not
just triggered by the allocation and duplication optimization but also by the dynamic
refinement that deduplicates zero pages.

Table 7.3 shows summarized values for the memory consumption over the complete
runtimes of all benchmarks. To gain additional insights into the memory consumption
behavior, the complete profile of the memory usage over runtime will be also analyzed.
The four most interesting memory consumption profiles for the benchmarks (glmnet,
gbm, randomForest, and naiveBayes) are shown in Figure 7.7. For each benchmark, the
run with the execution time closest to the average of its 10 executions is selected. The
confidence intervals over all 10 runs of each benchmark are less than 1%, thus the
figure shows only the data from a single run. The x-axis represents the runtime in
seconds while the y-axis represents the corresponding memory consumption of the
benchmark. Both the profile for the standard R interpreter (yellow curves) and the
interpreter including the page-sharing optimizations (green curves) are presented. The
straight lines at the top indicate the peak memory usage, while the dotted lines mark
the average memory usage.
glmnet As mentioned, the glmnet benchmark utilizes an already-existing memory

optimization for sparse matrices. It is included in the evaluation to determine if the

page-sharing optimization can offer additional memory savings in the presence of
an optimization that applies specialized application knowledge. In the top left of

Figure 7.7 the memory-over-time behavior of this benchmark is illustrated. While

there is only a small improvement for the average memory usage (see dotted green

line), 6.2 % of the peak memory consumption is saved (see lines on the top). The
memory consumption curves show that at all local memory peaks the optimized
version of the R interpreter saves a small amount of memory while the memory
consumption during the remaining parts of the execution is largely unaffected.

This results in only a minor reduction of the average memory consumption. Still,

even in the presence of a very specific optimization for sparse matrices the page

sharing optimization can offer additional memory savings. As can be seen from
column ZPG (Table 7.3), savings are triggered by a large number of pages recovered

by deduplication (46 877).
gbm Not all benchmarks benefit from the content checks, though. For example, Ta-

ble 7.3 shows that in gbm only 464 zero pages are recovered. This benchmark bene-

fits more from the optimizations in allocation and duplication. The corresponding
memory-over-time behavior is shown in the top right of Figure 7.7. Here, the op-

timization does not reduce the peaks of the memory consumption, but there is a
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Fig. 7.7: Memory consumption over time profiles for benchmarks with different memory behavior for
the standard R interpreter vs. the interpreter with the page-sharing optimization. Lines at the top
indicate the peak memory usage; dotted lines mark the average memory usage [385].

marked reduction of memory usage in the valleys between the peaks, reducing the
average memory consumption by 7.9 %.

naiveBayes Another benchmark that does not benefit from the content checks is
naiveBayes with just 78 zeroed pages recovered. Its memory-over-time profile is
illustrated in the bottom left of Figure 7.7. In naiveBayes only the peak memory
usage is reduced by the optimization (large distance between the straight lines at
the top), but the average memory usage (small distance between the dotted lines)
is not affected. The profile also shows that naiveBayes has much smaller peaks
compared with gbm. Thus, the large reduction of memory usage at those peaks
results only in a small effect on the average memory consumption.

randomForest Finally, randomForest in the bottom right of Figure 7.7 represents one
of the benchmarks where the recovery of zeroed pages triggers high memory savings.
Here, the content checking reclaims 1130 650 pages, which corresponds to slightly
more than 4 GB of memory. The randomForest profile shows a saw-tooth curve for
the optimized interpreter (see green curve). This indicates that the benchmark uses
large blocks of memory that are slowly written to. For the page sharing optimiza-
tions, this represents an ideal memory usage pattern, as the allocation of memory is
delayed until the benchmark writes data to it. This results in a 37.9 % improvement
of the average memory consumption (large distance between dotted lines)—the
average time during which the benchmark has a high memory consumption is thus
reduced.
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Looking back at the profile of glmnet (top left), the green curve that shows the profile for
the optimized interpreter is longer than the yellow curve for the standard interpreter and
there is an increasing shift between the peaks of both curves over time. The reason for
this lies in the additional CPU time needed to provide the page-sharing optimizations.
The runtime overhead induced by the memory optimization will be referred to in the
next paragraph.

Runtime Overhead There are multiple reasons for the runtime overhead caused by
the optimizations. For the 15 benchmarks shown so far, 4 have a runtime overhead of <
1%, an additional 6 have an overhead < 5 %, an additional 2 have an overhead around
8%, and the remaining 3 have an overhead between 13 % and 17 %. More details on
the overhead are available in a separate publication [385].

Runtime Reduction In all previous measurements, the RAM available in the system
was sufficient to hold all data used by the benchmark. If this is not the case, runtime
overhead can become insignificant. This will be illustrated in the following. When the
amount of RAM in the system is too small to hold all data required, there are situations
where the proposed memory optimization is also able to reduce the runtime of the
benchmark instead of adding overhead. This is due to frequent page swaps requiring
I/0 when the total capacity of RAM is exceeded, also known as “thrashing”. To analyze
this situation, two benchmarks are considered. The first one is the Issvm benchmark
where the optimization provides a large reduction in memory consumption. The second
benchmark is an instance of logreg where the optimization provides only smaller
memory gains.

For the analysis, the memory requirements of the benchmarks need to be increased
beyond the capacity of the RAM in the system. Instead of increasing the dataset size
of both benchmarks, the system is limited to just 1 GB of RAM, since the runtimes of
the benchmarks do not scale linearly with the dataset size, leading to excessively high
execution times. However, since the logreg benchmark has a much smaller memory
consumption than 1GB, the dataset size for logreg is increased to 70 000 samples with
300 numeric features. This increases the memory requirements of this benchmark to
approximately the same level as Issvm. This still results in acceptable execution times
for logreg.

Table 7.4 shows the results for the previous 6 GB system configuration and the
limited 1 GB RAM configuration for both benchmarks. The logreg benchmark is now
shown as logreg-2 because it was executed with the previously described larger dataset.
In the 1GB configuration, the system had to swap for both the standard and optimized
interpreters, resulting in a large increase in runtime compared with the 6 GB configura-
tion. The peak memory usage for the interpreters is identical in both configurations
while the average memory usage differs because this value is time-dependent and thus
influenced by swapping. This swapping also increases the variability in the runtime
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Tab. 7.4: Evaluation results with two configurations of RAM; Std — standard R interpreter; Opt — opti-
mized R interpreter; Gain — relative gain; Speedup: runtime speedup factor (Std / Opt). Confidence
intervals (C) for runtime are shown; others are < 0.8 % [385].

Benchmark Std Opt Gain Std Opt Gain
Peak[MB] Peak[MB] Peak[%] Avg[MB] Avg[MB] Avg[%]

logreg-2, 1 GB 1228.2 1094.8 10.9 965.7 789.6 18.2

logreg-2, 6 GB 1228.2 1094.8 10.9 967.8 823.2 14.9

lssvm, 1GB 1365.1 631.1 53.8 970.0 381.3 60.7

lssvm, 6 GB 1365.1 631.0 53.8 820.2 381.1 53.5

Benchmark Std[s] Opt[s] Speedup (CI)

logreg-21GB  6395.5 5785.6 1.105}-34%

logreg-2,6GB  579.8  598.5 0.969557%

lssvm, 1 GB 3080.3  593.8 5.188%3%9

lssvm, 6 GB 530.5  601.2 0.8829:88

measurements, thus the confidence intervals for the speedup factors are also included
(see lower part of Table 7.4).

Reducing the available memory from 6 GB to 1 GB drastically increases the runtime
for both versions, the standard R interpreter (Std) and the interpreter including the
memory optimization (Opt). Still, the reduction in memory consumption for logreg-2
has turned the slowdown (factor 0.969) in its 6 GB configuration into a small speedup
(factor 1.105) when the RAM is limited to 1 GB. Depending on the benchmark and its
memory usage pattern, a different situation could also happen. In the worst case, the
content check of the optimized interpreter touches a large number of pages, forcing
them to be swapped in. This additional swap activity can increase the runtime so
that the gains from a reduced memory footprint may become irrelevant. The second
benchmark 1ssvm shows something closer to the best case for the optimization: Here,
the page-sharing optimization manages to save enough memory to avoid swapping. In
this case, significant speedups are gained, as shown in the lower part of Table 7.4 for
the 1 GB configuration of 1ssvm.

Similar to logreg-2, memory usage does not vary much between both configu-
rations (see upper part of Table 7.4). Considering the runtime results, the optimized
interpreter Opt only needs 593.8 seconds to run the 1ssvm benchmark. This is almost
unchanged from the 6 GB configuration (601.2 seconds). By contrast, the standard
interpreter Std has now increased its runtime to 3080.3 seconds (51.3 min.) when
limited to 1 GB of RAM. This makes the overhead of the memory optimization irrelevant
because the time gained by avoiding page I/Os is much larger. The page-sharing opti-
mization enables a speed up by a factor of 5.2 for llsvm by reducing the peak memory
consumption by 53.8 %. This speed up is also illustrated in Figure 7.8. It shows the
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Fig. 7.8: Memory consumption over time profile for the lssvm benchmark. Speed-up reaches a factor
of 5.2 on a system with 1GB of RAM. Solid lines indicate the peak memory and dotted lines mark the
average memory usage [385].

memory consumption profile for one exemplary execution of the 1ssvm benchmark.
This demonstrates that reducing the memory consumption with the page-sharing opti-
mization can significantly improve the runtime for memory-hungry benchmarks if the
available RAM is constrained. In turn, this can enable the processing of larger datasets.

7.1.5 Summary

The R interpreter induces a large memory overhead in the machine learning appli-
cations, due to wasteful memory allocation [387]. The goal of the presented memory
optimizations was to enable efficient memory utilization, especially for memory-hungry
R applications like machine learning algorithms. To accomplish this goal, this contri-
bution presented an application-transparent memory optimization employing page
sharing at a memory management layer between the R interpreter and the operating
system’s memory management. The optimization benefits a large number of applica-
tions since it preserves compatibility with the available software libraries that most R
programs are based on, and covers one of the most important resource bottlenecks of
machine learning algorithms. By concentrating on the most rewarding optimizations—
the sharing of zero-filled pages and deduplicating at the page level instead of the object
level—the overhead of more general OS level memory optimization approaches such as
deduplication and compression is avoided. With the proposed optimization, consider-
able reductions of the memory consumption for a large number of typical real-world
benchmarks have been achieved. This is an important step towards processing larger
input sizes. It also significantly speeds up the computation in cases where previously
pages had to be swapped out due to insufficient main memory.
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7.1.6 Conclusion

Designers of machine learning applications should be allowed to focus on the function-
ality of their algorithms. In order to execute these on resource-constrained embedded
systems, possible optimizations of the implementation should be performed. The pre-
sented work demonstrates the benefits of such optimizations for the case of memory
resources. In addition to the other optimizations in this contribution, we conjecture that
more memory-oriented optimizations exist and propose that they should be exploited
in order to execute machine learning algorithms in particular on hardware with limited
amounts of memory.
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Abstract: Due to the exceptional recent developments in deep learning, many fields
have benefited from the application of Artificial Neural Networks (ANNs). One of the
biggest challenges in ANNs, however, is the resource demand. To achieve high accuracy,
ANNs rely on deep architectures and a massive amount of parameters. Due to this, the
memory sub-system is one of the most significant bottlenecks in ANNs.

To overcome the memory bottleneck, recent studies have proposed using approximate
memory in which the supply voltage and access latency parameters are tuned for lower
energy consumption and for faster access times. However, these approximate memories
frequently exhibit bit errors during the read process. Typical software solutions that
monitor and correct these errors require a large processing overhead that can negate the
performance gains of executing ANNs on these devices. Hence, error-tolerant ANNs that
work well under uncorrected errors are required to prevent performance degradation
in terms of accuracy and processing speed.

In this contribution, we review the available and emerging memories that can be
used with ANNs, with a focus on approximate memories, and then present methods
to optimize ANNSs for error tolerance. For memories, we survey existing memory tech-
nologies such as Static Random-Access Memory (SRAM) and Dynamic Random Access
Memory (DRAM), but also present emerging memory technologies such as Ferroelectric
FET (FeFET), and explain how the modeling on the device level needs to be performed
for error tolerance evaluations with ANNs. Since most approximate memories have
similar error models, we assume a general error model and use it for the optimization
and evaluation of the error tolerance in ANNs. We use a novel hinge loss based on
margins in ANNs for error tolerance optimization and compare it with the traditional
flip regularization. We focus on Binarized Neural Networks (BNNs), which are one of
the most resource-efficient variants of ANNs.

7.2.1 Introduction

Artificial neural networks have been applied successfully in numerous fields, and are
being executed on a variety of systems ranging from large computing clusters to small,
battery-driven embedded systems. In most cases, state-of-the-art neural network mod-
els rely on a large number of parameters to achieve high performance. This leads to an
expensive, slow, and energy-consuming memory bottleneck. On neural network acceler-
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atorswith SRAM, the energy consumption of the memory makes up the largest fraction
of system energy, while advances in memory bandwidth are significantly slower than
processing speed. Hence, improving the memory consumption of ANNs and improving
the memory sub-systems is imperative to further push the applications of ANNs. One
design paradigm to improve the memory sub-system is to use approximate memory in
which resource efficiency is achieved by allowing for bit errors during the read and/or
write process. Likewise, reducing the memory consumption of ANNs is an established
part of deep learning research. Here, arguably, the most extreme form is to use Bina-
rized Neural Networks (BNNs) that only use binary weights {0, 1} leading to a potential
32 times memory reduction as high as 32 times that of their floating-point siblings.
Interestingly, it has been shown that BNNs can be trained to tolerate bit errors by bit
flip injections during training. However, this method has a large overhead and does
not scale well with model size and higher bit error rates .

In this contribution, we first summarize the currently available and emerging
memories that are possible to be used with neural network inference systems. Here,
we focus on approximate memories, which are unreliable due to bit errors and for
which countermeasures are necessary. One of the most promising emerging memory
components is the FeFET, which has high speed, and low energy consumption, but
faces reliability issues. We explain how FeFET can be used as approximate memory
for neural networks despite the bit errors caused by temperature and read voltage.
Finally, we present results on how bit error tolerance in ANNs is achieved without
bit flip injections based on margin-maximization and compare it to the traditional
methods for bit error tolerance optimization of ANNs. This contribution was previously
published as a conference paper in [113].

7.2.2 Emerging Memories

Recent studies on efficient ANN-based inference systems have explored the use of
approximate memory, which has been realized by reducing the memory supply voltage
and tuning latency parameters with the goal of lower power consumption and faster
access. If these methods are pushed to the limit, high Bit Error Rates (BERs) can occur.
Before discussing bit errors and how to deal with them in more detail we will quickly
survey volatile memories (SRAM, DRAM) and other emerging non-volatile memories
(FeFET, Resistive Random Access Memory (RRAM), Spin Transfer Torque Random
Access Memory (STT-RAM) or Magnetoresistive Random Access Memory (MRAM)) here.

SRAM For ANN inference systems using on-chip SRAM, the works in the literature
mainly employ scaling of various device parameters. To reduce energy consumption,
the SRAM voltage is scaled in [306, 652]. Yang et al. [717] separately tune the weight and
activation values of BNNs to achieve fine-grained control over the energy consumption.
Sun et al. [652] propose similar techniques for ternary ANNs. A similar approach is
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employed by Henwood et al. [306], in which layer-wise the best energy-accuracy trade-
off for SRAM is chosen.

DRAM For DRAM, the study by Koppula et al. [381] provides an overview of studies
related to ANNSs that use different DRAM technologies and proposes a framework for
evaluating ANN accuracy when using approximate DRAM in various different settings
and inference systems. Specifically, the study shows that DRAM parameters can be
tuned such that energy and performance are optimized to achieve significant improve-
ments, whereas the ANN accuracy drop stays negligible due to the ANNs’ adaptations
in retraining. Other studies, e.g. [532, 672], also optimize the refresh rate of DRAM to
achieve energy savings.

RRAM Hirtzlin et al. [316] propose computing BNN operations with RRAM that fea-
tures in-memory processing capabilities. They set the write energy of RRAM low and
show that BNNs can tolerate the resulting errors by error tolerance training. This low-
energy setting also increases the RRAM cell lifetime since low-energy writes stress the
cells less. The work by Yu et al. [727] also uses RRAM to implement on-chip BNNs. They
show that under limited bit yield, BNNs can still operate with satisfying accuracy. Sun et
al. [651] propose an RRAM synaptic array to deploy BNNs. They investigate the accuracy
impact of errors from sense amplifiers that have offsets due to process variation.

MRAM or STT-RAM Another branch in the literature is about ANNs on STT-RAM
or MRAM. Hirtzlin et al. [315] propose deploying BNNs on MRAM with a low-energy
programming setting that causes relatively low error rates, and no significant accuracy
drop, but decreases write energy by a factor of two. Tzoufras et al. [675] also propose
operating BNNs on MRAM with reduced voltage with similar results. They test a wide
range of error rates and discuss the implications of BNN bit error tolerance on the
lifetime, performance, and density of MRAM. Pan et al. [549] take a different approach
for energy reduction and investigate the benefits of multi-level cell MRAM for the in-
memory acceleration of BNNs. For more general ANN models, Vincent et al. [686]
propose tunable STT-RAM to save resources.

FeFET FeFET is considered to be one of the most promising memory technologies.
The reason why FeFET store logic ‘0’ and logic ‘1’ lies in the available dipoles inside
the FE. The directions of these dipoles can switch if a sufficiently strong electric field is
applied. This state is non-volatile because the dipoles retain their direction when the
field is turned off. The logic ‘0’ and logic ‘1’ can be read out from the FeFET based on
the intensity of the current returned (e.g. high or low), which can be converted into the
digital domain with sensing circuits.

The three main advantages of FeFET over other non-volatile memories are as follows:
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Fig. 7.9: Errors due to temperature, stemming from underlying FeFET devices, are modeled and then
injected during the ANN inference [720].

1. FeFET is fully CMOS-compatible, which means that it can be fabricated us-
ing current manufacturing processes. This has been demonstrated by Global-
Foundries [668].

2. FeFET-based memories can perform read operations within 1ns latency. This re-
duces the differences to traditional SRAM technology, while the energy usage of
FeFET is significantly lower [668].

3. FeFET memory has the potential to enable extremely low-density memory since
the core cell consists merely of a single transistor.

One of the major disadvantages of FeFETSs is error susceptibility. Manufacturing variabil-
ity (i.e. process variation during production) and temperature fluctuations at run-time
can cause variations in the FeFET properties. This shrinks available noise margins and
may cause errors. To still employ FeFETs despite the errors in, say, on-chip memory for
Binarized Neural Networks (BNNs) inference systems, it is necessary to extract the error
models for the stored bits. With the error model, the impact of the temperature-induced
bit errors on the inference accuracy of BNNs can be evaluated.

In Figure 7.9, the steps for extracting the temperature-dependent error model of
FeFET transistors are shown. The entire FeFET device has been implemented and
modeled in the Technology CAD (TCAD) framework (Synopsys Sentaurus [656]). The
variation in the underlying transistor and the added ferroelectric layer are considered.
After incorporating the temperature and variation effects in the calibrated TCAD models,
Monte-Carlo simulations for the entire FeFET device are performed. Then the probability
of error is extracted for a certain read voltage, i.e. the probability that logic ‘0’ is read
as logic ‘1’ and a logic ‘1’ is read as logic ‘0’. Details on device physics modeling and
reliability analysis for FeFET under the effects of temperature variability (runtime) and
manufacturing (design-time) variability can be found in [280] and [534], respectively.

7.2.3 Binarized Neural Networks

Traditional neural networks use floating-point (e.g., 32 bits) or integer values (e.g., 8
bits) to represent the ANN parameters (i.e., weights, activations, inputs, etc.) . In such
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a case, the position of the occurred bit error (i.e., the bit flip in the value) does matter.
Specifically, in floating-point ANNs, a one-bit error in one weight can cause the pre-
diction of the ANN to become useless (see e.g. [381]). This typically occurs when a bit
flip in the exponent of the floating-point representation occurs leading to an error with
an unacceptable magnitude. As mentioned before, BNNs are resource-efficient neural
networks that are ideally suited for small devices. Additionally, they can be trained
to be resilient against bit errors, which makes them ideal candidates for approximate
memories. In BNNs each weight (and possibly each activation) is stored in a single
bit {0, 1}. Hence, a bit error in a binary weight or binary input causes a change of the
computation result by merely 1, reducing its overall impact. In addition to the reduced
impact of bit errors and reduced memory footprint due to smaller weights the execution
of BNNs also becomes simpler. Consider, for example, the output of the fully connected
I-layer with activation o and weights W'

fi(X) = o(W'x) 71)

In regular floating-point neural networks, the execution of this layer requires the re-
peated computation of matrix-vector products W'X as well as the application of ¢. In a
BNN this operation becomes

2popcount(XNOR(W!, X)) =B > T (7.2

where popcount counts the number of 1s in the XNOR-result, B is the number of bits in
the XNOR operands, and T is a learnable threshold parameter if batch normalization
layers are used, whose comparison produces binary values (representing a shifted
binarization function) [325, 609].

A common method of training ANNs is to apply stochastic gradient descent (SGD)
with mini-batches. Let D = {(x1, ¥1), ..., (X7, y1)} be the training data with x; € X as
theinputs, y; € Y as the labels, and ¢: Y=Y - Ras the loss function. W = (W?, ..., W%)
are the weight tensors of layer 1. .. L and fy,(x) is the output of the ANN. The goal is to
find a solution for the optimization problem

argmin 1 " ((fw(0),y) (73)

(x,y)eD

with a mini-batch SGD strategy that computes gradients using backpropagation.

To train BNNs, Hubara et al. [325] proposes to deterministically binarize the weights
and activations during the forward pass. For backpropagation, the floating-point num-
bers are used for parameter updates. This leads to training times similar regular ANNs
but assumes binary values during the forward pass. More formally, let b: R > {-1,+1}
be a binarization function with

b(x)={1 x>0 74)

-1 else
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and let B(W) denote the element-wise application of b to a tensor W. Now we simply
apply B during the forward pass to each weight tensor. During the backward pass,
the authors propose using full floating point precision, whereas during the backward-
pass they replace the gradient of b with the straight-through estimator. Consider the
forward computation Y = B(X). Let Vy/ denote the gradient with respect to Y. The
straight-through estimator approximates

Vxl := Vyl, (7.5)

essentially pretending that B is the identity function. Algorithm 5 summarizes this
approach.

Algorithm 5: Binarized forward pass for a network with L layers, each with
weight tensors w! performing a generic operation ol (e.g. a convolution).

1 forle{1,...,L}do

2 | x € BBW)ox)

7.2.3.1 Flip Regularization

To make BNNs bit error-tolerant, the state-of-the-art method is bit flip injections in
the binarized values during the forward pass, as proposed by Hirtzlin et al. [316]. The
idea is simple: To make BNNs robust against bit errors, we simulate the errors already
during training time. During each forward pass computation, we generate a random
bit-flip mask and apply it to the binary weights.

Let M denote a random bit-flip mask with entries +1 of the same size as W that we
multiply component-wise to the binarized weights. We first consider computing the
bit-flip operation as H = (B(W) - M) o X where o denotes the application of the ANN
to the input X. Standard backpropagation on a loss ¢ that is a function of H yields the
following gradient of ¢ with respect to B(W)

which for fully connected layers amounts to a gradient update
Vel =M - (Vgt X7). (7.7)

We see that an update computed this way accounts for the bit-flips that were performed.
We propose instead using a special flip-operator with straight-through gradient approx-
imation. We denote by e, the bit error function that flips its input with probability p
and let E, denote its component-wise version. During training, we change the forward
pass such that it computes

X" .= B(E,(B(WY) o XY). (7.8)
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We replace the gradient of E, with a straight-through approximation. This way, in
the example above we now have H = E,(B(W)) o X with gradient updates Vel =
VE,Bw)! which for fully connected layers yields the update

Vet =Vl X" (7.9)

which is unaware of bit flips and just uses the corrupted outputs H.

The original bit-flip regularization proposed in [316] reports extreme overfitting to
the flip probability used during training. As we will see later in the experiments, we
do not report such an overfitting. We believe that the approach using straight-through
gradient approximation is superior and that the extreme overfitting is attributable to
the use of the naive gradient.

7.2.3.2 Margin-Maximization for Bit Error Tolerance Optimization

Bit-flip regularization improves the error tolerance of the network by simulating bit
errors during the forward pass. This introduces two objectives to the training: Given a
set of labeled input data, train a BNN for high accuracy and for high bit error tolerance.
Hence, another approach is to combine high accuracy and high bit error tolerance
into a single loss function directly so that both objectives are jointly optimized during
training. To do so, we now introduce a margin-based neuron-level bit error tolerance
metric for BNNs that is then extended to formulate a bit error tolerance metric for the
output layer.

In the following, we use a notation describing the properties of neurons in convolu-
tional layers, but our considerations also apply to neurons in fully connected layers. Let
n be the index of one neuron in a ANN, and x € X an input to the ANN. The output of a
neuron in a convolutional layer is a feature map with height U and width V. Let hy,n,u,v €
Z be the pre-activation value of neuron n at place (u,v) € {0,...,U} x{0,...,V},
before applying the activation function. For BNNs, the pre-activation values of a neuron
are computed by a weighted sum of inputs and weights that are +1. Therefore, one bit
flip in one weight changes the pre-activation value by 2.

Theorem 25. Letn € {0, ..., N} be the index of one neuron. Furthermore, let q be the
number of bit flips induced in the weights of neuron n. The pre-activation of neuron n at
place (u, v) after induction of these bit flips is in the interval [hx,n,u,v — 24, hx,n,u,v + 2q].

The proof can be found in [113].

A detailed analysis of the error tolerance for hidden-layer neurons has been con-
ducted in [114], but the use of Theorem 25 for optimizing bit error tolerance on the
neuron-level has been reported to be unsuccessful. We hypothesize that bit flips of
neuron outputs can only affect the BNN prediction if the effect of bit flips reaches the
output layer and leads to a change in the predicted class. Therefore, we now shift our
focus on applying the notion of margin to the output layer, i.e., to neurons with index
in N, 0.
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Each neuron in the output layer has only one output value hy , 1,1 which is one entry
in the vector of predictions y. No activation function is applied to the output value of
these neurons. There are as many values in y as there are neurons in the last layer. The
index of the entry with the maximum value in y determines the class prediction, where
we assume that ties are broken arbitrarily.

