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Foreword 

Learning analytics and its sister community of educational data mining have, over 
the years, matured into a field where an increasing community of scholars and 
practitioners work together to understand the best methods for exploring the high-
volume data available about learners and their learning. This has led to an increasing 
number of handbooks and online courses. However, none of these prior resources 
had focused on providing step-by-step tutorials for how to carry out the various types 
of analyses conducted in learning analytics. This book, by Saqr and López-Pernas, 
and their colleagues, fills this important gap, offering clear and concise step-by-step 
tutorials combined with high level explanations of why each step is necessary. As 
such, it is an important contribution to the field and represents a manuscript that I 
am sure many learners will find extremely valuable—both newcomers and relatively 
experienced practitioners looking to learn a new method. 

Professor of education and computer science Ryan Baker 
University of Pennsylvania
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Foreword 

My introduction to learning analytics was unexpected. A brief conversation with 
George Siemens in early June 2010 sparked a transformative journey for me, with 
lasting impact on many. George proposed co-organizing a conference on “learning 
analytics.” It was the first time I’d heard of the phrase. The phrase resonated deeply, 
connecting with my previous collaborations with Jelena Jovanovic, Chris Brooks, 
Marek Hatala, Griff Richards, Gord McCalla, Colin Knight, and other colleagues in 
Canada’s LORNET research network (mid 2000s). 

Excited to collaborate, I was initially a bit skeptical about George’s ambition to 
organize the conference by September 2010. However, I learned to appreciate his 
eagerness to implement ideas swiftly. We eventually reconnected and agreed on a 
late February 2011 date, giving us extra six months. Despite remaining nervous, I 
underestimated the potential impact. The experience proved me wrong in the most 
positive way, and I’m forever grateful to George, a dear friend, for his unwavering 
vision and belief. 

The conference we organized, the 1st International Conference on Learning 
Analytics and Knowledge (LAK), was held in Banff, Canada, in late February 
and early March 2011. The frigid temperatures (–35 ◦C) were matched by the 
conference’s energy. It attracted a large audience and fostered an open, vibrant, 
productive, and transformative community of researchers and practitioners. This 
conference is often considered the birth of learning analytics, and the definition 
we used in the chairs’ message in the conference proceedings remains widely used 
in the field. 

Learning analytics is now a well-established field. Since our early conversations, 
we’ve emphasized the importance of methods. My dear friend and esteemed col-
league, Shane Dawson, a co-founder of the Society for Learning Analytics Research 
and field pioneer, first referred to learning analytics as a “bricolage field,” one that 
borrows methods and theories from data science, artificial intelligence, network 
science, psychology, psychometrics, sociology, and natural language processing. 

As founding editors-in-chief of the Journal of Learning Analytics, Shane and I 
recognized the need to introduce and promote diverse learning analytics methods. 
This led us to collaborate with Mykola Pechenizkiy, then-president of the Inter-
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x Foreword

national Educational Data Mining Society, to edit a special section on learning 
analytics tutorials featuring five papers on different methods. These papers, based 
on tutorials and workshops from the first two Learning Analytics Summer Institutes, 
became some of the journal’s most impactful publications. It demonstrated the 
need for learning analytics methods tutorials. However, 8 years have passed, a 
significant timeframe considering the rapid advancements in artificial intelligence 
and the methods they’ve driven. 

Therefore, I’m delighted to see Learning Analytics Methods and Tutorials edited 
by Mohammed Saqr and Sonsoles López-Pernas. This timely book addresses a 
critical need in learning analytics. 

The book offers a comprehensive guide to data analysis methods for researchers 
and practitioners of all experience levels. It starts with the basics, equipping 
beginners with R programming and data analysis skills through chapters on data 
cleaning and exploration. These skills are fundamental for understanding student 
data and preparing it for further analysis. Even for experts, the book offers advanced 
methods while emphasizing the broader applicability of these techniques beyond 
education. 

The core of the book explores various analytical approaches. Machine learning 
methods receive well-deserved attention, including introductions to commonly used 
methods—specifically, predictive modeling and clustering. Predictive modeling is 
frequently used in learning analytics to identify at-risk students or classify online 
discussions by analyzing past data patterns. This allows for early intervention to 
support students at different progress levels. Cluster analysis, another machine 
learning technique, groups students based on similar characteristics, behaviors, or 
learning outcomes. It’s commonly used to analyze learning strategies in different 
learning environments and can provide educators with valuable insights to tailor 
teaching support to diverse student needs. 

We’ve long recognized the dynamic nature of learning, with many learning 
processes unfolding over time. This highlights the need for temporal analytic 
methods in learning analytics. I’m pleased to see the book provides a rich guide 
to various temporal methods that analyze the order and timing of events in data 
about learning and learners. Techniques like sequence analysis and process mining 
leverage student activity traces to understand how learning unfolds over time. This 
is crucial for studying longitudinal processes like student engagement throughout a 
program or explaining connections between cognitive and metacognitive processes 
in solo and group learning activities. 

Network analysis has been a prominent methodological approach since the early 
days of learning analytics. The book offers excellent coverage of network analytic 
approaches that explore the relational aspects of data about learners and learning 
environments. By examining interactions between learners, teachers, and topics, 
researchers and practitioners can understand collaboration patterns and identify 
student communities. These methods can be further enriched by combining them 
with temporal analysis to explore how these relationships evolve over time. The 
book also covers recent advancements in quantitative ethnography, introducing



Foreword xi

epistemic network and ordered network analysis, techniques I’ve extensively used 
with collaborators in recent years. 

I have recently been advocating for the need to establish stronger collabora-
tive ties between learning analytics and psychometrics. Psychometrics is a well-
established discipline that can offer many relevant methods to learning analytics. 
Specifically, psychometrics can help us address issues that have received insufficient 
attention in learning analytics—reliability and validity. Without addressing these 
issues, learning analytics can be jeopardized. Therefore, I am delighted that the final 
section of the book delves into psychometrics, a field that investigates relationships 
between psychological constructs (like metacognition) and observable data (like 
test scores). The book explores techniques like factor analysis and structural 
equation modeling, which help researchers test hypotheses and theories about 
these relationships. By mastering these methods, learning analytics researchers 
and practitioners can gain valuable insights from student data to improve learning 
experiences and outcomes. 

The book editors and chapter authors must be commended for their valuable 
contributions to learning analytics. What is outstanding about this book is that it 
provides source code illustrating all the methods introduced. Readers can directly 
use the code to build hands-on skills on the many high-importance methods for 
learning analytics that are so thoughtfully introduced in this book. The book can be 
directly used in any graduate or postgraduate course on learning analytics. I wish 
this book had been available 3 years ago when we developed the graduate certificate 
in learning analytics at Monash University. Many of its chapters would have been 
directly used as part of the graduate certificate program. And, I can easily see that 
many similar programs around the world will greatly benefit from this outstanding 
book. The book is equally suitable for practitioners and researchers in education 
institutions, schools, or industry who either want to develop basic data analytic skills 
or advance their skills with methods they haven’t used before. 

The overall learning analytics community is significantly richer because of this 
book. For that, we all owe immense thanks to Mohammed Saqr and Sonsoles López-
Pernas, the book editors, for their incredible leadership and vision! 

Distinguished Professor of Learning Analytics, Dragan Gašević 
Director of Research in the Department of Human 
Centred Computing, 
Director of the Centre for Learning Analytics, 
Monash University 
Clayton, VIC, Australia



Preface 

Learning analytics is a fast-paced discipline at the cross-section of cutting-edge 
methodological advances and theoretical innovations. Most of the methods have 
been born long before the field of learning analytics and continue to be developed 
and advanced across diverse fields. Therefore, researchers and students have to 
navigate through fragmented literature from several fields and learn to apply such 
methods. Notwithstanding the difficulties of identifying which literature or guides 
one can use, several methodological questions remain unanswered in these books. 
This is of course because such literature was prepared for other disciplines and offers 
case studies that are oftentimes not relevant. 

Being learning analytics researchers ourselves, we have been through these 
difficulties. Learning a new methodology took several trials and searching for 
answers that were rather hard to get. Collaboration with other researchers from 
learning analytics and other fields—e.g., statistics and methodology—has helped 
us navigate these difficulties. In many situations, we would contact statisticians or 
package developers to help with solving an issue or collaborate on a paper. With 
the publication of our papers, we got several emails from researchers asking about 
technical details. It has become clear to us that there is a need for a well-documented 
resource for learning analytics methods. In fact, this is how we—the editors of 
this book—met. Sonsoles was doing mobility in Sweden, where Mohammed was 
working, and she wanted to do a learning analytics study for a dataset she collected 
from a programming course. Lacking any resource that could help her kick-start her 
exploration of the emerging field, she sought collaboration. Ever since, we had an 
interesting journey of working together on so many projects. 

The lack of resources and methodological guidance was a problem then and 
continues to be a problem today. We thought that the arduous journey in learning 
analytics should not be endured by everyone, and we decided to make that resource 
with the help of the community as well as our collaborators. More than a year of 
intensive work is within your hands now. We hope that we have contributed to LA 
by providing an informative resource that students, researchers, and practitioners 
can use.
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xiv Preface

In this book, we tried to include all the basics of R as a programming language 
as well as the basics of data cleaning, statistics, and data manipulation. In doing 
so, we wanted the newcomers to find an easy entry to the field. We also tried to 
be as comprehensive as we could and included almost all major methodologies. 
For every method, we started with the basics, explaining the main concepts, the 
essential techniques, and basic functions. In subsequent chapters, we went deeper 
into advanced methods that are at the forefront of novel methodological innovations. 
We also used real-life learning analytics data and made it readily available to 
researchers. To do so, we collaborated with world-renowned researchers, package 
developers, and methodological experts from other fields to offer an unprecedented 
resource on novel topics that are hard to find any resource for. 

We hope the readers find this book useful as a guide through learning analytics 
methods, highlighting the ways in which data-driven insights can benefit educators, 
learners, and researchers. 

Joensuu, Finland Mohammed Saqr 
Sonsoles López-Pernas
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Capturing the Wealth and Diversity 
of Learning Processes with Learning 
Analytics Methods 

Sonsoles López-Pernas, Kamila Misiejuk, Rogers Kaliisa, 
Miguel Ángel Conde-González, and Mohammed Saqr 

1 Introduction 

The official birth of the field of learning analytics is often ascribed to the first 
Learning Analytics & Knowledge Conference in 2011, where the widely used 
definition was coined as “the measurement, collection, analysis, and reporting of 
data about learners and their contexts, for purposes of understanding and optimizing 
learning and the environments in which it occurs” [1]. Over the years, learning 
analytics has grown in scope, scale, and diversity and has since attracted researchers 
from diverse backgrounds bringing several disciplines together under one umbrella. 
Such increasing interest has resulted in a large number of publications, research 
groups, specialized units, and funding of large projects. Although other data-
intensive fields started before learning analytics (e.g., academic analytics in 2007 
and educational data mining in 2008), interest in such methods—and in closely 
related fields at large—has surged only after the rapid adoption of learning analytics. 
The unique position of learning analytics at the intersection of education and 
computer science while reaching out to several other disciplines such as statistics, 
psychometrics, econometrics, mathematics, and linguistics has accelerated the 
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growth and expansion of the field. Therefore, it is a crucial endeavor for learning 
analytics researchers to stay abreast of the latest methodological and computational 
advances to drive their research forward. The diversity and complexity of the 
existing methods can make this task overwhelming both for newcomers to the 
learning analytics field and for experienced researchers. When conducting learning 
analytics research, researchers need to decide which data can and must be collected 
from learners to give answers to their research questions. They need to understand 
and decide which analytical methods may apply to such data and their potential 
limitations. They also need to interpret the findings and contextualize them in light 
of the existing literature and learning theories. With the motivation to accompany 
researchers in this challenging journey, this book aims to provide a methodological 
guide for researchers to study, consult, and take the first steps toward innovation. 

Every method described in this book was developed before learning analytics, for 
instance, predicting students’ performance can be traced back to almost a century 
ago [2], and using social network analysis to understand students’ networks dates 
back to over five decades ago [3]. Similarly, process mining, sequence analysis, 
and Markov models can all be traced to times before the birth of the field of 
learning analytics (e.g., [4–6]). Not only were these methods born outside learning 
analytics, but they also continue to be developed, refined and advanced in their 
relevant fields. Nevertheless, learning analytics has succeeded in taking advantage 
of these methodological developments as well as the increasingly available digital 
data, computational resources, and data science, and in popularizing data-intensive 
research in education to bring this field together [7]. 

The diversity of methods and fields that have given rise to the field of analytics is 
evident in the list of authors of the chapters of this book, which include authors 
of R packages, and experts in methods and applications to drive a state-of-the-
art blend. In the first category, we have the world renowned sequence analysis 
experts Gilbert Ritschard and Matthias Studer (University of Geneva), who are 
the creators of TraMineR, which is the most central R package for sequence 
analysis. Closely related, we have Satu and Jouni Helske (University of Turku), 
developers of seqHMM, an innovative R package for Mixture Hidden Markov Mod-
els of sequential data with tons of visualizations and statistical analysis potentials. 
Also, our list of authors includes Luca Scrucca (University of Perugia), author 
of mclust, one of the most widely used clustering packages for classification, 
and density estimation using Gaussian finite mixture models, and Keefe Murphy 
(Maynooth University), creator of several R packages such as MoEClust for 
Gaussian parsimonious clustering models with covariates. Our list of authors also 
includes David Shaffer (University of Wisconsin-Madison), the creator of rENA 
(an R package for Epistemic Network Analysis) along with other members of the 
rENA and the Ordered Network Analysis groups: Yuanru Tan and Andrew Ruis 
(University of Wisconsin-Madison), and Zachari Swiecki (Monash University). We 
also have Leonie V.D.E. Vogelsmeier (Tilburg University), author of lmfa, an  
innovative R package for latent Markov factor analysis which offers transition, 
and mixture factor analysis. We have Santtu Tikka (University of Jyväskylä),



Capturing the Wealth and Diversity of Learning Processes with Learning. . . 3

author of the dynamite R package for dynamic multivariate panel models. In 
addition, among our authors, we have prominent methodology experts in several 
domains: Joran Jongerling (Tilburg University); Emorie Beck (UC Davis); Merja 
Heinäniemi and Juho Kopra (University of Eastern Finland), and Marieke Schreuder 
(KU Leuven). Lastly, we count on several senior and emerging learning analytics 
researchers: Jelena Jovanović (University of Belgrade); Ángel Hernández-García, 
Javier Conde, Laura Del-Río-Carazo, and Carlos Cuenca-Enrique (Universidad 
Politécnica de Madrid); Adrienne Traxler (University of Copenhagen); Kamila 
Misiejuk (University of Bergen); Miguel Ángel Conde (University of Leon), and 
Marion Durand (University of Eastern Finland). Besides, the editors (Mohammed 
Saqr and Sonsoles López-Pernas) from the University of Eastern Finland have 
a long history of learning analytics research working with diverse methods and 
interdisciplinary research that spans most learning analytics methods. 

Thanks to the breadth and diversity of authors’ backgrounds and expertise, the 
book offers a comprehensive array of methods that are described thoroughly. A 
step-by-step tutorial using the R programming language with real-life datasets and 
case studies is presented for each method. The book starts with an introductory 
section for readers to get up-to-speed with the R programming language, in which 
we cover the basics of the language, data preprocessing, basic statistics, and 
data visualization. Then, we move to classic machine learning methods, such 
as prediction and clustering applied to educational data. These methods enable 
readers to predict achievement, dropout, and students at risk, as well as to group 
students into different groups or profiles according to certain characteristics such 
as motivation or engagement. This is followed by an extensive section devoted 
to temporal methods such as sequence analysis, Markovian modeling, and process 
mining, which allow taking advantage of the endless possibilities of trace log data. 
The book then moves on to discuss network analysis in its many forms including 
social network analysis, epistemic network analysis, ordered network analysis, 
and temporal networks. Such methods are crucial for understanding collaboration 
and relationships between individuals and concepts, which are key aspects of 
learning. The book concludes with a section on psychometrics such as psychological 
networks, factor analysis, and structural equation modeling, which are fundamental 
tools for the analysis of self-reported data among others. We hope the readers find 
this book useful as a guide through learning analytics methods, highlighting the 
ways in which data-driven insights can benefit educators, learners, and researchers 
alike. 

The book targets learning analytics researchers (and education researchers at 
large) at all stages. It is suitable to teach newcomers to the field, even with 
no experience in R, since the introductory chapters are aimed at getting readers 
acquainted with the basics of R programming and data analysis. The book also 
covers advanced methods that may be of interest to experts in the field of learning 
analytics or data science in general. Moreover, the skills taught are transferable to 
other fields, i.e., can be applied in other contexts outside education. 

We hope the readers find this book useful as a guide through learning analytics 
methods, highlighting the ways in which data-driven insights can benefit educators, 
learners, and researchers.
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2 How the Book Is Structured 

2.1 Introductory Chapters 

The first section of the book provides the basis for getting up to speed with the 
R programming language and the data that will be analyzed throughout the book. 
This section covers the fundamental steps of the data analysis process, such as data 
preprocessing and exploratory analysis. During data preprocessing, educational data 
is cleaned and prepared for further analysis. Many crucial decisions about building 
and conceptualizing learning indicators from raw data are made in this essential step 
of the learning analytics process. Exploratory analysis enables an early detection of 
interesting phenomena that can be discovered in the data using visualizations or 
simple statistics. Using these techniques helps to guide the direction of the in-depth 
analysis and the selection of more advanced analytical methods. 

Chapter 2: A Broad Collection of Datasets for Educational Research Train-
ing and Application [8] 

Sonsoles López-Pernas, Mohammed Saqr, Javier Conde, Laura Del-Río-Carazo 
Since the goal of this book is to provide a guide and tutorial on how to 

implement learning analytics methods, the use of relevant data is a key aspect of 
the contextualization of these methods within learning analytics research. Chapter 2 
kicks off the book with an introduction to the most relevant types of data in learning 
analytics and provides a diverse collection of curated datasets that we will use 
throughout the book to illustrate the different methods. Understanding the data 
under examination is a crucial step for the interpretability of the analyses that 
we will learn to perform in this book, and therefore, readers should familiarize 
themselves with the datasets described in this chapter to facilitate following the 
tutorials presented in subsequent ones. 

Chapter 3: Getting Started with R for Education Research [9] 
Santtu Tikka, Juho Kopra, Merja Heinäniemi, Sonsoles López-Pernas, 

Mohammed Saqr 
The first tutorial-like chapter of the book provides an introduction to the basics of 

R programming, with a focus on the Rstudio integrated development environment 
and the tidyverse programming paradigm. The R programming language has 
become a popular tool for conducting data analysis in the field of learning analytics. 
The chapter covers topics such as data types and structures, control structures, pipes, 
functions, loops, and input/output operations. By the end of the chapter, readers 
should have a solid understanding of the basics of R programming and have the 
necessary tools to learn more in-depth topics such as data wrangling and basic 
statistics using R. 

Chapter 4: An R Approach to Data Cleaning and Wrangling for Education 
[10] 

Juho Kopra, Santtu Tikka, Merja Heinäniemi, Sonsoles López-Pernas, 
Mohammed Saqr



Capturing the Wealth and Diversity of Learning Processes with Learning. . . 5

After learning the basics of the R programming language, Chap. 4 goes one 
step further by introducing the reader to data wrangling, also known as data 
cleaning and preprocessing. Data wrangling is a critical step in the data analysis 
process, particularly in the context of learning analytics. This chapter provides an 
introduction to data wrangling using R and covers topics such as data importing, 
cleaning, manipulation, and reshaping with a focus on tidy data. Specifically, readers 
will learn how to read data from different file formats (e.g., CSV, Excel), how 
to manipulate data using the dplyr package, and how to reshape data using the 
tidyr package. Additionally, the chapter covers techniques for combining multiple 
data sources. 

Chapter 5: Introductory Statistics with R for Educational Researchers [11] 
Santtu Tikka, Juho Kopra, Merja Heinäniemi, Sonsoles López-Pernas, 

Mohammed Saqr 
Statistics play a fundamental role in learning analytics, providing a means to 

analyze and make sense of the vast amounts of data generated by learning environ-
ments, visualize relationships, test hypotheses, and make comparisons. Chapter 5 in 
this book provides an introduction to basic statistical concepts using R and covers 
topics such as measures of central tendency, variability, correlation, and regression 
analysis. Specifically, readers will learn how to compute descriptive statistics, test 
hypotheses, and perform simple linear regression analysis. The chapter also includes 
practical examples using realistic data sets from the field of learning analytics. 
By the end of the chapter, readers should have a solid understanding of the basic 
statistical concepts and methods commonly used in learning analytics, as well as a 
practical understanding of how to use R to conduct statistical analysis of learning 
data. 

Chapter 6: Visualizing and Reporting Educational Data with R [12] 
Sonsoles López-Pernas, Kamila Misiejuk, Santtu Tikka, Mohammed Saqr, Juho 

Kopra, Merja Heinäniemi 
Visualizing data is central in learning analytics research, underpins learning 

dashboards, and is a prime method for reporting results and insights to stakeholders. 
Chapter 6 guides the reader through the process of generating meaningful and 
aesthetically pleasing visualizations of different types of datasets using well-known 
R packages. The main visualization types will be demonstrated with an explanation 
of their usage and use cases. Furthermore, learning-related examples will be 
discussed in detail. For instance, readers will learn how to visualize learners’ logs 
extracted from learning management systems to show how trace data can be used to 
track students’ learning activities. Readers will also be able to generate professional-
looking tables with summary statistics. 

2.2 Machine Learning Methods 

The next section follows with some of the classic machine learning methods 
of learning analytics, which date to the early beginnings of the field: predictive
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modelling and cluster analysis. Predictive modelling is a supervised learning method 
used widely in learning analytics research, where past data patterns are analysed to 
predict students’ future outcomes. Clustering is an unsupervised learning method 
that detects similar patterns in the data and is typically used to group students 
based on their personal characteristics, observed behavior, or learning outcomes. 
Both methods are applied to address various challenges in education, such as pre-
venting student drop-out, comparing strategies to improve academic performance, 
or identifying disengaged students. In addition, the results are often used to trigger 
specific interventions to help students succeed or to raise awareness about students’ 
performance based on specific indicators. 

Chapter 7: Predictive Modelling in Learning Analytics Using R [13] 
Jelena Jovanovic, Sonsoles López-Pernas, Mohamed Saqr 
Prediction of learners’ course performance has been a central theme in learning 

analytics since the inception of the field. The main motivation behind it has been to 
identify learners who are at risk of low achievement so that they could be offered 
timely support based on intervention strategies derived from analysis of learners’ 
data. To predict student success, numerous indicators, from varying data sources, 
have been examined and reported in the literature, as well as various predictive 
algorithms. Chapter 7 introduces the reader to predictive modeling, through a review 
of the main objectives, indicators, and algorithms that have been operationalized 
in previous works as well as a step-by-step tutorial on how to perform predictive 
modeling in learning analytics using R. The tutorial demonstrates how to predict 
student success using learning traces originating from a learning management 
system, guiding the reader through all the required steps from the data preparation 
to the evaluation of the built models. 

Chapter 8: Dissimilarity-Based Clustering Educational Data Using R [14] 
Keefe Murphy, Sonsoles López-Pernas, Mohammed Saqr 
Chapter 8 presents another central method in learning analytics research: cluster-

ing. Clustering is a collective term that refers to techniques aimed at uncovering 
patterns and subgroups within the data. Finding patterns or differences among 
students enables teachers and researchers to improve their understanding of the 
diversity of students—and their learning processes—and tailor their support to 
different needs. This chapter introduces the theory underpinning the dissimilarity-
based clustering methods. Then, the focus is placed on some of the most widely-
used heuristic dissimilarity-based clustering algorithms; namely, K-means, K-
medoids, and agglomerative hierarchical clustering. Methods for choosing the 
optimal number of clusters are provided, particularly the criteria that can guide the 
choice of clustering solution among multiple competing methodologies, and not 
only the choice of the number of clusters K for a given method. All of these are 
demonstrated in detail with a tutorial in R using a real-life educational dataset. 

Chapter 9: An Introduction and R Tutorial to Model-Based Clustering in 
Education via Latent Profile Analysis [15] 

Luca Scrucca, Mohammed Saqr, Sonsoles López-Pernas, Keefe Murphy 
Chapter 9 presents an alternative approach for capturing different patterns or 

subgroups within students’ behavior or functioning. Assuming that there is an
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average pattern that represents the entirety of student populations requires the 
measured construct to have the same causal mechanism, the same development 
pattern, and affect students in exactly the same way. Using a person-centered method 
(Finite Gaussian mixture model or latent profile analysis), this chapter offers an 
introduction to model-based clustering that includes the principles of the methods, 
a guide to the choice of number of clusters, an evaluation of clustering results 
and a detailed guide with code and a real-life dataset. The tutorial part shows 
how to uncover the heterogeneity within engagement data by identifying latent or 
unobserved clusters. The discussion elaborates on the interpretation of the results, 
the advantages of model-based clustering as well as how this method compares with 
others. 

2.3 Temporal Methods 

We continue our journey with an introduction to temporal methods in learning 
analytics. Unlike the methods based on mere counts of events or activities, temporal 
methods acknowledge the order and temporality of events, as well as the transitions 
thereof, which are key aspects of learning. Temporal methods have garnered 
increasing attention since they allow researchers to take advantage of the trace 
log data that students leave behind when using educational technology and also to 
study longitudinal processes (e.g., a whole study program). Such methods originate 
in social sciences and have been imported and adapted into the learning analytics 
field. We provide three chapters focused on sequence analysis, and two on transition 
analysis through Markovian modeling and process mining. 

Chapter 10: Sequence Analysis in Education: Principles, Technique, and 
Tutorial with R [16] 

Mohammed Saqr, Sonsoles López-Pernas, Satu Helske, Marion Durand, Keefe 
Murphy, Matthias Studer, Gilbert Ritschard 

Sequence analysis is a data mining technique that is increasingly gaining ground 
in learning analytics. Sequence analysis enables researchers to extract meaningful 
insights from sequential data, i.e., to summarize the sequential patterns of learning 
data and classify those patterns into homogeneous groups. Chapter 10 introduces 
readers to sequence analysis techniques and tools through real-life step-by-step 
examples of sequential trace log data of students’ online activities. Readers are 
guided on how to visualize the common sequence plots and interpret such visu-
alizations. An essential part of sequence analysis is the discovery of patterns within 
sequences through clustering techniques. Therefore, this chapter demonstrates the 
various sequence clustering methods, calculation of cluster indices, and evaluation 
of clustering results. 

Chapter 11: Modeling the Dynamics of Longitudinal Processes in Educa-
tion. A Tutorial with R for The VaSSTra Method [17] 

Sonsoles López-Pernas, Mohammed Saqr
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Building upon the knowledge acquired in the previous chapter, Chap. 11 covers 
VaSSTra, a method for analyzing multiple variables across multiple time points. The 
idea behind this method is to summarize multiple variables at each time point into 
a single state using person-based methods. Then, sequence analysis can be used to 
analyze the sequences of such states for each person, and clustering techniques can 
be implemented to detect similar trajectories of the evolution of such states. The 
method is illustrated in a case study about engagement. Several engagement-related 
variables are derived from students’ online activities (frequency of each activity, 
regularity, etc.). These variables are used for clustering students into three states 
(active, moderate, and disengaged) at each course. Then, sequence analysis is used 
to map the sequence of engagement states across a whole program. Lastly, clustering 
mechanisms are used to detect distinct trajectories of engagement. 

Chapter 12: A Modern Approach to Transition Analysis and Process Mining 
with Markov Models in Education [18] 

Jouni Helske, Satu Helske, Mohammed Saqr, Sonsoles López-Pernas, Keefe 
Murphy 

Chapter 12 presents Markov models, a widely used technique to model temporal 
processes. Contrary to the deterministic approach seen in the previous sequence 
analysis chapters, Markovian models are probabilistic models, focusing on the 
transitions between states instead of studying sequences as a whole. The chapter 
provides an introduction to Markov models and differentiates between its most 
common variations: first-order Markov models, hidden Markov models, mixture 
Markov models, and hidden mixture Markov models. All implementations are 
illustrated with a step-by-step tutorial using the R package seqHMM using students’ 
longitudinal data. The chapter also provides a complete guide to performing 
stochastic process mining with Markovian models as well as plotting, comparing, 
and clustering different process models 

Chapter 13: Multichannel Sequence Analysis in Educational Research 
Using R [19] 

Sonsoles López-Pernas, Satu Helske, Mohammed Saqr, Keefe Murphy 
When dealing with learners’ data, sometimes one single source of information is 

not enough to capture all of the dimensions of the learning process. Fortunately, 
sequence analysis as a method supports the examination of multiple sequences 
(termed channels) at the same time as long as they follow the same time scheme. 
Chapter 13 covers multi-channel sequence analysis, allowing the reader to study 
and visualize synchronized sequences together, and cluster them into distinct 
trajectories based on the values of the various channels. We present two methods for 
clustering: one distance-based (see Chap. 10) and one based on Markovian models 
(see Chap. 12). We illustrate the method by studying the longitudinal association 
between student engagement and achievement across a study program. 

Chapter 14: The Why, the How, and the When of Educational Process 
Mining in R [20] 

Sonsoles López-Pernas, Mohammed Saqr 
Process mining is a recent analytical method that enables the extraction of 

meaningful insights from time-ordered event logs. The goal of process mining is to
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discover processes from the data, evaluate process efficiency, and help or enhance 
processes. Since its introduction in education, process mining has been used to map 
students’ learning processes, visualize learners’ strategies, as well as demonstrate 
differences in approach to learning across different learning groups. Chapter 14 
illustrates how to prepare learners’ data for process mining and how to visualize the 
process data using the bupaverse framework. Moreover, readers will learn how 
to examine the transitions between phases or activities within a learning process. 

2.4 Network Analysis 

The next section of the book deals with the relational aspects of analyzing educa-
tional data such as relationships between students, teachers, and topics. Network 
analysis is the underlying method used to study such relational aspects. Social 
network analysis allows researchers to study collaboration and discussion between 
peers and understand the role each student occupies in the network. Moreover, 
community finding allows the detection of distinct groups of peers in the network 
that interact with each other more than with the rest. We can even combine network 
analysis with the temporal methods presented in the last section through temporal 
networks or use epistemic or ordered network analysis to explore topic or construct 
co-occurrence. 

Chapter 15: Social Network Analysis: A Primer, a Guide and a Tutorial in 
R [21] 

Mohammed Saqr, Sonsoles López-Pernas, Miguel Ángel Conde, Ángel 
Hernández-García 

For five decades, learning networks have been used to map collaboration 
networks among students, study the influence of peers, and capture the relational 
dimension of collaborative learning. Additionally, networks have been used to study 
the semantics of discourse, relations between behaviors, and patterns of relations 
among teachers. Networks offer a powerful framework with vast potential for data 
analysis. Chapter 15 introduces the concept and methods of social network analysis 
and a detailed guide on how researchers can use network analysis using real-world 
data. The chapter demonstrates network analysis and visualisation with an emphasis 
on learners’ roles and relevance to the educational context. The chapter further 
provides a mathematical analysis and interpretation of the different social network 
metrics such as centrality and betweenness measures with several examples of how 
they can be used in practice. 

Chapter 16: Community Detection in Learning Networks Using R [22] 
Ángel Hernández-García, Carlos Cuenca-Enrique, Adrienne Traxler, Sonsoles 

López-Pernas, Miguel Ángel Conde, Mohammed Saqr 
In learning situations, communities can be groups of students within a whole 

cohort who collaborate with each to a larger extent than with other students in 
a learning situation. Finding these communities is integral to understanding the 
interaction process, the structure and behaviour of the formed groups and how they
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contribute to the overall learning process. Chapter 16 builds on the principles of 
social networks from Chap. 15 and introduces the topic of community detection. 
The main aim of community detection is to identify different groups or clusters 
of nodes within the network that share some similar characteristics. One way of 
understanding communities in social networks is as subnetworks where the number 
of internal connections is larger than the number of external connections, and 
therefore members of a community have a higher probability of being connected to 
each other than to members of other communities. The chapter focuses on detecting 
communities (groups of highly connected nodes) within a wider network and shows 
how to visualize them using R. 

Chapter 17: Temporal Network Analysis: Introduction, Methods, and Anal-
ysis with R [23] 

Mohammed Saqr 
Learning can be viewed as relational, interdependent, and temporal and therefore, 

methods that account for such multifaceted dynamic processes that unfold overtime 
are required. Chapter 17 combines the temporal and relational aspects in a single 
analytics framework: temporal networks. Temporal networks allow modeling of the 
temporal learning processes i.e., the emergence and flow of activities, communities, 
and social processes through fine-grained dynamic analysis. This can provide 
insights into phenomena like knowledge co-construction, information flow, and 
relationship building. This chapter introduces the basic concepts of temporal 
networks, their types (i.e, contact and interval), and techniques. The chapter further 
provides a detailed guide to temporal network analysis, which involves network 
building, visualization, and statistical analysis at the graph and node level. 

Chapter 18: Epistemic Network Analysis and Ordered Network Analysis in 
Learning Analytics [24] 

Yuanru Tan, Zachari Swiecki, Andrew Ruis, David Shaffer 
The increasing use of technology in many areas of society and life has led to an 

increasing amount of Big Data about human behavior and interaction. However, this 
volume of data is usually too large and strains the capabilities of human interpreta-
tion and the traditional social science research approaches. Chapter 18 presents two 
quantitative ethnographic approaches that link the power of statistics and in-depth 
ethnographic approaches to understand learning behaviour through large-scale 
qualitative data. Epistemic Network Analysis (ENA) and Ordered Network Analysis 
(ONA), are two methods for quantifying, visualizing, and interpreting network data. 
Taking coded data as input, ENA and ONA represent associations between codes 
(e.g., topics or categories) in undirected or directed weighted network models, 
respectively. Both techniques measure the strength of association among codes and 
illustrate the structure of connections in network graphs, quantify changes in the 
composition and strength of those connections over time, and enable comparison of 
networks. The chapter presents a thorough description of the methods and a step-
by-step guide on how to implement them with R.
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2.5 Psychometrics 

We finalize the book with a section on psychometrics. In the field of educational 
psychology, psychometrics aims to study how psychological constructs (e.g., 
intelligence or aptitude) are related to observable variables (e.g., test scores). 
Traditionally, psychometric methods in educational psychology have relied on self-
reported data from validated questionnaire-like instruments, although nowadays 
researchers have begun to make use of digital data. We present several techniques to 
investigate the relationship between measured variables and to test hypotheses and 
theories: psychological networks, factor analysis, and structural equation modeling 
(SEM). 

Chapter 19: Psychological Networks: A Modern Approach to Analysis of 
Learning and Complex Learning Processes [25] 

Mohammed Saqr, Emorie Beck, Sonsoles López-Pernas 
When analyzing psychological phenomena that take place in educational set-

tings, a multitude of variables are at play that may interact with, trigger, and 
influence each other. To understand such dependency between variables, it is not 
enough to analyze the linear relationships between each pair of variables, but rather 
such complexity calls for using more sophisticated methods that capture the full 
breadth of the interplay between variables: psychological networks. As opposed 
to social networks where nodes often represent people and edges represent the 
interactions or relations between them, the nodes in psychological networks repre-
sent observed psychological variables and edges represent a statistical relationship 
between them. Chapter 19 opens the section on psychometric methods by presenting 
the concept of psychological networks as well as a tutorial for their estimation, 
visualization, and interpretation with R. 

Chapter 20: Factor Analysis in Education Research Using R [26] 
Leonie V. D. E. Vogelsmeier, Mohammed Saqr, Sonsoles López-Pernas, Joran 

Jongerling 
Chapter 20 presents factor analysis, a method employed to reduce a large 

number of variables into fewer numbers of factors. The method is commonly used 
to identify which observable indicators are representative of latent, not directly-
observed constructs. This is a key step in developing valid instruments to assess 
latent constructs such as student engagement in educational research. The chapter 
describes the two main approaches for conducting factor analysis in detail and 
provides a tutorial on how to implement both techniques. The first is confirmatory 
factor analysis (CFA), a more theory-driven approach, in which a researcher actively 
specifies the number of underlying constructs as well as the pattern of relations 
between these dimensions and observed variables. The second is exploratory factor 
analysis (EFA), a more data-driven approach, in which the number of underlying 
constructs is inferred from the data, and all underlying constructs are assumed to 
influence all observed variables (at least to some degree). 

Chapter 21: Structural Equation Modeling with R for Education Scientists 
[27]
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Joran Jongerling, Sonsoles López-Pernas, Mohammed Saqr, Leonie V. D .E. 
Vogelsmeier 

Chapter 21 presents the last method in our book: Structural Equation Modeling 
(SEM). SEM is a suitable and useful method for modeling the multitude of 
relationships between latent variables and the observable indicators, as well as the 
relationship between the latent variables themselves to test theories. In its most 
common form, SEM combines CFA (covered in Chap. 20) with another method 
named path analysis. Just like CFA, SEM relates observed variables to latent 
variables that are measured by those observed variables and, as path analysis does, 
SEM allows for a wide range of regression-type relations between sets of variables 
(both latent and observed). This chapter presents an introduction to SEM, an 
integrated strategy for conducting SEM analysis that is well-suited for educational 
sciences, and a tutorial on how to carry out an SEM analysis in R. 

3 The Companion Code and Data 

To enhance your learning experience and practical understanding of the concepts 
discussed in this book, we have developed a companion code repository that 
accompanies each chapter. The repository contains all the code included in the step-
by-step tutorials that illustrate how to implement the different learning analytics 
methods covered in the book chapters. The code also contains custom functions that 
automate complex operations, making it easier for anyone to apply the techniques 
to their own datasets. Moreover, the code will guide the reader on how to generate 
visualizations, graphs, and plots aimed at helping to interpret and communicate 
findings effectively. The companion code repository can be accessed at:

O https://github.com/lamethods/code 
Along with the code, we provide a collection of datasets carefully curated to 

represent educational scenarios, allowing readers to experiment with the techniques 
discussed in the book and beyond. Each dataset is described in detail in Chap. 2.

O https://github.com/lamethods/data 
The combination of theoretical knowledge and practical application through the 

companion code and datasets will prepare the reader to begin their journey into the 
multidisciplinary field of learning analytics. 
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Part I 
Getting Started



A Broad Collection of Datasets for 
Educational Research Training and 
Application 

Sonsoles López-Pernas, Mohammed Saqr, Javier Conde, 
and Laura Del-Río-Carazo 

1 Introduction 

Learning analytics involves the combination of different types of data such as 
behavioral data, contextual data, performance data, and self-reported data to gain 
a comprehensive understanding of the learning process [1, 2]. Each type of data 
provides a unique perspective of the learning process and, when analyzed together, 
can provide a more complete picture of the learner and the learning environment. 
Throughout the book, we will work with different types of learning analytics data 
to illustrate the analysis methods covered. This chapter explores the most common 
types of data that are used in learning analytics and that we will work with in the 
subsequent book chapters. Such data include demographic and other contextual data 
about students, performance data, online activity, interactions with other students 
and teachers, and self-reported data. 

This chapter also describes a set of datasets that will be used throughout the book, 
as well as additional datasets that may be useful for readers to put the newly learned 
methods into practice. We will discuss the characteristics, structure, and contents of 
each dataset, as well as the context in which they have been used within the book. 
The goal of this chapter is to give readers a solid foundation for working with the 
datasets used in the book, as well as to provide a starting point for those interested 
in exploring additional data sources. 
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2 Types of Data 

2.1 Contextual Data 

Contextual data refer to data that provide information about the environment in 
which learning takes place, such as demographic information, socioeconomic status, 
and prior academic achievement. This type of data can be used to understand how 
external factors may impact learning, to identify students with similar profiles, and 
to develop targeted interventions. Demographic data can be used to understand 
the characteristics of the learners, such as age, gender, race, and ethnicity [3]. 
Socioeconomic data can be used to examine the impact of the socio-economic 
status of learners, such as income, employment status, and education level [4]. 
Prior academic achievement data can be used to understand how the academic 
background of the learners, such as their previous grades and test scores, may 
influence their learning at present [5]. The data about the learning context is also 
relevant to better understand and support students; for example, the level and 
difficulty of the educational program and courses, format (online vs. face-to-face), 
or pedagogical approach (e.g., flipped classroom, laboratory course, etc.) [6]. 

Descriptive statistics can be used to summarize and describe the main charac-
teristics of the contextual data, such as the mean, median, and standard deviation. 
In Chapters 3 [7] and 4 [8], we will learn how to clean and manipulate data and 
how to summarize it using descriptive statistics. In Chapter 6 [9], we will learn how 
to create different types of plots that will allow us to better understand the data. 
Cluster analysis can also be used to group similar students together. This can be 
used to identify patterns in the data and, for example, to understand which different 
groups of students exist in a course or degree and whether such groups differ in 
terms of, e.g., performance [10]. We cover clustering in Chapters 8 and 9 [11, 12]. 

It is important to bear in mind that contextual data are essential to understand 
learners’ and the learning process, but they should be used in combination with 
other types of data to obtain a comprehensive understanding [13]. It is also crucial 
to comply with data protection laws and regulations and to consider the ethical 
implications of collecting and operationalizing this type of data, especially when 
it comes to the existence of bias when making decisions based on demographic 
data [14]. 

2.2 Self-reported Data 

Self-reported data refers to data provided by students themselves (or other relevant 
stakeholders), such as data collected through surveys or questionnaires. This type of 
data can provide valuable insight into learners’ and teachers’ attitudes, motivation, 
and perspectives on their learning experiences, and can be used to inform the design 
of educational programs [15]. It is important to keep in mind that the data should
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be cleaned and pre-processed before applying any analytical techniques, especially 
when dealing with qualitative data (e.g., free text, video, or recordings), and the 
results should be interpreted with caution, keeping in mind the limitations of self-
reported data [16]. 

Regarding the techniques employed to analyze self-reported data, descriptive 
statistics and data visualization are commonly used to understand the distribution 
of responses and to identify patterns in the data (see Chapters 4 [8] and 6 [9]). 
Moreover, inferential statistics can be used to make inferences about a population 
based on a sample of data. This can include techniques such as t-tests and analysis 
of variance to identify significant differences between groups or chi-squared tests 
to identify associations in the data. Chapter 5 will help us better understand the 
most common statistical tests and how to implement them with R [17]. Depending 
on the research question, the type of data, and the level of detail required, a more 
sophisticated choice of analytical techniques might be needed. For instance, Factor 
Analysis is a statistical technique that can be used to identify underlying factors 
or dimensions that explain the relationships between multiple variables [18]. We 
will learn about it in Chapter 20 [19]. Similarly, Structural Equation Modeling 
(SEM) can be used to test complex models that involve multiple observed and 
latent variables that depend on one another. We cover this method in Chapter 21 
[20]. Moreover, self-reported data can be analyzed using psychological networks, a 
relatively new approach in the field of psychology that focuses on understanding 
psychological phenomena as interconnected networks of individual components. 
We cover this method in Chapter 19 [21]. Lastly, text mining can be used to 
analyze unstructured data, such as open-ended responses to surveys or interviews. 
It can be used to identify key concepts and themes, perform sentiment analysis, and 
summarize text [22]. This type of analysis is beyond the scope of this book. 

2.3 Activity Data 

Activity data in learning analytics refers to the data that is collected about a student’s 
interactions with educational technology. Activity data can include information such 
as the learning resources a student visits, the time spent on a resource, the buttons 
clicked, and the messages posted [23]. Data can be collected automatically by 
the learning management system (LMS) or other educational technology (e.g., a 
game, an intelligent tutoring system, eBooks, or coding environments). Log activity 
data can be used to track student progress, identify areas where students may be 
struggling, and personalize instruction [24]. For example, if a student is spending 
an excessive amount of time on a particular concept, it may indicate that they are 
having difficulty understanding that concept. In this case, the teacher can provide 
additional support or re-teach the concept to help the student improve. Log activity 
data can also be used to measure student engagement with the course content and 
to identify students who are not engaging with the material [25]. Log activity data
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have been used to detect students’ online tactics and strategies [26] paying attention 
not only to the frequency but to the order and timing of students’ events. 

Besides basic analysis using descriptive and inferential statistics, activity logs 
have been operationalized in many ways in learning analytics, especially using 
temporal methods that allow to take advantage of the availability of large amounts 
of timestamped data. For example, process mining—which we cover in Chapter 14 
[27]—has been used to investigate how students navigate between different online 
activities [28]. Sequence analysis has been used to detect and interpret students’ 
online tactics and strategies based on the order of learning activities within learning 
sessions [29]. We dedicate several chapters to this technique [30–33]. Such analyses 
have been complemented with cluster analysis, which allows to detect distinct 
patterns of students with different online behavior [34] (see Chapters 8 and 9 
[11, 12]). 

2.4 Social Interaction Data 

Social interaction data in learning analytics refers to the data collected about 
students’ interactions with each other (and sometimes teachers too) in a learning 
environment, social media, or messaging platforms. This can include data such 
as the frequency and nature of interactions, the content of discussions, and the 
participation of students in group work or collaborative activities. Social interaction 
data can be used to understand how students are engaging with each other and to 
identify patterns or roles that students assume [35]. For example, if a student is not 
participating in group discussions, it may indicate that they are feeling disengaged 
or are having difficulty understanding the material. Furthermore, social interaction 
data can be used to study how students’ depth of contributions to the discussion 
influences performance [36]. For example, an analysis of social interaction data may 
reveal that students who receive more replies from other students perform better in 
the course than students whose contributions do not spark a lot of interest. 

Social Network Analysis (SNA) is the most common method to study social 
interaction data. SNA comprises a wealth of quantitative metrics that summarize 
relationships in a network. In most cases in learning analytics, this network is 
formed based on students’ interactions. These metrics, named centrality measures, 
pave the path to apply other analytical methods such as cluster analysis to detect 
collaboration roles [37], or predictive analytics to determine whether performance 
can be predicted from students’ centrality measures [38]. We cover the basics of 
SNA in Chapter 15 of the book [39], community detection in Chapter 16 [40], and 
temporal network analysis in Chapter 17 [41]. Moreover, the nature and content of 
students’ interactions can be analyzed with Epistemic Network Analysis (ENA), a 
method for detecting and quantifying connections between elements in coded data 
and representing them in dynamic network models [42]. We cover this method in 
Chapter 18 [43].
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2.5 Performance Data 

Performance data refers to data that measures how well learners are able to apply 
what they have learned. This type of data can be used to evaluate the effectiveness 
of a particular educational activity, to identify areas where additional support may 
be needed, or to detect students at risk. Performance includes assessment data 
from tests, quizzes, projects, essays, exams, and other forms of evaluation used 
to track students’ progress. Assessment can be performed by different entities, 
such as teachers, peers or automated assessment tools. Moreover, assessment data 
can have different levels of granularity: it can be the grade for a specific task, a 
midterm or final exam, or a project; it can be the final grade for a course, or even 
a whole program GPA [44]. Performance data used for learning analytics may not 
necessarily be assessment data. For instance, pre-test and post-test data are used 
to evaluate the effectiveness of a particular educational intervention [45]. Another 
example is the data captured by audience response systems (ARSs) [46], which are 
often used to evaluate learners’ knowledge retention during lectures. 

Performance data are rarely analyzed on its own, but rather used in combination 
with other sources of data. For example, a common use case in learning analytics 
is to correlate or predict grades with indicators from several sources [13, 47], 
such as demographic data, activity data or interaction data. In the book, we cover 
predictive modelling in Chapter 7 [48]. Moreover, grades are often compared among 
groups or clusters of students, for example, to evaluate the performance of students 
that use different online learning strategies [29] or to establish whether students’ 
assuming different levels of collaboration also show differences in performance 
[49]. Clustering is covered in Chapters 8 and 9 [11, 12]. 

2.6 Other Types of Data 

In recent years, the landscape of data used for learning analytics has undergone a 
remarkable expansion beyond demographics, grades, surveys and digital logs [50]. 
This evolution has led to the incorporation of novel methodologies designed to 
capture a more holistic understanding of students’ learning experiences, including 
their physiological responses [51]. This progression encompasses a diverse range of 
data acquisition techniques, such as eye-tracking data that traces the gaze patterns 
of students, electrodermal activity which measures skin conductance and emo-
tional arousal, EEG (electroencephalogram) recordings that capture brain activity 
patterns, heartbeat analysis reflecting physiological responses to learning stimuli, 
and motion detection capturing physical movements during learning activities [52]. 
These physiological datasets are often combined with other forms of information, 
such as video recordings (e.g., [50]). Through the combination of various data 
modalities, researchers and educators can better understand how students engage 
with educational content and respond to different teaching methodologies [51]. This
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analysis goes beyond the capabilities of conventional digital learning tools, offering 
insights into the emotional, cognitive, and physical aspects of learning that might 
otherwise remain concealed [53, 54]. This synergistic analysis of multiple data 
sources is often referred to as “multimodal learning analytics”. In Chapter 13, we 
will cover multi-channel sequence analysis, a method suitable for analyzing several 
modalities of data at the same time [33]. 

3 Dataset Selection 

The present section describes a set of curated datasets that will be used throughout 
the book. In the introductory chapters, the reader will learn how to import datasets in 
different formats [7], clean and transform data [8], conduct basic statistics [17], and 
create visualizations [9]. Each of the remaining chapters covers a specific method, 
which is illustrated in a tutorial-like way using one or more of the datasets described 
below. All the datasets are available on Github.1 

3.1 LMS Data from a Blended Course on Learning Analytics

O Link to the dataset 
The first dataset in our book is a synthetic dataset generated from a real blended 

course on Learning Analytics offered at the University of Eastern Finland. The 
course has been previously described in a published article [55] which used the 
original (non-synthetic) dataset. The lectures in the course provided the bases for 
understanding the field of learning analytics: the recent advances in the literature, 
the types of data collected, the methods used, etc. Moreover, the course covered 
learning theories as well as ethical and privacy concerns related to collecting and 
using learners’ data. The course had multiple practical sessions which allowed 
students to become skilled in learning analytics methods such as process mining 
and social network analysis using real-life datasets and point-and-click software. 

Students in the course were required to submit multiple assignments; most of 
them were practical, in which they had to apply the methods learned in the course, 
but others were focused on discussing learning theories, ethics, and even conducting 
a small review of the literature. The course had a final project that accounted for 30% 
of the course final grade in which students had to analyze several datasets in multiple 
ways and comment and discuss their findings. Moreover, there was a group project 
in which students had to present an implementation of learning analytics application 
in an institutional setting, discussing the sources of data collection, the analyses that 
could be conducted, and how to present and make use of the data and analyses. The

1 O Github repository: https://github.com/lamethods/data. 


 -790 28989 a -790 28989 a
 
https://github.com/lamethods/data
https://github.com/lamethods/data
https://github.com/lamethods/data
https://github.com/lamethods/data
https://github.com/lamethods/data


A Broad Collection of Datasets for Educational Research Training and Application 23

course was implemented in a blended format: instruction was face-to-face while 
the learning materials and assignments were available online, in the Moodle LMS. 
Discussions among students in the group project also took place online in the LMS 
forum. 

The dataset contains four files: a file containing students’ online activities in 
Moodle, a file containing their grades, a file containing their demographic data, and 
a file that aggregates all the information. It is shared with a CC BY 4.0 license, 
which means that anyone is free to share, adapt, and distribute the data as long as 
appropriate credit is given. The dataset has been used in the introductory chapters 
of the book to learn the basics of R [7], data cleaning [8], basic statistics [17] 
and data visualization [9]. Moreover, it has been used in two additional chapters 
to illustrate to well-known learning analytics methods: sequence analysis [30] and 
process mining [27]. Below, we provide further details on each of the files of the 
dataset. 

3.1.1 Events 

The Events.xlsx file contains 95,580 timestamped Moodle logs for 130 distinct 
students. The activities include viewing the lectures, discussing on forums, and 
working on individual assignments, as well as discussion in small groups, among 
other events. The logs were re-coded to balance granularity with meaningfulness, 
i.e., grouping together logs that essentially represent the same action. For example, 
the activities related to the group project were all coded as Group_work, log  
activities related to feedback were coded as Feedback, logs of students’ access to 
practical resources or assignments were coded as Practicals, social interactions 
that are unrelated to learning were coded as Social, etc. Below we describe the 
columns of the dataset. A preview of the dataset can be seen in Table 1. In Fig. 1, 
we show the distribution of events per student.

• Event.context: Resource of the LMS where the event takes place, for example 
“Assignment: Literature review”.

• user: User name in the LMS.
• timecreated: Timestamp in which each event took place, ranging from Septem-

ber 9th 2019 to October 27th 2019.
• Component: Type of resource involved in the event. There are 13 distinct entries, 

such as Forum (39.11%); System (34.33%); Assignment (15.50%) and 10 others.
• Event.name: Name of the event in Moodle. There are 27 distinct entries, such as 

Course module viewed (35.89%); Course viewed (26.28%); Discussion viewed 
(13.77%) and 24 others.

• Action: Column coded based on the combination of the event name and context. 
There are 12 distinct entries, such as Group_work (34.25%); Course_view 
(26.45%); Practicals (10.48%) and 9 others.
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Fig. 1 Number of actions per student per type 

Table 2 Preview of the LA course Demographic dataset 

User Name Surname Origin Gender Birthdate Location Employment 

1 6eba3ff82 Amanda Mora Costa Rica F 28.2.1998 On 
campus 

None 

2 05b604102 Lian Abdullah Yemen F 19.11.1996 On 
campus 

None 

3 111422ee7 Bekim Krasniqi Kosovo M 30.1.1999 On 
campus 

None 

4 b4658c3a9 Yusuf Kaya Turkey M 16.6.1998 On 
campus 

None 

5 e6ec47f29 Zoran Babić Serbia M 29.10.1998 On 
campus 

Part-time 

6..129 

130 278a75edf Marwa Singh Qatar F 29.3.1996 Remote None 

3.1.2 Demographics 

The Demographics.xlsx file contains simulated demographic data on the 
students, including name, date of birth, gender, location (on-campus vs. remote 
student), and employment status. Table 2 shows a preview of the data.

• user: User identifier in the learning management system, with 130 distinct 
entries.

• Name: User’s first name.
• Surname: User’s last name.
• Origin: Country of origin.
• Gender: User’s gender: F (Female, 50%) or M (Male, 50%).
• Birthdate: Date of birth.
• Location: Whether the student is on campus or studying remotely, with 2 distinct 

entries, such as On campus (81.54%); Remote (18.46%).
• Employment: Whether the student is working part-time, full-time or not at all, 

with 3 distinct entries, such as None (70.77%); Part-time (25.38%); Full-time 
(3.85%).
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3.1.3 Results 

Performance data is provided in the Results.xlsx file, including grades per 
assignment and the overall course grade. Table 3 shows a preview of the data 
(the column names have been abbreviated in the preview). Figure 2 shows the 
distribution of grades per graded item.

• user: User name in the learning management system (it matches the previous 
files).

• Grade.SNA_1: Grade of the first SNA assignment (0–10).
• Grade.SNA_2: Grade of the second SNA assignment (0–10).
• Grade.Review: Grade of the studies’ review assignment (0–10).
• Grade.Group_self: Individual grade of the group project (0–10).
• Grade.Group_All: Group grade of the group project (0–10).
• Grade.Excercises: Grade of the practical exercises (0–10).
• Grade.Project: Final project grade (0–10).
• Grade.Literature: Grade of the literature review assignment (0–10).
• Grade.Data: Grade of the data analysis assignment (0–5).
• Grade.Introduction: Grade of the introductory assignment (0–10).
• Grade.Theory: Grade of the theory assignment (0–10).
• Grade.Ethics: Grade of the ethics assignment (0–10).
• Grade.Critique: Grade of the critique assignment (0–10).
• Final_grade: Final course grade (0–10). 

3.1.4 AllCombined 

This file AllCombined.xlsx contains the students’ demographics, grades, and 
frequency of each action in the LMS. The columns from students’ demographic data 
and grades remain the same, while the event data has been grouped per student for 
each type of event (Action column in the Events dataset), i.e., there is a new 
column for each type of event that contains the number of events of that type that 
each student had. Moreover, a new column AchievingGroup separates the high 
achievers from the low achievers. Table 4 shows a preview of the new columns of the 
data (the column names have been abbreviated) that were not shown in the previous 
previews (Fig. 3).

• Frequency.Applications: Number of events related to the “Applications” 
resource.

• Frequency.Assignment: Number of events related to the assignments’ submis-
sion.

• Frequency.Course_view: Number of visits to the course main page.
• Frequency.Feedback: Number of views of the assignment feedback.
• Frequency.General: Number of events related to general learning resources.
• Frequency.Group_work: Number of events related to the group work.
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Fig. 2 Grade per student and graded item

• Frequency.Instructions: Number of events related to assignment instructions.
• Frequency.La_types: Number of events related to the “LA types” resource.
• Frequency.Practicals: Number of events related to the practicals.
• Frequency.Social: Number of events related to the forum discussion.
• Frequency.Ethics: Number of events related to the “Ethics” resource.
• Frequency.Theory: Number of events related to the “Theory” resource.
• Frequency.Total: Number of events overall.
• AchievingGroup: Categorization as high achievers (top 50% grades) and lows 

achievers (bottom 50% grades). 

3.2 LMS Data from a Higher Education Institution in Oman

O Link to the dataset 
The next dataset includes the log data of students enrolled in a computing 

specialization in a higher education institution in Oman. The dataset contains data 
from students enrolled in the sixth semester or beyond. The data was recorded across 
five modules (Spring 2017–2021) and includes the records of 326 students with 40 
features in total, including the students’ academic information (24 features), logs 
of students’ activities performed on the Moodle LMS (10 features), and students’ 
video interactions on the eDify mobile application (6 features). The academic data 
includes demographic data, academic data, study plan, and academic violations. 
The Moodle activity data includes students’ timestamped activities in Moodle. The 
eDify data contains video interactions in the eDify mobile application. 

The dataset has been described in an article by Hasan et al. [56] and was 
originally made available in the Zenodo repository [57] with a CC BY 4.0 license, 
which means anyone can share and adapt the dataset but must give credit to the 
author and cannot apply any further restrictions to the dataset. Besides the raw data,
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Fig. 3 Relationship between total frequency of events and final grade 

the dataset includes a processed file that contains a series of indicators that can be 
used for different purposes such as predictive modeling or clustering of students’ 
profiles. It has been used in several publications with the purpose of predicting 
student performance using different algorithms and approaches [58, 59]. The main 
files of the dataset are described below. 

3.2.1 Student Academic Information 

Students’ academic information downloaded from the institutional information 
system. The data are spread in 15 files (starting with KMS), but have been combined 
in a single file (KMSmodule.RDS) for convenience. Table 5 shows a preview of 
the data. The resulting dataset has the following structure:

• file: Original file name that contains the module offering identifier (e.g., “KMS 
Module 1 F19.csv”). There are 15 distinct entries (one for each file).

• ModuleCode: Module identifier (Module 1–5).
• ModuleTitle: Name of the module (Course 1–5).
• SessionName: Class section in which the student has been enrolled (Session-A 

or Session-B).
• RollNumber: Student identifier (e.g., “Student 83”). There are 306 distinct 

students.
• CGPA: Students’ cumulative GPA (1–4).
• AttemptCount: Number of attempts per student and module.
• Advisor: Students’ advisor identifier (e.g., ‘Advisor 16’). There are 50 distinct 

advisors.
• RemoteStudent: Whether the student is studying remotely. There are 2 possible 

values: Yes (0.31%) or No (99.69%).
• Probation: Whether the student has previous incomplete modules. There are 2 

possible values: Yes (3.36%) or No (96.64%).
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• HighRisk: Whether the module has a high risk of failure. There are 2 possible 
values: Yes (6.73%) or No (93.27%).

• TermExceeded: Whether the student is progressing in their degree plan. There 
are 2 possible values: Yes (1.83%) or No (98.17%).

• AtRisk: Whether the student has failed two or more modules in the past. There 
are 2 possible values: Yes (23.55%) or No (76.45%).

• AtRiskSSC: Whether the student has been registered for having any educational 
deficiencies. There are 2 possible values: Yes (4.59%) or No (95.41%).

• OtherModules: Number of other modules the student is enrolled in on the same 
semester.

• PrerequisiteModules: Whether the student has enrolled in the prerequisite 
module.

• PlagiarismHistory: Modules for which the student has a history of plagiarism.
• MalPracticeHistory: Modules for which the student has a history of academic 

malpractice. 

3.2.2 Moodle 

The Moodle data is spread around 15 files (starting with Moodle), which contain 
all the clicks that students performed in the Moodle LMS in each module. The 15 
files have been combined in a single file (moodleEdify.RDS) for convenience. 
Table 6 shows a preview of the data. The resulting dataset has the following 
structure:

• csv: Module offering identifier. There are 15 distinct entries (one for each file).
• Time: Timestamp in which the event occurred, ranging between January 1st 2018 

to December 9th 2020.
• Event context: Resource of the LMS where the event takes place, for example 

“File: Lecture 4”.
• Component: Type of resource involved in the event. There are 16 distinct entries, 

such as System (51.71%); File (22.30%); Turnitin Assignment 2 (15.04%) and 
13 others.

• Event name: Name of the event in Moodle. There are 70 distinct entries, such 
as Course viewed (36.59%); Course module viewed (25.98%); List Submissions 
(11.08%) and 67 others. 

3.2.3 Activity 

Aggregated information per student based on the Moodle data, including the 
activity on campus and at home. The data are also spread in 15 files (starting with 
Activity), but has been combined in a single file (ActivityModule.RDS) 
for convenience. Table 7 shows a preview of the data. The resulting dataset has the 
following structure:
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Table 7 Preview of the Higher Education Institution Activity data 

File RollNumber Online C Online O 

1 Activity Module 1 F19.csv Student 208 35 108 

2 Activity Module 1 F19.csv Student 209 332 256 

3 Activity Module 1 F19.csv Student 210 158 20 

4 Activity Module 1 F19.csv Student 211 345 90 

5 Activity Module 1 F19.csv Student 212 352 459 

6..325 

326 Activity Module 5 SP18.csv Student 89 216 43 

Table 8 Preview of the Higher Education Institution grade data 

File RollNumber SessionName CW1 CW2 ESE 

1 Result Module 1 F19.csv Student 208 Session-A 29 34 63 

2 Result Module 1 F19.csv Student 209 Session-A 18 36 54 

3 Result Module 1 F19.csv Student 210 Session-A 16 18 34 

4 Result Module 1 F19.csv Student 211 Session-A 15 28 43 

5 Result Module 1 F19.csv Student 212 Session-A 20 34 54 

6..325 

326 Result Module 5 SP18.csv Student 89 Session-A 79 80 30

• file: Original file name that contains the module offering identifier (e.g., “Activity 
Module 1 F19.csv”). There are 15 distinct entries (one for each file).

• RollNumber: Student identifier (e.g., “Student 208”).
• Online C: Duration of the activity (in minutes) within campus.
• Online O: Duration of the activity (in minutes) off campus. 

3.2.4 Results 

Student performance data in each module. The data are also spread in 10 files (start-
ing with Result), but has been combined in a single file (ResultModule.RDS) 
for convenience. Table 8 shows a preview of the data. The resulting dataset has the 
following structure:

• file: Original file name that contains the module offering identifier (e.g., “Result 
Module 1 F19.csv”). There are 10 distinct entries (one for each file).

• RollNumber: Student identifier (e.g., “Student 208”). There are 326 distinct 
students.

• SessionName: Class section, Session-A (84.66%), or Session-B (9.82%).
• CW1: Grade of students’ first assignment (0–100).
• CW2: Grade of students’ second assignment (0–100).
• ESE: Grade of students’ end-of-semester examination (0–100).
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Table 9 Preview of the Higher Education Institution eDify data 

File RollNumber Played Paused Likes Segment 

1 VL Module 1 F19.csv Student 208 5 0 1 3 

2 VL Module 1 F19.csv Student 209 1 4 3 3 

3 VL Module 1 F19.csv Student 210 5 0 2 5 

4 VL Module 1 F19.csv Student 211 5 0 1 3 

5 VL Module 1 F19.csv Student 212 4 0 2 3 

6..325 

326 VL Module 5 SP18.csv Student 89 5 7 1 4 

3.2.5 eDify 

Student aggregated activity data in the eDify mobile application. The data are 
also spread in 15 files (starting with VL), but has been combined in a single file 
(VLModule.RDS) for convenience. Table 9 shows a preview of the data. The 
resulting dataset has the following structure:

• file: Original file name that contains the module offering identifier (e.g., “Result 
Module 1 F19.csv”). There are 15 distinct entries (one for each file).

• RollNumber: Student identifier (e.g., “Student 208”). There are 326 distinct 
students.

• Played: Number of times the student has played a video.
• Paused: Number of times the student has paused a video.
• Likes: Number of times the student has liked a video.
• Segment: Number of times a student has scrolled to a specific part of the video. 

3.3 School Engagement, Academic Achievement, and 
Self-regulated Learning

O Link to the dataset 
This dataset includes measures of school engagement, self-regulation and aca-

demic performance of a group of primary school students in northern Spain [60]. 
The data contains responses to the questionnaire from 717 primary education 
students. The subjects were recruited using convenience sampling from 15 schools 
(5 privately funded and 10 publicly funded) in northern Spain. The objective of 
collecting these data was to characterize school engagement and to explore to 
which extent different engagement profiles are associated with academic perfor-
mance and self-regulation. In the questionnaire, engagement was assessed with the 
school engagement measure [61], which allows to differentiate between behavioral, 
cognitive and emotional engagement. Self-regulation was assessed using the self-
regulation strategy inventory [62], which allows measuring students’ approaches
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Fig. 4 Self-reported grades 
of students in Mathematics 
and Spanish 
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Fig. 5 School engagement results of the survey. (a) Emotion engagement z-score. (b) Cognitive 
engagement z-score. (c) Behavior engagement z-score 

0 

50 

100 

150 

200 

−4 −2 0 2 

C
ou

nt
 

0 

50 

100 

150 

−4 −2 0 2 

C
ou

nt
 

0 

50 

100 

150 

−2 0 2 4 

C
ou

nt
 

0 

50 

100 

−3 −2 −1 0 1 2 3 

C
ou

nt
 

Fig. 6 Self-regulation results of the survey. (a) Environment management z-score. (b) Information 
help management z-score. (c) Maladaptative behavior z-score. (d) Time management z-score 

to seeking and learning information, maladaptive regulatory behavior, environment 
management, and time management. The measure used for achievement was 
students’ self-reported information about their grades in Spanish and mathematics 
on a scale of 1 (fail) to 5 (outstanding). 

Figure 4 summarizes the responses of the students in both subjects, Fig. 5 
presents a set of histograms with the engagement measures, and Fig. 6 includes a 
set of histograms with the self-regulation measures. The dataset was analyzed in 
a previous article [63], where the authors carried out cluster analysis using LPA 
(Latent Profile Analysis) to identify different groups of students according to their
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engagement and self-regulation and to compare the performance between these 
groups. The dataset is used in Chapter 9 [11] of this book, which covers model-
based clustering. The dataset is published with a CC BY 4.0 license, which means 
that you can share, copy and modify this dataset so long as appropriate credit is 
given. Table 10 shows a preview of the dataset. Below, we describe the dataset’s 
main variables.

• alumno: Student identifier in the school.
• sexo: Student’s gender (1 = Male, 48.40%; 2 = Female, 51.46%).
• coleg: School identifier (1–15).
• curso: Grade that students were in 5th grade (62.48%) or 6th grade (37.52%).
• grup: Class section (1–3).
• ren.mat: Mathematics self-reported academic achievement (1–5).
• ren.leng: Spanish self-reported academic achievement (1–5).
• Emotion_Engage: Emotional engagement (z-score).
• Cognitive_Engage: Cognitive engagement (z-score).
• Behavior_Engage: Behavioural engagement (z-score).
• Enviroment_Manage: Environment management (z-score).
• Information_help_Manage: Information and help management (z-score).
• Maladapative_Behavior: Maladaptative self-regulation (z-score).
• Time_Manage: Time management self-regulation (z-score). 

3.4 Teacher Burnout Survey Data

O Link to the dataset 
The next dataset presents the responses collected from a survey about teacher 

burnout in Indonesia [64]. The survey questionnaire contains 18 items in five 
different categories. The first category contains five items to assess the teacher 
self-concept (TSC), from the TSC Evaluation Scale [65]. The second category is 
teacher efficacy (TE), with 5 items adapted from [66]. The remaining categories 
are Emotional Exhaustion (EE, 5 items), Depersonalization (DP, 3 items), and 
Reduced Personal Accomplishment (RPA, 5 items), adapted from the Maslach 
burnout inventory [67]. The survey items were measured using a 5-point Likert 
scale, where 1 represents “never”, and 5 represents “always”. 

Table 11 shows a preview of the dataset with the questions and answers, and 
Fig. 7 represents it in a Likert scale chart. The dataset has been analyzed using 
several statistical methods [68]: Content Validity Index (CVI), Exploratory Factor 
Analysis (EFA), Confirmatory Factor Analysis (CFA), Covariance-Based SEM 
(CB-SEM). The main aim was to determine the factors that may be predictors of 
teacher burnout. In this book, we also make use of this dataset to illustrate Factor 
Analysis [19] and SEM [20]. The files associated with this dataset are licensed under 
a CC BY 4.0 license, which means you can share, copy and modify this dataset so
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Fig. 7 Results of the burnout 
survey 
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long as appropriate credit is given to the authors. The variables of the dataset are 
described below.

• Teacher self-concept 

– TSC1: Response to the item “I think I have good teaching skills and ability”. 
– TSC2: Response to the item “I have a reputation for being an efficient 

teacher”. 
– TSC3: Response to the item “My colleagues regard me as a competent 

teacher”. 
– TSC4: Response to the item “I feel I am a valuable person”. 
– TSC5: Response to the item “Generally speaking, I am a good teacher”.

• Teacher efficacy 

– TE1: Response to the item “I help my students value learning”. 
– TE2: Response to the item “I motivate students who show low interest in 

schoolwork”. 
– TE3: Response to the item “I improve understanding of students who are 

failing”. 
– TE4: Response to the item “I provide appropriate challenges for very capable 

students”. 
– TE5: Response to the item “I get students the students to follow classroom 

rules”.

• Emotional exhaustion 

– EE1: Response to the item “I feel emotionally drained from my work”.
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– EE2: Response to the item “I feel used up at the end of the workday”. 
– EE3: Response to the item “I feel fatigued when I get up in the morning and 

have to face another day on the job”. 
– EE4: Response to the item “I feel burnt out from my work”. 
– EE5: Response to the item “Working with people all day is really a strain on 

me”.

• Depersonalization 

– DE1: Response to the item “I’ve become more callous toward people since I 
took this job”. 

– DE2: Response to the item “I worry that this job is hardening me emotion-
ally”. 

– DE3: Response to the item “I feel frustrated by my job”.

• Reduced Personal Accomplishment 

– RPA1: Response to the item “I cannot easily create a relaxed atmosphere with 
my students”. 

– RPA2: Response to the item “I do not feel exhilarated after working closely 
with my students”. 

– RPA3: Response to the item “I have not accomplished many worthwhile 
things in this job”. 

– RPA4: Response to the item “I do not feel like I’m at the end of my rope”. 
– RPA5: Response to question “In my work, I do not deal with emotional 

problems very calmly”. 

3.5 Interdisciplinary Academic Writing Self-efficacy

O Link to the dataset 
This dataset contains the result of nursing students’ responses to the Situated 

Academic Writing Self-Efficacy Scale (SAWSES) [69] questionnaire for interdisci-
plinary students (543 undergraduate and 264 graduate). Participating students were 
recruited from three higher education institutions and from the general public using 
social media. The survey contains 16 items based on Bandura’s self-efficacy theory 
[70] and the model proposed by [71]. 

The questionnaire items are related to three dimensions. The first dimension 
is Writing Essentials, with three items related to synthesis, emotional control, 
and language. The second dimension is Relational Reflective Writing, with seven 
items related to relationship building with writing facilitators and the self through 
reflection. The third dimension is Creative Identity, with six items related to gaps in 
student achievement of transformative writing. Demographic data for age, gender, 
years in post-secondary, English language status, English writing status, and writing 
attitude are also included.
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Table 12 Preview of the SAWSES demographic data 

Age Gender 
Writing-
Attitude TypeStudent Ugyears Gryears WriteEnglish SpeakEnglish 

1 2 2 3 1 5 NA 1 1 

2 2 2 1 1 5 NA 1 1 

3 4 2 1 1 1 NA 3 4 

4 2 2 3 1 3 NA 1 1 

5 2 2 3 1 4 NA 1 1 

6..806 

807 3 3 1 2 NA 3 1 1 

The survey has been validated in a published article [72]. We make use of this 
dataset in Chapter 8 [12], devoted to clustering algorithms. The dataset is published 
under the CC0 1.0, which means that anyone can copy, modify, distribute it, even 
for commercial purposes, without asking permission from the authors. The dataset 
variables are described below. 

First, we describe the demographic variables, which can be previewed in 
Table 12.

• Age: Age.
• Gender: Student’s gender, 1 = male (24.91%), 2 = female (72.12%), 3 = non-

binary (2.97%).
• WritingAttitude: Writing attitude, 1 = dislikes writing (44.73%), 2 = somewhere 

in between (14.37%), or 3 = likes writing (44.73%).
• TypeStudent: Academic level, 1 = undergraduate (67.29%), 2 = graduate 

(32.71%).
• Ugyears: Undergraduate years in the school for undergraduate students.
• Gryears: Graduate years in the school for graduate students.
• WriteEnglish: English writing status (1–5).
• SpeakEnglish: English language status (1–5). 

Next, we present the questionnaire responses for each of the dimensions. The 
responses are on a scale of 0–100. Table 13 shows a preview of the data, and Fig. 8 
presents a box plot with some the response distribution of the questionnaire.

• Writing Essentials 

– overcome: Response to the item “Even when the writing is hard, I can find 
ways to overcome my writing difficulties”. 

– words: Response to the item “I can successfully use scholarly academic words 
and phrases when writing in my courses”. 

– synthesize: Response to the item “I can combine or synthesize multiple 
sources I’ve read to create an original product or text”.
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Fig. 8 Results of the 
SAWSES survey 
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• Relational Reflective Writing 

– meaning: Response to the item “When I write, I can think about my audience 
and write so they clearly understand my meaning”. 

– improve: Response to the item “When I receive feedback on my writing, no 
matter how it makes me feel, I can use that feedback to improve my writing 
in the future”. 

– reflect: Response to the item “When I reflect on what I am writing I can make 
my writing better”. 

– ideas: Response to the item “When I read articles about my topic, the 
connections I feel with the ideas of other authors can inspire me to express 
my own ideas in writing”. 

– overall: Response to the item “When I look at the overall picture I’ve 
presented in my writing, I can assess how all the pieces tell the complete story 
of my topic or argument”. 

– wander: Response to the item “I can recognize when I’ve wandered away 
from writing what my audience needs to know and have begun writing about 
interesting, but unrelated, ideas”. 

– adapt: Response to the item “With each new writing assignment, I can adapt 
my writing to meet the needs of that assignment”. 

– feedback: Response to the item “When I seek feedback on my writing, I can 
decide when that feedback should be ignored or incorporated into a revision 
in my writing”.

• Creative Identity 

– creativity: Response to the item “I can use creativity when writing an 
academic paper”. 

– spark: Response to the item “I feel I can give my writing a creative spark and 
still sound professional”. 

– voice: Response to the item “I feel I can develop my own writing voice (ways 
of speaking in my writing that are uniquely me)”.
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– original: Response to the item “Even with very specific assignment guide-
lines, I can find ways of writing my assignment to make it original or unique”. 

– discipline: Response to the item “I can comfortably express the concepts, 
language, and values of my discipline or major in my writing assignments”. 

3.6 Educators’ Discussions in a MOOC (SNA)

O Link to the dataset 
This dataset belongs to two offerings of the MOOC “The Digital Learning Tran-

sition in K-12 Schools” [73]. The course was aimed at helping school and district 
leaders implement digital learning initiatives in K-12 education. The objectives of 
the course were for participants to understand the advantages of digital learning 
in schools, to assess the specific goals for their own school, and to devise a plan 
to achieve such goals. The course consisted of five learning units dealing with the 
schools of the future, teaching and learning culture, successful digital transition, 
leading the transition, and crowd sourcing. The MOOCs were offered to American 
as well as international teachers. There were two offerings of the MOOC, with minor 
variations regarding duration and groups. The dataset contains the interactions of 
the MOOC discussion forums and concerns teachers’ communications throughout 
the courses. The dataset also contains the characteristics of the teachers, e.g., their 
professional roles, and experience. 

The dataset is extensively described in a dedicated publication where the authors 
give details about the context and the courses, the files, and the fields contained 
in each file [74]. In this book, we use this dataset to illustrate dissimilarity-based 
clustering [39], Social Network Analysis [39] and Temporal Network Analysis [41]. 
The dataset is available with a CC0 1.0 license. Therefore, permission to copy, 
modify, and distribute, even for commercial purposes, is granted. As a standard 
Social Network Analysis dataset, it comes in two files for each of the courses (four 
in total), which we describe in detail below.

• Edges file: This file defines who interacted (the source or the sender of the 
communication) with whom (the target or the receiver of the communication). 
The edges file comes with other metadata, such as time, discussion topic and 
group. Table 14 presents a preview of one of the edge files, and Fig. 9 shows the 
network of collaboration between forum contributors. 

– Sender: Source of the communication identifier (1–445). 
– Receiver: Target of the communication identifier (1–445). 
– Timestamp: Timestamp of the intervention in “m/d/Y H:M” format, ranging 

from April 10th 2013 to June 8th 2013. 
– Discussion Title: Title of the discussion. 
– Discussion Category: Category of the discussion.
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Fig. 9 MOOC participants’ 
network

• Nodes file: The file defines the characteristics of the interacting teachers, their 
IDs, their professional status and expertise level. Table 15 shows a preview of 
one of the nodes file data. 

– UID: Teacher identifier (1–445). 
– role1: Role of the teacher. 
– experience: Level of experience (1–3). 
– experience2: Years of experience. 
– country: Country of origin. 
– gender: Teachers’ gender, female (68.09%); male (31.69%). 
– expert: Level of expertise (0–1).

• Centralities file: The file contains the centrality measures of the partici-
pants which indicate their number of contributions (OutDegree), replies 
(InDegree), position in the network (Closeness_total), worth of their 
connections (Eigen), spread of their ideas (Diffusion_degree), and more. 
For more information on how to calculate centralities from interaction data, refer 
to Chapter 15 [39]. Table 16 shows a preview. 

– name: Teacher identifier (1–445). 
– InDegree: In-degree centrality. Number of responses received. 
– OutDegree: Out-degree centrality. Number of messages sent. 
– Closeness_total: Closeness centrality. Position in the network. 
– Betweenness: Betweenness centrality. Influential position. 
– Eigen: Eigen centrality. Worth of connections. 
– Diffusion.degree: Diffusion degree centrality [75]. Spread of ideas. 
– Coreness: Coreness centrality. Spreading capability. 
– Cross_clique_connectivity: Cross clique connectivity. Facilitation of infor-

mation propagation.
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3.7 High School Learners’ Interactions (SNA)

O Link to the dataset 
The next dataset [76] concerns a course of interactions among 30 students in 

a high school in Kenitra, Morocco. The course under examination had a duration 
of two months and covered topics related to computer science: the computer 
information system, algorithms and programming. The course was implemented 
in the Moodle LMS, using the forum as a discussion space. Students’ interactions 
were aimed at communicating, discussing and exchanging knowledge among them. 

The dataset has been analyzed using social network analysis, is briefly described 
in an article [77], and is shared under Creative Commons license CC BY 4.0, which 
means that anyone can share, copy and modify this dataset so long as appropriate 
credit is given. The dataset includes two files described below.

• Edges file: The file contains the interactions source, target and weights. Table 17 
shows a preview of the edge files. Figure 10 presents the graph of all the 
interactions on the network. 

– source: Source node identifier (1–21). 
– Target: Target node identifier (1–21). 
– W: Weight of the link (the value is always 1). 

Table 17 Preview of the  
High school learners’ 
interactions data (edges) 

Source Target W 

1 17 6 1 

2 17 5 1 

3 17 11 1 

4 17 17 1 

5 17 6 1 

6..221 

222 21 8 1 

Fig. 10 High school 
learners’ network 

1 

6 

17 

2 

10 

13 

3 

5 

11 

15 

18 

19 

20 

4 

7 

8 

9 

12 

14 

16 

21


 -790 2939
a -790 2939 a
 


A Broad Collection of Datasets for Educational Research Training and Application 51

Table 18 Preview of the High school learners’ interactions data (nodes) 

ID Username Name Genre Date de naissance 

1 1 L1 Aya F 22/11/2002 

2 2 L2 Nouhaila Mahsana F 25/10/2002 

3 3 L3 Said Rhioui M 26/02/2001 

4 4 L4 Mehdi ouchne M 04/06/2000 

5 5 L5 ilyass liagoubi M 03/04/2001 

6..29 

30 30 L30 Kaoula Elyamani F 06/05/2002

• Nodes file: contains the characteristics of the interacting students, e.g., gender 
and age. Table 18 presents a preview of the dataset. 

– ID: Student identifier (1–30). 
– Username: Username of the student. 
– name: Name of the student. 
– genre: Gender of the student F (n = 23); M (n = 7). 
– Date de naissance: Birthdate of the student in format “D/M/Y”. 

3.8 Interactions in an LMS Forum from a Programming 
Course (SNA)

O Link to the dataset 
This dataset includes message board data collected from a programming under-

graduate course in a higher education institution in Spain using the Moodle LMS. 
The most particular characteristic of the course is that it follows the CTMTC 
(Comprehensive Training Model of the Teamwork Competence) methodology 
[78], which allows individualized training and assessment of teamwork across all 
stages of teamwork-based learning: storming, norming, performing, delivery and 
documentation [79]. 

This is a mandatory course with a workload of 6 ECTS. The data dates back to 
the first semester of the 2014–2015 academic year. The course offers foundational 
knowledge on programming and numeric calculus, has a strong focus on the 
development of algorithms, and a hands-on approach to teaching. The course starts 
with a two-hour long introductory session; after this session, students work in class 
and out of class during the whole semester on a team project, following the CTMTC 
methodology. Individual evidence of teamwork is collected from forum activity, 
where the work phases are presented, and group evidence of teamwork is collected 
from Dropbox and wikis. 

The dataset refers to individual evidence of teamwork; in other words, it contains 
information about forum interactions during the course. The original dataset, 
obtained from Moodle logs, was processed with the help of GraphFES [80] to
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provide condensed information. The output of GraphFES consists of three different 
datasets: views, or the number of times user a read a message posted by user b; 
replies, which informs about the number of replies from user a to user b; and 
messages, which provides a network with the hierarchical structure of messages in 
the forum. This dataset has been used previously in [81] and is now being publicly 
released under a CC 4.0 BY-NC-SA license, which means that anyone is free to 
share, adapt, and distribute the data as long as appropriate credit is given, it is not 
used for commercial purposes, and the original license is kept. The dataset is used in 
Chapter 16 [40] of this book, about community detection. This dataset presents the 
replies network, a directed graph, and consists of an edges file and a nodes file.

• Edges file: this file includes information about who (attribute source) inter-
acted with (replied to) whom (attribute target); in other words, the sender and 
the receiver of the informational exchange, and how many times that exchange 
happened during the course (attribute weight), considering all messages 
exchanged. The dataset includes a total of 662 weighed edges. Table 19 presents 
a preview of the edges file data, and Fig. 11 represents the complete network of 
interactions among the Moodle users. 

– source: Source node identifier (108 distinct values). 
– target: Target node identifier (108 distinct values). 
– weight: Weight of the link.

• Nodes file: this file contains information about all users with access to the course 
in the Moodle space, including students, instructors and administrators. The file 
includes a total of 124 nodes (users); of these, 110 users are students, distributed 
in 19 groups of between 5 and 7 members each. The file includes an identifier for 
each user (attribute id), the username (attribute user; after anonymization, all 
usernames have the format user_id), the number of initial posts, which refers 
to the number of first posts in a thread (attribute initPosts), the number of 
replies, or posts that were a reply to another post (attribute replyPosts) and 
the total number of posts by that user in the forum (attribute totalPosts), 
which is the sum of initPosts and replyPosts. It is worth noting that 
user_55, a central node of the network, corresponds to the main instructor of 
the course. Table 20 shows a preview of the nodes file. 

– User: User identifier. There are 124 distinct users. 

Table 19 Preview of the  
programming course 
interaction data (edges) 

Source Target Weight 

1 192 164 1 

2 164 55 2 

3 139 142 1 

4 142 55 2 

5 175 55 5 

6..661 

662 194 153 1
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Fig. 11 Interactions of the users in the Moodle discussion forum 

Table 20 Preview of the  
programming course 
interaction data (nodes) 

Id User initPosts replyPosts totalPosts 

1 54 user_54 0 0 0 

2 55 user_55 23 2 25 

3 56 user_56 0 0 0 

4 57 user_57 0 0 0 

5 58 user_58 0 0 0 

6..123 

124 214 user_214 1 0 1 

– initPosts: Number of first posts in a thread. 
– replyPosts: Number of replies to posts in a thread. 
– totalPosts: Total number of posts by a user in the forum. 

3.9 Engagement and Achievement Throughout a Study 
Program

O Link to the dataset 
This dataset contains simulated data of students’ online engagement and aca-

demic achievement throughout a study program. The dataset has been simulated 
based on the results of a published article [82]. The article used students’ logs
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extracted from a university’s Moodle LMS for all the subjects and for all the 
students who attended the years: 2015, 2016, 2017 and 2018. The logs were 
used to derive indicators of engagement, such as frequency of performing learning 
activities (course browsing, forum consumption, forum contribution, and lecture 
viewing), session count, total session time, active days and regularity of each 
activity. Regularity of viewing the course main page, for example, was calculated 
by dividing main page browse actions for the given student over the total main page 
browse actions over the course duration; the resulting probabilities are used within 
a Shannon entropy formula to calculate the entropy. 

Then, Latent Class Analysis was used to cluster students into engagement 
states for each course: Active, Average or Disengaged. Achievement was measured 
through course final grades, which were divided into tertiles: Achiever, Interme-
diate and Low. Hence, for each course, students had an engagement state, and 
an achievement state. The motivation and process of deriving these states from 
students’ engagement indicators is explained in Chapter 11 [31]. 

The simulated dataset contains the data for 142 students for 8 sequential courses, 
including their engagement and achievement states, as well as covariate data. It is 
shared with a CC BY 4.0 license, which means that anyone is free to share, adapt, 
and distribute the data, as long as appropriate credit is given. The dataset is used 
in Chapter 13 [33] of this book, to illustrate multi-channel sequence analysis. A 
preview of the dataset can be seen on Table 22. A visual representation of the 
evolution of engagement and achievement throughout the program is depicted in 
Fig. 13. The dataset contains two files: 

3.9.1 Longitudinal Engagement Indicators and Grades 

The file LongitudinalEngagement.csv contains all of the engagement 
indicators per student and course (frequency, duration and regularity of learning 
activities) as well as the final grade. Each column is described below and a preview 
can be seen in Table 21 and in Fig. 12.

• UserID: User identifier. There are 142 distinct users.
• CourseID: Course identifier. There are 38 distinct courses.
• Sequence: Course sequence for the student (1–8).
• Freq_Course_View: Number of views of the course main page.
• Freq_Forum_Consume: Number of views of the forum posts.
• Freq_Forum_Contribute: Number of forum posts created.
• Freq_Lecture_View: Number of lectures viewed.
• Regularity_Course_View: Regularity of visiting the course main page.
• Regularity_Lecture_View: Regularity of visiting the lectures.
• Regularity_Forum_Consume: Regularity of reading forum posts.
• Regularity_Forum_Contribute: Regularity of writing forum posts.
• Session_Count: Number of online learning sessions.
• Total_Duration: Total activity time online.
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Fig. 12 Histogram of engagement indicators and final grade throughout the eight courses

• Active_Days: Number of active days (with online activity).
• Final_Grade: Final grade (0–100). 

3.9.2 Longitudinal Engagement and Achievement States 

The file SequenceEngagementAchievement.xlsx contains students’ 
engagement and achievement states for each course as well as covariates (their 
previous grade, their attitude towards learning, and their gender). Engagement states 
were obtained by applying model-based clustering techniques to the engagement 
indicators in the previous file. Achievement states were obtained in a similar way 
for the final grade. The dataset columns are described below and a preview of the 
data can be seen at Table 22 and a graphical representation is shown in Fig. 13.

• UserID: User identifier. There are 142 distinct users.
• CourseID: Course identifier. There are 38 distinct courses.
• Sequence: Course sequence for the student (1–8).
• Engagement: Engagement state. There are 3 distinct states: Active (29.93%), 

Average (47.98%), amd Disengaged (22.10%).
• Final_Grade: Final grade of each student for each course (1–100).
• Achievement: Achievement state calculated using model-based clustering. 

There are 3 distinct states: Achiever (39.26%), Intermediate (23.33%), and 
Low (37.41%).



A Broad Collection of Datasets for Educational Research Training and Application 57 

Ta
bl

e 
22

 
Pr

ev
ie

w
 o

f 
th

e 
da

ta
se

t a
bo

ut
 e

ng
ag

em
en

t a
nd

 a
ch

ie
ve

m
en

t t
hr

ou
gh

ou
t t

he
 e

ig
ht

 c
ou

rs
es

 

U
se

rI
D

C
ou

rs
eI

D
Se

qu
en

ce
 

E
ng

ag
em

en
t 

Fi
na

l_
G

ra
de

 
A

ch
ie

ve
m

en
t 

A
ch

ie
ve

m
en

tN
til

e 
Pr

ev
_g

ra
de

 
A

tti
tu

de
G

en
de

r 

1
00

05
0F

0E
 

4C
3F

37
F0

 
1

A
ve

ra
ge

72
.2

7
A

ch
ie

ve
r

In
te

rm
ed

ia
te

6.
82

66
13

12
.9

28
33

 
M

al
e 

2
00

05
0F

0E
 

E
54

A
52

A
3 

2
D

is
en

ga
ge

d 
72

.5
6

A
ch

ie
ve

r
A

ch
ie

ve
r

6.
82

66
13

12
.9

28
33

 
M

al
e 

3
00

05
0F

0E
 

A
B

7E
C

62
4 

3
A

ve
ra

ge
78

.7
8

A
ch

ie
ve

r
A

ch
ie

ve
r

6.
82

66
13

12
.9

28
33

 
M

al
e 

4
00

05
0F

0E
 

B
0E

95
21

3 
4

A
ve

ra
ge

74
.1

9
A

ch
ie

ve
r

A
ch

ie
ve

r
6.

82
66

13
12

.9
28

33
 

M
al

e 

5
00

05
0F

0E
 

0B
30

1F
55

5
A

ve
ra

ge
87

.3
5

A
ch

ie
ve

r
A

ch
ie

ve
r

6.
82

66
13

12
.9

28
33

 
M

al
e 

6.
.1

13
5 

11
36

FE
2E

4C
85

 
79

E
D

68
73

 
8

A
ct

iv
e

87
.6

9
A

ch
ie

ve
r

A
ch

ie
ve

r
4.

18
94

20
20

.0
00

00
 

M
al

e



58 S. López-Pernas et al.

1 2 3 4 5 6 7 8  
Course order 

Engagement Active Average Disengaged 

1 2 3 4 5 6 7 8  
Course order 

Achievement Achiever Intermediate Low 

Fig. 13 Sequence and engagement for each student across eight courses

• AchievementNtile: Achievement state calculated using tertiles. There are 3 
distinct states: Achiever (33.27%), Intermediate (33.36%), and Low (33.36%).

• Prev_grade: GPA with which the student applied to the program (1–10).
• Attitude: Attitude towards learning (0–20).
• Gender: Gender (male/female). There are 44% females and 56% males. 

3.10 University Students’ Basic Need Satisfaction, 
Self-regulated Learning and Well-Being During 
COVID-19

O Link to the dataset 
This dataset contains the results of a survey investigating students’ psychological 

characteristics related to their well-being during the COVID-19 pandemic. The 
variables under study are related to the satisfaction of basic psychological needs 
(relatedness, autonomy, and experienced competence), self-regulated learning, pos-
itive emotion and intrinsic learning motivation. Moreover, the dataset contains 
demographic variables, such as country, gender, and age. The data were collected 
from 6071 students from Austria and Finland. There are, however, 564 records with 
missing responses to at least one item. 

This dataset has been used in a published study to examine the relationships 
between the different variables using SEM [83]. The dataset has been used in 
Chapter 19 [21] of this book, to illustrate the implementation of psychological 
networks. The dataset has been published under a CC BY 4.0 license, which means 
that you are free to use and adapt the data but you must give appropriate credit, 
provide a link to the license, and indicate if changes were made. A preview of the 
dataset can be found on Table 23. A summary of the responses is in Fig. 14. Below,  
we describe each of the dataset columns.

• Demographic data 

– country: Country of the student: 0 = Austria (78.60%), 1 = Finland (21.40%).


 -790 32623 a -790 32623 a
 


A Broad Collection of Datasets for Educational Research Training and Application 59 

Ta
bl

e 
23

 
Pr

ev
ie

w
 o

f 
th

e 
C

O
V

ID
-1

9 
w

el
l-

be
in

g 
su

rv
ey

 d
at

a 

C
ou

nt
ry

 
G

en
de

r 
A

ge
 

sr
1 

sr
2 

sr
3 

co
m

p1
 

co
m

p2
 

co
m

p3
 

au
to

1 
au

to
2 

au
to

3 
pa

1 
pa

2 
pa

3 
lm

1 
lm

2 
lm

3 
gp

1 
gp

2 
gp

3 

1
0

1
36

5
4

2
2

3
3

3
4

N
A

4
3

2
5

5
2

N
A

 
N

A
 

N
A

 

2
0

2
36

4
4

1
4

4
3

4
4

3
4

4
4

5
5

4
3

3
4 

3
0

2
36

1
1

1
3

4
2

5
4

4
4

4
3

4
4

4
2

1
2 

4
0

2
36

1
2

1
2

2
2

4
3

3
2

2
2

3
3

3
2

1
2 

5
0

1
36

1
1

3
3

2
3

4
4

1
3

3
2

4
3

3
2

5
3 

6.
.7

72
3 

77
24

1
1

69
2

2
1

2
2

2
2

2
2

3
3

3
1

1
1

2
2

2



60 S. López-Pernas et al.

Fig. 14 Results of 
COVID-19 well-being survey 

gp3 
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gp1 
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lm1 
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pa1 

auto3 
auto2 
auto1 

comp3 
comp2 
comp1 

sr3 
sr2 
sr1 

100 50 0 50 100 
Percentage 

Response 1 2 3 4 5  

– gender: Gender of the student: 1 = Female (70.74%), 2 = Male (28.25%), 3 = 
Other (0.70%). 

– age: Age of the student. 

Below we describe the items of the questionnaire for each construct. The possible 
responses are: 1 = strongly agree, 2 = agree, 3 = somewhat agree, 4 = disagree, 5 = 
strongly disagree.

• Basic Psychological Needs: Relatedness 

– sr1: Response to the item “Currently, I feel connected with my fellow 
students”. 

– sr2: Response to the item “Currently, I feel supported by my fellow students”. 
– sr3: Response to the item “Currently, I feel connected with the people who 

are important to me (family, friends)”.

• Basic Psychological Needs: Competence 

– comp1: Response to the item “Currently, I am dealing well with the demands 
of my studies”. 

– comp2: Response to the item “Currently, I have no doubts about whether I am 
capable of doing well in my studies”. 

– comp3: Response to the item “Currently, I am managing to make progress in 
studying for university”.

• Basic Psychological Needs: Autonomy 

– auto1: Response to the item “Currently, I can define my own areas of focus in 
my studies”. 

– auto2: Response to the item “Currently, I can perform tasks in the way that 
best suits me”. 

– auto3: Response to the item “In the current home-learning situation, I seek 
out feedback when I need it”.
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• Positive Emotion 

– pa1: Response to the item “I feel good”. 
– pa2: Response to the item “I feel confident”. 
– pa3: Response to the item “Even if things are difficult right now, I believe that 

everything will turn out all right”.

• Intrinsic learning motivation 

– lm1: Response to the item “Currently, doing work for university is really fun”. 
– lm2: Response to the item “Currently, I am really enjoying studying and doing 

work for university”. 
– lm3: Response to the item “Currently, I find studying for university really 

exciting”.

• Self-regulated learning 

– gp1: Response to the item “In the current home-learning situation, I plan my 
course of action”. 

– gp2: Response to the item “In the current home-learning situation, I think 
about how I want to study before I start”. 

– gp3: Response to the item “In the current home-learning situation, I formulate 
learning goals that I use to orient my studying”. 

4 Discussion 

In this chapter, we have provided an overview of the types of data operationalized 
in learning analytics research. We covered a wide spectrum of data types, ranging 
from foundational demographic information to the footprints left by the interactions 
of students with online learning technologies, including clicks, activities, social 
interactions, and assessment data. We have pointed to some of the most commonly 
employed analytical techniques for each type of data and we referred the reader 
to the chapters of the book that have covered each type of analysis. Thereafter, we 
presented a curation of illustrative datasets. We have described each dataset in detail, 
describing and representing the relevant variables. We also acknowledged the ways 
each dataset have been analyzed throughout the remaining chapters of the book. 

We must disclose that collecting learners’ data is not an easy endeavor. First and 
foremost, it is crucial to consider the ethical implications of collecting and using 
different types of data, and to comply with data protection laws and regulations [14]. 
Moreover, it is important to ensure the data quality to draw relevant conclusions 
from the data, especially in scenarios where data come from heterogeneous sources 
and are provided in large quantities [84], such as in the educational field [85]. 
These requirements make finding good-quality open datasets online extremely 
challenging. In this regard, we hope that the selection offered in this chapter is 
useful for the reader beyond the scope of the book. A few articles have offered 
other dataset collections suitable for learning analytics [86] or educational data
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mining [87]. Moreover, the reader is encouraged to consult open data repositories 
where datasets are continuously published in multiple fields: Zenodo (https:// 
zenodo.org), US Department of Education Open Data Platform (https://data.ed.gov), 
Harvard Dataverse (https://dataverse.harvard.edu), European Data Portal (https:// 
data.europa.eu), Mendeley Data (https://data.mendeley.com), openICPSR (https:// 
www.openicpsr.org), Google Dataset Search (https://datasetsearch.research.google. 
com), figshare (https://figshare.com), Open Science Framework (https://osf.io), or 
data.world (https://data.world). 
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Getting Started with R for Education 
Research 

Santtu Tikka, Juho Kopra, Merja Heinäniemi, Sonsoles López-Pernas, 
and Mohammed Saqr 

1 Introduction 

R is a free, versatile, and open source programming language and software 
environment specifically designed for statistical computing and data analysis. R has 
a vast library of packages that enable data manipulation, visualization, modeling 
and machine learning [1]. Such a wealth of packages enable a wide range of 
functionalities that saves the users time, effort or the need to write complex code. 
The fact that R is freely available makes all these functionalities accessible to all. 
R has a large community of developers, users and researchers who support the 
development of the platforms as well as provide support and shared knowledge on 
popular sites such as StackExchange. Thereupon, R is becoming an increasingly 
popular choice for students, researchers and data scientists [2]. 

Being open source and accessible to researchers, several packages are added 
continuously to expand the possibilities and functions that R offers. Some of the R 
packages included in this book have been added by researchers during the last few 
years to address contemporary scientific problems and state-of-the-art innovations 
[3]. For example, R software packages for the analysis of psychological networks 
were developed in the past five years and ever since have grown tremendously due 
to contributions from a large base of researchers [4]. 
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Although many of the methods described in this book can be implemented 
with other software tools, it is hard to find a comprehensive platform that can be 
used to perform practically all the existing learning analytics methods with such 
maturity, performance and range of possibilities. For instance, Social Network 
Analysis (SNA) can be performed with several programming languages (e.g., 
Python) and desktop software applications (e.g., Gephi) [5]. However, both options 
provide limited capabilities compared to what R provides for the analysis of SNA. 
This includes a wider range of SNA centrality measures, mathematical models, 
community finding algorithms and generative models. Sequence analysis is another 
example in which the possibilities offered by R are hard to match with other software 
solutions. 

This book does not make any assumptions about the superiority of R over any 
other platform. Other languages and software platforms are indeed very helpful and 
have vast capabilities for researchers. For instance, Python has remarkable tools 
for machine learning and Gephi offers beautiful graphics for the visualization of 
networks. Oftentimes, readers may need to learn or use other tools to do specific 
tasks. Put another way, where R offers a rich toolset for researchers, there is 
a space for other tools that researchers can use to accomplish certain tasks. In 
summary, investing time in learning R is a worthwhile endeavor that helps interested 
researchers to perform and expand their research skills and toolset. Since R is a 
large platform, it represents a doorway to the vast capabilities of its ever expanding 
repertoire of functions and packages. 

2 Learning  R  

The goal of programming is to write, i.e. code, a program that performs a desired 
task. A program consists of several commands, each of which does something 
very simple. In the statistics and data analysis context, R is typically used to write 
short programs called scripts. R is therefore not intended for developing games or 
other complicated programs. R is also not a language originally intended for web 
programming, although with the right packages you can also make web applications 
with R. 

R is a high-level programming language. This means that there are many ready-
made commands in R, which have much more code “underneath” that the R 
programmer does not have to touch. For example, a statistical t-test requires several 
mathematical intermediate steps, but an R programmer can perform the test with 
a single command (t.test) that provides all the necessary computations and 
information about the test. 

The best way to learn how to use and program R code is by doing. This text has 
R code embedded between the text in gray boxes, as in the example below. Lines 
starting with two hashes, i.e. ##, are not code, but output generated by running the 
code. Let’s first take the classic “Hello, world!” command as an example:
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print("Hello, world!") 

[1] "Hello, world!" 

The print function prints the given text to the console. It is convenient, for 
example, for testing the operation of a program and monitoring the progress of 
a longer program. R can also be used as a calculator. In the example below, we 
calculate the price of a product after a 35% discount that was originally priced at 80 
euros. 

80 * (1 - 0.35) 

[1] 52 

However, running individual commands is usually not useful unless the results 
can be saved somewhere. In programming languages, data is stored in variables, 
which you will become familiar with later. 

3 RStudio 

R has a large array of tools and integrated development environments (IDEs) that 
make writing and managing code easier and more accessible. The most widely used 
R IDE is RStudio, which is a free open source software that—similarly to R—runs 
on all major operating systems [6]. RStudio provides a comprehensive and user-
friendly interface for writing, running, and debugging R code, which makes it easier 
for users to get started and become more productive. Together, R and RStudio allow 
for the creation of reproducible research. The code and results can be easily shared 
and replicated, making R and RStudio great tools for collaboration and transparency. 

R and RStudio can be very useful in analyzing and visualizing different types 
of data. This can help researchers, educators and administrators make data-driven 
decisions and improve the learning experience for students. Whether you are 
analyzing student performance, demographic data, or tracking the effectiveness of 
instructional interventions, R and RStudio provide a flexible and efficient platform 
for achieving your goal. 

First install R (step 1) and then RStudio Desktop for your operating system. R 
and RStudio are available for many operating systems. The interface of RStudio 
shown in Fig. 1 has the following default components: 

(1) Editor: The editor is used to write files containing R code, i.e., R scripts. Scripts 
will be introduced later, but they are simply a collection of R commands that 
carry out a specific task when placed together, for example analyze the data of
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Fig. 1 RStudio user interface 

a research project or draw figures of the finished results. A new script can be 
opened from the “File” menu by selecting “New File” and then “R script”. The 
same can be accomplished via a keyboard shortcut by pressing Ctrl + Shift + 
N on Windows and Linux. On macOS, users can use Cmd + Shift + N. Also, 
see the “Keyboard Shortcuts Help” under the “Tools” menu for all the shortcuts 
available. The code written in the editor can be run line by line by pressing 
Ctrl + Enter at the line. Several lines can also be selected and run at once. The 
Source button at the top runs all the code in the current file. R scripts can be 
saved just like other files and their file extension is .R. All the code you use 
to analyze your data should be written in scripts. When you save your code in 
this way, the next time you can simply run the script to perform the desired task 
instead of rewriting the code from scratch. 

(2) Console: R commands are executed in the console. If the code written in the 
editor is run, RStudio automatically executes the commands in the console. In 
the console, just pressing Enter is enough to execute a line of code. You can 
try to write a calculation in the console, such as 2 * 3 and press Enter, and the 
result will be printed in the console. You can also write code in the editor and 
press Ctrl + Enter to accomplish the same result. Possible messages, warnings 
and errors are also printed into the console. The main difference between the 
console and the editor is that the commands written in the console are not saved 
in any file. So if you want to keep your code, it should be written in the editor 
and saved in a script file. Commands made during the same session can be 
scrolled in the console with the up and down arrows. In addition, the command 
history can be viewed in the History tab in RStudio.
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(3) Workspace: Displays the variables in the current working environment of the R 
session. 

(4) Files: Shows the directory structure of the operating system, by default the 
working directory. 

(5) Plots: Graphics drawn with R appear here. 
(6) Packages: Here you can manage the installed packages (instructions for 

installing the packages are below). 
(7) Help: Here you can browse the R manual with instructions for every R 

command. You can try running the ?print command in the editor or console, 
which opens the help page for the print function. 

4 Best Practices in Programming 

As the word “script” already suggests, data analysis often requires a “script” of 
various steps, such as reading measurements from a file, organizing a table, or 
describing the results of an analysis, for example by calculating the averages of 
different sample groups and drawing figures. Writing the R commands that perform 
these steps in a script provides a documentation of how the analysis was done, 
and it’s also easy to come back to and possibly add a few additional steps, such 
as performing a t-test. The script file is also easy to share with others who work 
with similar data analysis tasks, because with small modifications (file names, table 
structure) the same code also works for different datasets and workflows. Comments 
are often used inside the code. Comments are text written along the R commands, 
which are not written in a programming language, and which are ignored when 
running the code. The purpose of comments is to describe the behavior and purpose 
of the code. It is good to practice to comment your own code from the beginning, 
even if the code for the first tasks is very simple. In R, comments are marked with 
the # symbol. 

# Assign arbitrary numbers to two variables 
x <- 3 
y <- 5 
# Sum of two variables 
z <- x  + y 
# Print the results 
z 

[1] 8
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4.1 R Markdown 

While scripts can only store code and comments, a more comprehensive format 
called R Markdown is also available in RStudio. R Markdown is an extension of 
the Markdown markup language that allows users to create dynamic reports and 
interactive notebooks that can integrate text, code, and visualizations. R Markdown 
documents are created in a plain text format and can be rendered into various output 
formats, such as HTML, PDF, Word, or even presentations. To create a new R 
Markdown document in RStudio, go to the “File” menu, select “New File” and 
finally “R Markdown”. In the dialog that opens, choose the output format you want 
to use, and give your document a title. Figure 2 shows the RStudio editor panel for 
a default R Markdown document of R Studio. 

The YAML metadata wrapped between the --- delimiters at the top of the 
document can be used to customize the output and contents in various ways. For 
example, you can change the title, author, or add a table of contents. In this example 
we have defined the title, the output format (HTML) and the date, but many more 
options are available besides these. Use Markdown syntax to format your text, and 
enclose your R code in code chunks with the ```{r} and ``` tags which can also 
be provided other options. For example, our first code chunk has been given the 
label setup and the following option include = FALSE means that this chunk 
will be executed but its output will not be printed into the final document. Within 
the chunk, a global knitr option is set so that all code chunks will print (echo) their 

Fig. 2 An example R Markdown document in R Studio
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output by default. You can also use inline chunks to quickly reference the results 
of computations or other R objects. Some examples of standard markdown syntax 
in the document are second level headers marked with ## (note that # is not used 
for comments in an R Markdown document) and bold text denoted by wrapping the 
text with **. Once you are satisfied with your document, you can render it into the 
chosen output format by clicking the “Knit” button in RStudio, or use the keyboard 
shortcut “Ctrl + Shift + K”. Figure 3 shows the corresponding rendered HTML 
document. 

This simple example shows only a fraction of the full features of R Markdown 
documents and the Markdown syntax. R Markdown is a powerful tool for creating 
reproducible research reports, teaching materials, or even websites. It allows users 
to integrate code and output seamlessly into their written work, making it easier 
to share and reproduce analyses. As an alternative to R Markdown documents, R 
Studio also supports the creation of R Notebooks, which are in essence interactive 
R Markdown documents. R Notebooks can be useful for example when the goal is 
not to produce one comprehensive analysis report but instead to keep track of the 
code and try out various approaches to a problem interactively. For an in-depth guide 
to R Markdown, see [7] which is also freely available online at https://bookdown. 
org/yihui/rmarkdown/. 

Fig. 3 The example R 
Markdown document 
rendered into HTML

https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/rmarkdown/
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4.2 How Is Code Developed? 

Code development typically follows similar steps: 

1. Design parts of the code. 
2. Start by writing a small piece of code. 
3. Test whether the code you wrote works. If it doesn’t, find out why and fix it. 
4. Go to the next piece of code and continue accordingly, always testing piece by 

piece whether your code works. 

Along with this material, many packages include a “Cheat Sheet” as a summary 
of basic tasks and functions related to the package. Cheat sheets provide a quick 
and easy reference for checking how something is done in R if you don’t remember 
it by heart. There are cheat sheets for various R packages and other entities on the 
Internet e.g., the base R cheat sheet, or the tidyr [8] cheat sheet. 

In addition to the basic commands presented in this chapter of the book, practical 
R programming relies to a great extent on the use of various packages developed 
by the scientific community. Packages are collections of code that contain new 
functions, classes and data, i.e., they extend R. Most R packages are available 
from the Comprehensive R Archive Network (CRAN). They can be installed with 
the install.packages() function, or via RStudio’s installation window which 
in practice calls the install.packages() function. You can also install several 
packages at once. The command below installs the dplyr [9] and tidyr packages: 

install.packages(c("dplyr", "tidyr")) 

In order to use the commands contained in an R package, the package must 
be installed and attached to the R workspace. This is done with the library() 
command: 

library("tidyr") 

Now that the tidyr package is loaded, we can use the commands it 
provides, for example to manage the learning analytics data in data frame 
format that we will address later. If you don’t want to attach the entire 
package, you can use individual commands from packages with the format 
name_of_the_package::name_of_the_command(). 

5 Basic Operations 

Basic operations in R consist of arithmetic operations, logical operations, and 
assignment. In addition, there are several commands that are often helpful when
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starting a new project or managing the working directory. For example, the current 
working directory can be obtained with the following command: 

getwd() 

[1] "/home/sonsoles/labook/chapters/ch03-intro-r" 

5.1 Arithmetic Operators 

R can be used to compute basic arithmetic operations such as addition (+), 
subtraction (-), multiplication (*), division (/), and exponentiation (ˆ). These 
operations follow standard precedence rules, and additional brackets can be added 
to control the evaluation order if needed. 

1 + 1 # Addition 

[1] 2 

2 - 1 # Subtraction 

[1] 1 

2 * 4 # Multiplication 

[1] 8 

5 / 2 # Division 

[1] 2.5 

2 ˆ 4 # Exponentiation 

[1] 16
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5.2 Relational Operators 

Relational operators compare objects or values to other objects or values. These 
operators are often required for conditional data filtering, for example when 
selecting a subset of individuals that satisfy some criterion. In R, there are six such 
operators: smaller than, greater than, smaller or equal to, greater or equal to, equal 
to, and not equal to. There operators have the following syntax in R: 

1 < 2 # Smaller than 

[1] TRUE 

3 > 2 # Greater than 

[1] TRUE 

2 <= 2 # Smaller or equal to 

[1] TRUE 

3 >= 3 # Greater or equal to 

[1] TRUE 

5 == 5 # Equal to 

[1] TRUE 

1 != 2 # Equal to 

[1] TRUE 

In the previous example we used these operators to compare integers, but we may 
also use them to compare other types of values, such as characters: 

"a" == "b" 

[1] FALSE



Getting Started with R for Education Research 77

5.3 Logical Operators 

Similar to relational operators, logical operators are used to evaluate the logical 
value of a conjunction of two logical values. In R, there are five logical operators: 
negation, AND, OR, elementwise AND, and elementwise OR. These operators have 
the following syntax: 

!TRUE # Negation 

[1] FALSE 

TRUE && TRUE # Logical AND 

[1] TRUE 

TRUE || FALSE # Logical OR 

[1] TRUE 

TRUE & TRUE # Elementwise AND 

[1] TRUE 

TRUE | FALSE # Elementwise OR 

[1] TRUE 

The elementwise operators & and | can be used to compare multiple pairs of 
logical values simultaneously, for example 

c(TRUE, FALSE, TRUE) | c(TRUE, FALSE, FALSE) 

[1] TRUE FALSE TRUE 

whereas the operators && and || only accept single values. In the previous example, 
we also used one of the most important operations of R: the c() function (the 
letter ‘c’ is short for “combine”) which we used to combine the logical values into 
a vector, i.e., an ordered sequence of values of the same type. Vectors and other 
important data types will be discussed in greater details in the next section.
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5.4 Special Operators 

Another core functionality in R is the assignment operator <-. Assignment can be 
used to store the results of computations into variables which can then be used again 
in other computations without having to redo the original computations. For instance 

x <- 5 # Assign value 5 into variable named x 
y <- 7 # Assign value 7 into variable named y 
x # Access value of x (value is printed into the 

console in RStudio) 

[1] 5 

y # Access value of y 

[1] 7 

x + y # Compute the sum of x and y 

[1] 12 

x > y # Is x greater than y? 

[1] FALSE 

Here we chose the names x and y for our variables, but the names are arbitrary 
with the caveat that one should avoid assigning values to objects with names that 
R already uses internally, such as names of common functions like c(), exp(), or  
lm() to name a few. Variables currently assigned in the working environment can 
be displayed with the following command: 

ls() 

[1] "x" "y" "z" 

It is also possible to use the equal sign = as the assignment operator, but this 
is often not recommended, because the equal sign also has other purposes in 
the R language and may cause confusion if used for assignment. There are also 
some special instances, where the equals sign does not function identically to <-. 
Therefore, we recommend always using the standard assignment operator <-.
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When constructing vectors, the function c() can be cumbersome in some sce-
narios. For instance, say we wanted to create a vector that contains all integers from 
1 to 100. With c(), we would have to write each value individually. Fortunately, 
such sequences can be constructed effortlessly using the : (colon) operator: 

1:100 

[1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19  
[20] 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 
[39] 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57  
[58] 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 
[77] 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 
[96] 96 97 98 99 100 

Often we may wish to select only specific values from a vector. Values in a vector 
can be accessed by their index, starting from 1. This is accomplished by using the 
subset operator which uses the following square bracket syntax. For example, we 
could select the first value of a vector x by writing x [1]. For a more involved 
example, we could simultaneously select the first, 50th and 100th value of the vector 
1:100 by writing: 

x <- 1:100 
x[c(1, 50, 100)] 

[1] 1 50 100 

Essentially, we write the positions of the values that we wish to select inside the 
square brackets as a vector. Alternatively, we can create a vector of logical values 
that has the same length as the vector we are selecting from, and the value TRUE for 
the values we wish to select, and FALSE otherwise. In the next section, we also show 
how to select values based on a condition. 

6 Basic Data Types and Variables 

In the examples of the previous section, we already used several of the most common 
data types that users are most likely to encounter in practical data analyses. Each 
object in R has a type, which can be determined with the function typeof(). Types 
are used to describe what kind of data our variables of interest contain and what 
kind of operations can be carried out on them. Perhaps the most common type is 
the numeric type, which describes values that can be interpreted as numbers. Two 
special instances of the numeric type are integer and double, which correspond 
to integer values and decimal values, respectively.
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typeof(1.0) 

[1] "double" 

typeof(1L) 

[1] "integer" 

The capital L on the second line denotes that we mean the integer 1, and not 
the decimal number 1.0. Text data is often represented by the character type. 
Unlike in some other programming languages, in R the character type does not 
necessarily describe individual characters as the name would suggest, but character 
strings, for instance: 

typeof("a") 

[1] "character" 

typeof("hello world!") 

[1] "character" 

As we can see, both have the same type. 
The logical type is used to represent the boolean values TRUE and FALSE. 

Logical values are typically not as common in actual data where such values may 
often be represented by the integers 1 and 0 instead. However, their importance lies 
in forming conditions for data filtering and manipulations that we may wish to carry 
out based on a criterion that is true for only a subset of subjects in our data. For 
example, suppose we have the values 1, 2, 3, 4, 5, and we wish to programmatically 
select only those values that are greater than 2. We can accomplish this as follows: 

some_numbers <- 1:5 
some_numbers[some_numbers > 2] 

[1] 3 4 5 

Let’s walk through what the code above does step by step. On the first line, we 
create a vector of numeric values 1 through 5 by using the : operator and assign 
the result to the variable named some_numbers. On the second line, we use the 
square brackets (the subset operator) to select only those values of some_numbers
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for which the condition some_numbers > 2 is true. Here we introduce the vector-
ization feature of R which applies to a vast majority of arithmetic and relational 
operators. By writing some_numbers > 2, we actually evaluate the condition for 
every value in the vector some_numbers: 

some_numbers > 2 

[1] FALSE FALSE TRUE TRUE TRUE 

All of the aforementioned types are called atomic types, meaning that vectors 
of such values can only contain values of one specific atomic type. For example, a 
vector cannot contain values of both character and integer types: 

c(0L, "a") 

[1] "0" "a" 

We see that the result was automatically converted to an atomic character vector. 
Alongside type, objects in R also have a class, which can be viewed with the 

class() function. For atomic types, their class is the same as their type, but for 
more complicated types of variables, a class essentially describes a special instance 
of a type. Objects within a specific class typically have their own set of functions 
or methods that can only be applied for that specific class. A common example 
of a class is factor. Factors are a special class of integer vectors designed to 
represent categorical and ordinal data. Variables that are of the factor class have 
levels, which differentiates factor variables from ordinary integer variables. For 
example, a factor could represent group membership in a randomized experiment 
indicating inclusion in the control group or the treatment group for each individual. 
The levels of this factor could be called "control" and "treatment" for example. 
Supposing that 0 indicates that an individual belongs in the control group and 1 
indicates that an individual belongs in the treatment group, we could create such a 
factor by writing 

group <- c(0, 0, 1, 0, 1, 0, 1, 1) 
factor(group, labels = c("control", "treatment")) 

[1] control control treatment control treatment control treatment treatment 

Levels: control treatment 

Factors are important when fitting statistical models or when performing statis-
tical tests, because if we would simply use the corresponding integer values, they 
may be erroneously interpreted as continuous. The levels of the factor also often 
help to provide more informative output. In the next section we will discuss more 
complicated data types including data frames, which can contain data of various 
types simultaneously.
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7 Basic R Objects 

In this section we will discuss the concepts of data frame and tibble. Let’s assume 
that your data can be stored in a two-dimensional array where the columns represent 
variables and each row represents a case of measurement. In R, a data frame is a 
concept for storing such a two-dimensional array of data. Let’s first study how data 
frames work in R and we will then move on to see how another concept called 
tibble extends the capabilities of a data frame. 

A data frame which has been loaded into R under the name grades and printed 
in the R console will look as follows. 

grades 

group grade 
1 2 4.67 
2 2 4.90 
3 3 2.63 
4 4 3.39 
5 4 6.89 

In the above printout we can see that R prints the data frame just as we would 
expect the data to look like. One issue with a standard data frame is that if there are 
very many columns or rows, then the printout may be difficult to read. In RStudio, a 
neater (and more flexible) way of inspecting the data is by using a command called 
View(): 

View(grades) 

To go further with the data, we need tools for data manipulation. We begin with 
the very basic tools which are commonplace in any data analysis workflow. More 
comprehensive knowledge about data transforming, cleaning etc. can be found in 
Chap. 2. 

A data frame can be constructed directly in the R by using the function called 
data.frame() and then listing variable names and their values. The grades data 
above has two columns, group and grade, and each row represents a student. The 
variable group is indicates the number of a group in which each person has studied. 
The variable grade stores the final grade that the student has received from a course. 

8 Working with Dataframes 

To extract a column from a data frame, one needs to start with the name of the data 
frame object and connect the column name with the name of the data frame object
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by using the dollar symbol ($). Thus, extracting the column group from grades 
data can be accomplished by writing 

grades$group 

[1]  2 2 3 4 4  

Next, let’s use a couple of basic functions which are often needed when 
developing R code. First of all, to get a summary of every variable of a data frame, 
we can call 

summary(grades) 

group grade 
Min. :2 Min. :2.630 
1st Qu.:2 1st Qu.:3.390 
Median :3 Median :4.670 
Mean :3 Mean :4.496 
3rd Qu.:4 3rd Qu.:4.900 
Max. :4 Max. :6.890 

The result show us the minimum, maximum, median, mean and quartiles of both 
variables. You may note that as group was intended to be a categorical variable, 
so computing its mean value in the data does not make sense. We can change that 
behavior by converting the group column into a factor. 

grades$group <- as.factor(grades$group) 
summary(grades) 

group grade 
2:2 Min. :2.630 
3:1 1st Qu.:3.390 
4:2 Median :4.670 

Mean :4.496 
3rd Qu.:4.900 
Max. :6.890 

On the other hand, we might want to calculate the mean or the sample standard 
deviation of the variable grade. This can be done with functions called mean() and 
sd(), respectively.
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mean(grades$grade) 

[1] 4.496 

sd(grades$grade) 

[1] 1.630178 

The functions above can only take numeric vectors as input. If we tried using 
another type of argument, we would encounter an error message. 

sd(grades) 

Error in is.data.frame(x): ’list’ object cannot be coerced to type ’double’ 

The above message can actually teach us a couple of things. First of all, the 
error comes from the function is.data.frame(), which is called somewhere in 
the definition of sd(). Second, the actual error message tells us that the object 
which we gave to the function as its argument is a list object. List is an object 
type of R on top of which data.frame objects have been built. We will describe 
lists in greater detail later. Further, the message tells us that R has tried to coerce 
the argument object into the double type. This means that the object we supplied 
to the function is not of the right type and cannot easily be converted into the proper 
format. 

8.1 tibble 

A tibble is an expansion of data.frame objects which is used in the tidyverse 
programming paradigm [10]. To use tidyverse, we advise to load the tidyverse 
[11] (meta)package which loads all key tidyverse packages. 

# load tidyverse to use as_tibble 
library("tidyverse") 
# convert a data frame as tibble 
grades2 <- as_tibble(grades) 

Next, let’s see what a tibble looks like when printed in the console
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grades2 

# A tibble: 5 x 2 
group grade 
<fct> <dbl> 

1 2 4.67 
2 2 4.9 
3 3 2.63 
4 4 3.39 
5 4 6.89 

Tibbles behave similarly compared to data frames when printed, but they also 
describe the dimensions of the data and the types of the columns right under the 
column names. For instance, <fct> refers to a factor column and <dbl> refers to 
a double column. In order to discover the column types when using data frames, 
one would need to apply the class() or typeof() function to the columns, or 
write str(grades) to see the types of the columns and the structure of the data. 
Another useful property of tibble tables is that if a tibble has a large number of 
observations or variables, then only the rows or the columns which can fit on to the 
screen are printed. 

Tidyverse and tibbles also support so called lazy evaluation, which is useful when 
your data is stored in a database, for instance. With lazy evaluation, the commands 
that you use on your data would be evaluated directly in the database (if possible). 
Without lazy evaluation, the entire data would be downloaded onto your computer 
only after which the commands would be evaluated. Lazy evaluation can perform 
many tasks faster and it can also alleviate memory usage of the computer. 

9 Pipes 

Piping is a fairly recent concept in R and was very rarely used in R code just a 
few years ago. The concept of a pipe originates from a package called magrittr, 
and pipes are commonly used under the tidyverse programming paradigm, but the 
pipe was also later added to base R. The notations for a tidyverse pipe and a native R 
pipe are %>% and |>, respectively. The idea of a pipe is that you can connect multiple 
function calls sequentially while keeping the code more readable. Pipes also serve 
to unnest standard R code which often involves using many nested parentheses, and 
can quickly become hard to read as one has to read the code based on the order 
of the operations instead of reading it linearly. For example, consider the following 
code where we apply a sequence of operations on a numeric vector x.
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x <- 1:10 
round(mean(diff(log(x))), digits = 2) 

[1] 0.26 

This code computes the rounded mean differences of the logarithms of the vector 
x, however this description does not match the order of operations, where the 
logarithm is computed first. To accomplish the same result using pipes we would 
write 

x <- 1:10 
x |> log() |> diff() |> mean() |> round(digits = 2) 

[1] 0.26 

Here, the order of operations can be easily read from left to right. Next, we will 
discuss the use of pipes in more detail. 

9.1 magrittr pipe %>% 

Let’s have a look at an example, where we call the summary() function for the 
grades2 data using the magrittr pipe %>%, and we also define that results should be 
printed with two digits. 

grades2 %>% 
summary(digits = 2) 

group grade 
2:2 Min. :2.6 
3:1 1st Qu.:3.4 
4:2 Median :4.7 

Mean :4.5 
3rd Qu.:4.9 
Max. :6.9 

In the code above, the object grades2 is taken by the pipe operator %>% 
and forwarded to the first argument of the summary() function. The summary() 
function also has a second argument, which is defined by digits = 2. Thus, 
the pipe only takes the object mentioned before the pipe operator and forwards 
it to the function after the pipe as the first free argument. It is very common and
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recommended to structure R code so that there is only one pipe per row and that a 
new line is started after each pipe. 

Although the above example is easy to understand as we already know the 
summary() function, there is also a more general way to compute summarized 
information following the tidyverse style. The function summarise() can be used 
to compute arbitrary statistics from the data, for example the number of observations 
(via the function n()) and the mean and the sample standard deviation of the 
variable grade. 

grades2 %>% 
summarise( 

n =  n(), 
mean = mean(grade), 
sd = sd(grade) 

) 

# A tibble: 1 x 3 
n mean sd 

<int> <dbl> <dbl> 
1 5 4.50 1.63 

The summarise() function also produces a tibble enabling further operations 
via piping, if desired. 

9.2 Native pipe |> 

In R version 4.1, the native pipe |> was introduced to the R language, which does 
not require any external packages to use. In most scenarios, it does not matter 
whether the native or the magrittr pipe is used. However, there are two technical 
differences between the magrittr pipe and the native pipe. First, the magrittr 
pipe is actually a function 

class(`%>%`) 

[1] "function" 

while the native pipe is not, and simply converts the written code into a non-piped 
version, i.e., into a form that one would write without using the pipe:
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x <- 1:5 
quote(x |> sum()) 

sum(x) 

We see that providing x to the sum function via the native pipe is exactly the same 
as writing sum(x) directly. What this means in practice is that the native pipe may 
have better performance for example when passing a large dataset through a large 
number of pipes. The reason for this is that the magrittr pipe incurs an additional 
computational function call overhead each time it is called. The second difference 
between the pipes is that parentheses have to be provided for function calls when 
using the native pipe, but they can be omitted when using the magrittr pipe 

x %>% sum 

[1] 15 

x %>% sum() 

[1] 15 

x |> sum() 

[1] 15 

x |> sum # produces an error 

Error: The pipe operator requires a function call 
as RHS (<text>:1:6) 

10 Lists 

Earlier, we already briefly mentioned lists in the context of data frames. Lists are 
one the most common types of data in R and they resemble basic vectors in many 
aspects. Like vectors, a list is an ordered sequence of elements, but unlike vectors, 
lists can contain elements of different types simultaneously and may even contain 
other lists. For example, we could construct a list that contains a logical value, a 
numeric value and a character value using the list() function as follows.



Getting Started with R for Education Research 89 

y <- list(TRUE, 7.2, "this is a list") 

Subsetting a list object works slightly differently compared to vectors. When 
single brackets are used, a sublist is selected, i.e., a list object that contains the 
elements at the supplied indices, for example: 

y[1:2] 

[[1]] 
[1] TRUE 

[[2]] 
[1] 7.2 

typeof(y[1:2]) 

[1] "list" 

To extract an actual element of a list, double brackets should be used: 

y[[2]] 

[1] 7.2 

The elements of a list may also be named, which enables subsetting via the 
dollar sign operator similar to data frames, or by giving the element name in double 
brackets instead of the index: 

z <- list(bool = TRUE, num = 7.2, 
description = "this is another list") 

z$bool 

[1] TRUE 

z[["description"]] 

[1] "this is another list"
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One benefit of using the dollar sign is that it is not necessary to provide the full 
element name, unlike when using the double brackets. It is sufficient to provide 
a prefix of the element name so that the full name can be uniquely determined 
from the prefix. Because all the names of our elements in the previous list z start 
with a different letter, the first letter of the name suffices as the prefix. The same 
functionality also applies when using the dollar sign to select columns of data 
frames. 

z$b 

[1] TRUE 

z$n 

[1] 7.2 

z$d 

[1] "this is another list" 

11 Functions 

A function is a set of statements that when organized together perform a specific 
task. Each function in R has a name, a set of arguments, a body and a return object. 
The name of the function usually describes the purpose of the function. For example, 
the base R function mean() computes the arithmetic mean of the argument vector. 
The result is returned as a numeric value. 

x <- 1:5 
mean(x) 

[1] 3 

Functions are often much more complicated, which is why it is often helpful 
to view the documentation of a function before using it in practice. To view the 
documentation pages of a function, one can simply write the name of the function 
prefixed by a question mark.
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?mean 

In RStudio, the documentation will open in the “Help” tab in the bottom 
right pane by default. Functions will only be executed when they are called, i.e., 
when arguments are supplied to them. Simply writing the function name without 
parentheses will instead print the body of the function to the console, meaning the 
code that the function consists of and which is executed if the function is called. 

In the previous sections, we’ve already familiarized ourselves with some com-
monly used basic functions such as c(), sd(), and summary(). Base R has a wide 
range of function to accomplish common tasks needed in data analysis, which is 
further extended by tidyverse and other R packages. This means that one does 
not typically have to write their own functions when programming in R. We will 
explore several of the functions provided by the tidyverse in later chapters. 

12 Conditional Statements 

Sometimes we may only wish to execute a piece of code when a certain condition 
is met. Conditional statements in R can be defined via the if and else clauses. The 
if clause evaluates a condition, which is an R expression that evaluates to a single 
logical value, and if this condition evaluates to TRUE, the expression following 
the clause if executed. Further, if an else clause is also provided, the expression 
following else will be executed instead if the condition evaluates to FALSE. As R  
code, the syntax for these clauses is 

if (cond) expr 
if (cond) expr else alt_expr 

where cond is the condition being evaluated, expr is the expression that will be 
evaluated if cond == TRUE, and alt_expr will be evaluated if cond == FALSE. 

Note that if will only evaluate a single condition. If cond is a vector, an error 
will be produced: 

cond <- c(TRUE, FALSE) 
if (cond) { 

print("This will not be printed") 
} 

Error in if (cond) {: the condition has length > 1 

As expected, the error message tells us that the condition contained more than 
one element when it was evaluated. However, there are often scenarios where we
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may wish to conditionally select or define values based on a vector of conditions. 
For such instances, the function ifelse() can be used. This function has three 
arguments: test, yes, and no. When called, the function will pick those elements 
of the vector yes for which the logical vector test evaluates to TRUE, and those 
elements of the vector no for which test evaluates to FALSE: 

cond <- c(TRUE, FALSE, FALSE, TRUE) 
x <- 1:4 
y <- -(1:4) 
ifelse(cond, x, y) 

[1] 1 -2 -3 4 

13 Looping Constructs 

In some cases, we may wish to execute the same piece of code multiple times 
under varying conditions. Instead of writing the same code multiple times for each 
condition, we can use a looping construct. There are two types of loops in R: the 
for loop and the while loop. The main difference between the two loops is that 
for always executes the code associated with the loop a fixed number of times 
whereas while will continue executing the code as long as a specific condition 
remains satisfied. The syntax of these loops is 

for (var in seq) expr 
while (cond) expr 

In other words, for will execute the expression expr for every element var in 
some object seq that can be indexed. For-loops are very general, and can be used 
to loop over most ordered structures such as vectors and lists. Similarly, while will 
execute the expression expr as long as the condition cond evaluates to TRUE. Care  
must be taken when using while-loops to ensure that the condition will eventually 
evaluate to FALSE, otherwise the loop will simply run indefinitely and the program 
will be stuck. As an example, we will print the number 1 through 5 to the console 
using both for and while loops: 

x <- 1:5 
for (i in x) { 

print(x[i]) 
} 
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[1] 1 
[1] 2 
[1] 3 
[1] 4 
[1] 5 

i <- 0 
while (i < length(x)) { 

i <- i  + 1 
print(x[i]) 

} 

[1] 1 
[1] 2 
[1] 3 
[1] 4 
[1] 5 

In contrast to explicit for and while loops, the so-called apply family of 
functions can often be a simpler alternative (see ?apply). As the name suggests, 
these functions apply an operation to each element of a list or a vector (and other 
more general data structures). For example, the above loop example could also be 
accomplished with the lapply() function as follows: 

y <- lapply(x, print) 

[1] 1 
[1] 2 
[1] 3 
[1] 4 
[1] 5 

14 Discussion and Other Resources for Learning R 

The main aim behind this chapter was to introduce R to new users. This chapter 
is, of course, an initial step and can hardly cover all the basics. Interested users are 
advised to consult other resources e.g., open access books, tutorials, cheat sheets, 
and package manuals for more information. An introductory book “An Introduction 
to R” packaged with each R installation can be accessed from the RStudio Help 
panel by first selecting “Show R Help” and then selecting “An Introduction to R” 
under “Manuals”. This book covers a wide range of topics on base R programming
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in great detail. The book “R for Data Science” by Hadley Wicham and Garret 
Grolemund provides a comprehensive tutorial on using R for data science under the 
tidyverse paradigm. The book is free to use and readily available online at https:// 
r4ds.had.co.nz/. As we go further, several questions will emerge and the reader will 
learn by doing and by consulting the literature and help files. In doing so, the reader 
will build knowledge and experience that helps advance their skills. 
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An R Approach to Data Cleaning and 
Wrangling for Education Research 

Juho Kopra, Santtu Tikka, Merja Heinäniemi, Sonsoles López-Pernas, 
and Mohammed Saqr 

1 Introduction 

When analyzing data, it is crucial that the data is in a suitable format for the tools you 
will be using. This makes data wrangling essential. Data preparation and cleaning, 
such as extracting information from raw data or removing erroneous measurements, 
must also be done before data is ready for analysis. Data wrangling often takes 
up the majority of the time spent on analysis, sometimes up to 80%. To reduce 
the amount of work required, it is beneficial to use tools that follow the same 
design paradigm to minimize the time spent on data wrangling. The tidyverse 
[1] programming paradigm is currently the most popular approach for this in R. 

The tidyverse has several advantages that make it preferable over other 
alternatives such as simply using base R for your data wrangling needs. All packages 
in the tidyverse follow a consistent syntax, making it intuitive to learn and use 
new tidyverse packages. This consistency also makes the code more easier to 
read, and maintain, and reduces the risk of errors. The tidyverse also has a vast 
range of readily available packages that are actively maintained, reducing the need 
for customized code for each new data wrangling task. Further, these packages 
integrate seamlessly with one another, facilitating a complete data analysis pipeline. 
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To fully realize the benefits of the tidyverse programming paradigm, one must 
first understand the key concepts of tidy data and pivoting. Tidy data follows three 
rules: 

1. Each variable must have its own column. 
2. Each observation must have its own row. 
3. Each value must have its own cell. 

Let’s consider examples of tidy data. For instance, if you have data from a 
Moodle course where two attempts of an exam for each student are located in 
a single column. This example data violates the first rule, because there are two 
variables in a single column instead of separate columns for each variable. What 
is needed to make this data tidy is to pivot it to a longer format. The pivoted data 
would have two rows for each student, both of which are different observations 
(exam attempts 1 and 2). Thus the pivoted data would not conflict with second rule. 

Data can also be too long, but in practice, this is much more rare. This can occur 
if two or more variables are stored on a single column across multiple rows. A 
key indicators of this is if the different rows of the same column have different 
measurements units (e.g. lb vs. kg). It may also occur that your raw data has multiple 
values in a single cell. In these cases, it is necessary to split the cells to extract the 
necessary information. In a simple case, where you have two values systematically 
in a one cell, the values can be easily separated into their own columns. 

Overall, using tidyverse and understanding the key concepts of tidy data and 
pivoting can streamline the data analysis process and make code easier to work with 
and maintain. The rest of this chapter will guide readers through the process of data 
cleaning and wrangling with R in the field of learning analytics. We demonstrate 
how data can be grouped and summarized, how to select and transform variables of 
interest, and how data can be rearranged, reshaped and joined with other datasets. 
We will strongly rely on the tidyverse programming paradigm for a consistent 
and coherent approach to data manipulation, with a focus on tidy data. 

2 Reading Data into R 

Data files come in many formats, and getting your data ready for analysis can 
often be a daunting task. The tidyverse offers much better alternatives to base R 
functions for reading data, especially in terms of simplicity and speed when reading 
large files. Additionally, most of the file input functions in the tidyverse follow 
a similar syntax, meaning that the user does not have to master every function for 
reading every type of data individually. 

Often, just before the data can be read into R, user must specify the location of 
data files by setting a working directory. Perhaps most useful way to do that is to 
create a project in RStudio and then create a folder called “data” within the project 
folder. Data files can be put into that folder and user can refer to those files just 
by telling R-functions relative path of data file (e.g. “data/Final%20Dataset.csv”) 
while the project takes care of the rest of the path. A more traditional way of
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setting this, which also works without RStudio, is by using a command such as 
setwd("/home/Projects/LAproject/data/Final%20Dataset.csv"). Here, 
a function called setwd() is used to set up a folder into location mentioned in a 
character string given as its argument. A getwd() lists current working directory, 
which can also be seen in RStudio just above the Console output. 

Some of the most common text data formats are comma-separated files or 
semicolon-separated files, both of which typically have the file extension .csv. These 
files can be read into R using the readr [2] package and the functions read_csv() 
and read_csv2(), respectively. For instance, we can read a comma-separated file 
R as follows 

library("readr") 
url <- "https://github.com/lamethods/data/raw/main/2_moodleEdify/" 
lms <- read_csv(paste0(url, "Final%20Dataset.csv")) 

Functions in readr provide useful information about how the file was read into 
R, which can be used to assess if the input was successful and what assumptions 
about the data were made during the process. In the printout above, the read_csv() 
function tells us the number of rows and columns in the data and the column 
specification, i.e., what type of data is contained within each column. In this case, 
we have 17 columns with character type of data, and 4 columns of double type 
of data. Functions in readr try to guess the column specification automatically, but 
it can also be specified manually when using the function. For more information 
about this dataset, please refer to Chapter 2 in this book [3]. 

