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Hierarchical Temporal Memory Theory Approach to Stock Market Time Series Forecasting
Reprinted from: Electronics 2021, 10, 1630, doi:10.3390/electronics10141630 . . . . . . . . . . . . . 59

Yuan Yuan, Chunfu Shao, Zhichao Cao, Zhaocheng He, Changsheng Zhu and Yimin Wang
et al.
Bus Dynamic Travel Time Prediction: Using a Deep Feature Extraction Framework Based on
RNN and DNN
Reprinted from: Electronics 2020, 9, 1876, doi:10.3390/electronics9111876 . . . . . . . . . . . . . . 75

David Garcı́a-Retuerta, Alberto Rivas, Joan Guisado-Gámez, Eleni Antoniou and Pablo
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Preface to ”Advances in Public Transport Platform for
the Development of Sustainability Cities”

Modern societies demand high and varied mobility, which in turn requires a complex transport

system adapted to social needs that guarantees the movement of people and goods in an economically

efficient and safe way, but all are subject to a new environmental rationality and the new logic of

the paradigm of sustainability. From this perspective, an efficient and flexible transport system that

provides intelligent and sustainable mobility patterns is essential to our economy and our quality

of life. The current transport system poses growing and significant challenges for the environment,

human health, and sustainability, while current mobility schemes have focused much more on the

private vehicle that has conditioned both the lifestyles of citizens and cities, as well as urban and

territorial sustainability.

Transport has a very considerable weight in the framework of sustainable development due to

environmental pressures, associated social and economic effects, and interrelations with other sectors.

The continuous growth that this sector has experienced over the last few years and its foreseeable

increase, even considering the change in trends due to the current situation of generalized crisis,

make the challenge of sustainable transport a strategic priority at local, national, European, and global

levels.

This Special Issue will pay attention to all those research approaches focused on the relationship

between evolution in the area of transport with a high incidence in the environment from the

perspective of efficiency, which has become one of the neuralgic centers of sustainability. This

relates to producing, consuming, and moving people and goods better, with fewer resources and

less environmental impact.

Juan M. Corchado, Josep L. Larriba-Pey, Pablo Chamoso, and Fernando De la Prieta

Editors
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1. Introduction

There is high and varied mobility in modern societies which requires a complex
transport system that adapts to social needs and guarantees the movement of people and
goods in an economically efficient and safe way. All this designed from the new perspective
of environmental wellness and of the sustainability paradigm. From this viewpoint, an
efficient and flexible transport system that provides intelligent and sustainable mobility
patterns is essential to our economy and quality of life. The current transport system poses
growing and significant challenges for the environment, human health, and sustainability.
Existent mobility schemes focus excessively on the use of private vehicles which have
conditioned the lifestyle of citizens in cities, as well as urban and territorial sustainability.

Transport is an important element of the sustainable development framework due
to the growing environmental strain, the associated social and economic effects, and its
interconnection with other sectors. The continuous growth that this sector has experienced
over the last few years and its foreseeable future growth, even considering the change of
trend caused by the current situation of generalized crisis, make the challenge of sustainable
transport a strategic priority at local, national, European, and global levels.

2. The Present Issue

This special issue consists of sixteen papers covering important topics in the field of
public transportation under the framework of smart cities.

The research community is now turning its attention to different areas such as opti-
mization and prediction [1–5]. As evidenced in references [2,3,5], which have analyzed
travel time data to evaluate the performance of a public transport system. Others have
focused on the demand for different modes of transportation and interaction among them,
including a proposal for minimizing the passengers’ waiting times and maximizing the
vehicles’ occupancy ratios. The use of unmanned aerial vehicles for emergency situations
is extensively described in [1] for search and rescue operations, surveillance, disaster moni-
toring, response to terrorist attacks. Finally, ref. [4] studied the influence of the economy
on transportation systems.

Recommender Systems are also commonly used within the framework of transporta-
tion for sustainable cities. Hence, references [6,7] focused on offering improved usability
and services based on multi-modal door-to-door passenger experiences to increase en-
gagement. Other examples can be found in reference [8], where recommendation systems
are designed to improve the passengers’ experience and the drivers’ profit. Finally, other
approaches focused on educating the general public about this topic [9].

Other topics included in this special issue are energy consumption forecasting in
sustainable cities [10] as well as the analysis of energy trading and the development of
a trust model [11]. Security is also an important issue within public transpormation, in
reference [12] the secure management of railway transportation systems has been analyzed.
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Finally, analytical models using Machine Learning and Deep Learning have been
explored as part of this special issue [13,14]. Also, two case studies, carried out in the city
of Barcelona, Spain [15] and Taipei, Taiwan [15], have been described.

3. Conclusions

This special issue has paid attention to all the research approaches that focus on the
relationship between the evolution of transportation and the new perspective of achieving
environmental wellness and efficiency, which has become one of the cornerstones of
sustainability. It revolves around producing, consuming, and transporting people and
goods better, while using up fewer resources and having lower environmental impact.
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Abstract: Unmanned aerial vehicles (UAVs) have been used extensively for search and rescue opera-
tions, surveillance, disaster monitoring, attacking terrorists, etc. due to their growing advantages of
low-cost, high maneuverability, and easy deployability. This study proposes a mixed-integer pro-
gramming model under a multi-objective optimization framework to design trajectories that enable a
set of UAVs to execute surveillance tasks. The first objective maximizes the cumulative probability of
target detection to aim for mission planning success. The second objective ensures minimization of
cumulative path length to provide a higher resource utilization goal. A two-step variable neighbor-
hood search (VNS) algorithm is offered, which addresses the combinatorial optimization issue for
determining the near-optimal sequence for cell visiting to reach the target. Numerical experiments
and simulation results are evaluated in numerous benchmark instances. Results demonstrate that the
proposed approach can favorably support practical deployability purposes.

Keywords: unmanned aerial vehicles (UAVs); multi-objective optimization; integer programming;
GLPK; variable neighborhood search; search and rescue

1. Introduction

The path planning problem for a set of Unmanned Aerial Vehicles (UAVs) has gained
unprecedented interest from researchers and practitioners to develop intelligent systems
and execute various tasks with minimum human intervention. With upgraded components
such as cameras, sensors, or telemetry systems, UAV application is becoming an integral
strategic part for emergency management; aerial photography; mountain rescue; smart
farming; maritime search and rescue; information collection, post-disaster relief; homeland
security, crowd management, etc. [1–3]. UAVs, in practice, has many significant advantages
such as human workload reduction, high mobility, saving of valuable resources, etc. In the
literature, the path planning problem is categorized in several ways according to problem
characteristics. For example, according to the targets’ reaction, one can classify the problem
into two categories: one-sided vs. two-sided path planning problems. On the other hand,
based on targets’ motion, one can classify the situation as static vs. moving target search or
open vs. closed-loop decision models based on the decision-making context [4–10].

In recent years, the utilization of UAVs has been becoming increasingly attractive in
the context of Smart City Management solutions. Several key technologies are continuously
integrated into smart cities operations, such as data collection and protection and intrusion
detection technologies. In this regard, the application of UAVs to collect data or images
is an economical and effective solution. UAVs operations can lead to a new paradigm for
developing smart cities with a high-quality life and sustainable economic growth. For
example, Felemban et al. [11] noted that UAVs could be used to detect the earlier signs
of a stampede, congestion, and other crowd problems. The authors proposed a Priority-
Based Routing Framework to increase the delivery speed of images during Hajj in Saudi
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Arabia. Researchers found that UAVs can be helpful in policing systems to fight against
crime [12]. It was reported that such UAV policing systems work well for extensive crime
deterrence [13]. However, there are many challenges, and we highlight one of those where
UAVs are deployed in search and rescue problems.

Due to the sequential decision-making nature, the fundamental search and rescue
path planning problem is a non-deterministic polynomial-time problem (NP-hard) [14].
Therefore, researchers employ both exact algorithm and heuristic approaches alternatively
to solve such complex decision-making problems. One can argue that the modern search
theory originated from the pioneering works by the group of researchers, Stewart [8],
Brown [15] and Benkoski et al. [16]. Researchers mainly focus on the allocation decision
instead of the optimal sequential path generation. By assuming an exponential detection
function, Stewart [8] formulated a network flow model to characterize a moving target
detection problem and used the branch and bound method to find a near-optimal solution.
Later, Eagle [4] formulated the model in a dynamic programming framework and utilized
the Markov process to replicate target motion as state transitions. Washburn [17] made an
effort to determine the best upper bound for a generalized path planning problem. After
that, researchers progressively shifted their attention toward the evaluation of algorithm
performance in more complex enshrinement [18]. However, the travel time in the earlier
model was assumed as uniform. Lau et al. [19] relaxed this assumption and formulated a
model where travel time among regions are non-uniform. Rogge and Aeyels [20] introduced
the concept of a collaborative path planning problem where the search area consists of
multiple moving targets with an arbitrary number of obstacles. Li et al. [21] studied energy-
efficient rechargeable UAV deployment strategy to provide seamless coverage in urban
areas and employed the two-stage particle swarm optimization (PSO) algorithm to solve
the problem. Regarding other variants, Berger and Lo [22] introduced a mixed-integer
programming model under a directed acyclic graph framework and used CPLEX software
to find an optimal path. To overcome computational effort, Perez-Carabaza et al. [23]
proposed a modified ant colony optimization (ACO) algorithm to investigate the nature
of trajectories for a set of heterogeneous UAVs. Ye et al. [24] used an adaptive genetic
algorithm (GA) to find the solution for a collaborative multiple task assignment problem
with fixed-wing UAVs. The authors employed a robust encoding strategy to generate
feasible chromosomes. Lu et al. [25] use the wolf pack algorithm (WPA) to solve the task
assignment problem for UAVs. The authors found that WPA can outperform PSO and GA
in terms of convergence speed and solution accuracy. Lou et al. [26] proposed a multi-
swarm fruit fly optimization algorithm to find a solution for multi-UAV cooperative mission
planning problem. However, Alhaqbani et al. [27] stated that a common problem in most of
the metaheuristics is that those can perform poorly in regards to run time. More recently,
Xiong et al. [28] introduced Voronoi-based Ant colony optimization algorithm combined
with the Dijkstra’s algorithm to investigate optimal trajectories. In recent years, various
types of machine learning algorithms have been employed to obtain optimal deployment
strategy, and we refer to the recent review works by [29] and [30] for detailed discussion in
this aspect. In addition, we refer the following works for more discussion on path planning
from various perspectives [31–37].

In this study, we use a modified Variable Neighborhood Search (VNS) meta-heuristic [38].
Since its inception, the algorithm has been employed in numerous fields such as network
design problems in communication [39], facility location problem [40], data mining [41],
timetabling and related manpower organization problems [42], single- and multi-objective
job shop scheduling [43,44], vehicle routing problem [45] and bioinformatics [46] due to its
user-friendliness, higher precision and robustness. The VNS systematically exploits the
idea of neighborhood change iteratively to improve the initial solution inside the shaking
and local search procedures [47,48]. Unlike other meta-heuristic approaches, parameter
tuning is always an issue; the fundamental VNS algorithm and its extension version require
few or, occasionally, no parameters. One significant advantage to the VNS-based approach
for path planning is that it accommodates the path maneuverability through the path
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constructor (see Algorithm 1) operator. At the same time, the inherent shaking procedure
seeks to overcome the possible local optima. The algorithm then attempts to improve the
randomly changed path to catch a more rewarded path than the incumbent solution.

The cited literature’s main disadvantage is that most authors only studied the problem
as a single-objective optimization problem, e.g., maximizing the probability of finding
targets, minimizing the path length, equal utilization of resources, etc. However, in a
time-constrained decision-making context, only considering one objective may not lead
to an acceptable outcome [49,50]. From a practical point of view, it is essential to handle
several objectives simultaneously to obtain a pragmatic solution. Explicitly, the two most
fundamental goals that need to be considered are maximization of finding the targets and
minimizing the path length objective that can ensure minimum utilization of resources and
implicitly ensure less operational time and energy consumption. It is challenging to find
the ideal solution due to the conflicting nature of objective functions; therefore, researchers
have proposed different approaches such as weighted sum [51], global criterion [52], goal
programming [53], multi-choice goal programming [54], non-dominated sorting genetic
algorithm II [55], fuzzy-two phase approach [56], etc., and the issue of a specific method
largely depends on the decision-makers. Note that UAV path planning is itself an NP-
hard problem [57]; thus, we use a simple weighted sum approach in this study. This
study formulated the model as binary linear programming (BLP) formulation under a
bi-objective optimization environment and proposed a modified VNS algorithm to find the
solution. Numerical experiments were conducted to validate the overall framework. The
key contributions of the study are as follows: First, a bi-objective optimization problem is
proposed to obtain paths for multiple UAVs in a time-constrained environment. Second, a
modified VNS algorithm is proposed, which is highly parallelizable and straightforward to
understand. Moreover, the simulation study reveals that it can provide a solution within a
reasonable time when the exact solver fails to provide a solution, and the performance for
the algorithm is always higher compared to Dijkstra’s algorithm, which is extensively used
by several researchers [58,59]. Finally, a sensitivity analysis on the weight-space provide
an overview regarding the importance of multi-objective formulation in the practical
implementation of UAVs.

The paper is organized as follows. The mathematical model and corresponding
assumption and notation are presented in Section 2. In Section 3, an overview is presented
for the data generation. The solution procedure for the model is described in Section 4.
A detailed overview of the VNS algorithm is also presented in this section. Extensive
numerical experiments and validation of the proposed solution framework’s effectiveness
are presented in Section 5. Finally, Section 6 concludes by highlighting findings, limitations
and future research directions.

2. Mathematical Model

Path planning and trajectory mapping for UAV is an important topic because of the
incredible versatility and flexibility of UAVs that allow them to be employed in different
operations. Although path planning goes before trajectory mapping, fundamentally, their
characteristics are not entirely distinct. If point-to-point trajectories are measured, the two
problem needs to be solved simultaneously if the initial and final positions are specified.
One can define the path planning problem as finding a collision-free motion within a
specified environment where initial and final locations are pre-defined. In this study, we
use the cell decomposition method. In this method, the entire search space is subdivided
into several regions (equal/unequal), called cells. The corresponding path will represent
a connected graph and describe the adjacent relations between cells. Simultaneously, the
trajectory planning problem is based on the input generated by the path planner. To plan a
trajectory, commonly, a sequence of waypoints needs to be extracted. A kinematic inversion
needs to be performed based on some decision-maker criteria such as minimizing total
execution time, energy, distance, jerk, etc. In the present formulation, we ignore the effect
of the kinematics of the UAV. We assume that a team of homogeneous UAVs is searching
stationary targets in a pre-defined search region [60].
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The search area is divided into an N× N grid describing possible target locations. The
time duration for each cell visit, with equal size, is assumed as constant. The cell occupancy
probabilities are generated initially, and, as we assume the targets to be stationary and non-
moving, we omit the dynamics of a changing probability map. To maneuver its neighboring
cells, any UAV can move in eight different directions{E, W, N, S, SE, SW, NE, NW}. However,
at the cell where the UAVs start maneuvering is located, the UAVs are also allowed to
hover. This mimics the possibility of early landing or later departure for some UAVs. A
graph theory-based directed acyclic network representation is employed to streamline the
setup. The entire graph is defined as Gt = (Vt, Et) for all t in a given time horizon T, Vt, the
set of vertices, represent all possible locations n ∈ N∗ = {1, . . . , N2 − 1, N2} at time t ∈ T.
Et, the set of edges, represents all the possible state transition related to each UAV between
episodes t and t + 1. An adjacency matrix A defines the connectivity of G, Atn′n = 1 if
vtn′ ∈ Vt and vt′n ∈ Vt+1 are connected, else Atn′n = 0. Consequently, a binary decision
variable xntr is introduced to represent the cells n traversed at the respective time period t
for the respective rth UAV.

The following notations are used to formulate the mathematical model:

N the entire search region is divided into N × N number of cells with equal area in the grid, n ∈ N∗ = {1, .., N2 − 1, N2}
T set of time intervals with equal length defining the time horizon to explore a grid, t ∈ {0, 1, . . . , |T| − 1}
R number of UAVs, r ∈ {1, . . . , R}
pn probability of actual target occupancy on cell n
xntr state transition binary variable; xntr = 1, if the path of rth UAV investigates the nth cell in time period t, while xntr = 0, if that the

corresponding cell is not visited
Fn′ntr a binary matrix representation of the infeasible maneuvers. That is, Fn′ntr = 1 whenever Atn′n = 0
Zntr a binary binary matrix representation of all cells through the time horizon representing the same location
Bntr a binary matrix representation of the cells that can only be visited once
Hntr a binary matrix representation of all maneuvers performed in the time period t
Sntr a binary matrix representation of start and ending positions for rth UAV

Based on the above notation, the following mathematical model is proposed, where
the first objective represents the cumulative probability of success for the total number of
UAVs to be deployed and the second objective minimizes the total spent time performing
the mission:

max f1 = ∑
r∈R

∑
t∈T

∑
n∈N∗

pnxntr (1)

min f2 = ∑
r∈R

∑
t∈T

∑
n∈N∗

xntr

RT
(2)

s.t.

∑
t∈T

∑
n∈N∗

Fn′ntrxntr ≤ 1 ∀r ∈ R ∀n′ ∈ N∗ (3)

Constraint (3) ensures that infeasible maneuvers cannot be performed between two
consecutive time periods. The binary matrix F showcases each pair between consecutive
cells n and n′ that are infeasible for a given time period t. That is, if Fn′ntr = 1, then the two
cells n and n′ in time period t and t + 1, respectively, are not feasible in the same path for
any r.

∑
r∈R

Zntrxntr ≤ 1 ∀n ∈ N∗ t ∈ T (4)

Constraint (4) enforces a safety zone around each path, that is, a single agent r can
only traverse a cell in a given time period. Note that the binary matrix Z showcases the
decision variable’s index that represents the same time period.

∑
r∈R

∑
t∈T

Bntrxntr ≤ 1 ∀n ∈ N∗ (5)

Here, constraint (5) considers gathering images of a cell over multiple different time
periods, where the binary B matrix showcase each index that represents the same cell. In
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this paper, we neglect the dynamics of changing probability, and we are not interested in
obtaining a search path that acquires multiple images of the same cell. Note that we do
not have to consider a conditional probability map that is dependent on the chosen paths
because of this constraint, as the cumulative probability will be in the range of [0, 1].

∑
n∈N2

Hntrxntr = 1 ∀n ∈ N∗ r ∈ R (6)

In constraint (6), the binary H matrix ensures that the paths only allow a single
maneuver to be performed per time period per UAV.

∑
r∈R

∑
t∈T

Sntrxntr = 1 ∀r ∈ R (7)

Constraint (7) ensures that the complete path starts and ends in the designated time
zones in the designated time periods.

xntr ∈ {0, 1} ∀n ∈ N∗, ∀t ∈ T, r ∈ {1, . . . , R} (8)

Finally, the above constraint (8) represent the decision and auxiliary variables.

3. Scenario Generation

The UAV-assisted SAR mission generally consists of multiple different phases, with
the common goal of deploying as soon as possible when sufficient information about the
mission is gathered. The UAV aspect is to either aid or collect information as fast as possible
for the rescue team’s job. In this research, the UAVs are only gathering information through
images. Therefore, when generating the problem scenarios, we have to assume some
information that later can be modified to accommodate real-world scenario. In general, the
overall map is divided into an N × N grid where each cell is assumed to have the same
area. Then, a probability map is generated where each cell is given a certain probability
of containing the missing target. The probability map is generated randomly based on
a given number of hotspots and corresponding spread (see Figure 1). To accommodate
the problem scenario, the number of deployed UAVs also affects the size of the problem
scenario. These are assumed to be taking off and landing in a specific grid cell. There is also
denoted a time horizon with a given number of equidistant points in time, and the UAVs
are then able to search an entire grid cell for each time period, and then go to one of their
neighboring grid cells in the following time period. As mentioned in the Mathematical
Modelling Section, the UAVs can move in all directions, but they can only hover (land) in
the grid cell containing the UAV station. Note that this cell, therefore, should not have any
gain or loss in terms of the objectives, e.g., probability of locating the target. Due to the
problem complexity, we assume there to only be two hot spots with a spread of three and
the UAV station to be located in grid cell [0, 0]. The parameters assumed to affect the size
of the problem scenario are the grid size, N, time horizon, T, and number of UAVs, R.

Note that the proposed division of the search area is analogous to the raster model,
which is a data storage method used extensively in geographic information systems.

4. Solution Procedure

In this section, we explain the solution procedure and the selection of search pa-
rameters for the employed search method. The exact approach is often not applicable in
large-scale scenarios, as it can even fail to deliver a feasible solution. In a time-restricted
environment such as UAV-assisted search and rescue, this is not applicable. On the other
side of the spectrum, a greedy approach does deliver a feasible solution, but it often lacks
in performance. This is what we try to investigate with the deployed VNS approach. We
evaluate the performance of the algorithm with Dijkstra’s algorithm and exact solvers such
as GNU Linear Programming Kit (GLPK) to establish its efficiency. However, before doing
so, the following definitions should be presented.
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Figure 1. Probability map on a 30 × 30 grid given six hotspots with a spread of 3. The start and end
cell (UAV station) is located in cell [0, 0] in the upper left corner.

Definition 1. Multiple objective optimization problems can be represented as follows:




max ( f1(x), f2(x), . . . , fk(x))
min (g1(x), g2(x), . . . , gr(x))
s.t. x ∈ X = {x | ht(x) ≤ 0, t = 1, . . . , m}

where x = (x1, x2, . . . , xn) are the decision variables; fi(x), (i = 1, . . . , k) are maximization
type objective functions; gj(x), (j = 1, . . . , r) are minimization type objective function; ht(x),
(t = 1, . . . , m) are set of constraints [60].

Definition 2. A decision plan x0 ∈ X is said to be a Pareto optimal solution to the multiple
objective optimization problems if there does not exist another y ∈ X, such that fk(y) ≤ fk(x0) for
all k and fs(y) < fs(x0) for at least one s Wu et al. [61].

From the perspective of the search and rescue problem, it is difficult to define the strict
upper or lower bounds for the multi-objective setting problem. This is first because of the
fuzzy nature of the multi-objective setting but also because of the complexity of obtaining a
solution. Therefore, we incorporate both exact and inexact solution approachs to illustrate
these issues.

4.1. Transforming Multi-Objective Framework into a Single-Objective One

When dealing with a multi-objective framework, several types of solution approaches
can be applied, such as transforming the problem into a single-objective one, incorporating
them through a lexicographic method, identifying the entire Pareto front to determine the
trade-off among objective weightings, etc. Therefore, it generally comes down to whether
the decision maker’s preference is incorporated before, under or after exploring the solu-
tion space.

In a time-restricted environment such as search and rescue mission planning, it is
of absolute necessity that a solution can be obtained in real-time. Therefore, we utilize
the approach to transform the multi-objective framework into a single objective. For the
bi-objective framework, the objectives do not have a fitting cost transform due to the
respective units of the objectives. However, there is a range similarity in terms of the sum
of them being between 0 and 1; a simple weighted average is, therefore, fitting to do this.
Here, α represents the trade-off between the objectives [62].

fcombined = α f1 + (1− α) f2 (9)

Note that the naive weighted average can be controversial, and we therefore elaborate the
use of this in Section 5 (for more information see, Wang [29]).
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4.2. GLPK

We utilized the freely available GNU Linear Programming Kit (GLPK) package for the
exact solution procedure. The GLPK package is used for large-scale mixed-integer linear
programming problems [63]. It utilizes the branch-and-cut method for integer restriction
of the decision variables, extending to the branch-and-bound and cutting plane method.
The package is implemented in Python, where a maximum solution time is set to 12 min.
In a general real-world setting, the ultimately allowed solution time in practice is likely to
be lower, and this limit is therefore only set for illustrative purposes.

4.3. Dijkstra’s Algorithm

A useful path can be established by implementing graph searching algorithms. In
this direction, we utilize Dijkstra’s Algorithm, which is extensively used in single-source
shortest path problems with non-negative weights for each edge. In implementing the
Dijkstra’s algorithm for the path finding problem, it is imperative to introduce the constraint
on revisiting nodes that represent the same location in different time periods. A way to
incorporate this is when visiting the node (i.e., that node being the lowest distance in the
queue), then not allowing it to go back after a defined safety period has passed. The set of
nodes is then removed in the same way as the visiting node is removed from the queue.
Here, the distance that is sought to be minimized is the cumulative score, while the graph
traversed is the directed graph G, not allowing it to go backward in time. We refer to the
works of Yuan et al. [58] and Sathyara et al. [59] for the detail overview of the algorithm.

4.4. Variable Neighborhood Search

The inexact solution procedure developed in this research is a two-step VNS method
that incorporates the general approaches of the VNS but couples that with the known
information of directed acyclic graph of feasible paths through a path construction al-
gorithm. The general VNS is proposed by Mladenovic and Hansen [38] in 1997, and it
represents a flexible framework for building heuristics to approximately solve combi-
natorial and non-linear optimization problems. The VNS search heuristic systematically
changes its neighborhood structures to obtain a solution. It does so based on the following
key observations [64]:

• A local optimum relative to one neighborhood structure is not necessarily a local
optimum for another neighborhood structure.

• A global optimum is a local optimum concerning all neighborhood structures.
• Empirical evidence shows that all or a large majority of the local optima are relatively

close to each other for many problems.

The ingredients of a variable neighborhood search heuristic include an improvement
phase used to improve a given solution and a so-called shaking phase used to resolve
local minima traps. The improvement phase, the shaking procedure and the neighborhood
change step are executed alternately until a predefined stopping criterion. This research
combined it with a path construct algorithm to obtain feasible solutions more quickly and
ensure that it follows the stated constraints. The path construct algorithm can be found in the
pseudo-code of Algorithm 1. This approach linearly goes through the available time horizon
and selects the next maneuver through a weighted probability based on each alternative’s
respective score. It accompanies the constraint by removing feasible maneuvers and steers
it back to the end position by narrowing the feasible maneuvers based on the Chebyshev
and Manhattan distances to the end position. Note that this feature of steering the path
back to the selected end position is necessary as the two-step VNS randomly selects new
neighborhoods to investigate. The grid representation is, therefore, not enough to steer it
back. The integrated VNS approach selects a random neighborhood to improve upon the
path. It stops selecting new neighborhoods when a designated number of iteration have
been investigated. The pseudocode of the algorithm is presented in Algorithms 1 and 2.
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Algorithm 1: The path constructing algorithm: path_constructor(x_original, t1,
t2, rs, score)

Result: feasible path in x
1 x_original := the path that should be updated
2 N, R, T := the dimensions of the problem (grid size, number of UAVs, size of time horizon)
3 t1, t2 := the start and end time where a new path between should be located
4 rs := the set of UAVs
5 x_new := x_original
6 x_new[:,:,[t1:t2]] := 0
7 for r in rs do
8 start = starting position
9 end = end position

10 if start, end is empty then
11 start := global start
12 end := global end
13 end
14 t := t1 + 1
15 infeasible_neighbor := []
16 infeasible_neighbor_T := []
17 while t < t2 do
18 prior := cell of t-1 maneuver
19 feasible_maneuver := all maneuvers inside grid

/* remove infeasible maneuvers */
20 feasible_maneuvers := remove infeasible manuevers as indicated by

infeasible_neighbor if t is in infeasible_neighbor_T
21 if Manhatten distance from prior to end >= t2 - (t-1) then
22 maneuver_distance = manhatten distance from possible neighbors to end + 1
23 if maneuver_distance <= t2-t then
24 remove maneuver from feasible_maneuvers
25 end
26 end
27 if chebyshev distance from prior to end >= t2 - (t-1) then
28 maneuver_distance = chebyshev distance from possible neighbors to end + 1
29 if maneuver_distance <= t2-t then
30 remove maneuver from feasible_maneuvers
31 end
32 end
33 if maneuver in feasible_maneuvers has already been visited by other UAVs then
34 remove maneuver from feasible_maneuvers
35 end
36 if feasible_maneuvers is empty then
37 if t-1 is equal to t1 then
38 RETURN(x_original)
39 end
40 else
41 Add prior manuever to infeasible_neighbor
42 Add t-1 to infeasible_neighbor_T
43 remove prior from x_original
44 t := t-1
45 break
46 end
47 end

/* select feasible maneuver based on weighted probability */
48 ranked_maneuvers := ARGSORT(score[feasible_manuevers])
49 weighted_maneuvers := ranked_maneuvers / SUM(ranked_maneuvers)
50 chosen := CHOOSE(feasible_manuevers, weighted_maneuvers, 1)
51 x_new[chosen] = 1
52 end
53 end
54 RETURN(x_new)
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Algorithm 2: Pseudocode representing VNS(score, N, R, T, neighborhood_size,
nmax, kmax, tmax)
1 h! Result: best path P
2 score := score for each cell
3 N, R, T := the dimensions of the problem (grid size, number of UAVs, size of time horizon)
4 neighborhood_size := size of searched neighborhood
5 nmax := maximum number of neighborhood changes
6 kmax := maximum searches per neighborhood
7 tmax := total maximum runtime in seconds
8 n := 0
9 x_best := path_constructor(ZEROS(N,R,T), t1=0, t2=end, rs=[0,1], score)

10 score_best := SUM(x_best * score)
11 while n<nmax do
12 k := 0
13 while k<kmax do
14 n1 := RANDOM(0,T)
15 n2 := min(T,n1+neighborhood_size)
16 nr := RANDOM(0,R)
17 x_temp := path_constructor(x_best, t1=n1, t2=n2, rs=nr, score)
18 score_temp := SUM(x_best * score)
19 if score_temp > score_best then
20 x_best := x_temp
21 score_best := score_temp
22 k := 0
23 end
24 k := k+1
25 end
26 n := n+1
27 end
28 RETURN(x_best)

5. Experiments

All numerical experiments were executed with Intel Core i5-8250 CPU with 1.60 GHz
processors and 8.00 GB RAM for performance evaluation. For numerical verification, we
model the probability map through two hotspots with a spread of two cells.