If bit errors modify the output values in the output layer such that another neuron
provides the highest output value, then the class prediction changes. Let h, ,; ; ; and
hy 1,1 With n',n” € Ny be the highest and the second-highest output value of neurons
in the output layer. The following corollary shows that the margin

m:= hx,n',l,l - hx,n”,l,l (7'10)

serves as a bit error tolerance metric for the output layer.

Corollary 26. If m > 0, then the output layer of the BNN tolerates max(0, | % | - 1) bit
flips.

The proof can be found in [113].

We now focus on constructing a loss function based on Corollary 26 and the hinge
loss known from Support Vector Machines (SVMs). The hinge loss [602] for maximum
margin classification is defined as

oy, f) =max(0,1-y-f), (7.11)

with the ground truth prediction y = +1 and the prediction f € R. This loss becomes
small if the predictions have the same sign as the predicted class and are close to 1in
magnitude. For predicted values larger than 1, the loss becomes 0. The “1” in the loss
forces the classifier to maximize the margin between two class predictions.

For BER tolerance of the last layer, the margin m as introduced in Equation 7.10
needs to be large so that the maximum number of bit flips the output layer can tolerate is
high. The margin can be directly computed by subtracting the second-highest entry y -
of the output vector y from the highest entry y., i.e., m = . - y-. However, optimizing
with respect to m without considering the other entries y of y may not exhaust the full
potential of the margin between y. and the output of the other classes j.. The larger
the margin between y. and j. of other classes c, i.e. m¢ = y. - J¢, the more bit errors
can be tolerated in the neuron that calculates y. without a change in the prediction. To
put it concisely, for a bit error tolerant output layer, y - needs to be as large as possible,
while the other j. need to be as small as possible.

In the case of BNNs for multi-class problems, however, the version of the hinge loss
in Equation 711 cannot be directly used. To extend the hinge loss to multiple classes,
we define yenc as a one-hot vector with elements in {-1, 1}, which has a +1 at the index
with the ground truth, else —1. yenc has the same number of elements as y. Then the
element-wise product yenc -y is computed. In this product, in case of correct predictions,
positive predictions in the correct class will stay positive, and negative predictions that
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Tab. 7.5: Datasets used for experiments.

Name # Train # Test #Dim # classes
FashionMNIST 60000 10000 (1,28,28) 10
CIFAR10 50000 10000 (3,32,32) 10

Tab. 7.6: Parameters used for experiments.

Parameter Range

Fashion FCNN  In-> FC 2048 - FC 2048 > 10
Fashion CNN In>C64>MP2->C64>MP2
- FC2048 > 10

CIFARIOCNN  In->C128-> C128> MP2-> (256> (256
>MP2- (256 > (C256 > MP 2
>FC2048-> 10

should be as negative as possible become positive. In case of wrong predictions, i.e.
high negative values for the correct class and high positive values for the wrong class,
the values become negative. For a high penalty in the wrong case and a small penalty for
the correct case, we subtract the product yenc -y from a parameter b, and get (b—yenc ).
Since we do not demand higher prediction values than b, we set negative values to zero
with the max function, and denote the Modified Hinge Loss (MHL):

LY, Yenc) = max{0, (b - Yenc - )} (712)

7.2.4 Experiments

We evaluate fully connected binarized neural networks (FCBNNs) and convolutional
binarized neural networks (CBNNSs) in the configurations shown in Table 7.6 for the
datasets FashionMNIST and CIFARI10 (see Table 7.5). In all experiments, we run the
Adam optimizer for 100 epochs for FashionMNIST and 250 epochs for CIFAR10. We
use a batch size of 128 and an initial learning rate of 1073. To stabilize training, we
exponentially decrease the learning rate every 25 epochs by 50 %. In the following,
we compare the margin-based methods (MHL) to Flip Regularization (FR). FR uses
the Cross-Entropy Loss (CEL) by default. We first compare MHL without FR to FR.In a
second step, we compare MHL without FR to MHL in combination with FR.

7.2.4.1 MHL Only vs. FR
Figure 7.10 presents the experimental results of different BNNs with respect to the
accuracy over BER (from 0 % to up to 15 % in Figure 7.10(a) and (b), and from 0 % to up
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to 5% in Figure(c)). For each dataset, five BNNs were conducted using MHL without any
FR and FR with different BERs for bit-flip injections. Moreover, for all BNNs trained with
MHL, we employed a parameter search for b, testing powers of two, up to two times
the maximum value the neurons in the output layer can compute (maximum output
value of a neuron in the output layer is the number of neurons in the layer before the
output layer). Among these configurations of b, the best one was chosen. We observe
that BNNs trained with the MHL without FR have better accuracy over BER than the
BNNs trained with FR, i.e., in Figure(a) and (b) up to 10 %, and in Figure(c) up to 5 %.
The BNNs trained with FR suffer from a significant accuracy drop for lower BERs, when
the BER during training is high, e.g., CEL 20 % and/or CEL 30 % at low BER. The BNNs
trained with MHL, however, do not suffer from this accuracy drop. Although the BNNs
trained with FR 20 % and bit-flip injections have better accuracy for Fashion CBNN in
Figure 7.10(b) when the error rate is higher than 10 %, the accuracy of the BNNs drops
by a significant amount, which may be unacceptable. Below, we thus present further
investigations.

7.2.4.2 MHL Combined With FR

We evaluate BNNs trained with the MHL and FR under different BERs. In addition, the
BNNs trained with the MHL without FR (i.e., those BNNs generated using the MHL in
Figure 711 under 0 % BER) are included here as the baseline in this subsection. For
all configurations, we employed the same parameter search for b as in the previous
section. Figure 7.11 presents the experimental results of different BNNs with respect to
the accuracy over BER (from 0 % to up to 30 % in Figure 7.11(a) and (b) and from 0 % to
up to 6 % in (c)). In all experiments, we observe that the accuracy over the BER of the
BNNs trained under MHL and FR is significantly higher than that of the baseline trained
by only MHL. For example, for Fashion in Figure 7.11, the BER at which the accuracy
degrades significantly is extended from 5 % (baseline, green curve) to 20 % and 15 %,
respectively, with a small trade-off in the accuracy at 0 % BER. If more accuracy at low
error bit rates is traded, the BER at which accuracy degrades steeply can be shifted even
further. For CIFAR10 in Figure 7.11, this breaking point can also be increased. However,
more accuracy has to be traded compared with previous cases. If b is higher than the
ones shown, the accuracy for lower BERs suffers similarly to how it would using CEL
with high BERs. If b is lower, there will be no significant change compared with CEL
with 0% BER. We only show the results with the best b.

7.2.5 Conclusion
Deep learning is notoriously memory hungry and hence new memory sub-systems

must be developed to push the application of ANNs to small devices. Likewise, new
ANN architectures can help to reduce memory consumption and offer a more resource-
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friendly execution of deep networks. Non-volatile memories such as Ferroelectric FET
(FeFET) are a promising technology for new memory sub-systems. FeFET enables faster
and more energy-efficient read/write operations but it introduces bit errors into the
execution. While standard software solutions can monitor and correct bit errors, they
negate the advantages of non-volatile memories by introducing further processing
overhead. Neural networks that are resilient to random bit errors by design, on the
other hand, can retain the advantages of non-volatile memories leading to potentially
faster and more energy-efficient solutions. BNNs are a novel class of small, resource-
efficient neural nets that are ideally suited for such a setting. In BNNs each weight
consists of weights {0, 1} so that they require 32 times less memory than their floating-
point counterpart while being more resilient to random bit flips. In this contribution,
we provided an in-depth discussion of the bit errors in BNNs and derived a novel
max-margin optimization from it. Our approach offers a better accuracy across most
error rates while preventing the overfitting of the BNN to a specific error rate. Hence,
our approach allows the deployment of BNNs on a variety of different devices with
unknown and varying error rates.
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Fig. 7.10: Accuracy over bit error rate for BNNs trained with FR under a given bit flip injection rate
(specified in the legend, 0 %, 5 %, 10 %, etc.) and BNNs trained with MHL without FR for a specified b

in Equation 7.12.
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Fig. 7.11: Accuracy over bit error rate for BNNs trained with MHL and FR (denoted as FR 0 %, 1%, etc).

The number after the b is the value to which the parameter b in the MHL is set during training (see
Equation (7.12)).
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7.3 Cache-Friendly Execution of Tree Ensembles

Sebastian Buschjdiger
Kuan-Hsun Chen

Abstract: Ensembles of decision trees are among the most used classifiers in machine
learning and regularly achieve state-of-the-art performance in many real-world applica-
tions, e.g., in the classification of celestial objects in astrophysics, pedestrian detection,
etc. Machine learning practitioners are often concerned with model training, re-training
different models again and again to achieve the best performance. Nevertheless, once a
learned model is trained and validated, the executing cost of its continuous application
might become the major concern.

Applying decision trees for inferences is very efficient in run-time, but it requires
many memory accesses to retrieve nodes. For example, it is common to train several
thousand trees, e.g., each with depth 15 leading to 21> = 32 768 nodes per tree. This
leads to millions of decision nodes that must be stored in memory and processed. Cache
memory is commonly adopted to hide the long latency between the main memory and
the processor. However, an improper memory layout might bring up additional cache
misses, leading to performance degradation. Thus, designing a suitable memory layout
of tree ensembles is of key importance to achieve efficient inference over tree ensembles.

In this contribution, we discuss the deployment of tree ensembles on different hard-
ware architectures. Given a pre-trained decision tree ensemble, we first present different
realization techniques commonly used in the literature. Afterwards, we study different
layout strategies to optimize the node placement in the memory, focusing on the caches
available on different hardware architectures. Finally, we present the evaluation results
over different configurations and combine all approaches into a single framework that
automatically generates the optimized realization for a target hardware architecture.

7.3.1 Introduction

Efficient learning has always been the focus of research, but the demand for the efficient
application of learned models has emerged only recently. Consider, for example, self-
driving cars. Current prototypes use machine learning (ML) for image recognition and
fundamental steering.! Thus, the ML model must not only be applied continuously, but
it also must react on time. As a second example, consider search engines that utilize ML

1 ,https://towardsdatascience.com/teslas-deep-learning-at-scale-7eed85b235d3.
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models such as Gradient Boosted Trees? to rank search results. These engines routinely

process roughly 12 billion search queries a month worldwide.? The 4 480 287 queries

per second they process demand fast model application.

While deep learning is excellent for unstructured image data, tree ensembles are
often referred to as one of the best black-box methods available for structured data. They
offer high accuracy with only a few parameters to tune [120, 223] and frequently place
among the top methods in data science competitions.* For real-time application, tree
ensembles have become important in many domains, e.g., the real-time classification
of celestial objects in astrophysics [115], real-time pedestrian detection [466], real-time
3D face analysis [211]), the real-time classification of noise signals [608], nano-particle
sensors [439].

However, these trees are usually stored in the main memory and processed directly
out of the memory. The runtime of such a memory-intensive application is mainly de-
termined by the use of the various caches of the CPU. Surprisingly, as the line between
realizational details and algorithmic contributions becomes blurry on modern comput-
ing systems, caching behavior determines the performance of implemented algorithms
even more than algorithmic differences [615]. For tree ensembles, we can foresee that an
analytical approach to an efficient layout of the memory is desirable. Given a pre-trained
tree ensemble, we present several cache-aware approaches to optimize the memory
layout (so-called tree-framing), while preserving the original ensembles’ accuracy. The
proposed approaches are wrapped in a code generator that automatically adapts to
underlying architectures to produce optimized code segments. Overall, we present the
following contributions:

Cache-aware tree-framing approaches We analyze the source of cache misses on
two common tree realizations, i.e., native and if-else trees, and discuss several
approaches at the application level to optimize the memory layout by artificially
creating instruction/data locality .

Architecture-aware code generator We present a code generator that exploits the
analytical insights for generating optimized realizations of a given tree ensem-
ble. The code generator is publicly available at https://github.com/sbuschjaeger/
fastinference.

Empirical evaluation We perform 1800 experiments across three different computer
architectures and show that our approaches offer a speed-up factor at 2 — 4 on
average without changing the prediction accuracy of the given trained model.

This contribution was previously published as a conference paper in [108] and was
later expanded in a dissertation in [107].

2 https://www.seroundtable.com/bing- core-ranking-algorithm-machine-learning-27040.html.

3 Numbers are for 2019, see https://www.statista.com/topics/4294/bing/.

4 https://www.kdnuggets.com/2016/01/anthony- goldbloom-secret-winning-kaggle-competitions.
html.
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7.3.2 Related Work

Tree ensembles are some of the most used machine learning algorithms and, as such,
have been studied extensively in the literature. In the context of model application and
fast inference, there are two principled approaches. The first set of methods changes the
training procedure for Decision tree (DT) ensembles to produce more resource-friendly
models. This can be beneficial to achieve the highest accuracy given the computational
resources provided, but often result in longer training times and more evolved training
procedures. Common examples for this approach are pre- and post-pruning rules for
trees (see, e.g. [43]) or the pruning of entire ensemble members [347, 449, 589, 739].

The second set of methods studies the realization of a given DT ensemble and its
execution. This approach uses the ensemble as-is and, as such, does not affect the train-
ing. We will focus on this methodology in this contribution. Note that both methods can
also be combined. For example, Van Essen et al. present in [679] a comprehensive study
of different architectures for implementing Random Forests (RFs) on CPUs, FPGAs, and
GPUs. Based on the CATE algorithm [586], the authors train an RF with DTs constrained
by a fixed height. By fixing the tree-depth, the authors show a practical pipelining
approach for executing DTs on CPUs, FPGAs, and GPUs.

Asadi et al. introduce different realization schemes of tree-based models in the
context of learning-to-rank tasks [26]. They introduce two different realization schemes,
which will be discussed in more detail later: the first one uses a while-loop to iterate
over individual nodes of the tree, whereas the second approach decomposes each tree
into its if-else structure. For the first realization, the authors also consider a continuous
data layout (i.e., an array of structs) to increase data locality but do not directly optimize
each realization. Also note that the authors mainly consider gradient-boosted trees.
There, the individual trees are usually “weak” in a sense, that they are comparably
small, as opposed to larger trees in RFs.

Also in the context of ranking models, Lucchese et al. present the QuickScorer
algorithm for gradient boosted trees [162, 450]. In this approach, the authors discard
the tree structure and decompose each tree into its comparisons. Then, they sort the
comparisons of the entire ensemble according to the feature value and perform them
one after another instead of traversing trees in a classical sense. To do so, they introduce
a 24-dimensional bit vector, where A is the height of a tree in which the most significant
bit (MSB) signifies the prediction leaf node of that tree. This way, the algorithm can
reuse comparisons across all ensemble members while minimizing cache misses. In
[452] the authors further enhance their method by adding vectorization over multiple
examples for more efficient batch-processing. To mitigate the limitations of a fixed
height, Ye et al. propose in [721] using an encoding scheme called epitome that decodes
the bitvectors on the fly while preserving vectorization. We note that, while these
methods usually offer a tremendous speed-up, they execute all possible comparisons
in the entire ensemble in the worst case. Thus, they are especially effective for large
ensembles of smaller trees commonly produced by gradient boosting algorithms.
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Kim et al. present in [373] a realization for binary search trees using vectorization units
on Intel CPUs and compare their realization against a GPU realization. The authors
provide insight on how to tailor the realization to Intel CPUs by taking into account
register sizes, cache sizes, and page sizes. Their work is specialized for Intel CPUs,
and thus, it is not directly applicable for different CPU architectures. Lucchese and
colleagues have already noticed, that many nodes are seldom visited [450]. Buschjager
and Morik formalize this observation in [110] by estimating the probabilities of specific
paths during tree traversal. Based on this probabilistic view of model execution or
inference, the authors consider different realization schemes for tree traversal and
theoretically analyze their runtime. Note, however, that this model of computation
remains at the software level and does not include the memory layout. Buschjager et al.
enhance this model in [108] by including the memory layout in their model. They show
how to minimize cache misses and how different realizations affect the instruction and
data cache differently for executing ensembles of large trees commonly found in RFs.
We will now discuss this paper in more detail.

7.3.3 A Probabilistic View of DT Execution

We consider supervised learning problems, in which we infer a model f : R¢ > Y from
labeled training data {(x;, y;)|i = 1, ..., N} to predict the value f(x) of new, unseen
observations. For Y = R, we have a regression problem, forY = {0, 1, ...}, we havea
classification problem.

Tree ensembles train a set of individual trees and combine their predictions to
establish a joint model. In the classical Random Forest (RF) approach by Breiman [72],
K DTs are trained using different samples of input features. Other RFs variations have
been explored, such as those that train trees on samples of data (bagging) [71] or those
that randomly generate splits for training [250]. Boosting [610] also frequently uses
decision trees as their weak base learners, but trains them sequentially to correct each
other.

A decision tree is a simple, tree-structured model that consists of inner nodes with
two children and leaf nodes. Each inner node compares the feature value x; of the
current sample x against a threshold ¢ where f and ¢t are computed during tree training.
Depending on the outcome of this comparison, either the left or the right child of this
node is used until a leaf node is found. The leaf node stores a constant prediction value
(e.g. the estimated class probabilities that fall into the leaf) which is then returned.

Our goal is to analyze the probability of performing a certain comparison while
traversing a DT. Based on this analysis, we can decide for each tree, which realization
and which data layout is best. Our notation is the following: each node receives a
unique identifier (e.g., in breath-first order) i. We denote the left child of i with I(i) and
the right child with r(i). Note that every observation takes exactly one path 7(x) from
the root node to one leaf. To lighten the notation, we drop the argument x, if we are not
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Fig. 7.12: Decision tree with probabilities of the path.

interested in the path of a specific observation. As established in [110], we model each
comparison at node i as a Bernoulli experiment in which we take the path towards
the left child with probability p(i - I(i)) and towards the right child with p(i > r(i)). It
holds that p(i - I(i)) = 1 - p(i - r(i)). An example can be found in Figure 7.12.

The probabilities p(i - 1(i)) and p(i - r(i)) can be estimated with the training
data by counting the number of samples at each node i taking the left and right path.
Assume a path of length L with 7 = (i, iz, ..., ir), where i;,; is either the left or
the right child of the j** node on the path. Following this path consists of a series of
Bernoulli experiments, each with probability p(i; > ij,1). Let P denote the set of all
paths in the tree. The probability of taking path 7 € P is given by

L
p(m) =plip > i1)-...-plip-1 > i) = Hp(i; > djy1) (7.13)

j=0
Again, let i be a node, there is exactly one path 7 = (0, ..., i) ending in node i. We

call the probability of the path leading to node i the probability of that node, that is
p(@) = p((0,...,1). Let T be the set of all nodes in the tree. We define the probability
for every subset of nodes T C T as:

p(T)=> _p(d (714)

ieT

7.3.4 Memory Locality and Tree Realization

As mentioned, tree ensembles can consist of millions of nodes that must be stored and
managed in the main memory. Hence, the memory layout of tree ensembles is one of the
most crucial aspects of efficient tree traversal. In order to mitigate the performance gap
between the main memory and the processor, smaller and faster memory subsystems
are often introduced in modern computer architectures to hide the long read/write
latency, in the forms of cache and scratchpad memories. Here we focus on the cache
memory, which is commonly equipped in modern computing systems.

The cache memory basically acts as a buffer between the main memory and the
CPU and stores the data and instructions that the CPU uses more frequently. This way,
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frequently accessed parts of the memory can be loaded from the smaller, but much

faster cache memory to reduce the latency of memory accesses. However, any misuse of

cache memory might be even worse than no cache in the memory hierarchy because one
cache miss triggers two loading instructions, one from the main memory to the cache

and one from the cache to the processor. There are three types of cache misses [183]:

Compulsory misses are due to the first access to a memory block that the cache did
not yet have a chance to buffer.

Capacity misses occur when some memory blocks are discarded from the cache mem-
ory due to the limited capacity, i.e., the program is working on more data than the
cache capacity.

Conflict misses occur in set-associative or direct-mapped caches when several blocks
are mapped to the same cache set.

The basic assumption of a cache is that of memory localities:

Temporal locality Recent data will be accessed in the near future, say, in small pro-
gram loops.

Spatial locality Data at addresses close to the addresses of recently accessed data will
be accessed in the near future, say, in sequential accesses to elements of an array.

These are the general assumptions for cache design, but please note that knowing how
the caches exactly behave is difficult or even impossible. Caches are manufactured
as parts of the closed IP of CPU manufacturers and hence the exact design of caches
is unknown. Additionally, due to the fact that there are often competing processes
running on a single CPU it is difficult to predict the cache behavior deterministically. In
this contribution we suppose that the design of cache behaviors cannot be changed.
The question we address is this: How to realize a cache-friendly execution while
preserving the functional behaviors of a given DT?

First, we analyze the memory usage of two common realizations of DT, i.e., native
Tree and If-else Tree that do not exploit the memory locality during the execution over
the structure of DT. Then we discuss how we can make these two realizations more
cache-friendly.

Native Tree The native tree implementation uses a while-loop to iterate over the
individual tree nodes that are stored within a continuous data structure, say, in a
one-dimensional array. An example code can be found in Listing 7.1. Although the
usage of the simple loop with a few lines of codes preserves the temporal locality,
the accesses over the nodes of a DT do not have spatial locality. The nodes are often
allocated sequentially according to the indexes, whereas such indexes might not take
the execution of the DT into consideration, e.g., the nodes on one path might not be
allocated sequentially. In addition, if the distance between each node of the path is
greater than the number of nodes that can be hosted into a cache set, some nodes will



344 =— 7 Memory Awareness

be loaded into caches but not used at all, leading to much capacity and conflict cache
misses.

Listing 7.1: Example for native tree structure in C++.

struct Node {
bool islLeaf;
unsigned int prediction; // Predicted label
unsigned char feature; // Targeted feature
float split; // Threshold
unsigned short leftChild, rightChild;
i
Node treel[] = {{0,0,0,8191,1,23},{0,0,1,2048,3,4},..1}
bool predict(short const x[31){
unsigned int i = 0;
While(!treel[i].isLeaf) {
if (x[tree[i].feature] <= tree[i].split) {
i = tree[i].leftChild;
} else {
i = tree[i].rightChild;

}

return tree[i].prediction;

If-Else Tree An alternative is the if-else tree, which statically encodes the split values
of nodes in the instructions. This realization essentially avoids the indirect memory
accesses required by the native tree and usually improves the runtime efficiency sig-
nificantly. An example code can be found in Listing 7.2. However, the advantage of
the temporal locality in the instruction cache might be completely abandoned. Since
DTs are naturally composed of many branches, some encoded instructions might be
prefetched into the instruction cache but not used. Additionally, if the size of the instruc-
tions for one DT is greater than the size of the instruction cache, the cached instructions
may be evicted out by loading other instructions due to the capacity and conflict cache
misses.
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Listing 7.2: Example for if-else trees in C++.

bool predict(short const x[31){
if(x[@] <= 8191){
if(x[1] <= 2048){
return true;
} else {
return false;
}
} else {
if(x[2] <= 512){
return true;
} else {
return false;
}
3
3

7.3.5 Memory Layout Optimization

In the following, we analyze the caching behaviors of the two different realizations and
present our tree-framing algorithms to optimize the memory layout at the application
layer accordingly.

Native Tree As shown in Listing 7.1, a DT can be realized by allocating the tree nodes
sequentially in an 1-D array, and a simple loop can access them according to the com-
parison between the feature and the split value. We first observe that, in fact, half of
the nodes in a tree are leaf nodes storing a prediction value. This naive realization, how-
ever, assumes the same data type for each node, incurring unnecessary memory usage.
Second, the access pattern of a DT forms a unique path from the root to a leaf for each
input data, but the nodes are typically sequentially allocated in the array according to
Breadth-First Search (BFS).> The distance between each accessed node becomes larger
when the accessed nodes are placed deeper in the DT. The proposed optimization is
twofold: 1) reducing compulsory cache misses by encoding the predicted label into the
field of children, and 2) reducing capacity and conflict cache misses by allocating as
many nodes as possible from the same path into the same cache set.

When a node is loaded, the following nodes in the array are prefetched into the
data cache sequentially. If the size of memory for each node can be reduced, more
nodes can be loaded into the cache at once so that overall compulsory cache misses
can be reduced. To reduce memory consumption we can completely remove the isLeaf

5 Please note that the problem is not limited to BFS. Here we point out the demand of considering the
access pattern when allocating nodes to memory.
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and prediction fields, and store the predicted labels of the children directly in the
respective fields by encoding the node type with an indicator field, i.e., removing one
Boolean variable and two unsigned shorts by adding one unsigned short.

As mentioned earlier, the sequence of stored nodes is not consistent with the access
pattern over the execution of the tree, so the benefit of caching cannot be utilized
properly. A sensible solution is to leverage the probabilistic view on DT execution
to identify nodes that were likely executed consecutively and place them in memory
accordingly. Let T be the cache set size and A be the array in which we place all nodes
of T. Furthermore, let C be the candidate list of nodes in T that have not been placed
in A yet and let 8§ denote the nodes that should be placed in the same cache set. For
each node, we greedily choose a child that has the highest probability on the current
path and place it in 8. Once § contains 7 — 1 elements (and hence is full), we append
all nodes from 8 to the array A, clean up 8, and repeat the above procedure for the next
set. The details are summarized in Algorithm 6.

Algorithm 6: Optimized path layout
Data: Tree-nodes T, maximum nodes per set T

Result: A data array A with the path-oriented layout
1 A=[]
2 C < {0}
3 while € # () do

s | i€ argmaxjce {p(()}

s | e<«e\{i}

6 | S<{i}

7 while 8| # T do

8 if i is leaf-node and € # () then

9 i < argmaxjce{p(n())}

10 e<e\{i}

1 else

12 C < Cuargmin{p(i > I(i)), p(i > (i)}
13 i < argmax{p(i > U(i)), p(i > (D)}
14 if |S| = 7 - 1 then

15 | e« eu{lh), ri}

16 8 < 8uU{i}

17 A.append(S)

Please note that adding a new node to § (Line 7) has two possible actions for the
encoding procedure:
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— The current node is a split node. The algorithm picks the next node based on the
children’s probabilities and puts a more probable child in § and the other children
into the candidate list C.