Data from Excel worksheets can be read into R using the import() function 
from the rio [4] package. We will use synthetic data generated based on a real 
blended course of learning analytics for the remainder of this chapter. These data 
consist of three Excel files which we will first read into R. 

library("rio") 
url <- "https://github.com/lamethods/data/raw/main/1_moodleLAcourse/" 
events <- import(paste0(url, "Events.xlsx"), setclass = "tibble") 
results <- import(paste0(url, "Results.xlsx"), setclass = "tibble") 
demographics <- import(paste0(url, "Demographics.xlsx"), setclass = "tibble") 

The data files contain information on students’ Moodle events, background 
information such as their name, study location and employment status, and various 
grades they’ve obtained during the course. For more information about the dataset, 
please refer to Chapter 2 in this book [3]. These data are read in the tibble [5] 
format, a special type of data.frame commonly used by tidyverse packages. 
We also load the dplyr [6] package which we will use for various tasks throughout 
this chapter. 

library("dplyr")
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3 Grouping and Summarizing Data 

Instead of individual-level data metrics, we may be interested in specific groups as 
specified by some combination of data values. For example, we could compute the 
number of students studying in each location by gender. To accomplish this, we need 
to start by creating a grouped dataset with the function group_by(). To compute 
the number of students, we can use the summarise() function which we already 
used previously in Chapter 1 and the function count(), which simply returns the 
number of observations in each category of its argument. 

demographics |> 
group_by(Gender) |> 
count(Location) 

# A tibble: 4 x 3 
# Groups: Gender [2] 

Gender Location n 
<chr> <chr> <int> 

1 F On campus 55 
2 F Remote 10 
3 M On campus 51 
4 M Remote 14 

The column n lists the number of students in each group. When a tibble that 
contains grouped data is printed into the console, the grouping variable and the 
number of groups will be displayed in the console below the dimensions. Next, we 
will compute the total number of Moodle events of each student, which we will also 
use in the subsequent sections. 

events_summary <- events |> 
group_by(user) |> 
tally() |> 
rename(Frequency.Total = n) 

events_summary 

# A tibble: 130 x 2 
user Frequency.Total 
<chr> <int> 

1 00a05cc62 417 
2 042b07ba1 918 
3 046c35846 199 
4 05b604102 199 
5 0604ff3d3 436 
# i 125 more rows
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Here, the function tally() simply counts the number of number rows in 
the data related to each student, reported in the column n which we rename to 
Frequency.Total with the rename() function. We could also count the number 
of events by event type for each student 

events |> 
group_by(user, Action) |> 
count(Action) 

# A tibble: 1,439 x 3 
# Groups: user, Action [1,439] 

user Action n 
<chr> <chr> <int> 

1 00a05cc62 Applications 2 
2 00a05cc62 Assignment 121 
3 00a05cc62 Course_view 103 
4 00a05cc62 Feedback 7 
5 00a05cc62 General 10 
# i 1,434 more rows 

4 Selecting Variables 

In the tidyverse paradigm, selecting columns, i.e., variables from data is done 
using the select() function. The select() function is very versatile, allowing 
the user to carry out selections ranging from simple selection of a single variable to 
highly complicated selections based on multiple criteria. The most basic selection 
selects only a single variable in the data based on its name. For example, we can 
select the employment statuses of students as follows 

demographics |> 
select(Employment) 

# A tibble: 130 x 1 
Employment 
<chr> 

1 None 
2 None 
3 None 
4 None 
5 Part-time 
# i 125 more rows
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Note that using select() with a single variable is not the same as using the 
$ symbol to select a variable, as the result is still a tibble, select() simply 
produces a subset of the data, where only the selected columns are present. Select 
is more similar to subset() in base R, which can accomplish similar tasks as 
select() and filter() in the tidyverse. However, we do not recommend 
using subset(), as it may not work correctly when the working environment 
has variables that have the same name as columns in the data, which can lead to 
undesired outcomes. 

To extract the values of the selected column as a vector, we can use the function 
pull(). We use  the head() function here to limit the console output to just the first 
few values of the vector (default is 6 values). 

demographics |> 
pull(Employment) |> 
head() 

[1] "None" "None" "None" "None" "Part-time" "Part-time" 

The select() function syntax supports several operations that are similar to 
base R. We can select ranges of consecutive variables using :, complements using 
!, and combine selections using c(). The following selections illustrate some of 
these features: 

demographics |> 
select(user:Origin) 

# A tibble: 130 x 4 
user Name Surname Origin 
<chr> <chr> <chr> <chr> 

1 6eba3ff82 Amanda Mora Costa Rica 
2 05b604102 Lian Abdullah Yemen 
3 111422ee7 Bekim Krasniqi Kosovo 
4 b4658c3a9 Yusuf Kaya Turkey 
5 e6ec47f29 Zoran Babić Serbia 
# i 125 more rows 

demographics |> 
select(!Gender) 

# A tibble: 130 x 7 
user Name Surname Origin Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr>
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1 6eba3ff82 Amanda Mora Costa Rica 28.2.1998 On campus None 
2 05b604102 Lian Abdullah Yemen 19.11.1996 On campus None 
3 111422ee7 Bekim Krasniqi Kosovo 30.1.1999 On campus None 
4 b4658c3a9 Yusuf Kaya Turkey 16.6.1998 On campus None 
5 e6ec47f29 Zoran Babić Serbia 29.10.1998 On campus Part-time 
# i 125 more rows 

demographics |> 
select(c(user, Surname)) 

# A tibble: 130 x 2 
user Surname 
<chr> <chr> 

1 6eba3ff82 Mora 
2 05b604102 Abdullah 
3 111422ee7 Krasniqi 
4 b4658c3a9 Kaya 
5 e6ec47f29 Babić 
# i 125 more rows 

In the first selection, we select all variables starting from user on the left to 
Origin on the right. In the second, we select all variables except Gender. In the  
third, we select both user and Surname variables. 

Sometimes, our selection might not be based directly on the variable names 
themselves as in the examples above but instead on vectors that contain the names of 
columns we wish to select. In such cases, we can use the function all_of(). We can 
consider the intersections or unions of such selections using & and |, respectively. 

cols_a <- c("user", "Name", "Surname") 
cols_b <- c("Surname", "Origin") 
demographics |> 

select(all_of(cols_a)) 

# A tibble: 130 x 3 
user Name Surname 
<chr> <chr> <chr> 

1 6eba3ff82 Amanda Mora 
2 05b604102 Lian Abdullah 
3 111422ee7 Bekim Krasniqi 
4 b4658c3a9 Yusuf Kaya 
5 e6ec47f29 Zoran Babić 
# i 125 more rows
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demographics |> 
select(all_of(cols_a) & all_of(cols_b)) 

# A tibble: 130 x 1 
Surname 
<chr> 

1 Mora 
2 Abdullah 
3 Krasniqi 
4 Kaya 
5 Babić 
# i 125 more rows 

demographics |> 
select(all_of(cols_a) | all_of(cols_b)) 

# A tibble: 130 x 4 
user Name Surname Origin 
<chr> <chr> <chr> <chr> 

1 6eba3ff82 Amanda Mora Costa Rica 
2 05b604102 Lian Abdullah Yemen 
3 111422ee7 Bekim Krasniqi Kosovo 
4 b4658c3a9 Yusuf Kaya Turkey 
5 e6ec47f29 Zoran Babić Serbia 
# i 125 more rows 

Often the names of data variables follow a similar pattern, and these patterns 
can be used to construct selections. Selections based on a prefix or a suffix in 
the variable name can be carried out with the functions starts_with() and 
ends_with(), respectively. The function contains() is used to look for a specific 
substring in the names of the variables, and more complicated search patterns 
can be defined with the function matches() that uses regular expressions (see 
?tidyselect::matches for further information). 

results |> 
select(starts_with("Grade")) 

# A tibble: 130 x 13 
Grade.SNA_1 Grade.SNA_2 Grade.Review Grade.Group_self Grade.Group_All 

<dbl> <dbl> <dbl> <dbl> <dbl> 
1 0 0 6.67 5 4  
2 8 10 6.67 1 3
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3 10 10 10 10 9.11  
4 5 5 0 1 4  
5 10 10 10 10 9.18  
# i 125 more rows 
# i 8 more variables: Grade.Excercises <dbl>, Grade.Project <dbl>, 
# Grade.Literature <dbl>, Grade.Data <dbl>, Grade.Introduction <dbl>, 
# Grade.Theory <dbl>, Grade.Ethics <dbl>, Grade.Critique <dbl> 

results |> 
select(contains("Data")) 

# A tibble: 130 x 1 
Grade.Data 

<dbl> 
1 4  
2 3  
3 5  
4 3  
5 5  
# i 125 more rows 

So far, our selections have been based on variable names, but other conditions for 
selection are also feasible. The general-purpose helper function where() is used to 
select those variables for which a function provided to it returns TRUE. For example, 
we could select only those columns that contain character type data or double 
type data. 

results |> 
select(where(is.character)) 

# A tibble: 130 x 1 
user 
<chr> 

1 6eba3ff82 
2 05b604102 
3 111422ee7 
4 b4658c3a9 
5 e6ec47f29 
# i 125 more rows 

results |> 
select(where(is.double)) 
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# A tibble: 130 x 14 
Grade.SNA_1 Grade.SNA_2 Grade.Review Grade.Group_self Grade.Group_All 

<dbl> <dbl> <dbl> <dbl> <dbl> 
1 0 0 6.67 5 4  
2 8 10 6.67 1 3 
3 10 10 10 10 9.11 
4 5 5 0 1 4  
5 10 10 10 10 9.18 
# i 125 more rows 
# i 9 more variables: Grade.Excercises <dbl>, Grade.Project <dbl>, 
# Grade.Literature <dbl>, Grade.Data <dbl>, Grade.Introduction <dbl>, 
# Grade.Theory <dbl>, Grade.Ethics <dbl>, Grade.Critique <dbl>, Final_grade 
<dbl> 

5 Filtering Observations 

In contrast to selection which relates to obtaining a subset of the columns of the data, 
filtering refers to obtaining a subset of the rows. In the tidyverse, data filtering 
is carried out with the dplyr package function filter(), which should not be 
confused with the base R filter() function in the stats package. As we have 
attached the dplyr package, the base R filter() function is masked, meaning 
that when we write code that uses filter(), the  dplyr version of the function will 
automatically be called. 

Filtering is often a much simpler operation than selecting variables, as the 
filtering conditions are based solely on the values of the data variables. Using 
filter() is analogous to the base R subset operator [, but the filtering condition 
is given as an argument to the filter() function instead. It is good to remind that 
in R a single equal sign (=) is merely for arguments of function calls, while double 
equal sign (==) is needed for comparison of two values. And example of filter: 

demographics |> 
filter(Origin == "Bosnia") |> 
select(Name, Surname) 

# A tibble: 2 x 2 
Name Surname 
<chr> <chr> 

1 Hamza Hodžić 
2 Davud Delić 

The code above first filters our student demographics data to only those students 
whose country of origin is Bosnia. Then, we select their first and last names. 

Multiple filtering conditions can be refined and combined using base R logical 
operators, such as & and |.
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demographics |> 
filter(Gender == "F" & Location == "Remote") 

# A tibble: 10 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 d93f7f0d3 Zahra Gul Afghanistan F 22.11.1999 Remote None 
2 93d1f2e82 Louise Bernard France F 5.9.1998 Remote Part-time 
3 417892918 Miora Rakotomalala Madagascar F 9.12.1995 Remote None 
4 f98e6e2b8 Linda Mensah Ghana F 7.2.1991 Remote None 
5 590846fe3 Lucija Horvat Croatia F 22.7.1998 Remote None 
# i 5 more rows 

Here, we filtered our data to female students who are studying remotely. The 
same result could also be obtained by using the filter() function two times 

demographics |> 
filter(Gender == "F") |> 
filter(Location == "Remote") 

# A tibble: 10 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 d93f7f0d3 Zahra Gul Afghanistan F 22.11.1999 Remote None 
2 93d1f2e82 Louise Bernard France F 5.9.1998 Remote Part-time 
3 417892918 Miora Rakotomalala Madagascar F 9.12.1995 Remote None 
4 f98e6e2b8 Linda Mensah Ghana F 7.2.1991 Remote None 
5 590846fe3 Lucija Horvat Croatia F 22.7.1998 Remote None 
# i 5 more rows 

This type of approach may improve the readability of your code especially when 
there are several independent filtering conditions to be applied simultaneously. 

Filters can naturally be based on numeric values as well. For example, we could 
select those students whose final grade is higher than 8. 

results |> 
filter(Final_grade > 8) 

# A tibble: 58 x 15 
user Grade.SNA_1 Grade.SNA_2 Grade.Review Grade.Group_self Grade.Group_All 
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> 

1 111422ee7 10 10 10 10 9.11 
2 e6ec47f29 10 10 10 10 9.18 
3 4951e7386 10 10 7 9 8.56 
4 9d744e5bf 10 10 10 10 9.29 
5 0ef305578 10 10 9.33 10 8.56 
# i 53 more rows
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# i 9 more variables: Grade.Excercises <dbl>, Grade.Project <dbl>, 
# Grade.Literature <dbl>, Grade.Data <dbl>, Grade.Introduction <dbl>, 
# Grade.Theory <dbl>, Grade.Ethics <dbl>, Grade.Critique <dbl>, Final_grade <dbl> 

Similarly, we could select students based on their total number of Moodle events. 

events_summary |> 
filter(Frequency.Total > 100 & Frequency.Total < 500) 

# A tibble: 44 x 2 
user Frequency.Total 
<chr> <int> 

1 00a05cc62 417 
2 046c35846 199 
3 05b604102 199 
4 0604ff3d3 436 
5 0af619e4b 268 
# i 39 more rows 

6 Transforming Variables 

In the best-case scenario, our data is already in the desired format after it has been 
read into R, but this is rarely the case with real datasets. We may need to compute 
new variables that were not present in the original data, convert measurements to 
different units, or transform text data into a numeric form. In the tidyverse, data 
transformations are carried out by the mutate() function of the dplyr package. 
This function can be used to transform multiple variables at the same time or to 
construct entirely new variables. The syntax of the function is the same in both 
cases: first, the name of the variable should be provided followed by an R expression 
that defines the variable. The transformed data is not automatically assigned to any 
variable, enabling transformations to be used as temporary variables within a chain 
of piped operations. 

As a simple example, we could convert the students’ locations into a factor 
variable. 

demographics |> 
mutate(Location = factor(Location)) 

# A tibble: 130 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <fct> <chr> 

1 6eba3ff82 Amanda Mora Costa Rica F 28.2.1998 On campus None
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2 05b604102 Lian Abdullah Yemen F 19.11.1996 On campus None 
3 111422ee7 Bekim Krasniqi Kosovo M 30.1.1999 On campus None 
4 b4658c3a9 Yusuf Kaya Turkey M 16.6.1998 On campus None 
5 e6ec47f29 Zoran Babić Serbia M 29.10.1998 On campus Part-time 
# i 125 more rows 

As we see from the tibble printout, the Location variable is a factor in the 
transformed data as indicated by the <fct> heading under the variable name. Note 
that the original demographics data was not changed, as we did not assign the 
result of the computation. 

The gender and employment status of the students could also be used as factors, 
which we could do in a single mutate() call 

demographics |> 
mutate( 

Gender = factor(Gender), 
Location = factor(Location), 
Employment = factor(Employment) 

) 

# A tibble: 130 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <fct> <chr> <fct> <fct> 

1 6eba3ff82 Amanda Mora Costa Rica F 28.2.1998 On campus None 
2 05b604102 Lian Abdullah Yemen F 19.11.1996 On campus None 
3 111422ee7 Bekim Krasniqi Kosovo M 30.1.1999 On campus None 
4 b4658c3a9 Yusuf Kaya Turkey M 16.6.1998 On campus None 
5 e6ec47f29 Zoran Babić Serbia M 29.10.1998 On campus Part-time 
# i 125 more rows 

However, writing out individual identical transformations manually is cumber-
some when the number of variables is large. For such cases, the across() function 
can be leveraged, which applies a function across multiple columns. This function 
uses the same selection syntax that we already familiarized ourselves with earlier 
to define the columns that will be transformed. To accomplish the same three 
transformations into a factor format, we could write 

demographics |> 
mutate(across(c(Gender, Location, Employment), factor)) 
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# A tibble: 130 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <fct> <chr> <fct> <fct> 

1 6eba3ff82 Amanda Mora Costa Rica F 28.2.1998 On campus None 
2 05b604102 Lian Abdullah Yemen F 19.11.1996 On campus None 
3 111422ee7 Bekim Krasniqi Kosovo M 30.1.1999 On campus None 
4 b4658c3a9 Yusuf Kaya Turkey M 16.6.1998 On campus None 
5 e6ec47f29 Zoran Babić Serbia M 29.10.1998 On campus Part-time 
# i 125 more rows 

The first argument to the across() function is the selection that defines the 
variables to be transformed. The second argument defines the transformation, in 
this case, a function, to be used. 

Working with dates can often be challenging. When we read the student 
demographic data into R, the variable Birthdate was assumed to be a  character 
type variable. If we would like to use this variable to e.g., compute the ages of the 
students, we need to first convert it into a proper format using the as.Date function. 
Since the dates in the data are not in any standard format, we must provide the format 
manually. Afterwards, we can use the lubridate [7] package to easily compute the 
ages of the students, which we will save into a new variable called Age. We will also 
construct another variable called FullName which formats the first and last names 
of the students as "Last, First". 

library("lubridate") 
demographics |> 

mutate( 
Birthdate = as.Date(Birthdate, format = "%d.%m.%Y"), 
Age = year(as.period(interval(start = Birthdate, end = date("2023-03-12")))), 
FullName = paste0(Surname, ", ", Name) 

) |> 
select(Age, FullName) 

# A tibble: 130 x 2 
Age FullName 

<dbl> <chr> 
1 25 Mora, Amanda 
2 26 Abdullah, Lian 
3 24 Krasniqi, Bekim 
4 24 Kaya, Yusuf 
5 24 Babić, Zoran 
# i 125 more rows 

The computation of the ages involves several steps. First, we construct a time 
interval object with the interval() function from the birthdate to the date for 
which we wish to compute the ages. Next, the as.period() function converts this 
interval into a time duration, from which we lastly get the number of years with the 
year() function.
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Suppose that we would like to construct a new variable AchievingGroup 
that categorizes the students into top 50% achievers and bottom 50% achievers 
based on their final grade on the course. We leverage two functions from the 
dplyr package to construct this new variable: case_when() and ntile(). The  
function case_when() is used to transform variables based on multiple sequential 
conditions. The function ntile() has two arguments, a vector x and an integer n, 
and it splits x into n equal-sized groups based on the ranks of the values in x. 

results <- results |> 
mutate( 

AchievingGroup = factor( 
case_when( 

ntile(Final_grade, 2) == 1 ~ "Low achiever", 
ntile(Final_grade, 2) == 2 ~ "High achiever" 

) 
) 

) 

The syntax of case_when() is very simple: we describe the condition for each 
case followed by ~ after which we define the value that the case should correspond 
to. We assign the result of the computation to the results data, as we will be using 
the AchievingGroup variable in later chapters. 

We would also like to categorize the students based on their activity level, i.e., 
the number of total Moodle events. Our goal is to create three groups of equal size 
consisting of low activity, moderate activity and high activity students. The approach 
we applied to categorizing the achievement level of the students is also applicable 
for this purpose. We name our new variable as ActivityGroup, and we assign the 
result of the computation, as we will also be using this variable in later chapters. 

events_summary <- events_summary |> 
mutate( 

ActivityGroup = factor( 
case_when( 

ntile(Frequency.Total, 3) == 1 ~ "Low activity", 
ntile(Frequency.Total, 3) == 2 ~ "Moderate activity", 
ntile(Frequency.Total, 3) == 3 ~ "High activity" 

) 
) 

) 
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7 Rearranging Data 

Sometimes we may want to reorder the rows or columns of our data, for example 
in alphabetical order based on the names of students on a course. The arrange() 
function from the dplyr package orders the rows of the by the values of columns 
selected by the user. The values are sorted in ascending order by default, but 
the order can be inverted by using the desc() function if desired. The variable 
order in the selection defines how ties should be broken when duplicate values are 
encountered in the previous variables of the selection. For instance, the following 
code would arrange the rows of our demographics data by first comparing the 
surnames of the students, and then the given names for those students with the same 
surname. Missing values are placed last in the reordered data. 

demographics |> 
arrange(Surname, Name) 

# A tibble: 130 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 ba76ebfab Bismah Abbasi Pakistan F 2.4.1996 Remote Full-time 
2 05b604102 Lian Abdullah Yemen F 19.11.1996 On campus None 
3 d2c3ce9a4 Amir Ait Morocco M 19.6.1997 On campus None 
4 68a377c82 Saliha Akmatova Kyrgyzstan F 19.5.1999 Remote None 
5 7e2726f3c Kazi Akter Bangladesh M 22.12.1992 On campus None 
# i 125 more rows 

A descending order based on both names can be obtained by applying the desc() 
function. 

demographics |> 
arrange(desc(Surname), desc(Name)) 

# A tibble: 130 x 8 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 a48165ad5 Liam Zambrano Ecuador M 4.4.1998 On campus None 
2 1115dae61 Poema Wong Tahiti F 22.1.1999 Remote Part-time 
3 0ef305578 Jack White Australia M 22.4.1995 Remote None 
4 f753ce9bf Dechen Wangmo Bhutan F 29.4.1999 On campus None 
5 f87eaa00c Prasert Wang Thailand M 9.4.1997 On campus None 
# i 125 more rows 

Column positions can be changed with the relocate() function of the dplyr 
package. Like arrange(), we first select the column or columns we wish to move
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into a different position in the data. Afterwards, we specify the position where the 
columns should be moved to in relation to positions of the other columns. In our 
demographics data, the user ID column user is the first column. The following 
code moves this column after the Employment column so that the user column 
becomes the last column in the data. 

demographics |> 
relocate(user, .after = Employment) 

# A tibble: 130 x 8 
Name Surname Origin Gender Birthdate Location Employment user 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 Amanda Mora Costa Rica F 28.2.1998 On campus None 6eba3ff82 
2 Lian Abdullah Yemen F 19.11.1996 On campus None 05b604102 
3 Bekim Krasniqi Kosovo M 30.1.1999 On campus None 111422ee7 
4 Yusuf Kaya Turkey M 16.6.1998 On campus None b4658c3a9 
5 Zoran Babić Serbia M 29.10.1998 On campus Part-time e6ec47f29 
# i 125 more rows 

The mutually exclusive arguments .before and .after of relocate() specify 
the new column position in relation to columns that were not selected. These 
arguments also support the select() function syntax for more general selections. 

8 Reshaping Data 

Broadly speaking, tabular data typically take one of two formats: wide or long. In 
the wide format, there is one row per subject, where the subjects are identified by 
an identifier variable, such as the user variable in our Moodle data, and multiple 
columns for each measurement. In the long format, there are multiple rows per 
subject, and the columns describe the type of measurement and its value. For 
example, the events data is in a long format containing multiple Moodle events 
per student, but the results and demographics data are in a wide format with 
one row per student. 

In the previous section, we constructed a summary of the users’ Moodle events 
in total and of different types. The latter data is also in a long format with multiple 
rows per subject, but we would instead like to have a column for each event 
type with one row per user, which means that we need to convert this data into a 
wide format. Conversion between the two tabular formats is often called pivoting, 
and the corresponding functions pivot_wider() and pivot_longer() from the 
tidyr [8] package are also named according to this convention. We will create a 
wide format data of the counts of different event types using the pivot_wider() 
function as follows
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library("tidyr") 
events_types <- events |> 

group_by(user, Action) |> 
count(Action) |> 
pivot_wider( 

names_from = "Action", 
names_prefix = "Frequency.", 
values_from = "n", 
values_fill = 0 

) 
events_types 

# A tibble: 130 x 13 
# Groups: user [130] 

user Frequency.Applications Frequency.Assignment Frequency.Course_view 
<chr> <int> <int> <int> 

1 00a05cc62 2 121 103 
2 042b07ba1 0 62 294 
3 046c35846 0 41 53 
4 05b604102 0 44 49 
5 0604ff3d3 0 9 119 
# i 125 more rows 
# i 9 more variables: Frequency.Feedback <int>, Frequency.General <int>, 
# Frequency.Group_work <int>, Frequency.Instructions <int>, 
# Frequency.La_types <int>, Frequency.Practicals <int>, Frequency.Social <int>, 
# Frequency.Ethics <int>, Frequency.Theory <int> 

Here, we first specify the column name that the names of the wide format 
data should be taken from in the long format data with names_from. In addition, 
we specify a prefix for the new column names using names_prefix that helps 
to distinguish what these new columns will contain, but in general, the prefix is 
optional. Next, we specify the column that contains the values for the new columns 
with values_from. Because not every student necessarily has events of every type, 
we also need to specify what the value should be in cases where there are no events 
of a particular type by using values_fill. As we are considering the frequencies 
of the events, it is sensible to select 0 to be this value. We save the results to 
events_types as we will use the event type data in later sections and chapters. 

9 Joining Data 

Now that we have computed the total number of events for each student and 
converted the event type data into a wide format, we still need to merge these new 
data with the demographics and results data. Data merges are also called joins, and



An R Approach to Data Cleaning and Wrangling for Education Research 113

the dplyr package provides several functions for different kinds of joins. Here, we 
will use the left_join() function that will preserve all observations of the first 
argument. 

left_join(demographics, events_summary, by = "user") 

# A tibble: 130 x 10 
user Name Surname Origin Gender Birthdate Location Employment Frequency.Total 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <int> 

1 6eba3ff~ Aman~ Mora Costa~ F 28.2.1998 On camp~ None 312 
2 05b6041~ Lian Abdull~ Yemen F 19.11.19~ On camp~ None 199 
3 111422e~ Bekim Krasni~ Kosovo M 30.1.1999 On camp~ None 532 
4 b4658c3~ Yusuf Kaya Turkey M 16.6.1998 On camp~ None 246 
5 e6ec47f~ Zoran Babić Serbia M 29.10.19~ On camp~ Part-time 356 
# i 125 more rows 
# i 1 more variable: ActivityGroup <fct> 

In essence, the above left join adds all columns from events_summary to 
demographics whenever there is a matching value in the by column. To continue, 
we can use additional left joins to add the remaining variables from the results 
data, and the Moodle event counts of different types from events_types to have 
all the student data in a single object. 

all_combined <- demographics |> 
left_join(events_types, by = "user") |> 
left_join(events_summary, by = "user") |> 
left_join(results, by = "user") 

all_combined 

# A tibble: 130 x 37 
user Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 6eba3ff82 Amanda Mora Costa Rica F 28.2.1998 On campus None 
2 05b604102 Lian Abdullah Yemen F 19.11.1996 On campus None 
3 111422ee7 Bekim Krasniqi Kosovo M 30.1.1999 On campus None 
4 b4658c3a9 Yusuf Kaya Turkey M 16.6.1998 On campus None 
5 e6ec47f29 Zoran Babić Serbia M 29.10.1998 On campus Part-time 
# i 125 more rows 
# i 29 more variables: Frequency.Applications <int>, Frequency.Assignment <int>, 
# Frequency.Course_view <int>, Frequency.Feedback <int>, Frequency.General <int>, 
# Frequency.Group_work <int>, Frequency.Instructions <int>, 
# Frequency.La_types <int>, Frequency.Practicals <int>, Frequency.Social <int>, 
# Frequency.Ethics <int>, Frequency.Theory <int>, Frequency.Total <int>, 
# ActivityGroup <fct>, Grade.SNA_1 <dbl>, Grade.SNA_2 <dbl>, ... 

We will use this combined dataset in the following chapters as well.
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10 Missing Data 

Sometimes it occurs that learning analytics data has cells for which the values are 
missing for some reason. The Moodle event data which we have utilized in this 
chapter does not naturally contain missing data. Thus, to have an example, we need 
to create a data which does. Second, handling of missing data is a vast topic of 
which we can only discuss some of the key points very briefly from a practical 
perspective. For a more comprehensive overview, we recommend reading [9] and 
[10] for a hands on approach. A short overview of missingness can be found in [11]. 

The code below will create missing values randomly to each column of 
events_types data (user column is an exception). To do that, we use the 
mice [12] package which also has methods for the handling of missing data. 
Unfortunately, mice is not part of the tidyverse. For more information 
about mice, a good source is miceVignettes at https://www.gerkovink.com/ 
miceVignettes/. Now, let’s create some missing data. 

library("mice") 
set.seed(44) 
events_types <- events_types |> 

rename( 
"Ethics" = "Frequency.Ethics", 
"Social" = "Frequency.Social", 
"Practicals" = "Frequency.Practicals" 

) 
ampute_list <- events_types |> 

ungroup(user) |> 
select(Ethics:Practicals)|> 
as.data.frame() |> 
ampute(prop = 0.3) 

events_types_mis <- ampute_list$amp |> 
as_tibble() 

events_types_mis[2, "Practicals"] <- NA 

Above, we also rename the variables that contain the frequencies of Moodle 
events related to ethics, social and practicals into Ethics, Social and 
Practicals, respectively. Let’s now see some of the values of events_types_mis 

events_types_mis 

# A tibble: 130 x 3 
Ethics Social Practicals 
<int> <int> <int> 

1 NA 12 89

https://www.gerkovink.com/miceVignettes/
https://www.gerkovink.com/miceVignettes/
https://www.gerkovink.com/miceVignettes/
https://www.gerkovink.com/miceVignettes/
https://www.gerkovink.com/miceVignettes/
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2 14 NA NA  
3 0 0 47  
4 0 0 48  
5 0 0 61  
# i 125 more rows 

We can see that now the data contains NA values in some of the cells. These are the 
cells in which a missing value occurs, meaning that a value for those measurements 
has not been recorded. A missing data pattern, that is how missing of one variable 
affects missingness of other variables, can be show as: 

md.pattern(events_types_mis, rotate.names = TRUE) 
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Above, each red square indicates a missing value while blue squares stand 
for observed ones. We can see that there are 95 complete rows, 10 for which 
Practicals are missing, 17 have missingness on Social and 9 are missing on 
Ethics. Also, one row has two red squares indicating a missing value on both 
Social and Practicals. 

Let’s now discuss options of handling missing data briefly. There are four classes 
of statistical methods for analyzing data with missing values: complete case (CC) 
methods, weighting methods, imputation methods, and model-based methods. The 
simplest of these is complete case analysis, which leaves missing values out of the 
analysis and only uses observations with all variables recorded. This can be done 
with the tidyr [8] package function drop_na(): 

events_types_mis |> 
drop_na() 

# A tibble: 95 x 3 
Ethics Social Practicals 
<int> <int> <int> 

1 0 0 47



116 J. Kopra et al.

2 0 0 48  
3 0 0 61  
4 0 24 102 
5 4 18 71 
# i 90 more rows 

We can see that after using this method, our data has only 95 rows as those were 
the rows without any columns having missing values. This made our data much 
smaller! If there are a lot of missing values, the data may become too small to use 
for practical purposes. 

A more novel group of methods are imputation methods. One of the options is 
using single imputation (SI) where the mean of each variable will determine the 
imputed value. The single mean imputation can be done as follows: 

imp <- mice(events_types_mis, method = "mean", 
m =  1, maxit = 1 , print = FALSE) 
complete(imp) |> 

head() 

Ethics Social Practicals 
1 7.553719 12.00000 89.00000 
2 14.000000 15.64602 74.80833 
3 0.000000 0.00000 47.00000 
4 0.000000 0.00000 48.00000 
5 0.000000 0.00000 61.00000 
6 0.000000 24.00000 102.00000 

We can see from above that the imputed values are not integers anymore. 
However, if we aim to estimate means or regression coefficients (see Chapter 5 [13] 
for details) that is not a problem. One of the problems with mean imputation is that 
the variance and standard error estimates will become downward biased. A mean of 
Ethics for mean imputation is: 

fit <- with(imp, lm(Ethics ~ 1)) 
summary(fit) 

# A tibble: 1 x 6  
term estimate std.error statistic p.value nobs 
<chr> <dbl> <dbl> <dbl> <dbl> <int> 

1 (Intercept) 7.55 0.811 9.32 4.20e-16 130 

Next, let’s briefly have a look at how we can utilize multiple imputation (MI) 
which is an improvement over single imputation. The multiple imputation approach 
generates more than one imputation thus creating many complete data sets for us.
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For each of these datasets, we can perform any analysis that we are interested in. 
After the analysis, one must pool the results from the impured datasets to get the 
final result. Here, we utilize a method called predictive mean matching (method = 
"pmm" in the code below), which uses the neighbour values of data as imputations. 

imp2 <- mice(events_types_mis, method = "pmm", 
m= 10, maxit = 100, print = FALSE) 
fit2 <- with(imp2, lm(Ethics ~ Practicals)) 
pool_fit <- pool(fit2) 
# Multiple imputation 
summary(pool_fit) 

term estimate std.error statistic df p.value 
1 (Intercept) 1.62080372 2.18285149 0.7425167 101.7304 0.459485402 
2 Practicals 0.08049328 0.02616765 3.0760606 106.0802 0.002668431 

# Complete cases 
summary(lm(Ethics ~ Practicals, events_types_mis))["coefficients"] 

$coefficients 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.15459162 2.12235051 1.015191 0.31226283 
Practicals 0.06220884 0.02605001 2.388054 0.01865793 

# Without missingness 
summary(lm(Ethics ~ Practicals, events_types))["coefficients"] 

$coefficients 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 1.05409529 2.17821479 0.4839262 0.6292651258 
Practicals 0.08891892 0.02590313 3.4327482 0.0008053447 

From the results above, we can see that in this particular case the multiple 
imputation performs well in comparison to CC approach. The regression coefficient 
for full data without any missing values is .0.089, and it is .0.080 for multiple 
imputation, while complete case analysis gives .0.062. As all of them have very 
similar standard errors, this yields that MI and full data give statistically significant 
p-values for significance level 0.01, while CC does not. 

11 Correcting Erroneous Data 

Let’s imagine that our data has an error on the surname variable Surname and that 
all the names ending with “sen” should end with “ssen”. What we can do is that we
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can use regular expressions to detect the erroneous rows and we can also use them to 
replace the values. Let’s first figure out which last names contain a name ending with 
“sen”. We can use a function str_detect() to return TRUE/FALSE for each row 
from stringr [14] package within a filter() function call. We define pattern 
= "sen$" where $ indicates the end of the string. 

library("stringr") 
demographics |> 

filter(str_detect(string = Surname, pattern = "sen$")) |> 
pull(Surname) 

[1] "Nielsen" "Johansen" "Joensen" "Jansen" "Olsen" 

After pulling the filtered surnames, there seems to be five surnames ending with 
“sen”. Next, let’s try to replace “sen” with “ssen”. On the next row we filter just as 
previously to limit output. 

demographics |> 
mutate(Surname = str_replace( 

string = Surname, pattern = "sen$", replacement = "ssen") 
) |> 
filter(str_detect(string = Surname, pattern = "sen$")) |> 
pull(Surname) 

[1] "Nielssen" "Johanssen" "Joenssen" "Janssen" "Olssen" 

Thus, the following code updates the data so that all the surnames ending with 
“sen” now end with “ssen” instead. 

demographics <- demographics |> 
mutate(Surname = str_replace( 

string = Surname, pattern = "sen$", replacement = "ssen") 
) 

12 Conclusion and Further Reading 

Data wrangling is one of the most important steps in any data analysis pipeline. 
This chapter introduced the tidyverse, tidy data, and several commonly used R 
packages for data manipulation and their use in basic scenarios in the context of 
learning analytics. However, the tidyverse is vast and can hardly be fully covered 
in a single chapter. We refer the reader to additional resources such as those found 
on the tidyverse website at https://www.tidyverse.org/learn/ and the book “R for 
Data Science” by Hadley Wicham and Garret Grolemund. The book is free to use 
and readily available online at https://r4ds.had.co.nz/.

https://www.tidyverse.org/learn/
https://www.tidyverse.org/learn/
https://www.tidyverse.org/learn/
https://www.tidyverse.org/learn/
https://www.tidyverse.org/learn/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
https://r4ds.had.co.nz/
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Introductory Statistics with R for 
Educational Researchers 

Santtu Tikka, Juho Kopra, Merja Heinäniemi, Sonsoles López-Pernas, 
and Mohammed Saqr 

1 Introduction 

Learning analytics involves the practical application of statistical methods to 
quantitative data, which can represent various aspects of the learning process such 
as student engagement, progress, and outcomes. Thus, knowledge about basic 
statistical methods is essential. Let’s start with how statistics connects with the 
research process and how it is also linked with philosophy of science. According 
to Niiniluoto [1], the research process can be described with the following eight 
steps: 

1. Setting up a problem. 
2. Disambiguation of the problem. Building a research strategy. 
3. Collecting data. 
4. Describing the data. 
5. Analysis of data. 
6. Interpreting the analyses. 
7. Writing the report. 
8. Publishing the results. 

Steps 1 and 2 require knowledge and skills related to the applied field, but also 
general scientific aptitude. Knowledge about statistics is central in steps 3, 4, 5, and 
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6. Finally, steps 7 and 8 mostly require skills in writing and communication. Overall, 
it can be argued that a solid understanding of statistics and statistical methods is 
crucial for anyone conducting research with quantitative data. 

This chapter of the book concentrates on steps 4, 5, and 6 of the research process. 
We start with descriptive statistics, which are statistics that describe the overall 
features of the data. In contrast, inferential statistics are used to draw conclusions 
and make inferences about the population under study. Afterwards, we explain the 
basics of statistical hypothesis testing, which is the most common—although not 
the only—way to analyze data. The most common statistical tests, such as Student’s 
t-test, Chi-squared test, Analysis of variance, Levene’s test, and Shapiro-Wilk test 
are covered in this chapter. We also explain how to interpret the results of each test. 
We also present the linear regression model, which is not a statistical test but one 
of the most powerful statistical tools. Basic understanding of linear regression is 
essential for anyone interested in more advanced regression techniques, including 
logistic regression which is covered in the final section of this chapter. For a more 
in-depth view on the statistical tests covered in this chapter, we refer the reader to 
works such as [2, 3]. 

2 Descriptive Statistics 

Descriptive statistics are used to provide a meaningful quantitative overview of 
data, and to summarize potentially vast amounts of information into more easily 
comprehensible and manageable quantities. In general, descriptive statistics are used 
as a first step in a data analysis workflow. In this section we will focus on numeric 
descriptors while visualizations are the topic of Chapter 6 [4]. For this chapter, 
we will use the combined Moodle data with students’ demographics, results, and 
summarized Moodle event activity. For more information about the dataset, please 
refer to Chapter 2 in this book [5]. We begin by installing all R packages that we 
will use in this chapter. 

install.packages( 
c("car", "rio", "see", "dplyr", "tidyr", 

"broom", "report", "correlation", "performance") 
) 

We use the rio [6] package to read the data files into R via the import() 
function. The Events dataset contains log data on the student’s Moodle activity 
such as Moodle event types and names. The Demographics dataset contains 
background information on the students such as their gender and location of study 
(categorical variables). Finally, the Results data contains grades on various aspects 
of the Moodle course including the final course grade (numeric variables). We 
also create a new variable called AchievingGroup that categorizes the students



Introductory Statistics with R for Educational Researchers 123

into bottom and top 50% of achievers in terms of the final grade. We will 
leverage the dplyr [7] and tidyr [8] packages to wrangle the data into a single 
combined dataset. We begin by reading the data files and by constructing the 
AchievingGroup variable. 

library("rio") 
library("dplyr") 
library("tidyr") 
url <- "https://github.com/lamethods/data/raw/main/1_moodleLAcourse/" 
events <- import(paste0(url, "Events.xlsx"), setclass = "tibble") 
demographics <- import(paste0(url, "Demographics.xlsx"), setclass = "tibble") 
results <- import(paste0(url, "Results.xlsx"), setclass = "tibble") |> 

mutate( 
AchievingGroup = factor( 

case_when( 
ntile(Final_grade, 2) == 1 ~ "Low achiever", 
ntile(Final_grade, 2) == 2 ~ "High achiever" 

) 
) 

) 

Next, we summarize the student’s engagement based on their Moodle activity 
into three groups: Low activity, Moderate activity and High Activity. 

events_summary <- events |> 
group_by(user) |> 
tally() |> 
rename(Frequency.Total = n) |> 
mutate( 

ActivityGroup = factor( 
case_when( 

ntile(Frequency.Total, 3) == 1 ~ "Low activity", 
ntile(Frequency.Total, 3) == 2 ~ "Moderate activity", 
ntile(Frequency.Total, 3) == 3 ~ "High activity" 

) 
) 

) 

We also count the different types of Moodle events. 

events_types <- events |> 
group_by(user, Action) |> 
count(Action) |> 
pivot_wider( 

names_from = "Action", 



124 S. Tikka et al. 

names_prefix = "Frequency.", 
values_from = "n", 
values_fill = 0 

) 

Finally, we combine the data. 

all_combined <- demographics |> 
left_join(events_types, by = "user") |> 
left_join(events_summary, by = "user") |> 
left_join(results, by = "user") 

The various steps of the combined data construction are discussed in greater 
detail in Chapter 4 [9]. 

2.1 Measures of Central Tendency 

A typical way to summarize a univariate data sample is to describe its “middle point” 
using an appropriate statistic depending on the measurement scale of the data. The 
most common statistics to describe such a value are the mean, the  median, and the 
mode. 

For data on the interval or ratio scales (and sometimes also on the ordinal scale), 
the most common option is to use the arithmetic mean, which is available via the 
base R function mean(). This function takes a vector of values as its input. 

all_combined |> 
summarise( 

mean_grade = mean(Final_grade), 
mean_total = mean(Frequency.Total) 

) 

# A tibble: 1 x 2 
mean_grade mean_total 

<dbl> <dbl> 
1 7.25 736. 

The means are reported as a tibble with a single column for both variables. 
For data on the ordinal scale (or interval or ratio scales), the median can be used 

which is defined as the value that separates the lower half from the bottom half of 
the data sample, i.e., the 50% quantile. The median can be computed in R using the 
built-in median() function. Similarly to mean(), this function also takes a vector 
of values as its input.
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all_combined |> 
summarise( 

median_grade = median(Final_grade), 
median_total = median(Frequency.Total) 

) 

# A tibble: 1 x 2 
median_grade median_total 

<dbl> <dbl> 
1 7.95 606 

Just like before, the medians are reported as a tibble with each value in its own 
column. 

For data on the nominal or ordinal scale, the mode is a suitable choice as it 
describes the category with the highest number of observations. Unfortunately, there 
is no readily available function in R to compute the mode, and the reader should 
take care not to mistakenly use the mode() function, which is used to determine the 
internal storage mode of a variable (similar to the typeof() function). However, 
we can easily write our own function to compute the statistical mode as follows: 

stat_mode <- function(x) { 
u <- unique(x) 
u[which.max(tabulate(match(x, u)))] 

} 

Functions in R are written using the following syntax. First, we define the name 
of the function, just like we would define the name of a variable when assigning 
data into it, in this case the name is stat_mode. Next, we assign the function 
definition, which starts with the keyword function. Next, we describe the function 
arguments within the parentheses, in this case we call our argument x, which we 
assume contains the data vector we wish to compute the mode for. Next, we define 
the body of the function within the braces. The body determines what the function 
does and what its output should be. Within the body, we first determine the unique 
values in the data vector x, and assign the result to a variable u. Next, we need 
to count the number of occurrences of each unique value. To start, we first match 
each observed value in x to the unique values in u to get the corresponding indices, 
which we will then count using tabulate. We obtain the index of the value with 
the highest number of occurrences with the function which.max(), and finally the 
corresponding unique value by selecting it from u using the subset operator, i.e., the 
brackets. Our function will now work on all types of data. 

all_combined |> 
summarise( 

mode_gender = stat_mode(Gender), 
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mode_location = stat_mode(Location) 
) 

# A tibble: 1 x 2 
mode_gender mode_location 
<chr> <chr> 

1 F On campus 

The output is now similar to the mean and median functions that we used earlier, 
showing the modes of Gender and Location as a two-column tibble. For nominal 
variables, it is common to also compute the frequencies of each category. This can 
easily be done with the base R function table() 

table(all_combined$Gender) 

F M  
65 65 

table(all_combined$Location) 

On campus Remote 
106 24 

The function outputs the names of the categories and the frequency of each 
category as an integer vector. 

2.2 Measures of Dispersion 

For data on the interval and ratio scales (and sometimes also on the ordinal scale), 
it is also meaningful to describe how clustered or scattered the values in the sample 
are, i.e., how far apart the values are from one another. Commonly used measures of 
statistical dispersion include the variance, standard deviation, and the interquartile 
range. Typically, such measures have the value 0 when all values in the sample are 
identical, and the value increases as the dispersion in the data grows. 

All three measures can be readily computed with built-in R functions var(), 
sd(), and IQR() respectively. Like mean() and median(), these functions accept 
a vector or numeric values as input. 

all_combined |> 
summarise( 

var_grade = var(Final_grade), 
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sd_grade = sd(Final_grade), 
iqr_grade = IQR(Final_grade) 

) 

# A tibble: 1 x 3 
var_grade sd_grade iqr_grade 

<dbl> <dbl> <dbl> 
1 4.81 2.19 3.34 

The variance, standard deviation and interquartile range of the final grade are 
returned as a tibble with three columns. 

2.3 Covariance and Correlation 

Covariance and correlation measure the linear dependence between two variables. 
Correlation is a unitless measure between . −1 and 1, whereas covariance is not, and 
its scale depends on the scale of the variables. The sign of both measures indicates 
the tendency of the relationship. Positive sign means that as the value of one variable 
increases, the value of the other variable tends to increase as well. Conversely, a 
negative sign indicates that the value of the second variable tends to decrease as the 
value of the first variable increases. 

Both covariance and correlation and be computed directly in R using the 
functions cov() and cor(), respectively. 

all_combined |> 
summarise( 

cov_grade_total = cov(Final_grade, Frequency.Total), 
cor_grade_total = cor(Final_grade, Frequency.Total), 

) 

# A tibble: 1 x 2 
cov_grade_total cor_grade_total 

<dbl> <dbl> 
1 504. 0.513 

We obtain the covariance and correlation between the final grade and total 
number of Moodle events. We will familiarize ourselves with correlations in greater 
depth in Sect. 4. 

2.4 Other Common Statistics 

The extreme values of a data sample can be found using the function range(), 
which computes the minimum and maximum values of the sample as a vector. These
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values can also be computed individually with the corresponding functions min() 
and max(). Because summarise() only allows a single value as output per row, we 
use the reframe() function instead when computing the range. 

all_combined |> 
reframe( 

range_grade = range(Final_grade) 
) 

# A tibble: 2 x 1 
range_grade 

<dbl> 
1 0  
2 10  

all_combined |> 
summarise( 

min = min(Final_grade), 
max = max(Final_grade) 

) 

# A tibble: 1 x 2 
min max 

<dbl> <dbl> 
1 0 10  

With reframe(), we obtain a tibble with two rows, the first containing the 
minimum value and the second the maximum value of the final grade. If we instead 
use summarise() like before, we can only obtain one value per computed variable. 
The summary() function can also be used to quickly compute several of the most 
common descriptive statistics for all variables of a dataset. 

results |> 
select(Grade.SNA_1:Grade.Group_self) |> 
summary() 

Grade.SNA_1 Grade.SNA_2 Grade.Review Grade.Group_self 
Min. : 0.000 Min. : 0.000 Min. : 0.000 Min. : 0.000 
1st Qu.: 8.000 1st Qu.: 9.000 1st Qu.: 6.670 1st Qu.: 9.000 
Median : 9.000 Median :10.000 Median : 8.000 Median :10.000 
Mean : 8.346 Mean : 9.262 Mean : 7.724 Mean : 8.085 
3rd Qu.:10.000 3rd Qu.:10.000 3rd Qu.: 9.670 3rd Qu.:10.000 
Max. :10.000 Max. :10.000 Max. :10.000 Max. :10.000 

The output shows the minimum and maximum values, the quartiles, and the mean 
of each variable that we selected.
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3 Statistical Hypothesis Testing 

Statistical hypothesis testing aims to evaluate hypotheses about a population of 
interest using probabilistic inference. The starting point of any statistical test is a so-
called null hypothesis (denoted by . H0), which typically corresponds to a scenario, 
where evidence supporting a specific hypothesis is a result of pure chance. For 
example, when evaluating whether a new drug is an efficient form of treatment 
via a randomized controlled trial, the null hypothesis could be that the drug has 
no effect on the response. A null hypothesis is always associated with an alternative 
hypothesis (denoted by . H1), which is typically the inverse of the null hypothesis and 
corresponds to the hypothesis of interest, e.g., the drug has an effect on the response. 

Statistical tests operate by assuming that the null hypothesis is true, and highly 
unlikely events under this assumption are typically regarded as giving cause for 
rejecting the null hypothesis. A statistical test is associated with a test statistic, 
which is a measure of how much the observations deviate from the null hypothesis 
scenario. The distribution of the test statistic under the null hypothesis and the 
sample test statistic can be used to compute the probability of obtaining a test 
statistic as extreme or more extreme than the one observed, assuming that the 
null hypothesis is true. This probability is known as the p-value, which is often 
mischaracterized even in scientific literature. For instance, the p-value is not the 
probability that the null hypothesis is true or that the alternative hypothesis is false. 
The p-value also does not quantify the size of the observed effect, or its real-world 
importance. 

Typically, a confidence level is decided before applying a statistical test (usually 
denoted by . α), and the null hypothesis is rejected if the observed p-value is smaller 
than this confidence level. If the p-value is greater than the confidence level, the 
null hypothesis is not rejected. Traditionally, the confidence level is 0.05, but this 
convention varies by field, and should be understood as being arbitrary, i.e., there is 
nothing special about the value 0.05. If the p-value falls below the confidence level, 
the result is regarded as statistically significant. 

Hypothesis testing is a powerful tool for drawing conclusions from data, but it is 
important to use it appropriately and to understand its limitations. Every statistical 
test is associated with a set of assumptions which are often related to the distribution 
of the data sample. If these assumptions are violated, then the results of the test 
may be unreliable. In the following sections, some of the most common statistical 
tests are introduced. We will take advantage of the report [10] package and the 
corresponding function report() to showcase the results of the various statistical 
tests. For more information on the concepts and principles related to statistical 
hypothesis testing, see e.g., [2, 3].
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3.1 Student’s t-test 

Student’s t-test [11] is one of the most well-known statistical tests. It compares 
the mean values of variables either between two populations or between a single 
population and a reference level and is thus applicable to continuous variables. The 
test assumes homogeneity of variance and that the data originates from a normal 
distribution. For nonhomogeneous data, the test can still be performed by using 
an approximation [12]. In R, all variants of the t-test test can be applied using the 
function t.test(). 

Our goal is to compare the students’ Moodle activity with respect to their final 
grade. For this purpose, we use the binary variable called AchievingGroup which 
categorizes the students into top and bottom 50% achievers in terms of the final 
grade. 

3.1.1 One-Sample t-test 

The one-sample t-test compares the mean of a data sample against a reference value, 
typically defined by the null hypothesis. Let us begin by testing the hypothesis that 
the average number of Moodle events (Frequency.Total) is 600 (.H0 : μ = 600). 
The function t.test() can be used in various ways, but in this example we 
provide the function with a formula object Frequency.Total ~ 1 as the first 
argument. The formula syntax is a standard method for defining statistical models 
and other dependency structures in R. The formula defines that the left-hand side 
of the ~ symbol is a response variable which is explained by the terms on the 
right-hand side. Because we’re not conducting the test with respect to any other 
variable, the right-hand side of the formula is simply 1, which means that it is a 
constant in the R formula syntax. This does not mean for example, that our null 
hypothesis would be that the number of Moodle events is 1. The expected value 
that the test is applied against (i.e., the value we assume . μ to have under the null 
hypothesis) is defined via the argument mu, which by default has the value 0 for 
a one-sample t-test. Argument data defines in which environment the formula 
should be evaluated. By providing the all_combined data, we do not have to 
explicitly extract the FrequencyTotal variable from the data in the formula by 
writing all_combined$Frequency.Total or by using pull(). This is especially 
useful when the formula contains several variables from the same data. 

ttest_one <- t.test(Frequency.Total ~ 1, data = all_combined, mu = 600) 
ttest_one 

One Sample t-test 

data: Frequency.Total 
t = 3.4511, df = 129, p-value = 0.0007553
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alternative hypothesis: true mean is not equal to 600 
95 percent confidence interval: 
657.8530 813.3163 

sample estimates: 
mean of x 
735.5846 

As a result, we obtain the value of the test statistic (t = 3.4511), the degrees 
of freedom (df = 129), and the p-value of the test (p-value = 0.0007553). 
Because the p-value is very small (much smaller than the standard 0.05 confidence 
level), we reject the null hypothesis, which means that the average number of 
Moodle events is significantly different from 600. The output of the test result object 
also describes the alternative hypothesis . H1 under alternative hypothesis, and 
the confidence interval of the test statistic. 

We produce a summarized report of the test results with the report() function. 

report(ttest_one) 

Warning: Unable to retrieve data from htest object. 
Returning an approximate effect size using t_to_d(). 

Effect sizes were labelled following Cohen’s (1988) recommendations. 

The One Sample t-test testing the difference between Frequency.Total (mean = 
735.58) and mu = 600 suggests that the effect is positive, statistically 
significant, and small (difference = 135.58, 95% CI [657.85, 813.32], t(129) = 
3.45, p < .001; Cohen’s d = 0.30, 95% CI [0.13, 0.48]) 

This produces a description of the results of the test that is easier to read and 
interpret than the direct output of the test result object. We note that a warning is 
also produced which we can safely ignore in this case. The warning occurs because 
the test result object ttest_one does not retain the original data all_combined 
which we used to carry out the test. If non-approximate effect sizes are desired, 
the test should be carried out by supplying the variables being compared directly 
without using the formula interface of the t.test() function. For more information 
on the effect size, see e.g., [13, 14]. 

3.1.2 Two-Sample t-test 

In contrast to the one-sample t-test, the two-sample t-test compares the means of 
two data samples against one another. For example, suppose that we’re interested in 
the hypothesis that the average number of Moodle events is the same for the top and 
bottom 50% achievers (.H0 : μ1 = μ2). We can once again leverage the formula 
syntax, but instead of the constant 1 on the right-hand side of the formula, we will 
now replace it with the variable Achievement which defines the achievement level.
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ttest_two <- t.test(Frequency.Total ~ AchievingGroup, data = all_combined) 
ttest_two 

Welch Two Sample t-test 

data: Frequency.Total by AchievingGroup 
t = 4.4749, df = 95.988, p-value = 2.102e-05 
alternative hypothesis: 
true difference in means between group 1 and group 2 is not equal to 0 
95 percent confidence interval: 
182.6427 473.8496 

sample estimates: 
mean in group High achiever mean in group Low achiever 

899.7077 571.4615 

The contents of the result object are mostly the same as in the case of the one-
sample t-test. The result is again statistically significant (using the 0.05 confidence 
level) meaning that according to the test, the average number of Moodle events is 
higher for the top 50% achievers. The report() function can be used to produce a 
similar summary as in the case of the one-sample t-test. 

report(ttest_two) 

Warning: Unable to retrieve data from htest object. 
Returning an approximate effect size using t_to_d(). 

Effect sizes were labelled following Cohen’s (1988) recommendations. 

The Welch Two Sample t-test testing the difference of Frequency.Total by 
AchievingGroup (mean in group High achiever = 899.71, mean in group Low achiever = 
571.46) suggests that the effect is positive, statistically significant, and large 
(difference = 328.25, 95% CI [182.64, 473.85], t(95.99) = 4.47, p < .001; Cohen’s d 
= 0.91, 95% CI [0.49, 1.33]) 

This produces the same warning as before in the one-sample case, but we can 
safely ignore it again. 

3.1.3 Paired Two-Sample t-test 

Instead of directly comparing the means of two groups, it may sometimes be of 
interest to compare differences between pairs of measurements. Such a scenario 
typically arises in an experiment, where subjects are paired, or two sets of 
measurements are taken from the same subjects. While our Moodle event data 
does not contain such measurement pairs, we could still imagine that our data was 
organized such that each student in the bottom 50% achievers was paired with a
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student in the top 50% achievers and that there is a one-to-one correspondence 
between the two achievement groups. This dependency between the two groups is 
the key difference between the paired test and the two-sample test. 

A more suitable approach for paired data is to test the differences between the 
pairs, e.g., the differences between the number of Moodle events in our scenario. 
We supply the t.test() function with the argument paired = TRUE so that it 
will take the measurement pairs into account. In this test, the null hypothesis is that 
the mean difference between the student pairs is zero (.H0 : μd = 0). 

ttest_paired <- t.test( 
Frequency.Total ~ AchievingGroup, data = all_combined, paired = TRUE 

) 
ttest_paired 

Paired t-test 

data: Frequency.Total by AchievingGroup 
t = 4.3733, df = 64, p-value = 4.599e-05 
alternative hypothesis: true mean difference is not equal to 0 
95 percent confidence interval: 
178.3014 478.1910 

sample estimates: 
mean difference 

328.2462 

The result is once again statistically significant, and we reject the null hypothesis. 
Because the mean difference between the pairs is positive, this means average 
number of Moodle events is higher for the top 50% achievers of the pairs. 

Paired two-sample t-test is also supported by report(). 

report(ttest_paired) 

Warning: Unable to retrieve data from htest object. 
Returning an approximate effect size using t_to_d(). 

Effect sizes were labelled following Cohen’s (1988) recommendations. 

The Paired t-test testing the difference of Frequency.Total by AchievingGroup (mean 
difference = 328.25) suggests that the effect is positive, statistically 
significant, and medium (difference = 328.25, 95% CI [178.30, 478.19], t(64) = 
4.37, p < .001; Cohen’s d = 0.55, 95% CI [0.28, 0.81]) 

We can once again safely ignore the produced warning message.
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3.2 Chi-Squared Test 

The chi-squared test is used for the analysis of contingency tables; it tests whether 
two categorical variables are independent or not [15]. A typical use case for this test 
is to investigate differences between groups such as student attendance by location 
or gender. The basic idea of the test is to compare the observed contingency table 
to a table under the null hypothesis where the variables are independent. The chi-
squared test is based on the cell-specific differences between these two tables. As a 
general rule, the test assumes that the expected value is at least 5 in at least 80% of 
the cells, and that no expected values are below 1. If these assumptions are violated, 
the results of the test may not be reliable. In such cases, Fisher’s exact test [16] can 
be used instead via the function fisher.test(), but it may be computationally 
slow for large contingency tables. Both the chi-squared test and Fisher’s exact test 
assume that the data is a random sample from the population. 

We will use the combined Moodle data to investigate whether the achievement 
level and the activity level of the students are independent. First, we must create the 
contingency table from the individual-level data. We use the table() function for 
this purpose. 

tab <- table(all_combined$ActivityGroup, all_combined$AchievingGroup) 
tab 

High achiever Low achiever 
High activity 27 16 
Low activity 14 30 
Moderate activity 24 19 

The table shows the observed frequencies in each cell, i.e., for each combina-
tion of activity and achievement. Next, we apply the chi-squared test using the 
chisq.test() function. 

Xsq_test <- chisq.test(tab) 
Xsq_test 

Pearson’s Chi-squared test 

data: tab 
X-squared = 9.2135, df = 2, p-value = 0.009984 

Printing the test result object shows the test statistic (X-squared), the associated 
degrees of freedom (df) and the p-value (p-value). The p-value is very small, 
meaning that we reject the null hypothesis. In other words, the achievement and 
activity levels of the students are not independent. This is not a surprising result, as
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more active students are more likely to engage with the course content and perform 
better in terms of the learning outcomes. We can confirm that the assumptions of 
the test related to the expected values of the cells were not violated by using the 
test result object, which contains the expected values of the cells in the element 
expected. 

all(Xsq_test$expected >= 1) 

[1] TRUE 

mean(Xsq_test$expected >= 5) >= 0.80 

[1] TRUE 

All expected values were greater than one, and over 80% of the expected values 
were greater than 5. This means that the assumptions are satisfied for our data 
and thus the results are reliable. Here, we used the function all() which takes a 
logical vector as input and returns TRUE if all elements of the vector were TRUE. 
Otherwise, the function returns FALSE. Unfortunately, the report() function does 
not support the chi-squared test. 

3.3 Analysis of Variance 

Analysis of variance (ANOVA) [17] can be viewed as the generalization of Student’s 
t-test, where instead of one or two groups, the means of a variable are compared 
across multiple groups simultaneously. The name of the method comes from its test 
statistic, which is based on a decomposition of the total variance of the variable 
into variance within the groups and between the groups. ANOVA makes several 
assumptions: the observations are independent, the residuals of the underlying linear 
model follow a normal distribution, and that the variance of the variable is the 
same across groups (homoscedasticity). If these assumptions are violated, the results 
of the test may not be reliable. One alternative in such instances is to use the 
non-parametric Kruskal-Wallis test [18] instead, which is available in R via the 
function kruskal.test(). This test uses the ranks of the observations, and the 
null hypothesis is that the medians are the same for each group. 

We use our combined Moodle data to demonstrate ANOVA. Instead of compar-
ing the total number of Moodle events between top and bottom 50% of achievers, 
this time we will compare the final grade of the students across three activity 
groups: low activity, moderate activity, and high activity, described by the variable 
ActivityGroup. Thus the null and alternative hypotheses are in this case:

• . H0: The expected values of the final grade are the same across the three activity 
groups (.μ1 = μ2 = μ3),
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• . H1: At least one activity group has a different expected final grade (.μi /= μj for 
at least one pair .i /= j ). 

To carry out the analysis, we apply the aov function, which uses the same 
formula syntax to define the response variable and the groups as the t.test() 
function does. Next, we apply the summary() function to the aov() function return 
object fit, as the default output of aov() is not very informative. 

fit <- aov(Final_grade ~ ActivityGroup, data = all_combined) 
summary(fit) 

Df Sum Sq Mean Sq F value Pr(>F) 
ActivityGroup 2 175.7 87.87 25.11 6.47e-10 *** 
Residuals 127 444.4 3.50
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 

The summary contains the following columns: Df describes the degrees of 
freedom of the F -distribution associated with the test, Sum Sq reports the sum of 
squares related to the groups and the residuals, Mean Sq reports the corresponding 
mean sum of squares, F value is the value of the test statistic, and finally Pr(>F) is 
the p-value of the test. For this example, the p-value is very small, which means that 
the null hypothesis is rejected, and there are statistically significant differences in 
the final grade between the groups according to the test. In the following sections we 
will learn how to test for the assumptions related to normality and homoscedasticity. 
The report() function can be used for the output of aov() as well. 

report(fit) 

The ANOVA (formula: Final_grade ~ ActivityGroup) suggests that:

- The main effect of ActivityGroup is statistically significant and large (F(2, 
127) = 25.11, p < .001; Eta2 = 0.28, 95% CI [0.17, 1.00]) 

Effect sizes were labelled following Field’s (2013) recommendations. 

This output also reports the degrees of freedom, the test statistic value and the 
p-value but in a more easily readable format. 

Note that ANOVA simply measures if there are differences between the groups 
but does not provide information on how these differences emerge. For example, 
there could be a single group that is different from all the rest, or two subgroups 
where the means are similar within each group, but different between the subgroups. 
Visualizations can be a helpful tool for gaining more insight into the differences, and 
post-hoc pairwise tests can be carried out to compare the pairs of groups.
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3.4 Levene’s Test 

Levene’s test is used to investigate whether the variance of a variable is the same 
across two or more groups [19]. Compared to alternatives such as Bartlett’s test [20], 
Levene’s test is less sensitive to non-normal observations. The test is not available in 
base R, but it can be found in the car package as the function leveneTest(). The  
function uses the same formula syntax as t.test() and aov(). We will investigate 
the homogeneity of the variance of the final grade between the activity groups. 

library("car") 
leveneTest(Final_grade ~ ActivityGroup, data = all_combined) 

Levene’s Test for Homogeneity of Variance (center = median) 
Df F value Pr(>F) 

group 2 5.7204 0.004181 ** 
127

---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 

The output of leveneTest() is analogous to the output of the ANOVA 
summary, and it contains the degrees of freedom (Df), the value of the test statistic (F 
value) and the p-value of the test (Pr(>F)). The p-value is very small, so we reject 
the null hypothesis meaning that the variance of the final grade is not the same across 
the groups according to the test. This means that the assumption of homoscedasticity 
is violated for the analysis of variance of the final grade, and thus the results may 
not be reliable. The report() function is not supported for leveneTest(). 

3.5 Shapiro-Wilk Test 

Shapiro-Wilk test tests the null hypothesis that a data sample originated from 
a normal distribution [21]. The test is available in base R as the function 
shapiro.test(). Unfortunately, this function does not support the formula syntax 
unlike the other test functions we have used thus far. The function only accepts a 
single numeric vector as its argument. Therefore, to test the normality of multiple 
groups simultaneously, the data must first be split into the groups to be tested. We 
apply the test to the final grade in each achievement group. With the help of the 
broom package [22], we wrap the test results into a tidy format. 

library("broom") 
all_combined |> 

# Performs the computations in each activity group 
group_by(ActivityGroup) |> 
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# Apply a function in each group 
group_modify(~{ 

# Apply the Shapiro test in each group and create tidy output 
shapiro.test(.$Final_grade) |> 

tidy() 
}) |> 
# Selection of variables to keep in the output 
select(ActivityGroup, statistic, p.value) 

# A tibble: 3 x 3 
# Groups: ActivityGroup [3] 

ActivityGroup statistic p.value 
<fct> <dbl> <dbl> 

1 High activity 0.918 0.00448 
2 Low activity 0.909 0.00215 
3 Moderate activity 0.862 0.000103 

This is also a great example of the tidyverse paradigm. First, we group the 
data by ActivityGroup using group_by(), and then apply a function in each 
group using group_modify(). We apply the shapiro.test() function to the 
Final_grade variable, and then we convert the test results into a tidy tibble using 
the tidy() function from the broom package. We also use the special dot notation 
. to select the final grade variable from the data in each group. Finally, we select the 
grouping variable (ActivityGroup), the test statistic (statistic) and the p-value 
(p.value) of each test using select() and print the results. The resulting object 
is a tibble with three columns: ActivityGroup, statistic and p.value, the last  
two of which give the test statistic and p-value of the test for the activity group of 
the first column. 

We can see that according to the test, the Final_grade variable is not normally 
distributed in any of the activity groups, as the p-values are very small. As a 
consequence, the results of the analysis of variance carried out earlier may not be 
reliable. 

4 Correlation 

In Sect. 2.3, we briefly described covariance and correlation, and showcased the base 
R functions to compute them. However, there are several powerful and user-friendly 
packages for the analysis and reporting of correlations, such as the correlation 
[23] package which we will demonstrate in this section. 

library("correlation")
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For example, the package can easily compute all pairwise correlations between 
the numeric variables of the data with the function correlation(). The argument 
select can be used to compute the correlations only for a subset of the variables. 

corrs <- correlation( 
all_combined, 
select = c("Frequency.Total", "Grade.Theory", "Final_grade") 

) 
corrs 

# Correlation Matrix (pearson-method) 

Parameter1 | Parameter2 | r | 95% CI | t(128) | p
-------------------------------------------------------------------------
Frequency.Total | Grade.Theory | 0.31 | [0.15, 0.46] | 3.75 | < .001*** 
Frequency.Total | Final_grade | 0.51 | [0.37, 0.63] | 6.76 | < .001*** 
Grade.Theory | Final_grade | 0.45 | [0.30, 0.58] | 5.69 | < .001*** 

p-value adjustment method: Holm (1979) 
Observations: 130 

The columns Parameter1 and Parameter2 describe the variables that the 
correlation was computed for, r is the value of the sample correlation, and the 
remaining columns report the 95% confidence interval, the value of the test 
statistic, and the p-value of the test (a t-test for correlations) along with the 
statistical significance. By default, Pearson’s correlation coefficient is calculated, 
but the package also supports many alternative correlation measures. The correlation 
coefficient to be computed can be selected with the argument method that has 
the value "pearson" by default. Selecting for example method = "spearman" 
would compute the Spearman correlation coefficient instead. We can also obtain a 
correlation matrix by using summary() 

summary(corrs) 

# Correlation Matrix (pearson-method) 

Parameter | Final_grade | Grade.Theory
--------------------------------------------
Frequency.Total | 0.51*** | 0.31*** 
Grade.Theory | 0.45*** | 

p-value adjustment method: Holm (1979) 

By default, redundant correlations are omitted, but they can be obtained by 
setting redundant = TRUE in the call to summary(). A plot of the correlation 
matrix can be produced with the help of the package see [24].
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library("see") 
corrs |> 

# Also include redundant correlations 
summary(redundant = TRUE) |> 
plot() 
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The plot shows the strength of the correlations where darker colors imply 
stronger correlations. Visualizations will be covered at greater length in Chapter 
6 [4]. 

5 Linear Regression 

Linear regression is a statistical tool where one continuous variable is explained by 
the values of other variables. The variable of interest is said to be a dependent, while 
the other variables are called predictors. Predictors may also be called explanatory 
variables, independent variables or covariates depending on the context, applied 
field, and perspective. 

Consider a very simple case, where we only have one predictor, which happens 
to be a continuous variable. In this case, fitting a linear regression model is merely 
the same as fitting a straight line to a scatterplot. It is assumed that deviations from 
this line are simply a result of random variation. 

Now, let’s go through the formal definition of a linear regression model. Let Y 
be a dependent variable with measurements .y1 . . . , yn, and let .X1, X2, . . . , Xk be 
predictor variables with measurements .x1i , . . . , xki for all .i = 1, . . . , n where i 
refers to an individual measurement. Then, the regression equation is
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. yi = β0 + β1x1i + β2x2i + · · · + βkxki + εi, εi ∼ N(0, σ 2), i = 1, . . . , n

where we have the regression coefficients .β0, β1, . . . βk and the error variance . σ 2. 
The first parameter . β0 is called the intercept that models the conditional expectation 
of Y when all the predictors have the value 0. From the regression equation, 
several assumptions become apparent. First, as the name of the model suggests, 
a linear relationship is assumed between the response and the predictors. Next, 
the variance . σ 2 of the errors . εi is constant, and does not depend on the values 
of the predictors (homoscedasticity). The errors are also assumed independent. The 
predictor variables are assumed fixed and their values perfectly measured without 
error. 

Let’s fit a linear regression model that predicts the final grade with the number 
of Moodle events of different types. To simplify the exposition, we will only 
use three types of Moodle events as predictors. We use the lm() function which 
has the same formula interface that we are already familiar with. First, we must 
define the dependent variable on the left-hand side of the formula, followed by the 
predictors on the right-hand side separated by a + sign. We must also supply the 
data argument, which tells the function where the actual values of the variables can 
be accessed. 

fit <- lm( 
Final_grade ~ Frequency.Applications + Frequency.Assignment + 

Frequency.La_types, 
data = all_combined 

) 
summary(fit) 

Call: 
lm(formula = Final_grade ~ Frequency.Applications + 

Frequency.Assignment + Frequency.La_types, data = all_combined) 

Residuals: 
Min 1Q Median 3Q Max

-7.0382 -0.8872 0.3665 1.2372 3.4422 

Coefficients: 
Estimate Std. Error t value Pr(>|t|) 

(Intercept) 5.800211 0.405963 14.288 < 2e-16 *** 
Frequency.Applications 0.076516 0.022294 3.432 0.000811 *** 
Frequency.Assignment -0.005049 0.005734 -0.881 0.380225 
Frequency.La_types 0.088252 0.027314 3.231 0.001574 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1  

Residual standard error: 1.914 on 126 degrees of freedom
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Multiple R-squared: 0.2559, Adjusted R-squared: 0.2382 
F-statistic: 14.45 on 3 and 126 DF, p-value: 3.798e-08 

The summary() function provides a compact overview of the model fit for 
lm objects. First, a summary of the residuals (i.e., the differences between the 
observed and predicted values) is provided under Residuals. Next, a summary 
of the regression coefficients . β is provided under Coefficients, including their 
estimates (Estimate), standard errors (Std. Error), test statistics for t-tests 
that test whether the coefficients are significantly different from zero (t value), 
p-values of the tests (Pr(>|t|)) and statistical significance (indicated by the 
asterisks). For instance, we see that the number of group work events is statistically 
significant. The notation used for the significance levels of the tests is described 
following Signif. codes. Estimate of the square root of the error variance . σ 2 is 
reported following Residual standard error. The two  R-squared values are 
estimates of the proportion of variance of the data that is explained by the model. 
Finally, the F-statistic reports the results of ANOVA when applied with the 
same model formula that was used for the linear regression model. 

The report() function provides a more comprehensive summary of the model 
fit and the regression coefficients: 

report(fit) 

We fitted a linear model (estimated using OLS) to predict Final_grade with 
Frequency.Applications, Frequency.Assignment and Frequency.La_types (formula: 
Final_grade ~ Frequency.Applications + Frequency.Assignment + Frequency.La_types). 
The model explains a statistically significant and moderate proportion of variance 
(R2 = 0.26, F(3, 126) = 14.45, p < .001, adj. R2 = 0.24). The model’s intercept, 
corresponding to Frequency.Applications = 0, Frequency.Assignment = 0 and 
Frequency.La_types = 0, is at 5.80 (95% CI [5.00, 6.60], t(126) = 14.29, p < .001). 
Within this model:

- The effect of Frequency Applications is statistically significant and positive 
(beta = 0.08, 95% CI [0.03, 0.12], t(126) = 3.43, p < .001; Std. beta = 0.32, 95% 
CI [0.13, 0.50])

- The effect of Frequency Assignment is statistically non-significant and negative 
(beta = -5.05e-03, 95% CI [-0.02, 6.30e-03], t(126) = -0.88, p = 0.380; Std. beta =
-0.08, 95% CI [-0.26, 0.10])

- The effect of Frequency La types is statistically significant and positive (beta 
= 0.09, 95% CI [0.03, 0.14], t(126) = 3.23, p = 0.002; Std. beta = 0.31, 95% CI 
[0.12, 0.49]) 

Standardized parameters were obtained by fitting the model on a standardized 
version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed 
using a Wald t-distribution approximation. 

Again, the report output has condensed the information about the model fit into 
a format that can be read in a straightforward manner.



Introductory Statistics with R for Educational Researchers 143

The assumption of normality of the residuals can be assessed with a quantile-
quantile plot, or q-q plot for short. The residuals of the model fit can be accessed 
with the function resid(). The function qqnorm() draws the quantiles of the 
residuals against the quantiles of the normal distribution. The function qqline() 
adds a straight line through the plot that passes through the second and third 
quantiles, by default. Ideally, the residuals should fall on this line, and large 
deviations indicate that the normality assumption may not hold. 

# Draw the quantiles of the residuals and the theoretical quantiles 
qqnorm(resid(fit)) 
# Add a line through the theoretical quantiles 
qqline(resid(fit)) 
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The vast majority of residuals fall nicely onto the line for our model. Besides the 
q-q plot, we can obtain more model diagnostics with the help of the performance 
[25] package. This package provides a wide array of tools to assess how well 
models fit to the data. The general-purpose function check_model( provides a 
visual overview of the model fit using several metrics. 

library("performance") 
check_model(fit, theme = see::theme_lucid(base_size = 10)) 



144 S. Tikka et al.

0.00 

0.05 

0.10 

0.15 

0.20 

0 5 10 15 

Final_grade 

D
en

si
ty

 

Observed data Model−predicted data 

Model−predicted lines should resemble observed data line 
Posterior Predictive Check 

−7.5 

−5.0 

−2.5 

0.0 

2.5 

6 7 8 9 10 11 

Fitted values 

R
es

id
ua

ls
 

Reference line should be flat and horizontal 
Linearity 

0.5 

1.0 

1.5 

2.0 

6 7 8 9  10  11  

Fitted values 

|S
td

. r
es

id
ua

ls
| 

Reference line should be flat and horizontal 
Homogeneity of Variance 

4 

89 

38 
1152 

0.8 

0.8 

−20 

−10 

0 

10 

20 

0.00 0.05 0.10 

Leverage (hii) 

S
td

. R
es

id
ua

ls
 

Points should be inside the contour lines 
Influential Observations 

1 

2 

3 

5 

10 

Frequency.ApplicationsFrequency.AssignmentFrequency.La_types 

V
ar

ia
nc

e 
In

fla
tio

n 
Fa

ct
or

 (
V

IF
, l

og
−

sc
al

ed
) 

Low (< 5) 

High collinearity (VIF) may inflate parameter uncertainty 
Collinearity 

−4 

−2 

0 

2 

−2 −1 0 1 2 

Standard Normal Distribution Quantiles 

S
am

pl
e 

Q
ua

nt
ile

s 

Dots should fall along the line 
Normality of Residuals 

The functions performs various tests related to the assumptions of the linear 
regression model. For example, the bottom right panel contains the same q-q 
plot that we previously constructed using the qqnorm() and qqline() functions. 
We refer the reader to the documentation of the performance package for more 
information on the remaining tests.
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6 Logistic Regression 

Logistic regression is a similar tool to linear regression, but with a binary outcome 
instead of a continuous one. Instead of modeling the outcome variable directly, a 
linear model is constructed for the logarithmic odds of the probability of “success” 
for the binary outcome, e.g., obtaining a passing grade. There is also no explicit 
error term . ε in the model, as the uncertainty in the outcome is already captured by 
the success probability. Formally, the model is 

. logit (P (yi = 1)) = β0 + β1x1i + β2x2i + · · · + βkxki, i = 1, . . . , n,

where the logit-function is defined as .logit(x) = log(x/(1 − x)). Here, the logit-
function serves as the so-called link function that connects the expected value of the 
response to the predictors. 

We fit a logistic regression model where the outcome variable is the level of 
achievement (AchievingGroup) and the predictors are the Moodle event counts of 
each type. The logistic regression model is a generalized linear model: a class of 
models that extend the linear regression model and that can be fitted in R with the 
function glm(). The syntax of glm() is analogous to lm(), but we must also specify 
the distribution of the outcome and the link function via the family argument. We 
use the function binomial() and supply the argument link = "logit" to define 
that the model should be a logistic regression model (in this case the link argument 
is optional, as "logit" is the default value). Because AchievingGroup is a factor, 
we must first convert it into a binary response that attains values 1 and 0 (or TRUE 
and FALSE). We can do this within the formula via the I() function, so that we do 
not have to modify our data. When used in a formula, this function will first compute 
its argument expression when evaluated, so that the expression is not mistaken for 
a variable name in the data (that does not exist). We select the high achievers as the 
“success” category for the outcome. 

fit_logistic <- glm( 
# Use the I() function to construct a binary response in the formula 
I(AchievingGroup == "High achiever") ~ Frequency.Applications + 

Frequency.Assignment + Frequency.La_types, 
data = all_combined, 
# Our response is binary, so we use the binomial family with logit link 
family = binomial(link = "logit") 

) 
summary(fit_logistic) 

Call: 
glm(formula = I(AchievingGroup == "High achiever") ~ Frequency.Applications + 

Frequency.Assignment + Frequency.La_types, family = binomial(link = "logit"), 
data = all_combined) 

Coefficients:
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Estimate Std. Error z value Pr(>|z|) 
(Intercept) -0.66272 0.62914 -1.053 0.29217 
Frequency.Applications 0.30443 0.07778 3.914 9.07e-05 *** 
Frequency.Assignment -0.04477 0.01402 -3.193 0.00141 ** 
Frequency.La_types 0.12245 0.04710 2.600 0.00933 **

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1  

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 180.22 on 129 degrees of freedom 
Residual deviance: 120.21 on 126 degrees of freedom 
AIC: 128.21 

Number of Fisher Scoring iterations: 6 

The summary of a glm() function output is very similar to the output of a lm() 
summary. First, the Call is reported, which simply restates how the model was 
fitted. Next, Coefficients reports the estimates of the regression coefficients . β, 
and their standard errors and statistical significance. Lastly, two deviance measures 
and their degrees of freedom are reported. The null deviance is twice the difference 
between the log-likelihood of the saturated model and the null model, and residual 
deviance is twice the difference between the saturated model and the model that was 
fitted. In simpler terms, the saturated model is a perfect model in a sense that there is 
a parameter for each observation. Conversely, the null model only has the intercept 
term. The deviance serves as a generalization of the residual sum of squares of the 
linear regression model, and it can be used to assess the quality of the model fit [26]. 

The report() function is applicable to models fitted with glm(). 

report(fit_logistic) 

We fitted a logistic model (estimated using ML) to predict AchievingGroup with 
Frequency.Applications, Frequency.Assignment and Frequency.La_types (formula: 
I(AchievingGroup == "High achiever") ~ Frequency.Applications + 
Frequency.Assignment + Frequency.La_types). The model’s explanatory power is 
substantial (Tjur’s R2 = 0.38). The model’s intercept, corresponding to 
Frequency.Applications = 0, Frequency.Assignment = 0 and Frequency.La_types = 0, is 
at -0.66 (95% CI [-1.94, 0.56], p = 0.292). Within this model:

- The effect of Frequency Applications is statistically significant and positive 
(beta = 0.30, 95% CI [0.17, 0.48], p < .001; Std. beta = 1.62e-14, 95% CI 
[-73784.14, 73784.14])

- The effect of Frequency Assignment is statistically significant and negative 
(beta = -0.04, 95% CI [-0.07, -0.02], p = 0.001; Std. beta = -9.05e-16, 95% CI 
[-71374.92, 71374.92])

- The effect of Frequency La types is statistically significant and positive (beta 
= 0.12, 95% CI [0.04, 0.22], p = 0.009; Std. beta = -2.52e-17, 95% CI [-75547.24, 
75547.24])
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Standardized parameters were obtained by fitting the model on a standardized 
version of the dataset. 95% Confidence Intervals (CIs) and p-values were computed 
using a Wald z-distribution approximation. 

The output describes succinctly the model that was fitted, and the effects of the 
predictors on the response. The performance package is also applicable to models 
fitted with the glm() function. 

check_model(fit_logistic) 
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Table 1 Summary of the statistical tests, their null hypotheses, and the number of groups they 
compare simultaneously 

Test Null Hypothesis Groups R function 

Student’s t-test Equal means One, two or paired t.test() 
Chi-squared test Independence One chisq.test() 
Fisher’s test Independence One fisher.test() 
ANOVA Equal means Two or more aov() 
Kruskal-Wallis test Equal medians Two or more kruskal.test() 
Levene’s test Homoscedasticity Two or more leveneTest() 
Shapiro-Wilk test Normality One shapiro.test() 

We note that a different set of diagnostic checks is carried out for the logistic 
regression model compared to the linear regression model. For example, there is no 
assumption of homoscedasticity of variance as there is no explicit error term . ε in 
the model. Again, we refer the reader to the documentation of the performance 
package for more details on these checks. 

7 Conclusion 

Basic statistics are an essential component of learning analytics. Learning analytics 
involves the collection, analysis, and interpretation of data related to the learning 
process, and statistical methods are used to identify patterns and trends in this data 
and to draw conclusions. Basic descriptive statistics such as measures of central 
tendency, variability and correlation are crucial for analyzing, interpreting, and 
visualizing data. Understanding these concepts is important for anyone involved 
in conducting research with quantitative data in the field of learning analytics. 
Moreover, mastery of basic statistics can facilitate the comprehension of more 
advanced statistical methods that are commonly used in learning analytics, such as 
logistic regression and cluster analysis. Table 1 contains a summary of the statistical 
tests that were introduced in this chapter. 

We emphasize that when using any statistical test or a statistical model, it is 
important to keep the various assumptions related to the chosen method in mind, 
and to assess them beforehand whenever possible. If the assumptions are violated, 
the results of the method may not be reliable, and thus suitable alternatives should 
be considered. 

8 Further Reading 

This chapter scratched the surface of the full features of packages such as 
correlation, report and performance that can streamline the statistical
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analysis and reporting process. We refer the reader to the documentation of 
these packages to gain a more thorough understanding of their features. These 
packages are part of a package collection called easystats [27] (https://github.com/ 
easystats/easystats). There are several other packages in this collection that were 
not discussed in this chapter that can be useful for R users working with learning 
analytics. The book “Learning Statistics with R” by Danielle Navarro is freely 
available online and provides a comprehensive introduction to statistics using R 
(https://learningstatisticswithr.com/). For a general introductory text to statistical 
methods and inference, see e.g., [2]. 
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Visualizing and Reporting Educational 
Data with R 

Sonsoles López-Pernas, Kamila Misiejuk, Santtu Tikka, Juho Kopra, 
Merja Heinäniemi, and Mohammed Saqr 

1 Introduction 

Data visualization can be defined as “the representation and presentation of data that 
exploits our visual perception abilities in order to amplify cognition” [1]. It has the 
power to transform complex information into stories that inform and inspire action. 
Data visualization is an effective tool for learning analytics, as it helps to present 
learners’ data in a way that is easily understandable and intuitive for students, 
teachers, researchers, and other stakeholders. Through the use of graphs, charts, and 
other visual aids, it is possible to quickly identify patterns, trends, and relationships 
within data that may not be immediately apparent through purely numerical data 
analysis methods. 

Visualization in learning analytics has two distinct applications. On the one hand, 
the use of visual dashboards has become the main vehicle for putting learning 
analytics into practice. Presenting data in visually appealing and intuitive ways 
can help promote data literacy among students and other stakeholders, encouraging 
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greater engagement with data and fostering a culture of continuous improvement. 
On the other hand, learning analytics scientific production heavily relies on data 
visualization to present research findings in a clear and accessible manner, making 
it easier for readers from different scholarly backgrounds to understand and act upon 
research insights. Regardless of the context, the power of visualization in learning 
analytics lies in its ability to take complex data and turn it into meaningful insights 
that support better decision-making and drive improvement. 

In this chapter, the reader will be guided through the process of generating 
meaningful and aesthetically pleasing visualizations of different types of datasets 
using well-known R packages. Relevant plots and plot types will be demonstrated 
with an explanation of their usage and usage cases. Furthermore, learning-related 
examples will be discussed in detail. For instance, readers will learn how to visualize 
learners’ logs extracted from learning management systems (LMSs) to show how 
trace data can be used to track students’ learning activities. Other examples of 
common research scenarios in which learners’ data are visualized will be illustrated 
throughout the chapter. In addition to creating compelling plots, readers will also 
be able to generate professional-looking tables with summary statistics to report 
descriptive statistics. 

2 Visualization in Learning Analytics 

Developing visualizations is a challenging task of balancing the cognitive load 
of users while not compromising on conveying specific insights from data [2]. 
Visualizations for practice in learning analytics are mostly developed for two main 
stakeholders: learners and instructors. Depending on the target group, a visualization 
or a dashboard (i.e., a collection of visualizations depicting multiple indicators) have 
different goals. 

Learner-facing visualizations are meant to make learners aware of their own 
learning and to provide them with actionable feedback on their learning. Visual-
izations display learners’ performance on a specific metric and compare it with a 
reference frame: other peers, desirable learning achievement, or their own progress 
over time [3]. Sense-making questions triggering reflection can be added to a 
visualization [4, 5], or some elements of the visualizations can be highlighted 
and described in words using layered storytelling [6, 7]. Another option is to 
gamify a dashboard, for example, by using badges [8]. To provide feedback to 
learners, visualizations can be augmented with links to recommended resources 
[9], information about specific topics to review to close the achievement gap 
[6], or explanations of the meaning of visualizations and their implications for 
the learner [10]. Current learner-facing dashboards mostly show resource use and 
assessment data [11], compare learners to their peers [12], display descriptive 
analytics rather than predictive or prescriptive analytics [10], and use self-regulated 
learning theory as their framework [12, 13]. Some reviews found a positive effect 
on student outcomes [10], while others reported mixed results [11, 14]. Showing
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visualizations to learners can change their behavior. For example, social network 
analysis visualizations have resulted in fewer cross-group commenting [15], while a 
visualization comparing individual submission patterns with the top 25% of students 
in a class led to earlier homework submissions [16]. 

In comparison, the goal of instructor-facing visualizations is to support teachers 
and their decision-making process by tracking student progress. Two main types 
can be distinguished. Mirroring or descriptive visualizations provide insights about 
the learners on an aggregated or an individual level using either descriptive or 
comparative data. Advising or prescriptive visualizations show not only information 
about the learners but also alert the instructor to undertake a pedagogical action 
[17, 18]. Current instructor-facing visualizations mostly display course-wide infor-
mation about the learners or track group work [14]. These visualizations can support 
teachers in facilitating student collaboration [19], planning and collecting student 
feedback on learning activities [20], or obtaining insights into student interactions 
within an online environment, such as simulations, virtual labs or online games 
[21, 22]. However, interpreting dashboard information is a challenging task for 
instructors. Although some teachers use dashboards as complementary sources of 
information, others act based only on the dashboard information without further 
investigation [23]. 

A common point of criticism of learning analytics dashboards is that most of 
them are not grounded in learning theories [13, 14]. Data-driven evaluations of dash-
boards focused on dashboard acceptance, usefulness, or usability are more prevalent 
than pedagogically-focused evaluations [24]. Some approaches were developed 
to mitigate these issues. The model of user-centered learning analytics systems 
(MULAS) presents a set of recommendations on four interconnected dimensions: 
theory, design, evaluation, and feedback, and can be used to guide dashboard 
development [14]. Another approach is an iterative five-stage Learning Awareness 
Tools—User eXperience (LATUX) workflow, including problem identification, 
low-fidelity prototyping, high-fidelity prototyping, pilot studies, and classroom use, 
that can be used to develop visual analytics [25]. Finally, open learner model 
research could be used as a source of insights while developing learning analytics 
visualizations, such as dashboards [9]. 

3 Generating Plots with ggplot2 

In the previous section, we have seen how central visualization is to learning 
analytics. In the remainder of the chapter, we will learn how to create different types 
of visualizations that are relevant to different types of data related to teaching and 
learning. We will mostly rely on ggplot2, a popular data visualization package in R 
that was developed by Hadley Wickham [26]. It is based on the grammar of graphics 
[27], which is a systematic way of thinking about and constructing visualizations. 
The ggplot2 library provides a flexible and intuitive framework for creating a wide 
range of graphics, from basic scatter plots to complex visualizations with multiple
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layers. It is known for its ability to produce visually appealing and informative 
graphics with relatively few lines of code. It enables users to define aesthetics, such 
as color and size, and add layers, such as points and lines, to create customized 
and interactive plots. In addition, ggplot2 allows for easy customization of plot 
features, such as titles, axis labels, and legends. 

Overall, ggplot2 is a powerful and versatile tool for data visualization in R, and 
is widely used by data scientists, statisticians, and researchers in a variety of fields. 
In this chapter, we will cover the fundamental concepts and techniques of ggplot2, 
including how to create basic plots, and customize their appearance. We will start 
by introducing the building blocks of a ggplot2 plot, including aesthetics, layers, 
and scales. Then, we will create a plot from scratch step by step, showing how to 
customize its appearance, including how to change theme, colors, and scales. We 
will then explore the different types of plots that can be created with ggplot2, such 
as scatter plots, bar charts, and histograms. 

Throughout this section, we will use datasets of students’ learning data to 
demonstrate how to create effective visualizations for learning analytics with 
ggplot2. Please, refer to Chapter 2 of this book [28] to learn more about the 
datasets used. By the end of this section, you will have a solid foundation in 
ggplot2 and be able to create basic, yet compelling visualizations to explore your 
data. 

3.1 The ggplot2 Grammar 

The ggplot2 library is based on Wilkinson’s grammar of graphics [27]. The main 
idea is that every plot can be broken down into a set of components, each of which 
can be customized and combined in a flexible way. These components are: 

• Data: This is the data we want to visualize. It can be in the form of a dataframe, 
tibble or any other structured data format. 

• Aesthetic mapping (aes): It defines how variables in the data are mapped to 
visual properties of the plot, such as position, color, shape, size, and transparency. 

• Geometric object (geom): It represents the actual visual elements of the plot, 
such as points, lines, bars, and polygons. 

• Statistical transformation (stat): It summarizes or transforms the data in some 
way, such as by computing means, medians, or proportions, or by smoothing or 
summarizing data, or grouping them into bins. 

• Scale (scale): It maps values in the data to visual properties of the plot, such as 
color, size, or position. 

• Coordinate system (coord): It defines the spatial or geographic context in which 
the plot is displayed, such as Cartesian coordinates, polar coordinates, or maps. 

• Facet (facet): It allows to split the data into subsets and display each subset in 
a separate panel. It often useful for visualizing data with multiple categories or 
groups.
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Through the combination and customization of these components, we can create 
a wide variety of complex and informative visualizations in ggplot2. The idea 
behind the graphics grammar is to provide a consistent framework for constructing 
plots, allowing users to focus on the data and the message they want to convey, 
rather than on the technical details of the visualization. In the following section, we 
will create a plot from scratch step by step to become familiar with the most relevant 
components. 

3.2 Creating Your First Plot 

We will now create our first plot using ggplot2. Our example deals with a widely 
studied matter in learning analytics, which is the relationship between online activity 
and achievement. We will use a bar chart to represent the number of students 
that have low, moderate and high activity levels in each achievement group (high 
achievers vs. low achievers). In order to become familiar with the syntax of 
ggplot2, we will recreate the plot step by step, explaining each of the elements 
in the plot. Below is the final result we aim at accomplishing (Fig. 1): 
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Fig. 1 First plot with ggplot2
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3.2.1 Installing ggplot2 

Our first step is installing the ggplot2 library. This is usually the first step in any R 
script that makes use of external libraries. 

install.packages("ggplot2") 

To import ggplot2 we just need to use the library command and specify the 
ggplot2 library: 

library(ggplot2) 

3.2.2 Downloading the Data 

Next, we need to import the data that we are going to plot. For this chapter, we are 
using synthetic data from a blended course on learning analytics. For more details 
about this dataset, refer to Chap. 2 in this book. The data is in Excel format. We can 
use the library rio since it makes it easy to read data in several formats. We first 
install the library: 

install.packages("rio") 

And import it so we can use its functions: 

library(rio) 

Now we can download the data using the import function from rio and assign 
it to a variable named df (short for dataframe). 

demo_url = 
"https://github.com/lamethods/data/raw/main/1_moodleLAcourse/AllCombined.xlsx" 
df <- import(demo_url) 

We can use the head command to get an idea of what the dataset looks like. 
To recreate the plot above we will need the AchievingGroup column —which 
indicates whether students’ are high achievers (to 50%) or low achievers (bottom 
50%), according to their final grade— and the ActivityGroup column —which 
indicates whether students have a high level of activity (top 33%), moderate activity 
(middle 33%), or low activity (bottom 33%), according to their total number of 
events in the LMS.
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head(df) 

# A tibble: 130 x 37 
User Name Gender ActivityGroup AchievingGroup Surname Origin Birthdate 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 00a05cc62 Wan M Low activity Low achiever Tan Malay~ 12.12.19~ 
2 042b07ba1 Daniel M High activity Low achiever Tromp Aruba 28.5.1999 
3 046c35846 Sarah F Low activity Low achiever Schmit Luxem~ 25.4.1997 
4 05b604102 Lian F Low activity Low achiever Abdull~ Yemen 19.11.19~ 
5 0604ff3d3 Nina F Low activity Low achiever Borg Malta 13.6.1994 
6 077584d71 Moham~ M High activity High achiever Gamal Egypt 13.7.1998 
7 081b100cf Maxim~ M Moderate act~ High achiever Gruber Austr~ 20.12.19~ 
8 0857b3d8e Hugo M High activity High achiever Pérez Spain 22.12.19~ 
9 0af619e4b Aylin F Low activity Low achiever Barat Kazak~ 14.8.1995 

10 0ec99ce96 Polina F Moderate act~ Low achiever Novik Belar~ 9.10.1996 
# i 120 more rows 
# i 29 more variables: Location <chr>, Employment <chr>, 
# Frequency.Applications <dbl>, Frequency.Assignment <dbl>, 
# Frequency.Course_view <dbl>, Frequency.Feedback <dbl>, 
# Frequency.General <dbl>, Frequency.Group_work <dbl>, 
# Frequency.Instructions <dbl>, Frequency.La_types <dbl>, 
# Frequency.Practicals <dbl>, Frequency.Social <dbl>, ... 

3.2.3 Creating the Aesthetic Mapping 

Now that we have our data, we can pass it on to ggplot2 as follows: 

ggplot(df) 

Fig. 2 Empty plot 

We still do not see anything because we have not selected the type of chart or 
the variables of the data that we want to plot (Fig. 2). First, let us specify that 
we want to plot the AchievingGroup column (high vs. low achievers) on the x-
axis. Assigning columns of our dataset to different elements of the plot is called 
constructing an aesthetic mapping. We can do it by calling the aes function from 
ggplot2, specifying that we want to map the AchievingGroup column to the x-



158 S. López-Pernas et al.

axis, and then passing this call to aes to our plot using the second argument of 
ggplot: 

3.2.4 Add the Geometry Component 

ggplot(df, aes(x =  AchievingGroup)) 

Fig. 3 Empty plot with 
AchievingGroup in x-axis 
labels 

High achiever Low achiever 
AchievingGroup 

We now see that the x-axis has the two possible values of AchievingGroup: 
“High achiever” and “Low achiever” (Fig. 3). We still need to tell ggplot2 the type 
of chart we want to use to plot the number of students of each type. To do that we 
need to add a geometrical (geom) component to our plot in which we specify that 
we want a bar chart. We do it by adding a + sign after our call to ggplot and calling 
geom_bar() (the name of the geometry that represents a bar chart). 

ggplot(df, aes(x =  AchievingGroup)) + geom_bar() 
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Fig. 4 Basic bar plot showing students by achievement group
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Now the plot can actually be called a plot. Notice that we have not specified what 
we want to plot in the y-axis. When not specified, ggplot2 assumes that we want 
to use the count of rows (Fig. 4). 

We also notice that the bars are in the wrong order. By default, ggplot2 orders 
the values in an ascending way (alphabetically in the case of text values). If we want 
to enforce our own order, we need to convert the AchievingGroup column of df 
into a factor and provide the ordered list of values to the levels argument. 

df$AchievingGroup = factor(df$AchievingGroup, 
levels = c("Low achiever", "High achiever")) 

If we generate our plot again, we see that the bars are now in the order we want 
them to be (Fig. 5): 

ggplot(df, aes(x =  AchievingGroup)) + geom_bar() 
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Fig. 5 Basic bar plot showing students by achievement group after transforming the x-axis 
variable into a factor 

3.2.5 Adding the Color Scale 

We still need to color our bar chart according to students’ activity level. We do that 
by mapping the fill aesthetic to the ActivityLevel column inside the aes. When 
we provide the fill property, ggplot will automatically create the appropriate 
legend (Fig. 6). 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + geom_bar()
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Fig. 6 Basic bar plot showing students’ activity level by achievement group and colored by 
activity level 

Again, we need to change the order of our legend so that it follows the logical 
semantic order for the activity levels (low-moderate-high): 

df$ActivityGroup = factor(df$ActivityGroup, 
levels = c("Low activity", "Moderate activity", 
"High activity")) 

If we generate the plot again, we see now that the legend is in the right order 
(Fig. 7): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + geom_bar() 
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Fig. 7 Basic bar plot showing students’ activity level by achievement group and colored by 
activity level after ordering the legend
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However, the stacks are still not in the right order, being the low activity students 
at the top of the bar, and the high activity students at the bottom, which might be 
counter-intuitive. To change this, we need to reverse the position of the bar using 
position = position_stack(reverse = TRUE) inside geom_bar (Fig. 8): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) 
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Fig. 8 Basic bar plot showing students’ activity level by achievement group and colored by 
activity level after ordering the stacks 

We are getting closer but the color scheme does not quite match our intended 
result. To add a color scheme to our plot we need to add a scale layer. In this 
case, the scale is for the fill property, which is the color of the bars in our chart. 
There are many ways to specify the color scheme. One option is to use sequential 
colors from the same palette. For that we add a new layer to our plot named 
scale_fill_brewer and we pass the palette that we want as an argument. For 
example, palette number 15 would look like this (Fig, 9): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_brewer(palette = 15) 

Another option is to provide a manual scale with the colors of our choice. For 
that we use scale_fill_manual and specify a values vector as an argument. 
We need to specify as many colors as unique elements in your scale. In this case 
we have three activity groups (for low, moderate or high activity), so we must 
provide three colors. There are tons of resources online where you can find or create 
your own palettes (e.g., Coolors, Adobe Color or Lospec). You have to provide the
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Fig. 9 Bar plot showing students’ activity level by achievement group with sequential color scale 

hexadecimal code of each color or the official color name recognized by R. Below 
is an example (Fig. 10): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_manual(values = c("#ef6461", "#7AE7C7", "#8E518D")) 
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Fig. 10 Bar plot showing students’ activity level by achievement group with manual color scale 

Lastly, a very common color scale used is Viridis. It is designed to be perceived 
by viewers with common forms of color blindness. To use it in our plot we just add 
scale_fill_viridis_d() (Fig. 11).
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https://r-graph-gallery.com/42-colors-names.html
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ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d() 
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Fig. 11 Bar plot showing students’ activity level by achievement group with viridis color scale 

Viridis is the palette we need to replicate our target plot. However, the order of 
the color needs to be reversed so the most dense color represents the higher activity 
level. We do this by reversing the direction of the palette as follows (Fig. 12): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) 
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Fig. 12 Bar plot showing students’ activity level by achievement group with viridis color scale
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3.2.6 Working with Themes 

Now that the geometry and color scheme of the bars looks like our initial plot, we 
notice that there are still some differences. An important one is the grey background 
of the plot. To change the general appearance of our plot, we may use the ggplot2 
themes. Below are some examples (Fig. 13): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + theme_dark() 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + theme_classic() 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + theme_void() 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + theme_minimal() 

0 

20 

40 

60 

Low achiever High achiever 
AchievingGroup 

co
un

t 

ActivityGroup 

Low activity 

Moderate activity 

High activity 

0 

20 

40 

60 

Low achiever High achiever 
AchievingGroup 

co
un

t 

ActivityGroup 

Low activity 

Moderate activity 

High activity 

ActivityGroup 

Low activity 

Moderate activity 

High activity 

0 

20 

40 

60 

Low achiever High achiever 
AchievingGroup 

co
un

t 

ActivityGroup 

Low activity 

Moderate activity 

High activity 

Fig. 13 Bar plot using different themes: theme_dark (top left), theme_classic (top right), 
theme_void (bottom left), and theme_minimal (bottom right) 

We have theme_dark with a dark background and border, theme_classic 
with thick axes and no grid lines, theme_void which is completely empty, and 
theme_minimal with a minimalistic look. There are more available in the ggplot2
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documentation and even more third-party implementations. To recreate our goal 
plot, we select the theme_minimal. To avoid having to add the theme to all of 
our plots from now on, we can set a default theme for our whole project by using 
theme_set: 

theme_set(theme_minimal()) 

Notice how now we get theme_minimal even when we do not specify it in our 
code (Fig. 14): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) 
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Fig. 14 Bar plot with theme minimal by default 

3.2.7 Changing the Axis Ticks 

You may have not noticed that another difference with our goal plot is the ticks in 
our y-axis. In the goal plot we count 10 by 10, whereas in our last plot we do so 20 by 
20. Just like we modified the scale of the fill aesthetic when we changed the color 
of our bars, we can also modify the y aesthetic to adjust to our needs. We use the 
scale_y_continuous layer and we try different number of breaks (n.breaks), 
until we find what we like best (Fig. 15):
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ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 15) 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 3) 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 7) 
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Fig. 15 Bar plot with different numbers of y.axis breaks: 15 (left), 3 (middle), and 7 (right) 

We choose 7 breaks to obtain our desired result. 

3.2.8 Titles and Labels 

Our plot is still missing some slight modifications to be 100% equal to the original 
one. For instance, the axes’ titles are not the same. To specify the y-axis label, we 
add a new layer to our plot named ylab and we pass a string with our desired label 
“Number of students” (Fig. 16): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 7) + 
ylab("Number of students") 
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Fig. 16 Bar plot with y-axis label 

We do the same for the x-axis using xlab, and for the legend using labs 
(Fig. 17): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 7) + 
ylab("Number of students") + 
xlab("Achievement group") + 
labs(fill = "Activity level") 
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Fig. 17 Bar plot with all labels
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More importantly, we are missing the overall title of the plot. To add it we use 
ggtitle and we pass our intended plot title “Activity level by achievement group”. 
Keep in mind that, whenever possible, it is better to add a caption to the image rather 
than a title on the plot. A caption is more accessible for visually impaired users since 
it is compatible with screen readers. In scientific papers, it is also more common to 
have a Figure caption than a title within the plot. In social media, it is frequent to 
see the title on the plot as images are often shared without context. However, many 
social media platforms allow to provide an alternative text which is what screen 
readers will read as a substitute for the image, and that is also the case in learning 
analytics dashboards (Fig. 18). 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 7) + 
ylab("Number of students") + 
xlab("Achievement group") + 
labs(fill = "Activity level") + 
ggtitle("Activity level by achievement group") 
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Fig. 18 Bar plot with title 

3.2.9 Other Cosmetic Modifications 

Lastly, we need to do some slight modifications to the overall appearance of the 
plot. We do this through the generic theme function of ggplot2. We first modify 
the position of the legend by setting legend.position to “bottom”. We then 
increase the size of the axes titles, by setting axis.title to element_text(size 
= 12). Finally, we make the plot title bigger as well and put it in bold by setting
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plot.title to element_text(size = 15, face = "bold")). With these last 
changes, we have an exact replica of our original plot (Fig. 19). 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 7) + 
ylab("Number of students") + 
xlab("Achievement group") + 
labs(fill = "Activity level") + 
ggtitle("Activity level by achievement group") + 
theme(legend.position = "bottom", 

axis.title = element_text(size = 12), 
plot.title = element_text(size = 15, face = "bold")) 
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Fig. 19 Bar plot with theme modifications 

3.2.10 Saving the Plot 

Since we have obtained the desired result, we may now save it as an image to be 
able to use it elsewhere. For that, we first need to assign the plot to a variable (e.g., 
myplot).
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myplot <- ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) + 
scale_fill_viridis_d(direction = -1) + 
scale_y_continuous(n.breaks = 7) + 
ylab("Number of students") + 
xlab("Achievement group") + 
labs(fill = "Activity level") + 
ggtitle("Activity level by achievement group") + 
theme(legend.position = "bottom", axis.title = element_text(size = 12), 

plot.title = element_text(size = 15, face = "bold")) 

We then use ggsave to save the plot to our filesystem. We need to specify the file 
path (including the extension, such as PNG, JPEG, etc.) where we want to save the 
plot (e.g., “bar.png”) as the first argument and pass the variable where we saved our 
plot (myplot) as a second argument. If we do not do this, ggplot2 assumes we want 
to save the latest plot that we created. Lastly, we may specify the width, height and 
resolution (dpi) of our plots. If we are submitting our figure to a scientific journal, 
we probably need a high resolution image. If we are using the figure in social media, 
we do not want the resolution to be so high as it would take a long time to load. 

ggsave("bar.png", myplot, width = 10000, height = 5000, units = "px", dpi = 900) 

Throughout this section, we have learned how we can create a plot from scratch 
using only the ggplot2 library and a simple dataset. We have seen the many 
customization possibilities (theme, scales, titles) that we can achieve using the 
different plot components without needing to rely on external tools for retouching 
our final graph. In the next section we will learn about new types of plots that might 
be more suitable for other types of data and their customization possibilities. 

3.3 Types of Plots 

The ggplot2 library offers many types of plots (or geoms) that you can choose from 
to visualize your data in several ways. In this section, we go over some of the most 
common types and present examples using students’ learning data. 

3.3.1 Bar Plot 

We have seen how to construct a bar plot in the previous section as an example of 
how to use ggplot2. But when should we use a bar plot? Bar plots are useful when 
we want to represent counts or any numerical variable broken down by categories. 
The y-axis would represent the count (or other continuous numerical variable) and 
the x-axis would represent the categories. Keep in mind that if the categories follow 
a natural order, the x-axis should respect it (for example: “Morning”, “Afternoon”, 
“Evening”; or “Children”, “Adults”, “Elders”). Otherwise, you can just order the 
x-axis alphabetically or from highest to lowest value in the y-axis (Fig. 20).
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ggplot(df, aes(x =  AchievingGroup)) + 
geom_bar(position = position_stack(reverse = TRUE)) 
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Fig. 20 Basic bar plot of students by achievement group 

Remember that you can add a “third dimension” to the plot by using the fill 
property. This is known as a ‘stacked’ bar chart and helps highlight the proportion 
of, in this case, students’ activity level (ActivityGroup) (Fig. 21). 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
scale_fill_viridis_d(direction = -1) + 
geom_bar(position = position_stack(reverse = TRUE)) 
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Fig. 21 Basic bar plot of students by achievement group filled by activity level
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If we care more about the actual number rather than the proportion of students 
with each activity level, instead of a stacked bar chart we can keep each ‘stack’ as a 
whole bar of their own. This plot is very useful to compare values among categories. 
We accomplish this by passing the position argument with the value “dodge” to 
the geom_bar component (Fig. 22): 

ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup)) + 
scale_fill_viridis_d(direction = -1) + geom_bar(position = "dodge") 
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Fig. 22 Basic bar plot of students by achievement group filled by activity level with position dodge 
instead of stacked 

We can now see that the highest group is represented by the low achievers with 
low activity, followed by the high achievers with high activity. 

3.3.2 Histogram 

Histograms allow us to represent the distribution of a single continuous variable. 
It is inherently a bar chart, but instead of each bar representing the count of a 
single category, it represents the count of a range of values in the x-axis (what is 
known as a bin). Let us, for example, create a histogram for students’ online activity. 
Specifically, let us see the distribution of the number of accesses to the course main 
page online. 

If we look at our dataset, we can see that the name of the variable that we are 
interested in is Frequency.Course_view:
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head(df) 

# A tibble: 130 x 37 
User Name Surname Origin Gender Birthdate Location Employment 
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 

1 00a05cc62 Wan Tan Malaysia M 12.12.19~ Remote None 
2 042b07ba1 Daniel Tromp Aruba M 28.5.1999 Remote None 
3 046c35846 Sarah Schmit Luxembourg F 25.4.1997 On camp~ None 
4 05b604102 Lian Abdullah Yemen F 19.11.19~ On camp~ None 
5 0604ff3d3 Nina Borg Malta F 13.6.1994 On camp~ None 
6 077584d71 Mohamed Gamal Egypt M 13.7.1998 On camp~ Part-time 
7 081b100cf Maximilian Gruber Austria M 20.12.19~ On camp~ None 
8 0857b3d8e Hugo Pérez Spain M 22.12.19~ On camp~ None 
9 0af619e4b Aylin Barat Kazakhstan F 14.8.1995 On camp~ None 

10 0ec99ce96 Polina Novik Belarus F 9.10.1996 On camp~ None 
# i 120 more rows 
# i 29 more variables: Frequency.Applications <dbl>, 
# Frequency.Assignment <dbl>, Frequency.Course_view <dbl>, 
# Frequency.Feedback <dbl>, Frequency.General <dbl>, 
# Frequency.Group_work <dbl>, Frequency.Instructions <dbl>, 
# Frequency.La_types <dbl>, Frequency.Practicals <dbl>, 
# Frequency.Social <dbl>, Frequency.Ethics <dbl>, Frequency.Theory <dbl>, ... 

To create a histogram for this variable we may use the geom_histogram feature 
of ggplot2. We just pass our dataset and map the Frequency.Course_view 
variable to the x axis, and we add the geometry geom_histogram (Fig. 23): 

ggplot(df, mapping = aes(x =  Frequency.Total)) + geom_histogram() 
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Fig. 23 Histogram of students’ course page views 

We can provide our own value to the bins argument in geom_histogram to 
personalize how many bins we want in our plot (Fig. 24):



174 S. López-Pernas et al. 

ggplot(df, mapping = aes(x =  Frequency.Total)) + 
geom_histogram(bins = 50) 
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Fig. 24 Histogram of students’ course page view with 50 bins 

We can also personalize the color scheme using fill for the background of the 
bars (Fig. 25): 

ggplot(df, mapping = aes(x =  Frequency.Total)) + 
geom_histogram(bins = 20, fill = "deeppink" ) + 
scale_x_continuous(n.breaks = 10) 
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Fig. 25 Histogram of students’ course page view with color, fill and linewidth
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The histogram allows us to acknowledge that most students had around 400–500 
events, with another peak around 900–1000. Students with more than 1000 events 
were rare. 

3.3.3 Line Plot 

Another very widely used type of plot is the line plot. Like the histogram, it is 
also appropriate when we have both a numerical continuous x-axis and y-axis but it 
gives us a bit more liberty of what we plot and it is suitable for when we want to plot 
several series of data together. A very common scenario for a line plot is when we 
deal with timelines and we wish to visualize the evolution of a certain variable over 
time. Let us, for instance, plot the students’ daily events in the LMS throughout the 
course, a common plot in learning analytics dashboards. In the dataset that we have 
been using, we have the total count of events per user but not the timestamp of each 
event. We need to import the original event data from the dataset: 

ev_url <- "https://github.com/lamethods/data/raw/main/1_moodleLAcourse/Events.xlsx" 
events <- import(ev_url) 

The Events.xlsx file contains all the actions that the students enrolled in 
this course performed in the LMS (Action) with their corresponding timestamp 
(timecreated): clicking on a lecture file, viewing the assignment instructions, etc. 

head(events) 

# A tibble: 95,626 x 7 
Event.context user timecreated Component Event.name Log Action 
<chr> <chr> <dttm> <chr> <chr> <chr> <chr> 

1 Assignment: Fina~ 9d74~ 2019-10-26 09:37:12 Assignme~ Course mo~ Assi~ Assig~ 
2 Assignment: Fina~ 9148~ 2019-10-26 09:09:34 Assignme~ The statu~ Assi~ Assig~ 
3 Assignment: Fina~ 278a~ 2019-10-18 12:05:28 Assignme~ Course mo~ Assi~ Assig~ 
4 Assignment: Fina~ 53d6~ 2019-10-19 13:28:37 Assignme~ The statu~ Assi~ Assig~ 
5 Assignment: Fina~ aab7~ 2019-10-15 23:38:13 Assignme~ Course mo~ Assi~ Assig~ 
6 Assignment: Fina~ 82ed~ 2019-10-18 17:51:43 Assignme~ Course mo~ Assi~ Assig~ 
7 Assignment: Fina~ 4178~ 2019-10-18 15:22:56 Assignme~ Course mo~ Assi~ Assig~ 
8 Assignment: Fina~ 82ed~ 2019-10-22 13:46:51 Assignme~ The statu~ Assi~ Assig~ 
9 Assignment: Fina~ f2e9~ 2019-10-15 14:58:17 Assignme~ Submissio~ Assi~ Assig~ 

10 Assignment: Fina~ 53d6~ 2019-10-19 13:28:38 Assignme~ Course mo~ Assi~ Assig~ 
# i 95,616 more rows 

Instead of mapping timecreated directly to the x aesthetic, we can plot the 
timeline of the number of events per day by using as.Date(timecreated) and the 
geom_line geometry from ggplot2. Notice that, unlike geom_bar, if we do not  
provide a y aesthetic and want ggplot2 to count the number of events per day for 
us, we need to make it explicit by passing the stat argument with value "count" 
to geom_line (Fig. 26). 

ggplot(events, aes(x =  as.Date(timecreated) )) + geom_line(stat = "count")



176 S. López-Pernas et al. 

1000 

2000 

3000 

4000 

5000 

Sep 15 Oct 01 Oct 15 
as.Date(timecreated) 

co
un

t 

Fig. 26 Line plot of number of events per day 

The line plot of students’ events allows us to identify periods of increased 
activity. We can see that it was low at the very beginning of the course, with some 
peaks corresponding to the assignment deadlines and one last peak for the final 
project. When the course is over, activity begins to decrease. 

To make our plot more aesthetically pleasing, we can customize the color and 
line width. We do so by tweaking the color and linewidth properties of the 
geom_line. We can also fix the axes’ titles as we learned before (Fig. 27). For 
example: 

ggplot(events, aes(x =  as.Date(timecreated) )) + 
geom_line(stat = "count", color = "turquoise", linewidth = 2) + 
xlab ("Date") + ylab("Number of events") 
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Fig. 27 Line plot of number of events per day with color, linewidth, and custom labels
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We can also add a point to mark each date using geom_point (Fig. 28): 

ggplot(events, aes(x =  as.Date(timecreated) )) + 
geom_line(stat = "count", color = "turquoise", linewidth = 1.5) + 
geom_point(stat = "count", color = "purple", size = 2, stroke = 1) + 
xlab ("Date") + 
ylab("Number of events") 
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Fig. 28 Line plot of number of events per hour with points every hour 

Besides visualizing the events for all the students of the course, we can pinpoint 
specific students to follow their progress and offer them personalized support. To 
do this, we would need to filter our data before handing it over to ggplot2. We can 
filter the data using the filter function from dplyr, as we learned in Chapter 4 
[29]. We first install dplyr if we do not have it: 

install.packages("dplyr") 

Then, we import it as usual: 

library(dplyr) 

We can now filter the data and pass it on to ggplot2 (Fig. 29): 

events |> filter(user == "9d744e5bf") |> ggplot(aes(x =  as.Date(timecreated) )) + 
geom_line(stat = "count", color = "turquoise", linewidth = 2) + 
geom_point(stat = "count", color = "purple", size = 2, stroke = 1) + 
xlab ("Date") + 
ylab("Number of events") 
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Fig. 29 Line plot of number of events per date for a single student 

3.3.4 Jitter Plots 

In the previous plots we have seen aggregated information for all the cohort of 
students as well as information for a single student. However, in some occasions, 
it is very useful to see the general picture while accounting for possible individual 
differences. For example, using our original df dataset, we can plot the number of 
events on the LMS, differentiating between high achievers and low achievers. 

One option is to use geom_point to represent each students’ count of events as a 
single point. To do this, we map the Event column to the x aesthetic, the Frequency 
column to the y aesthetic, and the User column to the group aesthetic (Fig. 30): 

ggplot(df, aes(x =  AchievingGroup, y =  Frequency.Total)) + 
geom_point() + 
xlab("Achieving group") + 
ylab("Number of events") + 
theme(legend.position = "bottom", 

legend.text = element_text(size = 7), 
legend.title = element_blank()) 

However, there are many points that overlap. If we use geom_jitter instead, we 
take advantage of the horizontal gap between the event names to spread the points 
and avoid the overlap:
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Fig. 30 Jitter plot of number 
of events per achievement 
group using geom_point 
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ggplot(df, aes(x =  AchievingGroup, y =  Frequency.Total)) + 
geom_jitter() + 
xlab("Achieving group") + 
ylab("Number of events") + 
theme(legend.position = "bottom", 

legend.text = element_text(size = 7), 
legend.title = element_blank()) 

Fig. 31 Jitter plot of number 
of events per achievement 
group using geom_jitter 
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The plot shows that students that are high achievers generally have a higher 
number of events than low achievers (Fig. 31). 

3.3.5 Box Plot 

When we have too many data points, it is often more useful to visualize summary 
statistics instead of all the points. Box plots are very useful in summarizing data 
distributions. We can create a box plot for the number of events per achievement 
group using geom_boxplot:
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ggplot(df, aes(x =  AchievingGroup, y =  Frequency.Total)) + geom_boxplot() + 
xlab("Achieving group") + ylab("Number of events") 

Fig. 32 Box plot of activity 
per achievement group 
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The lower hinge of each box indicates the 25% percentile, the thick middle line is 
the median, and the top hinge is the top 75% percentile. The upper whisker extends 
from the hinge up to the maximum value within 1.5 * IQR (inter-quantile range), 
whereas the lower whisker extends to the minimum value within 1.5 * IQR of the 
hinge. The points outside the whisker represent outliers in the distribution (i.e., 
values outside of the 1.5 * IQR range). As the jitter plot already hinted, the median 
number of events is higher in the high achieving group (Fig. 32). 

3.3.6 Violin Plot 

We can also visualize the distribution of the number of events for each group using 
violin plots (geom_violin), but these are recommended when we have a large 
amount of data (Fig. 33): 

ggplot(df, aes(x =  AchievingGroup, y =  Frequency.Total)) + geom_violin() + 
xlab("Achieving group") + ylab("Number of events") 

Fig. 33 Violin plot of total 
activity per achievement 
group 
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3.3.7 Scatter Plots 

The examples we have seen so far have dealt with plotting a single variable alone 
or divided in categories. Another common scenario is to investigate the direct 
relationship between two or more variables. Scatter plots are used to visualize how 
two numerical variables relate to each other. For example, we can use them to see 
how LMS activity relates to grades (Fig. 34). 

ggplot(df, aes(x =  Frequency.Total, y =  Final_grade)) + 
geom_point() + 
ylab("Final grade") + xlab("Number of events") 

Fig. 34 Scatter plot of 
number of events vs. final 
grade 
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In the plot, each point represents a student. Students at the right side of the plot 
represent students with higher activity, while students closer to the left side of the 
plot, represent students with lower activity. At the same time, students with low 
grades are closer to the bottom of the plot, while students with high grades are 
closer to the top. Overall, se see an upward trend whereby students with higher 
activity indeed obtain better grades. 

We can add another dimension by coloring points according to another variable. 
For example, we can color the points according to high vs. low achievers (Fig. 35), 
so we can now where the division between the two groups is: 

ggplot(df, aes(x =  Frequency.Total, y =  Final_grade, color = AchievingGroup)) + 
geom_point() + 
ylab("Final grade") + xlab("Number of events") + 
labs(color = "Achievement") 
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Fig. 35 Scatter plot of number of events vs. final grade colored by achievement group 

We can add yet another dimension by mapping the size aesthetic to another 
variable, for example Frequency.Group_work which represents the number of 
events related to group work (Fig. 36). 

ggplot(df, aes(x =  Frequency.Total, y =  Final_grade, 
fill = AchievingGroup, size = Frequency.Group_work)) + 

geom_point(color = "black", pch = 21) + 
scale_size_continuous(range = c(1, 7)) + 
ylab("Final grade") + xlab("Number of events") + 
labs(size = "Group work", fill = "Achievement") 
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Fig. 36 Scatter plot of number of events vs. final grade colored by achievement group and sized 
by frequency of group work
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3.4 Advanced Features 

3.4.1 Plot Grids 

Sometimes, adding all the information in a single plot can be overwhelming and 
hard to interpret. For example, take a look at the following line plot that shows the 
number of events per day for each of the course online components (Fig. 37): 

ggplot(events, aes(x =  as.Date(timecreated), color = Action )) + 
scale_fill_viridis_d() + 
geom_line(stat = "count") + 
xlab("Date") + 
ylab("Number of events") 
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Fig. 37 Multiple series line plot 

If we had only a few (2–5) lines, the plot would probably look good, but as the 
number of categories grow, the plot becomes unintelligible. Instead of showing all 
the lines together, the plot would be easier to understand if each component had their 
own plot. To do this, instead of mapping the Action column to the color aesthetic, 
we add a new component to our plot using facet_wrap and we pass the name of 
the column as a character string ("Action"). We can change the geom_line to a 
geom_area to enhance the visualization (Fig. 38).
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ggplot(events, aes(x =  as.Date(timecreated))) + 
geom_area(stat = "count", fill = "turquoise", color = "black") + 
facet_wrap("Action") + 
xlab("Date") + 
ylab("Number of events") 
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Fig. 38 Grid of multiple plots 

3.4.2 Combining Multiple Plots 

In the previous example, we saw how to split a plot into multiple plots. But what 
happens if we want to combine multiple independent plots? For that purpose, we 
can use the library patchwork. Install it first if you do not have it already: 

install.packages("patchwork") 

We import the patchwork library:
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library(patchwork) 

We have to create the plots that we want to combine and assign each of them to a 
different variable. We can use previous examples from this chapter and assign them 
to variables named p1, p2, and p3. 

p1 <- ggplot(df, aes(x =  Frequency.Total, y =  Final_grade)) + 
geom_point() + ylab("Grade") + 
xlab("Total number of events") 

p2 <- ggplot(df, aes(x =  AchievingGroup, fill = ActivityGroup )) + 
geom_bar(position = position_fill(reverse = T)) + 
scale_fill_viridis_d(direction = -1) + 
xlab("Achievement group") + 
ylab("Number of events") + 
labs(fill = "Activity level") 

p3 <- ggplot(events, aes(x =  as.Date(timecreated) )) + 
geom_line(stat = "count", color = "turquoise", linewidth = 1.5) + 
geom_point(stat = "count", color = "purple", size = 2, stroke = 1) + 
xlab ("Date") + 
ylab("Number of events") 

Now, if we add the three variables together separated by the + sign, the plots will 
be placed horizontally next to each other (Fig. 39): 

p1 + p2 + p3 
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Fig. 39 Multiple plots stacked horizontally
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If we use the / character side instead, we lay them out vertically (Fig. 40): 

p1 / p2 / p3 

Fig. 40 Multiple plots 
stacked vertically 
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We can use combinations of both signs and even leave blank spaces as follows 
(Fig. 41): 

(p1 + p2) / ( p3  + plot_spacer())
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Fig. 41 Multiple plots in a grid 

Putting plots side by side can be very useful to compare datasets and discuss the 
differences. Some publication venues limit the number of figures or pages of their 
articles, so combining several plots together can be very useful to overcome this 
limitation. 

4 Creating Tables with gt 

We have seen earlier in this chapter multiple types of visualizations that are suitable 
for diverse scenarios in learning analytics. However, we must not forget the other 
main way of reporting results or metrics, i.e., tables. When we display a data frame 
in Rstudio, it is by default presented as a table, but we need to be able to extract this 
table and display it in a dashboard, a report or a scientific article. The library gt can 
help us with this endeavor. First, install it if you do not have it yet: 

install.packages("gt") 

We then import it, as usual: 

library(gt) 

Let us create a table, for example, to display the descriptive statistics of students’ 
events in the LMS. Using the events dataset, we first count the number of events 
of each type (Event.name) per student (user) using  group_by and count from



188 S. López-Pernas et al.

dplyr. We then group by Event.name only and use the summarize function, also 
from dplyr, to create the mean, and standard deviation of the number of events of 
each type per student, as we learned in Chapter 5 [30]. 

events |> 
group_by(user, Action) |> 
count() |> 
group_by(Action) |> 
summarize(Mean = mean(n), SD = sd(n)) 

# A tibble: 12 x 3 
Action Mean SD 
<chr> <dbl> <dbl> 

1 Applications 11.1 9.83 
2 Assignment 56.7 34.1 
3 Course_view 195. 152. 
4 Ethics 11.7 10.7 
5 Feedback 24.7 16.2 
6 General 25.7 21.4 
7 Group_work 252. 163. 
8 Instructions 49.8 40.3 
9 La_types 14.5 7.58 

10 Practicals 77.1 33.8 
11 Social 18.1 19.0 
12 Theory 11.1 6.92 

Now that we have a data frame with the shape that we like, we can use gt to create 
the formatted table by simply adding gt to the pipeline of operations (Table 1): 

events |> 
group_by(user, Action) |> 
count() |> 
group_by(Action) |> 
summarize(Mean = mean(n), SD = sd(n)) |> 
gt() 
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Table 1 Table created 
with gt 

Action Mean SD 

Applications 11.07143 9.825022 

Assignment 56.68462 34.129492 

Course_view 194.56154 151.656947 

Ethics 11.68182 10.669050 

Feedback 24.71429 16.243082 

General 25.73846 21.390991 

Group_work 251.90769 162.899810 

Instructions 49.80000 40.272213 

La_types 14.54615 7.583245 

Practicals 77.07692 33.751627 

Social 18.10744 19.034093 

Theory 11.10484 6.922120 

We might add some tweaks by forcing the numerical columns to have two 
decimals and the first column to be aligned left. You can also apply themes to the 
table using the library gtExtras (Table 2). 

events |> 
group_by(user, Action) |> 
count() |> 
group_by(Action) |> 
summarize(Mean = mean(n), SD = sd(n)) |> 
gt() |> 
fmt_number(decimals = 2, columns = where(is.numeric)) |> 
cols_align(align = "left", columns = 1) 

Table 2 Table created with 
gt with formatting 

Action Mean SD 

Applications . 11.07 . 9.83

Assignment . 56.68 . 34.13

Course_view .194.56 . 151.66

Ethics . 11.68 . 10.67

Feedback . 24.71 . 16.24

General . 25.74 . 21.39

Group_work .251.91 . 162.90

Instructions . 49.80 . 40.27

La_types . 14.55 . 7.58

Practicals . 77.08 . 33.75

Social . 18.11 . 19.03

Theory . 11.10 . 6.92
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5 Discussion 

The use of data visualization in the context of learning analytics has the potential to 
greatly enhance our understanding of student behavior and performance. Using tools 
such as ggplot2, instructors and researchers can create informative and visually 
appealing plots that highlight important patterns and trends in student activity, 
providing insights into factors that may be impacting student success and therefore 
inform instructional decisions and improve student outcomes. 

As we have already seen throughout the chapter, we often use different plots 
when dealing with categorical variables or numerical variables; when plotting a 
single variable or two (or more), etc. Moreover, on some occasions when we need 
very detailed information, a table might be more informative compared to a figure. 
As a summary for the possible visualizations, Table 3 gathers the most commonly 
used visualization types that we have seen throughout this chapter according to the 
number of variables and the data type. It also points to the ggplot2 geometry that 
is used to create each visualization. 

Table 3 Summary of the types of visualization for each data type and number of variables 

Number of variables Variable types Type of visualization ggplot2 geometry 

One variable Continuous Histogram geom_hist() 
Discrete Bar chart geom_bar() 

Two or more variables Both continuous Scatter plot geom_point() 
One discrete time and Line chart geom_line() 
one continuous Area chart geom_area() 
One discrete and one Bar chart geom_bar() 
continuous Box plot geom_boxplot() 

Jitter plot geom_jitter() 
Violin plot geom_violin() 

Both discrete Stacked bar chart geom_bar() 

Another way to decide which visualization to use is to think what kind of story 
we want to tell or which aspect of our data we want to highlight. Figure 42 shows 
a flowchart that can help choose the most suitable visualization for our data. There 
are many other decision charts online made for this purpose. For example, “From 
Data to Viz”1 leads you to the most appropriate graph for your data and also links 
to the code to build it and lists common caveats you should avoid. 

Throughout the rest of the book, we will see other forms of data visualization 
that are inherent to specific learning analytics methods. For example, in Chapter 
15 [31], we will learn how to represent students’ discussions in the form of 

1 Data to Viz https://www.data-to-viz.com/.

https://www.data-to-viz.com/
https://www.data-to-viz.com/
https://www.data-to-viz.com/
https://www.data-to-viz.com/
https://www.data-to-viz.com/
https://www.data-to-viz.com/
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Fig. 42 Flowchart to decide the most appropriate visualization for your data 

social networks, and in Chapter 10 [32], we will represent students’ sequences of 
activities using sequence analysis. The foundations learned in this chapter are key to 
understanding more complex visualizations in learning analytics and are, of course, 
transferable to other fields as well. We encourage readers to expand their knowledge 
of data visualization by referring to the recommended resources in the next section. 
Especially readers that would like to take their visualizations to the next step should 
consider using shiny,2 a web framework for R that allows creating fully interactive 
web apps for data analyses such as dashboards. 

6 Additional Material 

• Wilke, Claus. 2019. Fundamentals of Data Visualization. O’Reilly. https:// 
clauswilke.com/dataviz/. 

• Rahlf, Thomas. 2019 Data visualisation with R: 111 Examples. Springer. https:// 
doi.org/10.1007/978-3-030-28444-2. 

• Wickham, Hadley, Danielle Navarro, and Thomas Lin Pedersen. 2019. ggplot2: 
Elegant Graphics for Data Analysis (Use R) https://ggplot2-book.org/index.html. 

• Sahin, Muhittin and Dirk Ifenthaler. 2021. Visualizations and Dashboards for 
Learning Analytics. Springer. https://doi.org/10.1007/978-3-030-81222-5. 

2 Shiny https://mastering-shiny.org/.

https://clauswilke.com/dataviz/
https://clauswilke.com/dataviz/
https://clauswilke.com/dataviz/
https://clauswilke.com/dataviz/
https://doi.org/10.1007/978-3-030-28444-2
https://doi.org/10.1007/978-3-030-28444-2
https://doi.org/10.1007/978-3-030-28444-2
https://doi.org/10.1007/978-3-030-28444-2
https://doi.org/10.1007/978-3-030-28444-2
https://doi.org/10.1007/978-3-030-28444-2
https://doi.org/10.1007/978-3-030-28444-2
https://doi.org/10.1007/978-3-030-28444-2
https://doi.org/10.1007/978-3-030-28444-2
https://doi.org/10.1007/978-3-030-28444-2
https://ggplot2-book.org/index.html
https://ggplot2-book.org/index.html
https://ggplot2-book.org/index.html
https://ggplot2-book.org/index.html
https://ggplot2-book.org/index.html
https://ggplot2-book.org/index.html
https://doi.org/10.1007/978-3-030-81222-5
https://doi.org/10.1007/978-3-030-81222-5
https://doi.org/10.1007/978-3-030-81222-5
https://doi.org/10.1007/978-3-030-81222-5
https://doi.org/10.1007/978-3-030-81222-5
https://doi.org/10.1007/978-3-030-81222-5
https://doi.org/10.1007/978-3-030-81222-5
https://doi.org/10.1007/978-3-030-81222-5
https://doi.org/10.1007/978-3-030-81222-5
https://doi.org/10.1007/978-3-030-81222-5
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• Dougherty, Jack and Ilya Ilyankou. 2021. Hands-On Data Visualization: 
Interactive Storytelling from Spreadsheets to Code https://handsondataviz.org/ 
spreadsheet.html. 

• From Data to Viz. https://www.data-to-viz.com/about.html 
• Wickham, Hadley. 2021. Mastering shiny. O’Reilly. https://mastering-shiny.org/. 
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Part II 
Machine Learning



Predictive Modelling in Learning 
Analytics: A Machine Learning 
Approach in R 

Jelena Jovanovic, Sonsoles López-Pernas, and Mohammed Saqr 

1 Introduction 

Prediction of students’ performance has been a central theme within the field of 
learning analytics (LA) since the early days [1]. In fact, the initial conceptualization 
of the field has highlighted the use of digital data collected from learners to predict 
their success—among other usages. Such predictions hold the promise to help 
identify those who are at risk of low achievement, in order to proactively offer 
early support and appropriate intervention strategies based on insights derived from 
learners’ data [1, 2]. Nevertheless, the prediction of students’ performance is not 
unique to LA and was an important theme in related fields even before LA, e.g., 
academic analytics [3], educational data mining [4], and even far earlier in education 
research at large [5]. 

Such widespread, longstanding and continuous centrality of early and accurate 
prediction of students’ performance lends itself to the premise that detection of 
early signs could allow a timely prevention of, e.g., dropout, low achievement, 
or undesired outcomes in general [6]. More importantly, identifying the predictors 
could help inform interventions, explain variations in outcomes and inform edu-
cators of why such outcomes happened—a form of predictive modelling that is 
often referred to as explanatory modelling [7]. Noticeable is the famous example 
of the Signal system at the University of Purdue, where predictions were based 
on digital data collected from an online learning platform [8]. Signal produced 
predictions and classified students into three categories according to “safety” and 
presented the students with traffic-light-inspired dashboard signs, where at-risk 
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students get a red light. However, the influence of Signal on retention rates is 
unclear and often debated [9]. Several other systems were designed, built and 
applied in practice, e.g., OU analyse at the Open University, where the system offers 
informative dashboards to students and teachers as well as predictive models to 
forecast students’ performance [10]. 

Successful prediction of students’ performance has been demonstrated repeat-
edly in several LA studies across the years [11]. In general, the majority of the 
published studies used features extracted from logged learning trace data (i.e., 
data about students’ interactions with online learning activities and resources) and 
achieved accurate predictions for a considerable number of students. Yet, most of 
such studies examined a single course or what is often referred to as a convenience 
sample (i.e., a course with a sufficiently large and accessible dataset) [11]. Studies 
that attempted to apply predictive modelling across several courses have not found 
similar success [12–15]. For instance, Finnegan et al. [15] examined 22 courses 
across three academic domains using student log-trace data recorded from the 
learning management system. The authors found considerable differences among 
predictive models developed for individual courses regarding their predictive power 
as well as the significance of features. Similar results were reported by Gašević et  
al. [12] who used data from nine undergraduate courses in different disciplines to 
examine how instructional variations affected the prediction of academic success. 
Gašević et al. [12] found that predictors were remarkably different across courses 
with no consistent pattern that would allow for having one model applicable across 
all courses. Similarly, Conijn et al. [13] examined 17 courses across several subjects 
and confirmed the considerable variability of the indicators and predictive models 
across courses. 

Studies within the same domain have also found significant differences in 
predictors and predictive models. For instance, a recent study [14] examined 50 
courses with a similar course design and homogeneous pedagogical underpinning. 
The authors found variations among different offerings of the same course, that 
is, the same predictor was statistically significantly correlated with performance in 
one course offering, but not in the same course offered to similar students in the 
next year. Furthermore, some predictors were more consistent than others e.g., the 
frequency of online sessions was more consistent than the frequency of lectures. 
In a similar vein, Jovanović et al. [16] applied mixed-effect linear modelling to 
data from fifty combined courses and developed several predictive models with 
different combinations of features. All predictive models in the work by Jovanović 
et al. [16] were able to explain only a limited proportion of variations in students’ 
grades. The intraclass correlation coefficient (a measure of source of variability) of 
all models revealed that the main source of variability were students themselves, 
that is, students’ specific features not captured in the logged data, pointing to the 
importance of taking students’ international conditions into account. 

The goal of this chapter is to introduce the reader to predictive LA. The next 
section is a review of the existing literature, including the main objectives, indicators 
and algorithms that have been operationalized in previous works. The remainder of 
the chapter is a step-by-step tutorial of how to perform predictive LA using R. The
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tutorial describes how to predict student success using students’ online trace log 
data extracted from a learning management system. The reader is guided through 
all the required steps to perform prediction, including the data preparation and 
exploration, the selection of the relevant indicators (i.e., feature engineering) and 
the actual prediction of student success. 

2 Predictive Modelling: Objectives, Features, and 
Algorithms 

Extensive research in the LA field has been devoted to the prediction of different 
measures of student success, as proven by the existence of multiple reviews and 
meta-analyses on the topic [17–20]. Among the measures of student success that 
have been examined in the literature are student retention [21], grades [22], and 
course completion [23]. Predicting lack of success has also been a common target 
of predictive analytics, mostly in the form of dropout [24], with special interest in 
the early prediction of at-risk students [25, 26]. 

To predict student success, numerous indicators from varying data sources have 
been examined in the literature. Initially, indicators were derived from students’ 
demographic data and/or academic records. Some examples of such indicators 
are age, gender, and previous grades [27]. More recent research has focused 
on indicators derived from students’ online activity in the learning management 
system (LMS) [17, 20]. Many of such indicators are derived directly from the raw 
log data such as the number of total clicks, number of online sessions, number 
of clicks on the learning materials, number of views of the course main page, 
number of assignments completed, number of videos watched, number of forum 
posts [13, 14, 28–31]. Other indicators are related to time devoted to learning, 
rather than to the mere count of clicks, such as login time, login frequency, active 
days, time-on-task, average time per online session, late submissions, and periods 
of inactivity [13, 14, 32–35]. More complex indicators are often derived from 
the time, frequency, and order of online activities, such as regularity of online 
activities, e.g., regularity of accessing lecture materials [16, 36, 37], or regularity of 
active days [14, 16]. Network centrality measures derived from network analysis of 
interactions in collaborative learning settings were also considered, as they compute 
how interactions relate to each other and their importance [38]. Research has found 
that predictive models with generic indicators are only able to explain just a small 
portion of the overall variability in students’ performance [36]. Moreover, it is 
important to take into account learning design as well as quality and not quantity 
of learning [17, 20]. 

The variety of predictive algorithms that have been operationalized in LA 
research is also worth discussing. Basic algorithms, such as linear and logistic 
regression, or decision trees, have been used for their explainability, which allows 
teachers to make informed decisions and interventions related to the students



200 J. Jovanovic et al.

“at risk” [37]. Other machine learning algorithms have also been operationalized 
such as kNN or random forest [39, 40], although their interpretability is less 
straightforward. Lastly, the most cutting-edge techniques in the field of machine 
learning have also made their way to LA, such as XGBoost [41] or Neural Networks 
[42]. Despite the fact that the accuracy achieved by these complex algorithms is 
often high, their lack of interpretability is often pointed out as a reason for teachers 
to avoid making decisions based on their outcomes [7, 43]. 

It is beyond the scope of this review to offer a comprehensive coverage of the 
literature. Interested readers are encouraged to read the cited literature and the 
literature reviews on the topics [11, 14, 17–20] 

3 Predicting Students’ Course Success Early in the Course 

3.1 Prediction Objectives and Methods 

The overall objective of this section is to illustrate predictive modelling in LA 
through a typical LA task of making early-in-the-course predictions of the students’ 
course outcomes based on the logged learning-related data (e.g., making predictions 
of the learners’ course outcomes after log data has been gathered for the first 2–3 
weeks). The course outcomes will be examined and predicted in two distinct ways: 
(1) as success categories (high vs. low achievement), meaning that the prediction 
task is approached with classification models; (2) as success score (final grades), in 
which case the development of regression models is required. 

