
Revantha Ramanayake
Josef Urban (Eds.)

 123

LN
AI

 1
42

78

32nd International Conference, TABLEAUX 2023
Prague, Czech Republic, September 18–21, 2023
Proceedings

Automated Reasoning
with Analytic Tableaux
and Related Methods

Lecture Notes in Computer Science

Lecture Notes in Artificial Intelligence 14278
Founding Editor
Jörg Siekmann

Series Editors
Randy Goebel, University of Alberta, Edmonton, Canada
Wolfgang Wahlster, DFKI, Berlin, Germany
Zhi-Hua Zhou, Nanjing University, Nanjing, China

The series Lecture Notes in Artificial Intelligence (LNAI) was established in 1988 as a
topical subseries of LNCS devoted to artificial intelligence.

The series publishes state-of-the-art research results at a high level. As with the LNCS
mother series, the mission of the series is to serve the international R & D community
by providing an invaluable service, mainly focused on the publication of conference and
workshop proceedings and postproceedings.

Revantha Ramanayake · Josef Urban
Editors

Automated Reasoning
with Analytic Tableaux
and Related Methods
32nd International Conference, TABLEAUX 2023
Prague, Czech Republic, September 18–21, 2023
Proceedings

Editors
Revantha Ramanayake
University of Groningen
Groningen, The Netherlands

Josef Urban
Czech Technical University in Prague
Prague, Czech Republic

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-031-43512-6 ISBN 978-3-031-43513-3 (eBook)
https://doi.org/10.1007/978-3-031-43513-3

LNCS Sublibrary: SL7 – Artificial Intelligence

© The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://orcid.org/0000-0002-7940-9065
https://orcid.org/0000-0002-1384-1613
https://doi.org/10.1007/978-3-031-43513-3
http://creativecommons.org/licenses/by/4.0/

Preface

TABLEAUX, the International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, is a conference series that started in 1992 and has been
held every year since then. The series brings together researchers interested in all aspects
- theoretical foundations, implementation techniques, systems development and applica-
tions - of the mechanization of reasoning with tableaux and related methods. Since 1995,
proceedings of TABLEAUX have been published in Springer’s LNCS/LNAI series.

TABLEAUX 2023 was the 32nd edition of the conference series and it was an in-
person conference hosted by the Czech Technical University in Prague, Czech Republic,
September 18–21, 2023. It was co-located with the 14th International Symposium on
Frontiers of Combining Systems (FroCoS 2023).

The Program Committee received a total of 43 submissions, comprising 33 research
papers and 10 short papers. Each submission received on average three reviews in a
single-blind process and was evaluated during program committee discussions. Even-
tually 20 research papers and 5 short papers were accepted for presentation at the
conference.

This volume includes all the accepted research papers and short papers of
TABLEAUX 2023. These include papers on proof theory, with deductive mechanisms
ranging from tableaux, sequent calculi and extensions, and non-wellfounded proofs.
Their objects of inquiry encompass a range of modal logics, including in the non-normal,
intuitionistic, constructive and temporal settings, linear logic, MV-algebras, separation
logic, first-order logics and results on cut-elimination, termination and complexity of
proof search, term-forming operators and proof-theoretic semantics. Investigations also
delve into formalised proofs, automated theorem proving for classical and non-classical
logics, and their integration with machine learning and SMT solvers. In addition to
the main track, this year’s edition hosted a special track on Artificial Intelligence and
Theorem Proving (AITP), inviting papers combining machine learning and related AI
methods with standard TABLEAUX topics.

This volume also includes abstracts of invited talks presented at TABLEAUX 2023.
The five invited speakers, chosen by the Program Committee, were:

– Marta Bílková (Czech Academy of Sciences, Czechia) joint with FroCoS
– Chad E. Brown (Czech Technical University in Prague, Czechia) joint with FroCoS
– Valentin Goranko (Stockholm University, Sweden) joint with FroCoS
– Rosalie Iemhoff (Utrecht University, The Netherlands)
– Roman Kuznets (Technische Universität Wien, Austria)

The following papers were selected by the Program Committee for awards:

– Best Paper. Ian Shillito, Iris van der Giessen, Rajeev Gore and Rosalie Iemhoff. A new
calculus for intuitionistic Strong Löb logic: strong termination and cut-elimination,
formalised.

vi Preface

– Best Junior Researcher Paper. Bahareh Afshari, Lide Grotenhuis, Graham Leigh
and Lukas Zenger. Ill-founded Proof Systems For Intuitionistic Linear-time Temporal
Logic.

The two awards were presented at the conference.
We thank all the people who contributed to making TABLEAUX 2023 a success. We

thank the Programme Committee and all additional reviewers for the time, professional
effort and expertise they invested to deliver the high scientific standards of the conference
and these proceedings. We thank the local organizers for making this event happen. We
thank the invited speakers for their inspiring talks, and the Steering Committee for their
helpful advice. We thank all the authors for their excellent contributions. Special thanks
to Jens Otten who supported us with advice through all phases of the conference.

We would also like to thank Springer for sponsoring the conference and publishing
these proceedings, University of Innsbruck for providing the registration system, and
the Czech Institute of Informatics, Robotics, and Cybernetics (CIIRC-CTU) for hosting
and supporting the conference and its organization.

July 2023 Revantha Ramanayake
Josef Urban

Organization

Program Committee Chairs

Revantha Ramanayake University of Groningen, The Netherlands
Josef Urban Czech Technical University in Prague, Czechia

Steering Committee

Agata Ciabattoni Technische Universität Wien, Austria
Anupam Das University of Birmingham, UK
Cláudia Nalon University of Brasília, Brazil
Hans de Nivelle Nazarbayev University, Kazakhstan
Jens Otten University of Oslo, Norway
Dirk Pattinson Australian National University, Australia
Elaine Pimentel Federal University of Rio Grande do Norte, Brazil
Andrei Popescu University of Sheffield, UK

Program Committee

Bahareh Afshari University of Gothenburg, Sweden, and
University of Amsterdam, The Netherlands

Carlos Areces Universidad Nacional de Córdoba, Argentina
Peter Baumgartner Data61/CSIRO, Australia
Serenella Cerrito Université Paris-Saclay, Université d’Evry, France
Kaustuv Chaudhuri Inria, France
Anupam Das University of Birmingham, UK
Stéphane Demri CNRS, France
Clare Dixon University of Manchester, UK
Christian Fermüller Technische Universität Wien, Austria
Camillo Fiorentini Universitá degli Studi di Milano, Italy
Ulrich Furbach University of Koblenz, Germany
Didier Galmiche Université de Lorraine, France
Silvio Ghilardi Universitá degli Studi di Milano, Italy
Marianna Girlando University of Amsterdam, The Netherlands
Charles Grellois Université de Bordeaux, France
Andrzej Indrzejczak University of Łódź, Poland

viii Organization

Cezary Kaliszyk University of Innsbruck, Austria
Hidenori Kurokawa Kanazawa University, Japan
Stepan Kuznetsov Russian Academy of Sciences, Russia
Timo Lang University College London, UK
Stéphane Graham-Lengrand SRI International, USA
Sonia Marin University of Birmingham, UK
Neil Murray University at Albany, USA
Cláudia Nalon University of Brasília, Brazil
Sara Negri University of Genoa, Italy
Hans de Nivelle Nazarbayev University, Kazakhstan
Eugenio Orlandelli University of Bologna, Italy
Jens Otten University of Oslo, Norway
Alessandra Palmigiano Vrije Universiteit Amsterdam, The Netherlands
Dirk Pattinson Australian National University, Australia
Nicolas Peltier CNRS, France
Frank Pfenning Carnegie Mellon University, USA
Elaine Pimentel University College London, UK
Gian Luca Pozzato University of Turin, Italy
Michael Rawson Technische Universität Wien, Austria
Reuben Rowe Royal Holloway, University of London, UK
Katsuhiko Sano Hokkaido University, Japan
José Espírito Santo University of Minho, Portugal
Lutz Straßburger Inria, France
Thomas Studer University of Bern, Switzerland
Yoni Zohar Bar-Ilan University, Israel
Zsolt Zombori Alfréd Rényi Institute of Mathematics, Hungary

Local Organizers

Karel Chvalovský Czech Technical University in Prague, Czechia
Jan Jakubův Czech Technical University in Prague, Czechia
Cezary Kaliszyk University of Innsbruck, Austria
Martin Suda Czech Technical University in Prague, Czechia
Josef Urban Czech Technical University in Prague, Czechia

Organization ix

Additional Reviewers

Stefano Aguzzoli
Martín Diéguez
Andrea De Domenico
Mauro Ferrari
Guido Fiorino
Pietro Galliani
Anton Gnatenko
Giuseppe Greco
Sean Holden
Etienne Lozes

Tim Lyon
Sergei Odintsov
Edi Pavlovic
Florian Rabe
Atefeh Rohani
Tor Sandqvist
Apostolos Tzimoulis
Dominik Wehr
Junhua Yu
Lukas Zenger

Abstracts of Invited Talks

Epistemic Logics of Structured Intensional Groups:
Agents - Groups - Names - Types

Marta Bílková

Czech Academy of Sciences, Czechia

In the overwhelming majority of contributions to multi-agent epistemic, doxastic, and
coalition logic, a group is reduced to its extension, i.e., the set of its members. This
has a counter-intuitive consequence that groups change identity when their membership
changes, and rules out uncertainty regarding who is a member of a given group. Addi-
tionally, this idealization does not reflect the structure of groups, or the structured way in
which collective epistemic attitudes emerge, in the intended application of logical mod-
els. We will outline an abstract framework in which we can lift this idealisation, namely
replacing agent or group labels of epistemic modalities with names, or providing them
with an algebraic structure relevant to types of collective epistemic attitudes in question.
The resulting formalisms are essentially two-sorted, combining the language of labels
of modalities and the language of epistemic statements. A fully abstract account of
such epistemic logics can be given, linking two-sorted algebras (involving propositions
and group labels/types of knowledge) with monotone neighborhood frame semantics,
in terms of an algebraic duality. This can further be applied to obtain, e.g., a definability
theorem or to design a multi-type proof theory for the basic logic. We further discuss
several particular examples of algebraic signatures giving rise to interesting and useful
variants of group knowledge.

First-Order Instantiation-Based Tableau

Chad E. Brown

Czech Technical University in Prague, Czechia

We present a tableau calculus for first-order logic with equality. The calculus is a fragment
of the higher-order calculus that is the theoretical basis for the award winning higher-
order automated theorem prover Satallax and its successor Lash. A key aspect of the
calculus is that universal quantifiers only need to be instantiated with terms that occur on
one side of a disequation on the current open branch. This makes the search instantiation-
based (as no metavariables are introduced and no unification is used). We will give an
overview of the completeness proof and how the completeness proof can be modified
to justify various modifications to the calculus. Both Satallax and Lash make use of the
SAT solver MiniSat to determine when the search is complete (i.e., when every branch
of the tableau is closed). Superposition provers like Vampire and E and SMT solvers
like CVC5 and Z3 outperform Lash on typical first-order TPTP problems (used in the
CASC competition). However, we will present a set of first-order clausal problems on
which Lash significantly outperforms other provers.

Combining Semantic Tableaux

Valentin Goranko

Stockholm University, Sweden

Semantic tableaux for combined logical systems are usually constructed ad hoc and the
question of developing more general methodologies for combining tableaux is yet to be
systematically explored.

In this talk I will address that question and will outline a methodological approach for
combining tableaux. I will discuss the questions of transfer of soundness, completeness,
and termination from the components to the combined tableaux, both in general and
in the context of some important special cases, including multi-agent epistemic and
temporal epistemic logics.

Proof Systems and Termination

Rosalie Iemhoff

Utrecht University, The Netherlands

In the study of logics, proof systems are a useful tool, and proof systems that are ter-
minating even more so. Termination comes in degrees, where the strongest form of
termination arguably requires that any backwards proof search in the proof system ter-
minates. Not every application in which a proof system is involved needs this strong
form of termination, but some applications seem to do so. In this talk I discuss the role
of termination in proof theory, and connect it in particular to counter model constructions
and interpolation.

Always Look on Both Sides of Proof:
Syntax and Semantics as the Yin and Yang of Structural

Proof Theory

Roman Kuznets

Technische Universität Wien, Austria

Proof theory provides a purely syntactic way of reasoning, without the need to resort
to semantics. This is especially true of internal proof calculi where proof objects are
interpreted as formulas, as opposed to external calculi that also exploit semantic elements.
On the other hand, tableau formalisms suggest that the distinction between pure and
“impure” syntax, between internal and external calculi is, perhaps, more superficial
than commonly believed. Indeed, tableaus are typically isomorphic to some internal
sequent-like calculus, despite themselves being described in largely semantic terms.

I argue that the choice between embracing and avoiding semantic elements is a
false one, that the two sides of proof formalisms mutually enrich rather than oppose
each other. As an illustration of such successful interplay, I will discuss how semantic
intuitions have been instrumental in developing several proof formalisms, including
those used for solving two open problems: (1) the Lyndon interpolation property for
Gödel-Dummett Logic and (2) decidability for the intuitionistic modal logic S4.

Supported by the Austrian Science Fund (FWF) project ByzDEL (P33600).