— The checked node is a leaf node, i.e., the end of the path. The algorithm picks a
sub-root with the highest probability from the candidate list € as long as it is not
empty. The traversal starts again until 8 is full.

If the current 8 is full, but a path is not finished yet (Line 14), two children of the current
node are returned to the candidate list € (Line 16). A sub-root that has the highest
probability is picked from C for the next new set 8. The algorithm outputs the optimized
memory layout over nodes in which path-oriented sets are sequentially allocated to the
array.

If-Else Tree Asshown in Listing 7.2, a DT can be realized by unrolling the comparisons
of a DT into conditional statements with the if-else blocks. This version avoids the
indirect memory accesses and does not consider the execution pattern of a DT. The
proposed optimization is also twofold: 1) reducing compulsory cache misses by reducing
the branch executions, and 2) reducing capacity and conflict cache misses by grouping
those nodes used most of the time, e.g., the root node.

When a compulsory cache miss takes place, several consecutive instructions are
fetched into the instruction cache, even though some of them might not be executed
due to branches. An analysis of the corresponding assembly code reveals that only the
branches for else statements are generated in general. In order to increase the chance of
using prefetched instructions, the possibility of branch executions should be reduced.
Towards this, we propose traversing all paths in the DT and swapping the children of
every node i when p(i > (i) = p(i > r(i)).

Furthermore, unlike the native tree, the positions of unrolled nodes cannot be freely
allocated. The size of nodes from a DT is likely greater than the size of the instruction
cache. Because of the capacity and conflict cache misses the cached instructions may
be evicted by fetching other instructions. We propose partitioning nodes into different
computation kernel functions, and leveraging goto statements to break the tie between
if-else blocks so that we can put probable nodes together.

Let K denote the kernel function and let s(i) be a mapping function returning the
instruction size of node i. We formulate the following optimization problem:

K = arg max {p(T)}T C Ts.t. Zs(i) < B}, (7.15)

ieT
where f is a given budget related to the size of the instruction cache on the targeted
architecture. Given X, these nodes likely remain in the cache once they are fetched,
whereas the remaining nodes £ = P \ X may be evicted more often. In order to avoid
iterating over all possible subsets of 7, which might be computationally inefficient, we
propose a greedy algorithm to partition nodes in a path-wise manner, summarized in
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Algorithm 7. At first, the algorithm swaps the children according to their probabilities,

Algorithm 7: Optimized if-else tree
Data: Tree T, Paths P = {mq, ..., my}

Result: Kernel X, Label £
1 swapChildren(7)
2 P < sortByProbabilities(P)
3b<0
4 form e Pdo

5 fori c mdo

6 if b + s(i) > B then
7 | Additos

8 else

9 AdditoX
10 b < b+s(i)

and sorts all paths in the tree by their probabilities. Afterwards, the approach greedily
appends nodes one by one into X until the accumulated size of the added nodes b
is greater than the given budget B. The rest of the nodes are all added to £. Once the
nodes are grouped into X and £, we can use goto statements to break the sequential
generation of if-else blocks. First, we generate if-else blocks for all nodes in X. Once
the left/right child of one of those nodes is in £, a goto statement is generated at the
same position to replace the original if-else statement. Then, the corresponding if-else
statements of this node and its children are all generated into a label block at the end,
which is branched from the goto statement. Listing 7.3 shows an example based on
Listing 7.2 by applying Algorithm 7.
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Listing 7.3: If-else structure in C++ with goto statements.

bool predict(short const x[31){
if(x[@] > 8191){
if(x[2] <= 512){
return true;
} else {
return false;

}
} else {
goto Label®;

3
Label®:

{
if(x[1] <= 2048){
return true;
} else {
return false;
3
3
}

The remaining question is how to estimate the instruction size s(-) of each node. In

general, the instruction set size differs for two different types of nodes:

Split nodes require three types of instructions. First, the values of the target feature
and the corresponding threshold are loaded into registers. Second, the values
inside the registers are compared against constant values. Last, a jump out of the
current block is performed based on the comparison.

Leaf nodes need two types of instructions. First, the return value of the prediction
is stored in a register, and second, a jump back to the caller of the if-else tree is
performed.

Therefore, we can estimate s(-) by counting the number of generated instructions for a
tree node. Table 7.7 summarizes the expected size of instructions for ARM, X86 (Intel),
and PPC in an isolated example.® Please note that in a real application, the actual
number of instructions depends on the adopted compilation tool-chains and the actual
realization. An advanced automation can be further explored by exploiting compiler
features, e.g., annotations on the source code, to enforce the executing patterns. By
doing so, the number of generated instructions can be firmed in the proposal algorithm
as for example done in ongoing research such as [132].

6 We adopted GNU C++ (g++) compiler version 4.8.3 for ARM, version 4.9.2 for PPC, and version 5.4.0
for Intel with -00 option.
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Tab. 7.7: The expected size of instructions for a split node and a leaf node in a decision tree on ARM
(Raspberry PI 2), PPC (NXP T4240 processors) and Intel (Intel Core i7-6700) processors.

ARM [Bytes] PPC [Bytes] Intel [Bytes]

Type Int Float Int  Float Int Float
Split 20 32 20 48 28 17
Leaf 8 8 8 8 10 10

7.3.6 Architecture-Aware Code Generator

As noted earlier, for each combination of tree ensembles and target hardware architec-
ture a different implementation might offer the best inferencing solution. Hence, we
implement the discussed tree-framing methods in a single code-generator framework
that generates the optimized realizations for a given forest and target platform. Fig-
ure 713 gives an overview of the whole workflow. First, the pre-trained forest (in a JSON
format) is loaded. Afterwards, the corresponding intermediate representation of the
ML model is generated, and the proposed optimizations are performed, e.g., branch
swapping, node re-indexing, etc. Finally, we provide a set of C-style templates that
represent the specific implementation types (e.g. native or if-else). Several auxiliary
scripts scripts are provided to automate the above procedures, e.g., selecting corre-
sponding cross-compilers. Per default sci-kit learn models are targets [561] but other
model definitions, in, say, the ONNX format are also supported. More details can be
found at https://github.com/sbuschjaeger/fastinference.

A Choose
Read File 011\)/;:(;1;129 ‘ Target Ge&l:gzte
Architecture
Decision Tree L—»Tree Framing X86 if-else

Ensemble
ARM native

PPC

Fig. 7.13: Workflow of our code generator. The model configuration is loaded into an internal repre-
sentation. If selected, optimizations are performed on the model before code generation. Afterwards,
the target architecture and the appropriate templates are selected for final code generation.
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7.3.7 Experimental Evaluation

We have performed 1800 different experiments by training Decision Trees (DT) [73],
Random Forests (RF), [72] and Extremely randomized Trees (ET) [250] on 12 different
datasets with varying tree-depths to generate the aforementioned realizations for dif-
ferent architectures, i.e., X86, PPC, and ARM CPUs. Table 7.8 shows the datasets we
used during the experiments. All datasets are available in the UCI Machine Learning
Repository [31] except for MNIST [420], IMDB [456], and FACT [17]. In addition to the
number of features and the number of examples during test time, we also report the
range of accuracy for the three different models DT, RF, and ET. In all experiments we
used the CART algorithm with the Gini score criterion for node-splitting and trained
models using the sklearn package[561]. For RF and ET, we used 25 trees. If the respec-
tive dataset comes with a pre-computed train/test split, we use this. Otherwise, we use
75 % of the data for training and 25 % of the data for testing. DTs often do not achieve
high accuracy, whereas RF and ET perform best with large trees. We did not perform
any hyperparameter optimization with respect to the classification accuracy and report
the accuracy here to validate our code generator.

Since sklearn is arguably one of the most-used machine learning libraries we also
compared its performance against our implementation. We found that, our realization
is on average 500 — 1500 times faster than sklearn. However, we admit that this com-
parison is biased, because large parts of sklearn are written in Python and optimized
for batch execution. Thus, we excluded these comparisons in the following discussion.
For space reasons, we focus our evaluation on RF models, but found that DT and ET
result in similar behaviors across all systems. We use the naive native realization as
the baseline for all experiments, and measure the average speed-up for each dataset of
each optimization against this realization. To minimize unfairness due to caching, we
classify all samples in the test set twice, but only report the runtime of the second run.
We repeat the whole process 50 times and report the average speed-up across these 50
repetitions.

For native optimizations, we choose T = 25 on X86, T = 8 on ARM, and 1 = 8 for
the PPC CPU. For if-else optimizations, we use an instruction-cache size § = 128 000
bytes on X86, 8 = 32 000 bytes on ARM, and 8 = 32 000 bytes on the PPC CPU. The
experiments were performed on an Intel Core i7-6700 desktop machine with 16 GB
RAM for X86. For PPC, we use a NXP Reference Design Board with T4240 processors
and 6 GB RAM. For ARM, we use an Raspberry PI 2 with an ARMv7 CPU and 1GB RAM.

Experiments on the X86 CPU Architecture Figure 7.14 depicts the average speed-up
of the four different optimizations on Intel. First we note, that the if-else trees are the
fastest on Intel and offer a speed-up of around three across all tree depths. For smaller
tree depths from 1 — 10, we see that optimizing if-else trees only offers marginal speed-
up. However, for larger tree depths of around 15 and 20, we can see that optimized
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Tab. 7.8: Summary of datasets for our experiments based on UCI datasets [31], IMDB [456],
MNIST [420], FACT [17].

Dataset # Examples  # Features Accuracy
adult 8141 64 0.76-0.86
bank 10297 59 0.86-0.90
covertype 145253 54 0.51-0.88
fact 369 450 16 0.81-0.87
imdb 25000 10000 0.54-0.80
letter 5000 16 0.06-0.95
magic 4755 10 0.64-0.87
mnist 10000 784  0.17-0.96
satlog 2000 36 0.40-0.90
sensorless 14628 48 0.10-0.99
wearable 41409 17 0.57-0.99
wine-quality 1625 11  0.49-0.68

if-else trees can retain their speed-up and outperform unoptimized if-else trees with a
speed-up factor larger than 3.

Native trees do not perform as well as if-else trees on Intel CPUs. Overall, the speed-
up compared with naive native trees is only marginal for smaller trees below depth 15.
Here, both versions, i.e., the StandardNativeTree and the OptimizedNativeTree, offer a
speed-up of 1.5 at most. Interestingly, for larger trees around depth 15 and more, we
again notice that our optimizations improve performance.

Experiments on the PPC CPU architecture Figure 715 depicts the average speed-
up of the four different optimizations on PPC. We can observe that the results here
are similar to Figure 7.14, in which if-else trees always outperform native trees with a
speed-up in the range from 2 - 5. Along with the increment of tree depth, the speed-up
from both if-else tree versions drops. Un-optimized if-else trees suffer especially from
degraded performance, dropping to almost 2, whereas the optimized version can retain
a speed-up of around 3.5.

Similar to X86 CPU, the native realization does not seem to be the best choice
as it provides a speed-up under 2 in all cases. However, with increasing tree depths,
optimizations are more important. It is worth noting, that we can observe cases where
the native trees outperform if-else trees when tree depth is larger than 15.

Experiments on the ARM CPU Architecture Figure 7.16 depicts the average speed-
up of the four different optimizations on ARM. We observe that the situation on ARM is
more fragmented than that of X86 and PPC. In general, we are able to achieve a speed-up
of around 4 for small trees, which drops to around 2 - 3 for larger trees. Both realizations
roughly start with the same speed-up factor for small trees, but then quickly diverge for
tree depth from around 5 - 15. In this range of tree depth, we see that if-else trees are the
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Speedup over the naive native implementation on X86
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Fig. 7.14: Average speed-up factor for real-time execution compared with the naive native realization
on Intel for tree depths from 1 - 20.
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Fig. 7.15: Average speed-up factor for real-time execution compared to the naive native realization on
PPC for tree depths from 1 - 20.
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Speedup over the naive native implementation on ARM
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Fig. 7.16: Average speed-up factor for real-time execution compared with the naive native realization
on ARM for tree depths from 1 - 20.

fastest choice on ARM. Additionally, we notice that with increasing tree depths cache
optimizations become more important and consistently outperform their un-optimized
counterpart. Once trees are sufficiently large, we see that the native trees match again
the performance of if-else trees and even outperform them for tree depths of 15 and 20
in some cases. In this sense, the results are similar to what we have seen on the PPC
architecture.

7.3.8 Discussion of the Experiments

The experiments show differences and similarities across the three architectures. Here,
we want to discuss these phenomena in terms of the properties of the specific architec-
tures, as well as the particular CPU models used for experiments. We note that one of
the main architectural differences between X86, ARM, and PPC are the available instruc-
tions. Since native trees only use a small amount of hot-code, the differences between
CPU architectures will likely not matter much here. However, while looking at if-else
trees, we can expect a larger difference. To further investigate the interplay between
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CPU architectures and code size, we consider Table 7.9, 7 which depicts the instruction
size of a tree kernel function for varying tree depths over the FACT dataset (containing
floating-point features) and the covertype dataset (containing integer features) under
the standard if-else tree realization. For Intel CPUs, as shown in Figure 7.14, we notice

Tab. 7.9: The actual size of instructions for if-else tree executing kernel functions on different archi-
tectures with the O3 option.

(a) Kernel size with integer features for covertype dataset

DateType DT-1 DT-5 DT-10 DT-15 DT-20

Intel 224 575 8185 51005 167644
PPC 232 604 7732 51840 170772
ARM 204 604 9040 55012 180628

(b) Kernel size with floating point features for fact dataset

DateType DT-1 DT-5 DT-10 DT-15 DT-20

Intel 96 415 17023 127330 404722
PPC 96 556 20996 169696 577952
ARM 88 428 18436 154992 542020

that if-else trees are the best choice. There are mainly two reasons. First, X86 CPUs
are Complex Instruction Set Computers (CISC) offering a very rich set of instructions
that include all sorts of specialized operations. Since if-else trees unroll the complete
tree structure into instructions, they give the compiler the opportunity to utilize this
multitude of instructions to the fullest by encoding larger parts of the tree in single
instructions. From Table 7.9 we can also see that the Intel CPU almost always requires
the fewest instructions per decision tree. Second, in our experimental setting, the Intel
Core i7-6700 CPU has a comparably large instruction cache of 256 KiB combined with
two larger shared caches of 1 MiB (L2 Cache) and 8 MiB (L3 Cache). Thus, by encoding a
single tree in only a few instructions, it is likely to fit it into the larger instruction cache.
By contrast, native trees do not benefit from the CISC architecture and require additional
space in the data cache by encoding the tree nodes as data instead of instructions.

As with the X86 architecture, we have seen that if-else trees perform very well on
the PPC architecture, but to a lesser extent. The PPC CPU architecture is a Reduced
Instruction Set Computer (RISC) with performance enhancement for high performance
computing. RISC does not offer instructions for specialized operations as CISC does.

7 Although the instructions generated by the compiler may differ due to aggressive compiler optimiza-
tion (03) compared with the presented node sizes (00 optimization) in Table 7.7, the code generator at
the end selects the O3 option to accelerate the realizations as much as possible.
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Thus, the compiler must largely rely on the combination of (comparably) simple
instructions to implement if-else trees. This, in turn, results in larger code that is less
likely to fit into the instruction cache. Comparing the instruction size of PPC with
X86 in Table 7.9 we see that the PPC architecture indeed requires more instructions
than with X86. Interestingly, this case is less severe for integer features, due to the
enhancements in this instruction set architecture. Considering the cache sizes of the
T4240 processors used in the experiments, we see that it only has a 32 KiB instruction
cache, but also comes with a 2 MiB shared L2 cache, which is even larger than the Intel
Core 17-6700 CPU. For smaller trees of around 5 - 10, the cache sizes are still large
enough to hold all trees, and thus if-else trees are still the fastest choice. If trees become
large (depth 10 or more), the instruction cache is not enough to hold all trees and we
must rely on the larger L2 cache. However, this cache is slower, which in combination
with the larger code size explains the performance drop for larger trees.

Finally, we discuss the fragmented behavior of the ARM architecture. Much like its PPC
counterpart, ARM also uses a RISC architecture. However, ARM’s RISC does not come with
specialized instructions for high-performance computing, and thus the compiler has to
completely rely on the combination of simple instructions for if-else realization. This in
turn results in even larger code for integer features, which is less likely to fit into the
instruction cache as shown in Table 7.9. Interestingly, for floating-point features, we see
that the ARM CPU uses fewer instructions than the PPC CPU, which is attributable to the
specific CPU model used during experiments. The T4240 processors are optimized for
high-performance computing in a low-power embedded computing setting, such as
networking applications, and thus are optimized for integer operations. By contrast,
the ARMv7 CPU of the Raspberry PI 2 is a general-purpose CPU aimed at the needs
of the average user, and thus it places a larger emphasis on floating-point operations
compared with the T4240 processors. It has a 32 KiB instruction cache in combination
with a significantly smaller 512KiB L2 shared cache. Compared with the other CPUs,
this means that the ARM CPU has 2 - 16 times less L2/L3 cache available. For smaller
trees around a depth of 5 - 10, the cache sizes are still enough to hold all trees, and thus
if-else trees are still the fastest choice. For larger tree depths, however, the instruction
cache is not enough and native structures using the data cache become faster. However,
since the data cache is also small, both caches are filled quickly to their maximum.
Interestingly, if we optimize both if-else and native trees, we end up with roughly the
same performance.

7.3.9 Conclusion
DTs form one of the building blocks of modern machine learning and ensembles of

decision trees are one of the most successful classifiers regularly achieving state-of-
the-art performance in real-world applications. DTs are generally regarded as ‘simple’
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classifiers that can be executed even on the tiniest of hardware. However, a tree easily
contains up to millions of decision nodes that must be stored and managed which can
be a challenge even for large server hardware. Cache memory is commonly adopted
in today’s von-Neumann computing architecture to hide the long latency between
the main memory and the processor. Hence, an efficient realization of a given tree
ensemble must respect this memory hierarchy and provide a suitable memory layout of
the decision nodes for optimal performance. In every modern programming language
there are at least two ways to implement a DT: either one decomposes the tree into its
if-else structure or one uses a while-loop to iterate over a continuous array of nodes.
Both approaches offer different caching behaviours that can be further enhanced by
the tree-framing methods discussed in this contribution. At the core of these methods
lies the fact that DTs do not have a deterministic runtime, but its execution time may
vary depending on the current sample. Hence, a probabilistic view of DT execution
estimates the most probable paths of the tree and frames the tree so that these paths are
likely to remain in the cache. The experimental evaluation shows a speed-up around
2 - 4 across three different hardware architectures on a variety of datasets without any
loss in accuracy occurs.
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The ubiquity of connected devices and parallel computing platforms challenges ef-
ficient and reliable execution of machine learning algorithms. If machine learning
workloads are executed merely locally, a system does not always have sufficient re-
sources at its disposal to perform the necessary operations fast enough. Furthermore,
at a smaller scale, multiple hardware components these days are interconnected via
on-chip or off-chip networks to create many-core systems. Communication, synchro-
nization, and offloading have thus become essential in designing embedded systems
under communication and resource constraints.

This chapter presents (1) the timing predictability of embedded systems and (2) the
communication architecture in heterogeneous CPU/GPU environments. Synchroniza-
tion with resource sharing, communication with potential failures, and probabilistic
timing information are presented in Section 8.1. Bandwidth limitations of different exe-
cution models and coprocessor-accelerated optimization are presented in Section 8.2.
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8.1 Timing-Predictable Learning and Multiprocessor
Synchronization

Kuan-Hsun Chen
Junjie Shi

Abstract: With the increasing demand for time-predictable machine learning applica-
tions, e.g., object detection in autonomous driving systems, such a trend poses several
new challenges for resource synchronization in real-time systems, especially when
hardware accelerators like Graphics Processing Units (GPUs) are considered as shared
resources. When the shared resources have relatively high utilization, conventional
synchronization mechanisms might result in performance downgrade.

We thus propose the emerging Dependency Graph Approach (DGA), where the prece-
dence constraints of all the computation segments are pre-proceeded. Such a non-work-
conserving approach can schedule long critical sections, which may be even longer
than the period of another task. This is not the case in all the other work-conserving
protocols typically in use. Throughout numerical experiments, we show that DGA out-
performs all the other conventional protocols in all the evaluated configurations when
shared resources are highly utilized.

Additionally, a system does not always have sufficient resources at its disposal to per-
form the necessary operations fast enough if machine learning workloads are executed
merely locally. One sound approach is to offload heavy workload to powerful remote
servers and expect the inference outcome can be received in time. However, since this
approach highly depends on network connectivity and responsiveness, typically only
non-critical tasks are offloaded, whose timing requirements are less strict than those of
critical tasks. Against such a pessimistic design, we present two novel offloading proto-
cols that offload both critical and non-critical tasks. They handle uncertain connections
while providing certain timing guarantees.

To achieve a timing-predictable design, typical timing analyses always consider the
worst-case execution pattern to derive timing guarantees. But this approach is often
too restrictive for some machine learning applications with soft timing constraints.
To mitigate the pessimism, we develop several timing analyses of the probability of
deadline misses and the deadline miss rate, two important metrics considered in the
literature to quantify timeliness.



8.1 Timing-Predictable Learning and Multiprocessor Synchronization =——— 361

8.1.1 Introduction

Under the von Neumann programming model, shared resources that require mutually
exclusive accesses, e.g., shared files, data structures, etc., have to be protected by apply-
ing synchronization (e.g., binary semaphores) or locking (e.g., mutex locks) mechanisms.
Protected code segments that have to access shared resource(s) mutually exclusively
are called critical sections. For uni-processor real-time systems, longstanding protocols
developed in the 90s, are the current state of the art. These are namely the Priority
Inheritance Protocol (PIP) and the Priority Ceiling Protocol (PCP) by Sha et al. [623], as
well as the Stack Resource Policy (SRP) by Baker [37].

Along with the development of multiprocessor platforms, multiprocessor resource
synchronization and locking protocols have been proposed and extensively studied.
These include Distributed-PCP (DPCP) [592], Multiprocessor PCP (MPCP) [591], Mul-
tiprocessor SRP (MSRP) [238], Flexible Multiprocessor Locking Protocol (FMLP) [58],
0(m) Locking Protocol (OMLP) [69], and Multiprocessor resource sharing Protocol
(MrsP) [101].

However, the performance of aforementioned protocols highly depends on 1) how
the tasks are partitioned and prioritized, 2) how the resources are shared locally and
globally, and 3) whether a job/task being blocked should spin or suspend itself. In
the literature, conventional synchronization mechanisms might result in performance
downgrade, since most of them are designed for sporadic tasks with relatively low
utilization for critical sections, which are often not able to represent emerging heavy-
loaded machine learning applications. We thus propose a novel concept called DGA,
which can serve high utilization of critical sections well.

Moreover, when the workload of a critical section, e.g., a machine learning work-
load on GPU, is extremely high, a system does not always have sufficient resources at
its disposal to perform the necessary operations fast enough. A sound solution is to
offload heavy workload to powerful remote servers and wait for the outcome of the
inference processes. However, the performance and stability of this approach highly de-
pends on the quality of the network. To improve flexihility, we propose several adaptive
protocols to ensure that the timing requirements of safety- and mission-critical tasks
are not violated even in the case of connectivity issues while obtaining the benefits of
offloading computation shares.

Last but not least, to achieve a timing-predictable design, conventional timing
analyses always focus on the worst-case execution pattern to derive hard timing guaran-
tees. However, such analyses are sometimes too pessimistic when systems can accept
rare deadline misses, e.g., for soft real-time systems. Limited deadline misses on many
machine learning applications might only lead to performance degradation, e.g., for
image and voice recognition on smart edge devices. Some end users might only feel
inconvenienced without further serious consequences. However, people might still
wonder how resilient the considered system is with respect to deadline misses in a
probabilistic argument. To obtain the probability of deadline misses, we innovate a
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well-known convolution-based approach based on multinomial distribution, and adopt

several concentration inequalities to derive analytical upper bounds to further improve

the efficiency of calculation.
Overall, the presented contributions in this chapter are as follows:

Dependency Graph Approach (DGA) We propose a novel method for periodic real-
time task systems, which predestines the sequence where tasks can access re-
sources. The conducted numerical simulations show that DGA outperforms all
state-of-the-art approaches in most evaluated configurations, especially when
utilization of critical sections is relatively high.

Offloading protocols for unreliable connection We present two offloading proto-
cols that offload both critical and non-critical tasks. They deal with uncertain
connections while providing certain timing guarantees. A case study on a robotic
system demonstrates the applicability of the proposed protocols under various
configurations.

Deadline-miss analyses A novel approach based on the multinomial distribution is
proposed that calculates the deadline miss probability with drastically better analy-
sis runtime without any precision loss. Furthermore, we propose several analytical
bounds based on various concentration inequalities. The evaluation shows that
our approaches are applicable for significantly larger task sets while preserving
the quality of derived results, compared with conventional convolutional-based
approaches.

8.1.2 Related Work

For multiprocessor systems, many resource synchronization and locking protocols are
extensions of these aforementioned well-known uni-processor protocols. For example,
Rajkummar et al. [592] proposed DPCP, where each resource is assigned on a processor
statically, and critical sections are executed on the corresponding processor where the
requested resource is assigned on. The extension MPCP [591] enables tasks to execute
their critical section locally. In order to minimize the usage of stack memory in real-
time systems, Gai et al. [238] proposed MSRP. Block et al. [58] introduced FMLP, where
resources are divided into two groups, i.e., long and short. For short resources, critical
sections are executed in a non-preemptable manner and tasks spin on their processors
while waiting for resources. For long resources, tasks suspend themselves into a First
In First Out (FIFO) queue while waiting. Brandenburg and Anderson [69] proposed
OMLP, which ensures O(m) maximum pi-blocking for any task set. Burns et al. [101]
proposed MrsP, which allows tasks to progress other tasks that have occupied the same
requested resource, in order to reduce the blocking time. A comprehensive survey of
multiprocessor real-time locking protocols can be found in [68].
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Besides fully relying on local computational power, offloading computation to remote
servers is a reasonable solution to ease the pressure of resource constraints on em-
bedded systems. In 2012, a cloud-assisted system for autonomous driving was firstly
studied by Kumar et al. [406]. In 2015, Esen et al. [203] presented a software architecture
named Control as a Service in which all control functions are completely moved to
the cloud. In 2018, Adiththan et al. [4] proposed an adaptive offloading technique for
control applications that makes all offloading decisions online based on a network
performance monitor. Recently, Al Maruf and Azim [469] proposed a strategy for task of-
floading in multiprocessor mixed-criticality systems with dynamic scheduling policies
under overload conditions. For real-time systems that allow offloading, one concept for
modeling this particular local system view is self-suspension [127]. One of the state-of-
the-art models can be applied such as the dynamic self-suspension model (e.g. [324],
[442]), the segmented self-suspension model (e.g. [611]), or a hybrid model, e.g. [84].
For a detailed overview, see [127, 128].