5.1. Sensitivity of VNS Parameters

The VNS algorithm has three different parameters indicating the search depth, i.e.,
neighborhood, nmax and kmax, defining the size of the neighborhood each search consid-
ers; the maximum number of searched neighborhoods; and the number of searches per
neighborhood. The results are shown in Table 1.

Table 1. Average performance, standard deviation and average runtime for 100 different runs with different neighbor-
hood parameter.

Neighborhood Parameter Relative Performance ( fcombined) Standard Deviation ( fcombined) Runtime (s)

0.250 0.630 0.086 13.239
0.333 0.820 0.033 20.094
0.417 0.837 0.036 27.870
0.500 0.860 0.025 35.917
0.583 0.908 0.027 39.621
0.667 0.921 0.027 42.898
0.750 0.893 0.043 47.320
0.833 0.862 0.035 49.739
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The performance in Table 2 illustrates the change in deviation and runtime when
modifying the nmax and kmax parameter, but it should be noted that the computation of
these could easily be parallelized. In the parameter indicating the neighborhood’s size,
we can see that there is not a unified result showing which size of a neighborhood to
chose. Therefore, we choose to further extend the algorithm by randomly selecting a length
within the range of 0.3 to 0.9 for each neighborhood change. This furthers the shake and
improvement steps of the VNS, as both local and global solutions will be investigated.

Table 2. Average relative performance of the Variable Neighborhood Search (VNS) method compared to the exact GNU
Linear Programming Kit (GLPK) approach for 100 different runs with different nmax and kmax settings.

Avg. Performance (Relative to GLPK) Avg. Runtime (In Seconds)

nmax\kmax 5 15 25 35 45 55 5 15 25 35 45 55

50 0.778 0.844 0.847 0.865 0.907 0.889 1.279 3.634 6.006 8.895 10.885 13.773
100 0.777 0.865 0.889 0.885 0.885 0.847 2.335 7.114 11.527 16.675 22.014 26.318
150 0.931 0.890 0.870 0.931 0.950 0.933 3.662 11.177 16.975 24.241 32.656 37.795
200 0.926 0.931 0.843 0.823 0.864 0.912 5.356 14.136 23.159 32.099 42.245 54.182
250 0.867 0.779 0.911 0.933 0.891 0.865 6.185 16.359 28.851 39.850 55.093 62.888
500 0.932 0.867 0.913 0.911 0.869 0.975 12.262 33.660 59.775 87.177 102.260 126.429
1000 0.934 0.912 0.910 0.868 0.871 0.932 23.976 70.143 111.092 156.020 211.473 269.177
1500 0.886 0.846 0.928 0.928 0.867 0.913 32.441 103.338 171.001 248.853 323.948 360.003
2000 0.927 0.849 0.911 0.912 0.956 0.912 45.564 133.198 229.218 338.928 360.003 360.007
2500 0.869 0.976 0.911 0.912 0.974 0.912 61.237 175.410 298.774 360.004 360.002 360.002

5.2. Performance and Runtime for VNS, Dijkstra, and GLPK

GLPK is an exact approach and is therefore significantly slower, but it also yields
the optimal solution. However, the GLPK is not able to solve any of the larger problem
scenarios. The performance and runtime for the three approaches on different scenario
sizes relative to grid size N, time horizon T and the number of UAVs R can be seen in
Figure 2. Note that, when a solution approach reaches the time limit, the time is noted,
while its performance is not.

Figure 2. (a) The relative performance of the Variable Neighborhood Search (VNS) and Dijkstra algorithm compared to the
optimal solution found by the GNU Linear Programming Kit (GLPK) approach is shown. Note that many experiments do
not yield a relative performance as GLPK could not obtain a solution. (b) The runtime for the three approaches is presented,
demonstrating relation to different grid sizes and time horizons. The exact value of performance measures is presented in
Table 3.
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Table 3. The performance of the respective solution approaches on different scenarios. Note that
GLPK could not obtain a solution on some of the scenarios. This is illustrated by (-), while its runtime
reached the limit of 720 s.

Grid Size Time Horizon No. of UAVs Performance ( fcombined) Relative Performance

N T R VNS Dijkstra GLPK
f|V NS

f|GLPK

f|Dijkstra
f|GLPK

5 10 1 0.225 0.018 0.242 0.928 0.074
5 10 2 0.137 0.324 0.416 0.329 0.778
5 14 1 0.310 0.206 0.357 0.868 0.576
5 14 2 0.454 0.124 0.454 1.000 0.273
5 18 1 0.332 0.199 0.484 0.686 0.412
5 18 2 0.371 0.172 0.428 0.865 0.406
5 22 1 0.460 0.128 0.460 1.000 0.280
5 22 2 0.400 0.185 0.481 0.830 0.384
7 10 1 0.075 0.046 0.102 0.730 0.450
7 10 2 0.082 0.019 0.135 0.612 0.143
7 14 1 0.163 0.037 0.178 0.912 0.208
7 14 2 0.119 0.045 0.143 0.831 0.316
7 18 1 0.366 0.140 0.385 0.951 0.364
7 18 2 0.214 0.061 - - -
7 22 1 0.554 0.005 0.554 1.000 0.009
7 22 2 0.344 0.016 - - -
9 10 1 0.184 0.057 0.222 0.832 0.258
9 10 2 0.319 0.188 0.344 0.927 0.546
9 14 1 0.096 0.035 0.101 0.947 0.351
9 14 2 0.026 0.011 - - -
9 18 1 0.346 0.244 0.371 0.932 0.656
9 18 2 0.431 0.003 - - -
9 22 1 0.446 0.237 0.496 0.899 0.479
9 22 2 0.458 0.300 - - -

11 10 1 0.185 0.007 0.185 1.000 0.042
11 10 2 0.283 0.099 0.296 0.958 0.336
11 14 1 0.273 0.042 0.297 0.916 0.141
11 14 2 0.408 0.162 0.427 0.955 0.380
11 18 1 0.242 0.029 0.297 0.812 0.098
11 18 2 0.272 0.003 - - -
11 22 1 0.447 0.191 0.447 0.999 0.428
11 22 2 0.545 0.002 - - -
13 10 1 0.097 0.056 0.111 0.876 0.504
13 10 2 0.110 0.027 - - -
13 14 1 0.223 0.068 0.248 0.899 0.273
13 14 2 0.347 0.274 - - -
13 18 1 0.348 0.002 0.348 1.000 0.008
13 18 2 0.522 0.005 - - -
13 22 1 0.373 0.089 - - -
13 22 2 0.547 0.047 - - -
15 10 1 0.111 0.042 0.111 0.999 0.384
15 10 2 0.085 0.028 - - -
15 14 1 0.095 0.009
15 14 2 0.039 0.028 - - -
15 18 1 0.072 0.043 - - -
15 18 2 0.112 0.039 - - -
15 22 1 0.092 0.004 - - -
15 22 2 0.107 0.031 - - -
17 10 1 0.010 0.008
17 10 2 0.024 0.081 - - -
17 14 1 0.492 0.068 - - -
17 14 2 0.573 0.355 - - -
17 18 1 0.372 0.163 - - - -
17 18 2 0.448 0.003 - - -
17 22 1 0.249 0.001 - - -
17 22 2 0.141 0.033 - - -

The performance clearly indicates that the GLPK is generally faster for small problem
scenarios with a single UAV. However, it cannot even obtain a solution whenever there are
two UAVs to consider or the grid size or time horizon is larger. The relative performance of
VNS indicates that, for larger problem scenarios, it will perform within 20% of the optimal
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solution, while, for smaller problem scenarios, it performs within 50% of the optimal. The
latter is perhaps because VNS searches with a neighborhood size that is too small relative
to the grid size, so it will never get out of the local optima. However, it does not seem
to be an issue for the larger problem scenarios. Similarly, the Dijkstra approach seems to
decrease in performance relative to the exact approach when the scenario size increases.
This is probably due to the greedy nature of the method, as it does not want to investigate
areas that require it to cross a section of cells without any probability of success. The results
also showcase the complexity of the large-scale problem scenarios in UAV-assisted search
and rescue missions. Overall, Figure 2 demonstrates that the VNS outperforms GLPK
and Dijkstra’s algorithm in the perspective of relative performance measures for most of
the instances.

5.3. Sensitivity of Objective Weighting for the GLPK

Figure 3 illustrates the sensitivity to changes in the trade-off between objectives
represented by modifying α. The sensitivity analysis sheds light on the change in the
optimal path for different trade-offs. Figure 3 shows that the UAVs for alpha equal to
0 and 0.1 clearly stay in take-off and landing zone for the entire time horizon for both
UAVs or just for one UAV. This is because the score for each grid cell outside the take-off
zone is too high to consider. Finally, Figure 4 shows that the optimal path changes for
almost all different alpha settings. However, the pattern of each path seems to follow the
same structure because the path is sensitive to the parameter α, which also justifies the
multi-objective formulation of the problem.

Figure 3. The corresponding route in 2D generated by GLPK for different weightings of alpha on the corresponding scoring
map. Note that the illustrated paths is for two UAVs on a 6× 6 grid with a time horizon of 10 and start and end in grid cell
[0, 0]. In addition, for alpha = 0.1, the second UAV stays in the start cell.
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Figure 4. The corresponding route in three dimension generated by GLPK for different weights of alpha. The longitude and
latitude axes represent the possible maneuvers on the grid, while time illustrates the time dimension.

5.4. Benefits and Adverse Circumstances Associated with Multi-Objective Framework

The results on the sensitivity clearly showcase some of the dangers when incorporating
the bi-objective framework on the UAV pathfinding. It is very difficult to see which alpha
enforces that all equipment will be employed and not spending too much time in the
landing zone. Clearly, the solution procedure should allow UAVs to return before time, but
it is very difficult to identify when it is too early to specify through the alpha parameter.

There is similarly a robustness issue when introducing the multi-objective framework as
objectives can be conflicting, and a solution can satisfy an objective that is not of our interest.
In the case of this paper, we are clearly interested in searching as many high probability cells
as possible in as little time as possible. However, indicating how little time is too much is
very difficult in the presented setting. The last thing one wants to introduce is nervousness
in the scheduling, so some rules about searching different areas could be of advantage.

Nevertheless, introducing these additional objectives clearly brings us closer to the
optimal goal. For these search and rescue Missions, we are interested in accumulating the
highest probability of locating the missing target. We are, however, also interested in doing
it as quickly as possible by obtaining the best quality images possible. Similarly, there could
be a chance that the missing target has a higher probability of survival in some regions
than others, which is why we also are interested in locating the target alive. Therefore,
additional objectives other than the ones considered in this research could be introduced.

6. Conclusions

The smart city concept is almost around last couple of decades, and one of the critical
concepts is to integrate cutting-edge technology without raising costs in improving environ-
mental sustainability and life expectancy. In this direction, we proposed a multi-objective
path planning and trajectory mapping problem under the mixed integer programming
problem framework for a set of homogeneous UAVs deployed to search for static targets. A
graph theory-based directed acyclic network representation is employed to reduce complex-
ities and track the inward and outward movement of each UAV from its respective present
cell location by ensuring flow conservation. A modification of the basic VNS algorithm is
proposed and implemented in two phases to find the solution. In the first phase, a path is
generated and in the second phase, trajectory mapping is done sequentially by considering
constraints associated with the problem environment. Numerical simulation on synthetic
experimental settings demonstrates that the proposed approach can reduce computational
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complexity and provide a solution within reasonable amount of time compared to the
exact solver. Moreover, it is found that the exact solver is unable to provide a solution
within a time threshold. When we compare the relative performance of VNS with GLPK
or Dijkstra’s algorithm, it was found that Dijkstra’s algorithm’s performance is relatively
lower as the grid size increases, which justifies the efficiency of the proposed algorithm. To
our best knowledge, this is the first work to explore the path for multiple UAVs by using
a bi-objective VNS algorithm. Considering the numerical evaluation, one can conclude
that the approach presented in this study is a better alternative than the exact solver, and
methodology can contribute to intelligent systems.

For future work, we intend to extend the proposed approach to calculate paths
for finding moving targets. We assumed altitude differentiation from the perspective of
collision avoidance. We ignored constraints such as fuel, sensor capacity, search pattern, etc.,
those need to be integrated to formulate a robust path planning model. We compared the
outcome of proposed solution approach with exact solver, therefore one can employ other
algorithms such as particle swarm optimization [65], bat algorithm [66], A∗ algorithm [59],
machine learning (ML) algorithms [29] etc. to compare the performance of the proposed
VNS algorithm. Finally, one can use a multi-criterion decision-making algorithm [67] to
incorporate customizable preferences of decision-makers robustly to take advantage of the
inherent flexibility while setting weights.
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Abstract: Determining the best timetable for vehicles in a public transportation (PT) network is a
complex problem, especially because it is just necessary to consider the requirements and satisfaction
of passengers as the requirements of transportation companies. In this paper, a model of the PT
timetabling problem which takes into consideration the passenger waiting time (PWT) at a station
and the vehicle occupancy ratio (VOR) is proposed. The solution aims to minimize PWT and
maximize VOR. Due to the large search space of the problem, we use a multiobjective particle swarm
optimization (MOPSO) algorithm to arrive at the solution of the problem. The results of the proposed
method are compared with similar results from the existing literature.

Keywords: optimization models; timetable; passenger waiting time; vehicle occupancy ratio

1. Introduction

In modern transportation systems, the greatest challenge is to minimize, in general terms, energy
consumption, and maximize economic, technological and social goals. The problem of optimizing and
finding the best timetable for public transportation (PT) vehicles has been known for years [1–3]. Recent
research has provided more efficient algorithms which have achieved better results by modifying
known mathematical models and modifying or combining various known algorithms [4–6]. Planning
of PT is a highly complex task which is usually analyzed via two different aspects: minimization
of the passenger waiting time (PWT) at the station and optimization of the number and/or sizes of
vehicles. The train timetabling problem (TTP) has recently been studied, and the main problem in this
field is to determine a periodic or non-periodic timetable, which satisfies the capacities of vehicles
and limits of operations [7–10]. Some of the greatest challenges in waiting time (WT) minimization
models are to find the optimal number of vehicles and to find the optimal route and minimize travel
time [11]. The goal of every PT service should be to attract more people to use it by reducing the
use of private cars, which is directly related to reducing traffic congestion, decreasing the number
of car accidents and reducing pollution. The use of PT services by passengers depends on three
elements; namely, travel time (walking, waiting and riding times), fare (ticket and other related
services’ costs) and convenience (a comfortable walk, waiting under a shelter, having a seat on the

21



Electronics 2020, 9, 360

vehicle, air-conditioning on the vehicle, etc.). However, for the PT operator to maximize profits,
operational costs need to be minimized. The PT operator’s requirements can be achieved by designing
an efficient network (the more transfers the network has the more efficient it is), adopting a quality
timetable, efficiently schedule the vehicles and maximize the vehicle occupancy ratio (VOR). This paper
proposes a model of the PT timetabling problem whose solution improves PT operations planning in
terms of timetabling and vehicle scheduling; that is, changes to the departure times and assignment of
the PT vehicles, so as to reduce total PWT and increase VOR (thereby minimizing operational costs
of the vehicles for the PT operator). Due to the complexity of the problem, a multiobjective particle
swarm optimization (MOPSO) algorithm is used in order to minimize PWT while maximizing VOR.
The paper is structured as follows: Section 2 extensively describes the state-of-the-art in the timetabling
problem. Section 3 elaborates on the problem statement. Section 4 presents the proposed method,
and Section 5 contains two numerical examples. Section 6 presents the analysis and discussion of the
results. Section 7 contains the concluding remarks.

2. State-of-the-Art

In order to increase the productivity and efficiency of transport services on the one hand,
and customer satisfaction on the other , four main analytical methods for determining the number
of vehicles needed during the relevant period are presented in [1,3,12]. The first two methods in
these papers ensure the average maximum daily occupancy of the vehicles during a given period.
The other two methods elaborate on the capacities of the vehicles, which will never be exceeded with
an additional constraint on the part of the route which is loaded more than the required availability.
Numerical calculation of the average PWT at a station with a limited capacity of the intercity transport
vehicles is described in [13]. It is concluded that for a more accurate representation of PWT at the
station, the reliability of supply services, passenger behavior and characteristics of the transportation
system should be considered. The passenger transport problem is always observed from the viewpoint
of costs and improvement of business transport companies. On the contrary, passenger satisfaction
is rarely taken into account, especially when creating the timetable [14]. Passenger satisfaction is
directly related to the total travel time; the shorter the travel time the more satisfied the passenger
is and vice-versa. Excluding the travel speed of the vehicle, the total travel time can be reduced
by reducing PWT and the number of passenger transfers. Hence, in this paper, we use the term
passenger satisfaction to refer primarily to PWT. A multicriteria approach to timetabling problems,
with an emphasis on minimizing PWT at the station, is proposed in [15,16]. The authors in these
papers analyze two criteria; namely, empty seat penalty (empty seat kilometers or empty seat hours)
and approximate PWT at the station. The problem is solved using a multiobjective label-correcting
algorithm that results in 43% saving of PWT with an acceptable load of the vehicle. In order to ensure
fast and energy efficient urban rail transport, a nonlinear problem of minimizing the total travel time
and energy consumption is presented in [17]. The model reduces the cost (number of trains and energy
consumption) and improves passenger satisfaction (reduced PWT and the number of transfers, thereby
reducing the total travel time). Optimization of energy consumption and PWT can also be found
in [18]. The authors in this paper propose a bi-objective timetable optimization model to minimize
PWT and energy consumption. The genetic algorithm (GA) is used for generating a solution with
reduced total energy consumption and total passenger waiting time in comparison to the real timetable.
The timetable synchronization problem (TSP) refers to the problem of waiting time during a transfer,
which is usually solved using a branch and bound (B&B) method. In order to speed up the execution
time, the optimization based heuristic method (OHM) is developed and compared with B&B in [19].
It is concluded that OHM is much faster and optimizes the problem more efficiently. The scheduling
problem is usually based on maximization of the number of synchronized vehicles arriving at the
transfer station or minimization of the total waiting time at the station. For solving the latter problem,
a genetic algorithm with local search is used in [20]. The model is applied to a small bus network and
the cost of the waiting time is reduced by 9.5%. An optimization model for synchronizing a timetable
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is proposed in [21]; i.e., for minimizing the maximum PWT during the transfer and reducing the worst
time of the transfer. Mathematical models with PWT as the objective function at the transfer station
include a set of mixed integer programming (MIP) models [22]. The model can be solved using a
conventional MIP solver such as CPLEX solver (B&B) if there are fewer than 50 lines and by using
genetic algorithms for a greater network. Additionally, a solution of the timetable synchronization
problem is proposed in [23]. The authors develop a multicriteria optimization model which takes the
vehicle scheduling and passenger demand assignment into account. In order to solve the problem
to obtain a set of Pareto-efficient solutions, a novel deficit function (DF)-based sequential search
method is proposed. Minimization of the average transfer time in the periodic scheduling of trains
(PRTS—periodic railway timetable scheduling problem) is solved using an improved differential
evolution (DE) algorithm with dual population [24]. A comparison of the presented model against the
B&B method and greedy-based heuristic algorithm for using the PRTS simulation algorithm to solve
the problem of schedules shows that the given model provides a better indicator for PRTS problem
and numerical indicators of optimization functions. The problem of minimizing PWT at the station
and the cost of vehicle occupancy is solved using the genetic algorithm in [25]. The models developed
for solving the problem of minimizing PWT at the station are defined with preserving the flow of
passengers waiting at the station, as shown in [26,27]. The problem of PWT at the station occurs when
there is a delay in the timetable. One possible solution is to include additional time delays according to
the probability theory; i.e., the objective function includes an exponential distribution of delay, Exp()
with the expected delay, as shown in [28,29]. In [30], the problem of minimizing train delays while
maximizing the total satisfaction during a traffic jam (for example, a vehicular crash or similar) is
solved using a heuristic algorithm. Timetable optimization is based on the optimal departure time of
vehicles from the station for each line of vehicles in order to reduce PWT. A model which minimizes
PWT and distinguishes a direct vehicle transfer from walking from one station to another is solved
using a heuristic algorithm, the same as in [31]. If the headway is reduced, the average PWT can be
reduced as well. Minimization of the sum of headways results in minimization of the average PWT.
The average PWT is equal to the ratio of the sum of headway squares and the sum of headways during
which a traveler arrives. A numerical method for solving this issue is described in [32].

In order to rationalize departure intervals as much as possible, make the bus journey quicker
and minimize PWT, an optimization bus schedule model is proposed in [33]. The authors in this
paper consider vehicle overtaking, the limit of the vehicle’s capacity and the uncertainty of passenger
choice for a bus type (traditional bus or rapid bus). They propose two methods for the solution: a
hybrid method of traditional PSO (HPSO) and a combination of GA and PSO named GAPSO. Table 1
summarizes a literature review and shows the details of the studies presented in this section.

Table 1. Literature review.

Paper Year Objective Constraints Solution Method Case

[28] 2006 Minimize the waiting time
Running time, departure
time, buffer time, spacing
time

Linear programming real

[19] 2008 Minimize the interchange
waiting times

Running time, dwell
times, trip times,
headways, turnaround

B&B, heuristic real

[22] 2010 Minimize the waiting time Headway bounds, extra
dwell times Genetic algorithm real

[15] 2012

Minimize the expected
passenger waiting time and
Minimize the discrepancy
from a desired occupancy
level on the vehicles

Headway bounds,
vehicle capacity

A multi-objective
label-correcting
algorithm

real
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Table 1. Cont.

Paper Year Objective Constraints Solution Method Case

[25] 2012 Minimize the waiting time

Headway, in-train
passengers,
passenger demands,
fleet-size, number of
boarded passengers

Genetic algorithm real

[24] 2013 Minimize the waiting time Traveling time Evolutionary
algorithm real

[31] 2014 Minimize the waiting time Headway, departure
time

Tabu Search
algorithm test

[17] 2015

Minimize the total travel
time of all passengers and
the energy consumption of
the trains using a weighted
sum strategy

Headway, train
capacity

Evolutionary
algorithms test

[21] 2015 Minimize the maximal
passenger waiting time

Headway, departure
time, running time Genetic algorithm real

[32] 2015 Minimize the waiting time Headway Analytical test

[33] 2017 Minimize the waiting time Headway

Improvements of the
Genetic Algorithm
and Particle Swarm
Optimization

test

[23] 2018 Vehicle scheduling problem
with the transit assignment

Headway,
the number of vehicle
departures, fleet size

Heuristic test

[18] 2019 Minimize the PWT and
energy consumption Headway Genetic algorithm real

This
paper

Minimize the waiting time
and maximize vehicles’
occupancy

Headway, passenger
demands, number of
boarded passengers

Particle swarm
optimization test

3. Problem Statement

In order to further elaborate on the effects of departure times and the assignments of PT vehicles
on PWT and VOR, a representative network with stations A, B, C, D and E is considered [23] (see
Figure 1). The PT network has two terminals (a and b), two routes (ra−→b, rb−→a ) and one transfer stop
(node C). An estimated origin-destination (OD) demand matrix is shown in Table 2.

Table 2. Simple example origin destination matrix [23].

From \To A B C D E

A 0 100 50 70 80

B 0 0 0 0 50

C 50 20 0 80 60

D 60 0 0 0 0

E 80 100 20 60 0
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Figure 1. Example of a small network with running times (based on [23]).

The maximum load on route ra−→b is the load on route segment C-B (360 passengers), and the
maximum load on route rb−→a is the load on route segment C-D (340 passengers). Assuming that a
vehicle with a suitable capacity is used for service ACBE1, all 360 passengers on route segment C-B
will be satisfied; i.e., transferred from their respective origins to destinations. For a case in which the
vehicle does not have a suitable capacity, some passengers will be left at one of the stations, depending
on the vehicle capacity. These passengers may choose to wait for the next service or use another
type of transport (e.g., taxi). This decision is based upon the time needed to wait for the next service.
In order to perform some example calculations, let us assume that the desired occupancy (do) for
both routes is set to 70 passengers and that we have a given set of the number of departures per hour
(four for route ra−→b and four for route rb−→a). After service ACBE1 leaves Station A, 230 passengers
are left behind and have to wait for the next service. Assuming that all 50 passengers for Station C get
onboard at Station A, after service ACBE1 leaves Station C, 60 passengers are left behind. Considering
the number of passengers left in Station A by the previous service (ACBE1), after service ACBE2
leaves Station A, 460 passengers are left behind. Assuming that all 50 passengers for Station C get
onboard at Station A, after service ACBE2 leaves Station C, 120 passengers are then left behind (this
number includes those passengers left behind from the previous service). The vehicle occupancy ratio
for services ACBE1 and ACBE2 is the same: [1 1 1]. Each element of the occupancy ratio array is
given by the ratio of the number of passengers in the vehicle to the vehicle capacity and is defined
for each OD pair of the service—in this case AC, CB, BE. The amount of PWT for a given station is
defined as the product of the number of passengers left behind by the previous service and the time
needed for the current service or vehicle to arrive (plus an additional constant term which takes into
consideration the number of passengers arriving at the station in the meantime—see Equation (11)).
Hence, if the time between consecutive services is 15 min, i.e., service ACBE2 leaves 15 min after
ACBE1, the amount of PWT at Station A for service ACBE2 is 3450 passengers · min, while that of
Station C is 900 passengers ·min. Assuming that the headway between services is too long, it can be
assumed that the remaining passengers will find other means of transportation; this is suitable neither
for the service operator nor for the passengers. A cost effective solution for the service operator would
be if route ACBE were to be such that the same vehicle and crew can return and perform both services
within an hour. Otherwise, if the operator sends more vehicles per time period, additional costs are
incurred (more vehicles and crew members are needed). Supposing the operator has passenger cars
or coaches that can be connected (assuming this is a tram or rail line), then, in this example, if the
capacity is 350 (5 · 70), no passengers are left behind at Station A, which is good. However, the vehicle
occupancy ratio for both ACBE1 and ACBE2 is now [0.8571 1 0.54286]. The numbers of passengers
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left at the stations are [0 10 0] and [0 20 0] respectively for the two consecutive services. For
these reasons, it is necessary to make optimal decisions in order to satisfy the operators business
interests and passenger needs at the same time.

4. Proposed Model

In order to describe the proposed model, an overview of the notation and variables used is
provided in Table 3.

Table 3. Notation.