To meet the stated objectives, the following overall approach will be applied: 
create several predictive models, each one with progressively more learning trace 
data (i.e., logged data about the learners’ interactions with course resources and 
activities), as they become available during the course. In particular, the first model 
will be built using the learning traces available at the end of the first week of the 
course; the second model will be built using the data available after the completion 
of the second week of the course (i.e., the data logged over the first 2 weeks); then, 
the next one will be built by further accumulating the data, so that we have learning 
traces for the first 3 weeks, and so on. In all these models, the outcome variable 
will be the final course outcome (high/low achievement for classification models, 
that is, the final grade for regression models). We will evaluate all the models on 
a small set of properly chosen evaluation metrics and examine when (that is, how 
early in the course) we can make reasonably good predictions of the course outcome. 
In addition, we will examine which learning-related indicators (i.e., features of the 
predictive models) had the highest predictive power.
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3.2 Context 

The context of the predictive modelling presented in this chapter is a postgraduate 
course on learning analytics (LA), taught at University of Eastern Finland. The 
course was 6 weeks long, though some assignments were due in the week after the 
official end of the course. The course covered several LA themes (e.g., Introductory 
topics, Learning theories, Applications, Ethics), and each theme was covered 
roughly in 1 week of the course. Each theme had a set of associated learning 
materials, mostly slides, and reading resources. The course reading resources 
included seminal articles, book chapters, and training materials for practical work. 
The course also contained collaborative project work (referred to as group projects). 
In the group project, students worked together in small groups to design an LA 
system. The group project was continuous all over the course and was designed to 
align with the course themes. For instance, when students learned about LA data 
collection, they were required to discuss the data collection of their own project. 
The group project has two grades, one for the group project as a whole and another 
for the individual contribution to the project. It is important to note here that the 
dataset is based on a synthetic anonymized version of the original dataset and was 
augmented to three times the size of the original dataset. For more details on the 
course and the dataset, please refer to the dataset chapter [44] of the book. 

3.3 An Overview of the Required Tools (R Packages) 

In addition to a set of tidyverse packages that facilitate general purpose data explo-
ration, wrangling, and analysis tasks (e.g., dplyr, tidyr, ggplot2, lubridate), 
in this chapter, we will also need a few additional R packages relevant for the 
prediction modelling tasks:

• The caret (Classification And REgression Training) package [45] offers a  
wide range of functions that facilitate the overall process of development and 
evaluation of prediction models. In particular, it includes functions for data pre-
processing, feature selection, model tuning through resampling, estimation of 
feature importance, and the like. Comprehensive documentation of the package, 
including tutorials, is available online.1 

• The randomForest package [46] provides an implementation of the Random 
Forest prediction method [47] that can be used both for the classification and 
regression tasks.

• The performance package [48] offers utilities for computing indices of model 
quality and goodness of fit for a range of regression models. In this chapter, it 

1 https://topepo.github.io/caret/.

https://topepo.github.io/caret/
https://topepo.github.io/caret/
https://topepo.github.io/caret/
https://topepo.github.io/caret/
https://topepo.github.io/caret/
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will be used for estimating the quality of linear regression models. The package 
documentation, including usage examples, is available online.2 

• The corrplot package [49] allows for seamless visual exploration of correlation 
matrices and thus facilitates understanding of connections among variables 
in high dimensional datasets. A detailed introduction to the functionality the 
package offers is available online.3 

3.4 Data Preparation and Exploration 

The data that will be used for predictive modelling in this chapter originates 
from the LMS of a blended course on LA. The dataset is publicly available in a 
GitHub repository,4 while its detailed description is given in the book’s chapter 
on datasets [44]. In particular, we will make use of learning trace data (stored in 
the Events.xlsx file) and data about the students’ final grades (available in the 
Results.xlsx file). 

We will start by familiarising ourselves with the data through exploratory data 
analysis. 

library(tidyverse) 
library(lubridate) 
library(rio) 

After loading the required packages, we will load the data from the two 
aforementioned data files: 

events = import( 
"https://github.com/lamethods/data/raw/main/1_moodleLAcourse/Events.xlsx") 

results = import( 
"https://github.com/lamethods/data/raw/main/1_moodleLAcourse/Results.xlsx") 

We will start by exploring the events data, and looking first into its structure: 

glimpse(events) 

Rows: 95,626 
Columns: 7 
$ Event.context <chr> "Assignment: Final Project", "Assignment: Final Project"~ 
$ user <chr> "9d744e5bf", "91489f7a9", "278a75edf", "53d6ab60c", "aab~ 

2 https://easystats.github.io/performance/. 
3 https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html. 
4 https://github.com/sonsoleslp/labook-data/tree/main/1_moodleLAcourse.

https://easystats.github.io/performance/
https://easystats.github.io/performance/
https://easystats.github.io/performance/
https://easystats.github.io/performance/
https://easystats.github.io/performance/
https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html
https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html
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$ timecreated <dttm> 2019-10-26 09:37:12, 2019-10-26 09:09:34, 2019-10-18 12~ 
$ Component <chr> "Assignment", "Assignment", "Assignment", "Assignment", ~ 
$ Event.name <chr> "Course module viewed", "The status of the submission ha~ 
$ Log <chr> "Assignment: Final Project", "Assignment: Final Project"~ 
$ Action <chr> "Assignment", "Assignment", "Assignment", "Assignment", ~ 

Since we intend to build separate predictive models for each week of the course, 
we need to be able to organise the events data into weeks. Therefore, we will extend 
the events data frame with additional variables that allow for examining temporal 
aspects of the course events from the weekly perspective. To that end, we first order 
the events data based on the events’ timestamp (timecreated) and then add three 
auxiliary variables for creating the course_week variable: weekday of the current 
event (wday), weekday of the previous event (prev_wday), and indicator variable 
for the start of a new week (new_week). The assumption applied here is that each 
course week starts on Monday and the beginning of a new week (new_week) can be 
identified by the current event being on Monday (wday=="Mon") while the previous 
one was on any day other than Monday (prev_wday!="Mon") :  

events |> 
arrange(timecreated) |> 
mutate(wday = wday(timecreated, 

label = TRUE, 
abbr = TRUE, 
week_start = 1)) |> 

mutate(prev_wday = lag(wday)) |> 
mutate(new_week = ifelse((wday == "Mon") & (is.na(prev_wday) | prev_wday != "Mon"), 

yes = TRUE, no = FALSE)) |> 
mutate(course_week = cumsum(new_week)) -> events 

Having created the variable that denotes the week of the course (course_week), 
we can remove the three auxiliary variables, to keep our data frame tidy: 

events |> select(-c(wday, prev_wday, new_week)) -> events 

We can now explore the distribution of the events across the course weeks. The 
following code will give us the count and proportion of events per week (with 
proportions rounded to the fourth decimal): 

events |> 
count(course_week) |> 
mutate(prop = round(n/nrow(events), 4)) 

The output of the above lines show that we have data for 7 weeks: 6 weeks of 
the course plus one more week, right after the course officially ended but students 
were still able to submit assignments. We can also observe that the level of students’ 
interaction with course activities steadily increased up until week 5 and then started 
going down.
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Let us now move to examining the factor variables that represent different types 
of actions and logged events. First, we can check how many distinct values each of 
these variables has: 

events |> 
summarise(across(c(Event.context, Component:Action), n_distinct)) 

Event.context Component Event.name Log Action 
1 80 13 27  80 12  

We can also examine unique values of each of the four variables, but it is better 
to examine them together, that will help us better understand how they relate to one 
another and get a better idea of the semantics of events they denote. For example, 
we can examine how often distinct Component, Event, and Action values co-occur 
(Table 1): 

events |> 
count(Component,Event.name, Action) |> 
arrange(Component, desc(n)) 

Likewise, we can explore how Action and Log values are related (i.e., co-occur) 
(Table 2): 

Table 1 Count of all combinations of Component, Event, and Action 

Component Event.name Action n 

1 Assignment Course module viewed Practicals 3463 

2 Assignment Course module viewed Assignment 2926 

3 Assignment The status of the submission has been viewed Practicals 2698 

4 Assignment The status of the submission has been viewed Assignment 2427 

5 Assignment Course module viewed Group_work 676 

6...102 

103 Zoom meeting Clicked join meeting button Group_work 25 

Table 2 Count of all combinations of Log and Action 

Action Log n 

1 Applications File: Case studies 141 

2 Applications File: Features students really expect from learning analytics 153 

3 Applications File: OU Analyse: Analysing at-risk students at The Open University 161 

4 Applications File: Whitelock-Wainwright et al-2019-Journal of Computer Assisted 
Learning 

42 

5 Applications URL: E2Coach 90 

6..80 

81 Theory URL: Theory video lecture 207 
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events |> 
count(Action, Log) |> 
arrange(Action) 

Having explored the four categorical variables that capture information about the 
students’ interactions with course resources and activities, we will select the Action 
variable as the most suitable one for further analysis. The reason for choosing the 
Action variable is twofold: (1) it is not overly granular (it has 12 distinct values), 
and thus allows for the detection of patterns in the learning trace data; (2) it captures 
sufficient information about the distinct kinds of interaction the events refer to. In 
fact, the Action variable was manually coded by the course instructor to offer a 
more nuanced way of analysis. The coding was performed to group actions that 
essentially indicate the same activities under the same label. For instance, logs of 
viewing feedback from the teacher were grouped under the label feedback. Practical 
activities (Social network analysis or Process mining) were grouped under the 
label practicals. In the same way, accessing the group work forums designed for 
collaboration, browsing, reading others’ comments, or writing were all grouped 
under the label group_work [50]. 

We will rename some of the Action values to make it clear that they refer to 
distinct topics of the course materials: 

topical_action <- c("General", "Applications", "Theory", "Ethics", "Feedback", "La_types") 

events |> 
mutate(action = ifelse(test = Action %in% topical_action, 

yes = str_glue("Materials_{Action}"), 
no = Action), 

.keep = "unused") -> events 

Let us now visually examine the distribution of events across different action 
types and course weeks: 

# Compute event counts across action types and course weeks 
events |> 

count(course_week, action) |> 
arrange(course_week, desc(n)) -> action_dist_across_weeks 

# Visualise the event distribution 
action_dist_across_weeks |> 

mutate(Action = as.factor(action)) |> 
ggplot(aes(x =  course_week, y =  n, fill = action)) + 
geom_col(position = position_fill()) + 
scale_fill_brewer(palette = 'Paired') + 
scale_x_continuous(breaks = seq(1,7)) + 
labs(x =  "\nCourse week", y =  "Proportion\n", fill ="Action") + 
theme_minimal() 
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Fig. 1 Distribution of action 
types across the course weeks 
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From the plot produced by the above lines of code (Fig. 1), we can observe, for 
example, that group work (Group_work) was the most represented type of actions 
from week 2 till the end of the course (week 6). It is followed by browsing the main 
page of the course containing the course materials, announcements and updates 
(Course_view) and working on practical tasks (Practicals). We can also note 
that the assignment-related actions (Assignment) are present mostly towards the 
end of the course. 

Now that we have familiarised ourselves with the events data and done some 
initial data preparation steps, we should do some final ‘polishing’ of the data and 
store it to have it ready for further analysis. 

# Keep only the variables to be used for further analysis and 
# Rename some of the remaining ones to keep naming consistent 
events |> 

select(user, timecreated, course_week, action) |> 
rename(week = course_week, ts = timecreated) -> events 

# Save the prepared data in the R native format 
dir.create("preprocessed_data") 
saveRDS(events, "preprocessed_data/events.RDS") 

The next step is to explore the grades data that we previously loaded into the 
results data frame 

glimpse(results) 
Rows: 130 
Columns: 15 
$ user <chr> "6eba3ff82", "05b604102", "111422ee7", "b4658c3a9",~ 
$ Grade.SNA_1 <dbl> 0, 8, 10, 5, 10, 7, 9, 10, 10, 10, 7, 10, 9, 9, 9, ~ 
$ Grade.SNA_2 <dbl> 0, 10, 10, 5, 10, 10, 9, 10, 10, 10, 8, 10, 10, 10,~ 
$ Grade.Review <dbl> 6.67, 6.67, 10.00, 0.00, 10.00, 9.67, 6.67, 7.00, 1~
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Fig. 2 Distribution of the final course grade 

$ Grade.Group_self <dbl> 5, 1, 10, 1, 10, 6, 10, 9, 10, 10, 6, 10, 10, 10, 9~ 
$ Grade.Group_All <dbl> 4.00, 3.00, 9.11, 4.00, 9.18, 4.00, 8.56, 8.56, 9.2~ 
$ Grade.Excercises <dbl> 10.00, 10.00, 10.00, 10.00, 10.00, 3.33, 10.00, 10.~ 
$ Grade.Project <dbl> 0.00, 7.00, 9.33, 6.00, 5.33, 7.67, 0.00, 9.33, 10.~ 
$ Grade.Literature <dbl> 6.67, 6.67, 10.00, 4.33, 10.00, 9.67, 5.00, 6.67, 1~ 
$ Grade.Data <dbl> 4, 3, 5, 3, 5, 5, 1, 4, 5, 4, 5, 4, 4, 5, 3, 4, 5, ~ 
$ Grade.Introduction <dbl> 6, 6, 10, 4, 10, 10, 4, 8, 10, 8, 10, 10, 6, 8, 6, ~ 
$ Grade.Theory <dbl> 2, 2, 10, 2, 10, 10, 2, 8, 6, 2, 8, 2, 2, 8, 8, 6, ~ 
$ Grade.Ethics <dbl> 2, 8, 10, 2, 10, 10, 4, 6, 10, 6, 10, 10, 6, 8, 4, ~ 
$ Grade.Critique <dbl> 4, 4, 10, 6, 10, 10, 2, 2, 10, 6, 10, 10, 6, 6, 6, ~ 
$ Final_grade <dbl> 2.626970, 4.670169, 9.244600, 0.000000, 8.238179, 5~ 

Even though the results dataset includes the students’ grades on individual 
assignments, we will be able to use just the final grade (Final_grade) since we 
do not have information when during the course the individual assignment grades 
became available. 

To get an overall understanding of the final grade distribution, we will compute 
the summary statistics and plot the density function for the Final_grade variable: 

summary(results$Final_grade) 

Min. 1st Qu. Median Mean 3rd Qu. Max. 
0.000 5.666 7.954 7.254 9.006 10.000
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ggplot(results, aes(x =  Final_grade)) + 
geom_density() + 
labs(x =  "Final grade", 

title = "Distribution of the final grade") + 
theme_minimal() 

We can clearly notice both in the summary statistics and the distribution plot 
(Fig. 2) that the final grade is not normally distributed, but skewed towards higher 
grade values. 

As noted in Sect. 3.1, we will build two kinds of prediction models: models that 
predict the final grade (regression models) as well as models that predict whether a 
student belongs to the group of high or low achievers (classification models). For the 
latter group of models, we need to create a binary variable (e.g., Course_outcome) 
indicating if a student is in the high or low achievement group. Students whose final 
grade is above the 50th percentile (i.e., above the median) will be considered as 
being high achievers in this course (High), the rest will be considered as having low 
course achievement (Low): 

results |> 
mutate(Course_outcome = ifelse(test = Final_grade > median(Final_grade), 

yes = "High", no = "Low")) |> 
mutate(Course_outcome = factor(Course_outcome)) -> results 

Now that we have prepared the outcome variables both for regression and 
classification models (Final_grade and Course_outcome, respectively), we can 
save them for later use in model building: 

results |> 
select(user, Final_grade, Course_outcome) |> 
saveRDS("preprocessed_data/final_grades.RDS") 

3.5 Feature Engineering 

After the data has been preprocessed, we can focus on feature engineering, that is, 
the creation of new variables (features) to be used for model development. This step 
needs to be informed by the course design and any learning theory that underpins 
the course design, so that the features we create and use for predictive modelling are 
able to capture relevant aspects of the learning process in the given learning settings. 
In addition, we should consult the literature on predictive modelling in LA (see 
Sect. 2), to inform ourselves about the kinds of features that were good predictors
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in similar learning settings. Following such an approach, we have identified the 
following event-based features as potentially relevant: 

A. Features based on learning action counts 

1. Total number of each type of learning actions 
2. Average number of actions (of any type) per day 
3. Entropy of action counts per day 

B. Features based on learning sessions: 

1. Total number of learning sessions 
2. Average (median) session length (time) 
3. Entropy of session length 

C. Features based on number of active days (= days with at least one learning 
session) 

1. Number of active days 
2. Average time distance between two consecutive active days 

In addition to the course specific features (A1), the feature set includes several 
course-design agnostic (i.e., not directly related to a specific course design) features 
(e.g., A2 and A3) that proved as good predictors in similar (blended) learning 
settings [14, 16, 36, 51]. Furthermore, the chosen features allow for capturing both 
the amount of engagement with the course activities (features A1, A2, B1, B2, C1) 
and regularity of engagement (features A3, B3, C2) at different levels of granularity 
(actions, sessions, days). 

To compute features based on action counts per day (group A), we need to extend 
the events dataset with date as an auxiliary variable: 

events |> mutate(date = as.Date(ts)) -> events 

To compute features based on learning sessions, we need to add sessions to the 
events data. It is often the case that learning management systems and other digital 
learning platforms do not explicitly log beginning and end of learning sessions. 
Hence, LA researchers have used heuristics to detect learning sessions in learning 
events data. An often used approach to session detection consists of identifying 
overly long periods of time between two consecutive learning actions (of the same 
student) and considering them as the end of one session and beginning of the next 
one [14, 16, 36]. To determine such overly long time periods that could be used as 
“session delimiters”, LA researchers would examine the distribution of time periods 
between consecutive events in a time-ordered dataset, and set the delimiter to the 
value corresponding to a high percentile (e.g., 85th or 90th percentile) of the time 
distance distribution. We will rely on this approach to add sessions to the event data. 

First, we need to compute time distance between any two consecutive actions of 
each student:
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events |> 
group_by(user) |> 
arrange(ts) |> 
mutate(ts_diff = ts - lag(ts)) |> 
ungroup() -> events 

Next, we should examine the distribution of time differences between any two 
consecutive actions of each student, to set up a threshold for splitting action 
sequences into sessions: 

events |> pull(ts_diff) -> ts_diff 

ts_diff_hours = as.numeric(ts_diff, units = 'hours') 

summary(ts_diff_hours) 

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s 
0.00000 0.00028 0.00028 1.40238 0.01694 307.05028 130 

As summary statistics is not sufficiently informative, we should examine the 
upper percentiles: 

quantile(ts_diff_hours, probs = seq(0.8, 1, 0.01), na.rm = TRUE) |> round(3) 

80% 81% 82% 83% 84% 85% 86% 87% 88% 89% 
0.017 0.017 0.034 0.034 0.034 0.050 0.067 0.084 0.117 0.167 

90% 91% 92% 93% 94% 95% 96% 97% 98% 99% 
0.234 0.350 0.617 1.000 1.834 3.367 7.434 14.300 22.035 39.767 
100% 

307.050 

Considering the computed percentile values, on one hand, and the expected 
length of learning activities in the online part of the course (which included long 
forums discussions), we will set 1.5 hours (value between 93th and 94th percentile) 
as the threshold for splitting event sequences into learning sessions: 

events |> 
mutate(ts_diff_hours = as.numeric(ts_diff, units = 'hours')) |> 
group_by(user) |> 
arrange(ts) |> 
mutate(new_session = (is.na(ts_diff_hours)) | (ts_diff_hours >= 1.5)) |> 
mutate(session_nr = cumsum(new_session))|> 
mutate(session_id = paste0(user,"_", "session_",session_nr)) |> 
ungroup() -> events_with_sessions 

We will also add session length variable, which can be computed as the difference 
between the first and last action in each session, as it will be required for the 
computation of some of the features (B2 and B3):
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events_with_sessions |> 
group_by(session_id) |> 
mutate(session_len = as.numeric(max(ts) - min(ts), units = "secs")) |> 
ungroup() -> events_with_sessions 

After adding the necessary variables for feature computation, we can tidy up the 
dataset before proceeding to the feature computation. In particular, we will keep 
only the variables required for feature computation: 

events_with_sessions <- events_with_sessions |> 
select(user, ts, date, week, action, session_nr, session_id, session_len) 

All functions for computing the event-based features outlined above are given 
in the feature_creation R script. In the following, we give a quick overview of 
those functions, while the script with further explanations is available at the book’s 
GitHub repository:

• the total_counts_per_action_type function computes the set of features 
labelled as A1, that is, counts of each type of learning action, up to the current 
week

• the avg_action_cnt_per_day function computed feature A2, that is, average 
(median) number of learning actions per day, up to the current week

• the daily_cnt_entropy function computes feature A3, namely entropy of 
action counts per day, up to the current week

• the session_based_features function computes all session-based features up 
to the current week: total number of sessions (B1), average (median) session 
length (B2), and entropy of session length (B3)

• the active_days_count function computes the number of active days (C1), up 
to the current week

• the active_days_avg_time_dist function computes avg. (median) time dis-
tance between two consecutive active days (C2), up to the current week

• finally, the create_event_based_features function makes use of the above 
functions to compute all event-based features, up to the given week 

Having defined the feature set and functions for feature computation, cumula-
tively for each week of the course, we can proceed to the development of predictive 
models. In the next section (Sect. 3.6), we will present the creation and evaluation of 
models for predicting the overall course success (high/low), whereas Sect. 3.7 will 
present models for predicting the final course grade. 

3.6 Predicting Success Category 

To build predictive (classification) models, we will use Random Forest [47]. This 
decision was motivated by the general high performance of this algorithm on a



212 J. Jovanovic et al.

variety of prediction tasks [52] as well as its high performance on prediction tasks 
specific to the educational domain [43]. 

Random forest (RF) is a very efficient machine learning method that can be used 
both for classification and regression tasks. It belongs to the group of ensemble 
methods, that is, machine learning methods that build and combine multiple 
individual models to do the prediction. In particular, RF builds and combines 
the output of several decision or regression trees, depending on the task at hand 
(classification or regression). The way it works can be briefly explained as follows: 
the method starts by creating a number of bootstrapped training samples to be 
used for building a number of decision trees (e.g. 100). When building each tree, 
each time a split in a tree is to be made, instead of considering all predictors, 
a random sample of predictors is chosen as split candidates from the full set of 
predictors (typically the size of the sample is set to be equal to the square root of 
the number of predictors). The reason for choosing a random sample of predictors is 
to make a diverse set of trees, which has proven to increase the performance. After 
all the trees have been built, each one is used to generate a prediction, and those 
predictions are then aggregated into the overall prediction of the RF model. In case 
of a classification task, the aggregation of predictions is done through majority vote, 
that is, the class voted (i.e., predicted) by the majority of the classification trees is the 
final prediction. In case of a regression task, the aggregation is done by averaging 
predictions of individual trees. For a thorough explanation of the RF method (with 
examples in R), an interested reader is referred to Chapter 8 of [53]. 

We will first load the additional required R packages as well as R scripts with 
functions for feature computation and model building and evaluation: 

library(caret) 
library(randomForest) 

source("feature_creation.R") 
source("model_develop_and_eval.R") 

The following code snippet shows the overall process of model building and 
evaluation, one model for each week of the course, starting from week 1 to week 
5. Note that week 5 is set as the last week for prediction purposes since it is the 
last point during the course when some pedagogical intervention, informed by the 
model’s output, can be applied by the course instructors. 

models <- list() 
eval_measures <- list() 

for(k in 1:5) {  

ds <- create_dataset_for_course_success_prediction(events_with_sessions, 
k, results) 

set.seed(2023) 
train_indices <- createDataPartition(ds$Course_outcome, 
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p =  0.8, list = FALSE) 
train_ds <- ds[train_indices,] |> select(-user) 
test_ds <- ds[-train_indices,] |> select(-user) 

rf <- build_RF_classification_model(train_ds) 
eval_rf <- get_classification_evaluation_measures(rf, test_ds) 

models[[k]] <- rf 
eval_measures[[k]] <- eval_rf 

} 

The process consists of the following steps, each of which will be explained in 
more detail below: 

(1) Creation of a dataset for prediction of the course outcomes, based on the 
logged events data (events_with_sessions) up to the given week (k) and 
the available course outcomes data (results) 

(2) Splitting of the dataset intro the part for training the model (train_ds) and 
evaluating the model’s performance (test_ds) 

(3) Building a RF model based on the training portion of the dataset 
(4) Evaluating the model based on the test portion of the dataset 

All built models and their evaluation measures are stored (in models and 
eval_measures lists) so that they can later be compared. 

Going now into details of each step, we start with the creation of a dataset to 
be used for predictive modelling in week k. This is done by first computing all 
features based on the logged events data (events_data) up to the week k, and 
then adding the course outcome variable (Course_outcome) from the dataset with 
course results (grades): 

create_dataset_for_course_success_prediction <- function(events_data, 
current_week, 
grades) { 

features <- create_event_based_features(events_data, current_week) 
grades |> 

select(user, Course_outcome) |> 
inner_join(features, by = "user") 

} 

Next, to be able to properly evaluate the performance of the built model, we need 
to test its performance on a dataset that the model “has not seen”. This requires 
the splitting of the overall feature set into two parts: one for training the model 
(training set) and the other for testing its performance (test set). This is done in 
a way that a larger portion of the dataset (typically 70–80%) is used for training 
the model, whereas the rest is used for testing. In our case, we use 80% of the 
feature set for training (train_ds) and 20% for evaluation purposes (test_ds). 
Since observations (in this case, students) are randomly selected for the training and
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test sets, to assure that we can replicate the obtained results, we initiate the random 
process with an (arbitrary) value (set.seed). 

In the next step, we use the training portion of the dataset to build a RF 
model, as shown in the code snippet below. We train a model by tuning its mtry 
hyper-parameter and choose the model with optimal mtry value based on the 
Area under the ROC curve (AUC ROC) metric. The mtry hyper-parameter defines 
the number of features that are randomly chosen at each step of tree branching, 
and thus controls how much variability will be present among the trees that RF 
will build. It is one of the key hyper-parameters for tuning RF models and its 
default value (default_mtry) is equal to the square root of the number of features 
(n_features). Hence, we create a grid that includes the default value and a few 
values around it. 

build_RF_classification_model <- function(dataset) { 

#defining the model hyperparameter (mtry) that we want to tune 
n_features <- ncol(dataset)-1 
default_mtry <- round(sqrt(n_features)) 
grid <- expand.grid(.mtry = (default_mtry-1):(default_mtry+1)) 

#setting that we want to train the model through 10-fold cross-validation 
ctrl <- trainControl(method = "CV", 

number = 10, 
classProbs = TRUE, 
summaryFunction = twoClassSummary) 

# initiating the training process and setting the evaluation measure 
# (ROC) for choosing the best value of the tuned hyperparameter 
rf <- train(x =  dataset |> select(-Course_outcome), 

y =  dataset$Course_outcome, 
method = "rf", 
metric = "ROC", 
tuneGrid = grid, 
trControl = ctrl) 

rf$finalModel 
} 

The parameter tuning is done through 10-fold cross-validation (CV). K-fold 
CV is a widely used method for tuning parameters of machine learning models. 
It is an iterative process, consisting of k iterations, where the training dataset is 
randomly split into k folds of equal size, and in each iteration, k-1 folds are used 
for training the model whereas the k-th fold is used for evaluating the model on the 
chosen performance measure (e.g., ROC AUC, as in our case). In particular, in each 
iteration, a different fold is used for evaluation purposes, whereas the remaining 
k-1 folds are used for training. When this iterative process is finished, the models’ 
performance, computed in each iteration, are averaged, thus giving a more stable 
estimate of the performance for a particular value of the parameter being tuned. CV 
is often done in 10 iterations, hence the name 10-fold CV.



Predictive Modelling in Learning Analytics: A Machine Learning Approach in R 215

The final step is to evaluate each model based on the test data. To that end, 
we compute four standard evaluation metrics for classification models—Accuracy, 
Precision, Recall, and F1—as shown in the code snippet below. These four metrics 
are based on the so-called confusion matrix, which is, in fact, a cross-tabulation of 
the actual and predicted counts for each value of the outcome variable (i.e., class). 

get_classification_evaluation_measures <- function(model, test_data) { 

# use the model to make predictions on the test set 
predicted_vals <- predict(model, 

test_data |> select(-Course_outcome)) 
actual_vals <- test_data$Course_outcome 

# create the confusion matrix (see Fig. 3) 
cm <- table(actual_vals, predicted_vals) 

TP <- cm[2,2] 
TN <- cm[2,2] 
FP <- cm[1,2] 
FN <- cm[2,1] 

# compute evaluation measures based on the confusion matrix 
accuracy = sum(diag(cm)) / sum(cm) 
precision <- TP / (TP + FP) 
recall <- TP / (TP + FN) 
F1 <- (2 * precision * recall) / (precision + recall) 

c(Accuracy = accuracy, 
Precision = precision, 
Recall = recall, 
F1 = F1) 

} 

In our case, the confusion matrix has the structure as shown on Fig. 3. In  
rows, it has the counts of the actual number of students in the high and low 
achievement groups, whereas the columns give the predicted number of high and 
low achievers. We consider low course achievement as the positive class, since 
we are primarily interested in spotting those students who might benefit from a 

Fig. 3 Confusion matrix for 
the prediction of the students’ 
overall course success
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pedagogical intervention (to prevent a poor course outcome). Hence, TP (True 
Positive) is the count of students who had low course achievement and were 
predicted by the model as such. TN (True Negative) is the count of those who 
were high achieving in the course and the model predicted they would be high 
achievers. FP (False Positive) is the count of those who were high achievers in 
the course, but the model falsely predicted that they would have low achievement. 
Finally, FN (False Negative) is the count of students who were predicted to have 
high achievement in the course, but actually ended up in the low achievement group. 
These four count-based values forming the confusion matrix serve as the input for 
computing the aforementioned standard evaluation measures (Accuracy, Precision, 
Recall, and F1) based on the formuli given in the code snippet above. 

After the predictive models for weeks 1–5 are built and evaluated, we combine 
and compare their performance measures: 

eval_df <- bind_rows(eval_measures) 
eval_df |> 

mutate(week = 1:5) |> 
mutate(across(Accuracy:F1, \(x) round(x, digits = 4))) |> 
select(week, Accuracy:F1) 

Table 3 shows the resulting comparison of the built models. According to all 
measures, models 2 and 3, that is, models with the data from the first two and first 
3 weeks of the course, are the best. In other words, the students’ interactions with 
the course activities in the first 2–3 weeks are the most predictive of their overall 
course success. In particular, the accuracy of these models is 84%, meaning that for 
84 out of 100 students, the models will correctly predict if the student would be a 
high or low achiever in this course. These models have precision of 75%, meaning 
that out of all the students for whom the models predict will be low achievers in 
the course, 75% will actually have low course achievement. In other words, the 
models will underestimate students’ performance in 25% of predictions they make, 
by wrongly predicting that students would have low course achievement. The two 
best models have perfect recall (100%), meaning that the models would identify 
all the students who will actually have low course performance. These models 
outperform the other three models also in terms of the F1 measure, which was 
expected considering that this measure combines precision and recall giving them 
equal relevance. Interestingly, the studies exploring predictive models on weekly 

Table 3 Comparison of 
prediction models for 
successive course weeks 

Week Accuracy Precision Recall F1 

1 0.7917 0.7500 0.8182 0.7826 

2 0.8400 0.7500 1.0000 0.8571 

3 0.8400 0.7500 1.0000 0.8571 

4 0.7692 0.7333 0.8462 0.7857 

5 0.7692 0.7333 0.8462 0.7857
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basis have found similar high predictive power for models developed around the 
second week of the course [54]. 

RF allows for estimating the relevance of features used for model building. In 
a classification task, RF estimates feature relevance as the total decrease in the 
impurity (measured by the Gini index) of leaf nodes from splitting on a particular 
feature, averaged over all the trees that a RF model builds [46]. We will use this 
RF’s functionality to compute and plot the importance of features in the best model. 
The function that does the computation and plotting is given below. 

compute_and_plot_variable_importance <- function(rf_model) { 
importance(rf_model, type = 2) |> 

as.data.frame() |> 
(function(x) mutate(x, variable = rownames(x)))() -> var_imp_df 

row.names(var_imp_df) <- 1:nrow(var_imp_df) 
colnames(var_imp_df) <- c("importance","variable") 

ggplot(var_imp_df, 
aes(x =  reorder(variable, importance), y =  importance)) + 

geom_col(width = 0.35) + 
labs(x =  "", y =  "", title = "Feature importance") + 
coord_flip() + 
theme_minimal() 

} 

The plot produced by this function for one of the best models (Model 2) is given 
in Fig. 4. 

compute_and_plot_variable_importance(models[[2]]) 
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Fig. 4 The importance of features in the best course outcome prediction model, as estimated by 
the RF algorithm
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As Fig. 4 shows, features denoting the overall level of activity (avg_session_len, 
session_cnt) are those with the highest predictive power. They are followed by 
entropy-based features, that is, features reflective of the regularity of study. These 
findings are in line with the LA literature (e.g., [14, 36, 37]. It should be also 
noted that the feature reflective of the level of engagement in the group work 
(Group_work_cnt) is among the top 5 predictors, which can be explained by the 
prominent role of group work in the course design. 

3.7 Predicting Success Score 

To predict the students’ final grades, we will first try to build linear regression 
models, since linear regression is one of the most often used regression methods 
in LA [43]. To that end, we will first load a few additional R packages: 

library(performance) 
library(corrplot) 

Considering that a linear regression model can be considered valid only if it 
satisfies a set of assumptions that linear regression, as a statistical method, is 
based upon (linearity, homogeneity of variance, normally distributed residuals, and 
absence of multicollinearity and influential points), we will first examine if our data 
satisfies these assumptions. In particular, we will compute the features based on the 
events data from the first week of the course, build a linear regression model using 
the computed features, and examine if the resulting model satisfies the assumptions. 
Note that we limit our initial exploration to the logged events data over the first 
week of the course since we aim to employ a regression method that can be applied 
to any number of course weeks; so, if the data from the first course week allow for 
building a valid linear regression model, we can explore the same method further; 
otherwise, we need to choose a more robust regression method, that is, method that 
is not so susceptible to imperfections in the input data. 

Having created the dataset for final grade prediction based on the week 1 events 
data, we will split it into training and test sets (as done for the prediction of 
the course outcome, Sect. 3.6), and examine correlations among the features. The 
latter step is due to the fact that one of the assumptions of linear regression is the 
absence of high correlation among predictor variables. In the code below, we use 
the corrplot function to visualise the computed correlation values (Fig. 5), so that 
highly correlated variables can be easily observed. 

ds <- create_dataset_for_grade_prediction(events_with_sessions, 1, results) 

set.seed(2023) 
train_indices <- createDataPartition(ds$Final_grade, p =  0.8, list = FALSE) 
train_ds <- ds[train_indices,] |> select(-user) 
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Fig. 5 Correlations among variables in the feature set 

test_ds <- ds[-train_indices,] |> select(-user) 

# examine correlations among the variables: for a linear regression model, 
# they must not be highly mutually correlated 
corrplot(train_ds |> select(-Final_grade) |> cor(), 

method = "number", type = "lower", 
diag = FALSE, order = 'hclust', 
tl.cex = 0.75, tl.col = 'black', tl.srt = 30, number.cex = 0.65) 

Figure 5 indicates that there are a couple of features that are highly mutually 
correlated. These will be removed before proceeding with the model building. While 
there is no universal agreement on the correlation threshold above which features 
should be considered overly correlated, correlation coefficients of 0.75 and . −0.75
are often used as the cut-off values [53]. 

train_ds |> select(-c(session_cnt, Course_view_cnt, 
active_days_cnt, entropy_daily_cnts)) -> train_ds_sub 

We can now build a model and check if it satisfies the assumptions of linear 
regression: 

lr <- lm(Final_grade ~ ., data = train_ds_sub) 
check_model(lr) 

The check_model function from the performance R package [48] allows for 
seamless, visual verification of whether the assumptions are met. The output of 
this function when applied to our linear regression model (lr) is shown on Fig. 6.
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Fig. 6 The output of the check_model function enables visual verification of the assumptions that 
linear regression is based upon 

As the figure shows, two important assumptions of linear models are not met, 
namely linearity and homoscedasticity (i.e. homogeneity of variance). Therefore, 
linear regression cannot be used with the given feature set. Instead, we have to use a 
regression method that does not impose such requirements on the data distribution. 
Since Random forest is such a method and it has already proven successful with 
our dataset on the classification task (Sect. 3.6), we will use it to build regression 
models that predict students’ final grades.
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Before moving to regression with Random forest, it is worth noting that, in addi-
tion to checking all model assumptions at once, using the check_model function, 
one can also check each assumption individually using appropriate functions from 
the performance R package. For example, from Fig. 6, one can not clearly see 
the X-axis of the collinearity plot and might want to explore this assumption more 
closely. That can be easily done using the check_collinearity function: 

check_collinearity(lr) 

# Check for Multicollinearity 

Low Correlation 

Term VIF VIF 95% CI Increased SE Tolerance Tolerance 95% CI 
Course_materials_cnt 3.02 [2.32, 4.08] 1.74 0.33 [0.25, 0.43] 

Group_work_cnt 4.10 [3.09, 5.59] 2.02 0.24 [0.18, 0.32] 
Instructions_cnt 4.70 [3.52, 6.44] 2.17 0.21 [0.16, 0.28] 

Practicals_cnt 2.30 [1.81, 3.08] 1.52 0.43 [0.32, 0.55] 
Social_cnt 3.74 [2.83, 5.09] 1.93 0.27 [0.20, 0.35] 

Assignment_cnt 2.04 [1.63, 2.71] 1.43 0.49 [0.37, 0.61] 
avg_daily_cnt 2.89 [2.23, 3.90] 1.70 0.35 [0.26, 0.45] 

avg_session_len 2.24 [1.77, 3.00] 1.50 0.45 [0.33, 0.56] 
session_len_entropy 2.65 [2.06, 3.56] 1.63 0.38 [0.28, 0.49] 

avg_aday_dist 2.34 [1.84, 3.13] 1.53 0.43 [0.32, 0.54] 

From the function’s output, we can clearly see the VIF (Variance Inflation Factor) 
values for all the features and a confirmation that the assumption of the absence 
of multicollinearity is satisfied. The documentation of the performance5 package 
provides the whole list of functions for different ways of checking regression 
models. 

To build and compare regression models in each course week, we will follow a 
similar procedure to the one applied when building classification models (Sect. 3.6); 
the code that implements it is given below. The differences are in the way that the 
dataset for grade prediction is built (create_dataset_for_grade_prediction), 
the way that regression models are built (build_RF_regression_model) and 
evaluated (get_regression_evaluation_measures), and these will be explained in 
more detail below. 

regression_models <- list() 
regression_eval <- list() 
for(k in 1:5) {  

print(str_glue("Starting computations for week {k} as the current week")) 

ds <- create_dataset_for_grade_prediction(events_with_sessions, k, results) 

set.seed(2023) 
train_indices <- createDataPartition(ds$Final_grade, p =  0.8, list = FALSE) 
train_ds <- ds[train_indices,] |> select(-user) 
test_ds <- ds[-train_indices,] |> select(-user) 

5 https://easystats.github.io/performance/reference/index.html. 

https://easystats.github.io/performance/reference/index.html
https://easystats.github.io/performance/reference/index.html
https://easystats.github.io/performance/reference/index.html
https://easystats.github.io/performance/reference/index.html
https://easystats.github.io/performance/reference/index.html
https://easystats.github.io/performance/reference/index.html
https://easystats.github.io/performance/reference/index.html
https://easystats.github.io/performance/reference/index.html
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rf <- build_RF_regression_model(train_ds) 
eval_rf <- get_regression_evaluation_measures(rf, train_ds, test_ds) 

regression_models[[k]] <- rf 
regression_eval[[k]] <- eval_rf 

} 

To create a dataset for final grade prediction in week k, we first compute all 
features based on the logged events data (events_data) up to the week k, and then 
add the final grade variable (Final_grade) from the dataset with course results 
(grades): 

create_dataset_for_grade_prediction <- function(events_data, current_week, grades) { 
features <- create_event_based_features(events_data, current_week) 
grades |> 

select(user, Final_grade) |> 
inner_join(features, by = "user") 

} 

As can be observed in the code snippet below, building a RF regression model 
is very similar to building a RF classification model. The main difference is in the 
evaluation measure that is used for selecting the optimal mtry value in the cross-
validation process - here, we are using RMSE (Root Mean Squared Error), which 
is a standard evaluation measure for regression models [53]. As its name suggests, 
RMSE is the square root of the average squared differences between the actual and 
predicted values of the outcome variable on the test set. 

build_RF_regression_model <- function(dataset) { 

n_features <- ncol(dataset)-1 
default_mtry <- round(sqrt(n_features)) 
grid <- expand.grid(.mtry = (default_mtry-1):(default_mtry+1)) 

ctrl <- trainControl(method = "CV", 
number = 10) 

rf <- train(x =  dataset |> select(-Final_grade), 
y =  dataset$Final_grade, 
method = "rf", 
metric = "RMSE", 
tuneGrid = grid, 
trControl = ctrl) 

rf$finalModel 
} 

Finally, to evaluate each model on the test data, we compute three standard 
evaluation metrics for regression models, namely RMSE, MAE (Mean Absolute



Predictive Modelling in Learning Analytics: A Machine Learning Approach in R 223

Error), and R. 2. MAE is the average value of the absolute differences between the 
actual and predicted values of the outcome variable (final grade) on the test set. 
Finally, R. 2 (R-squared) is a measure of variability in the outcome variable that is 
explained by the given regression model. The computation of the three evaluation 
measures is shown in the code below. 

get_regression_evaluation_measures <- function(model, train_ds, test_data) { 

predicted_vals <- predict(model, 
test_data |> select(-Final_grade)) 

actual_vals <- test_data$Final_grade 

# R2 = 1 - RSS/TSS 
# RSS - Residual Sum of Squares 
RSS <- sum((predicted_vals - actual_vals)ˆ2) 
# TSS - Total Sum of Squares 
TSS <- sum((median(train_ds$Final_grade) - actual_vals)ˆ2) 
R2 <- 1 - RSS/TSS 

# RMSE = sqrt(RSS/N) 
RMSE <- sqrt(RSS/nrow(test_ds)) 

# MAE = avg(abs(predicted - actual)) 
MAE <- mean(abs(predicted_vals - actual_vals)) 

c(R2 = R2, RMSE = RMSE, MAE = MAE) 
} 

After the regression models for weeks 1–5 are built and evaluated, we combine 
and compare their performance measures, with the results reported in Table 4. 

regression_eval_df <- bind_rows(regression_eval) 
regression_eval_df |> 

mutate(WEEK = 1:5) |> 
mutate(across(R2:MAE, \(x) round(x, digits = 4))) |> 
select(WEEK, R2, RMSE, MAE) 

As shown in Table 4, in this case, we do not have a clear situation as it was 
with the classification task (Table 3), since the three evaluation measures point to 

Table 4 Comparison of 
grade prediction models for 
successive course weeks 

WEEK R2 RMSE MAE 

1 0.7315 0.8123 0.6614 

2 0.8423 0.6215 0.4531 

3 0.8387 0.6285 0.4474 

4 0.9067 0.7625 0.5915 

5 0.9179 0.7151 0.5777
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Fig. 7 The importance of features in the best final grade prediction model, as estimated by the RF 
algorithm 

different models as potentially the best ones. In particular, according to R. 2, the  
best model would be model 5 (i.e., the model based on the data from the first 5 
weeks), whereas the other two measures point to the second or third model as the 
best. Considering that (1) RMSE and MAE measures are considered more important 
than R. 2 when evaluating the predictive performance of regression models [13] and 
(2) RMSE and MAE values for models 2 and 3 are very close, while the second 
model is better in terms of R. 2, we will conclude that the second model, that is, 
the model based on the logged event data from the first 2 weeks of the course is 
the best model. This model explains 84.23% of variability in the outcome variable 
(final grade), and predicts it with an average absolute error of 0.4531, which can be 
considered a small value with respect to the value range of the final grade [0–10]. 

To estimate the importance of features in the best regression model, we 
will again leverage the RF’s ability. We will use the same function as before 
(compute_and_plot_variable_importance) to estimate and plot feature 
importance. The only difference will be that the importance function (from the 
randomForest package) will internally use residual sum of squares as the measure 
of node impurity when estimating the features importance. Figure 7 shows that, 
as in the case of predicting the overall course success (Fig. 4), regularity of study 
features (avg_aday_dist, entropy_daily_cnts, session_len_entropy) are  
among the most important ones. In addition, the number of learning sessions 
(session_cnt), as an indicator of overall activity in the course, is also among the 
top predictors. 

compute_and_plot_variable_importance(regression_models[[2]])
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4 Concluding Remarks 

The results of predictive modelling presented in the previous section show that, in 
the examined postgraduate course on LA, we can make fairly accurate predictions 
of the students’ course outcomes already in the second week of the course. In 
fact, both classification and regression models, that is, prediction of the students’ 
overall course success and final grades, proved to be the most accurate when based 
on the logged learning events data from the first two or three course weeks. That 
students’ learning behaviour in the first part of the course is highly predictive of their 
course performance, which is in line with related research on predictive modelling 
(e.g., [54–56]). It should be also noted that the high performance of the presented 
predictive models can be partially explained by the well chosen feature set and the 
used algorithm (Random forest) that generally performs well on prediction tasks. 
However, it may also be due to the relatively large dataset. As noted in Sect. 3.1, we  
used a synthetic anonymized version of the original dataset that is three times larger 
than the original dataset. 

Considering the features that proved particularly relevant for predicting the 
students’ course performance, we note that in both kinds of predictive tasks— 
course success and final grade prediction—features reflective of regularity of study 
stand out. In addition, features denoting the overall level of engagement with online 
learning activities and resources also have high predictive power. It is also worth 
noting that the highly predictive features are session level features, suggesting that 
learning session is the right level of granularity (better than actions or active days) 
for predictive modelling in the given course. In fact, this finding is in line with 
earlier studies that examined predictive power of a variety of features derived from 
learning traces [13, 14, 36]. Note that due to the purpose of this chapter to serve 
as introductory reading to predictive modelling in LA, we based the feature set on 
relatively simple features and used only one data source for feature creation. For 
more advanced and diverse feature creation options, interested readers are referred 
to, for example [57–59]. 

The algorithm used for building predictive models, namely Random forest, offers 
the advantage of flexibility in terms of the kinds of data it can work with (unlike, 
for example, linear regression which is based on several assumptions about data 
distribution) as well as fairly good prediction results it tends to produce. On the 
other hand, the algorithm is not as transparent as simpler algorithms are (e.g., linear 
regression or decision trees) and thus its use might raise issues of teachers’ trust 
and willingness to rely on the models’ output. On the positive side, the algorithm 
offers an estimate of feature importance thus shedding some light on the underlying 
“reasoning” process that led to its output (i.e., predictions). 

To sum up, predictive modelling, as applied in LA, can bring about important 
benefits in the form of early in the course detection of students who might be 
struggling with the course and pointing out indicators of learning behaviour that are 
associated with poor course outcomes. With such insights available, teachers can 
make better informed decisions as to the students who need support and the kind of
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support they might benefit from. However, predictive modelling is also associated 
with challenges, especially practical challenges related to the development and 
use of such models, including availability and access to the data, interpretation of 
models and their results, and the associated issue of trust in the models’ output. 

5 Suggested Readings

• Max Kuhn & Julia Silge (2022). Tidy Modeling with R: A Framework for 
Modeling in the Tidyverse. O’Reilly. https://www.tmwr.org/

• Bradley Boehmke & Brandon Greenwell (2020). Hands-On Machine Learning 
with R. Taylor & Francis. https://bradleyboehmke.github.io/HOML/

• James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to 
Statistical Learning: With Applications in R. 2nd Edition. Springer US. https:// 
doi.org/10.1007/978-1-0716-1418-1 
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Dissimilarity-Based Cluster Analysis of 
Educational Data: A Comparative 
Tutorial Using R 

Keefe Murphy, Sonsoles López-Pernas, and Mohammed Saqr 

1 Introduction 

Cluster analysis is a term used to describe a broad range of techniques which 
have the goal of uncovering groups of observations in a data set. The typical 
aim of cluster analysis is to categorise observations into groups in such a way 
that observations within the same group are in some sense more similar to each 
other, while being relatively dissimilar to those in other groups [1]. In other 
words, clustering methods uncover group structure in heterogeneous populations 
by identifying more homogeneous groupings of observations which may represent 
distinct, meaningful subpopulations. Using machine learning terminology, cluster 
analysis corresponds to unsupervised learning, whereby groups are identified by 
relying solely on the intrinsic characteristics (typically dissimilarities), without 
guidance from unavailable ground truth group labels. Indeed, foreknowledge of the 
fixed number of groups in a data set is characteristic of supervised learning and the 
distinct field of classification analysis. 

It is important to note that there is no universally applicable definition of 
what constitutes a cluster [2, 3]. Indeed, in the absence of external information 
in the form of existing “true” group labels, different clustering methods can 
reveal different things about the same data. There are many different ways to 
cluster the same data set, and different methods may yield solutions with different 
assignments, or even differ in the number of groups they identify. Consequently, 
we present several cluster analysis algorithms in this chapter; namely, K-means 
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[4] in Sect. 3.1, a generalisation thereof, K-medoids [5], in Sect. 3.1.2.3, and 
agglomerative hierarchical clustering [6] in Sect. 3.2. We apply each method in a 
comparative study in our tutorial using R [7], with applications to a data set about 
the participants from discussion forum of a massive open online course (MOOC) 
for teachers. 

The clustering methods we review in this chapter are designed to find mutually 
exclusive, non-overlapping groups in a data set, i.e., they recover a hard partition 
whereby each observation belongs to one group only. This is in contrast to soft 
clustering approaches under which each observation is assigned a probability of 
belonging to each group. One such example of soft clustering is the model-based 
clustering paradigm, which is discussed in the later Chapter 9 [8]. While model-
based clustering methods, as the name suggests, are underpinned by the assumption 
of generative probabilistic models [9], the more traditional dissimilarity-based 
methods on which this chapter is focused are purely algorithmic in nature and rely 
on heuristic criteria regarding the pairwise dissimilarities between objects. 

Heuristic clustering algorithms can be further divided into two categories; 
partitional clustering (e.g., K-means and K-medoids) and hierarchical (of which 
we focus on the agglomerative variant). Broadly speaking, partitional clustering 
methods start with an initial grouping of observations and iteratively update the 
clustering until the “best” clustering is found, according to some notion of what 
defines the “best” clustering. Hierarchical clustering methods, on the other hand, 
is more sequential in nature; a tree-like structure of nested clusterings is built up 
via successive mergings of similar observations, according to a defined similarity 
metric. In our theoretical expositions and our applications in the R tutorial, we 
provide some guidelines both on how to choose certain method-specific settings 
to yield the best performance and how to determine the optimal clustering among a 
set of competing methods. 

The remainder of this chapter proceeds as follows. In Sect. 2, we review relevant 
literature in which dissimilarity-based clustering methods have been applied in the 
realm of educational research. In Sect. 3, we describe the theoretical underpinnings 
of each method in turn and discuss relevant practical guidelines which should be 
followed to secure satisfactory performance from each method throughout. Within 
Sect. 4, we introduce the data set of our case study in Sect. 4.1 and give an overview 
of some required pre-processing steps in Sect. 4.1.1, and then present a tutorial 
using R for each clustering method presented in this chapter in Sect. 4.2, with a 
specific focus on identifying the optimal clustering solution in Sect. 4.2.4. Finally, 
we conclude with a discussion and some recommendations for related further 
readings in Sect. 5, with a particular focus on some limitations of dissimilarity-
based clustering which are addressed by other frameworks in the broader field of 
cluster analysis.
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2 Clustering in Education: Review of the Literature 

In education, clustering is among the oldest and most common analysis methods, 
predating the field of learning analytics and educational data mining by several 
decades. Such early adoption of clustering is due to the immense utility of cluster 
analysis in helping researchers to find patterns within data, which is a major 
pursuit of education research [10]. Interest was fueled by the increasing attention to 
heterogeneity and individual differences among students, their learning processes, 
and their approaches to learning [11, 12]. Finding such patterns or differences 
among students allows teachers and researchers to improve their understanding of 
the diversity of students and tailor their support to different needs [13]. Finding 
subgroups within cohorts of students is a hallmark of so-called “person-centered 
methods”, to which clustering belongs [8]. 

A person-centered approach stands in contrast to the variable-centered methods 
which consider that most students belong to a coherent homogeneous group with 
little or negligible differences [14]. Variable-centered methods assume that there is 
a common average pattern that represents all students, that the studied phenomenon 
has a common causal mechanism, and that the phenomenon evolves in the same way 
and results in similar outcomes amongst all students. These assumptions are largely 
understood to be unrealistic, “demonstrably false, and invalidated by a substantial 
body of uncontested scientific evidence” [15]. In fact, several analytical problems 
necessitate clustering, e.g., where opposing patterns exist [16]. For instance, in 
examining attitudes towards an educational intervention using variable-centered 
methods, we get an average that is simply the sum of negative and positive 
attitudes. If the majority of students have a positive attitude towards the proposed 
intervention—combined with a minority against—the final result will imply that 
students favour such intervention. The conclusions of this approach are not only 
wrong but also dangerous as it risks generalising solutions to groups to whom it 
may cause harm. 

Therefore, clustering has become an essential method in all subfields of edu-
cation (e.g., education psychology, education technology, and learning analytics) 
having operationalised almost all quantitative data types and been integrated with 
most of the existing methods [10, 17]. For instance, clustering became an essential 
step in sequence analysis to discover subsequences of data that can be understood 
as distinct approaches or strategies of students’ behavior [18]. Similar applications 
can be found in social network analysis data to identify collaborative roles, or 
in multimodal data analysis to identify moments of interest (e.g., synchrony). 
Similarly, clustering has been used with survey data to find attitudinal patterns or 
learning approaches to mention a few [17]. Furthermore, identifying patterns within 
students’ data is a prime educational interest in its own right and therefore, has been 
used extensively as a standalone analysis technique to identify subgroups of students 
who share similar interests, attitudes, behaviors, or background. 

Clustering has been used in education psychology for decades to find patterns 
within self-reported questionnaire data. Early examples include the work of Beder
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and Valentine [19] who used responses of a motivational questionnaire to discover 
subgroups of students with different motivational attitudes. Similarly, Clément et 
al. [20] used the responses of a questionnaire that assessed anxiety and motivation 
towards learning English as a second language to find clusters which differentiated 
students according to their attitudes and motivation. Other examples include the 
work by Fernandez-Rio et al. [21] who used hierarchical clustering and K-means to 
identify distinct student profiles according to their perception of the class climate. 
With the digitalisation of educational institutions, authors also sought to identify 
students profiles using admission data and learning records. For instance, Cahapin 
et al. [22] used several algorithms such as K-means and agglomerative hierarchical 
clustering to identify patterns in students’ admission data. 

The rise of online education opened many opportunities to investigate students’ 
behavior in learning management systems based on the trace log data that students 
leave behind them when working on online activities. An example is the work by 
Saqr et al. [23], who used K-means to cluster in-service teachers’ approaches to 
learning in a MOOC according to their frequency of clicks on the available learning 
activities. Recently, research has placed a focus on the temporality of students’ 
activities, rather than the mere count. For this purpose, clustering has been integrated 
within sequence analysis to find subsequences which represent meaningful patterns 
of students behavior. For instance, Jovanovic et al. [24] used hierarchical clustering 
to identify distinct learning sequential patterns based on students’ online activities in 
a learning management system within a flipped classroom, and found a significant 
association between the use of certain learning sequences and learning outcomes. 
Using a similar approach, López-Pernas et al. [25] used hierarchical clustering to 
identify distinctive learning sequences in students’ use of the learning management 
system and an automated assessment tool for programming assignments. They also 
found an association between students’ activity patterns and their performance in the 
course final exam. Several other examples exist for using clustering to find patterns 
within sequence data [16, 26, 27]. 

A growing application of clustering can be seen in the study of computer-
supported collaborative learning. Saqr and López-Pernas [28] used cluster analysis 
to discover students with similar emergent roles based on their forum interaction 
patterns. Using the K-means algorithm and students’ centrality measures in the 
collaboration network, they identified three roles: influencers, mediators, and 
isolates. Perera et al. [29] used  K-means to find distinct groups of similar teams and 
similar individual participating students according to their contributions in an online 
learning environment for software engineering education. They found that several 
clusters which shared some distinct contribution patterns were associated with more 
positive outcomes. Saqr and López-Pernas [30] analysed the temporal unfolding of 
students’ contributions to group discussions. They used hierarchical clustering to 
identify patterns of distinct students’ sequences of interactions that have a similar 
start and found a relationship between such patterns and student achievement. 

An interesting application of clustering in education concerns the use of multi-
modal data. For instance, Vieira et al. [31] used  K-means clustering to find patterns 
in students’ presentation styles according to their voice, position, and posture
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data. Other innovative uses involve students’ use of educational games [32, 33], 
virtual reality [34], or artificial intelligence [35]. Though this chapter illustrates 
traditional dissimilarity-based clustering algorithms with applications using R to 
data on the centrality measures of the participants of a MOOC, along with related 
demographic characteristics, readers are also encouraged to read Chapter 9 [8] and 
Chapter 10 [18] in which further tutorials are presented and additional literature is 
reviewed, specifically in the contexts of clustering using the model-based clustering 
paradigm and clustering longitudinal sequence data, respectively. We now turn to an 
explication of the cluster analysis methodologies used in this chapter’s tutorial. 

3 Clustering Methodology 

In this section, we describe some of the theory underpinning the clustering methods 
used in the later R tutorial in Sect. 4. We focus on some of the most widely-known 
heuristic dissimilarity-based clustering algorithms; namely, K-means, K-medoids, 
and agglomerative hierarchical clustering. In Sect. 3.1, we introduce K-means 
clustering by describing the algorithm, outline the arguments to the relevant R 
function kmeans(), and discuss some of the main limitations and practical concerns 
researchers should be aware of in order to obtain the best performance when running 
K-means. We also discuss the related K-medoids algorithm and the associated 
function pam() in the cluster library [36] in R, and situate this method in the 
context of an extension to K-means designed to overcome its reliance on squared 
Euclidean distances. In Sect. 3.2, we introduce agglomerative hierarchical clustering 
and the related R function hclust(), while outlining various choices available to 
practitioners and their implications. Though method-specific strategies of choosing 
the optimal number of clusters K are provided throughout Sects. 3.1 and 3.2, we  
offer a more detailed treatment of this issue in Sect. 3.3, particularly with regard to 
criteria that can guide the choice of clustering solution among multiple competing 
methodologies, and not only the choice of the number of clusters K for a given 
method. 

3.1 K-Means 

K-means is a widely-used clustering algorithm in learning analytics and indeed data 
analysis and machine learning more broadly. It is an unsupervised technique that 
seeks to divide a typically multivariate data set into some pre-specified number of 
clusters, based on the similarities between observations. More specifically, K-means 
aims to partition n objects .x1, . . . , xn, each having measurements on . j = 1, . . . , d

strictly continuous covariates, into a set of K groups .C = {C1, . . . , CK}, where . Ck

is the set of . nk objects in cluster k and the number of groups .K ≤ n is pre-specified 
by the practitioner and remains fixed. K-means constructs these partitions in such a
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way that the squared Euclidean distance between the row vector for observations in a 
given cluster and the centroid (i.e., mean vector) of the given cluster are smaller than 
the distances to the centroids of the remaining clusters. In other words, K-means 
aims to learn both the cluster centroids and the cluster assignments by minimising 
the within-cluster sums-of-squares (i.e., variances). Equivalently, this amounts to 
maximising the between-cluster sums-of-squares, thereby capturing heterogeneity 
in a data set by partitioning the observations into homogeneous groups. What 
follows is a brief technical description of the K-means algorithm in Sect. 3.1.1, after  
which we describe some limitations of K-means and discuss practical concerns to 
be aware of in order to optimise the performance of the method in Sect. 3.1.2. In  
particular, we present the widely-used K-medoids extension in Sect. 3.1.2.3. 

3.1.1 K-Means Algorithm 

The origins of K-means are not so straightforward to summarise. The name was 
initially used by James MacQueen in 1967 [4]. However, the standard algorithm 
was first proposed by Stuart Lloyd in a Bell Labs technical report in 1957, which 
was later published as a journal article in 1982 [37]. In order to understand the ideas 
involved, we must first define some relevant notation. Let .μ(j)

k denote the centroid 
value for the j -th variable in cluster . Ck by 

. μ
(j)
k = 1

nk

∑

xi∈Ck

xij

and the complete centroid vector for cluster . Ck by 

. μk =
(
μ

(1)
k , . . . , μ

(p)
k

)⊤
.

These centroids therefore correspond to the arithmetic mean vector of the obser-
vations in cluster . Ck . Finding both these centroids .μ1, . . . ,μK and the clustering 
partition . C is computationally challenging and typically proceeds by iteratively 
alternating between allocating observations to clusters and then updating the 
centroid vectors. Formally, the objective is to minimise the total within-cluster sum-
of-squares 

.

n∑

i=1

K∑

k=1

zik‖xi − μk‖2
2, (1) 

where .‖xi − μk‖2
2 = ∑p

j=1

(
xij − μ

(j)
k

)2
denotes the squared Euclidean distance 

to the centroid . μk—such that .‖·‖2 denotes the . 𝓁2 norm—and . zi = (zi1, . . . , ziK)⊤
is a latent variable such that . zik denotes the cluster membership of observation i;
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.zik = 1 if observation i belongs to cluster . Ck and .zik = 0 otherwise. This latent 
variable construction implies .

∑n
i=1 zik = nk and .

∑K
k=1 zik = 1, such that each 

observation belongs wholly to one cluster only. As the total variation in the data, 
which remains fixed, can be written as a sum of the total within-cluster sum-of-
squares (TWCSS) from Eq. (1) and the between-cluster sum-of-squares as follows 

. 

n∑

i=1

(xi − x̄)2 =
n∑

i=1

K∑

k=1

zik‖xi − μk‖2
2 +

K∑

k=1

nk‖μk − x̄‖2
2,

where . ̄x denotes the overall sample mean vector, minimising the TWCSS endeav-
ours to ensure that observations in the same cluster are maximally similar to 
observations in the same cluster and maximally dissimilar to those in other clusters. 

Using the notation just introduced, a generic K-means algorithm would proceed 
as follows: 

1. Initialise: Select the number of desired clusters K and define K initial centroid 
vectors .μ1, . . . ,μK . 

2. Allocate: Find the optimal . zik values that minimise the objective, holding the . μk

values fixed. 

Calculate the squared Euclidean distance between each observation and each 
centroid vector and allocate each object to the cluster corresponding to the initial 
centroid to which it is closest in terms of squared Euclidean distance. Looking 
at the objective function in Eq. (1) closely and examining the contribution of 
observation i, we need to choose the value of . zi which minimises the expression 
.
∑K

k=1 zik‖xi − μk‖2
2. This is achieved by setting .zik = 1 for the value of k that has 

smallest .‖xi − μk‖2
2 and setting .zik' = 0 ∀ k' /= k everywhere else. 

3. Update: Find the optimal . μk values that minimise the objective, holding the . zik

values fixed. 

If we re-write the objective function in Eq. (1) as 

. 

n∑

i=1

K∑

k=1

p∑

j=1

zik

(
xij − μ

(j)
k

)2
,

we can use the fact that 

. 
∂

∂μ
(j)
k

(
xij − μ

(j)
k

)2 = −2
(
xij − μ

(j)
k

)

to obtain 

.
∂

∂μ
(j)
k

n∑

i=1

K∑

k=1

p∑

j=1

zik

(
xij − μ

(j)
k

)2 = −2
n∑

i=1

zik

(
xij − μ

(j)
k

)
.
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Solving this expression for .μ(j)
k yields 

. μ
(j)
k =

∑n
i=1 zikxij∑n

i=1 zik

= 1

nk

∑

xi∈Ck

xij .

4. Iterate: One full iteration of the algorithm consists of an allocation step (Step 2) 
and an update step (Step 3). Steps 2 and 3 are repeated until no objects can be 
moved between clusters, at which point the algorithm has converged to at least a 
local minimum of Eq. (1). 

Upon convergence, we obtain not only the estimated partition . C =
{C1, . . . , CK }, indicating the cluster membership of each observation, but also the 
estimated cluster centroids .μ1, . . . ,μK which act as cluster prototypes, efficiently 
summarising the characteristics of each cluster. The algorithm just described is 
just one standard variant of K-means. there have been several algorithms proposed 
for the same objective which derive their names from the author who proposed 
them; namely MacQueen [4], Lloyd [37], Forgy [38], and Hartigan and Wong 
[39]. They differ in some subtle ways, particularly with regard to how initial 
centroids in Step 1 are chosen and whether Steps 3 and 4 are applied to all n 
observations simultaneously or whether allocations and centroids are updated for 
each observation one-by-one (i.e., some variants iterate over Step 2 and Step 3 in a 
loop over .i = 1, . . . , n). Without going into further details, we note that the default 
option for kmeans() in R uses the option algorithm="Hartigan-Wong" and this 
is what we will henceforth adopt throughout. 

3.1.2 K-means Limitations and Practical Concerns 

Though K-means is a useful tool in many application contexts due to its conceptual 
and computational simplicity—so ubiquitous, in fact, that the kmeans() function 
in R is available without loading any additional libraries—it suffers from numerous 
limitations and some care is required in order to obtain reasonable results. We now 
discuss some of the main limitations in turn, but note that each is addressed explic-
itly throughout the K-means application portion of the R tutorial in Sect. 4.2.1. The  
concerns relate to choosing K (Sect. 3.1.2.1), choosing initial centroids . μ1, . . . ,μK

(Sect. 3.1.2.2), and relaxing the reliance on squared Euclidean distances with the 
more general K-medoids method (Sect. 3.1.2.3). 

3.1.2.1 Fixed K and the Elbow Method 

The first major drawback is that the number of clusters K must be pre-specified. This 
is a key input parameter: if K is too low, dissimilar observations will be wrongly
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grouped together; if K is too large, observations will be partitioned into many small, 
similar clusters which may not be meaningfully different. Choosing the optimal 
K necessitates running the algorithm at various fixed values of K and finding the 
single value of K which best balances interpretability, parsimony, and fit quality. Fit 
quality is measured by the TWCSS, i.e., the objective function in Eq. (1). Increasing 
K indefinitely will cause the TWCSS to decrease indefinitely, but this is not what we 
want. Instead, we seek a K value beyond which the decrease in TWCSS is minimal, 
in order to yield a parsimonious solution with a reasonable number of clusters to 
interpret, without overfitting the data or merely subdividing the actual groups. Thus, 
a commonly used heuristic graphical method for determining the optimal K value is 
to plot a range of K values against the corresponding obtained TWCSS values and 
look for an “elbow” or kink in the resulting curve. Such a plot will guide the choice 
of K in the K-means portion of R tutorial which follows in Sect. 4.2.1. 

3.1.2.2 Initialisation and K-means++ 

An especially pertinent limitation which must be highlighted is that K-means is 
liable to converge to sub-optimal local minima, i.e., it is not guaranteed to converge 
to the global minimum of the objective function in Eq. (1). Many practitioners have 
observed that the performance of K-means is particularly sensitive to a good choice 
of initial cluster centroids in Step 1. Indeed, as different initial settings can lead to 
different clusterings of the same data, good starting values are vital to the success of 
the K-means algorithm. Typically, K random vectors are used to define the initial 
.μ1, . . . ,μK centroids. One means of mitigating (but not completely remedying) the 
problem is to run K-means with a suitably large number of random starting values 
and choose the solution associated with the set of initial centroids which minimise 
the TWCSS criterion. 

In order to contextualise this issue, it is prudent to first describe some of the main 
arguments to the kmeans() R function. The following list is a non-exhaustive list 
of the available arguments to kmeans(): 

• x: a numeric matrix of data or a data.frame with all numeric columns. 
• centers: either the number of clusters K or a set of K initial (distinct) cluster 

centroids. 
• nstart: if  centers is specified as a number, this represents the number of 

random sets of K initial centroids with which to run the algorithm. 
• iter.max: the maximum number of allocation/update cycles allowed per set of 

initial centroids. 

The arguments nstart and iter.max have default values of 1 and 10, respec-
tively. Thus, a user running kmeans() with centers specified as a number will, by 
default, only use one random set of initial centroids, to which the results are liable 
to be highly sensitive, and will have the algorithm terminate after just ten iterations, 
regardless of whether convergence was achieved. It would seem be an improvement, 
therefore, to increase the values of nstart and iter.max from these defaults.
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Fortunately, the function automatically returns the single optimal solution according 
to the random initialisation which yields the lowest TWCSS when nstart exceeds 
1. 

Though this will generally lead to better results, this approach can be computa-
tionally onerous if the number of observations n, number of features d, or size of the  
range of fixed K values under consideration is large. An alternative strategy, which 
greatly reduces the computational burden and the sensitivity of the final solution 
to the initial choices of .μ1, . . . ,μk is to choose a suitable set of informed starting 
values in a data-driven fashion. To this end, the so-called K-means++ algorithm was 
proposed [40] in order to improve the performance of K-means by replacing Step 
1 with an iterative distance-weighting scheme to select the initial cluster centroids. 
Though there is still randomness inherent in K-means++, this initialisation technique 
ensures that the initial centroids are well spread out across the data space, which 
increases the likelihood of converging to the true global minimum. The K-means++ 

algorithm works as follows: 

(A) Choose an initial centroid uniformly at random from the rows of the data set. 
(B) For each observation not yet chosen as a centroid, compute .D2(xi ), which 

represents the squared Euclidean distance between . xi and the nearest centroid 
that has already been chosen. 

(C) Randomly sample a new observation as a new centroid vector with probability 
proportional to .D2(xi ). 

(D) Repeat Steps B and C until K centroids have been chosen. If any of the 
chosen initial centroids are not distinct, add a small amount of random jitter 
to distinguish the non-unique centroids. 

(E) Proceed as per Steps 2–4 of the traditional K-means algorithm (or one of its 
variants). 

Although these steps take extra time, K-means itself tends to converge very 
quickly thereafter and thus K-means++ actually reduces the computational bur-
den. A manual implementation of the K-means++ is provided by the function 
kmeans_pp() below. Its output can be used as the centers argument when running 
kmeans(). 

1 kmeans_pp <- function(X, # data 
2 K # number of centroids 
3 ) {  
4 

5 # sample initial centroid from distinct rows of X 
6 X <- unique(as.matrix(X)) 
7 new_center_index <- sample(nrow(X), 1) 
8 centers <- X[new_center_index,, drop=FALSE] 
9 

10 # let x be all observations not yet chosen as a centroid 
11 X <- X[-new_center_index,, drop=FALSE] 
12 

13 if(K >= 2) {  
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14 # loop over remaining centroids 
15 for(kk in 2:K) { 
16 

17 # calculate distances from all observations to all already chosen 
18 centroids 
19 distances <- apply(X, 1, function(x) min(sum((x - centers)ˆ2))) 
20 

21 # sample new centroid with probability proportional to squared 
22 Euclidean distance 
23 probabilities <- distances/sum(distances) 
24 new_center_index <- sample(nrow(X), 1, prob=probabilities) 
25 

26 # record the new centroid and remove it for the next iteration 
27 centers <- rbind(centers, X[new_center_index,, drop=FALSE]) 
28 X <- X[-new_center_index,, drop=FALSE] 
29 } 
30 } 
31 

32 # add random jitter to distinguish non-unique centroids and return 
33 centers[duplicated(centers)] <- jitter(centers[duplicated(centers)]) 
34 return(centers) 
35 } 

However, it should be noted that there is still inherent randomness in K-
means++—note the use of sample() in lines 7 and 22—and the algorithm is liable 
to produce different initial centroids in different runs on the same data. In effect, K-
means++ does not remove the burden of random initialisation; it is merely a way 
to have more informed random initialisations. Thus, it would be prudent to run 
K-means with K-means++ initialisation and select the solution which minimises 
the TWCSS, to transfer the burden of requiring multiple runs of K-means with 
random starting values to fewer runs of K-means++ followed by K-means with more 
informed starting values. We adopt this strategy in the later R tutorial in Sect. 4.2.1. 

3.1.2.3 K-medoids and Other Distances 

The K-means objective function in Eq. (1) explicitly relies on squared Euclidean 
distances and requires all features in the data set to be strictly continuous. An 
artefact of this distance measure is that it is generally recommended to standardise 
all features of have a mean of zero and unit variance prior to running K-means. In 
general, standardisation is advisable if the values are of incomparable units (e.g., 
height in inches and weight in kilogram). More specifically for K-means, it is 
desirable to ensure all features have comparable variances to avoid having variables 
with higher magnitudes and variances dominate the distance calculation and have 
an undue prominence on the clustering partition obtained. While we employ such 
normalisation to the data used in our R tutorial when applying some pre-processing 
steps in Sect. 4.1.1, we note that this is not sufficient to overcome all shortcomings 
of relying on squared Euclidean distances.
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For these reasons and more, K-medoids—otherwise known as partitioning 
around medoids (PAM)—was proposed as an extension to K-means which allows 
using any alternative dissimilarity measure [5]. The K-medoids objective function 
is given by 

. 

n∑

i=1

K∑

k=1

zikd
(
xi ,ψk

)
,

where .d
(
xi ,ψk

)
can be any distance measure rather than squared Euclidean and 

.ψk is used in place of the mean vector . μk . The PAM algorithm works in much 
the same fashion as K-means, alternating between an allocation step which assigns 
each observation to the cluster with the closest .ψk (according to the specified 
distance measure) and an update step which minimises the within-cluster total 
distance (WCTD). Notably, when minimising with respect to . ψk , the notion of a 
cluster centroid . μk is redefined as a cluster medoid . ψk , which is selected among the 
rows of the observed data set, i.e., the medoid is the observation . xi from which the 
distance to all other observations currently allocated to the same cluster, according 
to the specified distance measure, is minimised. Similar to K-means, the medoids 
obtained at convergence again enable straightforward characterisation of a “typical” 
observation from each cluster and the elbow method from Sect. 3.1.2.1 can be 
adapted to guide the choice of K in K-medoids by plotting a range of candidate 
K values against the within-cluster total distance. 

This reformulation has three main advantages. Firstly, the distance . d
(
xi ,ψk

)

is not squared, which diminishes the influence of outliers. As K-means relies on 
squared Euclidean distances, which inflates the distances of atypical observations, 
and defines centroids as means, it is not robust to outliers. Secondly, by defining 
the medoids as observed rows of the data, rather than finding the value of .ψk that 
minimises in general, which could potentially be difficult to estimate for complex 
data types or particularly sophisticated dissimilarity measures, the algorithm can 
be much more computationally efficient. It requires only a pre-calculated pairwise 
dissimilarity matrix as input. Finally, the flexibility afforded by being able to 
modify the dissimilarity measure enables data which are not strictly continuous to 
be clustered. In other words, K-medoids is applicable in cases where the mean 
is undefined. As examples, one could use the Manhattan or general Minkowski 
distances as alternatives for clustering continuous data, the Hamming [41], Jaccard 
[42], or Sørensen-Dice [43, 44] distances for clustering binary data, or the Gower 
distance [45] for clustering mixed-type data with both continuous and categorical 
features. The closely related K-modes algorithm [46] has also been proposed 
specifically for purely categorical data applications, as well as the K-Prototypes 
algorithm [47] for mixed-type variables applications; neither will considered further 
in this chapter). As their names suggest, they again redefine the notion of a centroid 
but otherwise proceed much like K-means and K-medoids. 

The function pam() in the cluster library in R provides an implementation of 
K-medoids, with options for implementing many recent additional speed improve-
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ments and improved initialisation strategies [48]. We will discuss these in the 
K-medoids portion of the later R tutorial in Sect. 4.2.2. Most dissimilarity measures 
we will use are implement in the base-R function dist(), with the exception of 
the Gower distance which is implemented in the daisy() function in the cluster 
library. 

3.2 Agglomerative Hierarchical Clustering 

Hierarchical clustering is another versatile and widely-used dissimilarity-based 
clustering paradigm. Though also dissimilarity-based, hierarchical clustering differs 
from partitional clustering methods like K-means and K-medoids in that it typically 
doesn’t avail of the notion of computing distances to a central prototype, be that a 
centroid mean vector or a medoid, but instead greedily builds a hierarchy of clusters 
based on dissimilarities between observations themselves and sets of observations. 
Consequently, a hierarchical clustering solution provides a set of partitions, from 
a single cluster to as many clusters as observations, rather than the single partition 
obtained by K-means and K-medoids. The results of a hierarchical clustering are 
usually presented in the form of a dendrogram visualisation, which illustrates the 
arrangement of the set of partitions visited and can help guide the decision of the 
optimal single clustering partition to extract. However, hierarchical clustering shares 
some of the advantages K-medoids has over K-means. Firstly, any valid measure 
of distance can be used, so it is not restricted to squared Euclidean distances and 
not restricted to clustering purely continuous data. Secondly, hierarchical clustering 
algorithms do not require the data set itself as input; all that is required is a matrix 
of pairwise distances. 

Broadly speaking, there are two categories of hierarchical clustering: 

• Agglomerative: Starting from the bottom of the hierarchy, begin with each 
observation in a cluster of its own and successively merged pairs of clusters while 
moving up the hierarchy, until all observations are in one cluster. This approach 
is sometimes referred to as agglomerative nesting (AGNES; [6]). 

• Divisive: Starting from the top of the hierarchy, with all observations in one 
cluster, recursively split clusters while moving down the hierarchy, until all 
observations are in a cluster of their own. This approach is sometimes referred to 
as divisive analysis (DIANA; [49]). 

However, divisive clustering algorithms such as DIANA are much more com-
putationally onerous for even moderately large data sets. Thus, we focus here on 
the agglomerative variant of hierarchical clustering, AGNES, which is implemented 
in both the agnes() function in the cluster library and the hclust() function 
in base R. We adopt the latter in the hierarchical clustering portion of the R 
tutorial in Sect. 4.2.3. That being said, even agglomerative hierarchical clustering 
has significant computation and memory burdens when n is large [50, 51].
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There are three key decisions practitioners must make when employing agglom-
erative hierarchical clustering. The first of these, the distance measure, has already 
been discussed in the context of K-medoids. We now discuss the other two in turn; 
namely, the so-called linkage criterion for quantifying the distances between merged 
clusters as the algorithm moves up the hierarchy, and the criterion used for cutting 
the resulting dendrogram to produce a single partition. 

3.2.1 Linkage Criteria 

Agglomerative hierarchical clustering employs two different notions of dissimi-
larity. There is the distance measure, d, such as Euclidean, Manhattan, or Gower 
distance, which is used to quantify the distance between pairs of single observations 
in the data set. Different choices of distance measure can lead to markedly different 
clustering results and it is thus common to run the hierarchical clustering algorithm 
with different choices of distance measure and compare the results. However, in the 
agglomerative setting, individual observations are successively merged into clusters. 
In order to decide which clusters should be combined, it is necessary to quantify 
the dissimilarity of sets of observations as a function of the pairwise distances of 
observations in the sets. This gives rise to the notion of a linkage criterion. At 
each step, the two clusters separated by the shortest distance are combined; the 
linkage criteria is precisely the definition of ‘shortest distance’ which differentiates 
different agglomerative approaches. Again, the choice of linkage criterion can 
have a substantial impact on the result of the clustering so multiple solutions 
with different combinations of distance measure and linkage criterion should be 
evaluated. 

There are a number of commonly-used linkage criteria which we now describe. 
A non-exhaustive list of such linkages follows—only those which we use in the later 
R tutorial in Sect. 4—in which we let . A and . B denote two sets of observations, . |·|
denote the cardinality of a set, and .d(a, b) denote the distance between observations 
in those corresponding sets according to the chosen distance measure. We note 
that ties for the maximum or minimum distances for complete linkage and single 
linkage, respectively, are broken at random. 

• Complete linkage: Define the dissimilarity between two clusters as the distance 
between the two elements (one in each cluster) which are furthest away from 
each other according to the chosen distance measure d: 

. max
a∈A,b∈B

d(a, b).

• Single linkage: Define the dissimilarity between two clusters as the distance 
between the two elements (one in each cluster) which are closest to each other 
according to the chosen distance measure d:
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. min
a∈A,b∈B

d(a, b).

• Average linkage: Define the dissimilarity between two clusters as the average 
distance according to the chosen distance measure d between all pairs of 
elements (on in each cluster): 

. 
1

|A| × |B|
∑

a∈A

∑

b∈B
d(a, b).

• Centroid linkage: Define the dissimilarity between two clusters . A and . B

as the distance, according to the chosen distance measure d, between their 
corresponding centroid vectors .μA and . μB: 

. d(μA,μB).

• Ward linkage [52]: Instead of measuring the dissimilarity between clusters 
directly, define the dissimilarity as the cost of merging two clusters as the increase 
in total within-cluster variance after merging. In other words, minimise the total 
within-cluster sum-of-squares by finding the pair of clusters at each step which 
leads to minimum increase in total within-cluster variance after merging, where 
.A ∪ B denotes the cluster obtained after merging, with corresponding centroid 
.μA∪B: 

. 
|A| × |B
|A ∪ B| ‖μA−μB‖2

2 =
∑

x∈A∪B
‖x−μA∪B‖2

2−
∑

x∈A
‖x−μA‖2

2−
∑

x∈B
‖x−μB‖2

2.

The Ward and centroid linkage criteria differ from the other linkage criteria in 
that they are typically meant to be used only when the initial pairwise distances 
between observations are squared Euclidean distances. All of the above linkage 
criteria are implemented in the function hclust(), which is available in R without 
requiring any add-on libraries to be loaded and specifically performs agglomerative 
hierarchical clustering. Its main arguments are d, a pre-computed pairwise dissim-
ilarity matrix (as can be created from the function dist()), and method, which 
specifies the linkage criterion (e.g., "complete", "single", "average", and 
"centroid"). Special care must be taken when employing Ward’s linkage criterion 
as two options are available: "ward.D", which assumes that the initial pairwise 
distance matrix already consists of squared Euclidean distances, and "ward.D2", 
which assumes the distances are merely Euclidean distances and performs the 
squaring internally [53].
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3.2.2 Cutting the Dendrogram 

One might notice that when calling hclust(), the number of clusters K is not 
specified in advance, as it is when calling kmeans() or pam(). Instead, hclust() 
returns an object which describes the hierarchy of the tree produced by the clustering 
process. A visualisation of such a tree is referred to as a dendrogram, which can 
be thought of as a representation of a set of candidate partitions. In a dendrogram 
representation of an agglomerative hierarchical clustering solution, each observation 
is initially in a singleton cluster on its own, along the x-axis, according to their 
similarities. Thereafter, each observation, and subsequently each set of observations, 
are merged along the y-axis in a nested fashion. The scale along the y-axis is 
proportional to the distance, according to the chosen linkage criterion, at which 
two clusters are combined. In the end, the groups formed towards the bottom of the 
graph are close together, whereas those at the top of the graph are far apart. 

Obtaining a single hard partition of objects into disjoint clusters is obtained by 
cutting the dendrogram horizontally at the corresponding height. In other words, 
observations are allocated to clusters by cutting the tree at an appropriate height. 
Generally, the lower this height, the greater the number of clusters (theoretically, 
there can be as many clusters as there are observations, n), while the greater the 
height, the lower the number of clusters (theoretically, there can be as few as only 
one cluster, corresponding to no group structure in the data). Thus, an advantage 
of hierarchical clustering is that the user need not know K in advance; the user 
can manually select K after the fact by examining the constructed tree and fine-
tuning the output to find clusters with a desired level of granularity. There is no 
universally applicable rule for determining the optimal height at which to cut the 
tree, but it is common to select a height in the region where there is the largest gap 
between merges, i.e., where there is a relatively wide range of distances over which 
the number of clusters in the resulting partition does not change. This is, of course, 
very much guided by the visualisation itself. 

In R, one can visualise the dendrogram associated with a particular choice 
of distance measure and linkage criterion by calling plot() on the output from 
hclust(). Thereafter, the function cutree() can be used to obtain a single 
partition. This function takes the arguments tree, which is the result of a call to 
hclust(), h which is the height at which the tree should be cut, and k which more 
directly allows the desired number of clusters to be produced. Specifying k finds the 
corresponding height which yields k clusters and overrides the specification of h. 

However, it is often the case that certain combinations of dissimilarity measure 
and linkage criterion produce undesirable dendrograms. In particular, complete 
linkage is known to perform poorly in the presence of outliers, given its reliance 
on maximum distances, and single linkage is known to produce a “chaining” effect 
on the resulting dendrogram, whereby, due to its reliance on minimum distances, 
observations tend to continuously join increasingly larger, existing clusters rather 
than being merged with other observations to form new clusters. A negative 
consequence of this phenomenon is lack of cohesion: observations at opposite ends 
of the same cluster in a dendrogram could be quite dissimilar. These limitations can
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also be attributed to hierarchical clustering—regardless of the linkage employed— 
optimising a local criterion for each merge, unlike K-means and K-medoids which 
endeavour to optimise global objectives. 

3.3 Choosing the Number of Clusters 

Determining the number of clusters in a data set is a fraught task. Throughout 
Sects. 3.1 and 3.2, method-specific strategies for guiding the choice of K were 
presented. However, they are not without their limitations. For K-means and K-
medoids, the elbow method is somewhat subjective and unreliable. Often, the 
presence of an elbow is not so clear at a single value of K . Likewise, for agglom-
erative hierarchical clustering, choosing a height at which to cut the dendrogram 
as the criterion for choosing K has also been criticised as an overly subjective 
method. Moreover, these strategies are only capable of identifying the best K 
value conditional on the chosen method and do not help to identify the overall 
best solution among multiple competing methods. Moreover, we are required to 
choose more than just the optimal K value when using K-medoids (for which 
different solutions with different dissimilarity measures and different K values can 
be obtained) and agglomerative hierarchical clustering (for which different solutions 
can be obtained using different dissimilarity measures and linkage criteria). 

Overcoming these ambiguities and identifying a more general strategy for 
comparing the quality of clustering partitions is a difficult task for which many 
criteria have been proposed. Broadly speaking, cluster quality measures fall into 
two categories: 

1. Comparing of the uncovered partition to a reference clustering (or known 
grouping labels). 

2. Measuring of internal cluster consistency without reference to ground truth 
labels. 

The first is typically conducted using the Rand index [54] or adjusted Rand index 
[55], which measure the agreement between two sets of partitions. However, as we 
will be exploring clustering in exploratory, unsupervised settings, using data for 
which there is no assumed “true” group structure, we will instead focus on a quality 
measure of the latter kind. As previously stated, a large number of such criteria have 
been proposed in the literature: several are summarised in Table 7 of Chapter 10 
of this book [18], where they are used to guide the choice of K for agglomerative 
hierarchical clustering in the context of sequence analysis. Here, however, for the 
sake of brevity, we describe only one commonly used criterion which we later 
employ in the R tutorial in Sect. 4—which is itself a dissimilarity-based measure 
and is thus universally applicable to all clustering algorithms we employ—even if 
in most applications it would be wise to inform the choice of K with several such 
quantitative criteria. Moreover, the practitioner’s own subject matter expertise and
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assessment of the interpretability of the obtained clusters should also be used to 
inform the choice of K . 

The quantitative criterion we employ is referred to as the average silhouette width 
(ASW) criterion [56], which is routinely used to assess the cohesion and separation 
of the clusters uncovered by dissimilarity-based methods. Cohesion refers to the 
tendency to group similar objects together and separation refers to the tendency to 
group dissimilar objects apart in non-overlapping clusters. As the name implies, the 
ASW is computed as the average of observation-specific silhouette widths. Under 
the assumption that .K > 1, silhouette widths and the ASW criterion are calculated 
as follows: 

(A) Let .a(i) be the average dissimilarity from observation i to the other members 
of the same cluster to which observation i is assigned. 

(B) Compute the average dissimilarity from observation i to the members of all 
.K − 1 other clusters: let .b(i) be the minimum such distance computed. 

(C) The silhouette for observation i is then defined to be 

. s(i) = b(i) − a(i)

max{a(i), b(i)}

=

⎧
⎪⎪⎨

⎪⎪⎩

1 − a(i)
b(i)

if a(i) < b(i)

0 if a(i) = b(i)
b(i)
a(i)

− 1 if a(i) > b(i),

unless observation i is assigned to a cluster of size 1, in which case .s(i) = 0. 
Notably, .a(i) and .b(i) need not be calculated using the same dissimilarity 
measure with which the data were clustered; it is common to adopt the 
Euclidean distance. 

(D) Define the ASW for a given partition . C as: . ASW (C) = 1
n

∑n
i=1 si .

Given that .−1 ≤ s(i) ≤ 1, the interpretation of .s(i) is that a silhouette close 
to 1 indicates that the observation has been well-clustered, a silhouette close to 
.−1 indicates that the observation would be more appropriately assigned to another 
cluster, and a silhouette close to zero indicates that the observation lies on the 
boundary of two natural clusters. If most values of .s(i) are high, then the clustering 
solution can be deemed appropriate. This occurs when .a(i) ⪡ b(i), meaning that 
observation i must be well-matched its own cluster and poorly-matched to all other 
clusters. Conversely, if most .s(i) values are low or even negative, this provides 
evidence that K may be too low or too high. 

The values of .s(i) can be averaged over all observations assigned to the same 
cluster, as a measure of how tightly grouped the observations in the given cluster are. 
The ASW criterion itself is simply the mean silhouette width over all observations 
in the entire data set. Generally, clustering solutions with higher ASW are to 
be preferred, however it is also prudent to dismiss solutions with many negative 
silhouettes or particularly low cluster-specific mean silhouettes. A silhouette plot
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can help in this regard; such a plot depicts all values of .s(i), grouped according to 
the corresponding cluster and in decreasing order within a cluster. In the R tutorial 
which follows, ASW values and silhouette plots will guide the choice of an optimal 
clustering solution in a comparison of multiple methods in Sect. 4.2.4. 

4 Tutorial with R 

In this section, we will learn how to perform clustering using the R programming 
language [7], using all methods described throughout Sect. 3. We start by loading 
the necessary libraries. We will use cluster [36] chiefly for functions related to 
K-medoids and silhouettes. As per other chapters in this book, we use tidyverse 
[57] for data manipulation and rio [58] for downloading the data: see Sect. 4.1.1 
for details the on the data pre-processing steps employed. 

library(cluster) 
library(rio) 
library(tidyverse) 

We note that hierarchical clustering and K-means are implemented in base R and 
thus no dedicated libraries need to be loaded. 

4.1 The Data Set 

Our case study will be to identify different groups of participants that have a similar 
role in the discussion forum of a massive open online course (MOOC) for teachers. 
For that purpose, we will rely on the centrality measures of the participants which 
indicate their number of contributions (OutDegree), replies (InDegree), position 
in the network (Closeness_total), worth of their connections (Eigen), spread of 
their ideas (Diffusion_degree), and more. For more details about the data set, 
please refer to the data chapter of the book (Chapter 2; [59]). To learn more about 
centrality measures and how to calculate them, refer to the social network analysis 
chapter (Chapter 15; [60]). We will henceforth refer to these data as “the MOOC 
centralities data set”. We can download and preview (Table 1) the data with the 
following commands: 

URL <-"https://github.com/lamethods/data/raw/main/6_snaMOOC/" 
df <- import(paste0(URL, "Centralities.csv")) 
df 
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Additionally, a number of categorical variables pertaining to demographic 
characteristics are available for the same participants. Again, please refer to the data 
chapter of the book (Chapter 2; [59]) for more details on these variables. With an 
appropriate distance measure, namely the Gower distance measure, we will incor-
porate some of these variables in our applications of K-medoids and agglomerative 
hierarchical clustering (but not K-means) in addition to the continuous variables 
contained in df, largely for the purpose of demonstrating clustering methods which 
are capable of clustering variables of mixed type. We can download and preview the 
auxiliary categorical data set with the commands below. Note that we select only 
the following variables: 

• experience (coded as a level of experience, 1–3), 
• gender (female or male), 
• region (Midwest, Northeast, South, and West U.S.A., along with International), 

for the sake of simplifying the demonstration of mixed-type variables clustering 
and reducing the computational burden. We also extract the UID column, a user 
ID which corresponds to the name column in df, which will be required for later 
merging these two data sets. We also ensure that all but this leading UID column is 
formatted as a factor (Table 2). 

demog <- import(paste0(URL, "DLT1%20Nodes.csv")) 
demog <- demog |> 

select(UID, experience, gender, region) |> 
mutate_at(vars(-UID), as.factor) 

demog 

4.1.1 Pre-processing the Data 

In df, the first column (name) is the student identifier, and the remaining columns are 
each of the centrality measures calculated from students’ interactions in the MOOC 
forum. We will eventually discard the name column from future analyses; we retain 
it for the time being so that df and demog can be merged appropriately. The data 

Table 2 Preview of the 
selected additional 
categorical demographic 
variables associated with the 
MOOC centralities data set 

UID Experience Gender Region 

1 1 1 Female South 

2 2 1 Female South 

3 3 2 Female Northeast 

4 4 2 Female South 

5 5 3 Female South 

6..444 

445 445 3 Female South
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also contain a small number of observations—only three rows of df—with missing 
values for the variable Closeness_total, as seen by 

df |> is.na() |> which(arr.ind=TRUE) 

row col 
441 441 4 
442 442 4 
443 443 4 

Given that none of the clustering methods described in this chapter are capable 
of accommodating missing data, we remove these three observations for future 
analyses too. Furthermore, one of the rows in demog has NULL recorded for the 
gender variable. We remove all invalid rows from both df and demog. The function 
complete.cases() constructs a completely observed data set by extracting the 
rows which contain one or more missing values and we augment the index of fully 
observed rows with an index of non-NULL gender values. Finally, we drop the 
redundant NULL level from the factor variable gender. 

obs_ind <- complete.cases(df) & demog$gender != "NULL" 
df$name[!obs_ind] # indices of observations with missing values 

[1] 439 441 442 443 

df <- df |> filter(obs_ind) 
demog <- demog |> filter(obs_ind) |> droplevels() 

Before proceeding any further, it would be prudent to explore the complete data 
visually, which we do via the matrix of pairwise scatter plots, excluding the name 
column, in Fig. 1: 

pairs(df[,-1]) 

From the plots in Fig. 1, we can see that there are clearly two quite extreme 
outliers. Simple exploratory analyses (not shown) confirms that these are the final 
two rows of the complete data set. These observations are known to correspond 
to the two instructors who led the discussion. They have been marked using a red 
cross symbol in Fig. 1. Though we have argued that K-medoids is a more robust 
clustering method than K-means, for example, we also remove these observations 
in order to avoid their detrimental effects on the K-means output. The rows must 
be removed from both df and demog so that they can later be merged. With these 
observations included, K-means for instance would likely add one additional cluster 
containing just these two observations, about whom we already know their role 
differs substantially from the other observations, as they are quite far from the bulk 
of the data in terms of squared Euclidean distance. That is not to say, however, that 
there will not still be outliers in df after removing these two cases.
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Fig. 1 Matrix of pairwise scatter plots for all variables in the MOOC centralities data set 

keep_ind <- 1:(nrow(df) - 2) 

df <- df |> slice(keep_ind) 
demog <- demog |> slice(keep_ind) 

As is good practice when using dissimilarity-based clustering algorithms, we pre-
process the purely continuous data by normalising each variable to have a mean of 
0 and a variance of 1, by constructing the scaled data frame sdf using the function 
scale(), again excluding the name column. 

sdf <- scale(df[,-1], center=TRUE, scale=TRUE) 

The object sdf can be used for all clustering methods described herein. To 
also accommodate the categorical demographic variables, we use merge() to
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combine both the scaled continuous data and the categorical data. This requires 
some manipulation of the name column, with which the two data sets are merged, 
but we ultimately discard the superfluous name column, which we do not want 
to contribute to any pairwise distance matrices or clustering solutions, from both 
merged_df and sdf. 

merged_df <- data.frame(name=df$name, sdf) |> 
merge(demog, by=1) |> 
select(-name) 

Finally, before proceeding to apply various clustering methods to these data, 
we present summaries of the counts of each level of the categorical variables 
experience, gender, and region. These variables imply groupings of size three, 
two, and five, respectively, and it will be interesting to see if this is borne out in any 
of the mixed-type clustering applications. 

table(merged_df$experience) 

1 2 3  
118 150 171 

table(merged_df$gender) 

female male 
299 140 

table(merged_df$region) 

International Midwest Northeast South West 
32 77 110 168 52 

4.2 Clustering Applications 

We now show how each of the clustering methods described above can be 
implemented in R, using these data throughout and taking care to address all 
practical concerns previously raised. For each method—K-means in Sect. 4.2.1, 
K-medoids in Sect. 4.2.2, and agglomerative hierarchical clustering in Sect. 4.2.3— 
we show clustering results following the method-specific guidelines for choosing 
K . However, we conclude by comparing results across different methods using the 
average silhouette width criterion to further guide the choice of K in Sect. 4.2.4. We  
refrain from providing an interpretation of the uncovered clusters until Sect. 4.2.5, 
after the optimal clustering solution is identified.
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Before we proceed, we set the seed to ensure that results relying on random 
number generation are reproducible. 

set.seed(2024) 

4.2.1 K-means Application 

We begin by showing a naive use of the kmeans() function, supplying only the 
scaled data sdf and the pre-specified number of clusters K via the centers 
argument. For now, we assume for no particular reason that there are .K = 3 clusters, 
just to demonstrate the use of the kmeans() function and its arguments. A number 
of aspects of the results are printed when we examine the resulting km1 object. 

km1 <- kmeans(sdf, centers=3) 
km1 

K-means clustering with 3 clusters of sizes 48, 129, 262 

Cluster means: 
InDegree OutDegree Closeness_total Betweenness Eigen 

1 2.2941694 1.9432559 1.0923551 1.9697769 2.00747791 
2 -0.4088814 -0.4311073 -1.4086380 -0.3975783 -0.55451137 
3 -0.2189864 -0.1437536 0.4934399 -0.1651209 -0.09475944 

Diffusion.degree Coreness Cross_clique_connectivity 
1 1.9078646 2.1923592 2.0066265 
2 -1.1038258 -0.5622732 -0.3094092 
3 0.1939543 -0.1248092 -0.2152835 

Clustering vector: 
[1]  1 2 2 3 1 1 1 1 3 1 1 3 1 1 1 2 1 3 1 2 2 1 2 1 3 1 1 2 1 1 2 3 3 1 1 1 2  

[38] 3 3 2 1 3 2 1 3 3 2 3 1 1 3 3 1 1 2 3 3 1 3 1 1 1 1 1 3 3 1 1 3 3 3 3 2 3  
[75] 3 3 3 3 2 2 3 3 3 2 3 2 3 1 2 3 3 1 2 3 3 3 2 1 3 1 3 3 3 3 3 2 3 2 3 3 2  

[112] 3 3 3 1 1 2 2 2 3 3 2 2 3 2 3 3 3 3 2 3 2 3 3 2 3 1 3 3 2 3 3 3 3 2 3 3 3  
[149] 2 3 2 3 2 3 3 2 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 3 3 2 2 3 3 3 3 2 3 2 3 3 3  
[186] 3 3 3 3 3 2 3 3 3 3 3 2 1 3 3 3 3 3 3 3 3 3 2 2 2 3 3 2 3 2 2 3 3 1 2 3 2  
[223] 1 2 2 3 2 2 2 2 2 3 2 1 3 3 2 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3  
[260]  2 3 2 2 2 3 2 3 2 2 2 3 2 2 2 2 3 2 3 3 3 3 2 2 3 2 2 2 2 2 2 2 3 2 2 3 2  
[297]  3 3 3 3 3 3 3 3 3 2 2 3 2 1 2 2 2 3 2 2 3 3 2 3 2 3 2 3 3 3 2 2 3 3 3 2 3  
[334] 2 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 2 2 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 2  
[371] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  
[408] 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 1 2 2 2 2 2 2 3  

Within cluster sum of squares by cluster: 
[1] 858.90295 72.01655 414.30502 
(between_SS / total_SS = 61.6 %)
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Available components: 

[1] "cluster" "centers" "totss" "withinss" 
"tot.withinss" 

[6] "betweenss" "size" "iter" "ifault" 

Among other things, this output shows the estimated centroid vectors 
.μ1, . . . ,μK upon convergence of the algorithm ($centers), an indicator vector 
showing the assignment of each observation to one of the .K = 3 clusters 
($cluster), the size of each cluster in terms of the number of allocated observations 
($size), the within-cluster sum-of-squares per cluster ($withinss), and the ratio 
of the between-cluster sum-of-squares ($betweenss) to the total sum of squares 
($totss). Ideally, this ratio should be large, if the total within-cluster sum-of-
squares is minimised. We can access the TWCSS quantity by typing 

km1$tot.withinss 

[1] 1345.225 

However, these results were obtained using the default values of ten maximum 
iterations (iter.max=10, by default) and only one random set of initial centroid 
vectors (nstart=1, by default). To increase the likelihood of converging to the 
global minimum, it is prudent to increase iter.max and nstart, to avoid having 
the algorithm terminate prematurely and avoid converging to a local minimum, as 
discussed in Sect. 3.1.2.2. We use  nstart=50, which is reasonably high but not so 
high as to incur too large a computational burden. 

km2 <- kmeans(sdf, centers=3, nstart=50, iter.max=100) 
km2$tot.withinss 

[1] 1339.226 

We can see that the solution associated with the best random starting values 
achieves a lower TWCSS than the earlier naive attempt. Next, we see if an even 
lower value can be obtained using the K-means++ initialisation strategy, by invoking 
the kmeans_pp() function from Sect. 3.1.2.2 with K=3 centers and supplying these 
centroid vectors directly to kmeans(), rather than indicating the number of random 
centers to use. 

km3 <- kmeans(sdf, centers=kmeans_pp(sdf, K=3), iter.max=100) 
km3$tot.withinss 

[1] 1343.734
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In this case, using the K-means++ initialisation strategy did not further reduce the 
TWCSS; in fact it is worse than the solution obtained using nstart=50. However, 
recall that K-means++ is itself subject to randomness and should therefore also be 
run several times, though the number of K-means++ runs need not be so high as 
50. In the code below, we use replicate() to invoke both kmeans_pp() and 
kmeans() itself ten times in order to obtain a better solution. 

KMPP <- replicate(10, list(kmeans(sdf, iter.max=100, 
centers=kmeans_pp(sdf, K=3)))) 

Among these ten solutions, five are identical and achieve the same minimum 
TWCSS value. 

TWCSS <- sapply(KMPP, "[[", "tot.withinss") 
TWCSS 

[1] 1345.225 1339.226 1339.226 1339.226 1340.457 1339.226 1345.225 
1345.225 

[9] 1345.225 1339.226 

Thereafter, we can extract a solution which minimises the tot.withinss as 
follows: 

km4 <- KMPP[[which.min(TWCSS)]] 
km4$tot.withinss 

[1] 1339.226 

Finally, this approach resulted in an identical solution to km2 being obtained— 
with just ten runs of K-means++ and K-means rather than nstart=50 runs of the K-
means algorithm alone—which is indeed superior to the solution obtained with just 
one uninformed random start in km1. We will thus henceforth adopt this initialisation 
strategy always. 

To date, the K-means algorithm has only been ran with the fixed number of 
clusters .K = 3, which may be suboptimal. The following code iterates over a range 
of K values, storing both the kmeans() output itself and the TWCSS value for 
each K . The range .K = 1, . . . , 10 notably includes .K = 1, corresponding to no 
group structure in the data. The reason for storing the kmeans() output itself is to 
avoid having to run kmeans() again after determining the optimal K value; such a 
subsequent run may not converge to the same minimised TWCSS and having to run 
the algorithm again would be computationally wasteful. 

K <- 10 # set upper limit on range of K values 

TWCSS <- numeric(K) # allocate space for TWCSS estimates 

KM <- list() # allocate space for kmeans() output 
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Fig. 2 Elbow plot showing a range of K values against the corresponding obtained TWCSS for 
K-means applied to the MOOC centralities data set using K-means with K-means++ initialisation 

for(k in 1:K) { # loop over k=1,...,K 

# Run K-means using K-Means++ initialisation: 
# use the current k value and do so ten times if k > 1  
KMPP <- replicate(ifelse(k > 1, 10, 1), 

list(kmeans(sdf, iter.max=100, 
centers=kmeans_pp(sdf, K=k)))) 

# Extract and store the solution which minimises the TWCSS 
KM[[k]] <- KMPP[[which.min(sapply(KMPP, "[[", "tot.withinss"))]] 

# Extract the TWCSS value for the current value of k 
TWCSS[k] <- KM[[k]]$tot.withinss 

} 

As previously stated in Sect. 3.1.2.1, the so-called “elbow method” consists of 
plotting the range of K values on the x-axis against the corresponding obtained 
TWCSS values on the y-axis and looking for an kink in the resulting curve. 

plot(x=1:K, y=TWCSS, type="b", 
xlab="K", ylab="Total Within-Cluster\n Sum-of-Squares") 

Figure 2 suggests that .K = 4 would produce the best results: beyond . K = 4, the  
decrease in TWCSS is minimal, which suggests that an extra cluster is not required
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to model the data well; between .K = 3 and .K = 4, there is a more substantial 
decrease in TWCSS, which suggests that the fourth cluster is necessary. This method 
is of course highly subjective, and we will further inform our choice of K for K-
means using silhouette widths and the ASW criterion in Sect. 4.2.4. 

For now, we can interrogate the K-means solution with .K = 4 by examining 
the sizes of the clusters and their centroid vectors, using the corresponding fourth 
element of the list KM by setting K <- 4. 

K <- 4 

KM[[K]]$size 

[1] 127 57 8 247 

KM[[K]]$centers 

InDegree OutDegree Closeness_total Betweenness Eigen Diffusion.degree 
1 -0.4086612 -0.4381057 -1.4220978 -0.3994123 -0.5596480 -1.1138889 
2 1.5706416 1.1372352 0.9247804 1.3859592 1.0781087 1.4216179 
3 4.1035975 5.0512503 1.5201941 3.4673658 5.4946785 3.1631065 
4 -0.2852445 -0.2007813 0.4685522 -0.2267743 -0.1390054 0.1422138 

Coreness Cross_clique_connectivity 
1 -0.5672245 -0.3102236 
2 1.7423739 0.9615041 
3 3.4821417 5.5033583 
4 -0.2232184 -0.2406243 

However, these centroids correspond to the scaled version of the data created in 
Sect. 4.1.1. Interpretation can be made more straightforward by undoing the scaling 
transformation on these centroids, so that they are on the same scale as the data df 
rather than the scaled data sdf which was used as input to kmeans(). The column-
wise means and standard deviations used when scale() was invoked are available 
as the attributes "scaled:center" and "scaled:scale", respectively and are 
used in the code below. We show these centroids rounded to four decimal places in 
Table 3. 

rescaled_centroids <- t(apply(KM[[K]]$centers, 1, function(r) { 
r * attr(sdf, "scaled:scale") + attr(sdf, 
"scaled:center") 
} ))  

round(rescaled_centroids, 4) 

Now, we can more clearly see that the first cluster, with .nk=1 = 127 observations, 
has the lowest mean value for all .d = 8 centrality measures, while the last 
cluster, the largest with .nk=4 = 247 observations, has moderately larger values 
for all centrality measures. The two smaller clusters, cluster two with . nk=2 = 57
observations and cluster three with only .nk=3 = 8 observations have the second-
largest and largest values for each measure, respectively. As previously stated, we
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Table 3 Centroids from the .K = 4 K-means solution on the original data scale 

InDegree OutDegree 
Closeness_ 
total Betweenness Eigen 

Diffusion. 
degree Coreness 

Cross_clique_ 
connectivity 

1.1024 1.7480 0.0008 20.7010 0.0071 144.1732 2.6378 4.6850 

15.3684 14.8421 0.0010 849.9328 0.0996 1370.1053 16.1053 157.5789 

33.6250 47.3750 0.0011 1816.6608 0.3492 2212.1250 26.2500 703.6250 

1.9919 3.7206 0.0010 100.8842 0.0308 751.5061 4.6437 13.0526 

defer a more-detailed interpretation of uncovered clusters to Sect. 4.2.5, after the  
optimal clustering solution has been identified. 

4.2.2 K-medoids Application 

The function pam() in the cluster library implements the PAM algorithm for 
K-medoids clustering. By default, this function requires only the arguments x (a 
pre-computed pairwise dissimilarity matrix, as can be created from the functions 
dist(), daisy(), and more) and k, the number of clusters. However, there are 
many options for many additional speed improvements and initialisation strategies 
[48]. Here, we invoke a faster variant of the PAM algorithm which necessitates 
specification of nstart as a number greater than one, to ensure the algorithm 
is evaluated with multiple random initial medoid vectors, in a similar fashion 
to kmeans(). Thus, we call pam() with variant="faster" and nstart=50 
throughout. 

Firstly though, we need to construct the pairwise dissimilarity matrices to be 
used as input to the pam() function. Unlike K-means, we are not limited to squared 
Euclidean distances. It is prudent, therefore, to explore K-medoids solutions with 
several different dissimilarity measures and compare the different solutions obtained 
for different measures. Each distance measure will yield different results at the same 
K value, thus the value of K and the distance measure must be considered as a pair 
when determining the optimal solution. 

We begin by calculating the Euclidean, Manhattan, and Minkowski (with .p = 3) 
distances on the scaled continuous data in sdf: 

dist_euclidean <- dist(sdf, method="euclidean") 

dist_manhattan <- dist(sdf, method="manhattan") 

dist_minkowski3 <- dist(sdf, method="minkowski", p=3) 
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Secondly, we avail of another principal advantage of K-medoids; namely, the 
ability to incorporate categorical variables in mixed-type data sets, by calculating 
pairwise Gower distances between each row of merged_df, using  daisy(). 

dist_gower <- daisy(merged_df, metric="gower") 

As per the K-means tutorial in Sect. 4.2.1, we can produce an elbow plot by 
running the algorithm over a range of K values and extracting the minimised 
within-cluster total distance achieved upon convergence for each value of K . We  
demonstrate this for the dist_euclidean input below. 

K <- 10 
WCTD_euclidean <- numeric(K) 
pam_euclidean <- list() 
for(k in 1:K) { 

pam_euclidean[[k]] <- pam(dist_euclidean, k=k, 
variant="faster", nstart=50) 

WCTD_euclidean[k] <- pam_euclidean[[k]]$objective[2] 
} 

Equivalent code chunks for the dist_manhattan, dist_minkowski3, and 
dist_gower inputs are almost identical, so we omit them here for the sake of 
brevity. Suffice to say, equivalent lists pam_manhattan, pam_minkowski3, and 
pam_gower, as well as equivalent vectors WCTD_manhattan, WCTD_minkowski3, 
and WCTD_gower, can all be obtained. Using these objects, corresponding elbow 
plots for all four dissimilarity measures are showcased in Fig. 3. 

Some of the elbow plots in Fig. 3 are more conclusive than others. As examples, 
there are reasonably clear elbows at .K = 3 for the Euclidean and Minkowski 
distances, arguably an elbow at .K = 4 for the Manhattan distance, and no clear, 
unambiguous elbow under the Gower distance. In any case, the elbow method only 
helps to identify the optimal K value for a given dissimilarity measure; we defer a 
discussion of how to choose the overall best K-medoids clustering solution to later 
in this tutorial. 

For now, let’s interrogate the .K = 3 solution obtained using the Euclidean 
distance. Recall that the results are already stored in the list pam_euclidean, so we  
merely need to access the third component of that list by setting K <- 3. Firstly, we 
can examine the size of each cluster by tabulating the cluster-membership indicator 
vector as follows:
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Fig. 3 Elbow plots for K-medoids clustering evaluated with different dissimilarity measures over 
a range of K values. In clockwise order, beginning with the top-left panel, these are the Euclidean 
distance, Manhattan distance, Minkowski distance and, for the merged data with additional 
categorical covariates, the Gower distance 

K <- 3 

table(pam_euclidean[[K]]$clustering) 

1 2 3  
67 122 250 

Examining the medoids which serve as prototypes of each cluster is rendered 
difficult by virtue of the input having been a distance matrix rather than the data set 
itself. Though K-medoids defines the medoids to be the rows in the data set from 
which the distance to all other observations currently allocated to the same cluster, 
according to the specified distance measure, is minimised, the medoids component 
of the output instead gives the indices of the medoids within the data set. 

pam_euclidean[[K]]$medoids 

[1] 88 272 45
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Table 4 Medoids for the .K = 3 K-medoids solution obtained using the Euclidean distance on 
the original data scale, with the corresponding observation index in the name column 

name InDegree OutDegree 
Closeness 
_total Betweenness Eigen 

Diffusion. 
degree Coreness 

Cross_clique 
_connectivity 

88 16 14 0.0011 675.5726 0.1096 1415 18 157 

272 1 1 0.0007 0.0000 0.0047 41 2 2 

45 1 2 0.0010 29.4645 0.0194 684 3 5 

Table 5 Cross-tabulation of the clusters obtained by K-means with .K = 4 (along the columns) 
and K-medoids with .K = 3 and the Euclidean distance (along the rows) 

1 2 3 4 

1 0 57 8 2 

2 122 0 0 0 

3 5 0 0 245 

Fortunately, these indices within sdf correspond to the same, unscaled observa-
tions within df. Allowing for the fact that observations with name greater than the 
largest index here were removed due to missingness, they are effectively the values 
of the name column corresponding to the medoids. Thus, we can easily examine the 
medoids on their original scale. In Table 4, they include the name column, which 
was not used when calculating the pairwise distance matrices, and are rounded to 
four decimal places. 

df |> 
slice(as.numeric(pam_euclidean[[K]]$medoids)) |> 
round(4) 

Thus, we can see that there is a small cluster with .nk=1 = 67 observations which 
has the largest values for all .d = 8 centrality measures, a slightly larger cluster with 
.nk=2 = 122 observations and the lowest values for all variables, and the largest 
cluster with .nk=3 = 250 and intermediate values for all variables. The cluster sizes 
of the K-medoids solution being more evenly balanced than the earlier K-means 
solution is an artefact of K-medoids being less susceptible to outlying observations 
by virtue of not squaring the distances. We can explore this by cross-tabulating the 
clusters obtained by K-means with .K = 4 and K-medoids with .K = 3 and the 
Euclidean distance in Table 5. 

table(pam_euclidean[[3]]$clustering, 
KM[[4]]$cluster) 

From the cross-tabulation in Table 5, we can see that the .nk = 8 observations 
in the smallest K-means cluster were absorbed into a larger cluster under the K-
medoids solution, thereby demonstrating the robustness of K-medoids to outliers. 
Otherwise, both solutions are broadly in agreement.
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4.2.3 Agglomerative Hierarchical Clustering Application 

Performing agglomerative hierarchical clustering is straightforward now that the 
distance matrices have already been created for the purposes of running pam(). All  
that is required is to specify the distance matrix and an appropriate linkage criterion 
as the method when calling hclust(). We demonstrate this below for a subset 
of all possible distance measure and linkage criterion combinations among those 
described in Sect. 3.2.1. Recall that for the Ward criterion, the underlying distance 
measure is usually assumed to be squared Euclidean and that "ward.D2" is the 
correct method to use when the Euclidean distances are not already squared. For 
method="centroid", we manually square the Euclidean distances. 

hc_minkowski3_complete <- hclust(dist_minkowski3, method="complete") 

hc_manhattan_single <- hclust(dist_manhattan, method="single") 

hc_gower_average <- hclust(dist_gower, method="average") 

hc_euclidean_ward <- hclust(dist_euclidean, method="ward.D2") 

hc_euclidean2_centroid <- hclust(dist_euclideanˆ2, method="ward.D2") 

Plotting the resulting dendrograms is also straightforward. Simply calling 
plot() on any of the items above will produce a dendrogram visualisation. We 
do so here for four of the hierarchical clustering solutions constructed above—the 
undepicted hc_euclidean2_centroid dendrogram is virtually indistinguishable 
from that of hc_euclidean_ward—while suppressing the observation indices 
along the x-axis for clarity by specifying labels=FALSE. 

plot(hc_minkowski3_complete, labels=FALSE, 
main="", xlab="Minkwoski Distance (p=3) with Complete Linkage") 

plot(hc_manhattan_single, labels=FALSE, 
main="", xlab="Manhattan Distance with Single Linkage") 

plot(hc_gower_average, labels=FALSE, 
main="", xlab="Gower Distance with Average Linkage") 

plot(hc_euclidean_ward, labels=FALSE, 
main="", xlab="Euclidean Distance with the Ward Criterion") 

As previously alluded to in Sect. 3.2.2, some combinations of dissimilarity 
measure and linkage criterion are liable to produce undesirable results. The 
susceptibility to outliers of complete linkage clustering is visible in the top-left panel 
of Fig. 4, where just two observations form a cluster at a low height and are never 
again merged. The tendency of single linkage clustering to exhibit a “chaining” 
effect whereby all observations are successively merged into just one ever-larger 
cluster is evident in the top-right panel of Fig. 4, and similar behaviour is observed 
for the Gower distance with average linkage depicted in the bottom-left panel. The
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Fig. 4 Dendrograms obtained by agglomerative hierarchical clustering with a selection of dissim-
ilarity measures and linkage criteria 

most reasonable results appear to arise from using the Ward criterion in conjunction 
with Euclidean distances. 

Taking the set of candidate partitions in hc_euclidean_ward, for the reasons 
outlined above, all that remains is to cut this dendrogram at an appropriate height. 
Practitioners have the freedom to explore different levels of granularity in the final 
partition. Figure 5 shows the dendrogram from the bottom-right panel of Fig. 4 cut 
horizontally at different heights, indicated by lines of different colours, as well as 
the corresponding implied K values. 

Thereafter, one simply extracts the resulting partition by invoking cutree() 
with the appropriate height h. For example, to extract the clustering with .K = 3, 
which we choose here because of the wide range of heights at which a . K = 3
solution could be obtained: 

hc_ward2 <- cutree(hc_euclidean_ward, h=45) 

The object hc_ward2 is now simply an vector indicating the cluster-membership 
of each observation in the data set. We show only the first few, for brevity, and then 
tabulate this vector to compute the cluster sizes. However, interpretation of these 
clusters is more difficult than in the case of K-means and K-medoids, as there is no 
centroid or medoid prototype with which to characterise each cluster.
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Fig. 5 Dendrogram obtained using the Euclidean distance and Ward criterion cut at different 
heights with the corresponding implied K indicated 

head(hc_ward2) 

[1]  1 2 2 2 1 1  

table(hc_ward2) 

hc_ward2 
1 2  

49 390 

In this section, we have not presented an exhaustive evaluation of all possible 
pairs of dissimilarity measure and linkage criterion, but note that the code to do 
so is trivial. In any case, much like K-means and K-medoids, we must turn to 
other cluster quality indices to guide the choice of the best overall solution, be 
that choosing the best distance and linkage settings for agglomerative hierarchical 
clustering, or choosing the best clustering method in general among several 
competing methods. We now turn to finding the optimal clustering solution among 
multiple competing methods, guided by silhouette widths and plots thereof. 

4.2.4 Identifying the Optimal Clustering Solution 

In our application of K-means, the elbow method appeared to suggest that . K = 4
yielded the best solution. In our applications of K-medoids, the elbow method
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suggested different values of K for different distance metrics. Finally, in our 
applications of hierarchical clustering, we noted that visualising the resulting 
dendrogram could be used to guide the choice of the height at which to cut to 
produce a single hard partition of K clusters. Now, we must determine which 
method yields the overall best solution. Following Sect. 3.3, we employ silhouettes 
for this purpose. 

For K-means and agglomerative hierarchical clustering, silhouettes can be 
computed using the silhouette function in the cluster library, in which case the 
function requires two arguments; the integer vector containing the cluster member-
ship labels and an appropriate dissimilarity matrix. Thus, for instance, silhouettes 
could be obtained easily for the following two examples (using kmeans() and 
hclust(), respectively). 

kmeans_sil <- silhouette(kmeans(sdf, centers=kmeans_pp(sdf, K=4), 
iter.max=100)$cluster, 

dist_euclidean) 

hclust_sil <- silhouette(cutree(hclust(dist_euclidean, method="ward.D2"), k=2), 
dist_euclidean) 

For K-medoids, it suffices only to supply the output of pam() itself, from which 
the cluster membership labels and appropriate dissimilarity matrix will be extracted 
internally, e.g., 

pam_sil <- silhouette(pam(dist_euclidean, k=3, variant="faster", nstart=50)) 

Thereafter, plot() can be called on kmeans_sil, hclust_sil, or pam_sil to 
produce a silhouette plot. For an example based on hclust_sil, see Fig. 6. Note  
that as .K = 2 here, col=2:3 colours the silhouettes according to their cluster. 

plot(hclust_sil, main="", col=2:3) 

Figure 6 shows that most silhouette widths are positive under this solution, 
indicating that most observations have been reasonably well-clustered. Cluster 2 
appears to be the most cohesive, with a cluster-specific average silhouette width of 
.0.70, while cluster 1 appears to be the least cohesive, with a corresponding average 
of just .0.24. The overall ASW is .0.65, as indicated at the foot of the plot. 

Given that we adopted a range of .K = 1, . . . , 10 when using K-means and 
K-medoids, and four different dissimilarity measures when using K-medoids, 
we have 50 non-hierarchical candidate solutions to evaluate, of which some 
seem more plausible than others according to the respective elbow plots. For 
agglomerative hierarchical clustering, an exhaustive comparison over a range of 
K values, for each dissimilarity measure and each linkage criterion, would be 
far too extensive for the present tutorial. Consequently, we limit our evalua-
tion of silhouettes to the K-means and K-medoids solutions already present
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Silhouette width si 
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Average silhouette width :  0.65 
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j : nj | aveiϵCj  si 

1 :   49  |  0.24 

2 :   390  |  0.70 

Fig. 6 Silhouette plot for the .K = 2 hierarchical clustering solution obtained using the Ward 
criterion with Euclidean distances 

in the objects KM, pam_euclidean, pam_manhattan, pam_minkowski3, and 
pam_gower, and the hierarchical clustering solutions which employ the Ward 
criterion in conjunction with Euclidean distances (of which we consider a further 
10 solutions, again with .K = 1, . . . , 10, by considering the 10 possible associated 
heights at which the dendrogram can be cut). We limit the hierarchical clustering 
solutions to those based on the Ward criterion given that single linkage and 
complete linkage have been shown to be susceptible to chaining and sensitive to 
outliers, respectively. We use the corresponding pre-computed dissimilarity matri-
ces dist_euclidean, dist_manhattan, dist_minkowski3, and dist_gower, 
where appropriate throughout. 

Though the ASW associated with hclust_sil is given on the associated 
silhouette plot in Fig. 6, we can calculate ASW values for other solutions—which 
we must do to determine the best solution—without producing individual silhouette 
plots. To show how this can be done, we examine the structure of the hclust_sil 
object, showing only its first few rows. 

head(hclust_sil)
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cluster neighbor sil_width 
[1,] 1 2 0.4408007 
[2,] 2 1 0.7416708 
[3,] 2 1 0.7401549 
[4,] 2 1 0.4696606 
[5,] 1 2 0.2494557 
[6,] 1 2 0.1915306 

The columns relate to the cluster to which object i is assigned, the cluster for 
which the corresponding .b(i) was minimised, and the .s(i) score itself, respectively. 
Calculating mean(hclust_sil[,3]) will return the ASW. Though the code is 
somewhat tedious, we calculate the ASW criterion values for all 60 candidate 
solutions—that is, six methods evaluated over .K = 1, . . . , 10—using a small helper 
function to calculate the ASW for the sake of tidying the code. 

K <- 10 
ASW <- function(x) mean(x[,3]) 
silhouettes <- data.frame(K=2:K, 

kmeans=sapply(2:K, function(k) ASW(silhouette(KM[[k]]$ 
cluster, dist_euclidean))), 

kmedoids_euclidean=sapply(2:K, function(k) ASW(silhouette 
(pam_euclidean[[k]]))), 

kmedoids_manhattan=sapply(2:K, function(k) ASW(silhouette 
(pam_manhattan[[k]]))), 

kmedoids_minkowski3=sapply(2:K, function(k) ASW(silhouette 
(pam_minkowski3[[k]]))), 

kmedoids_gower=sapply(2:K, function(k) ASW(silhouette 
(pam_gower[[k]]))), 

hc_euclidean_ward=sapply(2:K, function(k) ASW(silhouette(cutree 
(hc_euclidean_ward, k), dist_euclidean)))) 

In Fig. 7, we plot these silhouettes against K using matplot(), omitting the 
code to do so for brevity. 

According to Fig. 7, there is generally little support for .K > 5 across almost 
all methods considered, as most method’s ASW values begin to decline after this 
point. The ASW values also make clear that incorporating the additional categorical 
demographic variables in a mixed-type clustering using the Gower distance does 
not lead to reasonable partitions, for any number of clusters K . Overall, the most 
promising solutions in terms of having the highest ASW are K-means, Ward 
hierarchical clustering, and K-medoids with the Manhattan distance, all with . K =
2, and K-medoids with the Euclidean and Minkowski distances, each with .K = 3. 
However, it would be wise to examine silhouette widths in more detail, rather 
than relying merely on the average. The silhouettes for this hierarchical clustering 
solution are already depicted in Fig. 6, so Fig.  8 shows individual silhouette widths 
for the remaining solutions. 

It is notable that the silhouettes and ASW of the .K = 2 K-means solution (top-
left panel of Fig. 8) and the Ward hierarchical clustering solution (Fig. 6) appear 
almost identical (if one accounts for the clusters being relabelled and associated
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colours being swapped). Indeed, according to a cross-tabulation of their partitions 
(not shown), their assignments differ for just 4 out of .n = 439 observations. Despite 
having the highest ASW, we can justify dismissing these solutions given that . K = 2
was not well-supported by its corresponding elbow plot in Fig. 2. Similar logic 
suggests that the .K = 3 K-means solution and the .K = 2 K-medoids solution 
based on the Manhattan distance can also be disregarded. Although we stress again 
that an ideal analysis would more thoroughly determine an optimal solution with 
reference to additional cluster quality measures and note that various clustering 
solutions can be legitimate, for potentially different clustering aims, on the same 
data set [2, 3], we can judge that—among the two .K = 3 K-medoids solutions— 
the one based on the Euclidean distance is arguably preferable, for two reasons. 
Firstly, its ASW is quite close to that of the Minkowski distance solution: 

silhouettes |> 
filter(K == 3) |> 
select(kmedoids_euclidean, kmedoids_minkowski3) 

kmedoids_euclidean kmedoids_minkowski3 
1 0.470844 0.4795972
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Fig. 8 Silhouette plots showing silhouette widths for a numbering of promising solutions, 
coloured according to cluster membership 

Secondly, the first cluster has a higher cluster-specific average silhouette width 
under the solution based on the Euclidean distance. Indeed, this solution has fewer 
negative silhouette widths also: 

sum(silhouette(pam_euclidean[[3]])[,3] < 0) 

[1] 27
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sum(silhouette(pam_minkowski3[[3]])[,3] < 0) 

[1] 28 

4.2.5 Interpreting the Optimal Clustering Solution 

By now, we have identified that the .K = 3 solution obtained using K-medoids and 
the Euclidean distance is optimal. Although aspects of this solution were already 
discussed in Sect. 4.2.2—in particular, Table 4 has already shown the .K = 3 medoid 
vectors obtained at convergence—we now turn to examining this output in greater 
detail, in order to provide a fuller interpretation of each of the uncovered clusters. 
We extract this solution for ease of manipulation. 

final_pam <- pam_euclidean[[3]] 

Recall that this method yielded three clusters of sizes .n1 = 67, . n2 =
122, and .n3 = 250. Although the categorical variables were not used by this 
clustering method, additional interpretative insight can be obtained by augmenting 
the respective medoids in Table 4 with these cluster sizes and the experience 
values of the corresponding rows of the merged_df data set, which includes the 
additional demographic features. 

df |> 
slice(as.numeric(final_pam$medoids)) |> 
round(4) |> 
mutate(size=table(final_pam$clustering)) |> 
left_join(slice(demog |> 

select(UID, experience), 
as.numeric(final_pam$medoids)), 

by=join_by(name == UID)) |> 
select(-name) 

Interpretation and labeling of the clustering results is the step that follows, with 
a focus only on the medoid values of the centrality scores (had the optimal solution 
been obtained by kmeans(), we could instead examine its centroids in its $centers 
component, i.e., mean vectors). We will follow the example papers that we used 
as a guide for choosing the centrality measures [28] and [61]. Both papers have 
used traditional centrality measures (e.g., degree, closeness, and betweenness) as 
well as diffusion centralities (diffusion degree and coreness) to infer students’ roles. 
Furthermore, the second paper has an extended review of the roles and how they 
have been inferred from centrality measures, so readers are encouraged to read this 
review.
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As the data shows, the first cluster has the highest degree centrality measures 
(InDegree and OutDegree), highest betweenness centrality, as well as the highest 
values of the diffusion centralities (Diffusion_degree and Coreness). These 
values are concordant with students who were actively engaged, received multiple 
replies, had their contributions discussed by others, and achieved significant diffu-
sion. All of such criteria are concordant with the role of leaders. It stands to reason 
that the leaders cluster would be the smallest, with .n1 = 67. 

The third cluster has intermediate values for the degree centralities, high diffu-
sion centrality values, as well as relatively high values of betweenness centrality. 
Such values are concordant with the role of an active participant who participates 
and coordinates the discussion. Therefore, we will use the label of coordinators. 

Finally, the second cluster has the lowest values for all centrality measures 
(though its diffusion values are still fairly reasonable). Thus, this cluster could 
feasibly be labelled as an isolates cluster, gathering participants whose role in the 
discussions is peripheral at best. Overall, the interpretations of this .K = 3 solution 
are consistent with other findings in the existing literature, e.g., [28]. 

We can now label the clusters accordingly to facilitate more informative cluster-
specific summaries. Here, we also recall the size of each cluster with the new labels 
invoked, to demonstrate their usefulness. 

final_pam$clustering <- factor(final_pam$clustering, 
labels=c("leaders", "coordinators", 

"isolates")) 
table(final_pam$clustering) 

leaders coordinators isolates 
67 122 250 

As an example, we can use these labels to guide a study of the mean vectors of 
each cluster (bearing in mind that these are not centroid centroid vectors obtained 
by K-means, but rather mean vectors obtained calculated for each group defined 
by the K-medoids solution), for which the interpretation of the leader, coordinator, 
and isolate labels are still consistent with the conclusions drawn from the medoids 
in Table 4. Note that, for the sake of readability, the group-wise summary below is 
transposed. 

df |> 
group_by(clusters=final_pam$clustering) |> 
select(-name) |> 
summarise_all(mean) |> 
mutate_if(is.numeric, round, 2) |> 
pivot_longer(cols=-clusters, 

names_to="centrality") |> 
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pivot_wider(names_from=clusters, 
values_from=value) 

# A tibble: 8 x 4 
centrality leaders coordinators isolates 
<chr> <dbl> <dbl> <dbl> 

1 InDegree 17.1 1.1 1.98 
2 OutDegree 18.8 1.68 3.62 
3 Closeness_total 0 0 0 
4 Betweenness 943. 21.2 99.1 
5 Eigen 0.13 0.01 0.03 
6 Diffusion.degree 1466. 132. 742. 
7 Coreness 17.2 2.56 4.58 
8 Cross_clique_connectivity 220. 4.53 12.6 

From Table 6, we can also see that each observation which corresponds to a 
cluster medoid contains low, high, and medium levels of experience, respectively. 
However, one should be cautious not to therefore conclude that the clusters neatly 
map to experience levels, as the following cross-tabulation indicates little-to-no 
agreement between the groupings of experience levels in the data and the uncovered 
clusters. 

table(final_pam$clustering, 
merged_df$experience, 
dnn=c("Clusters", "Experience")) 

Experience 
Clusters 1 2 3 

leaders 17 23 27 
coordinators 40 34 48 
isolates 61 93 96 

Finally, we can produce a visualisation of the uncovered clusters in order to better 
understand the solution. Visualising multivariate data with .d > 2 is challenging and 
consequently such visualisations must resort to either plotting the first two principal 
components or mapping the pairwise dissimilarity matrix to a configuration of 
points in Cartesian space using multidimensional scaling. The latter is referred to 
as a “CLUSPLOT” [62] and is implemented in the clusplot() function in the 
same cluster library as pam() itself. This function uses classical (metric) multi-
dimensional scaling [63] to create a bivariate plot displaying the partition of the data. 
Observations are represented by points in the scatter plot an ellipse spanning the 
smallest area containing all points in the given cluster is drawn around each cluster. 
In the code below, only clusplot(final_pam) is strictly necessary to produce 
such a plot for the optimal .K = 3 Euclidean distance K-medoids solution; all other
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Fig. 9 Two-dimensional clustering plot for the final .K = 3 Euclidean distance K-medoids 
solution obtained via classical multidimensional scaling. The ellipses around each cluster are given 
the associated labels of leaders, coordinators, and  isolates and the points are coloured according 
to cluster membership 

arguments are purely for cosmetic purposes for the sake of the resulting Fig. 9 and 
are described in ?clusplot. 

Figure 9 shows that the leaders cluster—the smallest cluster with the highest 
value for all centrality measures—is quite diffuse. Conversely, the larger coordina-
tors cluster, with the smallest values for all centrality measures, and the isolates 
cluster, the largest of all, with intermediate values for all centrality measures, are 
more compact. This is consistent with the cluster-specific average silhouette widths 
shown in the bottom-right panel of Fig. 8. That being said, the large span of the 
leaders cluster again affirms the relative robustness of K-medoids to outliers, of 
which some (all of which are leaders) still remain despite the earlier pre-processing 
steps. 

clusplot(final_pam, # the pam() output 
main="", sub=NA, # remove the main title and subtitle 
lines=0, # do not draw any lines on the plot 
labels=4, # only label the ellipses 
col.clus="black", # colour for ellipses and labels 
col.p=as.numeric(final_pam$clustering) + 1, # colours for points 
cex.txt=0.75, # control size of text labels 
xlim=c(-4, 17) # expand x-axis to avoid trimming labels 
) 
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5 Discussion and Further Readings 

The present analysis of the MOOC centralities data set incorporated three of the 
most commonly used dissimilarity-based clustering approaches; namely, K-means, 
K-medoids, and agglomerative hierarchical clustering. Throughout the applications, 
emphasis was placed on the sensitivity of the results to various choices regarding 
algorithmic inputs available to practitioners, be that the choice of how to choose 
initial centroids for K-means, the choice of dissimilarity measure for K-medoids, 
or the choice of linkage criterion for hierarchical clustering, as examples. Conse-
quently, our analysis considered different values of K , different distances, different 
linkage criteria, different combinations thereof, and indeed different clustering 
algorithms entirely, in an attempt to uncover the “best” clustering solution for the 
MOOC centralities data set. We showed how elbow plots and other graphical tools 
can guide the choice of K for a given method but ultimately identified—via the 
average silhouette width criterion—an optimal solution with . K = 3, using  K-
medoids in conjunction with the Euclidean distance measure. Although we note 
that there are a vast array of other cluster quality measures in the literature which 
target different definitions of what constitutes a “good” clustering [3], the solution 
we obtained seems reasonable, in that the uncovered clusters which we labelled 
as leaders, coordinators, and isolates are consistent, from an interpretative point 
of view, with existing educational research. Indeed, several published studies have 
uncovered similar patterns of three groups which can be labelled in the same way 
[28, 64, 65]. 

Nonetheless, there are some limitations to our applications of dissimilarity-based 
clustering methods in this tutorial which are worth mentioning. Firstly, we note 
firstly that the decision to standardise the variables—in particular, to normalise them 
by subtracting their means and dividing by their standard deviations—was applied 
across the board to each clustering method we explored. Although the standardised 
data were only used as inputs to each algorithm (i.e., the output was always 
interpreted on the original scale), we note that different groups are liable to be 
uncovered with different standardisation schemes. In other words, not standardising 
the data, or using some other standardisation method (e.g., rescaling to the . [0, 1]
range) may lead to different, possibly more or less meaningful clusters. 

A second limitation is that all variables in Table 1 were used as inputs (either 
directly in the case of K-means, or indirectly as inputs to the pairwise dissimilarity 
matrix calculations required for K-medoids and hierarchical clustering). As well 
as increasing the computational burden, using all variables can be potentially 
problematic in cases where the clustering structure is driven by some . d⋆ < d

variables, i.e., if the data can be separated into homogeneous subgroups along fewer 
dimensions. In such instances where some of the variables are uninformative in 
terms of explaining the variability in the data, variable selection strategies tailored 
to the unsupervised paradigm may be of interest and again may lead to more 
meaningful clusters being found [66, 67].
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Although dissimilarity-based clustering encompasses a broad range of flexible 
methodologies which can be utilised in other, diverse settings—for example, 
dissimilarity-based clustering is applied in the context of longitudinal categorical 
data in the chapter on sequence analysis methods (Chapter 10; [18])—there are 
other clustering paradigms which may be of interest in similar or alternative settings 
as the data used in the present tutorial, even if they are not yet widely adopted in 
educational research. We now briefly introduce some of these alternative clustering 
frameworks for readers interested in expanding their knowledge of the topic of 
clustering beyond the dissimilarity-based framework detailed herein. 

A first alternative to dissimilarity-based clustering is the density-based clustering 
framework, most famously exemplified by the DBSCAN clustering algorithm 
[68, 69]. Density-based clustering broadly defines clusters as areas of higher density 
than the remainder of the data set, where objects are closely packed together with 
many nearby neighbours, while objects in the sparse areas which separate clusters 
are designated as outliers. This has been identified as one main advantage of 
DBSCAN by authors who applied it an education research context [70]—insofar 
as the capability to easily and effectively separate individual exceptionally poor or 
exceptionally outstanding students who require special attention from teachers is 
desirable—along with DBSCAN obviating the need to pre-specify the number of 
clusters K . 

Another alternative is given by the model-based clustering paradigm, which is 
further discussed in Chapter 9 [8]. Although we direct readers to that chapter for 
a full discussion of model-based clustering using finite Gaussian mixture models, 
the relationship between this approach and latent profile analysis, and a tutorial in 
R using the  mclust package [71], there are some aspects and advantages which 
are pertinent to discuss here. Firstly, as model-based clustering is based on an 
underlying generative probability model, rather than relying on dissimilarity-based 
heuristics, it admits the use of principled, likelihood-based model-selection criteria 
such as the Bayesian information criterion [72], thereby eliminating the subjectivity 
of elbow plots and other graphical tools for guiding the choice of K . Secondly, such 
models can be extended to allow covariates to guide the construction of the clusters 
[73], thereby enabling, for example, incorporation of the categorical demographic 
variables associated with the MOOC centralities data set used in the present tutorial. 

A third advantage of model-based clustering is that it returns a “soft” partition, 
whereas dissimilarity-based approaches yield either a single “hard” partition (with 
each observation placed in one group only), under partitional methods like K-
means or K-medoids, or a set of nested hard partitions from which a single hard 
partition can be extracted, under hierarchical clustering. Specifically, model-based 
clustering assigns each observation a probability of belonging to each cluster, such 
that observations can have a non-negative association with more than one cluster 
and the uncertainty of the cluster memberships can be quantified. This has the effect 
of diminishing the effect of outliers or observations which lie on the boundary of 
two or more natural clusters, as they are not forced to wholly belong to one cluster.
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In light of these concerns, another clustering paradigm of potential interest is that 
of fuzzy clustering, which is notable for allowing for “soft” cluster-membership 
assignments while still being dissimilarity-based [74, 75]. Indeed, there are fuzzy 
variants of the K-means and K-medoids algorithms which relax the assumption 
that the latent variable . zi encountered in Eq. (1), for example, is binary. They are 
implemented in the functions FKM() and FKM.med(), respectively, in the fclust R 
package [76]. 