To safely derive probabilistic timing guarantees, which enable a tradeoff between
system safety and hardware costs, several techniques have been developed in the
literature. Diaz et al. [177] developed a framework for calculating the deadline miss
probability based on convolution for periodic task systems. In addition, Tanasa et
al. [657] used the Weierstrass Approximation to approximate any arbitrary execution
time distributions and applied a customized decomposition procedure to search all the
possible combinations. However, the two approaches can derive only the probability
of deadline misses with 7 and 25 jobs in the hyper-period, respectively. For sporadic
real-time task systems, in which two consecutive jobs of a task do not have to be released
periodically, Axer et al. [27] proposed evaluating the response-time distribution and
iterating over the activations of job releases for non-preemptive fixed-priority schedul-
ing. Maxim et al. [476] provided a probabilistic response time analysis by assuming a
probabilistic minimum inter-arrival as well as probabilistic worst-case execution times
(WCETSs) for the fixed-priority scheduling policy. Ben-Amor et al. [46] extended the
probabilistic response time analysis in [476] by considering precedence-constrained
tasks. These convolution-based approaches are in general not scalable due to the huge
number of jobs in the interval of interest.

8.1.3 Dependency Graph Approach
In this subsection, the dependency graph approach is presented in detail, including

the primary design of DGA, the extension for supporting periodic task systems, and the
corresponding scheduling algorithms.
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8.1.3.1 Primary Design of DGA

We consider a set of n frame-based real-time tasks T ={7y, ..., Tn} that is sched-

uled on M identical (homogeneous) processors. Each task is described by 7; =

((Ci,15 Aj1, Cip), Ty, D;). The given tasks release their jobs at the same time and have

the same period and relative deadline. Specifically, each task 7; releases a job (at time

0 for notational brevity) with the following properties:

- C;,; is the execution time of the first non-critical section of the job.

- A; is the execution time of the (first) non-nested critical section of the job, in
which a binary semaphore or a mutex o(t; ;) is used to control the access to the
critical section.

- C;, is the execution time of the second non-critical section of the job.

A sub-job is a critical section or a non-critical section. Therefore, each job of task t;
has three sub-jobs. We assume the task set T is given and a constrained deadline is
considered, i.e., D; < T;. We also make the following assumptions:

- Foreachtask7;inT, C;120,C;,=0,andA;; = 0.

— The execution of the critical sections guarded by one binary semaphore s must
be sequentially executed under a total order. That is, if two tasks share the same
semaphore, their critical sections must be executed one after another without any
interleaving.

— The execution of a job cannot be parallelized, i.e., a job must be sequentially
executed in the order of C; 1, 4;,1, Ci 2.

— There are in total Z binary semaphores.

The dependency graph approach consists of the following two steps:

— In the first step, a directed graph G = (V, E) is constructed. A subjob (i.e., a critical
or a non-critical section) is a vertex in V and the edges in E describe the precedence
constraints of these jobs. The subjob C; ; is a predecessor of the subjob A; ;, and
A; 1 is a predecessor of the subjob C; ,. If two jobs of 7; and 7; share the same binary
semaphore, i.e., 0(7; 1) = 0(7},1), then either the subjob 4; ; is the predecessor of
A; 1 or the subjob 4; ; is the predecessor of A; ;. All the critical sections guarded by
a binary semaphore form a chain in G, i.e., the critical sections of the same binary
semaphore follow a total order. Therefore, we have the following properties in set
E:

- The two directed edges (C; 1, A;,1) and (4;,1, C; ;) arein E.

— Suppose that T}, is the set of tasks that require the same binary semaphore sy.
Then, the |Ty| tasks in Ty follow a certain total order 7z such that (4; ;, 4 ]-,1) is
a directed edge in E when n1(t;) = ni(1;) - 1.

Figure 8.1 provides an example of a task dependency graph with one binary

semaphore. Since there are Z binary semaphores in the task set, the task depen-

dency graph G has in total Z connected subgraphs, denoted as G, G2, ..., Gz.In
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Fig. 8.1: A task dependency graph for a task set with one binary semaphore.

each connected subgraph G, the corresponding critical sections of the tasks that
request critical sections guarded by the same semaphore form a chain and have to
be executed sequentially. For example, in Figure 8.1, the dependency graph forces
the scheduler to execute the critical section A1, prior to any of the other three
critical sections.

— Inthe second step, a corresponding schedule of G on M processors is generated.
The schedule can be based on system restrictions or user preferences, i.e., it can
be based on either preemptive or non-preemptive schedules, or on either global,
semi-partitioned, or partitioned schedules.

Algorithms to Construct G The objective of constructing dependency graph, i.e., G, is
to minimize the makespan, i.e., the latest finishing time of all tasks, with the assumption
that the number of virtual processors is the same as the number of tasks, based on
uni-processor non-preemptive scheduling. For each task, C; ; is considered as release
time r;, and C; ; is considered as delivery time. There are several existing algorithms to
derive good approximations of G*, where G is the graph with the optimal makespan:
1) the extended Jackson’s rule [289], which is a polynomial-time algorithm with 2-
approximation [377]; 2) the Potts [583], which is a polynomial-time 1.5-approximation
algorithm [289]; 3) and the improvement of the approximation ratio to 4/3 by Hall and
Shmoys [289].

8.1.3.2 Extension to Periodic Task Systems

To increase the applicability, we extend the DGA to handle multiprocessor synchroniza-
tion for periodic real-time task systems. That is, we unroll the jobs of all the tasks in
one hyper-period and then construct a dependency graph of these jobs. Suppose that
the hyper-period H of a task set is the least common multiple (LCM) of the periods of
all the tasks in this set. For each task 7; that requests (at least) one resource, we create
H/T; jobs of task ;. For the ¢-th job of task 7;, we set its release time to (¢ — 1) T; and its
absolute deadline must be no later than (¢ - 1) T; + D;. Since the jobs for one task should
not have any execution overlap with each other, we only need one virtual processor or
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dedicated shop for them, but the release time constraint is added for each job. The three
methods in Section 8.1.3.1 can still be applied by adding the release time constraint
for each job. Afterward, a dependency graph for all the jobs in one hyper-period is
generated. In the end, the schedules are generated offline. And the generated schedules
will be repeated in the upcoming hyper-periods.

Please note that such an extension can be applied to any periodic real-time task
system but that it comes at the cost of space and computation, due to the increasing
number of jobs in one hyper-period.

8.1.3.3 Scheduling Algorithms
In the following, we show three scheduling algorithms for the same dependency
graph(s) under different system specifications.

List-EDF Here, we show how to schedule the unrolled dependency graphs over the
hyper-period. For the ¢-th job of 7;, J{ has three subjobs J¢ ;, J¢ ,, J¢ ; that represent the
related subjobs C; 1, A; 1, C;,,, respectively. The release time of the first subjob is ]{ 1 1s
(£-1)T;, and the absolute deadline of the last subjob ]f, 5 is (¢~ 1)T; + D;. Regarding the
release times of the second and third subjob, we initially set the earliest possible time
the job may be released based on the WCETs of the other subjobs. Meanwhile, regarding
the deadline of the first and second subjob, we initially assign the latest possible time
the subjob can finish while still allowing schedulability. To be precise, the release time
of J{, is set to (¢ - 1)T; + C; 1, the release time of J¢ 5 is set to (¢ - 1)T; + Cy 1 + Ay 1, the
absolute deadline of ]f’ ,issetto (¢ - 1)T; + D; - C; », and the absolute time of J, f 1 is set
to (Z - 1)T1 + Di - Ci,2 - Ai,l'

We assume that each dependency graph Gs for a binary semaphore s is constructed
for the corresponding jobs released (strictly) within one hyper-period H. If Hs < H,
then Hﬂs copies of Gs are applied in a consecutive order to represent the precedence
constraints of the critical sections. For notational brevity, we denote rf’j as the release
time of the subjob ]f,j and df’ ; as the absolute deadline of ]f’ ;- I the absolute deadline of
an immediate predecessor of ]f i denoted as IPre(J f j), is larger than df i the absolute
deadline of the immediate predecessor should be reassigned to df’ j minus the WCET
of ]ﬁ ;- This is a standard procedure for scheduling jobs subject to release dates and
precedence constraints. Details can be found in [36].

We assume that the absolute deadline assignment is adjusted accordingly so that
df,j for the subjob ]f’ ; is always greater than the absolute deadline of IPre(]f’ ;)- Schedul-
ing G1, G,, ..., G; on M homogeneous (identical) processors is a special case of the
classical scheduling problem P|prec; rj|Lmax, i.e., scheduling a set of jobs with speci-
fied release times and precedence constraints on M identical processors, minimizing
the maximum lateness. One possible scheduling strategy is to use the List scheduling
developed by Graham [269] in combination with Earliest Deadline First scheduling
(EDF). A List schedule works as follows: Whenever a processor idles and there are
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subjobs eligible to be executed (i.e., all of their predecessors in the dependency graph
have finished), one of the eligible subjobs is executed on the processor. If more subjobs
than processors are available, we prioritize the subjobs that have the earlier absolute
deadlines. If two subjobs have the same absolute deadline, the one with the larger
remaining workload has a higher priority. We call this scheduling algorithm List-EDF.

Federated-Based Partitioning Algorithm Federated scheduling was proposed by
Li et al. [430] in order to schedule parallel real-time task systems with internal prece-
dence constraints that can be modeled as a Directed-Acyclic Graph (DAG). The foremost
intention of this scheduling algorithm is to provide provably good approximations
with respect to an optimal scheduling algorithm while considering implementation
constraints, e.g., cache hit-rates and memory accesses during runtime. The idea of
federated scheduling is to assign DAGs (in our case the DAGs resulting from the de-
pendency graph construction) that need to utilize more than one processor (so-called
heavy graphs) to those processors exclusively. Analogously, the graphs that can be
feasibly scheduled on a single processor are denoted as light graphs and are scheduled
jointly on the remaining processors, i.e., non-exclusively allocated processors. After
this initial partition, the actual scheduling is done by a work-conserving scheduler on
the assigned processors. If the graphs in both the heavy group and the light group can
be scheduled feasibly, the corresponding partition is returned. Otherwise, there is no
feasible partition.

Worst Fit-Based Heuristic In addition, a worst-fit heuristic is proposed in which
the tasks are partitioned one by one. The tasks are first sorted according to a sorting
strategy. After that, they are partitioned to the available processors using a worst-fit
strategy, i.e., each task is assigned to the processor with the currently lowest utilization.
Again, Partitioned-EDF (P-EDF) scheduling is applied to verify whether the resulting
partition on M processors is feasible.

We proposed two sorting strategies: 1) sort all the tasks decreasingly with regard
to the tasks’ utilization, no matter which resources they request; 2) sort the graphs
decreasingly with regard to the graph utilization and then sort the tasks inside each
graph decreasingly with regard to the task utilization. In our proposed heuristic, both
sorting strategies are applied. If the partition P generated by the first sorting strategy
is not applicable, i.e., if the task set is not schedulable on M processors based on the
current partition P using P-EDF, the second sorting strategy and the resulting partition
P’ are considered, and P-EDF is applied to verify the new partition P’ once again. The
algorithm only returns infeasible when both aforementioned sorting strategies cannot
generate a schedulable partition. Otherwise, the task set is schedulable and the partition
is returned. Again, if a time-driven schedule is created, the schedule can be returned as
well.
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8.1.3.4 Evaluation

We randomly generated task sets based on the number of processors M, shared re-

sources Z, and relative utilization of the critical sections H as parameters. In our evalu-

ation, we considered M € {4, 8,16}, Z € {4,8,16},and H € {[5% — 10%)], [10% —

40 %], [40% — 50 %] }.

For a given configuration of M, Z, and H, we generated task sets with 10 x M
tasks for each total utilization value ZrieT Uz, € [0, M] with a step 5%, applying the
RandFixedSum method [199]. We enforced the total utilization Uz, < 0.5 for each task
7;. To determine the subtask utilization of one task, i.e., Uc, ,, Uc,,, and Uy, ,, we first
decided the utilization of the critical section Uy, , by randomly drawing a percentage of
the task’s total utilization Uz, based on the parameter H. Next, the remaining utilization
Uc, was split by drawing Uc,, randomly uniform from [0, U¢,] and setting Uc,, to
Uc, - Uc,,. The resource that each critical section of a task requests was selected
randomly from all the available resources. In addition, we generated two kinds of task
sets according to their settings of available periods:

Periodic task sets with semi-harmonic periods The task periods T; are selected
randomly from a set of semi-harmonic periods, i.e., T; € {1, 2, 5, 10}, which is a
subset of the periods used in automotive systems [86, 290, 392, 606, 662].

Frame-based task sets As a special case of periodic task sets, all the tasks have the
common period 1. Hence, i.e., C; 1 = Ug, ;, Aj1 = Uy,,, and C;; = Ug,,.

For each of these setting of periods, 54 configurations are considered in total. For each

of the utilization step values, 1000 task sets were randomly generated.

Evaluated Approaches To construct the dependency graphs, POTTS [583] is applied.
Other evaluated methods to schedule the tasks sets were: 1) FED-P-EDF: the algorithm
based on federated scheduling; 2) WF-P-EDF: the algorithm based on global worst-
fit partitioning; 3) LIST-EDF: the List schedule based approach; 4) ROP-FP: Resource-
Oriented Partitioned under Fixed-Priority [82]; 5) ROP-EDF: ROP under Dynamic-priority;
6) LP-GFP-FMLP [58]; 7) LP-GFP-PIP [194]; and 8) GS-MSRP [704].

Evaluation Results Only a subset of the results is presented, as the other results
show similar trends. The evaluation results for periodic task systems are shown in
Figure 8.2. If the workload of the critical sections is increased (Figure 8.2-(a) to (c)),
the performance of all methods is reduced, and the difference between methods is
decreased as well. The reason is that, when f = [40 % - 50 %)], the execution time of
the critical section for tasks with period 10 time units can be large, i.e., longer than 2
time units. Therefore, tasks with period 1 time unit directly miss the deadline by default
for all other approaches, no matter what kind of partitioning algorithm is applied. The
performance drops down quickly when the utilization is increased and the critical
section workload is large, as shown in Figure 8.2 (c).
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Fig. 8.2: Schedulability of different approaches for periodic task sets.

The evaluation results for frame-based task systems are shown in Figure 8.3. The pro-
posed worst-fit heuristic WF-P-EDF outperforms ROP-EDF and other partitioned schedul-
ing methods significantly. Furthermore, Figure 8.3 shows that WF-P-EDF has a good
performance compared with LIST-EDF. In most cases, both LIST-EDF and WF-P-EDF can
reach a 100 % acceptance ratio even with a 95 % utilization per processor.

8.1.4 Offloading Protocols for Unreliable Connection

In this subsection, two offloading protocols are presented in detail, addressing two
system requirements: 1) the service protocol, which provides as much service for non-
critical tasks as possible at any point in time, and 2) the return protocol, which allows
a fast return to normal system behavior in the case of an unsuccessful offloading
operation.

8.1.4.1 System Model

We consider a cyber-physical system comprising a set of tasks T that can be divided
into two subsets with different requirements, namely, the set of critical tasks T,;,
and the set of non-critical tasks Tnon, such that T = T,;; U Tnon and T¢pir N Tnon = 0.
While for each 7 € T, timing constraints must be satisfied at any point in time, for
each 1) € Tnon timing violations may be unpleasant but not hazardous. According to
the classification of tasks into two subsets, we specify two different system execution
behaviors, i.e., normal and local execution behavior. When the system exhibits normal
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Fig. 8.3: Schedulability of different approaches for frame-based task sets(1).

execution behavior, all timing requirements of all tasks are satisfied at any point in

time, whereas, if the system exhibits local execution behavior, timing guarantees can

only be given for all critical tasks 1) € Tyi¢.
Each recurrent real-time task 7; € T is assumed to have a sporadic arrival pattern

and is characterized by a tuple (Cy.1, Ci.s» Ck,2> Sk» Pi» 9> Dic» Ti):

— Each 1y releases an infinite number of task instances denoted as jobs. T indicates
the minimum inter-arrival time of 7.

— Dy describes the relative deadline of 1. A constrained-deadline task system is
considered, in which D; < T}, for each task 7.

- C,1 and Cy,, denote the WCETs of the first and second computation segments,
respectively.

—  Cy,s is the WCET of the typically offloaded task share if executed on the local system.

—  py and g; are the WCETs of the pre- and post-processing routines, which are exe-
cuted before and after the offloading operation of a job of task 7, respectively.

— Sy is the offloading or suspension time of 1.

We assume that Ty 2 Dy > 0 and Cy 1, Cy s, Cx.2, Sk» Pk> 4k 2 0. Moreover, we assume
that WCET of pre- and post-processing routines are less than or equal to the WCET
of local execution, i.e., py + g < Cj . Furthermore, the WCET of a job of task 7
under any possible execution scenario is greater than 0, i.e., Cy ; + Cy s + Ci , > O and
Ck,1 *+ Dk + qx + Ck 2 > 0. For notational brevity, we denote C,ﬁ( = Cy,1 + Cys + Cx o and
Ci = Ci1 +Pic+ Gk + Ci 2

In addition, we assume that the local cyber-physical real-time system, termed local
system, is a uniprocessor system, in which tasks are scheduled according to a preemptive
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Fig. 8.4: A job of task t, is executed locally (local execution behavior).
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Fig. 8.5: An offloading operation of a job of task ty is performed successfully (normal execution
behavior).

fixed-priority policy. More precisely, each task is assigned a unique priority, i.e., all
jobs of task 7 have the same priority. If at any point in time multiple jobs are ready,
i.e., eligible for being executed on the local system, the job having the highest priority
is executed. For each task 7, the unique set of the higher-priority tasks is denoted as

hp(ty).

For ajob of task 1 arriving at time ry, the following execution scenarios are possible:

— The job is executed locally (Figure 8.4). In this case, the WCET of the job released at
time r is Cy ;1 + Cy s + Cy 2, i.e., Cﬁ.

- The job is offloaded. In this case, the job is first executed locally for up to Cy ;
execution time units and thereon enters the pre-processing routine for up to py
execution time units. Suppose that the first computation segment as well as the pre-
processing routine are finished at time p. Then, the considered job is offloaded to
the remote system at time p. The actual offloading operation can be either successful
or unsuccessful:

Offloading is successful if the computation result or offloading response is re-
turned to the local system until time p + S. In this case, the offloading response
is post-processed for up to g; time units and the second computation segment
is executed for up to Cy , time units (Figure 8.5). Accordingly, the execution
time of the job of 1) on the local system is at most C?(.

Offloading is unsuccessful otherwise. In this case, at time p + Sj, a local re-
execution of the offloaded task share is performed for up to Cj s time units
followed by the execution of the second computation segment for up to Cy ,
time units. In this case, the execution time of the job of 1) on the local system
is at most C?{ + Dk-

8.1.4.2 Recovery Protocols
Cyber-physical systems are applied throughout a broad range of areas, each exhibiting
individual requirements and thus a need for situationally appropriate system behav-
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ior. For safety-critical cyber-physical systems, the timeliness of critical tasks must be
guaranteed under any circumstances - even in the event of an unsuccessful offload-
ing operation. Since in this case a larger amount of local resources is required, less
resources remain to serve the non-critical tasks, as we explained in Section 8.1.4.1. How-
ever, depending on the actual system characteristics, timing constraints for non-critical
tasks tend to be less strict. For instance, it is possible that a non-critical task misses its
deadline, but that the results are still useful up to a certain degree [83, 87]. Nevertheless,
it may be desirable to return to the normal execution behavior and to re-establish timing
guarantees for both critical and non-critical tasks as soon as possible, especially since
a non-critical task is not necessarily unimportant and thus should provide functionally
and temporally correct results most of the time. Further discussion on the relation
between criticality and importance can be found in [204].

Against this backdrop, we propose two recovery protocols allowing the system
to satisfy its requirements under local execution behavior and to return to normal
execution behavior:

— The service protocol aims to provide as much service as possible for non-critical
tasks, even under local execution behavior.

—  The return protocol aims to minimize the amount of time, in which the system
exhibits local execution behavior after an unsuccessful offloading operation.

Independent of the actual protocol, we assume that the local system exhibits normal
execution behavior at time 0, such that offloading is enabled for all tasks in J. The
schedule considers the execution of all tasks until the first moment y; v in which the
offloading operation of a certain task 7 is unsuccessful. That is, a job of task 7;, which
has offloaded its computation at time y; \ — Sy, does not receive the offloading response
until time y;,y (Figure 8.6). Immediately after y;, v, the local system exhibits local
execution behavior. Until time y; v, three scenarios are possible for each incomplete

job of all critical tasks 7; in T,

— Thejob of T; has not been offloaded: In this case, no offloading operation will be
performed for this job, but it is executed locally instead. Since it is possible that
the pre-processing routine for offloading is already active at time y;, v, the WCET of
this job is upper-bounded by C; ; + p; + C; s + C; 5, i.e,, C? + Dj.

— Thejob of 1; is already offloaded, but no offloading response was received until time
¥1,~: In this case, the offloading process is aborted and the job is executed locally as
of time y1, . Therefore, the WCET of this job is upper-bounded by C; ; +p;+C; s+C; 2,
ie., C! +p;.

— The job of t; is already offloaded and the offloading response has been received
prior to time y1 v In this case, the job continues its final processing. Therefore, the
WCET of this job is upper-bounded by C; ; + p; + q; + C; 1, i.e., C?.

After y;,, timing guarantees are provided only for T¢,;;. Moreover, offloading is in-
hibited for all critical tasks in the near future of y;,y due to the currently unreliable
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Fig. 8.6: An unsuccessful offloading operation of 74 resulting in the transition to the local system
behavior at time y1,v.

connection leading to the missing offloading response. The offloading decision for

non-critical tasks, however, depends on the applied recovery protocol:

Service Protocol Under the service protocol, offloading is inhibited for all instances
of all tasks that are active as long as the system exhibits local execution behavior.
The task share of each 7; € T that is offloaded under normal execution behavior
is executed locally within C; s units of execution time. Since this leads to a higher
workload on the local system, timeliness cannot be guaranteed for any non-critical
task. Nevertheless, no non-critical task is aborted.

Return Protocol The return protocol does not inhibit offloading for all tasks, only for
critical ones under local execution behavior. Non-critical tasks, by contrast, are
offloaded regardless, but neither a re-execution nor a re-transmission is performed
if an offloading response is not received in time. More precisely, the second subtask
of 7; is executed only if an offloading response is received, and aborted otherwise.
Moreover, a job of 7; in Tnon is aborted whenever it misses its deadline.

As of time y; v, the local system exhibits local execution behavior until the point in time

¥1,7, in which timing guarantees can be given again for all tasks in 7. In the proposed

protocols, two options are considered for the transit from local to normal execution

behavior. They should be chosen based on the actual system requirements:

Abort-Transit This option aims to re-establish the normal system execution behavior
as quickly as possible. Suppose that y; » is the earliest moment (after y; ) in
which there is no incomplete job from T,;; at y1,. All released but not yet finished
instances of non-critical tasks are discarded.

Idle-Transit This option re-establishes the normal system execution behavior at the
earliest moment y; » (after y;,) in which there is no incomplete job from T at y; .

We note that the above transitions are well-defined and the local system exhibits normal
and local execution behavior in an interleaving manner.

8.1.4.3 Evaluation

In this subsection, we perform a case study on a robotic system to compare the accep-
tance ratio of schedulability over different protocols. More comprehensive numerical
simulations can be found in the original paper [612].
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Tab. 8.1: Periodic, implicit-deadline tasks; measurements of a Robotnik RB-1 Base robot platform.
Note that the frequency of task 7/4se, is 15.5 Hz.

Task ‘ WCET [ms] ‘ Period [ms]

Tigser 6.732 64.516
Todom 1.046 60.0
T 0.333 60.0
Service Protocol, 40% offloaded Return Protocol, 40% offloaded
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Fig. 8.7: The percentage of time the robot exhibits local execution behavior during the simulation for
different probabilities of unsuccessful offloading operations and different percentages of offloaded
workload under the service and the return protocol with 40 % offloaded workload per task.

Case Study on a Robotic System We adopt a Robotnik RB-1 Base robot platform [598],
which uses the well-known Robot Operating System (ROS) [601]. We simulated the nav-
igation of the robot in a virtual map and measured the timing data of the move_base
node during a time frame of 60 seconds by using the Real-Time Scheduling Framework
for ROS (ROSCH) [607] and RESCH [362]. We obtained three periodic, implicit-deadline
tasks, as shown in Table 8.1, which are transformed into self-suspending tasks anal-
ogously to the tasks in experiment 1), and we considered the cases that 40 %, and
60 % of the task workload are offloaded. Moreover, we assume that T¢,ir = {Todom }
and Tnon = {Tigser> Tt }- We simulate the system behavior using the event-based miss
rate simulator from experiments 1) with A = 0.1 - % For each offloading case, the
simulation was repeated 100 times.

Under the return protocol, Figure 8.8 shows that the amount of offloaded workload
has no significant impact on the time that the system exhibits local execution behavior.
Under the service protocol, we can observe that the time that the system exhibits local
execution behavior is increased along with the increasing amount of offloaded workload.
Overall, the derived results suggest that the amount of offloaded workload per task has
a strong impact on the system execution behavior under the service protocol and thus
should be taken into consideration at system design time.
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Fig. 8.8: The percentage of time the robot exhibits local execution behavior during the simulation for
different probabilities of unsuccessful offloading operations and different percentages of offloaded
workload under the service and the return protocol with 40 % and 60 % offloaded workload per task.

