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Abstract: This paper proposes a novel interval prediction method for effluent water quality indicators
(including biochemical oxygen demand (BOD) and ammonia nitrogen (NH3-N)), which are key
performance indices in the water quality monitoring and control of a wastewater treatment plant.
Firstly, the effluent data regarding BOD/NH3-N and their necessary auxiliary variables are collected.
After some basic data pre-processing techniques, the key indicators with high correlation degrees
of BOD and NH3-N are analyzed and selected based on a gray correlation analysis algorithm.
Next, an improved IBES-LSSVM algorithm is designed to predict the BOD/NH3-N effluent data
of a wastewater treatment plant. This algorithm relies on an improved bald eagle search (IBES)
optimization algorithm that is used to find the optimal parameters of least squares support vector
machine (LSSVM). Then, an interval estimation method is used to analyze the uncertainty of the
optimized LSSVM model. Finally, the experimental results demonstrate that the proposed approach
can obtain high prediction accuracy, with reduced computational time and an easy calculation
process, in predicting effluent water quality parameters compared with other existing algorithms.

Keywords: water quality monitoring; data pre-processing; improved IBES-LSSVM algorithm;
interval prediction method

1. Introduction

Nowadays, freshwater is considered one of the most critical resources for humans,
since it can ensure the availability of an acceptable quantity of water for livelihoods, health,
ecosystems and production. Hence, freshwater plays a key role in poverty and disease
burden reduction, economic growth and environmental sustainability [1,2]. This fact has
long been acknowledged all over the world. However, due to industrial pollution, rapid
population growth and farmland sewage caused by the extensive use of chemical fertilizers,
pesticides and herbicides, the shortage of freshwater sources is a serious and challenging
issue [3,4].

Wastewater treatment is one key technology to potentially provide additional water
supplies, and it is very important for the functioning of the economy and society. Wastew-
ater treatment has been attracting a lot of attention, since it can not only remove organic
wastes to reduce the environmental burden, but also offer the advantage of producing a
renewable source of water [5,6]. Wastewater treatment is a very complex process with a
variety of physical and biochemical reactions since it presents nonlinear dynamic behavior,
time delay and uncertainty [7]. In wastewater treatment plant processes, effluent water
quality monitoring is an important task that involves measuring the evolution of the quality
parameters in time.

Note that most traditional methods of measuring these quality indicators for wastew-
ater treatment processes are based on manual lab-based monitoring approaches, with
manual sample collection, long-time transportation and biological/microbial testing in a
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laboratory, which is cumbersome and time-consuming. Usually, the testing equipment is
very expensive and cannot be used online. In addition, since the process of wastewater
treatment is complex, some control strategies are necessary and required to be deployed
to guarantee that effluent quality indicators behave normally. In recent decades, water
quality monitoring has been evolving to the latest wireless sensor networks [8], such that
most of the important indicators of effluent water (pressure, pH, level and so on) can be
measured by their corresponding sensors online. However, there are still some parameters
that cannot be measured quickly due to high costs and the limitations of sensors, such
as BOD and NH3-N. Usually, the concentration of the BOD/NH3-N effluent associated
with a wastewater treatment process is an important factor to measure the water quality
since the discharge of a large amount of NH3-N and BOD wastewater will lead to water
eutrophication, which can affect human health. In China’s “Pollutant Discharge Standard
for Urban Wastewater Treatment Plants (GB18918-2002)”, the Class A standard stipulates
that the maximum discharge for NH3-N is 5 mg/L, while for BOD, it is 10 mg/L. Thus,
measuring these effluent quality indicators with high accuracy is an important issue.

Researchers have focused on soft-sensing methods to predict these effluent quality
indicators and the prediction task is addressed combining data analytics and water quality
control. Soft-sensing methods aim to find some certain relationships between easy-to-
measure variables and difficult-to-measure variables in the sewage treatment process.
Then, a suitable model is established based on these relationships, and difficult-to-measure
variables can be predicted based on the soft-sensing models.

Machine learning approaches are usually considered a subset of artificial intelligence.
They focus on some statistical models and algorithms to extract patterns from data so
that useful inferences can be used to predict new data. Recently, with the development of
machine learning, artificial neural network (ANN), support vector machine (SVM), decision
tree, random forest, ensemble learning and many other methods have been researched
in depth and have a wide range of applications, including text processing, computer
vision, healthcare, finance and robotics. They can also be used for socio-economic and
environmental studies [9–12]. In [12], the impacts of flood protection in Bangladesh were
evaluated by machine learning methods. In [13], a gray model and ANN method were
investigated to predict suspended matter and chemical oxygen demand in the wastewater
treatment process. Cong et al. proposed a mixed soft sensor model based on a wavelet
neural network and adaptive weighted fusion for the online prediction of effluent COD [14].
M. Hamada carried out the assessment of a wastewater treatment plant’s performance
based on ANN and a multiple linear regression method [15]. M. Zeinolabedini et al. proved
that applying various parent wavelet functions to the neural network structure can improve
the accuracy of predicting the wastewater sludge volume [16]. A. K. Kadam et al. used
ANN and multiple linear regression to model and predict water quality parameters in river
basins [17]. S. Heddam et al. investigated a generalized regression neural network model
to predict the BOD of effluent in wastewater treatment plants [18]. Tan et al. predicted
the first weighting from the working face roof in a coal mine based on a GA-BP neural
network [19]. V. Nourani et al. proved that the prediction ability of a neural network
ensemble is more reliable [20].

Compared with the ANN method, SVM is another important prediction technique,
which can effectively solve the problem of high-dimensional data model construction
under the condition of limited samples, and has strong generalization ability. Hence,
many scholars have carried out a lot of research on SVM-based prediction. Cheng et al.
proposed a variety of kernel single-class SVMs to monitor and predict the intake conditions
of wastewater treatment plants [21]. Han et al. developed a neural network model for
predicting the sludge volume index based on information transfer strength and adaptive
second-order algorithms [22]. Wu et al. proposed an adaptive multi-output soft sensor
model for monitoring wastewater treatment and made several simulation comparisons to
prove the superiority of the algorithm [23]. K. Lotfi et al. used a linear–nonlinear hybrid
method to predict the effluent index of a wastewater treatment plant, which improves the

130



Sensors 2022, 22, 422

prediction ability of the single method [24]. Han et al. proposed a data-based predictive
control strategy and proved its superiority through several simulations [25]. In [26], the
total solid content of a wastewater treatment plant was predicted by an SVM model, which
can enhance performance and durability.

Although SVM is a small-sample learning method and has been widely used to solve
the wastewater prediction problem, the calculation process is multifarious, which is difficult
to implement for large-scale training samples [27]. To overcome these disadvantages, the
least-squares support vector machine (LSSVM) has been proposed. LSSVM improves the
performance of the SVM algorithm by solving linear programming rather than quadratic
programming. In this way, the calculation process can be reduced and the computation
speed greatly improved [28]. Zhang et al. proposed an improved LSSVM model based on
SVM to predict river flow [29]. Fei Luo et al. integrated the Gustafson-Kessel algorithm and
least-squares support vector machine for line prediction of [30]. D. S. Manu et al. combined
SVM and an adaptive neuro-fuzzy reasoning system model to predict the effluent nitrogen
content of wastewater treatment plants [31]. Liu et al. investigated the online prediction of
effluent COD in an anaerobic wastewater treatment system based on principal component
analysis and the LSSVM algorithm [32].

Note that there are some unknown parameters in the kernel functions of LSSVM that
need to be selected in advance. Generally, these parameters are determined according to
experience, which may be time-consuming, and it is difficult to find the optimal parameters.
Nowadays, swarm intelligence optimization algorithms are researched extensively, since
the optimal solution can be found by swarm intelligence to perform a collaborative search
mechanism. The results of the combination of swarm intelligence optimization algorithms
and machine learning methods can be found in a large number of references. In [33],
a hybrid model of particle swarm optimization (PSO) and support vector machine is
proposed to predict the turbidity and pH value of sand filtered water in irrigation systems.
Han et al. use an adaptive PSO algorithm to design self-organizing radial basis function
neural networks to improve the accuracy and save time [34]. Chen et al. study the artificial
bee colony optimization back-propagation network to predict the water quality of a water
diversion project [35]. Fan et al. use the LSSVM model to improve the performance of
predicting the safety factor of a circular slope [36]. Mahdi Shariati et al. use the gray
wolf algorithm to optimize ELM model parameters to predict the compressive strength of
partially replaced cement concrete [37]. However, to the best of the authors’ knowledge,
these swarm intelligence methods may fall into local optima and do not find the global
optimal solutions.

Most of the above-mentioned methods only focus on point prediction, without pro-
viding information regarding accuracy. The prediction results have strong uncertainty
that affects the decision-making process, increasing the risk of not making good decisions.
Prediction interval (PI) is a standard tool for quantifying prediction uncertainty. PI not
only provides the range where the target value is most likely to exist, but also indicates its
accuracy. Yao et al. combined the mean variance estimation (MVE) method with a recur-
rent neural network to measure the uncertainty in prediction [38]. Yuan et al. combined
beta distribution with the PSO-LSTM model to obtain the wind power prediction interval
with high reliability and a narrow interval width, so as to provide decision support for
the safe and stable operation of power systems [39]. Liao et al. combined the bootstrap
method with the long and short memory network to realize the uncertain prediction of the
remaining service life of the machine [40]. Marin et al. obtained the prediction interval of
power consumption by combining the delta method with a fuzzy prediction model [41].
Sun et al. constructed a high-quality prediction interval based on the two-step method of
dual ELM and applied it to the scheduling of a gas system [42]. In recent years, a direct
interval prediction method called upper and lower bound estimation (LUBE) has been
proposed. The main idea of this method is to directly construct the upper and lower bounds
of PI by optimizing the coefficients of the neural network according to the interval quality
evaluation index. This approach can provide good performance and does not consider
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strict data distribution assumptions, such that it can provide more information about the
prediction results, which motivates the work of this paper.

The main objective of this paper is to obtain a soft-sensor-based interval prediction
method with high prediction accuracy and less computational time to predict the effluent
water quality parameters, which is significant for water quality monitoring and control. Aim-
ing at the online prediction of BOD/NH3-N effluent in a wastewater treatment plant within
a smart data-driven framework, the main contributions of this paper are the following:

• Data pre-processing methods, i.e., abnormal data elimination and normalization,
are taken into consideration after the data and their related auxiliary variables are
collected. Then, some key factors of the wasterwater quality indicators are selected
based on the gray correlation analysis algorithm.

• In order to improve the prediction accuracy of BOD/NH3-N effluent, a novel IBES-
LSSVM algorithm is proposed, in which an improved bald eagle search (IBES) opti-
mization algorithm is used to find the optimal parameters of the least-squares support
vector machine (LSSVM). The superiority of the proposed method is verified by com-
paring it with the existing soft-sensing models (such as GWO, WOA, PSO, SSA) using
some benchmark functions and providing higher prediction accuracy.

• In order to estimate the uncertainty of the model prediction results and make better
decisions, after obtaining the point prediction results, the interval prediction bounds of
effluent quality are also generated. Compared with some existing soft-sensing models,
the proposed interval prediction method can obtain a more accurate prediction range.

The structure of this paper is as follows: In Section 2, the problem description is given,
including the real data collection, data pre-processing and gray-correlation-analysis-based
data selection. Section 3 describes the model uncertainty analysis by using the proposed
IBES-LSSVM algorithm and LUBE algorithm. In Section 4, the simulation examples are
depicted, demonstrating the effectiveness of the proposed method based on the BOD and
NH3-N data. Section 5 draws the main conclusions of this paper.

2. Problem Description

In this paper, a soft-sensing-based method is investigated to analyze and predict the
water quality indicators, including three main aspects: data collection, data pre-processing
and data interval prediction. The main steps of the approach presented in this paper are
shown in Figure 1.

Under a smart data-driven framework, in order to predict water quality tendencies and
analyze the mechanisms behind the considered data sources, enough relevant experimental
data in real time must be collected based on the prediction quality indicators. Most collected
data may present several issues, such as data sparsity and data synchronization, among
others. After the data are collected, they must be pre-processed in advance by applying
several procedures, such as data cleaning, abnormal data elimination or normalization.
Then, correlation analysis from different dimensions of water quality indicators should be
considered to extract the relations between these auxiliary variables and find the key factors.

2.1. Data Collection

Due to the complexity of the wastewater treatment process and the large number
of parameters that need to be set, it is necessary to determine the characteristic variables
related to the water quality to be determined as auxiliary variables. The data that can
evaluate the quality or impact of water quality in wastewater treatment plants are mainly
divided into the following four categories [43]:

• Physical data: Physical properties are the ones that must be monitored throughout
the treatment process, including total suspended solids, temperature, conductivity,
transparency, total dissolved solids, etc.
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• Chemical data: Chemical water quality indices of the national comprehensive dis-
charge standard for water pollutants, including: pH, biochemical oxygen demand,
biochemical oxygen consumption, heavy metals, nitrates, etc.

• Biological data: Biomarkers include a variety of microorganisms in the water, such as
mayflies, E. coli, etc.

• Environmental data: Environmental data cover the whole process of water supply,
including indexes of weather, hydrology, soil or ecology.

Figure 1. Main steps of the proposed approach.

This paper focuses on a real wastewater treatment plant in Beijing, China, from August
2014 to September 2014 [7,44]. Two data sets are collected first, which are used to predict
the BOD/NH3-N effluent, separately. (1) BOD data set: containing 360 batches of data with
23 variables (including the BOD effluent parameters)—the detailed information is shown in
Table 1; (2) NH3-N data set: including 10 characteristic variables related to NH3-N effluent
parameters, as shown in Table 2.

2.2. Elimination of Abnormal Data

Data collected from wastewater treatment plants can contain erroneous values because
of improper instrument operation, human or environmental interference and other factors.
As a result, we need to analyze the collected data first, and eliminate some abnormal or
meaningless data.

In this paper, we use the 3σ criterion to handle the abnormal data of the two collected
data sets. The sample data are denoted as x1, x2, · · · , xn. ηi is used to represent the data
residual error. Then, the standard deviation is calculated as follows:

σ =

√√√√√ n
∑

i=1
ηi

2

n − 1
(1)

ηi = xi − x̄ (2)
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where n represents the number of elements in the data set, and x̄ is the data average.
If the residual error of particular data sample xi satisfies

|ηi| > 3σ (3)

this means that it corresponds to an abnormal sample and needs to be eliminated. Other-
wise, xi is accepted.

Table 1. Effluent BOD data set.

Number Auxiliary Variable

01 Influent pH (IPH)
02 Effluent pH (EPH)
03 Influent SS (mg/L)
04 Effluent SS (ESS) (mg/L)
05 Influent BOD (IBOD) (mg/L)
06 Influent COD (ICOD) (mg/L)
07 Effluent COD (ECOD) (mg/L)
08 Sludge settling ratio of biochemical tank (mg/L)
09 MLSS in biochemical tank (MLSS) (mg/L)
10 Biochemical pool Do (mg/L)
11 Influent oil (IOil) (mg/L)
12 Effluent oil (EOil) (mg/L)
13 Influent NH3-N (INH3-N) (mg/L)
14 Effluent NH3-N (mg/L)
15 Influent Chroma (IC) (d)
16 Effluent Chroma (EC) (d)
17 Influent TN (IT) (mg/L)
18 Effluent TN (mg/L)
19 Influent phosphate concentration (IPC) (mg/L)
20 Effluent phosphate concentration (mg/L)
21 Inlet water temperature (◦C)
22 Outlet water temperature (◦C)
23 Effluent BOD (EBOD) (mg/L)

Table 2. Effluent NH3-N data set.

Number Auxiliary Variable

01 Effluent TP (mg/L)
02 Influent TP (ITP) (mg/L)
03 Temperature (T) (◦C)
04 Anaerobic terminal ORP (ATORP) (mv)
05 Aerobic front end DO (mg/L)
06 Aerobic terminal DO (mg/L)
07 Total suspended solids TTS (TTS) (mg/L)
08 Effluent PH (EPH)
09 Effluent ORP (EORP) (mL)
10 Effluent nitrate (EN) (mg/L)
11 Effluent NH3-N (ENH3-N) (mg/L)

2.3. Data Normalization

Different variables often have different dimensions and dimensional units. In order to
eliminate the dimensional influence between indicators, it is necessary to normalize the
data to achieve uniformity among the different data indicators. There are four classes of
normalization methods, i.e., rescaling, mean normalization, standardization and scaling to
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unit length. In this paper, the rescaling method is selected. The normalization formula is
as follows:

x̃i =
xi − xi min

xi max − xi min
(4)

where xi is any value of a variable; xi min and xi max are, respectively, the minimum and
maximum value of the variable.

After this kind of normalization, all the values of the data are set in the range of [0, 1].

2.4. Correlation Degree Analysis

Since different characteristic variables will have different influences on the predicted
variables, to obtain a soft-sensing model with a simpler structure, it is necessary to choose
the quality indicators with high correlations. Selecting ḿ auxiliary variables from m
variable, it has ḿ < m. In practice, the larger m is, the smaller ḿ is compared to m.

In this paper, the gray relational degree analysis method is investigated to select the
characteristic variables of BOD and NH3-N effluents. Gray relational degree analysis is a
multi-factor statistical method, which describes the strength of the relationship between
various factors according to the gray relational degree. This method looks for the inconsis-
tency between quantitative results and quantitative analysis in the traditional mathematical
statistics method and reduces the amount of calculation.

The gray correlation coefficient is formulated as follows:

β =
∣∣x0(k)− xj(k)

∣∣ (5)

μj(k) =
min

j
min

k
β + ρ · max

j
max

k
β

β + ρ · max
j

max
k

β
(6)

where j means the j-th variable, k is the k-th iteration, x0(k) is the output variable, xj(k) is
the input variable, μj is the gray correlation coefficient and ρ is the resolution coefficient. If
ρ is smaller, the difference between correlation coefficients is larger, and the distinguishing
ability is stronger.

Then, the gray correlation degree can be calculated as follows:

γj =
1
n

n

∑
k=1

μj(k) (7)

where n is the number of variables.
If the gray correlation degree is larger, this means that the corresponding variable

has a higher correlation with the effluent quality indicators. Then, according to the gray
correlation degree, the characteristic variables are sorted from front to back. Usually, a
threshold is determined in advance as h̄, and then the key indicators can be selected as the
input of the soft-sensing model if

γj > h̄ (8)

is satisfied.

3. Methodology

In this section, a novel IBES-LSSVM method is proposed to find the optimal kernel
function parameters of the LSSVM in Figure 2.
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Figure 2. Flow chart of IBES-LSSVM model.

3.1. LSSVM Algorithm

The theory of LSSVM was first proposed by Suykens in 1994. LSSVM is a kernel
learning machine following the principle of structural risk minimization and is suitable for
analyzing the issue of sample classification and regression estimation [45].

In LSSVM theory, firstly, the sample data are mapped to higher dimensions through
nonlinear changes, and linear functions are used for fitting in this high-dimensional fea-
ture space:

y(x) = w · φ(x) + b (9)

where y(x) is the output variable, x is the input variables, and w and b are weight and bias
terms, respectively.

The optimization objectives of the LSSVM regression algorithm can be formulated as

minJ(w, ξi) =
1
2

wTw +
C
2

n

∑
i=1

ξ2
i

s.t. (10)

yi = w · φ(x) + b + ξi, i = 1, 2, · · · , n

where C is the regularization coefficient, ξi is the relaxation variable, and
n
∑

i=1
ξ2

i is the

experience risk.
By means of Lagrange multipliers αi, (10) can be expressed as:
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L(w, b, ξi, αi) =
1
2

wTw +
C
2

N

∑
i=1

ξ2
i

−
n

∑
i=1

αi[w · φ(x) + b + ξi−yi]

(11)

According to Karush–Kuhn–Tucker (KKT) optimization conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂b

= 0 ⇒
n

∑
i=1

αi = 0

∂L
∂w

= 0 ⇒ w =
n

∑
i=1

αiφ(xi)

∂L
∂ξi

= 0 ⇒ αi = Cξi

∂L
∂a

= 0 ⇒ w · φ(xi) + b + ξi − yi

(12)

By defining kernel functions, the optimization problem (11) can be transformed into a
linear solution issue:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 · · · 1
1 K(x1,x1)+1

C · · · K(x1, xn)
...

...
...

1 K(xn, x1) · · · K(xn ,xn)+1
C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b
α1
...

αn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
y1
...

yn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13)

where K(x, xi) is the kernel function.
The Lagrange multiplier and its parameters can be obtained from (13). Therefore, the

output of LSSVM can be obtained:

ŷ(x) =
n

∑
i=1

αiK(x, xi) + b (14)

For LSSVM, there are many different types of kernel functions, such as linear function,
polynomial kernel function, radial basis function (RBF), sigmoid kernel function, etc.
Different kernel functions will produce difference types of LSSVM. In this paper, we select
RBF as the kernel function of the model:

K(x, xi) = exp(−‖x − xi‖2

2σ2 ) (15)

where σ is the variance of RBF.
Through the aforementioned analysis, LSSVM has two tunable parameters (regular-

ization coefficient C and variance of radial basis kernel function σ with RBF), which are
important and need to be determined. To obtain the optimal two parameters, the next step
is to use an improved PSO algorithm to optimize them.

3.2. IBES-LSSVM Algorithm

The BES algorithm is an optimization algorithm that simulates the hunting strategy of
vultures when looking for fish. It can obtain a single optimal solution through multiple
iterations and finally obtain the overall optimal solution, such that the position of the
optimal solution corresponds to the optimal parameter value.

BES hunting is divided into three stages. In the first stage (selection space), the eagle
selects the space with the largest prey number. In the second stage (spatial search), the
eagle moves in the selected space to find the prey. In the third stage (dive), the eagle swings
from the best position determined in the second stage and determines the best hunting.
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In the selection stage, firstly, this paper optimizes the initial prey position and adopts
the tent chaos strategy, which has the advantages of simple structure and strong ergodicity.
Then, the linear decreasing method is used to improve the control parameters of the vulture
iterative update position. The optimal model parameters of the model can be found that
improve the quality of the fitting. The tent chaotic mapping function is described as:

Pi+1 =

{
Pi/λ, Pi ∈ [0, λ)

(1 − Pi)/(1 − λ), Pi ∈ [λ, 1]
(16)

where λ is [0, 1].
Then, the vultures hunt for food. The formula is:

Pnew ,i = Pbest + R1 · C1 · (Pmean − Pi) (17)

where R1 is a parameter controlling the position change, and C1 is a random number
between (0, 1). Pbest is the current optimal location. Pmean is the average distribution
location of vultures after the previous search. Pi is the location of the i-th vulture.

In the search phase, vultures search for prey in the selected search space and move in dif-
ferent directions in the spiral space to speed up the search. The best position for subduction is:

Pi, new = Pi + b(i) · (Pi − Pi+1) + a(i) · (Pi − Pmean) (18)

where:

a(i) =
ar(i)

max(|ar|) (19)

b(i) =
br(i)

max(|br|) (20)

ar(i) = r(i) · sin[(θ(i))] (21)

br(i) = r(i) · cos[(θ(i))] (22)

r(i) = θ(i) + R2 · C3 (23)

θ(i) = π · ω · C2 (24)

ω = (1 − i
imax

)2 · (ωmax − ωmin) + ωmin (25)

where θ(i) and r(i) are the polar angle and polar diameter of the spiral equation, respec-
tively. ω and R2 are the parameters controlling the spiral trajectory. C2 and C3 are a
random number within (0, 1). The a(i) and b(i) represent the position of the vulture in
polar coordinates, and the values are (−1, 1).

During the dive phase, vultures swing from the best position in the search space to
their target prey. All points also move towards the best point according to

Pi, new = C4 · Pbest + a1(i) · (Pi − R3 · Pman)

+ b1(i) · (Pi − R4 · Pbest)
(26)

where:

a1(i) =
ar(i)

max(|ar|) (27)

b1(i) =
br(i)

max(|br|) (28)

ar(i) = r(i) · sinh[(θ(i))] (29)

br(i) = r(i) · cosh[(θ(i))] (30)

r(i) = θ(i) (31)
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θ(i) = π · ω · C5 (32)

where R3 and R4 represent the moving speed of the vulture to the optimal point. C4 and
C5 are random numbers within (0, 1).

3.3. Interval Prediction

The traditional point prediction cannot deal with the uncertainty in the operation of the
system. In order to obtain the numerical estimation and its reliability, the practical application
requires the calculation of the prediction interval. Interval prediction indicates the estimation
interval of the range of predicted values in a certain confidence interval. Therefore, the
prediction interval is composed of the upper and lower line of prediction, which provides its
accuracy within a certain confidence level. Assuming that the confidence level is (1 − μ)%,
l and u are the lower and upper limits, respectively, when P(l < y < u) = 1 − μ%, and PI
can be expressed as [l, u]. For a given confidence interval, the smaller the range of prediction
interval, the smaller the uncertainty of prediction and the higher the accuracy.

The evaluation indexes of interval prediction are as follows [46].
PICP: The ratio of the real value to the upper and lower bounds of the prediction interval

PICP =
1
n

n

∑
i=1

ci (33)

If the predicted value is within the [li, ui] range, ci is 1. Otherwise, ci is 0. If all
predicted values are included in the prediction interval, PICP = 100%. n is the number
of prediction points. In theory, PICP � (1 − μ)%; otherwise, PI is invalid or unreliable.
When comparing the PIs by the model, the other indexes should be as small as possible
under the condition that the PICP is as close to the confidence level as possible.

PINAW: The narrow PI has more information and practical value than the wide PI
according to

PINAW =
1

nR

n

∑
i=1

(ui − li) (34)

where R is the range of predicted values, respectively.
PINRW: Represents the standard square root width of the predicted interval. The

expression is:

PINRW =
1
R

√
1
n

n

∑
i=1

(ui − li)
2 (35)

CWC: In practical application, it is often hoped that a narrow prediction interval width
can still be obtained under the condition of high prediction probability, i.e., the prediction
interval range probability and interval width will conflict. Therefore, the comprehensive
index CWC is proposed:

CWC = PINAW
(

1 + �(PICP) · e−τ·(PICP−(1−μ))
)

(36)

where τ and μ are constants.
When working with training data, the set �(PICP) is 1. In addition, in data verification,

�(PICP) is a step function:

� =

{
0 PICP ≥ 1 − μ

1 PICP < 1 − μ
(37)

LUBE is a method based on neural networks to directly calculate the lower and upper
bound of the prediction interval. Assuming that the two node values of the output layer of the
neural network are the upper and lower limits of the interval, respectively, all the predicted
values are included in this range at the confidence level (1 − μ)%. The training purpose of a
neural network is to minimize the objective function CWC. In this way, the probability and
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width of the prediction interval are considered at the same time, and the advantages and
disadvantages of the prediction interval PI can be comprehensively evaluated.

The flow-chart of the proposed IBES-LSSVM algorithm is shown in Figure 2, which
mainly includes the procedure presented in Algorithm 1.

Algorithm 1 LUBE interval prediction based on IBES-LSSVM model.

Input: Measured data of wasterwater treatment plant.
Output: Prediction interval of BOD/NH3-N effluent.
Step 1: Abnormal data elimination, normalization of the data according to

Equations (1)–(4).
Step 2: Analyzing and selecting the key indicators with high correlation degree by

Equations (5)–(8).
Step 3: The bald eagle population is initialized by tent chaos strategy based on

Equation (16).
Step 4: Local optimal solution.
1: for all Xi do:
2: for all Xi do:
3: Obtain predicted value by means of Equations (9)–(15), (17).
4: end for
5: Using confidence, mean, standard deviation and other parameters, the prediction

interval is obtained according to norminv() formula.
6: Evaluate interval fitness by means of Equations (33)–(37).
7: end for
8: Obtain the local optimal solution.
Step 5 : Global optimal solution.
1: While t ≤ iter do:
2: for all Xi do:
3: Update parameter X, C, σ by using Equations (18)–(25).
4: Obtain different predictions by using Equations (9)–(15).
5: end for
6: Using confidence, mean, standard deviation and other parameters, the prediction

interval is obtained according to norminv() formula.
7: Judge and update by Equations (33)–(37).
8: for all Xi do:
9: Update parameter X, C, σ by using Equations (26)–(32).
10: Obtain different predictions by using Equations (9)–(15).
11: Using confidence, mean, standard deviation and other parameters, the prediction

interval is obtained according to norminv() formula.
12: Judge and update by means of Equations (33)–(37).
13: end for
14: t = t + 1
15: end while
16: Obtain the global optimal solution.
Step 6: Return the global optimal prediction interval.
Step 7: Output C, σ, fitness and other index values by using Equations (33)–(37), (38)–(41).

4. Simulation Results

In this section, the data sets of BOD/NH3-N effluents are collected from a wastewater
treatment plant in Beijing and are used to verify the effectiveness of the proposed approach.

The following evaluation indices of several certainty point predictions are evaluated
as follows:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (38)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (39)
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MAE =
1
n

n

∑
i=1

|ŷi − yi| (40)

R2 = 1 − ∑n
i=1(ŷ − yi)

2

∑n
i=1(ŷ − ȳ)2 =

∑n
i=1(yi − ȳ)2

∑n
i=1(ŷ − ȳ)2 (41)

4.1. Experiment of Benchmark Functions

The proposed approach is based on the six functions listed in Table 3 with the corre-
sponding ranges and parameters. The range is the boundary of the function search space.

In order to verify the superiority of the proposed approach, it is compared with
the WOA, GWO, PSO and SSA algorithms. Statistical results are presented in Table 4.
Moreover, the iteration process is depicted in Figures 3–8. From the results, we can see that
the convergence rate of IBES is better than that of the other algorithms and the proposed
IBES method is able to provide competitive results on the benchmark functions.

Table 3. Benchmark functions.

Function Range Parameters

F1 F(x) = −∑10
i=1

[
(X − ai)(X − ai)

T + ci
]−1

[1, 10] dim = 4 popsize = 100 iteration = 300
F2 F(x) = −∑7

i=1
[
(X − ai)(X − ai)

T + ci
]−1

[1, 10] dim = 4 popsize = 100 iteration = 300
F3 F(x) = −∑5

i=1
[
(X − ai)(X − ai)

T + ci
]−1

[1, 10] dim = 4 popsize = 100 iteration = 300
F4 F(x) = −∑4

i=1 ci exp
(
−∑6

j=1 aij(xj − pij)
2
)

[0, 1] dim = 6 popsize = 100 iteration = 200

F5 F(x) = −∑4
i=1 ci exp

(
−∑3

j=1 aij(xj − pij)
2
)

[1, 3] dim = 3 popsize = 100 iteration = 120

F6 F(x) =
(

1
500 + ∑25

j=1
1

j+∑2
i=1(xi−aij)

6

)−1
[−65, 65] dim = 2 popsize = 100 iteration = 180

Table 4. Simulation results of algorithms.