GENERAL
OD Origin-destination
ODs Set of OD pairs for a given service s
SOD Set of services for a given OD pair
M = {1, 2, . . . , m} Set of vehicles
N = {1, 2, . . . , n} Set of stations
L Set of lines
vs,c Vehicle v with capacity c, for service s
INDEXES
s ∈ SOD Service s from the set of services
i ∈ N Station i from the set of stations
v ∈ M Vehicle v from the set of vehicles
l ∈ L Line l from the set of lines
VARIABLES
td
s,i Departure time of the vehicle at station i for service s

ta
s,i Arrival time of the vehicle at station i for service s

do Desired occupancy
dwells,i Dwelling time at station i for service s
runs,i Running time – traveling time between adjacent

stations i and i + 1 for service s
runs Sum of running time between all adjacent

stations for service s
Hi,s Headway – difference between departure times at station i

for consecutive services s and s + 1
Ts,i Difference between departure times of vehicle v

between adjacent stations i and i + 1 for a given service s
Ti Time horizon for i-th station
P(vs,c, i) Total number of passengers in vehicle v in station i
Pij Number of passengers entering the vehicle in station i

heading for destination j (ij OD pair)
P(vs,c, kj) Number of passengers who entered the vehicle

in station k with traveling to j
Pout(vs,c, i) Number of passengers exiting vehicle v of service s at station i
Pin(vs,c, i) Number of passengers entering vehicle v of service s at station i
Pcurr(vs,c, i) Number of passengers in vehicle v of service s arriving at station i
Pstay(vs,c, i) Number of passengers remaining at station i

after vehicle v of service s leaves the station
wi Average waiting time at station i
ki Average number of passengers per time
Zi,s Amount of PWT at station i for service s
η Total vehicles’ occupancy ratio for all services for a given line
τv,s Average vehicle occupancy ratio for service s

The OD demand formulation of the number of passengers is given as input data in order to
calculate PWT for a given station. According to Figure 1, the OD pairs are AB, AC, AD, AE, CD, CA,
CB, CE, BE, EC, EB, ED, EA and DA; while the possible lines are AC, ACB, ACBE, ACD, etc. Each line
(l) has multiple services per day; for example, line ACBE has services ACBE1, ACBE2, ACBE3, etc.
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Hence, a set of services is defined for each OD pair; i.e., SACBE = ACBE1, ACBE2, ACBE3, . . . Each
service s depends on the:

• Departure time of the vehicle from station i (td
s,i);

• Vehicle assignment—vs,c = the vehicle v of service s with given capacity c.

The set of OD pairs for each service s is denoted as ODs, and the set of services for each OD pair
is denoted as SOD.

Let us suppose that the parameters are as follows. There are six OD pairs for one line ACBE:
AC, AB, AE, CB, CE and BE (i.e., OD{ACBE} = {AC, AB, AE, CB, CE, BE}). The number of passengers
entering service s at station i (Pin(vs,c, i)) is lower than or equal to the sum of the number of passengers
for all OD pairs in station i at departure time t in service s:

Pin(vs,c, i) ≤
n

∑
j=i+1

Pij (1)

where Pij is the number of passengers who arrive at station i and are traveling to station j (input data
from OD matrix). An inequality sign in Equation (1) signifies that is not necessary that all passengers
at station i board vehicle v.

4.1. Assumptions, Variables, Parameters Which Are Time Dependent

First, a set of vehicles with different capacities is considered. The set of vehicles is marked with
M = 1, 2, . . . , m (v-th vehicle is marked with index v). This is important in order to track the number
of used vehicles in the network at a certain time. The time between two consecutive services in station
i with the same OD pair is defined as:

Hi,s = td
s,i − td

(s−1),i, ∀s ∈ SOD (2)

which is the objective of timetable generation and is a dependent variable of the model.
When the vehicle arrives at the final station of the network for one service, this vehicle is free to

be used for another service. The traveling time between adjacent stations is defined as running time
(runs,i) for each vehicle v:

runs,i = ta
s,(i+1) − td

s,i. (3)

For each vehicle v at each station i of the service s, the dwelling time (dwells,i) is defined:

dwells,i ≤ td
s,i − ta

s,i. (4)

The time for boarding or alighting is considered as a constant for now. The difference between
departure times of vehicle v between consecutive stations (running time + dwelling time) for a given
service s (see Figure 2) is defined by:

Ts,i = td
s,i+1 − td

s,i, ∀s ∈ SOD. (5)
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Figure 2. Vehicle occupancy depending on time, between consecutive stations for a given service s.

4.2. Assumptions, Variables, Parameters and Sets—Passengers, PWT and VOR

For each OD pair, we have passenger variables that depend on departure times for stations (td
s,i).

The number of passengers in i-th station for j-th OD-pair (e.g., AB) for all stations for one line (at
departure time td

s,i), for a given vehicle vs,c is shown in Figure 2. The total number of passengers in
vehicle v in station i is defined by:

P(vs,c, i) = Pcurr(vs,c, i) + Pin(vs,c, i)− Pout(vs,c, i) (6)

where Pout(vs,c, i) is the number of passengers leaving service s at station i and Pin(vs,c, i) is the number
of passengers entering service s at station i. The following assumptions are made for the number of
passengers entering service s at station i: (a) The maximum number of passengers that can board the
service depends on the currently available capacity of the service; i.e., the current number of free seats.
(b) Passengers board the vehicle at station i according to the direct proportional distribution determined
by the current number of passengers for each OD pair of station i (station i being the origin).

Those assumptions are necessary in order to simplify the calculation of Equation (6); i.e., Pout for
a given station will always be the maximum possible for that station.

The number of passengers in vehicle v before station i (entered in station k) and with destination j
(curr = current) is:

Pcurr(vs,c, i) =
i−1

∑
k=1

n

∑
j=i+1

P(vs,c, kj) (7)

P(vs,c, i) =
i−1

∑
k=1

n

∑
j=i+1

P(vs,c, kj) + Pin(vs,c, i)− Pout(vs,c, i); (8)

i.e., passengers entering before station i and exiting after station i (station i excluded).
The average number of passengers at a station between consecutive services.

ki =
∑s∈SOD

P(vs,c, i)
Ti

(9)

where Ti is the time horizon for station i. The average waiting time at station i is given by [23]

wi =
E[Hi]

2

[
1 +

Var[Hi]

E2[Hi]

]
(10)
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where E[Hi] and Var[Hi] are, respectively, the mean and variance of headway time between vehicles at
station i. The amount of PWT in station i for every service (s) is given by

Zi,s = Pstay(vs,c, i) · Hi,s + ki Hi,swi, (11)

where Pstay(vs,c, i) is the number of passengers left at station i because they could not enter service
s− 1. The amount of PWT (Equation (11)) at station i is the sum of the amount of waiting time at
station i until the next service arrives at the station (Pstay(vs,c, i) · Hi,s)) and the average amount of
waiting time at station i given by ki Hi,swi (for all OD pairs). It should be noted that this constant term
is a measure of passengers arriving at the station between services with the average waiting time
(wi) for these passengers. This is based on the assumptions that (a) passengers randomly arrive at the
station and (b) the arrivals of vehicles are uneven but occur in predetermined time intervals.

In the multiobjective optimization algorithm implemented in this paper, average normalized
values of PWT and VOR are used. The average normalized amount of PWT is defined by:

Zav,norm =
∑i,s Znorm

i,s

n ·m (12)

where the normalized amount of PWT is defined by Znorm
i,s =

Zi,s − Zmin

Zmax − Zmin
for a given station i and

service s, with Zmax being the amount of PWT for the maximal difference between departure times of
consecutive services for a given station using vehicles of minimal capacity, and Zmin is the amount of
PWT for the minimal differences between departure times of consecutive services for a given station
using vehicles of maximal capacity. n is the number of stations and m is the total number of vehicles
used (i.e., number of services). Equation (12) represents the objective function for minimizing the
amount of PWT.

The vehicle occupancy ratio for service s is defined by:

τv,s =
∑n

i=1 Pcurr(vs,c, i) · runs,i

n · cv · runs
. (13)

where runs = ∑n
i=1 rs,i is the sum of running time between all adjacent stations for service s.

The total vehicle occupancy ratio (VOR) for all services across all stations is given by:

η = ∑
s∈S

τv,s. (14)

The average normalized value of η, ηav,norm is defined by:

ηav,norm =
η

n ·m (15)

Equation (15) represents the objective function for maximizing VOR. The profit margin of a
transport company increases as the vehicles’ occupancy ratio increases.

4.3. Objective Function

The optimization problem aims at minimizing the amount of PWT while maximizing VOR.
The variable PWT is used in the optimization model in order to satisfy users of PT. On the another
hand, VOR (Equation (15)), used in the optimization model, is based on vehicles’ occupancy for all
services in time horizon. The variables included in the model are discrete so the model can be solved
using combinatorial optimization methods.

The objective function of the model is defined as:

min
x

F(x) = ( f1(x), f2(x)) (16)
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where x is decision variable in the solution space of dimension 2|SOD|. |SOD| represents the number of
services in SOD. The first |SOD| elements in x represent the departure times of the services from the first
station on the line, while the second |SOD| elements in x represent the corresponding vehicle capacities
of the services. f1(x) corresponds to the inverse average normalized value of η, i.e., (1− ηav,norm)

given by (15), and f2(x) corresponds to the average normalized amount of PWT, Zav,norm, given by (12).
The objective function (16) minimizes two goals and it is solved using multiobjective optimization.
It minimizes f1(x) and f2(x), which correspond to maximizing VOR and minimizing the amount of
PWT. The objective function of the model has the following constraints:

P(vs,c, i) ≤ cv, ∀v ∈ M, ∀i ∈ N (17a)

td
s−1,i < td

s,i, ∀s ∈ SOD (17b)

Ts,i = td
s+1,i − td

s,i, ∀i ∈ N, ∀s ∈ SOD (17c)

Hi,s = td
s,i − td

s−1,i, ∀i ∈ N, ∀s ∈ SOD (17d)

ki ≤
cv

∑
s∈S

Hi,s
∀i ∈ N, ∀s ∈ SOD (17e)

In order to simplify the model and future calculations, it is assumed that the number of passengers
in j-th vehicle cannot be more than cv, ∀v ∈ M, as shown in constraint (17a). Constraint (17b) implies
that the departure time of vehicle v in service s has to be after the previous departure time of the
same OD pair served. Equation (17c) expresses the difference between departure times of vehicle v
between consecutive stations in one service s. Equation (17d) expresses the difference of the departure
time between two consecutive services in station i with the same OD pair. Constraint (17e) expresses
that the average arrival rate for the OD pair at station i is less than or equal to the average maximum
capacity rate.

5. Results

Due to the complexity of the objective function (16) and the large search space, we propose to
use a heuristic optimization algorithm to determine a suitable solution. Such algorithms have shown
to be suitable in such optimization problems, especially those involving large search space [34–37].
The efficiency and suitability of the various heuristic optimization algorithms in solving a whole
range of complex problems have been receiving a lot of attention from academia for many years.
Most of the available heuristic optimization algorithms mainly fall into two categories—swarm
intelligence algorithms and evolutionary algorithms. The main representatives of these categories
are particle swarm optimization (PSO) and the genetic algorithm (GA), respectively. In this paper,
the multiobjective particle swarm optimization (MOPSO) algorithm, proposed in [38], was used.
The algorithm in [38] extends the standard PSO algorithm to solve multiobjective optimization
problems by utilizing an additional repository of particles to help the main set of particles in their
search. The exploratory capabilities of the algorithm are also enhanced by a specific mutation operator
that is incorporated. A preliminary comparison by the authors of this paper, of an implementation of
the aforementioned algorithm, was made with a brute force search for the Pareto-optimal set solution
of a model of a much simpler PT timetabling problem, and the same results were obtained. As a
result, the implemented version was deemed suitable enough. A comparison of the MOPSO algorithm
implemented in this paper with other PSO algorithms for multiobjective optimization, such as that
proposed in [39], will be considered in future research, especially with respect to the accuracy and
convergence rate in solving the proposed objective function. Additionally, a comparison of other
heuristic optimization algorithms regarding their suitability in solving the proposed objective function
will also be considered.

The proposed optimal solution from the Pareto-optimal set, obtained using the implemented MOPSO
algorithm, was determined based on the multicriteria decision making method. The technique for order
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of preference by similarity to ideal solution (TOPSIS), as proposed in [40], was used for solving traffic
problems. In this section, two experimental problems based on input data and assumptions given
in [23] are provided and analyzed. In both experiments, the results obtained are compared using the
proposed method and assumptions and the results from [23].

5.1. Experiment 1

The first experiment consists of a simple passenger transportation line (Figure 1) involving three
sets of a number of departures (q = 4, q = 5 and q = 6) for route ra−→b with four stations and two sets of
a number departures (q = 4 and q = 5) for route rb−→a. The input data during the given time period
(7 a.m.–8 a.m.) consist of the average travel times, and the constant time needed for alighting and
boarding is set to 0.5 minutes. An estimated OD demand matrix is presented in Table 2. The running
times between each station for each service are presented in Figure 1. Other details of the experimental
setup, which define the search space, are as follows:

• Desired occupancy of each vehicle: 70;
• Possible departure time (in minutes) at the first terminal is defined by the time intervals for each

service respectively:

– [0, 15], [16, 30], [31, 45], [46, 60]
– [0, 12], [13, 24], [25, 36], [37, 48], [49, 60]
– [0, 10], [11, 20], [21, 30], [31, 40], [41, 50], [51, 60].

Table 4 presents the combined results of the proposed method using MOPSO algorithm and the
results from the literature. The results are displayed using the following parameters: the number of
passengers left at a station, waiting time and amount of PWT. Each of these are displayed as a matrix
with the number of columns representing the number of stops and the number of rows representing
the number of services. Based on the input data and results in [23], the departure times from the
terminals a and b, needed for comparison, are presented in Table 4, in three sets for the number of
departures for route ra−→b and two sets for the number of departures for route rb−→a.

With respect to the MOPSO algorithm, all experiments were performed using 200 particles
(population size) and 500 generations. The detailed results are presented in Table 4.

In order to compare the results, the waiting time and amount of PWT for each solution are
presented. As shown, the waiting time for the next service is shorter with the MOPSO algorithm
although it is an uneven timetable. Hence, the amount of PWT based on (11) is better when using
MOPSO. Although VOR is maximized (it is not displayed in Table 4, but it can be deduced by
looking at the number of passengers left at the station and taking into consideration the fixed desired
occupancy), the amount of PWT is not acceptable because of the high number of passengers left at
the station and the long waiting time for consecutive service. From the obtained results, it can be
concluded that passengers will choose another type of PT. In order to provide an example with a more
user-oriented PT service, Experiment 1 is expanded as presented in Experiment 2.

5.2. Experiment 2

The second experiment is a bit more complex. All the parameters and conditions are the same as
in Experiment 1 with two changes: the PT line is a train or tram line and the vehicles are passenger
cars or coaches each having a capacity of 70. It is also assumed that a maximum of seven passenger
cars can be connected. The aim of this experiment is to reduce the amount of PWT and maximize VOR
at the same time. MOPSO was used to determine the optimal parameters. With respect to the MOPSO
algorithm, all experiments were performed using 200 particles (population size) and 500 generations.
The proposed optimal solution was found by the TOPSIS method. The obtained Pareto-optimal set and
the proposed optimal solution is displayed in Figure 3, The detailed results are presented in Table 5.
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Comparing the results in Experiment 2 with those in Experiment 1, the waiting time for an uneven
headway is acceptable when more than one passenger car or coach is used per service. The number of
passengers left at the station is reduced, and it is assumed that passengers will wait for the next service.

Table 4. Comparison of the results obtained in Experiment 1 using the proposed method and those
obtained in the literature [23].

do = 70 Dep.
Time Zav,norm

Number of
Passengers Left
at the Station

Waiting Time Amount of PWT
(Equation (11))

r a
−→

b

q = 4

Proposed
method

[7:15,
7:28,
7:38,
7:46]

0.142

230 152 8 13 12 12 4386.45 2813.87 336.74
460 304 16 10 9 9 5674.19 3684.52 339.03
690 456 24 8 7 7 6379.35 4163.61 335.23
920 608 32 90 89 89 92,467.74 60,520.65 4491.29

Results
according
to [23]

[7:15,
7:30,
7:45,
8:00]

0.161

230 152 8 15 14 14 5700 3630 495
460 304 16 15 14 14 9150 5910 615
690 456 24 15 14 14 12,600 8190 735
920 608 32 90 89 89 96,300 62,820 5130

q = 5

Proposed
method

[7:12,
7:24,
7:35,
7:43,
7:49]

0.126

230 152 8 12 11 11 4239.73 2711.84 342.62
460 304 16 11 10 10 6416.42 4157.85 402.07
690 456 24 8 7 7 6506.49 4239.89 356.41
920 608 32 6 5 5 6259.86 4091.92 315.31
1150 760 40 72 71 71 91,678.38 60,047.03 4359.73

Results
according
to [23]

[7:12,
7:24,
7:36,
7:48,
8:00]

0.141

230 152 8 12 11 11 4560 2904 396
460 304 16 12 11 11 7320 4728 492
690 456 24 12 11 11 10,080 6552 588
920 608 32 12 11 11 12,840 8376 684
1150 760 40 72 71 71 93,600 61,200 4680

q = 6

Proposed
method

[7:10,
7:20,
7:30,
7:40,
7:47,
7:51]

0.114

230 152 8 10 9 9 3635.37 2321.22 302.56
460 304 16 10 9 9 5935.37 3841.22 382.56
690 456 24 10 9 9 8235.37 5361.22 462.56
920 608 32 7 6 6 7374.76 4816.85 379.79
1150 760 40 4 3 3 5134.15 3360.49 249.02
1380 912 48 60 59 59 90,812.20 59,527.32 4215.37

Results
according
to [23]

[7:10,
7:20,
7:30,
7:40,
7:50,
8:00]

0.127

230 152 8 10 9 9 3800 2420 330
460 304 16 10 9 9 6100 3940 410
690 456 24 10 9 9 8400 5460 490
920 608 32 10 9 9 10,700 6980 570
1150 760 40 10 9 9 13,000 8500 650
1380 912 48 60 59 59 91,800 60,120 4380

r b
−→

a

q = 4

Proposed
method

[7:15,
7:28,
7:38,
7:46]

0.169

190 178 21 13 12 12 3680.26 3291.52 552.29
380 355 41 10 9 9 4730.97 4301.94 624.84
570 533 62 8 7 7 5304.77 4865.55 667.87
760 711 83 90 89 89 76,778.71 70,757.42 9403.55

Results
according
to [23]

[7:15,
7:30,
7:45,
8:00]

0.192

190 178 21 15 14 14 4800 4245 765
380 355 41 15 14 14 7650 6900 1065
570 533 62 15 14 14 10,500 9570 1380
760 711 83 90 89 89 80,100 73,440 10,170

q = 5

Proposed
method

[7:12,
7:24,
7:35,
7:43,
7:49]

0.150

190 178 21 12 11 11 3562.43 3171.81 547.95
380 355 41 11 10 10 5355.56 4854.49 722.28
570 533 62 8 7 7 5414.95 4954.54 693.30
760 711 83 6 5 5 5201.22 4783.91 645.97
950 888 103 72 71 71 76,094.59 70,150.86 9191.68

Results
according
to [23]

[7:12,
7:24,
7:36,
7:48,
8:00]

0.168

190 178 21 12 11 11 3840 3396 612
380 355 41 12 11 11 6120 5520 852
570 533 62 12 11 11 8400 7656 1104
760 711 83 12 11 11 10,680 9792 1356
950 888 103 72 71 71 77,760 71,496 9576

32



El
ec

tr
on

ic
s

20
20

,9
,3

60

Ta
bl

e
5.

D
et

ai
le

d
re

su
lt

s
ob

ta
in

ed
in

Ex
pe

ri
m

en
t2

us
in

g
th

e
pr

op
os

ed
m

et
ho

d.

1
−

η
av

,n
or

m
V

eh
ic

le
O

cc
up

an
cy

N
um

be
r

of
Fr

ee
Se

at
s

N
um

be
r

of
Pa

ss
en

ge
rs

Le
ft

at
th

e
St

at
io

n
Z

av
,n

or
m

W
ai

ti
ng

Ti
m

e
A

m
ou

nt
of

PW
T

(E
qu

at
io

n
(1

1)
)

ra−→b

q
=

4

D
ep

.
ti

m
e

[7
:1

5,
7:

25
,7

:3
7,

7:
46

]
0.

08
0

1
1

1
0

0
0

23
0

15
2

8

0.
49

8

10
9

9
33

48
.3

9
21

49
.0

3
25

4.
73

1
1

0.
52

0
0

23
6

40
13

6
0

12
11

0
17

38
.0

6
23

86
.8

4
20

9.
68

d o
[7

0,
49

0,
70

,4
90

]
1

1
1

0
0

0
27

0
28

8
8

9
8

8
33

73
.5

5
31

58
.1

3
22

9.
26

1
1

0.
52

0
0

23
6

80
27

2
0

90
89

0
16

63
5.

48
30

14
1.

29
15

72
.5

8

q
=

5

D
ep

.
ti

m
e

[7
:1

2,
7:

21
,7

:3
2,

7:
40

,7
:4

9]

0.
06

4

1
1

1
0

0
0

23
0

15
2

8

0.
05

7

9
8

8
31

25
.0

7
20

01
.0

4
24

7.
84

1
1

0.
52

0
0

23
6

40
13

6
0

11
10

0
17

29
.5

3
22

69
.7

2
21

4.
92

d o
[7

0,
49

0,
70

,4
90

,3
50

]
1

1
1

0
0

0
27

0
28

8
8

8
7

7
30

97
.8

4
28

66
.7

22
0.

31
1

1
0.

52
0

0
23

6
80

27
2

0
9

8
0

17
75

.0
7

30
81

.0
4

17
5.

84
1

1
1

0
0

0
31

0
42

4
8

72
71

71
30

76
0.

54
35

59
2.

32
19

82
.7

6

q
=

6

D
ep

.
ti

m
e

[7
:1

0,
7:

19
,7

:2
9,

7:
36

,7
:4

5,
7:

51
]

0.
08

0

1
1

1
0

0
0

23
0

15
2

8

0.
04

0

9
8

8
32

45
.4

9
20

73
.2

9
26

7.
91

1
1

0.
52

0
0

23
6

40
13

6
0

10
9

0
16

69
.5

1
21

21
.7

1
21

1.
59

1
1

1
0

0
0

27
0

28
8

8
7

6
6

27
78

.6
6

25
49

.2
0

20
4.

11

d o
[7

0,
49

0,
70

,4
90

,7
0,

49
0]

1
1

0.
52

0
0

23
6

80
27

2
0

9
8

0
18

62
.5

6
31

33
.5

4
19

0.
43

1
1

1
0

0
0

31
0

42
4

8
6

5
5

26
21

.7
1

30
01

.0
2

17
4.

95
1

1
0.

52
0

0
23

6
12

0
40

8
0

60
59

0
14

81
7.

07
29

05
0.

24
12

69
.5

1

rb−→a

q
=

4

D
ep

.
ti

m
e

[7
:1

5,
7:

25
,7

:3
7,

7:
46

]
0.

06
6

1
1

1
0

0
0

19
0

17
8

21

0.
06

0

10
9

9
28

08
.6

0
25

13
.8

7
41

9.
68

1
1

0.
63

0
0

15
4

30
19

4
0

12
11

0
14

50
.3

2
32

08
.6

5
25

1.
61

d o
[7

0,
42

0,
70

,4
90

]
1

1
1

0
0

0
22

0
37

1
20

9
8

8
27

97
.7

4
39

99
.4

8
36

8.
71

0.
98

1
0.

6
10

0
19

6
0

35
0

0
0

89
0

81
77

.4
2

38
10

4.
84

18
87

.1
0

q
=

5

D
ep

.
ti

m
e

[7
:1

2,
7:

22
,7

:3
1,

7:
41

,7
:4

9]

0.
05

5

1
1

1
0

0
0

19
0

17
8

21

0.
06

1

10
9

9
29

10
.1

4
25

95
.8

8
44

3.
11

1
1

1
0

0
0

31
0

32
3

3
9

8
8

36
99

.1
2

36
41

.2
9

23
6.

80

d o
[7

0,
14

0,
49

0,
70

,4
90

]
1

1
0.

57
0

0
21

2
80

30
6

0
10

9
0

18
10

.1
4

38
75

.8
8

23
3.

11
1

1
1

0
0

0
27

0
48

4
21

8
7

7
29

68
.1

1
45

24
.7

0
35

4.
49

1
1

0.
60

0
0

19
4

40
46

9
0

72
71

0
10

15
2.

97
39

64
2.

32
16

78
.3

8

33



Electronics 2020, 9, 360

(a) (b)

(c) (d)

(e)
Figure 3. Obtained Pareto-optimal set and the proposed optimal solutions. (a–c) The solutions for
ra−→b and q = 4, q = 5, q = 6, respectively. (d,e) Solutions for rb−→a and q = 4, q = 5, respectively.

6. Analysis and Discussion

In Experiment 1 (Table 4), the results indicate that by optimizing the timetable using the proposed
method, an uneven timetable is obtained compared to the solution obtained by [23]. However, the amount
of PWT is lower . In Experiment 2, it is assumed that the PT line is a train or tram line and that a maximum
of seven coaches, each of capacity 70, can be used. The results obtained using the proposed method show
a drastic improvement of the amount of PWT (i.e., a decrease in the value of Zav,norm).

Table 6 shows the results that are obtained when the desired vehicle occupancy obtained in
Experiment 2 is combined with the departure time obtained in Experiment 1. As was expected, both
(1− ηav,norm) and Zav,norm values are decreased (implying an increase in VOR and decrease in the
amount of PWT) compared to the solutions obtained by [23] in Experiment 1.
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Table 6. Results obtained when vehicle occupancies of Experiment 2 are combined with corresponding
departure times of Experiment 1.

ra−→b rb−→a

Dep.Time do 1− ηav,norm Zav,norm Dep.Time do 1− ηav,norm Zav,norm

q = 4

Proposed
method

[7:15,
7:28,
7:38,
7:46]

70

0.080 0.050 Proposed
method

[7:15,
7:28,
7:38,
7:46]

70

0.066 0.061490 420

70 70

490 490

Results
according
to [23]

[7:15,
7:30,
7:45,
8:00]

70

0.080 0.064
Results
according
to [23]

[7:15,
7:30,
7:45,
8:00]

70

0.066 0.078490 420

70 70

490 490

q = 5

Proposed
method

[7:12,
7:24,
7:35,
7:43,
7:49]

70

0.095 0.040 Proposed
method

[7:12,
7:24,
7:35 ,
7:43 ,
7:49]

70

0.055 0.061
490 140

70 490

490 70

70 490

Results
according
to [23]

[7:12,
7:24,
7:36,
7:48,
8:00]

70

0.095 0.048
Results
according
to [23]

[7:12,
7:24,
7:36,
7:48,
8:00]

70

0.055 0.073
490 140

70 490

490 70

70 490

q = 6

Proposed
method

[7:10,
7:20,
7:30,
7:40,
7:47,
7:51]

70

0.080 0.040
490

70

490

70

490

Results
according
to [23]

[7:10,
7:20,
7:30,
7:40,
7:50,
8:00]

70

0.080 0.046
490

70

490

70

490

For example, for route ra−→b, when four departures and the possibility of using more passenger
cars or coaches are considered, the value indicating the amount of PWT (0.050) is lower than that
obtained by [23] (0.064), while the value representing the vehicles’ occupancy ratio (0.080) is the same
for both algorithms (Table 6). If the desired vehicle occupancy is fixed, i.e., do = 70, the amount of
PWT when using the proposed method is 0.142, while it is 0.161 when using the input given in [23]
(Table 4). From these results, it can be concluded that it is more appropriate to use more passenger cars
or coaches and an uneven timetable for the input data during the particular time period.

A qualitative analysis of the proposed timetable, with respect to the headway, is performed
using the following indicators—the average headway (AH) and the expected waiting time (EWT),
as recommended in [12]. AH and EWT of randomly arriving passengers, for all sets of departures
and routes, are presented in Table 7. For example, for route ra−→b and six departures during the given
time period, the expected PWTs, when using the proposed method, are 4.45 and 4.23 for Experiments
1 and 2 respectively, while the expected PWT is 5 when using the procedure in [23]. The presented
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qualitative analysis confirms that the timetable obtained using the proposed model and optimized
using MOPSO is more appropriate compared to the timetable obtained in literature [23].