Another advantage of model-based clustering over the dissimilarity-based 
paradigm is the flexibility it affords in relation to the shapes, orientations, volumes, 
and sizes of the clusters it uncovers. At their most flexible, finite Gaussian mixture 
models can find clusters where all of these characteristics differ between each 
cluster, but intermediary configurations—whereby, as but one example, clusters can 
be constrained to have equal volume and orientation but varying shape and size— 
are permissible. This is achieved via different parsimonious parameterisations of the 
cluster-specific covariance matrices which control the geometric characteristics of 
the corresponding ellipsoids; see Chapter 9 [8] for details. By contrast, K-means is 
much more restrictive. The algorithm assumes that clusters are of similar size, even 
if the estimated clusters can vary in size upon convergence. Moreover, by relying 
on squared Euclidean distances to a mean vector, with no recourse to modelling 
covariances, K-means implicitly assumes that all clusters are spherical in shape, 
have equal volume, and radiate around their centroid. This can have the damaging 
consequence, in more challenging applications, that a larger number of spherical 
clusters may be required to fit the data well, rather than a more parsimonious and 
easily interpretable mixture model with fewer non-spherical components. Finally, 
in light of these concerns, we highlight the spectral clustering approach [77], 
implemented via the function specc() in the kernlab package in R, which is, like 
model-based clustering, capable of uncovering clusters with more flexible shapes, 
particularly when the data are not linearly separable, and shares some connections 
with kernel K-means [78], another flexible generalisation of the standard K-means 
algorithm adopted in this tutorial. 

Overall, we encourage readers to further explore the potential of dissimilarity-
based clustering methods, bear in mind the limitations and practical concerns of 
each algorithm discussed in this tutorial, and remain cognisant of the implications 
thereof for results obtained in educational research applications. We believe that 
by paying particular attention to the guidelines presented for choosing an optimal 
partition among multiple competing methodologies, with different numbers of clus-
ters and/or different dissimilarity measures and/or different linkage criteria, more 
meaningful and interpretable patterns of student behaviour can be found. Finally, 
we hope that the additional references provided to other clustering frameworks will 
inspire a broader interest in the topic of cluster analysis among practitioners in the 
field of education research.
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An Introduction and R Tutorial to 
Model-Based Clustering in Education via 
Latent Profile Analysis 

Luca Scrucca, Mohammed Saqr, Sonsoles López-Pernas, and Keefe Murphy 

1 Introduction 

Education research is commonly performed with variable-centered methods (e.g., 
correlation, regression, comparison of means e.g., t-test) using a sample from 
the population to devise or compare central tendency measures or an “average” 
(i.e., mean or median). The average is assumed to represent the population under 
study and therefore could be generalised to the population at large [1, 2]. Put 
another way, the statistical findings of variable-centered methods are thought to 
apply to all learners in the same way. In doing so, variable-centered methods 
ignore the individual differences that are universal across all domains of human 
function [3]. Learners are not an exception; students vary in their behavior, attitude, 
and dispositions, and they rarely—if at all—conform to a common pattern or an 
average behavior [2, 4]. An “average” is thus a poor simplification of learners’ 
heterogeneity; consequently, methods to capture individual differences have started 
to gain popularity with the increasing attention to patterns and differences among 
students. Our focus in this chapter is on such person-centered methods [1–3, 5]. 

Person-centered methods can be broadly grouped into two categories; (1) 
heuristic, dissimilarity-based clustering algorithms (e.g., agglomerative hierarchical 
clustering, and partitional clustering algorithms like k-means) on one hand and (2) 
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model-based clustering (MBC) approaches (e.g., finite Gaussian mixture models) 
on the other. Though we focus here on the MBC paradigm, we note that—contrary 
to variable-centered methods—person-centered methods are generally concerned 
with capturing heterogeneity by uncovering the latent (e.g., unobserved or hidden) 
patterns within data into subgroups of “clusters” or “profiles”, which are assumed 
to be homogeneous [1, 2]. Modelling the unobserved patterns within the data could 
reveal the qualitative differences between learners. For instance, where students may 
have different patterns of approaching their learning, capturing such patterns would 
make sense as each different approach may benefit from a certain course design, 
set of instructional methods, or scaffolding approach [2]. Similarly, dispositions 
such as engagement, motivation, and achievement are multidimensional and vary 
across students; capturing such differences requires a method that could handle such 
nonlinear multidimensional dispositions and identify the different patterns. 

This chapter deals with one of the person-centered methods; namely, latent 
profile analysis (from the perspective of model-based clustering via finite Gaussian 
mixture models). To clarify, we note that the terms finite mixture models and latent 
profile analysis can be used interchangeably, with the former being more common in 
the statistical literature and the latter being more common in the education literature 
and social sciences literature more broadly. The equivalence of both terminologies is 
further elaborated in Sect. 3.1. In any case, this framework represents a probabilistic 
approach to statistical unsupervised learning that aims at discovering clusters of 
observations in a data set [6]. In other words, the MBC paradigm is referred to as 
model-based by virtue of being based on a generative probabilistic model, unlike 
heuristic clustering algorithms based on dissimilarity criteria. 

We also offer a walkthrough tutorial for the analysis of a data set on school 
engagement, academic achievement, and self-regulated learning using the popular 
mclust package [7] for R [8] which implements the approach. Whereas mixture 
models and mclust have received growing attention within social science, they have 
not garnered widespread utilisation in the field of educational research and their 
adoption in learning analytics research has been relatively slow. 

2 Literature Review 

Examples of mixture models being applied in educational research settings are 
relatively few compared to other methods of clustering. Some notable examples 
exist which address patterns in students’ online learning [9] or patterns in students’ 
disposition [10] or collaborative roles [11]. Most studies in education research that 
applied mixture models used latent profile analysis (LPA) to identify students’ 
profiles from self-reported data. For example, [10] performed LPA on a data 
set of 318 students’ survey responses about emotional self-efficacy, motivation, 
self-regulation, and academic performance, and identified four profiles: “low”, 
“average”, “above average with a low ability to handle the emotions of others”, and 
“high emotional self-efficacy”. In the work by Cheng et al. [12], the authors ana-
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lyzed 615 vocational education students’ achievement emotions in online learning 
environments, and found three profiles: “blends of negative emotions”, “nonemo-
tional”, and “pure positive emotion”. Hoi [13] employed LPA on self-report data on 
classroom engagement from 413 first-year university students in Vietnam and found 
three profiles: “highly engaged”, “moderately engaged”, and “minimally engaged”. 
Scheidt et al. [14] collected survey responses from 2339 engineering undergraduates 
about 28 noncognitive and affective factors using a survey instrument and using 
Gaussian mixture models found four very distinct profiles of students. 

The analysis of online trace log data—which is at the core of learning analytics 
data—with mixture models is even less common. In the study by Zhang et al. 
[15], the authors applied LPA to variables related to debugging derived from 
students’ programming problems submission traces. They found a profile with 
higher debugging accuracy and coding speed, another profile with lower debugging 
performance in runtime and logic errors, and a third profile with lower performance 
in syntactic errors who tended to make big changes in every submission. Studies 
covering online collaborative learning are even more scarce. A rare example 
is the study by Saqr and López-Pernas [11], in which the authors used latent 
profile analysis to identify students’ roles in collaboration based on their centrality 
measures. The mixture models identified three collaborative roles that represented a 
distinct pattern of collaboration: leaders, who contribute the most to the discussion, 
whose arguments are more likely to spread; mediators, who bridge others and 
moderate the discussions; as well as isolates, who are socially idle and do not 
contribute to the discussion. 

A considerable number of studies that applied mixture models further investigate 
the association between profile membership and academic achievement. For exam-
ple, in the aforementioned study by Yu et al. [10], students with high emotional 
self-efficacy had higher academic performance than the other profiles. In the study 
by Zhang et al. [15], the authors found that higher debugging accuracy was related 
to higher scores in all exams, whereas there were no differences between the two 
other identified profiles. By the same token, researchers have attempted to find 
reasons why a certain profile emerged, or what are the variables that are more 
associated with one profile more than the other. For example, [13] found that peer 
support, provision of choice, and task relevance are the factors more likely to predict 
classroom engagement profile membership. Yu et al. [10] found that self-regulation 
and motivation played significant roles in determining profile membership. 

Clearly, there are plenty of opportunities for further exploration and investigation 
in this area that could augment our knowledge of learning, learners’ behavior, and 
the variabilities of learning processes [2]. This is especially true given the numerous 
advantages of the MBC paradigm over more traditional, heuristic clustering algo-
rithms, which we imminently describe. Subsequently, in the rest of this chapter we 
elaborate on the theoretical underpinnings of the family of Gaussian parsimonious 
clustering models implemented in the mclust R package and additionally explore 
some advanced features of the package, which we employ in an analysis of a 
real educational research application thereafter. Finally, we conclude with a brief 
discussion.
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3 Model-Based Clustering 

As stated above, clustering methods, in a general sense, are used to uncover group 
structure in heterogeneous populations and identify patterns in a data set which may 
represent distinct subpopulations. While there is no universally applicable definition 
of what constitutes a cluster [16], it is commonly assumed that clusters should be 
well separated from each other and cohesive in an ideal analysis [17]. Conversely, 
objects within a cluster should be more similar to each other in some sense, in such 
a way that an observation has a defined relationship with observations in the same 
cluster, but not with observations from other clusters. 

Traditional clustering approaches, like the aforementioned k-means algorithm, 
and agglomerative hierarchical clustering, use dissimilarity-based heuristics to ulti-
mately produce a “hard” partition of cases into groups, such that each observation is 
associated with exactly one cluster only. As such approaches are not underpinned by 
a statistical model, assessment of the optimal number of clusters is often a fraught 
task, lacking the guidance of principled statistical model selection criteria. However, 
we note that k-means can be recasted as a clustering model assuming a Gaussian 
mixture with equal proportions and diagonal equal covariance matrix across groups. 
Moreover, some (but not all) agglomerative hierarchical clustering models can be 
rooted in a statistical model also, as discussed in [18]. 

Conversely, the MBC paradigm typically assumes that data arise from a (usually 
finite) mixture of probability distributions, whereby each observation is assumed 
to be generated from a specific cluster, characterised by an associated distribution 
in the mixture [19]. Ideally, mixtures of distributions are supposed to provide a 
good model for the heterogeneity in a data set; that is, once an observation has 
been assigned to a cluster, it is assumed to be well-represented by the associated 
distribution. As such, MBC methods are based on a formal likelihood and seek to 
estimate parameters (e.g., means, variances, and covariances, which may or may 
not differ across groups) which best characterise the different distributions. Rather 
than yielding only a “hard” partition, each observation is assigned a probability of 
being associated with each mixture component—such that observations can have 
non-negative association with more than one cluster—from which a hard partition 
can be constructed. These probabilities are treated as weights when estimating the 
component parameters, which brings the advantages of minimising the effect of 
observations lying near the boundary of two natural clusters (e.g., a student with an 
ambiguous learning profile) and being able to quantity the uncertainty in the cluster 
assignment of a particular observation to provide a sense of cases for which further 
investigation may be warranted. Compared to other approaches, the other main 
advantages of this statistical modelling framework are its ability to use statistical 
model selection criteria and inferential procedures for evaluating and assessing the 
results obtained. 

Inference for finite mixture models is routinely achieved by means of the 
expectation-maximisation (EM) algorithm [20], under which each observation’s 
component membership is treated as a “missing” latent variable which must be
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estimated. This formulation assumes that the data are conditionally independent and 
identically distributed, where the conditioning is with respect to a latent variable 
representation of the data in which the latent variable indicates cluster membership. 
Given the relative familiarity of latent class and latent profile terminology in the 
social sciences, we now explicitly cast MBC methods in the framework of latent 
variable modelling. 

3.1 Latent Variable Models 

Latent variable models are statistical models that aim to explain the relationships 
between observed variables by introducing one or more unobserved or latent 
variables. The idea behind latent variable models is that some of the underlying 
constructs or concepts we are interested in cannot be measured directly, but only 
through their effects on observable variables. Latent variable modelling has a 
relatively long history, dating back from the measure of general intelligence by 
factor analysis [21], to the structural equation modelling approach [22], from topic 
modelling, such as the latent Dirichlet allocation algorithm [23], to hidden Markov 
models for time series [24] and longitudinal data [25]. Latent variable models are 
widely used in various fields, including psychology, sociology, economics, and 
biology, to name a few. They are particularly useful when dealing with complex 
phenomena that cannot be easily measured or when trying to understand the 
underlying mechanisms that drive the observed data. 

When discussing latent variable modelling, it is useful to consider the taxonomy 
presented by Bartholomew et al. [26]. This can be particularly helpful, as the 
same models are sometimes referred to by different names in different scientific 
disciplines. Bartholomew et al. [26, Table 1.3] considered a cross-classification of 
latent variable methods based on the type of variable (manifest or latent) and its 
nature (metrical or categorical). If both the manifest and latent variables are metrical, 
the model is called a factor analysis model. If the manifest variables are categorical 
and the latent variables are metrical, the model is called a latent trait model or 
item response theory model. If the manifest variables are metrical and the latent 
variables are categorical, the model is called a latent profile analysis model. If both 
the manifest and latent variables are categorical, the model is called a latent class 
model. 

In this scheme, finite Gaussian mixture models described in this chapter assume 
that the observed variables are continuous and normally distributed, while the 
latent variable, which represents the cluster membership of each observation, is 
categorical. Therefore, Gaussian mixtures belong to the family of latent profile 
analysis models. This connection is made apparent by the tidyLPA R package [27], 
which leverages this equivalence to provide an interface to the well-known mclust 
R package [7] used throughout this chapter, using tidyverse syntax and terminology 
which is more familiar in the LPA literature.
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3.2 Finite Gaussian Mixture Models 

As described above, finite mixture models (FMMs) provide the statistical framework 
for model-based clustering and allow for the modelling of complex data by 
combining simpler distributions. Specifically, a FMM assumes that the observed 
data are generated from a finite mixture of underlying distributions, each of which 
corresponds to a distinct subgroup or cluster within the data. Gaussian mixture 
models (GMMs) are a particularly widespread variant of FMMs which specifically 
assume that each of the underlying distributions is a (multivariate) Gaussian 
distribution. This means that the data within each cluster are normally distributed, 
but with potentially different means and covariance matrices. The relevance of 
GMMs stems from the well-established fact that mixtures of Gaussians can provide 
an accurate approximation to any continuous density. 

In FMMs, the latent variable represents the cluster assignment for each observa-
tion in the data. It is a categorical variable assuming one of a finite set of possible 
values that correspond to different clusters. Alternatively, it can be encoded using 
a set of indicator variables, which take the value of 1 for the cluster to which the 
observation belongs, and 0 for all other clusters. 

To estimate the parameters of a GMM with the associated latent variable for 
cluster membership, a likelihood-based approach is typically used. The likelihood 
function expresses the probability of observing the data, given the parameter values 
and the latent variable. The maximum likelihood estimation (MLE) method is 
commonly used to estimate the parameters and the latent variable which maximise 
the likelihood function. Usually, the number of clusters in a GMM is also unknown, 
and it is determined through a process known as model selection, which involves 
comparing models with different numbers of clusters and parameterisations and 
selecting the one which best fits the data. 

In summary, model-based clustering from the perspective of latent variable 
modelling assumes that the data is generated from a probabilistic model with a 
specific number of clusters. A likelihood-based approach can be used to estimate the 
parameters of the model and the latent variable that represents the cluster assignment 
for each observation in the data, and guide the selection of the number of clusters. A 
GMM is a common framework for model-based clustering which assumes the data 
in each cluster is generated from a Gaussian distribution. 

4 Gaussian Parsimonious Clustering Models 

For a continuous feature vector .x ∈ R
d , the general form of the density function of 

a Gaussian mixture model (GMM) with K components can be written as



An Introduction and R Tutorial to Model-Based Clustering in Education via. . . 291

.f (x) =
K∑

k=1

πkφd(x;μk,Σk), (1) 

where .πk represents the mixing probabilities, i.e., the marginal probability of 
belonging to the k-th cluster, such that .πk > 0 and .

∑K
k=1 πk = 1, and . φd(·)

is the d-dimensional multivariate Gaussian density with parameters .(μk,Σk) for 
.k = 1, . . . , K . Clusters described by such a GMM are ellipsoidal, centered at 
the means . μk , and with other geometric characteristics (namely volume, shape, 
and orientation) determined by the covariance matrices .Σ1, . . . ,ΣK . Parsimonious 
parameterisations of covariance matrices can be controlled by imposing some 
constraints on the covariance matrices through the following eigen-decomposition 
[28, 29]: 

.Σk = λkU kΔkU
⏉
k , (2) 

where .λk = |Σk|1/d is a scalar which controls the volume, .Δk is a diagonal matrix 
whose entries are the normalised eigenvalues of .Σk in decreasing order, such that 
.|Δk| = 1, which controls the shape of the density contours, and . U k is an orthogonal 
matrix whose columns are the eigenvectors of . Σk , which controls the orientation of 
the corresponding ellipsoid. The size of a cluster is distinct from its volume and is 
proportional to . πk [29]. 

GMMs with unconstrained covariance matrices are quite flexible, but require the 
estimation of several parameters. To obtain a balance between model complexity 
and accuracy of parameter estimates, a parsimonious model parameterisation can 
be adopted. Constraining the geometric characteristics of cluster covariances to be 
equal across clusters can greatly reduce the number of estimable parameters, and 
is the means by which GMMs obtain intermediate covariance matrices between 
homoscedasticity and heteroscedasticity. A list of the 14 resulting parameterisations 
available in the mclust package [7] for R [8] is included in Table 2.1 of [30]. 
Of particular note is the nomenclature adopted by mclust whereby each model 
has a three-letter name with each letter pertaining to the volume, shape, and 
orientation, respectively, denoting whether the given component is equal (E) or free  
to vary (V) across clusters. Some model names also use the letter I in the third 
position to indicate that the covariance matrices are diagonal and two particularly 
parsimonious models have the letter I in the second position to indicate that the 
covariance matrices are isotropic. Thus, as examples, the fully unconstrained VVV 
model is one for which the volume, shape, and orientation are all free to vary 
across clusters, the EVE model constrains the clusters to have equal volume and 
orientation but varying shape, and the VII model assumes isotropic covariance 
matrices with cluster-specific volumes. The flexibility to model clusters with 
different geometric characteristics by modelling correlations according to various 
parameterisations represents another advantage over heuristic clustering algorithms. 
Taking the k-means algorithm as an example, a larger number of circular, Euclidean 
distance-based clusters may be required to fit the data well, rather than a more
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parsimonious and easily interpretable mixture model with fewer non-spherical 
components. 

Given a random sample of observations .{x1, x2, . . . , xn} in d dimensions, the 
log-likelihood of a GMM with K components is given by 

.𝓁(θ) =
n∑

i=1

log

{
K∑

k=1

πkφd(xi;μk,Σk)

}
, (3) 

where .θ = (π1, . . . , πK−1,μ1, . . . ,μK,Σ1, . . . ,ΣK) denotes the collection of 
parameters to be estimated. 

Maximizing the log-likelihood function in Eq. 3 directly is often complicated, 
so maximum likelihood estimation (MLE) of . θ is usually performed using the 
EM algorithm [20] by including the component membership as a latent variable. 
The EM algorithm consists of two steps: the E-step (Expectation step) and the 
M-step (Maximisation step). In the E-step, the algorithm calculates the expected 
membership probabilities of each data point to each of the mixture components 
based on the current estimates of the model parameters. Thus, though the latent 
variable indicating cluster membership is assumed to be categorical and represented 
by indicator variables taking the values 0 or 1, the model estimates assignment 
probabilities in the range .[0, 1] at this step. In the M-step, the algorithm updates 
the model parameters by maximizing the likelihood of the observed data given the 
estimated membership probabilities. These two steps are repeated until convergence 
or a maximum number of iterations is reached. Details on the use of EM algorithm in 
finite mixture modelling is provided by McLachlan and Peel [19], while a thorough 
treatment and further extensions can be found in [31]. For the GMM case, see Sec. 
2.2 of [30]. 

Following the fitting of a GMM and the determination of the MLEs of param-
eters, the maximum a posteriori (MAP) procedure can be used to assign the 
observations into the most likely cluster and recover a “hard” partition. For an 
observation . xi the posterior conditional probability of coming from the mixture 
component k is given by 

.p̂ik = π̂kφd(xi; μ̂k, Σ̂k)

K∑

g=1

π̂gφd(x; μ̂g, Σ̂g)

. (4) 

Then, an observation is assigned to the cluster with the largest posterior conditional 
probability, i.e., .xi ∈ Ck⋆ with .k⋆ = arg maxk p̂ik .
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4.1 Model Selection 

Given that a wide variety of GMMs in Eq. 1 can be estimated by varying the number 
of mixture components and the covariance decompositions in Eq. 2, selecting 
the appropriate model represents a crucial decision. A popular option consists in 
choosing the “best” model using the Bayesian information criterion [BIC, 32], 
which, for a given model . M, is defined as 

. BICM = 2𝓁M(̂θ) − νM log(n),

where .𝓁M(̂θ) stands for the maximised log-likelihood of the data sample of size n 
under model . M, and .νM for the number of independent parameters to be estimated. 
Another option available in clustering is the Integrated Complete Likelihood [ICL, 
33] criterion given by 

. ICLM = BICM + 2
n∑

i=1

K∑

k=1

cik log(p̂ik),

where .p̂ik is the conditional probability that . xi arises from the k-th mixture 
component from Eq. 4, and .cik = 1 if the i-th observation is assigned to cluster 
. Ck and 0 otherwise. 

Both criteria evaluate the fit of a GMM to a given set of data by considering both 
the likelihood of the data given the model and the complexity of the model itself, 
represented by the number of parameters to be estimated. Compared to the BIC, the 
ICL introduces a further entropy-based penalisation for the overlap of the clusters. 
For this reason, the ICL tends to select models with well-separated clusters. 

Whereas there is no consensus of a standard criteria for choosing the best model, 
there are guidelines that the researcher could rely on. To decide on the optimal 
model, examining the fit indices (such as the BIC and ICL), model interpretability, 
and conformance to theory can be of great help. The literature recommends 
estimating a 1-cluster solution for each model that serves as a comparative baseline 
and then increasing the number of clusters one by one, evaluating if adding 
another cluster yields a better solution in both statistical and conceptual terms [34]. 
Among all fit indices, larger BIC values seems to be the preferred method for 
selecting the best model. However, examining other indices (e.g., AIC, ICL) is also 
useful. Oftentimes, fit indices do not converge to a certain model. In such cases, 
the interrelation between the selected models, such as whether one model is an 
expanded version of another, should also be taken into consideration, as well as the 
stability of the different models, including the relative sizes of the emergent profiles 
(each profile should comprise more than 5–8% of the sample) [34]. Furthermore, the 
elbow method could be helpful in cases where no clear number of clusters can be 
easily determined from the fit indices (e.g., the BIC continues to grow consistently 
when increasing the number of clusters). This entails plotting the BIC values and 
finding an elbow shape where a rise in BIC is less noticeable with increasing
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numbers of clusters or roughly an elbow followed by a relatively flat line. The 
choice of the best number of clusters can and probably should be guided by theory; 
that is, in cases where previous research reported a certain number of clusters or 
profiles, it is recommended to take this guidance into account. For instance, research 
on engagement has repeatedly reported three levels of engagement. Once we have 
chosen the most suitable model, it is suggested to compute model diagnostics (e.g., 
entropy and average posterior probability) to evaluate the selected model. These 
diagnostics are covered in Sect. 4.3.3. 

4.2 mclust R Package 

mclust is an R package [8] for model-based cluster analysis, classification, and 
density estimation using Gaussian finite mixture models [30, 35]. It is widely used 
in statistics, machine learning, data science, and pattern recognition. One of the 
key features of mclust is its flexibility in modelling quantitative data with several 
covariance structures and different numbers of mixture components. Additionally, 
the package provides extensive graphical representations, model selection crite-
ria, initialisation strategies for the EM algorithm, bootstrap-based inference, and 
Bayesian regularisation, among other prominent features. mclust also represents a 
valuable tool in educational settings because it provides a powerful set of models 
that allows students and researchers to quickly and easily perform clustering and 
classification analyses on their data. We focus here on the use of mclust as a 
tool for unsupervised model-based clustering, though the package does also provide 
functions for supervised model-based classification. 

The main function implementing model-based clustering is called Mclust(), 
which requires a user to provide at least the data set to analyze. In the one-
dimensional case, the data set can be a vector, while in the multivariate case, it can 
be a matrix or a data frame. In the latter case, the rows correspond to observations, 
and the columns correspond to variables. 

The Mclust() function allows for further arguments, including the optional 
argument G to specify the number of mixture components or clusters, and 
modelNames to specify the covariance decomposition. If both G and modelNames 
are not provided, Mclust() will fit all possible models obtained using a number of 
mixture components from 1 to 9 and all 14 available covariance decompositions, 
and it will select the model with the largest BIC. Notably, if the data set is 
univariate, only 2 rather than 14 models governing the scalar variance parameters 
are returned; that they are equal or unequal across components. Finally, computing 
the BIC and ICL criteria can be done by invoking the functions mclustBIC() and 
mclustICL(), respectively.
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4.3 Other Practical Issues and Extensions 

Prior to commencing the cluster analysis of a data set on school engagement, 
academic achievement, and self-regulated learning measures, we first provide some 
theoretical background on some extensions of practical interest which will be 
explored in the analysis. 

4.3.1 Bayesian Regularisation 

Including a prior distribution over the mixture parameters is an effective way to 
avoid singularities and degeneracies in maximum likelihood estimation. Further-
more, this can help to prevent overfitting and improve model performance. In 
situations where the variables of interest are discrete or take on only a few integer 
values, including a prior distribution can help to regularise the model. 

Fraley and Raftery [36] proposed using weekly informative conjugate priors to 
regularise the estimation process. The EM algorithm can still be used for model 
fitting, but maximum likelihood estimates (MLEs) are replaced by maximum a 
posteriori (MAP) estimates. A slightly modified version of BIC can be used for 
model selection, with the maximised log-likelihood replaced by the log-likelihood 
evaluated at the MAP or posterior mode. 

The prior distributions proposed by Fraley and Raftery [36] are:

• a uniform prior on the simplex for the mixture weights .(π1, . . . , πK);
• a Gaussian prior on the mean vector (conditional on the covariance matrix), i.e., 

.μ | Σ ∼ N(μP,Σ/κP). (5) 

∝ |Σ|−1/2 exp
{
−κP 

2 
tr

(
(μ − μP)⏉Σ−1 (μ − μP)

)}
, (6) 

with .μP and . κP being the hyperparameters controlling, respectively, the mean 
vector and the amount of shrinkage applied;

• an inverse Wishart prior on the covariance matrix, i.e., 

. Σ ∼ IW(νP,ΛP)

∝ |Σ|−(νP+d+1)/2 exp

{
−1

2
tr

(
Σ−1Λ−1

P

)}
, (7) 

with the hyperparameters . νP and the matrix .ΛP controlling the degrees of 
freedom and scale of the prior distribution, respectively. 

Adding a prior to GMMs estimated using the mclust R package is easily 
obtained by adding an optional prior argument when calling some of the fitting 
functions, such as mclustBIC() and Mclust(). Specifically, setting prior = 
priorControl(functionName = "defaultPrior") allows to adopt the conju-
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gate priors described above with the following default values for the hyperparame-
ters:

• mean vector .μP = x̄, the sample mean of each variable;
• shrinkage .κP = 0.1;
• degrees of freedom .νP = d + 2;
• scale matrix .ΛP = §/(K2/d), where . § is the sample covariance matrix. 

Rationale for the above default values for the prior hyperparameters, together 
with the corresponding MAP estimates of the GMM parameters, can be found in 
[36, Table 2]. These values should suffice for most applications, but experienced 
users who want to tune the hyperparameters can refer to the documentation available 
in the help pages for priorControl and defaultPrior(). Further details about 
specifying different hyperparameter values can be found in [30]. 

4.3.2 Bootstrap Inference 

Likelihood-based inference in mixture models is complicated because asymptotic 
theory applied to mixture models require a very large sample size [19], and standard 
errors derived from the expected or the observed information matrix tend to be 
unstable [37]. For these reasons, resampling approaches based on the bootstrap are 
often employed [38]. 

The bootstrap [39] is a general, widely applicable, powerful technique for 
obtaining an approximation to the sampling distribution of a statistic of interest. The 
bootstrap distribution is approximated by drawing a large number of samples, called 
bootstrap samples, from the empirical distribution. This can be obtained by resam-
pling with replacement from the observed data (nonparametric bootstrap), or from a 
parametric distribution with unknown parameters substituted by the corresponding 
estimates (parametric bootstrap). A Bayesian version of the bootstrap, introduced 
by Rubin [40], allows posterior samples to be obtained by resampling with weights 
for each observation drawn from a uniform Dirichlet distribution. A strictly related 
technique is the weighted likelihood bootstrap [41], where a statistical model is 
repeatedly fitted using weighted maximum likelihood with weights obtained as in 
Bayesian bootstrap. 

Let . ̂θ be the estimate of a set of GMM parameters . θ for a given model . M, 
determined by the adopted covariance parameterisation and number of mixture 
components. The bootstrap distribution for the parameters of interest is obtained 
as follows:

• draw a bootstrap sample of size n using one of the resampling techniques 
described above to form the bootstrap sample .(x⋆

1, . . . , x
⋆
n);

• fit a the GMM . M to get the bootstrap estimates . ̂θ
⋆
;

• replicate the previous steps a large number of times, say B.
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The bootstrap distribution for the parameters of interest, .̂θ
⋆

1, θ̂
⋆

2, . . . , θ̂
⋆

B , can 
then be used for computing the bootstrap standard errors (as the square root of the 
diagonal elements of the bootstrap covariance matrix) or the bootstrap percentile 
confidence intervals. More details can be found in [30]. 

From a practical point of view, bootstrap resampling can be conducted in mclust 
by means of the function MclustBootstrap(). This function takes as arguments 
the fitted model object returned from e.g., Mclust() or mclustBIC(), the optional 
argument type, which allows to specify the type of bootstrap samples to draw 
("bs" for nonparametric bootstrap, "pb" for parametric bootstrap, and "wlbs" for 
weighted likelihood bootstrap), and the optional argument nboot, which sets the 
number of bootstrap samples. At least 999 samples should be drawn if confidence 
intervals are needed. 

4.3.3 Entropy and Average Posterior Probabilities 

The definition of entropy in information theory [42] refers to the average amount of 
information provided by a random variable. Following this definition, [43] defines 
the entropy of a finite mixture model as follows 

. EFMM = −
n∑

i=1

K∑

k=1

p̂ik log(p̂ik),

where .p̂ik is the estimated posterior probability of case i to belong to cluster k (see 
Eq. 4). If the mixture components are well separated, .p̂ik ≈ 1 for the assigned 
cluster . Ck and 0 otherwise. Consequently, the entropy of the mixture model in this 
case is .EFMM = 0 (note that .0 log(0) = 0 by convention). On the contrary, in 
the case of maximal assignment uncertainty, .p̂ik = 1/K for all clusters . Ck (. k =
1, . . . , K). As a result, the entropy of the mixture model is .EFMM = n log(K). 

In latent class and latent profile analysis, a slightly different definition of 
entropy is used as a diagnostic statistic to assess how well the fitted model assigns 
individuals to the identified clusters based on their response patterns. Thus, a 
normalised version of the entropy is defined as follows 

. E = 1 − EFMM

n log(K)
= 1 +

∑n
i=1

∑K
k=1 p̂ik log(p̂ik)

n log(K)
.

Entropy takes values on the range .[0, 1], with higher entropy values indicating 
that the model has less uncertainty in assigning cases to their respective latent 
classes/profiles. Thus, high entropy values typically indicate a better model which 
is able to distinguish between the latent components and that the components are 
relatively distinct. An entropy value close to 1 is ideal, while values above .0.6 are 
considered acceptable, although there is no agreed upon optimal cutoff for entropy.
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The contribution of each observation to the overall total entropy can be defined 
as 

. Ei = 1 +
∑K

k=1 p̂ik log(p̂ik)

log(K)
,

so that the overall total entropy is obtained by averaging over the individual 
contributions, i.e., .E = ∑n

i=1 Ei/n. The individual contributions . Ei can also be 
used to compute the average entropy of each latent component, which indicates 
how accurately the model defines components. Average posterior probabilities 
(AvePP) are a closely related performance assessment measure, given by the average 
posterior membership probabilities .p̂ik for each component for the observations 
most probably assigned to that component, for which a cutoff of .0.8 has been 
suggested to indicate acceptably high assignment certainty and well-separated 
clusters [34]. The analysis below presents the necessary code to calculate entropies 
and average posterior probabilities thusly from a fitted mclust model. 

5 Application: School Engagement, Academic Achievement, 
and Self-regulated Learning 

A group of 717 primary school students from northern Spain were evaluated in terms 
of their school engagement, self-regulation, and academic performance through the 
use of various measures. The school engagement measure (SEM) was employed 
to assess their engagement, while their self-regulation was evaluated with the self-
regulation strategy inventory—self-report. The measure for academic achievement 
was based on the students’ self-reported grades in Spanish and mathematics, which 
were rated on a scale of 1–5. More information about the dataset is available in 
Chapter 2 [44]. This data set can be used to identify clusters of students based 
on their engagement and self-regulation. These clusters would represent distinct 
patterns or “profiles” of engagement. Finding such profiles would allow us to 
understand individual differences but more importantly to stratify support according 
to different engagement profiles. 

5.1 Preparing the Data 

We start by loading the packages required for the analysis. We note in particular that 
version 6.0.0 of mclust is employed here, the latest release at the time of writing. 

library(ggplot2) 
library(ggridges) 
library(mclust) 
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library(rio) 
library(tidyverse) 

-- Attaching core tidyverse packages ---------------- tidyverse 2.0.0 --
v dplyr 1.1.3 v readr 2.1.4 
v forcats 1.0.0 v stringr 1.5.0 
v lubridate 1.9.2 v tibble 3.2.1 
v purrr 1.0.2 v tidyr 1.3.0
-- Conflicts ---------------------------------- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter() 
x dplyr::lag() masks stats::lag() 
x purrr::map() masks mclust::map() 
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force 

all conflicts to become errors 

Then, we read the data set from an online comma-separated-value (CSV) file, 
followed by some data cleaning and formatting to prepare the data for subsequent 
analysis. Note that the CSV file to be read is not in standard format, so we have to 
explicitly set the separator field using the optional argument sep = ";". 

# read the data 
data <- import("https://github.com/lamethods/data/raw/main/3_engSRLach/ 

Manuscript_School%20Engagment.csv", 
sep = ";") 

# select the variables to be analyzed 
vars <- c("PRE_ENG_COND", "PRE_ENG_COGN", "PRE_ENG_EMOC") 
x <- select(data, all_of(vars)) |> 

as_tibble() |> 
rename("BehvEngmnt" = "PRE_ENG_COND", # Behavioral engagement 

"CognEngmnt" = "PRE_ENG_COGN", # Cognitive engagement 
"EmotEngmnt" = "PRE_ENG_EMOC") # Emotional engagement 

# print the data set used in the subsequent analysis 
x 

# A tibble: 717 x 3 
BehvEngmnt CognEngmnt EmotEngmnt 

<dbl> <dbl> <dbl> 
1 3.75 3.14 4.4 
2 4 3.71 2 
3 4.25 3.86 4 
4 3.75 2.57 3 
5 4.25 3 4 
6 4 3.71 3.8 
7 3.5 2.14 3.2 
8 4.75 3.57 1.6 
9 3.25 2.71 3 

10 5 4.43 4.8 
# i 707 more rows
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A table of summary statistics for the data set can be obtained as follows: 

x |> pivot_longer(cols = colnames(x), 
names_to = "Variable", 
values_to = "Value") |> 

group_by(Variable) |> 
summarize(N =  n(), 

Nunq = n_distinct(Value), 
Mean = mean(Value), 
SD = sd(Value), 
Min = min(Value), 
Median = median(Value), 
Max = max(Value)) 

# A tibble: 3 x 8 
Variable N Nunq Mean SD Min Median Max 
<chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> 

1 BehvEngmnt 717 17 4.17 0.627 1 4.25 5 
2 CognEngmnt 717 30 2.92 0.771 1 2.92 5 
3 EmotEngmnt 717 22 3.61 0.911 1 3.61 5 

5.2 Model Estimation and Model Selection 

To begin our latent profile analysis, we first fit a number of candidate GMMs 
with different numbers of latent components and covariance parameterisations, 
and compute the Bayesian Information Criterion (BIC) to select the “optimal” 
model. This model selection criterion jointly takes into account both the covariance 
decompositions and the number of mixture components in the model. 

As mentioned earlier, given the characteristics of the data, which consists of a 
small number of unique values relative to the number of observations, a prior is 
used for regularisation. We invoke the default priors described above, summarise 
the BIC values of the three best models, and visualise the BIC values of all fitted 
models. 

BIC <- mclustBIC(x, prior = priorControl()) 
summary(BIC) 
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Best BIC values: 
VVI,3 VVI,4 VVV,3 

BIC -4521.213 -4526.905884 -4533.57166 
BIC diff 0.000 -5.693183 -12.35896 

plot(BIC) 

The selected model is a three-component GMM with diagonal covariance 
matrices of varying volume and shape, with axis-aligned orientation, indicated as 
(VVI,3). Thus, the variables are independent within each cluster (Fig. 1). 

5.3 Examining Model Output 

The fit of the optimal model is obtained using: 

mod <- Mclust(x, modelNames = "VVI", G =  3, prior = priorControl()) 
summary(mod, parameters = TRUE) 

----------------------------------------------------
Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------
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Fig. 1 BIC traces for the estimated GMMs with default priors
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Mclust VVI (diagonal, varying volume and shape) model with 3 components: 

Prior: defaultPrior() 

log-likelihood n df BIC ICL
-2194.856 717 20 -4521.213 -4769.174 

Clustering table: 
1 2 3  

184 119 414 

Mixing probabilities: 
1 2 3  

0.2895147 0.1620776 0.5484078 

Means: 
[,1] [,2] [,3] 

BehvEngmnt 3.704041 4.713234 4.257355 
CognEngmnt 2.287057 3.699530 3.017293 
EmotEngmnt 2.738969 4.733899 3.737286 

Variances: 
[,,1] 

BehvEngmnt CognEngmnt EmotEngmnt 
BehvEngmnt 0.5022148 0.0000000 0.0000000 
CognEngmnt 0.0000000 0.3909235 0.0000000 
EmotEngmnt 0.0000000 0.0000000 0.7674268 
[,,2] 

BehvEngmnt CognEngmnt EmotEngmnt 
BehvEngmnt 0.0737948 0.0000000 0.00000000 
CognEngmnt 0.0000000 0.4150514 0.00000000 
EmotEngmnt 0.0000000 0.0000000 0.05540526 
[,,3] 

BehvEngmnt CognEngmnt EmotEngmnt 
BehvEngmnt 0.2048374 0.0000000 0.0000000 
CognEngmnt 0.0000000 0.3327557 0.0000000 
EmotEngmnt 0.0000000 0.0000000 0.2795838 

The shown output reports some basic information about the fit, such as the 
maximised log-likelihood (log-likelihood), the number of observations (n), the 
number of estimated parameters (df), the BIC criterion (BIC), and the clustering 
table based on the MAP classification. The latter indicates that the clusters also vary 
in terms of size. The optional argument parameters = TRUE in the summary() 
function call additionally prints the estimated parameters. Observe that the VVI 
model allows variance to vary across components while fixing all covariance 
parameters to zero. 

A plot showing the classification provided by the estimated model can be drawn 
as follows: 

plot(mod, what = "classification")



An Introduction and R Tutorial to Model-Based Clustering in Education via. . . 303

BehvEngmnt 

1 2 3 4 5  

1
2 

3
4

5
 

1
2

3
 4

5 

CognEngmnt 

1 2 3 4 5  

EmotEngmnt 

1 2 3 4 5  

1
2

3
4

5
 

Fig. 2 Scatterplot matrix of engagement features with data points marked and coloured by the 
identified clusters, and ellipses corresponding to projections of the estimated cluster covariances 

The estimated model identifies three clusters of varying size. The third group 
(shown as filled green triangles) accounts for more than 50% of the observations, 
while the first (shown as blue filled points) and the second (shown as red open 
squares) account for approximately 29% and 16%, respectively. The smallest cluster 
is also the group with the largest engagement scores (Fig. 2). 

The different engagement behaviour of the three identified clusters can be shown 
using a latent profiles plot of the estimated means with point sizes proportional to 
the estimated mixing probabilities (see Fig. 3): 

# collect estimated means 
means <- data.frame(Profile = factor(1:mod$G), 

t(mod$parameters$mean)) |> 
pivot_longer(cols = -1, 

names_to = "Variable", 
values_to = "Mean") 

# convert variable names to factor 
means$Variable <- factor(means$Variable, 

levels = colnames(mod$data)) 
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Fig. 3 Latent profiles plot showing estimated means with point sizes proportional to estimated 
mixing probabilities 

# add mixing probabilities corresponding to profiles 
means <- means |> 

add_column(MixPro = mod$parameters$pro[means$Profile]) 
means 

# A tibble: 9 x 4 
Profile Variable Mean MixPro 
<fct> <fct> <dbl> <dbl> 

1 1 BehvEngmnt 3.70 0.290 
2 1 CognEngmnt 2.29 0.290 
3 1 EmotEngmnt 2.74 0.290 
4 2 BehvEngmnt 4.71 0.162 
5 2 CognEngmnt 3.70 0.162 
6 2 EmotEngmnt 4.73 0.162 
7 3 BehvEngmnt 4.26 0.548 
8 3 CognEngmnt 3.02 0.548 
9 3 EmotEngmnt 3.74 0.548 

# plot the means of the latent profiles 
ggplot(means, aes(x =  Variable, y =  Mean, 

group = Profile, 
shape = Profile, 
color = Profile)) + 

geom_point(aes(size = MixPro)) + 
geom_line(linewidth = 0.5) + 
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labs(x =  NULL, y =  "Latent profiles means") + 
scale_color_manual(values = mclust.options("classPlotColors")) + 
scale_size(range = c(1, 3), guide = "none") + 
theme_bw() + 
theme(legend.position = "top") 

The smallest cluster (Profile 2) has the highest engagement scores for all three 
variables. All three scores are lower for the largest cluster (Profile 3), which are 
all in turn lower for Profile 1. All three profiles exhibit the lowest mean scores 
for the cognitive engagement attribute. For Profile 2, behavioural engagement and 
emotional engagement scores are comparable, whereas for the other two profiles, 
the mean scores for this attribute are lower than those for the behaviour engagement 
attribute. Taken together, we could characterise profiles 1, 3, and 2 as “low”, 
“medium”, and “high” engagement profiles, respectively. 

To provide a more comprehensive understanding of the results presented in the 
previous graph, it would be beneficial to incorporate a measure of uncertainty for 
the estimated means of the latent profiles. This can be achieved by resampling using 
the function MclustBootstrap() as described above: 

boot <- MclustBootstrap(mod, type = "bs", nboot = 999) 

The bootstrap distribution of the mixing weights can be visualised using his-
tograms with the code 

par(mfcol = c(1, 3), mar = c(2, 4, 1, 1), mgp = c(2, 0.5, 0)) 
plot(boot, what = "pro", xlim = c(0, 1)) 

while the bootstrap distribution of the components means can be plotted with the 
code 

par(mfcol = c(3, 3), mar = c(2, 4, 1, 1), mgp = c(2, 0.5, 0)) 
plot(boot, what = "mean", conf.level = 0.95) 

The resulting graphs are reported in Figs. 4 and 5, where the GMM estimates 
are shown as dashed vertical lines, while the horizontal segments represent the 
percentile confidence intervals at the 95% confidence level. 

Numerical output of the resampling-based bootstrap distributions is given by: 

sboot <- summary(boot, what = "ci") 
sboot 

----------------------------------------------------------
Resampling confidence intervals
----------------------------------------------------------
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Fig. 4 Bootstrap distribution of GMM mixture weights 
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Fig. 5 Bootstrap distribution of GMM component means 

Model = VVI 
Num. of mixture components = 3 
Replications = 999 
Type = nonparametric bootstrap 
Confidence level = 0.95 

Mixing probabilities: 
1 2 3  

2.5% 0.1243841 0.08798243 0.4782555 
97.5% 0.3835502 0.25791041 0.6687084
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Means: 
[,,1] 

BehvEngmnt CognEngmnt EmotEngmnt 
2.5% 3.478885 1.816859 2.121577 
97.5% 3.815991 2.447267 2.960526 
[,,2] 

BehvEngmnt CognEngmnt EmotEngmnt 
2.5% 4.620202 3.521108 4.495329 
97.5% 4.900447 3.946966 4.867349 
[,,3] 

BehvEngmnt CognEngmnt EmotEngmnt 
2.5% 4.092707 2.835722 3.512692 
97.5% 4.369398 3.149737 3.908160 

Variances: 
[,,1] 

BehvEngmnt CognEngmnt EmotEngmnt 
2.5% 0.3925919 0.2235505 0.5453094 
97.5% 0.7894949 0.4924710 0.9944741 
[,,2] 

BehvEngmnt CognEngmnt EmotEngmnt 
2.5% 0.01602006 0.3225734 0.01935046 
97.5% 0.10643442 0.5867531 0.15708500 
[,,3] 

BehvEngmnt CognEngmnt EmotEngmnt 
2.5% 0.1571746 0.2842534 0.2288972 
97.5% 0.2816023 0.3952229 0.4188765 

The information above can then be used to plot the latent profile means 
accompanied by 95% confidence intervals represented as vertical bars, as illustrated 
in Fig. 6. The confidence intervals for the cognitive and emotional engagement 
attributes are noticeably wider for the “low” engagement profile. 

means <- means |> 
add_column(lower = as.vector(sboot$mean[1,,]), 

upper = as.vector(sboot$mean[2,,])) 
means 

# A tibble: 9 x 6 
Profile Variable Mean MixPro lower upper 
<fct> <fct> <dbl> <dbl> <dbl> <dbl> 

1 1 BehvEngmnt 3.70 0.290 3.48 3.82 
2 1 CognEngmnt 2.29 0.290 1.82 2.45 
3 1 EmotEngmnt 2.74 0.290 2.12 2.96 
4 2 BehvEngmnt 4.71 0.162 4.62 4.90
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Fig. 6 Latent profiles plot showing estimated means with 95% bootstrap confidence intervals 

5 2 CognEngmnt 3.70 0.162 3.52 3.95 
6 2 EmotEngmnt 4.73 0.162 4.50 4.87 
7 3 BehvEngmnt 4.26 0.548 4.09 4.37 
8 3 CognEngmnt 3.02 0.548 2.84 3.15 
9 3 EmotEngmnt 3.74 0.548 3.51 3.91 

ggplot(means, aes(x =  Variable, y =  Mean, group = Profile, 
shape = Profile, color = Profile)) + 

geom_point(aes(size = MixPro)) + 
geom_line(linewidth = 0.5) + 
geom_errorbar(aes(ymin = lower, ymax = upper), 

linewidth = 0.5, width = 0.1) + 
labs(x =  NULL, y =  "Latent profiles means") + 
scale_color_manual(values = mclust.options("classPlotColors")) + 
scale_size(range = c(1, 3), guide = "none") + 
theme_bw() + 
theme(legend.position = "top") 

Finally, the entropy of the estimated partition, average entropy of each latent 
component, and average posterior probabilities are obtained via: 

probs <- mod$z # posterior conditional probs 
probs_map <- apply(probs, 1, max) # maximum a posteriori probs 
clusters <- mod$classification # cluster assignment for each obs 
n <- mod$n # number of obs 
K <- mod$G # number of latent profiles 
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# Entropy: 
E <- 1 + sum(probs * log(probs))/(n * log(K)) 
E 

[1] 0.6890602 

# Case-specific entropy contributions: 
Ei <- 1 + rowSums(probs * log(probs))/log(K) 
sum(Ei)/n 

[1] 0.6890602 

df_entropy <- data.frame(clusters = as.factor(clusters), entropy = Ei) 

df_entropy |> 
group_by(clusters) |> 
summarise(count = n(), 

mean = mean(entropy), 
sd = sd(entropy), 
min = min(entropy), 
max = max(entropy)) 

# A tibble: 3 x 6 
clusters count mean sd min max 
<fct> <int> <dbl> <dbl> <dbl> <dbl> 

1 1 184 0.740 0.239 0.369 1.00 
2 2 119 0.690 0.225 0.187 0.993 
3 3 414 0.666 0.197 0.172 0.974 

ggplot(df_entropy, aes(y =  clusters, x =  entropy, fill = clusters)) + 
geom_density_ridges(stat = "binline", bins = 21, 

scale = 0.9, alpha = 0.5) + 
scale_x_continuous(breaks = seq(0, 1 ,by=0.1), 

limits = c(0, 1.05)) + 
scale_fill_manual(values = mclust.options("classPlotColors")) + 
geom_vline(xintercept = E, lty = 2) + 
labs(x =  "Case-specific entropy contribution", 

y =  "Latent profile") + 
theme_ridges(center_axis_labels = TRUE) + 
theme(legend.position = "none", 

panel.spacing = unit(1, "lines"), 
strip.text.x = element_text(size = 8)) 
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# Average posterior probabilities by cluster: 
df_AvePP <- data.frame(clusters = as.factor(clusters), pp = probs_map) 

df_AvePP |> 
group_by(clusters) |> 
summarise(count = n(), 

mean = mean(pp), 
sd = sd(pp), 
min = min(pp), 
max = max(pp)) 

# A tibble: 3 x 6 
clusters count mean sd min max 
<fct> <int> <dbl> <dbl> <dbl> <dbl> 

1 1 184 0.864 0.160 0.513 1.00 
2 2 119 0.858 0.146 0.468 0.999 
3 3 414 0.850 0.135 0.502 0.996 

ggplot(df_AvePP, aes(y =  clusters, x =  pp, fill = clusters)) + 
geom_density_ridges(stat = "binline", bins = 21, 

scale = 0.9, alpha = 0.5) + 
scale_x_continuous(breaks = seq(0, 1, by=0.1), 

limits = c(0, 1.05)) + 
scale_fill_manual(values = mclust.options("classPlotColors")) + 
labs(x =  "MAP probabilities", y =  "Latent profile") + 
theme_ridges(center_axis_labels = TRUE) + 
theme(legend.position = "none", 

panel.spacing = unit(1, "lines"), 
strip.text.x = element_text(size = 8)) 

We note that, as shown in Figs. 7 and 8, all entropy and AvePP quantities appear 
satisfactory from the point of view of indicating reasonably well-separated clusters. 

6 Discussion 

Using a person-centered method (finite Gaussian mixture model), the present analy-
sis uncovered the heterogeneity within the SEM engagement data by identifying 
three latent or unobserved clusters: low, medium, and high engagement clus-
ters. Uncovering the latent structure could help understand individual differences 
among students, identify the complex multidimensional variability of a construct— 
engagement in our case—and possibly help personalise teaching and learning. 
Several studies have revealed similar patterns of engagement which—similar to 
the current analysis—comprise three levels that can be roughly summarised as 
high, moderate, and low [9, 45, 46]. The heterogeneity of engagement has been 
demonstrated in longitudinal studies, in both face-to-face settings as well as 
online engagement [9]. Furthermore, the association between engagement and
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Fig. 7 Entropy contributions by cluster and total entropy (dashed line) 

performance has been demonstrated to vary by achievement level, time of the 
year, as well as engagement state; that is, high achievers may at some point 
in their program descend to lower engagement states and still continue to have 
higher achievement [3]. Such patterns, variability, and individual differences are 
not limited to engagement, but has been reported for almost every major disposition 
in education psychology [2]. 

On a general level, heterogeneity has been a hot topic in recent educational 
literature. Several calls have been voiced to adopt methods that capture different 
patterns or subgroups within students’ behavior or functioning. Assuming that there 
is “an average” pattern that represents the entirety of student populations requires 
the measured construct to have the same causal mechanism, same development 
pattern, and affect students in exactly the same way. The average assumption is of 
course impossible and has been proven inaccurate across a vast number of studies 
(e.g., [2] and [4]). Since heterogeneity is prevalent in psychological, behavioral, and 
physiological human data, person-centered methods will remain a very important 
tool for researchers [47]. 

Person-centered methods can be grouped into algorithmic clustering methods 
on one hand and the model-based clustering paradigm on the other, with the 
former being more traditional and the latter being more novel in the learning 
analytics literature. The analysis of the SEM data centered here on the model-based
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Fig. 8 Average posterior probabilities by cluster 

approach, specifically the finite Gaussian mixture model framework. The mclust 
package enabled such models to be easily fitted and this framework exhibits many 
advantages over traditional clustering algorithms which rely on dissimilarity-based 
heuristics. Firstly, the likelihood-based underpinnings enable the selection of the 
optimal model using principled statistical model selection criteria. In particular, it 
is noteworthy in the present analysis that the model selection procedure was not 
limited to three-cluster solutions: mixtures with fewer or greater than three clusters 
were evaluated and the three-cluster solution—supported by previous studies in 
education research—was identified as optimal according to the BIC. Secondly, 
the parsimonious modelling of the covariance structures provides the flexibility to 
model clusters with different geometric characteristics. In particular, the clusters 
in the present analysis, whereby each group is described by a single Gaussian 
component with varying volume and shape, but the same orientation aligned 
with the coordinate axes are more flexible than the spherical, Euclidean distance-
based clusters obtainable under the k-means algorithm. Thirdly, the models relax 
the assumption that each observation is associated with exactly one cluster and 
yields informative cluster-membership probabilities for each observation, which 
can be used to compute useful diagnostics such as entropies and average posterior 
probabilities which are unavailable under so-called “hard” clustering frameworks.
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Finally, the mclust package facilitates simple summaries and visualisations of the 
resulting clusters and cluster-specific parameter estimates. 

That being said, there are a number of methodological limitations of the GMM 
framework to be aware of in other settings. Firstly, and most obviously, such models 
are inappropriate for clustering categorical or mixed-type variables. For clustering 
longitudinal categorical sequences, such as those in Chapter 10 [48], model-based 
approaches are provided by the mixtures of exponential-distance models framework 
of [49] (and related MEDseq R package) and the mixtures of hidden Markov 
models framework of [50] (and related seqHMM package; see Chapter 12 [51]). 
Regarding mixed-type variables, [52] provide a model-based framework (and the 
related clustMD package). 

Secondly, the one-to-one correspondence typically assumed between compo-
nent distributions and clusters is not always the case [53]. This is only true if 
the underlying true component densities are Gaussian. When the assumption of 
component-wise normality is not satisfied, the performance of such models will 
deteriorate as more components are required to fit the data well. However, even 
for continuous data, GMMs tend to overestimate the number of clusters when 
the assumption of normality is violated. Two strategies for dealing with this are 
provided by the mclust package, one based on combining Gaussian mixture 
components according to an entropy criterion, and one based on a adding a so-
called “noise component”—represented by a uniform distribution—to the mixture. 
The noise component captures outliers which do not fit the prevailing patterns of 
Gaussian clusters, which would otherwise be assigned to (possibly many) small 
clusters and minimises their deleterious effect on parameter estimation for the 
other, more defined clusters. Further details of combining components and adding a 
noise component can be found in [30]. Alternatively, mixture models which depart 
from normality have been an active area of research in model-based clustering 
in recent years. Such approaches—some of which are available in the R package 
mixture [54]—replace the underlying Gaussian component distributions with 
e.g., generalised hyperbolic distributions, the multivariate t distribution, and the 
multivariate skew-t distribution. 

A third main limitation of GMMs is their ineffectiveness in high-dimensional 
settings, when the data dimension d is comparable to or even greater than n. 
Among the 14 parsimonious parameterisations available in mclust, only models 
with diagonal covariance structures are tractable when .n ≤ p. Incorporating 
factor-analytic covariance decompositions in so-called finite Gaussian mixtures of 
factor analysers have been proposed for addressing this issue [55, 56]. Imposing 
constraints on the parameters of such factor-analytic structures in the component 
covariance matrices in the spirit of mclust leads to another family of parsimonious 
Gaussian mixture models [57], which are implemented in the R package pgmm. 
Model selection becomes increasingly difficult with such models, given the need 
to choose both the optimal number of mixture components and the optimal 
number of latent factors (as well as the covariance parameterisation, in the case of 
pgmm). Infinite mixtures of infinite factor analysers—implemented in the R package
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IMIFA—are a recent, Bayesian extension which enable automatic inference of the 
number of components and the numbers of cluster-specific latent factors [58]. 

Another recent extension, building directly on the 14 models from mclust, is  
the MoEClust model family of [59] and the associated MoEClust R package, which 
closely mimics its syntax. MoEClust effectively embeds Gaussian parsimonious 
clustering models in the mixtures of experts framework, enabling additional sources 
of heterogeneity in the form of covariates to be incorporated directly in the 
clustering model, to guide the construction of the clusters. Either, neither, or both 
the mixing proportions and/or component mean parameters can be modelled as 
functions of these covariates. The former is perhaps particularly appealing, given 
its analogous equivalence to latent profile regression [60]. Hypothetically, assuming 
information on the gender and age of the students in the present analysis was 
available, such covariates would influence the probabilities of cluster membership 
under such a model, while the correspondence thereafter between the parameters of 
the component distributions and the clusters would have the same interpretation as 
per standard LPA models. 
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Part III 
Temporal Methods



Sequence Analysis in Education: 
Principles, Technique, and Tutorial 
with R 

Mohammed Saqr, Sonsoles López-Pernas, Satu Helske, Marion Durand, 
Keefe Murphy, Matthias Studer, and Gilbert Ritschard 

1 Introduction 

Patterns exist everywhere in our life, from the sequence of genes to the order of steps 
in cooking recipes. Discovering patterns, variations, regularities, or irregularities is 
at the heart of scientific inquiry and, therefore, several data mining methods have 
been developed to understand patterns. Sequence analysis—or sequence mining— 
was developed almost four decades ago to address the increasing needs for pattern 
mining [1]. Ever since, a wealth of applications, algorithms, and statistical tools 
have been developed, adapted, or incorporated into the array of sequence analysis. 
Since sequence mining has been conceptualized, it has grown in scale of adoption 
and range of applications across life and social sciences [2] and education research 
was no exception (e.g., [3]). As a data mining technique, sequence mining has been 
commonly implemented to identify hidden patterns that would otherwise be missed 
using other analytical techniques and find interesting subsequences (parts of the 
sequence) that have practical significance or unexpected sequences that we did not 
know existed [4]. For instance, by mining sequences of collaborative dialogue, we 
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could identify which sequences are followed by more argumentative interactions, 
and what sequences are crucial to the collaborative process. A literature review of 
the common applications follows in the next section. 

Learning is a process that unfolds in time, a process that occurs in sequences of 
actions, in repeated steps, in patterns that have meanings and value for understand-
ing learners’ behavior [5]. The conceptualization of learning as a process entails 
two important criteria: process as a sequence of states that unfold in time and 
process as a transformative mechanism that drives the change from one state to 
another [6]. Thereupon, methods such as sequence mining have gained increasing 
grounds and amassed a widening repertoire of techniques in the field of education 
to study the learning process. In particular, sequence mining has been used to 
harness the temporal unfolding of learners’ behavior using digital data, transcripts 
of conversations, or behavioral states [7]. Nevertheless, sequence mining can be 
used to study non-temporal sequences such as protein sequences and other types of 
categorical data [8]. 

What makes sequences in education interesting is that they have patterns of 
repeated or recurrent sequences. Finding such patterns has helped typify learners’ 
behaviors and identify which patterns are associated with learning and which are 
associated with unfavorable outcomes [3]. Sequence mining can also describe a 
pathway or a trajectory of events, for example, how a student proceeds from 
enrolment to graduation [9], and help to identify the students who have a stable 
trajectory, who are turbulent, and who are likely to falter along their education [3]. 

2 Review of the Literature 

In recent years, sequence analysis has become a central method in learning analytics 
research due to its potential to summarize and visually represent large amounts of 
student-related data. In this section we provide an overview of some of the most 
representative studies in the published literature. A summary of the studies reviewed 
in this section can be seen in Table 1. A common application of sequence analysis is 
the study of students’ log data extracted from their interactions with online learning 
technologies (mostly learning management systems, LMSs) throughout a learning 
session [10–12]. In some studies, the session is well-delimited, such as the duration 
of a game [13] or moving window [14], but in most cases it is inferred from the data, 
considering a session as an uninterrupted sequence of events [10, 11]. Few are the 
studies in which longer sequences are studied, covering a whole course or even a 
whole study program [3, 9, 15]. In such studies, the sequences are not composed of 
instantaneous interactions but rather of states that aggregate students’ information 
over a certain period, for example, we can study students’ engagement [9], learning 
strategies [3], or collaboration roles [15] for each course in a study program. 

Most of the existing research has used clustering techniques to identify distinct 
groups of similar sequences. Agglomerative Hierarchical Clustering (AHC) has 
been the most used technique, with a wealth of distance measures such as Euclidean
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[3, 10], Longest Common Subsequence [13], Longest Common Prefix [16], and 
Optimal Matching [11]. Other works have relied on Markovian Models [15, 17] 
or differential sequence mining [18]. Throughout the remainder of the book, we 
provide an introduction to sequence analysis as a method, describing in detail the 
most relevant concepts for its application to educational data. We provide a step-by-
step tutorial of how to implement sequence analysis in a data set of student log data 
using the R programming language. 

3 Basics of Sequences 

Sequences are ordered lists of discrete elements (i.e., events, states or categories). 
Such elements are discrete (in contrast to numerical values such as grades) and 
are commonly organized chronologically. Examples include sequence of activities, 
sequence of learning strategies, or sequence of behavioral states [19]. A sequence 
of learning activities may include (play video—solve exercise—taking quiz—access 
instructions) [17], other examples include sequence of game moves e.g., (solve 
puzzle—request hint—complete game) [13], or collaborative roles, for instance, 
(leader—mediator - isolate) [15]. 

Before going into sequence analysis, let’s discuss a basic example of a sequence 
inspired by Saqr and López-Pernas [9]. Let’s assume we are tracking the engage-
ment states of students from a course to the next and for a full year that has 
five courses. The engagement states can be either engaged (when the student is 
fully engaged in their learning), average (when the student is moderately engaged), 
and disengaged (when the student is barely engaged). Representing the sequence 
of engagement states of two hypothetical students may look like the example on 
Table 2. 

The first student starts in course 1 with an Average engagement state, in Course 
2, the student is engaged, and so in all the subsequent courses Course 3, Course 4, 
and Course 5. The student in row 2 has a Disengaged state in course 2 onwards. 
As we can see from the two sequences here, there is a pattern that repeats in both 
sequences (both students stay 4 consecutive courses in the same state). In real-life 
examples, sequences are typically longer and in larger numbers. For instance, the 
paper by Saqr and López-Pernas [9] contains 106 students for a sequence of 15 
courses. Finding repeated patterns of engaged states similar to the first student or 
repeated patterns of disengaged states like the other student would be interesting and 
helpful to understand how certain subgroups of students proceed in their education 
and how that relates to their performance. 

Table 2 An example sequence
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3.1 Steps of Sequence Analysis 

Several protocols exist for sequence analysis that vary by discipline, research 
questions, type of data, and software used. In education, sequence analysis protocol 
usually follows steps that include preparing the data, finding patterns, and relating 
these patterns to other variables e.g., performance e.g., [11]. The protocol which 
will be followed in this manual includes six steps: 

(1) Identifying (or coding) the elements of the sequence, commonly referred to as 
alphabet 

(2) Specifying the time window or epoch (time scheme) or sequence alignment 
scheme 

(3) Defining the actor and building the sequence object 
(4) Visualization and descriptive analysis 
(5) Finding similar groups or clusters of sequences, 
(6) Analyzing the groups and/or using them in subsequent analyses. 

3.1.1 The Alphabet 

The first step of sequence analysis is defining the alphabet which are the ele-
ments or the possible states of the sequence [19]. This process usually entails 
“recoding” the states to optimize the granularity of the alphabet. In other words, 
to balance parsimony versus granularity and detail of the data. Some logs are 
overly detailed and therefore would require a careful recoding by the researcher [8]. 
For instance, the logs of Moodle (the LMS) include the following log entries for 
recoding students’ access to the quiz module: quiz_attempt, quiz_continue_attempt, 
quiz_close_attempt, quiz_view, quiz_view_all, quiz_preview. It makes sense here 
to aggregate (quiz_attempt, quiz_continue_attempt, quiz_close_attempt) into one 
category with the label attempt_quiz and (quiz_view, quiz_view all, quiz preview) to  
a new category with the label view_quiz. Optimizing the alphabet into a reasonable 
number of states also helps reduce complexity and facilitates interpretation. Of 
course, caution should be exercised not to aggregate meaningfully distinct states 
to avoid masking important patterns within the dataset. 

3.1.2 Specifying the Time Scheme 

The second step is to define a time scheme, time epoch or window for the analysis. 
Sometimes the time window is fairly obvious, for instance, in case a researcher 
wants to study students’ sequence of courses in a program, the window can be 
the whole program e.g., [9]. Yet, oftentimes, a decision has to be taken about 
the time window which might affect the interpretation of the resulting sequences. 
For example, when a researcher is analyzing the sequence of interactions in a 
collaborative task, he/she may consider the whole collaborative task as a time 
window or may opt to choose segments or steps within the task as time epochs.
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Fig. 1 Every line represents a click, a sequence of successive clicks is a session, and the session 
is defined by the inactivity period 

Table 3 A sequence of engagement states using fictional data 

In the same way, analyzing the sequence of tasks in a course, one would consider 
the whole course to be the time window for analysis or analyze the sequence of steps 
in each course task e.g., [ 20]. 

In online learning, the session has been commonly considered the time window 
e.g., [11, 17]. A session is an uninterrupted sequence of online activity which can 
be inferred from identifying the periods of inactivity as depicted in Fig. 1. As can 
be seen, a user can have multiple sessions across the course. There is no standard 
guideline for what time window a researcher should consider, however, it is mostly 
defined by the research questions and the aims of analysis. 

3.1.3 Defining the Actor 

The third important step is to define the actor or the unit of analysis of the sequences 
(see the actor in Table 3 or User in Table 4). The actor varies according to the type 
of analysis. When analyzing students’ sequences of actions, we may choose the 
student to be the actor and build a sequence of all student actions e.g., [20]. In online 
learning, sequence mining has always been created for “user sessions” i.e., each user 
session is represented as a sequence e.g., [17, 21] and therefore, a user typically has 
several sessions along the course. In other instances, you may be interested in the 
study of the sequences of the students’ states, for example engagement states in [9] 
where the student was the actor, or a group of collaborating students’ interactions 
as a whole such as [16] where the whole group is the actor. In the review of the 
literature, we have examples of such decisions. 

3.1.4 Building the Sequences 

This step is specific to the software used. For example, in TraMineR the step includes 
specifying the dataset on which the building of the sequences is based and telling
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Table 4 The first three columns are simulated sequence data and the three gray columns are 
computed 

User Action Time Lag Session Order 

Layla Calendar 9.1.2023 18:44 – Layla session 1 1 

Layla Lecture 9.1.2023 18:45 1 Layla session 1 2 

Layla Instructions 9.1.2023 18:47 2 Layla session 1 3 

Layla Assignment 9.1.2023 18:49 2 Layla session 1 4 

Layla Lecture 9.1.2023 18:50 1 Layla session 1 5 

Layla Video 9.1.2023 18:51 1 Layla session 1 6 

Sophia Lecture 9.1.2023 20:08 – Sophia session 1 1 

Sophia Instructions 9.1.2023 20:12 4 Sophia session 1 2 

Sophia Assignment 9.1.2023 20:14 2 Sophia session 1 3 

Sophia Assignment 9.1.2023 20:18 4 Sophia session 1 4 

Sophia Assignment 9.1.2023 20:21 3 Sophia session 1 5 

Carmen Lecture 10.1.2023 10:08 – Carmen session 1 1 

Carmen Video 10.1.2023 10:11 3 Carmen session 1 2 

Layla Instructions 10.1.2023 19:57 1506 Layla session 2 1 

Layla Video 10.1.2023 20:01 4 Layla session 2 2 

Layla Lecture 10.1.2023 20:08 7 Layla session 2 3 

Layla Assignment 10.1.2023 20:14 6 Layla session 2 4 

TraMineR the alphabet, the time scheme, and the actor id variable, as well as other 
parameters of the sequence object. This step will be discussed in detail in the 
analysis section. 

3.1.5 Visualizing and Exploring the Sequence Data 

The fourth step is to visualize the data and perform some descriptive analysis. 
Visualization allows us to summarize data easily and to see the full dataset at once. 
TraMineR includes several functions to plot the common visualization techniques, 
each one showing a different perspective. 

3.1.6 Calculating the Dissimilarities Between Sequences 

The fifth step is calculating dissimilarities or distances between pairs of sequences. 
Dissimilarity measures are a quantitative estimation of how different—or similar— 
the sequences are. Since there are diverse contexts, analysis objectives and sequence 
types, it is natural that there are several methods to compute the dissimilarities based 
on different considerations. 

Optimal matching (OM) may be the most commonly used dissimilarity measure 
used in social sciences and possibly also in education [22]. Optimal matching 
represents what it takes to convert or edit a sequence to become identical to another
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sequence. These edits may involve insertion, deletion (together often called indel 
operations) or substitution. For instance, in an example in Table 3, where we see 
a sequence of five students’ engagement states, we can edit Vera’s sequence and 
substitute the disengaged state with an average state; Vera’s sequence will become 
identical with Luis’ sequence. That is, editing Vera’s sequence takes one substitution 
to convert her sequence to that of Luis. We can also see that it will take four 
substitutions to convert Anna’s sequence to Maria’s sequence. In other words, 
Anna’s sequence is highly dissimilar to Maria. Different types of substitutions 
can be given different costs depending on how (dis)similar the two states are 
viewed (referred to as substitution costs). For example, the cost of substituting state 
engaged with state average might have a lower cost than substituting engaged with 
disengaged, since being disengaged is regarded most dissimilar to being engaged 
while average engagement is more similar to it. Since contexts differ, there are 
different ways of defining or computing the pairwise substitution costs matrix. 

Optimal matching derives from bioinformatics where transformations such as 
indels and substitutions are based on actual biological processes such as the 
evolution of DNA sequences. In many other fields such a transformation process 
would be unrealistic. In social sciences, [22] outlined five socially meaningful 
aspects and compared dissimilarity measures to determine how sensitive they are 
to the different aspects. These similarities are particularly relevant since learning, 
behavior, and several related processes e.g., progress in school or transition to the 
labor market are essentially social processes. We explain these aspects based on an 
example using fictional data in Table 3 following [9]. 

1. Experienced states: how similar are the unique states forming the sequence. 
For instance, Maria and Bob in Table 3 have both experienced the same states 
(engaged and average). 

2. Distribution of the states: how similar is the distribution of states. We can 
consider that two sequences are similar when students spend most of their time 
in the same states. For instance, Bob and Maria have 80% engaged states and 
20% average states. 

3. Timing: the time when each state occurs. For instance, two sequences can be 
similar when they have the same states occurring at the same time. For instance, 
Vera and Luis start similarly in a disengaged state, visit the average state in the 
middle, and finish in the engaged state. 

4. Duration: the durations of time spent continuously in a specific state (called 
spells) e.g., the durations of engaged states shared by the two sequences. 
For instance, Vera and Anna both had spells of two successive states in the 
disengaged state while Bob had two separate spells in the engaged state (both 
of length 2). 

5. Sequencing: The order of different states in the sequence, for instance, Vera and 
Luis had similar sequences starting as disengaged, moving to  average and then 
finishing as engaged. 

Of the aforementioned aspects, the first two can be directly determined from the 
last three. Different dissimilarity measures are sensitive to different aspects, and it is
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up to the researcher to decide which aspects are important in their specific context. 
Dissimilarity measures can be broadly classified in three categories [22]: 

1. distance between distributions, 
2. counting common attributes between sequences, and 
3. edit distances. 

Category 1 includes measures focusing on the distance between distributions 
including, e.g., Euclidean distance and .χ2-distance that compare the total time spent 
in each state within each sequence. The former is based on absolute differences in 
the proportions while the latter is based on weighted squared differences. 

Category 2 includes measures based on counting common attributes. For exam-
ple, Hamming distances are based on counting the (possibly weighted) sum of 
position wise mismatches between the two sequences, the length of the longest com-
mon subsequence (LCS) is the number of shared states between two sequences that 
occur in the same order in both, while the subsequence vector representation-based 
metric (SVRspell) is counted as the weighted number of matching subsequences. 

Category 3 includes edit distances that measure the costs of transforming one 
sequence to another by using edit operations (indels and substitutions). They include 
(classic) OM with different cost specifications as well as variants of OM such as OM 
between sequences of spells (OMspell) and OM between sequences of transitions 
(OMstran). 

Studer and Ritschard [22] give recommendations on the choice of dissimilarity 
measure based on simulations on data with different aspects. If the interest is 
on distributions of states within sequences, Euclidean and .χ2-distance are good 
choices. When timing is of importance, the Hamming distances are the most 
sensitive to differences in timing. With specific definitions also the Euclidean 
and .χ2-distance can be made sensitive to timing—the latter is recommended if 
differences in rare events are of particular importance. When durations are of 
importance, then OMspell is a good choice, and also LCS and classic OM are 
reasonable choices. When the main interest is in sequencing, good choices include 
OMstran, OMspell, and SVRspell with particular specifications. If the interest is 
in more than one aspect, the choice of the dissimilarity measure becomes more 
complex. By altering the specifications in measures such as OMstran, OMspell, 
and SVRspell the researcher could find a balance between the desired attributes. 
See [22] for more detailed information on the choice of dissimilarity measures and 
their specifications. 

Dissimilarities are hard to interpret as such (unless the data are very small), so 
further analyses are needed to decrease the complexity. The most typical choice is 
to use cluster analysis for finding groups of individuals with similar patterns [23]. 
Other distance—or dissimilarity—based techniques include visualizations with 
multidimensional scaling [24], finding representative sequences [25], and ANOVA-
type analysis of discrepancies [26].
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3.1.7 Finding Similar Groups or Clusters of Sequences 

The sixth step is finding similar sequences, i.e., groups or patterns within the 
sequences where sequences within each group or cluster are as close to each other 
as possible and as different from other patterns in other clusters as possible. For 
instance, we can detect similar groups of sequences that show access patterns to 
online learning which are commonly referred to as tactics e.g., [3]. Such a step 
is typically performed using a clustering algorithm which may—or may not— 
require dissimilarity measures as an input [23, 27]. Common clustering algorithms 
that use a dissimilarity matrix are the hierarchical clustering algorithms. Hidden 
Markov models are among the most non-distance based cluster algorithms. See 
the remaining chapters about sequence analysis for examples of these algorithms 
[28–30]. 

3.1.8 Analyzing the Groups and/or Using Them in Subsequent Analyses 

Analysis of the identified patterns or subgroups of sequences is an important 
research question in many studies and oftentimes, it is the guiding research question. 
For instance, researchers may use log data to create sequences of learning actions, 
identify subgroups of sequences, and examine the association between the identified 
patterns and performance e.g., [3, 17, 18], associate the identified patterns with 
course and course delivery [10], examine how sequences are related to dropout using 
survival analysis [9], or compare sequence patterns to frequencies [16]. 

3.2 Introduction to the Technique 

Before performing the actual analysis with R code, we need to understand how 
the data is processed for analysis. Four important steps that require more in-
depth explanation will be clarified here, those are: defining the alphabet, the 
timing scheme, specifying the actor, and visualization. Oftentimes, the required 
information to perform the aforementioned steps are not readily obvious in the data 
and therefore some preparatory steps need to be taken to process the file. 

The example shown in Table 4 uses fictional log trace data similar to those that 
come from LMSs. To build a sequence from the data in Table 4, we can use the 
Action column as an alphabet. If our aim here is to model the sequence of students’ 
online actions, this is a straightforward choice that requires no preparation. Since 
the log trace data has no obvious timing scheme, we can use the session as a time 
scheme. To compute the session, we need to group the actions that occur together 
without a significant delay between actions (i.e., lag) that can be considered as an 
inactivity (see Sect. 3.1.2). For instance, Layla’s actions in Table 4 started at 18:44 
and ended at 18:51. As such, all Layla’s actions occurred within 7 minutes. As 
Table 4 also shows, the first group of Layla’s actions occur within 1–2 minutes of
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Table 5 A sequence of engagement states using fictional data 

Actor 1 2 3 4 5 6 

Layla session1 Calendar Lecture Instructions Assignment Lecture Video 

Sophia session1 Lecture Instructions Assignment Assignment Assignment 

Carmen session1 Lecture Video 

Layla session2 Instructions Video Lecture Assignment 

lag. The next group of actions by Layla occur after almost one day, an hour and 
six minutes (1506 minutes) which constitutes a period of inactivity long enough 
to divide Layla’s actions into two separate sessions. Layla’s actions on the first 
day can be labeled Layla-session1 and her actions on the second day are Layla-
session2. The actor in this example is a composite of the student (e.g., Layla) and 
the session number. The same for Sophia and Carmen: their actions occurred within 
a few minutes and can be grouped into the sessions. Given that we have the alphabet 
(Action), the timing scheme (session), and the actor (user-session), the next step is to 
order the alphabet chronologically. In Table 4, the actions were sequentially ordered 
for every actor according to their chronological order. The method that we will use 
in our guide requires the data to be in so-called “wide format”. This is performed 
by pivoting the data, or creating a wide form where the column names are the order 
and the value of the Action column is sequentially and horizontally listed as shown 
in Table 5. 

The following steps are creating a sequence object using sequence mining 
software and using the created sequence in analysis. In our case, we use the 
TraMineR framework which has a large set of visualization and statistical functions. 
Sequences created with TraMineR also work with a large array of advanced tools, 
R packages, and extensions. However, it is important to understand sequence 
visualizations before delving into the coding part. 

3.3 Sequence Visualization 

Two basic plots are important here and therefore will be explained in detail. The 
first is the index plot (Fig. 2) which shows the sequences of stacked colored bars 
representing spells, with each token represented by a different color. For instance, 
if we take Layla’s actions (in session1) and represent them as an index plot, they 
will appear as shown in Fig. 2 (see the arrow). Where the Calendar is represented 
as a purple bar, the Lecture as a yellow bar, and instructions as an orange bar etc. 
Figure 2 also shows the visualization of sequences in Table 5 and you can see each 
of the session sequences as stacked colored bars following their order in the table. 
Nevertheless, sequence plots commonly include a large number of sequences that 
are of the order of hundreds or thousands of sequences and may be harder to read 
than the one presented in the example (see examples in the next sections). 

The distribution plot is another related type of sequence visualization. Distri-
bution plots—as the name implies—represent the distribution of each alphabet at
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Fig. 2 A table with ordered sequences of actions and the corresponding index plot; the arrow 
points to Layla’s actions 

Fig. 3 Index plot (top) and distribution plot (bottom) 

each time point. For example, if we look at Fig. 3 (top) we see 15 sequences in the 
index plot. At time point 1, we can count eight Calendar actions, two Video actions, 
two Lecture actions and one Instruction action. If we compute the proportions: we 
get 8/15 (0.53) of Calendar actions; for Video, Assignment, and Lecture we get 
2/15 (0.13) in each case, and finally Instructions actions account for 1/15 (0.067). 
Figure 3 (bottom) shows these proportions. At time point 1, we see the first block 
Assignment with 0.13 of the height of the bar, followed by the Calendar which 
occupies 0.53, then a small block (0.067) for the Instructions, and finally two equal 
blocks (0.13) representing the Video and Lecture actions. 

Since the distribution plot computes the proportions of activities at each time 
point, we see different proportions at each time point. Take for example, time point 
6, we have only two actions (Video and Assignment) and therefore, the plot has 50%



334 M. Saqr et al.

for each action. At the last point 7, we see 100% for Lecture. Distribution plots 
need to be interpreted with caution and in particular, the number of actions at each 
time point need to be taken into account. One cannot say that at the seventh time 
point, 100% of actions were Lecture, since it was the only action at this time point. 
Furthermore, distribution plots do not show the transitions between sequences and 
should not be interpreted in the same way as the index plot. 

4 Analysis of the Data with Sequence Mining in R 

4.1 Important Packages 

The most important package and the central framework that we will use in our 
analysis is the TraMineR package. TraMineR is a toolbox for creating, describing, 
visualizing and analyzing sequence data. TraMineR accepts several sequence 
formats, converts to a large number of sequence formats, and works with other 
categorical data. TraMineR computes a large number of dissimilarity measures 
and has several integrated statistical functions. TraMineR has been mainly used 
to analyze live event data such as employment states, sequence of marital states, 
or other life events. With the emergence of learning analytics and educational data 
mining, TraMineR has been extended into the educational field [31]. In the current 
analysis we will also need the packages TraMineRextras, WeightedCluster, and 
seqhandbook, which provide extra functions and statistical tools. The first code 
block loads these packages. In case you have not already installed them, you may 
need to install them. 

library(TraMineR) 
library(TraMineRextras) 
library(WeightedCluster) 
library(seqhandbook) 
library(tidyverse) 
library(rio) 
library(cluster) 
library(MetBrewer) 
library(reshape2) 

4.2 Reading the Data 

The example that will be used here is a Moodle log dataset that includes three 
important fields: the User ID (user), the time stamp (timecreated), and the
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actions (Event.context). Yet, as we mentioned before, there are some steps that 
need to be performed to prepare the data for analysis. First, the Event.context 
is very granular (80 different categories) and needs to be re-coded as mentioned 
in the basics of sequence mining section. We have already prepared the file with 
a simpler coding scheme where, for example, all actions intended as instructions 
were coded as instruction, all group forums were coded as group_work, and all 
assignment work was coded as Assignment. Thus, we have a field that we can use 
as the alphabet titled action. The following code reads the original coded dataset. 

Seqdatas <-
import("https://github.com/lamethods/data/raw/main/1_moodleLAcourse/Events.xlsx") 

# A tibble: 95,626 x 7 
Event.context user timecreated Component Event.name Log Action 
<chr> <chr> <dttm> <chr> <chr> <chr> <chr> 

1 Assignment: Fina~ 9d74~ 2019-10-26 09:37:12 Assignme~ Course mo~ Assi~ Assig~ 
2 Assignment: Fina~ 9148~ 2019-10-26 09:09:34 Assignme~ The statu~ Assi~ Assig~ 
3 Assignment: Fina~ 278a~ 2019-10-18 12:05:28 Assignme~ Course mo~ Assi~ Assig~ 
4 Assignment: Fina~ 53d6~ 2019-10-19 13:28:37 Assignme~ The statu~ Assi~ Assig~ 
5 Assignment: Fina~ aab7~ 2019-10-15 23:38:13 Assignme~ Course mo~ Assi~ Assig~ 
6 Assignment: Fina~ 82ed~ 2019-10-18 17:51:43 Assignme~ Course mo~ Assi~ Assig~ 
7 Assignment: Fina~ 4178~ 2019-10-18 15:22:56 Assignme~ Course mo~ Assi~ Assig~ 
8 Assignment: Fina~ 82ed~ 2019-10-22 13:46:51 Assignme~ The statu~ Assi~ Assig~ 
9 Assignment: Fina~ f2e9~ 2019-10-15 14:58:17 Assignme~ Submissio~ Assi~ Assig~ 

10 Assignment: Fina~ 53d6~ 2019-10-19 13:28:38 Assignme~ Course mo~ Assi~ Assig~ 
# i 95,616 more rows 

4.3 Preparing the Data for Sequence Analysis 

To create a time scheme, we will use the methods described earlier in the basis 
of the sequence analysis section. The timestamp field will be used to compute the 
lag (the delay) between actions, find the periods of inactivity between the actions, 
and mark the actions that occur without a significant lag together as a session. 
Actions that follow with a significant delay will be marked as a new session. The 
following code performs these steps. First, the code arranges the data according 
to the timestamp for each user (see the previous example in the basics section), 
this is why we use arrange(timecreated, user). The second step (#2) is to 
group_by(user) to make sure all sessions are calculated for each user separately. 
The third step is to compute the lag between actions. Step #4 evaluates the lag 
length; if the lag exceeds 900 seconds (i.e., a period of inactivity of 900 seconds), the 
code marks the action as the start of a new session. Step #5 labels each session with 
a number corresponding to its order. The last step (#6) creates the actor variable, by 
concatenating the username with the string “Session_” and the session number; the 
resulting variable is called session_id. 

sessioned_data <- Seqdatas |> 
arrange(timecreated, user) |> # Step 1 
group_by(user) |> # Step 2 
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mutate(Time_gap = timecreated - (lag(timecreated))) |> # Step 3 
mutate(new_session = is.na(Time_gap) | Time_gap > 900) |> # Step 4 
mutate(session_nr = cumsum(new_session)) |> # Step 5 
mutate(session_id = paste0 (user, "_", "Session_", session_nr)) #Step 6 

An important question here is what is the optimum lag or delay that we should 
use to separate the sessions. Here, we used 900 seconds (15 minutes) based on our 
knowledge of the course design. In the course where the data comes from, we did not 
have activities that require students to spend long periods of idle time online (e.g., 
videos). So, it is reasonable here to use a relatively short delay (i.e., 900 seconds) 
to mark new sessions. Another alternative is to examine the distribution of lags or 
compute the percentiles. 

quantile(sessioned_data$Time_gap, 
c(0.10, 0.50, 0.75, 0.80, 0.85, 0.90, 0.95, 1.00), na.rm = TRUE) 

Time differences in secs 
10% 50% 75% 80% 85% 90% 95% 100% 

1 1 61 61 181 841 12121 1105381 

The previous code computes the proportion of lags at 10% to 100% and the 
results show that at 90th percentile, the length of lags is equal to 841 seconds, 
that is very close to the 900 seconds we set. The next step is to order the 
actions sequentially (i.e., create the sequence in each session) as explained in 
Sect. 3.1.2 and demonstrated in Table 4. We can perform such ordering using the 
function seq_along(session_id) which creates a new field called sequence that 
chronologically orders the action (the alphabet). 

sessioned_data <- sessioned_data |> 
group_by(user, session_nr) |> 
mutate(sequence = seq_along(session_nr)) |> 
mutate(sequence_length = length(sequence)) 

Some sessions are outliers (e.g., extremely long or very short)—there are usually 
very few—and therefore, we need to trim such extremely long sessions. We do so 
by calculating the percentiles of session lengths. 

quantile(sessioned_data$sequence_length, 
c(0.05, 0.1, 0.5, 0.75, 0.90, 0.95, 0.98, 0.99, 1.00), na.rm = 
TRUE) 

5% 10% 50% 75% 90% 95% 98% 99% 100% 
3 4 16 29 42 49 59 61 62



Sequence Analysis in Education: Principles, Technique, and Tutorial with R 337

We see here that 95% of sequences lie within 49 states long and therefore, we 
can trim these long sessions as well as sessions that are only one event long. 

sessioned_data_trimmed <- sessioned_data |> 
filter(sequence_length > 1 & sequence <= 49) 

The next step is to reshape or create a wide format of the data and convert each 
session into a sequence of horizontally ordered actions. For that purpose, we use the 
function dcast from the reshape2 package. For this function, we need to specify 
the ID columns (the actor) and any other properties for the users can be specified 
here also. We selected the variables user and session_id. Please note that only 
session_id is necessary (actor) but it is always a good idea to add variables that 
we may use as weights, as groups, or for later comparison. We also need to specify 
the sequence column and the alphabet (action) column. The resulting table is 
similar to Table 5. 

The last step is creating the sequence object using the seqdef function from 
the TraMineR package. To define the sequence, we need the prepared file from 
the previous step (similar to Table 5) and the beginning and end of the columns 
to consider i.e., the start of the sequence. We have started from the fourth column 
since the first three columns are meta-data (user, session_id, and session_nr). 
To include all columns in the data we use the ncol function to count the number 
of columns in the data. Creating a sequence object enables the full potential of 
sequence analysis. 

data_reshaped <- dcast(user + session_id + session_nr ~ sequence, 
data = sessioned_data_trimmed, 
value.var = "Action") 

Seqobject <- seqdef(data_reshaped, 4:ncol(data_reshaped)) 

[>] found missing values (’NA’) in sequence data 
[>] preparing 9383 sequences 
[>] coding void elements with ’%’ and missing values with ’*’ 
[>] 12 distinct states appear in the data: 

1 = Applications 
2 = Assignment 
3 = Course_view 
4 = Ethics 
5 = Feedback 
6 = General 
7 = Group_work 
8 = Instructions 
9 = La_types 
10 = Practicals 
11 = Social
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12 = Theory 
[>] 9383 sequences in the data set 
[>] min/max sequence length: 2/49 

An optional—yet useful—step is to add a color palette to create a better looking 
plot. Choosing an appropriate palette with separable colors improves the readability 
of the plot by helping easily identify different alphabets. 

Number_of_colors <- length(alphabet(Seqobject)) 
colors <- met.brewer(name = "VanGogh2", n =  Number_of_colors) 
cpal(Seqobject) <- colors 

4.4 Statistical Properties of the Sequences 

A simple way to get the properties of the sequences is through the function 
summary(). The functions show the total number of sequences in the object, the 
number of unique sequences, and lists the alphabet. A better way to dig deeper into 
the sequence properties is to use the seqstatd() function which returns several 
statistics, most notably the relative frequencies, i.e., the proportions of each state at 
each time point or the numbers comprising the distribution plot. The function also 
returns the valid states, that is, the number of valid states at each time point as well 
as the transversal entropy, which is a measure of diversity of states at each time 
point [32]. The code in the next section computes the sequence statistics and then 
displays the results. We show only the output of seq_stats$Frequencies where 
we see the frequency of each activity at each time point (Table 6). 

summary(Seqobject) 
seq_stats <- seqstatd(Seqobject) 
seq_stats$Frequencies 
seq_stats$Entropy 
seq_stats$ValidStates 

4.5 Visualizing Sequences 

Visualization has a summarizing power that allows researchers to have an idea about 
a full dataset in one visualization. TraMineR allows several types of visualizations 
that offer different perspectives. The most common visualization type is the distri-
bution plot (described earlier in Fig. 3). To plot a distribution plot one can use the 
powerful seqplot function with the argument type="d" or simply seqdplot().
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Table 6 Frequency of activities at each point 

Activity 1 2 3 4 5 6 7 8 . . .  49 

Applications 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.03 

Assignment 0.08 0.10 0.11 0.09 0.08 0.09 0.07 0.07 0.00 

Course_view 0.48 0.32 0.27 0.26 0.23 0.21 0.20 0.23 0.14 

Ethics 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 

Feedback 0.03 0.04 0.03 0.05 0.04 0.04 0.04 0.04 0.00 

General 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.22 

Group_work 0.21 0.28 0.31 0.33 0.36 0.37 0.38 0.37 0.31 

Instructions 0.05 0.07 0.07 0.07 0.07 0.08 0.08 0.07 0.04 

La_types 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.09 

Practicals 0.09 0.12 0.12 0.11 0.11 0.11 0.11 0.12 0.07 

Social 0.01 0.02 0.02 0.03 0.03 0.02 0.03 0.03 0.00 

Theory 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 

Fig. 4 Sequence distribution 
plot 

seqplot(Seqobject, type = "d") 

The default distribution plot has an y-axis that ranges from 0 to 1.0 corresponding 
to the proportion and lists the number of sequences which in our case is 9383 
However, the default output of the seqdplot() function is rarely satisfactory and 
we need to use the function arguments to optimize the resulting plot. The help file 
contains a rather detailed list of arguments and types of visualizations that can be 
consulted for more options, which can be obtained like any other R function by 
typing ?seqplot. In this chapter we will discuss the most basic options. In Fig. 4, 
we use cex.legend argument to optimize the legend text size, we use the ncol 
argument to make the legend spread over six columns, the argument legend.prop 
to make the legend a bit far away from the main plot so they do not overlap and 
we use the argument border=NA to remove the borders from the plot. With such
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Fig. 5 Sequence distribution plot with customized arguments 

small changes, we get a much cleaner and readable distribution plot. Please note, 
that in each case, you may need to optimize the plot according to your needs. It is 
important to note here that in the case of missing data or sequences with unequal 
lengths like ours—which is very common—the distribution plot may show results 
that are made of fewer sequences at later time points. As such, the interpretation of 
the distribution plot should take into account the number of sequences, missing data, 
and timing (Fig. 5). An index plot may be rather more informative in cases where 
missing data is prevalent. 

seqplot(Seqobject, type = "d", cex.legend = 0.9, ncol = 6, cex.axis = 0.7, 
legend.prop = 0.1, border = NA) 

The index plot can be plotted in the same way using seqplot() with the 
argument type="I" or simply using seqIplot. The resulting plot (Fig. 6) has each 
sequence of the 9383 plotted as a line of stacked colored bars. One of the advantages 
of index plots is that they show the transitions between states in each sequence spell. 
Of course, plotting more than nine thousand sequences results in very thin lines 
that may not be very informative. Nevertheless, index plots are very informative 
when the number of sequences is relatively small. Sorting the sequences could 
help improve the visualization. On the right side, we see the index plot using the 
argument “sortv =”from.start”, under which sequences are sorted by the elements 
of the alphabet at the successive positions starting from the beginning of the time 
window.
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Fig. 6 Sequence index plots 

seqplot(Seqobject, type = "I", cex.legend = 0.6, ncol = 6, cex.axis = 0.6, 
legend.prop = 0.2, border = NA) 

seqplot(Seqobject, type = "I", cex.legend = 0.6, ncol = 6, cex.axis = 0.6, 
legend.prop = 0.2, border = NA, sortv = "from.start") 

The last visualization type we discuss here is the mean time plot, which plots 
the total time of every element of the alphabet across all time, i.e., a frequency 
distribution of all states regardless of their timing. As the plot in Fig. 7 shows, group 
work seems to be the action that students performed the most, followed by course 
view. 

seqplot(Seqobject, type = "mt", cex.legend = 0.7, ncol = 6, cex.axis = 0.6, 
legend.prop = 0.15, border = NA, ylim = c(0, 5)) 
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Fig. 7 Mean time plot 

4.6 Dissimilarity Analysis and Clustering 

Having prepared the sequences and explored their characteristics, we can now 
investigate if they have common patterns, recurrent sequences, or groups of similar 
sequences. This is a two-stage process; we will need to compute dissimilarities 
(along with associated substitution costs) and then perform cluster analysis on 
the resulting matrix. For more details on the clustering technique, please refer to 
Chapter 8 [33]. In the case of log trace data, clustering has always been performed 
to find learning tactics or sequences of students’ actions that are similar to each 
other or, put another way, patterns of similar behavior (e.g., [3, 11]). For the present 
analysis, we begin with the most common method for computing the dissimilarity 
matrix, that is Optimal Matching (OM). OM computes the dissimilarity between two 
sequences as the minimal cost of converting a sequence to the other. OM requires 
some steps that include specifying a substitution cost matrix, indel cost. Later, we 
use a clustering algorithm to partition the sequences according to the values returned 
by the OM algorithm [34, 35]. 

A possible way to compute substitutions cost that has been commonly used— 
yet frequently criticized—in the literature is the TRATE method [36]. The TRATE 
method is data-driven and relies on transition rates; it assumes that pairs of states 
with frequent transitions between them should have “lower cost” of substitution (i.e., 
they are seen as being more similar). Thus, if we replace an action with another 
action that occurs often, it has a lower cost. This may be useful in some course 
designs, where some activities are very frequently visited and others are rare. The 
function seqsubm() is used to compute substitution costs with the TRATE method 
via:
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substitution_cost_TRATE <- seqsubm(Seqobject, method ="TRATE") 

If we print the substitution cost matrix (Table 7), we see that, for instance, 
the cost of replacing Applications with Applications is 0, whereas the cost of 
replacing Applications with Assignment (and vice versa) is higher (1.94). 
Since Course_view is the most common transition, replacing any action with 
Course_view tends to be the lowest in cost, which makes sense. Please note that 
the TRATE method is presented here for demonstration only. In fact, we do not 
recommend it to be used by default; readers should choose carefully what cost 
method best suits their data. 

Nevertheless, the most straightforward way of computing the cost is to use 
a constant cost; that is, to assume that the states are equally distant from one 
another. To do so, we can use the function seqsubm() and supply the argument 
method="CONSTANT". In the following example, we assign a common cost of 2 
(via the argument cval). We also refer below to other optional arguments which are 
not strictly necessary for the present application but nonetheless worth highlighting 
as options. 

substitution_cost_constant <- seqsubm( 
Seqobject, # Sequence object 
method = "CONSTANT", # Method to determine costs 
cval = 2, # Substitution cost 
time.varying = FALSE, # Does not allow the cost to vary over time 
with.missing = TRUE, # Allows for missingness state 
miss.cost = 1, # Cost for substituting a missing state 
weighted = TRUE) # Allows weights to be used when applicable 

To compute the OM dissimilarity matrix, the indel argument needs to be 
provided and we will use the default value 1 which is half of the highest substitution 
cost (2). We also need to provide the substitution cost matrix (sm). We opt for 
the matrix of constant substitution costs created above, given its straightforward 
interpretability. 

dissimilarities <- seqdist(Seqobject, method = "OM",indel = 1, 
sm = substitution_cost_constant) 

[>] 9383 sequences with 12 distinct states 

[>] checking ’sm’ (size and triangle inequality) 

[>] 4062 distinct sequences 

[>] min/max sequence lengths: 2/49 

[>] computing distances using the OM metric 

[>] elapsed time: 7.807 secs
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Fig. 8 Visualization of clusters using a dendrogram 

In the resulting pairwise dissimilarity matrix, every sequence has a dissimilarity 
value with every other sequence in the dataset, and therefore, the dissimilarity matrix 
can be large and resource intensive in larger matrices. In our case, the dissimilarity 
matrix is 9383 * 9383 (i.e., 88,040,689) in size. With these dissimilarities between 
sequences as input, several distance-based clustering algorithms can be applied to 
partition the data into homogeneous groups. In our example, we use the hierarchical 
clustering algorithm from the package stats by using the function hclust(), but  
note that the choice of clustering algorithm can also affect results greatly and should 
be chosen carefully by the reader. For more details on the clustering technique, 
please refer to Chapter 8 [33]. The seq_heatmap() function is used to plot a 
dendrogram of the index plot which shows a hierarchical tree of different levels 
of subgrouping and helps choose the number of clusters visually. 

clusters_sessionsh <- hclust(as.dist(dissimilarities), method = "ward.D2") 
seq_heatmap(Seqobject, clusters_sessionsh) 

To do the actual clustering, we use the function cutree() and with the argument 
k = 3  to cluster the sequence into three clusters according to the groups highlighted 
in Fig. 8. The  cutree function produces a vector of cluster numbers, we can create
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Fig. 9 Sequence distribution plot for the k=3 cluster solution 

more descriptive labels as shown in the example and assign the results to an R 
object called Groups. Visualizations of the clustering results can be performed 
in a similar fashion to the earlier visualizations of the entire set of sequences: 
via seqplot(), with the desired type of plot, and the addition of the argument 
group (Fig. 9). Readers have to choose the arguments and parameters according to 
contexts, research questions, and the nature of their data. 

Cuts <- cutree(clusters_sessionsh, k =  3) 
Groups <- factor(Cuts, labels = paste("Cluster", 1:3)) 
seqplot(Seqobject, type = "d", group = Groups, cex.legend = 0.8, ncol = 2, 

cex.axis = 0.6, legend.prop = 0.2, border = NA) 

However, the resulting clusters might not be the best solution and we need to try 
other dissimilarity measures and/or clustering algorithms, evaluate the results, and 
compare their fit indices. TraMineR provides several distance measures, the most 
common of which are: 

• Edit distances: Optimal matching "OM" or optimal matching with sensitivity 
to certain factors, e.g., optimal matching with sensitivity to spell sequence 
("OMspell") or with sensitivity to transitions ("OMstran"). 

• Shared attributes: Distance based on the longest common subsequence 
("LCS"), longest common prefix ("LCP"; which prioritizes sequence common 
initial states), or the subsequence vectorial representation distance ("SVRspell"; 
based on counting common subsequences).
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• Distances between distributions of states: Euclidean ("EUCLID") distance or 
Chi-squared (“CHI2”). 

Determining the distance may be done based on the research hypothesis, 
context, and the nature of the sequences. For instance, a researcher may decide 
to group sequences based on their common starting points (e.g., [16]) where the 
order and how a conversation starts matter. TraMineR allows the computation of 
several dissimilarities. The following code computes some of the most common 
dissimilarities and stores each in a variable that we can use later. 

# Edit distances and sequences 
dissimOMstran <- seqdist(Seqobject, method = "OMstran", otto = 0.1, 

sm = substitution_cost_constant, indel = 1) 
dissimOMspell <- seqdist(Seqobject, method = "OMspell", expcost = 0, 

sm = substitution_cost_constant, indel = 1) 
dissimSVRspell <- seqdist(Seqobject, method = "SVRspell", tpow = 0) 
dissimOM <- seqdist(Seqobject, method = "OM", otto = 0.1, 

sm = substitution_cost_constant, indel = 1) 

# Distances between state distributions 
dissimCHI2 <- seqdist(Seqobject, method = "CHI2", step = 1) 
dissimEUCLID <- seqdist(Seqobject, method = "EUCLID", step = 49) 

# Distances based on counts of common attribute e.g., duration (spell lengths) 
dissimOMspell <- seqdist(Seqobject, method = "OMspell", expcost = 1, 

sm = substitution_cost_constant, indel = 1) 
dissimLCS <- seqdist(Seqobject, method = "LCS") 
dissimLCP <- seqdist(Seqobject, method = "LCP") 
dissimRLCP <- seqdist(Seqobject, method = "RLCP") 

We can then try each dissimilarity with varying numbers of clusters and 
compute the clustering evaluation measures. The function as.clustrange from 
the WeightedCluster package computes several cluster quality indices including, 
among others, the Average Silhouette Width (ASW) which is commonly used in 
cluster evaluation to measure the coherence of the clusters. A value above 0.25 
means that the data has some structure or patterns, whereas a value below 0.25 
signifies the lack of structure in the data. The function also computes the Rˆ2 Value 
which represents the ratio of the variance explained by the clustering solution. The 
results can be plotted and inspected. We can see that four clusters seem to be a 
good solution. Table 8 and Fig. 10 show that the ASW and CHsq measures are 
maximized for the four-cluster solution, for which other parameters such as Rˆ2 
are also relatively good. Thus, we can use the four cluster solution. We note the 
use of the norm=“zscoremed” argument which improves the comparability of the 
various metrics in Fig. 10 by standardizing the values to make it easier to identify 
the maxima. Table 8, however, presents the values on their original scales. Finally,
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Table 8 Cluster performance metrics 

PBC HG HGSD ASW ASWw CH R2 CHsq R2sq HC 

.0.281 .0.336 .0.335 .0.268 .0.268 .2230.420 .0.192 .3565.535 .0.275 . 0.319 

.0.417 .0.489 .0.488 .0.307 .0.307 .1992.266 .0.298 .3553.441 .0.431 . 0.246 

.0.507 .0.614 .0.614 .0.333 .0.333 .1952.437 .0.384 .3985.571 .0.560 . 0.190 

.0.491 .0.635 .0.634 .0.272 .0.272 .1717.644 .0.423 .3524.149 .0.601 . 0.184 

.0.511 .0.677 .0.677 .0.287 .0.288 .1580.850 .0.457 .3301.251 .0.638 . 0.165 

.0.534 .0.736 .0.735 .0.308 .0.309 .1449.482 .0.481 .3178.407 .0.670 . 0.138 

.0.557 .0.812 .0.812 .0.324 .0.325 .1362.368 .0.504 .3110.913 .0.699 . 0.104 

.0.559 .0.831 .0.830 .0.327 .0.327 .1341.529 .0.534 .3124.571 .0.727 . 0.096 

.0.571 .0.865 .0.865 .0.329 .0.330 .1274.303 .0.550 .3085.893 .0.748 . 0.080 
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HC ( −1.39 / 2.53 ) 

Fig. 10 Cluster performance metrics. X-axis represents the number of clusters, Y-axis represents 
the fit index standardized value 

the ranges and other characteristics of each cluster quality metric are summarized in 
Table 9. For brevity, we proceed with only the Euclidean distance matrix. 

dissimiarities_tested <- dissimEUCLID 
Clustered <- hclust(as.dist(dissimiarities_tested), method = "ward.D2") 
Clustered_range <- as.clustrange(Clustered, diss = dissimiarities_tested, 

ncluster = 10) 
plot(Clustered_range, stat = "all", norm = "zscoremed", lwd = 2) 

Clustered_range[["stats"]] 

To get the cluster assignment, we can use the results from the Clustered_range 
object and plot the clusters using the previously shown distribution, index, and mean 
time plot types (Figs. 11, 12, and 13).
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Table 9 Measures of the quality of a partition. Note: Table is based on [23] with permission from 
the author [23] 

Name Abrv. Range Min/Max Interpretation 

Point Biserial 
Correlation 

PBC [. −1;1] Max Measure of the capacity of the 
clustering to reproduce the distances 

Hubert’s Gamma HG [. −1;1] Max Measure of the capacity of the 
clustering to reproduce the distances 
(order of magnitude) 

Hubert’s Somers’ 
D 

HGSD [. −1;1] Max Measure of the capacity of the 
clustering to reproduce the distances 
(order of magnitude) taking into 
account ties in distances 

Hubert’s C HC [0;1] Min Gap between the partition obtained and 
the best partition theoretically possible 
with this number of groups and these 
distances 

Average 
Silhouette Width 

ASW [. −1;1] Max Coherence of assignments. High 
coherence indicates high 
between-group distances and strong 
within-group homogeneity 

Average 
Silhouette Width 
(weighted) 

ASWw [. −1;1] Max As previous, for floating point weights 

Calinski-Harabasz 
index 

CH [0; .+∞[ Max Pseudo F computed from the distances 

Calinski-Harabasz 
index 

CHsq [0; .+∞[ Max As previous, but using squared 
distances 

Pseudo R2 R2 [0;1] Max Share of the discrepancy explained by 
the clustering solution (only to 
compare partitions with identical 
number of groups) 

Pseudo R2 R2sq [0;1] Max As previous, but using squared 
distances 

grouping <- Clustered_range$clustering$cluster4 
seqplot(Seqobject, type = "d", group = grouping, cex.legend = 0.9, ncol = 6, 

cex.axis = 0.6, legend.prop = 0.2, border = NA) 

seqplot(Seqobject, type = "I", group = grouping, cex.legend = 0.9, ncol = 6, 
cex.axis = 0.6, legend.prop = 0.2, border = NA) 

seqplot(Seqobject, type = "mt", group = grouping, cex.legend = 1, ncol = 6, 
cex.axis = .5, legend.prop = 0.2, ylim = c(0, 10)) 
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Fig. 11 Sequence distribution plot for the four clusters 

Fig. 12 Sequence index plot for the four clusters 

Given the clustering structure, we also use a new plot type: the implication 
plot from the TraMineRextras package. Such a plot explicitly requires a group 
argument; in each of these plots, at each time point, “being in this group implies 
to be in this state at this time point”. The strength of the rule is represented by a
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Fig. 13 Mean time plot for the four clusters 

plotted line and a 95% confidence interval. Put another way, the more likely states 
have higher implicative values, which are more relevant when higher than the 95% 
confidence level (Fig. 14). 

implicaton_plot <- seqimplic(Seqobject, group = grouping) 
plot(implicaton_plot, conf.level = 0.95, cex.legend = 0.7) 

Given the implication plot as well as the other plots, the first cluster seems to 
be a mixed cluster with no prominent activity. Cluster 2 is dominated by practical 
activities, Cluster 3 is dominated by group work activities, Cluster 4 is dominated by 
assignments. Researchers usually give these clusters a label e.g., for Cluster 1, one 
could call it a diverse cluster. See some examples here in these papers [3, 10, 11]. 

5 More Resources 

Sequence analysis is a rather large field with a wealth of methods, procedures, and 
techniques. Since we have used the TraMineR software in this chapter, a first place 
to seek more information about sequence analysis would be to consult the TraMineR 
manuals and guides [23, 27, 37]. More tools for visualization can be found in the 
package ggseqplot [38]. The ggseqplot package reproduces similar plots to 
TraMineR with the ggplot2 framework as well as other interesting visualizations 
[39]. This allows further personalisation using the ggplot2 grammar, as we have
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Fig. 14 Implication plot for the four clusters 

learned in Chapter 6 of this book on data visualization [40]. Another important 
sequence analysis package is seqHMM [41], which contains several functions to 
fit hidden Markov models. In the next chapter, we see more advanced aspects of 
sequence analysis for learning analytics [28–30]. 

To learn more about sequence analysis in general, you can consult the book by 
Cornwell (2015), which is the first general textbook on sequence analysis in the 
context of social sciences. Another valuable resource is the recent textbook by Raab 
and Struffolino [38], which introduces the basics of sequence analysis and some 
recent advances as well as data and R code. 
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11. Jovanović J, Gašević D, Dawson S, Pardo A, Mirriahi N, Others (2017) Learning analytics to 
unveil learning strategies in a flipped classroom. Internet High Educ 33:74–85 

12. Saqr M, Matcha W, Uzir NA, Jovanovic J, Gašević D, López-Pernas S (2023) Transferring 
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17. Matcha W, Gašević D, Uzir NA, Jovanović J, Pardo A (2019) Analytics of learning strategies: 
Associations with academic performance and feedback. In: ACM international conference 
proceeding series, pp 461–470 

18. Kinnebrew JS, Biswas G (2012) Identifying learning behaviors by contextualizing differential 
sequence mining with action features and performance evolution. In: Proceedings of the 5th 
international conference on educational data mining, EDM 2012, pp 57–64 

19. Raab M, Struffolino E (2022) Sequence analysis. SAGE Publications 
20. López-Pernas S, Saqr M (2021) Bringing synchrony and clarity to complex multi-channel data: 

A learning analytics study in programming education. IEEE Access 9: 166531–166541 
21. López-Pernas S, Saqr M, Viberg O (2021) Putting it all together: Combining learning analytics 

methods and data sources to understand students’ approaches to learning programming. Sustain 
Sci Pract Pol 13:4825 

22. Studer M, Ritschard G (2016) What matters in differences between life trajectories: A 
comparative review of sequence dissimilarity measures. J R Stat Soc Ser A Stat Soc 179:481– 
511 

23. Studer M (2013) WeightedCluster library manual. Pract Guide Creat Typol Trajectories Soc 
Sci 2296–1658 

24. Piccarreta R, Lior O (2010) Exploring sequences: a graphical tool based 
on multi-dimensional scaling. J R Stat Soc Ser A (Stat Soc) 173:165–184. 
https://doi.org/10.1111/j.1467-985x.2009.00606.x 

25. Gabadinho A, Ritschard G (2013) Searching for typical life trajectories applied to childbirth 
histories. Gendered life courses–Between individualization and standardization A European 
approach applied to Switzerland, pp 287–312 

26. Studer M, Ritschard G, Gabadinho A, Müller NS (2011) Discrepancy analysis of state 
sequences. Sociol Methods Res 40:471–510


 8244 22940 a 8244 22940
a
 

 -563
53934 a -563 53934 a
 


354 M. Saqr et al.

27. Gabadinho A, Ritschard G, Müller NS, Studer M (2011) Analyzing and visualizing state 
sequences in R with TraMineR. J Stat Softw 40:1–37 

28. López-Pernas S, Saqr M, Helske S, Murphy K (2024, this volume) Multichannel sequence 
analysis in educational research using r. In: Saqr M, López-Pernas S (eds) Learning analytics 
methods and tutorials: A practical guide using R. Springer 

29. Helske J, Helske S, Saqr M, López-Pernas S, Murphy K (2024, this volume) A modern 
approach to transition analysis and process mining with markov models: A tutorial with R. 
In: Saqr M, López-Pernas S (eds) Learning analytics methods and tutorials: A practical guide 
using R. Springer 

30. López-Pernas S, Saqr M (2024, this volume) Modelling the dynamics of longitudinal processes 
in education. A tutorial with R for the VaSSTra method. In: Saqr M, López-Pernas S (eds) 
Learning analytics methods and tutorials: A practical guide using R. Springer 

31. Bergner Y, Shu Z, Davier A von (2014) Visualization and confirmatory clustering of sequence 
data from a simulation-based assessment task. In: Educational data mining 2014 

32. Billari FC (2001) The analysis of early life courses: Complex descriptions of the transition to 
adulthood. J Population Res 18:119–142. https://doi.org/10.1007/bf03031885 

33. Murphy K, López-Pernas S, Saqr M (2024, this volume) Dissimilarity-based cluster analysis of 
educational data: A comparative tutorial using R. In: Saqr M, López-Pernas S (eds) Learning 
analytics methods and tutorials: A practical guide using R. Springer 

34. Abbott A, Tsay A (2000) Sequence analysis and optimal matching methods in sociology: 
Review and prospect. Sociol Methods Res 29:3–33 

35. Studer M, Ritschard G (2015) What matters in differences between life trajectories: a 
comparative review of sequence dissimilarity measures. J R Stat Soc Ser A Stat Soc 179:481– 
511. https://doi.org/10.1111/rssa.12125 

36. Taub M, Banzon AM, Zhang T, Chen Z (2022) Tracking changes in students’ online self-
regulated learning behaviors and achievement goals using trace clustering and process mining. 
Front Psychol 13:813514 

37. Gabadinho A, Ritschard G, Studer M, Nicolas SM (2009) Mining sequence data in R with the 
TraMineR package: A users guide for version 1.2. University of Geneva, Geneva, vol 1 

38. Raab M (2022) ggseqplot: Render Sequence Plots using ‘ggplot2’. https://maraab23.github.io/ 
ggseqplot 

39. Wickham H, Chang W, Wickham MH (2016) Package ‘ggplot2’. Create elegant data visuali-
sations using the grammar of graphics. Version 2(1):1–189 

40. López-Pernas S, Misiejuk K, Kopra J, Tikka S, Heinäniemi M, Saqr M (2024, this volume) 
Visualizing and reporting educational data with r. In: Saqr M, López-Pernas S (eds) Learning 
analytics methods and tutorials: A practical guide using R. Springer 

41. Helske S, Helske J (2019) Mixture hidden Markov models for sequence data: the seqHMM 
package in R. J Stat Softw 88(3):1–32. https://doi.org/10.18637/jss.v088.i03 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.


 15198 16298
a 15198 16298 a
 

 1319 25153 a 1319 25153 a
 
https://maraab23.github.io/ggseqplot
https://maraab23.github.io/ggseqplot
https://maraab23.github.io/ggseqplot
https://maraab23.github.io/ggseqplot
https://maraab23.github.io/ggseqplot
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
https://doi.org/10.18637/jss.v088.i03
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Modeling the Dynamics of Longitudinal 
Processes in Education. A Tutorial with R 
for the VaSSTra Method 

Sonsoles López-Pernas and Mohammed Saqr 

1 Introduction 

Modeling a longitudinal process brings a lot of variability over time. The modeling 
procedure becomes even harder when we use multivariate continuous variables 
to model a single construct. For example, in education research we might model 
students’ online behavioral engagement through their number of clicks, time spent 
online, and frequency of interactions [1]. Most human behavioral constructs are an 
amalgam of interrelated features with complex fluctuations over time. Modeling 
such processes requires a method that takes into account the multidimensional 
nature of the examined construct as well as the temporal evolution. Nevertheless, 
despite the rich boundless information in the quantitative data, discrete patterns 
can be captured, modeled, and traced using appropriate methods. Such discrete 
patterns represent an archetype or a “state” that is typical of behavior or function 
[2]. For instance, a combination of frequent consumption of online course resources, 
long online time, interaction with colleagues and intense interactions in cognitively 
challenging collaborative tasks can be coined as an “engaged state” [3] The same  
student that shows an “engaged state” at one point, can transition to having few 
interactions and time spent online at the next time point, i.e., a “disengaged state”. 

Capturing a multidimensional construct into qualitative discrete states has several 
advantages. First, it avoids information overload where the information at hand is 
overwhelmingly hard to process accurately because of the multiplicity and lack of 
clarity of how to interpret small changes and variations. Second, it allows an easy 
way of communicating the information; it is understandable that communicating a 
state such as “engaged” is easier than telling the values of several activity variables. 
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Third, it is easier to trace or track. As we are interested in significant shifts overtime, 
fine-grained changes in the activities are less meaningful. We are rather interested 
in significant shifts between behavioral states, e.g., from engaged to disengaged. 
Besides, such a shift is also actionable. As [4] puts it, “reliability can sometimes 
be improved by tuning grain size of data so it is neither too coarse, masking 
variance within bins, nor too fine-grained, inviting distinctions that cannot be made 
reliably.” More importantly, capturing the states is more tethered to reality of human 
nature and function. In fact, many psychological, physiological or disease constructs 
have been described as states with defining criteria, e.g., motivation, depression or 
migraine. 

Existing methods for longitudinal analysis are often limited to the study of 
a single variable’s evolution over time [5]. Some examples of such methods are 
longitudinal k-means [6], group-based trajectory modeling (GBTM) [7], or growth 
models [8]. However, when multivariate data is the target of analysis, these methods 
cannot be used. Multivariate methods are usually limited to one step or another 
of the analysis e.g., clustering of multivariate data into categorical variables (e.g., 
states), or chart the succession of categories into sequences. The method presented 
in this chapter provides an ensemble of methods and tools to effectively model, 
visualize and statistically analyse the longitudinal evolution of multivariate data. 
As such, modeling the temporal evolution of latent states, as we propose in this 
chapter, may not be entirely new and has been performed—at least in part—using 
several models, algorithms and software platforms [9–11]. For instance, the package 
lmfa can capture latent states in multivariate data, model their trajectories as well 
as transition probabilities [12]. Nevertheless, most of the existing methods are 
concerned with modeling disease states, time-to event (survival models), time-to-
failure models [11] or lack a sequential analysis. 

The VaSSTra method described in this chapter allows to summarize multiple 
variables into states that can be analyzed using sequence analysis across time. 
Then, using life-event methods, distinct trajectories of sequences that undergo a 
similar evolution can be analyzed in detail. VaSSTra consists of three steps: (1) 
capturing the states or patterns (from variables); (2) modeling the temporal process 
(from states); and (3) capturing the patterns of longitudinal development (similar 
sequences are grouped in trajectories). As such, the method described in this chapter 
is a combination of several methods. First, a person-centered method (latent class or 
latent profile analysis) is used to capture the unobserved “states” within the data. The 
states are then used to construct a “sequence of states”, where a sequence represents 
a person’s ordered states for each time point. The construction of “sequence of 
states” unlocks the full potential of sequence analysis visually and mathematically. 
Later, the longitudinal modeling of sequences is performed using a clustering 
method to capture the possible trajectories of progression of states. Thus, the name 
of the method is “from variables to states”, “from states to sequences” and “from 
sequences to trajectories” VaSSTra [5]. 

Throughout the chapter, we discuss how to derive states from different variables 
related to students, how to construct sequences from students’ longitudinal progres-
sion of states, and how to identify and study distinct trajectories of sequences that
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undergo a similar evolution. We also cover some advanced properties of sequences 
that can help us analyze and compare trajectories. In the next section, we explain 
the VaSSTra method in detail. Next, we review the existing literature that has used 
the method. After that, we present a step-by-step tutorial on how to implement the 
method using a dataset of students’ engagement indicators across a whole program. 

2 VaSSTra: From Variables to States, from States to 
Sequences, from Sequences to Trajectories 

In Chap. 10, we went through the basics of sequence analysis in learning analytics 
[13]. Specifically, we learned how to construct a sequence from a series of 
ordered student activities in a learning session, which is a very common technique 
in learning analytics (e.g., [14]). In the sequences we studied, each time point 
represents a single instantaneous event or action by the students. In this advanced 
chapter, we take a different approach, where sequences are not built from a series of 
events but rather from states. Such states represent a certain construct (or cluster of 
variables) related to students (e.g., engagement, motivation) during a certain period 
(e.g., a week, a semester, a course). The said states are derived from a series of 
data variables related to the construct under study over the stipulated time period. 
Analyzing the sequence of such states over several sequential periods allows us 
to summarize large amounts of longitudinal information and to study complex 
phenomena across longer timespans [5]. This approach is known as the VaSSTra 
method. VaSSTra utilizes a combination of person-based methods (to capture the 
latent states) along with life events methods to model the longitudinal process. In 
doing so, VaSSTra effectively leverages the benefits of both families of methods 
in mapping the patterns of longitudinal temporal dynamics. The method has three 
main steps that can be summarized as (1) identifying latent States from Variables, 
(2) modeling states as Sequences, and (3) identifying Trajectories within sequences. 
The three steps are depicted in Fig. 1 and described in detail below:

• Step 1. From variables to states: In the first step of the analysis, we identify the 
“states” within the data using a method that can capture latent or unobserved 

Fig. 1 Summary of the three steps of the VaSSTra method
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patterns from multidimensional data (variables). The said states represent a 
behavioral pattern, function or a construct that can be inferred from the data. For 
instance, engagement is a multidimensional construct and is usually captured 
through several indicators. e.g., students’ frequency and time spent online, 
course activities, cognitive activities and social interactions. Using an appropriate 
method, such as person-based clustering in our case, we can derive students’ 
engagement states for a given activity or course. For instance, the method 
would classify students who invest significant time, effort and mental work are 
“engaged.” Similarly, students who are investing low effort and time in studying 
would be classified as “disengaged.” Such powerful summarization would allow 
us to use the discretized states in further steps. An important aspect of such states 
is that they are calculated for a specific timespan. Therefore, in our example 
we could infer students’ engagement states per activity, per week, per lesson, 
per course, etc. Sometimes, such time divisions are by design (e.g., lessons or 
courses), but in other occasions researchers have to establish a time scheme 
according to the data and research questions (e.g., weeks or days). Computing 
states for multiple time periods is a necessary step to create time-ordered state 
sequences and prepare the data for sequence analysis.

• Step 2. From states to sequences: Once we have a state for each student at 
each time point, we can construct an ordered sequence of such states for each 
student. For example, if we used the scenario mentioned above about measuring 
engagement states, a sequence of a single student’s engagement states across a 
six-lesson course would be like the one below. When we convert the ordered 
states to sequences, we unlock the potential of sequence analysis and life events 
methods. We are able to plot the distribution of states at each time point, study the 
individual pathways, the entropy, the mean time spent at each state, etc. We can 
also estimate how frequently students switch states, and what is the likelihood 
they finish their sequence in a “desirable” state (i.e., “engaged”).

• Step 3. From sequences to trajectories: Our last step is to identify similar 
trajectories—sequences of states with a similar temporal evolution—using tem-
poral clustering methods (e.g., hidden Markov models or hierarchical clustering). 
Covariates (i.e., variables that could explain cluster membership) can be added at 
this stage to help identify why a trajectory has evolved in a certain way. Moreover, 
sequence analysis can be used to study the different trajectories, and not only 
the complete cohort. We can compare trajectories according to their sequence 
properties, or to other variables (e.g., performance). 

3 Review of the Literature 

The VaSSTra method has been used to study different constructs related to students’ 
learning (Table 1), such as engagement [3, 15, 16], roles in computer-supported



Modeling the Dynamics of Longitudinal Processes in Education. A Tutorial. . . 359

Ta
bl
e 
1 

Pr
ev

io
us

 li
te

ra
tu

re
 in

 w
hi

ch
 V
aS
ST

ra
 h

as
 b

ee
n 

us
ed

 

R
ef

. 
V

ar
ia

bl
es

St
at

es
A

lp
ha

be
t

A
ct

or
T

im
e 

un
it 

M
et

ho
d 

St
ep

 1
 

M
et

ho
d 

St
ep

 3
A

dv
an

ce
 s

eq
ue

nc
e 

m
et

ho
ds

 

[3
] 

Fr
eq

ue
nc

y,
 ti

m
e 

sp
en

t 
an

d 
re

gu
la

ri
ty

 o
f 

on
lin

e 
ac

tiv
iti

es
 

E
ng

ag
em

en
t

A
ct

iv
e,

 A
ve

ra
ge

, D
is

en
ga

ge
d,

 
W

ith
dr

aw
 

St
ud

y 
pr

og
ra

m
 

C
ou

rs
e

L
C

A
H

M
M

E
nt

ro
py

, s
eq

ue
nc

e 
im

pl
ic

at
io

n,
 s

ur
vi

va
l, 

tr
an

si
tio

ns
 

[1
5]

 F
re

qu
en

cy
, t

im
e 

sp
en

t 
an

d 
re

gu
la

ri
ty

 o
f 

on
lin

e 
ac

tiv
iti

es
. G

ra
de

s 

E
ng

ag
em

en
t, 

ac
hi

ev
em

en
t 

A
ct

iv
e,

 A
ve

ra
ge

, D
is

en
ga

ge
s.

 
A

ch
ie

ve
r, 

In
te

rm
ed

ia
te

, L
ow

 
St

ud
y 

pr
og

ra
m

 
C

ou
rs

e
L

C
A

M
H

M
M

 
M

ul
ti-

ch
an

ne
l s

eq
ue

nc
e 

an
al

ys
is

 

[1
6]

 F
re

qu
en

cy
, t

im
e 

sp
en

t 
an

d 
re

gu
la

ri
ty

 o
f 

on
lin

e 
ac

tiv
iti

es
 

E
ng

ag
em

en
t

A
ct

iv
el

y 
en

ga
ge

d,
 A

ve
ra

ge
ly

 
en

ga
ge

d,
 D

is
en

ga
ge

d,
 D

ro
po

ut
 

St
ud

y 
pr

og
ra

m
 

C
ou

rs
e

L
C

A
A

H
C

Su
rv

iv
al

 a
na

ly
si

s,
 

di
sc

ri
m

in
at

in
g 

su
bs

eq
ue

nc
es

, m
ea

n 
tim

e 

[1
7]

 C
en

tr
al

ity
 m

ea
su

re
s

C
SC

L
 r

ol
es

In
flu

en
ce

r, 
M

ed
ia

to
r, 

Is
ol

at
e

St
ud

y 
pr

og
ra

m
 

C
ou

rs
e

L
PA

M
H

M
M

 
C

ov
ar

ia
te

 a
na

ly
si

s,
 s

pe
ll 

du
ra

tio
n,

 tr
an

si
tio

ns
, 

en
tr

op
y,

 in
te

gr
at

iv
e 

ca
pa

ci
ty

 

[1
8]

 O
nl

in
e 

ac
tiv

iti
es

L
ea

rn
in

g 
st

ra
te

gi
es

 
D

iv
er

se
, F

or
um

 r
ea

d,
 F

or
um

 
in

te
ra

ct
, L

ec
tu

re
 r

ea
d.

 I
nt

en
se

 
di

ve
rs

e,
 L

ig
ht

 d
iv

er
se

, L
ig

ht
 

in
te

ra
ct

iv
e,

 M
od

er
at

e 
in

te
ra

ct
iv

e 

C
ou

rs
e.

 
St

ud
y 

pr
og

ra
m

 

L
ea

rn
in

g 
se

ss
io

n.
 

C
ou

rs
e 

M
H

M
M

 
A

H
C

E
nt

ro
py

, i
m

pl
ic

at
io

n,
 

tr
an

si
tio

ns
 

[1
9]

 O
nl

in
e 

ac
tiv

iti
es

L
ea

rn
in

g 
st

ra
te

gi
es

 
V

id
eo

-o
ri

en
te

d 
in

st
ru

ct
io

n,
 

Sl
id

e-
or

ie
nt

ed
 in

st
ru

ct
io

n,
 

H
el

p-
se

ek
in

g.
 A

ss
ig

nm
en

t 
st

ru
gg

lin
g,

 A
ss

ig
nm

en
t 

ap
pr

oa
ch

in
g,

 A
ss

ig
nm

en
t 

su
cc

ee
di

ng
 

C
ou

rs
e

L
ea

rn
in

g 
se

ss
io

n 
A

H
C

H
M

M
M

ul
ti-

ch
an

ne
l s

eq
ue

nc
e 

an
al

ys
is



360 S. López-Pernas and M. Saqr

collaborative learning (CSCL) [17], and learning strategies [18, 19]. Several algo-
rithms have been operationalized to identify latent states from students’ online data. 
Some examples are: Agglomerative Hierarchical Clustering (AHC) [19], Latent 
Class Analysis (LCA) [3, 15, 16], Latent Profile Analysis (LPA) [17], and mixture 
hidden Markov models (MHMM) [18]. 

Moreover, sequences of states have mostly been used to represent each course 
in a program [3, 15–18], but also smaller time spans, such as each learning 
session in a single course [18, 19]. Different algorithms have also been used to 
cluster sequences of states into trajectories including HMM [3, 19], mixture hidden 
Markov models (MHMM) [15, 17], and AHC [16, 18]. Moreover, besides the basic 
aspects of sequence analysis discussed in the previous chapter, previous work have 
explored advanced features of sequence analysis such as survival analysis [3, 16], 
entropy [3, 17, 18], sequence implication [3, 18], transitions [3, 17, 18], covariates 
[17], discriminating subsequences [16] or integrative capacity [17]. Other studies 
have made used of multi-channel sequence analysis [15, 19], which is covered in 
Chap. 13 [20]. 

4 VassTra with R 

In this section we provide a step-by-step tutorial on how to implement VaSSTra 
with R. To illustrate the method, we will conduct a case study in which we 
examine students’ engagement throughout all the courses of the first two years of 
their university studies, using variables derived from their usage of the learning 
management system. 

4.1 The Packages 

In order to conduct our analysis we will need several packages besides the basic 
rio (for reading and saving data in different extensions), tidyverse (for data 
wrangling), cluster (for clustering features), and ggplot2 (for plotting). Below is 
a brief summary of the rest of the packages needed:

• BBmisc: A package with miscellaneous helper functions [21]. We will use its 
normalize function to normalize our data across courses to remove the differ-
ences in students’ engagement that are due to different course implementations 
(e.g., larger number of learning resources).

• tidyLPA: A package for conducting Latent Profile Analysis (LPA) with R [22]. 
We will use it to cluster students’ variables into distinct clusters or states.

• TraMineR: As we have seen in Chap. 10 about sequence analysis [13], this 
package helps us construct, analyze and visualize sequences from time-ordered 
states or events [23].
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• seqhandbook: This package complements TraMineR by providing extra analy-
ses and visualizations [24].

• Gmisc: A package with miscellaneous functions for descriptive statistics and 
plots [25]. We will use it to plot transitions between states.

• WeightedCluster: A package for clustering sequences using hierarchical 
cluster analysis [26]. We will use it to cluster sequences into similar trajectories. 

The code below imports all the packages that we need. You might need to install 
them beforehand using the install.packages command: 

library(rio) 
library(tidyverse) 
library(ggplot2) 
library(cluster) 
library(BBmisc) 
library(tidyLPA) 
library(TraMineR) 
library(seqhandbook) 
library(Gmisc) 
library(WeightedCluster) 

4.2 The Dataset 

For our analysis, we will use a dataset of students’ engagement indicators through-
out eight courses, corresponding to the first two years of a blended higher education 
program. The dataset is described in detail in the data chapter. The indicators or 
variables are calculated from students’ log data in the learning management system, 
and include the frequency (i.e., number of times) with which certain actions have 
been performed (e.g., view the course lectures, read forum posts), the time spent in 
the learning management system, the number of sessions, the number of active days, 
and the regularity (i.e., consistency and investment in learning). These variables 
represent students’ behavioral engagement indicators. The variables are described 
in detail in Chapter 2 about the datasets of the book [27] and Chapter 7 about 
predictive learning analytics [28] and in previous works [3]. Below we use rio’s 
import function to read the data. 

LongitudinalData <-
import("https://github.com/lamethods/data/raw/main/ 

9_longitudinalEngagement/LongitudinalEngagement.csv") 

# A tibble: 1,136 x 15 
UserID CourseID Sequence Freq_Course_View Freq_Forum_Consume
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<chr> <chr> <int> <int> <int> 
1 D2C5F64E C6107FC4 1 150 251 
2 D2C5F64E 4C3F37F0 2 98 84 
3 D2C5F64E E54A52A3 3 254 354 
4 D2C5F64E AB7EC624 4 332 825 
5 D2C5F64E B0E95213 5 386 960 
6 D2C5F64E 3DE2A32B 6 261 1026 
7 D2C5F64E D7DF3685 7 250 652 
8 D2C5F64E ECD1AFC8 8 287 697 
9 D7E3D0DC B51E1259 1 186 597 

10 D7E3D0DC C473D477 2 241 580 
# i 1,126 more rows 
# i 10 more variables: Freq_Forum_Contribute <int>, Freq_Lecture_View <int>, 
# Regularity_Course_View <dbl>, Regularity_Lecture_View <dbl>, 
# Regularity_Forum_Consume <dbl>, Regularity_Forum_Contribute <dbl>, 
# Session_Count <int>, Total_Duration <int>, Active_Days <int>, 
# Final_Grade <dbl> 

4.3 From Variables to States 

The first step in our analysis is to detect latent states from the multiple engagement-
related variables in our dataset (e.g., frequency of course views, frequency of forum 
posts, etc.). For this purpose, we will use LPA, a person-based clustering method, to 
identify each student’s engagement state at each course. We first need to standardize 
the variables, to account for the possible differences in course implementations 
(e.g., each course has a different number of learning materials and slightly different 
duration). This way, the mean value of each indicator will be always 0 regardless 
of the course. Any value above the mean will be always positive, and any value 
below will be negative. As such the engagement is measures on the same scale. To 
standardize the data we first group it by CourseID using tidyverse’s group_by 
and then we apply the normalize function from the BBmisc package to all the 
columns that contain the engagement indicators using mutate_at and specifying 
the range of columns. If we inspect the data now, we will see that all variables are 
centered around 0. 

LongitudinalData |> group_by(CourseID) |> 
mutate_at(vars(Freq_Course_View:Active_Days), 

function(x) normalize(x, method = "standardize")) |> 
ungroup() -> df 

# A tibble: 1,136 x 15 
UserID CourseID Sequence Freq_Course_View Freq_Forum_Consume 
<chr> <chr> <int> <dbl> <dbl> 

1 D2C5F64E C6107FC4 1 -1.13 -1.87 
2 D2C5F64E 4C3F37F0 2 -2.03 -2.69 
3 D2C5F64E E54A52A3 3 0.519 -1.24



Modeling the Dynamics of Longitudinal Processes in Education. A Tutorial. . . 363

4 D2C5F64E AB7EC624 4 1.88 1.33 
5 D2C5F64E B0E95213 5 2.78 2.11 
6 D2C5F64E 3DE2A32B 6 0.603 2.46 
7 D2C5F64E D7DF3685 7 0.434 0.357 
8 D2C5F64E ECD1AFC8 8 0.707 0.707 
9 D7E3D0DC B51E1259 1 0.939 1.22 

10 D7E3D0DC C473D477 2 1.55 1.39 
# i 1,126 more rows 
# i 10 more variables: Freq_Forum_Contribute <dbl>, Freq_Lecture_View <dbl>, 
# Regularity_Course_View <dbl>, Regularity_Lecture_View <dbl>, 
# Regularity_Forum_Consume <dbl>, Regularity_Forum_Contribute <dbl>, 
# Session_Count <dbl>, Total_Duration <dbl>, Active_Days <dbl>, 
# Final_Grade <dbl> 

Now, we need to subset our dataset and choose only the variables that we need 
for clustering. That is, we exclude the metadata about the user and course, and keep 
only the variables that we believe are relevant to represent the engagement construct. 

to_cluster <- dplyr::select(df, Freq_Course_View, Freq_Forum_Consume, 
Freq_Forum_Contribute, Freq_Lecture_View, 
Regularity_Course_View, Session_Count, 
Total_Duration, Active_Days) 

Before we go on, we must choose a seed so we can obtain the same results every 
time we run the clustering algorithm. We can now finally use tidyLPA to cluster 
our data. We try from 1 to 10 clusters and different models that enforce different 
constraints on the data. For example, model 3 takes equal variances and equal 
covariances, whereas model 6 takes varying variances and varying covariances. You 
can find out more about this in the tidyLPA documentation [22]. Be aware that 
running this step may take a while. For more details about LPA, consult the model-
based clustering chapter. 

set.seed(22294) 
Mclustt <- to_cluster |> ungroup() |> 

single_imputation() |> 
estimate_profiles(1:10, models = c(1, 2, 3, 6)) 

Once all the possible cluster models and numbers have been calculated, we can 
calculate several statistics that will help us choose which is the right model and 
number of clusters for our data. For this purpose, we use the compare_solutions 
function from tidyLPA and we use the results of calling this function to plot the 
BIC and the entropy of each model for the range of cluster numbers that we have 
tried (1–10) (Fig. 2). In the model-based clustering chapter you can find out more 
details about how to choose the best cluster solution.
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Fig. 2 Choosing the number of clusters by plotting statistics 

cluster_statistics <- Mclustt |> 
compare_solutions(statistics = c("AIC", "BIC","Entropy")) 

fits <- cluster_statistics$fits |> mutate(Model = factor(Model)) 

fits |> 
ggplot(aes(x =  Classes,y =  Entropy, group = Model, color = Model))+ 
geom_line() + 
scale_x_continuous(breaks = 0:10) + 
geom_point() + 

theme_minimal() + 
theme(legend.position = "bottom") 

fits |> 
ggplot(aes(x =  Classes,y =  BIC, group = Model, color = Model)) + 
geom_line() + 
scale_x_continuous(breaks = 0:10) + 
geom_point() + 
theme_minimal() + 
theme(legend.position = "bottom") 

Although, based on the BIC values, Model 6 with 3 classes would be the best fit, the 
entropy for this model is quite low. Instead, Models 1 and 2 have a higher overall 
entropy and quite a large fall in BIC when increasing from 2 to 3 classes. Taken 
together, we choose Model 1 with 3 classes which shows better separation of clusters 
(high entropy) and a large drop in BIC value (elbow). We add the cluster assignment 
back to the data so we can compare the different variables between clusters and use 
the cluster assignment for the next steps. Now, for each student’s course enrollment, 
we have assigned a state (i.e., cluster) that represents the student’s engagement 
during that particular course. 

df$State <- Mclustt$model_1_class_3$model$classification
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Fig. 3 Mean value of each variable for each cluster 

We can plot the mean variable values for each of the three clusters (Fig. 3) to  
understand what each of them represents: 

df |> pivot_longer(Freq_Course_View:Active_Days) |> 
mutate(State = factor(State)) |> 
filter(name %in% names(to_cluster)) |> 
mutate(name = gsub("_", " ", name)) |> 
group_by(name, State) |> 
summarize_if(is.double, mean) -> long_mean 

long_mean |> 
ggplot(aes(fill = name, y =  value, x =  State)) + 
geom_col(position = "dodge") + 
scale_fill_brewer("", type = "qual", palette=8) + 
theme_minimal() + 
ylab ("Mean value") + 
theme(legend.position = "bottom") 

We clearly see that the first cluster represents students with low mean levels of all 
engagement indicators; the second cluster represents students with average values, 
and the third cluster with high values. We can convert the State column of our 
dataset to a factor to give the clusters an appropriate descriptive label: 

engagement_levels = c("Disengaged", "Average", "Active") 
df_named <- df |> 

mutate(State = factor(State, levels = 1:3, labels = engagement_levels)) 
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4.4 From States to Sequences 

In the previous step, we turned a large amount of variables representing student 
engagement in a given course into a single state: Disengaged, Average, or  Active. 
Each student has eight engagement states: one per each course (time point in our 
data) in the first two years of the program. Since the dataset includes the order of 
each course for each student, we can construct a sequence of the engagement states 
throughout all courses for each student. To do that we first need to transform our 
data into a wide format, in which each row represents a single student, and each 
column represents the student’s engagement state at a given course: 

clus_seq_df <- df_named |> arrange(UserID, Sequence) |> 
pivot_wider(id_cols = "UserID", names_from = "Sequence", values_from = "State") 

Now we can use TraMineR to construct the sequence and assign colors to represent 
each of the engagement states: 

colors <- c("#28a41f", "#FFDF3C", "#e01a4f") 
clus_seq <- seqdef(clus_seq_df , 2:9, 

alphabet = sort(engagement_levels), cpal = colors) 

[>] 3 distinct states appear in the data: 

1 = Active 

2 = Average 

3 = Disengaged 

[>] state coding: 

[alphabet] [label] [long label] 

1 Active Active Active 

2 Average Average Average 

3 Disengaged Disengaged Disengaged 

[>] 142 sequences in the data set 

[>] min/max sequence length: 8/8 

We can use the sequence distribution plot from TraMineR to visualize the 
distribution of each state at each time point (Fig. 4). We see that the distribution 
of states is almost constant throughout the eight courses. The ‘Average’ state takes 
the largest share, followed by the ‘Engaged’ state, and the ‘Disengaged’ state is 
consistently the least common. For more hints on how to interpret the sequence 
distribution plot, refer to Chapter 10 [13].
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seqdplot(clus_seq, border = NA, use.layout = TRUE, 

with.legend = T, ncol = 3, legend.prop = 0.2) 

We can also visualize each of the individual students’ sequences of engagement 
states using a sequence index plot (Fig. 5). In this type of visualization, each 
horizontal bar represents a single student, and each of the eight colored blocks 
along the bar represents the students’ engagement states. We can order the students’ 
sequences according to their similarity for a better understanding. To do this, we 
calculate the substitution cost matrix (seqsubm) and the distance between the 
sequences according to this cost (seqdist). Then we use an Agglomerative Nesting 
Hierarchical Clustering algorithm (agnes) to group sequences together according to 
their similarity (see Chapter 10 [13]). We may now use the seq_heatmap function 
of seqhandbook to plot the sequences ordered by their similarity. From this plot, 
we already sense the existence of students that are mostly active, students that are 
mostly disengaged, and students that are in-between, i.e., mostly average. 

sm <- seqsubm(clus_seq, method = "CONSTANT") 
mvad.lcss <- seqdist(clus_seq, method = "LCS", sm = sm, with.missing = T) 
clusterward2 <- agnes(mvad.lcss, diss = TRUE, method = "ward") 
seq_heatmap(clus_seq, clusterward2) 
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4.5 From Sequences to Trajectories 

In the previous step we constructed a sequence of each student’s engagement 
states throughout eight courses. When plotting these sequences, we observed that 
there might be distinct trajectories of students that undergo a similar evolution of 
engagement. In this last step, we use hierarchical clustering to cluster the sequences 
of engagement states into distinct trajectories of similar engagement patterns. To 
perform hierarchical clustering we first need to calculate the distance between 
all the sequences. For more details on the clustering technique, please refer to 
Chapter 8 [29]. As we have seen in the Sequence Analysis chapter, there are 
several algorithms to calculate the distance. We choose LCS (Longest Common 
Subsequence), implemented in the TraMineR package which calculates the distance 
based on the longest common subsequence. 

dissimLCS <- seqdist(clus_seq, method = "LCS") 

[>] 142 sequences with 3 distinct states 

[>] creating a ’sm’ with a substitution cost of 2 

[>] creating 3x3 substitution-cost matrix using 2 as 
constant value 

[>] 103 distinct sequences 

[>] min/max sequence lengths: 8/8 

[>] computing distances using the LCS metric 

[>] elapsed time: 0.012 secs 

Now we can perform the hierarchical clustering. For this purpose, we use the 
hclust function of the stats package 

Clustered <- hclust(as.dist(dissimLCS), method = "ward.D2") 

We create partitions for clusters ranging from 2 to 10 and we plot the cluster 
statistics to be able to select the most suitable cluster number (Fig. 6). 