GWO PSO WOA SSA IBES Theoretical Value

F1 −10.5364 −105364 −10.5364 −10.5364 −10.5364 −10
F2 −10.4042 −10.4029 −10.4029 −10.4029 −10.4029 −10
F3 −10.1561 −10.1532 −10.1576 −10.1532 −10.1532 −10
F4 −3.3220 −3.3311 −3.3231 −3.3220 −3.3220 −3
F5 −3.8628 −3.8628 −3.8627 −3.8628 −3.8628 −3
F6 0.9980 0.9980 0.9980 2.9821 0.9980 1

Figure 3. The result of F1.

141



Sensors 2022, 22, 422

Figure 4. The result of F2.

Figure 5. The result of F3.

Figure 6. The result of F4.
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Figure 7. The result of F5.

Figure 8. The result of F6.

4.2. Experiment of BOD Data

BOD is one of the most important effluent quality indexes and can reflect the water
pollution situation [7]. First, the key auxiliary variables are selected for the BOD effluent
data set by calculating the gray correlation degree based on (7). The threshold of the gray
correlation degree is chosen as 0.8. Hence, 14 auxiliary variables (as shown in Table 5)
are selected as the soft measurement model inputs. Including the output effluent BOD,
there are 15 key indicators; the detailed information is shown in Figure 9. Moreover, the
description of each datum is given in Figure 10.

In this paper, the BOD effluent data set has 365 sets of data; among them, 335 sets
of data are randomly selected as training samples, and the remaining 30 sets of data
are treated as the prediction samples. In order to demonstrate the superiority of the
proposed IBES-LSSVM method, it is compared with some existing results, i.e., CNN, LSTM,
ELMAN, WOA-LSSVM, GWO-LSSVM, PSO-LSSVM and SSA-LSSVM. In the experiments,
the initialization conditions are set as: iter is 50, n = 30, ωmax = 10, ωmin = 0, R1 = 1.8,
R2 = 1, R3 = 1.5, R4 = 1.5.
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Figure 9. Auxiliary variables of BOD.

Figure 10. Original data of BOD.

Table 5. Data after processing.

Number of Coefficient Auxiliary Variable Correlation

1 Influent BOD 0.9179
2 Effluent COD 0.9151
3 Influent TN 0.9119
4 Effluent pH 0.8878
5 Influent NH3-N 0.8826
6 Influent pH 0.8716
7 Influent COD 0.8676
8 Influent Chroma 0.8669
9 Influent oil 0.8562

10 Effluent SS 0.8556
11 Effluent oil 0.8519
12 Effluent Chroma 0.8415
13 Influent phosphate 0.8397
14 MLSS in biochemical tank 0.8037

From Tables 6 and 7 and Figures 11–13, we can see that, compared with the existing
CNN model, LSTM model, ELMAN model, WOA-LSSVM model, GWO-LSSVM model,
PSO-LSSVM model and SSA-LSSVM model, the prediction accuracy of the proposed
method is better, demonstrating its effectiveness.
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(a) CNN (b) LSTM (c) WOA-LSSVM (d) ELMAN

(e) PSO-LSSVM (f) SSA-LSSVM (g) GWO-LSSVM (h) IBES-LSSVM

Figure 11. 99% of BOD.

(a) CNN (b) LSTM (c) WOA-LSSVM (d) ELMAN

(e) PSO-LSSVM (f) SSA-LSSVM (g) GWO-LSSVM (h) IBES-LSSVM

Figure 12. 95% of BOD.
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(a) CNN (b) LSTM (c) WOA-LSSVM (d) ELMAN

(e) PSO-LSSVM (f) SSA-LSSVM (g) GWO-LSSVM (h) IBES-LSSVM

Figure 13. 90% of BOD.

Table 6. Predictive index of BOD.

Model MSE RMSE MAE R2

CNN 0.0847 0.1500 0.1115 0.9503
LSTM 0.1310 0.2985 0.2330 0.8132

ELMAN 0.2425 0.3120 0.2523 0.7849
GWO-LSSVM 0.0659 0.0217 0.0182 0.9889
WOA-LSSVM 0.0711 0.1831 0.1521 0.9693
PSO-LSSVM 0.0587 0.1049 0.0851 0.9757
SSA-LSSVM 0.0726 0.2371 0.1707 0.9758

IBES-LSSVM 0.0201 0.0104 0.0103 0.9911

Table 7. PI of BOD.

μ = 90% μ = 95% μ = 99%

PICP PINRW CWC PINAW Time PICP PINRW CWC PINAW Time PICP PINRW CWC PINAW Time

CNN 0.9298 0.2731 0.2731 0.2348 41.489 0.9617 0.3848 0.3848 0.3325 42.940 0.9911 0.2841 0.2841 0.2413 46.076
LSTM 0.9124 0.3632 0.3632 0.3112 27.486 0.9609 0.3796 0.3796 0.3254 27.731 0.9913 0.3554 0.3554 0.3020 27.821

ELMAN 0.9073 0.2978 0.2978 0.2474 316.316 0.9549 0.2573 0.2573 0.2202 241.446 0.9909 0.2571 0.2571 0.2132 90.582
WOA-LSSVM 0.9104 0.2663 0.2663 0.2325 1.686 0.9633 0.2697 0.2697 0.2346 1.873 0.9909 0.2673 0.2673 0.2245 1.654
GWO-LSSVM 0.9099 0.2557 0.2557 0.2241 1.396 0.9587 0.2668 0.2668 0.2355 1.389 0.9911 0.2689 0.2689 0.2254 2.012
PSO-LSSVM 0.9111 0.2519 0.2519 0.2198 1.029 0.9544 0.2596 0.2596 0.2155 0.967 0.9908 0.2773 0.2773 0.2277 0.963
SSA-LSSVM 0.9072 0.2901 0.2901 0.2543 1.428 0.9563 0.3178 0.3178 0.2613 1.410 0.9907 0.2961 0.2691 0.2245 1.599

IBES-LSSVM 0.9053 0.2468 0.2468 0.2007 1.406 0.9531 0.2569 0.2569 0.2064 1.432 0.9907 0.2569 0.2569 0.2111 1.207

4.3. Experiment of NH3-N Data

In this experiment, the NH3-N effluent data set is considered, which has been de-
scribed in [44]. First, the gray correlation degree is calculated from (7), and the results are
presented in Figure 14. In addition, each selected auxiliary datum of the NH3-N data set is
shown in Figure 15.
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Figure 14. Auxiliary variables of NH3-N.

Figure 15. Original data of NH3-N.

In this example, the threshold of the gray correlation degree is also chosen as 0.8; hence,
7 auxiliary variables (as shown in Table 8) are selected as the soft measurement model
input. The experimental data of effluent NH3-N used in this paper are from a sewage
treatment plant in Beijing. In total, 237 sets of data were obtained, including 200 sets of
data that were randomly selected as training samples, and the remaining 37 sets of data
were treated as the prediction samples.
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Table 8. Data after processing.

Number of Coefficient Auxiliary Variable Correlation

1 Influent TP 0.8730
2 Anaerobic terminal ORP 0.8726
3 Effluent PH 0.8693
4 Temperature 0.8659
5 Total suspended solids TTS 0.8525
6 Effluent ORP 0.8257
7 Effluent nitrate 0.8143

In order to demonstrate the superiority of the proposed BES-LSSVM method, it is
compared with some existing approaches, i.e., CNN, LSTM, ELMAN, WOA-LSSVM, GWO-
LSSVM, PSO-LSSVM and SSA-LSSVM. In the experiments, the parameters are set as
follows: iter is 50, n = 30, ωmax = 10, ωmin = 0, R1 = 1.8, R2 = 1.2, R3 = 1.8, R4 = 1.8.

From Tables 9 and 10 and Figures 16–18, we can see that, compared with the existing
CNN model, LSTM model, ELMAN model, WOA-LSSVM model, GWO-LSSVM model,
PSO-LSSVM model and SSA-LSSVM model, the prediction accuracy of the proposed
method is the best, demonstrating its effectiveness.

Table 9. PI of NH3-N.

μ = 90% μ = 95% μ = 99%

PICP PINRW CWC PINAW Time PICP PINRW CWC PINAW Time PICP PINRW CWC PINAW Time

CNN 0.9231 0.53951 0.53951 0.50111 29.991 0.9619 0.49776 0.49776 0.46854 32.446 0.9919 0.52063 0.52063 0.48445 31.703
LSTM 0.9182 0.49437 0.49437 0.44235 22.176 0.9588 0.42320 0.42320 0.37824 22.637 0.9921 0.53185 0.53185 0.50111 21.272

ELMAN 0.9066 0.38637 0.38637 0.34255 6.661 0.9580 0.37625 0.37625 0.32142 3.175 0.9912 0.42032 0.42032 0.38764 3.120
WOA-LSSVM 0.9197 0.49711 0.49711 0.45739 1.547 0.9581 0.46106 0.46106 0.42131 1.711 0.9913 0.47562 0.47562 0.41121 1.584
GWO-LSSVM 0.9227 0.51067 0.51067 0.46174 1.346 0.9601 0.51117 0.51117 0.47894 1.166 0.9913 0.51776 0.51776 0.45669 1.163
PSO-LSSVM 0.9241 0.48209 0.48209 0.45394 0.959 0.9604 0.47815 0.47815 0.42756 0.797 0.9917 0.49209 0.49209 0.46401 0.801
SSA-LSSVM 0.9112 0.40579 0.40579 0.35752 1.363 0.9574 0.38947 0.38947 0.34556 1.184 0.9909 0.38777 0.38777 0.36454 1.142

IBES-LSSVM 0.9037 0.34531 0.34531 0.30989 1.354 0.9556 0.34906 0.34906 0.31128 1.181 0.9907 0.34677 0.34677 0.31001 1.366

(a) CNN (b) LSTM (c) WOA-LSSVM (d) ELMAN

(e) PSO-LSSVM (f) SSA-LSSVM (g) GWO-LSSVM (h) IBES-LSSVM

Figure 16. 99% of NH3-N.
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(a) CNN (b) LSTM (c) WOA-LSSVM (d) ELMAN

(e) PSO-LSSVM (f) SSA-LSSVM (g) GWO-LSSVM (h) IBES-LSSVM

Figure 17. 95% of NH3-N.

(a) CNN (b) LSTM (c) WOA-LSSVM (d) ELMAN

(e) PSO-LSSVM (f) SSA-LSSVM (g) GWO-LSSVM (h) IBES-LSSVM

Figure 18. 90% of NH3-N.

Table 10. Predictive index of NH3-N.

Model MSE RMSE MAE R2

CNN 0.1874 0.1711 0.1450 0.8932
LSTM 0.1138 0.2131 0.1663 0.7666

ELMAN 0.0954 0.1846 0.1564 0.7872
GWO-LSSVM 0.0997 0.0895 0.0628 0.7280
WOA-LSSVM 0.1929 0.2371 0.1709 0.8959
PSO-LSSVM 0.1312 0.1722 0.1247 0.8922
SSA-LSSVM 0.1196 0.1958 0.2037 0.8117

IBES-LSSVM 0.0917 0.0645 0.0450 0.8967
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5. Conclusions

This paper investigates an improved IBES-LSSVM algorithm to predict the effluent
water quality indicators of a wastewater treatment plant, in which an improved BES
method is proposed to find the optimal LSSVM parameters. To deal with the uncertainties
of the data, the prediction interval is generated within a certain confidence level, which
could provide the upper and lower bounds of the prediction results. Compared with other
existing methods, the proposed approach demonstrates high prediction accuracy, with
reduced computational time and an easy calculation process, in predicting effluent water
quality parameters. Note that the proposed results can only predict the water quality
indicators, but this is not the end work for a wastewater treatment plant process. The
application of this work to reliable decision-making and the generation of a suitable control
strategy will be our future work.
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Abstract: In semi-arid ecoregions of temperate zones, focused snowmelt water infiltration in topo-
graphic depressions is a key, but imperfectly understood, groundwater recharge mechanism. Routine
monitoring is precluded by the abundance of depressions. We have used remote-sensing data to
construct mass balances and estimate volumes of temporary ponds in the Tambov area of Russia.
First, small water bodies were automatically recognized in each of a time series of high-resolution
Planet Labs images taken in April and May 2021 by object-oriented supervised classification. A
training set of water pixels defined in one of the latest images using a small unmanned aerial vehicle
enabled high-confidence predictions of water pixels in the earlier images (Cohen’s K = 0.99). A
digital elevation model was used to estimate the ponds’ water volumes, which decreased with
time following a negative exponential equation. The power of the exponent did not systematically
depend on the pond size. With adjustment for estimates of daily Penman evaporation, function-based
interpolation of the water bodies’ areas and volumes allowed calculation of daily infiltration into the
depression beds. The infiltration was maximal (5–40 mm/day) at onset of spring and decreased with
time during the study period. Use of the spatially variable infiltration rates improved steady-state
shallow groundwater simulations.

Keywords: closed depressions; temporary water bodies; remote sensing; infiltration

1. Introduction

Shallow groundwater is present in many semi-arid landscapes across the world either
intermittently or permanently, depending on the lithological profile, topography, and water
balance. Unlike in wetter environments with diffuse groundwater recharge, recharge in
these environments is primarily focused (local) in areas of excess water input [1]. In such
environments, where moisture deficits in upland soils are high, groundwater recharge will
only occur if there is sufficient infiltration of converging flow to overcome the deficits. One
mechanism involved is a localized recharge process that routes surface water runoff within
the landscape to topographically low areas (depressions), allowing infiltration of water
through ephemeral seasonal ponds [2–4]. Moreover, depression-focused recharge driven by
snowmelt is a major annual hydrological event in cold semi-arid regions such as the Pothole
Prairie Region of North America. In recent decades, there has been an accelerated increase
in process understanding of the contributions of prairie potholes to surface runoff [5,6] and
depression-focused groundwater recharge [3] in this part of North America. The knowledge
has been acquired through studies involving conceptual and mathematical modeling of
hydrological processes of surface flows [5–7], subsurface flows and combinations of the
two [8,9], applications of isotopic and environmental tracers [3], digital elevation model
(DEM)-based delineations of depressions and their watersheds [10–14], assessments of
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hydrologic connectivity [6,10,15–17], and remote sensing with high and intermediate
resolution [18,19]. Studies in various catchments have shown that both horizontal and
vertical connectivity in pothole hydrological systems are very site-specific and no model
can be applied to a new system without validation.

In Russia, areas rich in pothole-like systems of depressions (“zapadiny”) in interfluves
of forest-steppe catchments cover a larger region than in North America, extending across
much of European Russia and into Siberia. However, after an initial period of intensive
hydrological research in the 1960s to the 1980s there was very little study of depression-
focused groundwater recharge despite advances in GIS-facilitated simulation and remote
sensing. Moreover, there is increasing societal need for such studies to enhance the un-
derstanding of key landscape functions related to water storage or movement, e.g., water
capacitance, carbon sequestration, and both nutrient retention and cycling [17,20] and
precision agricultural management. With some justification, early studies noted similarities
between prairie potholes and forest-steppe zapadiny. However, before applying tools
developed in North American research to Russian systems, there is a need for quantitative
evaluation of concepts that emerged in earlier local studies.

One of the key hypotheses developed during the 1960s is that the major source of
recharge for shallow groundwater in areas such as the Oka-Don Lowland of the Tambov
region in European Russia is depression-focused infiltration during snowmelt [21]. In a
very recent study an indirect method was used to calibrate the groundwater recharge to
hydraulic conductivity ratio for application in an analytical steady-state solution of the 2D
shallow groundwater flow equation using soil redoximorphic features of typical classified
catenas of the Samovetc catchment in this lowland [22]. In the cited study, the same
recharge rate was prescribed for all points along a topographical transect. In contrast, in the
study presented here, the spatial variability of depression-focused groundwater recharge
along the transect was studied in a field campaign in spring 2021 during, immediately after
snowmelt, and several weeks later.

There is no single method for classifying remote-sensing data for the ponds’ retrieval.
The methods and materials used vary greatly depending on the region of study, season
of the year, image resolution or type of the pond. In terms of wavelengths used in the
electromagnetic spectrum, they are visible (RGB), near infrared (NIR), shortwave infrared
(SWIR) and thermal infrared (TIR) [23,24]. In addition to optical methods, data from
RADAR and LIDAR are also used [25]. Methods for extraction of small water bodies are
divided into four groups. The first group is the threshold methods, the essence of which is
the discretization of individual spectral channels or spectral indicators based on expert or
experimental threshold values [26,27]. The second group of methods are statistical methods,
such as those using multivariate regression or discriminant analysis. Classification methods
(the third group) are a matrix of combinations of different methods—this is a pixel or object-
oriented approach, classifications with or without training, various classification machines;
for example: a random forest or support vector machine, neural algorithms [28–32]. There
are also various special techniques (group four) such as entropy-based computer vision
techniques [33].

In this work, remote-sensing data were used to construct a mass balance and estimate
volumes of ephemeral ponds by object-oriented supervised classification of high-resolution
Planet Labs images of the Tambov area acquired from April to May 2021. The data acquired
on dynamic changes in delineated ponds, in combination with a DEM, observations using
an unmanned aerial vehicle (UAV), a widely accepted method for calculating evaporation,
and visual hydrological observations were used to estimate infiltration volumes and rates
through the depression bottoms and account for their spatial and temporal variability.
Considering that groundwater recharge from the depressions’ bottom is very area-focused
and occurs episodically during the snowmelt, the process is not usually accounted for in
the regional-scale evaluation of the groundwater resources in Tambov region. To include
the impacts of spatial heterogeneity and dynamic fluctuation the depression-focused
infiltration may be modeled numerically [8]. To examine the early hypothesis [21] on a
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critical role of depressions in ground-water recharge in a forest-steppe region through
the simplified approach for estimating recharge, this paper aims: (1) to determine the
variations of the pond recession and infiltration rate in time and between the depressions
due to systematic (vertically-varying hydraulic conductivity) and random factors (presence
of clogging or frozen layers, pond- surface drainage network connection); (2) to determine
the role of such spatial variations through numerical analysis of shallow groundwater
model for the simplified 2D case; and (3) to determine a method for calculating the volume
of recharge through depression in other catchments both with and without the requirement
of numerical modeling and data assimilation. The result allowed identification of the
volume of intercepted water during snowmelt and calculation of the rate of water recession
and infiltration rates in closed depressions for the first time for the study region. Use of
the horizontal variation in parameters obtained along the studied transect substantially
improved results of the shallow ground water model developed in the cited study [22].

2. Materials and Methods

Remote-sensing data were used to construct a mass balance and estimate volumes
of ephemeral ponds by object-oriented supervised classification of high-resolution Planet
Labs images of the Tambov area acquired from April to May 2021. The data acquired on
dynamic changes in delineated ponds, in combination with a DEM, observations using an
unmanned aerial vehicle (UAV), a widely accepted method for calculating evaporation,
and visual hydrological observations were used to estimate infiltration volumes and rates
through the depression bottoms and account for their spatial and temporal variability.
The acquired time series of changes in the volume of nine temporary ponds enabled
parametrization with a negative exponential curve. A time series of the infiltration rate,
calculated from the water balance, was used to estimate the total amount accumulated
during the event, and both the initial (maximum) and saturated (minimum) infiltration
rates per unit area.

2.1. Study Area

The study area covers approximately 560 ha in the center of the Oka-Don lowland
(52◦37′ N, 40◦2′ E) in the Petrovsky district of the Tambov region, Russia (Figure 1). The
lowland is the largest in the forest-steppe biome. With elevation ranging from 120 to 180 m
above sea level, on average it is 100 m lower than adjacent territories. The lowland has a
semi-arid climate with long winters, pronounced spring snowmelt events and relatively
dry summers with an annual precipitation to potential evapotranspiration ratio of 0.8.
According to data recorded at a meteorological station 10 km north of the study site,
during the period 2005–2020 the annual temperature was 6.9 ◦C, and average monthly
temperatures in January and July were −8.6 ◦C and 21.0 ◦C, respectively [34]. Mean annual
precipitation during this period amounted to 550 mm (of which 113 mm fell during periods
with sub-zero temperatures), and the mean snow height before onset of snowmelt was
320 mm, very similar to the recorded historical climatic norm for 1961–1990 (290 mm).

The soils are mainly chernozems and the area is mainly used for cultivating crops
(typically wheat, corn, sunflower, soy, sugar beet), despite hindrance by water shortages.
Clay and loamy deposits, generally 5–15 m (but sometimes up to 40 m) thick, with boulders
of glacial origin, underlie a layer of loess-like loam with thickness ranging from 2 m in the
lower parts of slopes to 30 m in the interfluve. The upper layer is porous and can both
accumulate and retain moisture, while the glacial clays and loams form a local aquiclude
for infiltrated surface waters. Shallow groundwater above this aquiclude is permanent and
forms a continuous layer in the focal catchment. Evidence of stagnic condition in topsoil is
restricted to the presence of albic material in the lower part of the humus horizon in grey
gleysols in the depression bottom. There is clear evidence of gleyic conditions in the soil
morphology (Fe-Mn concretions, Fe masses, pore lining, reduced matrix) in the catchment
and continuous presence of water saturation below 2–3 m depth in the poorly drained soils
and 1 m depth in the waterlogged soils. The latter was confirmed by a few cases of drilling
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in different years and seasons (the WTD is consistently highest after the springflood) and
automated measurements in 2019 (a year with extremely low snow accumulation). Physical
properties of the surface loams have contributed to development of closed depressions of
multifactorial genesis, which are widely spread throughout the Oka-Don lowland. These
depressions delay the runoff of surface waters into rivers [21] and transfer surface runoff
to groundwater, thereby replenishing the groundwater and moistening the surrounding
soil. The closed depressions are filled with water in the spring when the snow melts. Snow
located in the catchment area of each basin melts and replenishes it, usually in mid-March
to early April. At the end of spring, surface water only remains in small parts of the
depressions, and in summer they usually dry up completely, in contrast to the closed
depressions of the Pothole Prairie Region. Monitoring the dynamics of water volume and
its filtration enables estimation of amounts of valuable additional moisture entering the
soil in this semi-arid region.

Figure 1. The study area. (a) Location of the study area in the forest-steppe biome of Eurasia. (b) Location of the study area
in the catchment of the Matyr River-Oka-Don Lowland (SRTM). (c) Digital elevation model (DEM) of the interfluve of the
Samovets brook; the studied territory of the depressions is marked with a rectangle. (d) Unmanned aerial vehicle (UAV)
DEM of the study area, the numbers indicate numbers of closed depressions filled with pond water in the spring of 2021
(for details, see Table 2).
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2.2. Input Data

Water dynamics in a closed depression in spring 2021 was tracked and modeled using
the following three types of data (Figure 2): ultra-high resolution (25 cm) digital terrain
and elevation models obtained using a small UAV—DJI Mavic 2 Pro, orthophotomaps of
terrain in the visible range with a ultra-high resolution (25 cm) from UAV, orthophotomaps
of high resolution (3 m) in the visible range from the sensors of the RapidEye and SkySat
mini-satellites of the Planet Labs system [25]. Precipitation data were obtained from the
nearest weather station with daily resolution. Evaporation data from the water surface was
obtained using Penman’s equation and meteorological input from the same station.

Figure 2. Sources of spatial data. (a) High-resolution DEM obtained photogrammetrically with colors indicating heights.
(b) Planet Labs’ digital images of terrain in the visible spectrum with 3 m resolution. (c) High-resolution digital image
obtained using the UAV in the visible spectral range.

In this study we used stereophotogrammetry, i.e., estimation of three-dimensional
coordinates of points on an object from two or more photographic images taken from
different positions by the small UAV. In this article, we used a standard method for
constructing a digital terrain model using a small UAV with an accuracy of 0.03 m (hereafter,
the UAV DEM).

For this, we used the Mavic 2 Pro routing app (DroneDeploy.com). Geolocation
markers were located on the ground, and their positions were determined using the
STONEX GNSS system (flight altitude, 150 m; image overlap, 75%). We processed the
data using Agisoft Metashape and created a dense point cloud to generate a digital terrain
model. We manually filtered points associated with agroforestry areas within the fields
in ArcGis Pro using the field mask and the vegetation mask. The masks were obtained
by manual decoding the UAV materials. Orthophoto maps generated from free satellite
photos obtained via Bing were used to identify trees. Points related to heights of the trees
were removed. A digital model of the territory with 25 cm resolution was created from the
remaining point cloud using the kriging interpolation tool in ArcMap. An orthomosaic
was created in Agisoft Metashape and exported with 25 cm resolution.

A time series of high-resolution visible orthomosaics (with 1–3 m resolution) at times
when there was no cloud cover, from the beginning of spring snowmelt to the drying up of
temporary water bodies in early summer were downloaded from Planet Labs Inc. Images
of the scenes were downloaded when there was no cloud cover, from the beginning of
spring snowmelt to the drying up of temporary water bodies in early summer.
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2.2.1. Delineation of Water Bodies

Orthophotomaps generated using an UAV allow correct interpretation of water sur-
faces, as they can be visually inspected to delineate water/dry surface boundaries accu-
rately. Orthomosaic maps from Planet Labs have lower resolution and higher atmospheric
noise. Therefore, we used the Interactive Supervised Classification tool in the ArcGIS
Pro desktop application to delineate water bodies in them. For this we created a water
feature training set from the ultra-high resolution orthomosaic, and used it to enable au-
tomatic recognition of water bodies in the Planet Labs orthomosaics via object-oriented
supervised classification, as implemented in the ArcGis Pro raster classification tool [35]. It
is well established that object-oriented classification is superior to pixel-based classifica-
tion for high-resolution images [36], and it has been previously used to delineate similar
depression-shaped natural systems [37,38].

The classification involved the following steps. First, the analyzed raster layer was
constrained by a field cadastral border [39] buffered 15 m on each side to prevent inclusion
of objects rather than a bare soil surface without water (e.g., an agricultural field with
no vegetation in early spring) and surfaces that may be flooded with water. Masking
was applied to avoid possible classification errors by excluding unnecessary objects (trees,
roads, buildings, etc.). The second step was imaging segmentation, based on a mean shift
procedure, by criteria of the minimum segment size expressed in pixels [40,41] implemented
in ArcGIS Pro, to merge adjacent pixels of relative homogeneity—preferentially based on
spectral (color) characteristics—into image objects. Unitless segmentation scale parameters
determining the average size of objects governing the degree of homogeneity allowed for
pixel merging was set to 10 on the RGB scale. The third step was creation of a training
set. As summer approaches, ponds in the depressions always shrink (Figure 3). Thus,
water surfaces present on the date of a UAV flight were always present on the preceding
dates, and three training samples were created for groups of dates before each UAV
survey (Figure 3). Each training sample contained two categories: water and soil surface.
Finally, the random forest (RF) method [42,43] and support vector machine (SVM) [44]
for supervised classification of segmented images was applied, yielding a binary (water–
not water) raster. The testing set from the next UAV survey was used to validate the
resulting binary models. This enabled identification of the water surface areas in each
period. However, in the classified images, the boundary of the ponds does not have a
constant height relative to the DEM of the UAV. To avoid this unnatural variation of height
the classified raster was transformed into a vector containing only water polygons. Along
the outer boundary of the water polygon, the DEM values of the UAV were sampled with
a frequency of 25 centimeters. The median was calculated from the extracted values. The
contour was then drawn for the second time, now in accordance with the average value
on the UAV DEM, thus, the outer boundaries of the ponds were forced to have a constant
height value. The described procedure allowed us to avoid misclassification of the Planet
Labs mixed pixels due to relatively low resolution as we operated with the vector area,
not the raster area. For the comparison purely pixel-based classification was also made.
The DEM and water polygons vector were used to calculate the volume of water in each
depression on the days the images were taken. We used the Surface-Volume tool from
ArcGIS Pro to calculate the area and volume between the surface and the reference plane
(Polygon Volume (3D Analyst). This provided the water content in each depression in
cubic meters on each of the days.

The maximum surface water area of a depression corresponds to the volume of water
up to its overflow point, defined here as the minimum value of the height in the UAV DEM
along its drainage basin vector boundary [45]. The watershed boundary was defined by the
Basin tool in ArcGis based on the raster of the flow direction, derived from the UAV DEM
using the “Direction of flow” tool in ArcGis Pro. The water layer (mm) in the catchment
area of each depression required for its maximum volume is equal to its total maximum
volume of water divided by its entire catchment area.
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Figure 3. Schematic illustration of the water surface classification method. The arrow at the bottom indicates the general
trend of depressions drying (from left to right) in spring. The green dashed lines around the blue areas show the extent of
the water as photographed by the UAV on the control dates (22 April, 15 May and 2 June). The gray color indicates the
water surface resulting from object-oriented image classification trained on a subset of points from the later control surveys
by the UAV. Three time intervals were used for the training. The green shading at the end is the area searched for a water
mirror surface by the UAV on a day when the pond had already disappeared (light red fill).

2.2.2. Evaporation

Results of a previous comparison suggest that all of three conventional methods for
estimating evapotranspiration from water-filled and vegetated depressions have acceptable
applicability for estimating evaporation from open water [46]. The most convenient of
these methods, the classical form of the Penman equation [47,48], was used in this study to
estimate potential evaporation:

EPEN =
Δ

Δ + γ

Rn

λ

γ

γ + Δ
6.43EA

λ
, (1a)

Here: EPEN is potential (open water) evaporation (mm/d); Rn is net radiation at the
surface (MJ/m2/d); Δ is the slope of the saturation vapor pressure curve (kPa/C); γ is
a psychrometric coefficient (kPa/◦C); λ is the latent heat of vaporization (MJ/kg); and
EA is the drying power of the air, which can be found using the following Dalton-type
formulation:

EA = f (U)D = (1 + 0.536U)(es − ea) (1b)

Here: f (U) is a wind function with linear coefficients for the original Penman equation
(1948, 1963); u is the wind speed at 2 m height (m/s), D = (es − ea) is vapor pressure deficit
(kPa); eS is saturation vapor pressure (kPa); and ea is actual vapor pressure (kPa).

Open-water evaporation was computed from readily available data as previously
described [49] and implemented in the Evaplib Python library [50]. Input data for this
were air temperature (T, ◦C), solar radiation (RS, MJ/m2/d), relative humidity (RH, %),
and wind velocity (u, m/s).
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In the absence of actinometric measurements of net radiation at the surface, this was
calculated from amounts of cloud cover recorded at the weather station and a previous
regional calibration [51].