Table 7. Average headway and expected waiting time.

Average Headway Expected Waiting Time

r a
−→

b

q = 4 Proposed method – exp 1 / exp 2 10.33 5.37/5.24

[23] – exp 1 15 7.5

q = 5 Proposed method – exp. 1 / exp. 2 9.25 4.93/4.68

[23] – exp 1 12 6

q = 6 Proposed method – exp 1 / exp 2 8.2 4.45/4.23

[23] – exp 1 10 5

r b
−→

a q = 4 Proposed method – exp 1 / exp 2 10.33 5.37/5.24

[23] – exp 1 15 7.5

q = 5 Proposed method – exp 1 / exp 2 9.25 4.93/4.66

[23] – exp 1 12 6

7. Conclusions

This paper presents a new model for determination of PT timetable. The model is formulated
using a multiobjective optimization model to optimize VOR and PWT. Thus, this model takes into
account the satisfaction of transport companies and passengers. The MOPSO algorithm is used in
optimizing the model. The best solution in the Pareto-optimal set was found by the TOPSIS method.
Practical implementation of the proposed model is presented using two numerical examples. PWT and
VOR indices are used to present the performances of the proposed model in comparison to the similar
results in the existing literature. Experiment 1 uses a simple passenger transportation line involving
three sets of a number of departures (q = 4, q = 5 and q = 6) for route ra−→b with four stations and two
sets of number departures (q = 4 and q = 5) for route rb−→a. Experiment 2 has the same parameters and
conditions as Experiment 1, and the additional assumptions that the PT line is a train or tram line and
the vehicles are passenger cars or coaches. In both experiments, the proposed model using MOPSO
algorithm shows better performances; i.e., shorter PWT and greater VOR. The case study based on the
operation data from the existing literature shows that the proposed approach can reduce the average
PWT by 10.54% for all sets with differing numbers of departures for two routes during the given time
period. Based on the presented results, it can be concluded that the presented model, which uses the
MOPSO algorithm to determine the optimal timetable, has an advantage in comparison to the existing
models in scientific literature, which makes it suitable for scientists and practitioners in the field of
PT. Further research will initially involve verification of the model using data from a real network
scenario. We plan to modify the proposed model by including an extra constraint that ensures that
the operation duration remains unchanged, especially if the number of vehicles or services is kept
constant. We also plan to take into consideration boarding and alighting times, transfer stations and
scheduling several lines.
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Abbreviations

The following abbreviations are used in this manuscript:

PT Public transportation
PSO Particle swarm optimization
PWT Passenger waiting time
VOR Vehicles’ occupancy ratio
TTP Train timetabling problem
WT Waiting time
MOPSO Multiobjective particle swarm optimization
GA Genetic algorithm
TSP Timetable synchronization problem
B&B Branch and bound
OHM Optimization based heuristic method
MIP Mixed integer programming
PRTS Periodic railway timetable scheduling problem
DE Differential evolution
HPSO Hybrid method of traditional PSO
OD Origin-destination
TOPSIS Technique for order of preference by similarity to ideal solution
AH Average headway
EWT Expected waiting time
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Abstract: Demand for different modes of transportation clearly interacts. If public transit is delayed
or out of service, customers might use mobility on demand (MoD), including taxi and carsharing for
their trip, or discard the trip altogether, including a first and last mile that might otherwise be covered
by MoD. For operators of taxi and carsharing services, as well as dispatching agencies, understanding
increasing demand, and changing demand patterns due to outages and delays is important, as a
more precise demand prediction allows for them to more profitably operate. For public authorities, it
is paramount to understand this interaction when regulating transportation services. We investigate
the interaction between public transit delays and demand for carsharing and taxi, as measured by
the fraction of demand variance that can be explained by delays and the changing OD-patterns. A
descriptive analysis of the public transit data set yields that delays and MoD demand both highly
depend on the weekday and time of day, as well as the location within the city, and that delays in the
city and in consecutive time intervals are correlated. Thus, demand variations must by corrected for
these external influences. We find that demand for taxi and carsharing increases if the delay of public
transit increases and this effect is stronger for taxi. Delays can explain at least 4.1% (carsharing) and
18.8% (taxi) of the demand variance, which is a good result when considering that other influencing
factors, such as time of day or weather exert stronger influences. Further, planned public transit
outages significantly change OD-patterns of taxi and carsharing.

Keywords: carsharing; data analysis; delays; demand; public transit; taxi

1. Introduction

Metropolitan areas suffer as a consequence of a car-centric city layout. Roads are
frequently congested [1], air quality decreases [2], and valuable space for active mobility is
restricted [3]. Thus, city planners aim to incentivize as many travelers as possible to use
rail and public transit. As travelers minimize their own transportation cost—comprised of
travel time and fare—[4], it is paramount to understand the impact of the different factors
of the cost function. The travel time depends on the scheduled transit time and delays.
While the scheduled transit time is usually comparatively low, delays can severely impact
both the actual and the perceived travel time [5]. Nowadays, public transit competes
with rising MoD services [6], such as ride-hailing and carsharing, since vehicle ownership
is lower in metropolitan than in rural areas ([7], p. 35). While delays also occur in MoD

systems, they do not propagate as severely as in public transit, due to missed connecting
trains, and they are perceived less severe by travelers [8]. Thus, surveys indicate that
users switch to road-based individual transportation if delays increase or public transit is
unavailable [9], resulting in additional demand. This additional demand (i) increases road
congestion and (ii) results in additional planning effort for MoD operators. They must react
by moving vehicles to locations with increased demand (rebalancing, dispatching), and
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they may have to increase their fleet size to accommodate those peak demands. Otherwise,
the unserved demand increases, which results in lost sales on a short horizon [10], and they
may also influence customer satisfaction and retention on a longer horizon [11]. The
changing demand patterns during the COVID-19 pandemic pose an additional challenge,
but they also permit us to study the system under a different demand profile.

This paper studies the influence of public transit delays on the demand of MoD services.
As such, it helps MoD operators to increase the quality of service by improving their demand
predictions and, consequentially, their operational strategies (e.g., [12]), and gives public
transit authorities first insights into how their delays impact road traffic, and eventually
congestion. A better understanding of the influence of public transit delays—and, thus, the
quality of service of public transit—eventually helps to carry over a demand prediction tool
that was developed in one location to another (as [13] attempt for bikesharing services).

This work is the first data-driven approach for establishing the correlation between
public transit delays and demand for carsharing and taxi services. From the data, we
establish a lower bound of how much taxi and carsharing substitute public transit by
measuring the number of additional taxi and carsharing trips for increasing delays, both
over a period of 10 months and exemplarily for closures of the main tracks, and both for
individual stations and the entire city center.

This suggests that

• a lower delay and/or higher coverage of the public transit system can result in a
smaller necessary fleet (by up to 2.2% and up to 0.5% of the total fleet size, respectively),
and most likely result in fewer traffic; and,

• carsharing and taxi operators can improve their demand prediction performance by
including information on planned public transit closures.

In the following, we first review related work in Section 2, and describe the data
collection process and general statistics in the data presented in Section 3. Section 4
analyzes the data to establish how demand MoD-systems and public transit delays are
connected. Section 5 discusses the results and concludes the paper.

2. Related Work

This work is related to two different streams of literature: demand prediction for
carsharing and taxi services, as well as substitution and complementarity between different
modes of shared and public transit.

[14] review different works focusing on demand prediction for carsharing. They
conclude that research still lacks in-depth knowledge about the intricacies of demand
processes. [15] investigate how taxi, Uber, and Lyft demand increases during severe rain
in New York City, as well as the price elasticity of Uber and Lyft during those periods.
They find that the total number of rides increases, but the number of taxi rides is only
weakly correlated with rain, which suggests that the additional demand is due to Uber and
Lyft’s pricing strategy. The impact of weather on demand is clearer than the influence of
public transit delays, since rain can be modeled as a Boolean variable, while the demand
increase may depend on the extent of the delay. [16] study how events influence taxi
demand in New York City using online information (web mining demand hot spots from
social media). They find that the frequency that events were mentioned has a significant
impact on the taxi demand. However, the influence of events differs from the influence of
public transit delays, as events only affect the origin of a trip, not origin-destination pairs,
and since events are known earlier than delays. [17] show that this event information can
improve the performance of demand predictors. Thus, we cannot directly adapt models
for measuring the influence of weather or events to the influence of delays. [18] show that
socio-demographic features have an impact on carsharing demand in Munich and Berlin
(Germany), [19] study the impact of these factors on New York City taxi demand, and [20]
investigate the impact of socio-demographic factors on ride-hailing demand in California.
All three studies find that socio-demographics can explain parts of the demand variances.
However, socio-demographics usually do not change within the observation period, unlike
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public transit delays. Therefore, we must develop a new methodology to measure the
impact of a cardinal variable that varies during the observation period, but it has strong
correlation with some of the previously studied variables.

Ref. [19] also explore the influence of demographic and socioeconomic factors on
the taxi passenger demand in New York. The results clearly indicate that a relationship
between public transit accessibility and taxi demand exists. Taxi trips in this study occur
more often if public transit is more accessible. The authors note that a finding of whether
this relationship is competitive or complementary could not be determined from their
results. Additionally, they do not consider if and how taxi demand varies, depending
on the temporal availability of public transit. Ref. [21] study the demand patterns for
taxi and Uber on a coarse-grained level. They find that similar external factors impact
the demand for taxi and Uber. Ref. [22] state that users of free-floating carsharing are
more likely to have a public transit subscription than the control group which suggests
complementarity. Ref. [23] consider the spatio-temporal availability of public transit, but do
not extend their analysis beyond examples during an outage at a central location. Naturally,
such a dependency implies that if the required time for one of the transit modes increases,
the demand for this mode should decrease. Ref. [23] gives some examples that support
that public transit outages increase the demand for alternative transportation modes in the
city of Vancouver, but do not extend this to a city-wide experiment over a longer period
of time. Ref. [24] observe that, for the most common carsharing trips (origin-destination
pairs) in Madrid, traveling by car is only slightly faster than public transit, but significantly
more expensive, which suggests a customer preference for traveling by car, but they do not
investigate whether the number of trips increases even further if public transit becomes
less available (due to outages or delays). For early carsharing adopters, ref. [25] find that,
on average, over seven European and North American cities, 40% of carsharing trips could
have been performed more quickly by public transit, which suggests that carsharing, in
fact, substitutes public transit. However, they do not include delays or outages, as well
as the waiting time for the next train. Several studies indicate that, on the customer side,
there is a notable difference in the perceived and real waiting time—especially in the case
of unestimated delays. Ref. [26] found that passengers who did not have knowledge
about the actual schedule perceived waiting times significantly longer than passengers
with knowledge. Ref. [27] confirm that users already more frequently decide against using
public transit for an entire trip if only a single trip segment is sub-optimal (e.g., long waiting
times, slow transit). Ref. [28] study the modal choice of travelers in Taiwan using a general
estimation equation, and find that intermodal transportation accessibility has a positive
influence of public transit ridership at those stations where available. However, ref. [28]
do not study the influence of the public transit operator’s availability and punctuality on
ridership (and alternative choices).

This paper is the first to analyze the influence of public transit delays and outages
on MoD demand in a data-driven fashion (as compared to simulation- and survey-based
research), both on a city level and more granular per public transit station (when compared
to single occasions). This provides substantial additional insights, but it also requires a
new methodology.

3. Reference Datasets

This study uses three different datasets for the city of Munich in the period from
May 2019 to March 2020: downtime and delays for public transit, vehicle movement data
of a major carsharing provider (only until December 2019), and taxi customer trip data of a
local taxi agency. The data are discretized and filtered.

3.1. Public Transit Data

We query current departures (scheduled and actual departure time) of all suburban
railway (S-Bahn) and underground (U-Bahn) lines at all stops in 5 min. intervals to obtain
an understanding about delays and outages in the public transit system. The delay δit can
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then be calculated as the difference between the scheduled and actual departure time. Both
of the times are only given in minutes, thus delays are only reported if they are at least
60 s, and delays are rounded down to the next integer. For our analysis, longer delays
are more relevant, reducing the impact if rounding down. Throughout this paper, we
indicate how we handle integrality. For each station i and time frame t, we report both
the average delay δit and maximum delay max(δit) of all departures. Outages are derived
from comparing the number of departures in a given interval to comparable intervals on
other days (maximum over all weeks). Additionally, we collected information regarding
track closures during the analysis period from public authorities.

Table 1 lists the basic statistics on the data set and the delays. Even in the short
observation period of ≈ 10 months, the number of departures is in the order of 12 M (This
number includes all departures of the same train and, thus, may seem to be excessively
high at first). Thus, the impact of those instances with a very high delay is negligible.
The mean delays (in minutes) are low (slightly above or below 1 min.), and the majority
of departures is not delayed (contrary to what customers perceive). Figure 1 depicts the
average of delays (suburban railway and underground) during an example week (week
42/2019, 14–20 October) at station Marienplatz. During rush hour, most of the lines are
slightly delayed, and the morning rush hour incurs more severe delays than the evening
rush hour. Major delays (>6 min.) occur infrequently, and on a more random pattern.

Table 1. Data Description Public Transit.

Suburban Railway Underground

# stations 125 98
# lines 7 8

# records 4,566,500 7,683,766
mean delay in min 1.168 0.837
max delay in min 354 1431

# records 1 > delay 2,131,051 3,890,972
# records 3 > delay ≥ 1 1,601,061 2,894,220
# records 6 > delay ≥ 3 618,356 759,421

# records delay ≥ 6 216,032 139,153
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Figure 1. Average of Delays at Marienplatz during Example Week.
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If an above average delay occurs at some point in time t, there is a high probability
(>55%) that there will also be an above average delay at time t + 15 min.. If the delay at
time t is in the 80th percentile (%τ(t)(δti) ≥ 0.8, where %τ(·)(·) is the percentile function that
assigns the delay percentile among comparable time frames (τ(t)) at station i), above av-
erage delays occur even more frequently, and delays persist longer. Figure 2 depicts the
delay persistency, i.e., the probability that a delay occurs at the same station a given time
interval after another delay.
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Figure 2. Delay Persistency in Munich and at Marienplatz.

When comparing the entire Munich city center to Marienplatz, it, at first, seems
surprising that the central location with a very dense time table and high utilization has
a lower delay persistency, but Marienplatz also has four tracks while most stations only
have two tracks. Delays propagate almost independently on different tracks. This delay
propagation is visible from Figure 3.
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Figure 3. Delay Propagation in the Public Transit Network.

It shows the probability that an above average delay at Marienplatz (left) or Münchner
Freiheit (right) correlates with an above average delays at other stations. Yellow shading
refers to a high covariance, blue shading to a low covariance. Clearly, stations along the
same line have a higher probability of delays and, at Marienplatz, this mainly affects
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the East-West connection (S-Bahn), not so much the North-South connection (U-Bahn).
The covariance between the selected station and stations along other lines is low, and the
remaining covariance can be due to external influences, customers transferring lines,
or intersecting lines. From the strong spatial and temporal differences in delays, we
conclude that our spatial and temporal resolution is reasonable.

3.2. Carsharing Data

Carsharing data for one of the largest Munich free-floating carsharing operators has
been collected while using webscraping techniques since April 2018. The scraping ended
mid-January 2020 when the API was discontinued. Every 5 min., the current location of
all available vehicles (not rented or reserved by customers, or blocked by the operator)
was recorded. Because of the data collection method, outages appear, and the data are
cleared accordingly.

Movements of vehicles are created by recording the last location of the vehicle be-
fore becoming “invisible” and the first location after re-appearing in the data stream.
The data collection method does not allow for us to differentiate between customer trips
and rebalancing operations, but there should be significantly less rebalancing operations
than customer trips, and the literature reports that rebalancing mainly occurs during the
night [29]. We remove time windows during the night, as described later.

The data set contains >1.5 M trips. Roughly 20% of all data points are missing due to
outages in the data collection. The reasons for outages include power outages, network
connection loss, or, otherwise, discontinued service on the collection server, unavailability
of the API, and service downtime of the carsharing service provider. On average, 131 trips
occurred per hour, with a maximum of 653 trips during an one-hour interval, and the
number of trips highly depends on the time of day and weekday.

Figure 4 shows an example weekly pattern for week 42/2019 (14–20 October).
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Figure 4. Number of Carsharing Trips during Example Week.

Demand is aggregated in one-hour intervals and it is reported at the beginning of the
interval. The demand follows a daily pattern with more demand during the evening rush
hour than the morning rush hour, and slightly decreasing demand during the course of
the week.
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3.3. Taxi Data

This study makes use of floating car data from a local taxi agency to derive the
passenger demand for taxi services in Munich. A fleet of 550 taxis served ≈10 M customer
trips between 2015 and 2020. The data are being continuously retrieved from the fleet
management interface, which is usually used for dispatching by the local taxi agency [30].
The data are directly provided by the dispatching agency with full information about trip
start, trip end, and driven route.

The data set contains >3.8 M trips in the observation period between April 2018 and
March 2020. On average, 252 trips are recorded per hour (at most, 740 trips per hour).

Figure 5 shows an example weekly pattern for week 42/2019 (14–20 October).

Mon
14.10.19

Tue
15.10.19

Wed
16.10.19

Thu
17.10.19

Fri
18.10.19

Sat
19.10.19

Sun
20.10.19

25

50

75

100

125

150

175

N
um

be
r 

of
 tr

ip
s

Figure 5. Number of Taxi Trips during Example Week.

The demand pattern follows the same high level trend as carsharing demand, but the
highest demand peaks occur on the weekend rather than at the beginning of the week.
The morning peak is more pronounced, and the daily afternoon demand peaks occur
slightly later in the day than in the carsharing system.

3.4. Data Discretization and Filtering

For comparability, we discretize the area in hexagons with an edge length and radius
of 461 m using Uber’s Hierarchical Spatial Index H3 [31]. Imposing a maximum walking
distance of 461 m is in alignment with literature [32]. Temporally, we discretize the
carsharing and taxi data into one-hour intervals on a rolling scheme, creating data points
every 15 min. Every data point then contains the total number of trips—the demand dit—
occurring in the 60 min. after a delay. One hour is a reasonable time frame for potential
impacts and in line with delay persistency (Figure 2). This (i) increases the amount of
available data points and, therefore, reduces random variances of our results compared to
one-hour intervals without rolling time windows and (ii) smoothes the demand pattern
as compared to 15-min. intervals, as one can see in Figure 6 for the carsharing and
taxi demand.
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Figure 6. Number of Carsharing and Taxi Trips during Example Week with and without Smoothing.

Because public transit delays persist for some time and, as these delays take time to
manifest in the taxi demand, using sliding time windows is also advantageous to be able
to record longer-time impacts on the demand.

Obviously, carsharing and taxi demand can only be evaluated against public transit
delays if the public transit service is scheduled to run. Further, an influence can only
be measured to a statistically significant level if the average number of carsharing and
taxi trips is sufficiently high. This does not exclude temporary outages, but it does ex-
clude nights, as public transit is not operating between 1:30–4:30 AM, and the number of
departures decreases substantially during the late evening. We exclude the time frame
10:00 PM–5:00 AM, to be safe against startup and end-of-horizon effects, and the low de-
mand during the night. Omitting this longer period of time also makes it more probable
that vehicle movements in carsharing are customer trips, rather than vehicle rebalancing
(since vehicle rebalancing in carsharing systems mainly occurs during the night [29]). Sub-
sequently, 13.0% of all public transit departures, 14.6% of all carsharing trips, and 31.6% of
all taxi trips are omitted.

Additionally, to be able to measure the effect of public transit on carsharing and taxi
demand, we exclude those hexagons without a public transit stop (suburban railway or
underground) and those outside the Munich city highway “Mittlerer Ring” (except for
Pasing station which is the west-most end of the suburban railway main tracks). Thus, we
consider demand in the 53 hexagons that are depicted in Figure 7 with blue squares for
U-Bahn stations, green dots for S-Bahn stations, and orange rhombuses for stations with
both U-Bahn and S-Bahn connections.

48



Electronics 2021, 10, 379

U-Bahn S-Bahn U/S-Bahn h3-cells

Figure 7. Considered Hexagons (in grey shading) with Suburban Railway (green dots), Underground (blue squares) stations,
or a Combination of both (orange rhombuses).

3.5. Censored Demand

Demand for MoD is subject to censoring [33,34]: if no vehicle is available, one cannot
record demand, and a straight-forward model tends towards underestimating demand.
Outages of the carsharing service might correlate with public transit disruptions. Thus,
none of the approaches that have been suggested in literature can be applied, since we
measure increased delay which also impacts the demand censoring. Instead, we split the
data set in those data points with and without censored demand (assuming that censoring
can apply only if supply is 0). This occurs more frequently in remote locations with low
demand. For the high demand location Marienplatz, censoring might have occurred in up
to 24% of all data points. Such censored demand only occurs for the carsharing service,
but not the taxi service, as taxi street-hailing is less common in Munich [35], and as Munich
has a significant oversupply in taxis [36].

4. Analysis

Using the previously described data sets, we analyze how public transit delays in-
fluence demand for MoD services. In particular, we give a high level relation, calculate
the fraction of demand variation that can be explained by public transit delays, analyze
the varying demand patterns during outages, the probability of having no vehicles avail-
able depending on delays and outages, and the demand changes during the COVID-19
pandemic. We use this analysis to estimate the additional demand, traffic, and necessary
increase in the fleet size due to delays and outages.

All of the numerical analyses are implemented in Python 3 with (among others)
Numpy, Scikit Learn, and Gurobi. The experiments are performed on an Ubuntu server.
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4.1. High Level Relation

Station-timeframe tuples with high delays (mean delay δit ≥ 3 min.) more frequently
result in high taxi and carsharing demand than tuples with lower maximum delays. Tuples
are clustered by the observed demand relative to the mean for this station-timeframe
tuple (in 2% bins), and the observed maximum delay (no delay, up to 3 min. delay,
and higher delays).

Figure 8 reports the relative frequency for each tuple by means of a cumulative
distribution function (CDF). It is obvious that the higher the delay, the more frequent high
demand instances appear. While this indicates some dependency, it does not yet show how
delays and demand correlate.
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Figure 8. Maximum Delay in the Entire City and at Marienplatz.

To this end, we further observe that any increase in public transit delays entails an
increase of the demand for taxi and carsharing services. We group the data points by delay
(in intervals: [0, 1), [1, 3), [3, 6), [6, 10), [10, 20), [20, 60), [60, ∞), with the last two being
aggregated for carsharing due to a low number of data points). The lower number of high
delay data points is a consequence of filtering potentially censored demand points in the
carsharing data. Figure 9 depicts the boxplots of trip deviations from mean for carsharing
and taxi. For ease of exposition, the boxplots do not contain outliers. The trip deviation
from mean increases from 0.0% to 13.5% for carsharing, and −2.1% to 50.0% for taxi.
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Figure 9. Increased Demand during Delays.

Thus, it is clear that MoD demand and public transit delay are correlated, even though
other external factors (time of day, station, weather, events) also exert a strong influence.

4.2. Explained Demand Variance Due to Delays

We showed that the demand for MoD increases if delays occur. However, delays are
not the only factor that can explain variances in the MoD demand, and some randomness
is intrinsic to the system. In order to measure the explanatory power of delays on MoD

demand, we assume that demand at a station during a given timeframe can be predicted
using the mean value as a baseline, and measure how much the variance decreases when
correcting the trip counts for the delay. Therefore, we filter the dataset for observations
in which a mean delay ≥3 is observed. Thus, we define a lookup function f (δit), which
returns the mean percentage trip deviation for each delay bin.

The data points are transformed into the deviation devit from mean µiτ(t) for location
i and timeframe t.

devit =
dit

µiτ(t)
− 1

resulting in the “basic” data set S, and potentially corrected by

ˆdevit =
dit · (1− f (δit))− µiτ(t)

µiτ(t)

resulting in the “corrected” data set Ŝ.
Each set of data points S and Ŝ can be represented as a density function. The his-

tograms for the density functions can be found in Figure 10.
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Figure 10. Explained Demand Variance due to Delays.

We individually compute the variance in each data set as

σ2 = ∑
it
(devit − µdev)

2

σ̂2 = ∑
it

(
ˆdevit − µ ˆdev

)2
,

where µdev and µ ˆdev refer to the average over all devit and ˆdevit, respectively. The relative
decrease in variance from the basic to corrected data set (S to Ŝ) corresponds to the fraction
of demand variation that can be explained by delays in the public transit network.

1− σ̂2

σ2

Thus, we can explain 4.1% of the variance by delays for carsharing and 18.8% for
taxi. Consequentially, demand prediction accuracy can be improved by considering the
delays during periods of high delay. At first, explaining 4.1% of carsharing demand
may not seem much, but, when considering the abundant number of influencing factors
(weather, events, . . . ), uncertainties of human behavior, the fact that delays do not vary
too much, and spatial differences in the explanatory power, explaining 4.1% is already
significantly improving the situation of MoD operators in a business with low profit mar-
gins. The explanatory power of delays on taxi demand variation is significantly higher.
Technically, this is a consequence of larger maximum correction factors returned by the
function f (δit), as readily visible from Figure 9. It appears as if users rather switch to taxi
than to carsharing if delays occur. This suggests that carsharing customers, on average,
have a lower valuation of time than taxi customers, which is backed by general intuition. It
does not necessarily mean that the user groups of taxi and public transit are overlapping
more than the user groups of carsharing and public transit, but might rather point towards
a lower willingness to wait among taxi users.
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4.3. Changing Demand Patterns in Presence of Known Outages

While one might assume that MoD demand increases during an outage (and such a
correlation has been reported by [23]), we cannot support this assumption based on our
data. In Munich, the total demand does not significantly change on days with outages.

This might be due to the fact that outages are commonly known before, and travelers,
therefore, either forgo trips, or use private vehicles or bikes. This indicates that, while taxi
and carsharing are an alternative to public transit if the delay was unexpected, customers
tend to use a different mode of transportation or omit trips if the delay was known before.

Instead, demand patterns (given by trip origins) change. For every day in the ob-
servation period, we compare the relative taxi demand per origin-destination pair to the
previous year by means of a Wasserstein distance. The Wasserstein distance (also known
as the Earth mover’s distance) refers to the "work necessary" to transform one distribution
into another. We compare the difference between two vectors vt and v′t, where vt refers to
the relative demand distribution in the previous year for some timeframe t

vit =
dit

∑
j

djt
,

and analogous for v′ (because outages occur for a longer period of time, and since random
demand imbalances can occur within the day with Integer demands, we aggregate time-
frames t to a daily level). To increase comparability, we compare any day in the current
year to the closest day in the previous year, which is the same weekday (e.g., Monday
4 November 2019 to Monday 5 November 2018), and omit days that were a public holiday
in either year. The Wasserstein distance per timeframe t is then calculated by solving the
following linear program of a transportation problem

min∑
i,j

∆ ijxij

vit + ∑
j

xij = v′it

xij ≥ 0 ∀i, j

where the decision variables xij refer to the amount of demand that is "shifted", and ∆ ij
refers to the Euclidean distance between locations i and j (representing the "difference"
between demand patterns, i.e., the transportation cost).

There are 21 days on which the main line of the S-Bahn was closed in one direction at
one station, and 10 instances where the main line was closed in both directions. While taxi
data are available for all days in the observation period, carsharing data are only available
on 20 and six of these days, respectively.

We test whether the Wasserstein distances increase (or decrease) during outages
when comparing an instance with an outage 2019 and no outage 2018 using a two-tailed
Welch’s t-test. Table 2 lists the results for carsharing and taxi. Carsharing demand patterns
significantly (α = 5%) differ in presence of delays, given by a significantly increasing
Wasserstein distance, for one-directional and two-directional closures, both independently
and jointly. For taxi demand patterns, the null hypothesis (mean Wasserstein distances
do not differ, travel patterns are similar) cannot be rejected for uni-directional closures (In
this case, the mean Wasserstein distance even decreased insignificantly.) and all closures.
Wasserstein distances for taxi demand patterns significantly increase (at a significance
level of 10%) when the main track was closed in both directions. Thus, we conclude that
demand patterns change in the presence of outages, and MoD operators should include this
information in demand prediction at the local level.
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Table 2. Results of the Welch’s t-Test for Changing Demand Patterns during Outages.