Contents

Tableau Calculi

Range-Restricted and Horn Interpolation through Clausal Tableaux 3
Christoph Wernhard

Non-Classical Logics in Satisfiability Modulo Theories . 24
Clemens Eisenhofer, Ruba Alassaf, Michael Rawson, and Laura Kovács

DefTab: A Tableaux System for Sceptical Consequence in Default Modal
Logics . 37

Carlos Areces, Valentin Cassano, Raul Fervari, and Guillaume Hoffmann

Non-distributive Description Logic . 49
Ineke van der Berg, Andrea De Domenico, Giuseppe Greco,
Krishna B. Manoorkar, Alessandra Palmigiano, and Mattia Panettiere

Sequent Calculi

A New Calculus for Intuitionistic Strong Löb Logic: Strong Termination
and Cut-Elimination, Formalised . 73

Ian Shillito, Iris van der Giessen, Rajeev Goré, and Rosalie Iemhoff

Some Analytic Systems of Rules . 94
Timo Lang

A Cut-Free, Sound and Complete Russellian Theory of Definite
Descriptions . 112

Andrzej Indrzejczak and Nils Kürbis

Towards Proof-Theoretic Formulation of the General Theory
of Term-Forming Operators . 131

Andrzej Indrzejczak

Theorem Proving

Lemmas: Generation, Selection, Application . 153
Michael Rawson, Christoph Wernhard, Zsolt Zombori,
and Wolfgang Bibel

xxiv Contents

Machine-Learned Premise Selection for Lean . 175
Bartosz Piotrowski, Ramon Fernández Mir, and Edward Ayers

gym-saturation: Gymnasium Environments for Saturation Provers
(System description) . 187

Boris Shminke

Non-wellfounded Proofs

A Linear Perspective on Cut-Elimination for Non-wellfounded Sequent
Calculi with Least and Greatest Fixed-Points . 203

Alexis Saurin

Ill-Founded Proof Systems for Intuitionistic Linear-Time Temporal Logic 223
Bahareh Afshari, Lide Grotenhuis, Graham E. Leigh, and Lukas Zenger

Proof Systems for the Modal µ-Calculus Obtained by Determinizing
Automata . 242

Maurice Dekker, Johannes Kloibhofer, Johannes Marti, and Yde Venema

Modal Logics

Extensions of K5: Proof Theory and Uniform Lyndon Interpolation 263
Iris van der Giessen, Raheleh Jalali, and Roman Kuznets

On Intuitionistic Diamonds (and Lack Thereof) . 283
Anupam Das and Sonia Marin

CoNP Complexity for Combinations of Non-normal Modal Logics 302
Tiziano Dalmonte and Andrea Mazzullo

Resolution Calculi for Non-normal Modal Logics . 322
Dirk Pattinson, Nicola Olivetti, and Cláudia Nalon

Canonicity of Proofs in Constructive Modal Logic . 342
Matteo Acclavio, Davide Catta, and Federico Olimpieri

Linear Logic and MV-Algebras

Proof-Theoretic Semantics for Intuitionistic Multiplicative Linear Logic 367
Alexander V. Gheorghiu, Tao Gu, and David J. Pym

The MaxSAT Problem in the Real-Valued MV-Algebra . 386
Zuzana Haniková, Felip Manyà, and Amanda Vidal

Contents xxv

Separation Logic

The Logic of Separation Logic: Models and Proofs . 407
Frank S. de Boer, Hans-Dieter A. Hiep, and Stijn de Gouw

Testing the Satisfiability of Formulas in Separation Logic with Permissions 427
Nicolas Peltier

First-Order Logics

Nested Sequents for Quantified Modal Logics . 449
Tim S. Lyon and Eugenio Orlandelli

A Naive Prover for First-Order Logic: A Minimal Example of Analytic
Completeness . 468

Asta Halkjær From and Jørgen Villadsen

Author Index . 481

Tableau Calculi

Range-Restricted and Horn Interpolation
through Clausal Tableaux

Christoph Wernhard(B)

University of Potsdam, Potsdam, Germany

info@christophwernhard.com

Abstract. We show how variations of range-restriction and also the
Horn property can be passed from inputs to outputs of Craig interpo-
lation in first-order logic. The proof system is clausal tableaux, which
stems from first-order ATP. Our results are induced by a restriction of
the clausal tableau structure, which can be achieved in general by a proof
transformation, also if the source proof is by resolution/paramodulation.
Primarily addressed applications are query synthesis and reformulation
with interpolation. Our methodical approach combines operations on
proof structures with the immediate perspective of feasible implementa-
tion through incorporating highly optimized first-order provers.

1 Introduction

We show how variations of range-restriction and also the Horn property can be
passed from inputs to outputs of Craig interpolation in first-order logic. The
primarily envisaged application field is synthesis and reformulation of queries
with interpolation [5,39,56]. Basically, the sought target query R is understood
there as the right side of a definition of a given query Q within a given background
knowledge base K, i.e., it holds that K |= (Q ↔ R), where the vocabulary of R
is in a given set of permitted target symbols. In first-order logic, the formulas R
can be characterized as the Craig interpolants of K ∧ Q and ¬K ′ ∨ Q′, where
K,Q are copies of K ′, Q′ with the symbols not allowed in R replaced by fresh
symbols [14]. Formulas R exist if and only if the entailment K ∧ Q |= ¬K ′ ∨ Q′

holds. They can be constructed as Craig interpolants from given proofs of the
entailment in a suitable calculus.

In databases and knowledge representation, syntactic fragments of first-order
logic ensure desirable properties, for example domain independence. Typically,
for given K and Q in some such fragment, also R must be in some specific
fragment to be usable as a query or as a knowledge base component. Our work
addresses this by showing for certain such fragments how membership is passed
on to interpolants and thus to the constructed right sides of definitions. The

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– Project-ID 457292495. The work was supported by the North-German Supercomput-
ing Alliance (HLRN).

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 3–23, 2023.
https://doi.org/10.1007/978-3-031-43513-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_1&domain=pdf
http://orcid.org/0000-0002-0438-8829
https://doi.org/10.1007/978-3-031-43513-3_1

4 C. Wernhard

fragment in focus here is a variant of range-restriction from [59], known as a
rather general syntactic condition to ensure domain independence [1, p. 97]. It
permits conversion into a shape suitable for “evaluation” by binding free and
quantified variables successively to the members of given predicate extensions.
Correspondingly, if the vocabulary is relational, a range-restricted formula can
be translated into a relational algebra expression. First-order representations of
widely-used classes of integrity constraints, such as tuple-generating dependen-
cies, are sentences that are range-restricted in the considered sense.

As proof system we use clausal tableaux [26,29–31,33], devised in the 1990s
to take account of automated first-order provers that may be viewed as enu-
merating tree-shaped proof structures, labeled with instances of input clauses.1

Such systems include the Prolog Technology Theorem Prover [53], SETHEO [32],
leanCoP [42,43] and CMProver [16,45,60,61]. As shown in [62], a given closed
clausal tableau is quite well-suited as a proof structure to extract a Craig inter-
polant. Via the translation of a resolution deduction tree [12] to a clausal tableau
in cut normal form [31,62] this transfers also to interpolation from a given reso-
lution/paramodulation proof.

Since the considered notion of range-restriction is based on prenexing and
properties of both a CNF and a DNF representation of the formula, it fits well
with the common first-order ATP setting involving Skolemization and clausifica-
tion and the ATP-oriented interpolation on the basis of clausal tableaux, where
in a first stage the propositional structure of the interpolant is constructed and
in a second stage the quantifier prefix.

Our strengthenings of Craig interpolation are induced by a specific restriction
of the clausal tableau structure, which we call hyper, since it relates to the proof
structure restrictions of hyperresolution [46] and hypertableaux [2]. However, it
is considered here for tree structures with rigid variables. A proof transformation
that converts an arbitrary closed clausal tableau to one with the hyper property
shows that the restriction is w.l.o.g. and, moreover, allows the prover unham-
pered search for the closed clausal tableaux or resolution/paramodulation proof
underlying interpolation.

Structure of the Paper. Section 2 summarizes preliminaries, in particular inter-
polation with clausal tableaux [62]. Our main result on strengthenings of Craig
interpolation for range-restricted formulas is developed in Sect. 3. Section 4 dis-
cusses Craig interpolation from a Horn formula, also combined with range-
restriction. The proof transformation underlying these results is introduced in
Sect. 5. We conclude in Sect. 6 with discussing related work, open issues and
perspectives.

1 Alternate accounts and views are provided by model elimination [34] and the con-
nection method [7,8].

Range-Restricted Interpolation through Clausal Tableaux 5

Proofs of nontrivial claims that are not proven in the body of the paper
are supplemented in the preprint version [63]. An implementation with the PIE
environment [60,61]2 is in progress.

2 Notation and Preliminaries

2.1 Notation

We consider formulas of first-order logic. An NNF formula is a quantifier-free
formula built up from literals (atoms or negated atoms), truth-value constants
�,⊥, conjunction and disjunction. A CNF formula, also called clausal formula,
is an NNF formula that is a conjunction of disjunctions (clauses) of literals.
A DNF formula is an NNF formula that is a disjunction of conjunctions (con-
junctive clauses) of literals. The complement of a literal L is denoted by L. An
occurrence of a subformula in a formula has positive (negative) polarity, depend-
ing on whether it is in the scope of an even (odd) number of possibly implicit
occurrences of negation. Let F be a formula. Var(F) is set of its free variables.
Var+(F) (Var−(F)) is the set of its free variables with an occurrence in an atom
with positive (negative) polarity. Fun(F) is the set of functions occurring in it,
including constants, regarded here throughout as 0-ary functions. Pred±(F) is
the set of pairs 〈p, pol〉, where p is a predicate and pol ∈ {+,−}, such that an
atom with predicate p occurs in F with the polarity indicated by pol . Voc±(F) is
Fun(F) ∪ Pred±(F). A sentence is a formula without free variables. An NNF is
ground if it has no variables. If S is a set of terms, we call its members S-terms.
The |= symbol expresses semantic entailment.

2.2 Clausal First-Order Tableaux

A clausal tableau (briefly tableau) for a clausal formula F is a finite ordered tree
whose nodes N with exception of the root are labeled with a literal lit(N), such
that for each node N the disjunction of the literals of all its children in their left-
to-right order, clause(N), is an instance of a clause in F . A branch of a tableau
is closed iff it contains nodes with complementary literals. A node is closed iff
all branches through it are closed. A tableau is closed iff its root is closed. A
node is closing iff it has an ancestor with complementary literal. With a closing
node N , a particular such ancestor is associated as target of N , written tgt(N).
A tableau is regular iff no node has an ancestor with the same literal and is
leaf-closing iff all closing nodes are leaves. A closed tableau that is leaf-closing is
called leaf-closed. Tableau simplification can convert any tableau to a regular and
leaf-closing tableau for the same clausal formula, closed iff the original tableau is
so. Regularity is achieved by repeating the following operation [31, Sect. 2.1.3]:
Select a node N with an ancestor that has the same literal, remove the edges
originating in the parent of N and replace them with the edges originating in
N . The leaf-closing property is achieved by repeatedly selecting an inner node
2 http://cs.christophwernhard.com/pie.

http://cs.christophwernhard.com/pie

6 C. Wernhard

N that is closing and removing the edges originating in N . All occurrences of
variables in (the literal labels of) a tableau are free and their scope spans the
whole tableau. That is, we consider free-variable tableaux [30, p. 158ff] with rigid
variables [26, p. 114]. A tableau without variables is called ground. The universal
closure of a clausal formula F is unsatisfiable iff there exists a closed clausal
tableau for F . This holds also if clausal tableau is restricted by the properties
ground, regular and leaf-closing in arbitrary combinations.

2.3 Interpolation with Clausal Tableaux

Craig’s interpolation theorem [13,15] along with Lyndon’s observation on the
preservation of predicate polarities [35] ensures for first-order logic the existence
of Craig-Lyndon interpolants, defined as follows. Let F,G be formulas such that
F |= G. A Craig-Lyndon interpolant of F and G is a formula H such that
(1) F |= H and H |= G. (2) Voc±(H) ⊆ Voc±(F) ∩ Voc±(G). (3) Var(H) ⊆
Var(F)∩Var(G). The perspective of validating an entailment F |= G by showing
unsatisfiability of F ∧ ¬G is reflected in the notion of reverse Craig-Lyndon
interpolant of F and G, defined as Craig-Lyndon interpolant of F and ¬G.

Fig. 1. A two-sided clausal tableau.

Following [62], our interpolant
construction is based on a gener-
alization of clausal tableaux where
nodes have an additional side label
that is shared by siblings and indi-
cates whether the tableau clause is
an instance of an input clause derived
from the formula F or of the formula
G of the statement F ∧G |= ⊥ under-
lying the reverse interpolant. Thus, a
two-sided clausal tableau for clausal
formulas F and G is a tableau for
F ∧ G whose nodes N with excep-
tion of the root are labeled addition-
ally with a side side(N) ∈ {F,G}, such
that (1) if N and N ′ are siblings, then
side(N) = side(N ′); (2) if N has a
child N ′ with side(N ′) = F, then clause(N) is an instance of a clause in F , and
if N has a child N ′ with side(N ′) = G, then clause(N) is an instance of a clause
in G. We also refer to the side of the children of a node N as side of clause(N).
For side ∈ {F,G} define pathside(N) def=

∧
N ′∈Path and side(N ′)=side lit(N ′), where

Path is the union of the set of the ancestors of N and {N}.
Let N be a node of a leaf-closed two-sided clausal tableau. The value of

ipol(N) is an NNF formula, defined inductively as specified with the tables below,
the left for the base case where N is a leaf, the right for the case where N is an
inner node with children N1, . . . , Nn.

Range-Restricted Interpolation through Clausal Tableaux 7

side(N) side(tgt(N)) ipol(N)

F F ⊥
F G lit(N)

G F lit(N)

G G �

side(N1) ipol(N)

F
∨n

i=1 ipol(Ni)

G
∧n

i=1 ipol(Ni)

Example 1. Figure 1 shows a two-sided tableau for F = p(a) ∧ (¬p(a) ∨ q(a))
and G = (¬q(a)∨r(a))∧¬r(a). Side G is indicated by gray background. For each
node the value of ipol, after truth-value simplification, is annotated in brackets.
The clauses of the tableau are ¬r(a) and ¬q(a) ∨ r(a), which have side G, and
¬p(a) ∨ q(a) and p(a), which have side F. If N is the node shown bottom left,
labeled with p(a), then pathF(N) = ¬p(a) ∧ p(a) and pathG(N) = ¬r(a) ∧ ¬q(a).

If N0 is the root of a two-sided tableaux for clausal ground formulas F
and G, then ipol(N0) is a Craig-Lyndon interpolant of F and ¬G.3 The CTIF
(Clausal Tableau Interpolation for First-Order Formulas) procedure (Fig. 2) [62]
extends this to a two-stage [9,24] (inductive construction and lifting) interpo-
lation method for full first-order logic. It is complete (yields a Craig-Lyndon
interpolant for all first order formulas F and G such that F |= G) under the
assumption that the method for tableau computation in Step 3 is complete
(yields a closed tableau for all unsatisfiable clausal formulas). Some steps leave
room for interpolation-specific heuristics: In step 4 the choice of the terms used
for grounding; in step 5 the choice of the side assigned to clauses that are an
instance of both a clause in F ′ and a clause in G′; and in step 7 the quantifier
prefix, which is constrained just by a partial order.

Example 2. Let F def= ∀x p(x) ∧ ∀x (¬p(x) ∨ q(x)) and let G def= ∀x (¬q(x) ∨
r(x)) → r(a). Clausifying F and ¬G then yields F ′ = p(x) ∧ ¬p(x) ∨ q(x) and
G′ = ¬q(x)∨ r(x)∧¬r(a). The tableau from Fig. 1 is a leaf-closed ground tableau
for F ′ and G′ and we obtain q(a) as Hgrd. Lifting for F = {} and G = {a} yields
the interpolant H = ∀v1 q(v1).

Example 3. Let F def= ∀x∀y p(x, f(x), y) and let G def= ∃xp(a, x, g(x)). Clausify-
ing yields F ′ = p(x, f(x), y) and G′ = ¬p(a, z, g(z)). We obtain p(a, f(a), g(f(a)))
as Hgrd. Lifting is for F = {f} and G = {a, g} with t1 = a, t2 = f(a) and
t3 = g(f(a)). It yields H = ∀v1∃v2∀v3 p(v1, v2, v3).

3 Interpolation and Range-Restriction

We now develop our main result on strengthenings of Craig interpolation for
range-restricted formulas.

3 So far, the interpolation method is a variation of well-known methods for sequent
systems [52,55] and analytic tableaux [20] when restricted to propositional formulas.