Ra =
24(60)

π
Gscdr(ωs sin(φ) sin(δ) + cos(φ) cos(δ) sin(ωs)) (2a)

Here: Ra is extraterrestrial radiation (MJ/m2/day**), Gsc is the solar constant
(0.0820 MJ/m2/min), dr is the inverse of the relative distance between the Earth and
Sun, ωs is the sunset hour angle (rad), φ is latitude (rad), and δ is solar declination (rad).

dr = 1 + 0.033 cos
(

2π

365
J
)

(2b)

where J is the day of the year; δ = 0.409 sin
( 2π

365 J − 1.39
)
;

ωs = arccos(− tan(φ) tan(δ)) ; N =
24
π

ωs

Solar radiation, Rs, can be calculated from the amount of cloud:

Rs = (as + bs(1 − N))Ra (3)

where N is the amount of cloud (ranging from 0 for clear sky to 1 for full cloud cover),
while as and bs are Angstrom values, and without regional calibration values of 0.25 and
0.50, respectively, are recommended [52].

Net longwave radiation (Rnl) can be estimated from the air temperature, actual va-
por pressure, and solar radiation. Net longwave radiation is expressed by the Stefan–
Boltzmann law:

Rnl = σ

⎛⎝ T
max2

44
min

(0.34 − 0.14
√

ea)

(
1.35

Rs

Rso
− 0.35

)⎞⎠ (4)

where Tmax is daily maximum air temperature (K), Tmin is daily minimum air temperature
(K), and Rso is clear-sky radiation (MJ/m2/day) according to:

Rso = (as + bs)Ra (5)

We applied a constant albedo of 7% (0.07) for water surfaces in the calculations, based
on the latitude and published mean reference values [51].

Rn = (1 − α)Rs − Rnl (6)

We calculated daily evaporation values. Input data for Equations (1a), (1b) and (4) and
daily precipitation were obtained from the nearest meteorological station (at Lipetsk city).

2.2.3. Water Balance and Groundwater Model Recalibration

Infiltration rates (mm/day) were calculated from the daily water balance equation:

F = 1000·[−ΔV − At(EPEN − P)]/At (7)

where −ΔV is the daily rate of reduction in pond volume (m3), At is the current pond area
(m2), and P is the daily precipitation (mm/d).

The volume of a pond on a given Julian day (dayT) was derived from the volume on
the first Julian day in a series (dayF) and the following negative exponential equation:

V = a·e−c·(dayT−dayF) (8)
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The scaling coefficient a and the power of the exponent c (the pond’s approximate
initial volume and decay rate, respectively) were obtained by the least square method,
which has given a fit with R2 > 0.9 for each of studied lakes (Table 2, Figure 4d). The
estimated volume on each day was used to calculate the rate of reduction in pond volume
in Equation (7) with a daily time step.

Figure 4. Temporal dynamics of selected ponds in the depressions. (a) Positions of Ponds 4 and 2 in
a UAV photo image. (b,c) Groundwater levels in basins of the ponds on indicated dates based on the
classification of images (highlighted in color by day). (d) Water volumes in the basins of ponds 4
and 2 on indicated dates (points) and negative exponential fits derived by Equation (8) (lines). Pond
numbering as in Figure 1 and Table 2.

A limitation of the method lies in the choice of the first day of infiltration, because it is
impossible to determine the water boundary in depressions when they are covered with
snow. Water infiltrates the soil when the temperature is already above 0 degrees Celsius,
but classification of images with partial snow cover is problematic. Thus, the first Planet
Labs image that was subjected to classification was the first when there was no snow cover
according to the nearest (Lipetsk) weather station.
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A 2D profile of the steady-state shallow water table depth was obtained by the ana-
lytical form of continuity equation with calibration based on soil redoximorphic features.
In [22] the hypothesized relationship between archived morphological properties (redox-
imorphic features as indicators of gleyic conditions) of soils and a current hydrological
process indicator (WTD) were established based on the expert knowledge of soil types,
WTD co-occurrence, then verified under a hillslope flow continuity constraint expressed
mathematically as a steady-state solution with two free parameters: hydraulic conductivity
and recharge rate. Here the input horizontal transect of groundwater recharge rate was
taken as a time integral of Equation (7). Spatially, it varied along the transect according to
positions of the depressions in the landscape. Infiltration into the soil is not equal to the
groundwater recharge rate, so relative values in the [0, 1] interval were used to describe
the variability along the transect while the formal calibration of the absolute values of
recharge rate to hydraulic conductivity (N/k) was preserved in the method. Time-averaged
infiltration was calculated based on the volume of water that infiltrated in closed depres-
sions. We established 10 regular topographic profiles representing the generalized transect,
3 km long and crossing the interfluve along the main slope with regularly (5 m) spaced
points. At each standard point, the value of the water layer (mm) was extracted, which
was filtered out in a closed depression. The 10 topographic lines were combined into a
single profile by averaging values corresponding to the order of the points of the water
layer. The regular placement of topographic profiles and sampling points was intended to
optimize the two-dimensional characterization of additional moisture infiltration along the
studied transect.

3. Results

The proposed combination of object-oriented image classification based on a time
series of Planet Labs images and an orthomosaic derived from UAV surveys to verify
the satellite data enabled highly accurate identification of the water mirrors of closed
depressions during their drying (Cohen’s kappa = 0.99). Moreover, high-precision digital
terrain models obtained using UAVs can be used to calculate volumes of water in closed
depressions.

We compared different methods of pond extraction for the scene on 9 April 2021, when
the reference UAV image was obtained. Two supervised pixel-based classification methods
were compared: random forest (RF) and support vector machines (SVM) providing results
as a raster. Then the ponds boundaries were brought to a constant median value of the
DEM to obtain vector pond polygons (also both from RF and SVM classification). Root
mean square error (RMSE) and mean absolute percentage error (MAPE) of pond volume
and area were the lowest for the vector approach and notably higher for raster approach
(Table 1). SVM and RF errors were almost the same within the vector approach (Table 1),
and it was decided to use RF as the most common in such studies. Contrary to [52], the
novel way to vectorize the polygons based on idea of flat pond mirror with constant height
brought a very notable increase in the quality of area and volume estimate.

Table 1. Root mean square error (RMSE) and mean absolute percentage error (MAPE) of the area
and volume with true value taken from ultra-high resolution UAV estimate of ponds’ boundaries.
Random forest (RF) and support vector machine (SVM) methods are compared for the pixel-based
(raster) and median DEM height-based (vector) delineation of the image taken on 9 April 2021.

Errors of Area Estimate Errors of Volume Estimate

RMSE, m2 MAPE, % RMSE, m3 MAPE, %

RF vector 7.8 1.4 2.5 5.9
RF raster 43.2 3.1 16.0 21.9

SVM vector 8.7 1.6 2.1 5.1
SVM raster 44.9 3.6 16.3 22.2

162



Sensors 2021, 21, 7403

Results obtained using the described procedure show that the drainage process of
the focal depressions follows an exponential equation (Figure 4, Table 2), with coefficients
(Table 2) that presumably depend on various factors (e.g., the depressions’ source rocks
and filtration areas), but we found no systematic quantitative relationships between the
coefficients and considered parameters.

Table 2. Derived characteristics of the ponds during the decreasing volume phase after snowmelt from the maximum
(starting day) to zero (final day). Coefficients a and c are from Equation (8) and R2 is the coefficient of determination for the
negative exponential fit of the lake volume by the least square method.

Pond
No.

1.

Maximum
Volume,

m3

Maximum
Area,

m2

Coefficient
a

Coefficient
c R2

Total
Infiltration,

m3

Initial
Infiltration
Rate, m3/d

Soil
Refill

Capacity,
mm/dd 2

ksat
mm/d

Total
Evaporation,

m3

Total
Precipitation,

m3

1 640 6123 604 0.11 0.91 475 47 54 3 320 155
2 647 4275 645 0.29 1.00 594 153 163 3 113 59
3 173 1756 173 0.38 0.98 167 50 172 12 18 12
4 66 1283 67 0.23 0.95 56 10 53 4 24 14
5 416 3546 428 0.19 0.94 366 64 103 6 103 54
6 16 540 16 0.53 1.00 14 5 37 1 6 4
7 103 978 104 0.28 1.00 92 23 113 2 24 13
8 36 543 37 0.34 0.97 34 9 93 4 7 5
9 12 295 13 0.19 0.99 9 1 34 2 7 4

1 The numbering follows Figure 1. 2 dd—melt water peak event duration (days).

During the initial phase the rate of pond recession is much higher than later in the
season (Figure 5 top). Notably less water is evaporated than infiltrates (Figure 5, middle
and bottom), so the depression-focused replenishment of the groundwater is consistent
with the previously mentioned hypothesis that the major source of recharge for shallow
groundwater in the study area (and similar areas) is depression-focused infiltration during
snowmelt [21]. There are two phases of infiltration—fast and slow (Figure 5, bottom).
Measurements during the fast phase enable estimation of the unsaturated soil’s refill rate
and capacity (Table 2). During the slow phase the change in infiltration rate from day to
day is much smaller. The saturated hydraulic conductivity decreases strongly with depth
under a depression [8], reflecting the effects of the decreasing frequency of fractures with
depth, and the flow is presumably limited by the lowest layer with the smallest frequency.
Thus, the infiltration rate estimated during the slow phase provides an approximation of
the hydraulic conductivity (Table 2), corresponding to the maximum possible flux out of
the soil column.

Overflow can occur from any closed depression (Figure 6). The probability of spillage
depends on multiple factors, including elevations of the lowest point in the catchment area
and the depression’s overflow point. In 2018, water reached the overflow point in almost
all the depressions considered here (Figure 6). Thus, the initial volumes (a coefficients)
obtained for the nine studied ponds can be used in speculation regarding the effects of the
landscape morphometry and meltwater input on initial volumes of ponds after snowmelt.

The results also indicate that the hypothesis of a quantitative linear relationship
between the volume of water accumulated in a depression and the catchment area of the
basin is only partly correct. The water volumes do not appear to be linearly related to
the depressions’ catchment, because the amount of water in a depression depends on the
catchment area and maximum volume that can be stored in it. Excess water will flow
through the overflow point without replenishing the water table. Limits of the possible
volume and layer of water intercepted by the focal depressions, which limit their ability
to converge surface runoff into underground flows, were identified. The maximal layer
depends on the catchment area of the depression and height of its overflow (Figure 6, right).

The water layer filling closed depressions during snowmelt in the forest-steppe zone
is highly dynamic. From 2005 to 2021, the snowmelt water layer (snow water equivalent,
SWE), reconstructed from the statistically corrected snow height and snow density data
series, varied from 50 to 300 mm. The derived snowmelt water layer during this period
has a binomial distribution with two maxima, at 50 and 200 mm SWE. Analysis of the
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meteorological data showed that closed depressions did not overflow during snowmelt in
60% of cases, on average, from 2005 to 2021. This corroborates the finding that in most cases
closed depressions intercept the surface runoff and transfer it to groundwater. Frequencies
of overflow were lowest for Ponds 2 and 4 (around 10%) and highest for Pond 9 (90%).

Figure 5. Rate of recession of the indicated ponds’ water levels (a), daily evaporation rate (b) and
infiltration rates of the ponds estimated from the mass balance (bottom panel) expressed in mm of
the water layer (c). The numbering of the ponds in the color legend follows Figure 1 and Table 2.
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Figure 6. (a) Boundaries of the maximum potential filling of closed depressions (up to their overflow heights) shown
in white in a Planet Labs image from 4 April 2018, with color shading and magenta contours, and the maximum pond
boundaries in 2021 from 6 April 2021 (green contours). In 2018, the investigated closed depressions were overflowing.
(b) Shades of blue indicating the layers of water (in mm) that must enter the depressions from their catchment areas to
completely fill them.

Figure 7 illustrates the simulations of the shallow groundwater level for cases with the
recharge rate either constant or spatially varied along the transect. The parameter N/k was
restricted by the requirement for correspondence between the simulated WTD and range
of WTD for soils of each type from expert knowledge (Table 2 in [22]) in distance intervals
across the catena’s whole toposequence. For example, if very poorly drained soils (under
depression bed) are present in M unit intervals, those in which WTD > 3 m (too deep)
were counted with 0 weight and the others with 1 weight. The same procedure was then
applied for each of the intervals with the other soil types, then the sums were added for all
groups and scaled to the total number of unit intervals in the catena toposequence to obtain
the accuracy in percent. Simulation of WTD was successful for the generalized transect
in terms of correspondence between the simulated WTD and ranges of WTD obtained
from the indirect soil indicators (redoximorphic features) and expert knowledge both in
the cases of constant and spatially variable recharge. However, the required accuracy
threshold was set at 97%, and was met for the spatially variable recharge. A significantly
lower threshold (80%) was satisfied for the constant recharge case. Therefore, the method
to estimate depression-focused infiltration proposed here can make the shape of the water
table profile more realistic.
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Figure 7. Cross-section of the catena with water table depth (WTD, blue and red lines) adjusted
to correspond to soil group [22]. The yellow and black lines indicate the position of the bedrock
and DEM profile, respectively. The blue and red lines respectively indicate WTD obtained with
infiltration along the transects estimated from the depressions’ positions and specific infiltration rates
(as indicated by the blue bars and right y axis) and constant infiltration along the transect.

4. Discussion

The word steppe is usually associated with the Russian plains, but the northern
part of this ecoregion has notable similarity to North American prairies. The lithological
and geomorphological similarity of the Tambov region to the Saskatchewan and Alberta
provinces in Canada enables direct comparison of the depression-focused infiltration into
their soils through temporal ponds that are very similar in size distribution and shape. The
recession rate of the ponds after snowmelt obtained in this study is similar to that derived
from an artificial flooding experiment in the C24 depression, northwest of Calgary, Alberta,
Canada, in 2004 [8]. As in the cited study [8] and another previous investigation [4], we
found that evaporation accounts for a much smaller proportion of the pond water balance
loss term than infiltration into the soil. The pre-event pore space available for filling with
infiltration water was not directly measured in this study. However, data from a depression
monitoring site in the study region in the years 2003–2005 show a spread of 30–400 mm of
water deficit to saturation. An assumption underlying our two-stage infiltration conceptual
model is that pores of the soils below the bottom of a pond are all filled to saturation
during the first stage down to the shallow groundwater depth (approximately 2 m). Thus,
the inflow is restricted by the bottleneck hydraulic conductivity below this point, which
is an order of magnitude lower than in the upper soil layers [8] and also by the gradual
rise of the water table when two fronts of water are jointing. The soil refill amount of 34
to 172 mm recorded in Table 2 fits well into this range. There is also similarity with the
refill amount (148 mm) obtained in the cited Canadian study [8]. A strength of our study
is that the infiltration rate was estimated for nine ponds, not just one pond such as the
well-studied experimental pond C24. The variation (four-fold) in infiltration between those
ponds (Table 2) could not be explained by the pond size or topographical settings. Thus,
it is not sufficient to apply infiltration data from one pond to other ponds as this leads to
large errors. The differences are likely due to diverse factors, inter alia physical properties
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of the soil associated with their lithological and textural characteristics, the thawing rate
and ice content, abundance of root channels and other pathways for preferential flow.
We conclude that there is no straightforward analytical way to characterize this spatial
variability, but use of data obtained by the methods proposed here in conjunction with
appropriate hydrological models and high-resolution satellite images is highly promising.

Here, we used the steady-state continuity equation in kinematic wave form parame-
terized using expert knowledge of the links between typical water table depth (WTD) and
redoximorphic features of soils with different hydromorphy degrees [22]. In this simulation,
we were able to account for variation in infiltration rates in the catena using real data on
depressions’ positions within the transect. However, calibration was still necessary because
the infiltration and recharge are split in time by unsaturated zone processes. In future
research, we plan to develop a model conceptually similar to the VSMB Depression-Upland
System (VSMB-DUS) model [8] using data acquired in investigations of the surface water–
groundwater interaction in individual depressions and their catchments. The planned
model will be based on the watershed hydrological WASA-SED model [53], which already
discretizes focal watersheds into hierarchical levels (sub basins, land units, terrestrial com-
ponents, soil-vegetation components). Land units are representative catenas and terrestrial
components can be easily supplemented with depressions and uplands providing surface
flow to them by an already incorporated horizontal flow mechanism. For the terrestrial
components prescribed as depressions, the temporally varying fluxes obtained by the
method developed here will be used as upper boundary conditions. Collection of field data
is planned to obtain saturated hydraulic conductivity values for the vertical levels besides
the bottom soil layer. Groundwater depth measurements will provide calibration for the
drainage rates from the deepest soil layer and validation for the dynamic version of the
WASA-SED shallow groundwater flow sub-model. In this manner, groundwater recharge
will fully account for the spatial variability of depression density, such as prevailing areas
of numerous depressions at the water divide.

In this study, we derived the saturated hydraulic conductivity, not for a single point,
but aggregated for the area of depressions. Most grid data used represent points, but
landscape-level data are essential inputs for a hydrological model. A hypothesis under
test is that soil hydraulic properties are related to landscape position and topography [54].
If so, elucidation of these relationships could greatly enhance pedotransfer functions for
estimating saturated hydraulic conductivities at the level of land units and terrestrial
components, not just points. Our study, based on remote sensing, provides an example
of such derivation because the hydraulic conductivity is based on the depressions’ water
balance accounting for their positions in the landscape.

A limitation of this study lies in the assumption that all snowmelt runoff from the
upland was routed to the depressions before the initial day of the study, and water volume
within each depression exceeding its maximum storage capacity overflowed directly into
surface runoff with no contribution to infiltration into the soil. However, it is widely
acknowledged that depressions tend to form fill-spill networks, where overflow from one
depression feeds an adjacent depression [5,6]. This process can be modeled [6,10,15–17],
but studies of fill-spill processes have primarily focused on effects of depression storage
on surface flow to streams rather than depression-focused groundwater recharge. Visual
observations during the hydrological phase after the most active snowmelt showed no
signs of connectivity between depressions at our study site, but that was typical for the
active snowmelt phase itself of about a week duration. We justify the restriction of our
approach with the hypothesis that non-stationary volumes of the depression ponds when
snow is still present contribute little to total infiltration, partly due to the frozen state of
the soil.

5. Conclusions

Estimation of infiltration through ponds is an important step toward the challenging
goal to estimate depression-focused recharge of groundwater, and thus evaluate this
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important resource, in the forest-steppe zone of Russia. Using high-resolution Planet Labs
images and widely evaluated tools for object-based image recognition, we have developed
a relatively simple method to reconstruct a time series of infiltration into the soil under
ponds and estimate landscape-scale saturated hydraulic conductivity. The simulation
of the steady-state groundwater profile for the topographical transect fed with data on
relative water supplies through depressions along the transect was more consistent with
observations (based on soil redoximorphic indicators of water level) than the simulation
fed with a uniform recharge function. Further development is needed to assimilate the data
generated with consideration of the spatial variability of pond infiltration into a process-
based model of groundwater recharge that accounts for interactions between depressions
and their catchments.
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Abstract: The use of precision agriculture is becoming more and more necessary to provide food for
the world’s growing population, as well as to reduce environmental impact and enhance the usage of
limited natural resources. One of the main drawbacks that hinder the use of precision agriculture is
the cost of technological immersion in the sector. For farmers, it is necessary to provide low-cost and
robust systems as well as reliability. Toward this end, this paper presents a wireless sensor network
of low-cost sensor nodes for soil moisture that can help farmers optimize the irrigation processes in
precision agriculture. Each wireless node is composed of four soil moisture sensors that are able to
measure the moisture at different depths. Each sensor is composed of two coils wound onto a plastic
pipe. The sensor operation is based on mutual induction between coils that allow monitoring the
percentage of water content in the soil. Several prototypes with different features have been tested.
The prototype that has offered better results has a winding ratio of 1:2 with 15 and 30 spires working
at 93 kHz. We also have developed a specific communication protocol to improve the performance of
the whole system. Finally, the wireless network was tested, in a real, cultivated plot of citrus trees, in
terms of coverage and received signal strength indicator (RSSI) to check losses due to vegetation.

Keywords: electromagnetic induction; soil moisture; precision agriculture; low cost; water manage-
ment; Internet of Things (IoT); wireless sensor network

1. Introduction

Given the basic need to provide food to the world’s population, it is necessary to
introduce technology to the agriculture sector to reduce the environmental impact caused
by the crops and to increase the conservation of natural resources, among others [1].
Efficient Irrigation is one of the essential factors to increase the development of sustainable
agriculture, especially in arid and semi-arid regions where there are the greatest limitations.
Irrigation methods can be classified into three generic categories; these are (1) gravity
irrigation, (2) sprinkler irrigation, and (3) drip irrigation. The gravity irrigation system is
the oldest method and the least efficient for the conservation of natural resources. However,
in order to determine the specific irrigation needs of crops, sensing devices must be
deployed to obtain data such as soil moisture.

Precision agriculture is a concept that appeared in the USA in the 1980s. It is a
management strategy that allows making decisions to improve farming productivity and
to achieve more sustainable activity. It is based on the management of crops by observing,
measuring, and acting against the variability of the many factors that affect them. Using
Internet of Things (IoT) solutions, the soil where the crops are planted can be monitored
to make decisions and perform more effective irrigation. These solutions may include
not only the electronic devices deployed in the fields but also the use of vehicles such as
drones to support the network [2] and to manage the use of pesticides on the crops [3,4].
However, in crop monitoring tasks, especially in those where fruit trees are grown, it is
important to be able to control soil moisture levels accurately. For the correct progress
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of a fruit tree, it is necessary to ensure that the roots have the right levels of moisture.
High humidity levels can facilitate the proliferation of fungi in the roots and leaves, thus
affecting production. However, an extremely low soil moisture level can provoke the soil
to crack. causing broken roots and the tree to die. This fact negatively affects the growth of
plants and consequently their production.

One of the main drawbacks that hinder the use of precision agriculture is the cost
of the sensors and the utilized technology. For farmers that want to use technology on a
massive scale, it is necessary to provide low-cost systems to make easier deployments.

The available commercial sensors for soil monitoring use different methods to assess
the water content of the soil. The most relevant existing methods for obtaining moisture
values from the soil [5] are the gravimetric method, tensiometric method, neutronic method,
gamma-ray attenuation method, dielectric method, Wenner or resistive method, and light
method infrared [6]. Generally, when low-cost sensors are used to measure soil moisture,
conductivity-based sensors are based on the use of two electrodes [1]. These types of
sensors have two fundamental disadvantages, lack of reliability, and durability. On the one
hand, depending on the type of soil and its salt content, the conductivity measurement
can vary even when the amount of water in the soil is maintained. On the other hand, the
electrodes must be in contact with the ground, and consequently, they can suffer rapid
deterioration. Inductive sensors are also employed to measure soil moisture. However,
they do not integrate the system into a sensor node to be able to read the parameters.

The network design is an important aspect to consider as well. Usually, fields are
located in remote areas. These areas may not have access to the internet infrastructure and
the power grid. Therefore, PA systems should include a form of energy harvesting such
as solar panels, and some characteristics of these networks should be considered when
designing the deployment of sensing devices [7]. Wireless communications are a good
solution because it eliminates the cost and hindrance of deploying cabled networks on
extensive areas where machinery is utilized. However, the foliage of the crops affects the
quality of the signal, resulting in reduced coverage between the devices. It is therefore
necessary to determine the optimal deployment design for the area of interest according to
the type of crop, and size of the field. Furthermore, the available protocols may not provide
all the functionalities desired for a particular crop and the resources available for the area.

In this paper, we present a group-based wireless sensor network to efficiently irrigate
cultivated lands. The network is composed of both actuators and sensor nodes that will
collect data from the soil and will activate different irrigation systems as a function of the
plot needs. Additionally, we design a new soil moisture sensor able to measure the amount
of water content in the root ball of a tree. The design includes the sensor and the power
circuit required to generate the bi-phase signals to power the coils. The paper presents
the design of the operation algorithm and the message exchange for efficient use of water.
Finally, the entire system is tested in a real environment to check the correct operation in
terms of soil moisture measurements and network performance.

The rest of the paper is structured as follows. Section 2 presents some previous and
related works where soil moisture systems are developed. Section 3 presents an overall
description of our proposed sensor as well as the features of the different coils used to
develop our soil moisture sensor and the experimental tests performed with the coils.
This section also includes the power circuit in charge of generating the required signals
as well as the integration of both the sensor and the power circuit with an ESP32 module.
Section 4 explains the network operation algorithm and message exchange between nodes.
In Section 5, the tests performed in a real environment are shown. Section 6 explains the
conclusion and future works.

2. Related Work

In this section, we summarize some previous works related to our proposal. The gap
in current solutions for soil moisture monitoring is also identified.

172



Sensors 2021, 21, 7243

Authors such as Ojha et al. [8] present a study where they analyze the wireless sensor
network (WSN) implementations for various agricultural applications. We will look at
surveys such as the one presented by Garcia et al. [1], aimed at summarizing the current
state of the art regarding smart irrigation systems and schemes for Internet of Things (IoT)
irrigation monitoring. This survey includes the review of more than 100 scientific works.
Other authors, such as Susha Lekshmi et al. [9], present a review of techniques employed
for soil moisture measurement. The authors highlight the limitations of the techniques
and the influence of soil parameters. Tumanski [10] describes the use of a coil to develop
sensors. The work compares, summarizes, and analyzes coil design methods and frequency
properties of the coil as well as the use of coil sensor applications such as magnetic antennas.
Jawad et al. [11] describe applications of WSNs in agricultural research, and classify and
compare wireless communication protocols, the taxonomy of energy efficiency, and energy
harvesting techniques for WSNs used in agricultural monitoring systems. They also explore
the challenges and limitations of WSNs in agriculture, highlighting energy reduction and
agricultural management techniques for long-term monitoring. Hamami et al. [12] present
a review of the application of WSNs in the field of irrigation. Mekonnen et al. [13] present a
review of the application of different machine learning algorithms in the analysis of sensor
data observed using WSNs in agriculture. In addition, they analyze a case study on a smart
farm prototype, based on IoT data, as an integrated food, energy, and water (FEW) system.
Nabi et al. [14] present a comparative study of different studies to provide a deeper insight
into these implemented systems. They also present a study of apple disease prognostic
systems, highlighting their key characteristics and drawbacks. The result of their study can
be used to select appropriate technologies to build a WSN-based system, optimized for
precision apple cultivation, which will help farmers avoid the ravages caused by disease
outbreaks.

Kabashi et al. [15] present a framework to design WSNs for agricultural monitoring
in developing regions, taking into account the particularities of said environments. They
propose new solutions and research ideas for sensor network design, including zone-based
joint topology control and power scheduling mechanism, multi-sink architecture with
complementary routing associated with backlink/storage, and a task scheduling approach
with parameter, energy, and environment recognition. Authors such as Kassim et al. [16]
present WSNs as the best way to solve agricultural problems related to optimization of
agricultural resources, decision support, and land monitoring in order to perform those
functions in real time. They explain in detail the hardware architecture, network archi-
tecture, and software process control of the precision irrigation system. García et al. [7]
study different WSN deployment configurations for a soil monitoring PA system, to iden-
tify the effects of the rural environment on the signal and to identify the key aspects to
consider when designing a PA wireless network. The PA system is described, providing
the architecture, the node design, and the algorithm that determines the irrigation require-
ments. The results of their testbed show high variability in densely vegetated areas. These
results are analyzed to determine the theoretical maximum coverage for acceptable signal
quality for each of the studied configurations. Furthermore, there are aspects of the rural
environment and the deployment that affect the signal. Zervopoulos et al. [17] present
the design and deployment of a WSN capable of facilitating the sensing aspects of smart
and precision agriculture applications. They describe a simple synchronization scheme,
which was installed in an olive grove, to provide time-correlated measurements using the
receiving node’s clock as a reference. The obtained results indicate the general effectiveness
of the system, although they appreciate a difference in the time correlation of the acquired
measurements. Bayrakdar [18] investigated an intelligent insect pest detection technique
with underground wireless sensor nodes for precision agriculture using a mathematical
simulation model. To evaluate performance, he examined the received signal strength
and path loss parameters. He observed the need for transmission of signals with different
transmission powers for depth-based communication in wireless underground sensor
networks.
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Other authors study the application of WSNs to monitor specific crops. Khedo et al. [19]
describe the implementation of the PotatoSense application, for precision agriculture with
WSNs, to monitor a potato plantation field in Mauritius. They employ different energy
efficiency algorithms, to ensure that the life of the system is prolonged. Additionally, they
have developed a monitoring application to process the data obtained from the simulated
WSN. Rasooli et al. [20] propose using WSNs and IoT to help increase wheat and saffron
production in Afghanistan in the future. Using both techniques, they predict the control
of the condition and growth of the crop as well as the ability to check soil, temperature,
humidity, and other environmental parameters.

Some authors propose the observation of parameters utilizing WSNs in greenhouses.
Chaudhary et al. [21] propose and discuss the use of the programmable system on chip
technology (PSoC) as part of the WSN to monitor and control various greenhouse param-
eters. Srbinovska et al. [22] propose a WSN architecture for vegetable greenhouses, in
order to achieve scientific cultivation and reduce management costs from the aspect of
environmental monitoring. They have designed a practical and low-cost greenhouse moni-
toring system based on wireless sensor network technology to monitor key environmental
parameters such as temperature, humidity, and lighting.

There are authors also studying energy savings in WSNs used in monitoring agricul-
ture. Hamouda et al. [23] study the problem of selecting the sampling interval, for precision
agriculture using WSNs, due to the energy limitation that appears when deploying sen-
sors in WSNs. They propose a Variable Sampling Interval Precision Agriculture (VSI-PA)
system to measure and monitor agricultural parameters for appropriate agricultural ac-
tivities, such as water irrigation. Compared to other fixed sampling interval schemes,
the proposed VSI-PA system provides a significant improvement in energy consumption,
while maintaining a small variation in soil moisture, regardless of soil temperature values.
Qureshi et al. [24] propose Gateway Clustering Energy-Efficient Centroid (GCEEC)-based
routing protocol, where a cluster head is selected from the centroid position and gateway
nodes are selected from each cluster. The results obtained, after evaluating the proposed
protocol in comparison to last-generation protocols, indicated a better performance of the
proposed protocol, and provided a more feasible WSN-based monitoring for temperature,
humidity, and lighting in the agricultural sector.

Table 1 summarizes different previous studies, carried out by other authors, regarding
the use of WSNs in soil monitoring for agriculture.

Table 1. Previous studies regarding the use of WSNs in soil monitoring for agriculture.