No Outage Outage No Out. 1-Way No Out. 2-Way

Carsharing

mean 25,498 30,878 25,498 29,496 25,498 35,486
variance 4.92E7 3.95E7 4.92E7 3.60E7 4.92E7 2.78E7

# observations 131 26 131 20 131 6
t-statistic −3.91 -2.71 −4.47
p(T ≥ t) 3.71E-4 1.13E-2 4.25E-3

crit. value 1.69 2.45 2.05

Taxi

mean 16,751 17,338 16,751 16,234 16,751 19,656
variance 2.83E7 2.42E7 2.83E7 2.20E7 2.83E7 2.30E7

# observations 304 31 304 21 304 10
t-statistic −0.82 0.32 −1.99
p(T ≥ t) 0.42 0.75 7.41E-2

crit. value 2.02 2.06 2.23

4.4. Decrease of Demand along Lines during COVID-19

During the recent COVID-19 pandemic, demand decreased significantly (average
number of taxi trips from 9 March to 3 May 2020 decreased by a factor of 3.5 as compared
to the previous year; this decrease is significant at α = 0.05 using a Welch’s t-test). Reduced
mobility is one of the key levers to reduce the spread of a pandemic, as [37] show for Italy.
Surprisingly, the relative demand along public transportation lines also decreased (15.9%
of all trips vs. 20.8%). This result is significant according to a Welch’s t-test at all commonly
used significance levels (see the results in Table 3).

Table 3. Results of the Welch’s t-Test for Fraction of Trips Along Lines.

Before COVID During COVID

mean 0.159 0.208
variance 4.12E-4 2.25E-4

# observations 56 708
t-statistic −17.7
p(T ≥ t) 1.54E-25

crit. value 2.00

When combined with the decreasing delays during this period (see Table 4), this
provides anecdotal evidence that the increased punctuality made it unnecessary to choose
alternative modes of transportation.

Table 4. Changing Public Transit Delay before and during COVID.

Before COVID During COVID

S-Bahn U-Bahn S-Bahn U-Bahn

mean delay in min 1.168 0.837 0.979 0.612
% 1 > delay 46.7 50.6 47.3 59.9

% 3 > delay ≥ 1 35.1 37.7 37.5 33.5
% 6 > delay ≥ 3 13.5 9.9 12.0 6.1

% delay ≥ 6 4.7 1.8 3.2 0.5
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4.5. Potential for Fleet Size Reduction

Public authorities can reduce congestion in the road network as well as the necessary
fleet size of MoD operators by improving the punctuality of the public transit system, since
a higher delay of the public transit service entails higher demand for MoD.

If all the delays were 0, the average demand for taxi would decrease by 2.2%, and the
average demand for carsharing would decrease by 0.5%, as given by the shift to the left-
most bin in in Figure 9. If all delays were reduced by 50%, the average demand for taxi
would decrease by 1.6%, and the average demand for carsharing would decrease by 0.5%.
These values are computed by artificially reducing the average delay for each time interval
at each location, and correcting the observed demand according to the corresponding
carsharing/taxi trip deviation.

These demand reductions can serve as an upper bound for potential fleet size reduc-
tions. The actual fleet size reduction may be less due to risk pooling in the presence of
stochastic demand. It stands to reason that the number of trips in privately owned cars
also reduces, even though the exact values might differ. This indicates that road-congestion
might be alleviated by reducing delays of the public transit operator, and making it
more reliable.

5. Discussion and Conclusions

In this paper, we study the effect of public transit delays on MoD operators, i.e., car-
sharing and taxi. If customers judge trips based on some combination of travel time and
travel cost, demand for the "outside option" (e.g., MoD) will increase if the travel time for
public transit increases. We conduct large-scale experiments using carsharing and taxi trip
data and public transit departure data for 10 months in Munich, Germany.

Demand for MoD increases if public transit delays increase. The mean demand
for carsharing varies by up to 13.5% and the mean taxi demand varies by up to 52.1%,
depending on the extent of the delay.

4.1% of carsharing and 18.8% of taxi demand variance can be explained if public
transit is delayed. Thus, it seems as if carsharing customers valued travel time less than
taxi customers. Because public transit delay is only one of many influencing factors (besides
weather, events, and others), the explanatory power is high.

If the public transit operator were delayed less, the necessary carsharing and taxi
fleet could be reduced by up to 0.5% and 2.2%, respectively. Even if delays did not vanish
entirely, the number of taxi and carsharing trips could decrease substantially. Thus, public
authorities might improve the public transit with the goal of reducing the congestion in
their road network. Improvements of the public transit operator to alleviate congestion
exceeds all approaches (e.g., [38]) for regulations of MoD discussed in existing literature,
and poses an interesting line for future research.

Customers adapt their travel patterns if the public transit service is not operating.
Unlike existing literature, we do not find that demand increases during outages. Most
likely, a substantial number of travelers decide to delay their trip until the end of the outage,
as outages are known upfront. Among the remaining travelers, origin-destination pairs
change significantly, given by an increasing Wasserstein distance when comparing the
origin–destination distribution to the previous year.

A few comments are in order: we only measure correlation, but no cause–effect
relationship. It could also be possible that an increase in carsharing and taxi usage increases
the delay for public transit. However, from an application point of view, this is unrealistic
for rail traffic, and even the maximum number of carsharing vehicles and taxis should
not incur significant delays for road-based public transit (bus, rail replacement services).
Additionally, both public transit delays and carsharing/taxi demand might be dependent
on an external influence that we did not correct for. While we cannot prove that no external
source caused the correlation, a causal relation is the most likely explanation. Further, we
must mention that the measured effect is minimal. This is because the S-Bahn has very
similar and rather low delays on most instances. It is possible that some passengers choose
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MoD, rather than public transit already due to the current mean delay. Our method cannot
capture this and, therefore, only returns a lower bound on the influence of public transit
delays on MoD demand. Because the data set only permits integer delays and since delays
are subject to external influences, the effects remain minimal. More precise data would
permit a more extensive analysis. However, this approach is important, since it allows
third parties, such as policy makers or new market entrants, in order to measure the effect
with data they have available, or can easily collect. The evidence that carsharing and taxi
can help in increasing accessibility is rather anecdotal. Insights can be strengthened in
future research if data are available prior and posterior to opening new lines in the public
transit system. In future work, our results can be used to approximate a customer choice
function in a data-driven fashion.
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Abstract: Over the years, and with the emergence of various technological innovations, the relevance
of automatic learning methods has increased exponentially, and they now play a key role in society.
More specifically, Deep Learning (DL), with the ability to recognize audio, image, and time series
predictions, has helped to solve various types of problems. This paper aims to introduce a new theory,
Hierarchical Temporal Memory (HTM), that applies to stock market prediction. HTM is based on
the biological functions of the brain as well as its learning mechanism. The results are of significant
relevance and show a low percentage of errors in the predictions made over time. It can be noted
that the learning curve of the algorithm is fast, identifying trends in the stock market for all seven
data universes using the same network. Although the algorithm suffered at the time a pandemic was
declared, it was able to adapt and return to good predictions. HTM proved to be a good continuous
learning method for predicting time series datasets.

Keywords: time series forecasting; HTM; regression; machine intelligence; deep learning

1. Introduction
1.1. Contextualization

HTM can be described as the theory that attempts to describe the functioning of the
neocortex, as well as the methodology that intends to provide machines with the capacity
to learn in a human way [1].

The neocortex is defined as the portion of the human cerebral cortex from which
comes the highest cognitive functioning, occupying approximately half the volume of the
human brain. The neocortex is understood by four main lobes with specific functions of
attention, though, perception, and memory. These four regions of the cortex are the frontal,
parietal, occipital, and temporal lobes. The frontal lobe’s responsibilities are the selection
and coordination of behavior. The parietal lobe is qualified to make decisions in numerical
cognition as well as in the processing of sensory information. The occipital lobe, in turn,
has a visual function. Finally, the temporal lobe has the functions of sensory as well as
emotional processing and dealing with all significant memory. Thus, the algorithm that is
presented intends to create a transposition of this portion of the brain, creating a machine
with “true intelligence” [2].

The HTM is built based on three of the main characteristics of the neocortex. Thus, it
is a system of memory, with temporal patterns and the construction of regions according to
a hierarchical structure.

Starting with the first region, the encoder deals with all of the sensory component.
This will receive the data in their raw form, converting them into a set of bits, that will
later be transformed into a Sparse Distributed Representation (SDR). Transposing into the
human organism, the SDRs correspond to the active neurons of the neocortex. Thus, a 1 bit
represents an active neuron while a 0 bit represents an inactive neuron. This transformation
is achieved by transforming the data into a set of bits while maintaining the semantic
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characteristics essential to the learning process. One of the characteristics that proved to
be quite interesting is that similar data entries, when submitted to the encoding process,
create overlapping SDRs; that is, with the active bits placed in the same positions. Another
important characteristic is that all SDRs must have a similar dimensionality and sparsity
(the ratio between the number of bits at 1 and the total number of bits) [3]. A certain
percentage of sparsity will result in a system’s ability to handle noise and under sampling.

The second region, Spatial Pooler (SP), is responsible for assigning the columns
according to a fixed number, where each column corresponds to a dendritic segment of
the neuron that connects to the input space created by the region described above, the
encoder. Each segment has a set of synapses, that can be initialized at random, with a
permanence value. Some of these synapses will be active (when connected to a bit with
value 1) and consequently will be driven in such a way as to inhibit other columns in
the vicinity. Therefore, the SP is responsible for creating an SDR of active columns. This
transformation follows the Hebbian learning rule that for each input, the active synapses
are driven by inhibiting the inactive synapses. The thresholds dictate whether a synapse is
active or not.

The third region, Temporal Memory (TM), starts from the result of the previous two,
finding patterns in the sequence of SDRs in order to determine a prediction for the next
SDR. At the beginning of the process, all the cells of the active column are also active;
however, the region TM is responsible for activating a subset of cells of those same columns
when a context is predicted. In case there is no forecast, all the cells remain active. The
activation of the previously mentioned subsets of cells is carried out because only in this
way can the same entry be represented according to different contexts.

Finally, the classifier is the region in which a decoder calculates the overlap of the
predicted cells of the SDR obtained, selecting the one with more overlaps and comparing it
with the actual value (if known) [4,5].

Figure 1 describes the typical process of an HTM network.
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1.2. Motivation

HTM is built in three main features of the neocortex: it is a memory system with
temporal patterns and its regions are organized in a hierarchical structure. There are many
biological details that the theory ignores in case they have no relevance for learning. In
short, this approach includes Sparse Distributed Representation (SDR)s, its semantical and
mathematical operations, and neurons along the neocortex capable of learning sequences
and enabling predictions; these systems learn in a continuous way, with new inputs through
time and with flows of information top-down and bottom-up between its hierarchical layers,
making them efficient in detecting temporal anomalies. The theory relies on the fact that
by mimicking the neocortex, through the encoding of data in a way that gives it a semantic
meaning, activating neurons sparsely in an SDR through time will give these systems a
power to generalize and learn, not achieved to date with other classic approaches of AI. It
is expected to achieve better results and conclusions, while being an intelligence with a
higher flexibility when put up against adverse contexts.
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1.3. Objectives

The idea of this paper was born from the scope previously mentioned, with the
objective to study applications of the HTM theory that are still largely unknown to the
pattern learning and recognition community; the applications being studied range from
audio recognition, image classification, and time series forecasting with public datasets,
that may someday help in anomaly detections in medicine, hospital management, or to
act in case of urgency matters. In order to have the confidence to use these systems daily,
there is the need for the introduction of new technologies, supported by an AI system
with a higher generalization capacity to the ones already in place. With this in mind, the
objectives are the following:

• Test and analyze the applications of the HTM theory;
• Compare the HTM theory results against traditional ML technics in terms of:

- Accuracy and other classification or regression metrics;
- Computing power/time required;
- Amount and type of data required;
- Noise robustness of the algorithms;
- Possibility to justify the obtained results.

2. State of the Art

Predicting stock market performance is a very challenging task. Even people with an
excellent understanding of statistics and probability have difficulty in doing so. Numerous
factors combine to make stock prices so volatile that forecasting is at first sight impossible.
Adding to all this complexity are all of the political and social factors. Therefore, this
article intends to elaborate on a theory and its algorithm on stock market forecasting,
determining the future value of a given company’s shares. Nevertheless, several studies
aim to accept the challenge, and while some statistical and Machine Learning algorithms
achieve significant results, the search for closer to ideal results is underway [1,6,7].

There are numerous application fields where HTM can be applied and can produce
excellent results. For example, smart cities and their use of sensors, actuators, and mobile
devices produce huge streams of data daily, that should be exploited towards innovative
solutions and applications [8]. These streams of data are essential for an HTM network
that is continuously learning; thus, a problem such as stock market prediction is a good
indicator of if HTM can be used in such a scenario, such as in smart cities.

The paper “Forecasting S&P 500 Stock Index Using Statistical Learning Models” [9]
defines the primary objective as the forecast of the S&P 500 index movement, using
statistical learning models such as logistic regression and naïve Bayes. In this work, an
accuracy of 62.51% was obtained. Regarding the dataset, the data were collected between
2004 and 2014, and a transformation of daily prices into daily returns was performed.
Similarly, the model described in [10] collects the stock price every 5 min by calculating
its return using data for the years 2010 to 2014 from the South Korean stock market.
However, in this study, a three-level Deep Neural Network (DNN) model was chosen,
using four different representation methods: raw data, Principal Component Analysis
(PCA), autoencoder, and restricted Boltzmann machine.

In 2018, ref. [11] proposed a two-stream gated Gated Recurrent Unit (GRU) model and
a sentiment word embedding trained on a financial news dataset in order to predict the
directions of stock prices by using not only daily S&P 500 stock prices but also a financial
news dataset and sentiment dictionary, obtaining an accuracy of 66.32%. More recently,
as presented in the article [12], a long short-term memory (LSTM) network was used to
predict the future trend of stock prices based on the price history of the Brazilian stock
market. However, the accuracy was only 55.9%.

In the same year, in [13], a LSTM network was also used, using an S&P 500 data set
for the period from 17 December 2010 to 17 January 2013. In the published document,
the objective was well clarified, and it was intended to predict the value of the following
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day, based on the last 30 days; the mean absolute percentage error (MAPE) obtained
was 0.0410%.

In [14], three different models were proposed to forecast stock prices using data
from January 2009 to October 2019: autoregressive integrated moving average (ARIMA),
simple moving average (SMA), and Holt–Winters method. The SMA model had the
best forecasting performance, with a MAPE of 11.456808% in the test data (January to
October 2019).

Another DL approach, by [15], made use of Wavelet Transform (WT), Stacked Au-
toEncoder (SAE) and LSTM in order to create a network for the stock price forecasting
of six different markets at different development stages (although it was not clear which
companies’ data were used); similarly to [16], 12 technical indicators were taken from the
data. The WT component had the objective of eliminating noise, the SAE of generating
“deep high-level features”, and the LSTM would take these features and forecast the next
day closing price. With 5000 epochs and the dataset divided into 80% for training, 10% for
validation, and 10% for testing, the average MAPE obtained in six years was of 0.011% for
the S&P 500 index.

With the increase in the availability of streaming time series data came the opportunity
to model each stream in an unsupervised way in order to detect anomalous behaviors in
real-time. Early anomaly detection requires that the system must process data in real-time,
favoring algorithms that learn continuously. The applications of HTM have been focused on
the matter of anomaly detection. In [17], a comparison between an HTM algorithm against
others such as Relative Entropy, K-Nearest Neighbor (KNN), Contextual Anomaly Detector
(CAD), CAD Open Source Edition (OSE), Skyline, in the anomaly detection of various
datasets of the Numenta Anomaly Benchmark107(NAB) was made. HTM demonstrated
that it is capable of detecting spatial and temporal anomalies, both in predictable and
noisy domains.

In addition, in [18], an HTM network was compared against ARIMA, Skyline, and
a network based on the AnomalyDetection R package developed by Twitter, using real
and synthetic data sets. Not only were good precision results obtained using the HTM,
but there was also a significant reduction in processing time. In [19], it is claimed that
most anomaly detection technics perform poorly with unsupervised data; with this in
mind, 25 datasets from the NYSE stock exchange, with historical data of 23 years, were
analyzed by an HTM network in order to detect anomaly points. However, no explanation
of the parameters used was made and no ground truth is known, making it hard to make
conclusions. A synthetic dataset was also used, with known anomaly points—the network
failed to detect when the values were too low, only detecting when the data were multiplied
by 100—possibly by a faulty encoding process.

Leaving the anomaly detection domain, in 2016, [20] used a HTM model to predict
the New York City taxi passenger count 2.5 h in advance, with aggregated data at 30-min
intervals, obtaining a MAPE of 7.8%, after observing 10,000 data records, lower than other
LSTM models used in the study. By including this reference, it is intended to demonstrate
that HTM can be used in various contexts and with quite significant results in most cases.
In 2020, ref. [21] used recurrent neural networks, such as LSTM and GRU, to solve the
same problem of taxi passenger counting. On this approach, through hyper-parametric
tuning and careful data formatting, it is stated that both the GRU model and the LSTM
model exceeded the HTM model by 30% in lower runtime.

Kang et al. [22], compared the efficiency in memory and time consumption of an HTM
network with a modified version of the network for a continuous multi-interval prediction
(CMIP) in order to predict stock price trends based on various intervals of historical data
without interruption; the conclusions were that the modified version was more efficient in
memory and time consumption for this problem, although no conclusions were taken in
terms of accuracy of the predictions.

In 2013, Gabrielsson et al. [16], used a genetic algorithm in order to optimize the
parameters of two networks: HTM and Artificial Neural Network (ANN); with two months
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of the S&P 500 index data (open, close, high, low, and volume) aggregated by the minute,
12 technical indicators were extracted and fed to the networks. The problem was converted
into a classification one, with training, validation, and test datasets, where the classifier
was binary—price will or will not rise—following a buy-and-hold trading mechanism. The
Profit and Loss (PnL) was used as a performance measure, where the HTM model achieved
more than three times the profit obtained by the ANN network.

The arrival of the Covid-19 pandemic brought uncertainty to the financial markets
around the globe. According to [23], an increase of 1% in cumulative daily Covid-19 cases
in the US results in approximately 0.01% of an accumulative reduction in the S&P 500 index
after one day and 0.03% after one month. In [24], a variety of economic uncertainty
measures were examined, showing this same uncertainty; also, it was observed that there
is a lack of historical parallelism of this phenomenon, due to the suddenness and enormity
of the massive job losses. Both studies suggest that the peak of the negative effects in the
stock market was observed during March 2020.

3. Why Hierarchical Temporal Memory?

The HTM starts from the assumption that everything the neocortex decides to do is
based on both memories as well as the sequence of patterns; this algorithm is based on
the theory of a thousand brains. Among many other things, this theory tries to suggest
mechanisms to explain how the cortex represents objects as well as their behavior. HTM is
the algorithmic implementation of this theory. The great goal is then to understand how
the neocortex works and build systems on that same principle. In particular, this method
focuses on three main properties:

• Sequence learning;
• Continuous learning;
• Sparse distributed representations.

This method is relatively recent when compared, for example, to neuronal network
techniques. Therefore, it is important to highlight the advantages of HTM and why it was
chosen. It should be noted that all the statements presented here were based on authors
presented in the state of the art.

In short, the reasons why HTM was chosen are:

1. HTM is the most proven model for the construction of intelligence such as brain
intelligence;

2. Although it presents some complexity, it is a scalable and comprehensive model for
all the tasks of the neocortex;

3. The neuronal networks are based on mathematics while HTM is inspired fundamen-
tally in the biology of the brain;

4. HTM is more noise-tolerant than any other technique presented until today, due to
the sparse distribution representations of raw input;

5. It is a fault-tolerant model;
6. It is variable in time, since it is dependent of state as well as of the context it is

presented;
7. It is an unsupervised model;
8. Only a small quantity of data are required;
9. No training/testing datasets are required;
10. Few hyper-parameters tuning—most of the parameters from the algorithms are

general to the theory and fall into a specific range of values.

However, as in all methods ever presented, there are already trade-offs:

1. The optimization of HTM for GPU can be difficult;
2. HTM is not a mathematically sound solution as the neural network;
3. This theory is recent and therefore still under construction;
4. There are relatively few applications made so far, and although the community is

growing, it is not as vast as the neural networks’ community.
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4. Data and Methods

Since it was not possible to find a representative dataset of the intended case studies,
such as ozone values and traffic in cities, among others, the work was applied to time
series forecasting of the close values in the stock market, for seven of the S&P 500 index
companies: Amazon, Google, HCA Healthcare, Disney, McDonald’s, Johnson & Johnson,
and Visa.

4.1. Dataset

The selection of a dataset as well as the features to be used may be determinant for the
success of the research work. Therefore, these were well thought out, and a script to obtain
stock fluctuations for various companies was made, pulling data from Yahoo Finance,
ranging from 3 January 2006 until 18 September 2020. Seven datasets were created, each
related to an S&P 500 company: Amazon, Google, HCA Healthcare, Disney, McDonald’s,
Johnson & Johnson, and Visa; the HCA Healthcare dataset only had data from 10 March
2011, and the Visa dataset from 19 March 2008.

To choose from the S&P 500 list of companies, two parameters were considered: first
the market capitalization and then the weight index. Companies are typically divided
according to market capitalization: large-cap ($10 billion or more), mid-cap ($2 billion to
$10 billion), and small-cap ($300 million to $2 billion). Market capitalization refers to the
total dollar value of a company’s outstanding shares. The market capitalization represents
the product between stock price and outstanding shares:

Market− Cap = Stock Price×Outstanding Shares (1)

The S&P 500 uses a market capitalization weighting method, giving a higher per-
centage allocation to the companies with the highest market capitalization. Therefore, we
chose the companies that represented several S&P 500 list levels with the following market
capitalization and indexes [24]. The companies chosen are displayed in Table 1.

Table 1. Companies Market Capitalization and Indexes.

Company Market Capitalization (Billion $) S&P500 Index

Amazon 1233.4 4.4
Google 1752.64 1.7

Johnson & Johnson 395.3 1.3
Visa 383.9 1.2

Disney 195.3 1.0
McDonalds 139.5 0.5

HCA 164.46 0.14

With this in mind, the seven companies were chosen due to their familiar popularity
and because they represent a wide range of business areas—although they did not represent
the entire S&P 500 index, these seven datasets were a good sample for the present study,
which pretended to investigate how well the HTM theory adjusts to the stock market
forecasting, using the same network for different datasets. Another particularity considered
was the inclusion of data after the declaration of the Covid-19 pandemic by the World
Health Organization (WHO) on 11 March 2020.

The seven datasets had the same fields: date, open, high, low, close, volume and name.
Two points were considered: the units of the Open, High, Low, and Close are in USD and
the name corresponds to the name of the stock, not of use for forecasting.

Table 2 describes all columns present in the dataset. On the Table 3, it is shown the
maximum values of each parameter per company and on the Table 4, the minimum values
of the same parameters. A first comparative analysis can be made where it is verified
that although all Amazon columns start with significantly lower values than Google, the
company’s growth was so positive that it ended up surpassing Google with higher values.
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Table 2. Description of Dataset columns.

Column Description

date Day of the values taken from the stock market
open Price of the stock at market open
high Highest price reached in the day
low Lowest price reached in the day

close Price of the stock at market close
volume Number of shares traded
name The stock’s ticker name

Table 3. Maximum values of each parameter.

Company High Low Open Close Volume

Amazon 3495 3467 3547 3400 104,329,200
Google 1800 1540 1609 1442 82,151,100

Johnson & Johnson 157 154 153 148 98,440,200
Visa 207 205 212 205 337,533,600

Disney 145 144 148 135 87,048,500
McDonalds 220 211 229 218 86,981,300

HCA 148 147 147 148 81,150,000

Table 4. Minimum values of each parameter.

Company High Low Open Close Volume

Amazon 29 26 34 36 881,300
Google 270 235 135 518 520,600

Johnson & Johnson 52 51 53 49 2,323,800
Visa 13 12 13 13 2,188,800

Disney 120 19 20 19 2,165,700
McDonalds 34 35 32 40 963,299

HCA 19 23 20 26 258,800

When plotting the close values for both companies, corresponding to the stock price
at the close of the market, it can be observed that there has been a significant increase over
the years. By looking at the Figure 2 it can be concluded that, although Amazon presented
lower close values at the beginning of 2006, it recovered the difference, obtaining higher
values than Google at the end of 2017. The datasets present different patterns and growths,
hence the importance of using different companies for this study.

4.1.1. Hierarchical Temporal Memory Network

All data present in the dataset were uploaded to a HTM network which was developed
using a python library called Numenta Platform for Intelligence Computing (NUPIC).
NUPIC is a machine intelligence platform that allows the implementation of machine
intelligence algorithms.

No pre-processing was carried out to the data because they were already very concise
and consistent, without any missing or out of range values; also, the network should be
able to interpret anomalies on the data and be resistant to noise.

The various regions of the network present the parameters in Tables 5–8.
The parameters presented in the previous tables were one of the most important

processes of choice throughout the investigation. While, for example, inputWidth is a value
required to guarantee the encoding of data, columnCount, numActiveColumns, boost, and
others were carefully tested in order to choose the best one. Therefore, specifically for data
encoding, importance was given to the days of the week and the season. The remaining
values are numeric and adapted to the value scales.

As for the SP, the default values were maintained for the following parameters: glob-
alInhibition, localAreaDensity, potentialPct, synPermConnected, synPermActiveInc, and
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synPermInactiveDec. The remaining parameters: numActiveColumnsPerInhArea, column-
Count, and boostStrength were tested and adapted in order to obtain the least possible error.

For the TM region, the parameters tested and adapted according to the results were:
cellsPerColumn, maxSynapsesPerSegment, and maxSynapsesPerCell. The remaining
parameters were left at the default values: newSynapseCount, initialPerm, permanenceInc,
permanenceDec, maxAge, globalDecay, minThreshold, activationThreshold, outputType,
and pamLength.
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Figure 2. Google and Amazon close value progression in the dataset.

Table 5. Maximum values of each parameter.

Input Type of Encoder Parameters

date DataEncoder season = dayOfWeek = 3
open RandomDistributedScalarEncoder Resolution = 0.5
high RandomDistributedScalarEncoder Resolution = 0.5
low RandomDistributedScalarEncoder Resolution = 0.5

close RandomDistributedScalarEncoder Resolution = 0.5
volume RandomDistributedScalarEncoder Resolution = 200

date DataEncoder season = dayOfWeek = 3

Table 6. SP Region Parameters.

Parameter Value

inputWidth 2033
columnCount 4096

GlobalInhibition 1
localAreaDensity −1

numActiveColumnsPerInhArea 160
potencialPCT 0.85

synPermConnected 0.1
synPermInactiveDec 0.04
synPermInactiveDec 0.005

boostStrength 3
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Table 7. TM Region Parameters.

Parameter Value

inputWidth 2033
columnCount 4096

cellsPerColumn 64
newSynapseCount 20

initialPerm 0.21
permanenceInc 0.1
permanenceDec 0.1

maxAge 0
globalDecay 0

maxSynapsesPerSegment 64
maxSegmentsPerCell 256

minThreshold 12
activationThreshold 16

outputType Normal
pamLength 1

Table 8. Classifier Region Parameters.

Parameter Value

Type SDRClassifier
Alpha 0.25
Steps 1.5

Many of these parameters were left as default, such as the ones related to the synaptic
permanence and decay, since they represent the biological link between the known theory
of how the neocortex works and its applicability to the network.

4.1.2. Metrics and Evaluation

This study aims to predict the next day’s close value of the market for a given company.
Three metrics were used to compute the results: root mean square error (RMSQ), MAPE,
and absolute average error (AAE) [25].
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Since the HTM is supposed to be a continuous learning theory, there are no train-
ing/validation/test sets; the data are learned and predicted continuously. To access the
learning, the metrics were taken on three moments: to the entire dataset, 365 days before
the declaration of the Covid-19 pandemic, and after the declaration. With these three
moments, it is possible to gain a better understanding of how quick (in terms of input
data needed) the algorithm is to achieve good previsions, while inferring how it adapts to
dramatic changes in the input data (in this case, as a consequence of the pandemic).