8 C. Wernhard

3.1 CNF and DNF with Some Assumed Syntactic Properties

Following [59] we will consider a notion of range-restriction defined in terms of
properties of two prenex formulas that are equivalent to the original formula,
have both the same quantifier prefix but matrices in CNF and DNF, respectively.

Fig. 2. The CTIF Procedure for Craig-Lyndon Interpolation [62].

Range-Restricted Interpolation through Clausal Tableaux 9

Although not syntactically unique, we refer to them functionally as cnf(F) and
dnf(F) since we only rely on specific – easy to achieve – syntactic properties that
are stated in the following Proposition 4–6.

Proposition 4. For all formulas F it holds that Var(cnf(F)) ⊆ Var(F);
Voc±(cnf(F)) ⊆ Voc±(F); Var(dnf(F)) ⊆ Var(F); Voc±(dnf(F)) ⊆ Voc±(F).

For prenex formulas F with an NNF matrix let dual(F) be the formula obtained
from F by switching quantifiers ∀ and ∃, connectives ∧ and ∨, truth-value con-
stants � and ⊥, and literals with their complement.

Proposition 5. For all formulas F it holds that cnf(F) = dual(dnf(¬F));
dnf(F) = dual(cnf(¬F)); cnf(¬F) = dual(dnf(F)); dnf(¬F) = dual(cnf(F)).

Proposition 6. Let F1, F2, . . . , Fn be NNF formulas. Then (i) Each clause in
cnf(

∧n
i=1 Fi) is in some cnf(Fj). (ii) Each conjunctive clause in dnf(

∨n
i=1 Fi)

is in some dnf(Fj). (iii) Formulas Fj that are literals are in each clause in
cnf(

∨n
i=1 Fi). (iv) Formulas Fj that are literals are in each conjunctive clause

in dnf(
∧n

i=1 Fi). (v) If S is a set of variables such that for all i ∈ {1, . . . , n} and
clauses C in cnf(Fi) it holds that Var(C) ∩ S ⊆ Var−(C), then for all clauses C
in cnf(

∨n
i=1 Fi) it holds that Var(C)∩S ⊆ Var−(C). (vi) If S is a set of variables

such that for all i ∈ {1, . . . , n} and conjunctive clauses D in dnf(Fi) it holds that
Var(D) ∩ S ⊆ Var+(D), then for all conjunctive clauses D in dnf(

∧n
i=1 Fi) it

holds that Var(D) ∩ S ⊆ Var+(D).

3.2 Used Notions of Range-Restriction

The following definition renders the characteristics of the range-restricted for-
mulas as considered by Van Gelder and Topor in [59, Theorem 7.2] (except for
the special consideration of equality in [59]).

Definition 7. A formula F with free variables X is called VGT-range-restricted
if cnf(F) = QMC and dnf(F) = QMD, where Q is a quantifier prefix (the same
in both formulas) upon universally quantified variables U and existentially quan-
tified variables E (in arbitrary order), and MC, MD are quantifier-free formulas
in CNF and DNF, respectively, such that

1. For all clauses C in MC it holds that Var(C) ∩ U ⊆ Var−(C).
2. For all conjunctive clauses D in MD it holds that Var(D) ∩ E ⊆ Var+(D).
3. For all conjunctive clauses D in MD it holds that X ⊆ Var+(D).

For VGT-range-restricted formulas it is shown in [59] that these can be translated
via two intermediate formula classes to a relational algebra expression. Related
earlier results include [17,18,40,41]. The constraint on universal variables is also
useful on its own as a weaker variation of range-restriction, defined as follows.

Definition 8. A formula F is called U-range-restricted if cnf(F) = QMC where
Q is a quantifier prefix upon of the universally quantified variables U (there may
also be existentially quantified variables in Q) and MC is a quantifier-free formula
in CNF such that for all clauses C in MC it holds that Var(C) ∩ U ⊆ Var−(C).

10 C. Wernhard

For formulas without free variables, U-range-restriction and VGT-range-restric-
tion are related as follows.

Proposition 9. Let F be a sentence. Then (i) F is VGT-range-restricted iff
F and ¬F are both U-range-restricted. (ii) If F is universal (i.e., in prenex
form with only universal quantifiers), then F is VGT-range-restricted iff F is U-
range-restricted. (iii) If F is existential (i.e., in prenex form with only existential
quantifiers), then F is VGT-range-restricted iff ¬F is U-range-restricted.

U-range-restriction covers well-known restrictions of knowledge bases and
inputs of bottom-up calculi for first-order logic and fragments of it that are nat-
urally represented by clausal formulas [3]. First-order representations of tuple-
generating dependencies (TGDs) are VGT-range-restricted sentences: conjunc-
tions of sentences of the form ∀XY (A(XY) → ∃Z B(YZ)), where A is a possibly
empty conjunction of relational atoms, B is a nonempty conjunction of relational
atoms and the free variables of A and B are exactly those in the sequences XY
and YZ, respectively. Also certain generalizations, e.g., to disjunctive TGDs,
where B is built up from atoms, ∧ and ∨, are VGT-range-restricted.

3.3 Results on Range-Restricted Interpolation

The following theorem shows three variations for obtaining range-restricted inter-
polants from range-restricted inputs.

Theorem 10 (Interpolation and Range-Restriction). Let F and G be
formulas such that F |= G.

(i) If F is U-range-restricted, then there exists a U-range-restricted Craig-
Lyndon interpolant H of F and G. Moreover, H can be effectively con-
structed from a clausal tableau proof of F |= G.

(ii) If F and G are sentences such that F and ¬G are U-range-restricted, then
there exists a VGT-range-restricted Craig-Lyndon interpolant H of F and
G. Moreover, H can be effectively constructed from a clausal tableau proof
of F |= G.

(iii) If F and ¬G are U-range-restricted, Var(F) = Var(G) = X , and (1) no
clause in cnf(F) has only negative literals; (2) for all clauses C in cnf(¬G)
with only negative literals it holds that X ⊆ Var−(C); (3) for all clauses C
in cnf(¬G) it holds that Var(C) ∩ X ⊆ Var−(C), then there exists a VGT-
range-restricted Craig-Lyndon interpolant H of F and G. Moreover, H can
be effectively constructed from a clausal tableau proof of F |= G.

Observe that Theorem 10.i requires range-restriction only for F , the first of
the two interpolation arguments. Theorem 10.iii aims at applications for query
reformulation that in a basic form are expressed as interpolation task for input
formulas F = K ∧ Q(X) and G = ¬K ′ ∨ Q′(X). Here K expresses background
knowledge and constraints as a U-range-restricted sentence and Q(X) represents
a query to be reformulated, with free variables X . Formulas K ′ and Q′ are copies

Range-Restricted Interpolation through Clausal Tableaux 11

of K and Q, respectively, where predicates not allowed in the interpolant are
replaced by primed versions. If the query Q is Boolean, i.e., X is empty, and
Q is VGT-range-restricted, then Theorem 10.ii already suffices to justify the
construction of a VGT-range-restricted interpolant. If X is not empty, the fine-
print preconditions of Theorem 10.iii come into play. Precondition (1) requires
that cnf(K) does not have a clause with only negative literals, which is satisfied
if K represents TGDs. Also cnf(Q) is not allowed to have a clause with only
negative literals. By precondition (2) all the free variables X must occur in all
those clauses of cnf(¬Q) that only have negative literals, which follows if Q meets
condition (3.) of the VGT-range-restriction (Definition 7). By precondition (3)
for all clauses C in cnf(¬Q) it must hold that Var(C)∩X ⊆ Var−(C). A sufficient
condition for Q to meet all these preconditions is that dnf(Q) has a purely
existential quantifier prefix and a matrix with only positive literals where each
query variable, i.e., member of X , occurs in each conjunctive clause.

3.4 Proving Range-Restricted Interpolation – The Hyper Property

We will prove Theorem 10 by showing how the claimed interpolants can be
obtained with CTIF. As a preparatory step we match items from the specification
of CTIF (Fig. 2) with the constraints of range-restriction. The following notion
gathers intermediate formulas and sets of symbols of CTIF.

Definition 11. An interpolation context is a tuple 〈F,G, F ′, G′,F ,G, E ,U ,
C, V 〉, where F,G are formulas, F ′, G′ are clausal formulas, C is a set of con-
stants, F ,G are sets of functions, and E ,U ,V are sets of terms such that the
following holds. (i) F |= G. (ii) Let Fc and Gc be F and G after replacing each
free variable with a dedicated fresh constant. Let C be those constants that were
used there to replace a variable that occurs in both F and G. F ′ and G′ are the
matrices of cnf(Fc) and of cnf(¬Gc), after replacing existentially quantified vari-
ables with Skolem terms. (iii) F is the union of the set of the Skolem functions
introduced for existential quantifiers of cnf(Fc), the set of functions occurring
in Fc but not in Gc and, possibly, further functions freshly introduced in the
grounding step of CTIF. Analogously, G is the union of the set of the Skolem
functions introduced for cnf(¬Gc), the set of functions occurring in Gc but not
in Fc, and, possibly, further functions introduced in grounding. (iv) E and U are
the sets of all terms with outermost function symbol in F and G, respectively.
(v) V is E ∪ U ∪ C.

The following statements about an interpolation context are easy to infer.

Lemma 12. Let 〈F,G, F ′, G′,F ,G, E ,U , C, V 〉 be an interpolation context. Then
(i) No member of G occurs in F ′. (ii) No member of F occurs in G′. (iii) If F is
U-range-restricted, then for all clauses C in F ′ it holds that if a variable occurs
in C in a position that is not within an E-term it occurs in C in a negative literal,
in a position that is not within an E-term. (iv) If ¬G is U-range-restricted, then
for all clauses C in G′ it holds that if a variable occurs in C in a position that
is not within an U-term, it occurs in C in a negative literal, in a position that is

12 C. Wernhard

not within an U-term. (v) If G satisfies condition (3) of Theorem 10.iii, then for
all clauses C in G′ it holds that any member of C that occurs in C in a position
that is not within an U-term occurs in C in a negative literal in a position that
is not within an U-term.

CTIF involves conversion of terms to variables at lifting (step 7) and at
replacing placeholder constants (step 8). We introduce a notation to identify
those terms that will be converted there to variables. It mimics the notation for
the set of free variables of a formula but applies to a set of terms, those with
occurrences that are “maximal” with respect to a given set S of terms, i.e., are
not within another term from S. For NNF formulas F define S-Max (F) as the
set of S-terms that occur in F in a position other than as subterm of another
S-term. Define S-Max+(F) (S-Max−(F), respectively) as the set of S-terms
that occur in F in a positive (negative, respectively) literal in a position other
than as subterm of another S-term. We can now conclude from Lemma 12 the
following properties of instances of clauses used for interpolant construction.

Lemma 13. Let 〈F,G, F ′, G′,F ,G, E ,U , C, V 〉 be an interpolation context. Then

(i) If F is U-range-restricted, then for all instances C of a clause in F ′ it holds
that V-Max (C) ∩ U ⊆ V-Max−(C).

(ii) If ¬G is U-range-restricted, then for all instances C of a clause in G′ it
holds that V-Max (C) ∩ E ⊆ V-Max−(C).

(iii) If condition (1) of Theorem 10.iii holds, then no instance C of a clause in
F ′ has only negative literals.

(iv) If condition (2) of Theorem 10.iii holds, then for all instances C of a clause
in G′ with only negative literals it holds that C ⊆ V-Max−(C).

(v) If ¬G is U-range-restricted and condition (3) of Theorem 10.iii holds, then
for all instances C of a clause in G′ it holds that V-Max (C) ∩ C ⊆
V-Max−(C).

The following proposition adapts Props. 6.v and 6.vi to S-Max .

Proposition 14. Let F1, F2, . . . , Fn be NNF formulas and let T be a set of
terms. Then (i) If S is a set of terms such that for all i ∈ {1, . . . , n} and
clauses C in cnf(Fi) it holds that T -Max (C) ∩ S ⊆ T -Max−(C), then for all
clauses C in cnf(

∨n
i=1 Fi) it holds that T -Max (C) ∩ S ⊆ T -Max−(C). (ii) If

S is a set of terms such that for all i ∈ {1, . . . , n} and conjunctive clauses D
in dnf(Fi) it holds that T -Max (D) ∩ S ⊆ T -Max+(D), then for all conjunctive
clauses D in dnf(

∧n
i=1 Fi) it holds that T -Max (D) ∩ S ⊆ T -Max+(D).

The key to obtain range-restricted interpolants from CTIF is that the tableau
must have a specific form, which we call hyper, as it resembles proofs by hyper-
resolution [46] and hypertableaux [2].

Definition 15. A clausal tableau is called hyper if the nodes labeled with a
negative literal are exactly the leaf nodes.

Range-Restricted Interpolation through Clausal Tableaux 13

While hyperresolution and related approaches, e.g., [2,3,11,36,46], consider
DAG-shaped proofs with non-rigid variables, aiming at interpolant extraction
we consider the hyper property for tree-shaped proofs with rigid variables. The
hyper requirement is w.l.o.g. because arbitrary closed clausal tableaux can be
converted to tableaux with the hyper property, as we will see in Sect. 5.

The proof of Theorem 10 is based on three properties that invariantly hold
for all nodes, or for all inner nodes, respectively, stated in the following lemma.

Lemma 16. Let 〈F,G, F ′, G′,F ,G, E ,U , C, V 〉 be an interpolation context and
assume a leaf-closed and hyper two-sided clausal ground tableau for F ′ and G′.

(i) If F is U-range-restricted, then for all nodes N the property INVC(N) defined
as follows holds: INVC(N) def= For all clauses C in cnf(ipol(N)) it holds that
V-Max (C) ∩ U ⊆ V-Max−(C) ∪ V-Max+(pathF(N)).

(ii) If ¬G is U-range-restricted, then for all nodes N the property INVD(N)
defined as follows holds: INVD(N) def= For all conjunctive clauses
D in dnf(ipol(N)) it holds that V-Max (D) ∩ E ⊆ V-Max+(D) ∪
V-Max+(pathG(N)).

(iii) If ¬G is U-range-restricted and conditions (1)–(3) Theorem 10.iii hold,
then for all inner nodes N the property INVX(N) defined as follows holds:
INVX(N) def= For all conjunctive clauses D in dnf(ipol(N)) it holds that
C ⊆ V-Max+(D) ∪ V-Max+(pathG(N)).

Each of Lemma 16.i, 16.ii and 16.iii can be proven independently by an
induction on the tableau structure, but for the same tableau, such that the
properties claimed by them can be combined. In proving these three sub-lemmas
it is sufficient to use their respective preconditions only to justify the application
of matching sub-lemmas of Lemma 13. That lemma might thus be seen as an
abstract interface that delivers everything that depends on these preconditions
and is relevant for Theorem 10.