Types References

Surveys of WSN Implementations for Agriculture. [1,8–14]
Frameworks, Studies, Designs and Deployments for WSN. [7,15–18]

WSNs for the Monitoring of Specific Crops. [19,20]
WSNs in Greenhouses. [21,22]
Energy Savings Studies. [23,24]

Regarding the available sensors for soil monitoring, there are works, such as [25],
that study farmed podzolic soils since these types of soils are under-represented in the
relevant literature. In the study, the authors established the relationship between apparent
electrical conductivity (ECa) and soil moisture content (SMC). The authors also evaluated
the estimated SMC with ECa measurements obtained with two electromagnetic (EMI)
induction sensors. The authors concluded that ECa measurements obtained through multi-
coil or multi-frequency sensors had the potential to be successfully used for field-scale SMC
mapping. Others, such as [26], designed and manufactured an integrated passive wireless
sensor to monitor the moisture in the sand. The sensor was made of a printed spiral
inductor embedded within the sand and it contained an inductive-capacitive (LC) resonant
circuit. The authors measured the level of internal moisture by monitoring the resonance
frequency using a sensing coil. Kizito et al. [27] presented a study where ECH20 sensors
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were used to measure soil moisture content, bulk electrical conductivity, and temperature
for a range of soils, across a range of measurement frequencies between 5 and 150 MHz.
The authors affirmed that the measurements carried out on soil were accurate enough to
work at 70 MHz. Finally, Nor et al. [28] discussed the development of a low-cost sensor
array based on planar electromagnetic sensors to determine the contamination levels of
nitrate and sulfate in water sources. The authors proposed three types of sensors: parallel,
star, and delta. According to their experiments, the star sensor array was the one with the
highest sensitivity.

After analyzing the exhibited works and many others not included in this paper, we
can conclude that our work improves the existing systems. In either very few or no cases in
the other works reviewed do the authors present complete or easily integrable systems in
commercial nodes, such as Arduino or similar, and many of them use working frequencies
that are too high (on the MHz scale). This fact makes it difficult to develop a simple and
inexpensive signal generator circuit. Our proposal aims to take a step beyond the current
state of the art, proposing a complete system, consisting of a sensor based on coils whose
working frequency is around 93 kHz, and a power circuit that can be easily integrated into
commercial modules for the development of a more complex wireless sensor network to
monitor a large-scale crop.

3. Network Nodes Description

This section describes the proposed system and the different parts that comprise our
proposed system. Additionally, it presents the features of the different coils used to develop
our soil moisture sensor as well as the experimental tests performed to determine the
best prototype.

3.1. Overall System Description

When trying to develop complete monitoring systems for precision agriculture, it is
important to take into account different aspects. On the one hand, agriculture is an essential
activity for the survival and development of society; this fact is evidenced by the amount of
global- and regional-scale agricultural monitoring systems [29] to assess the crop growing
conditions, crop status, and agro-climatic conditions that may have an impact on global
production of any type of crop. Some examples are Group on Earth Observations Global
Agricultural Monitoring Initiative (GEOGLAM) [30] or CropWatch [31], among others.

On the other hand, it is necessary to know the kind of crop wanted to be developed in
order to design adapted methods for monitoring activity. Considering the crop to monitor
and the location of the plot, the network should use a specific wireless communication
technology. Currently, it is possible to use cellular technologies by paying for subscrip-
tions to a service or by using low-power technologies such as ZigBee, LoRa, LoRaWAN,
Bluetooth BLE, or Sixfox, among others; most of these services do not require payment for
using their communication network infrastructure [32]. However, the wireless technology
par excellence for developing wireless sensors networks continues to be Wi-Fi. Although
its energy consumption is still high, it allows transmitting any type of content without the
bandwidth limitations that other technologies present. In addition, it is a widely studied
standard so it is easy to develop new optimized protocols. Therefore, by making a good
design of a power system based on renewable energies, it is possible to use Wi-Fi to develop
a Wi-Fi-based agriculture monitoring network with very interesting properties.

In the end, the completion of the design of the system led to precisely defining the type
of parameter to be monitored since this fact will indicate the type of sampling, and analysis
we should do. After that, the data interpretation and the scoring curves will help us to
define the correct operation of our actuator network system. Lastly, the correct processing
of collected data will help us to know the soil health and its characteristics for determining
if these are optimal for our crop.

Therefore, considering these previous issues, we propose the development of a group-
based wireless sensor network for soil moisture monitoring in precision agriculture. The
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network is composed of a set of nodes with different roles and functions. Some nodes
are able to collect data from the environment, particularly data from soil moisture and
other parameters required to ensure the correct progress of a tree (See Figure 1). The
rest of the nodes have actuators to control the activity of ditch gates and drip irrigation
elements. So, we will have 3 different sets of nodes that will communicate between
them. Additionally, sensor nodes will provide data to the actuator nodes performing the
required computation and decision making in the edge. Edge computing is recommended
in scenarios where nodes present in the network are able to analyze the data and take
decisions. Edge computing enables data produced by Internet of Things (IoT) devices to
be processed closer to where it was created rather than being sent over long journeys to
reach data centers and computing clouds. One of the fundamental advantages of this type
of computing is that it allows analyzing important data in near real time [33]. In citrus
groves, it is common to distribute them by forming rows of trees separated at a distance of
approximately 6 m, being able to opt for a denser plantation, with a minimum separation
of 4.5 m. The minimum depth that a citrus tree usually reaches is 45 cm. Considering
these facts and taking into account that a field can have different extensions, different
topologies of sensor nodes can be created. An important aspect is to ensure complete
coverage between nodes to guarantee stable communication. A distributed ad-hoc network
is optimal for this kind of scenario.

Figure 1. Proposed group-based network.

One of the main characteristic aspects of this proposal is its hierarchical structure by
layers where each layer has a series of nodes that, if necessary, could change their role.
That is, all sensor nodes and actuator nodes are wireless devices with the ability to act
as a packet relay. In a hypothetical situation where a node falls, communications can be
rerouted by other nodes of the same layer. If there is a fall of several nodes and one of them
is isolated but active, it could use nodes of the upper or lower layer as an alternative way
to carry out communications. However, these nodes would only forward the packet to
nodes of the isolated node’s layer.

To deal with the failure of a sensor or actuator node, it is convenient to establish an
alarm system, based on keep-alive messages. It is a task periodically scheduled, once per
day. It is possible to work with a large periodicity because the irrigation tasks of a field are
not considered a critical task. If there is a node or several nodes not responding to these
requests, the system will consider a node is down.

Additionally, developing a low-cost system was required to measure the moisture in
the soil depths. This system consists of four coil-based sensor elements equally distributed
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along 60 cm. The coils are connected to a processor module in charge of collecting the
data and wirelessly share them with the rest of the nodes of its group. Finally, and
considering the values of moistures collected by the sensor nodes, the actuator nodes will
enable/disable the ditch gates or the drip irrigation.

When talking about moisture or soil humidity, we refer to the amount of water the
soil contains. A gravimetric analysis method gives the relative comparison between the
mass of dry soil and the mass of watered soil (which will always be higher). The moisture
given in percentage is the result of dividing the difference between these two values by the
mass of dry soil. If there is no difference, moisture will be 0%. In the opposite case, when
the watered soil mass doubles the dry one, the moisture level will be 100%.

The development of our coil-based soil moisture sensor is based on the principle of
electromagnetic induction of the coils and how it varies as a function of the type of core the
coil has inside [34–36].

The soil moisture sensor is composed of two solenoid coils wound on the same PVC
pipe support. Coil 1 receives the sinusoidal signal generated by the power circuit based
on the integrated ICM7555. Coil 1 induces a current on Coil 2 which is largely affected by
the content of the coil core since the magnetic field is affected by the type of soil and water
content inside it. Finally, this current is measured, collected, and stored with an electronic
module. In our case, a module ESP32 DevKIT [37] with an integrated Wi-Fi interface has
been chosen. Figure 2 shows the diagram of the proposed soil moisture sensor.

Figure 2. Diagram of proposed soil moisture sensor base on coils.

Since this kind of module usually presents one or two analog inputs to collect data,
we also propose the use of an analog multiplexor of four inputs which can be controlled by
using two digital outputs. With this, our system will be able to take measurements from
the four soil moisture sensors.

3.2. Soil Moisture Sensor Based on Coils

As we mentioned before, it is possible to develop soil moisture sensors based on
several principles and chemical processes. However, we want to use a method based on
physical principles such as the variation of electromagnetic flow as a function of the nature
of the coil core.

In a coil distribution such as the one shown in Figure 3, coil 1 generates a magnetic field
that affects coil 2. This effect is known as mutual inductance and refers to the electromotive
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force (EMF) in a coil due to the change of current in another coil attached. The induced
EMF in a coil is described by Faraday’s law and its direction is always opposite to the
change in the magnetic field produced in it by the coupled coil (Lenz’s law). The EMF in
coil 1 (left) is due to its own inductance L.

Figure 3. Principle of operation for our developed sensor.

The induced EMF in coil 2, generated by the changes of current I1, can be expressed
as (see Equation (1)):

em f2 = −N2 A
ΔB
Δt

= −M
ΔI1

Δt
(1)

where N2 is the number of spires of coil 2, M the coefficient of mutual self-induction, A is
the cross-sectional area of the coil, ΔB

Δt the variation of the magnetic field as a function of the
time, and ΔI1

Δt the variation of current in coil 1 as a function of time. Mutual inductance (M)
can be defined as the ratio between the electromagnetic force (EMF) generated in coil 2,
and the changes in current in coil 1 that causes that EMF. Likewise, M is highly affected
by the characteristics of the medium that surrounds the coils, usually expressed by its
magnetic permeability.

Since it is difficult to measure the value of the magnetic permeability of the earth
core as a function of the moisture level, two theoretical approximations of the air core are
introduced [38]. Based on Equation (2) (which presents the coil inductance), we can state
Equation (3) where l is the length of the coil and r is the radius to the center of the coil of
the innermost layer of the conductor while R is the radio for the outermost layer.

L =
ΦN

I
=

μN2 A
l

=
μ0μr N2πr2

l
(H) (2)

Llayer =
N2r2

2.54(9r + 10l)
(μH) (3)

where L is the inductance of our coil (in H), Φ is the magnetic flow (in Wb), N represents
the number of turns (dimensionless), l is the length of the coil (in m), r expresses the radius
of the inner coil’s layer (in m), R is the radius of the outer coil’s layer (in m), A is the area of
the coil’s surface (in m2), μ0 is the magnetic permeability (free space) (H/m) and finally,
μr is the relative magnetic permeability (medium) (dimensionless).

This approximation allows estimating the components of the circuit for an air core,
which would be similar to those obtained with a large amount of pure water; so this value
will vary depending on the type of soil, its composition, and the level of soil moisture
presented by the soil that contains coil. The resonance peak of our coils can be calculated
by Equation (4).

fr =
1

2π

√
1

LCd
− R2

S
L2 ≈ 1

2π
√

LCd
(Hz) (4)
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where fr is resonance frequency (in Hz), Cd is coil’s parasite capacity (in F), L is the coil’s
inductance (in H) and, Rs is the coil’s resistance (in Ω).

We should take into account that the primary coil and secondary coil will have different
resonance frequencies because the secondary coil has a different number of coils. However,
our sensor only intends to detect changes in the induced current due to the presence of a
changeable medium and, finally, we want to relate this value of current with the amount of
water content in the soil.

Equations from (1) to (3) are theoretical approaches to explain how important it is
to know the relationship between the physical and electrical characteristics of the coil.
Equations (1)–(3) explain how the coil inductance, and hence mutual inductance, depend
on its geometry (length, radius, and the number of turns) for single-layer coils. Equation (4)
helps us to design a resonant circuit to obtain the maximum power transfer. It is highly
important to consider the appearance of a possible parasite capacity due to coil geometry
and working frequency.

We previously performed several tests with different combinations of coils, varying
the number of spires, the ratio of spires between coils, and the diameter [39]. In these
previous works, we performed many experiments with combinations of spires and the best
results were determined for a ratio of 1:2 with a medium value of spires and larger diameter.
For a fixed diameter, if we reduced the number of spires, the working frequency increased
for a fixed number of spires; if we increased the coil diameter, the working frequency
decreased. Additionally, developing a simple and cheap electronic system to generate the
signals was required. For such a system, it is highly recommended to have a sensor that
requires the lowest working frequency. Therefore, we chose to set some parameters such as
the type of copper and number of spires, we only varied the diameter of coils.

In developing our coils, 0.6 mm enameled copper wire was used. The process entails
winding copper wire along a cylinder, forming two solenoids. The distance between the
primary coil and the secondary coil is five mm. Figure 4 shows the developed coils with a
single layer of spires. Table 2 shows the physical features of each prototype.

   
(a) (b) (c) 

Figure 4. Coils used in our developed sensor: (a) P1, coil of 50 mm;(b) P2, coil of 32 mm; (c) P3, coil
of 20 mm.

Table 2. Prototypes to measure soil moisture.

Prototype Caliber N◦ Layers N◦ Spires 1st Coil N◦ Spires 2nd Coil N:n Diameter

P1 (Figure 4a) 0.6 mm 1 15 30 1:2 50 mm
P2 (Figure 4b) 0.6 mm 1 15 30 1:2 32 mm
P3 (Figure 4c) 0.6 mm 1 15 30 1:2 20 mm

The procedure to perform these tests with the coils consists of introducing each model
into a container filled with dry and compacted soil to observe the behavior of the output
voltage as a function of the amount of water. Therefore, for the same moisture level, a

179



Sensors 2021, 21, 7243

frequency sweep will be carried out to find the frequency that shows a peak in the induced
voltage. This value will be the sought-out resonance frequency. After that, the linearity
of each model will be analyzed. For each test, 4000 g of soil is used, with increments of
250 mL of water, for each moisture level up to 1000 mL of water. When water is added
to the soil, the sample is reposed for an hour to obtain a homogeneous sample inside the
coil. Specifically, five levels of content of water in soil will be measured: 0%, 6.25%, 15.5%,
18.75%, and 25% (see Table 3). For this type of soil, 25% of the content of water in soil
implies a land completely flooded. Measurements have been taken at 25 ◦C.

Table 3. Samples used during the tests.

Sample Mass of Dry Soil (g) Mass of Wet Soil (g) Mass of Water (g) % Volumetric Water Content

1 4000 4000 0 0
2 4000 4250 250 6.25
3 4000 4500 500 12.5
4 4000 4750 750 18.75
5 4000 5000 1000 25

In order to determine in which type of soil our sensor can be used, we endeavored
to determine which one presents the biggest linearity. The idea of this concept is that an
increase in the percentage of moisture is equivalent to an increase in output voltage without
instabilities.

3.3. Experimental Results with the Developed Coils

This subsection presents the test performed to determine the most suitable prototype
selected to develop the system, followed by the testing of the selected coil with different
types of soils and different levels of moisture.

Considering the types of soil, we can conclude that soils are usually made up of
different proportions of sand, silt, and clay. Each of them has morphological characteristics:

• Sandy soils, coarse texture (sand and clay sand).
• Silty soils, moderately coarse texture (sandy clay and fine sandy clay), medium texture

(very fine sandy clay, silt, silt loam, and sediments), and moderately fine texture (clay
silt, clay sand loam, and sand loam soil silty).

• Clay soils, fine texture (sandy clay, silty clay, and clay).

In order to perform our tests, we have selected three different types of soils, i.e., sand
from the beach, soil from cultivated land, and commercial universal substrate.

The sand on the beaches is formed by sediments from rocks and other marine debris
such as shells, corals, animals, algae, and even sand that travels through the rivers until
flowing into the sea. Due to the erosion of water and wind, due to rain and waves, or
temperature differences, the grain size of the sand tends to be reduced.

The soil from cultivated land is usually made up of an organic fraction, organic matter
more or less degraded into humus and humic and fulvic acids. These elements provide
the fertile part of the earth. The rest of the soil is considered as physical support. Some
farmlands have a high degree of clay which also intervenes in ion exchange and water
retention, facilitating the release of fertile elements according to the needs of the plants.

The raw materials used in the manufacture of a commercial universal substrate are
usually blonde peat from sphagnum moss, coconut fiber, compost, perlite, organic fertilizer,
mineral fertilizer, algae extract, etc. In addition, this type of soil usually contains a high
level of aeration.

Performing the measurements entails three identically constructed sensors simultane-
ously placed in three samples of each soil. The results shown in our graphs are the average
value of the three measurements collected, which in all cases were identical.

In order to perform the test, the primary coil is powered by using a wave of 7 Vpp
with positive and negative values. For example, it is possible to use sine or square waves,
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such as the one shown in Figure 5. In Figure 5, we can see, in blue, the signal used to power
the primary coil while the result of the induced current is shown in yellow.

 

Figure 5. Example of generated and obtained signals.

Figure 6 shows the preliminary results obtained with the 3 coils. Figure 6 shows the
value of the resonance frequency and the maximum voltage value.

Figure 6. Resonance frequency obtained for each prototype.

Table 4 shows the resonance frequency values (in kHz) of the developed prototypes
and the maximum voltage value (in mV) obtained in the induced coil.

Table 4. Prototypes to measure soil moisture.

Prototype Working Frequency (kHz) Maximum Voltage (mV)

1 93 1820
2 146 1570
3 216 680

After analyzing the results obtained in Figure 7, we can conclude that the prototype
that gives the best results is Prototype 1, with a working frequency of 93 kHz and a
maximum output voltage of 1.82 V.
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Figure 7. Behavior for prototype 1 in several types of soils.

Once the most suitable sensor for further development has been determined, this
sensor is tested on different types of soil to determine its versatility. In all cases, we will
look for the maximum linearity in the sensor response.

As we can see in the previous figure, the selected model has a linear behavior for all
three cases up to a humidity degree of 18.75%, i.e., a total volume of water of 750 mL for
4000 g of sand.

Another important aspect to highlight is that the behavior of the sensor for a universal
substrate is inverse to the behavior shown in the case of beach sand or cultivated soil. This
aspect should be considered when the results are processed in a real environment.

3.4. Power Circuit Design

Locating the resonance frequencies for the selected prototype of coil systems requires
a power supply and excitation circuit able to generate an alternating signal. To do this, a
555 series oscillator integrated circuit [40] will be used. A series of components will be used
to obtain the desired output signal with a resonance frequency of 93 kHz. Our circuit is
based on the ICM7555 [41]. According to the manufacturers’ specifications, this integrated
circuit can generate signals up to 3 MHz. Figure 8 shows the schema of our entire circuit.
This kind of integrated circuit has been conceived to be customized regarding the duty
cycle of signal and the required frequency. In this case, we can use R2 and C1 to change the
working frequency while C3, C4, and R1 are used to control the ripple signal and its form.
Modifying C4 and R1, it is possible to obtain both a sine wave and square signal, such as
the one shown in Figure 9.

To directly read a value of voltage proportional to the amount of water content in the
soil, we include a Graetz bridge or double wave rectifier bridge followed by an RC filter
that has been connected to the terminals of the secondary coil.

Figure 8. Enhanced power circuit schematic.
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Figure 9. Example of signal obtained in Output 1.

3.5. Comparision and Discussion with Existing Published Systems

We have compared our sensor model with existing and commercial soil moisture
sensors. Table 5 shows this analysis. It is important to consider that this table only contains
the price of the sensor, with exception of references [42–45] which include an electronic
module. In the rest of the cases, a microprocessor module must be included similar to the
one used in this paper that can cost approximately $10–$15.

Table 5. Comparison of soil moisture sensors with our proposal.

Ref. Model Sensitivity Power Size Cost

[42] RK520-02 Soil Moisture Sensor,
Temperature Probe & EC Sensor 0–100% 5 VDC, 12–24

VDC 136 × 45 mm $58.00–$72.00

[43] S-Soil MT-02A ±3% (0–53%)
±5% (53–100%) 3.6–30 VDC 149 × 45 mm $79.00

[44] S-Temp&VWC&EC-02A ±2% (0–50%)
±3% (50–100%) 3.6–30 VDC 149 × 45 mm $99.00

[45] SenseCAP Wireless Soil Moisture &
Temperature Sensor

±2% (0–50%);
±3% (50–100%) 3.6 V 149 × 45 mm $219.00

[46] Sensor YL-69 0–95% 3.3–5 VCD 60 × 30 mm $2.65

[47] Keyes Brick Soil Moisture Sensor
Module - 3.3–5V VDC 63 × 22 × 8 mm $1.34

[48] KeeYees - 3.3–5 VDC 3.858 × 0.906
mm $7.99

[49] Seeed Studio Grove—Capacitive
Moisture Sensor—101020614 - 3.3–5 V - $5.95

[50] Grove—Soil Moisture Sensor 0–95% 3.3–5 V 60 × 20 × 6.35
mm $2.99

[51] Seeed Studio Moisture
Sensor—101020008 - 3.3 V CC y 5

VDC - $3.99

[52] SEN0308 0–57% 3.3–5.5 VDC 175 × 30 mm $15.51
[52] MSE020SMS - 3.3V–12 VDC - $5.80

- Our proposal - 9 V 50 m × 30 m $2.15

It is evident that our proposed sensor, based on 2 coils, is one of the models that
presents the lowest prices. The price includes the pipe and wire, because it can be added to
any electronic platform to gather the data.

When this type of system is designed and developed, it is extremely important to
consider practical implementation problems and challenges.

One of the main problems in the outdoors is how to protect the electronics from
adverse conditions. A waterproof protection is highly recommended to protect the dif-
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ferent devices since the places where the devices are deployed can be highly changeable.
Additionally, the time during which the sensor nodes should work and the exposure to
environmental temperature and humidity can cause some variations in the measurements.
This issue should be controlled since a wrong reading would cause anomalous values
and consequently wrong behavior. To shore up this problem, it is possible to use artificial
intelligence and redundancy mechanisms.

Furthermore, there is another important issue regarding manufacturing techniques
of certain sensors and probes. In several cases, they are manufactured with copper. An
improvement in the system implementation could be the replacement of these sensors
for ones protected with the process of gold plating which help to combat the corrosion
of probes.

Coverage estimations do not usually match practical experimentation because the
emulation of environmental conditions is difficult. For this reason, we highly recommend
performing practical experiments and test benching, as presented in this paper.

4. Network Protocol Design and System Procedure

This section presents the network protocol used in our topology. In addition, it also
presents the algorithm designed to collect data from sensors and control the different
actuators as well as the messages exchanged between devices and the algorithm designed
for the system procedure.

As we presented before, our network is composed of three different types of nodes,
which can be classified as sensor nodes and actuator nodes. Additionally, we consider an
additional node that is placed in the engine to provide water to the plot. This node will
be in charge of starting the process of monitoring the entire network. Sensor nodes collect
data from the soil and provide the required warning alarms to the actuators for enabling
or disabling the irrigation systems. Figure 10 shows the diagram of our entire network
deployed in the plot.

Figure 10. Diagram of our entire network in the plot.

In order to obtain high performance, we have developed a specific network protocol.
This section presents the message exchange between devices, the fields of the messages
exchanged between devices, and the algorithm designed for the system procedure.
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The designed network is a distributed network made of sensor nodes (each one has
one or several physical moisture sensors), and one or several actuators which activate the
engine, for the drip irrigation system and/or the ditch gates, depending on the case.

Then the number of nodes (see Equation (5)) of the whole system (N) is:

N = ns + na (5)

where ns is the number of sensor nodes and na is the number of actuator nodes.
Our network will use Ad Hoc On-Demand Distance Vector Routing (AODV) since it

is one of the ad hoc routing protocols that presents the best performance [53].

4.1. Algorithm of the System

In order to determine when the irrigation process should be carried out, we need to
collect the data from the different ns which are placed and identified by zones (i). For
each zone, we defined the maximum number of nodes comprised in the zone as counter.
Carrying out this automation process of irrigation requires the design of an operation
algorithm. Figure 11 shows the operation algorithm of our soil moisture monitoring system.

 

Figure 11. Operation algorithm.

As commonly done in agriculture, there are periodic planned irrigations that should
be performed. In this case, the system of drip irrigation elements is enabled and it covers
the entire extension of trees. If an alarm is registered from a sensor, the system will request
the data from all nodes of that zone. If the number of nodes that register the need for
water is higher than 5, the system will enable the ditch gate of this zone. Even if only
some sensors warn about the need for water, the system will enable the drip irrigation
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elements of this zone. The rest of the zones in the plot will be analyzed to check if it is
required to proceed with irrigation. The different orders will be sent to the sink node by
the nearest node of that area to the sink node which will be in charge of enabling/disabling
the irrigations systems.

Finally, if the plot does not require any action, the system will remain in idle mode
waiting for new information.

4.2. Message Flow between Nodes

Finally, in order to send the required actions to the correct actuator nodes, it is impor-
tant to design the message exchange between nodes. In this sense, we should consider
three different situations (see Figure 12). Firstly, the most frequent situation is the one in
which the plot does not require any type of irrigation. In this case, if the sensor nodes do
not send any message in the next 30 min, the system will consider that no irrigation is
required (1).

Figure 12. Message exchange between nodes.

186



Sensors 2021, 21, 7243

The second situation (2) is when there is a global need for water in a zone of the plot.
In this case, the sensor head node will wait 30 min for messages from sensor nodes. If more
than 5 messages are received, the system will consider that global irrigation for this zone is
required. Then, the sensor head node will send a message to the actuator node in charge of
enabling the gates. After that, this node will inform the sink node to enable the engine to
provide water to the ditch.

The third situation (3) will be done when there is a partial need for water in a zone
of the plot. In this case, the sensor head node will wait 30 min for messages from sensor
nodes. If less than 5 messages are received, the system will consider that partial irrigation
for this zone is required. Then, the sensor head node will send a message to the actuator
node in charge of enabling the drip irrigation element of the affected trees. After that, this
actuator node will signal the sink node to enable the system of drip irrigation.

To make easier the process of forwarding messages from sensor nodes to actuator
nodes or sink nodes, it is possible to use any node present in the network. In this sense,
a node can receive several packets but if it is not the destination of this message, the
node will relay the message without processing it. When the sensor nodes of a zone
are communicating, an intragroup routing protocol will be utilized. When the message
exchange is performed between sensor nodes and actuator nodes or between actuator
nodes for ditch gates and actuator nodes for drip irrigation elements, these nodes will use
an intergroup routing protocol [54].

5. Experimental Results in a Practical Deployment

In this section, the results obtained in the deployments on orange groves are presented.
In order to perform the test, we have used several ESP32 DevKit nodes placed at different
heights. This will allow us to study the coverage of the nodes at different heights, so it
will be kept as a recommendation for practical deployments. The different deployment
strategies that were tested are presented in Figure 13. As can be seen, different configu-
rations of emitter height and receiver height were tested. The emitters were deployed at
heights of 0.5 m, 1 m, 1.5 m, and 2 m. The receivers were placed at 0 m for the on-ground
deployment, 0.5 m for the near-ground deployment, and 1.5 m for the above-ground
deployment. The emitter and receiver were separated for each test. The trees are spaced
in four-meter intervals and the field is located in an area with a Mediterranean climate.
The foliage of the trees affects the wireless communication among the devices. Testing
different configurations of transmitter and receiver provides us with the knowledge to
design the best deployment for optimal communication with this type of crop. The tests
were performed with sunny weather and temperatures of 20 ◦C. The measurement carried
out is the received signal strength indicator (RSSI) at different measuring points. The Esp32
DevKit nodes were encapsulated on a protective box.

The results for the emitter at a height of 0.5 m and the receiver at different deployment
configurations are presented in Figure 14. The positions of the trees are indicated by the
bold orange numbers on the X-axis. As can be seen, the overall higher RSSI values consid-
ering multiple trees along the tested distance were obtained for the near-ground position
of the receiver. This configuration of the receiver is also the most stable. Moreover, some
small fluctuations occurred for tree number 1 and tree number 4. However, the foliage in
the space between trees 2 to 4 presented a higher density, which lead to higher fluctuations.
One of the reasons for these fluctuations may be the multipath effect. Thus, avoiding node
deployments in areas of high foliage density is best to obtain more stable signals.
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Figure 13. Testbed.

Figure 14. Emitter at height of 0.5 m.

For the case of the emitter deployed at a height of 1 m, the results are presented in
Figure 15. As it can be seen, the near-ground receiver is the one with the best results. In
this case, the signal quality is reduced between trees 2 and 4. However, for the near-ground
receiver, the signal presents some recovery after the area with high foliage density. The
above-ground deployment presents similar results for the area with high foliage density
but worse signal quality for the rest of the measurement points. Lastly, the on-ground
receiver deployment presents the worst results.
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Figure 15. Emitter at height of 1 m.

Figure 16 presents the results for the emitter height of 1.5 m. The near-ground deploy-
ment has the highest signal quality values at almost all measuring points. As can be seen, it
experiences some fluctuations between trees 2 and 3. However, even with the fluctuations,
the signal quality is better than that of the other configurations. The next best option is the
above-ground receiver. In this case, the signal is more stable while remaining below the
quality levels of the near-ground receiver. Lastly, the on-ground deployment presented
the worst results and the highest fluctuations. Another final aspect to consider is that the
average signal quality for this emitter height was lower than the signal quality obtained
for lower emitter heights.

Figure 16. Emitter at height of 1.5 m.

Lastly, the results for the emitter height of 2 m are presented in Figure 17. This
emitter height obtains the worst signal quality results compared to all the emitter heights.
Regarding the receiver height, in this case as well, the near-ground deployment obtained
the best results. However, as shown in the figure, all receiver configurations present similar
results, while the results for this emitter height present the least fluctuations. As in the
other cases, the on-ground configuration was the worst option.
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Figure 17. Emitter at height of 2 m.

Considering the results for all the emitter heights, we can conclude that in the case
of orange groves, emitter heights of 0.5 and 1 m present the best signal quality and the
near-ground receiver deployment is the best option for all emitter heights. Therefore, near-
ground configurations are the optimal deployment style for both emitters and receivers.

The coverage results obtained from the tests performed on the orange groves have
been utilized to obtain a heuristic signal attenuation model for all emitter heights as
specified in [7]. The outlier values were discarded to perform this model. Equations (6)–(9)
show the model for emitter heights of 0.5 m, 1 m, 1.5 m, and 2 m respectively.

P0,5 m = −7.182 ln d(m)− 45.276 (6)

P1 m = −7.69 ln d(m)− 44.194 (7)

P1,5 m = −9.545 ln d(m)− 44.475 (8)

P2 m = −10.34 ln d(m)− 43.493 (9)

Furthermore, the model, confidence intervals, and prediction intervals are presented
in Figure 15, where the dots represent the values obtained from the tests on the fields.
As can be seen, the model reflects that the configurations of emitter heights of 0.5 m and
1 m (See Figure 18a,b) present better signal quality. Lastly, Figure 18c shows the graphic
representation for the case of the emitter height at 1.5 m and Figure 18d presents the results
for the emitter height of 2 m.