Clustered_range <- as.clustrange(Clustered, diss = dissimLCS, ncluster = 10) 
plot(Clustered_range, stat = "all", norm = "zscoremed", lwd = 2) 

There seems to be a maximum for most statistics at three clusters, so we save the 
cluster assignment for three clusters in a variable named grouping.
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Fig. 6 Cluster statistics for the hierarchical clustering 

grouping <- Clustered_range$clustering$cluster3 

Now we can use the variable grouping to plot the sequences for each trajectory 
using the sequence index plot (Fig. 7): 

seqIplot(clus_seq, group = grouping, sortv = "from.start") 

In Fig. 7, we see that the first trajectory corresponds to mostly average students, the 
second one to mostly active students, and the last one to mostly disengaged students. 
We can rename the clusters accordingly. 

trajectories_names = c("Mostly average", "Mostly active", "Mostly disengaged") 
trajectories = trajectories_names[grouping] 

We can plot the sequence distribution plot to see the overall distribution of the 
sequences for each trajectory (Fig. 8). 

seqdplot(clus_seq, group = trajectories)
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Fig. 7 Sequence index plot of the course states per trajectory
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Fig. 8 Sequence distribution plot of the course states per trajectory 

4.6 Studying Trajectories 

There are many aspects that we can study about our trajectories. For example, we 
can use the mean time plot to compare the time spent in each engagement state for 
each trajectory. This plot summarizes the time distribution plot across all time points
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Fig. 9 Mean time plot of the course states per trajectory 

(Fig. 9). As expected, we see that the mostly active students spend most of their time 
in an ‘Active’ state, the mostly average students in an Average state, and the mostly 
disengaged students in a ‘Disengaged’ state, although they spend quite some time 
in an ‘Average’ state as well. 

seqmtplot(clus_seq, group = trajectories) 

Another very useful plot is the sequence frequency plot (Fig. 10), that shows the 
most common sequences in each trajectory and the percentage of all the sequences 
that they represent. We see that, for each trajectory, the sequence that has all equal 
engagement states is the most common. The mostly active has, of course, sequences 
dominated by ‘Active’ states, with sparse average states, and one ‘Disengaged’ state. 
The mostly disengaged shows a similar pattern dominated by disengaged states with 
some average and one active state. The mostly average, although it is dominated by 
‘Average’ states, shows diversity of shifts to active or disengaged. 

seqfplot(clus_seq, group = trajectories) 

To measure the stability of engagement states for each trajectory at each time point, 
we can use the between-study entropy. Entropy is lowest when all students have the 
same engagement state at the same time point and highest when the heterogeneity is
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Fig. 10 The 10 most frequent sequences in each trajectory
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Fig. 11 Transversal entropy plot of each trajectory 

maximum. We can see that the “Mostly active” and “Mostly disengaged” trajectories 
have a slightly lower entropy compared to the “Mostly average” one, which is a sign 
that the students in this trajectory are the least stable (Fig. 11). 

seqHtplot(clus_seq, group = trajectories)
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Fig. 12 Most discriminating subsequences per trajectory 

Another interesting aspect to look into is the difference in the most common 
subsequences among trajectories (Fig. 12). We first search the most frequent subse-
quences overall and then compare them among the three trajectories. Interestingly 
enough, the most frequent subsequence is remaining ‘Active’, and remaining 
‘Disengaged’ is number five. Remaining average is not among the top 10 most 
common subsequences, but rather the subsequences containing the ‘Average’ state 
always include transitions to other states. 

mvad.seqe <- seqecreate(clus_seq) 
fsubseq <- seqefsub(mvad.seqe, pmin.support = 0.05, max.k = 2) 
discr <- seqecmpgroup(fsubseq, group = trajectories, method = "chisq") 
plot(discr[1:10]) 

There are other sequence properties that we may need compare among the trajec-
tories. The function seqindic calculates sequence properties for each individual 
sequence (Table 2). Some of these indices need additional information about the 
sequences, namely, which are the positive and the negative states. In our case, 
we might consider the Active state to be positive and the Disengaged state to be  
negative. Below we discuss some of the most relevant measures:

• Trans: Number of transitions. It represents the number of times there has been 
a change of state. If a sequence maintains the same state throughout its whole 
length, the value of Trans would be zero; if there were two shifts of state, the 
value would be 2.

• Entr: Longitudinal entropy or within-student entropy is a measure of the 
diversity of the sequence states. In contrast with the transversal or between-
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Table 2 Sequence indicators Trans Entr Volat Cplx Integr Prec 

1 .2.000 .0.343 .0.393 .0.313 .0.000 . 0.600

2 .2.000 .0.343 .0.393 .0.313 .0.000 . 0.600

3 .4.000 .0.512 .0.536 .0.541 .0.000 . 0.964

4 .0.000 .0.000 .0.000 .0.000 .1.000 . 0.000

5 .4.000 .0.631 .0.536 .0.600 .0.000 . 1.159

6..141 

142 .2.000 .0.343 .0.393 .0.313 .0.917 . 0.006

students entropy that we saw earlier (Fig. 11), which is calculated per time point, 
longitudinal entropy is calculated per sequence (i.e., which represents a student’s 
engagement through the courses in a program in this case). Longitudinal entropy 
is calculated using Shannon’s entropy formula. Sequences that remain in the 
same state most of the time have a low entropy whereas sequences that shift 
states continuously with great diversity have a high entropy.

• Cplx: The complexity index is a composite measure of a sequence’s complexity 
based on the number of transitions and the longitudinal entropy. It measures the 
variety of states within a sequence, as well as the frequency and regularity of 
transitions between them. In other words, a sequence with a high complexity 
index is characterized by many different and unpredictable states or events, and 
frequent transitions between them.

• Prec: Precarity is a measure of the (negative) stability or predictability of 
a sequence. It measures the proportion of time that a sequence spends in 
negative or precarious states, as well as the frequency and duration of transitions 
between positive and negative states. A sequence with a high precarity index is 
characterized by a high proportion of time spent in negative or precarious states, 
and frequent transitions between positive and negative states.

• Volat: Objective volatility represents the average between the proportion of 
states visited and the proportion of transitions (state changes). It is measure of 
the variability of the states and transitions in a sequence. A sequence with high 
volatility would be characterized by frequent and abrupt changes in the states 
or events, while a sequence with low volatility would have more stable and 
predictable patterns.

• Integr: Integrative capacity (potential) is the ability to reach a positive state and 
then stay in a positive state. Sequences with a high integrative capacity not only 
include positive states but also manage to stay in such positive states. 

Indices <- seqindic(clus_seq, 
indic = c("trans","entr","cplx","prec","volat","integr"), 
ipos.args = list(pos.states = c("Active")), 
prec.args = list(c("Disengaged"))) 

We can compare the distribution of these indices between the different trajectories 
to study their different properties (Fig. 13). Below is an example for precarity and
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Fig. 13 Comparison of sequence indicators between trajectories 

Table 3 Transition rate between states 

[-> Active] [-> Average] [-> Disengaged] 

[Active ->] 216 82 1 

[Average ->] 78 320 77 

[Disengaged ->] 5 75 140 

integrative capacity. We clearly see how the Mostly disengaged trajectory has the 
highest value of precarity, whereas the Mostly active students have the highest 
integrative capacity. Beyond a mere visual representation, we could also conduct 
statistical tests to compare whether these properties differ significantly from each 
other among trajectories. 

Indices$Trajectory = trajectories 

Indices |> ggplot(aes(x =  Trajectory, y =  Prec, fill = Trajectory)) + 
geom_boxplot() + scale_fill_manual(values = colors) + 
theme_minimal() + theme(legend.position = "none") 

Indices |> ggplot(aes(x =  Trajectory, y =  Integr, fill = Trajectory)) + 
geom_boxplot() + scale_fill_manual(values = colors) + 
theme_minimal() + theme(legend.position = "none") 

As we have mentioned, an important aspect of the study of students’ longitudinal 
evolution is looking at the transitions between states. We can calculate the transi-
tions using seqtrate from TraMineR and plot them using transitionPlot from 
Gmisc. 

transition_matrix = seqtrate(clus_seq, count = T) 

From Table 3 and Fig. 14 we can see how most transitions are between one state and 
the same (no change). The most unstable state is ‘Average’ with frequent transitions
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Fig. 14 Transition plot 
between states 

Active Active 

Average Average 

Disengaged Disengaged 

both to ‘Active’ and ‘Disengaged’. Both ‘Active’ and ‘Disengaged’ had occasional 
transitions to ‘Average’ but rarely from one another. 

transitionPlot(transition_matrix, 
fill_start_box = colors, 
txt_start_clr = "black", 
cex = 1, 
box_txt = rev(engagement_levels)) 

5 Discussion 

In this chapter, the VaSSTra method is presented as a person-centered approach for 
the longitudinal analysis of complex behavioral constructs over time. In the step-
by-step tutorial, we have analyzed students’ engagement states throughout all the 
courses in the first two years of program. First, we have clustered all the indicators 
of student engagement into three engagement states using model-based clustering: 
active, average and disengaged. This step allowed us to summarize eight continuous 
numerical variables representing students’ online engagement indicators of each 
course into a single categorical variable (state). Then, we constructed a sequence 
of engagement states for each student, allowing us to map the temporal evolution of 
engagement and make use of sequence analysis methods to visualize and investigate 
such evolution. Lastly, we have clustered students’ sequences of engagement states 
into three different trajectories: a mostly active trajectory which is dominated by 
engaged students who are stable throughout time, a mostly average trajectory 
with averagely engaged students who often transition to engaged or disengaged 
states, and a mostly disengaged trajectory with inactive students that fail to catch 
up and remain disengaged most of the program. As such, VaSSTra offers several 
advantages over the existing longitudinal methods for clustering (such as growth 
models or longitudinal k-means) which are limited to a single continuous variable
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[30–32], instead of taking advantage of multiple variables in the data. Through the 
summarizing power of visualization, VaSSTra is able to represent complex behaviors 
captured through several variables using a limited number of states. Moreover, 
through sequence analysis, we can study how the sequences of such states evolve 
over time and differ from one another, and whether there are distinct trajectories of 
evolution. 

Several literature reviews of longitudinal studies (e.g., [33]) have highlighted the 
shortcomings of existing research for using variable-centered methods or ignoring 
the heterogeneity of students’ behavior. Ignoring the longitudinal heterogeneity 
means mixing trends of different types, e.g., an increasing trend in a subgroup 
and a decreasing trend in another subgroup exist. Another limitation of the existing 
longitudinal clustering methods is that cluster membership can not vary with time so 
one student is assigned to a single longitudinal cluster, which makes it challenging 
to study variability and transitions. 

As we have seen in the literature review section, the VaSSTra method can 
be adapted to various scenarios beyond engagement, such as collaborative roles, 
attitudes, achievement, or self-efficacy, and can be used with different time points 
such as tasks, days, weeks, or school years. The reader should refer to Chapter 8 
[29] and Chapter 9 [34] about clustering to learn other clustering techniques that 
may be more appropriate for transforming different types of variables into states 
(that is, conducting the first step of VaSSTra). Moreover, in Chapter 10 [13], the 
basics of sequence analysis are described, including how to cluster sequences 
into trajectories using different distance measures that might be more appropriate 
in different situations. The next chapter (Chapter 12) [35] presents Markovian 
modeling, which constitutes another way of clustering sequences into trajectories 
according to their state transitions. Lastly, Chapter 13 [20] presents multi-channel 
sequence analysis, which could be used to extend VaSSTra to study several parallel 
sequences (of several constructs) at the same time. 
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A Modern Approach to Transition 
Analysis and Process Mining with 
Markov Models in Education 

Jouni Helske, Satu Helske, Mohammed Saqr, Sonsoles López-Pernas, 
and Keefe Murphy 

1 Introduction 

In the previous two chapters, we have learned about sequence analysis [1, 2] and its 
relevance to educational research. This chapter presents a closely-related method: 
Markovian models. Specifically, we focus on a particular type of Markovian 
model, where the data are assumed to be categorical and observed at discrete 
time intervals, as per the previous chapters about sequence analysis, although in 
general Markovian models are not restricted to categorical data. One of the main 
differences between sequence analysis and Markovian modelling is that the former 
relies on deterministic data mining, whereas the latter uses probabilistic models [3]. 
Moreover, sequence analysis takes a more holistic approach by analysing sequences 
as a whole, whereas Markovian modelling focuses on the transitions between states, 
their probability, and the reasons (covariates) which explain why these transitions 
happen. 
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We provide an introduction and practical guide to the topic of Markovian models 
for the analysis of sequence data. While we try to avoid advanced mathematical 
notations, to allow the reader to continue to other, more advanced sources when 
necessary, we do introduce the basic mathematical concepts of Markovian models. 
When doing so, we use the same notation as in the R package ‘seqHMM’ [4], 
which we also use in the examples. In particular, we illustrate first-order Markov 
models, hidden Markov models, mixture Markov models, and mixture hidden 
Markov models with applications to synthetic data on students’ collaboration roles 
throughout a complete study program. 

The chapter proceeds to describe the theoretical underpinnings on each method 
in turn, then showcases each method with code, before presenting some conclusions 
and further readings. In addition to the aforementioned applications to collaboration 
roles and achievement sequences, we also provide a demonstration of the utility of 
Markovian models in another context, namely process mining. In the process mining 
application, we leverage Markov models and mixture Markov models to explore 
learning management system logs. Finally, we conclude with a brief discussion 
of Markovian models in general and provide some recommendations for further 
reading of advanced topics in this area as a whole. 

2 Methodological Background 

2.1 Markov Model 

The simple first-order Markov chain or Markov model (MM) can be used to model 
transitions between successive states. In the first-order MM, given the current 
observation, the next observation in the sequence is independent of the past—this is 
called the Markov property (the order of MM determines on how many previous 
observations the next observation depends on). For example, when predicting a 
student’s school success in the fourth year under a first-order model, we only need 
to consider their success in the third year, while their success in the first and second 
year give no additional information for the prediction (see Fig. 1 for an illustration). 
As such, the model is said to be memoryless. 

As an example, consider the data described in Table 1 which includes four 
sequences of length ten. The alphabet—that is, the list of all possible states 
appearing in the data—consists of two types of observed state; low achievement 

Fig. 1 Illustration of the Markov Model. The nodes . Y1 to . Y4 refer to states at time points 1 to 4. 
The arrows indicate dependencies between states
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Table 1 Four example 
sequences of school 
achievement with individuals 
A–D across the rows and 
years 1–10 across the 
columns 

1 2 3 4 5 6 7 8 9 10 

A L L L H L H L H H H 

B L H H L H L H L L H 

C H H L H L L H L H H 

D H H L L L H L L L H 

Table 2 Transition matrix showing the probabilities of transitioning from one state to another 
(low or high achievement). The rows and columns describe the origin state and the destination 
state, respectively 

. → Low . → High 

Low .→ 8/20 = 0.4 12/20 = 0.6 

High .→ 10/16 = 0.625 6/16 = 0.375 

success (L) and high achievement success (H ). Here, the individuals are assumed 
to be independent from one another: 
Say t describes the position in the sequence, or in this example, the year (in other 
words, here t runs from 1 to 10). If we assume that the probability of observing L 
or H at any given point t depends on the previous observation only, we can estimate 
the transition probabilities .aLL (from state L to state L), .aLH (L to H ), .aHL (H 
to L), and .aHH (H to H ) by calculating the number of observed transitions from 
each state to all states and scaling these with the total number of transitions from 
that state. Mathematically, we can write the transition probability . ars from state r to 
state s as 

. ars = P(zt = s | zt−1 = r), s, r ∈ {L,H },

which simply states that the observed state . zt in year t being L or H depends on 
which of the two states were observed in the previous year .t − 1. For example, to 
compute .aLH = P(zt = H | zt−1 = L), the probability of transitioning from the 
origin state L to the destination state H , we divide the twelve observed transitions 
to state H from state L by 20, which is the total number of transitions from L to any 
state. 

The basic MM assumes that the transition probabilities remain constant in 
time (this property is called time-homogeneity). This means, for example, that 
the probabilities of transitioning from the low-achievement state to the high-
achievement state is the same in the ninth year as it was in the second year. We can 
collect the transition probabilities in a transition matrix (which we call A) which 
shows all of the possible transition probabilities between each pair of origin and 
destination states, as illustrated in Table 2. For example, when a student has low 
achievement in year t , they have a 40% probability to have low achievement in 
year .t + 1 and a higher 60% probability to transition to high achievement instead, 
regardless of the year t . Notice that the probabilities in each row must add up to 1 
(or 100%).
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Lastly, we need to define probabilities for the starting states of the sequences, i.e., 
the initial probabilities 

. πs = P(z1 = s), s ∈ {L,H }.

In the example, half of the students have low achievement and the other half have 
high achievement in the first year, so .πL = πH = 0.5. 

This basic MM is very simple and is often not realistic in the context of 
educational sciences. We can, however, extend the basic MM in several ways. 

First of all, we can include covariates to explain the transition and/or initial 
probabilities. For example, if we think that transitioning from low to high achieve-
ment becomes more challenging as the students get older we may add time as an 
explanatory variable to the model, allowing the probability of transitioning from 
low to high achievement to decrease in time. We could also increase the order of 
the Markov chain, accounting for longer histories. This may be more realistic, but 
at the same time increasing the order makes the model considerably more complex, 
the more so the longer the history considered. 

Secondly, one of the most useful extensions is the inclusion of hidden (or latent) 
states that cannot be observed directly but can be estimated from the sequence 
of observed states. An MM with time-constant hidden states is typically called 
the mixture Markov model (MMM). It can be used to find latent subpopulations, 
or in other words, to cluster sequence data. A model with time-varying hidden 
states is called the hidden Markov model (HMM), which allows the individuals 
to transition between the hidden states. Allowing for both time-constant and time-
varying hidden states leads to a mixture hidden Markov model (MHMM). Unless 
otherwise specified, from now on when talking about hidden states we refer always 
to time-varying hidden states, while time-constant hidden states are referred to as 
clusters. 

2.2 Mixture Markov Model 

Consider a common case in sequence analysis where individual sequences are 
assumed to be clustered into subpopulations such as those with typically high and 
low achievement. In the introductory sequence analysis chapter, the clustering of 
sequences was performed based on a matrix of pairwise dissimilarities between 
sequences. Alternatively, we can use the MMM to group the sequences based on 
their initial and transition probabilities, for example, into those who tend to stay in 
and transition to high achievement states and those that tend to stay in and transition 
to low achievement states, as illustrated in Table 3. 

In MMMs, we have a separate transition matrix .Ak for each cluster k (for 
.k = 1, . . . , K clusters/subpopulations), and the initial state distribution defines the 
probabilities to start (and stay) in the hidden states corresponding to a particular 
cluster. This probabilistic clustering provides group membership probabilities for
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Table 3 Two transition matrices showing the probabilities of transitioning from one state of 
achievement to another in two clusters of Low achievement and High achievement. The rows and 
columns describe the origin state and the destination state, respectively 

(a) Low achievement (b) High achievement 

Cluster: Low achievement . → Low . → High Cluster: High achievement . → Low . → High 

Low .→ 0.8 0.2 Low .→ 0.6 0.4 

High .→ 0.4 0.6 High .→ 0.1 0.9 

each sequence; these define how likely it is that each individual is a member of each 
cluster. We can easily add (time-constant) covariates to the model to explain the 
probabilities of belonging to each cluster. By incorporating covariates in this way 
we could, for example, find that being in a high-achievement cluster is predicted 
by gender or family background. However, we note that this is distinct from the 
aforementioned potential inclusion of covariates to explain the transition and/or 
initial probabilities. 

An advantage of this kind of probabilistic modelling approach is that we can use 
traditional model selection methods such as likelihood-based information criteria 
or cross-validation for choosing the best model. For example, if the number of 
subpopulations is not known in advance—as is typically the case—we can compare 
models with different clustering solutions (e.g., those obtained with different 
numbers of clusters, different subsets of covariates, or different sets of initial 
probabilities, for example) and choose the best-fitting model with, for example, the 
Bayesian information criterion (BIC) [5]. 

2.3 Hidden Markov Model 

The HMM can be useful in a number of cases when the state of interest cannot 
be directly measured or when there is measurement error in the observations. In 
HMMs, the Markov chain operates at the level of hidden states, which subsequently 
generate or emit observed states with different probabilities. For example, think 
about a progression of a student’s ability as a hidden state and school success as 
the observed state. We cannot measure true ability directly, but we can estimate 
the student’s progress by their test scores that are emissions of their ability. There 
is, however, some uncertainty in how well the test scores represent students’ true 
ability. For example, observing low test scores at some point in time does not 
necessarily mean the student has low ability; they might have scored lower than 
expected in the test due to other reasons such as being sick at that particular time. 
Such uncertainty can be reflected in the emission probabilities; for example, in the 
high-ability state students get high test scores eight times out of ten and low test 
scores with a 20% probability, while in the low-ability state the students get low 
test scores nine times out of ten and high test scores with a 10% probability. These 
probabilities are collected in an emission matrix as illustrated in Table 4.



386 J. Helske et al.

Table 4 Emission matrix showing the probabilities of each hidden state (low or high ability) 
emitting each observed state (low or high test scores) 

Low scores High scores 

Low ability 0.9 0.1 

High ability 0.2 0.8 

Fig. 2 Illustration of the HMM. The nodes . Z1 to . Z4 refer to hidden states at time points 1 to 
4, while the nodes . Y1 to . Y4 refer to observed states. The arrows indicate dependencies between 
hidden and/or observed states 

Again, the full HMM is defined by a set of parameters: the initial state probabilities 
. πs , the hidden state transition probabilities . ars , and the emission probabilities of 
observed states .bs(m). What is different to the MM is that in the HMM, the initial 
state probabilities . πs define the probabilities of starting from each hidden state. 
Similarly, the transition probabilities .ars define the probabilities of transitioning 
from one hidden state to another hidden state. The emission probabilities . bs(m)

(collected in an emission matrix B) define the probability of observing a particular 
state m (e.g., low or high test scores) given the current hidden state s (e.g., low or 
high ability). 

When being in a certain hidden state, observed states occur randomly, following 
the emission probabilities. Mathematically speaking, instead of assuming the 
Markov property directly on our observations, we assume that the observations 
are conditionally independent given the underlying hidden state. We can visualise 
the HMM as a directed acyclic graph (DAG) illustrated in Fig. 2. Here  Z are the 
unobserved states (such as ability) which affect the distribution of the observed 
states Y (test scores). At each time point t , the state . zt can obtain one of S possible 
values (there are two hidden states in the example of low and high ability, so .S = 2), 
which in turn defines how . Yt is distributed. 

2.4 Mixture Hidden Markov Models 

Combining the ideas of both time-constant clusters and time-varying hidden states 
leads to the concept of mixture hidden Markov model (MHMM). Here we assume
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Table 5 Two transition matrices showing the probabilities of transitioning from one state of ability 
to another in two clusters, the Stayers and the Movers. The rows and columns describe the origin 
state and the destination state, respectively 

(a) Stayers (b) Movers 

Cluster: Stayers . → Low . → High Cluster: Movers . → Low . → High 

Low .→ 1 0 Low .→ 0.6 0.4 

High .→ 0 1 High .→ 0.3 0.7 

Table 6 Two emission matrices showing the probabilities of each hidden state (low or high ability) 
emitting each observed state (low or high test scores) 

(a) Stayers (b) Movers 

Cluster: Stayers Low scores High scores Cluster: Movers Low scores High scores 

Low ability 0.9 0.1 Low ability 0.7 0.3 

High ability 0.1 0.9 High ability 0.2 0.8 

that the population of interest consists of a finite number of subpopulations, each 
with their own HMM with varying transition and emission probabilities. For 
example, we could expect to find underlying groups which behave differently when 
estimating the progression of ability through the sequence of test scores, such 
as those that consistently stay on a low-ability or high-ability track (stayers) and 
those that move between low and high ability (movers). In this case, we need two 
transition matrices: the stayers’ transition matrix allows for no transitions while the 
movers’ transition matrix allows for transitioning between low and high ability, as 
illustrated in Table 5. 

Similarly, we need two emission matrices that describe how the observed states 
are related to hidden states, as illustrated in Table 6. In this example, there is a closer 
match between low/high ability and low/high test scores in the Stayers cluster in 
comparison to the Movers cluster. 

Mathematically, when estimating a MHMM we first fix the number of clusters 
K , and create a joint HMM consisting of K submodels (HMMs). The number of 
hidden states does not have to be fixed but can vary by submodel, so that the HMMs 
have more hidden states for some clusters and fewer for others (in our example, 
because the transition matrix of the Stayers cluster is diagonal, we could also split 
the cluster into two single state clusters, one corresponding to low and another to 
high ability). This can increase the burden of model selection, so often a common 
number of hidden states is assumed for each cluster for simplicity. In any case, the 
initial state probabilities of this joint model define how sequences are assigned to 
different clusters. We estimate this joint model using the whole data and calculate 
cluster membership probabilities for each individual. The idea of using mixtures of 
HMMs has appeared in literature under various names with slight variations, e.g., 
[6], [7], and [4]. Notably, MHMMs inherit from MMMs the ability to incorporate 
covariates to predict cluster memberships.
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2.5 Multi-Channel Sequences 

There are two options to analyse multi-channel (or multi-domain or multi-
dimensional) sequence data with Markovian models. The first option is to combine 
observed states in different channels into one set of single-channel sequences with 
an expanded alphabet. This option is simple, and works for MMs, HMMs, MMMs, 
and MHMMs, but can easily lead to complex models as the number of states 
and channels increases considerably. The second option, which can only be used 
when working with HMMs and MHMMs, is to treat the observed states in each 
channel independently given the current hidden state. This can be easily performed 
by defining multiple emission probability matrices, one for each channel. The 
assumption of conditional independence simplifies the model, but is sometimes 
unrealistic, in which case it is better to resort to the first option and convert the 
data into single-channel sequences. Both options are discussed further in Chapter 
13 [8], a dedicated chapter on multi-channel sequences, where applications of 
distance-based and Markovian clustering approaches are presented. In this chapter, 
we henceforth focus on single-channel sequences. 

2.6 Estimating Model Parameters 

The model parameters, i.e. the elements of the initial probability vectors . π , 
transition probability matrices A, and emission probability matrices B, can be 
estimated from data using various methods. Typical choices are the Baum-Welch 
algorithm (an instance of the expectation-maximisation, i.e., the EM algorithm) 
and direct (numerical) maximum likelihood estimation. It is possible to restrict 
models, for example, by setting some parameters to fixed values (typically zeros), 
for example, to make certain starting states, transitions, or emissions impossible. 

After the parameter estimation, in addition to studying the estimated model 
parameters upon convergence, we can, for example, compute cluster-membership 
probabilities for each individual and find the most probable paths of hidden state 
sequences using the Viterbi algorithm [9]. These can be further analysed and 
visualised for interpretation. 

3 Review of the Literature 

Markovian methods have been used across several domains in education and have 
gained renewed interest with the surge in learning analytics and educational data 
mining. Furthermore, the introduction of specialised R packages (e.g., seqHMM [10])
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and software applications (e.g., Mplus [11, 12]) have made it easier to implement 
Markov models. One of the most common applications of Markovian methods is 
the clustering of sequence data [13–15]. Markov models offer a credible alternative 
to existing distance-based methods (e.g. optimal matching) and can be used with 
different sequence types (e.g. multi-channel sequences). Furthermore, Markovian 
methods offer some advantages in clustering sequential data such as the inclusion of 
covariates that can explain why a sequence emerged (e.g., [16]). More importantly, 
Markovian models are relatively scalable and can be used to cluster large sequences 
[17]. As Saqr et al. [17] noted, large sequences are hard to cluster using standard 
methods such as hierarchical clustering, which is memory inefficient, and hard 
to parallelise or scale [18, 19]. Furthermore, distance-based clustering methods 
are limited by the theoretical maximum dimension of a matrix in R which is 
2,147,483,647 (i.e., a maximum of 46,430 sequences). In such a case, Markovian 
methods may be the solution. 

Examples of Markovian methods in clustering sequences are plentiful. For exam-
ple, HMMs have been used to cluster students’ sequences of learning management 
system (LMS) trace data to detect their patterns of activities or what the authors 
referred to as learning tactics and strategies [15]. Another close example was that 
of López-Pernas and Saqr [20], who used HMMs to cluster multi-channel data 
of students’ learning strategies of two different tools (an LMS and an automated 
assessment tool). Other examples include using HMM in clustering sequences of 
students’ engagement states [21], sequences of students’ collaborative roles [16], or 
sequences of self-regulation [13, 14]. 

Markovian methods are also popular in studying transitions and have therefore 
been used across several applications and with different types of data. One of 
the most common usages is what is known as stochastic processes mining which 
typically uses first-order Markov models to map students’ transitions between 
learning activities. For example, Matcha et al. [22] used first-order Markov models 
to study students’ processes of transitions between different learning tactics. Other 
uses include studying the transitions between tactics of academic writing [23], 
between self-regulated learning events [24], or within collaborative learning settings 
[25]. Yet, most of such work has been performed by the pMiner R package [26], 
which was recently removed from The Comprehensive R Archive Network (CRAN) 
due to slow updates and incompatibility with existing guidelines. This chapter offers 
a modern alternative that uses modern and flexible methods for fitting, plotting, 
and clustering stochastic process mining models as well as the possibility to add 
covariates to understand “why” different transitions pattern emerged. 

Indeed, transition analysis in general has been a popular usage for Markovian 
models and has been used across several studies. For instance, for the analysis 
of temporal patterns of students’ activities in online learning (e.g., [27]), or 
transitions between latent states [28], or transitions between assignment submission 
patterns [29].
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4 Examples 

As a first step, we will import all the packages required for our analyses. We have 
used most of them throughout the book. Below is a brief summary: 

• qgraph: A package for visualising networks, which can be used to plot transition 
probabilities [30]. This is used only for the process mining application in 
Sect. 4.3. 

• rio: A package for reading and saving data files with different extensions [31]. 
• seqHMM: A package designed for fitting hidden (latent) Markov models and 

mixture hidden Markov models for social sequence data and other categorical 
time series [4, 32]. 

• tidyverse: A package that encompasses several basic packages for data 
manipulation and wrangling [33]. 

• TraMineR: As seen in the introductory sequence analysis chapter, this package 
helps us construct, analyze, and visualise sequences from time-ordered states or 
events [34]. 

library(qgraph) 
library(rio) 
library(seqHMM) 
library(tidyverse) 
library(TraMineR) 

Henceforth, we divide our examples into two parts: the first largely focuses 
on traditional uses of the seqHMM package to fit Markovian models of varying 
complexity to sequence data; the latter presents a demonstration of Markovian 
models from the perspective of process mining. We outline the steps involved in 
using seqHMM in general in Sect. 4.1, demonstrate the application of MMs, HMMs, 
MMMs, and MHMMs in Sect. 4.2, and explore process mining using Markovian 
models in Sect. 4.3, leveraging much of the steps and code from the previous two 
sections. We note that different datasets are used in Sects. 4.2 and 4.3; we begin by  
importing the data required for Sect. 4.2 and defer the importing of the data used in 
the process mining application to the later section. 

With this in mind, we start by using the ìmport() function from the rio package 
to import our sequence data. Based on the description of the MHMM in [35], 
we used the seqHMM package to simulate a synthetic dataset (simulated_data) 
consisting of students’ collaboration roles (obtained from [36]) on different courses 
across a whole program. As the original data, the simulation was based on the two-
channel model (collaboration and achievement), but we only use the collaboration 
sequences in the following examples, and leave the multi-channel sequence analysis 
to Chapter 13 [8]. While not available in the original study, we also simulated 
students’ high school grade point average (GPA, for simplicity categorised into three 
levels) for each student, which will be used to predict cluster memberships. Using
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this data, we show how the seqHMM package can be used to analyse such sequences. 
We start with the simple MM, and then transition to HMMs and their mixtures. 
To be able to use the seqHMM functions, we need to convert the imported data to a 
sequence using the function seqdef() from the TraMineR package (see Chapter 
10 [1] for more information about creating stslist objects). We subsequently 
assign a colour palette to each state in the alphabet for later visualisations using the 
function cpal(). Finally, we can also extract the covariate information separately 
(cov_data). 

URL <- "https://github.com/sonsoleslp/labook-data/raw/main/" 
simulated_data <- import( 

paste(URL, "12_longitudinalRoles/simulated_roles.csv")) 

roles_seq <- seqdef( 
simulated_data, 
var = 3:22, 
alphabet = c("Isolate", "Mediator", "Leader"), 
cnames = 1:20 

) 

[>] 3 distinct states appear in the data: 

1 = Isolate 

2 = Leader 

3 = Mediator 

[>] state coding: 

[alphabet] [label] [long label] 

1 Isolate Isolate Isolate 

2 Mediator Mediator Mediator 

3 Leader Leader Leader 

[>] 200 sequences in the data set 

[>] min/max sequence length: 20/20 

cpal(roles_seq) <- c("#FBCE4B", "#F67067", "#5C2262") 

cov_data <- simulated_data |> 
select(ID, GPA) |> 
mutate(GPA = factor(GPA, levels = c("Low", "Middle", "High"))) 
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4.1 Steps of Estimation 

We will first briefly introduce the steps of the analysis with the seqHMM package and 
then show examples of estimating MMs, HMMs, MMMs, and MHMMs. 

4.1.1 Defining the Model Structure 

First, we need to create the model object which defines the structure of the model. 
This can be done by using one of the model building functions of seqHMM. The build 
functions include build_mm() for constructing the simple MM, build_hmm() for 
the HMM, build_mmm() for the MMM, and build_mhmm() for the MHMM. 
The user needs to give the build function the sequence data and the number of 
hidden states and/or clusters (when relevant). The user can also set restrictions on 
the models, for example, to forbid some transitions by setting the corresponding 
transition probabilities to zero. To facilitate the estimation of the parameters of 
more complex models, the user may also set informative starting values for model 
parameters. 

4.1.2 Estimating the Model Parameters 

After defining the model structure, model parameters need to be estimated. The 
fit_model() function estimates model parameters using maximum likelihood 
estimation. The function has several arguments for configuring the estimation 
algorithms. For simple models the default arguments tend to work well enough, but 
for more complex models the user should adjust the algorithms. This is because 
the more parameters the algorithm needs to estimate, the higher the risk of not 
finding the model with the optimal parameter values (the ones which maximises 
the likelihood). 

In order to reduce the risk of being trapped in a local optimum of the likelihood 
surface (instead of a global optimum), we advise to estimate the model numerous 
times using different starting values for the parameters. The seqHMM package strives 
to automate this. One option is to run the EM algorithm multiple times with random 
starting values for any or all of initial, transition, and emission probabilities. These 
are specified in the control_em argument. Although not done by default, this 
method seems to perform very well as the EM algorithm is relatively fast. Another 
option is to use a global direct numerical estimation method such as the multilevel 
single-linkage method. See [4] for more detailed information on model estimation.
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4.1.3 Examining the Results 

The output of the fit_model() contains the estimated model (stored in 
fit_hmm$model) as well as information about the estimation of the model, 
such as the log-likelihood of the final model (fit_hmm$logLik). The print() 
method provides information about the estimated model in a written format, while 
the plot() method visualises the model parameters as a graph. For HMMs and 
MHMMs, we can calculate the most probable sequence of hidden states for each 
individual with the hidden_paths() function. Sequences of observed and hidden 
state sequences can be plotted with the ssplot() function for MMs and HMMs 
and with the mssplot() function for the MMMs and the MHMMs. For MMMs 
and MHMMs, the summary() method automatically computes some features of 
the models such as standard errors for covariates and prior and posterior cluster 
membership probabilities for the subjects. 

4.2 Markov Models 

We now follow the steps outlined above for each model in turn, starting from 
the most basic Markov model, proceeding through a hidden Markov model and 
a mixture Markov model, and finally concluding with a mixture hidden Markov 
model. 

4.2.1 Markov Model 

We focus on the sequences of collaboration roles, collected in the roles_seq 
object. The build_mm() function only takes one argument, observations, which 
should be an stslist object created with the seqdef() function from the 
TraMineR package as mentioned before. We can build a MM as follows: 

markov_model <- build_mm(roles_seq) 

For the MM, the build_mm() function estimates the initial probabilities and the 
transition matrix. Note that the build_mm() function is the only build func-
tion that automatically estimates the parameters of the model. This is possi-
ble because for the MM the estimation is a simple calculation while for the 
other types of models the estimation process is more complex. The user can 
access the estimated parameters by calling markov_model$initial_probs and 
markov_model$transition_probs or view them by using the print method of 
the model:
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print(markov_model) 

Initial probabilities : 
Isolate Mediator Leader 

0.375 0.355 0.270 

Transition probabilities : 
to 

from Isolate Mediator Leader 
Isolate 0.4231 0.478 0.0987 
Mediator 0.1900 0.563 0.2467 
Leader 0.0469 0.428 0.5252 

We can see that the initial state probabilities are relatively uniform, with a slightly 
lower probability for starting in the Leader state. In terms of the transition 
probabilities, the most distinct feature is that that it is rare to transition directly 
from the Leader state to Isolate and vice versa (estimated probabilities are about 5% 
and 10%, respectively). It is also more common to drop from Leader to Mediator 
(43%) than to increase collaboration from Mediator to Leader (25%). Similarly, the 
probability of moving from Mediator to Isolate is only 19%, but there is a 48% 
chance of transitioning from Isolate to Mediator. 

We can also draw a graph of the estimated model using the plot() method which 
by default shows the states as pie graphs (for the MM, the pie graphs only consist of 
one state), transition probabilities as directed arrows, and initial probabilities below 
each state (see Fig. 3). 

plot(markov_model, 
legend.prop = 0.2, ncol.legend = 3, 
edge.label.color = "black", vertex.label.color = "black") 

Fig. 3 Estimated Markov 
model as a pie charts with the 
transition probabilities shown 
as labelled edges 
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4.2.2 Hidden Markov Models 

The structure of an HMM is set with the build_hmm() function. In contrast to 
build_mm(), other build_*() functions such as build_hmm() do not directly 
estimate the model parameters. For build_hmm(), in addition to observations (an 
stslist), we need to provide the n_states argument which tells the model how 
many hidden states to construct. Using again the collaboration roles sequences, if 
we want to estimate an HMM with two hidden states, we can write: 

set.seed(1) 
hidden_markov_model <- build_hmm( 

observations = roles_seq, 
n_states = 2 

) 

The set.seed() call ensures that we will always end up with the same exact initial 
model with hidden states in the same exact order even though we use random values 
for the initial parameters of the model (which is practical for reproducibility). We 
are now ready to estimate the model with the fit_model() function. The HMM 
we want to estimate is simple, so we rely on the default values and again use the 
print() method to provide information about the estimated model: 

fit_hmm <- fit_model(hidden_markov_model) 
fit_hmm$model 

Initial probabilities : 
State 1 State 2 

0.657 0.343 

Transition probabilities : 
to 

from State 1 State 2 
State 1 0.9089 0.0911 
State 2 0.0391 0.9609 

Emission probabilities : 
symbol_names 

state_names Isolate Mediator Leader 
State 1 0.4418 0.525 0.0336 
State 2 0.0242 0.478 0.4980 

The estimated initial state probabilities show that it is more probable to start 
from hidden state 1 than from hidden state 2 (66% vs. 34%). The high transition
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Fig. 4 HMM with two 
hidden states (pie charts), 
with transitions between 
hidden states shown as 
labelled edges 

0.091 

0.039 

0.66 0.34 

Isolate Mediator Leader others 

probabilities on the diagonal of the transition matrix indicate that the students 
typically tend to stay in the hidden state they currently are in. Transition probabilities 
between the hidden states are relatively low and also asymmetric: it is more likely 
that students move from state 1 to state 2 than from state 2 to state 1. Looking at the 
emission matrices, we see that the role of the students in state 2 is mostly Leader 
or Mediator (emission probabilities are 50% and 48%). On the other hand, state 
1 captures more of those occasions where students are isolated or exhibit at most 
a moderate level of participation (mediators). We can also visualise this with the 
plot() method of seqHMM (see Fig. 4): 

plot(fit_hmm$model, 
ncol.legend = 4, legend.prop = 0.2, 
edge.label.color = "black", vertex.label.color = "black" 

) 

The plot values mainly shows the same information. By default, to simplify the 
graph, the plotting method combines all states with less than 5% emission probabil-
ities into one category. This threshold can be changed with the combine.slices 
argument (setting combine.slices = 0 plots all states). 

For simple models, using n_states is sufficient. It automatically draws random 
starting values that are then used for the estimation of model parameters. However, 
as parameter estimation of HMMs and mixture models can be sensitive to starting 
values of parameters, it may be beneficial to provide starting values manually using 
the initial_probs, transition_probs, and emission_probs arguments. This 
is also necessary in case we want to define structural zeros for some of these 
components, e.g., if we want to restrict the initial probabilities so that each sequence 
starts from the same hidden state, or if we want to set the lower diagonal part of the 
transition matrix to zero, which means that the model does not allow transitioning 
back to previous states (this is called a left-to-right model) [4]. It is also possible 
to mix random and user-defined starting values by using simulate_*() functions 
(e.g. simulate_transition_probs()) for some of the model components and 
user-defined values for others.
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In the following example we demonstrate estimating a three-state HMM with 
user-defined starting values for the initial state probabilities and the transition matrix 
but simulate starting values for the emission matrices. For simulating starting values 
with simulate_emission_probs(), we need to define the number of hidden 
states, and the number of observed symbols, i.e., the length of the alphabet of the 
sequences. 

# Set seed for randomisation 
set.seed(1) 

# Initial state probability vector, must sum to one 
init_probs <- c(0.3, 0.4, 0.3) 

# a 3x3 transition matrix, each row should sum to one 
trans_probs <- rbind( 

c(0.8, 0.15, 0.05), 
c(0.2, 0.6, 0.2), 
c(0.05, 0.15, 0.8) 
) 

# Simulate emission probabilities 
emission_probs <- simulate_emission_probs( 

n_states = 3, n_symbols = length(alphabet(roles_seq)) 
) 

# Build the HMM 
hidden_markov_model_2 <- build_hmm( 

roles_seq, initial_probs = init_probs, 
transition_probs = trans_probs, 
emission_probs = emission_probs 

) 

Our initial probabilities suggest that it is slightly more likely to start from the second 
hidden state than the first and the third. Furthermore, the starting values for the 
transition matrices suggest that staying in hidden states 1 and 3 is more likely than 
staying in hidden state 2. All non-zero probabilities are, however, mere suggestions 
and will be estimated with the fit_model() function. We now estimate this model 
50 times with the EM algorithm using randomised starting values: 

set.seed(1) 
fit_hmm_2 <- fit_model(hidden_markov_model_2, 

control_em = list(restart = list(times = 50)) 
) 
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We can get the information on the EM estimation as follows: 

fit_hmm_2$em_results 

$logLik 
[1] -3546.155 

$iterations 
[1] 488 

$change 
[1] 9.947132e-11 

$best_opt_restart 
[1] -3546.155 -3546.155 -3546.155 -3546.155 -3546.155 -3546.155 -3546.155 
[8] -3546.155 -3546.155 -3546.155 -3546.155 -3546.155 -3546.155 -3546.155 

[15] -3546.155 -3546.155 -3546.155 -3546.155 -3546.155 -3546.155 -3546.155 
[22] -3546.155 -3546.155 -3546.155 -3546.155 

The loglik element gives the log-likelihood of the final model. This value has 
no meaning on its own, but it can be used to compare HMMs with the same data 
and model structure (e.g., when estimating the same model from different starting 
values). The iterations and change arguments give information on the last EM 
estimation round: how many iterations were used until the (local) optimum was 
found and what was the change in the log-likelihood at the final step. 

The most interesting element is the last one: best_opt_restart shows the 
likelihood for 25 (by default) of the best estimation rounds. We advise to always 
check these to make sure that the best model was found several times from different 
starting values: this way we can be fairly certain that we have found the actual 
maximum likelihood estimates of the model parameters (global optimum). In this 
case all of the 25 log-likelihood values are identical, meaning that it is likely that 
we have found the best possible model among all HMMs with three hidden states. 

plot(fit_hmm_2$model, 
legend.prop = 0.15, ncol.legend = 3, 
edge.label.color = "black", vertex.label.color = "black", 
combine.slices = 0, trim = 0.0001 

) 

Interpreting the results in Fig. 5 we see that the first hidden state represents about 
equal amounts of isolate and mediator roles, the second hidden state represents 
mainly Leaders and some Mediator roles, and the third hidden state represents 
mainly Mediator roles and partly Leader roles. Interestingly, none of the students 
start as Mediator/Leader, while of the other two the Isolate/Mediator state is more 
typical (two thirds). There are no transitions from the first to the second state nor 
vice versa, and transition probabilities to the third state are considerably higher than 
away from it. In other words, it seems that the model has two different origin states 
and one destination state.
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Fig. 5 HMM with three hidden states (pie charts), with transitions between hidden states shown 
as labelled edges 
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Fig. 6 Observed and hidden state sequences from the HMM with three hidden states
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We can visualise the observed and/or hidden state sequences with the ssplot() 
function. The ssplot() function can take an stslist object or a model object of 
class mm or hmm (see Fig. 6). Here we want to plot full sequence index plots (type = 
"I") of both observed and hidden states (plots = "both") and sort the sequences 
using multidimensional scaling of hidden states (sortv = "mds.hidden"). See 
the seqHMM manual and visualisation vignette for more information on the different 
plotting options. 

ssplot(fit_hmm_2$model, 
# Plot sequence index plot (full sequences) 
type = "I", 
# Plot observed and hidden state sequences 
plots = "both", 
# Sort sequences by the scores of multidimensional scaling 
sortv = "mds.hidden", 
# X axis tick labels 
xtlab = 1:20 

) 

By looking at the sequences, we can see that even though none of the students start 
in hidden state 3, the majority of them transition there. In the end, most students end 
up alternating between mediating and leadership roles. 

Is the three-state model better than the two-state model? As already mentioned, 
we can use model selection criteria to test that. To make sure that the three-state 
model is the best, we also estimate a HMM with four hidden states and then use the 
Bayesian information criterion for comparing between the three models. Because 
the four-state model is more complex, we increase the number of re-estimation 
rounds for the EM algorithm to 100. 

# Set seed for randomisation 
set.seed(1) 

# Build and estimate a HMM with four states 
hidden_markov_model_3 <- build_hmm(roles_seq, n_states = 4) 

fit_hmm_3 <- fit_model(hidden_markov_model_3, 
control_em = list(restart = list(times = 100)) 

) 

fit_hmm_3$em_results$best_opt_restart 

[1] -3534.304 -3534.304 -3534.304 -3534.304 -3534.304 -3534.304 -3534.304 
[8] -3534.304 -3534.304 -3534.304 -3534.304 -3534.304 -3534.304 -3534.305 

[15] -3534.305 -3534.306 -3534.308 -3534.310 -3534.332 -3534.335 -3534.335 
[22] -3534.335 -3534.336 -3534.337 -3534.337
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The best model was found only 13 times out of 101 estimation rounds from 
randomised starting values. A cautious researcher might be wise to opt for a higher 
number of estimation rounds for increased certainty, but here we will proceed to 
calculating the BIC values. 

BIC(fit_hmm$model) 

[1] 7430.028 

BIC(fit_hmm_2$model) 

[1] 7208.427 

BIC(fit_hmm_3$model) 

[1] 7259.37 

Generally speaking, the lower the BIC, the better the model. We can see that the 
three-state model (fit_hmm_2) has the lowest BIC value, so three clusters is the 
best choice (at least among HMMs with 2–4 hidden states). 

4.2.3 Mixture Markov Models 

The MMM can be defined with the build_mmm() function. Similarly to HMMs, 
we need to either give the number of clusters with the n_clusters argument, 
which generates random starting values for the parameter estimates, or give starting 
values manually as initial_probs and transition_probs. Here we use random 
starting values: 

# Set seed for randomisation 
set.seed(123) 
# Define model structure (3 clusters) 
mmm <- build_mmm(roles_seq, n_clusters = 3) 

Again, the model is estimated with the fit_model() function: 

fit_mmm <- fit_model(mmm) 

The results for each cluster can be plotted one at a time (interactively, the default), 
or in one joint figure. Here we opt for the latter (see Fig. 7). At the same time we 
also illustrate some other plotting options:
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Fig. 7 MMM with three clusters 

plot(fit_mmm$model, 
# Plot all clusters at the same time 
interactive = FALSE, 
# Set the number of rows (1) and columns (3) for cluster plots 
nrow = 1, ncol = 3, 
# Omit legends 
with.legend = FALSE, 
# Choose another layout for the vertices (see plot.igraph) 
layout = layout_in_circle, 
# Omit pie graphs from vertices 
pie = FALSE, 
# Set state colours 
vertex.label.color = c("black", "black", "white"), 
# Set state label colours 
vertex.color = cpal(roles_seq), 
# Increase the size of the circle 
vertex.size = 80, 
# Plot state labels instead of initial probabilities 
vertex.label = "names", 
# Set state label in the centre of the circle 
vertex.label.dist = 0, 
# Omit labels for transition probabilities 
edge.label = NA 

) 

The following code plots the sequence distribution plot of each cluster (Fig. 8). In 
Cluster 1, we see low probabilities to downward mobility and high probabilities 
for upward mobility, so this cluster describes leadership trajectories. In Cluster 
2, we can see that the thickest arrows lead to mediator and isolates roles, so this 
cluster describes trajectories with less central roles in collaboration. In Cluster 3, 
we see the highest transition probabilities for entering the mediator role but also
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Fig. 8 State distribution plots by most probable clusters estimated with the mixture Markov 
model. (a) Cluster 1. (b) Cluster 2. (c) Cluster 3 

some transitions from mediator to leader, so this cluster describes trajectories with 
more moderate levels of participation in comparison to cluster 1. This behavior is 
easier to see when visualising the sequences in their most probable clusters. The 
plot is interactive, so we need to hit ‘Enter’ on the console to generate each plot. 
Alternatively, we can specify which cluster we want to plot using the which.plots 
argument. 

cl1 <- mssplot(fit_mmm$model, 
# Plot Y axis 
yaxis = TRUE, 
# Legend position 
with.legend = "bottom", 
# Legend columns 
ncol.legend = 3, 
# Label for Y axis 
ylab = "Proportion" 

) 

We can add covariates to the model to explain cluster membership probabilities. 
For this, we need to provide a data frame (argument data) and the corresponding 
formula (argument formula). In the example data we use the data frame called 
cov_data that we created at the beginning of the tutorial with columns ID and GPA,
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where the order of the ID variable matches to that of the sequence data roles_seq 
(note that the ID variable is not used in the model building, so the user needs to 
make sure that both matrices are sorted by ID). We can now use the information 
about students’ GPA level as a predictor of the cluster memberships. 

Numerical estimation of complex models from random starting values may 
lead to convergence issues and other problems in the estimation (you may, for 
example, get warnings about the EM algorithm failing). To avoid such issues, 
giving informative starting values is often helpful. This model is more complex 
than the model without covariates and estimation from random starting values leads 
to convergence issues (not shown here). To facilitate model estimation, we use 
the results from the previous MMM as informative starting values. Here we also 
remove the common intercept by adding 0 to the formula, which simplifies the 
interpretation of the covariate effects later (instead of comparing to a reference 
category, we get separate coefficients for each of the three GPA categories). 

set.seed(98765) 
mmm_2 <- build_mmm( 

roles_seq, 
# Starting values for initial probabilities 
initial_probs = fit_mmm$model$initial_probs, 
# Starting values for transition probabilities 
transition_probs = fit_mmm$model$transition_probs, 
# Data frame for covariates 
data = cov_data, 
# Formula for covariates (one-sided) 
formula = ~ 0 + GPA 

) 

Again, the model is estimated with the fit_model() function. Here we use the EM 
algorithm with 50 restarts from random starting values: 

set.seed(12345) 
fit_mmm_2 <- fit_model( 

mmm_2, 
# EM with randomised restarts 
control_em = list( 

restart = list( 
# 50 restarts 
times = 50, 
# Store loglik values from all 50 + 1 estimation rounds 
n_optimum = 51 

) 
) 

) 
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Warning in fit_model(mmm_2, control_em = list(restart 
= list (times = 50, : EM algorithm failed: Estimation of 
gamma coefficients failed due to singular Hessian. 

The model was estimated 50 + 1 times (first from the starting values we provided 
and then from 50 randomised values). We get one warning about the EM algorithm 
failing. However, 50 estimation rounds were successful. We can check that the 
best model was found several times from different starting values (37 times, to be 
precise): 

fit_mmm_2$em_results$best_opt_restart 

[1] -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 
[8] -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 

[15] -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 
[22] -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 
[29] -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 -3614.627 
[36] -3614.627 -3614.627 -3619.695 -3624.547 -3624.547 -3624.547 -3624.547 
[43] -3624.547 -3624.547 -3624.547 -3624.547 -3624.547 -3624.547 -3631.328 
[50] -3637.344 -Inf 

We can now be fairly certain that the optimal model has been found, and can proceed 
to interpreting the results. The clusters are very similar to what we found before. We 
can give the clusters more informative labels and then show state distribution plots 
in each cluster in Fig. 9: 
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Fig. 9 State distribution plots by most probable clusters estimated with the mixture Markov model 
with covariates. (a) Mainly leader. (b) Isolate/mediator. (c) Mediator/leader 
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cluster_names(fit_mmm_2$model) <- c( 
"Mainly leader", "Isolate/mediator", "Mediator/leader" 

) 
mssplot(fit_mmm_2$model, with.legend = "bottom", ncol.legend = 3) 

The model summary shows information about parameter estimates of covariates 
and prior and posterior cluster membership probabilities (these refer to cluster 
membership probabilities before or after conditioning on the observed sequences, 
respectively): 

summary_mmm_2 <- summary(fit_mmm_2$model) 
summary_mmm_2 

Covariate effects : 
Mainly leader is the reference. 

Isolate/mediator : 
Estimate Std. error 

GPALow 1.9221 0.478 
GPAMiddle 0.3901 0.314 
GPAHigh -0.0451 0.277 

Mediator/leader : 
Estimate Std. error 

GPALow 1.670 0.487 
GPAMiddle 0.411 0.312 
GPAHigh -0.667 0.332 

Log-likelihood: -3614.627 BIC: 7461.487 

Means of prior cluster probabilities : 
Mainly leader Isolate/mediator Mediator/leader 

0.244 0.425 0.331 

Most probable clusters : 
Mainly leader Isolate/mediator Mediator/leader 

count 49 87 64 
proportion 0.245 0.435 0.32 

Classification table : 
Mean cluster probabilities (in columns) by the most probable cluster (rows) 

Mainly leader Isolate/mediator Mediator/leader 
Mainly leader 0.91758 0.00136 0.0811 
Isolate/mediator 0.00081 0.89841 0.1008 
Mediator/leader 0.05902 0.10676 0.8342 

We will first interpret the information on prior and posterior cluster membership 
probabilities and then proceed to interpreting covariate effects. Firstly, the means 
of prior cluster probabilities give information on how likely each cluster 
is in the whole population of students (33% in Mediator, 24% in Leader, and 43% in 
Isolate). Secondly, Most probable clusters shows group sizes and proportions
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if each student would be classified into the cluster for which they have the highest 
cluster membership probability. 

Thirdly, the Classification table shows mean cluster probabilities (in 
columns) by the most probable cluster (in rows). We can see that the clusters 
are fairly crisp (the certainty of cluster memberships are fairly high) because the 
membership probabilities are large in the diagonal of the table. The uncertainty 
of the classification is the highest for the Mediator/leader cluster (among those that 
had the highest membership probability in that cluster, average cluster memberships 
were 83% for the Mediator/leader cluster, 6% for the Mainly leader cluster, and 11% 
for the Isolate/mediator cluster) and the highest in the Mainly leader cluster (92% 
for the Mainly leader cluster, 8% for the Mediator/leader cluster, and 0.1% for the 
Isolate/mediator cluster). 

The part titled Covariate effects shows the parameter estimates for the 
covariates. Interpretation of the values is similar to that of multinomial logistic 
regression, meaning that we can interpret the direction and uncertainty of the 
effect—relative to the reference cluster Mainly leader—but we cannot directly 
interpret the magnitude of the effects (the magnitudes are on log-odds scale). We 
can see that individuals with low GPA more often end up in the Isolate/mediator 
cluster and the Mediator/leader cluster in comparison to the Mainly leader cluster 
(i.e., the standard errors are small in comparison to the parameter estimates), while 
individuals with high GPA levels end up in the Mediator/leader cluster less often but 
are not more or less likely to end up in the Isolate/mediator cluster. For categorical 
covariates such as our GPA variable, we can also easily compute the prior cluster 
membership probabilities from the estimates with the following call: 

exp(fit_mmm_2$model$coefficients)/rowSums(exp(fit_mmm_2$model$coefficients)) 

Mainly leader Isolate/mediator Mediator/leader 
GPALow 0.07605453 0.5198587 0.4040868 
GPAMiddle 0.25090105 0.3705958 0.3785031 
GPAHigh 0.40497185 0.3870997 0.2079285 

The matrix shows the levels of the covariates in the rows and the clusters in the 
columns. Among the high-GPA students, 40% (0.40497) are classified as Mainly 
leaders, 39% as Isolate/mediators, and 21% as Mediator/leaders. Among middle-
GPA students classification is relatively uniform (25% as Mainly leaders, 37% as 
Isolate/mediators and 38 Mediator/leaders) whereas most of the low-GPA students 
are classified as Isolate/mediators or Mediator/leaders (52% and 40%, respectively). 

The summary object also calculates prior and posterior cluster memberships for 
each student. We omit them here, for brevity, but demonstrate that they can be 
obtained as follows: 

prior_prob <- summary_mmm_2$prior_cluster_probabilities 
posterior_prob <- summary_mmm_2$posterior_cluster_probabilities 
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4.2.4 Mixture Hidden Markov Models 

Finally, we will proceed to the most complex of the models, the MHMM. 
For defining a MHMM, we use the build_mhmm() function. Again, we can use 

the argument n_states which is now a vector showing the number of hidden states 
in each cluster (the length of the vector defines the number of clusters). We will 
begin by estimating a MHMM with three clusters, each with two hidden states: 

set.seed(123) 
mhmm <- build_mhmm( 

roles_seq, 
n_states = c(2, 2, 2), 
data = cov_data, 
formula = ~ 0 + GPA 

) 
fit_mhmm <- fit_model(mhmm) 

Error in fit_model(mhmm): EM algorithm failed: Estimation of 
gamma coefficients failed due to singular Hessian. 

In this case, we get an error message about the EM algorithm failing. This means 
that the algorithm was not able to find parameter estimates from the random starting 
values the build_mhmm() function generated and we need to adjust our code. 

Starting values for the parameters of the MHMM can be given with the arguments 
initial_probs, transition_probs, and emission_probs. For the MHMM, 
these are lists of vectors and matrices, one for each cluster. We use the same number 
of hidden states (two) for each cluster. We define the initial values for the transition 
and emission probabilities as well as regression coefficients ourselves. We also 
restrict the initial state probabilities so that in each cluster every student is forced to 
start from the same (first) hidden state. 

set.seed(1) 

# Set initial probabilities 
init <- list(c(1, 0), c(1, 0), c(1, 0)) 

# Define own transition probabilities 
trans <- matrix(c( 

0.9, 0.1, 
0.1, 0.9 

), nrow = 2, byrow = TRUE) 

translist <- list(trans, trans, trans) 

# Simulate emission probabilities 
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emiss <- simulate_emission_probs( 
n_states = c(2, 2, 2), 
n_symbols = 3, 
n_clusters = 3 

) 

emiss <- replicate(3, matrix(1/3, 2, 3), simplify = FALSE) 

# Define initial values for coefficients 
# Here we start from a case where low GPA correlates with Cluster 1, 
# whereas middle and high GPA has no effect 
beta <- cbind(0, c(-2, 0, 0), c(-2, 0, 0)) 

# Define model structure 
mhmm_2 <- build_mhmm( 

roles_seq, 
initial_probs = init, transition_probs = translist, 
emission_probs = emiss, data = cov_data, 
formula = ~ 0 + GPA, beta = beta 

) 

Now that we have built the MHMM, we can estimate its parameters: 

set.seed(1) 
suppressWarnings(fit_mhmm_2 <- fit_model( 

mhmm_2, 
control_em = list(restart = list(times = 100, n_optimum = 101))) 

) 

We can now check how many times the log-likelihood values occurred in the 101 
estimations: 

table(round(fit_mhmm_2$em_results$best_opt_restart, 2))

-Inf -3672.25 -3595.82 -3588.58 -3584.14 -3526.42 -3525.06 -3519.53 
56 2 1 3 1 4 1 2

-3519.5 -3519.24 
15 16 

The best model was found 16 times out of 101 times, although the second best model 
has a log-likelihood of . −3519.5 which is almost indistinguishable from the optimal 
model (. −3519.24) 

We will start to interpret the model by looking at the sequence plots in each 
cluster (see Fig. 10). The function call is interactive. As before, if you only want to 
plot one cluster you can use the which.plots argument:
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Fig. 10 MHMM estimated sequence distribution plot with hidden states. (a) Cluster 1. (b) Cluster  
2. (c) Cluster 3 
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Fig. 11 Transitions between states for each trajectory 

mssplot(fit_mhmm_2$model, 
plots = "both", type = "I", sortv = "mds.hidden", 
with.legend = "bottom.combined", legend.prop = .15) 

We can also visualise the model parameters in each cluster (see Fig. 11): 

plot(fit_mhmm_2$model, 
vertex.size = 60, 
label.color = "black", 
vertex.label.color = "black", 
edge.color = "lightgray", 
edge.label.color = "black", 
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legend.prop = 0.4, 
ncol.legend = 1, 
ncol = 3, 
interactive = FALSE, 
combine.slices = 0 

) 

Based on the two plots, we can determine that Cluster 1 describes students who start 
as leaders but then transition to alternating between mediator and leader. Cluster 2 
describes students who start by alternating between isolate and mediator roles and 
then mainly transition to alternating between mediator and leader roles. Cluster 3 
describes students who start as alternating between isolate and mediator roles, after 
which they transition between isolate/mediator and mediator/leader. 

cluster_names(fit_mhmm_2$model) <- c( 
"Downward transition", "Upward transition", "Alternating" 

) 

With summary(fit_mhmm_2$model) we get the parameter estimates and standard 
errors for the covariates and information about clustering: 

summary(fit_mhmm_2$model) 

Covariate effects : 
Downward transition is the reference. 

Upward transition : 
Estimate Std. error 

GPALow -0.455 0.464 
GPAMiddle 0.440 0.310 
GPAHigh -2.743 0.727 

Alternating : 
Estimate Std. error 

GPALow 1.3560 0.324 
GPAMiddle 0.3461 0.316 
GPAHigh 0.0468 0.250 

Log-likelihood: -3519.243 BIC: 7237.543 

Means of prior cluster probabilities : 
Downward transition Upward transition Alternating 

0.302 0.181 0.517 

Most probable clusters : 
Downward transition Upward transition Alternating 

count 61 30 109 
proportion 0.305 0.15 0.545
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Classification table : 
Mean cluster probabilities (in columns) by the most probable cluster (rows) 

Downward transition Upward transition Alternating 
Downward transition 0.95727 0.0267 0.0161 
Upward transition 0.03007 0.8037 0.1662 
Alternating 0.00975 0.0962 0.8940 

We can see, that the prior probabilities of belonging to each cluster are very 
different: half of the students can be described as alternating, while of the rest, 
a downward transition is more typical (31%). Based on the classification table, 
the Downward transition cluster is rather crisp, while the other two are partly 
overlapping (see the MMM example for more information on interpreting the 
classification table). 

The Covariate effects tables show that, in comparison to Alternating cluster, 
students with low GPA are less likely to end up in the Upward or Downward 
transition clusters and students with high GPA are less likely to end up in Upward 
transition cluster. Again, we can calculate the probabilities of belonging to each 
cluster by GPA levels: 

exp(fit_mhmm_2$model$coefficients)/rowSums(exp(fit_mhmm_2$model$coefficients)) 

Downward transition Upward transition Alternating 
GPALow 0.1813217 0.11502283 0.7036555 
GPAMiddle 0.2521406 0.39144399 0.3564154 
GPAHigh 0.4734128 0.03048189 0.4961054 

The table shows that students with low GPA typically belong to the Alternating 
cluster (70% probability) while students with high GPA mainly end up in the 
Downward transition cluster (47%) or the Alternating cluster (50%). Most students 
with middle GPA end up in the Upward transition cluster (39%), but the probabilities 
are almost as high for the Alternating cluster (36%) and also fairly high for the 
Downward transition cluster (25%). 

In light of this, it is worth noting that the covariates do not merely explain the 
uncovered clusters; as part of the model, they drive the formation of the clusters. 
In other words, an otherwise identical model without the dependence on the GPA 
covariate may uncover different groupings with different probabilities. 

If we are not sure how many clusters or hidden states we expect, or if we wish 
to investigate different combinations of covariates, we can estimate several models 
and compare the results with information criteria or cross-validation. Estimating a 
large number of complex models is, however, very time-consuming. Using prior 
information for restricting the pool of potential models is useful, and sequence 
analysis can also be used as a helpful first step [10, 37].
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4.3 Stochastic Process Mining with Markovian Models 

Process mining is a relatively recent method for the analysis of event-log data (time-
stamped logs) which aims to understand the flow and dynamics of the process under 
study. In education, process mining has been used extensively to analyse learners’ 
online logs collected from Learning Management Systems (LMS), to understand 
how they utilize learning resources and transitions between learning activities to 
mention a few [38, 39]. In this book, we have devoted a full chapter for process 
mining where we explained how process mining can be performed in R [40]. Yet, in 
this chapter we will present a novel method that we propose to perform stochastic 
process mining using MMs. While process mining can be performed using different 
software, techniques and algorithms, MMs offer a powerful framework for process 
mining with several advantages over the commonly used methods. First, it is more 
theoretically aligned with the idea of a transition from an action to an action and that 
actions are temporally dependent on each other. Second, MMs allow for data to be 
clustered into similar transition patterns, a possibility not offered by other process 
mining methods (see the process mining chapter of this book [40]). Third, contrary 
to other process mining methods, MMs do not require researchers to arbitrarily 
exclude—or trim—a large part of the data to “simplify” the model. For instance, 
most of the process mining analyses require an arbitrary cutoff to trim the data so 
that the process model is readable. This trimming significantly affects the resulting 
model and makes it hard to replicate. Most importantly, MMs have several fit 
statistics that we can use to compare and judge the model fit as we have seen before. 

Several R packages can perform stochastic process mining; in this tutorial we 
will rely on the same package we discussed earlier and combine it with a powerful 
visualisation that allows us to effectively visualise complex processes. In the next 
example, we will analyse data extracted from the learning management system logs 
and offer a detailed guide to process mining. We will also use MMMs to cluster the 
data into latent patterns of transitions. Given that the traditional plotting function in 
seqHMM works well with a relatively short alphabet, we will use a new R package 
called qgraph for plotting. The package qgraph offers powerful visualisations 
which makes plotting easier, and more interpretable especially for larger models. 
Furthermore, qgraph allows researchers to use a fixed layout for all the plotted 
networks so the nodes can be compared to each other more easily. 

Let us now go through the analysis. The next chunk of code imports the prepared 
sequence data from the sequence analysis chapter. The data belong to a learning 
analytics course and the events are coded trace logs of students’ actions such as 
Course view, Instructions, Practicals, Social, etc. Then, we build a sequence object 
using the function seqdef() from TraMineR.
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library(qgraph) 
library(rio) 
library(seqHMM) 
library(tidyverse) 
library(TraMineR) 
seq_data <- import(paste0(URL, "1_moodleLAcourse/LMS_data_wide.xlsx")) 
seq_data_all <- seqdef(seq_data, var = 7:54 ) 

Before proceeding further, it is advisable to visualise the sequences. Figure 12 shows 
the sequence index plot, sorted according to the first states. The data are much 
larger than the collaboration roles and achievement sequences analysed previously; 
there are 9478 observations with an alphabet of 12 states. Unlike in the previous 
example, the sequence lengths vary considerably. Due to this, shorter sequences 
contain missing values to fill the empty cells in the data frame. However, there 

Fig. 12 Sequence index plot for the learning management system logs
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are no internal gaps. When creating the sequence object with the seqdef function, 
TraMineR allows for distinguishing between real missing values (NA, where the true 
state is unknown) and technical missing values (void) used to pad the sequences to 
equal lengths. The seqHMM package is able to account for both types of missing 
values and treats them slightly differently, for example when calculating the most 
probable paths of hidden states. 

seqplot(seq_data_all, 
type = "I", ncol = 4, sortv = "from.start", 
legend.prop = 0.2, cex.legend = 0.7, border = NA, 
ylab = "Sequence (sorted)", xlab = "Time" 

) 

A simple transition analysis can be performed by estimating and plotting the 
transition probabilities. This can be performed using the TraMineR package. Yet, 
this simple approach has drawbacks and it is advisable to estimate the MM and 
use their full power. The next code estimates the transition probabilities of the full 
dataset using the function seqtrate() from TraMineR package (shown in Table 7). 

overalltransitions <- seqtrate(seq_data_all) 

As we mentioned earlier, we will use a novel plotting technique that is more 
suitable for large process models. Below, we plot the transition probabilities with the 
qgraph() function from the qgraph package (Fig. 13). We use some arguments to 
improve the process model visualisation. First, we use the argument cut = 0.15 to 
show the edges with probabilities below 0.15 in lower thickness and colour intensity. 
This cut makes the graph easier to read and less crowded, and gives emphasis to the 
edges which matter. The argument minimum = 0.05 hides small edges below the 
probability threshold of 0.05. We use edge.labels = TRUE to show the transition 
probabilities as edge labels. The argument color gets the colour palette from the 
sequence with the function cpal() and the argument curveAll = TRUE ensures 
the graph shows curved edges. The “colorblind” theme makes sure that the 
colours can be seen by everyone regardless of colour vision abilities. Lastly, the 
mar 

within the figure area. 

# get the labeles to use them as node names. 
Labelx <- alphabet(seq_data_all) 
transitionsplot <- qgraph( 

overalltransitions, cut = 0.15, minimum = 0.05, 
labels = Labelx, edge.labels = TRUE, edge.label.cex = 0.65, 
color = cpal(seq_data_all), curveAll = TRUE, 
theme = "colorblind", mar = c(4, 3, 4, 3) 

) 
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Fig. 13 Process map for the overall process 

The seqtrate() function only computes the transition probabilities but does 
not compute the initial probabilities. While it is not difficult to calculate the 
proportions of starting in each state, we can also estimate a simple Markov model 
which does the same with a short command. We do so using the build_mm() 
function as per Sect. 4.2, recalling that the build_mm() function is distinct from 
build_hmm(), build_mmm(), and build_mhmm() in that it is the only build 
function that automatically estimates the parameters of the model. 

The plotting now includes an extra option called pie = overallmodel$initi 
al_probs which tells qgraph to use the initial probabilities from the fitted MM 
as the sizes of the pie charts in the borders of the nodes in Fig. 14. For instance, 
the pie around Course view is around half of the circle corresponding to 0.48 initial 
probability to start from Course view. Please also note that the graph is otherwise 
equal to the one generated via seqtrate() apart from these initial probabilities.
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Fig. 14 Process map for the overall process with initial probabilities 

overallmodel <- build_mm(seq_data_all) 

overallplot <- qgraph( 
overallmodel$transition_probs 
cut = 0.15, 
minimum = 0.05, 
labels = Labelx, 
mar = c(4, 3, 4, 3), 
edge.labels = TRUE, 
edge.label.cex = 0.65, 
color = cpal(seq_data_all), 
curveAll = TRUE, 
theme = "colorblind", 
pie = overallmodel$initial_probs 

) 
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Having plotted the transitions of the full dataset, we can now look for transition 
patterns, that is typical transition patterns (i.e., clusters) that are repeated within the 
data. The procedure is the same as before. In the next example, we use the function 
build_mmm() to build the model with four clusters as a demonstration. Ideally, 
researchers need to estimate several models and choose the best model based on 
model selection criteria (such as BIC) values as well as interpretability. 

The steps involved in fitting the model are as before; we make use of the 
function fit_model() to estimate the model. The results of the running the code 
will be an MM for each cluster (with distinct initial and transition probabilities). 
Given the number of sequences in the dataset, their length, and the number of 
states, the computational burden is larger than for previous applications in this 
chapter. For illustrative purposes, instead of repeated EM runs with random starting 
values, we use single EM run followed by global optimisation, using the argument 
global_step = TRUE. One benefit of this global (and local) step in fit_model 
over the EM algorithm is the flexibility to define a maximum runtime (in seconds) 
for the optimization process (argument maxtime in control_global). This can 
be valuable for larger problems with predefined runtime (e.g., in a shared computer 
cluster). Note, however, that relying on the runtime can lead to non-reproducible 
results even with fixed seed if the optimisation terminates due to the time limit. 
Finally, we run additional local optimisation step using the results of the global 
optimisation, for more accurate results. The last argument threads = 16 instructs 
to use parallel computing to enable faster fitting (please, customise according to the 
number of cores in your computer). As for the starting values, we use the transition 
probabilities computed from the full data for all clusters, and random values for the 
initial probabilities. 

While in theory many of the global optimisation algorithms should eventually 
find the global optimum, in practice there are no guarantees that it is found in 
limited time. Thus, as earlier, in practice it is advisable to try different global/local 
optimisation algorithms and/or EM algorithm with different initial values to make it 
more likely that the global optimum is found (see [4] for further discussion). 

set.seed(1) 
trans_probs <- simulate_transition_probs(12, 4, diag_c = 5) 
init_probs <- as.numeric(prop.table(table(seq_data_all[,1])[1:12])) 
init_probs <- replicate(4, init_probs, simplify = FALSE) 

builtseqLMS <- build_mmm( 
seq_data_all, 
transition_probs = trans_probs, 
initial_probs = init_probs 

) 

fitLMS <- fit_model( 
builtseqLMS, 
global_step = TRUE, 
control_global = list( 

maxtime = 3600, 
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maxeval = 1e5, 
algorithm = "NLOPT_GD_STOGO_RAND"), 

local_step = TRUE, 
threads = 16 

) 

fitLMS$global_results$message 
fitLMS$logLik 

[1] "NLOPT_SUCCESS: Generic success return value." 

[1] -114491.2 

Before plotting the clusters, let us do some cleanups. First, we get the transition 
probabilities of each cluster and assign them to a variable. In that way, they are 
easier to manipulate and work with. In the same way, we can extract the initial 
probabilities for each cluster. 

#extract transition probabilities of each cluster 
Clustertp1 <- fitLMS$model$transition_probs$`Cluster 1` 
Clustertp2 <- fitLMS$model$transition_probs$`Cluster 2` 
Clustertp3 <- fitLMS$model$transition_probs$`Cluster 3` 
Clustertp4 <- fitLMS$model$transition_probs$`Cluster 4` 

#extract initial probabilities of each cluster 
Clusterinitp1 <- fitLMS$model$initial_probs$`Cluster 1` 
Clusterinitp2 <- fitLMS$model$initial_probs$`Cluster 2` 
Clusterinitp3 <- fitLMS$model$initial_probs$`Cluster 3` 
Clusterinitp4 <- fitLMS$model$initial_probs$`Cluster 4` 

Plotting the process maps can be performed in the same way we did before. 
However, if we need to compare clusters, it is best if we use a unified layout. 
An average layout can be computed with the function averageLayout() which 
takes the transition probabilities of the four clusters as input and creates—as the 
name implies—an averaged layout. Another option is to use the same layout of the 
overallplot in the previous example. This can be obtained from the plot object 
overallplot$layout. This can be helpful if you would like to plot the four plots 
corresponding to each cluster with the same layout as the overall plot (see Fig. 15). 

Labelx <- colnames(Clustertp1) # we need to get the labels 

Averagelayout <- averageLayout( 
list(Clustertp1, Clustertp2, Clustertp3, Clustertp4) 

) 
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Fig. 15 Process maps for each cluster 

# You can also try with this layout from the previous plot 
Overalllayout <- overallplot$layout 

qgraph( 
Clustertp1, cut = 0.15, minimum = 0.05 , labels = Labelx, 
edge.labels = TRUE, edge.label.cex = 0.65, color = cpal(seq_data_all), 
layout = Averagelayout, pie = Clusterinitp1, curveAll = TRUE, 
theme = "colorblind", title = "Diverse" 

) 

qgraph( 
Clustertp2, cut = 0.15, minimum = 0.05, labels = Labelx, 
edge.labels = TRUE, edge.label.cex = 0.65, color = cpal(seq_data_all), 
layout = Averagelayout, pie = Clusterinitp2, curveAll = TRUE, 
theme = "colorblind", title = "Assignment-oriented" 

) 

qgraph( 
Clustertp3, cut = 0.15, minimum = 0.05, labels = Labelx, 
edge.labels = TRUE, edge.label.cex = 0.65, color = cpal(seq_data_all), 
layout = Averagelayout, pie = Clusterinitp3, curveAll = TRUE, 
theme = "colorblind", title = "Practical-oriented" 

) 
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qgraph( 
Clustertp4, cut = 0.15, minimum = 0.05 , labels = Labelx, 
edge.labels = TRUE, edge.label.cex = 0.65, color = cpal(seq_data_all), 
layout = Averagelayout, pie = Clusterinitp4, curveAll = TRUE, 
theme = "colorblind", title = "Group-centered" 

) 

Oftentimes, the researcher is interested in comparing two pre-defined fixed groups, 
e.g., high achievers and low achievers, rather than between the computed clusters. In 
the next example we will compare high to low achievers based on their achievement 
levels. First, we have to create a separate sequence object for each group. We do 
this by filtering but you can do it in other ways. For instance, you can create two 
sequences from scratch for each group. The next step is to build the MMs separately 
for each group. 

seq_high <- seq_data_all[seq_data$Achievementlevel4 < =  2,] 
seq_low <- seq_data_all[seq_data$Achievementlevel4 > 2,] 

high_mm <- build_mm(seq_high) 
low_mm <- build_mm(seq_low) 

Before plotting the groups, let us do some cleaning, like we did before. First, we get 
the transition and initial probabilities of each group. We also compute an average 
layout. Please note that you can use the layout from the previous examples if you 
are comparing the models against each other and you need a unified framework. The 
plotting is the same as before (see Fig. 16). 
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Fig. 16 Process maps for high achievers and low achievers using average layout 
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par(mfrow=c(1, 2)) 

#extract transition probabilities of each cluster 
Highprobs <- high_mm$transition_probs 
Lowprobs <- low_mm$transition_probs 

#extract initial probabilities of each cluster 
Highinit <- high_mm$initial_probs 
Lowinit <- high_mm$initial_probs 

Averagelayout <- averageLayout(list(Highprobs, Lowprobs)) 

Highplot <- qgraph( 
Highprobs, cut = 0.15, minimum = 0.05, labels = Labelx, 
edge.labels = TRUE, edge.label.cex = 0.65, 
color = cpal(seq_data_all), layout = Averagelayout, 
pie = Highinit, theme = "colorblind", title = "High achievers" 

) 

Lowplot <- qgraph( 
Lowprobs, cut=0.15, minimum = 0.05, labels = Labelx, 
edge.labels = TRUE, edge.label.cex = 0.65, 
color = cpal(seq_data_all), layout = Averagelayout, 
pie = Lowinit, theme = "colorblind", title = "Low achievers" 

) 

We can also plot the difference plot (see Fig. 17); that is, what the low achievers 
do less than high achievers. In this case, red edges are negative (transitions they do 
less) and blue edges are positive (transitions that they do more than high achievers). 
As you can see, the differences are not that huge. In fact, much of the literature 
comparing high and low achievers uses higher thresholds e.g., top 25% to bottom 
25% or even top 10% to bottom 10%. 

diffplot <- qgraph( 
Lowprobs - Highprobs, cut = 0.15, minimum = 0.05, labels = Labelx, 
edge.labels = TRUE, edge.label.cex = 0.65, layout = Averagelayout, 
color = cpal(seq_data_all), theme = "colorblind" 

) 

5 Conclusions and Further Readings 

Markovian models provide a flexible model-based approach for analysing complex 
sequence data. MMs and HMMs have proven useful in many application areas such 
as biology and speech recognition, and can be a valuable tools in analysing data in 
educational settings as well. Their mixture variants allow for the representation of 
complex systems by combining multiple MMs or HMMs, each capturing different 
aspects of the underlying processes, allowing probabilistic clustering, information
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compression (e.g. visualisation of multicategory data from multiple domains), and 
detection of latent features of sequence data (e.g., extraction of different learning 
strategies). The ability to incorporate covariates in the case of MMMs and MHMMs 
makes those models even more powerful, and generally MMs and MMMs represent 
useful tools in the field of process mining also. 

The seqHMM package used in the examples supports time-constant covariates 
for predicting cluster memberships for each individual. In theory, covariates could 
be used to define transition or emission probabilities as well, leading to subject-
specific and possibly time-varying transition and emission probabilities (in the 
case of time-varying covariates). However, at the time of writing this chapter, 
these are not supported in seqHMM (this may change in the future). In R, there 
are at least two other, potentially useful packages: for MMs, the dynamite [41] 
package supports covariates on the transition probabilities with potentially time-
varying effects, whereas LMest [42] supports MMs and HMMs with covariates, and 
restricted variants of the MHMM where only the initial and transition matrices vary 
between clusters. Going beyond the R software, some commercial software also 
offers tools to analyse Markovian models, including latentGold [43] and Mplus [11]. 

The conditional independence assumption of observations given the hidden states 
in HMMs can sometimes be unrealistic. In these settings, the so-called double chain 
MMs can be used [44]. There the current observation is allowed to depend on both 
the current hidden state and the previous observation. Some restricted variants of 
such models are implemented in the march package in R [45]. Finally, variable-
order MMs extend basic MMs by allowing the order of the MM to vary in time. A 
TraMineR-compatible implementation of variable-order models can be found in the 
PST package [46]. 

−0.05 

0.05 
0.06 

−0.06 

−0.06 

0.06 

−0.06 

0.07 

0.07 

−0.07 

−0.08 

0.08 

0.1 

−0.12 
0.15 

Applications 

Assignment 

Course_view 

Ethics 
Feedback 

General 

Group_work 

Instructions 

La_types 

Practicals 

Social 

Theory 

Fig. 17 Difference between process maps of high achievers and low achievers using average 
layout



A Modern Approach to Transition Analysis and Process Mining with Markov. . . 425

We encourage readers to read more about how to interpret the results in the 
original study where the data for this chapter was drawn from [36]. We also 
encourage readers to learn more about Markovian models in the context of multi-
channel sequence analysis in Chapter 13 [8]. 
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Multi-Channel Sequence Analysis in 
Educational Research: An Introduction 
and Tutorial with R 

Sonsoles López-Pernas, Mohammed Saqr, Satu Helske, and Keefe Murphy 

1 Introduction 

Learning is a dynamic phenomenon which follows the unidirectional forward law 
of time; that is, learning occurs sequentially in a time-ordered manner [1, 2]. 
Throughout this book, we have devoted several chapters to sequence analysis of 
learner-related data, due to its increasingly central role in learning analytics and 
education research as a whole. First, in Chapter 10 [3], we presented an introduction 
to sequence analysis and a discussion on the relevance of this method. Subsequently, 
in Chapter 11 [4], we studied how to build sequences from multiple variables and 
analyse more complex aspects of sequences. Both Chapter 10 and Chapter 11 also 
deal with clustering sequences into trajectories which undergo a similar evolution 
using distance-based methods. Then, in Chapter 12 [5], we learned how to cluster 
sequential data using Markov models. Though Chapter 12 touched briefly on 
simultaneous analysis of multi-channel sequences —albeit only from the Markovian 
point of view— we present the multi-channel perspective in greater detail here. 

In this new chapter, we cover multi-channel sequence analysis, which deals 
with the analysis of two or more synchronised sequences, in greater detail. An 
example in educational research would be the analysis of the simultaneous unfolding 
of motivation, achievement, and engament sequences. Multi-channel sequence 
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analysis is a rather novel method in social sciences [6–9] and its applications within 
educational research in general remain scarce. The increasing availability of student 
multimodal temporal data makes multi-channel sequence analysis a relevant and 
timely method to tackle the challenges that these new data bring. 

Throughout this chapter, we describe multi-channel sequence analysis in detail, 
with an emphasis on how to detect patterns within the sequences, i.e., clusters —or 
trajectories— of multi-channel sequences that share similar temporal evolutions (or 
similar trajectories). We illustrate the method with a case study in which we examine 
students’ sequences of online engagement and academic achievement, where we 
analyse the longitudinal association between both constructs simultaneously. Here, 
we outline two perspectives on clustering multi-channel sequences and present both 
in the tutorial. The first approach uses distance-based clustering algorithms, very 
much in the spirit of the single-channel cluster analysis described in Chap. 10. We  
describe some limitations of this framework and then principally focus on a more 
efficient approach to identifying distinct trajectories using mixture hidden Markov 
models. We also show how covariates can be incorporated to make the Markovian 
framework even more powerful. This main analysis is inspired by the recently 
published paper by Saqr et al. [10]. In the next section, we provide a description 
of the multi-channel sequence analysis framework. We follow with a review of the 
existing literature in learning analytics that has relied on multi-channel sequence 
analysis. Next, we include a step-by-step tutorial on how to implement multi-
channel sequence analysis with R, with particular attention paid to clustering via 
distance-based algorithms and mixture hidden Markov models. Finally, we conclude 
with a brief discussion and provide recommendations for further reading. 

2 Multi-Channel Sequence Analysis 

Multi-channel sequence analysis refers to the process of analysing sequential data 
that consists of multiple parallel channels or streams of (categorical) information. 
Each channel provides a different perspective or type of information. The goal of 
multi-channel sequence analysis is to jointly explore the dependencies and temporal 
interactions between the different channels and extract meaningful insights that 
may not be evident when considering each channel in isolation. The sources of 
information can be of very varied nature. For example, using video data of students 
working on a collaborative task, we could code students’ spoken utterances in 
one channel, and their facial expressions in another channel throughout the whole 
session (see Fig. 1). In this way, we could analyse how students’ expressions relate 
to what they are saying. Multi-channel sequence analysis often follows the following 
steps:
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Fig. 1 An example of two channels of sequence data where the first channel (top) represents 
students’ utterances in collaborative work and the second channel (bottom) represents their facial 
expressions 

2.1 Step 1: Building the Channel Sequences 

Just like in regular sequence analysis (see Chapter 10 [3]), the first step in multi-
channel sequence analysis is to construct the sequences which constitute the 
different channels. A sequence is an ordered list of categorical elements (i.e., 
events, states or categories). These elements are discrete (as opposed to numerical 
values such as grades) and are ordered chronologically. In a sequence, time is 
not a continuum but a succession of discrete timepoints. These timepoints can 
be generated by sampling (e.g., each 30 seconds constitutes a new timepoint) or 
can emerge from an existing time scheme (e.g., each new lesson in a course is 
a new timepoint). In multi-channel sequence analysis, it is very important that 
all channels (i.e., parallel sequences) follow the same time scheme so they can 
be synchronised. As well as time points being aligned in this fashion, it is also 
typically assumed that the sequence length for each observation matches across 
channels (although some of the methods used can also deal with partially missing 
information). The elements of each sequence —typically referred to as the alphabet, 
which is unique for each channel— can be predefined events or categories from the 
beginning (e.g., utterances or facial expressions) or, in cases where we are dealing 
with numerical variables (e.g., heart rate or grades), we can convert them into a state 
or category by dividing the numerical variable into levels (e.g., tertiles, quartiles) or 
using clustering techniques. This way, we can focus on sharp changes in numerical 
variables and conceal small, probably insignificant changes. As Winne puts it [11], 
“reliability can sometimes be improved by tuning grain size of data so it is neither 
too coarse, masking variance within bins, nor too fine-grained, inviting distinctions
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that cannot be made reliably”. Once we have our channels represented as sequences 
of ordered elements that follow the same time scheme, we can use the steps learned 
in the introductory sequence analysis chapter to construct the sequences. 

2.2 Step 2: Visualising the Multi-Channel Sequence 

When we have built the sequences corresponding to all of the channels, we can 
visualise the data. Visualising multi-channel sequence data is not a straightforward 
task, and we need to decide whether we want to present each channel separately or 
extend the alphabet to show a plot of combined states—or sometimes even both. 
The extended alphabet approach —in which the states are the combination of the 
states of all the channels— helps us understand the structure of the data and the 
typical combinations and evolution of the combined states from all of the channels. 
It usually works well when (1) the extended alphabet is moderate in size, (2) when 
there are no state combinations that are very rare, and (3) when the states are either 
fully observed or missing in all channels at the same time. The extended alphabet 
is likely to be of moderate size when there are at most 2–3 channels with a small 
alphabet in each, or if some combinations are not present in the data. Rare state 
combinations are typically impractical both when visualizing and analyzing the 
data—especially if there are many rare combinations or if the data are very sensitive 
in nature. Finally, if there are partially missing observations, i.e., observations that 
at some specific time point are missing from some of the channels but not all, we 
would need to deal with each combination of missing and observed states separately, 
which further extends the alphabet. If one or more of the three conditions are not 
met, it is often preferable to resort to presenting each channel separately or using 
visualization techniques that summarise information (e.g., sequence distribution 
plots). 

Continuing with the previous example, the possible states in the extended 
alphabet would be all the combinations between the alphabet of the utterances 
channel (Question-Argument-Agreement) and the alphabet of the facial expressions 
channel (Happy-Neutral-Anxious). In Fig. 2, we can see that the first student starts 
by ‘Question/Happy’, then goes to ‘Argument/Anxious’ and so on. 

2.3 Step 3: Finding Patterns (Clusters or Trajectories) 

Patterns may exist in all types of sequences and, in fact, in all types of data. 
Discovering such patterns, variations, or groups of patterns is a central theme in 
analytics. In sequence analysis, similar patterns reflect common temporal pathways 
where the data share a similar temporal course. This could be a group of students, a 
typical succession of behavior, or a sequence of interactions. As such, the last typical 
step in the analysis is to find such patterns. Since these patterns are otherwise latent
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or unobservable, we need a clustering algorithm that unveils such hidden patterns. 
There are different possibilities to cluster multi-channel sequence data, of which two 
are described below: extensions to traditional distance-based clustering approaches 
widely used in single-channel analyses and Markovian models. The two approaches 
are then further distinguished in Sect. 2.4, with regard to the ability of the Markovian 
approach to directly accommodate covariates. 

2.3.1 Traditional Sequence Analysis Extensions 

Broadly speaking, the first paradigm involves extending techniques commonly 
adopted in single-channel analyses to the multi-channel domain, by suitably 
summarising the information arising from all constituent channels. Within this first 
framework, two different approaches have been proposed. 

The first consists of flattening the multi-channel data by combining the states 
(such as in the example in Fig. 2) and treating the sequence as a single channel 
with an extended alphabet. Typically, one would then compute dissimilarities using 
this extended alphabet, most commonly using Optimal Matching (OM). However, 
this approach is not limited to distance-based clustering [12]; any of the methods, 
distance-based or otherwise, that we have seen in the previous chapters related to 
sequence analysis can be used to cluster sequences represented in this way (e.g., 
agglomerative hierarchical clustering using OM, or hidden Markov models). While 
this seems like an easier choice, the models tend to become too complex —in 
the sense of requiring a larger number of clusters and/or hidden states in order to 
adequately characterise the data— when the number of channels or numbers of per-
channel states increase. Moreover, for even a moderate number of channels and/or 
moderate numbers of states per-channel, the size of the combined alphabet can 
become unwieldy. Indeed, using this approach in conjunction with OM has been 
criticised because of the difficulty of specifying appropriate substitution costs for 
such large combined alphabets [13]. As a reminder, the substitution cost refers to 
the penalty associated with replacing one element of a sequence with another one; 
these dissimilarites between all pairs of states are then used to calculate all pairwise 

Fig. 2 An example of a multi-channel sequence object obtained by using the extended alphabet 
approach, i.e., combining the states of the utterances and facial expressions channels of the data 
shown in Fig. 1
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distances between whole sequences, which are treated as the input to distance-based 
clustering algorithms (see Chapter 10 [3]). 

The second, more common approach is explicitly distance-based and relies on 
an extension of the OM metric itself, by using a set of overall multi-channel costs 
derived from channel-specific costs, to calculate a pairwise dissimilarity matrix. 
The method relies on computing substitution costs for each constituent channel, 
combining the channels into a new multi-channel sequence object, and deriving 
an overall substitution cost matrix for the multi-channel object by adding (or 
averaging) the appropriate substitution costs across channels for a particular multi-
state change, typically with equal weight given to each channel [14]. For instance, 
if the cost associated with substituting the states ‘Question’ and ‘Agreement’ 
in the utterances channel in Fig. 1 is .0.6 and the cost of substituting ‘Happy’ 
and ‘Neutral’ in the facial expressions channel is . 1.2, the cost associated with 
substitutions of ‘Question/Neutral’ for ‘Question/Happy’ and ‘Question/Neutral’ 
for ‘Agreement/Happy’ in Fig. 2 would be .1.2 and . 1.8, respectively. From such 
multi-channel costs, a pairwise multi-channel dissimilarity matrix can be obtained 
and all subsequent steps of the clustering analysis can proceed as per Chap. 10 
thereafter. 

That being said, adopting the extended OM approach rather than the extended 
alphabet approach does not resolve all limitations of the distance-based clustering 
paradigm. As Saqr et al. [15] noted, large sequences are hard to cluster using 
standard methods such as hierarchical clustering, which is memory inefficient and 
hard to parallelise or scale [16, 17]. Furthermore, distance-based clustering methods 
are limited by the theoretical maximum dimension of a matrix in R which is 
2,147,483,647, corresponding to a maximum of 46,430 sequences. Using weights 
can fix the memory issue if the number of unique sequences remains below the 
threshold [18]. However, the more states (and combinations of states), the more 
unique the sequences tend to be, so the memory issue is even more typical with 
multi-channel sequence data. In such a case, Markovian methods may be the 
solution. Moreover, the particular choice of distance-based clustering algorithm 
must be chosen with care, and as ever the user must pre-specify the number of 
clusters, thereby often necessitating the evaluation of several computing solutions 
with different numbers of clusters, different hierarchical clustering linkage criteria, 
or different distance-based clustering algorithms entirely. 

2.3.2 Mixture Hidden Markov Models 

Even so, the extended OM approach is still liable to overestimate the number of 
clusters. A second, more sophisticated option is to use mixture hidden Markov 
models (MHMM) [19], which we have already encountered in some detail in 
Chap. 12. Such models notably support both single- and multi-channel sequences 
and often lead to more parsimonious representations of the latent group structure 
than the distance-based paradigm. MHMMs are a thus a far more efficient and 
powerful method for temporally aligning the multiple channels of data into homo-
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geneous temporal patterns. As we have learned in Chap. 12, when we estimate a 
mixture hidden Markov model, we need to specify the number of clusters (K) and 
we create K submodels that are each a hidden Markov model. Each submodel 
can have a different number of hidden states, which allows for great flexibility 
in modeling the variability of the data, without unduly inflating the number of 
clusters as per the distance-based approaches, thereby enabling more concise and 
interpretable characterisation of the distinct patterns in the data. Accommodating 
multi-channel sequences in the MHMM framework requires treating the observed 
states in each channel independently given the current hidden state. This can 
be easily performed by defining multiple emission probability matrices (one per 
channel). The assumption of conditional independence simplifies the model but is 
sometimes unrealistic, particularly if there are strong time-dependencies between 
observed states even after accounting for the hidden state. In some cases, it would 
be better to either analyse single-channel sequences (using an extended alphabet) or 
resort to the distance-based paradigm described above. 

We also learned in Chap. 12 that an advantage of MHMMs, as a probabilistic 
modelling approach, is that we can use traditional model selection methods such 
as likelihood-based information criteria or cross-validation for choosing the best 
model. For example, if the number of subpopulations is not known in advance —as 
is typically the case— we can compare models with different clustering solutions 
(be they those obtained with different numbers of clusters or different sets of initial 
probabilities, for example) and choose the best-fitting model with, for example, the 
Bayesian information criterion (BIC) [20]. Conversely, the distance-based paradigm 
relies on heuristic cluster quality measures for conducting model selection. In 
addition, an advantage of the distance-based approach is that it does not rely on 
making any assumptions about the data-generating mechanism. In other words, it 
does not assume that the data follows a generative probabilistic model, Markovian 
or otherwise. 

The extended OM method for calculating multi-channel dissimilarities is imple-
mented in the R package TraMineR and is applied in our case study, while 
the extended alphabet approach (i.e., combining all channels into a single one 
where the alphabet contains all possible state combinations) is not pursued any 
further here. We also cluster via the MHMM framework in our case study, using 
the R package seqHMM [21], in order to empirically compare and contrast both 
perspectives. It is worth noting that, of the Markovian methods we learned about in 
Chap. 12, only hidden Markov models and mixture hidden Markov models explicitly 
allow for multi-channel sequences by treating the observed states in each channel 
independently given the current hidden state. The more basic Markov and mixture 
Markov models can only accommodate multi-channel sequences by treating them 
as a single channel using the extended alphabet approach described above, but we 
do not consider this option any further here. To summarise, we do not explore the 
extended alphabet approach in either the distance-based or Markovian settings; we 
only demonstrate the multi-channel extension of the OM metric from the distance-
based point of view, and only the MHMM approach from the Markovian point of 
view.
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2.4 Step 4: Relating Clusters to Covariates 

As we have seen, there are, broadly speaking, two conflicting perspectives on clus-
tering in the sequence analysis community; algorithmic, distance-based clustering 
on the one hand, and model-based clustering on the other. Distance-based clustering 
of multi-channel sequences has already been described above, but it is useful to 
acknowledge that mixture Markov models and mixture hidden Markov models 
are precisely examples of model-based clustering methods. Moreover, seqHMM 
and the methods it implements are unique in offering a model-based approach to 
clustering multi-channel sequences. A key advantage of the model-based clustering 
framework is that it can easily be extended to directly account for information 
available in the form of covariates, as part of the underlying probabilistic model. 
Though the recently introduced mixture of exponential-distance models framework 
[22] attempts to reconcile the distance-based and model-based cultures in sequence 
analysis, while allowing for the direct incorporation of covariates, it is not based 
on Markovian principles, and most importantly can currently only accommodate 
single-channel sequences. 

Otherwise, however, distance-based approaches typically cannot accommodate 
covariates, except as part of a post-hoc step whereby, typically, covariates are 
used as explanatory variables in a post-hoc multinomial regression with the cluster 
memberships used as the response (or as independent variables in linear or non-
linear regression models). This is questionable as substituting a categorical variable 
indicating cluster membership disregards the heterogeneity within clusters and is 
clearly only sensible when the clusters are sufficiently homogeneous [23, 24]. It 
is often more desirable to incorporate covariates directly, i.e. to cluster sequences 
and relate the clusters to the covariates simultaneously. This represents an important 
distinction between the two approaches outlined above; this step does not apply to 
distance-based clustering approaches and is a crucial advantage of the Markovian 
approach which makes MHMMs even more powerful tools for clustering multi-
channel sequences. 

In theory, MHMMs can include covariates to explain the initial, transition, and/or 
emission probabilities. A natural use-case would be to allow subject-specific and 
possibly time-varying transition and emission probabilities (in the case of time-
varying covariates). For example, if we think that transitioning from low to high 
achievement gets harder as the students get older we may add time as an explanatory 
variable to the model, allowing the probability of transitioning from low to high 
achievement to diminish in time. However, at the time of writing this chapter, these 
extensions are not supported in seqHMM (this may change in the future). Instead, 
the seqHMM package used in the examples supports time-constant covariates only. 
Specifically, the manner in which covariates are accommodated is similar in spirit 
to the aforementioned mixture of exponential-distance models framework and latent 
class regression [25], in that covariates are used for predicting cluster memberships 
for each observed sequence. Adding covariates to the model thus helps to both 
explain and influence the probabilities that each individual has of belonging to
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each cluster. By incorporating covariates in this way, we could, for example, find 
that being in a high-achievement cluster is predicted by gender, previous grades, or 
family background 

In the terminology of mixtures of experts modelling, this approach corresponds 
to a so-called “gating network mixture of experts model”, whereby the distribution 
of the sequences depends on the latent cluster membership variable, which in turn 
depends on the covariates, while the sequences are independent of the covariates, 
conditional on the latent cluster membership variable (see [26] and [22] for  
examples). This, rather than having covariates affect the component distributions, is 
particularly appealing, as the interpretation of state-specific parameters is the same 
as it would be under a model without covariates. However, it is worth noting that the 
covariates do not merely explain the uncovered clusters; as part of the model, they 
drive the formation of the clusters. In other words, an otherwise identical model 
without dependence on covariates may uncover different groupings with different 
probabilities. However, this can be easily overcome by treating the selection of the 
most relevant subset of covariates as an issue of model selection via the BIC or 
other criteria and taking the number of clusters/states, set of initial probabilities, 
and set of covariates which jointly optimise the chosen criterion. The incorporation 
of covariates in MHMMs and related practical issues are also illustrated in the 
case study on the longitudinal association of engagement and achievement which 
follows. 

3 Review of the Literature 

The use of multi-channel sequence analysis in learning analytics has so far been 
scarce. Most of the few studies that implemented this method used it to combine 
multiple modalities of data such as coded video data [27, 28], electrodermal activity 
[27, 28], clickstream/logged data [10, 29, 30], and assessment/achievement data 
[10, 30, 31]. The data were converted into different sequence channels using 
a variety of methods. For example, [27] manually coded video interactions as 
positive/negative/mixed to represent the emotional valence of individual interaction, 
and used a pre-defined threshold to discern between high and low arousal from 
electrodermal activity data. In the work by [30], two sequence channels were 
built from students’ daily tactics using the learning management system and an 
automated assessment tool for programming assignments respectively. The learning 
tactics were identified through hierarchical clustering of students’ trace log data 
in each environment. Similarly [10], created an engagement channel for each 
course in a study program based on students’ engagement states derived from 
the learning management system data, and an achievement state based on their 
grade tertiles. Another study [29] had five separate channels: the first channel 
represented the interactive dimension built from the social interactions through 
peer communications and online behaviours; the second channel represented the 
cognitive dimension constructed from students’ knowledge contributions at the
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superficial, medium, and deep levels; the third channel represented the regulative 
dimension which represented students’ regulation of their collaborative processes, 
including task understanding, goal setting and planning, as well as monitoring and 
reflection; the fourth channel represented the behavioural dimension which analysed 
students’ online behaviours, including resource management, concept mapping and 
observation, and the fifth channel represented the socio-emotional dimension, which 
included active listening and respect, encouraging participation and inclusion, as 
well as fostering cohesion. 

A common step in the existing works is the use of clustering techniques to detect 
unobserved patterns within the multi-channel sequences. Articles have relied on 
hidden Markov models to identify hidden states in the data. For instance, [30] found 
three hidden states consisting of learning strategies which combine the use of the 
learning management system and an automated assessment tool: an instruction-
oriented strategy where students consume learning resources to learn how to code; 
an independent coding strategy where students relied on their knowledge or used 
the learning resources available to complete the assignments, and a dependent 
coding strategy where students mostly relied on the help forums to complete their 
programming assignments. Most studies go one step further and identify distinct 
trajectories based on such hidden states. For example, [28] found four clusters 
of socio-emotional interaction episodes (positive, negative, occasional regulation, 
frequent regulation), which differed in terms of fluctuation of affective states and 
activated regulation of learning. The authors of [29] found three types of group 
collaborative patterns: behaviour-oriented, communication-behaviour-synergistic, 
and communication-oriented. To the knowledge of the authors, no article has 
relied on the distance-based approach (commonly used in single-channel sequence 
analysis) to cluster multi-channel sequences. However, this approach has been used 
in social sciences [9] as well as in other disciplines [e.g., 32]. 

4 Case Study: The Longitudinal Association of Engagement 
and Achievement 

To learn how to implement multi-channel sequence analysis we are going to practice 
with a real case study: we will investigate the longitudinal association between 
engagement and achievement across a study program using simulated data based 
on the study by [10]. We begin by creating a sequence for each of the channels 
(engagement and achievement) and then explore visualisations thereof. We then 
focus on clustering these data using the methods described above specifically 
tailored for multi-channel sequences, in order to present an empirical view of 
both the distance-based and Markovian perspectives. In doing so, we will first 
demonstrate how to construct a multi-channel pairwise OM dissimilarity matrix 
in order to adapt and apply the distance-based clustering approach of Chap. 10 
to these data. Secondly, we will largely focus on using a mixture hidden Markov
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model to detect the longitudinal clusters of students that share a similar trajectory 
of engagement and achievement. Finally, we will demonstrate how to incorporate 
covariates under the model-based Markovian framework. 

4.1 The Packages 

To accomplish our task, we will rely on several R packages We have use most of 
them throughout the book. Below is a brief summary of the packages required: 

• rio: A package for reading and saving data files with different extensions [33]. 
• seqHMM: A package designed for fitting hidden (latent) Markov models and 

mixture hidden Markov models for social sequence data and other categorical 
time series [21]. 

• tidyverse: A package that encompasses several basic packages for data 
manipulation and wrangling [34]. 

• TraMineR: As seen in the introductory sequence analysis chapter, this package 
helps us construct, analyse, and visualise sequences from time-ordered states or 
events [35]. 

• WeightedCluster: A package to cluster sequences and computing quality 
measures [18]. 

If you have not done so already, install the packages using the install.packages() 
command (e.g., install.packages(“seqHMM”)). We can then import them as 
follows: 

library(rio) 
library(tidyverse) 
library(TraMineR) 
library(seqHMM) 
library(WeightedCluster) 

4.2 The Data 

The data that we are going to use in this chapter is a synthetic dataset which contains 
the engagement states (Active, Average, or  Disengaged) and achievement states 
(Achiever, Intermediate, or  Low) for eight successive courses (each course 
is a timepoint). Each row contains an identifier for the student (UserID), an 
identifier for the course (CourseId), and the order (Sequence) in which the student 
took that course (1–8). For each course, a student has both an engagement state 
(Engagement) and an achievement state (Achievement). For example, a student 
can be 'Active' and 'Achiever' in the first course (Sequence = 1) they take,
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and 'Disengaged' and 'Low' achiever in the next. In addition, the dataset contains 
the final grade (0–100) and three time-constant covariates (they are the same for 
each student throughout all four courses): the previous grade (Prev_grade, 1–10), 
Attitude (0–20), and Gender (Male/Female). The dataset is described in more 
detail in the Data chapter of this book. We can import the data using the ìmport() 
command from rio. A preview is shown in Table 1. 

URL <- "https://github.com/sonsoleslp/labook-data/raw/main/" 
fileName <- "9_longitudinalEngagement/SequenceEngagementAchievement.xlsx" 
df <- import(paste0(URL, fileName)) 
df 

4.3 Creating the Sequences 

We are going to first construct and visualise each channel separately (engagement 
and achievement), and then study them in combination. 

4.3.1 Engagement Channel 

To build the engagement channel, we need to construct a sequence of students’ 
engagement states throughout the eight courses. To do so, we need to first arrange 
our data by student (UserID) and course order (Sequence). Then, we pivot the data 
to a wide format, where the first column is the UserID and the rest of the columns 
are the engagement states at each of the courses (ordered from 1 to 8). For more 
details about this process, refer to the introductory sequence analysis chapter. 

eng_seq_df <- df |> arrange(UserID, Sequence) |> 
pivot_wider(id_cols = "UserID", names_from = "Sequence", values_from="Engagement") 

Now we can use TraMineR to construct the sequence object and assign colours to it 
to represent each of the engagement states: 

engagement_levels <- c("Active", "Average", "Disengaged") 
colours <- c("#28a41f", "#FFDF3C", "#e01a4f") 
eng_seq <- seqdef(eng_seq_df , 2:9, alphabet = engagement_levels, cpal = colours) 

We can use the sequence distribution plot from TraMineR to visualise the distri-
butions of the states at each time point (Fig. 3 left), and the sequence index plot to 
visualise each student’s sequence of engagement states (Fig. 3, right), here sorted
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according to the elements of the alphabet at the successive positions starting from 
the beginning of the sequences: 

seqdplot(eng_seq, border = NA, ncol = 3, legend.prop = 0.2) 
seqIplot(eng_seq, border = NA, ncol = 3, legend.prop = 0.2, sortv = "from.start") 
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Fig. 3 Sequence distribution plot and index plot of the course engagement states 

Please refer to Chapter 10 [3] for guidance on how to interpret sequence 
distribution and index plots. 

4.3.2 Achievement Channel 

We follow a similar process to construct the achievement sequences. First we 
arrange the data by student and course order and then we convert the data into the 
wider format using —this time— the achievement states as the values. 

ach_seq_df <- df |> arrange(UserID,Sequence) |> 
pivot_wider(id_cols = "UserID", names_from = "Sequence", values_from ="Achievement") 

We use again TraMineR to construct the sequence object for achievement and we 
again provide a suitable, distinct colour scheme: 

achievement_levels <- c("Low", "Intermediate", "Achiever") 

coloursA <- c("#a5e3ff","#309bff","#3659bf") 
ach_seq <- seqdef(ach_seq_df , 2:9, cpal = coloursA, alphabet = achievement_levels) 

We may use the same visualisations to plot our achievement sequences in Fig. 4: 

seqdplot(ach_seq, border = NA, ncol = 3, legend.prop = 0.2) 
seqIplot(ach_seq, border = NA, ncol = 3, legend.prop = 0.2, sortv = "from.start") 
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Fig. 4 Sequence distribution plot and index plot of the course achievement states 

4.3.3 Visualising the Multi-Channel Sequence 

Now that we have both channels, we can use the mc_to_sc_data() function from 
seqHMM to convert the two channels of engagement and achievement sequences to a 
single channel with an extended alphabet. If we had additional channels, we would 
just add them to the list, after ach_seq. 

multi_seq <- mc_to_sc_data(list(eng_seq, ach_seq)) 

If we check the alphabet of the sequence data, we can see that it contains all 
combinations of engagement and achievement states. 

alphabet(multi_seq) 

[1] "Active/Achiever" "Active/Intermediate" 
[3] "Active/Low" "Average/Achiever" 
[5] "Average/Intermediate" "Average/Low" 
[7] "Disengaged/Achiever" "Disengaged/Intermediate" 
[9] "Disengaged/Low" 

We now need to provide an appropriate colour scale to accommodate the extended 
alphabet. The colour scale we define below uses green colours to represent active 
students, blue colours represent averagely engaged students, and red colours 
represent disengaged students, whereas the intensity of the colour represents the 
achievement level: darker colours represent higher achievement, and lighter colours 
represent low achievement. 

coloursM <- c("#115a20","#24b744","#78FA94", 
"#3659bf","#309bff","#93d9ff", 
"#E01A1A","#EB8A8A","#F5BDBD") 

cpal(multi_seq) <- coloursM 
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We can finally plot the sequence distribution and index plots for the multi-channel 
sequence (Fig. 5). We can already hint that the students’ multi-channel sequences are 
quite heterogeneous. In the next steps, we will use two distinct clustering techniques 
to detect distinct combined trajectories of engagement and achievement, beginning 
with the distance-based paradigm and then the using the more sophisticated MHMM 
framework. 

seqdplot(multi_seq, border = NA, ncol = 3, legend.prop = 0.2) 
seqIplot(multi_seq, border = NA, ncol = 3, legend.prop = 0.2, 

sortv = "from.start") 
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Fig. 5 Sequence distribution plot and index plot of the multi-channel sequence 

4.4 Clustering via Multi-Channel Dissimilarities 

We now describe how to construct a dissimilarity matrix for a combined multi-
channel sequence object to use as input for distance-based clustering algorithms, 
using utilities provided in the TraMineR R package and relying on concepts 
described in Chap. 10. We begin by creating a list of substitution cost matrices 
for each of the engagement and achievement channels. For simplicity, we adopt 
the same method of calculating substitution costs for each channel, though this 
need not be the case. Here, we use the data-driven “TRATE” method, which relies 
on transition rates, as the method argument in both calls to seqsubm(). In other 
scenarios, we might want to use a constant substitution cost (same cost for all 
substitutions) for one or some of the channels and, for example, manually specify 
the substitution cost matrix for the others.
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sub_mats <- list(engagement = seqsubm(eng_seq, method = "TRATE"), 
achievement = seqsubm(ach_seq, method = "TRATE")) 

Subsequently, we invoke the function seqMD() to compute the multi-channel 
dissimilarities. This requires the constituent channels to be supplied as a list of 
sequence objects, along with the substitution cost matrices via the argument sm. 
The argument what = "diss" ensures that dissimilarities are returned, according 
to the OM method, with equal weights for each channel specified via the argument 
cweight. 

channels <- list(engagement = eng_seq, achievement = ach_seq) 

mc_dist <- seqMD(channels, 
sm = sub_mats, 
what = "diss", 
method = "OM", 
cweight = c(1, 1)) 

Thereafter, mc_dist can be used as input to any distance-based clustering algo-
rithm. Though we are not limited to doing so, we follow Chap. 10 in applying 
hierarchical clustering with Ward’s criterion. However, we note that users of 
the distance-based paradigm are not limited to Ward’s criterion or hierarchical 
clustering itself either. 

Clustered <- hclust(as.dist(mc_dist), method = "ward.D2") 

We then obtain the implied clusters by cutting the produced tree using the cutree() 
function, where the argument k indicates the desired number of clusters. We also 
create more descriptive labels for each cluster. 

Cuts <- cutree(Clustered, k =  6) 
Groups <- factor(Cuts, labels = paste("Cluster", 1:6)) 

It is worth noting that the Groups vector contains the clustering assignment for 
each student. This vector is a factor in the same order as the engagement and 
achievement sequences, and hence the same order as the data frames used to create 
the sequences. Hence, information about which student belongs to which cluster is 
readily accessible. Here, we show the assignments of the first 5 students only, for 
brevity. 

head(Groups, 5)
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1 2 3 4 5  
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 3 
Levels: Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

Generally speaking, the resulting clusters for the chosen k value may not represent 
the best solution. In an ideal analysis, one would resort to one or more of the cluster 
quality measures given in Table 8 of Chap. 10 to inform the choice of an optimal 
k value. In doing so, we determined the chosen number of six clusters is optimal 
according to the average silhouette width (ASW) criterion (again, see Chap. 10). 
However, we omit repeating the details of these steps here for brevity and leave 
them as an exercise for the interested reader. 

The obtained Groups can be used to produce visualisations of the clustering 
solution. We do so in two ways; first showing the combined multi-channel object 
with an extended alphabet (as per Fig. 2) using the  seqplot() function from 
TraMiner in Fig. 6, and second using a stacked representation of both constituent 
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Fig. 6 State distribution plots per cluster for the combined multi-channel sequences
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Fig. 7 Stacked state distribution plots per cluster showing both constituent channels 

channels using the ssp() and gridplot() functions from seqHMM in Fig. 7. State 
distribution plots per cluster are depicted in each case. 

seqplot(multi_seq, type = "d", group = Groups, 
ncol = 3, legend.prop = 0.1, border = NA) 

Though there is some evidence of well-defined clusters capturing different engage-
ment and achievement levels over time, a plot such as this can be difficult to 
interpret, even for a small number of channels and small numbers of per-channel 
states. A more visually appealing alternative is provided by the stacked state 
distribution plots below, which shows each individual channel with its own alphabet 
on the same plot, with one such plot per cluster. This requires supplying a list of 
the observations ìn each cluster in each channel to the ssp() function to create 
each plot, with each plot then arranged and displayed appropriately by the function 
gridplot().
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ssp_k <- list() 
for(k in 1:6) {  

ssp_k[[k]] <- ssp(list(eng_seq[Cuts == k,], 
ach_seq[Cuts == k,]), 

type = "d", border = NA, 
with.legend = FALSE, 
title = levels(Groups)[k]) 

} 
gridplot(ssp_k, ncol = 3, byrow = TRUE, 

row.prop = c(0.4, 0.4, 0.2), cex.legend = 0.8) 

From this plot, we can see six clusters, relating respectively to (1) mostly averagely 
engaged high achievers, (2) mostly actively engaged intermediate achievers, (3) 
mostly disengaged intermediate or high achievement, (4) mostly averagely engaged 
low achievers, (5) mostly disengaged low achievers, and (6) mostly actively engage 
high achievers. This clustering approach and this set of plots provides quite a 
granular view of the group structure and interdependencies across channels, which 
differs somewhat from the clustering solution obtained by the application of 
MHMMs which now follows. 

4.5 Building a Mixture Hidden Markov Model 

The seqHMM package supports several types of (hidden) Markov models for single-
or multi-channel sequences of data. The package provides functions for evaluating 
and comparing models, and methods for the visualisation of multi-channel sequence 
data and hidden Markov models. The models are estimated through maximum 
likelihood, using the Expectation Maximisation (EM) algorithm and/or direct 
numerical maximisation with analytical gradients. For more details on the seqHMM 
package, refer to the “Markov models” chapter. We are going to construct a 
mixture hidden Markov model (MHMM). For this purpose, we will rely on the 
build_mhmm() function of seqHMM. In its most basic form, the build_mhmm() 
function takes as arguments a list of observations (i.e., a list of the sequences that 
make up the channels), and a vector n_states whose length indicates the number 
of clusters to estimate, for which the value of each position specifies the number of 
hidden states in each cluster. The build_mhmm() function defines that structure of 
the model (including possible restrictions) and also assigns random or user-defined 
starting values to model parameters for estimation. Though we are not restricted 
to assuming all clusters have an equal number of hidden states, we are going to 
build a model with three clusters and two hidden states per cluster, inspired by the 
results obtained in the previous section (i.e., six clusters). Therefore, our input for 
n_states is c(2, 2, 2). If we instead wanted to build a model with four clusters 
and three hidden states, we would need to provide c(3, 3, 3, 3).
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init_mhmm <- build_mhmm(observations = list(eng_seq,ach_seq), 
n_states = c(2, 2, 2)) 

Now we can fit the model using the fit_model() function. Using the EM algorithm 
and the times argument, we can provide a number to control the number of times 
the model should be fit in a hope to find the globally optimal solution. We need to 
find a number that is not too low (or else we might be settling for a non-optimal 
solution too early) but also not too high (or the code will take forever to run). If 
we provide 100, for example, the model will be estimated 101 times: once from the 
user-defined or random starting values at the build stage and then 100 re-estimations 
with randomised starting values. The function will give the best model as an output. 
Generally, the more complex the model, the more re-estimation rounds are needed. 

set.seed(2294) 
mhmm_fit <- fit_model(init_mhmm, 

control_em = list(restart = list(times = 100))) 

Once the function has finished fitting the model, we need to check if it has 
likely reached the optimal solution. We can do so by checking the variable 
mhmm_fit$em_results$best_opt_restart of the fitted model. For the results 
to be reliable, we would expect to find the best-fitting model a number of 
times from different starting values. In other words, we want to see the same 
value repeating at the beginning of the sequence of numbers returned by 
mhmm_fit$em_results$best_opt_restart for several times if we estimate 
the model 100 times. In this case, we observe the same number quite many times, 
so the stability of our results is acceptable. If the same number does not appear 
several times, we can increase the number provided to the times argument or we 
can provide more informative starting values (for example, using the parameters of 
the newly fitted suboptimal model as starting values for the new estimation). 

mhmm_fit$em_results$best_opt_restart 

[1] -1659.712 -1659.712 -1659.712 -1659.712 -1659.712 -1659.712 -1659.712 
[8] -1659.712 -1659.712 -1659.712 -1659.712 -1659.712 -1659.712 -1659.712 

[15] -1659.712 -1659.712 -1659.712 -1659.712 -1659.712 -1659.712 -1659.712 
[22] -1659.712 -1659.712 -1659.712 -1659.712 

Now we can plot our results using the mssplot() function. Figure 8 shows index 
plots for each of the three fitted clusters. These plots show the categories at each 
time point within each cluster, as well as the hidden states. We can see that Cluster 
1 corresponds to students who are mostly low achievers, wherein State 1 represents 
students who are disengaged and State 2 represents students who are averagely
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engaged. Cluster 2 includes the Active students who are mostly high achievers (State 
2), or intermediate achievers (State 1). Cluster 3 represents mostly low achievers, 
where State 1 mostly represents the disengaged and State 2 the mostly averagely 
engaged. Therefore, the results are quite interpretable and make sense given our 
data. 

HIDDEN_STATES <- c("darkred", "pink", "darkblue", "purple", 
"lightgoldenrod1", "orange") 

mssplot(mhmm_fit$model, 
plots = "both", 
type = "I", 
sortv = "mds.hidden", 
yaxis = TRUE, 
with.legend = "bottom", 
ncol.legend = 1, 
cex.title = 1.3, 
hidden.states.colors = HIDDEN_STATES) 

Fig. 8 Multi-channel sequence index plots. (a) Cluster 1. (b) Cluster 2. (c) Cluster 3 

We may also plot the transitions between the hidden states for each cluster using the 
plot() function (Fig. 9). Most arguments used here are purely cosmetic in nature, 
with the exception of combine.slice which corresponds to the highest probability 
for which emission probabilities are combined into one state. We adopt the default 
value of 0.05 to aid the legibility of the plots. We see that the probabilities of starting 
at each hidden state (initial probabilities), as shown at the bottom of each pie chart, 
are quite balanced: 0.61/0.39, 0.58/0.42, 0.62/0.38. The transition probabilities (i.e., 
the probabilities of transitioning from one hidden state to another within the same
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cluster) are in turn quite low (all < 0.07), meaning that in most cases students remain 
in the same hidden state throughout their whole academic trajectory. Lastly, the 
emission probabilities (i.e., the probabilities of each state within each hidden state) 
are quite diverse, where some hidden states are quite homogeneous (e.g, State 2 in 
Cluster 2 has a 0.84 probability of having Disengaged students) whereas others are 
more evenly distributed among all states (e.g., State 1 in Cluster 3). 

plot(mhmm_fit$model, 
vertex.size = 60, 
cpal = coloursM, 
label.color = "black", 
vertex.label.color = "black", 
edge.color = "lightgray", 
edge.label.color = "black", 
ncol.legend = 1, 
ncol = 3, 
rescale = FALSE, 
interactive = FALSE, 
combine.slices = 0.05, 
combined.slice.label = "States with probability < 0.05") 

Cluster 1 

0.023 
0.027 

0.38 0.62 

Cluster 2 

0.063 
0.067 

0.61 0.39 

Cluster 3 

0.043 
0.011 

0.58 0.42 

Active/Achiever 
Active/Intermediate 
Active/Low 
Average/Achiever 
Average/Intermediate 
Average/Low 
States with probability < 0.05 

Active/Low 
Average/Intermediate 
Average/Low 
Disengaged/Low 
Disengaged/Intermediate 
States with probability < 0.05 

Average/Achiever 
Average/Intermediate 
Average/Low 
Disengaged/Achiever 
Disengaged/Intermediate 
Disengaged/Low 
Active/Achiever 
States with probability < 0.05 

Fig. 9 Transitions between hidden states for each trajectory 

In the previous example, we have used build_mhmm() with the default values in 
which we only need to provide the number of clusters and hidden states. However, 
the function allows much more flexibility by allowing us to constrain the different 
probabilities (initial, transition, and emission) that we have just talked about. An 
interesting case study can be to investigate how students who start in the same 
hidden state evolve throughout their academic trajectory; whether they remain in 
the same hidden state or switch to a different one. To do that, we would need to
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fix the initial probabilities to be 1 for the first hidden state, and 0 for the other. 
To do this for the three clusters, we need to create a list with the vector c(1, 0) 
repeated three times. For the initial transition and emission probabilities, we can just 
simulate random ones using the functions simulate_transition_probs() and 
simulate_emission_probs() respectively. It is worth noting that in the previous 
MHMM example, when we fitted the model using the default probabilities, we just 
needed to provide the number of clusters and numbers of hidden states per cluster, 
via n_states. However, now that we need to fix the initial probabilities, we also 
need to simulate the transition and emission probabilities using the corresponding 
functions, as build_mhmm() requires either n_states to be provided or all three 
of initial_probs, transition_probs, and emission_probs to be provided. 

initial_probs <- list(c(1, 0), c(1, 0), c(1, 0)) 
transition_probs <- simulate_transition_probs(n_states = 2, 

n_clusters = 3, 
left_right = TRUE) 

emission_probs <- simulate_emission_probs(n_states = 2, 
n_symbols = 3, 
n_clusters = 1) 

We must now provide the probability objects to the build_mhmm() function along 
with the observations. Since the number of clusters and hidden states can be derived 
from the probabilities, we no longer need to provide the n_states argument. 
Specifically, this is because emission_probs is given as a list of length 3 with 
each element being a list of length 2, corresponding to three clusters each with two 
hidden states per cluster, as before. This new model is fitted in the same way, by 
using the fit_model() function. 

set.seed(2294) 
init_emission_probs <- list(list(emission_probs, emission_probs), 

list(emission_probs, emission_probs), 
list(emission_probs, emission_probs)) 

init_mhmm_i <- build_mhmm(observations = list(eng_seq, ach_seq), 
initial_probs = initial_probs, 
transition_probs = transition_probs, 
emission_probs = init_emission_probs) 

mhmm_fit_i <- fit_model(init_mhmm_i, 
control_em = list(restart = list(times = 200))) 

Again, we need to check whether the model has converged to a valid solution by 
checking if the same number is repeated at the beginning of the best_opt_start 
output:
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mhmm_fit_i$em_results$best_opt_restart 

[1] -1726.463 -1726.463 -1726.463 -1726.463 -1726.463 -1726.463 -1726.463 
[8] -1726.463 -1726.463 -1726.463 -1726.463 -1726.463 -1726.463 -1726.463 

[15] -1726.463 -1726.463 -1726.463 -1726.463 -1726.463 -1726.463 -1735.624 
[22] -1735.624 -1735.624 -1735.624 -1735.624 

Now that we have checked that our model is correct, we can give the channels and 
clusters representative names so that they look better when plotting: 

mhmm_fit_i$model$cluster_names <- c("Trajectory 1", 
"Trajectory 2", 
"Trajectory 3") 

mhmm_fit_i$model$channel_names <- c("Engagement", 
"Achievement") 

Now we may plot our results, as before, in the form of sequence index plots (see 
Fig. 10a–c). We see that —due to the specified initial probabilities— all clusters start 
with the same hidden state and mostly remain there throughout the whole trajectory, 
although some students switch to the other hidden state as time advances. In Cluster 
1, students are mostly low achievers and start by being mostly averagely engaged 
(State 1), while some transition to disengaged (State 2). In Cluster 2, students are 
mostly highly engaged and start being high achievers (State 1), while some students 
transition to being mostly intermediate achievers (State 2). Lastly, in Cluster 3, 
students are mostly averagely engaged or disengaged high or intermediate achievers 
(State 1), while a small fraction of students become more averagely engaged and 
more highly achieving over time (State 2). 

HIDDEN_STATES <- c("darkred", "pink", "darkblue", "purple", 
"lightgoldenrod1", "orange") 

mssplot(mhmm_fit_i$model, 
plots = "both", 
type = "I", 
sortv = "mds.hidden", 
yaxis = TRUE, 
with.legend = "bottom", 
ncol.legend = 1, 
cex.title = 1.3, 
hidden.states.colors = HIDDEN_STATES) 
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Fig. 10 Multi-channel sequence index plots with fixed start. (a) Trajectory 1. (b) Trajectory 2. (c) 
Trajectory 3 

There are countless combinations of numbers of clusters, hidden states, and 
initial/transition/emission probabilities that we can use to fit our model. The choice 
depends on our data, our research question, the interpretability of the results, and the 
goodness of fit. Regarding the latter, a common way to compare the performance of 
several models is by using the Bayesian Information Criterion (BIC; [20]). The BIC 
can help us score the models which better fit our data while penalising us if we 
overfit it by adding too many parameters (e.g, if we specified 50 clusters instead of 
3, we would better capture the variability of our data but our model would hardly 
generalise to other scenarios). Therefore, as a general rule, the lower the BIC the 
better the model, although we need to take into account the aforementioned issues 
(research questions, interpretability, etc.) to make the final choice. Below we show 
an example of how to calculate the BIC of the models we have estimated. We see 
that the first model with the fixed initial probabilities has a somewhat higher BIC 
than the second one with the restricted initial probabilities. However, we might need 
to try different numbers of clusters and hidden states to make our final choice. 

BIC(mhmm_fit$model) 

[1] 3565.658 

BIC(mhmm_fit_i$model) 

[1] 3656.949
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4.6 Incorporating Covariates in MHMMs 

The BIC can also be used to select the optimal model when different candidate 
models with different subsets of covariates are fitted. Recall that the clustering and 
the relation of clusters to covariates is performed simultaneously. Thus, otherwise 
identical models without dependence on covariates, or using different covariates, 
may uncover different groupings with different probabilities and hence a different 
BIC score. Here, we take the optimal model –with three clusters, each with two 
hidden states, using fixed initial probabilities– and demonstrate how to add and 
select covariates to make the model more powerful and interpretable. We begin by 
extracting the covariate information from the original, long format df. For each 
student, the available time-constant covariates are a numeric variable giving their 
previous grades from an earlier course, a numeric measure of their attitude towards 
learning, and their gender (male or female). The order of the rows of cov_df 
matches the order in the two eng_seq and ach_seq channels. 

cov_df <- df |> 
arrange(UserID, Sequence) |> 
filter(!duplicated(UserID)) |> 
select(Prev_grade, Attitude, Gender) 

The code below replicates the code used to fit the previously optimal MHMM 
model, and augments it by providing a data frame (via the data argument, using 
the cov_df just created) and the corresponding one-sided formula for specifying 
the covariates to include (via the formula argument). For simplicity, we keep 
the same number of clusters and hidden states and fit three models (one for each 
covariate in cov_df). To mitigate against convergence issues, we use the results of 
the previously optimal MHMM to provide informative starting values. 

set.seed(2294) 
init_mhmm_1 <- build_mhmm(observations = list(eng_seq, ach_seq), 

initial_probs = mhmm_fit_i$model$initial_probs, 
transition_probs = mhmm_fit_i$model$transition_probs, 
emission_probs = mhmm_fit_i$model$emission_probs, 
data = cov_df, 
formula = ~ Prev_grade) 

init_mhmm_2 <- build_mhmm(observations = list(eng_seq, ach_seq), 
initial_probs = mhmm_fit_i$model$initial_probs, 
transition_probs = mhmm_fit_i$model$transition_probs, 
emission_probs = mhmm_fit_i$model$emission_probs, 
data = cov_df, 
formula = ~ Attitude) 
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init_mhmm_3 <- build_mhmm(observations = list(eng_seq, ach_seq), 
initial_probs = mhmm_fit_i$model$initial_probs, 
transition_probs = mhmm_fit_i$model$transition_probs, 
emission_probs = mhmm_fit_i$model$emission_probs, 
data = cov_df, 
formula = ~ Gender) 

We estimate each model 50 + 1 times (first from the starting values we provided 
and then from 50 randomised values). 

mhmm_fit_1 <- fit_model(init_mhmm_1, 
control_em = list(restart = list(times = 50))) 

mhmm_fit_2 <- fit_model(init_mhmm_2, 
control_em = list(restart = list(times = 50))) 

mhmm_fit_3 <- fit_model(init_mhmm_3, 
control_em = list(restart = list(times = 50))) 

Note that in an ideal analysis, however, one would vary the number of clusters and 
hidden states along with varying sets of covariates and initial probabilities in order 
to find the model settings which jointly optimise the BIC. Moreover, one is not 
limited to including only a single covariate; one could specify for example formula 
= ~ Attitude + Gender, but we omit this consideration here for simplicity. 
Furthermore, one should check in an ideal analysis that the optimal model was 
found in a majority of the 51 runs. We did so and can be satisfied that there are no 
convergence issues. We select among the three models with three different, single 
covariates using the BIC, and include the previous model with no covariates in the 
comparison also. 

BIC(mhmm_fit_i$model) 

[1] 3656.949 

BIC(mhmm_fit_1$model) 

[1] 3614.673 

BIC(mhmm_fit_2$model) 

[1] 3632.004
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BIC(mhmm_fit_3$model) 

[1] 3649.353 

Recalling that lower BIC values are indicative of a better model, we can see that 
each covariate yields a better-fitting model. Though a better model could be found 
by adding more covariates or modifying the numbers of clusters and hidden states, 
we now proceed to interrogate, interpret, and visualise the results of the best model 
only; namely the MHMM with Prev_grade as a predictor of cluster membership. 

We begin by examining the clusters via sequence index plots using mssplot(), 
as before, in Fig. 11. 

mssplot(mhmm_fit_1$model, 
plots = "both", 
type = "I", 
sortv = "mds.hidden", 
yaxis = TRUE, 
with.legend = "bottom", 
ncol.legend = 1, 
cex.title = 1.3, 
hidden.states.colors = HIDDEN_STATES) 

Fig. 11 Multi-channel sequence index plots for the optimal covariate-dependent MHMM. (a) 
Cluster 1. (b) Cluster 2. (c) Cluster 3 

Compared to Fig. 10, the results are notably similar. One observation previously 
assigned to the first trajectory is now assigned to the third, but the clusters retain 
precisely the same interpretations of Cluster 1 being mostly low achievers who
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move from averagely engaged to disengaged, Cluster 2 being mostly highly engaged 
high achievers, some of whom transition to being mostly intermediate achievers, 
and Cluster 3 being most averagely engaged or disengaged high or intermediate 
achievers, some of whom become more averagely engaged and highly achieving 
over time. It is worth noting that it is possible for the clusters and the interpretation 
thereof to change more drastically than this when covariates are added. As the 
clusters are very similar to what we found before, we give the clusters more 
informative labels as a reminder: 

cluster_names(mhmm_fit_1$model) <- c("LowEngLowAch", "HighEngHighAch", "LowEngHighAch") 

We now present a summary of the model which shows information about parameter 
estimates of covariates and prior and posterior cluster membership probabilities, 
which refer to cluster membership probabilities before or after conditioning on 
the observed sequences, respectively. In other words, prior cluster membership 
probabilities are calculated using each individual’s observed covariate values only, 
while posterior cluster membership probabilities are calculated using individual’s 
covariate values and their observed sequence. In each case, these represent the 
probabilities of belonging to a particular HMM component in the MHMM mixture. 

summary_mhmm_1 <- summary(mhmm_fit_1$model) 
summary_mhmm_1 

Covariate effects : 
LowEngLowAch is the reference. 

HighEngHighAch : 
Estimate Std. error 

(Intercept) -6.253 1.220 
Prev_grade 0.817 0.159 

LowEngHighAch : 
Estimate Std. error 

(Intercept) -1.486 0.960 
Prev_grade 0.158 0.139 

Log-likelihood: -1708.843 BIC: 3614.673 

Means of prior cluster probabilities : 
LowEngLowAch HighEngHighAch LowEngHighAch 

0.40 0.34 0.26 

Most probable clusters : 
LowEngLowAch HighEngHighAch LowEngHighAch
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count 57 48 37 
proportion 0.401 0.338 0.261 

Classification table : 
Mean cluster probabilities (in columns) by the most probable 

cluster (rows) 

LowEngLowAch HighEngHighAch LowEngHighAch 
LowEngLowAch 0.98577 0.00702 0.00721 
HighEngHighAch 0.00316 0.98499 0.01185 
LowEngHighAch 0.01335 0.01552 0.97113 

We will first interpret the information on prior and posterior cluster member-
ship probabilities and then proceed to interpreting covariate effects. Firstly, the 
section named Means of prior cluster probabilities gives information 
on how likely each cluster is in the whole population of students (40% in 
“LowEngLowAch”, 34% in “HighEngHighAch”, and 26% in “LowEngHighAch”). 
Secondly, the section Most probable clusters shows group sizes and propor-
tions considering that each student would be classified into the cluster for which they 
have the highest cluster membership probability. Thirdly, the Classification 
table shows mean cluster probabilities (in columns) by the most probable cluster 
(in rows). We can see that the clusters are very crisp (the certainty of cluster 
memberships are very high) because the membership probabilities are large in the 
diagonal of the table. 

The part titled Covariate effects shows the parameter estimates for the 
covariates. Interpretation of the values is similar to that of multinomial logistic 
regression, meaning that we can interpret the direction and uncertainty of the 
effect –relative to the reference level of “LowEngLowAch”—but we cannot directly 
interpret the magnitude of the effects. The magnitude of the Prev_grade coefficient 
is small with respect to its associated standard error, so we can say there is no 
significant relationship between previous grades and membership of the poorly 
engaged yet highly achieving “LowEngHighAch”. However, the large positive 
coefficient in “HighEngHighAch” indicates that students with high previous grades 
are more likely to belong to the highly engaged high achieving cluster, which makes 
intuitive sense. 