We show here the proof of Lemma 16.i. Lemma 16.ii can be proven in full
analogy. The proof of Lemma 16.iii is deferred to [63, App. A]. In general, recall
that the tableau in Lemma 16 is a two-sided tableau for F ′ and G′ that is leaf-
closed and hyper. Hence literal labels of leaves are negative, while those of inner
nodes are positive. All tableau clauses are ground and with an associated side
in {F,G} such that a tableau clause with side F is an instance of a clause in F ′

and one with side G is an instance of a clause in G′.

Proof (Lemma 16.i). By induction on the tableau structure.
Base case where N is a leaf. If N and tgt(N) have the same side, then

ipol(N) is a truth value constant, hence V-Max (ipol(N)) = ∅, implying
INVC(N). If N has side F and tgt(N) has side G, then ipol(N) = lit(N),
which, because N is a leaf, is a negative literal. Thus V-Max (ipol(N)) =
V-Max−(ipol(N)), which implies INVC(N). If N has side G and tgt(N) has side
F, then ipol(N) = lit(tgt(N)), which, because N is a leaf, is a positive literal.
Thus V-Max (ipol(N)) ⊆ V-Max+(pathF(N)), implying INVC(N).

14 C. Wernhard

Induction Step. Let N1, . . . , Nn, where 1 ≤ n, be the children of N . Assume as
induction hypothesis that for i ∈ {1, . . . , n} it holds that INVC(Ni). Consider
the case where the side of the children is F. Then

(1) ipol(N) =
∨n

i=1 ipol(Ni).

Assume that INVC(N) does not hold. Then there exists a clause K in cnf(ipol(N))
and a term t such that (2) t ∈ U ; (3) t ∈ V-Max (K); (4) t /∈ V-Max−(K); (5)
t /∈ V-Max+(pathF(N)). To derive a contradiction, we first show that given (2),
(4) and (5) it holds that

(6) For all children N ′ of N : t /∈ V-Max+(pathF(N ′)).

Statement (6) can be proven as follows. Assume to the contrary that there is
a child N ′ of N such that t ∈ V-Max+(pathF(N ′)). By (5) it follows that
t ∈ V-Max (lit(N ′)) and lit(N ′) is positive. By Lemma 13.i and (2) there is
another child N ′′ of N such that lit(N ′′) is negative and t ∈ V-Max (lit(N ′′)).
Since the tableau is closed, it follows from (5) that tgt(N ′′) has side G, which
implies that ipol(N ′′) = lit(N ′′). Hence t ∈ V-Max (ipol(N ′′)). Since ipol(N ′′) is
a negative literal and a disjunct of ipol(N), it follows from (1) and Prop. 6.iii
that for all clauses C in cnf(ipol(N)) it holds that t ∈ V-Max−(C), contradicting
assumption (4). Hence (6) must hold.

From (6), (2) and the induction hypothesis it follows that for all chil-
dren N ′ of N and clauses C ′ in cnf(ipol(N ′)) it holds that V-Max (C ′) ∩ {t} ⊆
V-Max−(C ′). Hence, by (1) and Prop. 14.i it follows that for all clauses C
in cnf(ipol(N)) it holds that V-Max (C) ∩ {t} ⊆ V-Max−(C). This, however,
contradicts our assumption of the existence of a clause K in cnf(ipol(N)) that
satisfies (3) and (4). Hence INVC(N) must hold.

We conclude the proof of the induction step for INVC(N) by considering the
case where the side of the children of N is G. Then

(7) ipol(N) =
∧n

i=1 ipol(Ni).
(8) For all children N ′ of N : pathF(N) = pathF(N ′).

INVC(N) follows from the induction hypothesis, (8), (7) and Prop. 6.i. ��
The invariant properties of tableau nodes shown in Lemmas 16.i–16.iii apply

in particular to the tableau root. We now apply this to prove Theorem 10.

Proof (Theorem 10). Interpolants with the stated properties are obtained with
CTIF, assuming w.l.o.g. that the CNF computed in step 2 meets the requirement
of Sect. 3.1, and that the closed clausal tableau computed in step 3 is leaf-closed
and has the hyper property. That CTIF constructs a Craig-Lyndon interpolant
has been shown in [62]. It remains to show the further claimed properties of the
interpolant. Let 〈F,G, F ′, G′,F ,G, E ,U , C, V 〉 be the interpolation context for
the input formulas F and G and let N0 be the root of the tableau computed
in step 3. Since N0 is the root, pathF(N0) = pathG(N0) = � and thus the
expressions V-Max+(pathF(N0)) and V-Max+(pathG(N0)) in the specifications
of INVC(N0), INVD(N0) and INVX(N0) all denote the empty set. The claims made
in the particular sub-theorems can then be shown as follows.

Range-Restricted Interpolation through Clausal Tableaux 15

(10.i) By Lemma 16.i it follows that INVC(N0). Hence, for all clauses C in
cnf(ipol(N0)) it holds that V-Max (C) ∩ U ⊆ V-Max−(C). It follows that the
result of the interpolant lifting (step 7) of CTIF applied to ipol(N0) is U-range-
restricted. Placeholder constant replacement (step 8) does not alter this.

(10.ii) As for Theorem 10.i it follows that for all clauses C in cnf(ipol(N0))
it holds that V-Max (C) ∩ U ⊆ V-Max−(C). By Lemma 16.ii it follows that
INVD(N0). Hence, for all conjunctive clauses D in dnf(ipol(N0)) it holds that
V-Max (D) ∩ E ⊆ V-Max+(D). It follows that the result of the interpolant
lifting of CTIF applied to ipol(N0) is U-range-restricted. Since F and G have no
free variables, placeholder constant replacement has no effect.

(10.iii) As for Theorem 10.ii it follows that for all clauses C in cnf(ipol(N0))
it holds that V-Max (C)∩U ⊆ V-Max−(C) and for all conjunctive clauses D in
dnf(ipol(N0)) it holds that V-Max (D) ∩ E ⊆ V-Max+(D). By Lemma 16.iii it
follows that INVX(N0). Hence, for all conjunctive clauses D in dnf(ipol(N0)) it
holds that C ⊆ V-Max+(D). It follows that the result of the interpolant lifting
of CTIF applied to ipol(N0) followed by placeholder constant replacement, now
applied to C, is VGT-range-restricted. ��

4 Horn Interpolation

A Horn clause is a clause with at most one positive literal. A Horn formula
is built up from Horn clauses with the connectives ∧, ∃ and ∀. Horn formulas
are important in countless theoretical and practical respects. Our interpolation
method on the basis of clausal tableaux with the hyper property can be applied
to obtain a Horn interpolant under the precondition that the first argument
formula F of the interpolation problem is Horn. The following theorem makes
this precise. It can be proven by an induction on the structure of a clausal tableau
with the hyper property (see [63, App. B]).

Theorem 17 (Interpolation from a Horn Formula). Let F be a Horn
formula and let G be a formula such that F |= G. Then there exists a Craig-
Lyndon interpolant H of F and G that is a Horn formula. Moreover, H can be
effectively constructed from a clausal tableau proof of F |= G.

An apparently weaker property than Theorem 17 has been shown in [38, § 4]
with techniques from model theory: For two universal Horn formulas F and G
there exists a universal Horn formula that is like a Craig interpolant, except
that function symbols are not constrained. A universal Horn formula is there a
prenex formula with only universal quantifiers and a Horn matrix. For CTIF,
the corresponding strengthening of the interpolant to a universal formula can be
read-off from the specification of interpolant lifting (step 7 in Fig. 2).

The following corollary shows that Theorem 17 can be combined with The-
orem 10 to obtain interpolants that are both Horn and range-restricted.

Corollary 18 (Range-Restricted Horn Interpolants). Theorems 10.i,
10.ii and 10.iii can be strengthened: If F is a Horn formula, then there exists

16 C. Wernhard

a Craig-Lyndon interpolant H with the properties shown in the respective theo-
rem and the additional property that it is Horn. Moreover, H can be effectively
constructed from a clausal tableau proof of F |= G.

Proof. Can be shown by combining the proof of Theorem 10.i, 10.ii and 10.iii ,
respectively, with the proof of interpolation from a Horn sentence, Theorem 17.
The combined proofs are based on inductions on the same closed tableau with
the hyper property. ��

5 Obtaining Proofs with the Hyper Property

Our new interpolation theorems, Theorems 10 and 17, depend on the hyper
property of the underlying closed clausal tableaux from which interpolants are
extracted. We present a proof transformation that converts any closed clausal
tableau to one with the hyper property. The transformation can be applied to
a clausal tableau as obtained directly from a clausal tableaux prover. Moreover,
it can be also be indirectly applied to a resolution proof. To this end, the reso-
lution deduction tree [12] of the binary resolution proof is first translated to a
closed clausal ground tableau in cut normal form [31, Sect. 7.22]. There the inner
clauses are atomic cuts, tautologies of the form ¬p(t1, . . . , tn) ∨ p(t1, . . . , tn) or
p(t1, . . . , tn) ∨ ¬p(t1, . . . , tn), corresponding to literals upon which a (tree) res-
olution step has been performed. Clauses of nodes whose children are leaves
are instances of input clauses. Our hyper conversion can then be applied to the
tableau in cut normal form. It is easy to see that a regular leaf-closed tableau
with the hyper property can not have atomic cuts. Hence the conversion might
be viewed as an elimination method for these cuts.

We specify the hyper conversion in Fig. 3 as a procedure that destructively
manipulates a tableau. A fresh copy of an ordered tree T is there an ordered
tree T ′ with fresh nodes and edges, related to T through a bijection c such that
any node N of T has the same labels (literal label and side label) as node c(N)
of T ′ and such that the i-th edge originating in node N of T ends in node M if
and only if the i-th edge originating in node c(N) of T ′ ends in node c(M). The
procedure is performed as an iteration that in each round chooses an inner node
with negative literal label and then modifies the tableau. Hence, at termination
there is no inner node with negative literal, which means that the tableau is
hyper. Termination of the procedure can be shown with a measure that strictly
decreases in each round (Prop. 20 in [63, App. C]). Figures 4 and 5 show example
applications of the procedure.

Since the hyper conversion procedure copies parts of subtrees it is not a
polynomial operation.4 To get an idea of its practical feasibility, we experimented
with an unbiased set of proofs of miscellaneous problems. For this we took those
112 CASC-J11 [54] problems that could be proven with Prover9 [37] in 400 s per

4 A thorough complexity analysis should take calculus- or strategy-dependent proper-
ties of the input proofs into account. And possibly also the blow-up from resolution
to tree resolution underlying the cut normal form tableaux.

Range-Restricted Interpolation through Clausal Tableaux 17

Fig. 3. The hyper conversion proof transformation procedure.

Fig. 4. Hyper conversion of a closed clausal tableau in two rounds.

Fig. 5. Hyper conversion of a closed clausal tableau in cut normal form in two rounds.
For each round the result after procedure steps 1–4 is shown and then the result after
step 5, simplification, applied here to achieve regularity.

18 C. Wernhard

problem, including a basic proof conversion with Prover9’s tool Prooftrans.5 The
hyper conversion succeeded on 107 (or 96%) of these, given 400 s timeout per
proof, where the actual median of used time was only 0.01 s. It was applied to
a tableau in cut normal form that represents the proof tree of Prover9’s proof.
The two intermediate steps, translation of paramodulation to binary resolution
and expansion to cut normal form, succeeded in fractions of a second, except
for one case where the expansion took 121 s and two cases where it failed due
to memory exhaustion. The hyper conversion then failed in three further cases.
For all except two proofs the hyper conversion reduced the proof size, where the
overall median of the size ratio hyper-to-input was 0.39. See [63, App. D] for
details.

6 Conclusion

We conclude with discussing related work, open issues and perspectives. Our
interpolation method CTIF [62] is complete for first-order logic with func-
tion symbols. Vampire’s native interpolation [22,23], targeted at verification,
is like all local methods incomplete [28]. Princess [10,47] implements interpola-
tion with a sequent calculus that supports theories for verification and permits
uninterpreted predicates and functions. Suitable proofs for our approach can
currently be obtained from CMProver (clausal tableaux) and Prover9 (resolu-
tion/paramodulation). With optimized settings, Vampire [27] and E [49] as of
today only output proofs with gaps. This seems to improve [48] or might be
overcome by re-proving with Prover9 using lemmas from the more powerful sys-
tems.

So far we did not address special handling of equality in the context of
range-restriction, a topic on its own, e.g., [3,59]. We treat it as predicate, with
axioms for reflexivity, symmetry, transitivity and substitutivity. CTIF works
smoothly with these, respecting polarity constraints of equality in interpolants
[62, Sect. 10.4]. With exception of reflexivity these axioms are U-range-restricted.
We do not interfere with the provers’ equality handling and just translate in fin-
ished proofs paramodulation into binary resolution with substitutivity axioms.

The potential bottleneck of conversion to clausal form in CTIF may be reme-
died with structure-preserving (aka definitional) normal forms [19,44,50,58].

Our hyper property might be of interest for proof presentation and exchange,
since it gives the proof tree a constrained shape and in experiments often short-
ens it. Like hyperresolution and hypertableaux it can be generalized to take a
“semantics” into account [51] [12, Chap. 6] [26, Sect. 4.5]. To shorten interpolants,
it might be combined with proof reductions (e.g., [64]).

For query reformulation, interpolation on the basis of general first-order
ATP was so far hardly considered. Most methods are sequent calculi [6,56]
or analytic tableaux systems [5,21,25,57]. Experiments with ATP systems and
propositional inputs indicate that requirements are quite different from those

5 On a Linux notebook with 12th Gen IntelR© CoreTM i7-1260P CPU and 32 GB RAM.

Range-Restricted Interpolation through Clausal Tableaux 19

in verification [4]. An implemented system [25,57] uses analytic tableaux with
dedicated refinements for enumerating alternate proofs/interpolants correspond-
ing to query plans for heuristic choice. In [5] the focus is on interpolants that
are sentences respecting binding patterns, which, like range-restriction, ensures
database evaluability. Our interpolation theorems show fine-grained conditions
for passing variations of range-restriction and the Horn property on to inter-
polants. Matching these with the many formula classes considered in knowledge
representation and databases is an issue for future work. A further open topic
is adapting recent synthesis techniques for nested relations [6] to the clausal
tableaux proof system.

Methodically, we exemplified a way to approach operations on proof struc-
tures while taking efficient automated first-order provers into account. Feasible
implementations are brought within reach, for practical application and also for
validating abstract claims and conjectures with scrutiny. The prover is a black
box, given freedom on optimizations, strategy and even calculus. For interfacing,
the overall setting incorporates clausification and Skolemization. Requirements
on the proof structure do not hamper proof search, but are ensured by transfor-
mations applied to proofs returned by the efficient systems.