Considering the results for all the emitter heights, we can conclude that for the case of
orange groves, emitter heights of 0.5 and 1 m present the best signal quality and the near-
ground receiver deployment was the best option for all emitter heights. Therefore, near-
ground configurations are the optimal deployment style for both emitters and receivers.
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Figure 18. Heuristic model for (a) emitter at height of 0.5 m, (b) emitter at height of 1 m, (c) emitter at height of 1.5 m, and
(d) emitter at height of 2 m.

6. Conclusions and Future Work

Estimating the amount of water needed to irrigate a crop is essential to carry out
efficient use of a scarce resources such as water. The introduction of technology in the
agricultural sector is also important to improve the sustainability and competitiveness of
the sector. For this reason, this paper has presented the prototype of a low-cost sensor
based on coils for measuring soil moisture. For this, three prototypes composed of two
coils with different characteristics have been presented. These coils have been tested to
analyze their behavior based on the humidity level of the soil. After the observed results,
it has been concluded that the sensor that has had the best performance is prototype 1
working at 93 kHz. Additionally, a power circuit based on the ICM7555 has been designed
to be able to generate the biphase signal to power the soil moisture sensor. This sensor
is able to measure the percentage of water content in the soil at the desired depth. This
fact helps us to ensure the correct irrigation of the root ball. The sensor and power supply
circuit is connected to an ESP32 module for reading and storing humidity measurements.
The entire system has been tested with real samples for the extraction of its mathematical
behavior model. The results show that our sensor demonstrates that by using these models
we can achieve accuracies close to 95%.

Additionally, the network performance has been tested in a real, cultivated plot.
According to the results, and after modeling mathematically the results of the network
coverage, we can conclude that for the case of orange groves, the best results are obtained
when the emitter is placed at 0.5 and 1 m and the receiver is placed near the ground.
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So, near-ground configurations are the optimal deployment style for both emitters and
receivers.

In future work, we would like to perform more practical experiments with more
models of coils and different kinds of soils to design a more versatile sensor capable of
working with several sorts of soils without changing the sensor. It will also study the
possibility of including a system to automatically adapt the working frequency to the type
of soil. Because in our practical experiments we have included only the measurements
of signal amplitude, it could be interesting to measure the quadrature component and
phase of the obtained signal and trying to relate these parameters with changes of pH of
water. We also want to include other sensors in a multi-parametric node to place in the crop
field [55,56] to enhance the efficiency of water management in precision agriculture [57].
In this sense, we want to check if soil temperature has some effect over the soil moisture
measurements and, if required, over obtaining the soil moisture values compensated with
temperature. Finally, as the last step, we will study the most appropriate enclosures to
protect our entire system.
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Abstract: Water features (e.g., water quantity and water quality) are one of the most important envi-
ronmental factors essential to improving climate-change resilience. Remote sensing (RS) technologies
empowered by artificial intelligence (AI) have become one of the most demanded strategies to au-
tomating water information extraction and thus intelligent monitoring. In this article, we provide
a systematic review of the literature that incorporates artificial intelligence and computer vision
methods in the water resources sector with a focus on intelligent water body extraction and water
quality detection and monitoring through remote sensing. Based on this review, the main challenges
of leveraging AI and RS for intelligent water information extraction are discussed, and research
priorities are identified. An interactive web application designed to allow readers to intuitively and
dynamically review the relevant literature was also developed.

Keywords: surface water; water body detection; surface water extraction; water quality moni-
toring; remote sensing; artificial intelligence; computer vision; machine learning; deep learning;
convolutional neural networks

1. Introduction and Motivation

Water is fundamentally necessary to all forms of life, and it is also the primary medium
through which climate change impacts Earth’s ecosystem and thus the livelihood and
wellbeing of societies [1]. While water covers about 71% of the Earth’s surface, only
approximately 3% of the Earth’s water bodies are freshwater [2]. Climate change will
bring unique challenges to these water bodies. Many rivers and streams are heavily
dependent on winter snowpack, which is declining with rising temperatures and changing
precipitation patterns [3]. Sea level rise is also impacting the continued quality and quantity
of water supplies [4]. Both the quantity and the quality of freshwater systems are critical
environmental features essential to increasing resilience in the face of climate change [5,6].
Resilience is defined here as the capacity of a system to absorb disturbance and still retain
its basic function and structure [7]. Climate change will bring new disturbances in many
forms, including increased pollution from wildfires, saltwater intrusion, and deteriorated
water quantity resulting from prolonged drought [1,8]. It is critical that we gather, ideally
automatically, as much information as possible about freshwater bodies and how they
function in order to increase our capacity to respond to a changing climate. Rockström [5,6]
and his colleagues conceptualize freshwater use and biogeochemical flows that threaten
the integrity of freshwater (via pollution) as two of seven variables key to overall Earth
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system function. Each of these variables, they argue, can be thought of as having “planetary
boundary”, a threshold that should not be crossed if we are to maintain the Earth in its
current system state [5]. In this sense, the integrity and functioning of freshwater systems
are essential not only in the local scale in which they provide critical ecosystem services;
they also create a “safe operating space” for humanity as a whole, as we seek to achieve
global solutions to the larger environmental challenges we face with climate change and
associated stressors [6].

Responding to climate change challenge impacts on water resources requires adap-
tation strategies at the local, regional, national, and global scales. Countries are urged to
improve their water resources management systems and to identify and implement “no
regrets” strategies in order to be resilient to climate change [1]. The changing spatial and
temporal patterns of surface water are important, in both practical and scientific terms, for
water resources management, biodiversity, emergency response, and climate change [9].
More specifically, automated monitoring of water bodies is critical for adapting to climate
change, water resources, ecosystem services, and the hydrological cycle, as well as for
urban hydrology, which can facilitate timely flood protection planning and water quality
control for public safety and health [10–12]. Accurate water quality monitoring is essential
for developing sustainable water resource management strategies and ensuring the health
of communities, ecosystems, and economies [13]. However, current knowledge of water
quality is often disconnected in time and space across different measurement techniques
and platforms that may fail to capture dynamic ecosystem changes. This disconnection
indicates an inefficiency and redundancy in research and monitoring activities. A major
challenge for water resource management is how to integrate multiple sources of water
quality data and indices into usable and actionable information of environmental, social,
economic, and infrastructural value [13,14].

Geospatial big data are leading to transformative changes in science (with the advent
of data-driven and community science) and in society (with the potential to support the
economy, public health, and other advances). Artificial intelligence (AI), especially its
branches machine learning (ML), deep learning (DL), and computer vision (CV), are central
to leveraging geospatial big data for applications in both domains. Remote sensing (RS)
is the single largest source of geospatial big data and has increased dramatically in terms
of both spatial and temporal resolution. This poses serious challenges for effective and
efficient processing and analysis [15]. Meanwhile, recent advances in DL and CV have
significantly improved research in RS and geosciences [16–18]. These advances, if integrated
in creative and appropriate ways, host potential to enable the automated identification and
monitoring of large-scale water bodies and water quality effectively and efficiently.

In this article, we argue specifically that bridging research into extracting important
water information (e.g., water body extent, water quality) from RS imagery will provide
an important computational foundation for the development of smart, RS-enabled water
resource management systems. We review a range of recent developments in the relevant
fields that can be leveraged to support intelligent automation of water body extraction
and water quality detection and monitoring through RS imagery. An accompanying
interactive web application allows our readers to intuitively track scholars and publications
covered in this review (the web app tool URL and its brief demo video link are provided in
Appendix A).

1.1. Selection Criterion for Reviewed Papers and Brief Graphic Summary

In the literature review process, we performed a systematic search on Google Scholar
with the keywords and search strategy detailed in Table 1. In addition, our search was
restricted to research articles published in English and in peer-reviewed journals or confer-
ence proceedings. For water body detection, we combined the water body keywords with
some combination of the general keywords. The process for finding publications related
to water quality was the same, only with the water quality keywords list. Beyond the
keywords listed in this table, references (those cited in the papers we reviewed) cited by
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the keyword-identified papers were also retained. A total of 90 papers relevant to the topic
of water body and/or water quality from RS imagery using AI/ML/DL/CV algorithms
were identified. A total number of 56 highly relevant articles were identified by applying
the following exclusion criteria: (1) papers related to plastic pollution and sewage/water
treatment plants, (2) precipitation forecasting or groundwater detection (as it is not intuitive
to detect groundwater from RS imagery), and (3) general land use classification. Figure 1
shows the spatial distribution and a simple statistics summary of the papers covered in this
review, where (d) shows the number of published papers by year in the reviewed topics
from 2011 to early 2022.

Table 1. Keywords used for article search.

Keyword Category Search Strategy

General keywords 1

“remote sensing” OR “satellite data” OR “UAV” AND
“computer vision” OR

“machine learning” OR “deep learning” OR “neural
networks” OR “AI”

Water body “water body” AND “detection” OR “extraction”

Water quality “water quality” AND “sensing” OR “monitoring”
1 A list of general keywords were combined with either the category of water body or water quality, respectively,
to perform our search.

 
(a) 

 
(b) (c) 

Figure 1. Cont.
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(d) 

Figure 1. Geospatial distribution and simple statistics of the reviewed papers. Note that a freely
accessible interactive version of the charts can be accessed via our web app tool (the web app tool
URL and its brief demo video are provided in Appendix A). We can easily see that the major countries
are China and the United States and that the number of published papers by year (2011 to 2021) has
dramatically increased since 2018 and 2019. (a) Spatial distribution of reviewed papers based on the
first author’s institution location. (b) Topic distribution (water body, water quality, both). (c) Country
distribution. (d) Number of published papers by year from 2011 to 2021 on the relevant topics.

1.2. Roadmap

Here, we provide a roadmap for the rest of the paper. Section 2 outlines the scope of this
review and our intended audience. Section 3 is the core of the paper, focused on identifying
important and recent developments and their implications to water body detection and
water quality monitoring from RS imagery through the leverage of AI/ML/DL/CV. Here,
we highlight recent advances in several subfields of AI that water domains and RS can
leverage. Specifically, we provide general characteristics of the reviewed studies using
word clouds (Section 3.1). We then examine and appraise key components of influential
work in water body detection (Section 3.2) and water quality monitoring (Section 3.3).
Section 4 starts with a brief summary (Section 4.1), followed with a discussion of key
technical challenges (Section 4.2) and opportunities (Section 4.3). The paper concludes
in Section 5.

To allow our readers to intuitively and dynamically review the relevant literature, we
have developed a free-of-charge interactive web app tool (the web app URL and its brief
demo video are provided in Appendix A). To provide background for readers (particularly
those from water resources and RS) who are new to AI/ML/DL/CV, we introduce essential
ML terms in Appendix B. As evaluation metrics are essential for measuring the performance
of AI/ML/DL/CV models, we also provide an introduction to a set of commonly used
evaluation metrics in Appendix C. In addition, as there are plenty of acronyms in this paper,
we provide a full list of abbreviations right before the appendices.

2. Audience and Scope

It is important to know where water is and how its extent and quality are changing
over time in a quick and accurate manner. Water quality is a key issue in water supply,
agriculture, human and animal health, and many other areas [19]. Impaired water quality
can be caused by natural disasters, but the most common cause is anthropogenic pollution.
Pollutants, excessive nutrients from fertilizers, and sediment (e.g., from soil erosion) are
carried into local lakes and rivers via runoff from urban or agricultural areas [19,20]. The
quality of water varies from places and from time to time [19]. Affected surface waters are
present in RS imagery and can be identified with the help of computational techniques
such as ML. To make near real-time intelligent water body detection and water quality monitoring
possible, we need to first detect extent of water bodies from RS imagery, from which volume can be
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computed, and then recognize their corresponding water quality, eventually linking the two to allow
water quality monitoring.

Environmental nonprofits, government agencies, and water managers need access to
this type of integrated spatial–time series of water body and water quality information
to see how local water resources are changing and plan for future drought conditions.
Collective detection and monitoring of water bodies and their associated water quality
has applications for human health, as well as to private-sector industries including timber,
agriculture, recreation, and tourism. Public policy planners need to be better informed as
they make environmental preservation and restoration decisions based on changing water
availability, and with this data we can be better equipped to monitor water quality that can
quickly change due to floods, hurricanes, or human-caused pollution, and yet, to date, water
body detection and water quality monitoring research has been historically separate and does not
focus enough on producing intuitive, operational products.

Building on the long-term interest in ML and CV within the RS community, the main
goals of this review paper are to (1) survey recent advances in water body detection and
water quality monitoring from RS data using AI to identify commonly cited challenges
in order to provide suggestions for new research directions, and (2) move towards au-
tomated, synoptic water quantity and quality monitoring to inform more robust water
resource management.

This systematic review is relevant to multiple research domains, including, but not
limited to RS, geographic information science, computer science, data science, information
science, geoscience, hydrology, and water resource management. This paper does not
attempt to review the application of RS to water resources and hydrology more generally;
for recent reviews of these topics, see [13,21–24]. A survey of DL applications in hydrology
and water resources can be found in [25]; a survey of AI in the water domain can be found
in [26]; and a survey of water quality applications using satellite data solely focused on ML
can be found in [27]. This review focuses on investigating recent AI methods, including
its branches ML, DL, and CV, for water information extraction (specifically water body
detection and/or water quality monitoring) from RS imagery. Our review has a narrowed
scope in water resources and hydrological research, but a wider and deeper scope in
terms of AI methods and metrics used to assess models in both water body detection and
water quality research. By integrating both domains, we hope to develop a basis for effective
computational frameworks for intelligent water monitoring systems using RS and AI.

3. The State of the Art: Advances in Intelligent Waterbody Information Extraction

3.1. General Characteristics of the Reviewed Studies

Note that we only included and reviewed the papers that use both RS and AI/ML/DL/CV
for water body and/or water quality detection (that is, the number of papers cited in our
reference section is much larger than the number of papers we review in this Section 3). A word
cloud visualization of the titles, abstracts, and keywords of the reviewed 56 papers are provided
in Figure 2, where the top figure indicates the word cloud for all reviewed papers. The bottom
left word cloud is for reviewed water body papers, and the bottom right for reviewed water
quality papers.

As we can see from the word cloud for both water body extraction and water quality
(see the top word cloud in Figure 2), “remote sensing”, “deep learning”, “prediction”,
“classification”, “extraction”, “machine learning”, “water body”, “water quality”, and
“convolutional neural network” are prominent concepts and words captured by the word
cloud. Our focus is on studies that use RS for water body extraction and water quality
monitoring, so many of the keywords are to be expected. However, it is perhaps surprising
to see DL featured so prominently given that the shift from ML to DL models is a relatively
recent phenomenon.
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Figure 2. Word cloud visualization of all the reviewed papers (top), water body papers (bottom left),
and water quality papers (bottom right). Note that the word clouds are generated from paper titles,
abstracts, and keywords. The word clouds provide an informative (general and specific) focus of
each set of the papers. For example, both water body and water quality papers share the focus on
RS, DL, and neural networks (NN). We can also see that water body extraction tasks tend to focus
on the use of convolutional neural networks (CNN), whereas for water quality modeling the use of
long short-term memory (LSTM) networks is more prevalent. We can also see that there are specific,
unique keywords for water quality, such as “turbidity”, “chl”, and “algal bloom”.

When we separate the keyword word clouds (see the bottom two word clouds in
Figure 2), this trend becomes clearer. Deep learning is much more common in water body
extraction, whereas in the word cloud for water quality monitoring, “neural network” and
“machine learning” are about the same size. Additionally, in the water body extraction
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word cloud, “remote sensing” is featured much more heavily than it is in the water quality
extraction literature. In our review, the water quality papers often involved other types of
data, including in situ sensors or smaller RS devices (not satellites), whereas the water body
extraction literature is dominated by RS imagery. This is related to the scale of projects in
the two domains: water body extraction is usually undertaken across large spatial scales,
whereas the water quality monitoring literature is still focused on smaller, often individual,
bodies of water. This points to a future research direction in the water quality literature
that we touch on in our review paper: we need to scale up water quality estimation using
RS imagery by matching it with ground-truth water quality measurements.

Tables 2 and 3 provide a brief summary of the methods used for water body detection
and water quality monitoring, elaborated in Sections 3.2 and 3.3, respectively. The general
characteristics summarized by machines (i.e., the word clouds in Figure 2) align with the
literature; convolutional neural network (CNN) models are indeed applied much more
frequently for water body detection, and long short-term memory (LSTM) models are often
used for water quality monitoring. The evaluation metrics used in the reviewed articles
were also summarized and are provided in Tables 2 and 3 (a brief explanation of each
metric is in Appendix C).

Table 2. Studies targeting water body detection from RS imagery using AI (note that it is ordered
chronologically to show trends in data type and model usage; see the Abbreviations for a list of
the acronyms).

Reference Method Model Comparison RS Data Type Evaluation Metrics

Li et al. (2011) [28] DNN NDWI Landsat TM coherence

Yang et al. (2015) [29] AE DNN, SVM Landsat ETM+ accuracy

Huang et al. (2015) [30] ELM DT, LORSAL, RF, SVM, TB GeoEye-1, WorldView-2 Kappa, F-score

Isikdogan et al. (2017) [31] CNN MDWI, MLP Landsat F1-score, CE, OE, precision, recall

Yu et al. (2017) [32] CNN–LR hybrid ANN, CNN, SVM Landsat ETM+ accuracy

Jiang et al. (2018) [10] MLP MLC, NDWI Landsat-8 OLI Kappa, OA

Chen et al. (2018) [33] CNN CNN, NDWI, SVM GaoFen-2, Zi Yuan-3 ECE, EOA, EOE, OA, PA, UA

Miao et al. (2018) [34] CNN DNN Google Earth imagery OA

Acharya et al. (2019) [35] SVM ANN, DT, GMB, NB, NDWI, RF,
RPART Landsat-8 OLI Kappa, OA

Feng et al. (2019) [36] CNN–CRF hybrid CNN, CV-method GaoFen-2, WorldView-2 Kappa, PCC, precision

Li et al. (2019) [37] CNN CNN, NDWI, SVM GaoFen-2 F1-score

Li et al. (2019) [38] CNN–CRF hybrid CNN, NDWI GaoFen-1 IoU, pixel accuracy, recall

Meng et al. (2019) [39] CNN–SVM hybrid CNN, SVM GaoFen-2 accuracy, MA, UA

Isikdogan et al. (2020) [40] CNN CNN, MLP, MNDWI Landsat-8 F1-score, precision, recall

Song et al. (2020) [41] CNN CART, KNN, RF, SVM GaoFen-2, WorldView-3 IoU, precision, recall

Yang et al. (2020) [42] CNN CNN GaoFen-2 IoU

Wang et al. (2020) [43] CNN CNN, NDWI GaoFen-1 F1-score, mIoU, precision, recall

O’Neil et al. (2020) [44] CNN DEM, NDVI, RF LiDAR DEMs, NAIP precision, recall

Chen et al. (2020) [45] CNN NDWI, SVM GaoFen-1, GaoFen-2, Zi
Yuan-3 BOA, Kappa, OA

Dang and Li (2021) [46] CNN CNN GaoFen-2, GID mIoU, FWIoU, OA

Yuan et al. (2021) [47] CNN CNN, MNDWI, NDMI, NDWI Sentinel-2 accuracy, mIoU

Tambe et al. (2021) [48] CNN CNN Landsat-8 OLI CA, F1-score, GA, IoU, precision,
recall

Yu et al. (2021) [49] CNN CNN GaoFen-2, Landsat-7 F1-score, OA, precision, recall

Li et al. (2021) [50] CNN CNN, CV-method, SVM UAV Kappa, F-score, OA, precision
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Table 2. Cont.

Reference Method Model Comparison RS Data Type Evaluation Metrics

Zhang et al. (2021) [51] CNN CNN, MLC, NDWI, SVM GaoFen-2 IoU, Kappa, pixel accuracy

Li et al. (2021) [52] CNN CNN, NDWI, SVM GaoFen-2, GaoFen-6,
Sentinel-2, Zi Yuan-3 F1-score, IoU, OA

Su et al. (2021) [53] CNN CNN Landsat-8, Sentinel-2A IoU, pixel accuracy, recall

Ovakoglou et al. (2021) [54] KMeans

fuzzy-rules classification,
Haralick’s textural features of

dissimilarity, Otsu
valley-emphasis

Sentinel-1 Kappa, OA, precision, recall

Table 3. Studies targeting water quality monitoring from RS imagery using AI (where “/” means
none. Note that it is ordered chronologically to show trends in data type and model usage) (See the
Abbreviations for a full list of the acronyms).

Reference Method Model Comparison RS Data Type Evaluation Metrics

Chebud et al. (2012) [55] DNN / Landsat TM RMSE, R2

Wang et al. (2017) [56] SVR index methods spectroradiometer, water
samples RMSE, RPD, R2

Lee and Lee (2018) [57] LSTM DNN, RNN water quality time series RMSE

Wang et al. (2019) [58] LSTM / water quality time series accuracy, cross-correlation

Pu et al. (2019) [59] CNN RF, SVM Landsat-8 accuracy

Liu et al. (2019) [60] LSTM ARIMA, SVM IoT data MSE

Chowdury et al. (2019) [61] MLP / IoT data threshold value

Hafeez et al. (2019) [62] DNN CB, RF, SVR Landsat accuracy, relative variable
importance

Li et al. (2019) [63] RNN–DS hybrid GRU, LSTM, SRN, SVR water quality time series MAE, MAPE, RMSE

Randrianiaina et al. (2019) [64] DNN / Landsat-8 RMSE, R2

Yu et al. (2020) [65] LSTM / water quality time series MAE, RMSE

Zou et al. (2020) [66] LSTM DNN, GRU, LSTM meteorological time series,
water quality time series MAE

Peterson et al. (2020) [67] ELR MLR, SVR Landsat-8, Sentinel-2 MAPE, RMSE, R2

Hanson et al. (2020) [68] LSTM / water quality time series auto-correlation, MK statistics,
RMSE

Barzegar et al. (2020) [69] CNN–LSTM
hybrid CNN, LSTM water quality data from

multiprobe sensor
MAE, NSEC, Percentage of

Bias, RMSE, Wilmott’s index

Aldhyani et al. (2020) [70] LSTM ANN, DNN, KNN, NB,
SVM water quality time series

accuracy, F-score, MSE,
precision, R, sensitivity,

specificity

Li et al. (2021) [71] RF SVM Sentinel-2 MSI RMSE, RPD, R2, Z-score

Sharma et al. (2021) [72] CNN CNN UAV camera precision, recall

Cui et al. (2021) [73] CNN KNN, index method, RF,
SVM Landsat-8, Sentinel-2 RPD, RMSE, R2

Zhao et al. (2021) [74] DNN RBFNN Landsat-8, water quality
time series MAE, MSE, R2

Arias-Rodriguez et al. (2021) [75] ELM LR, SVR Landsat-8, Sentinel-2 MSI,
Sentinel-3 OLI MAE, MSE, RMSE, R2

Kravitz et al. (2021) [76] DNN KNN, RF, XGBoost Landsat 8 OLI, Sentinel-2
MSI MAPE, RMSE, RMSLE 1

Sun et al. (2021) [77] DNN GPR, RF proximal hyperspectral
imager, water samples accuracy, MRE, RMSE, R2

1 The authors use the abbreviation RMSELE for RMSLE in their paper (this might be a typographical error).
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3.2. Recent Advances in Water Body Detection Using AI

From our systematic review (including Table 2), we provide a brief summary here
about the recent advances in water body detection based on AI. (1) The most common
satellite platforms were Landsat, GaoFen, Zi Yuan, WorldView, and Sentinel, although
there were some manually annotated datasets. The use of UAVs and DEMs were noted
but were not as common. (2) Precision, recall, overall accuracy (OA), F1-score, kappa,
and intersection over union (IoU) are the most popular evaluation metrics for water body
detection since it is mainly a classification task. (3) Convolutional neural networks (CNNs)
are normally compared to normalized difference water index (NDWI) or another index-
based method, some form of “shallow” ML model (e.g., random forest (RF), support
vector machine (SVM)), or other CNN architectures). Below, we provide a more detailed
review of the methods used for water body detection. As Table 2 and word clouds (see
Figure 2) indicate, the dominant methods used in water body detection with AI are CNNs
(Section 3.2.1). Beyond CNN-based methods, there are other methods including CNN
hybrids (Section 3.2.2), artificial neural networks (ANN), multilayer perceptrons (MLP),
dense neural networks (DNN), other DL methods (Section 3.2.3), and “shallow” ML based
methods (Section 3.2.4).

3.2.1. CNN-Based Water Body Detection

CNN-based models are the dominant methods for water body detection, but each of
them have addressed different challenges posed in water body detection from RS imagery.
Based on our review, we identify the following five groups of use cases: (1) Addressing
limitations of index-based methods; (2) sharpening blurred boundaries caused by CNNs;
(3) Addressing spatial and spectral resolution challenges, which covers those methods that
are able to recognize water body across scales, at multiple resolutions, from very high-
resolution imagery, and/or integrating bands beyond RGB channels to use for CNN model
training; (4) Robust detection of small/slender/irregular-shaped water bodies; (5) Others.

1. Addressing limitations of index-based methods:

Index methods (e.g., NDWI) are rule-based and fail to take advantage of context
information. CNNs can overcome this, although they often blur boundaries in segmentation
tasks because of the convolution operation [34]. A DenseNet was used in [43] for water
feature extraction and the authors compared its performance with NDWI and several
popular CNN architectures. While NDWI methods are quick, they are not as accurate as
CNNs. The authors showed that DenseNet performed the best at distinguishing water
from shadows and clouds. However, the authors argue that clouds often occlude optical
imagery, so one way to improve their method is to combine it with microwave RS imagery.

The authors in [31] pointed out that index methods require careful calibration and that
indices differ from place to place. They also suffer from false positives (from snow, ice, rock,
shadows, etc.) and vary in different weather conditions (e.g., clouds). To overcome those
limitations of index-based methods, the authors of [31] developed DeepWaterMap, which
can classify water with high accuracy, even distinguishing it from snow, ice, shadow, and
clouds. DeepWaterMap is able to classify land classes that are often misclassified as water
(or vice versa); thus, it minimizes false positives during the classification process. Most
importantly, the DeepWaterMap model also works across different terrains and in different
weather conditions, although it is still affected by clouds. The same authors released a
second version of the model, DeepWaterMap v2, in [40]. The major improvement from v1
is that the new version allows users to input large RS scenes without the need for tiling,
and the authors made their network run efficiently with constant memory at inference time.
This model should theoretically work across different sensor platforms as long as they have
the visible, near-infrared, and shortwave infrared 1 and 2 bands, but will still sometimes
classify clouds as water.

2. Sharpening blurred boundaries caused by CNNs:
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CNN-based methods can overcome the limitations of index-based methods, as reported
above in group (1) [34], but they often blur boundaries in segmentation tasks because of the
convolution operation. To sharpen water body detection boundaries, in [34], a restricted
receptive field deconvolution network (RRF DeconvNet) and a new loss function called edges
weighting loss were proposed. However, the authors needed to retrain the entire network
(which is very computationally expensive) instead of using transfer learning (TL).

Apart from blurring pixel boundaries, CNNs generally require many training parame-
ters and very large training datasets to be successful. A novel convolution–inception block
in a network, called W-Net, was proposed in [48], to extract water bodies from RS imagery.
W-Net is able to train on fewer images compared with other CNN models and still extract
water bodies accurately, and the authors pointed out that less computations are necessary
due to use of inception layers. W-Net outperformed other CNN architectures, although
the authors still needed to go through the time- and labor-intensive process of creating a
dataset of manually annotating images.

3. Addressing resolution and band related challenges

High-resolution optical RS imagery allows for much finer detail in surface water
body extraction. However, clouds and their shadows are often present in optical RS
images [78]. The shadows (e.g., cloud shadows and building shadows) and water bodies
share a very similar appearance in optical RS images. Therefore, water body extraction is
not an easy task in the optical high-resolution RS images due to the limited spectral ranges
(including blue, green, red, and near-infrared bands) and the complexity of low-albedo
objects (cloud shadows, vegetation, and building shadows). Higher spatial resolution
imagery often comes at the cost of less spectral channels and thus makes it difficult to
extract features from complex scenes. To address this problem, a dense local feature
compression (DLFC) was proposed [52] to extract bodies of water from RS imagery, and
their DLFC outperformed other state-of-the-art (SOTA) CNNs, as well as an SVM and
NDWI thresholding. Their results demonstrated that the DLFC is good at extracting slender
water bodies and distinguishing water bodies from building shadows using multisensor
data from multiple RS platforms.

TL and data augmentation (see Appendix B) are used in [37] to extract water bodies
from satellite imagery. The authors showed that a CNN can outperform NDWI and an SVM
in water body detection when the input data is very high resolution. There are tradeoffs,
however, and the authors reported that the difficulty of hyperparameter tuning is one
downside to using a CNN. A water body extraction NN, named WBE-NN, was proposed
in [45] to extract water bodies from multispectral imagery at multiple resolutions while
distinguishing water from shadows, and performed much better than NDWI, an SVM,
and several CNN architectures. A self-attention capsule feature pyramid network (SA-
CapsFPN) was proposed in [49] to extract water bodies from satellite imagery of different
resolutions. SA-CapsFPN is able to recognize bodies of water across scales and different
shapes and colors, as well as in varying surface and environmental conditions, although it
is still entirely dependent on optical imagery as input to the CNN.

The novel MSResNet proposed in [46] learned from a large dataset of unlabeled RS
imagery. MSResNet, in addition to being able to extract water bodies in an unsupervised
manner, is able to recognize water bodies at multiple resolutions and of varying shapes.
However, their network cannot distinguish water bodies from farms and barren areas. In
addition, the CNN-based model name FYOLOv3, proposed in [51], is able to detect tidal
flats at different resolutions. However, it does depend on a manually selected similarity
threshold that introduces some subjectivity.

RGB band imagery is the primary focus in substantial research for water body ex-
traction, but many more bands are available in RS imagery. A multichannel water body
detection network (MC-WBDN) was created in [47], which fused the infrared and RGB
channels and used them as input data for their CNN architecture. They demonstrated that
when multispectral data is used, model performance for water body detection is increased
and the model is more robust to lighting conditions. The proposed model MC-WBDN is
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much more accurate than index-based methods such as NDWI, modified NDWI (MNDWI),
and normalized difference moisture index (NDMI). MC-WBDN also outperforms other
SOTA architectures such as U-Net and DeepLabV3+ for water body detection tasks. How-
ever, this method still relies on preprocessing data to make sure each input image is the
same shape and free of clouds.