8.1.5 Probability-Based Timing Analysis

In this subsection, we present a multinomial-based approach to efficiently calculate
the deadline miss probability. Additionally, three analytical approaches are presented,
i.e., Chernoff bound, Hoeffding’s inequality, and Bernstein’s inequality.

8.1.5.1 System Model and Notation

We consider a given set of n independent periodic (or sporadic) tasks I' = {11, T2, -+, Tn}
in a uniprocessor system. Each task 7; releases an infinite number of task instances,
called jobs, and is defined by a tuple ((C; 1, ..., C; ), D;, T;), where D; is the relative
deadline of 7; and T; is its minimum interarrival time. In addition, each task has a set
of h distinct execution modes M and each mode j with j € {1, ..., h} is associated with
a different WCET C; ;. We assume those execution modes to be ordered increasingly
according to their WCETs, i.e., C; , < Cims1 VM € {1,..., h - 1}. Furthermore, we
assume that each job of 7; is executed in one of those distinct execution modes. To
fulfill its timing requirements in the j* execution mode, a job of 7; that is released at
time t, must be able to execute C; ; units of time before t + D;. The next job of 7; must
be released at t4 + T; for a periodic task and for a sporadic task the next job is released
at or after t, + T;. In this work, we focus on implicit-deadline task sets, i.e., D; = T; for
all tasks, and constrained-deadline task sets, i.e., D; < T; for all tasks. We assume that a
job execution is aborted as soon as the absolute deadline is reached, to ensure that
there is no ’domino effect’ to jeopardize the execution of the other jobs.

We assume a preemptive fixed-priority scheduling policy is used in the considered
system. The tasks are indexed according to their priority, i.e., 7, has the highest and 7,
has the lowest priority. In addition, hp(t;) denotes the set of tasks with higher priority
than 7, and hep(ty) is hp(ty) U {7} }. P;(j) denotes the probability that a job of task T;
is executed in mode j with related WCET C; ; and we assume that each job is executed
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in exactly one of these distinct execution modes, i.e., Z]h:l P;(j) = 1. In addition, we
assume that these probabilities are independent from each other according to the
following definition:

Definition 27 (Independent Random Variables). Two random variables are (proba-
bilistically) independent if the realization of one does not have any impact on the
probability of the other.

Particularly, for a newly arriving job the probability of the execution modes is indepen-
dent from the execution mode of the jobs of previous jobs.

8.1.5.2 Definition of Deadline Miss Probability
To derive the probability of deadline misses, we look for the probability that the accu-
mulated workload S; over an interval of length ¢ is at most ¢, where S; can be calculated
by the sum of random variables, i.e., the sum of probabilistic WCETs from all tasks
T; € hep(ty) over. That is, the situation where S; is larger than ¢ for an interval of
length t and hence P(S; > t) is the overload probability at time ¢. To upper bound the
probability that this test fails, the minimum probability among all time points at which
the test could fail should be derived. Hence, the probability of a deadline miss @; can
be upper bounded by

@, = min P(S; > t) (8.1)

0<t<Dy

When analytical bounds are in use, we seek P(S; = t) instead of P(S; > t). By definition
P(St 2 ) = P(S¢ > t), so these values can be used directly when looking for an upper
bound of P(S; > t).

8.1.5.3 A Multinomial-Based Approach

Conventionally, the probability of deadline misses can be derived from convolution-
based approaches [476]. In such approaches, the underlying random variable represents
the execution mode of each single job. This state space in fact can be transformed
into an equivalent space that describes the states on a task-based level by proving the
invariance when considering equivalence classes for each task. As a result, we introduce
a novel approach that is based on the multinomial distribution. For the simplicity of
presentation, we only highlight the insight of the aforementioned transformation.
The traditional convolution-based approach determines the overload probability by
successively calculating the probability for all other points of interest in the analysis
interval. However, the probability for ¢ is evaluated based on the resulting states after all
jobs in the analysis interval are convoluted. With respect to ¢, the intermediate states are
not considered. By utilizing this insight, we can merge the states to efficiently calculate
the vector representing the possible states at time ¢. If the number of jobs for a task
is known, all possible combinations and the related probabilities can be calculated
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directly using the multinomial distribution. The rationale is to construct a tree based
on the tasks, which means that the number of children on each level depends on the
number of jobs the related task releases.

8.1.5.4 Analytical Upper Bounds

In the following, we demonstrate how common concentration inequalities used in
machine learning, statistics, and discrete-mathematics can be used to derive analytical
bounds on P(S; = t).

Chernoff Bound can be exploited to over-approximate the probability that a random

variable exceeds a given value. This statement is summarized in the following lemma:

Lemma 28 (Lemma 1 from Chen and Chen [131]). Suppose that S; is the sum of the ex-
ecution times of the py. ¢ + >_ . c py(r,) Pi.¢ JObs in hep(ty) at time ¢. In this case

HTiGhEp(Tk)(mgfi(s))pi,t >

exp(s - t) (8.2)

P(S¢ 2 t) < mingso <

Itis in general pessimistic and there is no guarantee for the quality of the approximation.
To find the optimal value of s to minimize the right-hand side in Equation 8.2, it has
been proven as a log-convex optimization problem [129].

Hoeffding’s Inequality derives the targeted probability that the sum of independent
random variables exceeds a given value. For completeness, we present the original
theorem here:

Theorem 29 (Theorem 2 from [319]). Suppose that we are given M independent random
variables, i.e., X1,X5,...,Xy. Let S = Z?ﬁl X;, X = S/Mand u = E[X] = E[S/M]. If
a;j<X;<h;y,i=1,2,...,M,thenfors >0,

2.2
P(X - 2 s) < exp —% (8.3)
Zi:l (bl - ai)
Lets =sM,i.e, s = s /M. Hoeffding’s Inequality can also be stated with respect to S:
2
P(S-E[S]>s) <exp (—MZSZ> (8.4)
Zi=1 (bl - ai)

By adopting Theorem 29, we can derive the probability that the sum of the execution
times of the jobs in hep(t;) from time O to time ¢ is no less than t. The detailed proof
can be found in [85].

Bernstein’s Inequality generalizes the Chernoff bound and the related inequality by
Hoeffding and Azuma. The original corollary is also stated here:
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Theorem 30 (Corollary 7.31 from [232]). Suppose that we are given L independent ran-
domyvariables, i.e., X1, X5, ..., Xy, each with zero mean, such that |X;| < K almost surely
for

i=1,2,...,L and some constant K > 0. Let S = ZiL:1 X;. Furthermore, assume that
[E[Xiz] < 91-2 for a constant 0; > 0. Then for s > 0,

o) cexp (- S12
P(S=>s)<exp ( ZiL:l 9% " Ks/3> (8.5)

The proof can be found in [232]. Note, however, that the result in [232] is stated for the
two-sided inequality, i.e., as upper bound on P(|S| = s). Here, the one-sided result,
which is a direct consequence of the proof in [232] (page 198), is tighter. Similarly, it
can also be used to derive the probability of deadline misses. The detailed proof can
also be found in [85].

Final Remark Considering the required runtime and the accuracy of different ap-
proaches, when a given task set needs to be analyzed, we suggest first running Chernoff’s,
Hoeffding’s, and Bernstein’s bounds. If a sufficiently low deadline miss probability can-
not be guaranteed from these analytical bounds, we propose running the multinomial-
based approach with equivalence class union in parallel on multiple machines by
partitioning the time points equally.

8.1.6 Summary

In this section, we showed a novel resource-sharing protocol for multiprocessors, named
DGA, that can serve a high utilization of critical sections while guaranteeing the given
hard real-time constraints. In addition, we presented adaptive protocols for compu-
tation offloading that are able to countermeasure the unreliable connection. Unlike
conventional analyses for hard real-time systems, our innovated convolution-based
approach is able to efficiently derive safe upper bounds for the probability of deadline
misses under soft real-time constraints.
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8.2 Communication Architecture for Heterogeneous Hardware

Henning Funke
Jens Teubner

Abstract: In this section, we look at distributed processing on a smaller scale. Even a
single-machine system today internally looks—and behaves—like a distributed system:
multiple processing modules of different flavors (e.g., CPUs, GPUs, FPGAs) interact with
memory modules, which are scattered over the system, through an interconnect that is
comprised of, say, QPI, PCle, or “real” network links. In such environments, communi-
cation quickly becomes the limiting factor—not only for observable performance, but
also for other system aspects, such as energy consumption.

We specifically look at communication patterns in heterogeneous CPU/GPU environ-
ments, and we illustrate how novel processing models can minimize communication
overhead in such systems, which in turn results in significant performance improve-
ments for real-world settings.

In GPU-accelerated, data-intensive systems, the PCle link is often perceived as the
limiting factor. Oftentimes, successions of fine-granular GPU kernel invocations amplify
the problem, since they tend to cause multiple round-trips over the bandwidth-limited
link. As we see in this section, unnecessary round-trips can be avoided by fusing fine-
granular kernels into larger work units that can hide costly PCle transfer times (query
compilation can be a device to implement kernel fusion).

Eliminating the PCle bottleneck, however, only exposes the GPU’s on-chip communi-
cation as the new bottleneck to GPU-assisted data processing. Here, the data-parallel
processing modes of graphics processors and the synchronization between parallel
units are the cause for redundant round-trips over the precious on-chip communication
interfaces. These bottlenecks can be avoided when processing models are deliberately
designed to be communication aware. A specific example is a novel combination of
pipelining/streaming processing models with the data-parallel nature of GPUs, which
aligns particularly well with the semantics of database query execution. For real-world
settings, this results in a reduction of memory access volumes by factors of up to 7.5x
and shorter GPU kernel execution times by factors of up to 9.5x.

8.2.1 Introduction

Graphics Processing Units (GPUs) are frequently used as powerful accelerators for
database query processing. As the arithmetic throughput of the coprocessor peaks in
the teraflop range, it becomes a challenge to provision enough data. For this reason,
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Fig. 8.9: The path of a tuple through the memory levels of a coprocessor environment.

hardware vendors equip graphics cards with high-bandwidth memory that has read
and write rates of hundreds of GB/s. Still, memory intensive applications such as
query processing fall behind regarding the cost of data movement for different reasons.
Figure 8.9 shows the path of relational data through the hierarchical memory levels in a
typical coprocessor system. Along the path, several bandwidth and capacity constraints
need to be considered to achieve scalability and performance:

PCIe/OpenCAPI/NVLink A widely-acknowledged problem is the data transfer
bottleneck between the host system and the coprocessor [270], typically via PCle. Due
to the coprocessor’s limited memory capacity, data transfers are necessary during
computations. With an order of magnitude between internal and external memory
bandwidth, database developers are challenged with data locality-aware algorithms
that efficiently use inter-processor communication. Recent technologies, i.e., OpenCAPI
and NVLink, increase the bandwidth over PCle, shifting the bottleneck toward GPU
global memory.

GPU Global Memory The fine-grained data parallelism of a GPU typically requires
that kernels perform additional passes over the data. Performing multiple passes,
however, can significantly inflate memory loads and can cause a bandwidth bottleneck
especially for random memory accesses.

Main Memory Integrated GPU-style coprocessors are a recent development to directly
access the memory of the host CPU. Such an Accelerated Processing Unit (APU) allows
the use of massively parallel processing without additional data transfers. However,
the available memory bandwidth is lower than that of a dedicated GPU (30 GB/s vs.
hundreds of GB/s).
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Scratchpad Memory! Scratchpad memory is located on-chip and placed next to
each compute unit of a GPU. It can be controlled as an explicit cache for low-level
computations and offers a very high bandwidth. However, the capacity is limited to
16 kB—96 kB per core, which makes it challenging to use it for large-scale computations.

8.2.2 Contributions

With HorseQC, we developed a database query compiler that accounts for the hierar-
chical memory structure of modern coprocessor environments and for their inherent
bandwidth limitations. In this section, we elaborate on the key building blocks of
HorseQC, which can serve as a poster child in bandwidth-aware systems for other
application contexts as well.

Specifically, we (a) analyze the bandwidth limitations in different database execu-
tion models; (b) demonstrate a query compiler for a coprocessor-accelerated database
engine; (¢) show how database sub-tasks can be realized in a single pass over the data
(thus avoiding expensive memory round-trips); and (d) integrate these contributions
in a fully working system that we use to evaluate our work.

Coprocessor-enabled database engines are typically classified by the macro exe-
cution model that they use to orchestrate the processing of query plans. Orthogonally,
we devise a micro execution model that can be paired with different existing macro
execution models, enhancing their communication- and resource-awareness.

8.2.3 Macro Execution Model

We begin by looking at macro execution models that have been employed in the past.
To evaluate a relational query operator, state-of-the-art systems will select a number
of primitives and execute the corresponding kernel sequence on the GPU. To feed
the kernels with data, the macro execution model defines how data transfers will be
interleaved with kernel executions. Here, the data movement from kernel to kernel
may result in additional bandwidth demand compared with conventional systems. To
understand the effect, we study the implications that existing macro execution models
have on the use of bandwidth at multiple levels (PCle, GPU global memory, etc.). We
profiled the execution of Query 3.1 as a poster child from the star schema benchmark
(SSB) [543]. The query was executed at scale factor 10 with CoGaDB [74] on a NVIDIA

1 We use the term scratchpad memory to disambiguate shared memory for CUDA and local memory for
OpenCL.
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GTX970 GPU.2 In the following, we discuss three macro execution models: run-to-finish,
kernel-at-a-time, and batch processing.

Algorithm 8: Run-to-finish execution of two successive kernels.
1 RUN-TO-FINISH - input: R, output: P

2 move R Host > GPU
3 tmp < op1(R) /* invoke first GPU kernel x/
4 P < op2(tmp) /* invoke second GPU kernel x/
5 move P GPU- Host

8.2.3.1 Run-To-Finish (Not Scalable)

A straightforward way to execute a sequence of kernels is to first transfer all input,
execute the kernels, and finally transfer all output. The approach, illustrated in Al-
gorithm 8, has the advantage that intermediate data remains in GPU global memory
in-between kernel executions and no significant PCle transfers are necessary. However,
run-to-finish has the disadvantage that it works only if all input, output, and interme-
diate data is small enough to fit in GPU memory. Run-to-finish macro execution models
are used, e.g., by Ocelot [302], CoGaDB [74], and others. The lack of scalability leads us
to evaluate the following execution models.

Algorithm 9: Kernel-at-a-time achieves scalability by transferring I/0 for
each kernel through PCle.

1 KERNEL-AT-A-TIME — input: R, output: P

2 foreachr;inR=ryU---Urydo

3 move r; Host > GPU

4 m; < op1(r;) /* invoke first GPU kernel x/
5 move m; GPU->Host (assemble into M)

6 foreach mjin M=m; U---Umydo
7

8

9

move m; Host - GPU
bj € op2(m;) /* invoke second GPU kernel x/
move p; GPU—>Host (assemble into P)

8.2.3.2 Kernel-At-A-Time

To process large data on coprocessors, we can execute each kernel on blocks of data.
The pseudocode of this approach is shown in Algorithm 9. Processing blocks of data
requires algorithm choices that can deal with partitioned inputs. Joins or aggregations,
for instance, can be processed in this mode only if their internal state (e.g. a hash table)
can fit in GPU global memory.

2 We measured 146.1 GB/s GPU global memory bandwidth in a host system with 16 GB/s bidirectional
PCle bandwidth.
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Fig. 8.10: Data movement for processing SSB Query 3.1. While the throughput of a is limited by PCle
transfers, b exposes GPU global memory access as the next bottleneck.

We analyze the data movement of kernel-at-a-time for SSB Query 3.1. Blocks are first
moved via PCle from the host to the coprocessor and then read by the kernel from GPU
global memory (output passes both levels vice-versa). In this way, the data volumes for
GPU global memory accesses equal the data volume transferred via PCle, plus the cost
to build up the hash tables in GPU global memory (0.4 GB here). Figure 8.10a shows
the resulting data movement.

In the figure, the arrows annotated with data volumes represent PCle transfers and
GPU global memory accesses. We aggregated the data volumes by kernel types (e.g.
scan, gather) and show only the most important kernels responsible for 88.2% of the
memory traffic. Given a PCle bandwidth of 16 GB/s, all PCle transfers together require
at least 350 ms to complete. This exceeds the aggregate time for GPU global memory
access by a factor of 5.8x. For kernel-at-a-time processing the PCle link is clearly the
bottleneck.
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Kernel-at-a-time processing is used to scale out individual operators [358]. Unified
Virtual Addressing (UVA) produces the same low-level access pattern, though it is
transparent to the system developer.

8.2.3.3 Batch Processing

We can alleviate PCle bandwidth limitations by rearranging the operations of kernel-at-
a-time. Instead of running kernels until a column is processed, we can short-circuit the
transfer of intermediate results to the host. Batch processing achieves this by reusing
the output of the previous operation (op1) as input for the next operation (op2) instead
of transferring to the host. This is applicable whenever intermediate batch results
can be kept within GPU global memory. The corresponding pseudocode is shown in
Algorithm 10.

Algorithm 10: Batch processing executes multiple kernels for each block that

is transferred via PCle.
1 BATCH PROCESSING — input: R, output: P

2 foreachr;inR=r; U---Urndo
3 move r; Host > GPU

4 tmp; € op1(7;) /* invoke first GPU kernel x/
5 pi € op2(tmp;) /* invoke second GPU kernel =*/
6 move p; GPU-> Host (assemble into P)

We analyze the data movement cost with the example of SSB Query 3.1. The GPU global
memory load is the same as for kernel-at-a-time processing, because each kernel reads
and writes I/0 to GPU global memory. We obtain the PCle transfer cost using the transfer
volumes of the input columns of the query and the output of the final result. Figure 8.10b
shows the resulting data movement cost. Batch processing reduces the amount of PCle
transfers by a factor of 8.8x. This shows that transferring data in blocks and performing
multiple operators per block allows scalability and increases the efficiency compared
to kernel-at-a-time.

Batch processing macro execution models have been used for coprocessing by
GPUDB [728] and Hetero-DB [735]. Wu et al. [711] described the concept as kernel fission
and identify opportunities to omit PCle transfers automatically.

Limitations The lower amount of PCle traffic can expose GPU global memory band-
width as the next limitation. Batch processing reduces the PCle transfer cost, but the
amount of GPU global memory accesses remains unaffected. The memory access vol-
ume inside the device is now an order of magnitude larger. Despite the high bandwidth,
this takes longer to process than the PCle bus transfers (Figure 8.10b). For this reason,
batch processing SSB Query 3.1 is not limited by PCle transfers, but by accesses to the
(high-speed) GPU global memory. Since in typical query plans, I/0 and hashing opera-
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tions both address the same GPU global memory, the situation may arise frequently in
real-world workloads.

Tab. 8.2: Number of passes over the input data for benchmark queries. Out of 25 queries, 9 are
definitely limited by GPU global memory.

Query Passes ‘ Query Passes ‘ Query  Passes

ssh11 7.5 ssh34 2.2 tpchs 7.2
ssh12 6.9 ssh41 7.4 tpché 6.2
ssb13 6.7 ssh42 3.9 tpch7 9.0
ssh21 9.6 ssh43 3.5 tpch9 9.0
ssh22 9.2 tpch1 15.5 tpch10 5.8
ssh23 9.1 tpch2 14.5 tpch15 6.3
ssh31 11.0 tpch3 5.2 tpch18 38.5
ssbh32 7.9 tpch4 6.6 tpch20 10.5
ssb33 7.5

8.2.4 Micro Execution Model

Tuning the macro level helps to remove the main bottleneck for scalability: data trans-
fers over PCle. However, the macro level change exposes a new bottleneck: the memory
bandwidth of GPU global memory. To utilize the GPU global memory bandwidth more
efficiently, we need to apply additional micro-level optimizations using micro execu-
tion models and combine them with the macro execution model (batch processing) to
achieve scalability and performance.

Existing micro-level optimizations such as vector-at-a-time processing [749] and
query compilation [529] utilize memory bandwidth more efficiently by leveraging pipelin-
ing in on-chip processor caches. Therefore, both techniques are promising candidates
for opening up the bottleneck of limited GPU global memory bandwidth. However,
vector-at-a-time processing and query compilation are designed in the context of CPUs.
While it is highly desirable to apply both techniques in the context of GPUs, mapping
the techniques from CPU to GPU is challenging, as we discuss below.

Vector-At-A-Time To mediate the interpretation overhead of Volcano and the materi-
alization overhead of operator-at-a-time, vector-at-a-time uses batches that fit in the
processor caches. First, this reduces the number of getNext () calls from one per tuple
to one per batch. Second, this makes materialization cheap because operators pick up
the cached results of previous operators. On CPUs, vector-at-a-time benefits from batch
sizes that are large enough to limit the function call overhead and small enough to fit
in the CPU caches.
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On GPUs, the compromise between tuple-at-a-time and full materialization strategies is
not a sweet spot, however. Kernel invocations are an order of magnitude more expensive
than CPU function calls. Furthermore, GPUs need much larger batch sizes to facilitate
over-subscription and out-of-order execution. This leads to the problem that batches,
which fit in the GPU caches, are too small to be processed efficiently. Alternatively, more
recent GPUs support pipes to move a local execution context from one kernel to another.
This has been used by GPL [557] for query processing. However, this technique still
introduces an overhead for switching the execution context. In addition, it is limited to
a depth of 2-32 kernels depending on the microarchitecture.

Query Compilation Query compilation is a common tool for avoiding excessive mem-
ory transfers during query processing. Compiling code for incoming queries becomes
feasible with low-level code generation and achieves performance close to hand-written
code. The compilation strategy of Neumann [529] keeps intermediate results in CPU
registers and passes data between operators without accessing memory at all. The
generated code processes full relations or blocks of tuples using a sequential tight loop.

To use query compilation on GPUs, we must integrate fine-grained data parallelism
into compiled queries. The parallelization strategy of HyPer [425], however, uses a
coarse-grained approach, so that it does not break with the concept of tight loops. In fact,
HyPer does not use SIMD instructions [529] and thus omits fine-grained data parallelism.
Even on CPUs with a moderate degree of parallelism in SIMD instructions, database
researches are challenged by integrating query compilation and SIMD instructions
[487, 639].

In summary, using a micro-level technique for efficient on-chip pipelining on GPUs
remains a challenge. Applying any of the commonplace techniques makes it necessary
to combine at least three things that are hardly compatible: fine-grained data-parallel
processing, extensive out-of-order execution, and deep operator pipelines. To achieve
our goal of mitigating the GPU global memory bottleneck, we need to develop a new
micro execution model.

8.2.5 Data-Parallel Query Compilation

In the following, we show a micro-level execution strategy that reduces GPU global
memory access volumes by means of pipelining in on-chip memory. To this end, we
show the approach of our query compiler HorseQC and its integration with the operator-
at-a-time execution engine of CoGaDB [74].

8.2.5.1 Fusion Operators
HorseQC extends the operator-at-a-time approach with the concept of fusion operators,
operators that embrace multiple relational operations. A fusion operator replaces a
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prefix sum

join probe

Fig. 8.11: Operator-at-a-time.

sequence of conventional operators in the physical execution plan with a micro-level-
optimized pipeline. The data movement within a fusion operator can be improved by
applying different micro level execution models.

8.2.5.2 Micro-Level Pipeline Layout

To keep matters simple, we first apply query compilation with the operator-at-a-time
primitives described by He et al. [300]. This choice is not limiting as other data-parallel
primitives may be used instead. However, a commonality of different primitive sets is
that they use relational primitives with relational functionality (e.g. select) and threading
primitives with thread coordination functionality (e.g., map, prefix sum, gather).

State Of The Art We look at a query with two input tables and a total of four rela-
tional operators opy, - - , op,. Operator-at-a-time runs three primitives per operator
(cf. Figure 8.11 on the right): The first pass executes the relational primitive (e.g., select,
project) and counts the number of outputs of each thread. The second pass computes
a prefix sum to obtain unique per-thread write positions. The third pass performs an
aligned write. This means that the output values are written into a dense array and
may include executing the relational primitive for a second time to produce the output
values. Thus, the query is processed in twelve operations with separate GPU global
memory I/0.
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Fig. 8.12: Multi-pass QC.

Multi-Pass Query Compilation By grouping operations that are applied to the same
input table, the query may be processed with two fusion operators. Within each fusion
operator, we apply the following query compilation strategy (cf. Figure 8.12): We extract
the prefix sum from the operators and execute it only once between all relational
primitives and all aligned writes. The relational primitives are then compiled into one
kernel called count, which is executed before the prefix sum. The aligned writes are
compiled into one kernel called write, which is executed after the prefix sum. In this
way, we apply kernel fusion [689] to the four relational primitives and to the four aligned
writes. The same query is processed with six operations and the operations in compiled
kernels communicate through on-chip memory instead of GPU global memory.

8.2.6 Memory Access and Limitations

In Figure 8.13, we illustrate the bandwidth characteristics of our example query when us-
ing code generation with three phases. The figure shows the behavior of the three-phase
micro execution model described above with the batch processing macro execution
model. To analyze the implications of forwarding intermediate results in the generated
kernels through registers and scratchpad memory, we extended the illustration with an
additional GPU-internal layer of memory.

GPU global memory access has previously been the bottleneck for query execution.
Here the count kernel accesses 1.7 GB in GPU global memory, the prefix sum compu-
tation accesses 0.8 GB in GPU global memory, and the write kernel accesses 1.9 GB
in GPU global memory. This is a reduction by a factor of 1.9x compared with batch
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Fig. 8.13: Data movement for data-parallel query compilation with three phases.

processing. In the generated kernels, a substantial amount of memory traffic has moved
to on-chip memory. In on-chip memory, the access volume of 14.4 GB is not a limiting
factor due to the extremely high bandwidth of 1.2 TB/s of scratchpad memory.