The summary object also calculates prior and posterior cluster memberships for 
each student. We omit them here, for brevity, but demonstrate that they can be 
obtained as follows: 

prior_prob <- summary_mhmm_1$prior_cluster_probabilities 
posterior_prob <- summary_mhmm_1$posterior_cluster_probabilities 

Similarly, to obtain the most likely cluster assignment for each student according to 
the posterior probabilites, we simply need to access the most_probable_cluster 
element from the summary object (summary_mhmm_1). As per the Groups vector
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defined in the earlier distance-based clustering analysis, we show the assignments 
for the first 5 students only below, for brevity. 

cluster_assignments <- summary_mhmm_1$most_probable_cluster 
head(cluster_assignments, 5) 

[1] LowEngHighAch LowEngLowAch LowEngLowAch HighEngHighAch 
LowEngLowAch Levels: LowEngLowAch HighEngHighAch LowEngHighAch 

If we are interested in getting the most probable path of hidden states for each 
student, we may use the hidden_paths() function from seqHMM and pass the 
MHMM model as an argument (mhmm_fit_1$model). We then need to convert 
it to the long format to get a row per student and timepoint and then we extract only 
the value column to get only the hidden state. We can then assign the resulting 
vector to a column (e.g., HiddenState) in the original dataframe which follows the 
same data order. 

df$HiddenState <- hidden_paths(mhmm_fit_1$model) |> 
pivot_longer(everything()) |> pull(value) 

head(df$HiddenState) 

[1] LowEngHighAch:State 1 LowEngHighAch:State 1 LowEngHighAch:State 2 
[4] LowEngHighAch:State 2 LowEngHighAch:State 2 LowEngHighAch:State 2 
8 Levels: LowEngLowAch:State 1 LowEngLowAch:State 2 ... % 

It is good to be aware that the most probable cluster according to posterior cluster 
probabilities may not always match with the cluster producing the single most 
probable path of hidden states. This is because the posterior cluster probabilities 
are calculated based on all of the possible hidden state paths generated from that 
cluster, while the single most probable path of hidden states may sometimes come 
from a different cluster. 

Lastly, we advise readers to consult Chap. 12 for more examples of interpreting 
covariate effects in the context of MHMM models. 

5 Discussion 

This chapter has provided an introduction to multi-channel sequence analysis, 
a method that deals with the analysis of two or more synchronised sequences. 
Throughout this chapter, we have highlighted the growing significance of multi-
channel sequence analysis in educational research. While earlier chapters in this 
book focused on sequence analysis of learner-related data, this method presents 
a suitable approach to leverage the increasing availability of student multimodal
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temporal data. Our review of the existing literature that has utilised multi-channel 
sequence analysis concluded that the applications of this method within educational 
research are still relatively scarce. However, the potential of this framework is 
immense, as it opens up new possibilities to address the challenges posed by the 
complex and dynamic nature of educational data. 

In the tutorial part of the chapter, we examined a case study on students’ online 
engagement and academic achievement to demonstrate how multi-channel sequence 
analysis can reveal valuable insights into the longitudinal associations between these 
constructs. The identification of distinct trajectories through mixture hidden Markov 
models allows for a deep understanding of how both constructs evolve together over 
time and the distance-based clustering approach offers an alternative perspective 
on the group structure within these data. The step-by-step tutorial on implementing 
multi-channel sequence analysis with R according to both clustering frameworks 
provides readers with practical guidance to explore and apply these methods in their 
own research. Armed with this knowledge, researchers and educators can unlock 
valuable insights from their data and make informed decisions to support student 
learning and success. 

Markovian models are relatively scalable and can be used to cluster large 
sequence data. See, e.g., [36] for scalability in terms of hidden states and time 
points in hidden Markov models. In terms of the number of sequences, computations 
can be easily parallelised; see, e.g., [19]. Then again, unlike data-mining type 
sequence analysis, probabilistic models require making assumptions about the 
data-generating mechanisms which may not always be realistic (such as time-
homogeneity or the Markov property itself [19]. Furthermore, analysis of complex 
multi-channel sequence data can be very time consuming [6, 37]. Although we have 
highlighted the advantages of the model-based Markovian approach, particularly 
with regard to the ability to incorporate covariates as predictors of cluster mem-
bership, it is difficult to say if one approach is definitively better than the other 
for all potential use-cases. Although information criteria such as the BIC or cross-
validation can be used to guide the choice of MHMM, particularly regarding the 
choice of the number of clusters (and numbers of hidden states within each cluster, 
and/or initial/transition/emission probabilities), we did not comprehensively do so 
here. Rather, we opted for three clusters, each with two hidden states, in both 
applications of MHMM herein, and only considered different initial probability 
settings and different covariates to arrive at the best model in terms of BIC. In an 
ideal analysis, one would compare different MHMM fits with different numbers of 
clusters and hidden states, different restrictions on the probabilities, and different 
covariates to arrive at an optimal model in terms of BIC or other model selection 
criteria. 

Conversely, the choice of six clusters for the hierarchical clustering solution 
was arrived at in a different fashion, driven by the average silhouette width cluster 
quality measure. Indeed, the BIC cannot be used to choose the number of clusters 
with hierarchical clustering, nor can it be used to compare a hierarchical clustering 
solution with MHMM. However, it is interesting to note that the six clusters 
obtained by hierarchical clustering map reasonably well to the six hidden states
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of the MHMM solutions. As examples, considering the MHMM with fixed initial 
probabilities, one could say that clusters 4 and 5 of the hierarchical clustering 
solution, capturing averagely engaged and disengaged low achievers respectively, 
matches the two hidden states of the first MHMM cluster, while clusters 2 and 6, 
capturing actively engaged intermediate and high achievers respectively, matches 
the two hidden states of the second MHMM cluster. 

Overall, we encourage readers to further explore the potential of multi-channel 
sequence analysis, the merits of both clustering approaches, and broader implica-
tions in the field of education by diving into the recommended readings. The next 
section provides a list of valuable resources for readers to expand their knowledge 
on the topic. 

6 Further Readings 

For more thorough presentations and comparisons of different options for the 
distance-based analysis of multi-channel sequences, we recommend the text book 
by Struffolino and Raab [38] and articles by Emery and Berchtold [8] and Ritschard 
et al. [13]. For assessing whether sequences in different channels are associated to 
the extent of needing joint analysis, Piccarreta and Elzinga [39, 40] have proposed 
solutions for quantifying the extent of association between two or more channels 
using Cronbach’s . α and principal component analysis. 

For general presentations of the MHMM for multi-channel sequences, see the 
chapter by Vermunt et al. [41] and the article by Helske and Helske [19]. For further 
examples and tips for visualization of multi-channel sequence data and estimation 
of Markovian models with the seqHMM package, see the seqHMM vignettes [42, 43]. 

To learn how to combine distance-based sequence analysis and hidden Markov 
models for the analysis of complex multi-channel sequence data with partially 
missing observations, see the chapter by Helske et al. [6]. 
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The Why, the How and the When of 
Educational Process Mining in R 

Sonsoles López-Pernas and Mohammed Saqr 

1 Introduction 

Nowadays, almost all learning platforms generate vast amounts of data that include 
every interaction a student has with the learning environment. Such large amounts 
of data offer a unique opportunity to analyze and understand the dynamics of the 
learning process. In the previous chapters of the book, we covered several methods 
for analyzing the temporal aspects of learning, such as sequence analysis [1, 2], 
Markovian modeling [3] or temporal network analysis [4]. In this chapter, we 
present an analytical method that is specifically oriented towards analyzing time-
stamped event log data: process mining. Process mining is a technique that allows 
us to discover, visualize, and analyze the underlying process from time-stamped 
event logs. Through process mining, we may uncover hidden patterns, bottlenecks, 
and inefficiencies in students’ learning journeys. Tracking students’ actions step-by-
step, allows us to identify which resources are most effective, which topics are more 
challenging, and even predict possible problems before they may occur. 

Process mining emerged as a business tool that allows organizations to analyze 
and improve their operational processes. The field has rapidly expanded with several 
modelling methods, algorithms, tools and visualization techniques. Further, the 
method has been met with enthusiasm from several researchers leading to a rapid 
uptake by other disciplines such as health care management and education. As the 
field currently stands, it is a blend of process management and data science with 
less emphasis on statistical methods. The field has found its place in educational 
research with the recent surge of trace log data generated by students’ activities and 
the interest that learning analytics and educational data mining have kindled. 
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This tutorial chapter will introduce the reader to the fundamental concepts of 
process mining technique and its applications in learning analytics and education 
research at large. We will first describe the method, the main terminology, and the 
common steps of analysis. Then, we will provide a review of related literature to 
gain an understanding of how this method has been applied in learning analytics 
research. We then provide a step-by-step tutorial on process mining using the R 
programming language and the bupaverse framework. In this tutorial, we analyze 
a case study of students’ online activities in an online learning management system 
using the main features of process mining. 

2 Basic Steps in Process Mining 

The goal of process mining is to extract process models from event data. The 
resulting models can then be used to portray students’ pathways in learning, identify 
common transitions, and find issues in their approach. In doing so, process mining 
promises to find deviations from the norm, suggest corrective actions, and optimize 
processes as an ultimate goal [5]. Process mining starts by the extraction of event 
data. In the case of educational process mining, event data often reflects students’ 
activities in learning management systems (LMSs), or in other types of digital tools 
that record time-stamped events of students’ interactions with the digital tools, such 
as automated assessment tools or online learning games. The said data is used to 
construct what is known as an event log. An event log has three necessary parts: 

• Case identifier: A case represents the subject of the process. For example, if 
we are analyzing students’ enrollment process, each student would represent a 
different case. If we are analyzing students’ online activities in the LMS, we can 
also consider each student as a separate case; alternatively, if we want a greater 
level of granularity, each student’s learning session can be then considered a 
separate case. All event logs need to have a case identifier that unequivocally 
identifies each case and that allows to group together all the events that belong to 
the same case. 

• Activity identifier: Activities represent each action or event in the event data. 
Continuing with the previous examples, an activity would represent each step in 
the enrollment process (e.g, application, revision, acceptance, payment etc.), or 
each action in the LMS (e.g., watch video, read instructions, or check calendar). 

• Timestamp: The timestamp is a record of the moment each event has taken 
place. It allows to establish the order of the events. In the case of online activity 
data, for instance, the timestamp would be the instant in which a student clicks 
on a learning resource. In some occasions, activities are not instantaneous, but 
rather have a beginning and an end. For example, if we are analyzing student’s 
video watching, we might have an event record when they start watching and 
when they finish. If we want to treat these events as parts of the same activity, 
we need to provide additional information when constructing an event log. As
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such, we need to specify an activity instance identifier, which would allow us to 
unequivocally identify and group together all instances of the same overarching 
activity (watching a video, in our example). Moreover, we would need to provide 
a lifecycle identifier (e.g., start and end), to differentiate between all stages of 
the same activity. A common limitation of LMS data is that only one click is 
recorded per activity so this type of analysis is often not possible. 

Once we have our event log defined, we can calculate multiple metrics that allow 
us to understand the data. For example, we can see the most frequent activities and 
the most frequent transitions. We can also see the case coverage for each activity, 
e.g., how many cases contain each activity, and the distribution of the length of each 
case (how many activities they have). We can also calculate performance metrics, 
such as idle time (i.e., time spent without doing any activities) or throughput time 
(i.e., overall time taken). 

From the event log, we often construct what is known as the Directly-Follows 
Graph (DFG), in which we graphically represent all the activities in the event log 
as nodes and all the observed transitions between them as edges [5]. Figure 1 
shows an example with event log data from students, where each case identifier 
represents a student’s session. First, we build the sequence of activities for each 
case. As such, Layla’s path for her first learning session would be: Calendar . →
Lecture . → Video . → Assignment. The path for Sophia’s first session would be: 
Calendar . → Instructions . → Video . → Assignment. We put both paths together and 
construct a partial DFG that starts from Calendar, then it transitions either to Lecture 
or Instructions and then it converges back into Video and ends in Assignment. We 
create the paths for the remaining student sessions. Then, we combine them together 
through an iterative process until we have the complete graph with all the possible 
transitions between activities. Our final graph with the four sessions shown in Fig. 1 
would start by Calendar, then transition either to Lecture or Instructions. Then the 

Fig. 1 Step-by-step construction of a DFG
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process could transition from Lecture to Instructions or viceversa, or to Video. In 
addition, Lecture has a self-loop because it can trigger another lecture (see Layla’s 
session 2). From Video, the only possible transition is to Assignment. 

In real-life scenarios, building the DFG for a complete —or large— event log 
may turn to be overcrowded and hard to visualize or interpret [5]. Therefore, 
it is “common to trim activities or transitions” that do not occur often. Other 
options include splitting the event logs by group (e.g., class sections) to reduce the 
granularity of the event log to be able to compare processes between groups. We can 
also zoom into specific parts of the course (e.g, a specific assignment or lecture) to 
better understand students’ activities at that time. Moreover, we can filter the event 
log to see cases that contain specific activities or that match certain conditions. 

The DFGs are often enhanced with labels that allow us to understand the graph 
better. These labels are often based on the frequency of activities and transitions. 
For example, the nodes (representing each activity) can be labeled with the number 
of times (or proportion) they appear in the event data, or with the case coverage, 
i.e., how many cases (or what percentage thereof) they appear in. The edges 
(representing transitions between activities) can be labeled with the frequency of 
the transitions or the case coverage as well, among others. Another common way 
of labeling the graph is using performance measures that indicate the mean time (or 
median, maximum, etc.) taken by each activity and/or transition. 

The DFG gives us an overarching view of the whole event log. However, in some 
occasions, we would like to understand the underlying process that is common to 
most cases of our event log. This step is called process discovery [5] and there are 
several algorithms to perform it such as the alpha algorithm [6], inductive techniques 
[7] or region-based approaches [8]. The discovered processes are then represented 
using specialized notation, such as Business Process Model and Notation (BPMN) 
[9] or Petri nets [10]. 

In some occasions, there are certain expectations regarding how the process 
should go. For instance, if we are analyzing students’ activities during a lesson, the 
teacher might have given a list of instructions that students are expected to follow 
in order. To make sure that the discovered process (i.e., what students’ data reveal) 
aligns with the expected process (i.e., what students were told to do in our example), 
conformance checking is usually performed. Conformance checking deals with 
comparing the discovered process with an optimal model or theorized process (i.e., 
an ideal process) [5]. The idea is to find similarities and differences between the 
model process and the real observed process, identify unwanted behavior, detect 
outliers, etc. As seen from our example, in educational settings, this can be used, 
for instance, to detect whether students are following the learning materials in the 
intended order or whether they implement the different phases of self-regulated 
learning. However, given that students are rarely asked to access learning materials 
in a strict sequential way, this feature has been rarely used. In the next section, we 
present a review of the literature on educational process mining where we discuss 
more examples.
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3 Review of the Literature 

A review of the literature by Bogarín et al. [11] mapped the landscape of educational 
process mining and found a multitude of applications of this technique in a diversity 
of contexts. The most common application was to investigate the sequence of 
students’ activities in online environments such as MOOCs and other online or 
blended courses, as well as in computer-supported collaborative learning contexts 
[11]. One of the main aims was to detect learning difficulties to be able to provide 
better support for students. For example, López-Pernas et al. [12] used process 
mining to explore how students’ transition between a learning management system 
and an automated assessment tool, and identified how struggling students make use 
of the resources to solve their problems. Arpasat et al. [13] used process mining 
to study students’ activities in a MOOC, and compared the behavior of high-
and low-achieving students in terms of students’ activities, bottlenecks and time 
performance. A considerable volume of research has studied processes where the 
events are instantaneous, such as clicks in online learning management systems 
(e.g., [14–16]). Fewer are the studies that have used activities with a start time and 
an end time due to the limitations in data collection in online platforms. However, 
this limitation has been often overcome by grouping clicks into learning sessions, 
as is often done in the literature on students’ learning tactics and strategies, or self-
regulated learning (e.g., [12, 17–19]). 

Regarding the methods used, much of the existing research is limited to cal-
culating performance metrics and visualizing DFGs, whereby researchers attempt 
to understand the most commonly performed activities and the common transitions 
between them. For example, Vartiainen et al. [20] used video coded data of students’ 
participation in an educational escape room to visualize the transitions between 
in-game activities using DFGs. Oftentimes, researchers use DFGs to compare 
(visually) across groups, for example high vs. low achievers, or between clusters 
obtained through different methods. For instance, Saqr et al. [21] implemented k-
means clustering to group students according to their online activity frequency, 
and used DFGs to understand the strategies adopted by the different types of 
learners and how they navigate their learning process. Using a different approach, 
Saqr and López-Pernas [22] clustered students groups according to their sequence 
of interactions using distance-based clustering, and then compared the transitions 
between different interactions among the clusters using DFGs. 

Going one step further, several studies have used process discovery to detect the 
underlying overall process behind the observed data [11]. A variety of algorithms 
have been used in the literature for this purpose, such as the alpha algorithm [23], the 
heuristic algorithm [24], or the fuzzy miner [18]. Less often, research on educational 
proecss mining has performed conformance checks [11], comparing the observed 
process with an “ideal” or “designed” one. An example is the work by Pechenizkiy 
et al. [25], who used conformance checking to verify whether students answered an 
exam’s questions in the order specified by the teacher.
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When it comes to the tools used for process mining, researchers have relied on 
various point-and-click software tools [11]. For example, Disco [26] has been used 
for DFG visualization by several articles (e.g., [27]). ProM [28] is the dominant 
technology when it comes to process discovery (e.g., [19, 29]) and also conformance 
checking (e.g., [25]). Many articles have used the R programming language to 
conduct process mining, relying on the bupaverse [30] framework for basic 
metrics and visualization (the one covered in the present chapter), although not for 
process discovery (e.g., [12]) since the algorithm support is scarce. 

4 Process Mining with R 

In this section, we present a step-by-step tutorial with R on how to conduct process 
mining of learners’ data. First, we will install and load the necessary libraries. Then, 
we will present the data that we will use to illustrate the process mining method. 

4.1 The Libraries 

As a first step, we need two basic libraries that we have used multiple times 
throughout the book: rio for importing the data [31], and tidyverse for data 
manipulation [32]. As for the libraries used for process mining, we will first rely on 
bupaverse, a meta-package that contains many relevant libraries for this purpose 
(e.g., bupaR), which will help us with the frequentist approach [30]. We will use 
processanimateR to see a play-by-play animated representation of our event data. 
You can install the packages with the following commands: 

install.packages("rio") 
install.packages("tidyverse") 
install.packages("bupaverse") 
install.packages("processanimateR") 

You can then load the packages using the library() function. 

library(bupaverse) 
library(tidyverse) 
library(rio) 
library(processanimateR) 
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4.2 Importing the Data 

The dataset that we are going to analyze using process mining contains logs of 
students’ online activities in an LMS during their participation on a course about 
learning analytics. We will also make use of students’ grades data to compare 
activities between high and low achievers. More information about the dataset can 
be found in the data chapter of this book [33]. In the following code chunk, we 
download students’ event and demographic data and we merge them together into 
the same dataframe (df). 

df <- import("https://github.com/lamethods/data/raw/main/1_moodleLAcourse/ 
Events.xlsx") 

all <- import("https://github.com/lamethods/data/raw/main/1_moodleLAcourse/ 
AllCombined.xlsx") |> 

select(User, AchievingGroup) 
df <- df |> merge(all, by.x = "user", by.y = "User") 

When analyzing students’ learning event data, we are often interested in analyz-
ing each learning session separately, rather than considering a longer time span (e.g., 
a whole course). A learning session is a sequence (or episode) of un-interrupted 
learning events. To do such grouping, we define a threshold of inactivity, after  
which, new activities are considered to belong to a new episode of learning or 
session. In the following code, we group students’ logs into learning sessions 
considering a threshold of 15 minutes (15 min. . × 60 sec./min. = 900 seconds), 
in a way that each session will have its own session identifier (session_id). For 
a step-by-step explanation of the sessions, code and rationale, please refer to the 
sequence analysis chapter [1]. A preview of the resulting dataframe can be seen in 
Table 1. We see that each group of logs that are less than 900 seconds (15 minutes) 
apart (Time_gap column) are within the same session (new_session = FALSE) 
and thus have the same session_id. Logs that are more than 900 seconds apart are 
considered a new session (new_session = TRUE) and get a new session_id. 

sessioned_data <- df |> 
group_by(user) |> 
arrange(user, timecreated) |> 
mutate(Time_gap = timecreated - (lag(timecreated))) 

|> 
mutate(new_session = is.na(Time_gap) | Time_gap > 

900) |> 
mutate(session_nr = cumsum(new_session)) |> 
mutate(session_id = paste0 (user, "_", "Session_", 

session_nr)) |> ungroup() 
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4.2.1 Creating an Event Log 

Now, we need to prepare the data for process mining. This is performed by 
converting the data into an event log. At a minimum, to construct our event log 
we need to specify the following: 

• case_id: As we have explained before, the case identifier allows to differentiate 
between all cases (i.e, subjects) of the process. In our dataset, since we are 
analyzing activities in each learning session, the case_id would represent the 
identifier of each session (the column session_id of our dataframe that we 
have just created in the previous step). 

• activity_id: It indicates the type of activity of each event in the event 
log. In our dataset, we will use the column Action that can take the values: 
“Course_view”, “Assignment”, “Instructions”, “Group_work”, etc. LMS logs 
often contain too much granularity so it is useful to recode the events to give 
them more meaningful names [33]. 

• timestamp: It indicates the moment in which the event took place. In our dataset, 
this is represented by the timecreated column which stores the time where each 
‘click’ on the LMS took place. 

Now that we have defined all the required parameters, we can create our event 
log. We will use the simple_eventlog() function from bupaR and supply the 
arguments to the function (corresponding to the aforementioned process elements) 
to the respective columns in our dataset. 

event_log <- simple_eventlog(sessioned_data, 
case_id = "session_id", 
activity_id = "Action", 
timestamp = "timecreated") 

In our example, each row in our data represents a single activity. This is often the 
case in online trace log data, as each activity is a mere instantaneous click with no 
duration. As explained earlier, in other occasions, activities have a beginning and an 
end, and we have several rows to represent all instances of an activity. For example, 
we might have a row to represent that a student has begun to solve a quiz, and 
another one to represent the quiz’s submission. If the data looks like that, we might 
need to use the activitylog() function from bupaR to create our activity log, and 
indicate, using the lifecycle_id argument, which column indicates whether it is 
the start or end of the activity, or even intermediate states.
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Fig. 2 Activity frequency. (a) Overall frequency. (b) Frequency by group 

4.2.2 Inspecting the Logs 

Now that we have created our event log, we can use the summary() function to get 
the descriptive statistics. The results show that we have a total of 95,626 events 
for 9560 cases (in our example, student sessions) and 12 distinct activities (the 
actions in the learning management system). We have 4076 distinct traces (i.e., 
unique cases), which in our example means that there are sessions that have the 
exact same sequence of events. These traces are, on average, 10 events long, and 
span from September 9th 2019 to October 27th 2019. 

event_summary <- summary(event_log) 

Number of events: 95626 
Number of cases: 9560 
Number of traces: 4076 
Number of distinct activities: 12 
Average trace length: 10.00272 

Start eventlog: 2019-09-09 14:08:01 
End eventlog: 2019-10-27 19:27:41 

We may now inspect what the most common activities are in our event log 
(Table 2). The absolute_frequency column represents the total count of activities 
of each type, whereas the relative_frequency represents the percentage (as a 
fraction of 1) that each activity represents relative to the total count of activities. We 
see that the working on the group project (Group_work) is the most frequent activity 
(with 32,748 instances), followed by viewing the course main page (Course_view) 
with 25,293 instances. 

activities(event_log)
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Table 2 Frequency of each 
activity 

Action Absolute_frequency Relative_frequency 

Group_work 32748 0.34245916 

Course_view 25293 0.26449919 

Practicals 10020 0.10478322 

Assignment 7369 0.07706063 

Instructions 6474 0.06770125 

General 3346 0.03499048 

Feedback 3114 0.03256437 

Social 2191 0.02291218 

La_types 1891 0.01977496 

Theory 1377 0.01439985 

Ethics 1028 0.01075021 

Applications 775 0.00810449 

We can also view the most frequent activities in graphical form. We can even 
visually compare the frequency of activities between different groups (e.g., high 
achievers vs. low achievers) (Fig. 2). 

event_log |> activity_frequency("activity") |> plot() 
event_log |> group_by(AchievingGroup) |> 

activity_frequency("activity") |> plot() 

We may be also interested in looking at activity presence, also known as 
case coverage. This refers to the percentage of cases that contain each of the 
activities at least once. Most sessions (85.8%) include visiting the main page of the 
course (Course_view). Slightly over half (54.6%) involve working on the group 
project (Group_work). Around one quarter include working on the Practicals 
(25.7%), Instructions (25.2%), and Assignment (23.2%). Other activities are 
less frequent (Fig. 3). 

event_log |> activity_presence() |> plot() 
event_log |> group_by(AchievingGroup) |> 

activity_presence() |> plot() 

If we are interested in the transition between activities, we can plot the 
antecedent-consequent matrix. This visualization tells us how many transitions there 
has been from the activities on the left side (antecedent) to the activities on the 
bottom side (consequent). 

event_log |> process_matrix() |> plot() 

Figure 4 shows that there are 6416 transitions from Course_view to 
Group_work within the same session. The most common transition is from
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Fig. 3 Activity presence. (a) Overall presence. (b) Presence by group 
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Fig. 4 Antedecent-consequent matrix 

Group_work to more Group_work, with 22060 instances. Note that, on the 
antecedent side (left), there is an additional row for Start. This allows to represent 
the activities that occur right at the beginning as a transition from Start, since they 
do not have any other activity as antecedent. In this case, we see that most sessions 
start with Course_view (4612). On the consequent side (bottom), we see that there 
is an additional column on the right side for End, representing the end of a session. 
This allows to represent the activities that occur at the very end of a session, since 
they do not have any other activities following. We see that sessions are most likely
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Fig. 5 Default process map 

to end by Group_work (2762), closely followed by Course_view (2669). Another 
aspect worth noting is that some cells in our matrix are empty, which represents the 
fact that a transition between the activity on the left, and the activity on the bottom is 
not present in any of the cases in our dataset. For example, we see that there are no 
transitions between Applications and Theory. Another —obvious— example is 
the cell from Start to End, as sessions should have at least one event and therefore 
they can never go from Start to End without any other event in the middle. 

4.2.3 Visualizing the Process 

Now, it is time to visualize the event log using the DFG. Within the bupaverse 
framework this graph is referred to as process map. We can use the process_map() 
function for this purpose (Fig. 5). 

event_log |> process_map() 

By default, the process map contains every single activity and transition between 
activities. As the number of activities and cases increase, this can become unread-
able, as is the case with our example. Therefore, we might need to trim some 
less frequent activities to be able to better visualize the process. We will choose 
to cover 80% of the activities. This means that we will select the most frequent 
activities in order, up to when we have accounted for 80% of all the activities 
in the event log. If we go back to Table 2, we can see that all activities ranging 
from the most frequent activity (Group_work) to  Instructions account roughly 
to 80%, so we are left with the top five activities and exclude the rest. There is
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no standard for choosing a threshold for trimming and it is up to the researcher 
to define the threshold. As discussed in the introduction, such approach may yield 
different process maps according to the trimming threshold. A good rule of thumb 
for choosing this threshold is that the process map should be readable but at the same 
time no essential information should be removed. In our case, the activities filtered 
out are very infrequent and specific to certain lessons in the course, so they are 
not representative to the course as a whole. Another strategy would be to combine 
these activities into a single one such as Reading, which would allow to simplify 
our analysis while keeping all the information. For demonstration processes, we 
proceed by filtering the log and to operate with it in subsequent steps. 

event_log |> filter_activity_frequency(percentage = 
0.8) -> event_log_trimmed 

If we now plot the process map of the trimmed event log, we will be able to 
see the process much more clearly (Fig. 6). When interpreting a process map it is 
common to start by commenting on the nodes (the activities) and their frequency. 
For example, we would say that Group_work is the most frequent activity with 
32,748 instances, followed by Group_work, etc., as we have already done in 
Table 2. Next, we would describe the transitions between activities, with emphasis 
on how sessions start. Most sessions (5,059) —in the trimmed dataset— start by 
viewing the course main page Course view. We can see this information on the 
edge (arrow) that goes from Start to Course_view. The second most common 
first step is Group_work (2,129). Most instances of Group_work are followed by  
more Group_work (22,429, as can be seen from the self-loop). The most common 
transitions between activities are between Course_view and Group_work, with 
6,000+ instances between one another both ways, as we can infer from the labels 
of the edges between one another. Viewing the course main page (Course view) is  
the most central activity in the process map as it has multiple transitions with all the 
other activities, since students often use the main page to go from one activity to the 
next. 

event_log_trimmed |> process_map() 

As we have seen, each node of the process contains the activity name along 
with its overall frequency, that is, the number of instances of that activity in our 
event log. Similarly, the edges (the arrows that go from activity to activity) are 
labeled with the number of times each transition has taken place. These are the 
default process map settings. Another way of labeling our process map is using the 
frequency("absolute-case") option, which counts the number of cases (i.e., 
sessions in our event log) that contain each given activity and transition (Fig. 7). 
Instead of seeing the count of activities and transitions, we are seeing the count of 
sessions that contain each activity and transition. For example, we could say that 
8,203 sessions contain the activity Course_view.
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Fig. 6 Process map trimmed 

Fig. 7 Absolute case process 
map 

event_log_trimmed |> process_map(frequency("absolute-case")) 

Sometimes we may be interested in the percentage (relative proportion) 
rather than the overall counts because it may be easier to compare and 
interpret. In such a case, we can use the frequency("relative") and 
frequency("relative-case") options. In the former, the labels will be relative 
to the total number of activities and transitions (Fig. 8a), whereas in the latter, the 
labels will be relative to the number of cases (or proportion thereof) (Fig. 8b). For 
example, in Fig. 8a, we see that Group_work accounts for 39.98% of the activities, 
whereas in Fig. 8b we see that it is present in 55.25% of the cases (i.e., sessions). 

event_log_trimmed |> process_map(frequency("relative")) 
event_log_trimmed |> process_map(frequency("relative-case")) 
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Fig. 8 Relative process maps. (a) Relative. (b) Relative case 

We can combine several types of labels in the same process map, and even add 
labels related to aspects other than frequency. In the next example, we label the 
nodes based on their absolute and relative frequency and we label the edges based on 
their performance, that is, the time taken in the transition (Fig. 9). We have chosen 
the mean time to depict the performance of the edges, but we could also choose 
median, minimum, maximum, etc. We see, for example, that the longest transition 
seems to be between Assingment and Group_work, in which students take on 
average 1.59 minutes (as seen on the edge label). The shortest transition is from 
Practicals to Practicals (self-loop) with 0.22 minutes on average. 

event_log_trimmed |> process_map( 
type_nodes = frequency("absolute"), 
sec_nodes = frequency("relative"), 
type_edges = performance(mean)) 

Fig. 9 Relative nodes and 
performance edges process 
map 

Another very useful feature is to be able to compare processes side by side. We 
can do so by using the group_by() function before calling process_map(). We
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see that the process map does not capture any meaningful difference between the 
two groups (Fig. 10). 

event_log_trimmed |> group_by(AchievingGroup) |> 
process_map(frequency("relative")) 

Fig. 10 Comparison between two process maps. (a) High achievers. (b) Low achievers 

We can even reproduce the whole event log as a video using the function 
animate_process from processanimateR (Fig. 11). 

animate_process(event_log_trimmed) 

5 Discussion 

We have demonstrated how to analyze event log data with process mining and how 
the visualization of process models can summarize a large amount of activities 
and produce relevant insights. Process models are powerful, summarizing, visually 
appealing and easy to interpret and understand. Therefore, process mining as a 
method has gained large scale adoption and has been used in a large number of 
studies to analyze all sorts of data. This chapter has offered an easy to understand 
overview of the basic concepts including the composition of the event log and 
the modelling approach that process mining undertakes. We also offered a brief 
overview of some examples of literature that have used the method in the analysis 
of students’ data. Then, a step-by-step tutorial has shown different types of 
visualization in the form of process maps that are based on raw frequency, relative 
frequency and performance (time). Later, we have shown how process maps can be 
used to compare between groups and show their differences. The last part of the 
chapter offered a guide of how to animate the process maps and see how events
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Fig. 11 Process animation 

occur in real-time. Please note that our approach is restricted to bupaverse, which 
is the most popular and well-maintained framework for process mining within the 
R environment. 

Whereas we share the enthusiasm for process mining as a powerful method, 
we also need to discuss the method from the rigor point of view. In many ways 
—as we will discuss later— process mining is largely descriptive and often times 
exploratory. While this is acceptable in the business domain, it needs to be viewed 
here from the viewpoint of scientific research and what claims we can make or 
base on a process map. As the tutorial has already shown, several parameters 
and decisions have to be made by the researcher and such decisions affect the 
output visualizations in considerable ways (e.g., filtering the event log). The said 
decisions are often arbitrary with no guidance or standards to base such decisions 
on. So, caution has to be exercised from over interpreting the process maps that 
have undergone extensive filtering. In fact, most researchers have used process 
mining as an auxiliary or exploratory method hand-in-hand with other tools such 
as sequence analysis or traditional statistics. In most cases, the conclusions and 
inferences were based on the other rigorous methods that are used, for instance, 
to statistically compare two groups. One can think of the process mining described 
in this chapter more of a visualization tool for the most common transitions or a 
method for visualizing the big picture of an event log in an intuitive way. 

Another known problem of process mining is that most algorithms are black-
boxed (i.e., the data processing is unclear to the researcher), with no fit statistics 
or randomization techniques to tell if the estimated process model is different 
from random. The absence of confirmatory tests makes the answer to the question



The Why, the How and the When of Educational Process Mining in R 485

of whether process mining actually recover the underlying process largely spec-
ulative. Moreover, all of the tools, algorithms, and visualization techniques have 
been imported verbatim from the business world and therefore, their validity for 
educational purposes remains to be verified. In the same vein, comparing across 
groups is rather done descriptively, without a statistic to tell whether the observed 
differences are actually significant or just happened by chance. In other methods 
such as psychological network analysis [34], several methods are available to create 
randomized models that assess the credibility of each edge, the stability of centrality 
measures, the differences between edges as well as to compare across networks 
regarding each of these parameters. Given that the algorithms, and the modelling 
technique necessitate trimming (discarding a considerable amount of data), it is bold 
to assume that the remaining process map (after trimming) is a true representation 
of the underlying process. 

It is also important to emphasize here that, given that the field name is “process 
mining”, the method does not translate to efficient analysis of the learning process. 
In fact, it is unrealistic to assume that process mining as a method —or any 
other method at large— can capture the full gamut of the complexity of the 
learning process as it unfolds across various temporal scales in different ways (e.g., 
transitions, variations, co-occurrence). A possible remedy for the problem lies in 
the triangulation of process mining models with other methods, e.g., statistics or 
better use a Markovian process modeling approach [3]. Stochastic process mining 
models (covered in detail in Chapter 12 [3]) are more advantageous theoretically 
and methodologically. Stochastic process mining models are theoretically robust, 
account for time and variable dependencies, offer fit statistics, clustering methods, 
several other statistics to assess the models and a wealth of possibilities and a 
growing repertoire of inter-operable methods. 

6 Further Readings 

There are multiple resources for the reader to advance their knowledge about 
process mining To learn more about the method itself, the reader should refer to 
the book Process Mining: Data Science in Action [35] and the Process Mining 
Handbook [36]. For more practical resources, the reader can refer to the bupaverse 
[30] documentation as well as find out more about the existing bupaverse 
extensions. The tutorial presented in this chapter has dealt with process analysis 
and visualization but not process discovery or conformance checking as the tools 
available in R are limited for these purposes. For process discovery in R, the 
reader can use the heuristicsMineR package [37], and for conformance checking, 
the pm4py package [38], a wrapper for the Python library of the same name. 
A practical guide with Python is also available in A Primer on Process Mining: 
Practical Skills with Python and Graphviz [39]. For specific learning resources on 
educational process mining, the reader can refer to the chapter “Process Mining 
from Educational Data” [40] in the  Handbook of Educational Data Mining, and
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“Educational process mining: A tutorial and case study using Moodle data sets” 
[41] in the book Data Mining and Learning Analytics: Applications in Educational 
Research. Moreover, the reader is encouraged to read the existing literature reviews 
on educational process mining (e.g., [11, 42]). 
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18. Beheshitha SS, Gašević D, Hatala M (2015) A process mining approach to linking the study 
of aptitude and event facets of self-regulated learning. In: Proceedings of the fifth international 
conference on learning analytics and knowledge. ACM, New York 

19. Cerezo R, Bogarín A, Esteban M, Romero C (2020) Process mining for self-regulated learning 
assessment in e-learning. J Comput Higher Edu 32:74–88. https://doi.org/10.1007/s12528-
019-09225-y 

20. Vartiainen H, López-Pernas S, Saqr M, Kahila J, Parkki T, Tedre M, Valtonen T (2023) 
Mapping students’ temporal pathways in a computational thinking escape room. In: Hirsto L,  
López-Pernas S, Saqr M, Sointu E, Valtonen T, Väisänen S (eds) Proceedings of the finnish 
learning analytics and artificial intelligence in education conference (FLAIEC22). CEUR, 
Joensuu, pp 77–88 

21. Saqr M, Tuominen V, Valtonen T, Sointu E, Väisänen S, Hirsto L (2022) Teachers’ learning 
profiles in learning programming: the big picture! Front Edu 7. https://doi.org/10.3389/feduc. 
2022.840178 

22. Saqr M, López-Pernas S (2023) The temporal dynamics of online problem-based learning: why 
and when sequence matters. Int J Comput-Support Collab Learn 18:11–37. https://doi.org/10. 
1007/s11412-023-09385-1 

23. Nafasa P, Waspada I, Bahtiar N, Wibowo A (2019) Implementation of alpha miner algorithm 
in process mining application development for online learning activities based on MOODLE 
event log data. In: 2019 3rd international conference on informatics and computational sciences 
(ICICoS). IEEE, Piscataway 

24. Bogarín A, Romero C, Cerezo R, Sánchez-Santillán M (2014) Clustering for improving 
educational process mining. In: Proceedings of the fourth international conference on learning 
analytics and knowledge. ACM, New York 

25. Pechenizkiy M, Trcka N, Vasilyeva E, van der Aalst WM, De Bra P (2009) Process mining 
online assessment data. In: Educational data mining 2009: 2nd international conference on 
educational data mining: proceedings [EDM’09], Cordoba, Spain. July 1–3, 2009. International 
Working Group on Educational Data Mining, pp 279–288 

26. Fluxicon Disco 
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Part IV 
Network Analysis



Social Network Analysis: A Primer, 
a Guide and a Tutorial in R 

Mohammed Saqr, Sonsoles López-Pernas, Miguel Ángel Conde-González, 
and Ángel Hernández-García 

1 Introduction 

Social Network Analysis (SNA) has emerged as a computational method for 
studying interactions, relationships, and connections among a vast array of different 
entities that include humans, animals, and cities, just to name a few. Two related 
and largely overlapping fields are also concerned with the network as a concept: 
network science and network analysis. Network science is concerned with the study 
of the structure of networks, finding patterns and universal laws that may explain 
or underpin such structure in a large variety of phenomena. Network analysis is a 
very closely related field that is concerned with the analysis of networks that are not 
necessarily “social”. In this chapter, we will simply use the terms social network 
analysis and network analysis interchangeably. 

1.1 What Are Networks? 

A quintessential concept in most analytical methods is that observations are —or 
should be—independent from each other whereas, in network analysis, observations 
can be related and interdependent and may interact with or influence each other 
[6]. As such, network analysis offers a more realistic view of the interconnected 
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world around us and allows us to paint an accurate picture of the relationships and 
interactions that underpin our world [1, 2]. For instance, when we study students’ 
engagement at a school, we may use a survey to measure each individual student’s 
engagement and compute statistics such as the correlation between engagement and 
grades. In doing so, we ignore that students interact with peers, teachers, and the 
environment around them [3, 4]. We also ignore that students get influenced by 
an engaged student, get supported by their friends, or face a problematic social 
environment that may hinder their engagement [5, 6]. Network analysis offers a 
rich set of methods for modeling and addressing such issues [7]. 

A network is simply a group of entities (often called vertices, nodes, or actors) 
connected through a relationship (often called edges, links, or arcs) [2]. In this 
chapter, we will use the terms vertices and edges for simplicity. Vertices can be 
humans (students, teachers, or families), ideas, keywords, behaviors, emotions, 
feelings, concepts, schools, countries, or any entity that can be hypothesized to have 
a relationship with other entities. Vertices may be connected through a vast array of 
relations. For instance, students may be connected to each other by being friends, 
teammates, classmates, group members, neighbors, sporting club fans, competitors, 
sharing a desk, or working together on an assignment. There is virtually no limit 
to how a researcher can hypothesize a network. Nevertheless, the interpretation of 
network analysis relies heavily on how the network was constructed [2, 8]. 

In learning contexts, the most common type of networks comes from digital data, 
and in particular online communications, the most common of which are discussion 
forums, where the conversation occurs between forum participants (vertices). Each 
reply from one participant to another forms a relationship between the two vertices, 
creating an edge in the network. In such a situation, we are talking about a directed 
network, where the interaction has a source (the person who replies) and a target (the 
replied-to) [9]. Other examples of directed networks are citation networks (where 
documents cite other documents), or users that follow other users in social media 
[10]. In turn, an undirected network contains non-directional relationships such as 
a network of siblings, friends, teammates, husband and wife, or co-workers [2]. 
Representing interactions as a network equips the researchers with a rich toolset 
to harness the power of social network analysis methods. Please note that the 
researcher can choose to model a directed network as undirected in case direction 
is deemed inappropriate according to theory, connect or research question. 

2 Analysis of Social Networks 

Two types of analysis methods are commonly used: network visualization and 
mathematical network analysis [2]. Visualization summarizes all the interactions in 
the network, giving the researcher a bird’s eye view of the structure of relationships, 
who is interacting with whom, who is leading the conversation, and who is isolated. 
Visualization is so powerful that it can summarize a whole semester of interactions 
in one visualization and still give meaningful information that can be used for 
intervention e.g., [11]. Mathematical network analysis offers quantification of all the
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network properties and the individual actors. The network properties are commonly 
known as graph-level measures. The mathematical measures of individual nodes 
are known node-level measures (often referred to as centrality measures) [2, 8, 12] 
Visualization is not discussed in details in this chapter, but interested readers 
are encouraged to see the excellent visualization tutorial maintained by Kateto 
Ognyanova [13]. 

2.1 Mathematical Analysis 

Three types of mathematical analysis can be obtained with SNA: graph-level 
measures, node-level measures (centrality measures) and edge-level measures. 
Graph level measures describe the network as a whole in terms of size, interactivity 
and components. Centrality measures quantify the connectivity and importance of 
individual actors such as the degree of involvement in interactions, the distance to 
others, or the importance of position among other interacting actors [12, 14, 15]. 
However, each of these “importance” examples can be measured in different ways. 
For example, students can be considered central if they frequently contribute to 
discussions, reply to multiple unique threads of discussions, their contributions 
receive multiple replies, or their contributions trigger several threads of discussions. 
As such, there are several centralities with diverse methods that allow us to quantify 
the degree of connectedness. The website centiserver.org counts more than 400 
centrality measures to this date and counting. In this book chapter, we will review 
and learn the most commonly used centralities in education. We rely on the recent 
meta-analysis 2022 for listing the used centrality measures, their classification, and 
operationalization in the literature. Edge measures describe the edge strength, edge 
weights or edges or edge centralities. 

2.1.1 Graph-Level Measures 

Graph-level measures are a type of analysis used in social network analysis that 
describes the overall structure and characteristics of a network. They can be used to 
compare different networks or track changes in a network over time. 

Size or vertex count is the number of vertices (individuals or groups) in the 
network. 

Edge count is the number of edges (interactions) between vertices in the 
network. 

Density represents the number of edges that are present in the network divided 
by the number of all possible connections. High density indicates that many vertices 
in the network are connected to one another. 

Reciprocity is another important graph-level measure that also reflects group 
cohesion. A reciprocated edge is an edge where two vertices have a reciprocal 
relationship (e.g., they are simultaneously source and target) [16]. The higher
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the ratio of the reciprocated edges, the more collaborative the network is, less 
centralized (dominated by few) and more participatory. 

Transitivity (or global clustering coefficient) measures the tendency of the 
vertices to cluster together or form tightly knit cliques. There is a large volume 
of research that associates the ratio of cliques with cohesion in collaborative groups, 
strong ties and productive knowledge construction [16] 

Other graph-level measures are aggregations of vertex-level or edge-level mea-
sures. For example, the mean degree is the mean number of edges of all the vertices 
in the network. In a collaborative group, the higher the mean degree, the more 
interactive the group is. 

2.1.2 Local Centrality Measures 

Local centrality measures are centralities that map the direct or immediate connec-
tions of an actor. Put another way, the local centralities quantify the neighbors of 
a certain vertex where each of these neighbors is directly connected to the target 
vertex without any intermediates (Figure 1). 

In-degree centrality represents the total number of incoming interactions or 
relationships of a vertex [12, 14]. Several examples exist in the literature with 
different operationalization and interpretations. In the case of collaborative learning, 
in-degree centrality has been interpreted as the worthiness of a participant’s 
contributions to receive replies, popularity, or influence [17–19]. 

Out-degree centrality represents the total number of outgoing interactions or 
links from an actor to other actors in the network [12, 14, 20]. Out-degree has been 
commonly interpreted as an indicator of participation, effort, and activity [21, 22]. 

Degree centrality refers to the total number of connections or interactions 
(incoming or outgoing) a vertex has. In undirected networks, it is simply the number 
of all connections of the vertex. Degree centrality can be interpreted in a similar way 
to the previous similar centralities as an indication of interactivity, communication, 
and social role in the collaborative process [23–25]. 

Fig. 1 Representation of a vertex in-degree (left), out-degree (middle), and degree (right)
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2.1.3 Measures Based on Shortest Paths 

Other relevant measures in assessing social network graphs are the shortest paths. 
These are based on the shortest distance between a pair of points (vertex) in the 
graph and represent how easy it is for a vertex to access others’ resources [12, 14, 
26]. Shortest paths can be used to better measure and understand centrality, as it is 
based on the distribution and distance of different points in a network which can 
help understand other educational insights [8, 27] The most relevant measures in 
this sense are represented in Fig. 2 and described below. 

Closeness centrality is a measure based on the farness between the vertices of 
a network; more specifically between a specific vertex and the rest of the network 
[12, 14]. Small closeness values indicate greater proximity to other vertices, whereas 
larger values indicate greater distances from other vertices. In the field of education, 
it can be seen as a way to measure: (1) closure in interaction [11, 28–32], (2) ease 
of interaction [11, 24, 29, 33, 34], (3) time for accessing information [23, 31, 35], 
(4) dependencies [30], (5) control over resources [25, 28, 33], and (6) awareness of 
opportunities [28]. 

Betweenness centrality is a measure to show the frequency of a vertex lying on 
the shortest path between two other vertices. In the field of education, it indicates 
how actors mediate communication among themselves [8, 27]. It can be a way to 
understand who are the leaders of the interactions, that is, those who can moderate 
interactions, reach unconnected groups (inter-group connection) , influence the 
information flow (information brokering) and manage that information to solve 
problems effectively [28, 29, 36]. 

Eccentricity can help to see the vertices not involved in the interactions. It is 
calculated as the distance to the farthest other vertices in the network. It can be used 
in the educational field to understand which are the students at risk of dropout or 
those that are not participating in the activities [11, 34, 36]. 

Fig. 2 Examples of networks where the highlighted vertex has a high value of betweenness (left), 
closeness (middle), and eccentricity (right)
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2.1.4 Eigenvector-Based Centralities 

Other useful metrics in social network graphs are those based on eigenvector 
centralities, i.e., those related to the value of a connection between vertices. It is 
based on the idea that it is preferable to have fewer connections to strong well-
connected vertices than to have many connections to weak isolated vertices. There 
are several measures based on this principle: 

Eigenvector centrality assesses the importance of a vertex based on the 
centralities of the vertex to which it is connected, that is, how many connections 
it has to influential vertices. It has been used to understand social capital, ego, and 
connection strength [21, 23, 34, 37]. 

Pagerank is based on link analysis and allows for defining the popularity of an 
individual in a network. It can be used in education to understand the reputation or 
influence upon a group of stakeholders based on his/her contacts [36, 38]. 

Hub centrality is based on Kleinberg’s HITS algorithm [39] that measures who 
interacts more with the most influential vertices in a network. In the educational 
field, it could help to understand the type of students’ interaction [23, 38, 40]. 

Authority is also based on Kleinberg’s HITS algorithm but it is used to identify 
which vertices might be considered an authority on a specific topic score. It is 
calculated taking into account if its incoming links connect the vertex to others that 
have an important number of outgoing links [23, 38]. 

2.1.5 Other Measures 

There are other possible metrics to be applied in social network graphs: 
Clustering coefficient is a measure of how individuals, represented as vertices, 

are embedded in their neighborhood [36], with interactions with other individuals 
forming triangles. In the educational field, it shows how an individual works with 
peers in groups or clusters, which shows network cohesion [11, 25, 34, 38]. 

Diffusion Centrality belongs to the diffusion measures that explore the struc-
tural properties that facilitate the diffusion and uptake process; that is, the diffusion 
resulting from the interaction. It tries to measure how well a vertex can diffuse 
a property given the semantics and structure of a social network and a model 
of diffusion [41, 42]. In education, it can be used to show the possibility of an 
interaction to generate replies and these other replies [19]. 

Cross Clique Centrality assesses the number of cliques or triangles a vertex 
belongs to. It is related to the degree of embeddedness, connectivity with other 
vertices, and strength of ties among vertices. In education, it allows understanding, 
for example, whether a post is going to be replied to and spread throughout the 
network [19]. 

Coreness (k-core or linkage) is similar to h-index metrics for publications, and 
is based on networks where all vertices have at least a k degree [43]. It is interesting 
because if an individual may produce promising contributions, he or she is going to 
attract others with similar contributions and establish strong connections. In the field
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Fig. 3 Left: a directed edge 
where an interaction happens 
from A->B. Right: an 
undirected edge where A-B 
are connected 

of education, those students involved in active interactions/discussions will attract 
other active users, which will enrich the discussion and therefore the interaction, 
collaboration, the quality of content, etc. [19]. 

2.2 Network Visualization 

As we discussed earlier, networks represent the relationships (edges) between actors 
(vertices). A vertex is commonly represented as a circle —although other shapes are 
also used— and the edge as an arrow (in the case of a directed network) from the 
source of interaction to the target of the interaction (Fig. 3). For example, a phone 
call from the caller to the call receiver is represented by an arrow from the caller 
to the receiver. In the case of an undirected network, the edge is represented by a 
line connecting both vertices, for instance, two siblings, where the relationship is 
mutual. 

2.3 Network Analysis 

Let us start with a simple example that uses a common analysis scenario. Our 
example is a fictional discussion among students where we model interactions 
between students as a network. Building a network from interactions in discussion 
forums has been commonly performed by building a post-reply network where an 
edge is constructed from the author (source of the reply) to the replied-to (target of 
the reply). For instance, in Fig. 4, B replies to A by saying “I agree, this could slow 
the progression of the disease but does it prevent the spread completely or terminate 
the pandemic?”. This can be represented as an edge from B to A. In the same token, 
C replies to B which represents another edge C to B. We can compile all of these 
interactions in a list of edges as shown in Table 1 which is often referred to as an 
edge list. An edge list is a simple way —among many others— to represent the 
network and therefore we will use it in this chapter. Constructing the network can 
be performed by aggregating all edges as a network as Fig. 4.
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Fig. 4 A conversation between students in a discussion forum 

Table 1 Edge list of 
students’ interactions in the 
discussion forum 

Source Target 

B A 

C B 

D C 

E D 

F E 

B D 

C A 

A C 

D A 

There are other ways to construct the network that depend on the researcher’s 
conceptualization, context, and research question. For instance, researchers may 
consider all students present in a discussion (co-present) and therefore linked 
together, which means that all vertices will have connections to each other [9, 22, 
44]. Similarly, several ways exist to aggregate the network. Figure 5 shows three 
identical networks where we have duplicate ties (i.e., repeated interactions between 
the same pair of vertices). In Fig. 5a, all interactions are represented. We can see, for 
instance, that there are six edges between A and F vertices. We can also see that there 
is a “loop” or “self-loop” around C and E. A loop exists when an interaction occurs 
between the vertex and itself, as is the case when one replies to their own post. 
This type of network configuration where multiple edges and self-loops are allowed 
is often referred to as multigraph. Another possible way to aggregate the network 
is to create a weight for each edge which represents the frequency of interactions 
between each pair of vertices (Fig. 5b). For instance, the edge between A and F 
will have a weight of 6 which is the number of edges between A and F, whereas 
the weight of the edge between H and B is 1 since this interaction only happened 
once. The network in Fig. 5b has an edge with a thickness that corresponds to the 
weight of 6, i.e., six times as thick as the edge between H and B. In other instances, 
we may disregard these repeated edges when they do not make a difference to our
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Fig. 5 Several ways of constructing a network: (a) Multigraph, (b) Weighted, (c). Simplified 

conceptualization of the network (Fig. 5c). Such a type of network is often referred 
to as a simplified network. For a discussion about network configurations and how 
they influence research results see [22]. 

3 Network Analysis in R 

The R language has a large number of libraries for the analysis of networks. The 
igraph package —the one used in our chapter— seems to be the preferred package 
by the R community given the number of dependencies, i.e., the number of other 
packages that rely on igraph or work with the igraph format [45]. The igraph 
package is fast, efficient, and well-respected within the academic community. 
The igraph package is also well maintained, continuously updated, has a large 
community, and has been released for other platforms besides R, e.g., Python. Other 
packages, such as sna and network, have a large user base, especially among those 
who are interested in statistical network modeling. Any of these packages —sna, 
network or igraph— can effectively perform the analysis described in this chapter. 
However, we will use igraph based on its relative ease of use and convenience for 
the chapter objectives. 

Example 1 Let us start with a simple example where we analyze the network 
created for Fig. 6. Before doing anything else, we need to import the necessary 
packages. We will use igraph to construct and represent networks, and we will 
use rio to download and import the data files that we need to use as an input for 
igraph. 

library(igraph) 
library(rio) 

We can now use the import function from rio to download the data for the exam-
ple (the data shown in Table 1), and assign it to a variable named SNA_example1.
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URL<-
"https://github.com/lamethods/data/raw/main/8_examples/" 
SNA_example1 <- import(paste0(URL, "SNA_example1.xlsx")) 

The function graph_from_data_frame from igraph converts the edge list in 
Table 1 into a network. R expects a dataframe where the first two columns are used 
as edges (the first column is used as source column, and the second is used as source 
column). Please also note that the two columns can have any name. Also, all extra 
columns —if they are there— will be used as edge attributes. We can print it to see 
if it has been created correctly. The print function is commonly used to test if the 
graph creation has been successful. In other words, does the created network have 
the expected number of vertices, edges, and attributes? 

Net <- graph_from_data_frame(SNA_example1) 
print(Net) 

IGRAPH f3fa5a7 DN-- 6 9 --
+ attr: name (v/c) 
+ edges from f3fa5a7 (vertex names): 
[1] B->A C->B D->C E->D F->E B->D C->A A->C D->A 

The output of the print function gives a glimpse of the network properties. First, 
igraph states that the object is an igraph object (a network). Then, igraph gives a 
unique seven-letter identifier for the network (not usually needed for analysis). Next, 
igraph tells us that the network was directed (D) and named (N), i.e., vertices have 
a name attribute. Then, igraph lists the attributes and the edges of the network. We 
can also visualize the created network (Fig. 6) by using the function plot. 

plot(Net) 

We have seen here the most basic functions we can use in a graph with no 
arguments. As shown, networks work with little effort with R. In the next section, 
we will take a deeper look into these functions and others using another network 
from a published paper. 

Example 2 The next example is a larger network that comes from the interactions 
of a group of teachers in a Massive Open Online Course (MOOC). The MOOC 
included 445 participants from different places in the United States. The dataset 
has an edges file where the first two columns are the sender (source) and receiver 
(target). There is also a file for the vertices that contains demographic and other 
relevant information about each vertex: gender, location, and their role, etc. For 
more information about this dataset, please refer to the data chapter [47]. To get the 
data into R, we first need to read the data, store it in a dataframe and then build a 
network with the appropriate arguments.
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Fig. 6 Example of a simple 
network plotted with igraph 

B 

C 

D 

E 

F 

A 

The first line of the code reads the edges list data with their attributes into a 
dataframe with the name net_edges. The second line imports the vertex data with 
their attributes into a dataframe with the name net_nodes. 

URL <-
"https://github.com/lamethods/data/raw/main/6_snaMOOC/" 
net_edges <- import(paste0(URL, "DLT1%20Edgelist.csv")) 
net_nodes <- (import(paste0(URL, "DLT1%20Nodes.csv")) 

To create the network, we again use the function graph_from_data_frame. 
This time we have to specify the edges dataframe using the argument d=net_edges. 
The second argument (optional) tells igraph that the network should be directed, if 
not provided, the network is created directed by default. The third argument which 
is also optional vertices = net_nodes tells igraph to use the dataframe net_nodes 
for vertex attributes. If the vertices argument is not provided, igraph will extract 
vertex names from the edges data. In case there are important vertex attributes for 
the analysis, providing the vertices data can be useful. Building the network and 
explicitly setting all arguments —as we did— helps avoid the problems that could 
happen from the default settings of the function. For instance, the network could 
be created as directed where we aim at creating an undirected network. Note that 
igraph generates a multigraph network by default (see Fig. 7). 

DLT1 <- graph_from_data_frame(d=net_edges, directed = 
TRUE, vertices = net_nodes) 

Let us now explore the network and see if it was built correctly using the function 
print. The print function output shows that the network is an igraph object, directed 
and named (DN) has 445 vertices, 2529 edges and then igraph lists the attributes 
of the vertices and the edges. Vertex attributes are listed along with their type.
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For instance, name (v/c) means the name attribute is a (v)ertex attribute and a 
(c )haracter. Edge attributes are listed in the same way. For instance, timestamp 
(e/c) means that it is an (e) dge and a (c)haracter. 

print(DLT1) 
IGRAPH 97c4a14 DN-- 445 2529 --
+ attr: name (v/c), Facilitator (v/n), role1 (v/c), experience (v/n), 
| experience2 (v/c), grades (v/c), location (v/c), region (v/c), 
| country (v/c), group (v/c), gender (v/c), expert (v/c), connect 
| (v/c), Timestamp (e/c), Discussion Title (e/c), Discussion Category 
| (e/c), Parent Category (e/c), Category Text (e/c), Discussion 
| Identifier (e/c), Comment ID (e/n), Discussion ID (e/n) 
+ edges from 97c4a14 (vertex names): 
[1] 360->444 356->444 356->444 344->444 392->444 219->444 318->444 4 ->444 
[9] 355->356 355->444 4 ->444 310->444 248->444 150->444 19 ->310 216->19 

[17] 19 ->444 19 ->4 217->310 385->444 217->444 393->444 217->19 256->219 
+ ... omitted several edges 

A network can also be plotted with the function plot() (Fig. 7). However, 
plotting with R is a vast field and will not be discussed in detail here. 
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Fig. 7 Example of a complex network plotted with igraph 
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plot(DLT1, layout = layout.fruchterman.reingold, 
vertex.size = 5, vertex.label.cex = 2) 

3.1 Graph Level Analysis 

Now that we have seen how to build a network from edge and vertex data, we are 
ready to understand some of the most commonly performed analyses in learning 
settings. The first type of analysis will look at the network level, or the whole group 
of collaborators. Analyzing the network level can tell us how interactive the group 
is, how cohesive, and how distributed the interactions are. We will go through each 
of these graph-level measures with a brief explanation of what they actually mean. 
We will use the data from example 1 (DLT1). 

Let us first start by calculating the basic measures of the network. The number 
of vertices can be queried using the function vcount, which adds up to 445, and 
the number of edges can be queried using the function ecount, which is 2,529. We 
can get the average number of interactions by a participant by dividing the number 
edges by the number of vertices which is 5.68. 

vcount(DLT1) # 445 
ecount(DLT1) # 2529 
ecount(DLT1) / vcount(DLT1) # 5.683146 

The density of a graph is an important parameter of a collaborative network that 
refers to the ratio of existing edges to the maximum possible among all participants. 
Density is maximum (1) when every vertex has interacted with every other vertex in 
the network. Graph density can be measured using the function graph.density. 

graph.density(DLT1) # 0.01279988 

However, the graph.density function may result in erratic results if the 
network is multigraph; this is because the igraph algorithm will count the repeated 
edges and loops. Thus, we need to simplify the network (delete all repeated edges 
and loops) before computing the density and use the simplified network to compute 
the graph density. The results of the density of the graph of 0.0097 which is rather a 
low value. 

graph.density(simplify(DLT1)) # 0.009798563 

Reciprocity is another important graph-level measure that also reflects group 
cohesion. A reciprocated edge is an edge where two vertices have a reciprocal
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relationship (e.g., they are simultaneously source and target) [16]. The higher the 
ratio of the reciprocated edges, the more collaborative the network is, less central-
ized (dominated by few) and more participatory. Reciprocity can be computed using 
the function reciprocity, which automatically removes the loops (i.e., does not 
consider when a person replies to oneself). The reciprocity by igraph definition is 
the fraction of reciprocated edges in a directed graph. The value here is 0.1997544 
which means that only 20% of all edges were reciprocated. 

reciprocity(DLT1) # 0.1997544 

We can also compute the dyad.census which returns the number of mutual 
interactions (reciprocated between a pair of vertices), the number of asymmetric 
interactions (interactions that are not reciprocated), and the number of non-
connected pairs. The number of mutual interactions in our network is 212, which 
is relatively small given the asymmetric (1512) and non-connected pairs (97066). 

dyad.census(DLT1) # $mut [1] 212 $asym [1] 
1512 $null [1] 97066 

Transitivity (or global clustering coefficient) measures the tendency of the 
vertices to cluster together or form tightly knit cliques. In igraph, transitivity 
is measured as the probability that the neighboring vertices of a vertex are also 
connected to each other or, more accurately, the ratio of triangles in the network 
to the total count of triplets (all occurrences of three vertices connected by two 
edges). There is a large volume of research that associates the ratio of cliques with 
cohesion in collaborative groups, strong ties and productive knowledge construction 
Block_2015. There are several methods for the estimation of transitivity. Here, we 
are going to focus on global transitivity (i.e., at the network-level) using the igraph 
method. The transitivity can be calculated by the function transitivity; the  
default function returns the global transitivity measure by default. The transitivity 
of our network here is 0.08880774. 

transitivity(DLT1) # 0.08880774 

Another possible way is to use the related function triad_census which reports 
the numbers of triangles and their different types. The reader may need to refer to 
the package manual to dig deeper in the results. 

triad_census(DLT1) 

[1] 13901588 486626 124805 4227 35745 11186 15929 3668 
[9] 932 81 1857 376 223 334 345 68 
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Group productivity or intensity of interactivity can be explored using the degree 
measures and its variants. The average degree of the network measures how much on 
average each group member has contributed and received interactions. To compute 
the average degree, we first have to compute the degree for each member and then 
compute the mean. 

In directed networks (like the one in this example), we can also compute the 
average in-degree and out-degree. For the same set of vertices, the network average 
in-degree should be equal to out-degree and both combined should be equal to 
the total degree. However, if we, for instance, compute a subset of vertices (only 
students excluding the teachers), in-degree and out-degree may be different. The 
code below computes the mean and median of the three measures, using the function 
degree with the argument mode="total" for the total degree, mode="in" for the 
in-degree, and mode=“out” for out-degree. 

Mean_degree <- mean(degree(DLT1, mode = "total")) 
# 11.36629 

Mean_in_degree <- mean(degree(DLT1, mode = "in")) 
# 5.683146 

Mean_out_degree <- mean(degree(DLT1, mode = "out")) 
# 5.683146 

Median_degree <- median(degree(DLT1, mode = "total")) 
# 4  

Median_in_degree <- median(degree(DLT1, mode = "in")) 
# 1  

Median_out_degree <- median(degree(DLT1, mode = "out")) 
# 2  

The mean degree is 11.36629 and the mean in-degree and out-degree are 
5.683146. The median degree is 4, the median in-degree is 1, and the median 
out-degree is 2. The median differs significantly from the mean and may be more 
relevant here in this large network, where participation may not be well-distributed 
(see next section). 

Collaboration is participatory by design but, oftentimes, some students may 
dominate and contribute disproportionately more than others. In the same vein, 
some may prefer to be isolated and thus rarely participate. Several measures allow 
us to measure the distribution of interactions across the network and how skewed 
the network contribution patterns are. An obvious method that comes straight from 
statistics is the standard deviation (SD) of the degree centrality. We can compute 
the SD like we calculated the mean and median in the previous step. The SD of 
degree centrality in our case is 34.2, SD for in-degree centrality is 26.7, and SD 
for out-degree centrality is 9.8. The SD is higher than the mean which suggests that 
calculation and inspection of the median was justified. We can also see that the SD of 
the in-degree centrality is much higher than the SD of the out-degree, which means 
that the variability in receiving replies is higher than that of contributions. This 
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variability is rather common since students are selective about whom they respond 
to and choose the reply-worthy contributions. 

SD_degree <- sd(degree(DLT1, mode = "total")) 
# 34.20511 

SD_in_degree <- sd(degree(DLT1, mode = "in")) 
# 26.73596 

SD_out_degree <- sd(degree(DLT1, mode = "out")) 
# 9.84249 

SNA has dedicated indices for measuring dominance in networks, known as 
centralization indices. Centralization indices are 0 when every vertex contributes 
equally and reaches the maximum of 1 when a single vertex dominates. A central-
ization index exists for many centralities —e.g., degree, closeness, and betweenness. 
Nevertheless, most of the literature has reported degree centralization, which we will 
demonstrate here. 

The code below computes the degree, in-degree and out-degree centralization. 
Please note that we use a simplified network to avoid the loops and repeated 
edges. The results of degree centralization confirm the previous results. The degree 
centralization is 0.38, out-degree centralization is 0.16, and in-degree centralization 
is 0.60. In our network, we see that the in-degree centralization is the highest index 
(0.60), which means that only a few students received replies. 

Centralization_degree <- centralization.degree(simplify(DLT1), 
mode = "all", loops = FALSE)$centralization # 0.3826871 
Centralization_in_degree <- centralization.degree(simplify(DLT1), 
mode = "in", loops = FALSE)$centralization # 0.6064291 
Centralization_out_degree <- centralization.degree(simplify(DLT1), 
mode = "out", loops = FALSE)$centralization # 0.1572214 

Another way to see how the interactions are distributed is to plot the degree 
distribution using the hist function, as demonstrated in Fig. 8. 

par(mfrow=c(1,2)) 
hist(degree(DLT1, mode = "in"), breaks = 100) 
hist(degree(DLT1, mode = "out"), breaks = 100) 

3.2 Network Connectivity 

We can also examine how connected the whole group is; this can be performed using 
the function is.connected which returns FALSE in our case, meaning that the graph 
has some disconnected components or subgroups of vertices that are isolated. We 



Social Network Analysis: A Primer, a Guide and a Tutorial in R 507 

Histogram of degree(DLT1, mode = "in") 

degree(DLT1, mode = "in") 

F
re

qu
en

cy
 

0 100 200 300 400 

0 
50

15
0

25
0

35
0 

Histogram of degree(DLT1, mode = "out") 

degree(DLT1, mode = "out") 

F
re

qu
en

cy
 

0  20 40 60 80  100  

0
50

 10
0

 
15

0 

Fig. 8 Distribution of degree. Left: in-degree. Right: out-degree 

can check these subgroups by the function components which tells us that there are 
four components: 

is.connected(DLT1) 
[1] FALSE 

Components <- components(DLT1) 
print(Components) 

$membership 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
441 442 443 444 445 

2 3 4 1 1  

$csize 
[1] 442 1 1 1 

$no 
[1] 4 

Using the function decompose, we can look at each of the components. The 
largest component has 442 vertices, and three others have one vertex. These isolated 
vertices are simply students who did not contribute at all and do not represent a real 
subgroup. 

Decomposed <- decompose(DLT1) 
Decomposed[[1]] 

IGRAPH 57821fd DN-- 442 2529 --
+ attr: name (v/c), Facilitator (v/n), role1 (v/c), experience (v/n), 
| experience2 (v/c), grades (v/c), location (v/c), region (v/c), 
| country (v/c), group (v/c), gender (v/c), expert (v/c), connect 
| (v/c), Timestamp (e/c), Discussion Title (e/c), Discussion Category 
| (e/c), Parent Category (e/c), Category Text (e/c), Discussion 
| Identifier (e/c), Comment ID (e/n), Discussion ID (e/n) 
+ edges from 57821fd (vertex names): 
[1] 360->444 356->444 356->444 344->444 392->444 219->444 318->444 4 ->444 
[9] 355->356 355->444 4 ->444 310->444 248->444 150->444 19 ->310 216->19 

[17] 19 ->444 19 ->4 217->310 385->444 217->444 393->444 217->19 256->219 
+ ... omitted several edges 

We can also look at the network diameter or largest number of steps between 
vertices to see how far distant vertices are (using the distance function). A more 
representative variable would be the average distance between vertices, which we 
can obtain from the mean_distance function. The network diameter is 8 and the 
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mean distance is 3. Both numbers are relatively high. Global efficiency is another 
network-level measure that examines how effective is the network structure as a 
conduit for information exchange using the distances between vertices. When all 
vertices are close to each other, reachable with a few number of steps, the network is 
said to be efficient. The value of efficiency is high in well connected groups, and low 
otherwise. We can examine the efficiency using the function global_efficiency. 

diameter(DLT1) # 8  

[1] 8 

mean_distance(DLT1) # 3.030694 

[1] 3.030694 

global_efficiency(DLT1) # 0.1961034 

[1] 0.1961034 

3.3 Network Operations 

There are many functions and tools to manipulate networks in igraph, which makes 
a comprehensive discussion of all of them beyond the scope of this introductory 
chapter. Nonetheless, we will discuss the most important functions. Oftentimes, 
we need to set an attribute to the vertices —e.g., setting the gender attribute for 
vertices— to be used in the analysis. Setting an attribute can be performed by 
using the V function followed by the $ character and the attribute that we want 
to set. Similarly, setting edge attributes can be done using the function E. In the next 
example, we define an attribute called weight for the vertices and we do the same 
for the edges. Using the skills we learnt, we can use them to create a simplified 
weighted network. We do so by concatenating all repeated edges into a single edge 
with the weight as the frequency. For that, we start by first assigning weights of 1 to 
each node and edge. Lastly, we use the function simplify to remove the duplicated 
edges and aggregate the weights (edge.attr.comb = list(weight = "sum", 
"ignore")) while all other edge attributes will be ignored. 

V(DLT1)$weight <- 1 
E(DLT1)$weight <- 1 
simple.DLT1 <- simplify(DLT1, 
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remove.multiple = TRUE, remove.loops = TRUE, 
edge.attr.comb = list(weight ="sum", "ignore")) 

There are two important functions that we may need if we want to divide or 
create a subnet of the network. The function subgraph.edges allows us to create 
a subset of a network based on edge characteristics. In the following example, 
we create a subgraph with the discussions involving Curriculum & Instruction 
by using the argument E(DLT1)$'Discussion Category'== 'Curriculum & 
Instruction'. In the same way, the induced_subgraph function allows us to 
specify a subgraph based on the vertex characteristics. In the next example, we 
create a network for North Carolina teachers using V(DLT1)$location== "NC". 

k <- subgraph.edges(DLT1, 
eids = which(E(DLT1)$'Discussion Category' == 

'Curriculum & Instruction')) 
NC_network <- induced_subgraph(DLT1, vids = 

which(V(DLT1)$location == "NC")) 

3.4 Individual Vertex Measures (Centrality Measures) 

We have discussed the centrality measures in the introductory section and how 
they can be used in an educational context. Centrality measures may serve many 
functions, —e.g., indicators of performance in collaborative environments [48] 
or indicators for roles in collaboration [21]. The igraph package allows the 
calculation of several centrality measures, many of which have been used in 
educational research and some of which may not be relevant. Other packages, such 
as centiserve, allow an even larger number of centrality measures [49]. In this 
section, we will focus on the common centrality measures according to the recent 
meta-analysis by Saqr et al. [48] and other recently used measures, such as diffusion 
centrality measures. 

Degree centrality measures can be computed using the function degree and the 
argument mode specifies the type of degree where mode="in" returns in-degree, 
mode="out" returns out-degree, mode="total" returns total degree centrality. In 
case of undirected networks, the mode argument is ignored and the function returns 
only the degree centrality, since there is no direction. We can combine all the 
centralities that we calculate together in a dataframe using the tibble function from 
the tibble package. 

InDegree <- degree(DLT1, mode = "in") 
OutDegree <- degree(DLT1, mode = "out") 
Degree <- degree(DLT1, mode = "total")
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Degree_df <- tibble::tibble( 
name = V(DLT1)$name, InDegree, OutDegree, Degree) 
print(Degree_df) 

# A tibble: 445 x 4 
name InDegree OutDegree Degree 
<chr> <dbl> <dbl> <dbl> 

1 1 20 33 53 
2 2 2 5 7  
3 3 2 4 6  
4 4 2 14 16  
5 5 16 17 33 
6 6 9 24 33  
7 7 32 26 58 
8 8 13 18 31 
9 9 2 12 14  

10 10 8 12 20 
# i 435 more rows 

Note that igraph has another function called graph.strength that computes the 
degree centrality and takes the edge weight attribute into account. In multigraph 
networks —like ours— degree centrality and graph.strength should return the 
same result. However, in networks where the edges have a weight attribute both 
functions (degree and graph.strength) return different results. In such weighted 
networks —like the simplified network we created in the previous example— the 
degree function will return the unique connections of every vertex or the size 
of the vertex direct collaborators —known as the size of the ego network. The 
graph.strength function will return the number of interactions a vertex has made. 
See the next example and compare the results. For more information about the 
different calculation methods of degree centrality of weighted networks, readers 
are advised to refer to the seminal article by Opsahl et al. [50]. 

InStrength <- graph.strength(DLT1, mode = "in") 
OutStrength <- graph.strength(DLT1,mode = "out") 
Strength <- graph.strength(DLT1, mode = "total") 
Strength_df <- tibble::tibble(name=V(DLT1)$ 

name,InStrength,OutStrength,Strength) 
print(Strength_df) 

# A tibble: 445 x 4 
name InStrength OutStrength Strength 
<chr> <dbl> <dbl> <dbl> 

1 1 20 33 53
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2 2 2 5 7  
3 3 2 4 6  
4 4 2 14 16  
5 5 16 17 33 
6 6 9 24 33  
7 7 32 26 58 
8 8 13 18 31 
9 9 2 12 14  

10 10 8 12 20 
# i 435 more rows 

Closeness and betweenness centralities are the most commonly used centrality 
measures according to [48] and both rely on the position of the vertex on the 
shortest paths between others. Closeness centrality can be calculated using the 
function closeness, which is directional; this means that we can compute in-
closeness, out-closeness and total closeness centrality. Betweenness centrality can 
be computed using the function betweenness and the function is directional: 
the argument directed=TRUE computes the directional version, and vice versa. 
Another commonly used centrality measure is eigenvector centrality, which can 
be computed using the function eigen_centrality. The eigen_centrality 
function default is directed=FALSE, since it is less suited for directed networks 
[14]. Pagerank is another closely related centrality measure that uses a similar 
algorithm and is more suitable for directed networks. The Pagerank centrality can 
be calculated using the function pagerank. Please note that to obtain the value of 
the centrality, you need to use $vector at the end as demonstrated in the code. 

An important question here is whether to compute these centralities with a 
simplified network, weighted network or a multigraph network. The answer depends 
on the context, the network structure and the research question. However, evidence 
suggests that multigraph configuration may render the most accurate results when 
centralities are used as indicators for performance [22]. The code below computes 
the aforementioned centralities, you may need to read the help of each centrality 
function for more options and arguments for customization: 

Closeness_In <- closeness(DLT1, mode = c("in")) 
Closeness_Out <- closeness(DLT1, mode = c("out")) 
Closeness_total <- closeness(DLT1, mode = c("total")) 

Betweenness <- betweenness(simple.DLT1, directed = FALSE) 
Eigen <- eigen_centrality(simple.DLT1, directed = FALSE)$ 

vector 
Pagerank <- page_rank(DLT1, directed = FALSE)$vector 

Diffusion centralities have been introduced recently in several studies and seem 
to offer a more robust estimation of a vertex role in spreading information [19, 51]. 
Diffusion centrality can be computed in the same way as degree centrality. However, 
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there is no function in the igraph package to calculate this centrality, so we rely 
on the diffusion.degree function from the centiserve package. The function 
diffusion.degree accepts the mode argument to compute different variants, i.e., 
"in", "out" and "total" diffusion degrees. 

library(centiserve) 
Diffusion.degree_in <- diffusion.degree(DLT1, mode =c("in")) 
Diffusion.degree_out <- diffusion.degree(DLT1, mode =c("out")) 
Diffusion.degree <- diffusion.degree(DLT1, mode =c("all")) 

Coreness and cross-clique connectivity are related centralities that estimate the 
embeddedness of the vertex in the network can be calculated using the functions 
coreness and crossclique. Both coreness and crossclique centralities have 
been shown to better correlate with performance as well as with productive and 
reply-worthy content [19]. 

Coreness <- coreness(DLT1) 
Cross_clique_connectivity <- crossclique(DLT1) 

Warning in cliques(graph): At core/cliques/cliquer_wrapper.c:57 : Edge 
directions are ignored for clique calculations. 

We can also combine the rest of the centralities together in a single dataframe: 

Centdf <-tibble::tibble( 
name=V(DLT1)$name,Closeness_total,Betweenness, 
Eigen,Pagerank,Diffusion.degree,Coreness,Cross_clique_ 
connectivity)print(Centdf) 

# A tibble: 445 x 8 
name Closeness_total Betweenness Eigen Pagerank Diffusion.degree Coreness 
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 

1 1 0.00110 1258. 0.206 0.00840 1865 18 
2 2 0.000808 26.5 0.0107 0.00140 218 6 
3 3 0.000799 30.6 0.00862 0.00130 191 6 
4 4 0.00102 72.5 0.0803 0.00273 965 13 
5 5 0.00106 309. 0.162 0.00525 1508 18 
6 6 0.00108 250. 0.155 0.00539 1607 18 
7 7 0.00111 1935. 0.230 0.00931 2088 21 
8 8 0.00106 164. 0.136 0.00503 1483 18 
9 9 0.00104 69.5 0.119 0.00251 1216 13 

10 10 0.00106 716. 0.0875 0.00343 1432 17 
# i 435 more rows 
# i 1 more variable: Cross_clique_connectivity <int> 

The calculation of graph level measures and centrality measures are usually 
a step in the analysis to answer a research question. For instance, density can 
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tell how distributed the interactions between students are and therefore, how it 
is collaborative [5]. Centrality may be calculated to identify who are the most 
important students in the discussions or used to infer the roles e.g., who are the 
leaders who drive the discussion [21, 23]. Several studies have calculated centrality 
measures to investigate their relationship with performance [18]. All of such types 
of analysis can be performed using the analysis we have demonstrated. Of course, 
there are no limits to the potentials of SNA and researchers have a wide range of 
possibilities and potentials that they can achieve by building on the aforementioned 
tutorials. 

4 Discussion 

The present chapter offered a primer on social network analysis as well as a tutorial 
on the most common types of SNA analysis. SNA is a vast field with diverse 
applications that are far beyond a chapter or even a whole book. Readers who 
are interested in expanding their knowledge about SNA are advised to read the 
literature cited in this chapter. Furthermore, several systematic reviews have tried 
to offer a synthesis of the extant literature and can help the readers get an idea 
about the status of SNA research in education. Two systematic reviews, [27, 52]. 
–despite being relatively old– they give a useful review on the uses and applications 
of SNA in learning settings. For instance, the methods used by SNA researchers 
have been addressed in a dedicated systematic review by Dado and Bodemer [8], 
where the authors offered a detailed review of methodological approaches used in 
SNA research. Centrality measures were the topic of a recent systematic review and 
meta-analysis that synthesized the literature and offered evidence of the association 
of centrality measures with academic achievement [48]. 

A more recent scientometric study by Saqr et al. [6] offers a comprehensive 
review of all research on network analysis and network science across the past 
five decades. The study also offers a review of authors, countries, research themes 
and research foundations. Whereas not a traditional systematic review, the recent 
paper by Poquet et al. [9] offers a review of the seminal papers of SNA with a 
methodological approach. The paper also offers recommendations for a reporting 
scheme for research using SNA. It is also important to mention that our chapter 
covered only static networks. Readers who are interested in the more advanced 
time varying networks, the temporal network chapter offers a great starting point 
[53]. Also several guides and empirical papers demonstrate examples of temporal 
network analysis [20, 54, 55]. Readers who want to go deeper in analysis of learning 
communities, the community detection chapter can be a good place [56]. Also, 
for readers interested in the novel methods of psychological networks, they are 
encouraged to read the psychological network chapter [57]. 
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5 More Reading Resources 

Books related to SNA that the readers can consult are: 

• Kolaczyk, E. D., & Csárdi, G. (2014). Statistical analysis of network data with R 
(Vol. 65). New York: Springer. 

• Luke, D. A. (2015). A user’s guide to network analysis in R (Vol. 72, No. 10.1007, 
pp. 978-3). New York: Springer. 

• Newman, Mark. Networks. Oxford university press, 2018. 
• Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. 

(Link) 
• Carolan, B. V. (2013). Social network analysis and education: Theory, methods 

& applications. Sage Publications. 
• Network Science by Albert-László Barabási (Link) 
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33. Gašević D, Joksimović S, Eagan BR, Shaffer DW (2019) SENS: network analytics to combine 
social and cognitive perspectives of collaborative learning. Comput Hum Behav 92:562–577. 
https://doi.org/10.1016/j.chb.2018.07.003 

34. Saqr M, Fors U, Nouri J (2018) Using social network analysis to understand online problem-
based learning and predict performance. PloS One 13:e0203590. https://doi.org/10.1371/ 
journal.pone.0203590 

35. Liu S, Chai H, Liu Z, Pinkwart N, Han X, Hu T (2019) Effects of proactive personality and 
social centrality on learning performance in SPOCs. In: CSEDU 2019 - Proceedings of the 
11th International Conference on Computer Supported Education vol 2, pp 481–487. https:// 
doi.org/10.5220/0007756604810487 

36. De-Marcos L, Garciá-López E, Garciá-Cabot A, Medina-Merodio J-AJA, Domínguez A, 
Martínez-Herraíz JJJ-J, Diez-Folledo T (2016) Social network analysis of a gamified e-learning 
course: small-world phenomenon and network metrics as predictors of academic performance. 
Comput Hum Behav 60:312–321. https://doi.org/10.1016/j.chb.2016.02.052 

37. Wise AF, Cui Y (2018) Unpacking the relationship between discussion forum participation 
and learning in MOOCs: content is key. In: ACM international conference proceeding 
series. Association for computing machinery, learning analytics research Network, New York 
University, New York, pp 330–339 

38. Liu Z, Kang L, Su Z, Liu S, Sun J (2018) Investigate the relationship between learners’ social 
characteristics and academic achievements. In: Journal of physics: conference series. Institute 
of Physics Publishing, [“National Engineering Research Center for E-Learning, Central China 
Normal University, Wuhan, China”, “National Engineering Laboratory for Technology of Big 
Data Applications in Education, Central China Normal University, Wuhan, China”] 

39. Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46:604–632. 
https://doi.org/10.1145/324133.324140 

40. García-Saiz D, Palazuelos C, Zorrilla M (2014) Data mining and social network analysis in the 
educational field: an application for non-expert users. Stud Comput Intell 524:411–439 

41. Banerjee A, Chandrasekhar AG, Duflo E, Jackson MO (2013) The diffusion of microfinance. 
Science 341:1236498. https://doi.org/10.1126/science.1236498 

42. Kang C, Molinaro C, Kraus S, Shavitt Y, Subrahmanian VS (2012) Diffusion centrality in 
social networks. In: 2012 IEEE/ACM international conference on advances in social networks 
analysis and mining, pp 558–564 

43. Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) 
Identification of influential spreaders in complex networks. Nat Phys 6:888–893. https://doi. 
org/10.1038/nphys1746 
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Community Detection in Learning 
Networks Using R 

Ángel Hernández-García, Carlos Cuenca-Enrique, Adrienne Traxler, 
Sonsoles López-Pernas, Miguel Ángel Conde-González, and Mohammed Saqr 

1 Introduction to Community Detection in Social Networks 

The world is essentially social. Interactions, relationships and connections form the 
social fabric of the structure that makes it “social” [1]. Nevertheless, the world is 
far from uniform or random. The social actors (e.g., humans) tend to aggregate, 
coalesce, or work together in teams, groups, and communities [2, 3]. In humans, 
communities form neighborhoods, villages, cities, and even counties. On a smaller 
scale, communities can be a group of friends, teams, or work colleagues. These 
are —more or less— organized communities. However, communities can also 
emerge spontaneously among, for instance, people who happen to work together 
more than they work with others. Other examples include groups of universities 
that collaborate with each other more than they collaborate with other universities. 
In learning situations, communities can be groups of students within a whole 
cohort who collaborate with each other to a larger extent than with other students 
in a discussion forum. In the broader context of network analysis, community 
structure, or simply 'community', denotes those nodes within the network that can 
be categorized into distinct sets, ensuring that nodes within each set exhibit a high 
degree of internal connectivity. 
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Finding these communities is integral to understanding the interaction process, 
the structure of the formed groups and how they contribute to the overall discussion. 
Community detection is not limited to discussion boards but extends to all types 
of networks where we would like to understand their structure. For instance, 
communities of key terms in a semantic network, where each concept is represented 
as a node, would allow us to understand the main themes of the conversation [4]. 
Communities of behaviors or strategies would allow us to understand the structure 
of human behavior and discern a better classification. The power of community 
detection has made it one of the most commonly used network approaches in 
education, social sciences and, in fact, in scientific method at large [3]. 

As such, the main aim of community detection is to identify different groups or 
clusters of nodes within the network that show strong interconnectivity. Generally, 
most community detection algorithms are based on the idea that some nodes are 
more densely connected to each other than to nodes outside of the group. As a 
result, the application of community detection algorithms partitions the network into 
different groups, clusters or communities, based on the strength of their connections. 
An alternate branch of community detection, blockmodeling, adopts the perspective 
that people with similar patterns of ties are likely to act in similar ways within the 
network. This approach seeks to identify those similarly connected actors to abstract 
the network into different positions or roles [5, 6]. A special type of communities are 
the rich club communities [7, 8]. A rich club is a subset of nodes in the network who 
are working together —and who are therefore strongly connected— far more than 
with others in the network. The rich club entails a few doing most of the interaction 
and a majority who are far less involved and less favorable in collaborative networks. 
This chapter explores the first and more common approach, that of identifying 
densely connected subgraphs. 

As mentioned above, a basic approach understands communities in social 
networks as subgraphs where the number of internal edges is larger than the 
number of external edges, and therefore they usually group nodes that have a higher 
probability of being connected to each other than to members of other groups [9]. 
The goal of identifying communities in social networks depends on the research 
question and context and, same as in the case of network analysis in general [10], 
the communities found in the analysis depend on how the network was constructed, 
and therefore their meaning must be explained by the researcher in each different 
context of application. For instance, a researcher might want to find communities to 
understand a social shift in some larger group [11, 12], to map political polarization 
[13], to interrupt disease transmission or to spread health-related behaviors [14], to 
study how students in a course self-segregate and stabilize into groups [15], or for 
many other reasons. 

Many partitioning algorithms use a quantitative measure called modularity index, 
which is, up to a multiplicative constant, the number of edges falling within groups 
minus the expected number in an equivalent network with edges placed at random
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[16]. Modularity, which ranges between −0.5 and 11 [18] and of which positive 
values indicate the possible presence of community structure [16] is not itself a 
clustering method, but a measure for comparing different partitionings to judge 
the best. There are no established values/thresholds for optimum modularity, but 
in practice it is found that a value above about 0.3 is a good indicator of significant 
community structure in a network [19]. 

In the previous chapter on Social Network Analysis [10], we learned how to build 
a network from a set of vertices (or nodes) and edges, how to visualize it, and how 
to calculate centrality measures that help us understand and describe the structure of 
the network and the position of the nodes with respect to others. In this new chapter, 
we focus on detecting communities (groups of highly connected nodes) within a 
wider network, and how to visualize them using R. 

2 Community Detection in Social Networks Based on 
Educational Data 

The application of community detection techniques in social network analysis of 
educational data (for further information about educational data and sources of 
educational data, we refer the reader to Chapter 2 in this book [20]) dates back 
to the emergence of learning analytics as a discipline. For example, in a 2012 study, 
Rabbany et al. [21] included community mining in their implementation of Meerkat-
ED to monitor how student interactions and collaborations occurred and changed 
over time. 

Community detection can serve multiple purposes in learning analytics. For 
example, Pham et al. [22] explored the community structure of the eTwinning 
project collaboration network and how the quality of the contributors’ work relates 
to their level of participation. Similarly, Suthers and Chu [23] unveiled communities 
emerging within the Tapped In network of educational professionals from the 
associations between members of this network distributed across media (chat rooms, 
discussion forums and file sharing). Orduña et al. [24] applied modularity analysis 
to identify collaborative behaviors in a mobile remote laboratory. Skrypnyk et 
al. [25] and Gruzd et al. [26] identified emerging communities from Twitter-
based interactions in a cMOOC. Joksimovic et al. [27] extracted clusters of 
concepts into topics (concept clusters) exchanged through social media also in the 
scope of a cMOOC. Hernández-García et al. [28] used connected components to 
analyze group cohesion. Adraoui et al. [29] identified student groups through their 
social interactions in Facebook groups. Nistor et al. [30] used cohesion network 
analysis to predict newcomer integration in online learning communities. López 
Flores et al. [31] performed community detection analysis to identify the learning 
behavior profiles of undergraduate computer science students. Abal Abas et al. [32] 

1 Depending on the formula used to calculate modularity, it can also range from −1 to 1 [17].
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determined study groups during peer learning interaction. Li et al. [33] examined 
whether students formed communities dominated by a specific gender or race, and 
Nguyen [34] explored youth's perspectives to frame climate change education by 
using community detection to find hashtag groups and identify different discourse 
themes in TikTok. The reader may find more examples of community detection in 
online learning environments in the recent review by Yassine et al. [4]. Another 
important aspect of community detection relates to the algorithms used to perform 
the detection, which will be discussed in the next section. 

3 Algorithms for Community Detection 

Community detection in social network analysis involves the application of specific 
algorithms (the number of community detection algorithms is rather high and 
will not be addressed in this chapter; for further information on the nature and 
performance of community detection algorithms, we suggest reading Lancichinetti 
and Fortunato [35], Fortunato [36], Fortunato and Hric [9] and Chunaev [37]), the 
most popular being Louvain [38], the one implemented in the software applications 
Gephi, Pajek and visone by default, and Girvan-Newman’s edge betweenness [39] 
and clique percolation [40], used in CFinder. 

In this chapter, we will focus on how to perform community detection with the 
R programming language. In R, community detection algorithms are implemented 
as functions of the igraph library [41], which was already introduced in the 
Social Network Analysis chapter [10]. The library includes functions to apply the 
following methods:

• Louvain (cluster_louvain): A multi-level modularity optimization algorithm 
that aims to discover community structure [42].

• Girvan-Newman (cluster_edge_betweenness): The concept behind this 
method is that edges connecting distinct communities tend to have a high edge 
betweenness and all the shortest paths from one community to another must pass 
through these edges [43].

• Fast greedy optimization (cluster_fast_greedy): A fast greedy modularity 
optimization method to identify communities within a network [19].

• Fluid communities (cluster_fluid_communities): This method is based 
on the concept of multiple fluids interacting in a non-uniform environment 
(represented by the graph topology). The method identifies communities by 
observing their expansion and contraction patterns, driven by their interactions 
and density [44].

• Random walk-based: 

– Infomap (cluster_infomap): This method discovers the community struc-
ture that minimizes the expected description length of a random walker's 
trajectory [45].
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– Walktrap (cluster_walktrap): This method is based on the underlying 
concept that short random walks have a tendency to remain within the same 
community [46].

• Label propagation (cluster_label_propagation): This method for detect-
ing community structure in networks is efficient, with a nearly linear time 
complexity [47]. It operates by assigning unique labels to the vertices and 
subsequently updating these labels through majority voting within the vertex's 
neighborhood.

• Leading eigenvector (cluster_leading_eigen): This method identifies 
densely connected subgraphs within a graph by computing the principal non-
negative eigenvector of the modularity matrix associated with the graph [48].

• Leiden (cluster_leiden): The Leiden algorithm is similar to the Louvain 
algorithm, but offers superior speed and delivers higher-quality solutions. It has 
the capability to optimize both modularity and the Constant Potts Model, which 
overcomes the resolution limit challenge [49].

• Optimal modularity clustering (cluster_optimal): This method computes 
the optimal community structure of a graph by maximizing the modularity 
measure across all potential partitions [18].

• Simulated annealing (cluster_spinglass): This method leverages the spin-
glass model and simulated annealing techniques to explore the graph's structure 
and identify cohesive communities [50]. 

Other available libraries to perform community detection include nett, which 
allows for spectral clustering (function spec_clust()) and implements methods 
for hypothesis testing. 

When to choose one algorithm over another usually depends on the characteris-
tics of the network data, whether or not directed edges are allowed and the goals of 
the analysis. For example, if the network is very large, Louvain or Label Propagation 
algorithms may offer satisfactory results with a small computational effort, whereas 
Girvan-Newman might be more appropriate if the network has a hierarchical 
structure or when networks are large. If the network has a flow of information, 
Infomap may be better suited, and spectral clustering might be preferrable when 
community structures are complex. Guidance about which algorithms to use is not 
robust, and issues such as computational efficiency are more often discussed than 
the match with research questions [9, 51]. Ideally, the choice should be made to align 
with the processes believed to drive community formation and the research purpose 
in seeking this structure [51]. In any case, we would recommend trying different 
algorithms and comparing their results before choosing one. 

It is important to note the limitations of some community detection algorithms in 
igraph. For example, fast greedy optimization, leading eigenvector, Leiden, Lou-
vain and simulated annealing only work with undirected graphs —even though some 
of these algorithms, such as Leiden, work in directed networks, their implementation 
in igraph does not allow for community detection in directed networks—, whereas 
fluid communities or simulated annealing only work with simple and connected 
graphs.
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Finally, it is worth mentioning that a limitation of some methods is that they are 
non-overlapping community detection algorithms; that is, they consider that a node 
belongs only to one group, partition or community. However, that is not often the 
case, which is why some overlapping community detection algorithms have been 
proposed (for example, random walk-based algorithms may handle overlapping), 
and the reader might want to check whether the chosen algorithm finds overlapping 
or non-overlapping communities when choosing what algorithm to use. Fortunato 
and Hric [9] offer additional guidance if overlapping communities are required. Now 
that we have covered the igraph library along with its features and limitations, in 
the next section we will present an example of how to use this library. 

4 Community Detection in R: An Annotated Example Using 
igraph 

To illustrate the use of igraph to perform community detection algorithms in R, 
we will use data from one of the courses reported in an article by Hernández-
García and Suárez-Navas [52]. More specifically, this example focuses on the data 
from a “Programming Basics” undergraduate course. The data set includes forum 
activity of 110 students from a BSc Degree on Biotechnology, which follows 
the Comprehensive Training Model of the Teamwork Competence (CTMTC) 
methodology [53]. In this course, students work in groups of between five and seven 
members each. The activity in the forum includes Q&As, technical and academic 
support in general forums, and message exchanges between group members in 
group-exclusive forums. 

The original data set including all forum activity was divided into three different 
subsets, with the help of GraphFES [54]: views (how many times user a read a 
message posted by user b), replies (which user replies to a different user, and how 
many times) and messages (which message is a reply to another message). 

In this example, we will focus on the Replies data set, a directed graph. The 
node list of the Replies data set includes a total of 124 nodes with three attributes: 
initPosts (number of first posts of a discussion sent by a user), replyPosts 
(number of posts replying to a previous post in the discussion) and totalPosts 
(the sum of initPosts and replyPosts). Weights in the edge list (attribute w) 
represent the number of times that user Target replied to user Source. The data set 
includes a total of 662 weighed edges. First off, we load the required libraries for 
data loading (rio) and analysis (igraph). Install them first if you have not done so 
before. 

library(igraph) 
library(rio)
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Then, we import the node and edges data, and we build the graph object, 
indicating that the network is directed (with the argument directed = TRUE in 
the call to graph_from_data_frame()): 

repo <- "https://github.com/lamethods/data/raw/main/10_snaProgramming/" 
ds.nodes <- import(paste0(repo,"hg_data_nodes.xlsx")) 
ds.edges <- import(paste0(repo,"hg_data_edges.xlsx")) 
ds <- graph_from_data_frame(d =  ds.edges, directed = TRUE, 

vertices = ds.nodes) 

We can now observe the structure of the graph: 

str(ds) 

Class ’igraph’ hidden list of 10 
$ : num 124 
$ : logi TRUE 
$ : num [1:662] 101 73 48 51 84 58 48 101 62 27 ... 
$ : num [1:662] 73 1 51 1 1 1 101 62 27 51 ... 
$ : NULL 
$ : NULL 
$ : NULL 
$ : NULL 
$ :List of 4 
..$ : num [1:3] 1 0 1 
..$ : Named list() 
..$ :List of 5 
.. ..$ name : chr [1:124] "54" "55" "56" "57" ... 
.. ..$ User : chr [1:124] "user_54" "user_55" "user_56" "user_57" ... 
.. ..$ initPosts : num [1:124] 0 23 0 0 0 0 1 0 3 3 ... 
.. ..$ replyPosts: num [1:124] 0 2 0 0 0 0 3 0 19 53 ... 
.. ..$ totalPosts: num [1:124] 0 25 0 0 0 0 4 0 22 56 ... 
..$ :List of 1 
.. ..$ weight: num [1:662] 1 2 1 2 5 4 1 1 1 1 ... 

$ :<environment: 0x5565f3418c28> 

We can also inspect the main attributes of the graph, which is shown as a directed, 
named and weighted network with 124 nodes and 662 edges: 

print(ds) 
IGRAPH 29b3383 DNW- 124 662 --
+ attr: name (v/c), User (v/c), initPosts (v/n), replyPosts (v/n), 
| totalPosts (v/n), weight (e/n) 
+ edges from 29b3383 (vertex names): 
[1] 192->164 164->55 139->142 142->55 175->55 149->55 139->192 192->153 
[9] 153->118 118->142 160->160 158->55 163->175 152->55 182->161 161->55 

[17] 210->55 149->138 138->55 117->178 178->55 127->55 160->55 197->55 
[25] 155->55 122->55 189->55 145->55 135->55 207->55 203->55 140->55 
[33] 159->55 126->55 123->55 139->55 133->55 153->55 201->55 139->139
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[41] 139->180 192->134 134->206 206->192 192->205 205->205 205->192 192->113 
[49] 113->192 134->192 192->206 113->205 205->206 192->192 113->134 206->205 
+ ... omitted several edges 

In addition, we may use the plot function to visualize the network, A first glance 
at the graph does not offer much information about the underlying community 
structure of the graph: 

plot(ds) 

At any moment, we can apply a community detection algorithm to the graph. In 
Fig. 1, we observe that the graph is not connected and is directed. Therefore, we 
can only apply a subset of community finding algorithms, such as Girvan-Newman, 
Infomap, Label propagation, or Walktrap (note that R will trigger a warning 
for Girvan-Newman, because edge weights have different meaning in modularity 
calculation and edge betweenness community detection). For the purpose of this 
example, we will apply the Infomap algorithm —because it is a random walk-based 
algorithm, we provide a random seed for reproducibility. 

set.seed(1234) 
comm.ds <- cluster_infomap(ds) 

The basic call to the cluster_infomap() function takes the graph as an 
argument (other arguments include edge weights, node weights, number of attempts 

Fig. 1 Graph of the Replies 
from the data set of [52] using  
the plot function 
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to partition the network and whether modularity needs to be calculated; in this case, 
the function takes the ‘weight’ edge attribute as default edge weight) and returns a 
community object. We can observe its structure: 

str(comm.ds) 

Class ’communities’ hidden list of 6 
$ membership: num [1:124] 1 2 3 4 5 6 7 8 9 10 ...  
$ codelength: num 3.95 
$ names : chr [1:124] "54" "55" "56" "57" ... 
$ vcount : int 124 
$ algorithm : chr "infomap" 
$ modularity: num 0.927 

The attributes of the community object include the group each node belongs 
to, the code length or average length of the code describing a step of the random 
walker (this parameter only adopts a value in random walk algorithms), node names, 
number of nodes and algorithm used to partition the network in communities. It is 
also possible to access values of the community object using different functions 
such as length(), sizes() or membership(), which return the number of communities, 
sizes of each community and membership of each node, respectively. At this point, 
it is possible to plot the graph and the communities (Fig. 2): 

plot(comm.ds, ds) 

See help(plot.communities) for more details on this method, which takes 
a communities object as its first argument and an igraph object as its second 

Fig. 2 Communities 
emerging from the Replies 
data set using the Infomap 
community finding algorithm 

54 

55 

56 

57 

58 

74 

85 

97 

98 

99 

101 

102 

103 

104 
105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 
143 

144 

145 

146 

147 

148149150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 
168 

169 170 

171 

172 

173 

174 

175 
176 

177 

178 

179 

180 

181 

182 

183 

184 

185 
186 

187 

188 
189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205206 

207 

208 

209 

210 

211 

212 

213 
214



528 Á. Hernández-García et al.

argument. By default, it colors the nodes and their surrounding “bubbles” with a 
different color for each community, and marks community-bridging edges in red. In 
many networks this produces a very overlapping and indistinct picture.2 

Because Fig. 2 does not provide useful information (yet), we have to proceed to 
clean the graph. First, we simplify the graph by removing multiple edges between 
nodes and turning them into a single weight (this is not strictly necessary in this case 
because the original edge data already included calculated weights) and self-edges. 
Additionally, and because isolated nodes do not belong to any community (they are 
their own community), we can remove them from the graph. We then re-calculate 
the Infomap clustering for the simplified graph and plot it again (Fig. 3). We see that 
the self-loops and repeated edges have disappeared. 

simple.ds <- simplify(ds, remove.multiple = TRUE, remove.loops = TRUE, 
edge.attr.comb = list(weight = "sum", "ignore")) 

simple.ds <- delete.vertices(simple.ds, which(degree(simple.ds) == 0)) 
comm.simple.ds <- cluster_infomap(simple.ds) 
plot(comm.simple.ds, simple.ds) 

We can now further refine the graph visualization to better highlight the 
communities: 

Fig. 3 Visualization of the 
communities emerging from 
the simplified Replies data set 
using the Infomap 
community finding algorithm 
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2 Customization is available through other igraph plotting parameters, such as filtering out the 
colored bubbles around isolates: 

plot(comm.ds, ds, mark.groups = communities(comm.ds)[sizes(comm.ds) >= 2]) 

However, we will shortly introduce more advanced visualization tools.
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Fig. 4 Fine-tuned 
visualization of the simplified 
graph 

lo <- layout_with_fr(simple.ds, niter = 50000, 
weights = E(simple.ds)$weight * 0.05) 

plot(comm.simple.ds, 
simple.ds, 
layout = lo, 
vertex.size = V(simple.ds)$totalPosts * 0.025, 
vertex.label = NA, 
edge.arrow.size = 0.1 

) 

From Fig. 4, we can clearly observe 19 communities, of which 18 correspond to 
the student groups and the remaining one (in the center of the graph) corresponds 
to the course instructor. Even in a network such as this with a relatively clear 
modular structure, different community detection algorithms can return different 
results. For example, cluster_spinglass() (which allows for adjustment of 
the importance of present vs. absent edges through a gamma parameter) returns 
a different partitioning: 

set.seed(4321) 
comm.simple2.ds <- cluster_spinglass(simple.ds, gamma = 1.0) 
plot(comm.simple2.ds, 

simple.ds, 
layout = lo, 
vertex.size = V(simple.ds)$totalPosts * 0.025, 
vertex.color = membership(comm.simple2.ds), 
vertex.label = NA,
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Fig. 5 Visualization of 
simplified graph with 
spinglass communities 

edge.arrow.size = 0.1 
) 

Figure 5 shows that the instructor is now included in one of the student 
communities, and a weakly connected member of another student group has split 
into their own community. Two groups with no direct bridging edges are also 
clustered together. This behavior is more common in blockmodeling, which looks 
for similarity of ties rather than direct links to identify groups; however, it can occur 
in standard community detection methods as well. 

Additionally, it is possible to further simplify the network graph, by plotting only 
the communities and their inter-relationships. To do so, we build a condensed graph 
using the Infomap clustering where each node summarizes the information from all 
the members of the community (Fig. 6). 

comms <- simplify(contract(simple.ds, membership(comm.simple.ds))) 
plot(comms, 

vertex.size = 2.5 * sizes(comm.simple.ds), 
vertex.label = 1:length(comm.simple.ds), 
vertex.cex = 0.8, 
edge.arrow.size = 0.1 

) 

It is also worth noting that igraph incorporates a function, compare(), 
that takes different community objects from different partitioning methods, and 
allows for their comparison, based on different methods, such as variation of 
information, normalized mutual information, split-join distance or Rand and
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Fig. 6 Network graph of the 
links between Infomap 
communities using the 
simplified version of the 
Replies data set 
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adjusted Rand indices. We have not included an example here because additional 
knowledge of the comparison metrics is needed to interpret the results, but see 
help(igraph::compare) for references. 

4.1 Interactive Visualization of Communities in R 

In the first sections of this chapter, we have highlighted the uses and applications 
of community finding using educational data, as well as the main principles and 
methods, complemented with an example in igraph. However, the last section 
also highlights the limitations of the igraph library to provide advanced graphic 
features, such as interactive plotting. To overcome these limitations, we will further 
explore interactive visualization of communities using two different libraries: 
visNetwork and networkD3. 

4.1.1 visNetwork 

visNetwork is an R package for network visualization that uses the vis.js javascript 
library. It is based on htmlwidgets, and therefore it is compatible with Shiny, R 
Markdown documents, and RStudio viewer. To access its functions, we must first 
load the visNetwork package: 

library(visNetwork) 

Then, we need to build a data set that visNetwork can read. To do so, we 
need to create a data frame with all the original data (in this example, the data set 
corresponding to the simplified graph), to which we add the group that each node 
belongs to.
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The first step to create this data frame is to build a data frame with the community 
of the node (in the column group) and a column id with a list of all nodes. The last 
line resets the row columns to a sequence starting in 1. In this step, it is critical to 
rename the column that represents the group assignment to “group”, because this 
field is internally interpreted by visNetwork as the different communities of the 
network. 

memberships <- as.data.frame(as.matrix(membership(comm.simple.ds))) 
colnames(memberships)[1]<- "group" 
memberships$id <- rownames(memberships) 
rownames(memberships) <- 1:nrow(memberships) 

The memberships data frame now has a column of group (community) numbers 
and a column of the original node id numbers: 

head(memberships) 

group id 
1 1  55  
2 2  85  
3 3  98  
4 4  99  
5 5 102 
6 6 103 

Next, we retrieve the original node and edge list as data sets, using the 
as_data_frame function. While we could extract both data sets in a single step 
using the argument what = "both", in this example we extract them separately 
for clarity of the manipulations required for each data set. 

simple.ds.nodes <- as_data_frame(simple.ds, what = "vertices") 
simple.ds.edges <- as_data_frame(simple.ds, what = "edges") 

In the node list, and while it is not absolutely necessary, we reset the row columns 
to a sequence starting in 1. After that, we need to rename the original ‘name’ and 
‘User’ columns to ‘id’ and ‘title’. The former manipulation will allow us to add 
the group number to the dataset with the information included in the memberships 
object, while the latter is used by visNetwork to identify the different nodes. 

rownames(simple.ds.nodes) <- 1:nrow(simple.ds.nodes) 
colnames(simple.ds.nodes)[1] <- "id" 
colnames(simple.ds.nodes)[2] <- "title" 

Finally, we combine the node data set with the membership data set.
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vis.comm <- merge(simple.ds.nodes, y =  memberships, by = "id", 
all.x = TRUE) 

For visualization purposes, we add a column with the size of the nodes in the 
visualization. 

vis.comm$size <- vis.comm$totalPosts * 0.2 

Finally, we proceed to visualize the graph. To do so, we call the visNetwork 
function, and we pipe different visualization options (|>,3 ) which we apply to the 
visualization object: (1) the manual random seed ensures reproducibility; (2) the 
legend displays the different communities in the right part of the viewer; (3) we 
highlight connected nodes on selection, and allow for selection in a dropdown menu 
by ‘id’ and ‘group’; and (4) we allow drag/zoom on the network, with navigation 
buttons that are displayed on the lower part of the viewer (see Fig. 7). 

visNetwork(vis.comm, simple.ds.edges, width = "100%", height = "800px", 
main = "Interactive Communities") |> 

visLayout(randomSeed = 1234) |> 
visLegend(position = "right", main = "group") |> 
visOptions(highlightNearest = TRUE, nodesIdSelection = TRUE, 

selectedBy = "group") |> 
visInteraction(hideEdgesOnDrag = TRUE, dragNodes = TRUE, dragView = TRUE, 

zoomView = TRUE, navigationButtons = TRUE) 

Fig. 7 Interactive 
visualization of the simplified 
version of the Replies data set 
using visNetwork 

3 The native R pipe (|>) was introduced in R version 4.1.0. If you are using an older version of R, 
you can use the magrittr pipe (%>%).
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4.1.2 networkD3 

The networkD3 is an advanced library for the interactive visualization of networks. 
It creates D3 network graphs and it is also based on the htmlwidgets framework, 
therefore simplifying the package’s syntax for exporting the graphs and allowing 
integration with RStudio, RMarkdown and Shiny web apps. To access its functions, 
we first load the library. 

library(networkD3) 

An advantage of the networkD3 library is that it provides a function, 
igraph_to_networkD3(), that allows direct loading of an igraph network as a 
networkD3 compatible graph. In this case, analogously to the previous example in 
visNetwork, we will visualize the simplified network. We provide two arguments 
to the igraph_to_networkD3 function: the original igraph object and the node 
membership list, also obtained before with the help of igraph. 

graph.d3 <- igraph_to_networkD3(simple.ds, 
group = membership(comm.simple.ds)) 

Analogously to the example in visNetwork, we add node sizes for improved 
visualization. 

graph.d3$nodes$size <- simple.ds.nodes$totalPosts * 0.2 

And finally, we use the forceNetwork function to display the graph. In this case, 
we will store the interactive visualization in an object to enhance the behavior of the 
legend later by using the htmlwidgets framework. From the example below, no 
additional manipulation of the original data sets was required.4 

The forceNetwork() function requires the edge (Links) and node (Nodes) data 
frames, as well as the name of the source and target columns in the edge data 
frame, the node id and group columns in the node data frame. In the following 
code, it is also worth noting that the argument provided to display the size of the 

4 However, it is important to note that in networkD3, the source and target vectors in the edge 
(links) data frame must be numeric and, most importantly, that their values are relative to the index 
of the node in the nodes data frame they represent. This may have implications, given that the 
nodes data set is based on JavaScript and it is therefore zero-indexed, unlike in R. The user may 
input the following code to reset the rows to a sequence starting in 0 before executing the call to 
forceNetwork: 

row.names(graph.d3$nodes) <- 0:(nrow(graph.d3$nodes)-1) 
row.names(graph.d3$links) <- 0:(nrow(graph.d3$links)-1).
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nodes refers to the column number —and not the column name—, and that we can 
provide different repulsion values using the charge parameter —the strength of node 
repulsion (negative values) or attraction (positive values). 

d3.comm <- forceNetwork(Links = graph.d3$links, Nodes = graph.d3$nodes, 
Source = 'source', Target = 'target', 
NodeID = 'name', Group = 'group', 
linkColour = "#afafaf", fontSize = 12, zoom = T, 
legend = T, Nodesize = 3, opacity = 0.8, 
charge = -25, width = 800, height = 800) 

d3.comm 

In the previous visualization, the legend moves when we zoom in or out, or drag 
the graph. A possible workaround to fix the legend is to use the htmlwidgets 
library [55]. The final result of the interactive visualization is shown in Fig. 8. 

library(htmlwidgets) 
htmlwidgets::onRender(d3.comm, jsCode = ' 

function (el, x) { 
d3.select("svg").append("g").attr("id", "legend-layer"); 
var legend_layer = d3.select("#legend-layer"); 
d3.selectAll(".legend") 

.each(function() { legend_layer.append(() => this); }); 
} 

') 

Fig. 8 Interactive 
visualization of the simplified 
version of the Replies data set 
using networkD3



536 Á. Hernández-García et al.

5 Concluding Notes 

In this chapter, we have introduced the literature on community detection in social 
network analysis, highlighted its uses in learning analytics, and worked through an 
example of finding and visualizing communities in R. The process begins outside 
of R, by identifying possible mechanisms of community formation in this network 
and why they are of interest. In educational settings, researchers may be concerned 
with information flow, dissemination of norms or attitudes, or other social forces. 
It is also important to consider whether the directionality and frequency (or other 
strength measure) of the interactions is important and if these considerations align 
with the theory and contextual peculiarity [56, 57]. Once these factors are thought 
out, there will still probably be a few options for community detection algorithms. 
It is worth trying more than one algorithm and comparing their groupings, as 
well as reading up on the method to see if it has tunable parameters, such as the 
tightness of a random walk or the relative importance of missing links. Moreover, 
once the communities have been detected they can be explored in several ways. For 
example, one can investigate the demographic differences between the communities 
and determine whether they are formed based on shared characteristics between 
the nodes (e.g., gender, race, and nationality). Other aspects to look into are 
the content of the interactions, the difference in performance (e.g., final grade) 
between communities, and their temporal evolution to understand how they formed. 
Furthermore, each community can be visualized and analyzed as a network of its 
own using the methods explained in the Social Network Analysis chapter of this 
book. 

Though we began with the visualization tools available in the igraph package, 
in many cases researchers will want to go further. In these cases, the results of 
clustering algorithms can be used with libraries like visNetwork or networkD3. 
In the end, the goal of the visualization is to explore or present insights about 
network subgroups that speak to the original research questions, and it is helpful 
to be familiar with a range of tools for this purpose. 

This chapter can be considered an introduction to the topic of community 
detection. However, interested users can resort to our cited papers and, for further 
readings, the selected papers and books provided in the following section can be a 
good start. 

6 Further Readings 

Interested readers can refer to the following resources about community detection 
in general:

• Fortunato, S., & Hric, D. (2016). Community detection in networks: A user 
guide. Physics Reports, 659, 1-44.
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• Traag, V. A., Waltman, L., & Van Eck, N. J. (2019). From Louvain to Leiden: 
Guaranteeing well-connected communities. Scientific Reports, 9(1), 5233.

• Xie, J., Kelley, S., & Szymanski, B. K. (2013). Overlapping community detec-
tion in networks: The state-of-the-art and comparative study. ACM Computing 
Surveys, 45(4), 1-35. 

For specific resources using R, the reader can consult the following:

• Borgatti, S. P., Everett, M. G., Johnson, J. C., & Agneessens, F. (2022). Analyzing 
social networks using R. SAGE.

• Kolaczyk, E. D., & Csárdi, G. (2014). Statistical analysis of network data with R 
(Vol. 65). New York: Springer.

• Luke, D. A. (2015). A user's guide to network analysis in R (Vol. 72, No. 10.1007, 
pp. 978-3). Cham: Springer. 
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Temporal Network Analysis: 
Introduction, Methods and Analysis 
with R 

Mohammed Saqr 

1 Introduction 

Learning is social and therefore, involves relations, interactions and connections 
between learners, teachers and the world at large. Such interactions are essentially 
temporal and unfold in time [1]; that is, facilitated, curtailed or influenced at 
different temporal scales [2, 3]. Therefore, time has become a quintessential aspect 
in several learning theories, frameworks and methodological approaches to learning 
[3–5]. Modeling learning as a temporal and relational process is, nevertheless, both 
natural, timely and more tethered to reality [4, 6]. Traditionally, relations have 
been modeled with Social Network Analysis (SNA) and temporal events have been 
modeled with sequence analysis or process mining [3, 7].Yet, researchers have rarely 
combined the two aspects (the temporal and relational aspects) in an analytics 
framework [1]. Considering how important the timing and order of the learning 
process are, it is all-important that our analysis lens is not time-blind [8, 9]. Using 
time-blind methods flattens an essentially temporal process where the important 
details of progression are lost or distorted [10, 11]. In doing so, we miss the rhythm, 
the evolution and devolution of the process, we overlook the regularity and we may 
fail to capture the events that matter [9–11]. 

Temporal Networks 
Recent advances in network analysis have resulted in the emergence of the new 
field of temporal network analysis which combines both the relational and temporal 
dimensions into a single analytical framework: temporal networks, also referred 
to as time-varying networks, dynamic networks or evolving networks [10]. Today, 
temporal networks are increasingly adopted in several fields to model dynamic 
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Fig. 1 Interactions are aggregated per day showing that some days show an active group e.g., 
Monday, and other days have an inactive group e.g., Friday. Meanwhile, the static network on the 
right appears dense [15] 

phenomena, e.g., information exchange, the spread of infections, or the reach of 
viral videos on social media [12]. Whereas temporal networks are concerned with 
the modeling of relationships similar to traditional social networks (i.e., static or 
aggregate networks), they are conceptually fundamentally different [10, 11, 13]. 
Additionally, temporal networks are not a simple extension of social networks, 
nor are they time-augmented social networks or time-weighted networks. In that, 
temporal networks are based on different representations of data, have a different 
mathematical underpinning, and use distinct visualization methods. In temporal 
networks, edges emerge (get activated or born) and dissolve (get deactivated or 
die) compared to always present edges in static social networks. Also, in temporal 
networks, an edge represents temporary interaction, contact, co-presence, or concur-
rency between two nodes interacting at a specific time. The fact that static networks 
represent nodes as being connected together all the time exaggerates connectivity 
[14, 15]. For instance, in Fig. 1, we have five network visualizations, each network 
belonging to a weekday. We see that Monday, Tuesday, and Wednesday networks 
are relatively connected, whereas Thursday and Friday networks are disconnected. 
The corresponding aggregated or static network on the right is densely connected. 
The example in Fig. 1 shows how a static network both conflates connectivity and 
obfuscates dynamics, you can read more about this example in [15]. Similarly, 
network measures calculated in static networks are inflated and biased -skewed 
towards higher values - because they ignore the temporal direction of edges allowing 
the edges to run back in time. Another characteristic of temporal networks is that 
edges have a starting time point and ending time point, the end of each edge 
is understandably later than the start, i.e., follows the forward-moving direction 
of time. Therefore, the paths in the temporal network are unidirectional or time-
restricted [10, 11]. The next section discusses the temporal networks in detail. 

2 The Building Blocks of a Temporal Network 

2.1 Edges 

In temporal networks, edges are commonly referred to as events, links, or dynamic 
edges. Two types of temporal networks are commonly described based on their edge 
type [12].
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Fig. 2 Example of a contact 
temporal network. Edges 
form momentarily and have 
no obvious duration 

Fig. 3 An example of an interval network. On the top, we see an example of an edge. In the 
bottom arrows pointing to two edges B–D and A–D, we can see that the two edges do not overlap 
and therefore, although they share a connection (A), we can’t assume that B is connected to A 
through D 

• Contact temporal networks: In contact temporal networks, edge duration 
is very brief, undefined, or negligible. For example, instant messages have 
no obvious duration but have a clear source (sender), target (receiver), and 
timestamp. Figure 2 shows a contact temporal network where the edges are 
represented as sequences of contacts between nodes with no duration. 

• Interval temporal networks: In interval temporal networks, each interaction has 
a duration. An example of such a network would be a conversation where each of 
the conversants talks for a certain length of time. In the interval temporal network, 
the duration of interactions matters and the modeling thereof helps understand 
the process. In Fig. 3, we see an interval temporal network where each edge has 
a clear start and clear end. For example, an edge forms between node A and node 
B at time point 1 and dissolves at time point 3, i.e., lasts for two time points. 

2.2 Paths, Concurrency, and Reachability 

Paths represent the pathways that connect edges, the identification of which can 
help solve essential problems like the shortest path between two places in a route
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planning application, e.g., Google maps. In a dynamic process, the paths represent 
a time-respecting sequence of edges i.e., where the timing of each edge follows one 
another according to time passage, that is, the timestamps are incrementally increas-
ing [10, 11]. For instance, let’s assume we have a group of students interacting about 
a problem, starting by defining the problem, argumenting, debating, and finding a 
solution. The temporal path that would represent the sequence of interactions among 
students in this process will be a defining->argumenting->debating->solving. We  
expect that the timestamp of defining precedes argumenting and argumenting 
precedes debating and so on. In that way, the path is unidirectional, follows a 
time-ordered sequence, and requires that each node is temporally connected, i.e., 
the two nodes coexist or interact with each other at the same time [11]. Such 
temporal co-presence is known as concurrent. Concurrency defines the duration of 
the nodes where they were co-present together and therefore can be a measure of 
the magnitude of contact between the two nodes. This is particularly important when 
we are modeling processes where the path length matters e.g., social influence. A 
student is more likely to be influenced by an idea when the student discusses the 
idea with another for a longer period of time. Similarly, self-regulation could be 
more meaningful when phases are more concurrent rather than disconnected [3]. 
Reachability is the proportion of nodes that can be reached from a node using time-
respecting paths. A node is more influential or central, if it can reach a larger number 
of nodes [12]. 

2.3 Nodes 

Nodes in temporal networks are similar to static networks at large. Such nodes can 
be humans, objects, semantics, historical events or chemical reactions to mention a 
few. Perhaps, the possible difference—if it at all exists—is that temporal network 
tend to be studied in fields where temporal order is consequential e.g., epidemics, 
linguistics and spread of ideas. 

3 Previous Work and Examples of Temporal Network 
Analysis 

Few studies have addressed temporal network analysis. Yet, some examples exist 
that may shed light on the novel framework and how it can be harnessed in 
education. In a study by Saqr and Nouri [15], the authors investigated how students 
interact in a problem-based learning environment using temporal networks. The 
study estimated temporal centrality measures, used temporal network visualization, 
and examined the predictive power of temporal centrality measures. The study 
reported rhythmic changes in centrality measures, network properties as well as the 
way students mix online. The study also found that temporal centrality measures



Temporal Network Analysis: Introduction, Methods and Analysis with R 545

were predictive of students” performance from as early as the second day of 
the course. Models that included temporal centrality measures have performed 
consistently better and from as early as the first week of the course. Another study 
by Saqr and Peeters [9] analyzed students’ interactions in an online collaborative 
environment where students interacted in Facebook groups. The authors compared 
centrality measures from traditional social networks to temporal centrality measures 
and found that temporal centralities are more predictive of performance. Another 
study from the same group has used chat messages to study how students interact 
online and how temporal networks can shed light on different dynamics of students 
interacting using Discord instant messaging platform compared to students inter-
acting using the forums in Moodle. Temporal networks were more informative in 
capturing the differences in dynamics and how such dynamics affected students” 
way of communicating [16]. 

4 Tutorial: Building a Temporal Network 

Temporal network is a relatively new field with an emerging repertoire of methods 
that are continuously expanding. As we currently stand, a coherent tutorial that 
combines all possible steps of the analysis does not exist, and that is what this 
chapter aims to fill. The tutorial will introduce the R packages, visualization and 
mathematical analysis e.g., graph and node level centrality measures. 

The first step is to load the needed packages. Unlike the SNA chapter [17] where 
we relied on the  igraph framework, we will rely on the statnet framework 
that has a rich repertoire of temporal network packages. We will use three main 
packages, namely tsna (Temporal Social Network Analysis) which provides most 
functions for dealing with temporal networks as an extension for the popular sna 
package. The package networkDynamic offers several complementary functions 
for the network manipulation, whereas the package ndtv (Network Dynamic 
Temporal Visualization) offers several functions for visualizing temporal networks. 
To learn more about these packages, please visit their help pages. The next code 
chunk loads these packages as well as tidyverse packages to process the network 
dataframe [18]. We also need tidyverse for manipulating the file and preparing 
the data. 

library(tsna) 
library(ndtv) 
library(networkDynamic) 
library(tidyverse) 
library(rio) 
library(scatterplot3d) 
library(ergm) 
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To create a temporal network, we need a timestamped file with interactions. The 
essential fields are the source, target and time, and perhaps also some infor-
mation about the interactions or the nodes (but these constitute extra information 
that is good to have). A temporal network is created by combining a base static 
network (that has the network base information) and a dynamic network with time 
information. As such, we need to prepare the Massive Open Online Course (MOOC) 
dataset described in detail here [19] and prepare it for creating a static network that 
will serve as a base network. 

The next code chunk loads the dataset files (edges and nodes data) from the 
MOOCs dataset. Some cleaning of the data is necessary. 

URL<- "https://github.com/lamethods/data/raw/main/6_snaMOOC/" 
net_edges <- import(paste0(URL, "DLT1%20Edgelist.csv")) 
net_nodes <- import(paste0(URL, "DLT1%20Nodes.csv")) 

First, we have to clean the column names from extra spaces using the function 
clean_names from the janitor package. Next, we have to remove loops, or 
instances where the source and target of the interaction are the same since it makes 
little sense that a person responds to oneself in a temporal network (this is not 
essential). Third, we need to create a dataframe where we replace duplicate edges 
with a weight equal to the frequency of repeated interactions, we will need this file 
for the creation of the base network (see later). Fourth, we recode the expertise level 
in the nodes file to meaningful codes (from its original numerical coding as 1,2,3) so 
that we can use them later in the analysis. The fifth step is to convert the timestamp 
to sequential days starting from the first day of the course; this makes sense for 
easy interpretation. Also, time works better in networkDynamic when it is numeric. 
The final step is to remove discussions where there are no replies. This cleaning 
is necessary since we have a dataset that was not essentially prepared for temporal 
networks. 

net_edges <- net_edges |> janitor::clean_names() #1 
cleaning column names 

net_edges_NL <- net_edges |> filter(sender != receiver) 
#2 removing loops 

# Removing duplicates and replacing them with weight 
net_edges_NLW <- net_edges_NL |> 

group_by(sender, receiver) |> 
tally(name = "weight") #3 

# Recoding expertise 
net_nodes <- net_nodes |> 

mutate(expert_level = case_match(experience, #4 
1 ~"Expert", 
2 ~ "Student", 
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3 ~ "Teacher")) 

# A function to create serial days 
dayizer = function(my_date) { 

numeric_date = lubridate::parse_date_time(my_date, 
"mdy HM") 

Min_time = min(numeric_date) 
my_date = (numeric_date - Min_time) / (24*60*60) 
my_date = round(my_date,2) 
return(as.numeric(my_date)) 

} 

net_edges_NL$new_date = dayizer(net_edges_NL$timestamp) 
#5 

# Remove discussions with no interactions 
net_edges_NL <- net_edges_NL |> 
group_by (discussion_title) |> 
filter(n() > 1) 

As mentioned before, the first step in creating a temporal network is creating 
a static base network (base network) which carries all the information about the 
network, e.g., the nodes, edges as well as their attributes. The base network is 
typically a static weighted network. Here we define the base network file (the 
weighted edge file we created before), we use directed = TRUE to create our 
network as directed and we tell the network function that the vertices attributes are 
in the net_nodes file. 

NetworkD <- network(net_edges_NLW, directed = TRUE, 
matrix.type = "edgelist", 
loops = FALSE, multiple = FALSE, 
vertices = net_nodes) 

For creating a temporal network, we need more than the source and the target 
commonly needed for the static network. In particular, the following variables are 
required to be defined. 

• tail: the source of the interaction 
• head: the target of the interaction 
• onset: The starting time of the interaction 
• terminus: the end time of the interaction 
• duration: the duration of the interaction 

Our dataset—which comes from forum MOOC interactions, see Fig. 4—has 
an obvious starting time (which is the timestamp of each interaction) but has no
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Fig. 4 Screenshot of the edges file. The edge file has source (sender), target (receiver) and a 
timestamp 

Fig. 5 A sample discussion demonstrating a way to compute the duration of the post. The first 
post lasts active in the discussion from starting time to the last reply it stimulated in the same 
thread (D1) 

clear end time. There is no straightforward answer to this question. Nonetheless, 
a possible way to consider the duration of every post is the duration the post was 
active in the discussion or continued to be discussed. That is the time from the post 
in a discussion thread to the last post in the same threads of replies. Such a method— 
while far from perfect—offers a rough method for estimating the time during which 
this interaction has been “active” in the discussion [15, 20]. For an illustration, see 
Fig. 5 which shows the duration for the first and second posts. 

The next code chunk creates a variable for the starting time of each interaction, 
computes the ending time where this post was part of an active discussion, and then 
computes the duration. 

# Create the required variables (start, end, and 
duration) defined by 

net_edges_NL <- net_edges_NL |> 
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group_by (discussion_title) |> 
mutate(start = min(new_date), end = max(new_date), 

duration = end - start) 

In the same way, the second duration is computed in the same way (D2). The 
next step of the analysis creates a dataframe where all the needed information for 
the network is specified and in the next step we simply use the networkDynamic 
with two arguments, the base network and the dataframe with all the tempo-
ral network information created in the previous step. Nonetheless, dealing with 
around 450 nodes in a network is hard, it becomes impossible to visualize or get 
insights from a large number of crowded nodes. So, for the sake of simplicity 
of demonstration in this tutorial, we will create a smaller subset of the network 
of people who had a reasonable number of interactions (degree more than 20) 
using get.inducedSubgraph argument. The resulting network is then called 
Active_Network which we will analyze. 

# Creating a dataframe with needed variables 

edge_spells <- data.frame("onset" = net_edges_NL$start , 
"terminus" = net_edges_NL$end, 
"tail" = net_edges_NL$sender, 
"head" = net_edges_NL$receiver, 
"onset.censored" = FALSE, 
"terminus.censored" = FALSE, 
"duration" = net_edges_NL$ 
duration) 

# Creating the dynamic network network 
Dynamic_network <- networkDynamic(NetworkD, edge.spells = 

edge_spells) 

Edge activity in base.net was ignored 
Created net.obs.period to describe network 
Network observation period info: 
Number of observation spells: 1 
Maximal time range observed: 0 until 72.01 
Temporal mode: continuous 
Time unit: unknown 
Suggested time increment: NA 

Active_Network <- get.inducedSubgraph(Dynamic_network, 
v =  which(degree 
(Dynamic_network) > 

20)) 
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Fig. 6 A plot of the full network as plotted by the plot function 

We can then confirm that the network has been created correctly using the print 
function. As the output shows, we have 521 distinct time changes, 72 days, 445 
vertices and 1936 edges. We can also use the function plot to see how the network 
looks. The argument pad helps us remove the additional whitespace around the 
network. Plotting a temporal network helps summarize all the interactions in the 
network. As we can see in Fig. 6, the network is dense with several edges between 
interacting students. 

print(Dynamic_network) 

NetworkDynamic properties: 
distinct change times: 495 
maximal time range: 0 until 72.01 

Includes optional net.obs.period attribute: 
Network observation period info: 
Number of observation spells: 1 
Maximal time range observed: 0 until 72.01 
Temporal mode: continuous 
Time unit: unknown 
Suggested time increment: NA 

Network attributes: 
vertices = 445 
directed = TRUE 
hyper = FALSE 
loops = FALSE 
multiple = FALSE
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bipartite = FALSE 
net.obs.period: (not shown) 
total edges= 1936 

missing edges= 0 
non-missing edges= 1936 

Vertex attribute names: 
connect country experience experience2 expert 
expert_level Facilitator gender grades group location region role1 
vertex.names 

Edge attribute names not shown 

plot.network(Active_Network, pad = -0.5) 

4.1 Visualization of Temporal Networks 

To take advantage of the temporal network, we can use a function to extract the 
network at certain times to explore the activity. In the next example in Fig. 7, we  
chose the first four weeks one by one and plotted them alongside each other. The 
function filmstrip can create a similar output with a snapshot of the network 
at several time intervals. A similar result, yet with three-dimensional placing, can 
also be obtained with the timePrism function, as shown in Fig. 8. You may need 
to consult the package manual to get more information about the arguments and 
options for the plots. 

plot.network(network.extract(Active_Network, onset = 1 
, terminus = 7)) 

plot.network(network.extract(Active_Network, onset = 8 
, terminus = 14)) 

plot.network(network.extract(Active_Network, onset = 15 
, terminus = 21)) 

plot.network(network.extract(Active_Network, onset = 22 
, terminus = 28)) 

compute.animation(Active_Network) 

slice parameters: 
start:0 
end:72.01 
interval:1 
aggregate.dur:1
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Fig. 7 A plot of the network at weeks 1, 2, 3, and 4

 0  5  10  15  20  25  

time 

Fig. 8 A three-dimensional visualization of the network as a sequence of snapshots in space and 
time prism 

rule:latest 

timePrism(Active_Network, at = c(1, 7, 14, 21), 
spline.lwd = 1, 
box = TRUE, 
angle = 60, 
axis = TRUE, 
planes = TRUE, 
plane.col = "#FFFFFF99", 
scale.y = 1, 
orientation = c("z", "x", "y")) 

However, a better way is to take advantage of the capabilities of the package 
ndtv and the network temporal information by rendering a full animated movie of 
the network as in Fig. 9 and explore each and every event as it happens. 

render.d3movie(Active_Network) 

As we mentioned in the introduction section, in temporal networks, edges or 
relationships form “get activated” and dissolve “get deactivated”. We can plot 
such the dynamic edge formation and dissolution process using the functions 
tEdgeFormation which as the name implies plots the edges forming at the given
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Fig. 9 A screenshot of the animated movie of the temporal network 
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Fig. 10 Edge formation and dissolution. We see that edge formation occurs towards the start and 
increases till almost t=50 and edge dissolution starts scanty at the beginning and increases with 
time, peaking at t = 70. (a) Edge formation. (b) Edge dissolution 

time point. The function tEdgeDissolution returns the edges terminating and 
can be plotted in the same way as seen in Fig. 10. Obviously, at the beginning of the 
MOOC, we see new relationships form and, at the end, most relationships dissolve. 

plot(tEdgeFormation(Active_Network, time.interval = 
0.01), ylim = c(0,50)) 

plot(tEdgeDissolution(Active_Network, time.interval = 
0.01), ylim = c(0, 50)) 

Another way to visualize a temporal network is to use the proximity timeline, 
the proximity.timeline function tries to draw the temporal network in two 
dimensions, that is, it draws nodes at each time point taking into account how 
closely connected they are and renders them accordingly, nodes that are interacting 
are rendered close to each other, and nodes that not interacting are rendered apart. 
Technically as described in the function manual: “The passed network dynamic
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Fig. 11 A proximity timeline shows connected interacting nodes closer to each other 

object is sliced up into a series of networks. It loops over the networks, converting 
each to a distance matrix based on geodesic path distance with layout.distance. 
The distances are fed into an MDS algorithm (specified by mode) that lays them 
out in one dimension: essentially trying to position them along a vertical line. The 
sequence of 1D layouts are arranged along a timeline, and a spline is drawn for each 
vertex connecting its positions at each time point. The idea is that closely-linked 
clusters form bands of lines that move together through the plot” [18]. The result is 
a timeline of temporal proximity. The next code draws the proximity timeline but 
also adds some colors, and a start and end for the plot, see the result in Fig. 11. 

proximity.timeline(Active_Network, default.dist = 1, 
mode = "sammon", 

labels.at = 1, vertex.col = 
grDevices::colors(), 

start = 1, end = 30, label.cex = 0.5) 

4.2 Statistical Analysis of Temporal Networks 

4.2.1 Graph Level Measures 

Graph properties in temporal networks are dynamic and vary by time. When graph 
measures are computed we get a time series of the computed measures. Such fine-
grained measures allow us to understand how the networks and their structure evolve
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or unfold in time and thus, such information can help us understand collaboration 
or interaction dynamics as they occur [9, 15]. 

The function tSnaStats from the package tsna has a large number of measures 
that can be computed by specifying the argument snafun. In the next example, we 
compute the graph level density with the argument snafun=gden. The function 
allows the choice of a range of time, for instance, from the end of the second week 
to the end of second month by supplying the arguments start = 14 to end = 60. 
We can also use the time.interval to specify the granularity of the calculation. 
The argument aggregate.dur specifies the period of the aggregation, for instance, 
aggregate.dur = 7 will compute the density for every seven days. We can also 
plot the density time series by simply using the function plot. 

Density <- tSnaStats( 
nd = Active_Network, 
snafun = "gden", 
start = 14, 
end = 60, 
time.interval = 1, 
aggregate.dur = 7) 

plot(Density) 

You can see, in the resulting graph in Fig. 12, that the density increases until day 
50 and then starts to drop. Of note, another type of density can be computed, known 
as temporal density, which computes the observed total duration of all edges and 
divides it by the maximum duration possible. Temporal density can be computed 
using the command tEdgeDensity. 

tEdgeDensity(Active_Network) 

[1] 0.3901841 
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Fig. 12 A plot of temporal density from t = 14 to t = 60
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gden(Active_Network) 

[1] 0.2186869 

Similar to density, we can compute reciprocity, i.e., the ratio of reciprocated 
edges to asymmetric edges. Note, that we calculate reciprocity here from day 1 
to day 73 on a daily basis (this is just for demonstration of different periods). 
Since the function default is to calculate the reciprocated dyads, we specify the 
argument measure = “edgewise” to calculate the proportion of reciprocated edges. 
As the graph in Fig. 13a shows, reciprocity increases steadily for the first 50 days 
pointing to a build up of trust between collaborators. The dyad.census function 
offers a more granular view of the dyads and their reciprocity as shown in Fig. 13b. 
Similarly, mutuality is a very similar function and returns the number of complete 
dyads (reciprocated dyads), plotted in Fig. 13c. All of the aforementioned functions 
deal with reciprocity, for differences and usages, readers are encouraged to read the 
functions’ help to explore the differences, arguments as well as the equation for each 
function. 

Reciprocity <- tSnaStats( 
nd=Dynamic_network, 
snafun = "grecip" , 
start = 1, 
end = 73, 
measure = "edgewise", 
time.interval = 1, 
aggregate.dur = 1) 

plot(Reciprocity) 

Dyad.census <- tSnaStats(Active_Network, 
snafun = "dyad.census") 

plot(Dyad.census) 
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Fig. 13 Network descriptive statistics over time. (a) Reciprocity over time. (b) Dyad census over 
time. (c) Mutuality over time 
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Fig. 14 A plot of degree centralization over time 

dynamicmutuality <- tSnaStats( 
Active_Network, 
snafun = "mutuality", 
start = 1, 
end = 73, 
time.interval = 1, 
aggregate.dur = 1 
) 

plot(dynamicmutuality) 

Centralization measures the dominance of members within the network and 
can be traced temporally using the function snafun = “centralization”. Please note 
that we can choose the period, the interval and the aggregation periods using 
function arguments as mentioned before. The next example computes the degree 
centralization as demonstrated in Fig. 14. Also note that we can also compute other 
centralization measures such as centralization indegree, centralization outdegree, 
centralization betweenness, centralization closeness and eigenvector. 

Degree_centralization <- tSnaStats( 
Active_Network, 
snafun = "centralization", 
start = 1, 
end = 73, 
time.interval = 1, 
aggregate.dur = 1, 
FUN = "degree") 
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plot(Degree_centralization) 

Several other graph-level measure can be computed in the same way using the 
following arguments passed to the snafun: - components: count of Components 
within the graph over time - triad.census: the triad census and types of triads over 
time - connectedness: the connectedness score of the network efficiency network 
efficiency over time - gtrans: network transitivity over time - hierarchy: network 
Hierarchy over time - lubness: network LUBness over time - efficiency: 
network efficiency over time - hierarchy: network hierarchy over time 

4.2.2 Node-Level Measures (Temopral Centrality Measures) 

Centrality measures has been used to identify important actors, as a proxy indicator 
for academic achievement or to identify students’ collaborative roles [21–24]. In 
temporal networks, centrality measures are fine-grained estimates of students” real-
time centralities or importance, i.e., shows who were central and when considering 
the temporarily of their interaction. In doing so, we can see exactly when and for 
how long, at what pace, and with which rhythm a behavior happens (compare 
this to traditional social network analysis where centralities are computed as a 
single number). There are several possible uses of temporal centrality measures. For 
instance [15] have used them to create predictive models of students’ performance. 
In another study by the same authors, they demonstrated that temporal centrality 
measures were more predictive of performance compared to traditional static 
centrality measures [9]. Since the temporal centralities are computed as time 
series, their temporal characteristics can also be used to compute other time series 
properties e.g., stability, variabilities, and pace, you can see for example [15]. There 
is a growing list of temporal centrality measures e.g., [13]. We will study here 
the most commonly used ones according to the latest review [23], but readers are 
encouraged to explore the tsna manual for more centrality measures. 