Acknowledgments. The author thanks Michael Benedikt for bringing the subtleties
of range-restriction in databases to attention, Cécilia Pradic for insights into subtleties
of proof theory, and anonymous reviewers for helpful suggestions to improve the pre-
sentation.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley,
Boston (1995)

2. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Alferes, J.J.,
Pereira, L.M., Orlowska, E. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61630-6 1

3. Baumgartner, P., Schmidt, R.A.: Blocking and other enhancements for bottom-up
model generation methods. J. Autom. Reasoning 64, 197–251 (2020). https://doi.
org/10.1007/11814771 11

4. Benedikt, M., Kostylev, E.V., Mogavero, F., Tsamoura, E.: Reformulating queries:
theory and practice. In: Sierra, C. (ed.) IJCAI 2017, pp. 837–843. ijcai.org (2017).
https://doi.org/10.24963/ijcai.2017/116

5. Benedikt, M., Leblay, J., ten Cate, B., Tsamoura, E.: Generating Plans from
Proofs: The Interpolation-based Approach to Query Reformulation. Morgan &
Claypool, San Rafael (2016). https://doi.org/10.1007/978-3-031-01856-5

6. Benedikt, M., Pradic, C., Wernhard, C.: Synthesizing nested relational queries from
implicit specifications. In: PODS ’23, pp. 33–45 (2023). https://doi.org/10.1145/
3584372.3588653

7. Bibel, W.: Automated Theorem Proving, 2nd edn. Vieweg, Braunschweig (1987).
https://doi.org/10.1007/978-3-322-90102-6. First edition 1982

8. Bibel, W., Otten, J.: From Schütte’s formal systems to modern automated deduc-
tion. In: The Legacy of Kurt Schütte, pp. 217–251. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-49424-7 13

https://doi.org/10.1007/3-540-61630-6_1
https://doi.org/10.1007/11814771_11
https://doi.org/10.1007/11814771_11
https://doi.org/10.24963/ijcai.2017/116
https://doi.org/10.1007/978-3-031-01856-5
https://doi.org/10.1145/3584372.3588653
https://doi.org/10.1145/3584372.3588653
https://doi.org/10.1007/978-3-322-90102-6
https://doi.org/10.1007/978-3-030-49424-7_13
https://doi.org/10.1007/978-3-030-49424-7_13

20 C. Wernhard

9. Bonacina, M.P., Johansson, M.: On interpolation in automated theorem proving. J.
Autom. Reasoning 54(1), 69–97 (2014). https://doi.org/10.1007/s10817-014-9314-
0

10. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: Beyond quantifier-free inter-
polation in extensions of Presburger arithmetic. In: Jhala, R., Schmidt, D. (eds.)
VMCAI 2011. LNCS, vol. 6538, pp. 88–102. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-18275-4 8

11. Bry, F., Yahya, A.H.: Positive unit hyperresolution tableaux and their application
to minimal model generation. J. Autom. Reasoning 25(1), 35–82 (2000). https://
doi.org/10.1023/A:1006291616338

12. Chang, C.L., Lee, R.C.T.: Symbolic Logic and Automated Theorem Proving. Aca-
demic Press, Cambridge (1973)

13. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.
Symb. Log. 22(3), 250–268 (1957). https://doi.org/10.2307/2963593

14. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Log. 22(3), 269–285 (1957). https://doi.org/10.2307/
2963594

15. Craig, W.: The road to two theorems of logic. Synthese 164(3), 333–339 (2008).
https://doi.org/10.1007/s11229-008-9353-3

16. Dahn, I., Wernhard, C.: First order proof problems extracted from an article in
the Mizar mathematical library. In: Bonacina, M.P., Furbach, U. (eds.) FTP’97,
pp. 58–62. RISC-Linz Report Series No. 97–50, Joh. Kepler Univ., Linz (1997).
https://www.logic.at/ftp97/papers/dahn.pdf

17. Demolombe, R.: Syntactical characterization of a subset of domain independent
formulas. Technical report, ONERA-CERT, Toulouse (1982)

18. Demolombe, R.: Syntactical characterization of a subset of domain independent
formulas. JACM 39, 71–94 (1992). https://doi.org/10.1145/147508.147520

19. Eder, E.: An implementation of a theorem prover based on the connection method.
In: Bibel, W., Petkoff, B. (eds.) AIMSA’84, pp. 121–128. North-Holland (1985)

20. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn.
Springer, Cham (1995). https://doi.org/10.1007/978-1-4612-2360-3

21. Franconi, E., Kerhet, V., Ngo, N.: Exact query reformulation over databases with
first-order and description logics ontologies. JAIR 48, 885–922 (2013). https://doi.
org/10.1613/jair.4058

22. Hoder, K., Holzer, A., Kovács, L., Voronkov, A.: Vinter: a Vampire-based tool for
interpolation. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp.
148–156. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35182-
2 11

23. Hoder, K., Kovács, L., Voronkov, A.: Interpolation and symbol elimination in Vam-
pire. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp.
188–195. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-
1 16

24. Huang, G.: Constructing Craig interpolation formulas. In: Du, D.-Z., Li, M. (eds.)
COCOON 1995. LNCS, vol. 959, pp. 181–190. Springer, Heidelberg (1995). https://
doi.org/10.1007/BFb0030832

25. Hudek, A., Toman, D., Weddell, G.: On enumerating query plans using analytic
tableau. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS (LNAI), vol. 9323, pp.
339–354. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24312-2 23

26. Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 1, chap. 3, pp. 101–178. Elsevier (2001).
https://doi.org/10.1016/b978-044450813-3/50005-9

https://doi.org/10.1007/s10817-014-9314-0
https://doi.org/10.1007/s10817-014-9314-0
https://doi.org/10.1007/978-3-642-18275-4_8
https://doi.org/10.1007/978-3-642-18275-4_8
https://doi.org/10.1023/A:1006291616338
https://doi.org/10.1023/A:1006291616338
https://doi.org/10.2307/2963593
https://doi.org/10.2307/2963594
https://doi.org/10.2307/2963594
https://doi.org/10.1007/s11229-008-9353-3
https://www.logic.at/ftp97/papers/dahn.pdf
https://doi.org/10.1145/147508.147520
https://doi.org/10.1007/978-1-4612-2360-3
https://doi.org/10.1613/jair.4058
https://doi.org/10.1613/jair.4058
https://doi.org/10.1007/978-3-642-35182-2_11
https://doi.org/10.1007/978-3-642-35182-2_11
https://doi.org/10.1007/978-3-642-14203-1_16
https://doi.org/10.1007/978-3-642-14203-1_16
https://doi.org/10.1007/BFb0030832
https://doi.org/10.1007/BFb0030832
https://doi.org/10.1007/978-3-319-24312-2_23
https://doi.org/10.1016/b978-044450813-3/50005-9

Range-Restricted Interpolation through Clausal Tableaux 21

27. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8 1

28. Kovács, L., Voronkov, A.: First-order interpolation and interpolating proof sys-
tems. In: Eiter, T., Sands, D. (eds.) LPAR-21. EPiC, vol. 46, pp. 49–64. EasyChair
(2017). https://doi.org/10.29007/1qb8

29. Letz, R.: Clausal tableaux. In: Bibel, W., Schmitt, P.H. (eds.) Automated Deduc-
tion - A Basis for Applications, vol. I, pp. 43–72. Kluwer Academic Publishers
(1998)

30. Letz, R.: First-order tableau methods. In: D’Agostino, A., Gabbay, D.M., Hähnle,
R., Posegga, J. (eds.) Handbook of Tableau Methods, pp. 125–196. Springer, Dor-
drecht (1999)

31. Letz, R.: Tableau and Connection Calculi. Structure, Complexity, Implementation.
Habilitationsschrift, TU München (1999). http://www2.tcs.ifi.lmu.de/∼letz/habil.
pdf. Accessed 19 July 2023

32. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SETHEO: a high-performance the-
orem prover. J. Autom. Reasoning 8(2), 183–212 (1992). https://doi.org/10.1007/
BF00244282

33. Letz, R., Stenz, G.: Model elimination and connection tableau procedures. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp.
2015–2114. Elsevier (2001)

34. Loveland, D.W.: Automated Theorem Proving: A Logical Basis. North-Holland,
Amsterdam (1978)

35. Lyndon, R.: An interpolation theorem in the predicate calculus. Pac. J. Math. 9,
129–142 (1959). https://doi.org/10.2140/pjm.1959.9.129

36. Manthey, R., Bry, F.: SATCHMO: A theorem prover implemented in Prolog. In:
Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 415–434. Springer,
Heidelberg (1988). https://doi.org/10.1007/BFb0012847

37. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/∼mccune/
prover9. Accessed 19 July 2023

38. McNulty, G.F.: Fragments of first order logic, I: universal Horn logic. J. Symb.
Log. 42(2), 221–237 (1977). https://doi.org/10.2307/2272123

39. Nash, A., Segoufin, L., Vianu, V.: Views and queries: determinacy and rewriting.
ACM Trans. Database Syst. 35(3), 1–41 (2010). https://doi.org/10.1145/1806907.
1806913

40. Nicolas, J.M.: Logics for improving integrity checking in relational data bases.
Technical report, ONERA-CERT, Toulouse (1979)

41. Nicolas, J.M.: Logics for improving integrity checking in relational data bases. Acta
Informatica 18(3), 227–253 (1982). https://doi.org/10.1007/BF00263192

42. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3),
159–182 (2010). https://doi.org/10.3233/AIC-2010-0464

43. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb.
Comput. 36(1–2), 139–161 (2003). https://doi.org/10.1016/S0747-7171(03)00037-
3

44. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symb. Comput. 2, 293–304 (1986). https://doi.org/10.1016/S0747-7171(86)80028-
1

45. Rawson, M., Wernhard, C., Zombori, Z., Bibel, W.: Lemmas: generation, selec-
tion, application. In: Ramanayake, R., Urban, J. (eds.) TABLEAUX 2023. LNCS
(LNAI), vol. 14278, pp. 153–174. Springer, Heidelberg (2023). https://doi.org/10.
1007/978-3-031-43513-3 9

https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.29007/1qb8
http://www2.tcs.ifi.lmu.de/~letz/habil.pdf
http://www2.tcs.ifi.lmu.de/~letz/habil.pdf
https://doi.org/10.1007/BF00244282
https://doi.org/10.1007/BF00244282
https://doi.org/10.2140/pjm.1959.9.129
https://doi.org/10.1007/BFb0012847
http://www.cs.unm.edu/~mccune/prover9
http://www.cs.unm.edu/~mccune/prover9
https://doi.org/10.2307/2272123
https://doi.org/10.1145/1806907.1806913
https://doi.org/10.1145/1806907.1806913
https://doi.org/10.1007/BF00263192
https://doi.org/10.3233/AIC-2010-0464
https://doi.org/10.1016/S0747-7171(03)00037-3
https://doi.org/10.1016/S0747-7171(03)00037-3
https://doi.org/10.1016/S0747-7171(86)80028-1
https://doi.org/10.1016/S0747-7171(86)80028-1
https://doi.org/10.1007/978-3-031-43513-3_9
https://doi.org/10.1007/978-3-031-43513-3_9

22 C. Wernhard

46. Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math.
1(3), 227–234 (1965)

47. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-89439-1 20

48. Schulz, S.: Credo Quia absurdum (?) – proof generation and challenges of
proof generation. In: PAMLTP/DG4D3 (2023), workshop presentation. https://
europroofnet.github.io/ pages/WG5/Prague23/pres/Schulz.pdf

49. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6 29

50. Scott, D.: A decision method for validity of sentences in two variables. J. Symb.
Log. 27(4), 477 (1962)

51. Slagle, J.R.: Automatic theorem proving with renamable and semantic resolution.
JACM 14(4), 687–697 (1967). https://doi.org/10.1145/321420.321428

52. Smullyan, R.M.: First-Order Logic. Springer, New York (1968). also republished
with corrections by Dover publications (1995)

53. Stickel, M.E.: A Prolog technology theorem prover: implementation by an extended
Prolog compiler. J. Autom. Reasoning 4(4), 353–380 (1988). https://doi.org/10.
1007/BF00297245

54. Sutcliffe, G., Desharnais, M.: The 11th IJCAR automated theorem proving sys-
tem competition - CASC-J11. AI Commun. (2023). https://doi.org/10.3233/AIC-
220244

55. Takeuti, G.: Proof Theory, second edn. North-Holland (1987)
56. Toman, D., Weddell, G.: Fundamentals of Physical Design and Query Compilation.

Morgan & Claypool, San Rafael (2011). https://doi.org/10.1007/978-3-031-01881-
7

57. Toman, D., Weddell, G.: An interpolation-based compiler and optimizer for rela-
tional queries (system design report). In: Eiter, T., Sands, D., Sutcliffe, G.,
Voronkov, A. (eds.) IWIL 2017 Workshop and LPAR-21 Short Presentations.
Kalpa, vol. 1. EasyChair (2017). https://doi.org/10.29007/53fk

58. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic,
vol. Part II, pp. 115–125. Steklov Mathematical Institute (1970)

59. Van Gelder, A., Topor, R.W.: Safety and translation of relational calculus queries.
ACM Trans. Database Syst. 16(2), 235–278 (1991). https://doi.org/10.1145/
114325.103712

60. Wernhard, C.: The PIE system for proving, interpolating and eliminating. In:
Fontaine, P., Schulz, S., Urban, J. (eds.) PAAR 2016. CEUR Workshop Proc.,
vol. 1635, pp. 125–138. CEUR-WS.org (2016). http://ceur-ws.org/Vol-1635/paper-
11.pdf

61. Wernhard, C.: Facets of the PIE environment for proving, interpolating and elimi-
nating on the basis of first-order logic. In: Hofstedt, P., Abreu, S., John, U., Kuchen,
H., Seipel, D. (eds.) INAP/WLP/WFLP -2019. LNCS (LNAI), vol. 12057, pp. 160–
177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46714-2 11

62. Wernhard, C.: Craig interpolation with clausal first-order tableaux. J. Autom.
Reasoning 65(5), 647–690 (2021). https://doi.org/10.1007/s10817-021-09590-3

63. Wernhard, C.: Range-restricted and Horn interpolation through clausal tableaux.
CoRR abs/2306.03572 (2023). https://doi.org/10.48550/arXiv.2306.03572

https://doi.org/10.1007/978-3-540-89439-1_20
https://doi.org/10.1007/978-3-540-89439-1_20
https://europroofnet.github.io/_pages/WG5/Prague23/pres/Schulz.pdf
https://europroofnet.github.io/_pages/WG5/Prague23/pres/Schulz.pdf
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1145/321420.321428
https://doi.org/10.1007/BF00297245
https://doi.org/10.1007/BF00297245
https://doi.org/10.3233/AIC-220244
https://doi.org/10.3233/AIC-220244
https://doi.org/10.1007/978-3-031-01881-7
https://doi.org/10.1007/978-3-031-01881-7
https://doi.org/10.29007/53fk
https://doi.org/10.1145/114325.103712
https://doi.org/10.1145/114325.103712
http://ceur-ws.org/Vol-1635/paper-11.pdf
http://ceur-ws.org/Vol-1635/paper-11.pdf
https://doi.org/10.1007/978-3-030-46714-2_11
https://doi.org/10.1007/s10817-021-09590-3
https://doi.org/10.48550/arXiv.2306.03572

Range-Restricted Interpolation through Clausal Tableaux 23

64. Wernhard, C., Bibel, W.: Learning from ffiLukasiewicz and Meredith: investiga-
tions into proof structures. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS
(LNAI), vol. 12699, pp. 58–75. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-79876-5 4

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-79876-5_4
https://doi.org/10.1007/978-3-030-79876-5_4
http://creativecommons.org/licenses/by/4.0/

Non-Classical Logics in Satisfiability
Modulo Theories

Clemens Eisenhofer1(B) , Ruba Alassaf2 , Michael Rawson1 ,
and Laura Kovács1

1 TU Wien, Vienna, Austria
{clemens.eisenhofer,michael.rawson,laura.kovacs}@tuwien.ac.at

2 University of Manchester, Manchester, UK
ruba.alassaf@manchester.ac.uk

Abstract. We show that tableau methods for satisfiability in non-
classical logics can be supported naturally in SMT solving via the frame-
work of user-propagators. By way of demonstration, we implement the
description logic ALC in the Z3 SMT solver and show that working with
user-propagators allows us to significantly outperform encodings to first-
order logic with relatively little effort. We promote user-propagators for
creating solvers for non-classical logics based on tableau calculi.