4. Robust detection of small/slender/irregular-shaped water bodies

Small water bodies are hard to extract from RS imagery. In [33], the authors designed
a CNN (named SAPCNN), which is able to extract high-level features of water bodies
from input data in a complex urban background. NDWI and SVMs cannot distinguish
between water and shadows and their architecture’s performance partly relies on visual
inspection. Ref. [53] utilized a modified DeepLabv3+ architecture to extract bodies of water
at different scales. Their focus is on extracting water bodies in urban RS images. Their
network performed well on small bodies of water, but the model has problems identifying
many of them because they were not properly annotated.

Mask-region-based CNNs (R-CNNs) have demonstrated success in detecting small
and irregular shape water bodies. Song et al. (2020) [41] employed an R-CNN for water
body detection from RS imagery, and their model outperforms many traditional ML models
in identifying small water bodies and bodies of water with differing shapes. However, it is
still difficult to deploy a trained NN model into a usable, production-ready form for water
mapping applications. The authors reported that using NN output to create and update a
vector map of water resources for stakeholders is challenging.

Yang et al. (2020) [42] also used a mask R-CNN to automate water body extraction.
The authors argued that this allows them to avoid manual feature extraction in complex RS
imagery. They segmented small water bodies and bodies of water with irregular shapes,
although their methods suffer from poor IoU accuracy. This is primarily due to a small
training set, for which DL models are ill-suited, and resulted in their models having
problems identifying multiple bodies of water in RS images.

A self-attention capsule feature pyramid network (SA-CapsFPN) was proposed in [49]
to extract water bodies from satellite imagery. SA-CapsFPN is able to recognize bodies of
water across scales and different shapes and colors, as well as utilizing different information
channels. The novel MSResNet proposed in [46], learnt from unlabeled large RS imagery, is
also able to recognize water bodies at multiple resolutions and of varying shapes; however,
their network cannot distinguish water bodies from farms and barren areas.

A dense local feature compression (DLFC) was proposed in [52] to extract bodies of
water from RS imagery, and their DLFC outperformed other SOTA CNNs, as well as an
SVM and an NDWI. Their results demonstrated that the DLFC is good at extracting slender
water bodies and distinguishing water bodies from building shadows using multisensor
data from multiple RS platforms.

5. Others

Extracting water bodies from RS imagery quickly and reliably is still a difficult task.
Based on U-Net, [50] developed a new model called SU-Net to distinguish between water
bodies, shadows, and mixed scenes. However, the authors only focused on water body
extraction in urban areas and only used RGB information during the extraction process.
While SU-Net performed better than an SVM and classic U-Net, it suffered when extracting
water bodies from RS imagery with high reflectivity or that contained aquatic plants.

Wetlands are important ecosystems because they can keep flooding at bay and store
carbon; however, they are threatened by development, climate change, and pollution. For
the task of identifying wetlands, [44] combined RS imagery with hydrological properties
derived from digital elevation models (DEMs) to identify wetlands. They showed that
an RF performs as well as a CNN, although both models had issues distinguishing roads
and trees from wetlands. This is perhaps due to their small training set. To improve
performance, the authors argued that larger datasets with finer labels should be created for
wetland detection.
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Substantial water body detection work has focused on water bodies in urban and
inland settings. Very few focus on tidal flat extraction, where sediment levels are high
and the boundary of the water body itself is blurry. A CNN model called FYOLOv3 was
proposed in [51], where the authors compared their model to NDWI, an SVM, a maximum
likelihood classifier, U-Net, and YOLOv3. FYOLOv3 performed the best and is able to detect
tidal flats at different resolutions; however, it depends on a manually-selected similarity
threshold during the training process, which is a source of subjectivity.

Large sets of unlabeled water body data are available and easy to acquire, and semantic
segmentation networks cannot recognize different water body shapes. A recent, very novel
encoder–decoder CNN architecture named MSResNet, proposed in [46], is able to overcome
those limitations. MSResNet is able to learn from unlabeled data and can also recognize
water bodies of varying shapes and at multiple resolutions. However, even though their
network outperforms other SOTA architectures without supervised training, their network
has some issues categorizing water bodies, farms, and barren areas.

3.2.2. CNN Hybrid-Based Water Body Detection

CNNs are the SOTA models in water body extraction tasks (detailed in Section 3.2.1
above); however, their output and decisions for why they make the predictions that they
do are largely a black box. Recent studies have integrated CNNs with some ML models.
Interpretability was improved by using a CNN and SVM in parallel to classify wetland
water bodies [39]. Wetlands are difficult/complex to identify in high-resolution satellite
imagery with any single ML model. Hybrid models have shown promise in a process called
decision fusion. Here, the authors pick a decision fusion threshold value by performing
cross-validation on the CNN to see when it is sure or not. They then use this threshold
value for the decision fusion predictions (e.g., when the CNN is not that sure, they defer
to the SVM). However, the authors did not explain why they used an SVM and not some
other ML model. The classifier used in [32] combines a CNN with a logistic regression (LR)
model to extract water bodies. The authors emphasized that traditional ML methods for
water body extraction need multispectral data and rely on lots of prior knowledge. Thus,
those ML-based methods would not generalize well to different tasks. The authors also
argue that single-band threshold methods are subjective. Their results demonstrated that
the hybrid CNN-LR model works better than an SVM, an ANN, and other CNNs. However,
their method requires segmented RS images as input.

How to accurately extract water bodies from RS images, while continuously updating
the surface water maps, is an active research question. Index methods and active contour
models are popular methods for water body detection tasks but are sensitive to subjective
threshold values and starting conditions. Deep U-Net model was proposed to be used
with a conditional random field (CRF) and regional restriction to categorize water versus
non-water in satellite images [36], while reducing the blurring of edges that often occurs
from CNNs for image segmentation. Although this network is highly accurate, it takes a
lot of data and computation power to train. Training ML models at a single scale in single
channels can cause errors when generalizing to other scales or types of RS data. Multiscale
RS imagery was used with DeepLabV3+ and a CRF for water body segmentation [38]. This
approach works well for training models on data from different scales, and they concluded
that CNNs and CRFs together extract more accurate water boundaries at both large and
small scales than CNNs alone.

3.2.3. ANN, MLP, DNN, and Other DL-Based Methods for Water Body Detection

An NN architecture called a local excitatory globally inhibitory oscillator network
(LEGION) is used in [28], where the authors compared the results of LEGION trained
on NDWI and spectral information, respectively. In addition, they employed object-wise
classification, instead of pixel-based classification used in most other work. The authors
reported that the network is very computationally expensive.
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Different methods of water body extraction work (or do not work) in different ar-
eas/terrain types. Each needs subjective thresholds and/or hand-crafted features. In addition,
generating large sets of labeled data is difficult and expensive, as high-dimension RS data is
difficult to analyze. Objects such as shadows, clouds, and buildings are hard to distinguish
from water bodies. In [29], the authors used an autoencoder for unsupervised training and
concluded that their results are more accurate than for an SVM and traditional NN.

Huang et al., 2015 [30] pointed out that not many people have focused on water
body detection in urban settings. This is a problem because water bodies often look
similar to shadows due to buildings at certain times of the day in optical imagery. The
authors employed an extreme learning machine (ELM), an SVM, a tree bagger (TB), and
an RF to detect water bodies. The authors reported that the RF and TB performed much
better than the SVM and ELM. However, their method depends on optical imagery with
subjective thresholds set through trial and error. Specifically, their method depends on
subjective threshold values in NDWI, normalized difference vegetation index (NDVI), and
morphological shadow index (MSI).

Ref. [10] compared MLP, NDWI, and a maximum likelihood model for water body
classification and showed that MLP performed the best. However, the maximum likelihood
model could not recognize small bodies of water and thin rivers, whereas NDWI was not
able to distinguish seawater from land. The MLP could identify small bodies of water
better, but the analysis depended on visual assessment.

3.2.4. “Shallow” ML-Based Water Body Detection

Although most of the recent methods for water body detection used DL and/or deeper
neural networks (Sections 3.2.1–3.2.3), a few studies used only “shallow” ML methods (e.g.,
RF and SVM). In [35], the authors used band methods (where slope, NDVI, and NDWI
were added as three secondary bands to integrate extra information into ML training), and
then applied an SVM, a decision tree (DT), and an RF to analyze multiband RS data for
water body extraction in the Himalayas. However, while their models worked well for flat
and hilly terrain, they had to parse out high elevations and snow in this method (which
involves extra preprocessing and limits when/where their method can work with optical
data). The authors ran different experiments to analyze which input bands (NDWI vs.
individual input bands from Landsat data) worked the best but could only compare results
visually. The authors concluded that adding single secondary bands is better than adding
multiple in most ML algorithms except for NNs.

Sentinel-1 data and four different ML models (K-nearest neighbors classifier (KNN),
fuzzy-rules classification, Haralick’s textural features of dissimilarity, Otsu valley-emphasis)
were employed to classify water bodies in [54]. It involved many different ML methods
in tandem (i.e., the output of one ML model was fed into other processing steps), which
complicates interpretability. This method did not have very high accuracy and did not
work well in flooded regions, near buildings, and in the presence of aquatic vegetation.
However, it was an important attempt to use synthetic aperture radar (SAR) data, which is
rare in water body detection literature.

3.3. Recent Advances in Water Quality Monitoring Using AI

From Table 3, we identify the following trends in the use of AI for water quality
monitoring research: (1) Water quality monitoring differs from water body detection in
that it is formulated as both a classification and a regression task. Because of this, recurrent
neural networks (RNNs), long short-term memory (LSTMs), and gated recurrent units
(GRUs) are much more prevalent in the water quality literature. (2) Accuracy, precision,
and recall are common metrics, as are some variations of mean squared error (MSE) and
R2. (3) It is important to note that while water body detection papers describe integrating
multiple data sources into one analysis, this practice is much more common in water quality
monitoring research. This primarily takes the form of trying to match up water quality
parameters from time series data or water samples to optical satellite RS imagery. In water
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quality monitoring, it is much more common to utilize Internet of Things (IoT) sensors,
smaller probes such as unmanned aerial vehicle (UAVs) and stationary hyperspectral
imagers, as well as government and private water quality time series data. (4) Some studies
do not compare their model to any other models (detailed in Table 3), making it difficult to
fully assess their methodologies.

Below, we provide a more detailed review of the methods used for water quality
detection and monitoring. As our manual investigation (see Table 3) and machine summary
(word cloud, see Figure 1) indicate, the dominant methods used in water quality detection
with AI are LSTMs (Section 3.3.1) and ANNs, MLPs, DNNs, and other DL methods
(Section 3.3.5). Beyond LSTM and ANN-based methods, there are other methods including
LSTM hybrids (Section 3.3.2), CNN-based methods (Section 3.3.3), and “shallow” ML-based
methods (Section 3.3.4).

3.3.1. LSTM-Based Water Quality Detection and Monitoring

Algal blooms cause serious harm to human and animal health and can damage both
environments and economies. Various factors lead to algal blooms and gathering the data
necessary to predict them is time- and cost-intensive. ML models can provide advanced
warning for these events by taking into account time series data of basic water quality
parameters. A linear regression model was compared with an MLP, an RNN, and an LSTM
to predict harmful algae blooms in dammed pools from several rivers [57]. While the LSTM
model was the most accurate overall, for several of the dammed pools that the authors
tested, a least-squares regression model outperformed the LSTM. This casts doubt as to
how the LSTM model generalizes and if it is worth the added complexity.

Water pollution is becoming an increasing problem because of rapid rates of devel-
opment and urbanization. Large amounts of water quality parameters can be taken via
IoT sensors, and DL techniques are well suited to finding patterns in the large quantity of
data. An LSTM was used to predict future values of different water quality parameters [60].
Most importantly, the authors only used single-dimensional inputs and outputs (i.e., a 1D
time series of dissolved oxygen as an input to predict dissolved oxygen at some time in the
future). While the results were good, the authors noted that the architecture would benefit
from training on multiple time series at the same time. The authors reported that long-term
predictions on the order of 6 months into the future did not work well. Beyond monitoring
water for different levels of pollutants, it is also important to find the sources of pollutants
when they are identified. Cross-correlation was used to map pollutants to different water
quality parameters [58]. They then used an LSTM to match pollutants to nearby polluting
industries using the highly correlated water quality parameters.

Similar to LSTMs, RNNs have been demonstrated to be accurate for times series
prediction but are also often criticized for being difficult to interpret. Meanwhile, process-
based ecological models, although deterministic, fail to capture patterns at longer time
scales. A process-based model was integrated with an RNN to better align predictions of
phosphorus levels in lakes to eliminate outlier predictions. Constraining NN output with
physics-based models better aligns their predictions with ecological principles [68].

Rapid development has led to decreased water quality. In [70], water quality parame-
ters can be used to both classify the current water quality index and predict future water
quality index states. However, the authors separately compared DL models for water
quality prediction and ML models for water quality classification, making the methods
not directly comparable. A nonlinear autoregressive neural network (NARNET), a type of
ANN, performed better than an LSTM at predicting the water quality index, while an SVM
performed better than other traditional ML models for classification.

3.3.2. LSTM Hybrids Water Quality Detection and Monitoring

To further improve model performance, a few recent studies have integrated other
models with LSTMs. Water scarcity and drought are increasingly significant environmental
challenges. Increased development is leading to worsening water pollution. Predicting the
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water quality from time series data is essential, but traditional ML models fail to capture
long-term temporal patterns. This causes them to make false predictions in water quality
monitoring applications. An RNN–Dempster–Shafer (RNN–DS) evidence theory hybrid
model was used to make sense of multiple input time series of different time scales [63].
While evidence theory did make the predictions more stable, longer-term predictions did
not work very well, even with the improvements to the model. The authors pointed out
one possible reason might have been not taking spatial correlations between water quality
parameters into account.

Economic development and urban growth have posed water quality issues. Wavelet
domain threshold denoising (WDTD) and wavelet mean fusion (WMF) were used to
analyze the output of LSTM predictions for multiple water quality parameters [65]. While
multiple wavelet basis functions were used to analyze predictions, the LSTM was not
compared to any other models in this analysis. The authors noted that not having enough
observations was a limitation while training their LSTM model.

Mangrove wetlands provide habitats for many different types of animal species in
addition to preventing coastal erosion. More recent research has focused on monitoring the
water quality in these environments to assess the health of coastal ecosystems. Using water
quality and meteorological time series data, three different submodels were used for each
water quality parameter at different time intervals and fused their output predictions [66].
The authors tested this setup with a DNN, a gated recurrent unit (GRU), and an LSTM
model. While the LSTM performed the best, the authors reported that the model is not very
reusable or user-friendly.

Collecting and analyzing water samples is expensive, time-consuming, and labor-
intensive. Thus, many researchers choose to use sensors to remotely monitor water quality
parameters, but the number of parameters they can record are often limited. Ref. [69] used a
submerged multiprobe sensor to monitor several important water quality parameters over
the course of 1 year. They found that a CNN–LSTM model performs better than standalone
DL models and traditional ML methods for predicting water quality parameter values;
however, the authors did not use a validation set during NN training and the hybrid model
was able to quickly learn the training and testing set data distributions.

3.3.3. CNN-Based Water Quality Detection and Monitoring

CNNs are the dominant architecture for water body detection (Sections 3.3.1 and 3.3.2)
but are not used as widely for water quality. Here, we review two very interesting but
effective CNN-based methods. In situ water quality measurements work really well but
are very expensive. In addition, things such as total nitrogen and phosphorus, biological
oxygen demand, and dissolved oxygen are hard to measure from satellites because they
have weak optical properties. A CNN was used in [59] and showed that TL beats out
traditional ML models when classifying water quality from RS imagery. However, their
dataset was very small, and their focus was narrow (specifically, only two lakes in China,
no rivers or coastal waters covered). Water bodies are often polluted, or their quality
is affected from far away and thus it is difficult to identify and report on water quality.
Methods for estimating water quality at scale are essential. Turbidity can be a proxy for
total suspended solids (TSS) and suspended sediment concentration (SSC), so [72] used
image detection and then applied edge detectors to UAV images of water. They employed
CNNs to detect changes in water color and utilized this to approximate quality. They
showed that image-based turbidity detection is as accurate as actual turbidity meters, but
more importantly represents a very promising method for monitoring water quality at
greater spatial scales.

3.3.4. “Shallow” ML-Based Water Quality Detection and Monitoring

Remote water bodies are hard to monitor for water quality. A simple NN architecture
was designed to estimate several water quality parameters (i.e., chlorophyll-a, turbidity,
phosphorus) both before and after an ecosystem restoration project during both the dry
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and wet seasons [55]. Importantly, their predictions, using seven different input bands for
training the NN, were very close to the actual values.

Finding what data to input into an ML model for water quality monitoring is neither
easy nor straightforward. Different indices are sensitive to different areas and varying
weather and lighting conditions. To address this problem, [71] first correlated water quality
parameters to different RS bands. These correlations were then used to test four ML models
and their ability to predict a water quality index. Their R2 statistics were not high, though.

3.3.5. ANN, MLP, DNN, and Other DL-Based Methods for Water Quality Detection and
Monitoring

Climate change is making droughts and water shortages increasingly worse in arid
regions. It is thus important to develop methods and systems for intelligent and efficient
monitoring of the water resources in those regions. A water quality index for arid regions
was proposed in [56] and attempted to find which bands and spectral indices are related
to that water quality index. In situ water quality sampling is labor- and cost-intensive
and often suffers from low temporal resolution. As bodies of water around the world are
changing rapidly due to global warming, it is more important than ever to model their
spatial variation through time. A point-centered regression CNN (PSRCNN) was used
in [73] to analyze lake reflectance data to model water transparency. The authors concluded
that their model outperformed different band ratios and traditional ML models (KNN, RF,
SVM), although at the cost of generalization. The PSRCNN did not make stable predictions
due to too little data.

There is currently not enough paired RS imagery and in situ water measurement to
meaningfully create robust water quality monitoring applications. The generation of a
synthetic dataset of atmospheric reflectances and its suitability for water quality monitoring
were investigated in [76]. The synthetic dataset is physics-based and attempts to capture the
natural variability in inland water reflectances and chlorophyll-a concentrations. An ANN
outperforms several traditional ML models (KNN, RF, XGBoost) in predicting actual water
quality parameter values when trained on the synthetic dataset, although only the ANN
is validated against unseen data. Still, synthetic data generation is a promising research
direction for water body and water quality detection. Without RS imagery, many water
quality monitoring programs will suffer from lack of spatial coverage due to labor, time, and
cost constraints. Yet while RS is a useful tool for monitoring water quality parameters, it
has not been meaningfully integrated into operational water quality monitoring programs.
Existing water quality time series data were used in [75] and assessed the effectiveness of
multiple RS data platforms and ML models in estimating various water quality parameters.
The authors showed that some sensors are poorly correlated with water quality parameters,
while others are more suitable for water quality monitoring tasks. They concluded that
more research needs to be carried out for assessing the suitability of paired RS imagery and
in situ field data.

Current water quality monitoring systems are labor-, time-, and cost-intensive to
operate. IoT sensors can monitor water quality parameters in near real time, allowing
for much more data to be recorded with much higher temporal resolution. A wireless
sensor network made up in part of IoT sensors was used in [61], and used an MLP to
classify water quality as either good or bad. The authors utilized the MLP predictions to
notify water quality managers via SMS if the water quality drops below a certain threshold
value. However, because of the cost to deploy and run the network, the authors were
not able to include additional water quality parameters from more types of bodies of
water other than rivers. Water quality monitoring data collection is expensive and time
consuming, and there are usually tradeoffs between spatial and temporal resolution when
implementing data collection programs. In addition, several key water quality parameters
(pH, turbidity, temperature) can be estimated directly from optical and infrared RS imagery.
Randrianianina et al. [64] used RS imagery and DNNs to model water quality parameters
directly, after which they extend their analysis to map the distributions of water quality
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parameters to an entire lake, but they only focused on one lake and did not test their
methods on other bodies of water.

As bodies of water are exposed to increased nutrient loads, harmful algal blooms can
occur, leading to eutrophication. This process can create dead zones that would kill wildlife
and lead to negative economic impacts. Thus, it is important to monitor chlorophyll-a levels
in water bodies and predict algal blooms before they happen. Zhao et al. [74] attempted to
address this need by comparing DL models to traditional ML and curve-fitting methods
to predict chlorophyll-a levels using time series measurements paired with RS imagery.
The authors did not have much data as they limited the data collection process to one lake.
Thus, the DL models did not perform well. Additionally, the ML models used in this paper
needed more data and computing than simpler models in order to perform well.

It is often difficult to monitor inland water bodies for quality because of low signal-to-
noise ratios and limitations in resolution. A proximal hyperspectral imager was used in [77]
with high spectral and temporal time series data for continuous water quality observations.
The authors found that index-based methods of water quality detection were difficult to
calibrate as thresholding values are subjective, while ML and DL models performed much
better. However, the authors show that their models do not generalize well to other water
bodies with different water quality parameter distributions.

Anthropogenic activities have currently threatened largely coastal ecosystems. Coastal
ecosystems are complex bodies of water but monitoring them is very important. The
performance of an ANN was compared to traditional ML models in [62] for predicting
various water quality parameters. In some cases, traditional ML methods outperform the
ANN. More importantly, the authors conducted an analysis of relative variable importance
to show which sets of input data helped the ML models to learn the most. While the relative
variable importance analysis is critically important, the authors only test their method in
cloud-free RS imagery, limiting its utility. Additionally, while biophysical and chemical
water quality parameters were analyzed, little work was carried out with bio-optical data
due to issues with data availability.

While recent advances in RS capabilities for water quality detection are substantial
in the literature, few papers have collected and synthesized the resources available to
researchers. In a paper reviewing recent trends in RS imagery, cloud computing, and ML
methods, [67] used time series data from hundreds of water quality parameters and water
samples and combined them with proximal imagery, hyperspectral imagery, and two sets
of data from different satellite data platforms. They showed that DNNs outperform many
other traditional processing and ML techniques for assessing water quality. The authors
conclude that anomaly detection using multisensor data is the most promising method
for algal bloom detection. As is sometimes the case in the water body detection and water
quality monitoring literature, the authors did not have a third holdout set (necessary for
DL projects so that the data is not memorized).

4. Challenges and Opportunities

In this section, we first provide a brief summary and discussion of the key themes and
overall insights (Section 4.1) derived from reviewing the range of research discussed above.
In Section 4.2, we provide and discuss some of the major challenges we identified through
our systematic survey. Specifically, those challenges shared in both domains are detailed in
Section 4.2.1, those specific only to water body extraction in Section 4.2.2, and those specific
to water quality monitoring in Section 4.2.3. Finally, we discuss possible research directions
and related opportunities for water body detection and water quality monitoring using RS
and AI in Section 4.3.

4.1. Summary and Discussion

After introducing the essential terms in AI and RS (Appendix B) and commonly used
evaluation metrics in ML and DL for classification, regression, and segmentation tasks
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(Appendix C), we reviewed recent and influential research for water body detection and
water quality monitoring using RS and AI (Section 3).

While the research investigated in Section 3 has demonstrated the power of using
RS and AI to detect water bodies and monitor water quality, very few studies thus far
performed integrative research of water body and water quality using the power of RS and
AI. In addition, most existing RS and AI-based work on water bodies and water quality
repeat the same (or very similar) methods in a different research location or on a different
(usually small) dataset. However, real intelligent water resource management applications
will require serious development that goes beyond this type of research. Before operational
applications can be deployed, AI models (especially DL models) need to be trained on
large and representative benchmark datasets with a focus on making models generalizable
and interpretable.

We noticed that most work does not include hardware specifications (e.g., what
CPU/GPU the authors used to run their models) and/or processing time. To make models
comparable and for the sake of replicability and reproducibility, it is essential to report
such information. This is even true for index-based methods and more traditional ML
models so that researchers can fully evaluate the trade-offs between runtime, accuracy, and
ease of implementation. We hope our review will provide a useful guide to make future
research more replicable and reproducible. From our interactive web app (the web app
tool URL and its brief demo video link are provided in Appendix A), we also noticed that
while most papers have an open access PDF/HTML version of their manuscripts, a sizable
portion of manuscripts (16 out of 56 of reviewed articles) do not. We suggest authors
provide an open access version (e.g., posting the proofreading version after acceptance
to ResearchGate/arXiv) in order to increase the visibility of their research and thus to
accelerate the advancement of scientific knowledge.

4.2. Identified Major Challenges

Below, we provide the most commonly posed challenges for water body and water
quality research in the literature we reviewed. Those challenges shared in both domains
are outlined in Section 4.2.1 and those specific to each domain are detailed in Sections 4.2.2
and 4.2.3, respectively. Here are some specific issues to water body detection and water
quality monitoring.

4.2.1. Shared Common Challenges in Both Domains

A summary of the shared common challenges and identified problems in water body
extraction and water quality monitoring using RS and AI are provided below.

• Methods for water body detection and water quality monitoring need to be able to
work quickly and reliably on large spatial and temporal scales, and yet high-resolution
RS imagery is very complex. Index methods rely on subjective threshold values that
can change over time and space depending on weather conditions. Shallow ML models
are more accurate, but do not work at scale. DL models are complex, require very large
datasets to train on, and are very computationally expensive; also, the hyperparameter
tuning process is very tedious and difficult.

• It is difficult to know exactly what data to feed to ML and DL models, and it is
difficult to know what to make of the output predictions. This often requires integra-
tive expertise and/or interdisciplinary collaboration of RS, hydrology, biology, and
CV/ML expertise.

• NNs generally perform the best in water quality and water body detection tasks
but are often the least stable models (i.e., they do not generalize well). This is not
surprising, as the datasets used in RS problem settings are often not large enough
to allow NN models (too many parameters compared with shallow ML models) to
overcome overfitting (see Appendix B). Table 4 summarizes the relatively few existing
datasets we identified through our systematic review.
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• Both domains over-rely on optical RS imagery, and thus clouds and shadows are a persis-
tent problem and heavily skew the results towards working only in cloud-free conditions.

Table 4. Existing datasets for waterbody extraction and water quality monitoring.

Datasets Source Category Link to the Dataset Notes

DeepWaterMap v2 [40] Water body
https://github.com/isikdogan/

deepwatermap, accessed on
15 December 2021

>1 TB of Landsat-7 imagery
paired with Global Inland Water

dataset labels.

2020 GaoFen
Challenge / Water body

https://github.com/
AICyberTeam/2020Gaofen, accessed

on 15 December 2021

Dataset containing both 2500
optical and 1200 SAR satellite

images with pixel level labels for
water body segmentation.

GID-15 [79] Water body
https:

//captain-whu.github.io/GID15/,
accessed on 15 December 2021

150 pixel-level annotated
GaoFen-2 images for semantic

segmentation tasks.

LandCover.ai [80] Water body https://landcover.ai/, accessed on
15 December 2021

A dataset from 2015–2018 of
10,674 annotated tiles of RGB

imagery with labeled
water bodies.

SEN12MS [81] Water body
https:

//mediatum.ub.tum.de/1474000,
accessed on 15 December 2021

A curated dataset of 180, 662
georeferenced multispectral

Sentinel-1 and -2 imagery with
MODIS land cover labels.

AquaSat [82] Water quality
https://github.com/

GlobalHydrologyLab/AquaSat,
accessed on 15 December 2021

600,000 data matchups between
satellite imagery and water
quality measurements from

1984–2019.

Forel–Ule Index [83] Water quality
https://doi.org/10.6084/m9

.figshare.13014299, accessed on
15 December 2021

151 data matchups between
satellite imagery and water
quality measurements from

2000–2018.

4.2.2. Additional Challenges in Water Body Extraction

The specific challenges and problems identified for water body extraction are summa-
rized below.

• The majority of reviewed research focused on inland bodies of water, where only a
few papers discussed applications for coastal waters (not including oceans). Moreover,
many papers focus solely on only one type of water body, for example, only on lakes
or rivers in a specific area. As a result, water bodies from different landscapes (e.g.,
inland, coastal tidal flats, urban, wetlands) are difficult to recognize with one unified
method (i.e., methods do not generalize). The same applies to water bodies of different
colors, especially when distinguishing them from rock, ice, snow, clouds, and shadows.

• There are very few benchmark datasets. In contrast, there are huge volumes of
unlabeled data not being fully leveraged.

• CNNs blur output boundaries during the segmentation process.

4.2.3. Additional Challenges in Water Quality Monitoring

The specific challenges and problems identified for water quality monitoring are
summarized below.

• Collecting in situ water quality data is very time- and labor-intensive and financially
expensive; also, it often does not have adequate temporal or spatial resolution.

• RS imagery and existing corresponding field samples are often not stored together.
Allowing water quality researchers to easily retrieve and locate two or more sources
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of data at the same location is critical, as computational methods require such data to
verify their model performance in order to generalize to new water bodies.

• Remote water bodies are difficult to monitor.
• Urbanization, pollution, and drought are having serious effects on the economy,

wildlife, and human health as they deteriorate water quality.
• Ecosystems are complex and their nutrient and pollution budgets are not well understood.
• Some studies do not use a training, validation, and testing set for DL projects (all

three are necessary) or do not use nearly enough data to achieve good results with
DL models.

4.3. Research Directions and Opportunities

Here, we provide five research directions, each along with its promising opportunities,
from our investigation and based on the posed challenges discussed in Section 4.2 above.

4.3.1. Urgent Need of Large and Comprehensive Benchmark Datasets

Large representative, balanced, and open-access benchmark datasets are critical for
any domain to let AI meaningfully shine [84–86]. In computer science, especially for its
branches CV and DL, there are very comprehensive, large, and open-source databases (e.g.,
ImageNet [87] for image classification tasks, and Microsoft COCO [88] for object detection
and segmentation tasks). The availability of big and open-source image repositories has
dramatically boosted recent advances in novel and robust algorithms in DL and CV, as
computer science researchers do not need to worry about collecting datasets. Instead, they
can focus on developing new algorithms and/or methods.

In our systematic review, we identified an urgent need for more curated, labeled
datasets for intelligent water body extraction and water quality monitoring. We found
some of the few available open-source datasets with water body boundary labels through
our literature review, but also sought out additional datasets. We identified datasets that
were not used in our literature review but contain water body labels, or datasets that were
used for water body detection or water quality monitoring that did not use ML/DL/CV
but would be useful for benchmarking tasks. Our search results are summarized in Table 4
above. Below, we list a few opportunities in this direction.