Temporal degree centrality measures can be computed in the same way as 
we computed the graph level properties shown before. The next code defines the 
function snafun = "degree", the start, the end date, and aggregation (which you 
can modify). An important argument here is the cmode argument which defines the 
type of centrality: “freeman”, “indegree” or “outdegree” for the calculation of total 
in or out degree centralities. The result is a time series with the 73 values for each 
day from start to end, each day having a unique value for the degree centrality for 
each node. The rest of the code is intended to organize the results. We convert the 
time series to a dataframe, create a variable for the day number to make it easier 
to identify the day and create a variable to define the type of centrality, and then 
combine all centrality measures into a single data frame as below. 

Degree_Centrality <- tSnaStats( 
Active_Network, 
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snafun = "degree", 
start = 1, 
end = 73, 
time.interval = 1, 
aggregate.dur = 1, 
cmode = "freeman") 

inDegree_Centrality <- tSnaStats( 
Active_Network, 
snafun = "degree", 
start = 1, 
end = 73, 
time.interval = 1, 
aggregate.dur = 1, 
cmode = "indegree") 

OutDegree_Centrality <- tSnaStats( 
Active_Network, 
snafun = "degree", 
start = 1, 
end = 73, 
time.interval = 1, 
aggregate.dur = 1, 
cmode = "outdegree") 

Degree_Centrality_DF <- Degree_Centrality |> 
as.data.frame() |> 

mutate(Day = 1:73, centrality = "Degree_Centrality", 
.before = 1L) 

inDegree_Centrality_DF <- inDegree_Centrality |> 
as.data.frame() |> 

mutate(Day = 1:73,centrality = "inDegree_Centrality", 
.before = 1L) 

OutDegree_Centrality_DF <- OutDegree_Centrality |> 
as.data.frame() |> 

mutate(Day = 1:73,centrality = "OutDegree_Centrality", 
.before = 1L) 

rbind(Degree_Centrality_DF, inDegree_Centrality_DF, 
OutDegree_Centrality_DF) 
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# A tibble: 219 x 47 
Day centrality ‘1‘ ‘5‘ ‘6‘ ‘7‘ ‘11‘ ‘13‘ ‘15‘ ‘17‘ ‘19‘ ‘24‘ 

<int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 
1 1 Degree_Cen~ 4 2 4 4 1 0 2 1 9 1  
2 2 Degree_Cen~ 4 2 5 4 2 0 2 1 9 2  
3 3 Degree_Cen~ 4 2 5 4 2 0 2 1 9 2  
4 4 Degree_Cen~ 5 2 5 4 2 0 2 1 9 2  
5 5 Degree_Cen~ 7 2 6 4 2 0 3 2 10 2  
6 6 Degree_Cen~ 7 2 6 4 2 0 3 2 10 2  
7 7 Degree_Cen~ 7 2 6 4 2 0 3 2 7 2  
8 8 Degree_Cen~ 7 2 6 4 3 0 3 2 8 2  
9 9 Degree_Cen~ 8 2 6 4 4 0 3 2 8 2  

10 10 Degree_Cen~ 9 2 6 4 4 0 3 2 9 2  
# i 209 more rows 
# i 35 more variables: ‘26‘ <dbl>, ‘27‘ <dbl>, ‘29‘ <dbl>, ‘30‘ <dbl>, 
# ‘34‘ <dbl>, ‘35‘ <dbl>, ‘36‘ <dbl>, ‘41‘ <dbl>, ‘44‘ <dbl>, ‘49‘ <dbl>, 
# ‘50‘ <dbl>, ‘53‘ <dbl>, ‘54‘ <dbl>, ‘58‘ <dbl>, ‘60‘ <dbl>, ‘61‘ <dbl>, 
# ‘62‘ <dbl>, ‘63‘ <dbl>, ‘64‘ <dbl>, ‘67‘ <dbl>, ‘68‘ <dbl>, ‘88‘ <dbl>, 
# ‘92‘ <dbl>, ‘98‘ <dbl>, ‘100‘ <dbl>, ‘116‘ <dbl>, ‘137‘ <dbl>, ‘198‘ <dbl>, 
# ‘219‘ <dbl>, ‘223‘ <dbl>, ‘234‘ <dbl>, ‘310‘ <dbl>, ‘432‘ <dbl>, ... 

In the same way, closeness, betweenness and eigenvector centralities can be 
computed. Please note that we have a new argument here gmode="graph" which 
tells snafun that we would like to compute these centralities considering the 
network as undirected. You can also use the gmode="digraph" to compute the 
measures on a directed basis. You may need to use the previous code to convert each 
of the resulting time series into a data frame and add the day of the centralities. The 
snafun can compute other centrality measures in the same way e.g., information 
centrality, Bonacich Power Centrality, Harary Graph Centrality, Bonacich Power 
Centrality among others. 

Closeness_Centrality <- tSnaStats( 
Active_Network, 
snafun = "closeness", 
start = 1, 
end = 73, 
time.interval = 1, 
aggregate.dur = 1, 
gmode = "graph") 

Betweenness_Centrality <- tSnaStats( 
Active_Network, 
snafun = "betweenness", 
start = 1, 
end = 73, 
time.interval = 1, 
aggregate.dur = 1, 
gmode = "graph") 
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Eigen_Centrality <- tSnaStats( 
Active_Network, 
snafun = "evcent", 
start = 1, 
end = 73, 
time.interval = 1, 
aggregate.dur = 1, 
gmode = "graph") 

Reachability is another important measure that temporal networks offer. You can 
calculate who, when, and after how many steps an interaction reaches from a certain 
vertex to another or to every other node in the network (if it at all does). In the next 
code, we compute the forward pathway (earliest reachable node) from node 44 (one 
of the course facilitators) using the function tPath. The output is a time series with 
all the time distance values and the number of steps. 

FwdPathway <- tPath( 
Active_Network, 
v =  44, 
start = 0, 
graph.step.time = 7, 
end = 30, 
direction = "fwd") 

FwdPathway |> as_tibble() 

# A tibble: 45 x 7 
tdist previous gsteps start end direction type 
<dbl> <dbl> <dbl> <dbl> <dbl> <chr> <chr> 

1 7.09 44 1 0 30 fwd earliest.arrive 
2 32.9 45 4 0 30 fwd earliest.arrive 
3 34.8 31 3 0 30 fwd earliest.arrive 
4 14.1 1 2 0 30 fwd earliest.arrive 
5 16.1 44 1 0 30 fwd earliest.arrive 
6 30.9 13 2 0 30 fwd earliest.arrive 
7 28.1 23 4 0 30 fwd earliest.arrive 
8 Inf 0 Inf 0 30 fwd earliest.arrive 
9 7.28 44 1 0 30 fwd earliest.arrive 

10 24.2 9 2 0 30 fwd earliest.arrive 
# i 35 more rows 

More importantly, we can plot the hierarchical path from the given node, by 
simply using plot function, see Fig. 15.
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Fig. 15 A forward pathway 
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plot(FwdPathway) 

We may also use Graphviz to make the plot look better and hierarchical 
(Fig. 16). Please follow the instructions on http://graphviz.org/download/ to down-
load and install Graphviz. 

plot(FwdPathway, edge.lwd = 0.1, vertex.col= "blue", 
pad = -4, 

coord=network.layout.animate.Graphviz(as.network 
(FwdPathway), 

layout.par = list(gv.engine='dot', 
gv.args = '-Granksep=2'))) 

Another option is to plot the network diffusion or transmission hierarchical tree 
with generation time vs. clock/model time using transmissionTimeline function 
as in Fig. 17. For more on these functions, readers are invited to read the function 
manuals and for usage, these papers offer a starting point [3, 9]. 

transmissionTimeline(FwdPathway, jitter = F, 
displaylabels = TRUE, 

main = "Earliest forward path" ) 

Another useful package that offers a wealth of graph level measures is 
tErgmStats, you may need to consult the help files which are available by using 
the command ?tErgmStats. One of the important functions that we can try here

http://graphviz.org/download/
http://graphviz.org/download/
http://graphviz.org/download/
http://graphviz.org/download/


Temporal Network Analysis: Introduction, Methods and Analysis with R 563

7.09 

32.92 

34.76 

14.09 

16.07 

30.92 

28.09 

7.28 

24.25 

23.32 

28.0723.92 

14.09 

27.1124.17 

17.35 

33.2 28.29 

26.08 

22.14 

30.0721.09 

25.34 

24.25 

28.09 

28.8925.74 

16.32 23.07 

32.68 

20.42 

17.35 

24.26 

14.09 14.2815.32 

9.257.28 

21.09 

1 

2 

3 

4 

5 

6 

7 

9 

10 

11 

12 13 

14 

15 16 

17 

18 19 

20 

21 

22 
23 

24 

25 

26 

2930 

31 33 

34 

35 

36 

37 

38 39 40 

41 42 

44 

45 

Fig. 16 An improved forward pathway with Graphviz 
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Fig. 17 Transmission hierarchical tree showing the earliest forward interaction with node 44 

is the nodemix. We can use nodemix to examine who and when different actors 
interact with each other, see here for an example where the authors examined how 
low and high achievers mix with each other and with the teachers [15]. The next 
code demonstrates how to compute the mixing patterns between expertise levels. 
We then convert the time series as a dataframe, clean the names and then plot the 
results as demonstrated in Fig. 18. 

Mix_experience <- tErgmStats(Active_Network, 
"nodemix('expert_level')", 
start = 1, 
end = 73, 
time.interval = 1, 
aggregate.dur = 1) 
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Mixing <- as.data.frame(Mix_experience) 

colnames(Mixing) <- gsub("mix.expert_level.", "", 
colnames(Mixing)) 

Mixing$Day <- 1:73 

Mixing_long= pivot_longer(Mixing, contains(".")) 

names(Mixing_long)= c("Day", "Mixing", "Frequency") 

ggplot(Mixing_long, aes(Day, Frequency, group = 
Mixing, color = Mixing)) + 

geom_line(alpha = .95) + theme_bw() 

5 Discussion 

Learning can be viewed as relational, interdependent, and temporal and therefore, 
methods that account for such multifaceted dynamic processes are required [1, 3]. 
We have shown the main advantages of temporal networks and the potentials it 
offers for modeling dynamic learning processes. These potentials or features can 
facilitate the modeling of the complex natural processes–including the emergence, 
evolution, diffusion or disappearance of learners’ activities, communities or social 
processes that unfold over time. Such features can augment the existing analytics 
method and help shed light on many learning phenomena [16]. Taking advantage of 
time dynamics allows us temporal evolution of co-construction of knowledge, the 
flow of information and the building of social relationships, to name a few examples.
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What is more, temporal networks allow the longitudinal modeling and analysis of 
interactions across longer periods of time e.g., full duration of a course, project or 
meeting using time-respecting paths [9, 15]. 

There are several methods that can dissect the temporal dimensions of a learning 
process, e.g., process and sequence mining, time series methods and epistemic 
network analysis [25, 26]. While such methods have given a wealth of information 
and insights about learning processes, they fall short when it comes to the relational 
aspects [9]. We review here and in short the main differences between such methods 
of temporal networks. Process mining is a method for the discovery and modeling 
of a temporal process [1, 27].Yet, the relational aspect is completely ignored. The 
case is similar for sequence mining where the time-ordered sequences are modeled 
regardless of the their interactions [25, 28, 29]. Epistemic network analysis is 
another method that allows the study of co-temporal interactions. However, the 
“temporal aspect” is limited to combining data within a temporal window and later 
modeling the interactions as a static network. Put another way, Epistemic network 
analysis is a special type of static networks where edges are defined based on co-
occurrence [30]. For a comparison between the various methods see [3]. 

6 Learning Resources 

A good place to start is to get acquainted with the cited research in the literature 
review section. Other good references could be the methodological paper that gives 
a detailed overview of temporal networks which some parts of this chapter has been 
built around it [31]. There are few, yet very informative tutorials that we can suggest, 
most notable are the tutorials by Brey [32] and Bender-deMoll [33]. The packages 
used in this chapter have very informative manuals: TSNA[34], NDTV[18] and 
networkDynamic[35]. Some seminal papers can be recommended here, especially 
the following papers and books. 

• Holme, P. (2015). Modern temporal network theory: a colloquium. European 
Physical Journal B, 88(9). 

• Holme, P., & Saramäki, J. (2019). A Map of Approaches to Temporal Networks 
(pp. 1–24). 

• Holme, P., & Saramäki, J. (Eds.). (2019). Temporal network theory (Vol. 2). New 
York: Springer. 
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Epistemic Network Analysis and Ordered 
Network Analysis in Learning Analytics 

Yuanru Tan, Zachari Swiecki, A. R. Ruis, and David Shaffer 

1 Introduction 

This chapter provides a tutorial on conducting epistemic network analysis (ENA) 
and ordered network analysis (ONA) using R. We introduce these two techniques 
together because they share similar theoretical foundations, but each addresses a 
different challenge for analyzing large-scale qualitative data on learning processes. 

ENA and ONA are methods for quantifying, visualizing, and interpreting 
network data. Taking coded data as input, ENA and ONA represent associations 
between codes in undirected or directed weighted network models, respectively. 
Both techniques measure the strength of association among codes and illustrate 
the structure of connections in network graphs, and they quantify changes in the 
composition and strength of those connections over time. Importantly, ENA and 
ONA enable comparison of networks both visually and via summary statistics, so 
they can be used to explore a wide range of research questions in contexts where 
patterns of association in coded data are hypothesized to be meaningful and where 
comparing those patterns across individuals or groups is important. 

In the following sections, we will (1) briefly review literature relevant to the 
application of ENA and ONA, (2) provide a step-by-step guide to implementing 
ENA and ONA in R, and (3) suggest additional resources and examples for further 
exploration. By the end of this chapter, readers will be able to apply these techniques 
in their own research. 
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2 Literature Review 

2.1 Epistemic Network Analysis (ENA) 

ENA is a method for identifying and quantifying connections in coded data and 
representing them in undirected weighted network models [1]. There are two key 
features that differentiate ENA from other networks analysis tools or multivariate 
analyses: (1) ENA produces summary statistics that can be used to compare the 
differences in the content of networks rather than just their structure; and (2) ENA 
network visualizations provide information that is mathematically consistent with 
those summary statistics, which facilitates meaningful interpretation of statistical 
differences [2]. These features enable researchers to analyze a wide range of 
phenomena in learning analytics, including complex thinking and knowledge 
construction [3, 4], collaborative problem solving [5, 6], socio-emotional aspects 
of learning [7], mentoring [8], and teacher professional development [9–11]. 

One key feature that makes ENA an effective method in modeling collaborative 
interaction is that ENA can model individuals’ unique contributions to collaborative 
discourse while accounting for group context, and thus both individuals and 
groups can be analyzed in the same model. This feature is particularly valuable 
in collaborative learning environments, where the interactions and contributions 
of each individual are related and should not be treated as a series of isolated 
events. For example, Swiecki et al. [6] analyzed the communications of air defense 
warfare teams in training exercises and found that ENA was not only able to reveal 
differences in individual performance identified in a qualitative analysis of the 
collaborative discourse, but also to test those differences statistically. 

2.2 Ordered Network Analysis (ONA) 

Ordered Network Analysis (ONA) extends the theoretical and analytical advantages 
of ENA to account for the order of events by producing directed weighted networks 
rather than undirected models [12]. Like ENA, ONA takes coded data as input, 
identifies and measures connections among coded items, and visualizes the structure 
of connections in a metric space that enables both statistical and visual comparison 
of networks. However, ONA models the order in which codes appear in the data, 
enabling analysis of phenomena in which the order of events is hypothesized to be 
important. 

For example, Tan et al. [12] used ONA to model the performance of military 
teams learning to identify, assess, and respond to potential threats detected by radar. 
The findings demonstrate that ONA could detect qualitative differences between 
teams in different training conditions that were not detected with unordered models 
and show that they are statistically significant. In their work, Tan et al. [12] argued 
that ONA possesses an advantage over methods such as Sequential Pattern Mining
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(SPM), which is widely used to identify frequent sequential patterns. In contrast 
to SPM, which prioritizes the specific micro-sequential order of events, ONA 
models processes by accounting for the co-temporal order of interactions between 
the units of analysis in response and what they are responding to. Consequently, 
ONA is a more appropriate methodological choice when modeling processes in ill-
formed problem-solving scenarios, where collaborative interactions do not follow a 
prescribed sequence of steps but where the order of activities is still important. 

ONA has also been used to analyze log data from online courses. For example, 
Fan et al. [13] analyzed self-regulated learning tactics employed by learners in 
Massive Open Online Courses (MOOC) using ONA and process mining. The 
authors found that ONA provided more nuanced interpretations of learning tactics 
compared to process mining because ONA models learning tactics across four 
dimensions: frequency, continuity, order, and the role of specific learning actions 
within broader tactics. 

Like ENA, ONA produces summary statistics for network comparison and math-
ematically consistent network visualizations that enable interpretation of statistical 
measures. Unlike ENA, ONA models the order in which codes appear in data, 
enabling researchers to investigate whether and to what extent the order of events is 
meaningful in a given context. 

In the following sections, we provide a step-by-step guide to conducting ENA 
and ONA analyses in R. 

3 Epistemic Network Analysis in R 

In this section, we demonstrate how to conduct an ENA analysis using the rENA 
package. If you are not familiar with ENA as an analytic technique, we recommend 
that you first read Shaffer [1], Shaffer and Ruis [14], and Bowman et al. [2] to  
familiarize yourself with the theoretical and methodological foundations of ENA. 

3.1 Install the rENA Package and Load the Library 

Before installing the rENA package, be sure that you are using R version 4.1 or 
newer. To check your R version, type R.version in your console. To update your 
R version (if needed), download and install R from the official R website: https:// 
cran.r-project.org/ 

First, install the rENA package and then load the rENA library after installation is 
complete.

https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/
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install.packages("rENA", repos = c("https://cran.qe-libs.org", "https://cran. 
rstudio.org")) 

library(rENA) 

We also install the other package that is required for accessing the view() function 
Sect. 3.7.3 in rENA. 

install.packages("tma", repos = c("https://cran.qe-libs.org", "https://cran.r 
studio.org")) 

library(tma ) 

3.2 Dataset 

The dataset we will use as an example, RS.data, is included in the rENA package. 
Note that the RS.data file in the package is only a subset of the full dataset, and is 
thus intended for demonstration purposes only. 

To start, pass RS.data from the rENA package to a data frame named data. 

data = rENA::RS.data 

Use the head() function in R to subset and preview the first three rows present in 
the input data frame to familiarize yourself with the data structure. 

head(data,3) 

##      UserName Condition CONFIDENCE.Pre CONFIDENCE.Post CONFIDENCE.Change 
## 1    steven z FirstGame              7               8                 1 
## 2     akash v FirstGame              6               8                 2 
## 3 alexander b FirstGame              5               7                 1 
##   C.Level.Pre NewC.Change   C.Change      Timestamp ActivityNumber GroupNa 
me 
## 1    High.Pre  Pos.Change Pos.Change 9/17/2013 9:43              1  Electr 
ic 
## 2    High.Pre  Pos.Change Pos.Change 9/17/2013 9:44              1  Electr 
ic 
## 3     Low.Pre  Pos.Change Pos.Change 9/17/2013 9:46              1  Electr 
ic 
##   GameHalf GameDay            text Data Technical.Constraints 
## 1    First       1          Steven    0                     0 
## 2    First       1 Hey, I am Akash    0                     0 
## 3    First       1        I'm Alex    0                     0 
##   Performance.Parameters Client.and.Consultant.Requests Design.Reasoning 
## 1                      0                              0      0 
## 2                      0                              0                0 
## 3                      0                              0                0 
##   Collaboration 
## 1             0 
## 2             0 
## 3             0 

RS.data consists of discourse from RescuShell, an online learning simulation 
where students work as interns at a fictitious company to solve a realistic engineer-
ing design problem in a simulated work environment. Throughout the internship,
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students communicate with their project teams and mentors via online chat, and 
these chats are recorded in the “text” column. A set of qualitative codes were applied 
to the data in the “text” column, where a value of 0 indicates the absence of the code 
and a value of 1 indicates the presence of the code in a given line. 

Further details about the RS.data dataset can be found in Shaffer and Aras-
toopour [15]. Analyses of data from RescuShell and other engineering virtual 
internships can be found in Arastoopour et al. [16] and Chesler et al. [17]. 

3.3 Construct an ENA Model 

To construct an ENA model, there is a function called ena which enables researchers 
to set the parameters for their model. This function wraps two other functions— 
ena.accumulate.data and ena.make.set—which can be used together to 
achieve the same result. 

In the following sections, we will demonstrate how to set each parameter and 
explain how different choices affect the resulting ENA model. 

3.3.1 Specify Units 

In ENA, units can be individuals, ideas, organizations, or any other entity whose 
structure of connections you want to model. To set the units parameter, specify 
which column(s) in the data contain the variables that identify unique units. 

For this example, choose the “Condition” column and the “UserName” column 
to define the units. The “Condition” column has two unique values: FirstGame, and 
SecondGame, representing novice users and relative expert users, respectively, as 
some students participated in RescuShell after having already completed a different 
engineering virtual internship. The “UserName” column includes unique user names 
for all students (n = 48). This way of defining the units means that ENA will 
construct a network for each student in each condition. 

unitCols = c("Condition", "UserName") 

To verify that the units are correctly specified, subset and preview the unique 
values in the units columns. There are 48 units from two conditions, which means 
that the ENA model will produce 48 individual-level networks for each of the units, 
and each unit is uniquely associated with either the novice group (FirstGame) or the 
relative expert group (SecondGame).



574 Y. Tan et al.

head(unique(data[, unitCols]),3) 

##   Condition    UserName 
## 1 FirstGame    steven z 
## 2 FirstGame     akash v 
## 3 FirstGame alexander b 

3.3.2 Specify Codes 

Next, specify the columns that contain the codes. Codes are concepts whose pattern 
of association you want to model for each unit. ENA represent codes as nodes in the 
networks and co-occurrences of codes as edges. Most researchers use binary coding 
in ENA analyses, where the values in the code columns are either 0 (indicating that 
the code is not present in that line) or 1 (indicating that the code is present in that 
line). RS.data contains six code columns, all of which will be used here. 

To specify the code columns, enter the code column names in a vector. 

codeCols = c('Data', 'Technical.Constraints', 'Performance.Parameters', 'Clie 
nt.and.Consultant.Requests', 'Design.Reasoning', 'Collaboration') 

To verify that the codes are correctly specified, preview the code columns 
selected. 

head(data[,codeCols],3) 

##   Data Technical.Constraints Performance.Parameters 
## 1    0                     0                      0 
## 2    0                     0                      0 
## 3    0                     0                      0 
##   Client.and.Consultant.Requests Design.Reasoning Collaboration 
## 1                              0                0             0 
## 2                              0                0             0 
## 3                              0                0             0 

3.3.3 Specify Conversations 

The conversation parameter determines which lines in the data can be connected. 
Codes in lines that are not in the same conversation cannot be connected. For 
example, you may want to model connections within different time segments, such 
as days, or different steps in a process, such as activities. 

In our example, choose the “Condition”, “GroupName”, and “ActivityNumber” 
columns to define the conversations. These choices indicate that connections can 
only happen between students who were in the same condition (FirstGame or 
SecondGame) and on the same project team (group), and within the same activity. 
This definition of conversation reflects what actually happened in the simulation: in 
a given condition, students only interacted with those who were in the same group, 
and each activity occurred on a different day.
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To specify the conversation parameter, enter the column names in a vector. 

conversationCols = c("Condition", "GroupName", "ActivityNumber") 

To verify that the conversations are correctly specified, subset and preview the 
unique values in the conversation columns. 

head(unique(data[, conversationCols]),3) 

##    Condition GroupName ActivityNumber 
## 1  FirstGame  Electric              1 
## 12 FirstGame  Electric              3 
## 15 FirstGame  Electric              4 

3.3.4 Specify the Window 

Once the conversation parameter is specified, a window method needs to be 
specified. Whereas the conversation parameter specifies which lines can be related, 
the window parameter determines which lines within the same conversation are 
related. The most common window method used in ENA is called a moving stanza 
window, which is what will be used here. 

Briefly, a moving stanza window is a sliding window of fixed length that moves 
through a conversation to detect and accumulate code co-occurrences in recent 
temporal context. The lines within a designated stanza window are considered 
related to each other. For instance, if the moving stanza window is 7, then each 
line in the conversation is linked to the six preceding lines. See Siebert-Evenstone 
et al. [18] and Ruis et al. [19] for more detailed explanations of windows in ENA 
models. 

Here, set the window.size.back1 parameter equal to 7. User can specify a dif-
ferent moving stanza window size by passing a different numerical value to the 
‘window.size.back‘ parameter. 

window.size.back = 7 

3.3.5 Specify Groups and Rotation Method 

When specifying the units, we chose a column that indicates two conditions: 
FirstGame (novice group) and SecondGame (relative expert group). To enable 
comparison of students in these two conditions, three additional parameters need 
to be specified: groupVar, groups, and mean. 

1 The ENA package also enables use of an infinite stanza window. The infinite stanza window 
works the same way as a moving stanza window, but there is no limit on the number of previous 
lines that are included in the window besides the conversation itself. The infinite stanza window is 
less commonly used in ENA, but is specified as follows: window.size.back = “INF”.
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groupVar = "Condition" # "Condition" is the column used as our grouping varia 
ble 
groups = c("FirstGame", "SecondGame") # "FirstGame" and "SecondGame" are the 
two unique values of the "Condition" column 
mean = TRUE 

These three parameters indicate that when building the ENA model, the first 
dimension will maximize the difference between the two conditions: FirstGame and 
SecondGame. This difference maximization is achieved through mean = TRUE, 
which specifies that a means rotation will be performed at the dimensional reduction 
stage. If the means rotation is set to FALSE or there aren’t two distinct groups 
in your data and you still set mean as TRUE, ENA will by default use singular 
value decomposition (SVD) to perform the dimensional reduction. Bowman et al. 
[2] provide a mathematical explanation of the methods used in ENA to perform 
dimensional reductions. 

3.3.6 Specify Metadata 

The last parameter to be specified is metadata. Metadata columns are not required 
to construct an ENA model, but they provide information that can be used to subset 
units in the resulting model. 

Specify the metadata columns shown below to include data on student outcomes 
related to reported self-confidence before and after participating in engineering 
virtual internships. We will use this data to demonstrate a simple linear regression 
analysis that can be done using ENA outputs as predictors. 

metaCols = c("CONFIDENCE.Change","CONFIDENCE.Pre","CONFIDENCE.Post","C.Change 
") # optional 

3.3.7 Construct an Model 

Now that all the essential parameters have been specified, the ENA model can be 
constructed. 

The ena function constructs the ENA model, and we recommend that you store 
the output in an object (in this case, set.ena). 

set.ena = 
ena( 
data = data, 
units = unitCols, 
codes = codeCols, 
conversation = conversationCols, 
window.size.back = 7, 
metadata = metaCols, # optional 
groupVar = groupVar, 
groups = groups, 
mean = TRUE 
)
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As noted above, the ena helper function combines the functions ena.accumu 
late.data and ena.make.set. The following code will construct the same ENA 
model specified above using these two functions. 

accum.ena = 
ena.accumulate.data( 
text_data = RS.data[, 'text'], 
units = data[,unitCols], 
conversation = data[,conversationCols], 
metadata = data[,metaCols], # optional 
codes = data[,codeCols], 

window.size.back = 7 
) 

set.ena = 
ena.make.set( 
enadata = accum.ena, # the accumulation ran above 
rotation.by = ena.rotate.by.mean, # equivalent of mean=TRUE in the ena fu 

nction 
rotation.params = list( 
accum.ena$meta.data$Condition=="FirstGame", # equivalent of groups in t 

he ena function 
accum.ena$meta.data$Condition=="SecondGame" # equivalent of groups in t 

he ena function 
) 

) 

3.4 Summary of Key Model Outputs 

Users can explore what is stored in the object set by typing set$ and select items 
from the drop down list. Here, we briefly describe the top-level items in set that are 
often of interest. 

3.4.1 Connection Counts 

Connection counts are the frequencies of unique connections a unit made. For 
each unit, ENA creates a cumulative adjacency vector that contains the sums of 
all unique code co-occurrences for that unit across all stanza windows. Here, there 
are 48 units in the ENA model, so there are 48 adjacency vectors. Each term in an 
ENA adjacency vector represents a unique co-occurrence of codes. Thus with six 
codes, each vector has 15 terms (n choose two). This is because ENA models are 
undirected and do not model co-occurrences of the same code. 

To access ENA adjacency vectors, use set.ena$connection.counts.



head(set.ena$connection.counts,3) 

##                 ENA_UNIT Condition    UserName CONFIDENCE.Change CONFIDENC 
E.Pre 
## 1:    FirstGame.steven z FirstGame    steven z                 1 
7 
## 2:     FirstGame.akash v FirstGame     akash v                 2 
6 
## 3: FirstGame.alexander b FirstGame alexander b                 1 
5 
##    CONFIDENCE.Post   C.Change Data & Technical.Constraints 
## 1:               8 Pos.Change                           22 
## 2:               8 Pos.Change                        47 
## 3:               7 Pos.Change                            9 
##    Data & Performance.Parameters Technical.Constraints & Performance.Param 
eters 

## 1:                            18 
20 
## 2:                            34 
42 
## 3:                             5 
8 
##    Data & Client.and.Consultant.Requests 
## 1:                                     5 
## 2:                                    10 
## 3:                                     5 
##    Technical.Constraints & Client.and.Consultant.Requests 
## 1:                     6 
## 2:                                                     14 
## 3:                                                      3 
##    Performance.Parameters & Client.and.Consultant.Requests 
## 1:                                                       5 
## 2:                                                      13 
## 3:                                                       3 
##    Data & Design.Reasoning Technical.Constraints & Design.Reasoning 
## 1:                      21                                       26 
## 2:                      45                                       59 
## 3:                       5                            8 
##    Performance.Parameters & Design.Reasoning 
## 1:                                        19 
## 2:                                        38 
## 3:                                         5 
##    Client.and.Consultant.Requests & Design.Reasoning Data & Collaboration 
## 1:                                                 6                    7 
## 2:                                                 9                   12 
## 3:                                                 2                    4 
##    Technical.Constraints & Collaboration Performance.Parameters & Collabor 
ation 
## 1:                                     9 
7 
## 2:                                    21 
11 
## 3:                                     6 
4 
##    Client.and.Consultant.Requests & Collaboration 
## 1:                                              1 
## 2:                                              2 
## 3:              0 
##    Design.Reasoning & Collaboration 
## 1:                                6 
## 2:                               19 
## 3:                                5



Epistemic Network Analysis and Ordered Network Analysis in Learning Analytics 579

3.4.2 Line Weights 

To compare networks in terms of their relative patterns of association, researchers 
can spherically normalize the cumulative adjacency vectors by diving each one by its 
length. The resulting normalized vectors represent each unit’s relative frequencies 
of code co-occurrence. In other words, the sphere normalization controls for the fact 
that different units might have different amounts of interaction or different numbers 
of activities than others. 

Notice that in set.ena$connection.counts, the value for each unique 
code co-occurrence is an integer equal or greater than 0, because they 
represent the raw connection counts between each unique pair of codes. In 
set.“ena“$line.weights, those raw counts are normalized, and therefore the 
values are rational numbers between 0 and 1. 

To access the normalized adjacency vectors, use set.ena$line.weights. 

head(set.ena$line.weights,3) 

##                 ENA_UNIT Condition    UserName CONFIDENCE.Change CONFIDENC 
E.Pre 
## 1:    FirstGame.steven z FirstGame    steven z                 1 
7 
## 2:     FirstGame.akash v FirstGame     akash v                 2 
6 
## 3: FirstGame.alexander b FirstGame alexander b                 1 
5 
##    CONFIDENCE.Post   C.Change Data & Technical.Constraints 
## 1:               8 Pos.Change                    0.4000661 
## 2:               8 Pos.Change                    0.4016067 
## 3:               7 Pos.Change                    0.4370786 
##    Data & Performance.Parameters Technical.Constraints & Performance.Param 
eters 
## 1:                    0.3273268                                      0.36 
36965 
## 2:                     0.2905240                                      0.35 
88826 
## 3:                     0.2428215                                      0.38 
85143 
##    Data & Client.and.Consultant.Requests 
## 1:                            0.09092412 
## 2:                            0.08544824 
## 3:                            0.24282147 
##    Technical.Constraints & Client.and.Consultant.Requests 
## 1:                                              0.1091089 
## 2:                                              0.1196275 
## 3:                                              0.1456929 
##    Performance.Parameters & Client.and.Consultant.Requests 
## 1:                                              0.09092412 
## 2:                                              0.11108271 
## 3:                                              0.14569288
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##    Data & Design.Reasoning Technical.Constraints & Design.Reasoning 
## 1:               0.3818813                                0.4728054 
## 2:               0.3845171                                0.5041446 
## 3:               0.2428215                                0.3885143 
##    Performance.Parameters & Design.Reasoning 
## 1:                                 0.3455117 
## 2:                                 0.3247033 
## 3:                                 0.2428215 
##    Client.and.Consultant.Requests & Design.Reasoning Data & Collaboration 
## 1:                                        0.10910895            0.1272938 
## 2:                                        0.07690342            0.1025379 
## 3:                                        0.09712859            0.1942572 
##    Technical.Constraints & Collaboration Performance.Parameters & Collabor 
ation 
## 1:                             0.1636634                             0.127 
29377 
## 2:                             0.1794413                             0.093 
99306 
## 3:                             0.2913858                             0.194 
25717 
##    Client.and.Consultant.Requests & Collaboration 
## 1:                                     0.01818482 
## 2:                                     0.01708965 
## 3:                                     0.00000000 
##    Design.Reasoning & Collaboration 
## 1:                        0.1091089 
## 2:                        0.1623517 
## 3:                        0.2428215 

3.4.3 ENA Points 

As the product of a dimensional reduction, for each unit, ENA produces an ENA 
point in a two-dimensional space. Since there are 48 units, ENA produces 48 ENA 
points. 

By default, rENA visualizes ENA points on an x-y coordinate plane defined by 
the first two dimensions of the dimensional reduction: for a means rotation, MR1 
and SVD2, and for an SVD, SVD1 and SVD2. 

To access these points, use set.ena$points. 

head(set.ena$points,3) 

##                 ENA_UNIT Condition    UserName CONFIDENCE.Change CONFIDENC 
E.Pre 
## 1:    FirstGame.steven z FirstGame    steven z                 1 
7 
## 2:     FirstGame.akash v FirstGame     akash v                 2 
6 
## 3: FirstGame.alexander b FirstGame alexander b                 1 
5 
##    CONFIDENCE.Post   C.Change         MR1         SVD2        SVD3
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## 1:               8 Pos.Change -0.05423338 -0.008491458  0.06551249 
## 2:               8 Pos.Change -0.07742095  0.031134440  0.03362490 
## 3:               7 Pos.Change -0.30594927 -0.098348499 -0.01105519 
##             SVD4         SVD5        SVD6         SVD7        SVD8         
SVD9 
## 1:  2.034477e-02  0.011885463 -0.02427483 -0.023161244 -0.01643227 -0.0128 
85771 
## 2: -2.531589e-05  0.006465571  0.01336324  0.001215593 -0.01390223  0.0040 
71313 
## 3:  9.816549e-02 -0.003662261  0.07609149  0.077059745 -0.09198643 -0.0624 
49678 
##          SVD10        SVD11        SVD12        SVD13       SVD14       SV 
D15 
## 1: -0.01169155  0.005448827 -0.027880312 -0.006140204  0.01230336  0.01989 
532 
## 2: -0.04017379  0.035710843 -0.011559722  0.002192745  0.02967617 -0.01100 
021 
## 3: -0.01146149 -0.031675014  0.003382794  0.026665665 -0.01779259 -0.01083 
445 

ENA points are thus summary statistics that researchers can use to conduct 
statistical tests, and they can also be used in subsequent analyses. For example, 
statistical differences between groups in the data can be tested using ENA dimension 
scores, and those scores can also be used in regression analyses to predict outcome 
variables, which we will demonstrate later. 

3.4.4 Rotation Matrix 

The rotation matrix used during the dimensional reduction can be accessed through 
set.ena$rotation. This is mostly useful when you want to construct an ENA 
metric space using one dataset and then project ENA points from different data into 
that space, as in Sect. 5.1. 

head(set.ena$rotation.matrix,3) 

##                                             codes          MR1         SVD 
2 
## 1:                   Data & Technical.Constraints -0.297140113  0.25542803 
7 
## 2:                  Data & Performance.Parameters  0.146745148 -0.40786334 
0 
## 3: Technical.Constraints & Performance.Parameters  0.006251295 -0.00672433 
8 
##          SVD3      SVD4        SVD5        SVD6       SVD7        SVD8 
## 1:  0.4027380 0.1829314 -0.18841712 -0.22238612  0.3539426 -0.04618008 
## 2:  0.4998255 0.1655853 -0.01271575  0.02831357 -0.5461929 -0.19336181 
## 3: -0.0357799 0.4901334  0.29999562  0.27301947  0.1197999  0.45958816 
##          SVD9      SVD10       SVD11         SVD12      SVD13      SVD14 
## 1: 0.39593034  0.3556577 -0.03738872 -0.0005144122 0.30025177 0.24188117 
## 2: 0.27237864 -0.1917366  0.18450254 -0.1247520324 0.17795795 0.06161493
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## 3: 0.01614337 -0.2375881 -0.25630008 -0.3668342035 0.05404011 0.25435787 
##         SVD15 
## 1: 0.07161604 
## 2: 0.04655934 
## 3: 0.20907031 

3.4.5 Metadata 

set$meta.data returns a data frame that includes all the columns of the ENA set 
except for the columns representing code co-occurrences. 

head(set.ena$meta.data,3) 

##                 ENA_UNIT Condition    UserName CONFIDENCE.Change CONFIDENC 
E.Pre 
## 1:    FirstGame.steven z FirstGame    steven z                 1 
7 
## 2:     FirstGame.akash v FirstGame     akash v                 2 
6 
## 3: FirstGame.alexander b FirstGame alexander b                 1 
5 
##    CONFIDENCE.Post   C.Change 
## 1:               8 Pos.Change 
## 2:               8 Pos.Change 
## 3:               7 Pos.Change 

3.5 ENA Visualization 

Once an ENA set is constructed, it can be visualized, which facilitates interpretation 
of the model. Here, we will look at the two conditions, “FirstGame” (novices) and 
“SecondGame” (relative experts), by plotting their mean networks. 

3.5.1 Plot a Mean Network 

To plot a network, use the ena.plot.network function. This function requires the 
network parameter (a character vector of line weights), and the line weights come 
from set$line.weights. 

First, subset line weights for each of the two groups. 

# Subset lineweights for FirstGame 
first.game.lineweights = as.matrix(set.ena$line.weights$Condition$FirstGame) 

# Subset lineweights for SecondGame 
second.game.lineweights = as.matrix(set.ena$line.weights$Condition$SecondGame)
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Fig. 1 ENA mean network 
for FirstGame group 

Next, calculate the mean networks for the two groups, and store the line weights 
as vectors. 

first.game.mean = as.vector(colMeans(first.game.lineweights)) 
second.game.mean = as.vector(colMeans(second.game.lineweights)) 

During plotting, use a pipe | > to send the output of one function into the first 
parameter of the subsequent function. To distinguish the two mean networks, set the 
color of the FirstGame mean network to red (Fig. 1) .  

ena.plot(set.ena, title = "FirstGame mean plot")  |> 
ena.plot.network(network = first.game.mean, colors = c("red")) 

and the color of the SecondGame mean network to blue (Fig. 2). 

ena.plot(set.ena, title = "SecondGame mean plot")  |> 
ena.plot.network(network = second.game.mean, colors = c("blue")) 

As you can see from the two network visualizations above, their node positions 
are exactly same. All ENA networks from the same model have the same node 
positions, which are determined by an optimization routine that attempts to place 
the nodes such that the centroid of each unit’s network and the location of the ENA 
point in the reduced space are co-located. 

Because of the fixed node positions, ENA can construct a subtracted network, 
which enables the identification of the most salient differences between two 
networks. To do this, ENA subtracts the weight of each connection in one network 
from the corresponding weighted connection in another network, then visualizes the 
differences in connection strengths. Each edge is color-coded to indicate which of
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Fig. 2 ENA mean network for SecondGame group 

the two networks contains the stronger connection, and the thickness and saturation 
of the edges corresponds to the magnitude of the difference. 

To plot a subtracted network, first calculate the subtracted network line weights 
by subtracting one group’s line weights from the other. (Because ENA computes the 
absolute values of the differences in edge weights, the order of the two networks in 
the subtraction doesn’t matter.) 

subtracted.mean = first.game.mean - second.game.mean 

Then, use the ena.plot function to plot the subtracted network. If the differences 
are relatively small, a multiplier can be applied to rescale the line weights, 
improving legibility (Fig. 3). 

ena.plot(set.ena, title = "Subtracted: FirstGame (red) - SecondGame (blue)") 
|> 
ena.plot.network(network = subtracted.mean * 5, # Optional rescaling of the 

line weights 
colors = c("red", "blue")) 

Here, the subtracted network shows that on average, students in the FirstGame 
condition (red) made more connections with Technical.Constraints and Collab-
oration than students in the SecondGame condition (blue), while students in 
the SecondGame condition made more connections with Design.Reasoning and 
Performance.Parameters than students in the FirstGame condition. This is because
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Fig. 3 ENA subtracted mean network for FirstGame (red) and SecondGame (blue) 

students with more experience of engineering design practices did not need to spend 
as much time and effort managing the collaborative process and learning about the 
basic technical elements of the problem space, and instead spent relatively more 
time focusing on more complex analysis and design reasoning tasks. 

Note that this subtracted network shows no connection between Techni-
cal.Constraints and Design.Reasoning, simply because the strength of this 
connection was similar in both conditions. Thus, subtraction networks should 
always be visualized along with with the two networks being subtracted. 

3.5.2 Plot a Mean Network and its Points 

The ENA point or points associated with a network or mean network can also be 
visualized. 

To visualize the points associated with each of the mean networks plotted above, 
use set$points to subset the rows that are in each condition and plot each 
condition as a different color. 

# Subset rotated points for the first condition 
first.game.points = as.matrix(set.ena$points$Condition$FirstGame) 

# Subset rotated points for the second condition 
second.game.points = as.matrix(set.ena$points$Condition$SecondGame)
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Then, plot the FirstGame mean network the same as above using ena.plot.network, 
use | > to pipe in the FirstGame points that we want to include, and plot them using 
ena.plot.points. 

Each point in the space is the ENA point for a given unit. The red and blue 
squares on the x-axis are the means of the ENA points for each condition, along 
with the 95% confidence interval on each dimension. (might need to zoom in for 
better readability). 

Since we used a means rotation to construct the ENA model, the resulting space 
highlights the differences between FirstGame and SecondGame by constructing a 
rotation that places the means of each condition as close as possible to the x-axis of 
the space and maximizes the distance between them (Figs. 4, 5, 6, 7, and 8). 

Fig. 4 FirstGame ENA 
points (dots), mean point 
(square), and confidence 
interval (box) 

Fig. 5 FirstGame ENA mean network and points



Epistemic Network Analysis and Ordered Network Analysis in Learning Analytics 587 

Fig. 6 SecondGame ENA 
points (dots), mean point 
(square), and confidence 
interval (box) 

Fig. 7 SecondGame ENA mean network and points 

ena.plot(set.ena, title = " points (dots), mean point (square), and confidenc 
e interval (box)") |> 

ena.plot.points(points = first.game.points, colors = c("red")) |> 
ena.plot.group(point = first.game.points, colors =c("red"), 

confidence.interval = "box") 

ena.plot(set.ena, title = "FirstGame mean network and its points") |> 
ena.plot.network(network = first.game.mean, colors = c("red")) |> 
ena.plot.points(points = first.game.points, colors = c("red")) |> 
ena.plot.group(point = first.game.points, colors =c("red"), 

confidence.interval = "box")



588 Y. Tan et al.

Fig. 8 ENA subtracted mean network for FirstGame (blue) and SecondGame (red) 

Then, do the same for the SecondGame condition. 

ena.plot(set.ena, title = " points (dots), mean point (square), and confidenc 
e interval (box)") |> 

ena.plot.points(points = second.game.points, colors = c("blue")) |> 
ena.plot.group(point = second.game.points, colors =c("blue"), 

confidence.interval = "box") 

ena.plot(set.ena, title = "SecondGame mean network and its points") |> 
ena.plot.network(network = second.game.mean, colors = c("blue")) |> 
ena.plot.points(points = second.game.points, colors = c("blue")) |> 
ena.plot.group(point = second.game.points, colors =c("blue"), 

confidence.interval = "box") 

Lastly, do the same for subtraction as well. 

ena.plot(set.ena, title = "Subtracted mean network: FirstGame (red) - SecondG 
ame (blue)")  |> 

ena.plot.network(network = subtracted.mean * 5, 
colors = c("red", "blue")) |> 
ena.plot.points(points = first.game.points, colors = c("red")) |> 
ena.plot.group(point = first.game.points, colors =c("red"), 

confidence.interval = "box") |> 
ena.plot.points(points = second.game.points, colors = c("blue")) |> 
ena.plot.group(point = second.game.points, colors =c("blue"), 

confidence.interval = "box")
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Note that the majority of the red points (FirstGame) are located on the left side of 
the space, and the blue points (SecondGame) are mostly located on the right side of 
the space. This is consistent with the line weights distribution in the mean network: 
the FirstGame units make relatively more connections with nodes on the left side 
of the space, while the SecondGame units make relatively more connections with 
nodes on the right side of the space. The positions of the nodes enable interpretation 
of the dimensions, and thus interpretation of the locations of the ENA points. 

3.5.3 Plot an Individual Unit Network and its Point 

Plotting the network and ENA point for a single unit uses the same approach. First, 
subset the line weights and point for a given unit. 

unit.A.line.weights = as.matrix(set.ena$line.weights$ENA_UNIT$`FirstGame.stev 
en z`) # subset line weights 
unit.A.point = as.matrix(set.ena$points$ENA_UNIT$`FirstGame.steven z`) # subs 
et ENA point 

Then, plot the network and point for that unit (Fig. 9). 

ena.plot(set.ena, title = "Individual network: FirstGame.steven z") |> 
ena.plot.network(network = unit.A.line.weights, colors = c("red")) 

|> 
ena.plot.points(points = unit.A.point, colors = c("red")) 

Following the exact same procedure, we can, for example, choose a unit from 
the other condition to plot and also construct a subtracted plot for those two units 
(Fig. 10). 

unit.B.line.weights = as.matrix(set.ena$line.weights$ENA_UNIT$`SecondGame.sam 
uel o`) # subset line weights 
unit.B.point = as.matrix(set.ena$points$ENA_UNIT$`SecondGame.samuel o`) # sub 
set ENA point 

ena.plot(set.ena, title = "Individual network: SecondGame.samuel o") |> 
ena.plot.network(network = unit.B.line.weights, colors = c("blue")) 

|> 
ena.plot.points(points = unit.B.point, colors = c("blue"))
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Fig. 9 EAN network for a student from FirstGame and its corresponding ENA point 

Fig. 10 ENA network for a student from SecondGame and its corresponding ENA point 

To visually analyze the differences between the two individual networks, plot 
their subtracted network (Fig. 11).
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Fig. 11 ENA subtracted network showing the differences between one student from FirstGame 
(red) and another student from SecondGame (blue) 

ena.plot(set.ena, title = "Subtracted network: FirstGame.steven z (red) - Sec 
ondGame.samuel o (blue)")  |> 

ena.plot.network(network = (unit.A.line.weights - unit.B.line.weigh 
ts) * 5, 

colors = c("red", "blue")) |> 
ena.plot.points(points = unit.A.point, colors = c("red")) |> 
ena.plot.points(points = unit.B.point, colors = c("blue")) 

In this unit-level subtracted network, Unit A (red) made relatively more con-
nections with codes such as Technical.Constraints, Data, and Collaboration, while 
Unit B (blue) made relatively more connections with Design.Reasoning and Perfor-
mance.Parameters. 

3.5.4 Plot Everything, Everywhere, All at Once 

The helper function ena.plotter enables users to plot points, means, and networks 
for each condition at the same time. This gives the same results as above more 
parsimoniously. However, this approach does not enable customization of edge and 
point colors. 

#with helper function 
plot = ena.plotter(set.ena, 

points = T, 
mean = T, 
network = T, 
print.plots = T, 
groupVar = "Condition", 
groups = c("SecondGame","FirstGame"), 
subtractionMultiplier = 5)
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3.6 Compare Groups Statistically 

In addition to visual comparison of networks, ENA points can be analyzed 
statistically. For example, here we might test whether the patterns of association 
in one condition are significantly different from those in the other condition. 

To demonstrate both parametric and non-parametric approaches to this question, 
the examples below use a Student’s t test and a Mann-Whitney U test to test 
for differences between the FirstGame and SecondGame condition. For more on 
differences between parametric and non-parametric tests, see Kaur and Kumar [20]. 

First, install the lsr package to enable calculation of effect size (Cohen’s d) for  
the t test. 

install.packages('lsr') 
library(lsr) 

Then, subset the points to test for differences between the points of the two 
conditions. 

ena_first_points_d1 = as.matrix(set.ena$points$Condition$FirstGame)[,1] 
ena_second_points_d1 = as.matrix(set.ena$points$Condition$SecondGame)[,1] 

ena_first_points_d2 = as.matrix(set.ena$points$Condition$FirstGame)[,2] 
ena_second_points_d2 = as.matrix(set.ena$points$Condition$SecondGame)[,2] 

Conduct the t test on the first and second dimensions. 

# parametric tests 
t_test_d1 = t.test(ena_first_points_d1, ena_second_points_d1) 
t_test_d1 

## 
##  Welch Two Sample t-test 
## 
## data:  ena_first_points_d1 and ena_second_points_d1 
## t = -6.5183, df = 45.309, p-value = 5.144e-08 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  -0.2687818 -0.1419056 
## sample estimates: 
##   mean of x   mean of y 
## -0.09411588  0.11122786 

t_test_d2 = t.test(ena_first_points_d2, ena_second_points_d2) 
t_test_d2 

## 
##  Welch Two Sample t-test 
## 
## data:  ena_first_points_d2 and ena_second_points_d2 
## t = 1.9334e-16, df = 43.175, p-value = 1 
## alternative hypothesis: true difference in means is not equal to 0
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## 95 percent confidence interval: 
##  -0.07768526  0.07768526 
## sample estimates: 
##     mean of x     mean of y 
##  1.935145e-19 -7.254914e-18 

Compute any other statistics that may be of interest. A few examples are given 
below. 

mean(ena_first_points_d1) 

## [1] -0.09411588 

mean(ena_second_points_d1) 

## [1] 0.1112279 

mean(ena_first_points_d2) 

## [1] 1.935145e-19 

mean(ena_second_points_d2) 

## [1] -7.254914e-18 

sd(ena_first_points_d1) 

## [1] 0.1115173 

sd(ena_second_points_d1) 

## [1] 0.1063515 

sd(ena_first_points_d2) 

## [1] 0.1267104 

sd(ena_second_points_d2) 

## [1] 0.1380851 

length(ena_first_points_d1) 

## [1] 26 

length(ena_second_points_d1) 

## [1] 22 

length(ena_first_points_d2) 

## [1] 26 

length(ena_second_points_d2) 

## [1] 22
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cohensD(ena_first_points_d1, ena_second_points_d1) 

## [1] 1.880622 

cohensD(ena_first_points_d2, ena_second_points_d2) 

## [1] 5.641688e-17 

Here, along the x axis (MR1), a two-sample t test assuming unequal variance 
shows that the FirstGame (mean = −0.09, SD = 0.11, N = 26) condition is 
statistically significantly different for alpha = 0.05 from the SecondGame condition 
(mean = 0.11, SD = 0.10, N = 22; t(45.31) = −6.52, p = 0.00, Cohen’s 
d = 1.88). Along the y axis (SVD2), a two-sample t test assuming unequal variance 
shows that the FirstGame condition (mean = 0.11, SD = 0.13, N = 26) is not 
statistically significantly different for alpha = 0.05 from the SecondGame condition 
(mean = 0.00, SD = 1.3, N = 22; t(43.17) = 0, p = 1.00). 

The Mann-Whitney U test is a non-parametric alternative to the independent 
two-sample t test. 

First, install the rcompanion package to calculate the effect size (r) for a Mann-
Whitney U test. 

install.packages('rcompanion') 
library(rcompanion) 

Then, conduct a Mann-Whitney U test on the first and second dimensions. 

# non parametric tests 
w_test_d1 = wilcox.test(ena_first_points_d1, ena_second_points_d1) 
w_test_d2 = wilcox.test(ena_first_points_d2, ena_second_points_d2) 

w_test_d1 

## 
##  Wilcoxon rank sum exact test 
## 
## data:  ena_first_points_d1 and ena_second_points_d1 
## W = 50, p-value = 8.788e-08 
## alternative hypothesis: true location shift is not equal to 0 

w_test_d2 

## 
##  Wilcoxon rank sum exact test 
## 
## data:  ena_first_points_d2 and ena_second_points_d2 
## W = 287, p-value = 0.9918 
## alternative hypothesis: true location shift is not equal to 0 

Compute any other statistics that may be of interest. A few examples are given 
below.
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median(ena_first_points_d1) 

## [1] -0.08464154 

median(ena_second_points_d1) 

## [1] 0.1300029 

median(ena_first_points_d2) 

## [1] -0.007252397 

median(ena_second_points_d2) 

## [1] 0.0003031848 

length(ena_first_points_d1) 

## [1] 26 

length(ena_second_points_d1) 

## [1] 22 

length(ena_first_points_d2) 

## [1] 26 

length(ena_second_points_d2) 

## [1] 22 

abs(wilcoxonR(ena_first_points_d1, ena_second_points_d1)) 

##     r 
## 0.863 

abs(wilcoxonR(ena_first_points_d2, ena_second_points_d2)) 

##     r 
## 0.863 

Here, along the x axis (MR1), a Mann-Whitney U test shows that the FirstGame 
condition (Mdn = −0.08, N = 26) was statistically significantly different for 
alpha = 0.05 from the SecondGame condition (Mdn = −0.007, N = 22; U = 50, 
p = 0.00, r = 0.86). Along the y axis (SVD2), a Mann-Whitney U test shows that 
the FirstGame condition (Mdn = 0.13, N = 26) is not statistically significantly 
different for alpha = 0.05 from the SecondGame condition (Mdn = 0.00, N = 22; 
U = 287, p = 0.99). The absolute value of r value in Mann-Whitney U test varies 
from 0 to close to 1. The interpretation values for r commonly in published literature 
is: 0.10 - < 0.3 (small effect), 0.30 - < 0.5 (moderate effect) and > = 0.5 
(large effect).
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3.7 Model Evaluation 

In this section, we introduce three ways users can evaluate the quality of their ENA 
models. 

3.7.1 Variance Explained 

Briefly, variance explained (also called explained variation) refers to the proportion 
of the total variance in a dataset that is accounted for by a statistical model or set of 
predictors. 

In ENA, to represent high-dimensional vectors in a two-dimensional space, ENA 
uses either singular value decomposition or means rotation combined with SVD. 
For each of the reduced dimensions, the variance in patterns of association among 
units explained by that dimension can be computed. 

head(set.ena$model$variance,2) 

##       MR1      SVD2 
## 0.3204602 0.2445006 

Here, the first dimension is MR1 and the second dimension is SVD2. The MR1 
dimension has the highest variance explained at 32%. 

As with any statstical model, greater explained variance does not necessarily 
indicate a better model, as it may be due to overfitting, but it provides one indicator 
of model quality. 

3.7.2 Goodness of Fit 

Briefly, a model’s goodness of fit refers to how well a model fits or represents the 
data. A model with a high goodness of fit indicates that it accurately represents the 
data and can make reliable predictions. 

In ENA, a good fit means that the positions of the nodes in the space—and thus 
the network visualizations—are consistent with the mathematical properties of the 
model. In other words, we can confidently rely on the network visualizations to 
interpret the ENA model. The process that ENA uses to achieve high goodness of fit 
is called co-registration. The mathematical details of co-registration are beyond the 
scope of this chapter and can be found in Bowman et al. [2]. 

To test a model’s goodness of fit, use ena.correlations. The closer the value 
is to 1, the higher the model’s goodness of fit is. Most ENA models have a goodness 
of fit that is well above 0.90.
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ena.correlations(set.ena) 

##     pearson  spearman 
## 1  0.993766  0.994119 
## 2 0.9850392 0.9850519 

3.7.3 Close the Interpretative Loop 

Another approach to evaluate an ENA model is to confirm the alignment between 
quantitative model (in our case, our ENA model) and the original qualitative data. In 
other words, we can return to the original data to confirm that quantitative findings 
give a fair representation of the data. This approach is an example of what’s called 
as closing the interpretative loop in Quantitative Ethnography field [1]. 

For example, based on our visual analysis of the network of “Sec-
ondGame.samuel o” in previous section, we are interested in what the lines are 
in the original data that contributed to the connection between Design.Reasoning 
and Performance.Parameters. 

Let’s first review what “SecondGame.samuel o” ENA network looks like 
(Fig. 12). 

ena.plot(set.ena, title = "Individual network: SecondGame.samuel o") |> 
ena.plot.network(network = as.matrix(set.ena$line.weights$ENA_UNIT$ 

`SecondGame.samuel o`), colors = c("blue")) |> 
ena.plot.points(points = as.matrix(set.ena$points$ENA_UNIT$`SecondG 

ame.samuel o`), colors = c("blue")) 

To do so, we use view() function and specify required parameters as below. 
This is going to activate a window shows up in your Viewer panel. If it is too 

small to read, you can click on the “Show in new window” button to view it in your 
browser for better readability. 

In the Viewer panel, hover over your cursor on any of the lines that are in bold, 
a size of 7 lines rectangle shows up, representing that in a moving stanza window 
of size 7, the referent line (the line in bold) and its preceding 6 lines. The 1 and 
0 in Technical.Constraints column and Design.Reasoning column shows where the 
connections happened (Fig. 13). 

For example, line 2477 Samuel shared his [Design.Reasoning] about “mindful of 
(the) how one device scores relative to other ones”, to reference back to what Casey 
said in line 2476 about [Performance.Parameters] “not one source/censor can be the 
best in every area so we had to sacrifice certain attributes”, as well as what Jackson 
said in line 2475 about safety as one of the [Performance.Parameters] “when it came 
to the different attributes, i think that all were important in their own way but i think 
safety is one of the most important”. 

This is a qualitative example of a connection made between Perfor-
mance.Parameters and Design.Reasoning.
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Fig. 12 ENA network for Samuel O from SecondGame 

Fig. 13 A screenshot of the view() function result. The highlighted lines represent lines within the 
same stanza window 

3.8 Using ENA Model Outputs in Other Analyses 

It is often useful to use the outputs of ENA models in subsequent analyses. The 
most commonly used outputs are the ENA points, i.e., set$points. For example, 
we can use a linear regression analysis to test whether ENA points on the first two 
dimensions are predictive of an outcome variable, in this case, change in confidence 
in engineering skills.
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regression_data = set.ena$points 
regression_data$CONFIDENCE.Change = as.numeric(regression_data$CONFIDENCE.Cha 
nge) 

## Warning: NAs introduced by coercion 

condition_regression = lm(CONFIDENCE.Change ~ MR1 + SVD2 + Condition, 
data = regression_data, 
na.action = na.omit) 

summary(condition_regression) 

## 
## Call: 
## lm(formula = CONFIDENCE.Change ~ MR1 + SVD2 + Condition, data = regression 
_data, 
##     na.action = na.omit) 
## 
## Residuals: 
##      Min       1Q   Median       3Q      Max 

## -1.18092 -0.24324 -0.08171  0.30716  1.88404 
## 
## Coefficients: 
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           1.1111     0.1490   7.457 2.82e-09 *** 
## MR1                  -0.4540     0.8616  -0.527    0.601    
## SVD2                  0.3268     0.7154   0.457    0.650    
## ConditionSecondGame  -0.3484     0.2566  -1.358    0.182    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## Residual standard error: 0.6374 on 43 degrees of freedom 
##   (1 observation deleted due to missingness) 
## Multiple R-squared:  0.1228, Adjusted R-squared:  0.0616 
## F-statistic: 2.007 on 3 and 43 DF,  p-value: 0.1273 

The results of this regression analysis show that ENA points are not a significant 
predictor of the students’ pre-post change in confidence (MR1: t = −0.53, p = 0.60; 
SVD2: t = 0.46, p = 0.65; Condition: t = −1.36, p = 0.18). The overall model was 
also not significant (F(3, 43) = 2.01, p = 0.13) with an adjusted r-squared value of 
0.06. 

Recall that the dataset we are using is a small subset of the full RS.data, and 
thus results that are significant for the whole dataset may not be for this sample. 

4 Ordered Network Analysis with R 

This section demonstrates how to conduct an ONA analysis using the ona R 
package. If you are new to ONA as an analytic technique, Tan et al. [12] provides a 
more detailed explication of its theoretical and methodological foundations.
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Because ONA shares some conceptual and procedural similarities with ENA, you 
may also want to read the recommended papers from the ENA section [1, 2, 14]. 

4.1 Install the ONA Package and Load the Library 

Install the ona package and load the ona library after installing. 

install.packages("ona", repos = c("https://cran.qe-libs.org", 
"https://cran.rstudio.org")) 

library(ona) 

Then, install the other package that is required for ONA analysis. 

install.packages("tma", repos = c("https://cran.qe-libs.org", 
"https://cran.rstudio.org")) 

library(tma) 

4.2 Dataset 

(Refer to Sect. 3.2 for a detailed description of the dataset used here.) 
Load the RS.data dataset. 

data = ona::RS.data 

4.3 Construct an ONA Model 

To construct an ONA model, identify which columns in the data to use for the 
parameters required by the ONA modeling function. The parameters are defined 
identically in both ENA and ONA; see Sect. 3.3 for detailed explanations. 

4.3.1 Specify Units 

Select the units as in Sect. 3.3.1. 

my_units <- c("Condition", "UserName") 
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4.3.2 Specify Codes 

Select the codes as in Sect. 3.3.2. 

my_codes = c( 
'Data', 
'Technical.Constraints', 
'Performance.Parameters', 
'Client.and.Consultant.Requests', 
'Design.Reasoning', 
'Collaboration') 

4.3.3 Specify Conversations 

The parameter to specify conversations in rENA is called “conversation”; in ONA, 
the equivalent is called “my_hoo_rules”, where “hoo” is an abbreviation of “horizon 
of observation.” 

Choose the combination of “Condition” column, “GroupName” column, and 
“ActivityNumber” column to define the conversation parameter. 

The syntax to specify conversations using my_hoo_rules in ONA is slightly 
different from the syntax to specify conversation in ENA, but the conceptual 
definition is the same. 

my_hoo_rules <- conversation_rules( 
(Condition %in% UNIT$Condition & 
GroupName %in% UNIT$GroupName & 
ActivityNumber %in% UNIT$ActivityNumber)) 

4.3.4 Specify the Window 

Specify a moving stanza window size by passing a numerical value to the 
window_size parameter. 

window_size = 7 

4.3.5 Specify Metadata 

As in ENA, metadata columns can be included if desired. Metadata columns are not 
required to construct an ONA model, but they provide information that can be used 
to subset units in the resulting model. 

metaCols = c("CONFIDENCE.Change","CONFIDENCE.Pre","CONFIDENCE.Post","C.Change 
")
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4.3.6 Accumulate Connections 

Now that all the parameters are specified, connections can be accumulated. For 
each unit, the ONA algorithm uses a moving stanza window to identify connections 
formed from a current line of data (e.g., a turn of talk), or response, to the preceding 
lines within the window (the ground). 

Unlike in ENA, where connections among codes are recorded in a symmetric 
adjacency matrix, ONA accounts for the order in which the connections occur by 
constructing an asymmetric adjacency matrix for each unit; that is, the number of 
connections from code A to code B may be different than the number of connections 
from B to A. 

To accumulate connections, pass the parameters specified to the contexts and 
accumulate_contexts functions, and store the output in an object (in this case, 
accum.ona). 

accum.ona <-
contexts(data, 

units_by = my_units, 
hoo_rules = my_hoo_rules) |> 

accumulate_contexts(codes = my_codes, 
decay.function = decay(simple_window, window_size = 7), 
meta.data = metaCols, 
return.ena.set = FALSE) # keep this as FALSE to get an 

ONA model, otherwise it will return an undirected model) 

4.3.7 Construct an ONA Model 

After accumulation, call the model function to construct an ONA model. ONA 
currently implements singular value decomposition (SVD) and means rotation 
(MR) to perform dimensional reduction. 

To create an ONA model using SVD, pass the accum.ona object to the model 
function. 

set.ona <-
model(accum.ona) 

When there are two discrete groups to compare, a means rotation can be used, as 
described in Sect. 3.3.5. 

A means rotation is specified using rotate.using =“mean” in the model 
function. Additionally, the model function expects rotation.params to be a list 
with two named elements, each containing a logical vector representing the rows of 
units to be included in each group.
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set.ona <-
model(accum.ona,                 # the previously run accumulation above 

rotate.using ="mean",     # means rotation method 
rotation.params = # two groups for means rotation in a list 

list(FirstGame=accum.ona$meta.data$Condition=="FirstGame", 
SecondGame=accum.ona$meta.data$Condition=="SecondGame")   

) 

Here, construct the ONA model as shown below. 

4.4 Summary of Key Model Outputs 

Information about an ONA model is now stored in the R object set.ona. 
As in rENA, users can explore the data stored in the object by typing set.ona$ 

and select items from the drop down list. Here, we briefly explain the top-level items 
in set.ona$. 

4.4.1 Connection Counts 

Because ONA accounts for the order in which the connections occur by constructing 
an asymmetric adjacency matrix for each unit, connection counts from code A to 
code B and from B to A, as well as self-connections for each code (from A to A) 
are recorded. Thus, because six codes were included in the model, the cumulative 
adjacency vector for each unit contains 36 terms (nˆ2). 

head(set.ona$connection.counts,3) 

##    Condition    UserName               ENA_UNIT Data to Data 
## 1: FirstGame    steven z    FirstGame::steven z          26 
## 2: FirstGame     akash v     FirstGame::akash v          72 
## 3: FirstGame alexander b FirstGame::alexander b          11 
##    Technical.Constraints to Data Performance.Parameters to Data 
## 1:                         44.0                            32 
## 2:                        102.5                            66 
## 3:                         21.5                            15 
##    Client.and.Consultant.Requests to Data Design.Reasoning to Data 
## 1:                                    12                      52 
## 2:                                    10                      88
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## 3:                                     4                      14 
##    Collaboration to Data Data to Technical.Constraints 
## 1:                    8                         27.0 
## 2:                   12                        106.5 
## 3:                    1                         11.5 
##    Technical.Constraints to Technical.Constraints 
## 1:                                            63 
## 2:                                           193 
## 3:                                            40 
##    Performance.Parameters to Technical.Constraints 
## 1:                                           29.5 
## 2:                                           90.5 
## 3:                                           15.5 
##    Client.and.Consultant.Requests to Technical.Constraints 
## 1:                                                    8.5 
## 2:                                                   23.5 
## 3:                                                    1.0 
##    Design.Reasoning to Technical.Constraints 
## 1:                                     62.0 
## 2:                                    160.5 
## 3:                                     23.0 
##    Collaboration to Technical.Constraints Data to Performance.Parameters 
## 1:                                  11.0                            24 
## 2:                                  29.0    77 
## 3:                                  15.5                            10 
##    Technical.Constraints to Performance.Parameters 
## 1:                                           35.5 
## 2:                                           91.5 
## 3:                                           17.5 
##    Performance.Parameters to Performance.Parameters 
## 1:                                              34 
## 2:                                              72 
## 3:                              10 
##    Client.and.Consultant.Requests to Performance.Parameters 
## 1:                                                     5.5 
## 2:                                                    20.5 
## 3:                                                     3.0 
##    Design.Reasoning to Performance.Parameters 
## 1:                                        42 
## 2:                                        77 
## 3:                                        14 
##    Collaboration to Performance.Parameters Data to Client.and.Consultant.R 
equests 
## 1:                                    7.5 
6 
## 2:                                   14.5 
18 
## 3:                                    1.0 
5 
##    Technical.Constraints to Client.and.Consultant.Requests
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## 1:                                                    7.5 
## 2:                                                   19.5 
## 3:                                                    7.0 
##    Performance.Parameters to Client.and.Consultant.Requests 
## 1:                                                    11.5 
## 2:                                                    18.5 
## 3:                                                     3.0 
##    Client.and.Consultant.Requests to Client.and.Consultant.Requests 
## 1:                                                               5 
## 2:                                                        12 
## 3:                                                               1 
##    Design.Reasoning to Client.and.Consultant.Requests 
## 1:                                              15.5 
## 2:                                               9.0 
## 3:                                               3.0 
##    Collaboration to Client.and.Consultant.Requests Data to Design.Reasonin 
g 
## 1:                                              2                      19 
## 2:                                              3 86 
## 3:                                              0                      10 
##    Technical.Constraints to Design.Reasoning 
## 1:                                     50.0 
## 2:                                    152.5 
## 3:                                     17.0 
##    Performance.Parameters to Design.Reasoning 
## 1:                                        20 
## 2:                                        69 
## 3:                                         9 
##    Client.and.Consultant.Requests to Design.Reasoning 
## 1:                                               5.5 
## 2:                                              16.0 
## 3:                                               2.0 
##    Design.Reasoning to Design.Reasoning Collaboration to Design.Reasoning 
## 1:                                  59                              6.0 
## 2:                                 136                             33.5 
## 3:                                  19                              4.0 
##    Data to Collaboration Technical.Constraints to Collaboration 
## 1:                    0                                   7.0 
## 2:                   15                                  27.0 
## 3:                    6                                  18.5 
##    Performance.Parameters to Collaboration 
## 1:                                    0.5 
## 2:                                    8.5 
## 3:                                    6.0 
##    Client.and.Consultant.Requests to Collaboration 
## 1:                                              0 
## 2:                                              2 
## 3:                                              0 
##    Design.Reasoning to Collaboration Collaboration to Collaboration 
## 1:                              5.0         0 
## 2:                             42.5                            14 
## 3:                              7.0                             9
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4.4.2 Line Weights 

To compare networks in terms of their relative patterns of association, researchers 
can spherically normalize the cumulative adjacency vectors by diving each one by its 
length. The resulting normalized vectors represent each unit’s relative frequencies 
of code co-occurrence. In other words, the sphere normalization controls for the fact 
that different units might have different amounts of interaction or different numbers 
of activities than others. 

In set.ona$connection.counts, the value for each unique co-occurrence of 
codes is an integer equal or greater than 0, because they represent the directional 
connection counts between each pair of codes. In set.ona$line.weights, the  
connection counts are sphere normalized, and so the values are between 0 and 1. 

head(set.ona$line.weights,3) 

##    Condition    UserName               ENA_UNIT ENA_DIRECTION Data to Data 
## 1: FirstGame    steven z    FirstGame::steven z      response   0.1543564 
## 2: FirstGame     akash v     FirstGame::akash v      response   0.1619657 
## 3: FirstGame alexander b FirstGame::alexander b      response   0.1424314 
##    Technical.Constraints to Data Performance.Parameters to Data 
## 1:                    0.2612185                     0.1899771 
## 2:                    0.2305762                     0.1484686 
## 3: 0.2783886                     0.1942246 
##    Client.and.Consultant.Requests to Data Design.Reasoning to Data 
## 1:                            0.07124140               0.3087127 
## 2:                            0.02249524               0.1979581 
## 3:                            0.05179323               0.1812763 
##    Collaboration to Data Data to Technical.Constraints 
## 1:           0.04749427                    0.1602931 
## 2:           0.02699429                    0.2395743 
## 3:           0.01294831                    0.1489055 
##    Technical.Constraints to Technical.Constraints 
## 1:                                     0.3740173 
## 2:                                     0.4341581 
## 3:                                     0.5179323 
##    Performance.Parameters to Technical.Constraints 
## 1:                                      0.1751351 
## 2:                                      0.2035819 
## 3:                                      0.2006988 
##    Client.and.Consultant.Requests to Technical.Constraints 
## 1:                                             0.05046266 
## 2:                                             0.05286381 
## 3:                                             0.01294831 
##    Design.Reasoning to Technical.Constraints 
## 1: 0.3680806 
## 2:                                0.3610486
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## 3:                                0.2978111 
##    Collaboration to Technical.Constraints Data to Performance.Parameters 
## 1:                            0.06530462                     0.1424828 
## 2:                            0.06523619                     0.1732133 
## 3:                            0.20069875                     0.1294831 
##    Technical.Constraints to Performance.Parameters 
## 1:                                      0.2107558 
## 2:                                      0.2058314 
## 3:  0.2265954 
##    Performance.Parameters to Performance.Parameters 
## 1:                                       0.2018506 
## 2:                                       0.1619657 
## 3:                                       0.1294831 
##    Client.and.Consultant.Requests to Performance.Parameters 
## 1:                                              0.03265231 
## 2:                             0.04611524 
## 3:                                              0.03884492 
##    Design.Reasoning to Performance.Parameters 
## 1:                                 0.2493449 
## 2:                                 0.1732133 
## 3:                                 0.1812763 
##    Collaboration to Performance.Parameters Data to Client.and.Consultant.R 
equests 
## 1:                             0.04452587                            0.035 
62070 
## 2:                             0.03261810                 0.040 
49143 
## 3:                             0.01294831                            0.064 
74153 
##    Technical.Constraints to Client.and.Consultant.Requests 
## 1:                                             0.04452587 
## 2:                                             0.04386571 
## 3:                                             0.09063815 
##    Performance.Parameters to Client.and.Consultant.Requests 
## 1:                                              0.06827301 
## 2:                                0.04161619 
## 3:                                              0.03884492 
##    Client.and.Consultant.Requests to Client.and.Consultant.Requests 
## 1:                                                      0.02968392 
## 2:                                                      0.02699429 
## 3:                                                      0.01294831 
##    Design.Reasoning to Client.and.Consultant.Requests 
## 1:                                        0.09202014 
## 2:                          0.02024571 
## 3:                                        0.03884492 
##    Collaboration to Client.and.Consultant.Requests Data to Design.Reasonin 
g 
## 1:                                    0.011873567               0.1127989 
## 2:                                    0.006748571               0.1934590 
## 3:                                    0.000000000               0.1294831
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##    Technical.Constraints to Design.Reasoning 
## 1:                                0.2968392 
## 2:                                0.3430524 
## 3:                                0.2201212 
##    Performance.Parameters to Design.Reasoning 
## 1:                                 0.1187357 
## 2:                                 0.1552171 
## 3:                                 0.1165348 
##    Client.and.Consultant.Requests to Design.Reasoning 
## 1:                                        0.03265231 
## 2:                                        0.03599238 
## 3:                                        0.02589661 
##    Design.Reasoning to Design.Reasoning Collaboration to Design.Reasoning 
## 1:                           0.3502702                       0.03562070 
## 2:                           0.3059352                       0.07535905 
## 3:                           0.2460178         0.05179323 
##    Data to Collaboration Technical.Constraints to Collaboration 
## 1:           0.00000000                            0.04155748 
## 2:           0.03374286                            0.06073714 
## 3:           0.07768984                            0.23954367 
##    Performance.Parameters to Collaboration 
## 1:                            0.002968392 
## 2:                            0.019120952 
## 3:                            0.077689840 
##    Client.and.Consultant.Requests to Collaboration 
## 1:                                    0.000000000 
## 2:                                    0.004499048 
## 3:                                    0.000000000 
##    Design.Reasoning to Collaboration Collaboration to Collaboration 
## 1:                       0.02968392                    0.00000000 
## 2:                       0.09560476                    0.03149333 
## 3:                       0.09063815                    0.11653476 

4.4.3 ONA Points 

For each unit, ONA produces an ONA point in a two-dimensional space formed by 
the first two dimensions of the dimensional reduction. 

Here, the MR1 column represents the x-axis coordinate for each unit, and the 
SVD2 column represents the y-axis coordinate for each unit. 

head(set.ona$points,3) 

##    Condition    UserName               ENA_UNIT ENA_DIRECTION         MR1 
## 1: FirstGame    steven z    FirstGame::steven z      response  0.00753635 
## 2: FirstGame     akash v     FirstGame::akash v      response -0.07719283 
## 3: FirstGame alexander b FirstGame::alexander b      response -0.20600855 
##           SVD2        SVD3        SVD4       SVD5         SVD6         SVD 
7 
## 1: -0.05350532  0.02308722  0.03365899 0.18576251 -0.064647347 -0.01638733 
9
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## 2:  0.01840812 -0.01485049 -0.03634380 0.02065882 -0.003406081 -0.00802670 
5 
## 3: -0.05806135 -0.08409658  0.13340227 0.03017168 -0.046102014 -0.09567464 
9 
##           SVD8        SVD9      SVD10         SVD11        SVD12       SVD 
13 
## 1:  0.02504138 -0.04662639 0.01654204 -0.0050339193  0.001089911  0.020150 
19 
## 2: -0.01584017 -0.01879391 0.03338419 -0.0082095228 -0.004596587  0.050346 
82 
## 3: -0.10337234  0.14247946 0.01749875  0.0005982879 -0.073284812 -0.019597 
35 
##          SVD14        SVD15    SVD16       SVD17         SVD18        S 
VD19 
## 1: -0.03170014  0.014028551 -0.03292583 -0.01286482  0.0002353795 -0.01426 
1325 
## 2: -0.02280942  0.042727200  0.02373320 -0.02829064 -0.0208970211  0.01012 
0401 
## 3: -0.01633710 -0.002697103 -0.03717024  0.02019079 -0.0119060565 -0.00651 
8936 
##          SVD20        SVD21        SVD22        SVD23        SVD24 
## 1:  0.01159296 0.0009366777 -0.033851942 -0.003230414 -0.016553686 
## 2: -0.01752303 0.0045814224 -0.006533689 -0.007668149  0.017903544 
## 3: -0.03746771 0.0075254949  0.038768078  0.008012232  0.009589488 
##            SVD25        SVD26        SVD27         SVD28        SVD29 
## 1:  2.124235e-03  0.008351416  0.024600338 -0.0003563738  0.006848068 
## 2: -4.643724e-05 -0.013146155 -0.003761067 -0.0172067645 -0.009072690 
## 3:  1.347210e-03  0.014229380  0.006423058  0.0020076670  0.003970270 
##           SVD30       SVD31       SVD32         SVD33        SVD34        
SVD35 
## 1:  0.009214306 0.000689622 0.001926662 -0.0001196152 0.0057286766  0.0031 
16433 
## 2: -0.006574454 0.001518995 0.006561024  0.0037200464 0.0019185441  0.0064 
47044 
## 3: -0.003266165 0.004738366 0.003057179  0.0018318401 0.0008428842 -0.0048 
84616 
##           SVD36 
## 1:  0.003361801 
## 2: -0.001230173 
## 3:  0.001080194 

4.4.4 Rotation Matrix 

The rotation matrix used during the dimensional reduction can be accessed through 
set.ona$rotation. This is mostly useful when you want to construct an ONA 
metric space using one dataset and then project ONA points from different data into 
that space, as in Sect. 5.2.
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##                            codes         MR1       SVD2         SVD3 
## 1:                   Data to Data -0.06930733 -0.4261566  0.041261221 
## 2:  Technical.Constraints to Data -0.18483941 -0.3305414 -0.001705309 
## 3: Performance.Parameters to Data  0.16511484 -0.4098705 -0.057056137 
##           SVD4        SVD5       SVD6       SVD7        SVD8       SVD9 
## 1: -0.24813254 -0.12386178 -0.1212851 -0.1813800 -0.02634818 0.02463562 
## 2: -0.09652822  0.29776415 -0.2487902  0.4530700 -0.08131861 0.19027807 
## 3: -0.06943836  0.02894105 -0.1666548 -0.1512543  0.26221091 0.15918103 
##         SVD10      SVD11      SVD12       SVD13      SVD14       SVD15 
## 1: -0.1685089 0.02779782  0.1634913  0.03515259 -0.1307011  0.11108864 
## 2: -0.2985731 0.03356852 -0.1788196  0.24614774 -0.1162268 -0.06526278 
## 3:  0.2634069 0.30265567  0.0364710 -0.16880948  0.2246206  0.04608908 
##         SVD16       SVD17      SVD18        SVD19       SVD20       SVD21 
## 1:  0.1678676 -0.21955326  0.4390146  0.263975884 -0.03791243 -0.26637411 
## 2:  0.2427948  0.31464439 -0.1658976 -0.023955700 -0.04756904  0.05450570 
## 3: -0.1521164 -0.06523085 -0.3436932  0.005934216 -0.21114098  0.07531336 
##   SVD22       SVD23       SVD24       SVD25       SVD26       SVD27 
## 1: -0.16378180 -0.04863544 -0.03046897  0.01129295  0.07990007 -0.10906748 
## 2:  0.09542229  0.04913771  0.09391774 -0.07213795 -0.01391693 -0.03060512 
## 3:  0.18550364 -0.20153993  0.11835360 -0.08759355 -0.06613629  0.01739627 
##         SVD28       SVD29       SVD30       SVD31        SVD32        SVD3 
3 
## 1:  0.1218933  0.05135484 -0.08227500  0.09675121 -0.205485302 -0.15944684 
3 
## 2: -0.0431860 -0.04667436 -0.03855961 -0.06592640 -0.006227139 -0.00619161 
0 
## 3:  0.1294605  0.01342884 -0.17369350  0.07209455 -0.153340746 -0.00982495 
5 
##          SVD34       SVD35      SVD36 
## 1: -0.12907089  0.14685408 0.01703190 
## 2:  0.02971639  0.11327562 0.07985307 
## 3:  0.17078477 -0.02710075 0.06842069 

head(set.ona$rotation.matrix,3) 

4.4.5 Metadata 

set.ona$meta.data gives a data frame that includes all the columns except for 
the code connection columns. 

head(set.ona$meta.data,3) 

##    Condition    UserName               ENA_UNIT 
## 1: FirstGame    steven z    FirstGame::steven z 
## 2: FirstGame     akash v     FirstGame::akash v 
## 3: FirstGame alexander b FirstGame::alexander b 

4.5 ONA Visualization 

Once an ONA model is constructed, ONA networks can be visualize. The plotting 
function in ONA is called plot, and it works similarly to the same function in 
ENA.
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Before plotting, you can set up several global parameters to ensure consistency 
across plots. These parameters will be clearer in subsequent sections. 

node_size_multiplier = 0.4 # scale up or down node sizes 
node_position_multiplier = 1 # zoom in or out node positions 
point_position_multiplier =1.5 # zoom in or out the point positions 
edge_arrow_saturation_multiplier = 1.5 # adjust the chevron color lighter or 
darker 
edge_size_multiplier = 1 # scale up or down edge sizes 

4.5.1 Plot a Mean Network 

Mean ONA networks can be plotted for each of the conditions along with their 
subtracted network. 

First, plot the mean network for the FirstGame condition. Use a pipe | > to 
connect the edges function and the nodes function. Users are only required to 
specify the weights parameter, as the remaining parameters have default values 
unless specified otherwise (Fig. 14). 

ona:::plot.ena.ordered.set(set.ona, title = "FirstGame (red) mean network") | 
> 
edges( 
weights =set.ona$line.weights$Condition$FirstGame, 
edge_size_multiplier = edge_size_multiplier, 
edge_arrow_saturation_multiplier = edge_arrow_saturation_multiplier, 
node_position_multiplier = node_position_multiplier, 
edge_color = c("red")) |> 

nodes( 
node_size_multiplier = node_size_multiplier, 
node_position_multiplier = node_position_multiplier, 
self_connection_color = c("red")) 

Since this is the first ONA network visualization in this chapter, we briefly 
explain how to read an ONA network. 

Node size: In ONA, the node size is proportional to the number of occurrences of 
that code as a response to other codes in the data, with larger nodes indicating more 
responses. For example, in this plot, students in the FirstGame condition responded 
most frequently with discourse about Technical.Constraints. 

Self-connections: The color and saturation of the circle within each node is 
proportional to the number of self-connections for that code: that is, when a code is 
both what students responded to and what they responded with. Colored circles that 
are larger and more saturated reflect codes with more frequent self-connections. 

Edges: Note that unlike most directed network visualizations, which use arrows 
or spearheads to indicate direction, ONA uses a “broadcast” model, where the 
source of a connection (what students responded to) is placed at the apex side of 
the triangle and the destination of a connection (what students responded with) is 
placed at its base.
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Fig. 14 ONA mean network for FirstGame group 

Chevrons on edges: The chevrons point in the direction of the connection. 
Between any pair of nodes, if there is a bidirectional connection, the chevron only 
appears on the side with the stronger connection. This helps viewers differentiate 
heavier edges in cases such as between Technical.Constraints and Data, where 
the connection strengths from both directions are similar. When the connection 
strengths are identical between two codes, the chevron will appear on both edges. 

Now, plot the mean network for SecondGame (Fig. 15). 

ona:::plot.ena.ordered.set(set.ona, title = "SecondGame (blue) mean network") 
|> 
edges( 
weights = set.ona$line.weights$Condition$SecondGame, 
edge_size_multiplier = edge_size_multiplier, 
edge_arrow_saturation_multiplier = edge_arrow_saturation_multiplier, 
node_position_multiplier = node_position_multiplier, 
edge_color = c("blue")) |> 

nodes( 
node_size_multiplier = node_size_multiplier, 
node_position_multiplier = node_position_multiplier, 
self_connection_color = c("blue"))
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Fig. 15 ONA mean network 
for SecondGame group 

Then, plot the subtracted network to show the differences between the mean 
networks of the FirstGame and SecondGame conditions (Fig. 16). 

ona:::plot.ena.ordered.set(set.ona, title = "Subtracted mean network: FirstGa 
me (red) vs SecondGame (blue)") |> 
edges( 
weights = (colMeans(set.ona$line.weights$Condition$FirstGame) - colMeans( 

set.ona$line.weights$Condition$SecondGame))*4, # optional weights multiplier 
to adjust readability 

edge_size_multiplier = edge_size_multiplier, 
edge_arrow_saturation_multiplier = edge_arrow_saturation_multiplier, 
node_position_multiplier = node_position_multiplier, 
edge_color = c("red","blue")) |> 

nodes( 
node_size_multiplier = node_size_multiplier, 
node_position_multiplier = node_position_multiplier, 
self_connection_color = c("red","blue")) 

4.5.2 Plot a Mean Network and its Points 

Besides plotting the mean network for each condition and the subtracted network, 
we can also plot the individual units within each condition. 

Use set.ona$points to subset the rows that are in each condition and plot the 
units in each condition as a different color. 

The points are specified in the units function. The edges and nodes functions 
remain the same as above (Figs. 17, 18, 19, and 20).
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Fig. 16 ONA subtracted network showing the differences between FirstGame (red) and Sec-
ondGame (blue) 

ona:::plot.ena.ordered.set(set.ona, title = "points (dots), mean point (squar 
e), and confidence interval") |> 
units( 
points=set.ona$points$Condition$FirstGame, 
points_color = c("red"), 
show_mean = TRUE, show_points = TRUE, with_ci = TRUE) 

ona:::plot.ena.ordered.set(set.ona, title = "FirstGame (red) mean network") | 
> 
units( 
points=set.ona$points$Condition$FirstGame, 
points_color = c("red"), 
show_mean = TRUE, show_points = TRUE, with_ci = TRUE) |> 

edges( 
weights =set.ona$line.weights$Condition$FirstGame, 
edge_size_multiplier = edge_size_multiplier, 
edge_arrow_saturation_multiplier = edge_arrow_saturation_multiplier, 
node_position_multiplier = node_position_multiplier, 
edge_color = c("red")) |> 

nodes( 
node_size_multiplier = node_size_multiplier, 
node_position_multiplier = node_position_multiplier, 
self_connection_color = c("red"))
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Fig. 17 ONA points (dots) 
and their mean point (square) 
for FirstGame group 

Fig. 18 ONA mean network 
for FirstGame group 

ona:::plot.ena.ordered.set(set.ona, title = "points (dots), mean point (squar 
e), and confidence interval") |> 
units( 
points=set.ona$points$Condition$SecondGame, 
points_color = c("blue"), 
show_mean = TRUE, show_points = TRUE, with_ci = TRUE)
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Fig. 19 ONA points (dots) 
and their mean point (square) 
for SecondGame group 

Fig. 20 ONA mean network and points for SecondGame



Epistemic Network Analysis and Ordered Network Analysis in Learning Analytics 617

ona:::plot.ena.ordered.set(set.ona, title = "SecondGame (blue) mean network") 
|> 
units( 
points=set.ona$points$Condition$SecondGame, 
points_color = "blue", 
show_mean = TRUE, show_points = TRUE, with_ci = TRUE) |> 

edges( 
weights = set.ona$line.weights$Condition$SecondGame, 
edge_size_multiplier = edge_size_multiplier, 
edge_arrow_saturation_multiplier = edge_arrow_saturation_multiplier, 
node_position_multiplier = node_position_multiplier, 
edge_color = c("blue")) |> 

nodes( 
node_size_multiplier = node_size_multiplier, 
node_position_multiplier = node_position_multiplier, 
self_connection_color = c("blue")) 

Plot the subtracted network as follows (Fig. 21). 

# FirstGame and SecondGame subtracted plot 
ona:::plot.ena.ordered.set(set.ona, title = "Difference: FirstGame (red) vs S 
econdGame (blue)") |> 
units( 
points = set.ona$points$Condition$FirstGame, 
points_color = "red", 
show_mean = TRUE, show_points = TRUE, with_ci = TRUE) |> 

units( 
points = set.ona$points$Condition$SecondGame, 
points_color = "blue", 
show_mean = TRUE, show_points = TRUE, with_ci = TRUE) |> 

edges( 
weights = (colMeans(set.ona$line.weights$Condition$FirstGame) - colMeans( 

set.ona$line.weights$Condition$SecondGame))*4, # optional multiplier to adjus 
t for readability 

edge_size_multiplier = edge_size_multiplier, 
edge_arrow_saturation_multiplier = edge_arrow_saturation_multiplier, 
node_position_multiplier = node_position_multiplier, 
edge_color = c("red","blue")) |> 

nodes( 
node_size_multiplier = node_size_multiplier, 
node_position_multiplier = node_position_multiplier, 
self_connection_color = c("red","blue")) 

4.5.3 Plot an Individual Network and its Points 

To plot an individual student’s network and ONA point, use set.ona$points.
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Fig. 21 ONA subtracted 
network showing the 
differences between 
FirstGame (red) and 
SecondGame (blue) 

Here, we choose the same two units we compared in the ENA analysis (Sect. 
3.5.3) (Figs. 22 and 23). 

points_color = "red", 
show_mean = FALSE, show_points = TRUE, with_ci = FALSE) |> 

edges( 
weights = set.ona$line.weights$ENA_UNIT$`FirstGame::steven z`, 
edge_size_multiplier = edge_size_multiplier, 
edge_arrow_saturation_multiplier = edge_arrow_saturation_multiplier, 
node_position_multiplier = node_position_multiplier, 
edge_color = c("red")) |> 

nodes( 
node_size_multiplier = node_size_multiplier, 
node_position_multiplier = node_position_multiplier, 
self_connection_color = c("red")) 

# first game 
ona:::plot.ena.ordered.set(set.ona, title = "FirstGame::steven z") |> 
units( 
points=set.ona$points$ENA_UNIT$`FirstGame::steven z`, 

# second game 
ona:::plot.ena.ordered.set(set.ona, title = "SecondGame::samuel o") |> 
units( 
points=set.ona$points$ENA_UNIT$`SecondGame::samuel o`, 
points_color = "blue", 
show_mean = FALSE, show_points = TRUE, with_ci = FALSE) |> 

edges(
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weights = set.ona$line.weights$ENA_UNIT$`SecondGame::samuel o`, 
edge_size_multiplier = edge_size_multiplier, 
edge_arrow_saturation_multiplier = edge_arrow_saturation_multiplier, 
node_position_multiplier = node_position_multiplier, 
edge_color = c("blue")) |> 

nodes( 
node_size_multiplier = node_size_multiplier, 
node_position_multiplier = node_position_multiplier, 
self_connection_color = c("blue")) 

In this case, both units make relatively strong connections between 
Design.Reasoning and Data. However, for Unit A (red), the connection is relatively 
more from Design.Reasoning to Data than the other way around. This indicates that 
more often this unit responded with Data. In contrast, Unit B (blue) responded more 
frequently to Data with Design.Reasoning. 

A subtracted network can make such differences more salient (Fig. 24). 

Fig. 22 ONA network for a 
student from FirstGame
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z`)) 
mean2 = as.vector(as.matrix(set.ona$line.weights$ENA_UNIT$`SecondGame::samuel 
o`)) 

subtracted.mean = mean1 - mean2 

ona:::plot.ena.ordered.set(set.ona, title = "subtracted network of steven z.F 
irstGame.Electric and SecondGame.luke u") |> 
units( 
points = set.ona$points$ENA_UNIT$`FirstGame::steven z`, points_color = "r 

ed", 
point_position_multiplier = point_position_multiplier, 
show_mean = FALSE, show_points = TRUE, with_ci = FALSE) |> 

units( 
points = set.ona$points$ENA_UNIT$`SecondGame::samuel o`, points_color = " 

blue", 
point_position_multiplier = point_position_multiplier, 
show_mean = FALSE, show_points = TRUE, with_ci = FALSE) |> 

edges( 
weights = subtracted.mean*2, 
edge_size_multiplier = edge_size_multiplier, 
edge_arrow_saturation_multiplier = edge_arrow_saturation_multiplier, 
node_position_multiplier = node_position_multiplier, 
edge_color = c("red", "blue")) |> 

nodes( 
node_size_multiplier = node_size_multiplier, 
node_position_multiplier = node_position_multiplier, 
self_connection_color = c("red", "blue")) 

# units difference 
mean1 = as.vector(as.matrix(set.ona$line.weights$ENA_UNIT$`FirstGame::steven 

The connection between Design.Reasoning and Data consists of two triangles, 
one in blue pointing from Data to Design.Reasoning, the other in red pointing 
from Design.Reasoning to Data. This indicates that although both units made strong 
connections between these two codes, the relative directed frequencies are different. 
Recall that in the ENA subtracted network for the same two units, the connections 
between Data and Design.Reasoning were basically the same. ONA, by accounting 
for the order of events, shows that while the undirected relative frequencies were 
similar, there was a difference in the order in which the two students made the 
connection. 

4.6 Compare Groups Statistically 

In addition to visual comparison of networks, ENA points can be analyzed 
statistically. For example, here we might test whether the patterns of association 
in one condition are significantly different from those in the other condition. 

To demonstrate both parametric and non-parametric approaches to this question, 
the examples below use a Student’s t test and a Mann-Whitney U test to test for 
differences between the FirstGame and SecondGame condition.
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Fig. 23 ONA network for a student from SecondGame 

First, install the lsr package to enable calculation of effect size (Cohen’s d) for  
the t test. 

install.packages('lsr') 
library(lsr) 

Then, subset the points to test for differences between the points of the two 
conditions. 

ona_first_points_d1 = as.matrix(set.ona$points$Condition$FirstGame)[,1] 
ona_second_points_d1 = as.matrix(set.ona$points$Condition$SecondGame)[,1] 

ona_first_points_d2 = as.matrix(set.ona$points$Condition$FirstGame)[,2] 
ona_second_points_d2 = as.matrix(set.ona$points$Condition$SecondGame)[,2] 

Conduct the t test on the first and second dimensions.



Fig. 24 ONA subtracted network showing the differences between one student from FirstGame 
(red) and another student from SecondGame (blue) 

parametric tests 
t_test_d1 = t.test(ona_first_points_d1, ona_second_points_d1) 
t_test_d1 

## 
##  Welch Two Sample t-test 
## 
## data:  ona_first_points_d1 and ona_second_points_d1 
## t = -3.7729, df = 41.001, p-value = 0.0005111 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval: 
##  -0.18227713 -0.05517572 
## sample estimates: 
##   mean of x   mean of y 
## -0.05441628  0.06431015 

t_test_d2 = t.test(ona_first_points_d2, ona_second_points_d2) 
t_test_d2 

## 
##  Welch Two Sample t-test 
## 
## data:  ona_first_points_d2 and ona_second_points_d2 
## t = -6.9301e-16, df = 45.45, p-value = 1 
## alternative hypothesis: true difference in means is not equal to 0 
## 95 percent confidence interval:
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##  -0.1008208  0.1008208 
## sample estimates: 
##     mean of x     mean of y 
## -1.727628e-17  1.742362e-17 

Compute any other statistics that may be of interest. A few examples are given 
below. 

mean(ona_first_points_d1) 

## [1] -0.05441628 

mean(ona_second_points_d1) 

## [1] 0.06431015 

mean(ona_first_points_d2) 

## [1] -1.727628e-17 

mean(ona_second_points_d2) 

## [1] 1.742362e-17 

sd(ona_first_points_d1) 

## [1] 0.09754142 

sd(ona_second_points_d1) 

## [1] 0.1171941 

sd(ona_first_points_d2) 

## [1] 0.1784777 

sd(ona_second_points_d2) 

## [1] 0.1679372 

length(ona_first_points_d1) 

## [1] 26 

length(ona_second_points_d1) 

## [1] 22 

length(ona_first_points_d2) 

## [1] 26 

length(ona_second_points_d2) 

## [1] 22 

cohensD(ona_first_points_d1, ona_second_points_d1)
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## [1] 1.109985 

cohensD(ona_first_points_d2, ona_second_points_d2) 

## [1] 1.997173e-16 

Here, along the x axis (MR1), a two-sample t test assuming unequal variance 
shows that the FirstGame (mean = −0.05, SD = 0.09, N = 26) condition is 
statistically significantly different for alpha = 0.05 from the SecondGame condition 
(mean = 0.06, SD = 0.12, N = 22; t(41.001) = −3.77, p = 0.00, Cohen’s 
d = 1.1). Along the y axis (SVD2), a two-sample t test assuming unequal variance 
shows that the FirstGame condition (mean = −1.73, SD = 0.17, N = 26) is not 
statistically significantly different for alpha = 0.05 from the SecondGame condition 
(mean = 1,74, SD = 0.17, N = 22; t(45.45) = 0, p = 1.00, Cohen’s d = 0.00). 

The Mann-Whitney U test is a non-parametric alternative to the independent 
two-sample t test. 

First, install the rcompanion package to calculate the effect size (r) for a Mann-
Whitney U test. 

# install.packages('rcompanion') 
library(rcompanion) 

Then, conduct a Mann-Whitney U test on the first and second dimensions. 

# non parametric tests 
w_test_d1 = wilcox.test(ona_first_points_d1, ona_second_points_d1) 
w_test_d2 = wilcox.test(ona_first_points_d2, ona_second_points_d2) 

w_test_d1 

## 
##  Wilcoxon rank sum exact test 
## 
## data:  ona_first_points_d1 and ona_second_points_d1 
## W = 130, p-value = 0.0009533 
## alternative hypothesis: true location shift is not equal to 0 

w_test_d2 

## 
##  Wilcoxon rank sum exact test 
## 
## data:  ona_first_points_d2 and ona_second_points_d2 
## W = 264, p-value = 0.6593 
## alternative hypothesis: true location shift is not equal to 0 

Compute any other statistics that may be of interest. A few examples are given 
below.
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median(ona_second_points_d1) 

## [1] 0.09596238 

median(ona_first_points_d2) 

## [1] 0.001753116 

median(ona_second_points_d2) 

## [1] 0.05862436 

length(ona_first_points_d1) 

## [1] 26 

length(ona_second_points_d1) 

## [1] 22 

length(ona_first_points_d2) 

## [1] 26 

length(ona_second_points_d2) 

## [1] 22 

abs(wilcoxonR(ona_first_points_d1, ona_second_points_d1)) 

## r 
## 0 

abs(wilcoxonR(ona_first_points_d2, ona_second_points_d2)) 

##     r 
## 0.707 

median(ona_first_points_d1) 

## [1] -0.04307778 

Here, along the x axis (MR1), a Mann-Whitney U test shows that the FirstGame 
condition (Mdn = −0.04, N = 26) was statistically significantly different for 
alpha = 0.05 from the SecondGame condition (Mdn = 0.10, N = 22 U = 130, 
p = 0.001, r = 0.00). Along the y axis (SVD2), a Mann-Whitney U test shows that 
the FirstGame condition (Mdn = 0.001, N = 26) is not statistically significantly 
different for alpha = 0.05 from the SecondGame condition (Mdn = 0.00, N = 22, 
U = 264, p = 0.66, r = 0.71). The absolute value of r value in Mann-Whitney 
U test varies from 0 to close to 1. The interpretation values for r commonly in 
published literature is: 0.10 - < 0.3 (small effect), 0.30 - < 0.5 (moderate 
effect) and > = 0.5 (large effect).
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4.7 Model Evaluation 

4.7.1 Variance Explained 

Briefly, variance explained (also called explained variation) refers to the proportion 
of the total variance in a dataset that is accounted for by a statistical model or set of 
predictors. 

In ONA, to represent high-dimensional vectors in a two-dimensional space, ONA 
uses either singular value decomposition or means rotation combined with SVD. For 
each of the reduced dimensions, the variance in patterns of association among units 
explained by that dimension can be computed. 

head(set.ona$model$variance,2) 

##       MR1      SVD2 
## 0.1367940 0.2736079 

In our example above, since we used means rotation method, the first dimension 
is labeled as MR1 and the second dimension is labeled as SVD2.The two dimensions 
in combination explained more than 40% of the variance. 

Here, the first dimension is MR1 and the second dimension is SVD2. The two 
dimensions in combination explained more than 40% of the variance. 

As with any statistical model, greater explained variance does not necessarily 
indicate a better model, as it may be due to overfitting, but it provides one indicator 
of model quality. 

4.7.2 Goodness of Fit 

Briefly, a model’s goodness of fit refers to how well a model fits or represents the 
data. A model with a high goodness of fit indicates that it accurately represents the 
data and can make reliable predictions. 

In ONA, a good fit means that the positions of the nodes in the space—and thus 
the network visualizations—are consistent with the mathematical properties of the 
model. In other words, we can confidently rely on the network visualizations to 
interpret the ONA model. The process that ONA uses to achieve high goodness of 
fit is called co-registration, the same as the one used in ENA. The mathematical 
details of co-registration are beyond the scope of this chapter and can be found in 
Bowman et al. [2]. 

To test a model’s goodness of fit, use ona::correlations. The closer the value 
is to 1, the higher the model’s goodness of fit is. Most ENA models have a goodness 
of fit that is well above 0.90.
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ona::correlations(set.ona) 

##     pearson  spearman 
## 1 0.9801173 0.9801799 
## 2 0.9801431 0.9759160 

4.7.3 Close the Interpretative Loop 

Another approach to evaluate an ONA model is to confirm the alignment between 
quantitative model (in our case, our ONA model) and the original qualitative data. In 
other words, we can return to the original data to confirm that quantitative findings 
give a fair representation of the data. This approach is an example of what’s called 
as closing the interpretative loop in Quantitative Ethnography field [1]. 

For example, based on our visual analysis of the network of “Sec-
ondGame::samuel o” in previous section, we are interested in what the lines are in 
the original data that contributed to the connection from Performance.Parameters to 
Design.Reasoning. 

Let’s first review what “SecondGame::samuel o” ONA network looks like. Based 
on the connection direction and strength from Technical.Constraints to Perfor-
mance.Parameters, we would expect to see more examples of Samuel responded 
with “Design.Reasoning” to “Performance.Parameters”, than the other way around 
(Fig. 25). 

ona:::plot.ena.ordered.set(set.ona, title = "SecondGame::samuel o") |> 
units( 
points=set.ona$points$ENA_UNIT$`SecondGame::samuel o`, 
points_color = "blue", 
show_mean = FALSE, show_points = TRUE, with_ci = FALSE) |> 

edges( 
weights = set.ona$line.weights$ENA_UNIT$`SecondGame::samuel o`, 
edge_size_multiplier = edge_size_multiplier, 
edge_arrow_saturation_multiplier = edge_arrow_saturation_multiplier, 
node_position_multiplier = node_position_multiplier, 
edge_color = c("blue")) |> 

nodes( 
node_size_multiplier = node_size_multiplier, 
node_position_multiplier = node_position_multiplier, 
self_connection_color = c("blue")) 

To do so, we use view() function and specify required parameters as below. 
This is going to activate a window shows up in your Viewer panel. If it is too 

small to read, you can click on the “Show in new window” button to view it in your 
browser for better readability. 

In the Viewer panel, hover over your cursor on any of the lines that are in bold, 
a size of 7 lines rectangle shows up, representing that in a moving stanza window 
of size 7, the referent line (the line in bold) and its preceding 6 lines. The 1 and 
0 in Technical.Constraints column and Design.Reasoning column shows where the 
connections happened (Fig. 26).
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Fig. 25 ONA network for a student from SecondGame 

Fig. 26 A screenshot of the view() function result. The highlighted lines represent lines within the 
same stanza window 

Notice that here we are viewing the same qualitative example as in Sect. 3.7.3 in 
ENA. In line 2477 Samuel shared his [Design.Reasoning] about “mindful of (the) 
how one device scores relative to other ones”, as a response to what Casey said in 
line 2476 about [Performance.Parameters] “not one source/censor can be the best in 
every area so we had to sacrifice certain attributes”, as well as what Jackson said in 
line 2475 about safety as one of the [Performance.Parameters] “when it came to the 
different attributes, i think that all were important in their own way but i think safety 
is one of the most important”.
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Here, ONA was able to not only capture the occurrence between code 
Design.Reasoning and Performance.Parameters as ENA did, but also represent 
the connection direction from Design.Reasoning to Performance.Parameters. 

4.8 Using ONA Model Outputs in Other Analyses 

As with ENA, the outputs of ONA models can be used as inputs in other statistical 
models. See Sect. 3.8 for an example using ENA points. 

5 Additional Features 

In the sections above, we demonstrated how to do an ENA analysis and an ONA 
analysis. In this section, we show how to project new data into a space constructed 
with different data. This can be done as long as the same codes are used in both sets. 

5.1 Projections in ENA 

To project the ENA points from one model into a space constructed with different 
data, replace the rotation.set parameter of ena.make.set. In the example 
below, an “expert” model is developed using the SecondGame units and the 
FirstGame (novice) units are projected into that space. By projecting novice model’s 
units into expert model’s space, users can interpret the projected novice units’ 
networks based on the two dimensions defined by expert model’s node positions. In 
other words, interpreting novice’s networks in the context of experts’ space (Figs. 
27 and 28).
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data = rENA::RS.data 

#expert data 
exp.data = subset(data, Condition == "SecondGame") 

#novice data 
nov.data = subset(data, Condition == "FirstGame") 

#expert model 
units_exp = exp.data[,c("Condition","UserName")] 
conversation_exp = exp.data[,c("Condition","GroupName","ActivityNumber")] 
codes_exp = exp.data[,codeCols] 
meta_exp = exp.data[,c("CONFIDENCE.Change", 

"CONFIDENCE.Pre","CONFIDENCE.Post","C.Change")] 

set_exp = 
ena.accumulate.data( 
text_data = exp.data[, 'text'], 
units = units_exp, 
conversation = conversation_exp, 
codes = codes_exp, 
metadata = meta_exp, 
window.size.back = 7, 

) |> 
ena.make.set() 

#novice model 
units_nov = nov.data[,c("Condition","UserName")] 
conversation_nov = nov.data[,c("Condition","GroupName","ActivityNumber")] 
codes_nov = nov.data[,codeCols] 
meta_nov = nov.data[,c("CONFIDENCE.Change", 

"CONFIDENCE.Pre","CONFIDENCE.Post","C.Change")] 

set_nov = 
ena.accumulate.data( 
text_data = nov.data[, 'text'], 
units = units_nov, 
conversation = conversation_nov, 
codes = codes_nov, 
metadata = meta_nov, 
window.size.back = 7, 

) |> 
ena.make.set(rotation.set = set_exp$rotation) 

# plot expert model (what we projected into) Using plotting wrapper to save t 
ime 
plot_exp = ena.plotter(set_exp, 

points = T,
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mean = T, 
network = T, 
print.plots = F 
) 

# plot test model (points from test model in training model space) 
plot_nov = ena.plotter(set_nov, 

points = T, 
mean = T, 
network = T, 
print.plots = F) 

#compare plots 
plot_exp$plot 

Fig. 27 Mean network for all units in the expert model 

plot_nov$plot 

5.2 Projections in ONA 

Projection works similarly in ONA (Fig. 29).
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Fig. 28 Mean network for novice students projected into expert space 

data = ona::RS.data 

#expert data 
exp.data = subset(data, Condition == "SecondGame") 

#novice data 
nov.data = subset(data, Condition == "FirstGame") 

#shared unit cols  
units = c("UserName","Condition","GroupName") 

#shared code cols 
codes = c( 

'Data', 
'Technical.Constraints', 
'Performance.Parameters', 
'Client.and.Consultant.Requests', 
'Design.Reasoning', 
'Collaboration')
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#shared hoo 
hoo = conversation_rules( 
(Condition %in% UNIT$Condition & GroupName %in% UNIT$GroupName)) 

#expert accum 
accum.exp = contexts(exp.data, units_by = units, hoo_rules = hoo) |> 
accumulate_contexts(codes = codes, 

decay.function = decay(simple_window, window_size = 7), 
return.ena.set = FALSE, norm.by = NULL) 

#expert model 
set.exp = model(accum.exp) 

#novice accum 
accum.nov = contexts(nov.data, units_by = units, hoo_rules = hoo) |> 
accumulate_contexts(codes = codes, 

decay.function = decay(simple_window, window_size = 7), 
return.ena.set = FALSE, norm.by = NULL) 

#novice model 
set.nov = model(accum.nov) 

# projecting novice data into expert space 
set = model(accum.nov, rotation.set = set.exp$rotation) 

ona:::plot.ena.ordered.set(set, title = "novice data into expert space") |> 
units( 
points = set$points, 
show_mean = TRUE, show_points = TRUE, with_ci = TRUE) |> 

edges( 
weights = set$line.weights) |> 

nodes( 
self_connection_color = "red", 
node_size_multiplier = 0.6) 

6 Discussion 

In this chapter, we introduced two techniques, ENA and ONA, for quantifying, 
visualizing, and interpreting networks using coded data. Through the use of 
a demonstration dataset that documents collaborative discourse among students 
collaborating to solve an engineering design problem, we provided step-by-step 
instructions on how to model complex, collaborative thinking using ENA and ONA 
in R. The chapter combines theoretical explanations with tutorials, intended to be 
of aid to researchers with varying degrees of familiarity with network analysis 
techniques and R. This chapter mainly showcased the standard and most common 
use of these two tools. The ENA and ONA R packages, akin to other R packages, 
offer flexibility to researchers to tailor their analyses to their specific needs. For 
example, users with advanced R knowledge can supply their own adjacency matrices 
and use ENA or ONA solely as a visualization tool rather than an integrated 
modeling and visualization tool.
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Fig. 29 Projecting novice data into expert space 

Due to the technical and practical focus of this chapter, we omitted detailed 
explanations of the theoretical, methodological, and mathematical foundations of 
ENA and ONA that are crucial for informed, theory-based learning analytics 
research using these techniques. Consult the Further Reading section for papers that 
explain these aspects of ENA and ONA in greater detail. 
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Psychological Networks: A Modern 
Approach to Analysis of Learning and 
Complex Learning Processes 

Mohammed Saqr, Emorie Beck, and Sonsoles López-Pernas 

1 Introduction 

Learning has long been described as a complex system that involves the interactions 
of several elements across time, persons and contexts [1–3]. Such descriptions 
include learning theories, constructs, classroom, learners, education as a whole 
and educational policies. For instance, Zimmerman describes self-regulation as 
a “complex system of interdependent processes” [4]. Winne describes the SRL 
process as “complex, dynamically changeable and contextually sensitive” [5]. 
Similar descriptions and operationalizations exist for engagement [6], motivation 
[7, 8], metacognition [9], agency [10] and achievement goals [11], to mention a few. 
Similarly, the students [12], the classroom [13], collaborative groups [14] have all  
been conceptualized from the perspective of complex systems. Nevertheless, despite 
the long history and the solid theoretical grounds, methodological approaches that 
capture the complexities of learning and learners have been lagging behind both in 
adoption or applications [1, 15]. This chapter introduces the complex systems and 
offers tutorial on one of the most important and promising methods of analyzing 
complex systems with a real-life dataset. 

1.1 Complex Systems 

A complex system is an ensemble of interdependent elements that interact with one 
another, evolve, adapt or self-organize in a nonlinear way leading to the emergence 
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of new phenomenon or behavior [16, 17]. Let’s for example take engagement as 
an example. Engagement is understood as a multidimensional construct with three 
dimensions: behavioral, cognitive and emotional dimensions [18, 19]. Research 
has shown that each of the engagement dimensions influence (or interact with) 
each other; for example, enjoying school (emotions) stimulates school attendance 
(behavior) and investment in learning (cognitive) [18, 20]. Such interactions may 
lead to the emergence of resilience (new behavior) [21]. We also know that such 
interactions are nonlinear—that is, we can not combine engagement dimensions 
together in a single score (e.g., behavioral + cognitive + emotional . /= engagement). 
In other words, the sum of the parts does not equal the whole. The same can be 
said about self-regulated learning, the Zimmerman cyclical phases model describes 
three phases: forethought (task analysis and goal-setting), performance phase (task 
enactment and strategies) and self-reflection (evaluation and adaptation). Each of 
these phases are explicitly modeled as influencing each other in a cyclical way; they 
interact in a non-linear way and such interactions lead to the emergence of learning 
strategies [22]. 

The study of these complexities of learning requires methods that account for 
such interactions, interdependencies and heterogeneity [1, 15]. Linear methods such 
as correlations, regression or comparison of means are essentially reductionist, 
that is, disregard the inter-relationships between the variables. For instance, in 
regression analysis, all variables are included as predictors of one predicted variable 
(dependable variable). By design, such variables are assumed to be independent and 
not correlated. While this view can offer understanding through simplification, it 
does so by compromising the understanding of the big picture. In contrast to the 
reductionist view of human behavior, embracing the view that learning is complex 
is more tethered to reality and promises for renewal of our knowledge [1, 15, 23]. 

1.2 Network Analysis 

Network analysis as a framework affords researchers a powerful tool set to chart 
relations, map connections, and discover clusters or communities between interact-
ing components and therefore, has become one of the most important methods for 
understanding complex systems [24, 25]. In education, social network analysis has 
been used for decades [25], and we covered it in detail in previous chapters of the 
book [26]; [27]; [28]}. Yet, to go beyond social interactions, one needs a different 
type of networks: probabilistic networks [29, 30]. In probabilistic networks, the 
variables (often indicators of constructs or scale scores) are the nodes or the vertices 
of the networks, the relationships or magnitude of interactions (i.e. probabilistic 
associations) between such variables form the edges. In particular, we will focus 
in this chapter on psychological networks: Gaussian graphical models (GGM) [30]. 
In psychological networks, the variables may be constructs, behaviors, attitudes, 
etc., and the interactions are partial correlations among the nodes [3]. A partial 
correlation measures the relationship (or the conditions dependence) between two
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variables after removing (controlling or adjusting) for all other variables in the 
network or what is known as ceteris paribus [30, 31]. For instance, if we are 
modeling a network where motivation, achievement, engagement, self-regulation 
and well-being are nodes, and we observed a relationship between well-being 
and achievement, such relationships means that well-being is associated with 
achievement beyond what can be explained by their associations with motivation, 
engagement, self-regulation (all other variables in the network). The absence of a 
relationship between two variables signifies a conditional independence between 
the two variables after controlling for all other variables in the network [31]. As 
such, the presence or lack of interactions are both interpretable and carry a meaning. 
Psychological networks offer rigorous methods for the assessment of the accuracy 
of estimated networks, edge weights and centrality measures through bootstrapping, 
assessment of sampling variability through simulation of “expected replicability” of 
the studied networks) [29]. 

2 Related Work 

As the term psychological networks suggests, most studies operationalizing this 
method are rooted in psychological research. Consequently, its connection to 
educational research is primarily established through educational psychology. For 
example, a study by Liu et al. [32] sought to identify a link between students’ per-
sonality and their experience of psychological distress during and after the COVID-
19 lockdown. Their results suggest that neuroticism was linked to heightened 
psychological distress both during and after the lockdown, whereas extraversion 
and conscientiousness were associated with the alleviation of psychological distress. 
Another study [33] investigated the relationship among various aspects influencing 
nursing students’ psychological well-being, and found that perceived social support 
and one’s professional self-concept were the most central predictors. 

The cited studies have relied on self-reported data. However, a recent trend is 
to take advantage of the intensive trace log data collected from digital educational 
tools. An example is the work by Saqr et al. [34], who used psychological networks 
to discover the interplay between self-regulated learning tactics among foreign 
language students. Their findings reveal a strong correlation between writing text 
and social bonding, as well as between acknowledging others and social bonding. 
López-Pernas et al. [35] clustered students into player profiles according to their 
performance in an educational game and used psychological networks to map the 
relationships between game performance indicators for each profile. They found 
that certain indicators (e.g., the use of hints for help) are decisive for the success of 
certain player profiles and superfluous for others. 

A recent trend in the use of psychological networks in education is to understand 
and visualize within-person (i.e., idiographic) phenomena, in which networks are 
constructed for data from a single individual at a time [36, 37]. For instance, 
Malmberg et al. [38] examined the association between monitoring events and
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phases of regulation in collaborative learning. Their results showed that cyclical 
phases of regulation do not occur simultaneously but rather monitoring motivation 
predicts the monitoring of task definition, ultimately leading to task enactment. A 
recent study by Saqr [39] constructed a network of engagement indicators using 
between-person data and another using within-person data. The results revealed that 
group-level inferences hardly generalize to individuals. For example, regularity in 
study and frequency of accessing resources were positively correlated at the group 
level but negatively so at the individual level. Such findings highlighted the need for 
person-specific insights to leverage personalized interventions to increase learner 
engagement. 

3 Tutorial with R 

In this section, we present a step-by-step tutorial on how to use psychological 
networks in cross-sectional survey data. The dataset that we are using contains the 
results of 6071 students’ responses to a survey investigating students’ psychological 
characteristics related to their well-being during the COVID-19 pandemic in Finland 
and Austria. The survey questions cover students’ basic psychological needs 
(relatedness, autonomy, and experienced competence), self-regulated learning, pos-
itive emotion and intrinsic learning motivation. Moreover, the dataset contains 
demographic variables, such as country, gender, and age and is well described in 
the dataset chapter [40]. In the tutorial, we will construct and visualize a network 
that represents the relationship between the different psychological characteristics, 
we will interpret and evaluate these relationships, and we will compare how the 
networks differ among demographic groups. 

3.1 The Libraries 

We start by importing the necessary packages We know rio [41] and tidyverse 
[42] from previous chapters for importing and manipulating data respectively. 
The bootnet [43] package provides methods to estimate and assess accuracy 
and stability of estimated network structures and centrality indices. The 
package networktools [44] includes a selection of tools for network analysis 
and plotting. NetworkToolbox [45] implements network analysis and graph 
theory measures used in neuroscience, cognitive science, and psychology. 
NetworkComparisonTest [46] allows to assess the difference between two 
networks based on several invariance measures. The package qgraph [47] 
offers network visualization and analysis, as well as Gaussian graphical model 
computation. The package mgm [48] provides estimation of k-Order time-varying 
Mixed Graphical Models and mixed VAR(p) models via elastic-net regularized
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neighborhood regression. Lastly, matrixcalc [49] offers a collection of functions 
to support matrix calculations for probability, econometric and numerical analysis. 

library(rio) 
library(tidyverse) 
library(bootnet) 
library(networktools) 
library(NetworkToolbox) 
library(NetworkComparisonTest) 
library(qgraph) 
library(mgm) 
library(matrixcalc) 

3.2 Importing and Preparing the Data 

The first step is importing the data and doing the necessary preparation, that is, 
removing the missing and incomplete responses. 

URL<-("https://raw.githubusercontent.com/lamethods/data/main/ 
11_universityCovid/data.sav") df <- import(URL) |> 

drop_na() 

To represent each of the constructs that the survey aimed at capturing, we 
combine all the columns representing items from the same construct into one by 
averaging the responses. The next code calculates the mean for each construct by 
averaging all the related items: 

aggregated <- df |> rowwise() |> mutate( 
Competence = rowMeans(cbind 

(comp1.rec , comp2.rec, comp3.rec), 
na.rm = T), 

Autonomy = rowMeans(cbind 
(auto1.rec , auto2.rec, auto3.rec), 
na.rm = T), 

Motivation = rowMeans(cbind 
(lm1.rec , lm2.rec, lm3.rec), 
na.rm = T), 

Emotion = rowMeans(cbind 
(pa1.rec , pa2.rec, pa3.rec), 
na.rm = T), 

Relatedness = rowMeans(cbind 
(sr1.rec , sr2.rec, sr3.rec), 
na.rm = T), 
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Table 1 Preview of the data 

Relatedness Competence Autonomy Emotion Motivation SRL 

1 .3.000 .2.333 .2.333 .2.000 .1.333 . 2.667 

2 .5.000 .3.000 .1.667 .2.333 .2.000 . 4.333 

3 .4.667 .4.000 .2.667 .4.000 .3.000 . 4.333 

4 .4.333 .3.333 .3.000 .3.333 .2.667 . 2.667 

5 .5.000 .4.000 .3.000 .4.000 .3.000 . 4.333 

6..7159 

7160 .4.333 .4.000 .4.000 .3.000 .5.000 . 4.000 

SRL = rowMeans(cbind 
(gp1.rec , gp2.rec, gp3.rec), 
na.rm = T)) 

We can now keep only the newly created columns. We also create subsets of the 
data based on gender (a dataset for males and another for females) and country (a 
data set for Austria and another for Finland). We will use these datasets later for 
comparison across genders and countries. 

cols <- c("Relatedness", "Competence", "Autonomy", 
"Emotion", "Motivation", "SRL") 

filter(aggregated, country == 1) |> 
select(all_of(cols)) -> finlandData 
filter(aggregated, country == 0) |> 
select(all_of(cols)) -> austriaData 
filter(aggregated, gender == 1) |> 
select(all_of(cols)) -> femaleData 
filter(aggregated, gender == 2) |> 
select(all_of(cols)) -> maleData 

select(aggregated, all_of(cols)) -> allData 

The allData dataframe should look as follows (Table 1) :  

3.3 Assumption Checks 

As a first step of the analysis, we need to check some assumptions to make sure 
that the dataset and the estimated network are appropriate. First, we need to ensure 
that the correlation matrix is positive definite i.e., the included variables are not 
a linear combination of each other and therefore, so similar they do not offer new
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information. This is performed by using the function is.positive.definite() 
from the package matrixcalc. Please note that in cases where the correlation 
matrix is non-positive definite, we can use option cor_auto to search for possible 
positive definite matrices (see later). In our case, the matrix is already positive 
definite. Note that we also set the use argument to "pairwise.complete.obs", 
or pairwise complete observations to include maximal observations. 

correlationMatrix <- cor(x =  allData, use = c( 
"pairwise.complete.obs")) 

is.positive.definite(correlationMatrix) 

[1] TRUE 

The second assumption that we need to check is whether some variables are 
highly correlated and therefore redundant. In doing so we make sure that each 
variable is sufficiently distinct from all other variables and captures a unique 
construct. The goldbricker algorithm compares the variables’ correlation patterns 
with all other variables in the dataset. Below, we search for items which are highly 
inter-correlated using the default values: (r > 0.50) with 0.25 as the significant 
fraction of variables and p-value of 0.05. The results show that the variables are 
significantly distinct from each other. 

goldbricker(allData, p =  0.05, method = "hittner2003", 
threshold = 0.25, corMin = 0.5, progressbar = 

FALSE) 

Suggested reductions: Less than 25 % of correlations are significantly 
different for the following pairs: 
[1] "No suggested reductions" 

3.4 Network Estimation 

Given that we made sure that the data satisfy the necessary assumptions, we can 
now build or estimate the network. The estimation means that we quantify the 
associations between the different variables. Several types of associations can be 
estimated. The most common in psychological networks are dependency measures, 
such as correlation and regression. In these networks, we are interested in how the 
levels or values of the variables in the network vary together in a similar way (e.g., 
if and to what extent higher levels of motivation are associated with higher levels of 
engagement). Such patterns can be estimated using covariance, simple correlation, 
partial correlation or relative importance (regression). In this tutorial, we focus
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on the the most commonly used estimation method, which is regularized partial 
correlation. 

Regularized partial correlations have been shown to (1) retrieve the true structure 
of the network in most situations, and (2) offer an interpretable sparse network that 
shows conditional association between variables. A partial correlation means that 
the association between each two variables is above and beyond all other variables in 
the network, or conditioning on all other variables in the network or holding all other 
variables constant often referred to as ceteris paribus. This allows us to estimate, 
for example, the association between motivation and engagement beyond other 
variables that are included in the network, e.g., achievement, anxiety or enjoyment. 
Regularization is the process of applying an extra penalty for the complexity of 
network model. A growing body of research recommends the procedure for several 
reasons. Regularization helps eliminate spurious edges that results from influence of 
other nodes, and shrinks trivial edges to zero and thus help eliminates Type 1 error 
or “false positive” edges. In doing so, the resulting network model is less complex, 
sparser, simpler to interpret with only the strong meaningful correlations. In doing 
so, regularization helps retrieve a true—and conservative—structure of the network. 
The penalty is commonly applied using the least absolute shrinkage and selection 
operator “LASSO”. 

Network estimation can be performed using several packages. We will use 
the package bootnet and the function estimateNetwork(). To estimate the 
network we need to pass the data as an argument, and select the option default 
= "EBICglasso" to estimate a regularized network. By default, the correlation 
type is set to cor_auto which can detect the distribution of the variables and set 
the appropriate correlation coefficient: polychoric, polyserial or Pearson correlation. 
Other options can be "cor" which will compute a correlation network and "npn" 
which will apply non-paranormal transformation—to normalize the data—and then 
compute correlations. By default, estimateNetwork() computes 100 models with 
various degrees of sparsity. The best model is selected based on the lowest Extended 
Bayesian Information Criterion value (EBIC) given a hyperparameter gamma (. γ ) 
which balances a trade off between false positive edges and suppressing of the true 
edges [30]. Gamma ranges from 0 (favors models with more edges [i.e. uses no 
regularization]) to 0.5 (favors model with fewer edges). The default for the hyper-
parameter gamma (. γ ) is set to 0.5 to ensure that edges included in the model are 
true and part of the network. The next code estimates the network and assigns 
the estimated network to an R object allNetwork. The estimated network can be 
accessed from allNetwork$graph. We can also see the details about the network 
using the function summary. 

allNetwork <- estimateNetwork(allData, default = 
"EBICglasso", 

corMethod = "cor_auto", 
tuning = 0.5) 

summary(allNetwork) 
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=== Estimated network === 
Number of nodes: 6 
Number of non-zero edges: 15 / 15 
Mean weight: 0.1397203 
Network stored in object$graph 

Default set used: EBICglasso 

3.5 Plotting the Network 

The network can be plotted by using the function plot(). The resulting plot uses 
a color blind theme by default where blue edges are positive correlations and red 
edges are negative correlations. The thickness of the edges is proportional to the 
magnitude of the regularized partial correlation. As the network shows, we see a 
very strong correlation between motivation, autonomy and competence. We also 
observe that emotion is strongly correlated with competence. As we mentioned 
before, each of the correlations in the network are conditioned—or above and 
beyond—all other nodes in the network same as regression. 

Please also note that we assign the plot to an R object under the name 
allDataPlot. This facilitates further plotting as well as retrieving other data, e.g., 
the allDataPlot object contains the correlation matrix, the plotting parameters, 
the call arguments etc. For instance, allDataPlot$layout returns the network 
layout which we can get and use in further plotting so that we have a fixed layout 
for all network to enable us to compare them easily against each other. Plotting in 
bootnet is mostly handled by the qgraph package and most options work with 
few differences. As such, the plot object works with all functions of the qgraph 
package as we will see later. The next code plots the network using the default 
settings (Fig. 1). The second line retrieves the layout and stores it in an object so we 
can later reuse it to plot our networks. 

allDataPlot <- plot(allNetwork) 
LX <- allDataPlot$layout 

However, in most situations, we will need to customize the plot. First, we may 
need to add a title using the argument title = "Both countries combined". 
Second, we define the node size using the argument vsize=9 (you may need to 
adjust according to your preference). Third, we choose to show the edge weight 
(i.e., the magnitude of the partial correlation) by setting edge.labels = TRUE; 
this is very important as it shows exactly how strong the correlation is. Fourth, we 
can choose cut = 0.10, which emphasizes edges higher than a threshold of 0.10. 
Edges below that threshold are shown with less color intensity. Whereas the cut 
argument is optional and relies on the network, it can be used to emphasize the
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Fig. 1 Network with default settings 
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Fig. 2 Network with customized settings 

important strong correlations and downsize the “clutter”. Another cosmetic option 
is to hide (but not remove) edges below 0.05 with the argument minimum = 0.05. 
Both cut and minimum make the network easy to read, interpret and less crowded. 
For more options, you need to consult the plot function manual bootnet.plot() 
or qgraph(). The final result can be seen in Fig. 2. 

allDataPlot <- plot( 
allNetwork, 
title = "Both countries combined", 
vsize = 9, 



Psychological Networks: A Modern Approach to Analysis of Learning and. . . 649 

edge.labels = TRUE, 
cut = 0.10, 
minimum = 0.05, 
layout = "spring") 

3.6 Explaining Network Relationships 

It may be useful—and all the more advisable—to compute the predictability of all 
nodes which simply means to calculate to which extent each node is explained by 
its relationships or the proportion of explained variance when regressing all nodes 
over the said node. In other words, the function computes regression for each node 
(where all other nodes are the predictors) and returns the R. 2. This process is repeated 
for each node. When the predictability (R. 2) is zero, the node is not explained at all 
by it connections and one should think whether the node belongs to this network or 
whether the measurement was accurate. When predictability is 1, then 100% of the 
variance is explained by the relationships of the node. This of course is unlikely and 
warrants serious checks. Predictability has also been linked to controlability, or the 
extent to which one can control all other nodes if acted on this node e.g. intervention 
targeting this node. 

For the calculation of predictability, we will need the function mgm() from the 
package mgm to estimate the model. The only required parameter for the function 
is the type of each variable which we specify as type = rep ('g', 6) or c("g" 
,"g", "g", "g" ,"g" ,"g"), which means all variables are Gaussian. 

fitAllData <- mgm(as.matrix(allData), type = c("g", "g" 
, "g", "g", "g", "g")) 

The predictability of each variable can be obtained by querying the resulting 
object as the code shows below. We can also obtain the mean predictability to see 
how far our network nodes are explained by their relationships on average. Using 
predictability in plots can enhance the readability of the network and give more 
information about the extent the node is explained by the current network. We do 
so by assigning the pie the value of R. 2 pie= predictAll$errors$R2. We can 
also see the the RMSE (Root Mean Square Error) which measures the difference 
between predicted values and the actual values using predictAll$errors$RMSE. 

# Compute the predictability 
predictAll <- predict(fitAllData, na.omit(allData)) 
predictAll$errors$R2 

# Check predictability for all variables 

[1] 0.139 0.518 0.442 0.315 0.458 0.126
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Table 2 Predictability 
dataframe 

Var R2 RMSE 

Relatedness 0.139 0.928 

Competence 0.518 0.694 

Autonomy 0.442 0.747 

Emotion 0.315 0.828 

Motivation 0.458 0.736 

SRL 0.126 0.935 

mean(predictAll$errors$R2) # Mean predictability 

[1] 0.333 

mean(predictAll$errors$RMSE) # Mean RMSE 

[1] 0.8113333 

We can also create a data frame of the predictability (Table 2). 

data.frame( 
var = predictAll$errors$Variable, 
R2 = predictAll$errors$R2, 
RMSE = predictAll$errors$RMSE 
) 

As the network plot (Fig. 3) and the data frame show, the highest predictability 
belongs to the competence, motivation and autonomy. We also see that SRL 
and relatedness have low predictability and therefore, are less explained by their 
connections. 

allDataPlot <- plot( 
allNetwork, 
title = "Both countries combined", 
vsize = 9, 
edge.labels = TRUE, 
cut = 0.10, 
minimum = 0.05, 
pie = predictAll$errors$R2 
) 
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Fig. 3 Network with predicatability as pie charts in the nodes 

3.7 Network Inference 

Similar to traditional networks, centrality measures can be computed for psycholog-
ical networks. Here—as in any network—the interpretation depends on the network 
variables, the estimation method, the weights of edges and of course, the theoretical 
underpinning that underpins the network structure. In the general sense, centrality 
measures estimate important, influential or central nodes. Early research has shown 
that centrality measures can be potential targets for intervention among others. 
Whereas many centrality measures exist, two centralities have gained traction: 
degree (or strength) centrality and expected influence. Others, e.g., betweenness, 
closeness and eigenvector centralities can be calculated but have not so far being 
“well understood” to be routinely recommended for analysis. 

Degree centrality is the tally of connections a node has regardless of weight. 
Strength centrality is the sum of absolute weights of all connections (the sum of 
correlations weights positive or negative). Expected influence is similar, however, 
expected influence sums the raw values. For instance, if a node has connections of 
0.3, . −0.1 and 0.5, the degree centrality is 3, the strength centrality is . 0.3 + 0.1 +
0.5 = 0.9 and the expected influence centrality is .0.3 − 0.1 + 0.5 = 0.7. Given  
that the network we have does not have any negative edges, strength and expected 
influence centralities are equivalent. To compute the centrality measures, we use the 
function centralityPlot() and provide the network as the main argument. We 
also need to provide the centralities that we wish to compute. The function plots the 
centralities by default (Fig. 4).
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Fig. 4 Centrality plot 

Table 3 Centrality table 

Graph Type Node Measure Value 

1 Graph 1 NA Relatedness Betweenness −0.6172134 

2 Graph 1 NA Competence Betweenness 0.7715167 

3 Graph 1 NA Autonomy Betweenness 1.6973368 

4..21 

22 Graph 1 NA Emotion ExpectedInfluence −0.3710702 

23 Graph 1 NA Motivation ExpectedInfluence 0.7079431 

24 Graph 1 NA SRL ExpectedInfluence −1.2029339 

centralityPlot(allNetwork, include = c("ExpectedInfluence", 
"Strength"), 

scale = "z-scores" ) 

Note: z-scores are shown on x-axis rather than raw centrality indices. 

If we wanted only the values, we could obtain the centralities by using the 
function centralityTable() (Table 3). 

centralityTable(allNetwork) 

Another possible way to compute several types of centralities is to use the 
NetworkToolbox package (Table 4) which offers a large collection of cen-
tralities, e.g., degree, strength, closeness, eigenvector or leverage centralities. 
NetworkToolbox has even more centrality measures that the reader can try. Please 
refer to the manual of this package for more information about the functions and
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Table 4 Centrality measures calculated with NetworkToolbox 

Var Degree Strength Betweenness Closeness Eigenvector Leverage 

Relatedness 5.00 .0.40 0.00 .1.89 .0.22 −3.43 

Competence .5.00 .1.07 6.00 .3.27 .0.55 1.35 

Autonomy .5.00 .0.90 10.00 .3.63 .0.47 1.07 

Emotion .5.00 .0.62 0.00 .2.58 .0.36 −0.42 

Motivation .5.00 .0.91 0.00 .3.16 .0.49 1.11 

SRL .5.00 .0.37 0.00 .1.88 .0.21 −5.38 

usage. Nevertheless, as mentioned above, the interpretations of these centralities are 
not clearly understood or straightforward as strength or expected influence. 

Degree <- degree(allNetwork$graph) 
Strength <- strength(allNetwork$graph) 
Betweenness <- betweenness(allNetwork$graph) 
Closeness <- closeness(allNetwork$graph) 
Eigenvector <- eigenvector(allNetwork$graph) 
Leverage <- leverage(allNetwork$graph) 
data.frame(Var = names 

(Degree), Degree, Strength, Betweenness, Closeness, 
Eigenvector, Leverage) 

As we mentioned above, besides the regularized partial correlation networks, 
several other estimation options are possible. We will demonstrate some 
here (Fig. 5). However, interested readers can refer to the manual pages of 
estimateNetwork() function. First, we can fit a model that is simply an 
association (i.e. correlation) network to explore the correlations between different 
variables. The association network is not recommended except for data exploration 
and is shown here for comparison. Another very interesting estimation method is 
the ggmModSelect(). This is recommended in large datasets with a low number of 
nodes. The ggmModSelect algorithm starts by estimating a regularized network as 
a starting baseline network, then estimates all possible un-regularized networks and 
selects the best model based on the lowest EBIC criteria. The last model we show 
here is the relative importance model relimp which estimates a directed network 
where edges are magnitude of the relative importance of the predictors in a linear 
regression model. You may notice that the ggmModSelect network is rather similar 
to the regularized network we estimated above whereas the correlation network 
is very dense. The relative importance network is directed and shows how each 
variable is expected to be influencing the other as per the regression results. 

allNetwork_cor <- estimateNetwork(allData, default = 
"cor", verbose = FALSE) 

allNetwork_mgm <- estimateNetwork(allData, default = 
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Fig. 5 Correlation networks with several estimation options 

"ggmModSelect", verbose = FALSE) 
allNetwork_relimp <- estimateNetwork(allData, default = 

"relimp", verbose = FALSE) 

plot(allNetwork_cor, title = "Correlation", vsize = 18, 
edge.labels = TRUE, 

cut = 0.10, minimum = 0.05, layout = LX) 
plot(allNetwork, title = "EBICglasso", vsize = 18, 

edge.labels = TRUE, 
cut = 0.10, minimum = 0.05, layout = LX) 

plot(allNetwork_mgm, title = "ggmModSelect", 
vsize = 18, edge.labels = TRUE, 

cut = 0.10, minimum = 0.05, layout = LX) 
plot(allNetwork_relimp, title = "Relative importance", 
vsize = 18, edge.labels = TRUE, 

cut = 0.10, minimum = 0.05, layout = LX) 

3.8 Comparing Networks 

Having shown the basic steps of estimation of a single network, we now proceed 
with comparing across different networks. Psychological networks offer rigorous 
methods to compare networks as a whole as well as edge weights and centralities 
using robust methods. Given that our data has two countries, we can estimate two 
networks for each country and test how they differ. 

First, to do the comparison we need to estimate the networks as we did before. 
The next section repeats the estimation steps for each country. We start with Finland
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and then Austria. First, the code performs the basic steps of assumption checking 
for each network. As the results show that the matrix of each of the networks is 
not positive definite and the goldbricker algorithm does not suggest that there are 
highly similar nodes that need to be reduced. Then, the next code chunk estimates 
two regularized partial correlation networks. As we have done before, we estimate 
the predictability of both networks. The results show that in general the mean 
predictability is similar in the two networks. 