Keywords: SMT · Non-Classical Logics · User-Propagators ·
Tableaux

1 Introduction

Satisfiability modulo theory (SMT) solvers, e.g. [4,14,29], mostly implement
CDCL(T) [6,27] to combine propositional satisfiability (SAT) solving with
theory-specific decision procedures. Due to the modular nature of the under-
lying CDCL(T) algorithm, not only can SMT solvers reason in combinations of
theories, but it is even possible to add and control custom first-order theories by
attaching new decision procedures, as recently introduced in the user-propagator
framework [8]. The underlying logic in the SMT solving community is classical
first-order logic. When moving towards non-classical logics, such as modal or
description logics [2,9,21], tableau calculi provide common ground [13]. The
resulting proof procedures behave very differently to SMT solvers [16,22].

In this paper, we argue that it is time to join forces. We show that tableau
methods can be integrated naturally into SMT solving (Sect. 3). In so doing,
we promote user-propagators [8] for guiding non-classical reasoning within SMT
solving. We demonstrate our work within the Z3 SMT solver [29] and show that
this approach outperforms two standard Z3 implementations based on quan-
tification (Sect. 4). Finally, we discuss an alternative encoding for non-boolean
based logics capable of dealing with explicit non-containment (Sect. 5).

We thank Nikolaj Bjørner for discussions on this topic. We acknowledge funding from
the ERC Consolidator Grant ARTIST 101002685, the TU Wien SecInt Doctoral Col-
lege, and the FWF SFB project SpyCoDe F8504.

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 24–36, 2023.
https://doi.org/10.1007/978-3-031-43513-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_2&domain=pdf
http://orcid.org/0000-0003-0339-1580
http://orcid.org/0000-0002-0331-2451
http://orcid.org/0000-0001-7834-1567
http://orcid.org/0000-0002-8299-2714
https://doi.org/10.1007/978-3-031-43513-3_2

Non-Classical Logics in Satisfiability Modulo Theories 25

Related Work. SAT/SMT solving driven by instantiation rules from modal and
description logic tableaux have been investigated [1,20,33], as has porting classi-
cal tableau rules to SMT [10], as has intuitionistic logic [12,15]. Our work applies
user propagation as a framework for implementing non-classical logics, but also
for theories that have tableau rules, such as strings [26] or finite sets [3]. Met-
TeL 2 [37,38] can automatically synthesize solvers from tableau rules expressed
in a domain-specific input language: complex features that cannot be expressed
in the input language can be implemented by manually changing the output
program generated by the tool.

Another approach to non-classical logics translates non-classical input to
SAT/SMT [11,23], first-order or higher-order logic [18,19,31,32,35,36] via a
shallow embedding. After translation, a SAT/SMT solver or automatic theorem
provers (ATPs) can be used for reasoning. ATPs typically work poorly esspe-
cially on satisfiable instances from such translations [25,39,40]. Solvers do not
usually take into account meta-logical properties of the considered non-classical
logic. If at all, such properties are communicated to a solver via further lem-
mas or fine-tuning the solver’s configuration. Our approach allows us to directly
encode expert knowledge of the considered logic. Additionally, our approach
allows reasoning in multiple non-classical logics simultaneously and supports
theory reasoning.

2 Background and Challenges

Background. We assume familiarity with basics of classical first-order logic [34],
SMT solving [7] , and the description logic ALC [2]. To avoid confusion with
first-order quantifiers, we use modal syntax to write ALC formulas ϕ as

ϕ ::= � | A | ¬ϕ | ϕ1 ∧ ϕ2 | �rϕ

where A is a (theory1) atom and r a modality/role. The logical connectives ⇒,
∧, and ⊥ are defined as usual. The modal operator ♦r is defined as the dual of
�r. We assume a problem in ALC is given by a knowledge base 〈TBox,ABox〉.
Elements in TBox are of the form global(ϕ)2 and are intended to be true in all
worlds. Elements in ABox are of the form wi : ϕ, asserting “ϕ holds in world
wi”; or rk : (wi, wj), asserting “rk relates worlds wi and wj”. In case no ABox
is given, we assume the existence of an implicit world w0. The truth-value of a
formula ϕ under such a Kripke interpretation is given as in [2].

SMT Challenges for First-Order Translation of Description Logics. We motivate
our work by considering the ALC knowledge base

TBox = {global(♦r(A ∧ ♦r¬A))}. (1)

1 this is an addition to the classical definition of ALC.
2 we write the more usual form ϕ1 � ϕ2 as global(ϕ1 ⇒ ϕ2).

26 C. Eisenhofer et al.

Fig. 1. Abstract tableau calculus rule.

One may reason about this formula by (i) translating it into classical first-order
logic via the standard translation [9]; and (ii) using a decision procedure handling
uninterpreted functions and quantifiers to establish satisfiability of the translated
formula. In particular, step (i) translates (1) into the first-order formula

∀x(∃y(reachr(x, y) ∧ A(y) ∧ ∃z(reachr(y, z) ∧ ¬A(z)))) (2)

where reachr is an uninterpreted function symbol. Then, in step (ii) SMT solv-
ing over (2) instantiates the universally-quantified variable x with w0, using for
example model-based quantifier instantiation (MBQI) [17]. Skolemization intro-
duces two new constants w1 and w2, which results in the quantifier-free instance:

reachr(w0, w1) ∧ reachr(w1, w2) ∧ A(w1) ∧ ¬A(w2), (3)

from which the partial interpretation

reachr(x, y) : if (((x = w0 ∧ y = w1) ∨ (x = w1 ∧ y = w2))) then � else ∗ . (4)

can be deduced. The symbol ∗ is undetermined and represents an arbitrary
Boolean value. Assume that the SMT solver sets ∗ to ⊥ in order to complete the
partial model (4) for checking (2): As the solver cannot derive equalities among
the world constants w0, w1, w2, the solver has to check all three constants with
respect to the universal quantifier of (2). As w1 and w2 violate the universal
quantifier, further constants are generated by Skolemization, but (2) remains
violated and the sequence of MBQI steps repeat indefinitely. Choosing � for
∗ avoids such failure, but increases the burden of SMT solving, as the solver
must consider all potential relations among all constants (here, w0, w1 and w2)
and eliminate such relations stepwise again as they lead to conflicts. Randomly
choosing � or ⊥ for completing the partial model (4) of (2) is not a solution
either, as it combines the disadvantages of both approaches.

3 Tableau as a Decision Procedure in CDCL(T)

Addressing the above challenges, we advocate user-propagators for tailored SMT
solving, providing efficient implementations of custom tableau reasoners. We
propose using the lemma generation process of CDCL(T), explained below, to
simulate rule application of tableau calculi.

In a nutshell, the CDCL(T) infrastructure [6] introduces fresh Boolean vari-
ables to name theory atoms of an input formula; the resulting propositional

Non-Classical Logics in Satisfiability Modulo Theories 27

Fig. 2. Rules for the ALC Description Logic.

skeleton is then solved by an ordinary SAT solver. If a propositional model is
found, theory solvers are asked if the model is correct with respect to theory
atoms. These specialized procedures may introduce further “lemma” formulas
to the Boolean abstraction or report conflicts directly, forcing the SAT solver
to “correct” the Boolean interpretation. This is repeated until all theory solvers
agree on the Boolean assignment or the Boolean abstraction becomes unsatisfi-
able.

User-Propagators in CDCL(T) with Tableau Methods. Our solution
builds a custom reasoner using the user-propagator framework [8]. Algorithm 1
shows underlined parts relevant for the following discussion. The custom rea-
soner is implemented by providing the methods push, pop, fixed and final in
some programming language. The method abstr(f) is a method to be applied
a priori solving. All other methods are those of the SMT solver.

We can simulate a tableau calculus whose rules are of the abstract form
shown in Fig. 1. We use signed formulas of the form sign : ◦(ϕ̄), where sign
is a member of a fixed set, usually truth values, and ◦ is a logical operator
applied to operands/subformulas ϕ̄. Each Pi asserts that a signed formula is
(not) contained in a label L(w). Labels are sets of signed formulas with known
sign at some node w on the current branch. Rules may only add signed formulas
to labels and create new branches. We assume the input is satisfiable, in case no
more rule is applicable.

This means, we consider sound, confluent, and non-destructive tableaux with
signed formulas [34] and explicit labelled nodes [24], which are straightforward in

28 C. Eisenhofer et al.

Algorithm 1: Simple CDCL(T) Algorithm.
Methods that can be provided by a user-propagator are underlined.
1 Method CDCLT(f):
2 f ← abstr(f) � Sect. 3.2
3 Loop
4 if conflict(f) then
5 if backtrack(f) = failed then return UNSAT
6 foreach s ∈ T -solvers do s.pop() � Sect. 3.5

7 while can unit propagate(f) do assign(get up(f))
8 if contains unassigned(f) then
9 foreach s ∈ T -solvers do s.push() � Sect. 3.5

10 assign(guess variable(f))

11 else
12 foreach s ∈ T -solvers do s.final() � Sect. 3.4
13 if ¬new formulas propagated() then return SAT

14 Method assign(x, value):
15 foreach s ∈ T -solvers do
16 if is associated(s, x) ∧ is relevant(x) then
17 s.fixed(x, value) � Sect. 3.3

our framework. Many calculi [13], including those for propositional logics, first-
order logics, various modal/description logics, and several many-valued logics,
can naturally be expressed within Fig. 1. The main steps of our work towards
integrating tableau reasoning in SMT solving can be illustrated using a running
example in ALC. The tableaux rules for ALC in our notation are detailed in
Fig. 2.

Example 1 (Running Example). Consider the ALC knowledge base:

TBox = {global(Hum ⇒ (�p(Alive ⇒ age ≤ recordLifespan) ∧ ♦pHum))}
ABox = {eva : Hum ∨ ♦f¬Hum, par : (eva, paul)}

where Alive (Alive), Hum (Human), and age depend on the current world,
but recordLifespan does not; age and recordLifespan are of integral sort; p
(parent) and f (friend) denote roles; and eva and paul are named worlds.

3.1 SMT-LIB Encoding and Custom SMT Theory

To enable SMT-based tableau reasoning, we encode non-classical logic features
directly in an extension of the SMT-LIB input standard [5]. In particular, we
encode non-classical logic symbols with the help of uninterpreted function sym-
bols and sorts, yielding an SMT theory of non-classical logic.

Non-Classical Logics in Satisfiability Modulo Theories 29

Example 2 (ALC Knowledge Base in SMT-LIB). For ALC, we introduce the
uninterpreted Relation and World sorts and the following functions:

box : Relation × B �→ B dia : Relation × B �→ B

global : B �→ B world : ∅ �→ W

reachable : Relation × W × W �→ B

where B is the sort of Booleans and world represents the current world3. Func-
tions may have an extra “World” argument to denote their dependency on some
world. With these syntactic features on top of SMT-LIB, Example 1 is encoded
as

(declare-fun Hum (World) Bool) (declare-fun Alive (World) Bool)

(declare-fun age (World) Int) (declare-const recordLifespan Int)

(declare-const eva World) (declare-const paul World)

(declare-const p Relation) (declare-const f Relation)

(assert (global

(=> (Hum world) (and

(box p (=> (Alive world) (<= (age world) recordLifespan)))

(dia p (Hum world))))))

(assert (global (=> (= world eva) (or (Hum world) (dia f (Rob world))))))

(assert (reachable p eva paul))

3.2 Preprocessing (Abstr)

Next, we traverse the syntax tree of the parsed problem and introduce fresh
user-function symbols to abstract away subformulas we want to observe. All
instances of introduced user-functions are automatically associated with our
user-propagator and thus Boolean assignments to those instances might be
reported by the SMT core by calling the fixed method. We might add a node
parameter of an uninterpreted sort to user-functions to store additional infor-
mation, such as the current world in Kripke semantics. As we go, we build a
tree-shaped abstraction data structure for keeping track of abstracted subfor-
mulas and efficiently applying tableau rules. Only the root of the abstraction is
passed to the SMT solver. Furthermore, we apply (logic-specific) simplifications.

Example 3 (Preprocessing and Abstraction). Recall Example 1. We replace all
operators handled by tableau rules by fresh user-functions: here, for the occur-
rences of �rϕ, global(ϕ), and for theory atoms. World-dependent terms and some
operators, such as �, require a node argument denoting the world in which they
are evaluated. To ease instantiating multiple instances of the formulas, we use
an unbounded variable x as the node argument. We obtain the SMT abstrac-
tion of Example 1 given in Fig. 3. G denotes applications of the global-rule, Mr

applications of �r, and T arbitrary theory atoms. ABox elements are encoded
directly by instantiating the node arguments accordingly (e.g., ¬Mf

1 (eva)).

3 which will be eliminated during preprocessing.

30 C. Eisenhofer et al.

Fig. 3. Abstraction tree for Example 1. For simplicity, we rewrote �rA as ¬♦r¬A.

3.3 Populating Languages (Fixed)

Whenever the SAT core assigns a variable Vi(w) �→ value , we look up the
operator ◦ and its operands abstracted by Vi during preprocessing. We add
◦, together with the auxiliary symbol and its operands ϕ̄i, to the respective
label set4 such that L̂(w) := L̂(w) ∪ {(value : ◦, Vi, ϕ̄i)} As the user-propagator
reports only assignments to formulas that were previously abstracted away by
user-functions, we might also need to abstract away other formulas for which
we are not interested in adding additional rules, in order to be notified when
these elements are added to some labels. For example, if we must observe 0:
(ϕ1 ∧ ϕ2) ∈ L(w), we can replace ∧ by a user-function. Usually, the tableau is
closed (i.e. conflict) automatically if we have formulas of different sign. If the
calculus has more complicated closing conditions, they can be reported explicitly
by propagating a conflict.