Although the reduced GPU global memory traffic may suggest that the approach
eliminates the bottleneck, real-world queries still experience limitations. In fact, Sec-
tion 8.2.10.6 shows that compilation with three phases can still not saturate PCle for 9
out of 12 SSB queries. This is because the query complexity prevents the strategy from
utilizing the full GPU global memory bandwidth. Therefore, we investigate ways to
further increase the processing efficiency in the next section.

8.2.7 Processing Pipelines in One Pass

The previous execution model relied on a typical programming concept of GPUs that
executes operations with multiple kernels. The kernels that execute the actual work for
the operations are interleaved with kernels that execute prefix sum computations. To
further improve the processing efficiency, we have to break with this concept. With a
new micro execution model, we avoid round trips to GPU global memory, which are
caused by multi-pass implementations. This enables us to radically reduce GPU global
memory traffic and lift the bandwidth bottleneck.
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Fig. 8.14: Compound kernel.

Compound Kernel Kernel fusion brought reduction operations (e.g. prefix sum)
as boundaries into the spotlight. Previously, we computed the prefix sum between
two generated kernels to obtain write positions. Instead of two separate kernels, we
now generate only one compound kernel that integrates the prefix sum computation
(cf. Figure 8.14), which eliminates multiple passes. Computing write positions within a
generated kernel makes it possible to process pipelines in one pass without intermediate
materialization. In this way, each fusion operator is executed by a single compound
kernel. In the following, we look at implementation strategies for reduction operations
that enable fully pipelined processing.

Atomic Prefix Sum The separation into multiple reduction kernels with intermediate
materialization impedes pipelining. To introduce a pipelined implementation, let us
first look at a very simple sequential prefix sum:

for(i=0; i<n; i++)

if(flags[i]) prefix_sum[i] = sum++;

The sequential prefix sum loops through the array flags while writing and incrementing
sum for every valid entry. Figure 8.15a illustrates the use of the prefix sum for a dense
write of selected input elements. When parallelizing the for-loop, this implementation
runs into the issue of many threads trying to increment sum at the same time. To resolve
this parallel dependency, atomic operations can be used to isolate parallel modifications
of the same memory address. Atomic operations ensure a consistent state, yet are
executed in an undefined order. The following code executes an atomic prefix sum to
compute unordered, dense write positions:
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Fig. 8.15: The computation of a prefix sum for writing selected elements to a dense array (a) can be
parallelized using atomic operations (b).

if(is_selected) wp = atom_add(&sum, 1);

Threads contribute an offset of 1 to the sum at address &sum by executing the expression
conditionally. Each atomic_add(. .) returns the previous state of sum. Thus, threads
immediately obtain a unique global write offset as wp in register. This is illustrated in
Figure 8.15b.

The use of atomic operations causes a break with the semantic of the prefix sum
because the result has no defined order. For the relational semantic, however, only the
uniqueness of output positions is critical. Output permutations lead to non-aligned
GPU global memory access where adjacent threads do not write to adjacent memory
addresses. The impact on write throughput, however, is limited, because the filter
semantics lead to non-aligned access for separate prefix sums as well.

8.2.7.1 Memory Access and Limitations

The compound kernel micro execution model further reduces GPU global memory
access by a factor of 2.4x to 1.8 GB (see Figures 8.13 and 8.16). Compared with operator-
at-a-time, this is a reduction by a factor of 4.7x. Pipelining the prefix sum avoids round
trips to GPU global memory that are necessary in the three-phase micro execution
model. The compound kernel has only a minimal GPU global memory access volume
for input, output, and hash-table access. Now the on-chip traffic is balanced with
the GPU global memory traffic when relating each memory volume to the available
bandwidth.

The described approach heavily relies on atomic operations. This has the disadvan-
tage of causing limitations for parallelism. Although the execution order is undefined,
the operations are sequentialized and reducing n values takes O(n) parallel steps. How-
ever, Egielski et al. [195] showed that recent hardware support makes atomic operations
competitive with parallel algorithms. Still, the integrated prefix sum puts significant
pressure on the atomic functional units, which prevents pipeline kernels from utilizing
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Fig. 8.16: Data movement for query compilation with one pass. The compound kernel reduces data
movement by 4.7x.

full GPU global memory bandwidth. In the following, we address this issue and show
how the efficiency of parallel reductions in compound kernels can be increased.

8.2.8 Efficient Pipelined Reductions

We have showed a way to pipeline reductions in generated kernels using atomic opera-
tions. This benefits the memory efficiency, but also reveals the atomic functional units
of a GPU to be a bottleneck. This is especially critical because several operations that
are combined in the compound kernel rely on atomic isolation as well. Specifically, the
state-of-the-art implementations of hash joins and hash aggregations [358] use atomic
operations to isolate hash table inserts.

This section addresses performance bottlenecks that occur when utilizing atomic
reductions to pipeline relational operators. We show a new technique called local
resolution, global propagation, that is used by HorseQC to pipeline prefix sums, single
tuple aggregation, and grouped aggregation efficiently. The approach reduces the
pressure on atomic functional units and offers tunability regarding hardware and
thread-group granularity. We describe the approach in the following.
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Fig. 8.17: Computing write positions with local resolution (local offset), global propagation (global
offset).

8.2.8.1 Local Resolution, Global Propagation
Like other efficient GPU implementations such as in CUB [489], local resolution with
global propagation consists of two levels of reductions. In contrast to other techniques,
however, it always uses pipelined techniques on both levels. Local resolution is an
additional pre-reduction step, computed by a local thread group, whereas global prop-
agation is the same atomic reduction as described in Section 8.2.7. We use the term
Collaborative Thread Array (CTA) for the thread groups in local resolution. CTAs can
either match the workgroup (AMD) or thread-block (NVIDIA) size of the GPU kernel or
work on a finer granularity.

The following code, illustrated in Figure 8.17, executes an atomic prefix sum using
local resolution, global propagation:

1_os = cta_prfx, (flags, &cta_total); //local res.
if, (cta_thread_idx == @)

g_os = atom_add, (&um, cta_total); //global prop.
wp = 1_os + g_os;

First, each CTA executes cta_prfx to compute a local prefix sum on flags. This is the
local resolution step. We implement cta_prfx with SIMD reductions (cf. Intra-Warp
Scan Algorithm by Sengupta et al. [622]). The function returns the local offset 1_os and
the sum of all flags assigned to the CTA cta_total. Second, one thread of each CTA
adds cta_total atomically to a global counter sum. This is the global propagation step.
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The call to atom_add returns the global offsets g_os. Finally, the write position wp is the
sum of 1_os and g_os.

Compared with the simple atomic prefix sum, we now add pre-aggregates instead of
1/0 flags to sum. Accordingly, each atomic add obtains ranges of output indices instead
of a single index. The process is analogous to allocating segments of output memory
to CTAs. The order of the allocations is undefined, however. (See the execution order
in Figure 8.17.) This leads to an output that is ordered within segments and permuted
between segments. Further investigation reveals that, due to the GPUs stream processing
engine, the permutations exhibit locality, leading to semi-ordered output data.

Local Resolution Mechanisms The mechanisms used for local resolution are in-
terchangeable. This makes it possible to tune pipelined reductions and to apply them
in different operations. Figure 8.18a and 8.18b show the integration of work-efficient
reductions [56] and SIMD reductions [622]. Both techniques have different thread group
granularities and we can choose between them to adapt to the hardware parallelism of
different processors. Figure 8.18c shows the use of pipelined segmented reductions for
grouping. First, segmented reductions compute pre-aggregates in scratchpad memory.
Second, global propagation inserts the pre-aggregates into a hash table with an atomic
operation. The ability to control scratchpad memory opens up a new design space
for grouping algorithms in pipelined computations (e.g. handling frequent items). A
similar approach PLAT [722] aggregates frequent grouping keys in a table local to each
CPU core.

8.2.9 DBMS Integration

We integrated our query compiler HorseQC into the open source DBMS CoGaDB, lever-
aging the built-in code generator Hawk [75]. The DBMS uses a columnar data layout
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and processes full columns operator-at-a-time on GPUs and CPUs. We use the front-end

and the storage layer of CoGaDB; HorseQC adds a compiler-based execution engine.
We added two components to the DBMS: 1. a query compiler that compiles fusion

operators to GPU code (cf. Section 8.2.4); and 2. a translation layer that identifies fusion
operators and drives the query compiler. Currently, there are two different workflows
for the translation layer:

1. CoGaDB parses the SQL code for a query and generates a query plan. The translation
layer applies the produce/consume model [529] to the query plan to determine
fusion operators. We use this approach for the SSB queries and TPC-H Q6.

2. The translation layer parses a JSON file that describes the query plan including the
fusion operators. This enables us to process queries when (1) cannot handle the
queries via SQL (e.g. correlated subqueries or automatic unnesting). This is used
for the other TPC-H queries.

When the fusion operators are defined, the translation layer drives the query compiler
to compile and execute. Finally, the decompression of dictionary compressed columns
and sorting are executed by CoGaDB’s original execution engine.

8.2.10 Evaluation

Section 8.2.3.1 showed that query coprocessing in existing macro execution models is
sensitive to memory bandwidth bottlenecks on various hierarchical levels. We proposed
several micro execution models that allow to remove memory indirections to achieve
a more efficient use of bandwidth. In this section, we evaluate our approaches and
carefully assess bandwidth and throughput in identifying several benefits.

The experimental study is structured as follows. First, we evaluate the micro exe-
cution models and we execute specific queries to analyze the reduction performance
of the proposed techniques in Experiments 1 and 2. Then, we evaluate the micro exe-
cution models for the SSB and TPC-H benchmarks in Experiments 3 and 4. Next, we
analyze the integration of our micro execution model with the batch processing macro
execution model. In doing so, we analyze the real-world benefits of our approach with a
comparison of end-to-end performance in Experiment 5 and a scalability analysis in
Experiment 6. Note that all experiments, except for Experiment 6, were executed with
scale factor 10.

8.2.10.1 Processing Techniques

This section describes three micro execution models built into HorseQC. The goal is
to use them within macro execution models to improve performance. Therefore, it is
crucial to achieve a higher throughput than PCle when executing queries. We show
the benefit of our approaches by comparing them with an operator-at-a-time micro
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Tab. 8.3: Coprocessors used in the evaluation.

Model Type Archi- Cores | Scratch B/W

‘ tecture ‘ pad (KB) | (GB/s)

GTX970 (NV) GPU Maxwell 13 96 146.1
GTX770 (NV) | GPU Kepler 8 48 167.6
RX480 (AMD) | GPU | Ellesmere 32 32 104.9
A10 (AMD) APU Godavari 8 32 18.7

execution model. In this way, we analyze the benefit of moving data transfers between

relational operators to the on-chip level.

Multi-pass The first approach separates reductions from the generated kernels, which
leads to an execution in multiple passes (Section 8.2.5). Each reduction is executed
on materialized data using the boost: : compute library.

Pipelined The second approach integrates reductions into a fully pipelined kernel
using atomic operations (Section 8.2.7). By using atomic operations for each reduc-
tion input, the approach is an instance of local resolution, global propagation that
has no local resolution step.

Resolution The third approach increases the efficiency of pipelined reductions with
local resolution methods such as pre-aggregation (Section 8.2.8). We differenti-
ate between local resolution implementations using Resolution:SIMD for SIMD
reductions and Resolution:WE for work-efficient reductions.

Operator-at-a-time We use CoGaDB 0.4.1, which processes full columns of data in
each operator with CUDA kernels. It features a run-to-finish macro execution model
and an operator-at-a-time micro execution model.

8.2.10.2 Baselines

PCIE transfer The PCle transfer time is the time it takes to transfer input and output
data between the host’s main-memory and GPU global memory. It is the target time
used by micro execution models for balancing throughput and PCle bandwidth.
The PCle transfer time is shown in each graph with a dashed line (- - -).

Memory bound The GPU global memory bound execution time is the time it takes to
access the data. As each approach has to read the input columns and write the
output columns, the baseline is a lower bound on the kernel execution time. We
indicate it with a solid line (—) in each graph.

Listing 8.1: Query 1is a simple selection and projection query inspired by the star schema bench-
mark.

SELECT lo_extprice * lo_discount + lo_tax AS revenue
FROM  lineorder
WHERE lo_quantity BETWEEN 25 - x AND 25 + x
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8.2.10.3 System Configuration

For the experiments, we use three dedicated GPUs with PCle gen 3.0 links and one APU
that accesses main-memory directly. Table 8.3 specifies the GPU models and shows
hardware properties. The amount of scratchpad is available per core. The reported
bandwidth refers to GPU global memory for the GPUs and to main-memory for the APU.
It was measured using on-GPU memcpy of 1 GB data. We measured bidirectional PCle
transfers between CPU and GPU as 12.1 GB/s.

Both NVIDIA GPUs GTX770 and GTX970 run in a system with an Intel Xeon E5-1607
CPU. We use the NVIDIA 364.19 driver and CUDA Toolkit 7.5 with OpenCL drivers. The
AMD RX480 GPU is placed in a separate system with the A10-7890K APU. We use the
AMDGPU-Pro 16.40 driver for the GPU and the fglrx 15.201 driver for the APU. Each
system is running Ubuntu 14.04 and uses the boost library 1.61.

We used the profiling tools nvprof 2.0.28 for NVIDIA hardware and CodeXLGpu-
Profiler V4.0.511 for AMD hardware to measure kernel execution times, PCle trans-
fers, and GPU global memory access. For the measurements of kernel execution times,
we used both tools to profile individual kernels and sum up the kernel execution times
when multiple kernels were involved.

8.2.10.4 Experiment 1: Pipelined Prefix Sum

We compare several pipelined prefix sum techniques with one non-pipelined technique
for a query that filters and projects one table. This allows us to analyze the benefit
of integrating prefix sum computations into single-pass kernels. We execute Query 1,
shown in Listing 8.1, and vary the selectivity in the range [0, 1] using x. By running the
experiment on four GPUs, we aim to assess the best local resolution mechanisms for a
given hardware. Figure 8.19 shows the results.

Observations Pipelined techniques perform better than Multi-pass in most cases.
Integrating the prefix sum computation into single-pass kernels reduces the kernel
execution times by a factor of up to 6.3x. While processing with Multi-pass takes up
to 328.6 % of the PCle time, Resolution:SIMD uses only 101.3 % of the PCle time in
the worst case (selectivity 1.0, RX480). This shows that the approach can saturate the
bus bandwidth for a variety of configurations. On the A10 there are no PCle transfers
and Resolution:SIMD increases the overall throughput by factors of up to 1.6x over
Multi-pass.

The results show that the local resolution step reduces the performance impact
of atomic operations. This becomes visible for higher selectivity factors. Pipelined
has higher executions times because the strategy executes one atomic addition per
output. However, Resolution:SIMD and Resolution:WE show good performance across
all selectivities due to local resolution.

Resolution:SIMD achieves the shortest kernel execution times in most cases and
allows memory bound processing on the GTX970. On the GTX770, lowering the output
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Fig. 8.19: Projection query executed with different approaches. Integrating prefix sums into kernels
allows fastest execution.

size down to O does not affect the execution time. We conclude that the GTX770 is
compute-bound earlier than the GTX970. The higher memory bandwidth of the GTX770
leads to an increased throughput for atomic operations and Pipelined can outperform
Resolution:SIMD for selectivities below 10 %. On the RX480 and on the A10 there is no
definite advantage for one of the reduction techniques. In the following, we use only
Resolution:SIMD and skip the other techniques for a clear presentation.

8.2.10.5 Experiment 2: Pipelined GROUP BY

We evaluate the effect of pipelined GROUP BY aggregations using Operator-at-a-time,
Pipelined, and Resolution. The query groups all tuples of lineorder according to
the computed attribute lo_orderkey%x into sums. We vary the number of groups by
increasing x from 2 to 16 384. We show the results of the experiment on a GTX970 GPU
in Figure 8.20.

Observations The execution times of Operator-at-a-time do not depend on the group
size. The main cost factor is sorting the input columns. Pipelined shows up to 11.1x
lower execution times but only for larger group sizes. For group sizes below 64, we
observe high execution times. This is caused by the heavy contention of parallel aggre-
gation hash-table inserts.

The bottleneck is resolved by Resolution which uses pre-aggregations to reduce
the contention. The results show that execution times reduce by a factor of up to 126x.
However, the local pre-aggregations have a limited effect on larger group numbers. This
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Fig. 8.20: Performance of grouped aggregations.
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Fig. 8.21: Performance of SSB queries.

explains the spike at 128 groups, where both pre-aggregation and contention have an
effect. While the approaches cannot saturate PCle when aggregating a full table, filters
reduce the cost of grouping for real-world queries.

8.2.10.6 Experiment 3: Star Schema Benchmark

The previous experiments showed that pipelining specific reduction operations helps
to increase the throughput of query processing. In this experiment, we analyze whether
this behavior carries over to real-world situations. To this end, we execute the SSB
Queries? on the GTX970 GPU.

We use Operator-at-a-time and two variants of our query compiler. HorseQC: Multi-
pass uses pipeline breaking implementations for reductions (A1, B1 and C1). HorseQC:
Fully pipelined integrates all pipeline operations in one kernel (using A3, B3 and C2).
We show the results of the experiment in Figure 8.21.

3 We could not process SSB Query 2.2 as we do not yet support range predicates on dictionary com-
pressed columns.
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Fig. 8.22: Performance of TPC-H queries.

Observations The bandwidth analysis in Section 8.2.3.1 showed that 4 out of 12

queries are limited by GPU global memory access in operator-at-a-time processing.

— The kernel execution times of Operator-at-a-time show that compute and latencies
make the problem worse. While PCle would allow execution times between 60.6 ms
to 90.9 ms, the kernel execution times take longer for 10 out 12 queries with up to
295.5 %.

—  HorseQC: Multi-pass improves over Operator-at-a-time and uses only 50.5 % of the
PCle bandwidth transfer time in the best case and 215.5 % in the worst case. This
shows that without efficient pipelining of reduction operations, the benefit of query
compilation is limited.

— HorseQC: Fully pipelined lowers all kernel execution times to a level that is consis-
tently lower than PCle transfer times. This shows that compiling pipelines into one
kernel with local resolution, global propagation provides an execution approach
with sufficient throughput. Processing takes 9.7 % of the PCle transfer time in the
best case and 78.1 % in the worst case. For Queries 1.1, 1.2, and 1.3, kernel execution
is memory bound by GPU global memory access.

8.2.10.7 Experiment 4: TPC-H Queries

We execute and profile queries from the TPC-H benchmark to show the effect when
relaxing the specific assumptions of the star schema benchmark (e.g. using one cen-
tralized table). We select a subset of queries based on the work by Boncz et al. [61] to
capture challenging aspects of the TPC-H benchmark: Q1, Q4, Q13, and Q21 contain
heavy aggregation; Q9 and Q18 contain heavy joins; and Q4, Q19, and Q21 contain
parallelism bottlenecks. We modified 4 queries, because HorseQC currently does not
support all operations, e.g., 1ike expressions. The results of the experiment are shown
in Figure 8.22. For Q1, there is no result for HorseQC: Multi-pass, because the strategy
ran out of GPU memory. The results shown for Operator-at-a-time are for all TPC-H
queries supported by the DBMS.
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Observations The PCle and memory-bound baselines show larger variations than
for the SSB benchmark. This is mainly caused by the join structure, e.g., Q13 joins three
small tables, while Q17, Q18, and Q21 join multiple instances of the largest 1ineitem
table.

The kernel execution times show that HorseQC can improve over operator-at-a-time by
factors of up to 8.6x. For Q1, Q4, and Q9, there are cases where Operator-at-a-time has
shorter kernel execution times than compiled strategies. Further investigation showed
that in these cases Operator-at-a-time moves some operators to the CPU, which means
that the measurements cover a limited amount of operations.

Comparing the variants of the query compiler, we observe that HorseQC: Fully
pipelined consistently improves over HorseQC: Multi-pass by a factor of up to 5.4x.
HorseQC: Fully pipelined achieves lower execution times than PCle transfer times for 8
out of 11 queries. For Q1, Q13, and Q18, the PCle bandwidth cannot be fully saturated.
This is because the queries contain grouped aggregations of unfiltered columns (cf.
Experiment 2). The execution times of HorseQC: Fully pipelined take 5.6 % of the PCle
transfer time in the best case and 268.1% in the worst case.

8.2.10.8 Experiment 5: Scalability

Due to the deeply integrated storage layer implementations of the host DBMS CoGaDB,
we were unable to build a fully scalable version of HorseQC. For this reason, we perform
a separate experiment that integrates the Resolution micro execution model with the
batch processing macro execution model for the star join from SSB Query 3.1. Decoupling
this experiment allows us to apply the rules for coprocessor data management by
Yuan et al. [728] and to measure end-to-end performance for larger datasets.

The star join recombines three dimension tables and one fact table with an overall
selectivity of 3.4 %. We build hash tables for the dimension tables in GPU global memory.
The fact table resides in pinned host memory and each column is partitioned into blocks
of 0.5 MB, 2 MB, or 8 MB. The blocks are transferred asynchronously via PCle into an
inner kernel that computes the star join by probing each dimension hash table.

Figure 8.23 shows the end-to-end execution times for each block size when exe-
cuting the experiment. We observe that execution times grow linearly with increasing
scale factors and that block sizes larger than 2 MB can saturate the PCle bandwidth. The
computation does not become a bottleneck for the examined scale factors. With a block
size of 4 MB and scale factor 300, the size of intermediate data in GPU global memory is
only 473 MB. Therefore, we expect the approach to scale to even larger databases with
linear performance.

8.2.10.9 Experiment 6: End-to-End Performance

To make a comparison with other database systems, we execute the TPC-H queries
with different database systems and measure end-to-end performance. We compare
MonetDB5 Dec2016-SP3 executed on CPUs, and CoGaDB 0.41 and HorseQC executed
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Fig. 8.24: End-to-end performance of TPC-H queries.

on GPUs. Both competitors feature an operator-at-a-time approach. We perform the
measurements with warm caches. MonetDB runs on a workstation-class system with
an Intel Xeon E5-1607 CPU and 32 GB RAM. CoGaDB and HorseQC run on the GTX970.
The results are shown in Figure 8.24.

Observations For the supported queries, HorseQC is up to 5.8x faster than CoGaDB.
While CoGaDB uses GPU global memory as a cache for frequently used columns,
HorseQC does not cache data between queries. This shows that HorseQC uses memory
and interconnects more efficiently. For Q6 there is no improvement, because query
execution is PCle bound.

HorseQC has lower execution times than MonetDB by a factor of up to 26.9x. Despite
moving data through the PCle bottleneck, the additional bandwidth resources of GPU
global memory offer an acceleration. For Q19, MonetDB has a lower execution time
than HorseQC. This shows that for queries with a low complexity, it is more effective to
process data directly than moving it over PCle.
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8.2.11 Discussion

In the previous experiments, we evaluated our new approaches for querying compi-
lation on coprocessors. Across all experiments, we were able to show improvements
of query compilation over operator-at-a-time processing. Operator-at-a-time has a low
memory efficiency due to large materialization volumes and repetitive operations. There-
fore, the approach cannot efficiently utilize the memory systems surrounding the co-
processor.

While naive compilation techniques increase the memory efficiency, reductions
and prefix sums split operator pipelines into multiple passes. In this way, the approach
inherits the drawbacks of operator-at-a-time. This becomes visible because kernel
execution times frequently exceed PCle transfer times.

We demonstrated a query compilation technique that merges the operators of a
pipeline into one compound kernel. When combined with efficient reduction tech-
niques, the compound kernel achieves substantial advantages over other processing
approaches. With upcoming OpenCAPI and NVLink interconnects, these improvements
to GPU-local processing are essential in order to take advantage of the increased band-
width of the new hardware. In the evaluation setting, the PCle bandwidth can be
saturated for all SSB queries. For the TPC-H benchmark, the approach is an improve-
ment over operator-at-a-time and naive compilation, but saturates PCle in only 8 out of
11 queries. We conclude that the compound kernel works particularly well with star
join queries.

8.2.12 Summary

In this section, we showed query processing techniques that help to balance the data
movement cost and compute throughput on GPU-style coprocessors. We measure the
data transfer volumes in different scalable processing approaches to assess bandwidth
bottlenecks. While naive scalable execution techniques are limited by PCle bandwidth,
batch processing is limited by GPU-local throughput. To address the bottleneck, we
propose micro execution models that benefit from on-chip pipelining. Naive query
compilation techniques allow simple code generation but inherit the memory-intensity
of operator-at-a-time. We introduce compound kernels that merge several pipeline
phases into one efficient kernel.
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Energy is a fundamental resource constraint that is present almost everywhere in life.
Many of the previous chapters indirectly discuss the energy demand of cyber-physical
systems and machine learning. Taking a broader view of cyber-physical systems, we
see that the total amount of energy required to solve a specific problem is (for constant
P)

W=P-t

where P is the power to run the hardware and t the amount of time this hardware needs
to execute a given software. Hence the energy consumption is typically determined by
1. the hardware used (that is P)

2. the algorithm that is run on the hardware (this can influence P and t)

3. the time the hardware executes the implemented algorithm (that is t)

In practice there is often a trade-off between these quantities. Hardware that has great
processing power can execute software very quickly, but often also requires much more
energy. Similarly, less powerful hardware may take longer to execute a software pipeline
while the overall energy consumption is smaller since it requires less power. Last, certain
implementations might use specific hardware features (e.g. a GPU) that influences both
the energy and time required for execution. With the ongoing integration of Machine
Learning (ML) into cyber-physical systems, two research directions must be explored.

First, in order to apply and train Machine Learning models on small devices, the
energy consumption of the ML algorithm itself must be reduced. Needed is a holistic
approach that takes all steps of the ML pipeline into account, starting from its theoretical
model down to its specific implementation on a specific hardware platform.

Second, the application of ML models to reduce the energy consumption of other
parts of the cyber-physical system must be explored. Here, a cross-domain approach
that combines domain-specific knowledge with ML for the right problems is necessary.

This chapter performs an exemplary discussion of both approaches. Section 9.1
discusses how probabilistic undirected models can be rephrased with integer-only
operations such that floating-point co-processors are no longer required. It introduces
Bit-Length Propagation (BL-Prop) and combines it with a novel IntGD algorithm for
numerical optimization with integrality constraints. The resulting algorithm enables
the training and inference of Markov random fields on small devices using integer-only
arithmetics.