### Check the assumptions 
## Finland 
# check for positive definitiveness 
correlationMatrix <- cor(x =  finlandData, use = c( 

"pairwise.complete.obs")) 
is.positive.definite(correlationMatrix) 

# check for redundancy 
goldbricker(finlandData, p =  0.05, method = "hittner2003", 

threshold = 0.25, corMin = 0.5, progressbar = 
FALSE) 

Suggested reductions: Less than 25 % of correlations are significantly 
different for the following pairs: 
[1] "No suggested reductions" 

## Austria 
# check for positive definitiveness 
correlationMatrix <- cor(x =  austriaData, use = c( 

"pairwise.complete.obs")) 
is.positive.definite(correlationMatrix) 

# check for redundancy 
goldbricker(austriaData, p =  0.05, method = "hittner2003", 

threshold = 0.25, corMin = 0.5, progressbar = 
FALSE) 

Suggested reductions: Less than 25 % of correlations are significantly 
different for the following pairs: 
[1] "No suggested reductions" 

#Estimate the networks 
finlandNetwork <- estimateNetwork(finlandData, 

default = "EBICglasso", 
corMethod = "cor_auto", tuning = 0.5) 

austriaNetwork <- estimateNetwork(austriaData, 
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default = "EBICglasso", 
corMethod = "cor_auto", tuning = 0.5) 

# Compute the predictability 
fitFinland <- mgm( 

as.matrix(finlandData), # data 
c("g" ,"g", "g", "g" ,"g" ,"g"), 

# distribution for each var 
verbatim = TRUE, # hide warnings and progress bar 
signInfo = FALSE # hide message about signs 
) 

predictFinland <- predict(fitFinland, na.omit(finlandData)) 

mean(predictFinland$errors$R2) 
# Mean predictability of Finland: 0.3085 

mean(predictFinland$errors$RMSE) 
# Mean RMSE of Finland: 0.8283333 

fitAustria <- mgm( 
as.matrix(austriaData), # data 
c("g" ,"g", "g", "g" ,"g" ,"g"), 

# distribution for each var 
verbatim = TRUE, # hide warnings and progress bar 
signInfo = FALSE # hide message about signs 
) 

predictAustria <- predict(fitAustria, na.omit(austriaData)) 

mean(predictAustria$errors$R2) 
# Mean predictability of Austria: 0.3436667 

mean(predictAustria$errors$RMSE) 
# Mean RMSE of Austria: 0.8036667 

[1] 0.3085 
[1] 0.8283333 
[1] 0.3436667 
[1] 0.8036667 

Now as the networks were estimated, we plot the networks side by side in the 
same way we used before (Fig. 6). It is always a good idea to have a common 
layout to facilitate interpretation. We can use the function averageLayout() 
to generate an average layout from the two networks as the first line of the 
code below shows. However, we will use the layout of the first network (LX) 
to maintain comparability. Please also note that we use the function qgraph()
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Fig. 6 Country networks and comparison. The weight of the edges represents the magnitude of 
the correlation while the color represents the sign: blue for positive and red for negative 

which is very similar to plot() with more options and arguments. Yet, two 
small differences: in qgraph() you need to supply the labels as an argument, 
otherwise qgraph() will use shortened labels. Second, qgraph() requires either 
an estimated network or matrix, to plot the difference network we subtract the two 
matrices finlandNetwork$graph-austriaNetwork$graph (not the networks) 
to get the matrix. The following code plots the three networks using the same 
layout side by side as well as computes a simple difference network. It is obvious 
that the two network differ substantially regarding several interactions. Finland has 
stronger connection between competence and emotion and between motivation and 
relatedness. Whereas in Austria, there is a stronger connection between motivation 
and competence, motivation and emotion as well as competence and autonomy and 
autonomy and relatedness. 

AverageLayout <- averageLayout 
(finlandNetwork, austriaNetwork) 

plot(finlandNetwork, # input network 
title = "Finland", # plot title 
vsize = 19, # size of the nodes 
edge.labels = TRUE, # label the edge weights 
cut = 0.10, # saturate edges > .10 
minimum = 0.05, # remove edges < .05 
pie = predictFinland$errors$R2, # put R2 as pie 
layout = LX) # set the layout 

plot(austriaNetwork, # input network 
title = "Austria", # plot title 
vsize = 19, # size of the nodes 
edge.labels = TRUE, # label the edge weights 
cut = 0.10, # saturate edges > .10 
minimum = 0.05, # remove edges < .05 
pie = predictAustria$errors$R2, # put R2 as pie 
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Fig. 7 Comparison of centralities plot between countries 

layout = LX) # set the layout 

qgraph(finlandNetwork$graph - abs(austriaNetwork$graph), 
title = "Difference", # plot title 
theme = allDataPlot$Arguments$theme, 
vsize = 19, # size of the nodes 
edge.labels = TRUE, # label the edge weights 
labels = allDataPlot$Arguments$labels, # node labels 
cut = 0.10, # saturate edges > .10 
layout = LX) # set the layout 

A visual comparison of centralities can be performed in the same way we did 
before (Fig. 7). Here, we supply the networks that we want to compare as a list, and 
we specify the centralities. As the results show, Motivation has the highest centrality 
value in the Austria network, meaning that motivation is the factor that is expected 
to drive the connectivity. In the Finland network, competence is the most central 
variable that drives the network connectivity. 

centralityPlot( 
list(Finland = finlandNetwork, 

Austria = austriaNetwork), 
include = c("ExpectedInfluence", "Strength")) 

Yet, to compare the networks in a rigorous way, we need a statistical test that 
tells which edges or centrality measures are actually different and not due to chance.
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For such a comparison, NCT (short for Network Comparison Test) is an effective 
method that allows for a detailed comparison regarding the network structure, edges, 
and centralities. To do so, NCT uses permutation to generate a large number of net-
works (based on the original network) as a references distribution and later compares 
the original networks against the permuted. To perform the test, we supply the net-
works and the number of iterations (a large number, at least 1000 iteration is recom-
mended). In addition, it is good practice to specify test.edges = TRUE, edges 
= 'all' to test all edges and test.centrality = TRUE to test the centralities 
since they are not tested by default. The code and the output are in the next chunk. 
To check the results, we can obtain the global strength (sum of all edge weights) 
by the using Compared$glstrinv.sep which is 2.148451 for Finland and 2.1725 
for Austria. The difference between global strength Compared$glstrinv.real 
is 0.02404855 and is statistically insignificant (Compared$glstrinv.pval = 
0.735). The maximum difference in any of the edges between the networks 
(Compared$nwinv.real) is 0.1713064. Compared$einv.real returns the differ-
ence matrix (as the difference network we computed above). The Holm-Bonferroni 
adjusted p-value (which adjusts for multiple comparisons) for each edge can be 
obtained using Compared$einv.pvals. The results show that most of the edges 
differed significantly except e.g., Relatedness-Emotion, Relatedness-SRL. Simi-
larly, the difference in centralities can be obtained using Compared$diffcen.real 
and the p-values using Compared$diffcen.pval which shows for example, that 
the difference in expected influence centrality of competence was not statistically 
significant. 

set.seed(1337) 
Compared <- NCT( 

finlandNetwork, # network 1 
austriaNetwork, # network 2 
verbose = FALSE, # hide warnings and progress bar 
it = 1000, # number of iterations 
abs = T, 
binary.data = FALSE, # set data distribution 
test.edges = TRUE, # test edge differences 
edges = 'all', # which edges to test 
test.centrality = TRUE, # test centrality 
progressbar = FALSE # progress bar 
) 

Compared$glstrinv.sep # Separate global strength values 
of the individual networks 
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[1] 2.148451 2.172500 

Compared$glstrinv.real # Difference in global strength 
between the networks 

[1] 0.02404855 

Compared$glstrinv.pval # p-value of strength difference 

[1] 0.7352647 

Compared$nwinv.real # Maximum difference in any of the edges 
between networks 

[1] 0.1713064 

Compared$einv.real # Difference in edge weight of the 
observed networks 

Relatedness Competence Autonomy Emotion Motivation SRL 
Relatedness 0.00000000 0.06812689 0.09520436 0.04142711 0.13714460 0.04672616 
Competence 0.06812689 0.00000000 0.13478602 0.17130636 0.16045438 0.12581888 
Autonomy 0.09520436 0.13478602 0.00000000 0.07667907 0.08758119 0.01228288 
Emotion 0.04142711 0.17130636 0.07667907 0.00000000 0.12873747 0.05299023 
Motivation 0.13714460 0.16045438 0.08758119 0.12873747 0.00000000 0.03062823 
SRL 0.04672616 0.12581888 0.01228288 0.05299023 0.03062823 0.00000000 

Compared$einv.pvals # Holm-Bonferroni adjusted p-values 
for each edge 

Var1 Var2 p-value Test statistic E 
7 Relatedness Competence 0.017982018 0.06812689 
13 Relatedness Autonomy 0.001998002 0.09520436 
14 Competence Autonomy 0.000999001 0.13478602 
19 Relatedness Emotion 0.165834166 0.04142711 
20 Competence Emotion 0.000999001 0.17130636 
21 Autonomy Emotion 0.009990010 0.07667907 
25 Relatedness Motivation 0.000999001 0.13714460 
26 Competence Motivation 0.000999001 0.16045438 
27 Autonomy Motivation 0.003996004 0.08758119 
28 Emotion Motivation 0.001998002 0.12873747
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31 Relatedness SRL 0.077922078 0.04672616 
32 Competence SRL 0.000999001 0.12581888 
33 Autonomy SRL 0.688311688 0.01228288 
34 Emotion SRL 0.073926074 0.05299023 
35 Motivation SRL 0.301698302 0.03062823 

Compared$diffcen.real # Difference in centralities 

strength expectedInfluence 
Relatedness 0.10476808 0.10476808 
Competence 0.07001173 0.07001173 
Autonomy -0.22860961 -0.22860961 
Emotion 0.12670208 0.21366531 
Motivation -0.20900022 -0.20900022 
SRL 0.08803084 0.17499406 

Compared$diffcen.pval # Holm-Bonferroni adjusted 
p-values for each centrality 

strength expectedInfluence 
Relatedness 0.006993007 0.006993007 
Competence 0.127872128 0.127872128 
Autonomy 0.000999001 0.000999001 
Emotion 0.009990010 0.000999001 
Motivation 0.000999001 0.000999001 
SRL 0.132867133 0.000999001 

3.9 The Variability Network 

The variability network offers a good indication of how the edge weights vary across 
the networks (Fig. 8). In other words, the range of variability (i.e. the degree of 
individual differences) across the included population. Edges with low variability 
are expected to be similar across the networks and vice versa. The following code 
creates two matrices and then loops across the two networks to compute the standard 
deviation. 

# Construct a network where edges are standard deviations 
across edge weights of networks 

edgeMeanJoint <- matrix(0, 6, 6) 
edgeSDJoint <- matrix(0, 6, 6) 
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for(i in 1:6){ 
for(j in 1:6) {  

vector <- c(getWmat(finlandNetwork)[i, j], getWmat 
(austriaNetwork)[i, j]) 

edgeMeanJoint[i, j] <- mean(vector) 
edgeSDJoint[i, j] <- sd(vector) 

} 
} 

We then plot the networks where the edge weights are the standard deviations of 
all edges (Fig. 8). 

qgraph(edgeSDJoint, layout = LX, edge.labels = TRUE, 
labels = allDataPlot$Arguments$labels, vsize = 9, 
cut = 0.09, minimum = 0.01, theme = "colorblind") 

In the same way we compared countries, we can compare across genders, and as 
we see in the next code chunk, we estimated the male network, the female network 
and the difference network (Fig. 9). Nonetheless, the differences are really small or 
even trivial. 

maleNetwork <- estimateNetwork(maleData, default = 
"EBICglasso") 

femaleNetwork <- estimateNetwork(femaleData, default = 
"EBICglasso") 

plot(maleNetwork, title = "Male", vsize = 9, edge.labels = 
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Fig. 9 Gender networks and comparison 

TRUE, 
cut = 0.10, minimum = 0.05, layout = LX) 

plot(femaleNetwork, title = "Female", vsize = 9, 
edge.labels = TRUE, 

cut = 0.10, minimum = 0.05, layout = LX) 

qgraph(femaleNetwork$graph - maleNetwork$graph, title = 
"Difference", cut = 0.1, 

labels = allDataPlot$Arguments$labels, vsize = 9 
,minimum = 0.01, 

edge.labels = TRUE, layout = LX, theme = 
"colorblind") 

Below we perform the network comparison test and we see that the p-values of 
differences between all edges is statistically insignificant. 

ComparedGender <- NCT( 
maleNetwork, # network 1 
femaleNetwork, # network 2 
verbose = FALSE, # hide warnings and progress bar 
it = 1000, # number of iterations 
abs = T, # test strength or expected influence? 
binary.data = FALSE, # set data distribution 
test.edges = TRUE, # test edge differences 
edges = 'all', # which edges to test 
progressbar = FALSE) # progress bar 

ComparedGender$einv.pvals # Holm-Bonferroni adjusted 
p-values for each edge 

Var1 Var2 p-value Test statistic E
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7 Relatedness Competence 0.10889111 0.04185543 
13 Relatedness Autonomy 0.05394605 0.05347524 
14 Competence Autonomy 0.99400599 0.00010546 
19 Relatedness Emotion 0.72127872 0.01087833 
20 Competence Emotion 0.42757243 0.01989769 
21 Autonomy Emotion 0.18981019 0.03229342 
25 Relatedness Motivation 0.08791209 0.04844325 
26 Competence Motivation 0.63736264 0.01271230 
27 Autonomy Motivation 0.20779221 0.03390618 
28 Emotion Motivation 0.47552448 0.01965116 
31 Relatedness SRL 0.73426573 0.00892731 
32 Competence SRL 0.56543457 0.01648147 
33 Autonomy SRL 0.92907093 0.00250644 
34 Emotion SRL 1.00000000 0.00000000 
35 Motivation SRL 0.34965035 0.02428596 

3.10 Evaluation of Robustness and Accuracy 

The most common procedure to evaluate the stability and accuracy of the of the 
estimated networks is bootstrapping, in which a large number (1000 or more) of 
bootstrapped networks are created based on the original data. The resulting edge 
weights of the bootstrapped networks are then used to create confidence intervals 
to assess the accuracy of the edges. Each edge weight in the estimated networks is 
contrasted to the confidence intervals of the bootstrapped edges. Edges where the 
upper and lower bounds do not cross zero are considered statistically significant and 
edges that either the upper or lower bound of the confidence interval crosses the 0 
line are considered not significant. 

nCores <- parallel::detectCores() - 1 
# Non-parametric bootstrap for stability of edges 

and of edge differences 

allBoot <- bootnet( 
allNetwork, # network input 
default = "EBICglasso", # method 
nCores = nCores, # number of cores for 

parallelization 
computeCentrality = FALSE, # estimate centrality? 
statistics = "edge" # what statistics do we 

want? 
) 
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Fig. 10 Edge weights 

plot(allBoot, plot = "area", order = "sample", legend = 
FALSE) 

As Fig. 10 shows, only the edges of autonomy-emotion and emotion-SRL are 
crossing the 0 line and therefore, are insignificant. We can also plot the edge 
difference plot which tests if the edge weights are different from each other (Fig. 11). 
As the figure shows, edges where the 95% bootstrapped confidence interval of the 
difference between any pair of edges crosses the zero line, the square is grey. The 
square is black if the edge difference does not cross the 0 (significant). For instance, 
autonomy-emotion and emotion-SRL have a grey square indicating non-significant 
difference whereas emotion-SRL and relatedness-SRL has a black square indicating 
that the two nodes are statistically significantly different. 

plot(allBoot, plot = "difference", order = "sample", 
onlyNonZero = FALSE, labels = TRUE) 

The accuracy of centrality is assessed by the case dropping test. In the case 
dropping test, several proportions of cases are dropped from the data and the 
correlation between the observed centrality measure and those obtained from the 
subsetted data is calculated. If the correlation dropped markedly after dropping a 
small subset of the cases, then the centrality measure is unreliable. 

set.seed(1) 
centBoot <- bootnet( 

allNetwork, # network input 
default = "EBICglasso", # method 
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Fig. 11 Differences between 
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type = "case", # method for testing 
centrality stability 

nCores = nCores, # number of cores 
computeCentrality = TRUE, # compute centrality 
statistics = c("strength", "expectedInfluence"), 
nBoots = 19000, # number of bootstraps 
caseMin = .05, # min cases to drop 
caseMax = .95 # max cases to drop 
) 

The correlation stability coefficient is a metric that is used to judge the stability of 
the centrality measure using the case dropping test and is estimated as the maximum 
drop to retain retain 0.7 of the sample. 

corStability(centBoot) 

If we plot the results (Fig. 12), we can see that the correlation stability coefficient 
is 0.95 which is very high indicating the stability of the edges. 

plot(centBoot)
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Fig. 12 Average correlation stability coefficient 

3.11 Discussion 

The field of psychological networks is growing fast and methods are refined at a fast 
speed. In the current chapter, we have tried to show the basic steps of analyzing a 
psychological network, visualizing the results and comparing different networks. 
We have also shown how networks can be compared using robust statistical 
methods. Furthermore, we also showed how to test the accuracy of the estimated 
networks using the bootstrapping methods. 

An important question here is how psychological networks compare to other 
methods that are prevalent in the educational field e.g., Epistemic Network Analysis 
(ENA). In ENA, there is no way to test if the network edges are different from 
random, there is no rigorous method for comparison of networks or verifying 
the edge weights. Also, there are no centrality measures or network measures. 
In fact, ENA loses all connection to network methods and therefore, the usual 
methods for verifying, randomization or computing of network measures do not 
apply in ENA [50]. The same can be said about process mining which produces 
transition networks. In process mining, there are few confirmatory tests that verify 
the resulting model or rigorously compare across process models. Perhaps social 
networks analysis (SNA) is the closest to psychological networks. However, SNA is 
limited to—or has been commonly used with—-limited types of edges (e.g., co-
occurrence, reply or interactions); these edges are almost always unsigned (i.e., 
are always positive) and have been limited to either social interactions or semantic 
interactions [25, 51, 52]. 

In sum, psychological networks offer far more wider perspectives into 
interactions—or interdependencies—among variables with a vast number 
of possible estimation methods and optimization techniques. Furthermore,
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psychological networks have a vibrant community who refine and push the 
boundary of the existing methods [53]. All of such advantages make psychological 
networks a promising method for modeling complex systems, understanding 
interactions and structure of psychological constructs as we demonstrated here 
[3, 54]. Furthermore, psychological networks require no prior theory or strong 
assumptions about the modeled variables and can serve as powerful analytical 
methods. As Borsboom et al. states psychological networks “form a natural bridge 
from data analysis to theory formation based on network science principles” and 
therefore can be used “to generate causal hypotheses” [29]. 

The book is a comprehensive reference for psychological networks from theory, 
to methods and estimation techniques. The following papers offer excellent guides 
and tutorials:

• Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological 
networks and their accuracy: A tutorial paper. Behavior research methods, 50, 
195-212.

• Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation 
networks. Psychological methods, 23(4), 617.

• Van Borkulo, C. D., van Bork, R., Boschloo, L., Kossakowski, J. J., Tio, P., 
Schoevers, R. A., . . . & Waldorp, L. J. (2022). Comparing network structures 
on three aspects: A permutation test. Psychological methods.

• Borsboom, D., Deserno, M. K., Rhemtulla, M., Epskamp, S., Fried, E. I., 
McNally, R. J., . . . & Waldorp, L. J. (2021). Network analysis of multivariate 
data in psychological science. Nature Reviews Methods Primers, 1(1), 58.

• Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, 
M., . . . & Snippe, E. (2019). What do centrality measures measure in psycholog-
ical networks?. Journal of abnormal psychology, 128(8), 892. 
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Factor Analysis in Education Research 
Using R 

Leonie V. D. E. Vogelsmeier, Mohammed Saqr, Sonsoles López-Pernas, 
and Joran Jongerling 

1 Introduction 

Educational scientists are usually after the invisible: sense of belonging, intel-
ligence, math ability, general aptitude, student engagement. . . the  list  of  crucial,  
multifaceted, but not directly observable student characteristics goes on. But how 
do researchers measure and study what they cannot see? One solution is not looking 
for the invisible cause itself but for its consequences. Just like one cannot see the 
wind but can tell it is there from the moving leaves, researchers can indirectly infer 
student engagement by looking at observable aspects of students' online behavior. 
For example, the more engaged students are, the more effort they invest in learning 
(i.e., longer online time), and the more regular and frequent they post on fora. 
These observable variables are the gateway to the underlying engagement construct 
that is theorized to drive students to be engaged, and factor analysis is the key to 
opening that gate. If scores on a set of observed variables are all caused by the 
same underlying construct of interest, the relations between these variables (i.e., 
the covariances that indicate how increases/decreases in one behavior are related to 
increases/decreases in another) are an expression of this underlying construct. This 
is exactly the core tenet of factor analysis. The method examines the covariances 
between the observed variables and, from this information, extracts the underlying 
unobserved or latent construct (as well as students' relative scores on it). 

The inventor of factor analysis is Spearman, who was trying to make sense 
of the fact that tests of widely varying cognitive abilities all positively correlated 
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with each other. He reasoned that the cause of this was an underlying construct 
(or factor) called “general intelligence” that was causing people's performance on 
all of those tests [1]. Spearman's work on factor analysis was later extended by 
Thurstone, who believed that people's performance was influenced by more than just 
one latent dimension. Thurstone [2], therefore, expanded factor analysis to enable 
the extraction of multiple underlying constructs based on the covariances between 
variables. The extension allowed performance on a math test to, for example, be 
influenced both by math ability (the key ability that should be measured) and reading 
ability (the ability to accurately understand questions on the math test in order to 
answer them correctly). 

Jöreskog introduced the final major addition to factor analysis. Although Spear-
man's and Thurstone's versions of factor analysis already allowed for exploring 
the factor structure for a given dataset, it was not yet possible to confirm if the 
factor structure fit well to the data and, thus, if the covariances between variables 
implied by the factor structure match the observed covariances in the dataset. 
Jöreskog [3] figured out how to estimate factor models in a way that made this 
possible. An added benefit of this estimation method was that it allowed for 
factor models in which observed variables (e.g., behaviors, tasks, or questionnaire 
items) were not influenced by all the assumed underlying dimensions but, for 
example, only by one, which was not possible in the methods of Spearman and 
Thurstone. This extension allowed adding theory and/or practical experience to 
the factor analysis. For instance, one could test the hypothesis that students' math 
ability consists of the separate sub-dimensions addition, subtraction, division, and 
multiplication by letting all tasks of a math test that involve addition belong to just 
one underlying addition factor, all the tasks involving multiplication to just one 
underlying multiplication factor, et cetera. If this multidimensional model of math 
ability fits the data well, students can subsequently be evaluated on each of these 
dimensions separately (instead of on an overall math ability factor). The approach in 
which researchers confirm if a specific factor model (i.e., for which both the number 
of underlying dimensions and the pattern of relations between these dimensions 
and the observed variables) fits to the data is nowadays called confirmatory factor 
analysis (CFA). In contrast, the more data-driven approach in which the number of 
underlying constructs is inferred from the data and all underlying constructs are 
assumed to influence all observed variables is called exploratory factor analysis 
(EFA). 

Nowadays, both EFA and CFA are readily available in modern statistical (open-
source) software and applied regularly across the social sciences in general and 
educational research in particular. For example, Krijnen et al. [4] used EFA to refine 
a typology of home literacy activities. They cautiously anticipated four hypothetical 
categories of home literacy activities (oral language exposure, oral language 
teaching, code skills exposure, and code skills teaching activities). However, since 
the authors did not have a strong theory or prior factor-analytical results to support 
this anticipated factor structure, they refrained from testing if that specific factor 
structure fit to the data with CFA and instead used the more data-driven EFA 
approach. Their results suggested that there were actually three factors underlying
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the observed variables in their dataset (oral language teaching, oral language 
exposure, and general code activities). 

In contrast, Hofhuis et al. [5] used factor analysis to validate a shortened 
version of the Multicultural Personality Questionnaire (MPQ; [6]), a measure of 
intercultural competence, among a sample of students in an international university 
program. The authors wanted to determine if this short form of the MPQ (MPQ-SF) 
could be used instead of the longer original and if item scores of both versions of 
the questionnaire were influenced by the same five theorized aspects of inter-cultural 
competence (cultural empathy, emotional stability, flexibility, openmindedness, and 
social initiative). Since previous research on the original MPQ provided insight 
into both the number of underlying factors and the specific relations between these 
factors and the set of items retained on the MPQ-SF, the authors used CFA in this 
study. They found that the factor structure of the MPQ-SF fit well to the data and 
that the structure was thus comparable to that of the original MPQ.1 

In the above, it was stressed that CFA is used when researchers have an idea 
about the factor structure underlying the data that they want to confirm, while EFA 
is used more exploratively when researchers have less concrete guiding insights for 
specifying the model. In practice, CFA and EFA are both used in confirmatory as 
well as exploratory settings and often even in the same study. Even if researchers 
have a well-substantiated idea about the number of constructs underlying their 
observations, they can use EFA to see if the number of factors found by this analysis 
matches their hypothesis. Similarly, researchers with competing theories about the 
factors underlying their observed behaviors can still use CFA to explicitly compare 
these competing models in terms of fit. Flora and Flake [8] discuss how neither 
EFA nor CFA is purely confirmatory or exploratory in more detail, arguing that, 
in essence, it comes down to one's specific research context. This will not further 
be discussed in this chapter. Instead, an integrated use of EFA and CFA often 
encountered in Educational Sciences is presented. The presentation is kept applied 
and focuses on conducting factor analysis in R. For more (technical) details, see the 
readings listed at the end of the chapter. 

2 Literature Review 

Several examples of factor analysis exist in learning analytics, which can be grouped 
broadly under two categories: factor analysis of self-reported data instruments (e.g., 
surveys) and factor analysis to explore students' online data. Analysis of self-
reported instruments seems to be most widely used within the emerging research

1 Moreover, they determined that the factor structure of the MPQ-SF was identical for Western and 
non-Western students and that the MPQ-SF could therefore be used to study and compare both 
these groups. This comparing factor structures for different groups in terms of similarity is called 
measurement invariance testing and will be discussed more extensively in the next chapter on SEM 
[7]. 
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field of learning analytics. For instance, Whitelock-Wainwright et al. [9] used  
EFA and CFA to validate an instrument that measures students' expectations of 
ethics, privacy, and usage of their learning analytics data. The analysis suggested 
a two-factor model that represented two categories of variables of ideal and 
predicted expectations of learning analytics. Similarly, Oster et al. [10] used EFA to  
validate an instrument that measures learning analytics readiness among institutions. 
The authors found that a five-factor model best represents the data (with the 
dimensions data management expertise, data analysis expertise, communication 
and policy application, and training). Similarly, factor analysis has been used 
to create an instrument for measuring variables influencing learning analytics 
dashboard success. For instance, Park and Jo [11] measured learning analytics 
dashboard success through an instrument based on Kirkpatrick's four evaluation 
levels (i.e., Reaction, Learning, Behavior, and Results). Through EFA, they found 
that five dimensions were more appropriate than four, as suggested by the original 
instrument, which CFA later confirmed. Similarly, Kokoç and Kara [12] used the  
Evaluation Framework for Learning Analytics to evaluate the impact of a learning 
analytics dashboard on learner performance. After conducting CFA, they found that 
the three-factor model of the Evaluation Framework for Learning Analytics for 
learners provided the best model fit for the collected data, confirming the structure 
of the original instrument. 

Besides the aforementioned traditional examples, factor analysis has also been 
used in learning analytics with students' online data logs. For instance, Hernández-
García et al. [13] used factor analysis to identify predictors derived from data about 
students' interactions. The authors found that a three-factor model best represented 
students' interaction variables (with dimensions groups' team message exchanges, 
distribution of postings, and reciprocity of interactions). In that case, factor analysis 
helps find groups of predictors, understand their underlying structure, and reduce 
dimensionality. Similarly, Fincham et al. [14] used EFA and CFA to build a 
theorized model of engagement based on three groups of variables derived from 
online log data, analysis of sentiments, and metrics derived from the discourse of 
online posts. Others have applied similar approaches to study the structure of log 
data. For instance, Baikadi et al. [15] applied EFA to learner activities within four 
online courses to identify emergent behavior factors. The findings suggested a four-
factor model including activity, quiz activity, forum participation, and participation 
in activities. Another example is the work by Wang [16], who used factor analysis 
for dimensionality reduction of log data, deriving predictors of learning performance 
from students' fine-grained actions on the learning management systems. 

The remainder of this chapter first provides a brief description of the factor 
analysis model, the model that is at the basis of both EFA and CFA. Second, the steps 
needed to perform factor analysis in R are presented by applying EFA and CFA to 
education data that is openly available. The application begins with data preparation, 
requirements, and initial checks. Additionally, it is shown how to set aside a 
holdout sample from the original dataset (which is necessary for establishing the 
generalizability of results from an EFA and/or CFA to future samples, as explained 
below). After these preliminary steps, it is shown how to run an EFA and interpret
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the outcomes. The part ends with a thorough description of how to do a CFA and 
assess generalizability. The chapter ends with a discussion and recommendation for 
further reading. 

3 Recap of the Factor Analysis Model 

Factor analysis can be seen as a set of (multiple) linear regression models where 
each observed variable is regressed on one or more latent factors (see Figure 1 in 
[17]). Like in regression, researchers get regression weights, intercepts, and error 
terms. They just get a set of these parameters for each observed variable in the 
analysis. The regression weights are referred to as loadings in factor analysis (the 
straight arrows in Fig. 1) and indicate how strongly the observed variables are related 
to the underlying factors. The intercepts (not explicitly indicated in Fig. 1) are the  
expected scores on the observed variables when the factor means are equal to zero. 
Finally, the error terms (the . ε's in Fig. 1) capture the variance unexplained by the 
factors and, thus, the unique variance of the individual observed variables. The 
difference between the factor analysis model and a regular regression model is that 
the values of the factors are unobserved. Therefore, estimating a factor analysis 
model is more complicated than estimating a regular regression analysis model with 
observed predictors and requires specialized software. 

As mentioned in the introduction, there are two types of factor analysis: 
Exploratory factor analysis (EFA; Fig. 2) and confirmatory factor analysis (CFA; 
Fig. 3). The key difference is that all loadings (i.e., all variable-factor relations) are 
estimated in EFA. As a result, variables may load on more than one factor (referred 
to as cross-loadings). In contrast, in CFA, several loadings are set to zero (and thus 
not estimated) based on researchers' a priori hypotheses about which variables are 
unrelated to which underlying factors. Therefore, the CFA model is considered a 
restricted version of the EFA model. 

Fig. 1 A basic 1-factor model. Each observed variable (. X1–. X3) is regressed on the factor. Straight 
arrows indicate factor loadings (the regression weights obtained by regressing the observed 
variable on the factor). The . ε's represent errors. Curved single-headed arrows indicated variances. 
Each observed variable also has an intercept, but these are not explicitly indicated in the figure
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Fig. 2 An EFA Model with two latent factors. Each observed variable (. X1–. X6) is influenced by 
both factors. Straight arrows indicate factor loadings. Loadings for Factor 2 are depicted with 
dashed lines for visual clarity. The . ε's represent errors. Curved single-headed arrows indicate 
variances and curved double-headed arrows indicate covariances 

Fig. 3 A CFA Model with two latent factors. Each observed variable (X. 1–X. 6) is influenced by 
only one of the underlying factors. Straight arrows indicate factor loadings. Loadings for Factor 
2 are depicted with dashed lines for visual clarity. The . ε’s represent errors. Curved single-headed 
arrows indicate variances and curved double-headed arrows indicate covariances 

Another difference is the determination of the number of factors. In EFA, the 
number of underlying factors is determined using a data-driven approach; that is, 
the likely number of underlying factors for the sample data is first estimated, for 
example, using parallel analysis [18]. Researchers then fit a set of factor models, 
with the number of underlying factors in these models based on the parallel analysis 
result. For example, if the parallel analysis suggests 5 factors, researchers can fit 
models with 4, 5, and 6 underlying factors. These three models are then compared 
in terms of both model fit—using the Bayesian information criterion [19]—and in 
terms of the interpretability of the models (i.e., “Do the relations between the factors 
and the observed variables they load on make sense?”). All this will be discussed in 
the Sect. 5 of this chapter. 

In contrast, the number of factors in CFA is determined based on strong a priori 
hypotheses. When researchers have multiple competing hypotheses, each can be 
translated into a separate CFA model. These models can then again be compared in 
terms of how well they fit the data. The hypothesis underlying the best-fitting model
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can be considered the most likely explanation of the data according to the sample at 
hand. 

4 Integrated Strategy for a Factor Analysis 

As described in the introduction, there is no clear delineation between when to 
use either EFA or CFA, and both methods often co-occur within the same study. 
Therefore, this section provides a detailed description of a principled modeling 
strategy that integrates both EFA and CFA. More specifically, the three steps that 
researchers should go through whenever latent constructs are part of their research 
(either because the instrument is the main focus of the study or because the latent 
construct is a predictor or outcome in an analysis) are discussed: (1) exploring the 
factor structure, (2) building the factor model and assessing fit, and (3) assessing 
generalizability. As a starting point, it is assumed that the researcher has already 
completed the initial instrument development phase for a construct of interest such 
as inter-cultural competence (i.e., that the researcher is using an instrument with 
variables/tasks/behaviors from previous research, has adjusted an instrument from 
previous research (e.g., by shortening, extending, translating, or revising content), 
or has newly developed an instrument (e.g., based on theory)). Furthermore, it is 
assumed that the researcher has gathered data from their population of interest (e.g., 
students). 

4.1 Step 1: Exploring the Factor Structure 

Once the variables/tasks/behaviors have been selected and data on them have been 
obtained using a sample from the population of interest, you, the researcher, should 
start with an EFA. If a previously validated instrument is used, or if strong prior 
hypotheses about the underlying factor structure of the instruments are available, 
you should investigate whether the number of factors and the way the variables load 
on the factors are in line with anticipated results. Thus, the key questions are “Do 
variable scores believed to be caused by the same underlying factor indeed all load 
on the same factor?” and, if only a single underlying factor is assumed to cause the 
scores on a set of variables, “Do these variables indeed have strong factor loadings 
with only a single factor?” 

If a new instrument is the starting point, you should determine if the factors 
and the pattern of loadings can be interpreted. The key questions are “Do all 
variables (primarily) loading on the same factor indeed have something in common 
substantively?” and “Are variables that load on different factors indeed qualitatively 
different somehow?” 

Referring back to the example about a math test, you could see that tasks 
involving addition, subtraction, division, and multiplication loaded on 4 distinct
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factors (which could then preliminarily be identified as addition-, subtraction-, 
division-, and multiplication ability), with each set of tasks being primarily influ-
enced by a single factor. At this stage, you may have to make some adjustments, 
like removing variables without substantial loadings (e.g., loadings smaller than 
an absolute value of .3) on any dimensions and reestimating the EFA. Note that 
you should always think about the reasons for low loadings (e.g., because of an 
ambiguously formulated item) and not just remove variables without good reason. 

4.2 Step 2: Building the Factor Model and Assessing Fit 

After choosing a model with EFA, you need to refine this model and use CFA to 
assess the model fit (and thus how well the covariances between variables implied 
by the factor structure match the observed covariances in the dataset). In the EFA 
in the previous step, all variables were allowed to load on all factors, but often, 
you have theoretical or (prior) empirical information that you want to include in 
your analyses, and that restricts the number of these cross-loadings. In this model-
building step, you could remove all factor-variable relations (i.e., factor loadings) 
that do not fit your theory or make substantive sense, but attention must be given 
to the size of the factor loadings. Close-to-zero factor loadings can be removed 
relatively risk-free, but larger factor loadings require more careful consideration. 
Even if these factor-variable relations do not make substantive sense (straight away), 
the data tell you they should be there. So consider them carefully; if, after closer 
inspection, they can be incorporated into your prior theory or assumptions, you 
might want to keep them; if not, you can always remove them and see if the model 
still fits your data. 

After selecting which variable-factor relationships should be removed, you can 
build the corresponding CFA model and fit it to the data to determine if it fits 
sufficiently well. If the model does not fit well, you can return to your EFA results 
and see if you might have to allow additional non-zero loadings (or apply other 
modifications discussed further below). Note that you should only add relationships 
to the model that make substantive sense. This process may require several rounds 
of adjustments until your model fits well and is substantively sound. 

4.3 Step 3: Assessing Generalizability 

After the previous step, you have a preliminary model that fits well with both your 
new or existing theory and the current data. However, since the ultimate goal should 
be to present instruments that can be used to measure constructs in future studies, 
it is essential that you also establish that your preliminary model fit new, as-yet-
unknown, data and, thus, that your model does not describe only your current sample 
properly but also other samples from your population. Therefore, in the final step,
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the preliminary model must be fitted to a new dataset from the same population 
as the data used to build the preliminary model. This final validation step can be 
referred to as cross-validation. 

To assess the generalizability, one could collect a second dataset. However, in 
practice, gathering data more than once for instrument development purposes is 
often unfeasible or undesirable. A suitable alternative is to randomly split one 
dataset into two parts: one sample on which you perform Steps 1 (exploring the 
factor structure using EFA) and 2 (building the factor model and assessing fit with 
CFA) and one so-called holdout sample, which you set aside for Step 3 (assessing 
generalizability). If the CFA model fits the holdout sample, you can be more 
confident that your instrument can be used in future studies and settle on it as your 
final model. On the other hand, if the preliminary model does not fit the holdout 
sample well, you have to conclude that you have not found an adequate instrument 
yet. In that case, the sources of misfit between the CFA and the holdout sample 
need to be investigated (more on this below when local fit and modification indices 
are discussed), and findings from this inspection need to be used to update your 
theory/model. This updated theory/model then needs to be investigated again by 
going through all the steps discussed above on a new (split) dataset. 

The above steps present a suitable factor modeling strategy for any study using 
instruments to measure latent dimensions. The only situation in which you could 
theoretically fit a CFA model immediately and assess its fit is when using an existing 
instrument on a sample from a population for which the instrument had already been 
validated in previous research. However, even in that situation, going through all the 
above steps is advisable because your sample might differ in important ways from 
the ones on which the instrument was validated, which could bias your results. 

5 Factor Analysis in R 

In the following, you are taken through the essential steps of investigating the factor 
structure using both EFA and CFA in the open-source software R. In describing 
the steps, the following is addressed: checking data characteristics for suitability 
for EFA/CFA, deciding on the number of factors, assessing global and local model 
fit, and evaluating the generalizability of the final factor model. To this end, a 
dataset is used to which factor analysis has been applied before [20]. The dataset 
contains survey data about teacher burnout in Indonesia. In total, 876 respondents 
have answered questions on five domains: Teacher Self-Concept (TSC, 5 questions), 
Teacher Efficacy (TE, 5 questions), Emotional Exhaustion (EE, 5 questions), 
Depersonalization (DP, 3 questions), and Reduced Personal Accomplishment (RPA, 
7 questions). Thus, the total number of variables equals 25. The questions were 
assessed on a 5-point Likert scale (ranging from 1 = “never” to 5 = “always”). For 
more information on the dataset, see the data chapter of this book [21]. 

The first section shows the necessary preparation, which involves reading in the 
data, evaluating whether the data are suited for factor analysis, and setting apart
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the holdout sample needed for assessing the generalizability. The next two sections 
show how to conduct an EFA to arrive at a preliminary factor model/factor structure 
(Step 1), and how to refine this model using CFA (Step 2). The final section shows 
how to test the generalizability of the refined factor model using cross-validation 
(Step 3). 

5.1 Preparation 

In order to follow all the steps, you have to install the following packages with 
install.packages()(you only have to install packages the first time you want 
to use them; therefore, the commands are hashtagged below) and load them with 
library() whenever you open the R script. 

library(lavaan) # install.packages("lavaan") 
library(psych) # install.packages("psych") 
library(semTools) # install.packages("semTools") 
library(effectsize) # install.packages("effectsize") 
library(rio) # install.packages("rio") 
library(tidyr) # install.packages("tidyr") 
library(ggplot2) # install.packages("ggplot2") 
library(devtools) # install.packages("devtools") 
library(sleasy) # install_github("JoranTiU/sleasy") is 

sufficient install_github("JoranTiU/sleasy") 

5.1.1 Reading in the Data 

The data can be read in, and the variable names can be extracted with the following 
commands: 

dataset <- import("https://github.com/lamethods/data/raw/main/4_ 
teachersBurnout/2.%20Response.xlsx") 

var_names <- colnames(dataset) 

If not all variables in the dataset should be used for the factor analysis, you should 
only add the relevant variables to the var_name object. The commands below will 
then take this into account automatically.
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5.1.2 Are the Data Suited for Factor Analysis? 

Several data characteristics are necessary for both EFA and CFA. First, the variables 
must be continuous. Variables are seldom truly continuous, but they can be treated 
as such if they were assessed on a scale with at least five response categories and 
the responses are reasonably symetrically distributed [22]. If the variables are not 
continuous, factor analysis can still be conducted, but a specific type of estimation 
for categorical data is required. Note that this is beyond the scope of this chapter 
(interested readers are referred to [23]). Moreover, the scale on which the observed 
variables are assessed should be the same, which may not hold in certain educational 
data. If the variables have been measured on different scales, or if the variables are 
measured on the same scale, but the range of observed scores on the variables differs 
substantially between variables (e.g., some variables have scores ranging from 1 
to 5, while others have scores ranging only from 2 to 4), the variables should be 
transformed before the factor analysis to make their scales more comparable. The 
following command can be used to inspect each variables’ range (Table 1): 

Table 1 Descriptive statistics of the dataset variables 

Vars n Mean sd Median Trimmed Mad Min Max Range Skew Kurtosis se 

1 876 .3.65 .0.68 4 .3.62 .0.00 1 5 4 .−0.09 0.06 . 0.02 

2 876 .3.81 .0.64 4 .3.78 .0.00 2 5 3 .−0.07 −0.14 . 0.02 

3 876 .3.73 .0.64 4 .3.71 .0.00 2 5 3 .−0.17 −0.02 . 0.02 

4 876 .3.71 .0.67 4 .3.67 .0.00 2 5 3 .−0.03 −0.25 . 0.02 

5 876 .3.82 .0.65 4 .3.79 .0.00 2 5 3 .−0.10 −0.13 . 0.02 

6 876 .4.06 .0.71 4 .4.10 .0.00 1 5 4 .−0.47 0.38 . 0.02 

7 876 .4.04 .0.70 4 .4.07 .0.00 2 5 3 .−0.22 −0.45 . 0.02 

8 876 .4.12 .0.71 4 .4.17 .0.00 1 5 4 .−0.72 1.60 . 0.02 

9 876 .4.11 .0.69 4 .4.15 .0.00 1 5 4 .−0.47 0.51 . 0.02 

10 876 .3.90 .0.75 4 .3.92 .0.00 1 5 4 .−0.41 0.16 . 0.03 

11 876 .3.81 .0.76 4 .3.81 .0.00 1 5 4 .−0.35 0.23 . 0.03 

12 876 .3.73 .0.85 4 .3.75 .1.48 1 5 4 .−0.37 0.12 . 0.03 

13 876 .3.88 .0.83 4 .3.91 .1.48 1 5 4 .−0.31 −0.40 . 0.03 

14 876 .3.69 .0.80 4 .3.67 .1.48 1 5 4 .−0.03 −0.41 . 0.03 

15 876 .3.99 .0.81 4 .4.03 .1.48 1 5 4 .−0.43 −0.27 . 0.03 

16 876 .3.92 .0.68 4 .3.93 .0.00 1 5 4 .−0.53 1.25 . 0.02 

17 876 .3.60 .0.68 4 .3.58 .1.48 1 5 4 .−0.22 0.64 . 0.02 

18 876 .3.82 .0.70 4 .3.79 .0.00 1 5 4 .−0.14 0.01 . 0.02 

19 876 .3.93 .0.83 4 .3.97 .1.48 1 5 4 .−0.59 0.50 . 0.03 

20 876 .3.94 .0.80 4 .3.99 .0.00 1 5 4 .−0.79 1.22 . 0.03 

21 876 .3.88 .0.79 4 .3.91 .0.00 1 5 4 .−0.59 0.75 . 0.03 

22 876 .3.87 .0.76 4 .3.89 .0.00 1 5 4 .−0.48 0.33 . 0.03 

23 876 .3.84 .0.79 4 .3.86 .0.00 1 5 4 .−0.53 0.67 .0.03 
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describe(dataset) 

All variables were assessed on 5-point Likert scales, and from the output, you 
can see that all variables have very similar observed score ranges. Therefore, you 
can treat them as continuous, and transformation is not necessary (for information 
on how to transform data in R, see [24]). 

Second, the sample size needs to be sufficiently large. There are several rules 
of thumb in the literature. Some simply state that a sample size of about 200 
should be targeted, although smaller samples may be sufficient for simpler models 
(e.g., models with fewer factors and/or stronger relations between the factors 
and observed variables), while more complicated models (e.g., models with more 
factors and/or weaker relations between the factors and observed variables) will 
require larger samples. Other rules are based on the ratio between sample size 
and the number of estimated parameters (i.e., factor loadings, intercepts, and 
error variances). Bentler and Chou [25] recommend having 5 observations per 
estimated parameter, while Jackson [26] recommends having 10, and preferably 20 
observations, for each parameter you want to estimate (e.g., for a one-factor model 
with 10 variables, one should aim for 30 (10 factor-loadings . + 10 intercepts . +
10 error-variances) .×10 = 300 cases). Remember that these recommendations are 
for the data the model is fitted to. Since you also need a holdout sample to assess 
the generalizability of your model, you need to have about twice the number of 
observations! The sample size can be assessed by asking for the number of rows in 
your dataset with the following command: 

nrow(dataset) 

[1] 876 

For the example data with 25 variables that are assumed to measure 5 latent 
constructs, you have to estimate 25 intercepts, 25 residual variances, and 5 . × 25 = 
125 factor loadings. This results in a total of 175 parameters. Looking at the output, 
you can conclude that the sample size is sufficiently large for both EFA and CFA 
according to the guidelines by Bentler and Chou [25] (5 . × 175 = 875) but not those 
of Johnson [27]. Since this dataset does not have twice the recommended sample 
size, you should not set aside a holdout sample and save the validation of the model 
for a future study. However, for illustration purposes, it will nevertheless be shown 
how to create a holdout subset for evaluating the generalizability of the final factor 
model. 

Next, there need to be sufficiently large correlations between the variables. 
Otherwise, there is no point in looking at the factor structure. You can rule out 
that the variables in the dataset are uncorrelated with Bartlett’s test [28], which 
tests whether the correlation matrix is an identity matrix (a matrix with off-diagonal 
elements equal to zero) and, thus, whether the variables are uncorrelated. The null 
hypothesis of this test is that the correlation matrix is an identity matrix. If the null 
hypothesis is rejected, it can be concluded that the variables are correlated and, thus,
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that you can continue with the factor analysis. With the following command, you test 
whether the p-value for the Bartlett’s test is smaller than an alpha level of 0.05 and, 
thus, if the null hypothesis of “no correlation between variables” can be rejected: 

(cortest.bartlett(R =  cor(dataset[, var_names]), n =  
nrow(dataset))$p.value) < 0.05 

[1] TRUE 

With the argument “R”, you provide the correlation matrix for the data (specifically 
for the variables that shall be part of the factor analysis), and with the argument “n” 
you determine the sample size, which is equal to the number of rows. The p-value 
is indeed smaller than 0.05. Thus, the variables correlate. 

In addition to checking for correlations between variables, it is also relevant to 
determine if there is enough common variance among the variables. You can assess 
this with the Kaiser-Meyer-Olkin (KMO) test [29]. The KMO statistic measures 
what proportion of the total variance among variables might be common variance. 
The higher this proportion, the higher the KMO value, and the more suited the data 
are for factor analysis. Kaiser [29] indicated that the value should be at least .8 to 
have good data for factor analysis (and at least .9 to have excellent data). With the 
following command, you obtain the results: 

KMO(dataset) 

Kaiser-Meyer-Olkin factor adequacy 
Call: KMO(r = dataset) 
Overall MSA = 0.94 
MSA for each item = 
TSC1 TSC2 TSC3 TSC4 TSC5 TE1 TE2 TE3 TE4 TE5 EE1 EE2 EE3 EE4 EE5 DE1 
0.96 0.96 0.95 0.94 0.96 0.93 0.96 0.94 0.94 0.96 0.95 0.94 0.95 0.94 0.97 0.87 
DE2 DE3 RPA1 RPA2 RPA3 RPA4 RPA5 

0.86 0.92 0.91 0.91 0.95 0.94 0.96 

The overall KMO value equals 0.94. Thus, the data are excellent for factor analysis. 
Next to the necessary data characteristics, you need to be aware of the non-

normality of the variables and missing data. A robust estimation method is required 
if the variables are not normally distributed. If the data contain missing values for 
one or more variables, this must also be accounted for in the estimation. How to do 
this will be described below. Normality can be assessed by inspecting the variables’ 
histograms:2 

2 There are many different ways to obtain histograms in R and this code is just one possible 
example. To learn more about how to create a histogram step by step, see the chapter on Data 
Visualization in this book [30]. 
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dataset |> pivot_longer(2:ncol(dataset), 
names_to = "Variable", values_to="Score") |> 

ggplot(aes(x=Score)) + geom_histogram(bins=6) + 
scale_x_continuous(limits=c(0,6), breaks = 

c(1,2,3,4,5)) + facet_wrap("Variable", ncol = 4, scales = 
"free") + theme_minimal() 

Looking at Fig. 4, you can see that the distribution of the variables is somewhat 
left-skewed. Therefore, an estimation method that is robust against non-normality 
should be used. 
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Fig. 4 Histogram of the responses to each of the items
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Next, you can check for missing data with the following command: 

colSums(is.na(dataset)) 

TSC1 TSC2 TSC3 TSC4 TSC5 TE1 TE2 TE3 TE4 TE5 EE1 EE2 EE3 EE4 EE5 DE1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

DE2 DE3 RPA1 RPA2 RPA3 RPA4 RPA5 
0 0 0 0 0 0 0  

There are no missing observations for any of the variables in this dataset. 

5.1.3 Setting a Holdout Sample Apart 

Once you know that the data are suited for factor analysis, you can consider setting 
a holdout sample apart to assess the generalizability of your findings, as explained 
before. However, it is important to consider the sample size in your decision. 
As indicated above, the minimum required sample size should at least be 5 (and 
preferably 10 or 20) times the number of parameters you will estimate. Do not set a 
holdout sample apart unless your sample size is approximately twice as large as the 
minimum required sample size (or larger). Otherwise, you will not have enough data 
to build an appropriate model in the first place. The validation of the final model then 
needs to be done in future research. Note, however, that the number of parameters 
for a CFA model is generally smaller than that for an EFA model. Therefore, it is 
okay if the holdout sample is somewhat smaller than the model building sample. 

As was already determined above, the sample size was not twice the minimum 
required sample size for a model with 25 variables and 5 latent factors, but for 
illustrative purposes, a holdout sample is set apart nevertheless. To this end, you can 
randomly assign 438 rows to a model-building and holdout dataset. For this, you 
can use the following commands: 

set.seed(19) 
ind <- sample (c (rep("model.building", 438), rep ( 

"holdout", 438))) 
tmp <- split (dataset, ind) 
model.building <- tmp$model.building 
holdout <- tmp$holdout 

With the first line of code, you set a seed. Setting a seed ensures that you get 
the same random sequence of elements every time you rerun the code, which is 
crucial for replicating your results. Then, you create a vector “ind” that contains 438 
times the terms “model.building” and “holdout”, respectively, in random order. This 
gives you a total of 876 classifications, one for each participant (i.e., row) in your 
data. Subsequently, you create a temporal list termed “tmp”, which contains two 
datasets: for each row number, the function split() checks whether it is assigned
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the label “model.building” or “holdout” and assigns this row to the respective dataset 
accordingly. For example, suppose the vector “ind” has as the first three elements 
“model.building”, “model.building”, and “holdout”. In that case, the first two rows 
of the dataset are assigned to the model-building dataset, and the third observation 
is assigned to the holdout dataset. In the last step, the two new datasets are extracted 
from the list and stored in objects named “model.building” and “holdout”. You will 
use the model-building data for all the following analyses until Sect. 4.3. 

5.2 Step 1: Exploring the Factor Structure 

The first step in exploring the factor structure is to determine how many dimensions 
are likely underlying the construct of interest. In this tutorial, you will see how to 
determine this using a combination of two commonly used data-driven approaches: 
parallel analysis [18] and the Bayesian information criterion (BIC; [19]). These 
two methods complement each other greatly: Parallel analysis indicates a range for 
the number of underlying dimensions, and the BIC tells us which specific number 
of dimensions from this range fits the data best. Parallel analysis is a simulation-
based method that chooses the number of factors by comparing the amount of 
variance explained by a certain number of factors in your data (with this amount 
of variance explained by each factor being called the factor’s eigenvalue) to the 
amount of information that the same number of factors would explain on average 
across many parallel simulated datasets (i.e., with the same number of variables and 
observations), but with zero correlations between all variables. This comparison 
allows for testing if the amount of explained variance in your data is larger than 
expected based on purely random sampling error alone. The number of factors 
chosen by parallel analysis is the number for which the explained variance in your 
data is larger than the explained variance for the simulated data. Details about how 
this method works are beyond the scope of this chapter but can be found in the help 
file3 of the fa.parallel() function that performs the analysis. 

With the argument x, you specify that you want to use your model-building data 
and, more specifically, all the columns corresponding to your variables. With the 
second argument fa = "fa", you specify that you assess the best number of factors 
for factor analysis and not the best number of components for principal components 
analysis, which is a related yet different method for finding dimensions in data (e.g., 
[31]). The output consists of two parts: a message and a figure: 

fa.parallel(x =  model.building[, var_names], fa = "fa") 

Parallel analysis suggests that the number of factors = 5 and the 
number of components = NA

3 Note that you can open the helpfile for any function of interest by typing ?[functionname] 
(e.g., ?fa.parallel). 
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Fig. 5 Parallel analysis 

The message indicates that five factors are likely underlying the data. Fig. 5 shows 
that with more than five factors (x-axis), the amount of information explained by 
the factors (on the y-axis) in your data is lower than for the simulated data. 

It is important to note that parallel analysis is a purely data-driven method, and 
the solution depends on the specific sample. Therefore, you should see the 5 factors 
only as a starting point (such that the number of underlying factors is likely around 
five) and treat parallel analysis as giving you a plausible range for the number 
of underlying factors, equal to the solution plus and minus one factor (or more, 
if you want to). The final decision for the number of underlying factors is made 
by running several factor models—one for each plausible number of underlying 
factors as determined using the parallel analysis—and comparing these models 
in terms of interpretability (i.e., does the pattern of variable-factor relations make 
substantive sense and/or does it fit prior knowledge/assumptions) and fit (using 
the BIC). The BIC can be used for model selection for many analyses, including 
factor analysis, and the criterion balances the fit of the factor model to the data 
on the one hand and model parsimony (i.e., simplicity) on the other by penalizing 
models for each parameter they contain. The lower the BIC value, the better, so 
if the smallest BIC value corresponds to the model with five factors, you have 
stronger support for the five-factor solution. Still, the final decision should take 
interpretability into account. If the parallel analysis and BIC disagree, your final 
decision should consider interpretability even more. 

The exploratory factor analysis can be performed with the following command:
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EFA <- efa(data = model.building[, var_names], 
nfactors = 4:6, 
rotation = "geomin", estimator = "MLR", 

meanstructure = TRUE) 

The efa() function is part of lavaan [32], which is a very popular, open-source 
R package that can be used for estimating various latent variable models, including 
factor analysis and structural equation modeling (the Structural Equation Modeling 
Chapter [39],[21]). With the first argument data, you again specify the dataset on 
which you want to perform factor analysis, nfactors indicates the range of factors 
for which you want to retrieve the results. Next, the argument rotation pertains 
to identifying the model, which is only necessary for EFA and not CFA because, 
in the latter, you specify restrictions (i.e., restricting loadings to be equal to zero) 
that automatically lead to the identification of the model. In EFA, where you do not 
have restrictions, there are an infinite number of solutions identical in fit; that is, 
your factor matrix with loadings can be transformed or “rotated” in infinite ways. 
To clarify, consider the following: with (continuous) observed variables, you can 
visualize your data using scatterplots in which each point represents an individual’s 
combination of scores on two variables that are represented by the x-axis and the 
y-axis. With observed variables, you have individuals’ actual scores on the variables 
in your dataset. Therefore, the locations of the points relative to the x-axis and 
y-axis (and, therefore, the axes’ position) are fixed. With factors, the situation is 
different. The latent variables are unobserved, which means that the position of 
the axes (which now represent latent variables) is not “pinned down” by the data. 
Considering Fig. 6, for example, both axis orientations are equally likely with latent 
variables. Note that in both plots, the data points are in the exact same location; 
only the orientations of the axes representing the (in this case, two) latent factors are 
different. Rotation is about choosing one out of all the many possible orientations 
of the axes. 

The choice of the orientation of the axes is generally made based on how easy 
it makes the interpretation of the factors. Typically, the aim is to find a so-called 

Fig. 6 The two possible axis orientations (out of an infinite number of plausible orientations) show 
that with rotation, the data points stay in exactly the same place, but the axes representing the latent 
factors (here, two factors) change
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simple structure [33] in which the orientation of the axes ensures that each observed 
variable is strongly related to one factor (i.e., has a large loading on one factor) and 
is as unrelated as possible to all others (i.e., has small cross-loadings, for example, 
smaller in absolute value than 0.3). This simple structure makes interpreting the 
factors (which is done by looking for a common theme in the variables that load on 
them) easier. 

In short, rotation is like taking a good selfie of yourself in front of the Eiffel 
Tower. You want both yourself and the tower to be clearly visible in the picture, 
so you move your camera until you get a clear shot of both. You and the Eiffel 
Tower both stay in exactly the same place! What changes is the vantage point, or 
angle, from which you look at both. Similarly, rotation moves your vantage point 
(the axes) to make the factors stand out clearly in your results, while the position of 
your observed data does not change. 

Going back to the rotation argument in the code above, you can use geomin, a  
method of rotation that allows your factors to be correlated with each other, which is 
a reasonable assumption in educational settings. For other rotation options, see [23]. 
The argument estimator allows you to choose different estimation procedures. 
The default is standard maximum likelihood (“ML”) estimation. However, for the 
current data, a robust maximum likelihood (“MLR”) estimation was chosen to 
account for small violations of the normality assumption. If the data would contain 
missing values, you could add the argument “missing” and specify it to be equal 
to “fiml”, which corresponds to a full information maximum likelihood approach 
and is a sensible approach if you have at least missing at random (MAR) data 
(details about missing data mechanisms are beyond the scope of this tutorial but 
can be found in the lavaan tutorial [23]). The final argument meanstructure = 
TRUE is necessary if you want to estimate intercepts for the observed variables 
as well, as opposed to just estimating variances and covariances. Note that if you 
add the “missing” argument to your model, meanstructure will be set to TRUE 
automatically. 

With the following command, you can extract and sort the BIC values in 
ascending order. 

sort(fitMeasures(EFA)["bic",]) 

nfactors = 5 nfactors = 4 nfactors = 6 
18142.38 18167.49 18189.29 

The output indicates that the model with five factors is the best according to the 
BIC. Thus, the two techniques to determine the number of factors agree. From the 
original article from which the data for this tutorial was obtained, it is known that the 
expected number of factors was also five. Therefore, continuing the model building 
with the five-factor solution for this tutorial makes the most sense. 

With the following command, you obtain the factor loadings for the five factors. 
Note that, by default, lavaan gives you standardized loadings, which means that the 
loadings can be interpreted as correlations between variables and factors.
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EFA$nf5 

f1 f2 f3 f4 f5 
TSC1 0.584* . 
TSC2 0.487* . 
TSC3 0.637* . 
TSC4 0.578* . . 
TSC5 0.547* . 
TE1 0.728* . 
TE2 . 0.672* 
TE3 0.708* . 
TE4 0.651* . 
TE5 0.337* . . 
EE1 . 0.469* . 
EE2 . 0.689* 
EE3 0.768* 
EE4 . 0.732* . 
EE5 . 0.479* . 
DE1 -0.353* 0.744* . 
DE2 . 0.821* 
DE3 . 0.755* 
RPA1 0.851* 
RPA2 0.906* 
RPA3 0.624* 
RPA4 . . 0.350* 
RPA5 . . 0.338* 

In the output, all loadings between the variables (rows) and factors (columns) 
larger than an absolute value of .3 are shown by default. Inspecting the results, 
you can clearly see a simple structure such that every variable loads on only one 
factor. An exception is variable DE1, which positively loads on factor 4 with the 
other DE variables and negatively on factor 3 with the EE variables. Besides this 
cross-loading, the results align with the theoretical model as all TSC variables, all 
TE variables, all EE variables, all DE variables, and all RPA variables load on the 
same factor, respectively. In the next step, the model can be further refined based 
on fit. Since the model without the cross-loading is entirely in line with theory, the 
loading of DE1 on factor 3 will be set equal to zero in the CFA in the next section. 
However, if the CFA model does not fit well, putting back this cross-loading would 
be the first logical step.
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5.3 Step 2: Building the Factor Model and Assessing Fit 

The first step in building the model is to describe the model you want to estimate 
using special lavaan syntax. The arguments relevant for this tutorial are “=~”, which 
can be read as “is measured by”, and “~~”, which translates into “is correlated with”. 
In the following, a model is specified in which the 5 factors TSC, TE, EE, DE, 
and RPA are measured by different sets of variables (in line with theory and the 
EFA results from the previous step), separated by “+”. Moreover, it is explicitly 
stated that correlations between factors should be estimated. Intercepts are not 
explicitly included in the model, but these are included again by adding the argument 
meanstructure = TRUE to the command when estimating the CFA model. 

CFA_model <-' 
# Regressing items on factors 
TSC =~ TSC1 + TSC2 + TSC3 + TSC5 
TE =~ TE1 + TE2 + TE3 + TE5 
EE =~ EE1 + EE2 + EE3 + EE4 
DE =~ DE1 + DE2 + DE3 
RPA =~ RPA1 + RPA2 + RPA3 + RPA4 

# Correlations between factors 
TSC ~~ TE 
TSC ~~ EE 
TSC ~~ DE 
TSC ~~ RPA 

TE ~~ EE 
TE ~~ DE 
TE ~~ RPA 

EE ~~ DE 
EE ~~ RPA 

DE ~~ RPA 
' 

The next step is to perform the CFA on the model-building data using the 
specified CFA model with the following command: 

CFA <- cfa(model = CFA_model, data = 
model.building[, var_names], 

estimator = "MLR", std.lv = TRUE, 
meanstructure = TRUE) 
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Which model should be used is specified by the argument model. The arguments 
data and estimator are the same as in the code for the EFA. The argument std.lv 
is used to get results similar to the EFA. Since factors are not directly observed, their 
scale has to be set, which can be done in two different ways: (i) by fixing one of the 
factor-loadings of each factor to 1 (which will set the scale of the factor equal to 
the scale of the observed variable which loadings was fixed), or (ii) by setting the 
variance of the factor equal to 1. Here, the second option was chosen. As already 
mentioned, the final argument meanstructure is necessary if you also want to 
estimate the intercepts of the observed variables. 

After performing the CFA, you can assess how well the model fits to the data. 
There are two types of fit measures: global and local. You can start with the global fit 
measures that describe how well the model as a whole fits to the data. Many different 
global model fit indices exist in the literature. Kline [34] suggests that at least the 
following four indices should be considered: (1) the Chi-squared significance test, 
which tests whether the model has a perfect fit to the data, that is, if the model 
can perfectly recreate the observed relations between variables; (2) the comparative 
fit index (CFI), which compares the fit of the chosen model to the fit of a model 
assuming zero correlations between variables; (3) the root mean square error of 
approximation (RMSEA), which is closely related to the Chi-squared test, but does 
not test for perfect fit and instead quantifies (approximate) fit between the model 
and the data in a single number; and (4) the standardized root mean square residual 
(SRMR) which summarizes the difference between the sample covariance matrix of 
the variables and the model-implied covariance matrix into one number. Unlike the 
Chi-squared significance test, the CFI, RMSEA, and SRMR are no tests and assess 
approximate fit. 

Each fit measure is accompanied by rules of thumb to decide whether or not 
a model fits sufficiently to the data. The Chi-squared significance test should be 
nonsignificant because the null hypothesis is that the model fits the data perfectly. It 
is important to note that with increasing sample size, the null hypothesis of perfect 
fit is easily rejected. Therefore, you should not base your decision on whether the 
model fits too much on this test. 

Regarding the other three measures, the CFI should be larger than 0.9 [35], the 
RMSEA point estimate and the upper bound of the 95 percent confidence interval 
should be smaller than 0.05 [36, 37], and the SRMR should be smaller than 0.08 
[35]. The fit measures and their interpretation can be obtained with the following 
command: 

globalFit(CFA) 

Results------------------------------------------------------------------------

Chi-Square (142) = 318.8407 with p-value 
= 1.332268e-15 

CFI = 0.9476614
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RMSEA = 0.05332242; lower bound = 0.04589762; 
upper bound = 0.06076663 

SRMR = 0.04353874 

Interpretations---------------------------------------------------------------

The hypothesis of perfect fit *is* rejected according to the Chi-
Square test statistics because the p-value is smaller than 0.05 

The hypothesis of approximate model fit *is not* rejected according 
to the CFI because the value is larger than 0.9. 

The hypothesis of approximate model fit *is* rejected according 
to the RMSEA because the point estimate is larger or equal to 
0.05. 

The hypothesis of approximate model fit *is not* rejected according 
to the SRMR because the value is smaller than 0.08. 

Inspecting the output, you can see that the Chi-squared significance test rejected 
perfect fit, but that approximate fit holds according to the CFI and the SRMR. 
Ideally, at least three of the fit measures should indicate appropriate fit, but for the 
sake of this tutorial’s brevity, it was decided to continue with the model without 
further adjustments. In practice, you may further adjust the model, for example, by 
including the cross-loading between DE1 and factor 3 again, and re-evaluate fit by 
fitting the updated model and running the globalFit() function again. 

All measures above inspect the global fit of the model, so if the model as a whole 
matches the data well. While informative and necessary, the above measures can 
miss local misfit between the model and the data. If, for example, the 5-factor model 
describes the relations between all but one of the observed variables well, then the 
global fit of the model will likely be sufficient even though the estimates of the 
relations between the ill-fitting observed variable and all others will be completely 
wrong. Because of this, you should also inspect the local fit of your model; that is, 
if every part of your model fits the data well. There are many local fit measures 
that you could use [38], but the most straightforward way of assessing local fit 
is to look at the absolute difference between the model-implied and the sample 
covariance matrix. These are the same two matrices that the SRMR is based on, 
but instead of quantifying the total difference between the two in one number, you 
obtain the difference between the two matrices for every variance and covariance 
separately. You can see how much the two matrices deviate for each pair of variables, 
as well as the maximum difference between the two matrices, by using the following 
command:
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localFit(CFA) 

$local_misfit 
TSC1 TSC2 TSC3 TSC5 TE1 TE2 TE3 TE5 EE1 EE2 EE3 EE4 

TSC1 0.000 
TSC2 0.012 0.000 
TSC3 0.007 0.012 0.000 
TSC5 0.007 0.002 0.010 0.000 
TE1 0.019 0.000 0.009 0.010 0.000 
TE2 0.025 0.014 0.031 0.021 0.011 0.000 
TE3 0.013 0.010 0.048 0.005 0.003 0.008 0.000 
TE5 0.025 0.028 0.032 0.022 0.012 0.026 0.005 0.000 
EE1 0.013 0.010 0.004 0.016 0.042 0.044 0.001 0.072 0.000 
EE2 0.004 0.009 0.025 0.003 0.029 0.050 0.027 0.043 0.002 0.000 
EE3 0.013 0.015 0.039 0.013 0.021 0.042 0.006 0.081 0.012 0.001 0.000 
EE4 0.002 0.002 0.000 0.013 0.042 0.021 0.006 0.039 0.017 0.017 0.010 0.000 
DE1 0.011 0.019 0.015 0.002 0.010 0.026 0.011 0.036 0.010 0.048 0.042 0.040 
DE2 0.014 0.018 0.030 0.011 0.008 0.025 0.032 0.059 0.058 0.031 0.012 0.052 
DE3 0.000 0.008 0.041 0.021 0.023 0.006 0.012 0.019 0.048 0.015 0.022 0.012 
RPA1 0.008 0.015 0.034 0.011 0.013 0.022 0.001 0.012 0.011 0.018 0.019 0.041 
RPA2 0.006 0.008 0.044 0.007 0.021 0.004 0.009 0.008 0.015 0.016 0.002 0.053 
RPA3 0.041 0.016 0.012 0.003 0.006 0.010 0.017 0.034 0.035 0.008 0.022 0.009 
RPA4 0.020 0.000 0.003 0.031 0.001 0.027 0.031 0.039 0.042 0.035 0.031 0.053 

DE1 DE2 DE3 RPA1 RPA2 RPA3 RPA4 
TSC1 
TSC2 
TSC3 
TSC5 
TE1 
TE2 
TE3 
TE5 
EE1 
EE2 
EE3 
EE4 
DE1 0.000 
DE2 0.004 0.000 
DE3 0.002 0.006 0.000 
RPA1 0.008 0.006 0.002 0.000 
RPA2 0.010 0.025 0.024 0.024 0.000 
RPA3 0.002 0.016 0.021 0.009 0.017 0.000 
RPA4 0.006 0.056 0.074 0.046 0.011 0.052 0.000 

$max_misfit 
[1] 0.08051991 

Based on the local fit evaluation, you can conclude that no local misfit is present 
since the biggest difference between the two matrices is only 0.08, which is small 
compared to the scale of the observed variables. If local misfit is present, for 
example, if the correlation between two observed variables had been much larger
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than predicted by the model, further adjustments could be made to your model that 
specifically address the source of local misfit, like adding an additional covariance 
between these observed variables. However, these adjustments should always make 
sense according to theory! Never just add parameters to your model to improve its 
fit. 

This concludes the assessment of fit. The last part of this model-building step is 
to look at the loadings of the final model with the following command: 

inspect(object = CFA, what = "std")$lambda 

TSC TE EE DE RPA 
TSC1 0.657 0.000 0.000 0.000 0.000 
TSC2 0.692 0.000 0.000 0.000 0.000 
TSC3 0.628 0.000 0.000 0.000 0.000 
TSC5 0.726 0.000 0.000 0.000 0.000 
TE1 0.000 0.789 0.000 0.000 0.000 
TE2 0.000 0.745 0.000 0.000 0.000 
TE3 0.000 0.788 0.000 0.000 0.000 
TE5 0.000 0.649 0.000 0.000 0.000 
EE1 0.000 0.000 0.739 0.000 0.000 
EE2 0.000 0.000 0.802 0.000 0.000 
EE3 0.000 0.000 0.786 0.000 0.000 
EE4 0.000 0.000 0.760 0.000 0.000 
DE1 0.000 0.000 0.000 0.665 0.000 
DE2 0.000 0.000 0.000 0.640 0.000 
DE3 0.000 0.000 0.000 0.738 0.000 
RPA1 0.000 0.000 0.000 0.000 0.849 
RPA2 0.000 0.000 0.000 0.000 0.854 
RPA3 0.000 0.000 0.000 0.000 0.788 
RPA4 0.000 0.000 0.000 0.000 0.587 

The loadings are very comparable to the ones of the EFA, which is not surprising 
given that only a single cross-loading (with absolute value > .3) was removed. Note 
that if you would want to extract other model parameters like the factor correlations, 
you could use the inspect() command without the “$lambda‘ at the end. 

5.4 Step 3: Assessing Generalizability 

The final step is assessing the generalizability of the CFA model from Step 2 by 
fitting the same model to the holdout sample. If the model fits this alternative dataset, 
too, you can be more confident that your factor model applies more generally and 
can capture the underlying structure of your measurement instrument in future
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studies and samples as well. To assess the generalizability, you use the same code 
as in Step 2, but now specify your holdout sample under the data argument. 

CFA_holdout <- cfa(model = CFA_model, data = 
holdout[, var_names], 

estimator = "MLR", std.lv = TRUE, 
meanstructure = TRUE) 

After fitting your CFA model to the holdout sample, fit measures and their 
interpretation can again be obtained with the globalFit() command. 

globalFit(CFA_holdout) 

Results------------------------------------------------------------------------

Chi-Square (142) = 339.7732 with p-value 
= 0  

CFI = 0.9429698 

RMSEA = 0.05639005; lower bound = 0.04898985; 
upper bound = 0.06383685 

SRMR = 0.04161716 

Interpretations---------------------------------------------------------------

The hypothesis of perfect fit *is* rejected according to the Chi-
Square test statistics because the p-value is smaller than 0.05 

The hypothesis of approximate model fit *is not* rejected according 
to the CFI because the value is larger than 0.9. 

The hypothesis of approximate model fit *is* rejected according 
to the RMSEA because the point estimate is larger or equal to 
0.05. 

The hypothesis of approximate model fit *is not* rejected according 
to the SRMR because the value is smaller than 0.08. 

Inspecting the output, you can see that the fit of the model to the holdout sample 
is very comparable to its fit to the model-building data. Again, the Chi-squared 
significance test rejects perfect fit, but approximate fit holds according to the CFI 
and the SRMR. 

Local fit is also tested with the same command as in Step 2 but again applied to 
your results on the holdout sample.
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localFit(CFA_holdout) 

$local_misfit 
TSC1 TSC2 TSC3 TSC5 TE1 TE2 TE3 TE5 EE1 EE2 EE3 EE4 

TSC1 0.000 
TSC2 0.010 0.000 
TSC3 0.012 0.015 0.000 
TSC5 0.007 0.007 0.005 0.000 
TE1 0.023 0.023 0.003 0.014 0.000 
TE2 0.027 0.012 0.019 0.008 0.008 0.000 
TE3 0.012 0.010 0.024 0.008 0.012 0.002 0.000 
TE5 0.019 0.014 0.008 0.002 0.046 0.006 0.013 0.000 
EE1 0.037 0.023 0.009 0.005 0.035 0.009 0.002 0.011 0.000 
EE2 0.028 0.003 0.003 0.019 0.038 0.016 0.069 0.008 0.033 0.000 
EE3 0.032 0.047 0.012 0.017 0.024 0.017 0.004 0.071 0.026 0.019 0.000 
EE4 0.006 0.033 0.003 0.002 0.027 0.002 0.002 0.048 0.015 0.020 0.004 0.000 
DE1 0.056 0.005 0.007 0.007 0.005 0.020 0.003 0.032 0.037 0.072 0.020 0.036 
DE2 0.005 0.029 0.032 0.061 0.012 0.014 0.046 0.006 0.024 0.038 0.034 0.018 
DE3 0.012 0.019 0.022 0.002 0.034 0.016 0.014 0.005 0.057 0.032 0.050 0.020 
RPA1 0.019 0.009 0.012 0.028 0.018 0.001 0.003 0.004 0.030 0.031 0.037 0.003 
RPA2 0.009 0.020 0.023 0.001 0.017 0.016 0.018 0.004 0.003 0.045 0.008 0.051 
RPA3 0.000 0.007 0.004 0.009 0.000 0.006 0.000 0.028 0.011 0.021 0.025 0.002 
RPA4 0.018 0.015 0.006 0.014 0.021 0.019 0.040 0.036 0.049 0.023 0.046 0.023 

DE1 DE2 DE3 RPA1 RPA2 RPA3 RPA4 
TSC1 
TSC2 
TSC3 
TSC5 
TE1 
TE2 
TE3 
TE5 
EE1 
EE2 
EE3 
EE4 
DE1 0.000 
DE2 0.020 0.000 
DE3 0.019 0.006 0.000 
RPA1 0.014 0.029 0.004 0.000 
RPA2 0.006 0.010 0.005 0.020 0.000 
RPA3 0.030 0.006 0.026 0.016 0.017 0.000 
RPA4 0.008 0.028 0.046 0.057 0.005 0.093 0.000 

$max_misfit 
[1] 0.09310116 

Results show that the local fit is sufficient for the holdout sample as well (the 
biggest absolute difference between the two matrices is only .09) and that it is again 
comparable to the results on the model-building data. 

Lastly, you can look at the loadings of the final model when fitted to the holdout 
sample.
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inspect(object = CFA_holdout, what = "std")$lambda 

TSC TE EE DE RPA 
TSC1 0.679 0.000 0.000 0.000 0.000 
TSC2 0.689 0.000 0.000 0.000 0.000 
TSC3 0.691 0.000 0.000 0.000 0.000 
TSC5 0.702 0.000 0.000 0.000 0.000 
TE1 0.000 0.694 0.000 0.000 0.000 
TE2 0.000 0.772 0.000 0.000 0.000 
TE3 0.000 0.819 0.000 0.000 0.000 
TE5 0.000 0.677 0.000 0.000 0.000 
EE1 0.000 0.000 0.749 0.000 0.000 
EE2 0.000 0.000 0.794 0.000 0.000 
EE3 0.000 0.000 0.781 0.000 0.000 
EE4 0.000 0.000 0.801 0.000 0.000 
DE1 0.000 0.000 0.000 0.677 0.000 
DE2 0.000 0.000 0.000 0.659 0.000 
DE3 0.000 0.000 0.000 0.766 0.000 
RPA1 0.000 0.000 0.000 0.000 0.851 
RPA2 0.000 0.000 0.000 0.000 0.867 
RPA3 0.000 0.000 0.000 0.000 0.700 
RPA4 0.000 0.000 0.000 0.000 0.618 

Again, you can see that results from the model-building data and holdout sample 
are very comparable, as the factor loadings are similar to before. 

Since the model fits the holdout sample sufficiently (for this illustration at least, 
as mentioned before we would normally want 3 out of 4 fit measures to indicate 
sufficient fit, which was not the case here) and equally well as the model-building 
data and parameter estimates are comparable between the two datasets, you can 
conclude that the model’s generalizability is okay. Had the model not fit the holdout 
sample sufficiently, you would have to conclude that while the CFA model from Step 
2 fits the model-building data well, you cannot be certain that it reflects a generally 
applicable structure of your measure and that the factor structure needs to be further 
refined. Since you already used your holdout sample in this phase, however, this 
further refinement would require collecting a new set of data that can be split into a 
model-building and holdout sample and going through all three steps again. 

6 Conclusion 

Factor analysis is a great way to study constructs that are not directly observable. 
Of course, factor analysis has vast applications across several fields that are usually 
interdisciplinary and has been extended in several ways (e.g., to multi-group factor
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analysis, which will play an important role in the next chapter, where you will also 
see a discussion of the important topic of measurement invariance). This chapter 
serves mainly as a primer to introduce and demonstrate the basics of the method 
and to get readers interested and confident in applying the method themselves. 

7 Further Readings 

In this chapter, you have seen an introduction and tutorial on how to apply factor 
analysis in educational research. To learn more about factor analysis in general, you 
can consult:

• Kline, R. B. (2015). Principles and Practice of Structural Equation Modeling (4 
ed.). Guilford Press. 

To learn more about the difference between EFA and CFA, you can consult:

• Flora, D. B., & Flake, J. K. (2017). The purpose and practice of exploratory 
and confirmatory factor analysis in psychological research: Decisions for scale 
development and validation. Canadian Journal of Behavioural Science, 49, 78– 
88. 

Finally, to learn more about the history of factor analysis, you can consult:

• Briggs, D. D. (2022). Historical and Conceptual Foundations of Measurement in 
the Human Sciences. Credos and Controversies. Routledge. 
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Gašević D (2019) Counting clicks is not enough: Validating a theorized model of engagement 
in learning analytics. In: Proceedings of the 9th international conference on learning analytics 
& knowledge. Association for Computing Machinery, New York, pp 501–510 

15. Baikadi A, Epp CD, Long Y, Schunn C (2016) Redefining“ what” in analyses of who does what 
in MOOCs. In: Proceedings of the 9th international conference on educational data mining. 
Raleigh, pp 569–570. https://www.educationaldatamining.org/EDM2016/proceedings/paper_ 
128.pdf 

16. Wang FH (2021) Interpreting log data through the lens of learning design: Second-order 
predictors and their relations with learning outcomes in flipped classrooms. Comput Educ 
168:104209. https://doi.org/10.1016/j.compedu.2021.104209 

17. Lawley DN, Maxwell AE (1962) Factor analysis as a statistical method. J. R. Stat. Soc Series 
D (The Statistician) 12:209–229. https://doi.org/10.2307/2986915 

18. Horn JL (1965) A rationale and test for the number of factors in factor analysis. Psychometrika 
30:179–185. https://doi.org/10.1007/BF02289447 

19. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464. 
https://doi.org/10.1214/aos/1176344136 

20. Prasojo LD, Habibi A, Mohd Yaakob MF, Pratama R, Yusof MR, Mukminin A, Suyanto, 
Hanum F (2020) Teachers’ burnout: a SEM analysis in an asian context. Heliyon 6:e03144. 
https://doi.org/10.1016/j.heliyon.2019.e03144 

21. López-Pernas S, Saqr M, Conde J, Del-Río-Carazo L (2024) A broad collection of datasets 
for educational research training and application. In: Saqr M, López-Pernas S (eds) Learning 
analytics methods and tutorials: a practical guide using R. Springer, Berlin 

22. Dolan CV (1994) Factor analysis of variables with 2, 3, 5 and 7 response categories: a 
comparison of categorical variable estimators using simulated data. Br J Math Stat Psychol 
47:309–326. https://doi.org/10.1111/j.2044-8317.1994.tb01039.x 

23. Rosseel Y (2023) The lavaan tutorial. https://lavaan.ugent.be/tutorial/ 
24. Patil I, Makowski D, Ben-Shachar MS, Wiernik BM, Bacher E, Lüdecke D (2022) Datawizard: 

an R package for easy data preparation and statistical transformations. J Open Source Softw 
7:4684. https://doi.org/10.21105/joss.04684 

25. Bentler PM, Chou C-P (1987) Practical issues in structural modeling. Sociol Methods Res 
16:78–117. https://doi.org/10.1177/0049124187016001004 

26. Jackson DL (2003) Revisiting sample size and number of parameter estimates: some support 
for the n:q hypothesis. Struct Equ Modeling Multidiscip J 10:128–141


 7521 1907 a 7521 1907 a
 
https://doi.org/10.1037/cbs0000069

 -563 5228 a -563
5228 a
 
https://doi.org/10.1111/jcal.12366
https://doi.org/10.1145/2883851.2883925
https://doi.org/10.1145/2883851.2883925
https://doi.org/10.1145/2883851.2883925
https://doi.org/10.1145/2883851.2883925
https://doi.org/10.1145/2883851.2883925
https://doi.org/10.1145/2883851.2883925
https://doi.org/10.1145/2883851.2883925

 12023 11870 a 12023 11870 a
 
https://doi.org/10.1007/s11423-019-09693-0
https://www.jstor.org/stable/26977854
https://www.jstor.org/stable/26977854
https://www.jstor.org/stable/26977854
https://www.jstor.org/stable/26977854
https://www.jstor.org/stable/26977854
https://www.jstor.org/stable/26977854

 4403 18512 a 4403 18512 a
 
https://doi.org/10.1016/j.chb.2018.07.016

 6365 20726 a 6365 20726 a
 
https://doi.org/10.1145/3303772.3303775
https://www.educationaldatamining.org/EDM2016/proceedings/paper_128.pdf
https://www.educationaldatamining.org/EDM2016/proceedings/paper_128.pdf
https://www.educationaldatamining.org/EDM2016/proceedings/paper_128.pdf
https://www.educationaldatamining.org/EDM2016/proceedings/paper_128.pdf
https://www.educationaldatamining.org/EDM2016/proceedings/paper_128.pdf
https://www.educationaldatamining.org/EDM2016/proceedings/paper_128.pdf
https://www.educationaldatamining.org/EDM2016/proceedings/paper_128.pdf
https://www.educationaldatamining.org/EDM2016/proceedings/paper_128.pdf
https://www.educationaldatamining.org/EDM2016/proceedings/paper_128.pdf

 4403 30688 a 4403 30688
a
 
https://doi.org/10.1016/j.compedu.2021.104209

 12060 32902 a 12060 32902 a
 
https://doi.org/10.2307/2986915

 4403 35116 a 4403 35116
a
 
https://doi.org/10.1007/BF02289447

 -563 37330 a -563 37330 a
 
https://doi.org/10.1214/aos/1176344136

 -563 40651 a -563
40651 a
 
https://doi.org/10.1016/j.heliyon.2019.e03144

 4403 47293 a 4403 47293 a
 
https://doi.org/10.1111/j.2044-8317.1994.tb01039.x
https://lavaan.ugent.be/tutorial/
https://lavaan.ugent.be/tutorial/
https://lavaan.ugent.be/tutorial/
https://lavaan.ugent.be/tutorial/
https://lavaan.ugent.be/tutorial/

 2521 51720 a 2521 51720 a
 
https://doi.org/10.21105/joss.04684

 3933 53934 a 3933 53934 a
 
https://doi.org/10.1177/0049124187016001004


Factor Analysis in Education Research Using R 703

27. Johnson J (2003) A procedure for conducting factor analysis with large numbers of variables. 
In: Poster presented at the 18th annual conference of the society for industrial and organiza-
tional psychology, orlando, FL 

28. Bartlett MS (1950) Tests of significance in factor analysis. Br J Math Stat Psychol 3:77–85. 
https://doi.org/10.1111/j.2044-8317.1950.tb00285.x 

29. Kaiser HF (1970) A second generation little jiffy. Psychometrika 35:401–415. 
https://doi.org/10.1007/BF02291817 

30. López-Pernas S, Misiejuk K, Tikka S, Saqr M, Kopra J, Heinäniemi M (2024) Visualizing 
and reporting educational data with R. In: Saqr M, López-Pernas S (eds) Learning analytics 
methods and tutorials: a practical guide using R. Springer, Berlin, in press 

31. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J 
Educ Psychol 24:417–441. https://doi.org/10.1037/h0071325 

32. Rosseel Y (2012) Lavaan: an R package for structural equation modeling. J Stat Softw 48: 
https://doi.org/10.18637/jss.v048.i02 

33. Kiers HAL (1997) Techniques for rotating two or more loading matrices to optimal agreement 
and simple structure: a comparison and some technical details. Psychometrika 62:545–568. 
https://doi.org/10.1007/BF02294642 

34. Kline RB (2015) Principles and practice of structural equation modeling, 4th edn. Guilford 
Publications, New York. https://play.google.com/store/books/details?id=3VauCgAAQBAJ 

35. Hu L, Bentler PM (1999) Cutoff criteria for fit indexes in covariance structure 
analysis: conventional criteria versus new alternatives. Struct Equ Model 6:1–55. 
https://doi.org/10.1080/10705519909540118 

36. Browne MW, Cudeck R (1992) Alternative ways of assessing model fit. Sociol Methods Res 
21:230–258. https://doi.org/10.1177/0049124192021002005 

37. Jöreskog KG, Sörbom D (1993) LISREL 8: structural equation modeling with the SIMPLIS 
command language. Scientific Software International, Chapel Hill 

38. Thoemmes F, Rosseel Y, Textor J (2018) Local fit evaluation of structural equation models 
using graphical criteria. Psychol Methods 23:27–41. https://doi.org/10.1037/met0000147 

39. Jongerling J, López-Pernas S, Saqr M, Vogelsmeier LVDE (2024) Structural equation modeling 
with R for education scientists. In: Saqr M, López-Pernas S (Eds) Learning analytics methods 
and tutorials: a practical guide using R. Springer. https://lamethods.github.io/chapters/ch21-
sem/ch21-sem.html 

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made. 

The images or other third party material in this chapter are included in the chapter’s Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter’s Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.


 -563 4121 a -563 4121 a
 
https://doi.org/10.1111/j.2044-8317.1950.tb00285.x

 -563 6335 a -563 6335
a
 
https://doi.org/10.1007/BF02291817

 9787 11870 a 9787 11870 a
 
https://doi.org/10.1037/h0071325


-563 14084 a -563 14084 a
 
https://doi.org/10.18637/jss.v048.i02

 -563 17405 a -563
17405 a
 
https://doi.org/10.1007/BF02294642
https://play.google.com/store/books/details?id=3VauCgAAQBAJ
https://play.google.com/store/books/details?id=3VauCgAAQBAJ
https://play.google.com/store/books/details?id=3VauCgAAQBAJ
https://play.google.com/store/books/details?id=3VauCgAAQBAJ
https://play.google.com/store/books/details?id=3VauCgAAQBAJ
https://play.google.com/store/books/details?id=3VauCgAAQBAJ
https://play.google.com/store/books/details?id=3VauCgAAQBAJ
https://play.google.com/store/books/details?id=3VauCgAAQBAJ
https://play.google.com/store/books/details?id=3VauCgAAQBAJ

 -563 22940 a -563 22940
a
 
https://doi.org/10.1080/10705519909540118

 4403 25153 a 4403 25153 a
 
https://doi.org/10.1177/0049124192021002005

 19352 29581 a 19352 29581 a
 
https://doi.org/10.1037/met0000147
https://lamethods.github.io/chapters/ch21-sem/ch21-sem.html
https://lamethods.github.io/chapters/ch21-sem/ch21-sem.html
https://lamethods.github.io/chapters/ch21-sem/ch21-sem.html
https://lamethods.github.io/chapters/ch21-sem/ch21-sem.html
https://lamethods.github.io/chapters/ch21-sem/ch21-sem.html
https://lamethods.github.io/chapters/ch21-sem/ch21-sem.html
https://lamethods.github.io/chapters/ch21-sem/ch21-sem.html
https://lamethods.github.io/chapters/ch21-sem/ch21-sem.html
https://lamethods.github.io/chapters/ch21-sem/ch21-sem.html
https://lamethods.github.io/chapters/ch21-sem/ch21-sem.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Structural Equation Modeling with R for 
Education Scientists 

Joran Jongerling, Sonsoles López-Pernas, Mohammed Saqr, 
and Leonie V. D. E. Vogelsmeier 

1 Introduction 

Educational research involves a variety of theoretical constructs that are not 
directly observable (e.g., motivation, engagement, cognitive development, and self-
regulation) and that can only be indirectly studied by looking at participant’s 
responses to observable indicators of these constructs (e.g., participants’ responses 
to questionnaire items). The previous chapter about factor analysis [1] showed  
how to assess the factor structure of these unobserved, or latent, constructs and, 
thus, which items are good measurements of these constructs. This is crucial for 
developing valid instruments to measure (i.e., quantify) the latent constructs encoun-
tered in educational research. However, good measurement of latent constructs is 
typically not the researchers' ultimate goal. Usually, they subsequently want to 
answer questions about relationships or mean differences between (multiple) of 
these constructs, such as, “Is teacher motivation related to student engagement?” 
or “Does student engagement significantly differ for small and large-scale teaching 
styles?” If researchers only have (i) observed variables (e.g., years of teacher 
experience) for both predictor and outcome variables and (ii) want to investigate 
the effect of one or more predictor variables on a single outcome variable at a time 
(e.g., the effect of teacher experience and teacher gender on student GPA), these 
types of questions can be answered using familiar analysis methods such as multiple 
regression or ANOVA. However, as soon as questions involve latent variables or 
testing an entire system of (complex) interrelations between variables (like the ones 
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found in most theoretical frameworks), researchers need an analysis technique with 
more flexibility that allows for modeling a multitude of relationships between (latent 
and/or observed) variables simultaneously [2]; that is, researchers need SEM. 

At its core, SEM is a mix of factor analysis (discussed in the previous chapter) 
and a method called path analysis, which was invented by Wright [3]. One can think 
of path analysis as a type of multiple regression analysis because it also allows 
estimating and testing direct effects between variables. However, while multiple 
regression merely allows for testing the direct effects of predictor(s) on only a 
single outcome variable, path analysis can look at both direct and indirect effects 
between whole sets of predictor(s) on whole sets of other variables simultaneously. 
This implies that in path analysis, a variable can simultaneously be an outcome 
and a predictor: a variable might be predicted by one or more variables while 
also serving as a predictor for other variables. In other words, with path analysis, 
researchers can pretty much fit any model they can dream of as long as all variables 
are observed. Fitting a path model to latent variables requires going beyond path 
analysis. Fortunately, Jöreskog and Van Thillo [4] developed a statistical software 
called LISREL that allowed the use of latent variables in path analysis and thereby 
created SEM. Over the years, their work has been integrated into increasingly user-
friendly software, contributing to the widespread use of the technique in social 
sciences today. This widespread use has also led to the definition of a SEM model 
becoming less concrete as the term is now also used for models with only observed 
variables, even though that would officially be a path model. 

2 Literature Review 

Perhaps the most well-known application of SEM in education research is the tech-
nology acceptance model (TAM), used to explain teachers’ adoption of education 
technology [5]. The model hypothesizes that a teacher's decision to adopt and use 
technology is influenced by their perceptions of its ease of use and usefulness. 
These perceptions shape their attitude toward technology use, which, in turn, affects 
their intention to use it and their actual usage. Such complex interplay in factors 
that influence technology acceptance requires using sophisticated methods such as 
SEM. The model has been extensively applied and validated in several contexts 
[6], investigating the adoption of multiple technological innovations such as serious 
games [7], virtual reality [8], or artificial intelligence [9]. The model has also been 
extended in several ways throughout the years to address the influence of other 
factors such as personality traits, result demonstrability, and risk, among many 
others [10]. 

Many other applications of SEM exist in education research. For example 
Kusurkar et al. [11] used SEM to investigate how motivation affects academic 
performance. They hypothesized that greater levels of self-determined motivation 
are associated with the adoption of effective study strategies and increased study 
dedication, resulting in improved academic achievement. Their findings confirmed
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that the influence of motivation on academic performance is mediated by the use 
of effective study strategies. The work by Kucuk and Richardson [12] examined 
the interconnections between the three types of Community of Inquiry presence 
(teaching, social, and cognitive), four engagement components (agentic, behavioral, 
cognitive, and emotional), and satisfaction in online courses. The findings suggest 
that teaching presence, cognitive presence, emotional engagement, behavioral 
engagement, and cognitive engagement were significant predictors of satisfaction, 
explaining 88% of its variance. 

The rise of digital learning and the opportunities for unobtrusive data collection 
have given rise to a new wave of studies that take advantage of the trace log data 
that students leave behind in online systems [13], instead of relying on self-reported 
data from questionnaires. For instance, Koç [14] proposed a model that explains 
the association between student participation and academic achievement. Student 
participation was measured through attendance to online lectures and discussion 
forum submissions. His results suggest that “student success in online learning [can] 
be promoted by increasing student participation in discussion forums and online 
lectures with more engaging learning activities” [14]. Fincham et al. [15] validated 
a theorized model of engagement in learning analytics using factor analysis and 
SEM. He found that affective engagement (measured by sentiment, sadness, and joy 
of students’ writing) and cognitive engagement (measured by syntactic simplicity, 
word concreteness, and referential cohesion) are not significantly associated with 
students’ final grades but academic and behavioral engagement (problem submis-
sions, videos watched, and weeks active) are. 

The rest of this chapter presents a recap of SEM, an integrated strategy for 
conducting a SEM analysis that is well suited for Educational Sciences, and an 
illustration of how to carry out a SEM analysis in R. Like the previous chapter, the 
presentation in this chapter will be kept applied and focus on how to conduct the 
analysis in R, instead of diving into technical details (for this, interested readers are 
referred to the readings listed at the end of this chapter). 

3 Recap of SEM 

In its most common form, SEM combines confirmatory factor analysis (CFA) with 
path analysis. Like CFA, SEM relates observed variables to latent variables that are 
measured by those observed variables, and, like path analysis, SEM allows for a 
wide range of relations between entire sets of variables (both latent and observed). 
As mentioned before, SEM is nowadays an umbrella term that also includes path 
analysis with only observed variables. However, this chapter focuses on SEM with 
latent variables to show its full potential. For the sake of brevity, it is assumed that 
the readers of this chapter have already read the factor analysis Chap. 20, where 
a good description and recap of CFA (and how it differs from exploratory factor 
analysis) is provided.
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Fig. 1 CFA with covariances between factors vs. SEM with relationships between factors. 
The straight arrows from the factors to the observed variables indicate factor loadings (the 
regression weights obtained by regressing the observed variable on the factor) while straight 
arrows between Factors indicate regression relationships. Double-headed arrows between factors 
indicate covariance. The . ε’s represent errors. Curved single-headed arrows indicated variances. 
Each observed variable can also have an intercept, and each latent variable can also have a mean, 
but these are not explicitly indicated in the figure The blue dashed boxes indicate the structural part. 
The gray dashed boxes indicate the measurement part. (a) A 3-factor CFA model with correlated 
factors, where each factor is measured by three observed variables (X1–X3, X4–X6, X7–X9). (b) A  
SEM model with one latent predictor variable and two latent outcome variables. The model is very 
similar to the CFA model in (a). However, now there are regression relationships between Factors 
1 and 2, and Factors 2 and 3 (as indicated by the straight arrows between them) while Factors 2 
and three are assumed to be unrelated to each other 

The similarity between CFA and SEM is illustrated in Fig. 1. It can be seen that 
both models consist of a part in which the observed and latent variables are related 
to each other (these relations are referred to as the measurement model) and a part 
in which the latent factors are related to each other (these relations are referred to as 
the structural model). The crucial difference between CFA and SEM is that factors 
in CFA can only correlate with each other (see Fig. 1a). In contrast, SEM gives us 
more flexibility regarding (the set of) relationships between (observed and latent) 
variables. For example, Fig. 1b shows the same factor model as Fig. 1a. However, in 
Fig. 1b, Factors 2 and 3 are both predicted by Factor 1a but are unrelated beyond 
that. Which model researchers specify, that is, what relations between (latent) 
variables they model, is entirely up to them. However, this flexibility is also a danger 
of SEM: the fact that researchers can fit any model they can think of does not mean 
they should. Ideally, the chosen relationships are driven by theory and substantive 
knowledge of the field.
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4 Integrated Strategy for Structural Equation Modeling 

In the following, we guide you, the researcher, through the different steps of 
conducting a SEM analysis. It is important to highlight that the most crucial part of 
a SEM analysis is checking its assumptions and checking measurement invariance 
(which was already briefly mentioned in the Chap. 20). Measurement invariance 
means that the factor model underlying your instrument applies equally to relevant 
subgroups in your sample. In other words, measurement invariance implies that if 
you analyzed each of those subgroups with factor analysis separately (using the 
three steps described in the Chap. 20), you would find the same model in each 
one. Measurement invariance is crucial: As discussed in the previous chapter, the 
interpretation of a latent variable depends on the factor model. Therefore, if the 
factor model of the latent variable(s) in your SEM model differs, for example, 
across biological sex, you effectively throw apples and oranges together if you 
analyze both males and females simultaneously in your analysis, which will result 
in uninterpretable outcomes. At the very least, you would want the same factor 
model for everyone in terms of the same number of factors and the same pattern 
of relationships between the factors and the observed variables. This scenario is 
called configural invariance. However, most research questions require higher levels 
of invariance, in which not only the number of factors and the pattern of factor 
loadings are the same across subgroups, but also the actual values of (most of the) 
parameters such as factor loadings and intercepts are equal across groups. More 
information about the different levels of invariance and how and when to test for 
them is presented below. After you have checked the assumptions and measurement 
invariance, you can safely apply and interpret a SEM analysis. The actual SEM 
analysis is just the final step of the modeling strategy presented here. 

4.1 Step 1: Steps from the Previous Chapter While Assessing 
Configural Invariance 

Since SEM analyses typically look at the relationships of one or more latent 
variables with one or more other (latent or observed) variables, you first need to 
ensure that the latent variables represent what you think they represent. To this end, 
the first step is going through some or all the steps described in the Chap. 20 for 
every latent variable you include. If you use a new instrument to measure the latent 
variables, you should go through all the steps from (1) exploring the data structure, 
(2) building the factor model and assessing fit, and (3) assessing generalizability.1 

As explained in the previous chapter, step 3 should be conducted using a holdout

1 Note that observed variables (such as age or gender) can just be added to your SEM model. 
Only multiple-item instruments to assess psychological constructs must be validated. Thus, you 
can ignore the observed variables in this first SEM step. 
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sample or a new sample. However, you can use the same (holdout or new) sample 
for your SEM analysis. More on determining sufficient sample sizes is discussed 
below in the “SEM in R” section. 

Once the factor model of your latent variables has been established and/or 
verified, you must ensure that this structure applies to all relevant subgroups in 
your sample. That is, you need to check for measurement invariance. The first level 
of invariance is configural invariance and, thus, whether the number of underlying 
factors and the pattern of relations between those factors and the observed variables 
is the same in each relevant subgroup. To test for configural invariance, you must 
go through the steps outlined in the previous chapter for each relevant group in 
your sample separately. Note that this also means you need sufficient observations 
for model building and generalizability in each subgroup you want to consider. 
Which subgroups are important to consider separately will always come down to 
theory. 

If you use an existing instrument on a sample from a population for which the 
instrument had already been validated and configural invariance attained in previous 
research (i.e., you have strong a priori assumptions about the CFA model), you could 
skip the three steps from the factor analysis chapter and go straight to assessing 
the fit of the CFA model to your data. If it fits, you can continue with the SEM 
analysis. However, even when using existing validated instruments, it is strongly 
recommended to follow all the aforementioned steps for each relevant subgroup of 
your sample, as your sample might differ in important ways from the ones on which 
the instrument was validated, which could potentially introduce biases into your 
results. 

4.2 Step 2: Assessing Higher Levels of Invariance 

After establishing configural invariance between relevant groups, it is time to verify 
that the factor model parameters (specifically the loadings and intercepts) are also 
invariant across the factor models of each group. To illustrate why these “higher 
levels of invariance” are important, assume you want to investigate the relationship 
between children’s age and how engaged they are in class. You measure the latent 
variable “classroom engagement” using a factor model on the three observed 
variables engages in group activities, asks for assistance when needed, and prefers 
working alone. Of these three variables, asks for assistance might be more indicative 
of classroom engagement for girls than for boys due to cultural stereotypes. Boys 
could be way less likely to ask for assistance, not because they are less engaged, 
but because society taught them that boys should not ask for help and should 
instead figure things out themselves. In this example, the interpretation of the latent 
variable would be different between girls and boys: for girls, you truly measure 
classroom engagement; for boys, you measure an uninterpretable mix of classroom
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engagement and how much they internalized gender stereotypes. If you ignored 
this between-group difference in the meaning of the latent variable when including 
it in a SEM model, you would come to invalid conclusions about the structural 
relationships between (latent or latent and observed) variables. Fortunately, the type 
of invariance in this example would show up as a difference in the relation between 
the factor classroom engagement and the variable asks for assistance between boys 
and girls. In other words, it would show up as a difference in factor loadings between 
groups. 

Testing for higher levels of invariance in the factor model between categorical 
characteristics or “groups” (e.g., gender, nationality) can be done by testing for 
differences in model parameters between groups using a multi-group approach 
[16, 17] that compares the fit of a factor model in which all parameters are allowed 
to differ between groups to one in which one or more parameters are constrained to 
be equal across groups. If constraining parameters across groups does not cause a 
substantially worse model fit, invariance holds, and the constrained parameters can 
safely be considered and modeled as equal across groups. To assess for invariance 
across continuous variables (e.g., age) one could split the continuous variable into 
groups (e.g., changing the continuous variable age into the groups “young” and 
“old”), although one should ideally use more advanced methods like Moderated 
Non-Linear Factor Analysis [18] since categorizing continuous variables leads to 
loss of information. This chapter, however, will focus on the multi-group approach 
because it is the most common and widely available approach. 

There are two important points about the invariance of model parameters that 
make the lives of researchers a little easier. First, not all model parameters have to 
be invariant. If you investigate relationships between (latent) constructs, as opposed 
to mean differences, only the factor loadings have to be invariant. For assessing 
differences in means, the factor loadings and the intercepts must be invariant. Note 
that the effects of categorical predictors on other variables also pertain to differences 
in means and that both loading- and intercept invariance are needed to interpret 
those effects. Note that a factor model comprises not only factor loadings and 
intercepts but also unique variances. However, unique variances do not have to be 
invariant across groups when looking at relationships or mean differences across 
latent variables. Therefore, we will not further consider them in this chapter. Second, 
the discussion of measurement invariance so far in this section has been about what 
is called full invariance, in which all parameters of a certain type (i.e., all factor 
loadings and/or all intercepts) are equivalent across groups (or across levels of a 
continuous variable). While this would represent an ideal situation, full invariance 
will rarely hold and is also not necessary. Partial invariance in which several, 
but not all, parameters of a certain type are invariant across groups is typically 
considered enough (e.g., the factor loadings of 4 out of 6 variables used to measure 
a factor are invariant across groups). Specifically, as long as at least two loadings 
are invariant across groups, one can look at relations between the corresponding 
latent variable and other (observed and/or latent) variables, and as long as at least 
two factor loadings and at least two intercepts are equal, one can meaningfully look 
at differences in means too ([19]; but also see [20]).
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4.3 Step 3: Building the Structural Equation Model and 
Assessing Fit 

After verifying the required level of measurement invariance for all latent variables 
that will be used in the SEM analysis, you are ready to investigate structural relations 
(e.g., regression relationships) between the factors (as well as observed variables 
if desired). Like with the factor models in the previous chapter, you first have 
to evaluate if the model fits your data sufficiently. You should only interpret the 
structural relations if the model fits the data. If the model does not fit, it is not a 
good description of the data and does not warrant further interpretation. 

5 SEM in R 

In the following, you will be taken through the essential steps of performing 
SEM in the open-source software R. To this end, the same dataset [21] will be 
used as the one to which factor analysis was applied to in the previous chapter 
[1]. The dataset contains survey data about teacher burnout in Indonesia. In total, 
876 respondents have answered questions on five domains: Teacher Self-Concept 
(TSC, 5 questions), Teacher Efficacy (TE, 5 questions), Emotional Exhaustion 
(EE, 5 questions), Depersonalization (DP, 3 questions), and Reduced Personal 
Accomplishment (RPA, 7 questions). Thus, the total number of variables equals 25. 
The questions were assessed on a 5-point Likert scale (ranging from 1 = “never” to 
5 = “always”). For more information on the dataset, the interested reader is referred 
to the data chapter of the book [22]. 

In line with the seven hypotheses about the structural relationships in the original 
article, the SEM analysis presented below tests whether TE is predicted by TSC and 
whether EE, DE, and RPA are respectively predicted by TE and TSC. Note that, as 
SEM builds up on factor analysis, the code presented below also builds up on the 
factor analysis results and syntax from the previous chapter. Without reading the 
previous chapter, the steps in this chapter might therefore be harder to follow. 

To provide an example of how to assess between-group invariance of the 
constructs, it will be tested whether the same factor structure holds across gender. 
More specifically, because the running example is only interested in relationships 
between constructs and not mean differences, only loading invariance will be tested 
for. However, code to also test for intercept invariance will also be provided. 

5.1 Preparation 

To follow all the steps, you have to install the following packages with the function 
install.packages(). You only have to install them the first time you want to use



Structural Equation Modeling with R for Education Scientists 713

them; therefore, the commands are commented below. Once you have the packages 
installed, you must load them with the library() function whenever you open the 
R script. 

library(lavaan) # install.packages("lavaan") 
library(tidyverse) # install.packages("tidyverse") 
library(rio) # install.packages("rio") 
library(psych) # install.packages("psych") 
library(combinat) # install.packages("combinat") 
library(devtools) # install.packages("devtools") 
library(sleasy) # devtools::install_github("JoranTiU/sleasy") 

5.1.1 Reading in the Data 

The data can be read in, and the variable names can be extracted with the following 
commands: 

dataset <- import("https://github.com/lamethods/data/raw/main/4_ 
teachersBurnout/2.%20Response.xlsx") 

var_names <- colnames(dataset) 

In the following, you will also find commands to add a gender variable to the 
dataset. This variable is only added to demonstrate how to perform invariance tests. 
Although the original data contains gender, it is unfortunately not part of the publicly 
shared data.2 The proportion of men (gender = 0) and women (gender = 1) in 
the created variable aligns with the reported values from the article corresponding 
to the dataset. 

set.seed(1611) 
dataset$gender <- as.factor((sample(c(rep(0, 618), rep(1, 258))))) 

5.1.2 Are the Data Suited for SEM? 

Several data characteristics are necessary for SEM. These largely overlap with the 
necessary data characteristics for factor analysis, as discussed in the Chap. 20 (i.e., 
are the variables continuous? Are the correlations between the variables sufficiently 
large? Is there enough common variance among the variables? Are the data normally

2 We contacted the authors, but they refrained from sharing the variable because they still plan to 
conduct research using the variable. 
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distributed?). Therefore, the steps in R to check whether the data are suited will not 
be presented here, as you can look those up in the previous chapter. To summarize: 
The data were suited for analysis with factor analysis and SEM, but the distribution 
of the variables is somewhat left-skewed. Therefore, an estimation method that is 
robust against non-normality should be used. 

The one characteristic that needs additional investigation is the sample size. 
As mentioned in the previous chapter on factor analysis, Bentler and Chou [23] 
recommend having 5 observations per estimated parameter, while Jackson [24] 
recommends having 10, and preferably 20 observations, for each parameter you 
want to estimate. Therefore, the total number of observations depends on the exact 
model fitted to the data. If you start your SEM analysis with going through all three 
recommended model-building steps from the previous chapter (see the “Integrated 
Strategy for Structural Equation Modeling” above), you need to base your required 
sample size on the number of parameters estimated by an exploratory factor analysis 
(e.g., for a two-factor model fitted to 10 variables, you would need about (20 factor 
loadings . + 10 intercepts . + 10 error-variances) . × 10 = 400 cases) and multiply 
that by 2 to also have enough observations for a new or holdout sample to check 
generalizability of your factor-model and for fitting your SEM model. Note that 
the sample size calculated this way is what you need in each relevant subgroup 
for which you want to assess measurement invariance. As mentioned above, you 
could go straight to the SEM analysis if you use an existing instrument on a sample 
from a population for which the instrument has already been validated and shown 
to be invariant across relevant groups in previous research. In that case, you would 
need fewer observations because a SEM model (like a CFA model) will have more 
constraints than an exploratory factor analysis model and hence fewer parameters to 
estimate. 

You will perform the SEM analysis using the holdout sample from the previous 
chapter. The sample size for that is 438, which is sufficiently large to estimate 
25 intercepts, 25 loadings, 25 unique variances, and 7 relations between factors 
according to the more lenient rules by Bentler and Chou [23], which, as you will 
see in Step 2, is the number of parameters of the SEM model that will be fitted to 
the data. 

5.2 Step 1: Steps from the Previous Chapter 

As explained in the strategy section, it is recommended to go through all the steps 
mentioned in the Chap. 20 (exploring the data structure, building the factor model 
and assessing fit, and assessing generalizability), and the R code for these steps 
can also be found there. For brevity, the steps and code will not be repeated here. 
Additionally, configural invariance (tested by following the steps from the previous 
chapter for each relevant subgroup separately) will be assumed to hold so that this 
section can focus on the code needed for a SEM analysis. We begin with picking up 
at the code for randomly assigning 438 rows of the data to a holdout dataset:
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set.seed(19) 
ind <- sample(c(rep("model.building", 438), rep( 

"holdout", 438))) 
tmp <- split(dataset, ind) 
model.building <- tmp$model.building 
holdout <- tmp$holdout 

For an explanation of the code, please go back to the Chap. 20. 

5.3 Step 2: Assessing Higher Levels of Invariance 

Before looking into the structural relationships of interest, you have to ensure that 
the loading (and possibly intercept) invariance holds across groups for which this 
might be violated according to theory. To this end, you first have to specify the 
model, which is very similar to the model that was specified in the previous chapter 
for the CFA model. The model syntax looks as follows: 

SEM_model <- ' 
# Regressing items on factors 
TSC =~ TSC1 + TSC2 + TSC3 + TSC4 + TSC5 
TE =~ TE1 + TE2 + TE3 + TE5 
EE =~ EE1 + EE2 + EE3 + EE4 
DE =~ DE1 + DE2 + DE3 
RPA =~ RPA1 + RPA2 + RPA3 + RPA4 

# Relations between factors 
TE ~ TSC 
EE ~ TE + TSC 
DE ~ TE + TSC 
RPA ~ TE + TSC 
' 

The first part of this syntax is exactly the same as the syntax that defined the CFA 
model in the previous chapter, with the syntax elements “=~” indicating that a factor 
is measured by specific observed variables. The code above defines a model where 
the factors TSC, TE, EE, DE, and RPA are measured by different sets of variables, 
which are separated by “+”. In addition to the measurement part, this syntax includes 
the specification of relations between factors using the “~” operator. For example, 
TE is regressed onto TSC, indicating a directional relationship from TSC to TE. 
When comparing this syntax to the one from the previous chapter, you will see that 
the only thing that changes when you move from CFA to SEM is that you specify 
concrete structural relations (i.e., which latent factors are regressed on each other)
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instead of solely specifying correlations. Although intercepts are not explicitly 
mentioned in the model, they can be included by using the meanstructure = 
TRUE argument in the command when estimating the model. 

Once the model syntax is specified, you can check whether invariance across 
groups (here, gender) holds. More specifically, you check this by comparing a 
model with and without equality constraints on the parameters of interest (here, as 
motivated before, only the loadings) and check whether adding constraints reduces 
model fit more than desired. To evaluate the degree of fit reduction, you can look at 
the changes in the global fit measures described in the previous chapter. These were 
(1) the Chi-squared significance test, (2) the comparative fit index (CFI), (3) the root 
mean square error of approximation (RMSEA), and (4) the standardized root mean 
square residual (SRMR). Recall that, unlike the Chi-squared significance test that 
assesses perfect fit, the CFI, RMSEA, and SRMR assess approximate fit. Similarly, 
only the Chi-squared significance test is a formal test for assessing invariance. As 
for the global fit measures, each fit measure is accompanied by rules of thumb 
when assessing invariance, allowing you to decide whether or not (approximate) 
invariance holds. The difference compared to the previous chapter and the rules of 
thumb presented there for the global fit measures is that the rules of thumb now 
pertain to differences in the criteria between models with and without constraints. 
The Chi-significance test should be nonsignificant because otherwise, the model 
with constraints fits significantly worse. Keep in mind, however, that this test easily 
rejects the assumption of invariance with increasing sample size. Regarding the 
other three measures, the rules of thumb are that differences in CFI should be smaller 
than or equal to 0.01, differences in RMSEA should be smaller than or equal to 
0.015, and differences in SRMR should be smaller than or equal to 0.030 [25]. 

You do not have to perform the invariance assessment by constraining parameters 
yourself. Instead, you can use the command below. The argument model asks you 
to specify the model syntax, data asks for the dataset that you want to use for the 
analysis, and group refers to the variable for which you want to assess invariance. 
The argument estimator indicates which estimation procedure is used. The default 
is standard maximum likelihood (“ML”) estimation. However, for the current data, 
a robust maximum likelihood (“MLR”) estimation is applied to account for small 
violations of the normality assumption. If the data contain missing values, you can 
add the argument missing and specify it as equal to “fiml”, corresponding to a full 
information maximum likelihood approach. As already discussed in the previous 
chapter, this is a sensible approach if you have at least missing at random (MAR) 
data (details about missing data mechanisms can be found in the lavaan tutorial 
[26]). Next, the argument “intercept” indicates whether intercept invariance should 
be assessed in addition to loading invariance. If put to TRUE, the output contains 
information on both loading and intercept invariance unless two or more of the 
four fit criteria indicate that loading invariance is violated because then, assessing 
intercept invariance does not make sense. This information would be provided in the 
form of a message. Finally, the argument “display” indicates whether output about 
group-specific parameters and differences are provided (when set to TRUE) or not  
(when set to FALSE).
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invarianceCheck(model = SEM_model, data = holdout, 
group = "gender", estimator = "MLR", 

intercept = FALSE, 
missing = FALSE, display = FALSE) 

Nested Model Comparison---------------------------------------------------------------

Scaled Chi-Squared Difference Test (method = "satorra.bentler.2001") 

lavaan NOTE: 
The "Chisq" column contains standard test statistics, not the 
robust test that should be reported per model. A robust difference 
test is a function of two standard (not robust) statistics. 

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq) 
Loadings_Free 320 15711 16283 648.06 
Loadings_Invariant 335 15693 16203 660.17 9.8747 15 0.8275 

Model Fit Indices --------------------------------------------------------------------

chisq.scaled df.scaled pvalue.scaled rmsea.robust cfi.robust 
Loadings_Free 632.823† 320 .000 .068 .923 
Loadings_Invariant 638.987 335 .000 .065† .925† 

srmr 
Loadings_Free .050† 
Loadings_Invariant .053 

Differences in Fit Indices -----------------------------------------------------------

df.scaled rmsea.robust cfi.robust srmr 
Loadings_Invariant - Loadings_Free 15 -0.002 0.002 0.002 

Loading Invariance Interpretation ----------------------------------------------------

The hypothesis of perfect loading invariance *is not* rejected according to the 
Chi-Square difference test statistics because the p-value is larger or equal 
to 0.05. 

The hypothesis of approximate loading invariance *is not* rejected 
according to the CFI because the difference in CFI value is smaller than 
or equal to 0.01. 

The hypothesis of approximate loading invariance *is not* rejected 
according to the RMSEA because the difference in RMSEA value is smaller 
than or equal to 0.015. 

The hypothesis of approximate loading invariance *is not* rejected 
according to the SRMR because the difference in SRMR value is smaller than 
or equal to 0.030. 

Inspecting the output, you can see several sections. You may directly go to the 
last section “Loading Invariance Interpretation” because this provides you with 
information on whether or not invariance is rejected according to the four fit 
measures (following the cut-off values provided before). If you are interested in 
(reporting) details about the Chi-square significance test and the (differences in)
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model fit criteria, you can also inspect the beginning of the output.3 It can be seen 
that invariance is not rejected according to any of the criteria. Similar to assessing 
model fit in factor analysis, it is advised that no more than one criterion should 
reject invariance for concluding that invariance holds. If this is initially not the case, 
you may release one equality constraint at a time (i.e., moving towards partially 
invariant models) and run the invarianceCheck() function again until partial 
invariance holds. In order to decide which constraints to release, you can consult the 
information provided when the “display” argument is set to TRUE. The output will 
then show the loadings and intercepts per group as well as the differences in these 
parameters across groups. You will also get a message indicating which loading 
(and intercept) differs most between groups. These would be the first targets to 
estimate freely across groups (while making sure that the minimum requirements for 
partial invariance mentioned above hold). How to update the model syntax to freely 
estimate parameters between groups is explained on the lavaan package website 
[26]. 

5.4 Step 3: Building the Structural Equation Model and 
Assessing Fit 

The next step is to perform the SEM analysis on the holdout data using the specified 
SEM model with the following command: 

sem_robust <- sem(model = SEM_model, data = holdout, 
std.lv = TRUE, 

estimator = "MLR", meanstructure = TRUE) 

The arguments are the same as for the cfa() function discussed in the previous 
chapter. The relevant (standardized) output about the structural relations can be 
extracted from the SEM model with the command below. The first argument asks 
you to specify the lavaan object from which you want to extract the structural 
relations, nd lets you specify the number of decimals you want to display (with 
default 3). 

sem_structural_results(sem_robust, nd = 3)

3 Note that you will first see a note from lavaan about ‘the "Chisq" column contain[ing] standard 
test statistics’. You can simply ignore this, as it just gives information on how the difference in fit 
was tested. 



Structural Equation Modeling with R for Education Scientists 719

outcome predictor std estimate se p-value 
1 TSC TE 0.693 0.121 0 
2 TSC EE 0.547 0.17 0 
3 TSC DE 0.4 0.143 0 
4 TSC RPA 0.413 0.111 0 
5 TE EE 0.32 0.114 0 
6 TE DE 0.293 0.088 0.001 
7 TE RPA 0.326 0.084 0 

Looking at the output from left to right, you can see the outcome variable of the 
structural relationship, the predictor of the structural relationship, the regression 
coefficient, the standard error of the regression coefficient, and the p-value of the 
effect. Here, you see that all structural relations are significantly different from zero 
and thus that TE, EE, DE, and RPA are all related to TSC and that EE, DE, and 
RPA are related to TE. As mentioned, the function sem_structural_results() 
displays the most relevant information about the structural relations. For more 
information and unstandardized estimates, you can use the summary() function on 
the lavaan object sem_robust (also see the lavaan tutorial by Rosseel [27]). 

6 Conclusion 

SEM is a rich, powerful, and mature statistical framework that has more than a 
century of evolution and expansion. Several other extensions have been developed 
to include dynamic structural equation modeling for the analysis of temporal data, 
latent growth curve modeling for the analysis of systematic change over time, 
and multilevel SEM for the analysis of hierarchically clustered (or nested) data, 
to mention just a few. This chapter merely provided a primer that introduces the 
basics of the methods and an example application. Hopefully, it opens the door for 
interested readers to explore such a powerful framework that offers an excellent 
solution to many of the analytical tasks that researchers encounter. 

7 Further Readings 

In this chapter, you have seen an introduction and tutorial on how to apply SEM in 
educational research. To learn more about how SEM can be applied to this field, you 
can consult these resources:

• Teo, T., Ting Tsai, L., & Yang, C. 2013. “Applying Structural Equation Modeling 
(SEM) in Educational Research: An Introduction”. In Application of Structural 
Equation Modeling in Educational Research and Practice.
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• Khine, M. S., ed. 2013. “Application of Structural Equation Modeling in 
Educational Research and Practice”. Contemporary Approaches to Research in 
Learning Innovations. 

To learn more about SEM in general, you can refer to the following:

• Kline, R. B. 2015. “Principles and Practice of Structural Equation Modeling”. 
4th Edition. Guilford Publications.

• Hoyle, Rick H. 2012. “Handbook of Structural Equation Modeling”. Guilford 
Press. 
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Why Educational Research Needs a 
Complex System Revolution that 
Embraces Individual Differences, 
Heterogeneity, and Uncertainty 

Mohammed Saqr, Marieke J. Schreuder, and Sonsoles López-Pernas 

1 Introduction 

Learning analytics (LA) has emerged to harness the opportunities created by the 
abundance of data and advanced machine learning methods to improve learning and 
teaching and offer the much-needed personalized support. The premise was that 
the availability of massive amounts of data would enable novel insights, improve 
inferences, and deliver real-life impact [1]. A wide array of learning analytics 
applications has been developed over the years to realize such aspirations. One of 
the initial applications of learning analytics focused on predictive modeling: that is, 
collecting data of online activities, such as clicks, access to educational resources, or 
forum discussions to create a predictive model that would early flag underachievers. 
The early identification of an underachieving student in a course paves the way for 
proactive intervention [2]. Several studies have reported the successful identification 
of underachievers in individual courses or limited samples. Yet, transferring such 
models across programs or courses has been a consistent disappointment. All the 
more so, very few have reported a successful proactive intervention [2]. 

A recent massive study with data from 250,000 students tried to examine the 
effectiveness of a large-scale, evidence-based intervention, and reported small 
benefits. The researchers concluded that interventions are likely more effective 
when implemented for the right person, at the right moment in time. In fact, such 
a conclusion is far from new, Gordon Paul's stated in 1967 that the important 
question is “What treatment, by whom, is most effective for this individual with 
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that specific problem, and under which set of circumstances?”[3]. This requires 
predictions at a dynamic (i.e., time-varying) and individual level [4]. Another recent 
large-scale study showed that a low proportion of variance in students’ performance 
was explained by the behavior-based indicators [5], and thus, students should best be 
identified on internal conditions (e.g., knowledge, self-regulation, and motivation). 
Recent reviews of intervention using LA methods further emphasize the difficulty 
of these promises [6]. As Du et al. [7] stated that “every course has different course 
requirements, it is impossible to identify generalisable thresholds of individual 
behaviors across courses” (p. 510). This holds even when courses are similar, 
homogenous, and use the same teaching [8]. 

The lackluster of predictive LA has led to a wide range of research threads aiming 
to tap into other methods that help explain and optimize students’ learning. Such 
methods have been used to analyze the relational temporal patterns of students’ 
learning processes. For instance, building on the importance of time, Process Mining 
(PM) and Sequence Analysis (SM) have gained wide popularity in the analysis of 
online learning activities to explain the time-ordered patterns of learning activities 
and to capture patterns of learning strategies [9]. Social network analysis (SNA) has 
also gained renewed interest and wider application in collaborative learning settings 
to understand students’ roles and interaction patterns and to find SNA measures 
that help predict performance [10, 11]. Nevertheless, most of such methods—which 
we covered with examples in the book—require an overarching framework or a 
theoretical underpinning to better ground the analysis. In this chapter, we discuss the 
importance and potential of complex systems in understanding learning, learners, 
and the educational milieu at large. 

2 Complex Systems and Education 

Most learning theories and frameworks can be conceptualized as systems, that is, 
composed of multiple components, phases, or elements that interact with each other. 
Typically, such interactions are non-linear and vary across people, contexts, and time 
scales resulting in the emergence of a unique learning process [12–14]. For instance, 
engagement can be considered as a complex system. Engagement is then viewed 
as the result of interaction between different components, namely behavioral, 
cognitive, and emotional dimensions [15, 16]. Such interactions vary between tasks, 
times, and contexts which are often referred to as interaction-dominant systems 
(Fig. 1b) [17, 18]. In interaction-dominant systems, the relationships between 
components may change intensity and direction across times and situations. For 
instance, a student may enjoy school in the early days which drives their engagement 
and achievement and boosts their motivation. These dynamics may change over 
time, where achievement could be the driving force of future engagement but 
also results in anxiety rather than enjoyment. In turn, anxiety may negatively 
affect school enjoyment and engagement. This dynamic view is more realistic 
than the common box-and-arrow models where the components of the system are
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Fig. 1 (a) A complex dynamic system where the interactions vary across time, change direction 
and strength in a soft-assembled manner. (b) A box and arrow framework where the interactions 
are fairly stable and linear 

rigidly assembled in a stable manner and the relationships between the components 
are deemed to be linear (Fig. 1b). Viewing the previous example from a linear 
perspective would entail that we see that the student will always have a stable 
relationship: enjoyment always drives engagement and achievement with little 
changes in the future nor any new patterns emerge. A linear view of engagement 
is then far from realistic. 

Engagement follows Gestalt principles, meaning that engagement is con-
sidered more than just the sum of its parts (i.e., engagement ./= emo-
tions+cognition+behavior) [16], the interactions between these components are 
often multiplicative rather than simple linear sum and rely on the environment 
and contextual conditions (family, peers, teachers, school, etc.). Additionally, most 
engagement theories describe feedback loops (for instance, achievement drives 
further engagement and vice versa) [19]. Again, such feedback loops fit well with 
the salient features of a complex dynamic system [14]. 
Self-regulated learning (SRL), too, follows complex systems principles: the inter-
action between SRL phases across different learning scenarios and temporal scales 
results in unique learning strategies which are different mixtures of SRL phases. 
Such interactions may enhance, impede, or catalyze each other. For example, 
reflection on performance can lead to improved learning and better goal-setting in a 
student. In another student, reflection can lead to frustration, and low performance. 
We can expect vast amounts of variations and complex interactions in the same way. 
Such conceptualization of SRL as a state of a complex person-environment system



726 M. Saqr et al.

is necessary to understand the interplay of the intricate SRL process [13, 17]. Indeed, 
Boekaerts and Cascallar [20] argue that it is impossible to understand learning and 
achievement “unless one adopts a systems approach to the study of self-regulated 
learning”. Similarly, other SRL theoreticians share the same conceptualization. For 
instance, [21] states that SRL is “a complex system of interdependent processes” 
[21], and so did Winne et al. when they described engagement as complex and 
dynamically changeable across contexts [22]. 

In fact, many learning concepts have been already described, operationalized, 
and framed in complex system terms including motivational [23, 24], achievement 
motivation theories [25], agency [26], and metacognition theories [27]. Also, the 
student has been described as a complex system [28], so have small collaborative 
groups [29], and the classroom as a whole to list a few. The merit of this complex 
systems view is that it not only accounts for many of the features of learning-
related processes (e.g., being interaction-dominant, lacking central control) but also 
provides a framework for better understanding - and perhaps even predicting -
such processes [13]. Nevertheless, endorsing that a system is interaction-dominant 
means that we also understand that forecasting and prediction of the system's future 
status may be more uncertain than the simple linear dynamics of component-
dominant scenarios [30]. That is, the slightest change in initial conditions may 
lead to substantial differences in the end state (a phenomenon called “sensitive 
dependence on initial conditions”). It follows that in order to understand complex 
systems, one has to look into the dynamics of such systems. 

2.1 Dynamics in Complex Systems 

The interactions that maintain a complex system tend to give rise to relatively 
stable configurations, which can be considered attractor states that emerge again 
and again [31]. Attractors can take many different forms, ranging from chaotic to 
cyclic to simple point attractors. In the context of learning analytics, for instance, 
a point attractor could resemble a state of “being relatively engaged”. Importantly, 
the attractors of complex systems may change over time. The aforementioned point 
attractor could for instance gradually lose its strength, up to a point where the 
attractor disappears. When reaching such a tipping point, the system switches to 
an alternate attractor [32]. Such a shift between different attractors is often labeled 
a transition. Transitions can be harmful—e.g., reflecting a shift from an adaptive 
state towards a maladaptive state—or beneficial—e.g., reflecting a reverse shift. 
Relatively well-investigated dynamics are “critical transitions”, which entail a shift 
from one stable regime (i.e., point attractor) towards another regime [31] (i.e., other 
point attractor). For instance, countries can shift between a state of peace towards 
a state of war and the climate can shift from a greenhouse to an icehouse state. 
Similarly, a learning child may shift between a state of engagement towards a state 
of disengagement. An important premise of complex systems theory is that such 
transitions - albeit in very different systems - follow the same generic principles.
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Among these principles is the idea of critical slowing down [30, 33]. Critical 
slowing down describes that, prior to a critical transition, it becomes increasingly 
difficult to recover from perturbations [33, 34]. In the case of engagement, such 
perturbations can be school problems (e.g., problems with other pupils). When the 
student is in a stable, engaged state—and thus, unlikely to experience a transition 
towards a disengaged state—such perturbations only have a brief effect on the 
student’s attention. This means that, upon a perturbation, he/she quickly recovers 
his/her “baseline” engagement levels [35]. As the resilience of the engaged state 
declines, however, the student becomes increasingly affected by these perturbations. 
This means that recovering his/her normative engagement becomes more and 
more difficult. This in turn translates to altering system dynamics, meaning that 
the interactions between and within system elements changes. Monitoring such 
changes may then allow for anticipating otherwise unpredictable transitions in 
learning processes [30, 33, 34]. Ultimately, this could aid the prevention of harmful 
transitions or the fostering of beneficial transitions. 

An important implication of viewing transitions in learning processes through 
a complex systems lens is that declining resilience may be detectable within 
systems, which in this case means that inferences are made on the level of the 
student. This approach contrasts with the common group-level inferences, which 
may allow for telling who is likely to undergo a transition. For instance, group-
level approaches may lead to the notion that “individuals with this behavior, 
this personality, or this socio-economic background are more likely to drop out 
of school than others”. Within-individual approaches, in contrast, may allow for 
determining when a specific individual will drop out. For the purposes of targeted 
and timely intervention, such insight is invaluable. A related merit of complex 
systems principles is that they allow for personalization. For instance, it is likely 
that vulnerability to major changes (e.g., transitions in engagement, school drop-
out) manifests in different variables for different individuals. Because declining 
resilience can be monitored within individuals, such heterogeneity does not pose 
a challenge. Rather, it can be accommodated by monitoring resilience in those 
variables that are considered most relevant for this particular student, in this specific 
context [36]. In conclusion, the possibility to monitor generic indicators of declining 
resilience may pave the way for deriving person-specific insights in predicting (and 
potentially, preventing or stimulating) changes in learning-related processes. 

2.2 From Theory to Practice: Measurement and Analyses 

If we agree that the learning phenomena, process or construct can be conceptualized 
as states in a complex system, then it becomes essential that a complex system 
lens is used to map the structure and dynamics of the said phenomena [37]. This 
has profound consequences for both measurement and data analyses. With respect 
to measurement, a complex systems lens necessitates the collection of time series 
data. The reason is that systems—and the interactions between elements within
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those systems—are by definition time-varying, and it is precisely the changes 
over time that contain information about the system as a whole. Thus, instead 
of a single, cross-sectional measurement, a complex systems perspective requires 
collecting repeated measurements for each individual. With advancing technology, 
collecting such measurements has become increasingly feasible. Broadly speaking, 
we can distinguish between passively collected data - which includes mobile sensing 
data (e.g., typing speed, scrolling, app usage, and sometimes also location) and 
actigraphy data (e.g., movement, heart rate, skin conductance) —and self-reported 
data—which is gathered through repeatedly prompting students with a questionnaire 
on their mood, motivation, or other psychological variables. Both modalities have 
their pros and cons. The main benefit of passively collected data is the amount of 
data that can be collected without burdening participants. The other side of the coin 
is that this amount of data often needs aggregation and intensive cleaning, which 
is far from straightforward, and in that sense the data can be “hard to handle”. 
The main benefit of self-report data is that the content of measurement may be 
more closely related to the construct of interest. However, self-report data require 
considerable motivation from participants, and it is not inconceivable that such 
demanding research designs introduce sampling bias. Put differently, it is possible 
that the types of individuals who engage in studies involving long-term self-reports 
are not representative of the general population (e.g., in terms of conscientiousness 
[38]). At the same time, however, studies that investigated sampling bias in intensive 
longitudinal studies involving the collection of repeated self-reports did not find 
evidence for self-selection [39]. As intuitive as it may seem, scientific evidence for 
the self-selection of participants into intensive longitudinal studies is thus lacking. 
Besides these relatively practical considerations, the necessity of time series data 
also comes with more fundamental questions, for instance, related to the timescale 
of assessments. Ideally, this timescale should be informed by the timescale at which 
the system’s dynamics unfold. This in turn varies between constructs: engagement 
may shift over minutes, while student’s performance may shift over weeks. 

Naturally, the focus on time series data has consequences for the analyses that are 
useful. Not only do we require time series analyses —which can handle the temporal 
dependency in the data—but we also need methods that can capture nonlinear 
and person-specific trends. This is because the dynamics of complex systems are 
typically non-linear, as illustrated by the erratic behavior and sudden shifts that 
govern complex systems. Examples of such analytical methods include dynamic 
time-warp analyses, generalized additive models, recurrence quantification analysis, 
state space grids, and moving window analyses [17]. Despite that most learning 
theories and processes can be described in complex system terms and the long 
history of theoretical foundations of complex systems in learning sciences, learners’ 
and learning environments, the uptake of suitable methods and approaches is 
lagging behind [13, 17]. Furthermore, applications, framing, and operationalization 
of learning theories as complex systems are rare in educational research [13, 17]. 
In this book, we therefore provide some theoretical underpinnings of a complex 
systems perspective on learning and education, and we further included several 
chapters that deal with methods and analyses that accommodate a complex systems
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lens e.g., psychological networks, Markovian models, and model-based clustering. 
In other fields, the adoption of such methods has resulted in the renewal of theories, 
understanding of human behavior, and the emergence of new solutions to real-life 
problems [40, 41]. Our aim was to help interested researchers to embrace such 
methods in their analysis. 

2.3 Complex Systems and Individual Differences 

Complex systems—as a paradigm—facilitates a better understanding of the hetero-
geneity and individualized nature of human behavior and psychological phenomena. 
In fact, many complex system methods, some of which described earlier, have a 
strong emphasis on person-specific fine-grained dynamics. The next section will 
offer a more in-depth discussion of the individual mechanisms and how they relate 
to the general average assumptions. 

2.3.1 The Individual 

The “individual”, or the “self” is a central construct in several learning theories, 
methodologies, and approaches. For instance, self-regulated learning, self-concept, 
self-control, and self-directedness to mention a few [42]. Further, the literature 
is awash with the notion of personalization, student-centeredness, and adaptive 
learning. Nonetheless, research is commonly conducted using methods that essen-
tially ignore the “individual” process. In that, research is performed using what 
is known as variable-centered methods where data is collected from a “group 
of others” to derive generalizable laws. In variable-centered methods, researchers 
compute standard tendency measures (mean or median) from a sample of indi-
viduals (often referred to as group-level analysis) to derive “norms” or “standard 
recommendations”. The average is considered a “norm” where everyone is assumed 
to fit. What is more, the outcome of such analysis is deemed representative and 
therefore, generalizable to the population at large. Given that such an average is 
derived from a sample of others, it rarely represents any single student [43, 44]. An 
accumulating body of evidence is mounting that humans are heterogeneous with 
diverse behaviors, attitudes, cognition, and learning approaches. Thereupon, using 
insights based on group-level analysis has so far resulted in recommendations that 
don’t work, assumptions that fail to hold, and replications that are hard to obtain. 
Furthermore, intervention programs or procedures based on such samples offered 
no more than negligible effects, e.g., [4]. 

The fact that group-level analysis is less representative of the person is far from 
new and has been recognized for decades. Yet, the methods that are more suited for 
person-specific analysis may have not progressed fast enough. The last two decades 
have witnessed a revolution in data collection methods, statistical approaches, and 
procedures that allow such analysis, collectively known as person-specific analysis.
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In many ways, person-specific methods are a paradigm shift in research which 
according to [45] represent a “brink of a major reorientation” that is “no longer 
an option, but a necessity”. Endorsing a person-specific approach may change how 
research is performed and how findings are applied [46, 47]. The person-specific 
methods—being individualistic—have low potential for generating generalizable 
recommendations [46]. Therefore, a combination of group-level and person-specific 
methods may be the best way forward. Such a combination may augment our 
understanding and provide precise interventions at the high resolution of the single 
student and sharpen our insights of the group level that are generalizable to the wider 
population [48]. 

There is an abundance of digital tools and data collection methods that allow the 
gathering of fine-grained intensive data about students. Such data -where several 
measurements from the same person are gathered- can allow the analysis of more 
person-specific insights. In doing so, it can help obtain an accurate view of a 
student's learning processes and offer more precise personalized support [45–47]. 

2.3.2 Heterogeneity 

As discussed in the previous section, a central assumption of group-level analysis is 
that “the average individual” represents every individual. Yet, the average individual 
very often does not exist [49]. To illustrate this problem, let us consider the story 
of Gilbert Daniels. Daniels was given the task to measure the physical dimensions 
of more than 4000 pilots who were part of the American Air Force around 1950. 
The goal was to find the average pilot size, so that cockpits could be re-designed 
accordingly. However, a remarkable finding of Daniels was that not a single pilot 
(out of all pilots who were measured) was approximately equal to the average 
of the 10 most relevant dimensions. Further, for any given combination of three 
dimensions, only 4% of pilots would match the average. Hence, he concluded that 
“The tendency to think in terms of the average man is a pitfall into which many 
people blunder [. . . ]. Actually, it is virtually impossible to find an average man”. The 
consequence of this discovery was that most cockpit material became adjustable so 
that it would suit everyone [50]. 

It is not difficult to translate Daniels’ findings to the field of LA. Here, 
too, students are measured in many dimensions. It is often implicitly assumed 
that the average of those dimensions will illustrate “a representative student”, 
but this is not the case. To accommodate this lack of “average students”, we 
should embrace person-centered methods, similar to how the American Airforce 
embraced adjustable furniture and clothing. In contrast to group-level analyses, 
person-centered methods attempt to find patterns where differences are minimal, 
assumptions are likely to hold and apply to wider groups of people. Recently, 
the range of available person-centered methods has vastly increased, coupled with 
improving rigor and potential. Therefore, person-centered methods are increasingly 
endorsed to model heterogeneity and individual differences across a vast range of 
empirical designs. In the current book, we have introduced several methods for
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capturing the heterogeneity of multivariate and longitudinal data, and we encourage 
researchers to take advantage of such data to capture the diversity and individual 
differences of learners [51–54]. 

3 Conclusion 

The birth of learning analytics signaled a new wave of educational research 
that embraced modern computational methods. Whereas the field has matured, 
several methodological and theoretical issues remain unresolved. In this chapter, 
we discussed the potentials of complexity theory and individual differences in 
advancing the field bringing a much-needed theoretical perspective that could help 
offer answers to some of our pressing issues. In fact, a complex systems view 
on learning processes can address some of the major barriers that have hampered 
progress in the field of education and possibly offer a venue for the renewal of 
knowledge. 
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