Example 4 (Tracking Assignments to Arbitrary Subformulas). To keep track
of all relevant Boolean assignments to atoms, we replace all atoms by user-
functions, including complex theory atoms such as age(w) ≤ recordLifespan as
shown in Fig. 3. To preserve semantics, we add the definitions of the abstracted
atoms by propagation For example, within Example 1 we might eagerly propa-
gate

T1(w) = value � ((age(w) ≤ recordLifespan) = value),

as soon as T1(w) is assigned the Boolean value.

3.4 Rule Application (Final)

Whenever the solver found a Boolean assignment such that the propositional
abstraction of its extended SMT problem (Sect. 3.1) is satisfied, we apply logic-
specific tableau rules by iterating over the set L̂(w) for every node w until no
more tableau rules are applicable. A propagation claim is of the form J1, . . . , Jm �
C. An arbitrary number of them can be added by the user-propagator within
fixed and final, indicating that the SAT core needs to assign C �→ 1 justified
by the expressions J1, . . . , Jm; here, C may be an arbitrary Boolean expression.

4 L̂(w) are sets maintained by the user-propagator code to simulate L(w).

Non-Classical Logics in Satisfiability Modulo Theories 31

Consider a tableau rule R as in Fig. 1 and assume that R is applied because
{P ′

1, . . . , P
′
m} ⊆ {P1, . . . , Pn} are satisfied, obtaining

Just(P ′
1), . . . , Just(P ′

m) � C, (5)

where Just(P ′
i) is Ji. We give C as a formula in disjunctive normal form (DNF)

∨

1≤i≤n

∧

1≤j≤mi

(ϕi,j(wi,j) = signi,j) (6)

simulating application of the rule R. We note that by using relevancy prop-
agation [28] SMT solving may enjoy tableau-style branching, such that only
one disjunct of the above DNF is chosen and reported assigned; unnecessary
Boolean assignments are not reported to the user-propagator. We distinguish
between two types of P ′

i in (5): (i) those asserting elements are in the label,
where P ′

i is sign : ◦(ϕ̄) ∈ L(w); and (ii) those that assert the opposite, where
P ′

i is sign : ◦(ϕ̄) /∈ L(w).
Justifying (i) is straightforward, as there must be an auxiliary user-function

denoting that the respective element is contained in the label. We therefore have
sign : ◦(ϕ̄), V, ϕ̄ ∈ L̂(w) and define Just(P ′

i) to be the equality V = sign.
Case (ii) cannot be justified in general in our encoding because some assign-
ments might not have been reported due to relevancy propagation. However,
justifications for non-containment constraints may be omitted in the following
scenarios:

1. The expression C can be simplified to � with respect to the current SAT
assignment and hence Lemma (5) and its justifications are irrelevant. Consider
F (w) �→ 0 where F (w) is a user-function used to replace A ∧ B in some node
w (see ∧ rule in Fig. 2) and 0 : A ∈ L̂(w). Propagating F (w) � A(w) =
⊥ ∨ B(w) = ⊥ has no effect, as the SMT solver detects that the consequent
is already satisfied and ignores (5).

2. Applying R without satisfying the negative containment condition does not
affect soundness or completeness and we make sure that we do not apply R
infinitely often. Consider F (w) �→ 0 where F (w) replaces �A in some node w
(see � rule in Fig. 2). Applying this rule once or finitely often does not affect
soundness or completeness in ALC.

In either scenario, we do not justify that the respective conditions P ′
i are satisfied,

but only check P ′
i before application of R (e.g. checking if a world is blocked).

We hence set Just(P ′
i) to �.

Example 5 (Applying Rules). Recall Example 1. Consider 1: Mp
2 ∈ L̂(eva), 0:

Mp
3 ∈ L̂(eva) and 1: G ∈ L̂. SMT solving may propagate in final

Mp
3 (eva) = ⊥ � (¬Hum(mary)) = ⊥ ∧ reachp(eva,mary) = �

32 C. Eisenhofer et al.

by a 0: �-rule instance of Fig. 1, where mary is a fresh world. The next final
callback might then propagate (because of the 1: � and 1: global rules)

Mp
2 (eva) = � ∧ reachp(eva,mary) = �

� (Alive(mary) ⇒ T1(mary) = �
G1 = � ∧ reachp(eva,mary) = �

� (Hum(mary) ⇒ (Mp
2 (mary) ∧ ¬Mp

3 (mary))) = �.

3.5 Backtracking (Push+pop)

Backtracking in the CDCL core of SMT solving uses justifications provided for
propagation claims. Our SMT-based tableau reasoner has to reset (pop) its state
to a previously-saved state (push), by restoring the value of L̂(w) to the one it
had in the previous state. However, unlike tableau calculi, subformulas intro-
duced by rule application may persist after backtracking because of conflict
learning and similar techniques, which can result in the solver assigning these
atoms unnecessarily. These spurious assignments correspond to adding elements
to some label L(w) without a respective rule being applicable and hence, it
might happen that L̂(w) �= L(w). We can nonetheless apply rules resulting from
spurious assignments as if they were not spurious: mostly, the solver will either
justify the spurious elements anyway later or, in the case of a conflict, backtrack
and undo these assignments.

Example 6 (Spurious Assignments). Recall Example 1. Suppose paul has a par-
ent mary, generated by Mp

3 (paul) �→ 0 using the 0: �-rule. Further, assume mary
has a parent sam, generated by Mp

3 (mary) �→ 0. On conflict, the SMT solver
might backtrack to a state before assigning Mp

3 (paul) �→ 0. The tableau-based
theory solver removes reachp(sam) from L̂(mary), as well as reachp(mary) from
L̂(paul). However, the solver may not “forget” the existence of atoms Mp

3 (mary)
and Mp

3 (paul). It may therefore happen that Mp
3 (mary) is assigned later without

first generating mary via Mp
3 (paul) �→ 0. We ignore this spurious assignment, as

the solver may later again assign Mp
3 (paul) �→ 0, ex post facto justifying the exis-

tence of mary. If this justification is not given later and we encounter a conflict,
the solver backtracks and removes the spurious assignment. If it leads to a model,
we ignore everything in the model resulting from the spurious assignment.

4 Implementation and Experiments

We implemented5 our tableau reasoning approach from Sect. 3 in the Z3 SMT
solver [29]. We compare our implementation applying user propagation over the
custom SMT theory of Sect. 3.1 against our implementation using two trans-
lations of modal logic to first-order logic, viz. the standard translation [9] and
iterative deepening using cardinality assumptions. We considered altogether 400

5 https://github.com/CEisenhofer/ModalZ3.

https://github.com/CEisenhofer/ModalZ3

Non-Classical Logics in Satisfiability Modulo Theories 33

Table 1. Experimental results for benchmarks in the modal logic K.

satisfiable (400) unsatisfiable (185) total (585)

standard translation 221 (55.3%) 81 (43.8%) 302 (51.6%)

model building 219 (54.8%) 78 (42.2%) 297 (50.8%)

user-propagator 269 (67.3%) 132 (71.4%) 401 (68.5%)

satisfiable and 185 unsatisfiable benchmarks in the modal logic K [30]. Our initial
experiments using a 60-second timeout are summarized in Table 1, showing that
applying our user-propagator framework performs the best. This is partially so
because quantifier reasoning in Z3 comes with MBQI overhead (Sect. 2). Finite
model building performs poorly for large minimal models.

5 Conclusion and Discussion

We introduce an SMT-based reasoning framework for tableau methods, encoding
tableau rules directly in SMT and applying user-propagators for custom reason-
ing. When implemented and evaluated using the Z3 SMT solver, our results
outperform alternative encodings of the modal logic K. However, implementing
logics via user-propagators requires further knowledge about the considered non-
classical logics for tailored support towards, e.g., conflict learning and theory
reasoning.

Beyond the Boolean Basis and Alternative Encodings. We so far considered an
assignment V �→ value to denote that value : V ∈ L(w) and only capture
value : V /∈ L(w) implicitly. This can be generalized to n mutually-exclusive
truth values by using �log2(n)� Boolean variables. If, on the other hand, we
need to justify that some element is not in our label, we can use a different
encoding with each potential value encoded by a single Boolean. In this case, we
use bitsign(V) = true to represent V ∈ L(w) instead of V = sign.

Example 7 (Ternary Logic). Consider a three-valued logic with values true, false,
and undefined. The first encoding represents each truth value as a list of two bits
where 00 represents false, 01 true, and 10 undefined respectively. The case of 11
is invalid. The second uses a list of three bits, one for each potential value. For
each introduced subformula, we additionally propagate the cardinality constraint
that exactly one bit has to be set to 1. This encoding incorporates the usual
assumption that value1 : ◦ ∈ L(w) and value2 : ◦ ∈ L(w) with value1 �= value2

represents a conflict, but could be dropped in cases where this is not desired.

Theories and Non-Classical Logic A challenging question arises when considering
theories in combination with non-Boolean based logics. As we abstract away
theory atoms (Example 3) and add them again on demand (Example 4), we
can customize what and how theory atoms are passed to the SMT solver. For
ternary logic, we might propagate the theory atom positively when assigned true,
for false its negation, and nothing when the value is undefined.

34 C. Eisenhofer et al.

References

1. Areces, C., Fontaine, P., Merz, S.: Modal satisfiability via SMT solving. In: Soft-
ware, Services, and Systems, pp. 30–45 (2015). https://doi.org/10.1007/978-3-319-
15545-6 5

2. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic
(2017)

3. Bansal, K., Barrett, C.W., Reynolds, A., Tinelli, C.: Reasoning with finite sets and
cardinality constraints in SMT. Log. Methods Comput. Sci. 14(4), 1–31 (2018).
https://doi.org/10.23638/LMCS-14(4:12)2018

4. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9 24

5. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2016). http://SMT-LIB.org

6. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theo-
ries. In: Handbook of Satisfiability, 2nd edn., vol. 336, pp. 1267–1329 (2021)

7. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Handbook of Satisfiability, 2nd edn., pp. 1267–1329 (2021). https://doi.
org/10.3233/FAIA201017

8. Bjørner, N.S., Eisenhofer, C., Kovács, L.: Satisfiability modulo custom theories in
Z3. In: VMCAI, pp. 91–105 (2023). https://doi.org/10.1007/978-3-031-24950-1 5

9. Blackburn, P., van Benthem, J.: Modal logic: a semantic perspective. In: Handbook
of Modal Logic, pp. 1–84 (2007). https://doi.org/10.1016/s1570-2464(07)80004-8

10. Bury, G., Cruanes, S., Delahaye, D.: SMT solving modulo tableau and rewriting
theories. In: SMT (2018)

11. Caridroit, T., Lagniez, J., Berre, D.L., de Lima, T., Montmirail, V.: A sat-based
approach for solving the modal logic s5-satisfiability problem. In: AAAI, pp. 3864–
3870 (2017). https://doi.org/10.1609/aaai.v31i1.11128

12. Claessen, K., Rosén, D.: SAT modulo intuitionistic implications. In: LPAR, pp.
622–637 (2015). https://doi.org/10.1007/978-3-662-48899-7 43

13. D’Agostino, M., Gabbay, D.M., Hähnle, R., Posegga, J.: Handbook of tableau
methods (2013). https://doi.org/10.1007/978-94-017-1754-0

14. Dutertre, B.: Yices 2.2. In: CAV, pp. 737–744 (2014). https://doi.org/10.1007/978-
3-319-08867-9 49

15. Fiorentini, C., Goré, R., Graham-Lengrand, S.: A proof-theoretic perspective on
smt-solving for intuitionistic propositional logic. In: TABLEAUX, pp. 111–129
(2019). https://doi.org/10.1007/978-3-030-29026-9 7

16. Fitting, M.: Tableau methods of proof for modal logics. Notre Dame J. Formal
Log. 13(2), 237–247 (1972). https://doi.org/10.1305/ndjfl/1093894722

17. Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in satis-
fiability modulo theories. In: CAV, pp. 306–320 (2009). https://doi.org/10.1007/
978-3-642-02658-4 25

18. Gleißner, T., Steen, A.: The MET: the art of flexible reasoning with modalities. In:
RuleML+RR, pp. 274–284 (2018). https://doi.org/10.1007/978-3-319-99906-7 19

19. Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal
logic. In: LPAR, pp. 14–30 (2017). https://doi.org/10.29007/jsb9

20. Goré, R., Kikkert, C.: CEGAR-Tableaux: improved modal satisfiability via modal
clause-learning and SAT. In: TABLEAUX, pp. 74–91. https://doi.org/10.1007/
978-3-030-86059-2 5

https://doi.org/10.1007/978-3-319-15545-6_5
https://doi.org/10.1007/978-3-319-15545-6_5
https://doi.org/10.23638/LMCS-14(4:12)2018
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
http://SMT-LIB.org
https://doi.org/10.3233/FAIA201017
https://doi.org/10.3233/FAIA201017
https://doi.org/10.1007/978-3-031-24950-1_5
https://doi.org/10.1016/s1570-2464(07)80004-8
https://doi.org/10.1609/aaai.v31i1.11128
https://doi.org/10.1007/978-3-662-48899-7_43
https://doi.org/10.1007/978-94-017-1754-0
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-030-29026-9_7
https://doi.org/10.1305/ndjfl/1093894722
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-642-02658-4_25
https://doi.org/10.1007/978-3-319-99906-7_19
https://doi.org/10.29007/jsb9
https://doi.org/10.1007/978-3-030-86059-2_5
https://doi.org/10.1007/978-3-030-86059-2_5

Non-Classical Logics in Satisfiability Modulo Theories 35

21. Goré, R., Nguyen, L.A.: Analytic cut-free tableaux for regular modal logics of agent
beliefs. In: CLIMA, pp. 268–287 (2007). https://doi.org/10.1007/978-3-540-88833-
8 15

22. Goré, R., Olesen, K., Thomson, J.: Implementing tableau calculi using BDDs:
BDDTab system description. In: IJCAR, pp. 337–343 (2014). https://doi.org/10.
1007/978-3-319-08587-6 25

23. Haarslev, V., Sebastiani, R., Vescovi, M.: Automated reasoning in ALCQ via SMT.
In: CADE, pp. 283–298 (2011). https://doi.org/10.1007/978-3-642-22438-6 22

24. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for expressive description
logics. In: LPAR, pp. 161–180 (1999). https://doi.org/10.1007/3-540-48242-3 11

25. Horrocks, I., Voronkov, A.: Reasoning support for expressive ontology languages
using a theorem prover. In: FoIKS, pp. 201–218 (2006). https://doi.org/10.1007/
11663881 12

26. Liang, T., Reynolds, A., Tsiskaridze, N., Tinelli, C., Barrett, C., Deters, M.: An
efficient SMT solver for string constraints. Formal Methods Syst. Des. 48(3), 206–
234 (2016). https://doi.org/10.1007/s10703-016-0247-6

27. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT Solvers.
In: Handbook of Satisfiability, 2nd edn., vol. 336, pp. 133–182 (2021)