(1) More public data and code: currently, most authors do not share their code and/or datasets.
See the two quoted pieces below from [25]: (a) “Lack of deep learning-ready datasets
within the water field [ . . . ] The main problem caused by this absence of many datasets is
that the research community does not build upon previous work in terms of constructing
better neural network architectures and moving the state of art to the next iteration [ . . . ]”;
(b) “[ . . . ] many papers are published that achieve the same task with almost identical
methods but different data.”. Part of this issue is a replication crisis in the water body
detection and water quality monitoring literature, but it stems more broadly from the lack
of public codebases and datasets.

(2) Some promising ways to generate large datasets of good quality

• AI/ML/DL models need large datasets with good quality to guarantee meaningful
(unbiased and generalize well) good to great performance, thus work on obtaining
large but better subsets of data. Quality > quantity is critical and in urgent demand.
See one piece of such evidence reported in [44], “[ . . . ] site-specific models improved
as more training data was sampled from the area to be mapped, with the best models
created from the maximum training datasets studied: [ . . . ] However, performance
did not improve consistently for sites at the intermediate training data thresholds.
This outcome exemplifies that model improvement is an issue of not only increasing
the quantity of training data, but also the quality”.

• Generating synthetic data as in [76] (detailed in the second paragraph in Section 3.3.5).
• Downloading RS images from Google Earth Engine (GEE) and annotating accordingly,

or, even better, developing user-friendly interactive interfaces with GEE as a backend
to directly allow researchers (or even citizen science volunteers) to contribute to the

214



Sensors 2022, 22, 2416

annotation of RS imagery available on GEE. To our knowledge, no RS datasets for
water body detection and water quality monitoring are downloaded from GEE and
then annotated, let alone interfaces for directly annotating RS imagery on GEE.

• Obtaining RS imagery from Google Earth (GE) manually or with the help of code
scripts, then annotating accordingly (see [34,42,49] for examples). For instance, the
following two datasets generated and used in [34,49] are both from GE, but are not
shared publicly.

� “The first dataset was collected from the Google Earth service using the BIGEMAP
software (http://www.bigemap.com, accessed on 15 December 2021). We named
it as the GE-Water dataset. The GE-Water dataset contains 9000 images cov-
ering water bodies of different types, varying shapes and sizes, and diverse
surface and environmental conditions all around the world. These images were
mainly captured by the QuickBird and Land remote-sensing satellite (Landsat)
7 systems.” [49].

� “We constructed a new water-body data set of visible spectrum Google Earth
images, which consists of RGB pan-sharpened images of a 0.5 m resolution, no
infrared bands, or digital elevation models are provided. All images are taken
from Suzhou and Wuhan, China, with rural areas as primary. The positive
annotations include lakes, reservoirs, rivers, ponds, paddies, and ditches, while
all other pixels are treated as negative. These images were then divided into
patches with no overlap, which provided us with 9000 images [ . . . ]” [34].

4.3.2. Generalization

It is important to be able to obtain a good accuracy score when training an ML/DL
model, but perhaps more important is that model’s ability to generalize to unseen data. The
ultimate goal of ML/DL is to develop predictive models through finding statistical patterns
in a training set which then generalize well to new, previously unseen data outside the
training set [89]. Ideally, this is achieved by training on large and representative datasets
that capture nearly all variations in the data actual distribution of values [86,89]. A model’s
ability to generalize is critical to the success of a model. An ML/DL model with good
generalization capability will have the best trade-off between underfitting and overfitting
so that a trained model obtains the best performance (See “Generalization, overfitting,
underfitting and regularization” entry in Appendix B for details). Below, we outline a few
ways to make AI systems more generalizable for water body detection and water quality
monitoring tasks.

(1) Create robust AI methods for tiny water body detection. Depending on resolution,
tiny water bodies such as ponds or small lakes in desert cities are difficult to identify yet
may play a more critical role than we think.

(2) Develop NN architectures and comprehensive datasets (see Section 4.3.1) that are
able to recognize water bodies not just from

• One type of body of water (e.g., ponds, lakes, rivers);
• One color (e.g., different levels of sediment, aquatic vegetation and algae, nutrients,

pollutants);
• One size: Water bodies present in RS imagery come with different sizes (large and

small water bodies) and various shapes. Many studies reported that it is not an easy
task to correctly classify small water bodies and/or water bodies with different shapes.

• One environment setting (e.g., desert, urban, inland, coastal).

(3) Utilize data from multiple sources to train ML/DL models. From our comprehen-
sive investigation, most of the current AI methods are only able to deal with water quality
and/or water body detection data from one specific type of RS imagery. This should be im-
proved and indicates a promising new research direction. Specifically, it will be important
to focus on using data from multiple data platforms or resolutions, from varying weather
conditions, and regions which have different ecosystem and terrain types. We humans
can recognize water bodies in different RS imagery with different weather conditions. We
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expect that machines should be able to mimic humans to perform this task well if we have
robust AI algorithms and comprehensive datasets. See some example research below:

• Extraction of water bodies at multiple resolutions and scales using CNNs [49,53];
• Evaluation of CNN performance on multisensor data from multiple RS platforms [52];
• Integration of data from multiple sources (e.g., SAR, UAV, smaller sensors, water

quality time series);
• Data fusion of Landsat-8 and Sentinel-2 RS imagery for water quality estimation [67].

“Virtual constellation” learning introduced in [67] could be a future direction for
both water body detection and water quality estimation. A virtual constellation is
constructed by using multiple RS platforms to “shorten” the revisit time and improve
the spatial coverage of individual satellites. This entails fusing data sources from
separate RS platforms with potentially different resolutions.

(4) Propose new frameworks for improving generalizability. Generalization is one
of the fundamental unsolved problems in DL. The goal of a generalization theory in
supervised learning is to understand when and why trained ML/DL models have small
test errors [90]. The recently proposed deep bootstrap framework [90] provides a new lens
for understanding generalization in DL. This new framework has the potential to advance
our understanding of water domain research empowered by RS and AI by highlighting
important design choices when processing RS imagery with DL.

4.3.3. Addressing Interpretability

DL has achieved significant advances with great performance in many tasks in a
variety of domains, including some water domain tasks (detailed in Section 3). In the
literature we reviewed for this paper, DL models have produced results comparable to,
and in some scenarios even superior to, human experts. Improving predictive accuracy is
important; however, improving the interpretability of ML/DL models is more important,
especially through visualization techniques of ML/DL model output for later analysis by
humans [18]. Interpretability is one of the primary weaknesses of DL techniques and raises
wide concerns and attention in DL [91]. Due to the overparameterized and black-box nature
of DL models, it is often difficult to understand the prediction results of DL models [92,93].
Understanding and explaining their black-box behaviors remains challenging due to their
hierarchical, nonlinear nature. The lack of interpretability raises major concerns across
several domains; for example, in high-stakes prediction applications, such as autonomous
driving, healthcare, and financial services [94], the trust of DL models is critical. While
many interpretation tools (e.g., image perturbation and occlusion [95], visualizing NN
activation weights and class activation mapping [96,97] or attention mechanisms [98,99],
feature inversion [100], local interpretable model-agnostic explanations or “LIME” [101])
have been proposed to interpret how DL models make decisions, either from a scientific
perspective or a social angle, explaining the behaviors of DL models is still in progress [92].
For water domains, we list some specific potential opportunities in terms of interpretability
we identified below.

• More ablation studies are needed (see Appendix B for an introduction) to investigate
the role of each DL component in terms of model performance contribution and
ultimately which component(s) control the model performance.

• Exploring the output of hidden layers to obtain some information to help investigate
whether the model works as expected.

• Hybrid models for analyzing NN output and improving an NN’s decision-making process
through post-processing, for example, CNN–LR hybrids [32], CNN–CRF hybrids [36,38],
CNN–SVM hybrids [39], RNN–DS hybrids [63], and CNN-LSTM hybrids [69].

• More research needs to be carried out on analyzing the importance of input data to
output predictions. See examples in [62,75], each detailed below.

� The authors in [62] systematically analyzed relative variable importance to
show which sets of input data contributed to the ML models’ performance. See
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the quoted text below: “Relative variable importance was also conducted to
investigate the consistency between in situ reflectance data and satellite data,
and results show that both datasets are similar. The red band (wavelength
≈ 0.665 μm) and the product of red and green band (wavelength ≈ 0.560 μm)
were influential inputs in both reflectance data sets for estimating SS and
turbidity, and the ratio between red and blue band (wavelength ≈ 0.490 μm) as
well as the ratio between infrared (wavelength ≈ 0.865 μm) and blue band and
green band proved to be more useful for the estimation of Chl-a concentration,
due to their sensitivity to high turbidity in the coastal waters”.

� The authors in [75] utilized existing water quality time series data and assessed
the effectiveness of multiple RS data platforms and ML models in estimating
various water quality parameters. One of their interesting findings is that some
sensors are poorly correlated with water quality parameters, while others are
more suitable for water quality monitoring tasks. They suggested that more re-
search needs to be carried out for assessing the suitability of paired RS imagery
and in situ field data. See the quoted text below: “[ . . . ] assess the efficacy of
available sensors to complement the often limited field measurements from
such programs and build models that support monitoring tasks [ . . . ] We
observed that OLCI Level-2 Products are poorly correlated with the RNMCA
data and it is not feasible to rely only on them to support monitoring operations.
However, OLCI atmospherically corrected data is useful to develop accurate
models using an ELM, particularly for Turbidity (R2 = 0.7).” (RNMCA is the
acronym for the Mexican national water quality monitoring system).

• Water quality monitoring will benefit from more research exploring how well a certain
ML/DL model contributes to which water quality parameter(s). See an example
in [67], where the authors investigated how well DNNs could predict certain water
quality parameters.

• Physics-constrained or process-based ML/DL predictions as demonstrated in [68,69].
• The need for automatic and visually-based model evaluation metrics that are better

than current visual assessment as an evaluation metric. For example, automatic
assessment of how DL methods are performing in large and complex RS imagery
(e.g., specifically, Bayesian DL, and Gaussian DL/ML for uncertainty measurement
and visualization).

4.3.4. Ease of Use

As emphasized in [13,14], one of the major current challenges for water resource
management is the integration of water quality data and indices from multiple sources into
usable and meaningful insights for actionable management decisions. Geovisualization,
also known as geographic visualization, uses the visual representations of geospatial data
and the use of cartographic techniques to facilitate thinking, understanding, knowledge
construction, and decision support about human and physical environments at geographic
scales of measurement [102,103]. Geovisualization is widely utilized in different domains
(e.g., public health [104], crisis management [105,106], environmental analysis [107–109],
and climate change strategies [110]) for the exploration and analysis of spatiotemporal
data. To the best of our knowledge, very little research has leveraged geovisualization
in this way for water resources management. The only piece of work similar to this we
noticed is in [111], where a web interface powered by GEE allows their expert system,
combined with visual analytics, to be run on any Landsat 5, 7, or 8 imagery to draw bound-
aries for water bodies. Geovisualization through interactive web applications provides a
promising solution to the posed challenge of integrating water quality data and indices
from multiple sources [112–115]. We provide a few suggested research opportunities in
this direction below.

• Simply applying (or with minor modifications) existing AI/ML/CV/DL algorithms/
methods to RS big data imagery-based problems is still very far away from producing
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real-world applications that meet water management professionals’ and policymakers’
needs. As echoed in [13], “[ . . . ] realizing the full application potential of emerging
technologies requires solutions for merging various measurement techniques and
platforms into useful information for actionable management decisions, requiring
effective communication between data providers and water resource managers” [116].
Much more multidisciplinary and integrative collaboration in terms of depth and
breadth are in high demand. Those scholars and practitioners who have an interdisci-
plinary background will play a major role in this in-depth and in-breadth integration.
For example, researchers who have expertise in RS but also know how to utilize AI,
through collaboration with domain expertise such as water resources management
officers, will significantly advance this research direction. Intuitive interactive web
apps that are powered by both geovisualization and AI/ML/DL/CV will definitely
make interdisciplinary collaboration much more seamless and thus easier.

� Interactive web portal empowered by geovisualization for integration of vari-
ous water quality data sources. As noted in [117], it is natural and intuitive in
many studies to use “space” as the organizing paradigm.

� More smart and responsive water management systems through the develop-
ment of interactive web apps/libraries that integrate ML/DL backends and
intuitive, user-friendly front ends are needed. Such systems would allow collab-
oration between technical experts and domain experts, including stakeholders,
and even community volunteers, from anywhere at any time.

� This requires very close collaboration and thus very integrative research from re-
searchers in many domains (e.g., computer science, cognitive science, informatics,
RS, and water-related sub-domains). We reinforce that geovisualization will be
the ideal tool to make the collaboration smooth, productive, and insightful.

� There is one recent work [118] that takes a small step in this direction, but much
more work and efforts are in demand.

• Resource hubs for standardized AI/ML/DL/CV models and easy-to-follow and
understandable tutorials for how to use them are needed.

• More data “matchups” as demonstrated in [82,83]. When more in situ measurements come
in, they should be matched up and stored with satellite data for easy calibration studies.

4.3.5. Shifting Focus

From our investigation, it is clear that with enough annotated data and allocated
computing, DL models are more accurate than traditional ML models, which are in turn
more accurate than index-based methods for water body detection and water quality
monitoring tasks. Increasing the accuracy of models by fractions of a percent should be
given much less focus and attention moving forward. Water body detection methods are
unlikely to improve upon the high rates of accuracy already reported in the literature
without very high-resolution, very large, labeled datasets or the use of UAVs to detect
small water bodies. Instead, we suggest that future research should focus more on reducing
model parameters and making model training less computationally expensive in terms
of time (e.g., designing neural networks to use constant memory at inference time [40], or
by using TL [37,59]). Below, we outline some additional potential research directions we
identified through our systematic review.

• As noted in Section 4.3.1, the lack of large benchmark datasets is a bottleneck in water
body detection and water quality monitoring research utilizing RS imagery and AI.
The dominant methods in both water domains are supervised learning, which often
requires very large, labeled datasets to train on, thus, there is a clear, urgent need for
semi-supervised and unsupervised learning methods [15].

� Unsupervised learning methods are able to learn from big sets of unlabeled data,
as demonstrated in [29,46].
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� Semi-supervised learning methods are able to learn from limited good-quality
labeled samples. DL models do not require feature engineering, and they are
also much better at discovering intricate patterns hidden in big data. How-
ever, pure supervised DL is impractical in some situations, such as those for
which the labeling tasks require domain knowledge from experts. Very few
domain experts have the time and are willing to label very large sets of RS
images [84]. An active learning-enabled DL approach that uses a visualization
interface and methods to iteratively collect modest amounts of input from
domain experts and uses that input to refine the DL classifiers [84] provides
a promising direction to produce well-performing DL models with limited
good-quality datasets.

• From our systematic review, we can easily see that current work on water body
extraction and water quality monitoring using AI and RS are, in general, carried out
separately. We call for a closer integration of water body detection and water quality
monitoring research and more attention focusing on handling massive datasets that
may include information in a variety of formats, of varying quality, and from diverse
sources. This integration is critical as it will provide the essential foundation for
developing real, intelligent water monitoring systems using RS and AI capable of
producing insights used for actionable decision making.

• GEE + AI: as noted in [18], GEE is a good solution to address computational costs
and overcome technical challenges of processing RS big data. However, online DL
functionality is still not supported on GEE. To the best of our knowledge, the only
piece of research integration of the Google AI platform with GEE is performed in [119];
however, as the authors reported, “data migration and computational demands are
among the main present constraints in deploying these technologies in an operational
setting”. Thus, the ideal solution is to develop DL models directly on the GEE platform.

• Most current ML/DL-based RS research focuses on borrowing or slightly improving
ML/DL/CV models from computer science [79,120]. Compared with natural scene
images, RS data are multiresolution, multitemporal, multispectral, multiview, and
multitarget [15]. Slight modifications of ML/DL/CV models simply cannot cope with
the special challenges posed in RS big data. New ML/DL models specialized for RS
big data are thus urgently needed [15,18]. We hope our review will draw the attention
of researchers who have a multidisciplinary background to this issue. Looking deep
into the mechanisms of RS and land surface processes, studying the characteristics of
RS imagery would guide the design of specialized ML/DL models for RS big data and
thus further improve RS applications using AI in breadth and depth [15].

5. Conclusions

Building intelligent and synoptic water monitoring systems requires automation of
water body extent detection using RS imagery, from which volume can be computed,
and also automation of their corresponding water quality, eventually linking the two to
allow synoptic water quality monitoring. Yet, to date, water body detection and water
quality monitoring research has been historically separate. Our systematic investigation
indicates the following trends: deep learning is much more commonly used in water
body detection, the dominant data source of which is RS imagery, whereas water quality
literature often involves other types of data sources (e.g., in situ sensors, smaller RS devices
that are not satellites). The trends relate to the scale of projects in the two domains: water
body extraction is usually undertaken across large spatial scales, whereas the water quality
monitoring literature is still only focused on smaller, often individual, bodies of water. This
points to one of the future research directions in the water quality literature that we touch
on above in Section 4.3; that is, we need to scale up water quality estimation using RS
imagery through matching it with ground-truth water quality measurements.

Overall, based on the systematic review above, we contend that RS integrated with
AI/ML/DL/CV methods, along with geovisualization, have great potential to provide
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smart and intelligent support for water resources monitoring and management. Thus, this
integration has considerable potential to address major scientific and societal challenges,
such as climate change and natural hazards risk management.
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Abbreviations

The following abbreviations (in alphabetical order) are used in this manuscript:

AE Autoencoder
AI Artificial Intelligence
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
BOA Boundary Overall Accuracy
CA Class Accuracy
CART Classification and Regression Trees
CB Cubist Regression
CE Commission Error
CNN Convolutional Neural Network
COCO Common Objects in Context
CPU Central Processing Unit
CRF Conditional Random Field
CV Computer Vision
DL Deep Learning
DNN Dense Neural Network
DS Dempster–Shafer Evidence Theory
DT Decision Tree
DEM Digital Elevation Model
ECE Edge Commission Error
ELM Extreme Learning Machine
ELR Extreme Learning Regression
ESA European Space Agency
EOE Edge Omission Error
EOA Edge Overall Accuracy
FN False Negative
FP False Positive
FWIoU Frequency Weighted Intersection over Union
GA Global Accuracy
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GAN Generative Adversarial Network
GBM Gradient Boosted Machine
GE Google Earth
GEE Google Earth Engine
GPR Gaussian Process Regression
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
IoT Internet of Things
IoU Intersection over Union
Kappa Kappa Coefficient
KNN K-Nearest Neighbors Classifier
LORSAL Logistic Regression via Variable Splitting and Augmented Lagrangian
LSTM Long Short-Term Memory
MA Mapping Accuracy
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
mIoU Mean Intersection over Union
MK Mann–Kendall
ML Machine Learning
MLC Maximum-Likelihood Classifier
MLP Multilayer Perceptron
MLR Multiple Linear Regression
MNDWI Modified Normalized Difference Water Index
MPC Microsoft Planetary Computer
MRE Mean Relative Error
MSE Mean Squared Error
MSI Morphological Shadow Index
NB Naive Bayes Classifier
NDMI Normalized Difference Moisture Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NIR Near-Infrared
NN Neural Network
NSEC Nash–Sutcliffe Efficiency Coefficient
OA Overall Accuracy
OE Omission Error
PA Producer’s Accuracy
PCC Percent Classified Correctly
RBFNN Radial Basis Function Neural Network
R-CNN Region Based Convolutional Neural Network
RF Random Forests
RMSE Root Mean Squared Error
RMSLE Root Mean Squared Log Error (referred to in Table 3 as RMSELE by the authors)
RNN Recurrent Neural Network
RPART Recursive Partitioning And Regression Trees
RPD Relative Percent Difference
RS Remote Sensing
SAR Synthetic Aperture Radar
SRN Simple Recurrent Network (same abbreviation given for Elman Neural Network)
SOTA State-of-the-Art
SVM Support Vector Machine
SVR Support Vector Regression
SWIR Short Wave Infrared
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TB Tree Bagger
TL Transfer Learning
TN True Negative
TP True Positive
VHR Very High Resolution
UA User’s Accuracy
UAV Unmanned Aerial Vehicle

Appendix A. The Accompanying Interactive Web App Tool for the Literature of

Intelligent Water Information Extraction Using AI

In Section 1.1, we provided a brief map and graphic summary of the papers covered
in this review. To allow readers to obtain more useful and dynamic information and
insights from the papers reviewed, we have developed an interactive web app. Through
the web app, readers can keep track of the major researchers and access an up-to-date list
of publications in the reviewed topics. Updated publications are accessible through (1) a
researcher’s public academic profile on Google Scholar or ResearchGate (see Figure A1a for
an example), and (2) a continuously updated citations count of the papers that we reviewed
in this paper (see Figure A1b for an example: the cited by as of 10 November 2021 is 47,
which is when we first entered the data in our data file when we reviewed the paper, and
then before this paper submission, when we clicked on the cited by URL, the page shows
that the up-to-date citation number is 49). The web app can be accessed publicly, free of
charge at

• Web app tool: https://geoair-lab.github.io/WaterFeatureAI-WebApp/index.html,
accessed on 28 February 2022.

• Brief web app demo video (about 6 min duration): the video link is accessible at the
web app page.

(a) 

Figure A1. Cont.
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(b) 

Figure A1. Our highly interactive web app (accessible publicly at: https://geoair-lab.github.io/
WaterFeatureAI-WebApp/index.html, accessed on 5 December 2021) provides the track of scholars
and publications with just a few clicks. See an example on the pop-up. Our readers can access (1) a
direct link to the PDF file of the paper (note that if there is no free, publicly available version of the
paper, we link directly to the journal page of the paper so our readers can obtain the paper if their
institution purchases the journal database), (2) the scholar profile (Google Scholar/ResearchGate
URL) of the first author, and (3) “Cited by” Google Scholar page. (a) Water body and quality AI
literature map pop-up. (b) “Cited by” Google Scholar page corresponding to the paper shown in (a).

Appendix B. Essential AI/ML/DL/CV Terms

In this appendix, we provide brief definitions to some essential terms (ordered
alphabetically) in ML/DL/RS in our review. For readability, we group some related
concepts together.

Ablation Studies: In AI, particularly in ML and DL, ablation is the removal of a
component of an AI system. Ablation studies are crucial for AI, especially for DL research.
An ablation study investigates the performance of an AI system by removing certain
components to understand the contribution of the component to the overall system. The
term is analogous to ablation in biology (removal of components of an organism). Note that
ablation studies require that the systems exhibit graceful degradation (i.e., they continue to
function even when certain components are missing or degraded). The motivation was that,
while individual components are engineered, the contribution of an individual component
to the overall system performance is not clear; removing components allows this analysis.
Simpler is better: if we can obtain the same performance with two models, we prefer the
simpler one.

Convolution, kernel (i.e., filter), and feature map [121–123]:
Convolutional layers are the major building blocks in CNNs. A convolution is the

simple application of a filter (i.e., kernel) to an input that results in an activation. Repeated
application of the same filter to an input results in a map of activations called a feature
map, indicating the locations and strength of a detected feature in an input (e.g., an image).
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Convolution: Convolution is one of the most important operations in signal and image
processing. Convolution is a mathematical operation to merge two sets of information.
Convolution provides a way of multiplying together two arrays of numbers, generally of
different sizes, but of the same dimensionality, to produce a third array of numbers of the
same dimensionality. This can be used in image processing to implement operators whose
output pixel values are simple linear combinations of certain input pixel values.

A convolutional filter (i.e., kernel) is a weight matrix (vector for one-dimensional
and cube for three-dimensional data) which operates through a sliding window on input
data. The convolution is performed by determining the value of a central pixel through
adding the weighted pixel values of all its neighbors together. Specifically, it is carried
out by sliding the kernel over the input image, generally starting at the top left corner,
so as to move the kernel through all the positions where the kernel fits entirely within
the boundaries of the input image. Each kernel position corresponds to a single output
pixel, the value of which is calculated by multiplying together the kernel value and the
underlying image pixel value for each of the cells in the kernel, and then adding all these
numbers together. The output is a new modified filtered image. Convolution is a general
purpose filter effect for images. Depending on the kernel structure, the operation enhances
some features of the input data (e.g., blurring, sharpening, and edge detection).

In the context of a CNN, a convolution is a linear operation that involves the mul-
tiplication of a set of weights with the input. Given that the technique was designed for
two-dimensional input, the multiplication is performed between an array of input data and
a two-dimensional array of weights (i.e., a filter or a kernel). Technically, note that in CNNs,
although it is referred to as a “convolution” operation, it is actually a “cross-correlation”.
That is, in CNNs, the filter is not flipped as is required in typical image convolutions; except
for this flip, both operations are identical.

Kernel (i.e., filter): A kernel is a small matrix used in image convolution, which
slides over the input image from left to right and top to bottom. Differently sized kernels,
which contain different patterns of numbers, produce different results through convolution
operation. The size of a kernel is arbitrary, but 3 × 3 or 5 × 5 is often used. Think of a filter
similar to a membrane that allows only the desired qualities of the input to pass through it.

Feature map: The feature maps of a CNN capture the application result of the filters
to an input image (i.e., at each layer, the feature map is the output of that layer). Think of it
as (higher level) representations of the input. The feature map(s) is/are the output image(s)
of each convolutional layer(s). The resultant number of feature maps equals the number
of filters.

Data augmentation (DA) [124]:
ML (especially DL) model performance often improves with an increase in the amount

of data. The common case in most ML/DL applications, especially in image classification
tasks, is that obtaining new training data is not easy. Thus, we need to make good use of the
existing (relatively small) training set. DA is one technique to expand the training dataset
from existing training data in order to improve the performance and generalizability of
DL models. DA enriches (i.e., “augments”) the training data by creating new examples
through random transformation of existing ones. This way, we artificially boost the size
of the training set, reducing overfitting. Thus, to some extent, DA can also be viewed as a
regularization technique.

Image DA is perhaps the most well-known type of DA and involves creating trans-
formed versions of images in the training dataset that belong to the same class as the
original image. The ultimate goal is to expand the training dataset with new, plausible
examples (i.e., variations of the training set images that are most likely to be seen by DL
models). For example, a horizontal flip of a bike photo may make sense, because the photo
could be taken from the left or right. A vertical flip of a bike image does not make sense
and would probably not be appropriate as the model is very unlikely to see a picture of an
upside down bike. Transformations for image DA include a range of operations from the
field of image manipulation (e.g., rotation, shifting, resizing, flipping, zooming, exposure
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adjustment, contrast change, and much more). This way, a lot of new samples can be
generated from a single training example.

Note that image DA is typically only applied to the training dataset, and NOT to the
validation or test dataset. This is different from data preparation such as image resizing and
pixel scaling; those must be performed consistently across all datasets that interact with the
model. The choice of the specific DA techniques used for a training dataset must be chosen
carefully and within the context of the training dataset and knowledge of the problem
domain. It can be useful to experiment with DA methods in isolation and in concert to see
if they result in a measurable improvement to model performance, perhaps with a small
prototype dataset, model, and training run.

DeepLabV3+ [125]: DeepLabV3 was firstly proposed to enable deep CNNs to seg-
ment features in images at multiple scales. ResNet-50 and ResNet-101, two variations on the
popular residual network (ResNet) architecture, are the tested backbones for DeepLabV3.
Through the use of residual blocks, atrous convolution, and a spatial pyramid pooling
module, the authors showed that their new architecture achieved comparable perfor-
mance to other SOTA models in image segmentation tasks without the need for further
post-processing. The authors further improved DeepLabV3 and named the new version
DeepLabV3+ [126], which combines atrous spatial pyramid pooling modules with an
encoder–decoder module. This further improved the performance of DeepLabV3 while
sharpening predicted feature boundaries. The DeepLabV3+ architecture is very popular in
the water body extraction literature.

Generative adversarial network (GAN): GAN is a class of unsupervised DL frame-
works in which two neural networks compete with each other. One network, the generator,
tries to create synthetic or false images which fool the discriminator network. The discrim-
inator, in turn, attempts to discern which images coming from the generator are actual
vs. synthetic images [127]. GANs use a cooperative zero-sum game framework to learn.
Among many variants of GAN, cycleGAN [128] is a technique for training unsupervised
image translation models using the GAN architecture and unpaired collections of images
from two different domains. CycleGAN has been demonstrated on a wide range of applica-
tions, including season translation, object transfiguration, style transfer, and generating
photos from paintings.

Generalization, overfitting, underfitting and regularization (referenced [123,129,130]):

The prediction results of an ML/DL model sit somewhere between (a) low-bias,
low-variance, (b) low-bias, high-variance, (c) high-bias, low-variance, and (d) high-bias,
high-variance. A low-biased, high-variance model is called overfit and a high-biased,
low-variance model is called underfit. A trained model achieves the best performance,
through generalization, when the best trade-off between underfitting and overfitting is
found. Learning with good accuracy is good, but generalization is what matters most.
A good model is supposed to have both low bias and low variance. Overfitting and
underfitting should both be avoided, where regularization may help.

Generalization: In ML/DL, generalization refers to the ability of a trained ML/DL
model to react to new (i.e., previously unseen) data, drawn from the same distribution as
the training data used to create the model. That is, after being trained on a training set, an
ML/DL model can digest new data and make accurate predictions. The generalizability of
an ML/DL model is central to the success of that model.

Overfitting vs. underfitting: Variance and bias are two important terms in ML. Vari-
ance refers to the variety of predicted values made by an ML model (target function). Bias
means the distance of the predictions from the actual (true) target values. A high-biased
model means its prediction values (average) are far from the actual values. In addition,
high-variance prediction means the prediction values are highly varied.

If an ML/DL model has been trained too well on training data, it will be unable to
generalize. It will make inaccurate predictions when given new data, making the model
useless even though it is able to make accurate predictions for the training data. This is
called overfitting. Underfitting happens when a model has not been trained enough on the
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data. Underfitting models are not useful either, as they are not capable of making accurate
predictions, even with the training data.

Low error rates and a high variance are good indicators of overfitting. To avoid
overfitting, part of the training dataset is typically set aside as the “test set” to check
whether a trained model is overfitting. If the training data has a low error rate and the
test data has a high error rate, it signals overfitting. An overfit model would have very
low training error on seen training data but very high error from unseen datasets (e.g.,
testing dataset and new datasets beyond training and testing data). This is because the
model maps the training set perfectly and any deviation from the training set would result
in errors. An underfit model has high training error in training data and testing error in
testing data and thus in new unseen data. This is because the model cannot generalize the
training data correctly. Thus, the model will have a very high training error.