5. Results

The results were obtained by forecasting the value ‘close’, concerning the next day, of
the stock market for seven different data sets, using the same parameters in the algorithm.
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Table 9 shows the values MAPE, RMSE, and AAE obtained for the three different moments,
explained in the previous section:

Table 9. Minimum values of each parameter.

Total 365 Days Before Pandemic After Pandemic

Company MAPE RMSE AAE MAPE RMSE AAE MAPE RMSE AAE

Amazon 1.6067 18.8210 8.3973 1.4366 36.4290 25.1878 2.0034 66.3107 51.6145
Google 1.2537 11.9884 6.7297 1.2393 21.8242 14.6977 1.9062 35.3589 25.3776

Johnson & Johnson 0.7320 1.1232 0.6765 0.8593 1.8820 1.1664 1.4166 3.0066 1.9545
Visa 1.2811 1.5859 0.8056 1.1627 2.8037 1.9013 2.1031 5.3197 3.7043

Disney 1.1345 1.2230 0.7204 1.1339 2.1880 1.4229 2.3098 3.5803 2.5156
McDonalds 0.8637 1.5649 0.8731 0.8791 2.6392 1.7090 1.8123 5.3295 3.2158

HCA 1.4504 1.7493 1.0308 1.3894 2.6339 1.8133 3.0940 4.5305 3.1896

In the following graphics (Figures 3–9), the predicted vs. actual values are displayed
along the time axis. The algorithm kept a good performance, following the trends of
market ‘close’ value through time, for all datasets. As expected, the algorithm suffered in
its previsions around the time of the declared pandemic; however, it was able to achieve
some stability afterwards, in line with the possible stability that the stock market can offer
in such an unstable time.
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It is also visible by the analysis of the graphics presented that although the value
dropped significantly at the beginning of 2020, there is a trend of a continuous rise of
the stock.

It is possible to infer that the algorithm learned the patterns quickly, making pre-
dictions that were very close to the actual ones with few data. The MAPE values were
lower for every dataset in the more stable period before the pandemic, except for the
McDonald’s and Visa datasets, which received better results in the total period. All MAPE
values increased for the post-pandemic period, although not as much for the Amazon
dataset—this can be explained by the more stable stock pricing in this company. In general,

69



Electronics 2021, 10, 1630

the RMSE and AAE values increased through time; since these are not percentage metrics,
and the data are not normalized, this increase can be explained by the higher ‘close’ values
in the stock market in the last few years across all datasets.
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The results obtained in this experiment were very promising, showing that the HTM
theory provides a solid framework for time series forecasting, achieving good predictions
with few data. Furthermore, the algorithm maintained a good performance across the
various datasets: through time, being robust to temporal noise, a bigger complexity of data,
and a disruption in the input data caused by the pandemic.

Because of the way HTM works, it is hard to make a rigorous comparison with other
methods, which normally divide datasets into training and testing batches.

Besides, in this study, the data used are specific to some S&P 500 companies, ranging
from 3 January 2006 until 18 September 2020, contrary to what is observed in the literature,
where the time range is typically smaller and no designation of the companies is made—
although, some comparisons and findings can be discerned. In [13], the SMA network
obtained a MAPE of 11.45% for only a short period of a year, a value worse than what was
obtained in the present study for any company for the whole time period available on the
datasets. The other two studies presented previously on Section 2, [12,14], related to the
forecasting of the next day ‘close’ value using different LSTM networks, obtained better
MAPE values. However, it cannot be stated that these networks perform better, since only
a small percentage of the datasets are used for testing and rely on massive training sessions.
These methods do not rely on an online continuous learning mechanism such as HTM.
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6. Discussion and Conclusions

The advancements of how our brains work biologically may lead to new and revolu-
tionary ways of achieving a true machine intelligence, the aim of the HTM theory. This
theory should evolve through the years and help the science community to solve problems
typically solved by Machine Learning; specifically Deep Learning in the last few years.

The proposed HTM network obtained good results in the time series forecasting of
close values of the stock market, for seven different datasets, through time, proving it
can be a great methodology to make predictions while being robust to noise in the data,
both in a temporal and spatial axis. It is shown that the network can adapt to different
datasets in the same range of problems, with no different hyper-parameter tuning, unlike
LSTM and other Deep Learning models; this attribute of HTM models is linked to the
known properties of the human cortical neurons and the representation of SDR. Another
key difference from other Deep Learning models is that HTM learns continuously, without
the need for a specific training dataset; the model learns and predicts continuously. The
known experiments where the ‘close’ value of the stock market is predicted use a classic
approach, where training/validation/test dataset tuning is applied to the comparison
between models, which is difficult in terms of prediction accuracy; moreover, classically,
the data are normalized and suffer a lot of data pre-processing, contrary to the HTM
network, where the raw input is only transformed into an SDR, keeping its semantic
characteristics.

7. Future Work

As the HTM theory develops, bringing new perspectives of the human intelligence
and learning process, such as grid cells [26], it should grab more attention from the data
science community, as it will provide a great framework for intelligence and learning.

With regards to future work, there are several possibilities that stand out:

• The combination of this theory with other methods of machine learning. In this way,
high dimensional temporal learning problems requiring pre-processing and feature
extraction can be solved before creating a sparse representation of the raw input;

• The application of this theory, or even the combination mentioned above, to the
in-depth study of the impact of the pandemic on stock prediction;

• The extension of the application of this theory or combination to all S&P 500 companies
and to other markets.

We believe that this approach has the most value, since not only does it prove that it
is possible to obtain good results with HTM, but it also encourages future research and
applications in this same field.

Author Contributions: Each of the authors made substantial contributions to the conception of the
article, pleasantly approving the submitted version. Conceptualization, R.S., T.L., A.A. and J.M.;
methodology, R.S., T.L., A.A. and J.M.; software, T.L.; validation, A.A. and J.M.; formal analysis, R.S.;
investigation, R.S., T.L., A.A. and J.M.; resources, A.A. and J.M.; data curation, R.S., T.L., A.A. and
J.M.; writing–original draft preparation, R.S., T.L.; writing–review and editing, R.S.; visualization,
R.S., T.L.; supervision, A.A. and J.M.; project administration, J.M.; funding acquisition, J.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by “FCT—Fundação para a Cieˆncia e Tecnologia” within the R&D
Units Project Scope: UIDB/00319/2020. The grant of R.S. is supported by the European Structural
and Investment Funds in the FEDER component, through the Operational Competitiveness and
Internalization Programme (COMPETE 2020). [Project n. 039479. Funding Reference: POCI-01-0247-
FEDER-039479].

Acknowledgments: We thank the administrative staff of the University of Minho for their availability.

Conflicts of Interest: The authors declare no conflict of interest.

71



Electronics 2021, 10, 1630

Abbreviations

AAE Absolute Average Error
ANN Artificial Neural Network
ARIMA Autoregressive integrated moving average
CAD Contextual Anomaly Detector
CMIP Continuous Multi-Interval Prediction
DNN Deep Neural Network
GRU Gated Recurrent Unit
HTM Hierarchical Temporal Memory
KNN K-Nearest Neighbor
LSTM Long short-term memory
MAPE Mean Average Percentage Error
NAB Numenta Anomaly Benchmark
NUPIC Numenta Platform for Intelligent Computing
NYSE New York Stock Exchange
PCA Principal Component Analysis
PNL Profit and Loss
RMSE Root Mean Square Error
SAE Stacked Autoencoder
SDR Sparse Distributed Representation
SMA Simple Moving Average
SP Spatial Pooler
SVM Support vector machine
TM Temporal Memory
WHO World Health Organization
WT Wavelet Transform
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Abstract: Travel time data is an important factor for evaluating the performance of a public transport
system. In terms of time and space within the nature of uncertainty, bus travel time is dynamic
and flexible. Since the change of traffic status is periodic, contagious or even sudden, the changing
mechanism of that is a hidden mode. Therefore, bus travel time prediction is a challenging problem
in intelligent transportation system (ITS). Allowing for a large amount of traffic data can be collected
at present but lack of precisely-conducting, it is still worth exploring how to extract feature sets that
can accurately predict bus travel time from these data. Hence, a feature extraction framework based
on the deep learning models were developed to reflect the state of bus travel time. First, the study
introduced different historical stages of bus signaling time, taxi speed, the stop identity (ID) of spatial
characteristics, and real-time possible arrival time, signified by fourteen spatiotemporal characteristic
values. Then, an embedding network is proposed to leverage a wide and deep structure to mate the
spatial and temporal data. In order to meet the temporal dependence requirements, an attention
mechanism for a Recurrent Neural Network (RNN) was designed in this research in order to capture
the temporal information. Finally, a Deep Neural Networks (DNN) was implemented in this research
in order to achieve the dynamic bus travel time prediction. Two case studies of Guangzhou and
Shenzhen were tested. The results showed that the performance of the algorithm was more efficient
than that of the traditional machine-learning model and promoted by 4.82% compared to the deep
neural network applied to the initial feature space. Moreover, the study visualized the weighted cost
of attention on the bus’s travel time features during a certain running state. Therefore, the study
demonstrated the proposed model enabled to understand the characteristic data of transit travel time
with visualization.

Keywords: dynamic bus travel time prediction; wide and deep; data fusion; attention; recurrent
neural network; deep neural networks
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1. Introduction

Bus travel time prediction is an important component of an intelligent transport system (ITS).
The precise capturing of real-time travel information facilitates the choice of an optimal route by a
traveler. Additionally, with unforeseen events occurring, traffic managers adjust departure schedules
in real time to ensure the service quality of a system [1,2]. Nevertheless, the travel time of the same
bus route in the same city is dynamic due to the nature of bus operation because of frequent traffic
congestion, traffic accidents, and road construction. Therefore, it is necessary to focus on a real-time
and dynamic bus travel time prediction model in depth in order to further improve traffic efficiency.

Bus travel time prediction has three dependencies. (1) Time dependence [3]: Due to the strong
periodicity of passenger demand, bus scheduling also has a certain periodicity. Moreover, bus travel
time also depends on the tendency of recent historical travel times. (2) Spatial dependence: The travel
time of a particular line is influenced not only by the current traffic state variables of the running
line but also by the traffic state variables of the entire bus line [4]. (3) Exogenous dependence: Some
exogenous variables, weather conditions, and emergencies may have a great impact on traffic timing
prediction [5]. However, driven by big traffic data, a challenge arises: can one gain broad utilization of
the latent knowledge hidden in big traffic data in order to predict bus travel time?

Currently, the original statistical-based parameter models (such as K-Nearest Neighbor (KNN) or
ARIMA) or machine learning models (such as Support Vector Machine (SVM)) are experiencing more
and more difficulty in meeting the requirements of big data in some areas, while the research field of
neural networks is active [6,7]. Recently, the neural network shallow prediction model has been used
in most scenarios [8]. However, these models have limitations when dealing with large historical data
sets and complex nonlinear functions [9].

Deep learning integrates multi-layer architecture and regression to extract inherent features in
an end-to-end way. Based on the analysis of a large amount of real-time and historical traffic data,
a deep neural network model can deal with the nonlinear characteristics of traffic data and obtain more
precise prediction results [10]. However, real-time dynamic bus travel time prediction is very complex,
and it involves complex space-time features [11,12]. Moreover, the potential traffic status and traffic
events are in a hidden mode. Therefore, the development of a deep learning model is not well suited
to capturing the deeper characteristics of bus travel time effectively [13].

For the critical issue of interpreting the space-time features of bus travel time, data-driven methods
and neural network methods have been doubted to have this ability [5]. However, there have been a
few research literature references that have focused on the diverse traffic features affecting the final
prediction of bus travel time. Therefore, this research aimed to explore a new methodology for handling
a large number of spatio-temporal features by using deep learning models for the prediction of bus
travel time.

In order to solve the problem of focusing on big data feature extraction for bus travel time
prediction, in this study, a dynamic real-time bus travel time prediction method was proposed based
on a deep learning feature extraction framework and data fusion. In this research, bus travel times
were divided into running times and dwelling times, and Global Positioning System (GPS) speeds
were added for taxis and buses, as well as travel times based on real-time speeds in order to predict
dynamic bus travel times, as indicated in Figure 1. In summary, the main contributions of the proposed
approach are those reported below.
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Based on the prediction of bus travel time, in this research, a new heterogeneous feature extraction
framework was proposed based on the recurrent neural network (RNN) model of embedding wide
and deep (WD) and an attention mechanism. The framework was proposed in order to gain a deep
understanding of the spatio-temporal features and intrinsic connections of the characteristics related to
bus travel time and to visualize the connections.

Fourteen spatial and temporal features were introduced, including stop Identities (IDs) as special
characteristics, bus dwelling times at different historical levels, real-time GPS bus speeds with real-time
possible transit times obtained based on real-time bus speeds as temporal features. These features
have not been analyzed together in previous surveys. Lastly, multiple super positions of the RNN and
Deep Neural Networks (DNNs) were employed to reduce the residual heterogeneous data fusion and
real-time dynamic bus travel time prediction. A novel system for real-time dynamic bus travel time
prediction was offered.

To verify the model’s stability and generalization ability, the model was tested on the datasets of
the Guangzhou No. 226 bus and the Shenzhen No. 113 bus. These buses ran along the main roads in
large urban centers. Both of the experiments achieved good results. Other studies never tested their
models in different cities.

2. Literature Review

Ever since the rapid development of deep learning methods occurred, the potential for processing
large-scale high-dimensional data has been maturing [3,10,14–18].

Recurrent Neural Network (RNN), which is a distinctive construction of deep learning models,
is widely used to solve sequence problems [19]. This type of network extends a DNN by repeatedly
connecting hidden layers in different timestamps. In this network structure, memory units can
dynamically model sequence data. Lately, some studies in the field of transportation has begun to
seek RNN to solve the problem of time series predictions, such as traffic flow [20], traffic speed [10],
and travel time prediction [21]. Petersen et al. (2019) and He et al. (2020) developed an RNN
architecture for the prediction of bus travel times. They demonstrated that the network could capture
long-term time dependencies in traffic data, as shown in Table 1 [6,22].

Table 1. A comparison of travel time prediction approaches.

Paper Model Feature Extraction Classification
Factors Number of

Cities
Size of Cities

AVL Speed Dwelling Time

[23] SVM,
ANN Cluster Temporal Yes Bus Historical mean 1 city megacity

[4]
SVM
ANN
KNN

No Temporal Yes Taxi Predicted 1 city megacity

[22] CNN
RNN No Spatio-temporal Yes No No 1 city metropolis

[6] RNN Cluster Temporal Yes No Historical mean 1 city megacity
[5] DNNS PCA, Cluster Spatio-temporal Yes No No 1city metropolis

Ours RNN
DNNs

Embedding Wide and-
Deep Attention Spatio-temporal Yes Bus and taxi Multiple stages 2 cities Megacities

Note: AVL means automatic vehicle location.

Deep Neural Networks (DNN) has deep fully connected neural layers. An individual DNN
does not require the manual extraction of features, and it learns in a supervised way. For our specific
problem, the factors that caused congestion, queue delays, and traffic flow came from the fuzzy
interaction with complex features. DNN is a multi-layer deep structure that can extract features from
data and reveal important potential or hidden structures. Furthermore, DNN provides a powerful
and new way to learn how these features interact. Abdollahi et al. (2020) trained a deep, multi-layer
perceptron to predict bus travel time [5].

Although the exploration of deep learning models with applications to bus travel time prediction
has achieved delightful results, there are still some limitations in these fields. A comparison of the
latest bus travel time prediction studies is shown in Table 1.
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There are few existing studies on bus travel time prediction using deep learning methods. It has
been even rarer to study real-time dynamic bus travel time prediction. In the only studies, although the
deep learning methods had a powerful ability to handle large amounts of data and high-dimensional
data, the gap between large-scale data and its shallow structure, the gap between full connectivity
and rich features [5,13], and the hidden patterns of potential traffic states and traffic events made it
difficult for the above models to derive representative features from the rich feature data set. In other
words, there has been a lack of systematic, perfect, and in-depth feature learning. Therefore, it is
necessary to develop a deep-seated deep learning architecture that fully reflects the features of bus
travel time prediction.

The existing studies of the prediction of bus travel time with feature learning still belong to
the category of shallower feature learning. Examples include geospatial feature analysis, principal
component analysis (PCA), and unsupervised learning algorithms (K-Means) to extract spatial features,
and a deep-stacked auto-encoder (SAE) to represent low-dimensional features [5,23]. Using the
deep structure of a Recurrent Neural Network (RNN) in time, the historical sequence information
was automatically remembered in the model structure [6,22]. The spatial features of the data were
extracted from the Convolutional Neural Network (CNN) for use by the Long Short-Term Memory
(LSTM) network [22]. DNNs were also used to predict bus travel times after feature extraction [5].
However, most of the research on bus travel time has been shallow in terms of the feature learning
structures [5,6,23], lack of feature learning [4,22], or lack of feature learning depth and related breadth.
Therefore, it is of great significance to develop a deep feature extraction structure that fully reflects the
characteristics of travel time.

The study proposed a neural network that integrated embedded, wide and deep algorithm,
and attention mechanisms, and introduced them into a dynamic bus travel time prediction model
for design. The extraction framework made use of the non-static space-time correlation existing in
urban public transport networks and discovered complex models that traditional methods could not
capture. Our study also visualized the RNN model to interpret the impact of various spatial-temporal
features on the prediction of dynamic bus travel times, which challenged the traditional neural network
approach in the public transport field.

3. Prediction Model

3.1. Feature Extraction Framework

The underlying feature extraction framework was proposed. The framework was composed of
Embedding, Wide and Deep, and Attention models.

3.1.1. Embedding

One-hot encoding is one of the most common methods used in dealing with discrete data. Taking
Wednesday as an example, it is the third day of a week, and (0, 0, 1, 0, 0, 0, 0) is used to represent three
out of seven. One-hot encoding treats each dimension independently, but these representations might
not be capable of catching the similarity of each variable; for example, Saturday and Sunday during
peak periods might be similar. Additionally, one-hot encoding is too sparse, which is difficult for a
deep learning model to deal with [24]

Embedding is a particularly effective method to solve the problems mentioned above, which can
be formalized into the following expression:

embedding = map
(
X ∈ RN×1 → XE ∈ RN×d

)
,

where N denotes the words, d is the embedding size, X is the feature, XE is the recoded features, and R
is the data feature set.

Similar to the data structure mentioned in Section 3.2, the features hours (time of data), day (day of
week), and distance, which was used as the station ID instead of bus travel distance, were discrete
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data features. In order to capture more similarity for each feature, the study implement an embedding
model for each feature, as shown in Figure 2.
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3.1.2. Wide and Deep

The bus travel time prediction task included both discrete features and continuous features.
The dimensions of the discrete features were much smaller than those of continuous features, and the
model would be more susceptible to the impact of continuous data if these features were directly input
into the deep model for training. To solve this problem, our study were inspired by the designation of
Wide and Deep, shown in Figure 3, for which the core idea was to combine the memory ability of the
linear model with the generalization ability of the deep model. In this study, discrete features were
applied, such as hours, day, and distance to the wide side, and continuous features were applied to the
deep side.

a. The Wide Component
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Since the wide side had a high memory ability, it could be used to map the interrelationships after
the embedding of discrete features turned into continuous features. Therefore, the discrete features
were input into the wide side.

The wide side emphasized features that had often co-occurred in the past, also known as “frequent
co-existence features.” For example, “Monday”, “7:30–9:30,” and “station 2–3” often appeared together.
The relationship between these three terms allowed us to explain why they occurred so often together.
In fact, the memory could be effectively captured by adding interaction items to a broad learning
model. The wide side is a generalized linear model for which the form is

embedding f d = WT
V×N × one_hot( fd) + b (1)
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where, embedding f d denotes the predicted discrete outputs, which were treated as traffic state features,
W is a V ×N matrix, and V is the set size of the corresponding discrete features. one_hot( fd) is the
one-hot encoding corresponding to the discrete features.

b. The Deep Component

Generalization is the use of new feature interactions that have occurred rarely or never in historical
data, such as “V3 = 40.1” rarely co-occurring with “DT1 = 3” at the same time. Therefore, the wide side
could not be used to predict situations that had occurred rarely or never in historical data. However,
deep neural networks could find correlations between invisible features.

The deep side had strong feature generation ability, so continuous features were input into the
deep side. This allowed the model to capture correlations between different continuous features.
The learning model for the expression of continuous features can be expressed as follows:

f eature f c = WT
M×N × fc + b (2)

where, f eature f c represents the Continuous features in the bus operation data, W is the vector M×N,
M is the size of the continuous features, N is the size of the embedding, fc is the hidden layer of the
neural network, and b is the offset.

c. Joint Training of the Wide and Deep Model

Finally, the features calculated from the two branches were spliced together to obtain the features
extracted from the original data. These features can be expressed as

f eature f = embedding f d ⊕ f eature f c (3)

where, f eature f is formed by combining discrete features and continuous features, and⊕ is the split joint.

3.1.3. Attention Mechanism

In this study, the attention mechanism was introduced into the task, and our attention-based
RNN model that used spatial-temporal features to predict dynamic bus travel times and capture the
importance of spatial-temporal features at different locations was proposed.

The attention model performed element-wise multiplication with each feature matrix to obtain a
weighted feature matrix, as shown in Figure 4:

attn_ f eaturet = attn⊗ f eaturet. (4)

The goal of the attention model was to learn an attention weight matrix attn_ f eatureTt. In this
study, an RNN model was proposed in which ht was used to learn weights at different states. Each
element could be interpreted as the relative importance of T f

(
f eature f atT

)
. The activation function

sigmoid between the output and the hidden layer could limit the output to between 0 and 1:

attn_ f eatureTt = sigmoid×
(
WTht

(
T f

)
+ b

)
(5)

In the formula, W is a T f matrix, and ht is a mapping between the input and hidden neurons. In this
study, Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) was used in a fully-connected
RNN network. Then the spatial-temporal matrix T f of the historical bus journey point by point was
multiplied with the attention matrix attn_ f eatureTt (as shown in Formula (2) to obtain a weighted bus
journey time matrix for further learning. Therefore, the final attended feature was

attn_Trnn = attn_ f eatureTt ⊗ T f (6)
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In the formula, attn_Trnn is the weighted eigenvector, and ⊗ represents the multiplication of the
corresponding elements one by one.Electronics 2020, 9, x FOR PEER REVIEW 7 of 20 
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The RNN was used to model the series data, and the RNN hidden features were used to weigh
the features. The formation process of the weighted travel time matrix is shown in Figure 5.
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3.2. Dynamic Bus Travel Time Prediction

The bus travel time prediction procedures underlying are formed by embedding module, Wide
and Deep module, RNN and DNN.

Step1: embedding model compresses and encodes discrete data, extracting correlations between
discrete features.

Step2: since the wide side had a high memory ability, it was used to map the interrelation ships
after the embedding of discrete features turned into continuous features. The deep side captures
correlations between different continuous features. The features calculated from the two branches were
spliced together to obtain the features extracted from the original data. The wide and deep module
that fused discrete and continuous features are shown in Figure 6.

81



Electronics 2020, 9, 1876

Electronics 2020, 9, x FOR PEER REVIEW 8 of 20 

 

3.2. Dynamic Bus Travel Time Prediction 

The bus travel time prediction procedures underlying are formed by embedding module, Wide 

and Deep module, RNN and DNN. 

Step1: embedding model compresses and encodes discrete data, extracting correlations 

between discrete features. 

Step2: since the wide side had a high memory ability, it was used to map the interrelation ships 

after the embedding of discrete features turned into continuous features. The deep side captures 

correlations between different continuous features. The features calculated from the two branches 

were spliced together to obtain the features extracted from the original data. The wide and deep 

module that fused discrete and continuous features are shown in Figure 6. 

Step3: all of the features were weighted by the attention module. The weighted features were 

fed into the RNN and DNN models. 

DNN is a fully connected deep learning model, which has better ability to obtain the optimal 

solution. However, there is an insoluble problem with fully connected DNN: it is impossible to 

model changes in time series. In a normal fully connected network, the hidden layer of DNN can 

only receive the input at the upper layer at the current moment, while in RNN, the output of neurons 

can act directly on itself in the next period. In other words, the hidden layer of a recursive neural 

network can not only receive the input of the previous layer, but also get the input of the current 

hidden layer at the previous moment. The significance of this change is that it makes the neural 

network capable of historical memory [26]. In principle, an infinite amount of historical information 

is well suited for tasks with long-term relevance, such as speech and language. The memory function 

of RNN is particularly suitable for memorizing and mining sequence data. The multiple 

combinations and superposition of DNN and RNN can capture the characteristics of the permissible 

sequence in bus travel time prediction and obtain the optimal solution. Meanwhile, the residual 

errors can be eliminated by multiple combinations and superposition. 

Then Mean Squared Error (MSE) was used in this study to train the model to predict the bus 

dynamic travel time, as shown in Formula (7): 

𝑙𝑜𝑠𝑠𝑡 =
1

2
|𝑡 𝑎𝑟𝑔 𝑒 𝑡𝑡 − 𝑡 𝑎𝑟𝑔 𝑒 𝑡𝑡̃ |2, (7) 

In the formula, 
t

loss  is a loss function, 
t

target
 

is the real travel time at time t, and is the 

predicted value at time t. 

Real-time 

Speed

Stop ID

Historical 

Transit  Time

Historical 

Dwell Time

Discrete Features

Continuous Features

Wide & Deep Model

Embedding

DNN

Attention Model

RNN Hidden 

Layer Weighting

Attention-

weighted 

Features

MSEDNN

Discrete 

Days

Discrete 

Hours

Multi-source Heterogeneous Spatio-

temporal Data

Data Fusion+ DNN

Attention

 weight

Travel Time PredictionFeature Extraction Framework

 

Figure 6. Overview of the model developed for the bus dynamic travel time prediction. 

The model was built to be end to end, and all of the parameters in the model were trained 

together. Our general training process is listed as Algorithm 1. 

Figure 6. Overview of the model developed for the bus dynamic travel time prediction.

Step3: all of the features were weighted by the attention module. The weighted features were fed
into the RNN and DNN models.

DNN is a fully connected deep learning model, which has better ability to obtain the optimal
solution. However, there is an insoluble problem with fully connected DNN: it is impossible to model
changes in time series. In a normal fully connected network, the hidden layer of DNN can only receive
the input at the upper layer at the current moment, while in RNN, the output of neurons can act
directly on itself in the next period. In other words, the hidden layer of a recursive neural network
can not only receive the input of the previous layer, but also get the input of the current hidden
layer at the previous moment. The significance of this change is that it makes the neural network
capable of historical memory [26]. In principle, an infinite amount of historical information is well
suited for tasks with long-term relevance, such as speech and language. The memory function of
RNN is particularly suitable for memorizing and mining sequence data. The multiple combinations
and superposition of DNN and RNN can capture the characteristics of the permissible sequence in
bus travel time prediction and obtain the optimal solution. Meanwhile, the residual errors can be
eliminated by multiple combinations and superposition.

Then Mean Squared Error (MSE) was used in this study to train the model to predict the bus
dynamic travel time, as shown in Formula (7):

losst =
1
2

∣∣∣∣targett − t̃argett

∣∣∣∣
2
, (7)

In the formula, losst is a loss function, targett is the real travel time at time t, and is the predicted
value at time t.

The model was built to be end to end, and all of the parameters in the model were trained together.
Our general training process is listed as Algorithm 1.
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Algorithm 1: Process for Model Training

1 Input:
2 Discrete data fd in the training dataset
3 Continuous data fc in the training dataset
4 Travel time targett in the training dataset
5 Output:
6 Step 1: Initialize all parameters
7 Step 2: Feature extraction
8 Step 3: Feed fd to the Embedding model to obtain embeddingfd
9 Step 4: Feed fc to the DNN model to obtain featurefc
10 Step 5: Concatenate all {embeddingfd, featurefc} as featuref
11 Step 6: For all states in a series of traffic data, do
12 SAMPLES = [[f 1,f 2,f 3, . . . ,fT]]
13 End for stage I feature extraction
14 Training Algorithm
15 Repeat
16 Step 7: Randomly choose a batch of samples in SAMPLES
17 For each state of the above
18 Get RNN output outputt

19 Get Attention features attn_featuret

20 End of stage II feature extraction
21 Concatenate both {outputt,att_featuret}
22 Get forecasted travel time targett

23 Compute loss on and targett using the mean standard error
24 Back propagation
25 Until convergence
26 End training

4. Data Collection and Feature Definition

4.1. Data Collection

We evaluated our approach using a large number of buses and taxi GPS data, as well as the bus
Automatic Vehicle Monitoring (AVL) data collected by the Transport Department of Guangzhou and
Shenzhen in the south of China, which are metropolises with populations of over 14.9 million people
and 13.2 million people, respectively.