Section 9.2 discusses how ML models can be integrated into the wireless commu-
nication of cyber-physical systems. More specifically, methods for modeling power
consumption for different communication technologies are discussed including LTE,
LTE-A, and NB-IoT. The integration of ML models in the User Equipment (UE) for esti-
mating transmission uplink power under external influences (e.g., signal strength or
signal quality) is further explored and discussed in a real-world context.

en Access. © 2023 the author(s), publishe e Gruyter. | A5 is work is licensed under the
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9.1 Integer Exponential Families

Nico Piatkowski

Abstract: In this contribution, we study how knowledge about the underlying compute
architecture can be incorporated directly into the learning problem. More precisely, we
consider the arithmetic limitations of Ultra-Low Power (ULP) Micro-Controller Units
(MCU). Such systems do not contain arithmetic co-processors, which implies that most
arithmetic computations must be emulated via integer logic. However, this creates
a large performance penalty for any machine learning method that relies heavily on
floating-point arithmetic. To mitigate this issue, we show how the model itself can be
rephrased with integer-only operations such that floating point co-processors are no
longer required. We exemplify this procedure with probabilistic undirected models,
so-called Markov random fields. All steps of learning and inference are discussed.
An approximate but integer-only probabilistic inference procedure called bit-length
propagation (BL-Prop) is presented. BL-Prop is based on belief propagation, where
instead of the full messages, only their bit-length is propagated along the models’
conditional independence structure. We analyze the algorithm and show what factors
have the largest influence on the approximation quality.

Furthermore, we derive IntGD—a numerical optimization method for convex objective
functions with integrality constraints. The method is based on an accelerated proxi-
mal algorithm for non-smooth and non-convex penalty terms. For integer gradients
computed via BL-Prop, IntGD is guaranteed to deliver an integer learning procedure in
which the final parameter vector as well as all intermediate results are integers. Numer-
ical experiments on benchmark data show that integer models allow us to achieve a
competitive prediction quality on low-end hardware while maintaining a large speedup
compared with its double precision counterpart—thus, completely mitigating the per-
formance penalty that arose from the missing floating point unit.

9.1.1 Introduction

Big data analytics for streaming sensor data challenges the resource efficiency of algo-
rithms in several ways. Running data mining methods in resource-constrained com-
putational environments generates challenges in terms of execution time and energy
consumption. Fortunately, optimizations that reduce the number of cycles in which the
CPU is busy also save energy consumption. When reviewing the specifications of pro-
cessing units, one finds that integer arithmetic is usually cheaper in terms of instruction
latency, i.e., it needs a smaller number of clock cycles until the result of an arithmetic
instruction is ready. Table 9.1 shows the latencies of arithmetic instructions measured
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in terms of clock cycles for Intel CPUs and ARM CPUs and for Nvidia GPUs. Note that
transcendental functions are composed of multiple instructions and therefore may take
substantially more cycles than the ones reported in Table 9.1. This motivates reducing
the number of cycles in which code is executed when designing new, resource-aware
learning algorithms.

Nowadays, big data arises in social media, industry, and basically all scientific
research areas. Data sets grow in size because they are increasingly being gathered
by ubiquitous information-sensing mobile devices. The joint prediction of various
unknowns based on multiple observed inputs is a ubiquitous subtask in real-world
problems from various domains, including computational biology, computer vision,
and natural language processing. Probabilistic graphical models are well-suited for
such tasks, but they suffer from the high complexity of probabilistic inference. Many
approximate approaches to probabilistic inference based on Belief Propagation (BP)
[404, 560] were proposed in the last decade, e.g., Counting BP [369], Lifted BP [10],
Stochastic BP [539], Tree-reweighted BP [691], Tree Block Coordinate Descent [642], and
Particle BP [331]. Quadrature-based methods [572, 573] deliver promising results, but
are not well-suited for embedded or resource-constrained environments. In contrast to
these approaches, the underlying model class here is restricted to the integers, which
results in a reduced runtime and energy savings, while maintaining good performance.
Asymptotically, the new approach has the same complexity as the vanilla BP, but it
uses cheaper operations.

This new approach should not be confused with models that are designed for
integer state spaces, in which case the state space X is a subset of the natural numbers
or, more generally, is a metric space. Here, the state space may be a random discrete
space without any additional constraints.

Estimation in discrete parameter models was recently investigated by Chaorat
and Seri [140]. They discuss consistency, asymptotic distribution theory, information
inequalities, and their relations with efficiency and super-efficiency for a general class
of m-estimators. Unfortunately, we do not consider the case when the true estimator
is not included in the search space and therefore, their analysis cannot be used to
estimate the error when the optimizer has to be approximated.

Bayesian network classifiers with reduced precision parameters were presented by
Tschiatschek et al. [671]. They evaluate empirically the classification performance when
reducing the precision of Bayesian networks probability parameters. After learning
the parameters as usual in R (represented as 64-bit double-precision floating-point
numbers), they varied the bit-width of mantissa and exponent, and reported the predic-
tion accuracy in terms of the normalized number of correctly classified test instances.
They found that after learning, the parameters may be multiplied by a sufficiently large
integer constant (10°) to convert the probabilities into integer numbers. However, Tschi-
atschek et al. missed an important point, namely that real value probability parameters
are necessary only for Bayesian networks.
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Tab. 9.1: Instruction latencies (in clock cycles) of Floating-Point (FP) and integer (INT) scalar arith-
metic operations for three processing architectures [24, 334, 542]. x/y means that latency is x for
32-bit and y for 64-bit operands. A single value indicates that both latencies are the same or, in case
of ARM and GPU, that 64-bit integer arithmetic is not supported. For GPU, the values are based on
the operation throughput. Cycles of Intel Sandy Bridge integer division and ARM11 integer multiplica-
tion depend on the lengths of their operands.

Sandy Bridge ARM GPU
FP INT FP INT5; FP INT3;
Addition 3 1 8 1 3/7 3
Multiplication 5 3 8/9 4-5 3/7 14
Division 14/22 13-25 19/33 - 7/-
Bit shift - 3 - 2 - 7
Square root 14/22 - 19/33 - 14/-

For undirected graphical models, this is not the case. As a result, the general framework

of undirected graphical models [692] may be mapped to the integer domain. A new

optimization scheme is proposed, that allows the resource-constrained learning of

integer parameters without the need for floating-point computation. This opens up the

opportunity of running data mining tasks on resource-constrained devices. To be more

precise, based only on integers, it is possible to compute approximations to the

— the marginal probabilities,

— the Maximum-A-Posteriori (MAP) assignment of the model,

— the Maximum Likelihood Estimate (MLE) either via an approximate closed form
solution or an integer variant of stochastic gradient descent.

In this contribution, algorithms for integer models are derived. It turns out that the
integer approximations do deliver a reasonable quality and are around twice as fast as
their floating-point counterparts. This contribution is based on [574] and [567], and is
organized as follows. A short introduction to probabilistic graphical models is given in
Section 9.1.2. In Section 9.1.3, the intuition behind integer undirected graphical models
is explained, and the corresponding algorithms are derived. Furthermore, a bound on
the training error is presented. Two instances of the integer framework, Integer Markov
random fields and Integer Conditional Random Fields, are evaluated in Section 9.1.4 for
synthetic and real world data.

9.1.2 Probabilistic Graphical Models

In the following, the basic notation and concepts of probabilistic graphical models are
introduced. Let G = (V, E) be a graph with |V| =nand Ny := {w € V : (v, w) € E} the
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neighbors of vertex v € V. Each vertex v € V corresponds to a random variable (RV)
X, with realization x, and domain X,. Consider the n-dimensional RV X = (X,),cy
with realization x € X = ®,cyXy. The probability of the event {X = x} is denoted by
p(X = x). p(x) is used as a shortcut for p(X = x) in the remainder of this report. For a set
of vertices A C V, X4 addresses the components of X that correspond to the vertices in
A. For ease of notation, Xy and X, are regarded as the same. For undirected graphical
models, the joint probability mass function of X is given by

pe(x) = ﬁ H Pelxe) 9.1)
cee(G)

20)=> [I ¥c&xo 9.2)
xeX CeC(G)

where C(G) is the set of all cliques! in G and Z(8) is the normalization constant (since it
does not depend on x). Let C be a clique of G and X the corresponding joint domain of
all vertices in C. The parameter vector 8 € © = Q9 contains |X¢| weights for each clique
C € €(G), i.e., 0 = (0c)cec(e)» which results in d = Ecee(c) |X¢|. The compatibility
functions Y (also known as factors) are typically chosen to be

Yelxe) = exp((0¢, pcx)))

since this ensures the positivity of pg and leads to a canonical form of the corresponding
exponential family member.

po(x) = exp((8, p(x)) - A(6))

The function ¢ is a sufficient statistic for x and may be understood as transformation of x
into a binary valued feature space ¢ : XX > {0, 1 }d. For convenience, the components of
0 and ¢ are indexed by C to denote the subvector of weights or features that corresponds
to a clique C. To address a certain component of 8 or ¢, the corresponding event
{X¢ = xc}isused as anindex, i.e., Ox,_x, Or even O¢_,. If the parameters 0 are known,
the maximum a posteriori prediction of the most likely joint state of all vertices can be
computed by

X' = argmax py(x) = arg max (0, p(x)) . (9.3)
xeX xeX

Parameter Estimation A common choice for learning the parameters 0 of an undi-
rected model is the maximum likelihood estimation, where the likelihood

£(0]0) = ] pe® (9:4)

xeD

1 A clique corresponds to a fully connected subgraph.
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of the parameters 0 for given i.i.d. data? D is maximized. The MLE 6", i.e., the solution
that maximizes £, has a closed form, if and only if the underlying graphical structure is
a tree or a triangulated graph. In this case, 8" is induced by the empirical expectation
of the sufficient statistics

0;:)( =logEqp [(;bv:x(x)} s
Ep [¢vu=xy(x)}
Ep [@pv-x(0)] Ep [pu=y(0)]

The MLE 0" for partially observed data and certain classes of graphical models like
Conditional Random Fields (CRF) [655] can be found with gradient-based methods.
Taking the logarithm of Equation 9.4, dividing by |D|, and substituting Equation 9.1
for p(x | 8) yields the average log-likelihood (see Equation 9.6). Since the logarithm
is monotonic, maximizing ¢ will reveal the same optimizer as £. Since Ep [¢(x)] =

ﬁ > xen P(), £ is given by

0,u-xy = log (9.5)

«0]D)=(0,Ep [¢p(x)]) - 1nZ(8). (9.6)

Taking the natural logarithm to form the log-likelihood is a random choice that may be
replaced with any other log,, if desired. Since the second term is the cumulant generating
function of pyg, its partial derivative is the expected sufficient statistic for a given 6. This
is plugged into the partial derivative of ¢ with regard to Ox.-x, (Equation 9.6) to obtain

046 | D)

aoxc=xc

Here, Ep[¢x.-x.(X)] denotes the empirical expectation of ¢x.-x.(x), i.e., its average
value in D. By using Equation 9.7, the model parameters 6 can be estimated by any
first-order optimization technique.

= Ep [Pxe=xc ()] - EglPxc=xc(x)] . 9.7)

Inference: In the following, it is explained shortly how Eg[¢x.-x.(x)] is computed
with Belief Propagation (BP). From now on, assume that the underlying graphical
structure is a tree. The maximum clique size is thus 2. The message update rule is

My, (Xy) = Z Yv,u(xv, xu)Pv(xv) H Mysy (Xv). (9.8

xy€Xy WENV\{“}

The messages m, -, (x,) are computed for all pairs of vertex v € V and neighbor u € N,
until convergence. Converged messages are denoted by m;_,, (x.). The product of all
incoming messages of a vertex is given by My(x) := [, <y, Mu>v(x). After convergence,
the vertex marginal probabilities py(x,) that are implied by 0 can be computed with

l/)v(Xv)M:/ (xv)

2 oxex, Py ()M (x) (9.9)

pv(Xv) =

2 Itis assumed that every training instance in D is fully observed.
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whereas M;(x) is the product of converged messages m;_m(xu). In case of non-tree-
structured graphs, BP performs multiple passes over all vertices until the convergence
of messages is reached. The convergence depends on the dynamic range of the poten-
tials. For trees and triangulated graphs, efficient orderings of message computations
(schedulings) are known that have polynomial runtime O(mdeg(G)|X|?) and result in
the exact marginal probabilities. We refer to [404] for discussions on belief-propagation
and related algorithms.

9.1.3 The Integer Approximation

In their fundamental book on graphical models, Wainwright and Jordan [692] write:
“It is important to understand that for a general undirected graph the compatibility
functions ¥ ¢ need not have any obvious or direct relation to marginal or conditional
distributions defined over the graph cliques. This property should be contrasted with
the directed factorization, where the factors correspond to conditional probabilities over
the child-parent sets.” This explains why it might be possible to have an undirected
graphical model that is parametrized by integers. But the identification of integer
parameters is not enough for excluding every floating-point computation. Moreover,
the computations that are required for training and prediction have to be based on
integer arithmetic. Last, the integer approximation should still deliver a reasonable
quality in terms of training error and test error.
The first step is directly related to the above statement. The potential function

Pxe) := 29090 — exp (In(2)(8c, pc(x))) (9.10)

is defined in a way, that yields only integer values as long as the parameters are positive
integers. It is easy to see that replacing ¢ (x¢) with i (x¢) does not alter the marginal
probabilities as long as the parameters are scaled by 1/ In 2. It is possible to convert
parameters that are estimated with y¢(x¢) to Y -(x¢) and vice versa without altering the
resulting probabilities. Notice that @C(xc) can be computed by a logical bit shift to the
left, which consumes less clock cycles than the corresponding transcendental function.
As already mentioned above, it requires that @ € N for Y (xc) is an integer and the
product of compatibility functions and the normalization constant (see Equation 9.2)
are computable by means of non-negative integer arithmetic. This restricts p(x) and
its marginals to [0, 1] N Q. Although the computation of a probability would require
floating-point division, its actual value is not required for estimating the integer model
parameters.

Inference Recalling the message update Equation 9.8, one sees that all messages are
integer valued, if ¢(x¢) is replaced by 1 -(x¢) and the initial messages are set to 1.
Thus, the whole message computation and propagation procedure is already stated
without floating-point computation. Nevertheless, recall that a CPU’s integer width is
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constrained by its wordsize w. m,, (x) may exceed the machines’ integer precision 2¢
quite easily. Thus, many overflows could occur during message computations, which
destroy the semantics of the messages and the resulting beliefs are no longer usable.
Initial attempts to make the computation more robust against overflows relied on
the fact that messages m, -, (x) may be scaled arbitrarily without changing the resulting
marginal probabilities as long as the same scale is used for all x. Nevertheless, the

pe(Xc = x¢)

De(Xc = x¢)

Fig. 9.1: Estimates of edge marginal probabilities for 50 random trees with 50 nodes and 2 states per
node. Marginals are computed by the bit-length approximation (p) and vanilla BP (p) on the same
parameter vector 6.

messages cannot be simply divided by their sum as with floating-point arithmetic,
since integer division will pin all messages down to 0. Numerous attempts to scale the
integer messages by bit-shift operations have only worked on relatively small graphical
structures, but all those approaches suffered from the loss of information that occurred
whenever too many bits had to be shifted out in order to prevent overflows.

As a solution to this problem, new messages are defined. Instead of computing
the original sum-product messages, we propose computing an approximation to the
integer message bit length. The approximate bit length ., (y) and the corresponding
message My (y) are given by

Bvu(y) = maxy Ovu=xy + Ov=x + Ou=y (9.11)
+ 2 wen,\fuy Bwy (),

(9.12)

vy (¥) 1= 2Bn ) (9.13)

maXy l/)vu (X, y) HWENV\{M} ﬁlwu (X) . (9.14)
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How m and m are related to each other is a natural question. The messages m that
result from the bit-length approximation resemble max-product messages [404]. Their
magnitude is related to the original messages m through the following lemma.

Lemmal. Let (v,u) € E be an edge of G = (V,E), hy := |Xy| the size of vs state
space, and ny := |Ny| the number of its neighbors. If hy 2 2 AVy € Xy : Ix € Xy :
ovu:xy + 0y + ou:y > 0, then

Pvu (X) < Mo (X) < iy (x) .

This statement can be proven by induction over the vertex degree. Note, that this implies
My (¥) = [Tyen, Mwv (%) < [Lyen, fwy (X) = MM (y). When it comes to the point-wise
estimates of the marginal probabilities, one finds that due to the approximate messages
some marginals probabilities simply cannot be present. Figure 9.1 shows edge marginal
probabilities for random parameters that are generated with m and 1, respectively. One
clearly sees how the probability space is discretized by the approximate messages. One
can also see that there is an error in the approximate marginal probabilities computed
with 1, since in case of zero error all points would lie on the diagonal.

The previous lemma helps to derive an estimate of the distance between the true
outcome of the inference and the one that results from the message update Equation 9.14.

Theorem 1. Let B, := maxy maxy fuy (V) be the maximum incoming bit length at v and
assume that the preconditions of Lemma 1 hold, then

D(ply) € O(mhpl),

where D (pv|| fav) denotes the Kullback-Leibler (KL) divergence between the marginal
probability mass function of pv, computed with the message update myy (y), and p,
computed with myy (y).

This result can be derived by plugging the BP marginals (Equation 9.9) into the definition
of the KL divergence and applying Lemma 1 two times. The KL is still unbounded, since
there is no bound on ;. Nevertheless, it indicates a dependence of the KL of p, and p,
on the state space size | Xy| and the neighborhood size |Ny|. This relation can also be
observed in the numerical experiments in Section 9.1.4. A comprehensive discussion of
how message errors generally affect the result of belief propagation can be found in
[332].

9.1.3.1 Parameter Estimation

In the following, an integer parameter estimation method based on the closed form
solution to the MLE is derived. Recall that Ep, [¢(x)] = ﬁ > xen ¢x) and let f :=
> xep $(x) and bl(a) = [log, a] + 1 the bit length of a. With this, an integer upper



414 —— 9 Energy Awareness

bound on the optimal parameters can be found.

log, Ep [¢V=X(X)] =log; fv-x —log, | D| (9.15)
< bl fyx - b1|D| =: By=x (9.16)
log, Ep [¢vu=xy(x)] < bl fru=xy (9.17)
— bl fv=x = bl fyu=xy + bl |D| (9.18)
=: évuzxy

Unfortunately, most of those estimates are negative which is not allowed due to the
integer restriction. Let s := maxy.;4 —éi be the negative component of 8 with the largest
magnitude. Now, consider the weights

- ~ - ~
0)_y =5+ 0y, Ou=xy := S+ Ovu=xy

withs := (s, s,...,s) € R Clearly, an error is induced into 8 by replacing log, with
bl. The following lemma shows that shifting 8 by s introduces no new error.

Lemma?2. Lets := (s,s,...,s)! ¢ RY and ¢ be an overcomplete sufficient statistic,
then ¢(0 + s) = ¢(0).

Proof: Since ¢ is overcomplete, it holds that (s, ¢(x)) = const, vVx and hence:

2(0) - ¢(0 +s) (9.19)

1 >yex exp (0 +s, d(y)) ~
D Z log exp (S, ¢(x)) >, exp (8, (V) -

xeD

0.

¢ as defined in Section 9.1.2 is actually overcomplete. This can now be used to bind the
training error of the shifted integer parameters 6*.

Theorem 2. Let —s be the smallest value in the vector Ex [¢(x)]. Furthermore, let 6; :=
s +logEp [¢;(x)] and 0! :=s+blEyp [¢i(x)] then

06") - ((8") < |Vf(B")]1.

The result follows from the previous lemma, convexity, and the Cauchy-Schwarz in-
equality. Since each component of the gradient is a difference of two probabilities, its
magnitude cannot be greater than 1. Hence, the gradient norm can be at most d. In the
following section, the magnitude of the gradient relative to d is evaluated numerically.

Either due to restrictions in wordsize w or for enlarging the number of representable
marginal probabilities, a final scaling of the parameters might be desired. To allow an
appropriate integer scaling, the parameter K is introduced. Let s := max.;.; —8; be
the negative component of 0 with the largest magnitude and m := maxy.;4 ?),- be the
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positive component of 8 with the largest magnitude. The final integer parameters are
computed by

K

0; XJ N 9vu=xy = \‘S m 0:11 XyJ (9.20)
Thus, 0" is rescaled such that 8 ¢ {0,1,..., K}d, which may also be interpreted as
implicit base change. Note, that unless K = (s+m), the parameter vector is scaled and an
additional error is added to the gradient. Hence, the impact of K is empirically evaluated
in Section 9.1.4. The method of choosing parameters according to Equation 9.20 is called

direct integer estimation.

Gradient-Based Estimation As already mentioned in Section 9.1.2, in certain situ-
ations, it might be desired to estimate the parameters with gradient-based methods.
Unfortunately, the partial derivatives from Equation 9.7 are not integers. Hence, the
expression must be rearranged to obtain an integer form. Let f := )~ _, ¢(x), so that

Z M;,(x) |D| ai (9.21)

XEXV

= Z i, VOO | fo=x — |D] MV(XV)-

| XEXy

This scaled version of the partial derivative is an integer expression that can be com-
puted by using only integer addition, multiplication, and binary bit shift. The common
gradient descent update makes use of a step size 1 to determine how far the current
weight vector should move in the direction of the gradient. The smallest possible step
size in integer space is 1. This means that any parameter can either be increased or
decreased by 1. Therefore, in the beginning of an integer gradient-based optimization,
all the model parameters are 0 and the gradient will tend to increase a large number
of parameters. This results in a rather slow convergence, since due to the fixed step
size of 1, most of the parameters are worse than before the update. To compensate,
we suggest updating, for each clique only the parameter for which the corresponding
partial derivative has the largest magnitude. This method is used when estimating the
CRF parameters in the following section.

9.1.4 Numerical Results

The previous sections pointed to various factors that may have an influence on the
training error, test performance, or runtime of the integer approximation. In order to
show that integer undirected models are a general approach for approximate learning
in discrete state spaces, generative and discriminative variants of undirected models
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are evaluated on synthetic data and real-world data. We consider in particular the

following methods:

RealMRF The classic generative undirected model as described in Section 9.1.2.

RealCRF The discriminative classifier as it is defined in [407, 655].

IntMRF The integer approximation of generative undirected models as described in
Section 9.1.3.

IntCRF The integer approximation of discriminative undirected models. Further details
are explained in Section 9.1.4.5.

Both real variants are based on floating-point arithmetic. In the MRF experiments,
the model parameters are estimated from the empirical expectations by Equations 9.5
and 9.20. Parameters of discriminative models are estimated by stochastic gradient
methods [655]. Each MRF experiment was repeated 100 times on random input distri-
butions and graphs. In most cases, only the average is reported, since the standard
deviation is too small to be visualized in a plot. Whenever MAP accuracy is reported,
it corresponds to the percentage of correctly labeled vertices, where the prediction is
computed with Equation 9.3.

Of course, the implementations of the above-mentioned methods are equally ef-
ficient, e.g. the message computation (and therefore the probability computation)
executes exactly the same code for all methods, except for the arithmetic instructions.
A subsets of the results is presented below. Unless otherwise explicitly stated, the
experiments are done on an Intel Core i72600K 3.4 GHz (Sandy Bridge architecture, Ta-
ble 9.1) with 16 GB 1333 MHz DDR3 main memory. An implementation of integer Markov
random fieldsis available as part of the Python package pxpy.3

Synthetic Data In order to achieve robust results that capture the average behavior
of the integer approximation, a synthetic data generator has been implemented that
samples random empirical marginals with corresponding MAP states. Therefore, a
sequential algorithm for random trees with given degrees [57] generates random tree
structured graphs. For a random graph, the weights 8; ~ N(0, 1) are sampled from
a Gaussian distribution. Additionally, for each vertex, a random state is selected that
gets a constant extra amount of weight, thus enforcing low entropy. The weights are
then used to generate marginals and MAP states with the double precision floating-
point variant of belief propagation. The so generated marginals provide empirical input
distribution. The MAP state is then compared with the MAP state that is estimated by
IntMRF and RealMRF for the given empirical marginals.

CoNLL-2000 Data This dataset was proposed for the shared task at the Conference
on Computational Natural Language Learning in 2000. The train and test data consist

3 https://pypi.org/project/pxpy.
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of three columns separated by spaces. Each word has been put on a separate line and
there is an empty line after each sentence. The first column contains the current word,
the second contains its part-of-speech tag as derived by the Brill tagger, and the third
contains its chunk tag as derived from the Wall Street Journal corpus. The chunk tags
contain the name of the chunk type—I-NP for noun phrase words and I-VP for verb
phrase words, say. Most chunk types have two types of chunk tags, B-CHUNK for the
first word of the chunk and I-CHUNK for each other word in the chunk. In total, there are
22 chunk tags that correspond to the vertex states, i.e., | X| = 22. For the computation of
per chunk F;-score, a chunk is treated as correct if and only if all consecutive tags that
belong to the same chunk are correct. The dataset contains 8, 936 training instances
and 2, 012 test instances. For each word, the surrounding words and part-of-speech
tags are used as features. Because of the inherent dependency between neighboring
vertex states, this dataset is especially well suited for evaluation if the dependency
structure between vertices is preserved by the integer approximation.

9.1.4.1 The Impact of |X| and |Ny| on Quality and Runtime

In Section 9.1.3 an estimate of the error in marginal probabilities that are computed
with bit length BP indicates that the size of a vertex state space |Xy| and the degree
|Nv| have an impact on the training error. Figure 9.2 shows the training error in terms
of normalized negative log-likelihood, the testing error in terms of MAP accuracy, and
the runtime in seconds for various values of |Xy| and |Ny| for an increasing number of
vertices on the synthetic data. Each curve is the average over 100 random trees with
random parameters and K = 8. The results with varying |X,| are generated with a
maximum degree of 8 and the ones for varying [Ny | are generated with |Xy| = 4.