Regularization (also known as shrinkage): When an ML/DL model becomes too
complex, it is most likely to suffer from overfitting. To avoid overfitting, regularization is a
collection of methods to constrain and make an ML/DL model simpler and less flexible.
Specifically, regularization methods are used to avoid high variance (i.e., bias/underfitting)
and overfitting and thus to increase generalization. Intuitively, it follows that the function
the model represents is simpler, less unsteady. Thus, predictions are smoother, and overfit-
ting is less likely. Certain approaches are applied to different ML algorithms, for example,
pruning for DT, dropout techniques for NN, and adding a penalty parameter to the cost
function in regression.

Google Earth (GE): GE is a computer software, formerly known as Keyhole Earth-
Viewer, that renders a 3D representation of Earth based primarily on satellite imagery. It
has a web version at https://earth.google.com/web/, accessed on 2 January 2022. Since
GE version 4.3, Google fully integrated Street View into Google Earth. Street View displays
360◦ panoramic street-level photos of select cities and their surroundings. The photos were
taken by cameras mounted on automobiles, can be viewed at different scales and from
many angles, and are navigable by arrow icons imposed on them.

Google Earth Engine (GEE) and Microsoft Planetary Computer (MPC):

GEE and MPC share similar goals (e.g., cloud storage and computing support for geospa-
tial datasets), but have their own primary focus. For example, GEE is the pioneer in the area of
RS cloud computing (launched in 2010, has 495 datasets in total as of 22 December 2021), and
MPC, launched in 2020 (contains 17 datasets in total as of 22 December 2021), with a primary
focus on climate change and sustainable environmental studies.

GEE [131,132]: GEE is a cloud-based platform for planetary-scale geospatial analysis,
launched in 2010 by Google. GEE combines a multipetabyte catalog of satellite imagery
and geospatial datasets with planetary-scale analysis capabilities. Scientists, researchers,
and developers use GEE to detect changes, map trends, and quantify differences on the
Earth’s surface. GEE brings Google’s massive computational capabilities to bear a variety of
high-impact societal problems (e.g., deforestation, drought, disaster, disease, food security,
water management, climate monitoring, and environmental protection). GEE has been
available for commercial use from 2021 and remains free for academic and research use.

MPC [133,134]: The world lacks comprehensive, global environmental data. Microsoft
Chief Environmental Officer (CEO), Dr. Lucas Joppa, imagines an international database
that would provide the world with “information about every tree, every species, all of our
natural resources”. Microsoft President Brad Smith further emphasized that “it should be
as easy for anyone in the world to search the state of the planet as it is to search the internet
for driving directions or dining options”, and Microsoft believes technology and AI is the
key to get there, in hopes that this information will allow people to “come together and
solve some of the greatest environmental and sustainability challenges we face today”.

To support sustainability decision-making with the power of cloud computing and
AI, similar to GEE, since December 2020, Microsoft is using ML and computing power
to aggregate global environmental data (contributed by individuals around the world
coupled with machinery placed in water, space, land, and air environments) into a planetary
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computer for a sustainable future. MPC, described as a “global portfolio of applications
connecting trillions of data points”, is designed to use AI to synthesize environmental data
into practical information regarding the Earth’s current ecosystems. For the first time, there
will be a concise and comprehensive compendium of international ecosystem data. Not only
will this allow for essential environmental information to be readily available to individuals
across the world, but the planetary computer will predict future environmental trends
through ML. In short, MPC integrates a multipetabyte catalog of global environmental
data with APIs, a flexible scientific computing environment that allows people to answer
global questions about that data, and applications that place those answers in the hands of
conservation stakeholders.

Image classification: The concept of image classification in RS and ML/DL settings
has different meanings. In RS research, the image classification is at pixel level (this is what
semantic segmentation does in CV, ML, and DL settings; see the concept definition below).
In contrast, in an ML and DL setting, image classification does not refer to assigning each
individual pixel to a class (e.g., vegetation, water), but rather to assign the entire image to a
specific class (e.g., flooded vs. not flooded) [135].

Instance segmentation: Unlike semantic segmentation, instance segmentation identi-
fies each object instance of each pixel for every known object within an image. Thus, labels
are instance-aware. Instance segmentation is essential to tasks such as counting the number
of objects and reasoning about occlusion.

Normalized difference moisture index (NDMI) [136,137]: Normalized difference
moisture index (NDMI) is a satellite-derived index from the near-infrared (NIR) and short
wave infrared (SWIR) channels of RS imagery (note that some literature used NDMI
interchangeably with NDWI; check the NDWI entry in this Appendix B for clarification).

NDMI is sensitive to the moisture levels in vegetation, and thus used to determine
vegetation water content. It can be used to monitor droughts as well as monitor fuel
levels in fire-prone areas. NDMI uses NIR and SWIR bands to create a ratio designed to
mitigate illumination and atmospheric effects. It is calculated as a ratio between the NIR
and SWIR values from RS imagery, see the formula below. For example, in Landsat 4–7,
NDMI = (Band 4 − Band 5)/(Band 4 + Band 5). In Landsat 8, NDMI = (Band 5 − Band
6)/(Band 5 + Band 6). Delivered NDMI is a single band image. Similar to NDVI, NDMI
values are between −1 and 1.

NDMI = (NIR − SWIR)/(NIR + SWIR)

Normalized difference vegetation index (NDVI) [138]: NDVI is a pixel-wise math-
ematical calculation rendered on an image. It is an indicator of plant health, calculated
by comparing the values of absorption and reflection of red and near-infrared (NIR) light.
A single NDVI value can be determined for every pixel in an image, ranging from an
individual leaf to a 500-acre wheat field, depending on the RS imagery resolution.

NDVI = (NIR − Red)/(NIR + Red)

NDVI values always fall between −1 and 1. Values between −1 and 0 indicate dead
plants, or inorganic objects (e.g., water surfaces, manmade structures such as houses,
stones/rocks, roads, clouds, snow). Bare soil usually falls within 0.1–0.2 range; and plants
will always have positive values between 0.2 and 1 (1 being the healthiest plants). Healthy,
dense vegetation canopy should be above 0.5, and sparse vegetation will most likely fall
within 0.2 to 0.5. However, it is only a rule of thumb and we should always take into
account the season, type of plant, and regional peculiarities to meaningfully interpret
NDVI values.

Normalized difference water index (NDWI) and modified NDWI (MNDWI) [139–141]:
The NDWI is an RS-based indicator sensitive to the change in the water content of leaves or
water content in water bodies (detailed below). There are two versions of NDWI.
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One was defined to monitor changes in water content of leaves, using near-infrared
(NIR) and short-wave infrared (SWIR) wavelengths, proposed by Gao in 1996 [139] (to
avoid confusion of the two versions of NDWI, this version is also called NDMI, see NDMI
entry in this Appendix B).

NDWI = (NIR − SWIR)/(NIR + SWIR)

The other version of NDWI, proposed by McFeeters in 1996, was defined to monitor
changes related to water content in water bodies, using green and NIR wavelengths [140].
The calculation formula is given below. It is obvious that the NDWI in the papers we
reviewed in this article is the version of water content in water bodies. Modification of
normalized difference water index (MNDWI) was proposed [141] for improved detection
of open water by replacing NIR spectral band with SWIR.

NDWI = (Green − NIR)/(Green + NIR)

PyTorch [142]: PyTorch is an open-source deep learning framework developed and
maintained by Facebook Artificial Intelligence Research (FAIR). At its core, PyTorch is a
mathematical library that performs efficient computation and automatic differentiation
on graph-based models. Achieving this directly is challenging, although thankfully, the
modern PyTorch API provides classes and methods that allow you to easily develop a suite
of deep learning models.

Random forest (RF): It is an ML (particularly, ensemble learning) algorithm that can
be used for both continuous (regression) and categorical (classification) tasks [143]. RF is
widely accepted as an efficient ensemble approach for land cover classification using RS
data. It handles imbalanced data, missing values, and outliers well [144].

Semantic segmentation: In contrast to instance segmentation, semantic segmentation
aims to predict categorical labels for each pixel for every known object within an image,
without differentiating object instances [145]. Thus, its labels are class-aware.

Support vector machine (SVM): SVM is a (supervised) machine learning algorithm
that provides solutions for both classification and regression problems. The support-vector
clustering [146] algorithm applies the statistics of support vectors (developed in the support
vector machine algorithm) to categorize unlabeled data and is one of the most widely used
clustering algorithms in many applications.

TensorFlow: TensorFlow is an open-source deep learning framework developed and
maintained by Google. Although using TensorFlow directly can be challenging, the modern
tf.keras API brings the simplicity and ease of use of Keras to the TensorFlow project.

Transfer learning (TL): TL is one powerful technique that makes learning in (deep) ML
transferable. TL was initially proposed in [147] and recently received considerable attention
due to recent significant advances in DL [123,148–152]. Inspired by humans’ capabilities
to transfer knowledge across domains (e.g., the knowledge gained while learning violin
can be helpful to learn piano faster), TL aims to leverage learned knowledge from a related
domain to achieve a desirable learning performance with minimized number of labeled
samples in a target domain [151]. The main idea behind TL is that it is more efficient to
take a DL model trained on an (unrelated) massive image dataset (e.g., ImageNet [87]) in
one domain, and transfer its knowledge to a smaller dataset in another domain instead of
training a DL classifier from scratch [153], as there are universal, low-level features shared
between images for different problems.

U-Net: CNNs gave decent results in easier image segmentation problems but have not
made any good progress on complex ones. This is where UNet comes in. UNet was first
designed especially for medical image segmentation in [154]. It demonstrated such good
results that it was used in many other fields afterwards. UNet is an improved architecture
developed for biomedical image segmentation [154]. The UNet architecture stems from a
fully convolutional network (FCN) first proposed by Long and Shelhamer in [155] and its
architecture was modified and extended to work with fewer training images and to yield
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more precise segmentations. The architecture of UNet resembles a “U”, which justifies
its name.

The UNet architecture includes three sections: the contraction, the bottleneck, and the
expansion section. The bottommost layer mediates between the contraction layer and the
expansion layer. The number of expansion blocks is the same as the number of contraction
blocks. Most importantly, UNet uses a novel loss weighting scheme for each pixel such
that there is a higher weight at the border of segmented objects. Specifically, all pixel-wise
softmax applied on the resultant image is followed by a cross-entropy loss function. Each
pixel is classified into one of the classes. The idea is that even in segmentation, every
pixel has to lie in some predefined category. Thus, a segmentation problem was converted
into a multiclass classification and it performed very well compared to the traditional
loss functions.

Appendix C. Common Evaluation Metrics in AI/ML/DL/CV Classification and

Regression, and Segmentation Tasks

Many evaluation criteria have been proposed and are frequently used to assess the
performance of AI/ML/DL/CV models. No single evaluation metric can tell a full story of a
trained model. To better select appropriate evaluation metrics for certain domain problems
and tasks, in this appendix, we provide brief definitions to some commonly used evaluation
metrics (ordered alphabetically; referenced [123,129,130,156,157]) in AI/ML/DL/CV for
classification, regression, and segmentation tasks in our review (i.e., those listed in the
field of “Evaluation metrics” in Tables 2 and 3). For readability, we group some related
metrics together. In the following formulas, TP refers to true positive, FP to false positive,
FN to false negative, and TN to true negative. TP samples are those that are in the positive
category and are correctly predicted as positive. FPs are not annotated as the positive
category but are incorrectly predicted as positive. TNs are correctly predicted as negative,
while FNs are predicted as negative when they are actually labeled as positive.

Accuracy, overall accuracy (OA), commission error (CE), omission error (OE), pro-

ducer’s accuracy (PA), user’s accuracy (UA), and pixel accuracy (PixA) [31,156,158–161]:
To better understand the metrics in this group, let us use the same confusion matrix

shown below in Figure A2 to calculate the accuracy metrics in this group. Confusion
matrix, also called error matrix, is a table that allows us to visualize the performance of a
classification algorithm by comparing the predicted value of the target variable with its
actual value [162].

 

Figure A2. Example confusion matrix. The classified data indicate the ML/DL model predicted
results and the reference data refer to the actual manually annotated data (image source: [161]).
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(Average) Accuracy: Classification accuracy is the number of correct predictions made
as a ratio of all predictions made. Accuracy with a binary classifier is measured as the
following:

Accuracy (for binary classifier) = (TP + TN)/(TP + TN + FP + FN)

Note, however, that (average) accuracy for a multiclass classifier is calculated as the
average of each accuracy per category (i.e., sum of accuracy for each category/number
of categories) (see the definition and examples of binary classification and multiclass
classification in Appendix A4 in [84]). For the example confusion matrix shown in Figure A2
(it is a multiclass classification problem), the (average) accuracy is calculated as follows:

(average) accuracy = (21/27 + 31/37 + 22/31)/3 = 77.5%

Accuracy is perhaps the most common evaluation metric for classification problems,
and it is also the most misused. It is really only meaningful and appropriate when there are
an equal number of observations in each category and that all predictions and prediction
errors are equally important, which is often not the case. Accuracy alone cannot tell a full
meaningful story of the ML/DL models, especially when a dataset encounters a severe data
imbalance problem (detailed in [86]); other metrics, such as F-score, need to tell whether an
ML/DL is not suffering from overfitting when the trained model has very high accuracy.

OA: It essentially tells us out of all of the samples what proportion were classified
correctly. OA is usually expressed as a percent, with 100% accuracy being a perfect
classification where all samples were classified correctly. OA is the easiest to calculate and
understand but ultimately only provides very basic accuracy information. OA is formally
defined as follows, where N is the number of total samples. OA calculation from the
example confusion matrix in Figure A2 is (21 + 31+ 22)/95 = 74/95 = 77.9%

OA = Number of correctly classified samples/N = (TP + TN)/N

OE [31]: Errors of omission refer to samples that were left out (or omitted, as its name
implies) from the correct category in the classified results. An example of OE is when pixels
of a certain thing (such as maple trees), are not classified as maple trees.

OE is sometimes also referred to as a type II error (false negative). An OE in one
category will be counted as a CE in another category. OEs are calculated by reviewing
the reference sites for incorrect classifications. In the example confusion matrix shown in
Figure A2, this is carried out by going down the columns for each category and adding
together the incorrect classifications and dividing them by the total number of samples for
each category. A separate OE is generally calculated for each category, as this will allow us
to evaluate the classification accuracy and error for each category. OE is the inverse of the
PA (i.e., OE = 1 − PA).

OE example based on the confusion matrix shown in Figure A2:
Water: Incorrectly classified reference sites: 5 + 7 = 12. Total # of reference sites = 33.

OE = 12/33 = 36%

Forest: Incorrectly classified reference sites: 6 + 2 = 8. Total # of reference sites = 39.

OE = 8/39 = 20%

Urban: Incorrectly classified reference sites: 0 + 1 = 1. Total # of reference sites = 23.

OE = 1/23 = 4%

CE [31]: Errors of commission are in relation to the classified results. An example of
an CE is when a pixel predicts the presence of a feature (such as trees) and, in reality, it is
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absent (no trees are actually present). CE is sometimes also referred to as a type I error (false
positive). CEs are calculated by reviewing the classified sites for incorrect classifications.
This is performed by going across the rows for each class and adding together the incorrect
classifications and dividing them by the total number of classified sites for each class. CE
is the inverse of the UA (i.e., CE = 1 − UA). This makes sense and is easy to interpret, as
when the predicted results are very reliable (with high UA score), the classification error
would be low.

CE example based on the confusion matrix shown in Figure A2:
Water: Incorrectly classified sites: 6 + 0 = 6. Total # of classified sites = 27.

CE = 6/27 = 22%

Forest: Incorrectly classified sites: 5 + 1 = 6. Total # of classified sites = 37.

CE = 6/37 = 16%

Urban: Incorrectly classified sites: 7 + 2 = 9. Total # of classified sites = 31.

CE = 9/31 = 29%

PA: Similar to UA, PA is category-level-based accuracy. PA is the accuracy from the
point of view of the “producer”. PA tells us how often real features in the ground truth
are correctly shown in the classified results, or the probability that a certain ground truth
category is classified as such. PA is formally defined as the following and is complement of
the omission error (OE). PA = 100% − OE.

PA = Number of correctly classified reference samples for a particular category/Number of
samples from reference (i.e., annotated) data for that category = 1 − omission error

PA example based on the example confusion matrix in Figure A2:
PA for water category = Correctly classified reference sites for water category/Total #

of reference sites for water category = 21/33 = 64%.
PA for forest category = Correctly classified reference sites for forest category/Total #

of reference sites for water category = 31/39 = 80%.
PA for urban category = Correctly classified reference sites for urban category/Total #

of reference sites for uran category = 22/23 = 96%.
UA: Similar to PA, UA is category-level-based accuracy. UA is the accuracy from

the point of view of a “user”, not the “producer”. UA essentially tells us how often the
classified category will actually align with the ground truth. This is referred to as reliability
(memory tip: users often care about reliability). The UA is a complement of the commission
error (i.e., UA = 100% − Commission Error). UA is defined as the following:

UA = Number of correctly classified samples for a particular category/Number of
samples classified (i.e., predicted) to that category = 1 − commission error.

UA example based on the example confusion matrix in Figure A2:

UA for water category = Correctly classified sites for water category/Total # of
classified sites for water category = 21/27 = 78%.

UA for forest category = Correctly classified sites for forest category/Total # of
classified sites for water category = 31/37 = 84%.

UA for urban category = Correctly classified sites for urban category/Total # of
classified sites for uran category = 22/31 = 70%.

PixA [158]: Pixel accuracy is perhaps the easiest to understand metric conceptually. It
is the percent of pixels in the image that are classified correctly. It is the simplest metric,
simply computing a ratio between the amount of properly classified pixels and the total
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number of pixels. See the PixA calculation formula below, where N represents the total
number of pixels in the assessment image, which equals TP + TN + FP + FN. TP denotes
the number of target-pixels that were correctly detected, FN denotes the number of water
body pixels not classified, FP is the number of nontarget pixels classified, and TN is the
number of nontarget pixels classified as nontarget pixels. This metric can sometimes
provide misleading results when the category representation is small within the image, as
the measure will be biased in mainly reporting how well the classifier identifies negative
category (i.e., where the category we care about, such as the water body category, is
not present).

PixA = (TP + TN)/N

Edge overall accuracy (EOA), edge commission error (ECE), and edge omission error [33]:
The authors in [33] defined a few evaluation metrics for water edge pixel extraction

accuracy. See the following steps for how these metrics are computed.

1. Manually draw the boundary of water body.
2. Apply morphological expansion to the water body boundary from step (1) to create a

buffer zone, which is centered on the boundary line (radius = three pixels).
3. Finally, the pixels in the buffer area are judged.

Let the total number of pixels in the buffer area be M, the number of correctly classified
pixels be MR, the number of missing pixels be MO, and the number of false alarm pixels be
MC. EOA, EOE, and ECE are defined as below:

EOA = MR/M × 100%

EOE = Mo/M × 100%

ECE = Mc/M × 100%

Intersection over union (IoU), mean intersection over union (mIoU), and frequency

weighted intersection over union (FWIoU):

In the formal definitions below, TP, TN, FP, and FN are the number of true positive,
true negative, false positive, and false negative samples, respectively.

IoU [163,164]: It is the most popular and simple evaluation metric for object detection
and image segmentation used to measure the overlap between any two shapes such as two
bounding boxes or masks (e.g., ground-truth and predicted bounding boxes). Values of
IoU lie between 0 and 1, where 0 means two boxes do not intersect and 1 indicates two
boxes completely overlap. If the prediction is completely correct, IoU = 1. The lower the
IoU, the worse the prediction.

mIoU [43]: It is a common evaluation metric for semantic image segmentation, which
first computes the IOU for each semantic class and then computes the average over classes.
The formula is given below.

mIoU = TP/(TP + FP + FN)

FWIoU [46,158]: It is an improvement over mIoU. As its name implies, it weights
each class importance depending on their appearance frequency. The formal definition of
FWIoU is given below, where n is the number of categories.

FWIoU =
1

n + 1 ∑n
i=0

(
TPi

TPi + TNi + FNi
× TPi + FNi

TPi + FPi + TNi + FNi

)
Kappa statistic [156,159,165–172]:
Kappa (aka Cohen’s kappa) statistic, a statistic that is frequently used to measure

inter-annotator reliability (i.e., agreement) and also intra-annotator reliability for qualitative
(i.e., categorical) items, is a very useful, but underutilized, metric. The importance of rater
reliability is important because it represents the extent to which the data collected in a study
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are correct representations of measured variables. Note that this measure is to compare
labeling by different human annotators, not a classifier versus a ground truth.

Cohen’s kappa statistic is a very good measure that can handle both multiclass and
imbalanced class problems very well. In ML, for a multiclass classification problem (see
Appendix A4.2 in [84] for the definition and other types of classification tasks), measures
such as accuracy, precision, or recall do not provide the complete picture of the performance
of a classifier. In addition, for imbalanced class problems (see section II.D Imbalanced
data in [86] for details about data imbalance), measures such as accuracy are misleading,
so measures such as precision and recall are used. There are different ways to combine
the two, such as the F-measure, but the F-measure does not have a very good intuitive
explanation, other than it being the harmonic mean of precision and recall.

The kappa statistic can be calculated by the following formula, where Pr(a) represents
the actual observed agreement, and Pr(e) represents expected (i.e., estimated) chance
agreement). Thus, Pr(a) = OA.

Kappa Statistic = (Pr(a) − Pr(e))/(1 − Pr(e))

Note that the sample size consists of the number of observations made across which
raters are compared. Cohen specifically discussed two raters in his papers. The kappa is
based on the chi-square table, and the Pr(e) is obtained through the following formula [166],
where: cm1, cm2, rm1, rm2 represent column 1 marginal, column 2 marginal, row 1 marginal,
row 2 marginal, respectively, and n represents the number of observations (not the number
of raters).

Expected (Chance) Agreement =

(
cm1×rm1

n

)
+
(

cm2×rm2

n

)
n

Similar to most correlation statistics, the kappa score can range from −1 to +1. Scores
above 0.8 are generally considered good agreement; zero or lower mean no agreement
(practically random labels). According to the scheme of [165], a value of <0 indicates no
agreement, 0–0.20 is slight, 0.21–0.40 is fair, 0.41–0.60 is moderate, 0.61–0.80 is substantial,
and 0.81–1 is almost perfect agreement.

Kappa is one of the most commonly used statistics to test interrater reliability, but it has
limitations. Judgments about what level of kappa should be acceptable for health research
are questioned. Cohen’s suggested interpretation may be too lenient for health-related
studies because it implies that a score as low as 0.41 might be acceptable [166]. Additional
measures have been proposed to make use of the kappa framework.

For example, in [159], the authors advocate against the use of kappa and proposed
the alternative measures of quantity and allocation disagreement. Quantity disagreement
(QD) is the disagreement between the classification and reference data resulting from a
difference in proportion of categories. Allocation disagreement (AD) assesses a difference
in the spatial location of categories. The two measures (i.e., QD and AD) sum to overall
error (i.e., 1–OA).

Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) [123,
129,130,173]:

MAE: also called mean absolute deviation, MAE finds the average of the absolute
differences between actual and predicted values. It gives an idea of how wrong the
predictions were. MAE measure gives an idea of the magnitude of the error, but no idea of
the direction (e.g., over- or underpredicting). MAE is defined as below [174], where yi is
the actual true value, and ŷi is the predicted value. MAE value lies between 0 to ∞. Small
value indicates a better model, and a value of 0 indicates no error, or perfect predictions.

MAE =
1
N ∑N

i=1|yi − ŷi|

MAE is more robust to the outliers than MSE, as it is not sensitive to outliers. MAE
treats larger and small errors equally. The main reason is that in MSE, through squaring
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the errors, the outliers, which usually have higher errors than other samples, obtain more
attention and dominance in the final error and thus impact the model parameters. In
addition, there is an intuitive maximum likelihood (MLE) interpretation behind MSE and
MAE metrics. If we assume a linear dependence between features and targets, then MSE
and MAE correspond to the MLE on the model parameters by assuming Gaussian and
Laplace priors on the model errors, respectively.

MAPE [175]: MAPE, also known as mean absolute percentage deviation (MAPD), is
the mean or average of the absolute percentage errors of forecasts. Error is defined as actual
value (i.e., observed value) minus the forecasted value. Percentage errors are summed
without regard to sign to compute MAPE. It is the most common measure used to forecast
error and works best if there are no extremes to the data (and no zeros). Because absolute
percentage errors are used, it avoids the problem of canceling positive and negative errors.
The formula is given below, where M is mean absolute percentage error, n is number of
times the summation iteration happens, At is the actual value, and Ft is the forecast value.
The smaller the MAPE, the better the forecast.

M =
1
n ∑n

t=1

∣∣∣∣At − Ft

At

∣∣∣∣
Precision, recall, sensitivity, specificity, and F-score [156]:
Each measure in this group is a set-based measure [176]. The values of those measures

are all from 0 to 1, with the best value at 1 and the worst score at 0.
Precision: The precision is mathematically defined by the following formula. Precision

attempts to answer the question What proportion of positive identifications was actually
correct? Precision refers to the proportion of the samples that is correctly classified amongst
the samples predicted to be positive and is equivalent to user’s accuracy (UA) for the
positive category, which is also equivalent to 1 − commission error.

Precision = TP/(TP + FP)

Recall (also called sensitivity or true positive rate): it refers to the proportion of the
reference data for the positive category that is correctly classified and is equivalent to
producer’s accuracy (also equivalent to 1 − omission error) for the positive category. It
is calculated by the following formula. Recall attempts to answer the following question:
What proportion of actual positives was identified correctly?

Recall = TP/(TP + FN)

Specificity (also called true negative rate): it refers to the proportion of negative
samples that is correctly predicted and is equivalent to the producer’s accuracy (PA) for the
negative category [177].

Specificity = TN/(TN + FP)

F-score (also called F1-score, F measure): Depending on the application domain, we
may need to give a higher priority to recall or precision, but there are many applications
where both recall and precision are important. Thus, it is natural to think of a way to
combine these two metrics into a single one. One popular metric that combines precision
and recall is called F1-score. The F1-score can be interpreted as a weighted harmonic mean
of the precision and recall and is formally defined as below. There is always a trade-off
between precision and recall of a model; if making the precision too high, we would see a
drop in the recall rate, and vice versa.

F1-score = (2 × Precision × Recall)/(Precision + Recall)
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The generalized version of F-score is defined as follows. F1-score is a special case of
F_β when β = 1.

Fβ =
(

1 + β2
)
× precision × recall

β2 × precision + recall

R2, mean squared error (MSE), root mean squared error (RMSE), and root mean

squared logarithmic error (RMSLE) [123,129,130,173]:
R2 is based on correlation between actual and predicted value; MAE is based on

absolute value of error; MSE and RMSE are both based on square of error.
R2: R-squared, also known as the coefficient of determination, is a value between 0

and 1 that measures how well a regression line fits the data (i.e., indication of the goodness
of fit of a set of predictions to the actual values in a regression model). The value range of
R2 lies between 0 and 1 for no-fit and perfect fit, respectively. R2 is not sensitive to outliers.

The R-squared formula compares our fitted regression line to a baseline model. This
baseline model is considered the “worst” model. The baseline model is a flat line that
predicts that every value of y will be the mean value of y. R-squared checks to see if our
fitted regression line will predict y better than the mean.

R2 = 1 − SSRES
SSTOT

= 1 − ∑i(yi − ŷi)
2

∑i(yi − y)2

SSRES refers to the residual sum of squared errors of the regression model; yi is the
actual value, and ŷi is the predicted value through the regression model. For example, if
the actual y value was 58 but we had predicted it would be 47 then the residual squared
error would be 121 and we would add that to the rest of the residual squared errors for
the model.

SSTOT is the total sum of squared errors. This compares the actual y values to the
baseline model (i.e., the mean). We square the difference between all the actual y values
and the mean y and add them together.

MSE: MSE is perhaps the most popular metric used for regression problems. It
essentially finds the mean (i.e., average) of the square of the difference (i.e., squared error)
between actual and estimated values. Similar to MAE, MSE provides a gross idea of the
magnitude of error. Let us assume we have a regression model that predicts the price of
houses in the Boston area and let us say for each house we also have the actual price the
house was sold for. The MSE can be calculated as the following, where N is the number of
samples, yi is the actual house price, and ŷi is the predicted value through the regression
model. MSE value lies between 0 to ∞. Small value indicates a better model. Sensitive to
outliers, it punishes larger errors more. MSE incorporates both the variance and the bias of
the predicting model.

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2

MSE measures how far the data are from the model’s predicted values, whereas R2

measures how far the data are from the model’s predicted values compared to how far the
data are from the mean. The difference between how far the data are from the model’s
predicted values and how far the data are from the mean is the improvement in prediction
from the regression model.

RMSE: very straightforward, RMSE is the square root of MSE. Sometimes people use
RMSE to have a metric with scale as the target values. Taking the house pricing prediction
example, RMSE essentially shows what is the average deviation in your model predicted
house prices from the target values (the prices the houses are sold for). Similar to MSE,
RMSE value lies between 0 to ∞, with a small value indicating a better model. Similar to
MSE, RMSE is sensitive to outliers and punishes larger errors more. The value of RMSE
is always greater than or equal to MAE (RMSE >= MAE). The greater difference between
them indicates greater variance in individual errors in the sample.
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RMSLE: both RMSE and RMSLE are the techniques to find out the difference between
the actual values and the predicted values by an ML/DL model. RMSLE is the root mean
squared error of the log-transformed predicted and log-transformed actual values. RMSLE
is formally defined as follows, where X denotes the predicted value and Y denotes the
actual value, and n is the number of samples. Note that RMSLE adds 1 to both actual and
predicted values before taking the natural logarithm to avoid taking the natural log of
possible 0 (zero) values.

RMLSE =

√
1
n ∑n

i=1(log(xi + 1)− log( yi + 1))2

RMSLE is very robust to outliers. When we compare the formula of the RMSE and
RMSLE, the only difference is the log function. Basically, what changes is the variance
measured. This small difference makes RMSLE much more robust to outliers than RMSE. In
RMSE, outliers can explode the error term to a very high value, but in RMLSE, the outliers
are drastically scaled down, therefore nullifying their effect.

RMSLE is often used when we do not want to penalize huge differences in the pre-
dicted and the actual values when both predicted and true values are huge numbers. (1) If
both predicted and actual values are small: RMSE and RMSLE is same. (2) If either pre-
dicted or the actual value is big: RMSE > RMSLE. (3) If both predicted and actual values
are big: RMSE > RMSLE (RMSLE becomes almost negligible).
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