The bus travel time prediction could be divided into a main road with a signal and a road without
a signal. Our experiment in Guangzhou and Shenzhen included different signal periods for multiple
intersections connected to each other, which was more challenging for the accuracy of urban main
road prediction [27].

To test the No. 226 Bus line in Guangzhou City (23.2 km, 28 stations), the dates for 27 sections and
the corresponding areas were collected from 5 October 2014, to 9 November 2014. The No. 226 bus
ran through the artery roads (such as Huangpu Road and Dongfeng Road). The running time of the
vehicles was 6:00–22:00, and the departure time was 10 min.

The Shenzhen data set used data for the No. 113 bus (19.5 km, 23 stations) with 23 sections and
the corresponding areas collected from 20 March 2018, to 5 August 2018. The buses ran through the
main road, ShenNan Avenue. The running time of the vehicles is 6:10–23:00, and the departure time
was about 4–8 min.
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4.2. Features and Definition

Firstly, the main reason why existing estimation approaches could not achieve excellent accuracy is
the fact that the travel times are impacted by various factors, such as different weather conditions [28,29],
temporal variation of peak and off-peak hours [4,30,31], boarding passenger information [32–34],
and real-time traffic conditions [35,36]. Some work focus on analyzing the impacts of different factors.
In the study of He [37], the traffic state reports from Twitter information is added as additional data
support to predict travel times. The results show that knowing real-time traffic condition helps to
increase the estimation accuracy. From the analysis results of the above studies, we can observe that
the traffic conditions are uncertain and important for travel time prediction [38]. However, bus GPS
data are usually infrequent. Especially, the penetration rate of buses in the traffic network is low at low
speed. It is less insensitive to irregular traffic conditions than taxis. It can be observed that only limited
studies exist that analyses the influence of real-time traffic flow conditions on bus travel times and the
correlation between them [4].

Secondly, the data of Shenzhen city is of 2016. In 2016, the working hours of bus lanes in
Shenzhen were from 7:30 am to 9:30 am and from 17:30 pm to 19:30 pm on weekdays (except statutory
holidays).Taxes are usually allowed to travel on bus lanes during non-bus lane working hours.
In addition, in the field observation of taxi operation, it is found that sometimes passengers will park
in the bus lane when getting on or off the taxi. As a result, taxis sometimes run on bus lanes.

Moreover, the data of Guangzhou comes from the time when bus lanes have not been implemented.
Therefore, at that time, buses and taxis were traveling together. Therefore, bus GPS and taxi GPS were
taken into account when considering the traffic status. Additionally, Different studies have different
definitions of real-time. Nikolas Julio [39] defined the dynamic travel time prediction as 10 min when
studying the use of traffic shock waves and machine learning algorithms to predict bus speed in real
time. Qichongb [40] Predicts bus real-time travel time basing on both GPS and RFID data based on
the assumption that the traffic flow keeps the same level in an interval of 30 min although he collects
GPS data every 30 s. Hans [41] forecasts Real-time bus route state using particle filter and mesoscopic
modeling with four loop detectors installed along the same corridor. Archived data provides access to
volume and occupancy information collected approximately every minute. In order to predict the
dynamic bus travel time, this paper adds the real-time GPS speed data of the bus every 20 s to the
feature for dynamic bus travel time prediction, which effectively improves the prediction accuracy.

Allowing for the data of Shenzhen city based on 2016-year when the exclusive hours of bus
lanes in Shenzhen were from 7:30 am to 9:30 am and from 17:30 pm to 19:30 pm on weekdays (except
statutory holidays). Besides, taxes are indeed allowed to travel on bus lanes during non-exclusive-bus
operating hours. In addition, in the field observation of taxi operation, it is found that sometimes
passengers will park in the bus lane when getting on or off the taxi. As a result, taxis always run on bus
lanes. Moreover, the fundamental data derived from bus GPS and taxi GPS were taken into account in
the paper, which are assumed to represent the traffic status of the PT and road transit, respectively.

We selected fourteen characteristic data sets related to bus travel time prediction, including discrete
data, continuous data, spatial data, and time data, as shown in Table 2. In this paper, the features of
exited studies is refined into multiple stages, and expanded to the speed of bus and taxi rather than
that of one kind vehicle, thus making it more comprehensive to reflect the traffic state.

The existed studies on dynamic travel time using deep learning model, especially the dynamic
bus travel time, has not yet been considered. Therefore, based on the above eigenvalues, we added the
real-time speed collected within 20s of the bus prediction time into the deep learning model proposed
in this paper to predict the dynamic bus travel time.
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Table 2. Features and definition.

Features Data type Temporal/Spatial Definition

dt1 Continuous Temporal Average bus dwell time within 30 min.
dt2 Continuous Temporal Average bus dwell time in 30 min at this point in the last week.

dt3 Continuous Temporal Average bus dwell time within 30 min on the same day of the
last week.

at1 Continuous Temporal Average bus travel time within 30 min.
at2 Continuous Temporal Average bus travel time within 30 min of the last week.

at3 Continuous Temporal Average bus travel time within 30 min on the same day of the
last week.

V1 Continuous Temporal Average velocity of the probe vehicles within 5 min.

V2 Continuous Temporal Average velocity of the probe vehicles in 5 min at this point in
the last week.

V3 Continuous Temporal Average velocity of the probe vehicles within 5 min on the
same day of the last week.

Real-time speed Continuous Temporal The real-time bus speed was used to reflect the real-time traffic
status in the bus lane.

Possible time Continuous Temporal The distance between stops divided by the real-time speed of
the bus

Day Discrete Temporal Day of the week, day = {1,2,3,4,5,6,7}.
Hours Discrete Temporal Hours of the day, hours = {8,9 . . . ,20}.

Stop-ID Discrete Spatial This reflected the spatial relationship between stops and the
impact of different stops on the bus travel time prediction.

5. Evaluation

5.1. Establishment of the Experiment

5.1.1. Platform Configuration

The experimental platform hardware components used in this study were an Intel Core i7 8700
@3.2 GHz and 32G DDR4 Memory. The platform software was Centos7.5. Our experiment was
operated using Python 3.6.8 and TensorFlow 1.10.0.

The experimental data can be found in Section 3, and the data features are shown in Table 2.

5.1.2. Missing Data

In the process of collecting data, missing data could not be avoided. In our experiments for
this study, the records with missing values were discarded because of the use of an RNN, but all the
states for a whole line were not discarded for the study. Instead, our study put the site information in
as a discrete feature on the wide side for feature learning, which has been talked about previously.
Therefore, for the entire bus travel time sequence, there may have been a sequence, such as 1-2-5-8-10,
for which a station with missing data was dropped.

5.1.3. Hyper Parameters

In the experiment, the size of embedding for the research was set to four at the wide side, and the
number of hidden DNN nodes at the deep side was set to 16. Finally, the features were concatenated.
Each state was converted to 28-dimensional features.

5.2. Evaluation Criteria

Three metrics are often used to evaluate the performance of traffic prediction models. They are
the mean absolute percentage error (MAPE) [10], mean absolute error (MAE) [4,10,13], and root mean
square error (RMS) [10,13]:

MAE =
1
n

n∑

i=1

∣∣∣xi − x̃i
∣∣∣, (8)

MAPE =
100
n

n∑

i=1

∣∣∣∣∣
xi − x̃i

xi

∣∣∣∣∣, (9)
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RMSE =

√√
1
n

n∑

i=1

(xi − x̃i)
2, (10)

where, N is the number of samples, i is the number of stations, xi is the real bus travel time, and x̃i is
the predicted bus travel time.

The MAE and MAPE are indicators of regression tasks. Compared with the MAE and MAPE,
the RMSE is more sensitive to outliers, and it can amplify larger prediction deviations. It is often used
to compare the stability of different prediction models. The MAPE provides prediction errors based
on the percentage difference between observed and predicted bus travel times as a measure of the
prediction accuracy of the statistical prediction methods. These performance indicators provide a deep
understanding of the nature of prediction errors [10].

5.3. Experiment Results

This section describes the evaluation of the accuracy of our approach for this study based on six
types of experiments with our proposed model compared to the existing models.

5.3.1. Different Method

To study different methods of accuracy, the following results were compared for the test set
of MAPE indicators in this research: The historical average estimate HAV, using only historical
information and not joining the floating vehicle average speed information SVR1, historical information
with the floating vehicle average speed SVR2 and a prior probability distribution of the bus travel
time, the use of Bayesian theory to modify the SVR2-Bayes theorem of the SVR2 experiment results,
the linear model, a neural network based on depth within the DNN [5] and RNN [6], and our proposed
methods. See Table 3 and Figure 7 [5,6].

Table 3. Results for GuangZhou261.

Error Index HAV SVR SVR1 SVR 2 ANN SVR
2-Bayes

SVR
2-Bayes2

Our
Study

MAPE (%) 18.5 17.98 17.98 16.4 17.23 14.93 14.29 8.43
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Table 3 indicates that the DNN [5] and RNN [6] represented relatively advanced artificial
intelligence algorithms. The DNN had nearly 5% more absolute promotion than the SVR2-Bayes2
model did. After replacing the model with the RNN, the MAPE could be further reduced by capturing
the interdependence between different sites, indicating that the spatial-temporal relationship between
sites had a certain impact on the prediction accuracy. However, the RNN itself did not pay attention to
the importance of different features in different states. Therefore, our study combined the RNN with
Wide and Deep and attention mechanisms to form a feature extraction framework. The accuracy of the

86



Electronics 2020, 9, 1876

proposed RNN network was further reduced by 0.5% and relatively improved by 5% compared with
the RNN network alone.

Based on Guangzhou PT center dataset, in order to study the changes in the travel time at different
times for each station, the predicted and true values of the bus travel time model for 8:00 AM were
randomly selected. It can be seen from Table 4 that our model could reduce the MAPE by 4–7%
compared with svr2-bayes2, indicating that our algorithm had a good performance during the peak or
flat peak times.

Table 4. MAPE values for different methods in different periods.

Time
MAPE SVR2

(%)
SVR2-Bayes

(%)
SVR2-Bayes2

(%)
Our Study

(%)

Morning (08:00–09:00) 15.99 14.21 13.83 9.51

Evening (17:00–19:00) 16.24 13.69 13.62 6.43

Flat peak 14.37 14.38 12.25 5.21

5.3.2. Different Dataset

The MAE and MAPE are indicators of regression tasks. For different scenarios, we use MAE and
MAPE two standards to evaluate the error. First, for a complete bus line, compare the data sets of
Guangzhou and Shenzhen with RNN, DNN and our own algorithm, and use MAE to evaluate the
error time to compare the operation of the entire line. This is important for traffic managers or bus
scheduling and dispatching personnel. The MAPE provides prediction errors based on the percentage
difference between observed and predicted bus travel times as a measure of the prediction accuracy of
the statistical prediction methods. Then, for the morning peak, evening peak and peace peak, we use
MAPE for comparison and evaluation of the stability of different prediction models. These performance
indicators provide a deep understanding of the nature of prediction errors. The results as below.

(1) With using the data for the No. 261 bus in Guangzhou and No. 113 bus in Shenzhen, we verify
the generalization performance of our model. The results showed that the proposed algorithm in
this research had better performance for the whole routes than the DNN or the RNN for both the
Guangzhou and Shenzhen datasets, as shown in Figure 7.

(2) We chose the peak period of the working day with a more complex traffic state and the flat peak
period with a simple traffic state as the research period, and we compared the algorithms. It can
be seen from Table 5 that for the maximum morning rush hour of the MAPE in Guangzhou,
the error of the one-hour bus journey time was about 6.5 min. For the maximum evening peak of
the MAPE in Shenzhen, the error of the one-hour bus journey time was about 5.6 min, which
indicated that this model had good generalization ability, and it solved the problem that the
proposed deep learning algorithms were suitable for the traffic states of different cities.

Table 5. Comparison of the results of the model for Guangzhou and Shenzhen.

Time
MAPE Guangzhou (%) Shenzhen (%)

Morning (08:00–09:00) 10.79 8.74

Evening (17:00–19:00) 9.11 9.33

Flat peak 8.17 7.97

5.3.3. Real-Time Bus Speed Information for Prediction

In order to get closer to the application scenario, our study divided their model into two scenarios
in the prediction process. The two scenarios comprised a model based entirely on historical data and a
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model based on bus real-time speed parameter correction. Our study use Model-Hist and Model-Real
for the two scenarios.

The hyper parameters of these two different models were the same. The only difference was that
in the model based on real-time sensor data correction, the speed of a real-time bus sensor was added
to the model as a feature on the deep side. The results used only historical data and real-time bus
speed data with historical data, as shown in Table 6.

Table 6. Comparative experiment for the historical data model and the real-time data model.

Error Indexes Model-Hist Model-Real

MAPE (%) 8.14 3.32
MAE 84.61 38.85
RMSE 108.9 51.49

After the addition of real-time bus speed data, the MAPE of the bus travel time forecast decreased
by 4.82% compared with the historical data alone. This indicated that the MAPE value obviously
decreased after considering the real-time speed of the bus, which in turn indicated that the real-time
speed information of the bus had a great influence on the bus travel time prediction.

This was consistent with the view that the speed data of a taxi could reflect the traffic status [4],
but it was also valuable to add the real-time speed of a bus to reflect the traffic status of bus lines.
Because the bus often ran in the bus lane, the combination of the real-time speed of the bus, the historical
speed of the taxi, and the historical speed of the bus could reflect the traffic status of the bus route
more comprehensively and accurately. It also confirmed the work of Ma et al. (2019), who said that in
their future work they would focus on using an existing taxi or another type of traffic data to estimate
the newly designed or sparsely recorded bus travel time [4].

Figure 8 shows the data for about one week from 9:00 to 10:00 for the morning bus travel time of
the site actual arrival time and the predicted travel time and the cumulative error figure. With the bus
real-time speed in the model, the bus travel time gap between the predicted values and the real value
was relatively small.
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5.3.4. Wide and Deep

In order to enable the model to capture as many differences between discrete and continuous
features as possible, our study introduced the WD (Wide and Deep) model into the RNN model.
With compared the influence of this module to the results for two different data sets in Guangzhou and
Shenzhen, the results of the comparison are shown in Table 7.

Table 7. The impact of Wide and Deep.

Method
Guangzhou Shenzhen with Real-Time Speed

Without W&D With W&D Without W&D With W&D

MAPE (%) 8.81 8.43 3.42 3.32
MAE 87.27 86.31 40.16 38.85
RMSE 119.95 120.11 54.09 51.49

The model with the WD module was improved for the Guangzhou and Shenzhen data to different
degrees, which proved that the discrete data and the continuous data played different roles in the
model. The wide side could effectively memorize discrete features, while the deep side could effectively
generalize continuous features.

5.3.5. Attention

The reason for using attention-based temporal and spatial architecture was that there was
spatial-temporal correlation among the traffic variables that predicted the bus travel times. For the
task of bus travel time prediction, our study thought that the spatial-temporal relationships of the data
might have different influences on the prediction results. Therefore, in this study, the attention module
was used to weight the spatial-temporal features. Under the condition of fixed hyper parameters,
the effects of adding attention mechanism or removing the attention mechanism on the prediction
results of the model were compared in this research.

As shown in Table 8, the results showed that the attention (Attn) model was helpful for improving
the accuracy of the bus travel time prediction whether the data sets of Guangzhou or Shenzhen were
used and whether the historical data was used alone or combined with the real-time bus speed.

Table 8. Influence of the attention mechanism on the prediction results for Guangzhou and Shenzhen.

Method
Guangzhou with Hist Shenzhen with Real-Time Speed

Without Attn With Attn Without Attn With Attn

MAPE (%) 8.53 8.43 3.42 3.32
MAE 87.67 86.31 39.33 38.85
RMSE 124.32 120.11 52.29 51.50

To verify the mechanism of attention, in this study, the weighted coefficient of attention for the
bus’s travel time features was visualized during a certain running state. Figure 9 shows the heat map of
the spatial feature temporal features. In the visual feature map, the red areas represent higher response
values, and the blue areas represent lower response values. By analyzing the attention scores learned
by the attention model described in Section 4.1, our study were able to learn the view of the proposed
method for the propagation mechanism of bus travel time prediction.

To further understand the propagation mechanism learned by the attention model used in the
proposed method, the evolution of the attention scores was analyzed with respect to the impact on
different bus stop IDs and the influence in the whole bus travel time prediction. Generally, it can be
seen from Figure 9 that whether discrete (day, hour, stop ID) or continuous (v, dt, at, real-time speed,
possible time) features were used, and whether temporal (v, dt, at, real-time speed, possible time, day,
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hour) or spatial (stop ID) features were used; all of the features had different impacts on the prediction
of bus travel times and bus stops.
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As shown in Figure 9, our study could observe that temporal feature dt2 (average bus dwell
time in 30 min at this point in the last week.) performed a rather important function in the model.
This reflected the fact that there was an influence from the complex boarding mode, the bus dwell time
was very unstable [4], and there were different basic modes, which had a significant impact on the
total travel time. Additionally, dt2 had a different impact on different bus stops. In comparison, dt3
(average bus dwell time within 30 min on the same day of the last week) also had a moderate impact
and dt1 (average bus dwell time within 30 min) had almost no impact on different bus stops.

Compared with previous studies, Ma et al. (2019) [4] did not forecast the dwelling time of each
bus stop as a part of the total travel time of a bus [4], and Xu (2017) [23] and He et al. (2020) [6] did
not use the full historical average bus dwelling times [6,24]. According to our heat map, shown in
Figure 9, DT2 and DT3 have a greater weight on the prediction of bus travel time. DT2 is Average bus
dwell time in 30 min at this point in the last week. DT3 is average bus dwell time within 30 min on
the same day of the last week. It indicates that the bus travel time is influenced by the periodicity of
dwelling time. Hence, it was a better decision to choose DT2 and DT3 simultaneously because the two
features of bus dwelling time worked well in the prediction of bus travel time. Based on real-time
information, it was important for the accuracy of real-time bus travel time prediction, especially the
possible real-time transit times converted from real-time bus speeds. However, previous studies only
considered the real-time bus speeds [23], rather than the possible real-time transit times. Furthermore,
many research works of traffic prediction have emphasized the importance of spatial information [5,22].
The spatial feature of a bus stop ID had a certain impact on bus travel time prediction, and it had
different influences on different bus stops. However, the impact is less prominent yet.

5.3.6. Hyper Parameters

In the experiment, the influences of different operation units of GRU and LSTM on the prediction
results were compared for the study, as shown in Table 9.
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Table 9. The influence of different hyper parameters on the model.

Error Indexes Model-LSTM Peepholes Model-GRU

MAPE (%) 3.33 3.32 3.34
MAE 39.15 38.85 39.20
RMSE 52.05 51.50 52.27

Although the LSTM model was better than the GRU model, different computing units had little
influence on the final prediction results of the model, which may have been because none of the
computing units could capture the characteristics of migration between different states.

6. Conclusions

From the perspectives of time and space, the bus travel times of public transportation are
dynamic/uncertain. The gap between a massive amount traffic data and its shallow features and the
gap between full connection and rich features make it difficult to obtain representative features from
datasets with rich features. The potential traffic state and traffic events belong to a hidden mode,
so travel time prediction is a challenging problem of ITS. Therefore, it is of particular importance to
develop a deep-seated architecture that fully reflects the characteristics of transit travel time.

We proposed an embedded network lever WD structure to solve the spatial data and designed
an attention mechanism for the RNN to capture the temporal information. Finally, the system used
the deep neural network model composed of the RNN and the DNN. The model could capture the
non-static spatiotemporal correlation of the urban bus travel time. This enabled the model to generalize
the learning model in the cross-temporal and spatial prediction. The model could be used to predict
the dynamic travel times of buses. Its effect was better than those of the historical average method,
traditional SVR model, SVR-Bayes optimization model, single DNN [5], and RNN [6,21], as shown in
Figure 7. The main contributions of this study were as follows.

• Based on the prediction of bus travel time, the study proposed a new heterogeneous feature
extraction framework based on the RNN model of embedding, WD, and an attention mechanism
in order to gain a deep understanding of the space-time features and intrinsic connections of the
characteristics related to bus travel time, and to visualize these features and connections, as shown
in Tables 7 and 8, Figure 9.

• Fourteen historical spatial and temporal features were introduced, including the stop IDs as
spatial features, bus dwelling times at different historical stages, and real-time GPS bus speeds
with real-time possible transit times obtained based on real-time bus speeds as temporal features
as shown in Table 2. Especially, the real-time bus speeds is important to improve the dynamic
bus travel time prediction, which can be seen in Table 6. These features have not been studied
together in previous studies

• The multiple super composition of the RNN and DNNs were carried out to reduce the residual
heterogeneous data fusion and real-time dynamic bus travel time prediction. A new scheme for
real-time dynamic bus travel time prediction was provided as shown in Figures 7 and 8.

• To verify the model’s stability and generalization ability, the model was tested on the data sets of
the Guangzhou 226 bus and the Shenzhen 113 bus. The buses ran on the main roads in big cities.
Both of the experiments achieved good results. Few of the existing studies tested their models in
different cities as shown in Figure 7 and Table 5.

For future work, our study will keep exploring the presented systems in the following directions.
In addition to further improving the accuracy of the model, we will extend from one bus line to the bus
lines of the entire road network. The existing models tested individual bus routes. The comparison
can prove the validity of the model, but our study hold the point that more factors need to be
considered. Therefore, it is a feasible choice to try to input the entire road network as a model.
With the development of in-deep learning technology, this effect can be achieved through a deep image
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convolution network of reference image processing [42], which is an important direction of our future
research. The effect of missing data on the prediction is obvious. When the missing rate was more
than 5%, the performance of the model decreased significantly when only speed was used as the input.
When using the multi-attribute fusion, the model had good performance, not only when the error value
was low but also when the error growth rate was low, particularly when compared with the model of
Liu et al. (2018) [10]. In this research, the missing data were not considered thoroughly enough. In the
future, more kinds of sensors (such as ground loops, videos, and geomagnetism) can be considered in
order to repair the missing data and to further improve the accuracy.
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Abstract: Increasing user engagement is one of the biggest challenges when a new application is
developed. An engaged user is one who finds a product valuable; highly engaged users generate
profit. This study focuses on increasing user engagement in a transport application, via a user
reputation score feature. The score is to reward application users and activity organisers, as well as
to motivate beginners by offering a high reputation score in the first days of use. The algorithms are
based on exponential and logarithmic functions, and were first tested on synthetic data. Real-world
tests have shown that the algorithms behave as expected, but the COVID-19 pandemic created a
disturbance which prevented any user from achieving the maximum score and many users from
registering altogether. Data show positive results, although the real number of users is not sufficient
to certify a correct behaviour. Further tests will be carried out when transport activities return
to normal.

Keywords: reputation algorithm; users’ reputation; transport; software application

1. Introduction

The vast amount of data generated on the Internet can be converted into highly valu-
able information if a proper analysis is carried out. Analysing and filtering the information
is especially necessary in cases where the user can interact directly with the content offered
in the service. Analysis mechanisms, like those applied in recommender systems, are
capable of extracting knowledge in systems that manage large volumes of information.
This type of system ensures a satisfactory user experience by providing users with the
content they are looking for. New innovative solutions have been proposed in recent
years to improve urban transport. Mobility services such as bike-sharing, car-sharing,
intermodal public transport and the concept of “Mobility as a Service” (MaaS) are effec-
tively shifting demand away from private vehicles [1]. Moreover, smartphone penetration
rates are increasing all over the world, facilitating iteration with public transport users via
an application. Applications can become an important element of a city, improving citizens’
experience and increasing the quality of tourism [2]. As a result, the development of a new
app can provide new functionalities and enhancements to a city’s infrastructure.

In recent years, mobile apps with user-generated content have become highly popular
(TripAdvisor, Amazon, BlaBlaCar, ResearchGate, etc). The trust-building mechanisms
of these apps have been enhanced so that a stranger on the internet can be seen as a
“trustman” [3], based on the ideal “in truth we trust”. Therefore, these apps expand the
source of trustworthy information from a few acquaintances to the whole app community,
which is of great value to users [4].

Smartphones have the ability to assist users with the completion of tasks (utilitarian),
to entertain them (hedonic) and to connect them with others (social) [5]. These three
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incentives can boost user engagement in a mobile app. Furthermore, a good balance
between short-term rewards and medium-term rewards must be found, so that a gradual
engagement is achieved. Otherwise, if the user does not perceive an increase in value
or perceives a high initial value but no lasting value, then app engagement will lower
considerably [6].

When users perceive high value and user engagement is high, the app community can
grow on the principles of the gift economy—where valuables are not sold, but given, with-
out an explicit agreement for immediate or future rewards. Webpages like Wikipedia have
proven this concept to be highly effective and successful among the internet community [7].

The My-TRAC application has been developed to provide new public-transport-
oriented functionalities. Its value lies in presenting practical alternatives to the use of
private vehicles by enabling citizens to make better use of public transport. The application
creates a healthy user community and a trustworthy source of information.

The main objective of this article is to propose a reputation algorithm to facilitate
recommendations on a series of trip-related activities, such as the purchase of tickets,
selection of the most appropriate means of transport, tourist activities, etc., which the users
will be able to use as a guide while planning their trips.

This work is organised as follows: a review of existing reputation systems is presented
in Section 2. Section 3 describes the proposal. Section 4 presents the assessment made with
synthetic data and the pilot data. Finally, Section 5 presents the conclusions.

2. Background

Advisory systems provide advice and help solve problems that are normally solved
by human experts [8]. In any community, individuals whose opinion is considered more
important are normally trusted more. The knowledge of human experts can then be
extracted and coded to automatise the process. Reputation systems are a kind of advisory
system that allow users to rate each other in online communities so as to build trust through
reputation [9].

Numerous proposals for reputation algorithms have been put forward over the years.
They are generally quite context-dependent. This is because each problem entails the study
of the best solution and, in most cases, it is not enough to have one generic proposal or
to apply a specific proposal to a different problem. It is always necessary to adapt the
approach to the new problem. From the analysis of the state of the art, it can be inferred
that context-dependent solutions generally perform better than those that do not consider
the context [10]. Additionally, some platforms have been designed to ease the development
of such systems, as an essential part of any developing Smart City [11,12]

The subsections that follow present different existing reputation systems can be
divided into groups of academic and commercial proposals.

2.1. Academic Proposals

Among the scientific proposals in the state of the art, two of them stand out (PageRank
and EigenTrust). PageRank is the most popular of all the reputation algorithms, presented
in [13] and used previously by Google to order the websites in its search engine in an objec-
tive and mechanical way. Four years later, researchers from Stanford University proposed
an algorithm for reputation management in peer-to-peer (P2P) networks, called Eigen-
Trust and described in [14]. With its application, they managed to minimize the impact of
malicious peers on the performance of a P2P system.

PathTrust [10], has been presented more recently. It is based on a model that exploits
the graph of relationships among the participants of virtual organizations. Its authors
indicate that the system is based on the two previous algorithms (PageRank and EigenTrust);
however, they are not directly applicable because their personalization is very limited.