In terms of training error, the top-left plot shows a clear offset between integer
and floating-point estimates for the same number of states. In terms of varying degrees
(center-left), the training error of the integer model shows a response to different neigh-
borhood sizes, whereas the likelihood of the floating-point model is invariant against
the degrees. A similar picture is drawn for the dependence of the test accuracy with
|X| and |Ny| (top-right, top-center). The floating-point MAP estimate is not changed by
an increasing number of states and neighbors, whereas the integer MRF shows a clear
response. The accuracy of the integer MRF actually increases with increasing degrees.
In general, the quality of the models seems to be independent of the number of vertices
in the graph.

The floating-point model outperforms the approximate integer model in terms of
the MAP accuracy and negative log-likelihood. However, the two plots at the bottom
of Figure 9.2 show that the resource consumption in terms of clock cycles is largely
reduced by the integer model. Time is measured for estimating parameters, computing
the likelihood, and performing a MAP prediction. Since both algorithms (RealMRF and
IntMRF) share exactly the same asymptotic complexity for these procedures, the sub-
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stantial reduction in runtime that is shown by the results must be due to the reduction

in clock cycles.
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Fig. 9.2: MRF training error, test accuracy, and runtime in seconds for different choices of the state
space size (X) and maximum degree as a function of the number of vertices. Each of the top two rows
shares legends and has an x-axis in logarithmic scale.

9.1.4.2 The Contribution of K to Quality

It might be convenient to scale the integer parameters such that the resulting parameter
vector O isin the set {0, 1, ..., K}. Weillustrate the effect of such scaling by the response
of the integer model in terms of training quality and test error, as shown in the two
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plots on the top of Figure 9.3. The training error seems to be a smooth function of K
whereas the MAP accuracy is sensitive to the choices of K. This is what we expected,
since a large K basically means that a larger number of marginal probabilities can be
represented. One can also see that, as soon as K is large enough (i.e., K = 8 in the right
plot at the top of Figure 9.3), a further increase does not show any significant impact on
either training error and test accuracy. Both results where generated on graphs with a
maximum degree of 8, but as already known from the previous experiment, the effect of
different degrees on the model’s quality is negligible. The bottom-left plot in Figure 9.3
shows the width of the intrinsic parameter space, i.e., the sum of the smallest and the
largest integer parameter before rescaling is performed. It turns out, that the width of
the parameter space is naturally bounded, since s + m seems to converge on the same
value for various configurations of n and X. Plotting s and m separately shows that the
dynamics in s + m are mainly influenced by the smallest parameter s, i.e., the width of
the parameter space must increase in order to represent smaller probabilities.

9.1.4.3 The Impact of K on the Gradient Norm

As indicated by the analysis of the training error in Section 9.1.3, the distance between
the maximum likelihood estimate and the result of the direct integer parameter esti-
mation is basically bounded by the gradient norm of the integer parameters 8. Since
the components of the gradient cannot exceed 1, a trivial upper bound for the gradient
norm is d, the dimension of the parameter vector. A very strong observation can be
made in the rightmost picture which shows the relative gradient norm for an increasing
number of vertices and various values K. This result suggests that there exists a bound
on the relative gradient norm that is independent of the number of vertices and that
this bound decreases with increasing K.

9.1.4.4 Integer Models on Resource-Constrained Devices

The motivation for the integer model was to save resources in terms of clock cycles.
We can now demonstrate that the impact of this reduction is larger, if the underlying
architecture is weaker, i.e., has slower floating-point arithmetic. The two bar charts
in Figure 9.4 show a runtime comparison of the integer MRF on two different CPU
architectures. One is Sandy Bridge, which has also been the platform for all the other
experiments; the other is a Raspberry Pi device with ARM11 architecture. As expected,
the integer model actually speeds up the execution on the Pi device more than on the
other architecture, i.e., the Raspberry Pi gains a speedup of 2.56x and Sandy Bridge a
speedup of 2.34x. In terms of standard deviation, the ARM11 architecture is more stable
than the Sandy Bridge, which might be a result of a more sophisticated out-of-order
instruction execution in the latter architecture.
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Fig. 9.3: Top: negative log-likelihood and MAP accuracy of MRF as a function of K. Bottom: the left
plot shows how the width of the parameter space behaves as a function of the number of vertices (in
log-scale) for different state space sizes, whereas —s is the smallest and m the largest element of the
corresponding estimated parameter vector. The relative norm of the gradient for various values of K
is shown on the right.

9.1.4.5 Training Integer CRF with Stochastic Integer Gradient Descent

In the last evaluation, the randomized stochastic gradient training of discriminative
models is investigated. An integer linear-chain CRF is constructed and trained by a
stochastic gradient-descent algorithm. In case of the integer CRF, the parameter updates
are computed by means of the scaled integer gradient (cf. the end of Section 9.1.3). Both
algorithms perform 20 passes over the training data, each pass looping through the
training instances in random order. This was repeated 50 times in order to compute an
estimate of the expected quality of the randomized training procedure. The parameter
update for the floating-point CRF is computed with the step size = 107, The ratio
of quality per runtime is presented in Figure 9.4, where the negative log-likelihood is
averaged over all training instances and the accuracy is computed with regard to the
chunk tags. Chunk type precision, recall, and F;-score are shown in Table 9.2, whereby
the overall F1-score for a model with @ = 0 is =~ 26 %. As desired, the performance of the
integer approximation is reasonable. Except for one chunk type (INTJ), precision, recall,
and F; -score have a relatively small standard deviation of about 2 %. The precision is
three times better using integer CRF; the recall and F;-score are one time better using
integer CRF than real CRF. IntCRF is substantially worse than RealCRF only for the
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Fig. 9.4: Top: Runtime comparison of integer and floating-point MRF on two architectures for a
varying number of states. Left: Raspberry Pl @ 700 MHz (ARM11). Right: Intel Core i7-2600K @
3.4 GHz (Sandy Bridge). Bottom: progress of stochastic gradient training in terms of training error
and test accuracy of the CRFs over running seconds.

verb phrase (VP). For many real-world applications, this is a price that can be paid for
IntCRF being about twice as fast as RealCRF.

9.1.5 Conclusion

In this contribution, integer undirected graphical models have been introduced, to-
gether with algorithms for probabilistic inference and parameter estimation that rely
only on integer arithmetic. Generative and discriminative models have been evaluated
in terms of prediction quality and runtime. We learned that optimal integer model
parameters typically take values with small magnitude, reducing the storage require-
ment when compared with 64-bit double precision numbers. This allows us to sample
from high-dimensional generative models and to use structured discriminative classi-
fiers, even on computational devices without or with a slow floating-point unit, or in
situations where energy has to be saved.
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Tab. 9.2: The difference of RealCRF and IntCRF precision (Prec), recall (Rec), and F;-score (F;) aver-
aged over 50 repetitions on the CoNLL-2000 dataset. Values are in percentage, i.e., a value of —0.29
means that the integer CRF was on average 0.29 % better at the corresponding measure than its
floating-point counterpart.

ADJP ADVP CONJP INT) LST NP PP PRT SBAR VP  Overall

Prec -0.29 -0.46 4.81 -15.56 0 11 0.33 3.78 1.15  6.09 0.73
Rec 1.61 2.69 -3.55 0 0 0.34 0.13 1.82 1.78 6.31 0.48
F1 0.74 1.17 1.60 -4.03 0 0.73 0.23 2.85 1.50 6.20 0.61
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9.2 Power Consumption Analysis and Uplink Transmission Power

Robert Falkenberg

Abstract: The penetration of wireless communication systems in industrial and private
environments is constantly increasing due to their flexible and mobile application
possibilities. Wearables, smartphones, or industrial systems for tagging, tracking, and
sensing are only a few examples from the tremendous variety of such systems. However,
unleashing these systems from the power grid also means that the available energy is a
limited resource that must be conserved and managed prudently.

The estimation of energy consumption by the communication system differs signifi-
cantly from the other components, as it is strongly dependent on external influences.
These include the quality of the radio channel, the channel access scheme, and the
utilization of the shared transmission medium by other participants, who are often not
part of the actual system. Data transmissions can last longer, require a higher transmis-
sion power, or fail due to collisions, so that they have to be repeated. The consequence
is a longer activity time of the transceiver and a shorter dwell time in the efficient power
saving mode. Therefore, realistic simulation models are required at design time, which
take into account the properties of the communication interface as well as the external
environment.

In the following, methods for modeling power consumption for different commu-
nication technologies are discussed. This includes decentralized narrow-band com-
munication in the Short Range Devices (SRD) band and the comprehensive modeling
of cellular technologies such as Long Term Evolution (LTE), LTE-Advanced (LTE-A)
and Narrow Band Internet of Things (NB-IoT) by a Context-Aware Power Consumption
Model (CoPoMo).

It is shown that a decentralized channel access with brisk activity on the radio
channel leads to an increased power consumption of all waiting subscribers, if the
channel occupancy is to be tracked continuously to keep the transmission latency
as low as possible. Conversely, in centrally organized cellular radio networks, the
energy consumption of the User Equipment (UE) is dominated by uplink transmissions,
especially when high transmission power is required. The proportion for reception,
however, depends mainly on the duration of the transmission. In fact, adding an
additional reception path via Carrier Aggregation (CA) not only increases the data rate,
but also reduces the energy consumption of the UE .

Since the knowledge of the transmit power is essential for the estimation of the
power consumption, but most UEs do not provide this information to the application
layer, a Machine Learning (ML)-based method for estimating the transmit power from
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the available parameters such as strength and quality of the received signal, is also
presented.

9.2.1 Introduction

Instead of treating inventory items as static resources, future intelligent warehouses
will turn containers to become Cyber Physical Systems (CPSs) that actively and au-
tonomously participate in the optimization of the logistical processes. Consequently,
new challenges that are system-immanent for the massive Internet of Things (IoT), such
as channel access in a shared communication medium, have to be addressed.

An example of such a warehouse scenario is shown schematically in Figure 9.5. A
wide variety of autonomous transport systems are used to transport goods into or out
of the warehouse. The individual goods are stored in smart containers that can provide
information about their current contents and the goods they contain at any time by
radio. Energy supply is a particular challenge for the embedded systems used for this
purpose. Mains and battery operation are ruled out due to the size of the location, so
that the platforms must obtain their energy for operation and communication through
energy harvesting, using photovoltaic, say, and must manage it extremely efficiently.

To fetch a specific inventory, distributed Access Points (APs) transmit inventory
queries to the warehouse. These are answered by containers with matching contents,
specifying the quantity contained. Subsequently, the transport systems bring the re-
quested quantity to a picking point for further use.

Since such requests can lead to massive replies depending on the distribution of
goods and inventory, channel access must be coordinated to avoid collisions during
transmission. Distributed channel access methods quickly reach their capacity limits
and increase the energy consumption of network subscribers due to collisions, multiple
transmissions, and prolonged waiting for a free channel. In this area, CRC 876 has devel-
oped and brought together innovative methods for recording, analyzing, and optimizing
energy consumption [206, 209], which are discussed in the following subsections.
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This contrasts with mobile communications networks that have centrally organized
channel access, which are discussed later in this section. If we accept the restriction of
operating only one specific technology on a frequency band, higher spectral efficiency
can be achieved in return. Techniques such as central power control or inter-cell inter-
ference coordination enable resource-efficient transmission even at high subscriber
density. Numerous studies of the CRC 876 have shown that the energy consumption
of current mobile radio terminals (UE ) is dominated by the transmission of data, es-
pecially at high transmission power. The specially developed CoPoMo enables a wide
variety of trade-offs, e.g., between transmission time, energy consumption, and spectral
resource requirements, for different frequency ranges, building densities, and mobil-
ity profiles. Section 9.2.4 introduces the basic concepts of CoPoMo and presents two
studies, one dealing with a trade-off between transmission bandwidth and energy con-
sumption, and the other presenting an ML-based method for the UE-based estimation
of transmission power using available quality indicators.

9.2.2 Power Consumption with Distributed Channel Access

In unlicensed bands, a distributed channel access method is often used to enable fair
coexistence of different technologies. These bands include the Industrial Scientific
Medical (ISM) band at 2.4 GHz and the SRD band at 868 MHz. The latter is used for
the communication of the PhyNode. Distributed channel access is based on the Listen
Before Talk (LBT) principle, which is known in a similar form as Carrier Sense Multiple
Access Collision Avoidance (CSMA/CA) for WLAN and ZigBee networks. For the SRD
band, channel access is specified by European Telecommunications Standards Institute
(ETSI), which is shown schematically in Figure 9.6. Stations with a transmission intent
hold back their transmission until the transmission channel is free. When the channel
becomes free, the system waits an additional backoff time t; = tr + tps with ¢t = 5 ms.
Thereby tps is randomly selected for each startup in the interval O ms to 5ms. If the
channel is still free after ¢; has elapsed, the transmission is carried out. Otherwise,
the system waits again for a free channel including a newly selected backoff time ¢; .
For acceleration in case of low channel utilization, a station can set tpg to O ms for
the first transmission attempt if the channel is continuously free between the initial
transmission request and the expiration of tr.

Figure 9.7 shows the channel occupation by three stations in the radio spectrum.
At the beginning of the recording, the channel is continuously occupied by a jammer.
The three stations already have a transmission intent and hold back their transmission
for the time being. After switching off the jammer, the three stations transmit one after
the other according to the access scheme and the random backoff intervals.

However, short s result in low channel utilization and thus in reduced spectral
efficiency due to the relatively long waiting times. In addition, the channel access
method requires continuous monitoring of the radio channel between the arrival of the
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blocks indicate an occupied channel by a transmission over the air. ©[2017] IEEE. Reprinted, with
permission, from [209].

transmission intent and the actual execution of the transmission. The duration of this
monitoring increases with the utilization of the channel. Since the receive circuits must
be active during this time, the power consumption of all competing stations increases
significantly.

Figure 9.8 shows the distribution of the transceiver’s energy consumption as a
function of the number of simultaneously active devices responding to 10 product
requests in the warehouse scenario (cf. Figure 9.5). The energy accounting is obtained
from an energy-aware driver model. The measurement includes the constant part for
the reception of the 10 requests and an additional message to terminate the measure-
ment after 11.75 s, as well as the variable energy consumption for sending the replies.
Compared with the empty channel, the energy consumption increases by up to a factor
of 10 in case of more than 30 stations.

To enable an optimization of energy consumption given the scarce resource, a
simulative hardware-in-the-loop design space exploration framework was developed,
which is discussed in more detail in the following section.

9.2.3 Simulative Access-Scheme Optimization

In this section, we present a multi-methodological system model that brings together
testbed experiments for measuring real hardware properties and simulative evaluations
for large-scale considerations [206]. As a case study, we focus on parametrization of
the 802.15.4-based radio communication system, which has to be energy-efficient due
to the scarce amount of harvested energy, but avoid latencies for the maintenance of
scalability of the overlaying warehouse system. The results show that a modification of
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Fig. 9.7: Spectral view of LBT scheme in action. Three stations organize their pending transmissions
when the channel becomes free (simulated by disabling a jamming signal).

the initial backoff time can lead to both energy and time savings in the order of 50 %
compared with the standard.

Figure 9.9 shows the underlying modeling principle. On the right side is the physical
system in the form of the PhyNetLab, in which a field evaluation can be performed [206].
The left side comprises the OMNeT++ simulation system, which models the communi-
cation system including the application layer in the form of a simulation. For a given
system scenario with information on energy consumption and dwell time of individual
operating states, data volume, available energy, and the number of network subscribers,
a simulative optimization of the communication system is carried out that enables a
trade-off between conflicting target variables, e.g. latency and energy consumption.
This configuration is transferred to the physical testbed and evaluated in field experi-
ments.

The energy consumption of the communication system of the PhyNode is modeled
in the simulation as a state machine with four states (cf. Figure 9.10). In the LISTEN state,
the device periodically listens on the channel for preambles that indicate the beginning
of a new packet for reception. When this occurs, the transceiver enters receive mode
(RX) to receive the packet and then returns to LISTEN. If a packet is to be transmitted, it
enters the BACKOFF state with repeated short dwelling times in the RX mode to wait
for the free channel. After the backoff timer expires, it finally sends the packet in TX
mode. The consumption values of the individual energy states can be automatically
captured and fed into the simulation using the hardware-in-the-loop approach and the
energy-aware driver models.

Based on the presented framework, the channel access procedure can be optimized
for a given warehouse scenario. One of the most common processes in a self-inventory
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warehouse is the request for specific products in a required quantity. For this purpose,
a request is sent out as a broadcast and answered by matching containers, i.e. the com-
munication systems located on them. Depending on the equipment of the warehouse
and the usually requested quantity, only a fraction of the responses is sufficient to fulfill
the requested product quantity. This value is called the Minimum Query Response Ratio
(QRRmin S [Os 1])

The issued requests cause a large number of participants to attempt to send their
responses at the same time. They select a random backoff and then send their packets.
However, if the backoff can take on only a few discrete values compared with the
number of subscribers, collisions inevitably occur, so that transmissions have to be
repeated and the response time until QRRy,;, is reached is increased as a result. To
resolve such collisions, the 802.15.4 standard defines an exponential increase of the
backoff window in the form of a backoff exponent BE, which is successively increased
in case of collisions and then reset to the initial value BEy. The minimum backoff
exponent BEj is an optimization parameter that has to be chosen depending on the
expected number of participants and the permitted delay in case of a smaller number
of participants.

Figure 9.11 shows the exemplary application of the framework to optimize the initial
backoff exponent BE for different QRR .

The results show that for QRRy,i, = 0.8, an initial BEy = 8 compared with BEy = 3
for 420 responding nodes reduces the energy consumption by 49 % while reducing the
time to fulfill the request by 56 %. However, even with smaller numbers of nodes, choos-
ing a larger BE( has a positive effect on both objectives. However, at lower QRR i, = 0.2,
a larger BEj leads to higher energy consumption in favor of reduced response time.
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Fig. 9.10: State machine model of the transceiver. ©[2018] IEEE. Reprinted, with permission, from
[206].

9.2.4 Power Consumption in Cellular Networks

Due to the increasing spread and popularity of cellular radio networks for networking
the smallest mobile devices, the analysis and optimization of energy efficiency is also
gaining importance in this domain. Centralized control by static infrastructure, i.e. by
the base station and backhaul, enables resource optimization without the intervention
of the end devices. For example, it can be considered whether distant stations with
poor channel conditions receive a greater short-term pensum of spectral resources to
perform their transmission than stations with good channel conditions that can still
achieve high data rates using lower transmit powers.

Optimizations of power consumption, however, require precise power consumption
models that on the one hand provide accurate estimates and yet can be calculated
efficiently. For this purpose, CRC 876 has contributed the CoPoMo [192], a Markovian
power consumption model for calculating the power consumption of current LTE and
LTE-A terminals. The calculation takes into account device-specific consumption char-
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Fig. 9.11: Simulation results of the energy consumption (left) and query response time (right) as
a function of the number of concurrently replying nodes for different backoff configurations and
minimum query response ratio. ©[2018] IEEE. Reprinted, with permission, from [206].

acteristics as well as spectral resource utilization, the frequency range used, mobility,
built environment, and the type of data traffic.

The following sections introduce the basic concepts of CoPoMo, and then present
extensions and case studies for resource optimization.

9.2.4.1 Context-Aware Power Consumption Modeling
This section introduces the basic concepts of CoPoMo [192]. As in all communication
systems, the power consumption of a UE depends on the current operating state, which
in turn is influenced by numerous context and system parameters. The power con-
sumption is caused by the digital signal processing and the operation of the High
Frequency (HF) components for receiving and transmitting the radio signals. Due to the
use of Application-Specific Integrated Circuits (ASICs), the signal processing is charac-
terized by a relatively low power consumption, which scales only insignificantly with
the effective data throughput, and can thus be assumed to be constant in many cases
during an ongoing transmission. The consumption by the HF receiver is also usually
not influenced by the received field strength and the effective data throughput, and thus
also assumes a constant value for the respective frequency band during reception [191].

The power consumption of the UE is dominated by the consumption of the power
amplifier for the transmission of messages in the uplink, especially at high transmission
powers for overcoming a high path loss [191]. Figure 9.12 shows the average power
consumption of a smartphone as a function of the transmit power of the power amplifier.
The measurement covers the entire system, i.e. including the main processor, display,
signal processing and all active HF components. Background activities and display
brightness were reduced to a constant minimum.

A small increase in power at low transmitting powers and a steep increase in power
consumption at high transmitting powers can be observed. The reason for this is the
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Fig. 9.12: Power consumption of a Samsung Galaxy S5 smartphone at 800 MHz in relation to trans-
mission power. ©[2017] IEEE. Reprinted, with permission, from [208].

Fig. 9.13: Markovian power state model of LTE User Equipment (UE). ©[2017] IEEE. Reprinted, with
permission, from [208].

typical use of two different power amplifiers with different operating ranges, which
are switched to increase efficiency depending on a threshold value y. Since the power
consumption within the respective operating ranges is approximately linear, CoPoMo
uses two linear models for power estimation, consisting of the respective slopes a, the y-
intercept B, and the switching point y, which are determined by empirical measurement
series for each system and frequency band.

Further investigation has shown that the power consumption can be accurately
estimated using four reference points of the linear model Py, P,, P; and P,, so that
the power consumption of an LTE UE can be described by a state model consisting
of four corresponding states [190]. The state model is shown in Figure 9.13. State 1
represents the power consumption in idle state without outgoing data transmission.
State 2 represents transmission with low transmit power (the point at 0 dB), state 3
represents transmission with high transmit power (midpoint between y and maximum
transmit power), and state 4 represents transmission with maximum transmit power of
23dBm.

Transitions between states are given in terms of transition probabilities A; and
u; and always lead over state 1, since state 2, 3, and 4 present states with outgoing
transmission, during which the UE remains in this current state and is not able to switch
into a different transmission-related power state. The state transitions are obtained
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from the augmented overall model, which is shown in Figure 9.14. A; is calculated as
A; = A-8;, where % corresponds to the arrival rate of outgoing data transmissions and 9;
with Zf;z 9; = 1 indicates the distribution of the residence time in states 2, 3, and 4. The
latter depends on the cell environment k, mobility p, and carrier frequency f., and can
be determined, say, by ray-tracing analysis and the statistical evaluation of path loss.
i is the inverse of the service rate and is calculated as y; = % with average file size D
and the average uplink data rate R; achieved in state i. The data rate in turn depends on
the number of allocated RBs M(i) and the Modulation and Coding Scheme (MCS) ID(i),
which are dynamically allocated according to the base station’s scheduling strategy.

Finally, state probabilities can be determined from the transition probabilities,
which then describe the average residence time in each state. The average power con-
sumption of the UE can be determined together with the state-specific power consump-
tion.
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9.2.5 Uplink Power Prediction with Machine Learning

This section summarizes the work on ML-based uplink power prediction according
to [207]. Energy-aware system design is an important optimization task for static and
mobile IoT-based sensor nodes, especially for highly resource-constrained vehicles
such as mobile robotic systems. For 4G/5G-based cellular communication systems,
the effective transmission power of uplink data transmissions is of crucial importance
for the overall system power consumption. Unfortunately, this information is usually
hidden within off-the-shelf modems and mobile handsets and can therefore not be
exploited for green communications. Moreover, the dynamic transmission power con-
trol behavior of the mobile device is not explicitly modeled in most of the established
simulation frameworks.

In order to close this gap, we present a novel machine learning-based approach for
forecasting the uplink transmission power used for data transmissions based on avail-
able passive network quality indicators and application-level information. A schematic
illustration of the proposed solution approach is shown in Figure 9.15. The key idea is
to leverage an SDR (Software-Defined Radio)-based measurement setup—capable of
simultaneously determining the uplink transmission power Prx and different network
context indicators—in order to derive a machine learning-based prediction model that
infers Prx from the context measurements. This model can then be deployed to other
platforms that are not capable of determining Prx on their own.

The required machine learning model is derived from comprehensive field measure-
ments of drive tests performed in a public cellular network and can be parameterized
for integrating all measurements that a given target platform is able to provide for the
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Fig. 9.16: Road map with locations of all data samples of the measurement campaign between two
larger cities in Germany. Each blue point represents an intermediate status logging of all measured
variables (cf. Table 9.3) during ongoing uplink transmissions. (Map: ©OpenStreetMap contributors,
CC BY-SA). ©[2018] IEEE. Reprinted, with permission, from [207].

prediction process. Figure 9.16 shows a road map of the measurement points along a
vehicular trajectory that covers urban, suburban, and rural environments. In total, 6172
have been acquired during the real world measurements. In focusing on the platform’s
sensing capabilities, we considered four different variants of feature sets. A summary
of the feature sets and the implied impact factors of the contained features is given in
Table 9.3.
For performing the actual prediction task, different regression models are consid-
ered:
Random Forest with 64 trees and a maximum depth of 32.
Deep Learning with three fully connected hidden layers, 64 neurons per layer, and
Rectified Linear Unit (ReLU) activation function.
Ridge Regression with 12 model parameters (one per feature plus one bias term).

The results of the 10-fold cross validation are summarized in Figure 9.17. While the
differences between the feature set variants are comparably small, larger differences
between the machine learning models can be observed. The Random-Forest models
thoroughly performed best with a mean average error of 3.166 dB. It can also be seen
that the standard deviation between the different cross validation runs is small, which
indicates a good model fit to unknown and independent data.
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Tab. 9.3: Captured features and association with application-specific prediction models based
on full-feature set [, practical sets P1/P2, and simulation set S. ©[2018] IEEE. Reprinted, with

permission, from [207].

Parameter Model Indicated Influences(s)

Velocity F,P1,P2,S Distortions by fast fading

Upload size F,P1,P2,5 Influence of TCP slow start

RSRP F,P1,P2,S Signal strength, distance

RSRQ, SINR F,P1,P2 Signal clarity, interference
Datarate F,P1 Signal strength, allocated RBs M
RSSI F Signal strength, distance
Frequency band F Environment [349]

Number of neighbor cells (in- [ Environment, cell density, interference
tra/inter freq.)

Cell bandwidth F Exhaustion of TX-power headroom

[l I Random Forest [ [l Deep Learning [l Ridge Regression
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Fig. 9.17: Cross-validated error of trained prediction models for each feature subset (F, P1, P2, S)
and each machine learning method (Random Forest, Deep Learning, Ridge Regression) in terms
of Root Mean Squared Error (RMSE) (left) and Mean Absolute Error (MAE) (right). Lower is better.
©[2018] IEEE. Reprinted, with permission, from [207].
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