Below is a brief description of how each algorithm works, along with its advantages
and disadvantages.
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• PageRank [13]: Advantages: This algorithm converges in about 45 iterations. Its scal-
ing factor is roughly linear in log(n). It uses graph theory to link the pages. An impor-
tant component of PageRank is that its calculation can be personalized. PageRank can
estimate web traffic and can predict backlinks. Disadvantages: PageRank is based
on random walks on graphs. This algorithm assumes the behaviour of a “random
surfer”, but if a real Web surfer ever gets into small loops of web pages, the PageRank
will have false positives. This method of random surfer assumes that periodically the
surfer “gets bored” and jumps to another random page;

• EigenTrust [14]: Advantages: This reputation system is among the most well-known
and successful reputation systems. It satisfactorily solves different problems existing
in P2P systems, which is the context in which the algorithm was designed. Disadvan-
tages: The main drawback of this system is its reliance on a set of pre-trusted peers,
which causes nodes to centre around them. As a consequence, other peers are ranked
low despite being honest, marginalizing their role in the system [15];

• PathTrust [10]: Advantages: This model of reputation (using the trust relationships
amongst the participants) is resistant against the attack of faking positive feedback.
A group of attackers collaborates to boost their reputation rating by leaving false,
positive feedback for each other. In this model of reputation, this will only strengthen
the trust relationship among the attackers, but will not necessarily strengthen the path
of the attacker to an honest inquirer, such that their reputation does not affect the
honest inquirer. Another benefit of exploiting established relationships in member
selection is the formation of long-term relationships. Disadvantages: The trust rela-
tionship between two participants is formed on the basis of past experience with each
other. A participant leaves a feedback rating after each transaction, and these ratings
are accumulated to a relationship value. Therefore, one user can boost a positive or
negative feedback.

2.2. Commercial Proposals

Currently, the most important reputation system proposals are those used by commer-
cial applications. Generally, commercial reputation systems directly focus on assigning
users a reputation score within that commercial system (for example, the reputation systems
of TripAdvisor, Waze, Amazon and BlaBlaCar).

The conclusion drawn from the review of the state of the art is that all the existing
reputation system proposals, especially those of commercial systems, focus exclusively
on their context. This implies that a specific algorithm has to be designed to obtain good
results. To do this, it is essential to identify the factors and the extent to which they have a
direct influence on reputation.

In the same way, although each type of parameter has its weight, which defines its
impact on the final score, each occurrence of the parameter may affect the associated
factors differently. It is, therefore, necessary to determine how the score assigned to each
occurrence of a parameter evolves over time.

Moreover, in the majority of the analysed commercial proposals, the user must know
the highest possible reputation level that can be reached in the system. This allows them to
understand the relevance of the different scores.

3. Proposal for User and Users’ Choices Reputation Algorithm

My-TRAC is an app devoted to the research and development of user-centric services
that enhance the passengers’ multimodal door-to-door experience. This helps citizens de-
velop greater confidence in, and adhesion to, multimodal transport services. Furthermore,
My-TRAC improves adaptation to the users’ needs through the provided data, statistics and
trends from the passengers’ experiences while using the proposed platform. An example
of the user interface can be found in Figure 1.

97



Electronics 2021, 10, 1070

Figure 1. The user interface of the My-TRAC app.

This section describes the algorithms used on My-TRAC to assign a reputation score
to each user and each user choice, activity or Point Of Interest (POI), representing their
ranking within the system. The two algorithms share a common basis; however, each
is used for a different purpose: one calculates the users’ reputation and the other one
calculates the reputation of the choices made by users. Therefore, each algorithm uses
different factors and metrics. As a result, each subsection describes either the part dedicated
to the users’ reputation algorithm or the users’ choices’ reputation algorithm.

The proposed model is based on a mixture of exponential and logarithmic functions
to create a system of distributed trust, a idea not yet fully explored in the literature. For
example, the most common research lines base their mapping functions on the definitions
of clever distances [16], graph analysis [13] or the definition of a set of rules affecting to
the trust relationships among users [10]. The main advantage of the current proposal is
that the mapping functions can be easily adapted or extrapolated to new systems, by just
analysing the importance of the considered features and selecting a suitable function for
those parameters, resulting in a higher versatility than other works.

This section is structured as follows: the factors identified as essential to determine
a user’s reputation in the system are presented below. Then, the metrics associated with
each of the individual factors are shown, followed by the description of the mechanism
that provides the initial score, which is the output of both algorithms. Finally, the proposed
adaptive weight mechanisms of both algorithms are described. They adapt the weight of
the factors according to the dynamic characteristics of the application where the algorithms
are applied. Thus, the role of this mechanism is to re-establish the limits of each factor
over time, as the number of users or the number of existing ratings changes with time,
providing an adequate maximum score.
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3.1. Mathematical Description of the Reputation System

The reputation system is based on a combination of logarithmic and exponential
functions to map the inputs onto their corresponding reputation. Metrics are related to
each of the identified factors. Therefore, each metric determines the reputation score
provided by its corresponding factor and each factor has its own metric. Besides, metrics af-
fect the overall reputation, as it is calculated as the sum of the scores of all the factors.
Each metric provides a final score which is calculated as the percentage reached by that
user over the total weight of each factor, and these final scores are added to obtain the
user/activity reputation.

The number of instances required to reach the maximum score is established for each
factor. In addition, the slope of any of the parameter functions determines how fast or how
slowly the value for that parameter increases. In this case, the slope parameter refers to the
steepness, incline, or grade of the function. It has been established that the evolution is not
linear, just like ResearchGate’s calculation of its “RG Score”. Thus, the growth in the score of
a specific factor will either be logarithmic or exponential, following Equations (1) and (2).

scoreParameteri = ymaximum ×
log(slope× x

xmaximum
+ 1)

log(2 + slope)
(1)

The logarithmic equation shown in Equation (1) is useful in cases where the slope
should be greater in the initial instances and then gradually decrease in subsequent in-
stances. For example, to encourage new users to rate activities, the first few ratings the
user gives will have a considerable effect on their reputation, however, the user will not
be able to continue gaining reputation at the same rhythm after producing a considerable
amount of ratings. Instead, further ratings will have a smaller impact on the reputation of
the user. Logarithmic growth is regulated by the slope variable of the equation, whereas
the maximum number of instances is regulated by xmaximum. This factor will be dynamic
due to the usage characteristics of the social network. Therefore, in the case of ratings
provided by users, the maximum score xmaximum can take a value of 200, meaning that a
user with more than 200 ratings will obtain a 100% initial score, which will greatly con-
tribute to the final score. In cases where the usage patterns of the application imply that
users give a large number of ratings, the factor xmaximum is adjusted dynamically, so that
xmaximum = 2× avgRatingsByUser. Finally, the factor ymaximum can reach 1, so that each
factor will have a score between 0 and 1.

scoreParameterj = ymaximum × (
x

xmaximum
)slope (2)

The exponential equation shown in Equation (2) is useful for factors in which the
weight of the initial instances is lesser and becomes more important in the system as the
number of instances grows. For example, a user that opens the application three times
does not notice a significant increase in their reputation in the system; however, a user
who opens the application 200 times is considered a regular user, and therefore obtains a
pertinent reputation.

Although the mathematical approach described above is not directly based on any
existing work to determine reputation, these types of equation are well known and widely
used in the literature for multiple purposes.

Mathematically speaking, the most similar proposed work can be found in [17],
where the authors present a trust management system based on reputation mechanisms.
The mechanisms proposed in this paper base the evolution of reputation on the number of
assessments that follow a logarithmic distribution.
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3.1.1. User Reputation Mathematical Model

User reputation is calculated using a mixture of exponential and logarithmic func-
tions. These are selected in order to maximise user engagement, providing them with fast
rewards for some easy tasks (logarithmic growth) and slow rewards until they complete a
challenging task (exponential growth).

All the equations related to the users can be found in Table 1.

Table 1. Equations related to the user reputation, inputs, outputs and factors.

Factor Metrics (Equations) Inputs Outputs

Days registered s1 = wdate × cdate−rdate
Mdate

cdate, rdate s1

List of valuations s2 = wvaluations ×
log (100 × nvaluations

Mvaluations
+1)

log (2+100) nvaluations s2

Number of uses of the application s3 = wuses ×
(

nuses
Muses

)2
nuses s3

Number of chosen routes s4 = wroutes ×
(

nroutes
Mroutes

)2
nroutes s4

The following variables are used as input:

• cdate refers to the current date.
• rdate refers to the registration date.
• nvaluations refers to the number of valuations of the user.
• nuses refers to the number of times the user opened the app.
• nroutes refers to the number of routes the user has chosen to travel.

The following variables are the obtained outputs:

• s1 is the initial score of days registered.
• s2 is the initial score of the list of valuations.
• s3 is the initial score of the number of uses of the application.
• s4 is the initial score of number of chosen routes.

M represents the number of occurrences of a given parameter to provide the maximum
value/weight that it is capable of providing over the total reputation (w).They refer to
maximum and weight, respectively. Both are static (but editable) variables obtained from
the database. The subscript indicates to which factor they are related.

The final score S is defined as shown in Equation (3):

S =
4

∑
i=1

si (3)

The pseudocode of this procedure can be found below in Algorithm 1.

Algorithm 1 User Reputation Calculation.

1: def f_log(x, x_max, slope=100):
2: return log(slope × (x/x_max)+1)/log(2+slope)
3: def f_exp(x, x_max, slope=2):
4: return pow((x/x_max), slope)
5: reputation = f_log(User.valuations, Maximum.valuations) × Weight.valuations

+ f_exp(User.uses_app, Maximum.uses_app) × Weight.uses_app
+ f_log(User.tickets_purchased, Maximum.tickets_purchased) ×
Weight.tickets_purchased + (User.days_registered/Maximum.registration) ×
Weight.registration + f_log(User.groups, Maximum.groups) ×Weight.groups

6: if reputation > 100 then
7: reputation = 100
8: else if reputation < 0 then
9: reputation = 0
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This novel proposal could provide commercial systems with the following advantages:
(i) dynamic adaptation of the reputation to the information of the system (non-linear
growth), (ii) dynamic adaptation at parameter level, varying the specific weight that each
parameter has on the final reputation, (iii) engaging the users with well-modelled changes
in its reputation score.

To this end, mechanisms similar to those used in well-known proposals, that have
been proven to work well (such as the one presented in [17]), have been integrated with
the peculiarities of My-TRAC, which determine the information to be used.

3.1.2. Users’ Choices Reputation Mathematical Model

The users’ choices (activities and POIs) reputation are calculated using a mixture of
linear and logarithmic functions. They are selected in order to maximise users’ engagement,
providing the users’ choices with fast rewards initially, and then basing the rewards on the
average star rating received.

All the equations related to users’ choices can be found in Table 2.

Table 2. Equations related to the activities’ reputation, inputs, outputs and factors.

Factor Metrics (Equations) Inputs Outputs

n-star ratings weighted average s1 = wrating ×∑n
i=1

(
∑n

k=1 (reuserk
× rauserk,i )

∑n
k=1 reuserk

× 1
Mrating

)2
reuser, rauser s1

Number of views of the activity s2 = wviews ×
log (50× nviews

ndays×Mviews
+1)

log (2+50) ndays, nviews s2

The following variables are used as input:

• rauserk,i is the rating of the k-th user on the i-th activity. The number of users who rated
this activity is defined as n.

• reuserk is the reputation of the k-th user who rated the activity. The number of users
who rated this activity is defined as n.

• ndays is the number of days since the activity was created.
• nviews is the number of views of the activity.

The following variables are the obtained outputs:

• s1 is the initial score of N-star ratings weighted average.
• s2 is the initial score of the number of views of the activity.

M and w are static (but editable) variables obtained from the database. They refer to
maximum and weight, respectively. The subscript indicates which factor they are related to.

The final score, S, is defined as shown in Equation (4):

S =
2

∑
j=1

sj (4)

The pseudocode of this procedure can be found below in Algorithm 2.

3.2. Updating the Parameters and Their Weights

The information on My-TRAC is not static; instead, it evolves over time. This obliges
the metrics that are part of the reputation algorithms to adapt to the information. For this
reason, it is crucial to implement mechanisms that update configurable factors in each of
the metrics.

For example, during the pilot stage, when the application begins to obtain real user
data, the system will start from zero. In the beginning, a lower number of instances of each
factor will be required to obtain a significant final reputation score of a user/activity. The
number of instances required will be much higher after a year of system functioning.
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Algorithm 2 Activity Reputation Calculation.

1: def f_log(x, x_max, slope=100):
2: return log(slope × (x/x_max)+1)/log(2+slope)
3: def f_exp(x, x_max, slope=2):
4: return pow((x/x_max), slope
5: numerator = 0
6: denominator = 0
7: for activity in ratings_database do:
8: numerator += activity.rating × activity.reputation_user
9: denominator += activity.reputation_user

10: avg_rating_reputation← numerator / denominator
11: reputation = f_log(Activity.views, days_registered × Maximum.views, 50) ×

Weight.views + f_exp(avg_rating_reputation, Maximum.average_rating) ×
Weight.average_rating

12: if reputation > 100 then
13: reputation = 100
14: else if reputation < 0 then
15: reputation = 0

According to the number of instances of each one of those factors, the metrics that
make up the algorithm can be adapted and the values can be updated automatically or
manually. Both the weight that the parameter has on the final reputation and number of
occurrences that a parameter must have to obtain the maximum score can be updated.

Regarding the weight of the parameter in the final reputation, it is set a priori but can
be changed at any given point in order to correct certain anomalies or to encourage desired
behaviours. On the other hand, there are two ways of updating the number of occurrences
that a parameter must have to obtain its maximum score:

• Manually: when an expert administrator/developer decides that it should be changed
for some reason.

• Automatically: depending on the evolution of the information on the platform. For
example, the rating an activity has in the system will not remain the same; it is going
to change over time and, according to its evolution, the maximum weight of this
parameter in the system can increase or decrease (if it receives many ratings, its weight
will decrease).

In the first version of the model, the system’s automatic adaptation has not been
evaluated because the data we are using at this stage are not sufficient to test it effectively.

4. Evaluation and Results

The evaluation of the proposed algorithms has been tested using two complementary
methods: creation of synthetic data and deployment of a pilot program. Synthetic data
are meant to simulate the behaviour of users when the app has gained popularity and is
already established, and the pilot phase provides a clear picture of how the algorithms will
behave in the beginning of the application deployment phase.

The only way of evaluating the correct functioning of the algorithm with the synthetic
data is the following: to analyse whether the obtained output behaves as expected and
then draw conclusions as to whether the reputation score assigned to different users
corresponds to the initial idea, as a function of the values of each of the parameters
affecting the reputation score.

Due to the initial lack of available data of real users, synthetic data were generated in
order to evaluate the proposed method. A total of 2000 simulated users were randomly
generated considering the following attributes:

1. Gender of users (i.e., male, female).
2. Age group: Three age groups were considered (i.e., 16–30, 31–50, 51–90).
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3. Volume of performed actions. Two possibilities: users that performs a small number
of actions and users that performs many actions.

4. Type or category of the performed actions. Six major categories of actions were
defined for the generated dataset: sports, eating, history, dancing, cinema, shopping.

Considering the above attributes, the generated dataset contained information about
the demographics of the users and the number of actions performed for each category. The
generation of a synthetic user is carried out by the data generator, which randomly chooses
the gender, the age group, and the volume of actions and based on the number of actions
performed by the mean users of the category that the user is applied to. The generator ran-
domly calculates (based on a uniform distribution) the number of actions of the generated
user for each of the six types of action.

Pilot data were used to analyse the real-world behaviour of the models, in a initial
phase. As a result, it is expected that many users register but do not make any usage of the
app. As the functionalities of the app are still limited, user engagement is likely to be lower
than in the real application.

The evaluation of the obtained results is a subjective task; however, it is important
to verify that the algorithms behave as expected. Section 4.1 describes the tests carried
out related to the artificially generated users and their results. Section 4.2 describes the
real-world experiment and its results.

4.1. Reputation Models Evaluation—Synthetic Data

When creating the synthetic dataset, the aim is to simulate the behaviour of real users
and users’ choices in the most realistic possible way. This method will provide an a priori
idea of how well the system works.

4.1.1. Users’ Reputation Evaluation

Evaluation methodology. This simulation aims to model the use of the system by
users. Therefore, no inactive users will be generated, even though, in a real system, they
could become the majority.

In this way, there will be a set of users who use the system a lot, a larger set who use it
frequently and an even larger one who use it sporadically. This has involved the creation
of three ranges of usage possibilities when creating the data.

This distribution of users is easily observed by analysing the scoreboard of the com-
mercial applications that made their scoreboard public. For example, on Waze [18], one of
the tools analysed in Section 2, a user with 100,000 points can reach the maximum level
“Waze Royalty”, which means they are among the 1% most active users in the country,
while the top users listed on the scoreboard have more than one million points.

Results. Figure 2 shows the distribution of reputation among system users. On the x-
axis, there are reputation intervals, and on the y-axis, the number of users with a reputation
within those intervals.

The resulting scores present a Gaussian distribution which denotes a desirable
behaviour—this is the distribution that would be expected from many natural phenomena.

4.1.2. Users’ Choices Reputation Evaluation

Evaluation methodology. On the other hand, the users’ choices reputation algorithm,
which determines the reputation of the activities and POIs included on My-TRAC, has also
been evaluated using synthetic data.

In this case, the only case-specific restrictions that have been applied when generating
the synthetic dataset are:

• The identifier is a unique integer from 1 to 1000.
• The inclusion date is between 1 September 2017 (start of the project) and

18 December 2018 (the date on which the evaluation was carried out).
• The number of views of an activity is higher than its number of ratings.
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Figure 2. Representation of the results obtained with synthetic data for the evaluation of the user
reputation model.

Results. The distribution of the reputation of the 1000 synthetically created activities
is shown in Figure 3, which shows, on the x-axis, the reputation values of the activities and
on the axis, and the number of activities that there are in the different reputation intervals.

It can be observed that there is no activity with a reputation of less than 21, because
the synthetic data were created to test the performance of the models with active users and
successful activities. These circumstances are not expected to exist in reality, where it is
expected that there may be activities that receive no ratings at all during the pilot stage.

Figure 3. Distribution of the activities’ reputation with the generated synthetic data

4.2. Reputation Models Evaluation—Pilot Study

Evaluation methodology. The previously designed reputation models have been
evaluated in the pilot phase. A variation in the initial model has been designed and its joint
use with the Social Market (another functionality of My-TRAC) is proposed. The Social
Market is a means of encouraging use of the application, as it enables the users to exchange
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the points they have obtained for rewards. The system allows the user to earn free tickets
as a reward, in exchange for a set number of points. The number of obtained points is
directly related to the user’s reputation. It is designed to encourage the user to make more
frequent use of the application.

It is necessary to remember that there are reputation models for both users and
activities. However, a specific variation in the user reputation model has been designed for
the current phase and integrated in the Social Market.

Thus, the version of the reputation model that has undergone major evaluation and
been tested by the users in the pilot phase is the original proposed model, with a slight
variation. What is different is that the date on which the users register does not affect
their reputation.

In the initial version of the model, a very active user who has been registered for a few
days would have a greater reputation than a user who has been registered for much longer
and who has also used the features of the application (used it sometimes, for example).
There are two main reasons for designing a variant for the pilot model:

1. The duration of the pilots is the same for all users and if a user has used the application
more times than another user, they should get a higher reward, independently of the
date of registration.

2. If the date has a negative effect on the user’s reputation, i.e., the more time passes,
the less reputation the user will have if they do not participate. This would cause the
user’s points on the Social Market to decrease even though the user has not spent
them. This is an undesirable situation for the evaluation of the model.

Therefore, the score obtained by the users in this phase is a decimal value between
0 and 100, where 0 is the initial reputation value for a user who has just registered, and
100 points can be reached by carrying out repeated interactions with the application. For
example, every time an activity or POI is valued, a certain reputation value is assigned
according to the previously defined metrics.

These points can be redeemed at the Social Market, where each user’s points will
be updated periodically at 0:00 (CET) each day. The points on the Social Market have
been updated periodically to control possible fraudulent behaviour by users who create
multiple accounts, automate actions and obtain rewards illegally at the time. In this way,
the development team can act as a moderator if this type of behaviour is detected and
proceed accordingly, for example, by deleting the user’s account for non-compliance with
the terms and conditions of use.

However, although the score that users have been able to visualize throughout the
pilot phase is the score that is provided with the user reputation version created for
integration with the Social Market, this section of the document also presents the results
that would have been obtained with the reputation version not linked to the reward points
and the users’ choice reputation models version. Thanks to this, it is possible to check
how the models operate in the presence of real data, although, after carrying out the
evaluation, it can be anticipated that the volume of information that has been collected is
again insufficient.

Results. Due to the pandemic, strict mobility restrictions have been implemented,
affecting the information that have been collected; this is different from the information we
would have expected under normal circumstances.

More specifically, there are 171 valid users out of a total of 206 (which means that
35 decided to delete their account). It can be seen in the results presented below that not all
of them have interacted with the tool. This was expected, as it commonly happens in any
type of application, as some users download the application and register but never use it.

The pilot was open to everyone who wanted to register, and an advertising cam-
paign was carried out in The Netherlands, Athens (Greece) and Barcelona (Spain) to
encourage participation.

The results and evaluation of each of the data models are presented below.
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4.2.1. User Points (Social Market Version)

The results of the adapted version of the model for the Social Market reward points
calculation, are presented below. They were obtained after carrying out the pilots with
different graphs incorporated in the panel of the analysis tool mentioned above.

Figure 4 shows the distribution of the points allocated for the total number of users
(206), i.e., both active and non-active users, grouped by ranges of 10 units.

Figure 4. Reward points for all users (206) points grouped ranges of 10 units.

It can be seen that there is a set that encompasses the majority of users (123), and this
distorts the results. This is due to the fact that the majority of users have not interacted
with the application at all or hardly at all.

To analyse this situation in greater detail, Figure 5 shows the same type of graph as
the prior one, but, in this case, the groupings of points are made by unit rather than in
groups of 10.

Figure 5. Reward points for all users (206) points grouped by units.

It can be seen that there are 63 users with the minimum value of reputation, which im-
plies that they have registered and have not carried out any more activities, while there are
43 users who have obtained the score that corresponds to a one-time use of the application.

Let us consider the users who have not interacted in any way with the application
as non-active users, thus providing 143 active users, and proceed to analyse the results
again. Figure 6 again shows a graph with the distribution of users according to their points
grouped in ranges of 10.

Figure 6. Reward points for active users (143) points grouped in ranges of 10 units.
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As with all users, the group of very inactive users still stands out, as they almost have
not interacted with the tool, so if we filter the graph by leaving out the first range of values
(from 0 to 10), we obtain a graph that is a better representation of the behaviour of the
"average" users of the application, as shown in Figure 7.

Figure 7. Reward points for active users (143) filtered and grouped in ranges of 10 units.

As mentioned above, the number of users who have participated in the pilots was not
significant enough to draw relevant conclusions regarding the functioning of the reputation
models; however, a very similar behaviour to the one expected can be observed, which was
obtained by generating synthetic data following a series of criteria intended to represent
the real behaviour of users. The expected results are represented in the document by the
graph shown in Figure 2.

It can be seen that the pursued objective has been achieved: the users who initially
participate add points to their reputation score with relative ease until they reach the average
values. It becomes more difficult for a user to go above the average reputation values,
motivating users to continue to use the app to increase their score, thus increasing their loyalty.

However, a certain number of users were expected to have the highest score and this
was not achieved, possibly because users have not been able to travel as much as expected
due to the restrictions caused by the COVID-19 pandemic and because 100% of the app’s
functionality is still not available.

An analysis of user activities was carried out, which provided points to better under-
stand the type of activity carried out by the users of the app. For example, Figure 8 shows
the points awarded to users according to the number of times they have used the app.

It can be seen that 67.5% of the users obtained a reward of between 0 and 1 points for
using the app, i.e., they were less active, while 20.4% of the users obtained between 9 and
10 points (the maximum) for using the app.

A similar analysis can be made for the score given to users depending on the number
of times they have requested a route and followed it. This analysis is shown in Figure 9.

In this case, it can be seen that 80.3% of users were awarded between 0 and 3 points
for following suggested routes, while only 2.4% of users obtained between 27 and 30 points
(the maximum) for having followed suggested routes. This clearly shows that very few
users used this functionality (40 to be exact).
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Figure 8. Users (% and size of sectors) who have obtained a certain amount of reward points (colour)
depending on how many times they have opened the app.

Figure 9. Users (% and size of sectors) who have obtained a certain amount of reward points (colour)
depending on how many times they followed a suggested route.

4.2.2. Users’ Reputation

Although the first version of the User Reputation Model was not used for the reasons
outlined above, it is possible to carry out an assessment to demonstrate how the system
would have performed.
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In this case, out of the 206 total real-world live users, no one had a reputation of
100, because active users stopped being active before the date of the assessment, and this
negatively affected the maintenance of their score at the highest value. The maximum
reputation in this case was 86, achieved by two users. To represent this, 10 groupings with
equal ranges were created, which are shown in Figure 10.

Figure 10. Reputation values for all users (206), scores grouped in 10 ranges.

The distribution is not exactly the same as with the reward points, but, in the same
way, the majority continues to remain in low values, mainly due to inactivity, so the results
are evaluated by discarding this set of users and focusing again on the 143 real-world live
users, who have at least interacted with the app. The distribution of their reputation is
shown in Figure 11.

As participation has been lower than expected due to mobility restrictions, it can be
seen that the majority of users have a below-average reputation, although the group with
the highest number of users is in the intermediate reputation zone, as expected.

Figure 11. Reputation values for active users (143), scores grouped in 9 ranges.

4.2.3. POIs and Activities’ Reputation

As far as the reputation of POIs and activities is concerned, the evaluation that can
be made on the basis of the information obtained from the pilots would not truly reflect a
real scenario, since the interaction of the real-world live users with this functionality on
My-TRAC has not been sufficient. The vast majority of POIs and activities have not been
interacted with, so they have no reputation, as can be seen in Figure 12.

If the results are evaluated, leaving aside the activities and POIs that have not been
interacted with, the results shown in Figures 13 and 14 are obtained.

Figure 13 shows that users only interacted with two activities, for which they have
an average reputation, while Figure 14 shows that users have interacted with a total of
37 POIs.
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Figure 12. Reputation values for all the activities and all the POIs

Figure 13. Reputation values for the activities with reputation value > 0.

On the one hand, we can conclude that users interact with POIs more than with
the activities offered by the app, despite the fact that there is an even number of options
(473 activities and 556 POIs). On the other hand, it can be concluded that users are, in most
cases, satisfied with the POIs they visit, as 25 of the 37 POIs they have interacted with have
high reputations.

Figure 14. Reputation values for the POIs with reputation value > 0.

5. Conclusions

Following analysis of the results, the conclusion is that, although the results seems to
follow the value distribution patterns that were sought with the initially defined models,
the number of active users is still not sufficient to certify that, in a real scenario, it will
behave as expected.

However, using the data obtained from the pilots and the simulations, the obtained
results were satisfactory, as no unexpected behaviours were detected. Moreover, it is clear
that the algorithm encourages users to participate more actively by giving them points
rapidly, and that reaching the maximum score is such a difficult task that users need to be
engaged before achieving it.

The reputation scores seem to form a normal or Gaussian distribution, with peaks on
the higher or lower end, resulting from optimal user behaviour in the synthetic data and
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from a low participation in the pilots, respectively. In general, active real-world users tend
to cluster around the reputation value 50 (the maximum reputation value is 100), which is
a desirable result. It does not demotivate users by maintaining their low score, and does
not cause them to become bored by giving them the maximum score often. Most users will
have around 50 points (out of 100), creating healthy competition against similar users, as
they try to surpass their equals and not to be left behind.

Activities and POIs also take advantage of having the same basis; therefore, analogous
results are obtained and a similar purpose is fulfilled.

It can, therefore, be concluded that, even though there was not enough data, the goal
of allowing users to determine the relevance of users and the actions was fulfilled in the
case study conducted on the My-TRAC platform.

This research and its results can be taken advantage of by any user who needs to
develop a similar system and apply it in a real-world scenario. For example, a new video
platform could adapt the developed basic functions (logarithmic and exponential) to assign
a reputation to the content creator and content consumers.

The main limitations of this work are related to the limited data gathered during
the pilots phase, adversely affected by the effects of the COVID-19 pandemic on mobility.
Moreover, user engagement is measured through the distribution of the reputation scores:
an indirect measurement instead of a direct one.

Regarding future research on this topic, user engagement will be measured when
the application is launched. The parameters’ limits will be updated in order to obtain a
Gaussian distribution shape, with a moderate number of users obtaining the maximum
score. If the resulting distribution has several peaks or is chaotic in any sense, more input
will be used to obtain a better modelling of the users’ worth.
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