28. de Moura, L., Bjørner, N.: Relevancy Propagation. Technical Report MSR-TR-
2007-140, Microsoft Research, Technical Report (2007), https://www.microsoft.
com/en-us/research/wp-content/uploads/2016/02/tr-2007-140.pdf

29. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: TACAS, pp. 337–
340 (2008). https://doi.org/10.1007/978-3-540-78800-3 24

30. Nalon, C., Hustadt, U., Papacchini, F., Dixon, C.: Local reductions for the modal
cube. In: IJCAR, pp. 486–505 (2022). https://doi.org/10.1007/978-3-031-10769-
6 29

31. Schmidt, R.A., Hustadt, U.: The axiomatic translation principle for modal logic.
ACM Trans. Comput. Log. 8(4), 19 (2007). https://doi.org/10.1145/1276920.
1276921

32. Schneider, M., Sutcliffe, G.: Reasoning in the OWL 2 full ontology language using
first-order automated theorem proving. In: CADE, pp. 461–475 (2011). https://
doi.org/10.1007/978-3-642-22438-6 35

33. Sebastiani, R.: From KSAT to delayed theory combination: exploiting DPLL out-
side the SAT domain. In: FroCoS, pp. 28–46 (2007). https://doi.org/10.1007/978-
3-540-74621-8 2

34. Smullyan, R.M.: First-order logic (1995). https://doi.org/10.1007/978-3-642-
86718-7

35. Steen, A.: An extensible logic embedding tool for lightweight non-classical reason-
ing (short paper). In: PAAR (2022)

36. Steen, A., Fuenmayor, D., Gleißner, T., Sutcliffe, G., Benzmüller, C.: Automated
reasoning in non-classical logics in the TPTP world. In: PAAR (2022)

37. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: MetTeL2: towards a tableau prover
generation platform. In: PAAR, pp. 149–162 (2012). https://doi.org/10.29007/1c73

38. Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: The tableau prover generator Met-
TeL2. In: JELIA, pp. 492–495 (2012). https://doi.org/10.1007/978-3-642-33353-
8 41

39. Tsarkov, D., Horrocks, I.: DL reasoner vs. first-order prover. In: DL (2003)
40. Tsarkov, D., Riazanov, A., Bechhofer, S., Horrocks, I.: Using Vampire to rea-

son with OWL. In: ISWC, pp. 471–485 (2004). https://doi.org/10.1007/978-3-540-
30475-3 33

https://doi.org/10.1007/978-3-540-88833-8_15
https://doi.org/10.1007/978-3-540-88833-8_15
https://doi.org/10.1007/978-3-319-08587-6_25
https://doi.org/10.1007/978-3-319-08587-6_25
https://doi.org/10.1007/978-3-642-22438-6_22
https://doi.org/10.1007/3-540-48242-3_11
https://doi.org/10.1007/11663881_12
https://doi.org/10.1007/11663881_12
https://doi.org/10.1007/s10703-016-0247-6
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2007-140.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2007-140.pdf
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-031-10769-6_29
https://doi.org/10.1007/978-3-031-10769-6_29
https://doi.org/10.1145/1276920.1276921
https://doi.org/10.1145/1276920.1276921
https://doi.org/10.1007/978-3-642-22438-6_35
https://doi.org/10.1007/978-3-642-22438-6_35
https://doi.org/10.1007/978-3-540-74621-8_2
https://doi.org/10.1007/978-3-540-74621-8_2
https://doi.org/10.1007/978-3-642-86718-7
https://doi.org/10.1007/978-3-642-86718-7
https://doi.org/10.29007/1c73
https://doi.org/10.1007/978-3-642-33353-8_41
https://doi.org/10.1007/978-3-642-33353-8_41
https://doi.org/10.1007/978-3-540-30475-3_33
https://doi.org/10.1007/978-3-540-30475-3_33

36 C. Eisenhofer et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

DefTab: A Tableaux System for Sceptical
Consequence in Default Modal Logics

Carlos Areces1, Valentin Cassano1,2, Raul Fervari1,3(B),
and Guillaume Hoffmann1,3

1 CONICET and Universidad Nacional de Córdoba, Córdoba, Argentina
2 Universidad Nacional de Ŕıo Cuarto, Ŕıo Cuarto, Argentina

3 Guangdong Technion - Israel Institute of Technology, Shantou, China

rfervari@gmail.com

Abstract. We report on an implementation of a tableaux calculus for
sceptical consequence in Default Logic built on Hybrid Modal Logic.
In turn, our tool offers support for checking default consequence over
formulas from Propositional Logic, Basic Modal Logic and Hybrid Logic.
We develop a test suite for assessing the correctness, scalability, and
efficiency of our system, and inform on the results. Interestingly, our
method can be adapted to generate examples for other default provers.

1 Introduction

A tableau method [11] is a standard proof procedure based on ‘refutations’. To
prove that a certain fact is valid, the procedure begins with a syntactical expres-
sion intended to assert the negation of the given fact. Then, successive steps
syntactically break down this assertion into cases. Finally, impossibility condi-
tions dictate closing cases. A proof is obtained if all cases are closed. Tableaux
are one of the most popular proof calculi for Modal Logics, as they are known
to lead to efficient and modular implementations [9].

The tableaux method presented here, called default tableaux, operates in the
way just described. The novelty is that this tableaux method captures scepti-
cal consequence in Default Logic [17], one of the most prominent approaches
for non-monotonic reasoning [1]. Two distinguishing characteristics of a default
logic are defaults and alternative extensions. Briefly, defaults can be understood
as defeasible rules of inference, whereas extensions can be understood as sets
closed under the application of defaults. Alternative extensions originate from
‘consistency checks’ on the application of defaults. A formula is called a ‘scep-
tical consequence’ if it is a consequence from every alternative extension. Our
tableaux method handles sceptical consequence for DHL, a default logic built
over Hybrid Logic (HL) [3,4], via default tableaux. Default tableaux are intro-
duced as an extension of tableaux for HL. These tableaux build on results pre-
sented in [5,7].

Moreover, we report on DefTab, an implementation of the default tableaux
mentioned above. DefTab was originally conceived for checking sceptical conse-
quence in Default Intuitionistic Logic [7]. Here, we advance on a modular imple-
mentation of a default prover acting over different modal logics. The general
c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 37–48, 2023.
https://doi.org/10.1007/978-3-031-43513-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-43513-3_3

38 C. Areces et al.

implementation of the tool is based on the architecture of HTab [13], a tableaux
system for HL (see also [12]). Given the ability of handling formulas from HL,
our prover also supports formulas from fragments of HL such as Classical Propo-
sitional Logic and Basic Modal Logic. Each fragment is in itself interesting.

We discuss the overall architecture of DefTab, the implementation of default
tableaux algorithm, and optimization details. In addition, we present an empiri-
cal evaluation of the tool to assess its correctness and efficiency. To this end, we
build a test suite for sceptical consequence in DHL by using hGen [2], a random
formula generator for HL and the mentioned fragments. We provide a system-
atic method to convert formulas generated by hGen into interesting test cases
for DHL. We posit other provers could benefit from our method in the future.

2 Basic Definitions

Hybrid Logic. The language of HL is defined on an enumerable set P =
{ pi | 0 ≤ i } of proposition symbols and an enumerable set N = { ni | 0 ≤ i } of
nominals, and is determined by the following BNF:

ϕ ::= pi | ni | ¬ϕ | ϕ ∧ ϕ | �ϕ | @ni
ϕ | Aϕ.

Other Boolean connectives are defined as usual. The modal formula �ϕ is an
abbreviation for ¬�¬ϕ, whereas Eϕ abbreviates ¬A¬ϕ. We will also refer to
some fragments of HL: the Basic Hybrid Logic (HL−) is obtained by removing the
constructor Aϕ from the BNF above. The Basic Modal Logic (BML) is obtained
by additionally removing ni and @ni

ϕ from the BNF. Finally, the Classical
Propositional Logic (CPL) is obtained by additionally removing �ϕ.

A hybrid Kripke model M is a tuple 〈W,R, V 〉 where: W is a non-empty set
of elements called worlds; R ⊆ W 2 is the accessibility relation; and the valuation
V : P ∪ N �→ 2W is a function s.t. for all n ∈ N, |V (n)| = 1.

The notion of satisfiability, written M, w |= ϕ, is defined inductively as fol-
lows, with the Boolean cases defined as usual:

M, w |= pi iff w ∈ V (pi)
M, w |= ni iff {w} = V (ni)
M, w |= �ϕ iff for all w′ ∈ W, Rww′ implies M, w′ |= ϕ
M, w |= Aϕ iff for all w′ ∈ W, M, w′ |= ϕ
M, w |= @ni

ϕ iff M, w′ |= ϕ, where {w′} = V (ni).

We write M, w |= Φ to abbreviate: for all ϕ ∈ Φ, M, w |= ϕ. We call ϕ a (local)
semantic consequence ([3]) of Φ, notation Φ � ϕ, iff for every hybrid Kripke
model M, and world w of M, if M, w |= Φ, then M, w |= ϕ.

Normal Default Logic. The work on Default Logic, initiated in [17], comprises
nowadays a wide range of non-monotonic formalisms built on an underlying
(typically monotonic) logic. In what follows, we describe a default logic built on
HL, and call this default logic Default Hybrid Logic (DHL).

DefTab: A Tableaux System for Sceptical Consequence 39

DHL is characterized by normal defaults and extensions. A normal default is
a pair (π, χ) of formulas of HL written as π/χ; where π is called the prerequisite
of the default, and χ its consequent. A normal default can be understood as a
non-admissible rule of inference of HL which is only applied if its application
does not yield a contradiction. Normal defaults are common in the literature,
since interestingly most existing variants of Default Logic converge in the case
of normal defaults (see, e.g., [1]). Extensions are defined with respect to default
theories. A default theory is a pair Θ = 〈Φ,Δ〉 where: Φ is a set of formulas of
HL, also indicated by ΦΘ; and Δ is a set of normal defaults, also indicated by
ΔΘ. An extension can be understood as a saturation of a set of facts via the
application of defaults. The precise definition of an extension is given in Def. 4.

Definition 1. Let δ = π/χ be a default and Δ be a set of defaults; then: δΠ = π,
δX = χ; ΔΠ = { δΠ | δ ∈ Δ }, ΔX = { δX | δ ∈ Δ } and Δ ∪ δ = Δ ∪ {δ}.
Definition 2 (Detachment). Let Θ be a default theory, and Δ ∪ δ ⊆ ΔΘ; we
say that δ is triggered by Δ (in Θ) iff (ΦΘ ∪ ΔX) � δΠ. We say that δ is blocked
by Δ iff (ΦΘ ∪ (Δ ∪ δ)X) � ⊥. We say that δ is detached by Δ if δ is triggered,
and not blocked, by Δ.

If we think of a default π/χ as a rule which enables us to pass from π to χ,
the notion of detachment in Def. 2 tells us under which conditions on π we
can obtain χ. The definition of detachment is an intermediate step towards the
definition of an extension via generating sets.

Definition 3 (Generating Set). Let Θ be a default theory; we call Δ ⊆ ΔΘ

a generating set if there is a total-ordering � on ΔΘ s.t. Δ = D�

Θ(n), where
n = |ΔΘ|, D�

Θ(0) = ∅, and for all 0 < i < n:

D�

Θ(i+1) =

⎧
⎪⎨

⎪⎩

D�

Θ(i) ∪ δ if δ ∈ ΔΘ\D�

Θ(i) is detached by D�

Θ(i), and

for all η �= δ ∈ ΔΘ\D�

Θ(i), if η is detached by D�

Θ(i), δ � η

D≺
Θ(i) otherwise.

Definition 4 (Extension). Let Θ be a default theory and E = ΦΘ ∪ ΔX; the
set E is an extension of Θ iff Δ is a generating subset of ΔΘ. We use E(Θ) to
indicate the set of all extensions of Θ.

As mentioned, intuitively, an extension is a set of formulas that is closed
under detachment. We present the definition of default consequence in Def. 5.

Definition 5 (Default Consequence). We say a formula ϕ is a sceptical
consequence of a default theory Θ, notation Θ |≈ ϕ, iff for all E ∈ E(Θ), E � ϕ.

The notion of default consequence in Def. 5 is referred to as sceptical in the
literature on Default Logic. In Sec. 3 we present a syntactic characterization of
sceptical consequence via a default tableaux proof calculus. This proof calculus
is the focus of our system description. We illustrate our definitions in Ex. 1.

40 C. Areces et al.

Example 1. We start by assuming that every world in the model has a succes-
sor, and that every world is either a sink world (nominal s) or ‘sees’ the sink
world. These assumptions are expressed in a default theory as facts, i.e., by
Φ = {A�,A(s ∨ �s)}. Moreover, we have three defaults: δ1 = /@n2�n3,
δ2 = /@n3¬s, and δ3 = /@n3�n3. Thus, we have Δ = {δ1, δ2, δ3}, and
Θ = 〈Φ,Δ〉. The default δ1 expresses that n2 must ‘see’ n3. This default is
detached by Φ. Then, we have the defaults δ2, expressing that n3 must not be
the sink world, and δ3, expressing that n3 must only ‘see’ itself. Both of these
defaults are individually detached by δ1, but they block each other: δ2 forces
n3 to have a successor different from itself to comply with the facts, while δ3

forces n3 to see only itself, i.e., it forces n3 be the sink. This means that we
have two generating sets, {δ1, δ2} and {δ1, δ3}, thus there are two extensions:
E1 = Φ ∪ {@n2�n3,@n3¬s} and E2 = Φ ∪ {@n2�n3,@n3�n3}. In both cases,
n2 sees the sink in two steps, i.e., Θ |≈ @n2��s.

3 Default Tableaux Proof Calculus

We present the default tableaux calculus for sceptical consequence in DHL which
is the focus of our system description. In what follows, we consider all the formu-
las from HL in negation normal form. The default tableaux calculus for sceptical
consequence in DHL constructs so-called default tableaux. A default tableau is a
tree whose nodes are of three different kinds. We write nodes of the first kind as
@iϕ, meaning that ϕ holds at world i. The second kind of nodes (which is a spe-
cial case of the first kind) is written as @i�j, meaning that world j is accessible
from world i. Nodes of the third kind are indicated by defaults. This last kind
of nodes marks the use of a default in a proof attempt. A default tableau for a
formula ϕ from a default theory Θ, is a default tableau whose root is @0¬ϕ, and
whose construction is carried out using the rules from Fig. 1.

Fig. 1. Tableau expansion rules for DHL.

DefTab: A Tableaux System for Sceptical Consequence 41

The rule (F) enables us to incorporate formulas from ΦΘ into a default
tableau, while the rule (D) enables us to incorporate defaults from ΔΘ. This
last rule corresponds to the concept of detachment in Def. 2. The notion of
reducibility using default tableaux is made precise in Def. 7.

Definition 6 (Closure). A branch of a default tableau is closed (�), if @iϕ
and @i¬ϕ occur in the branch. A branch is open (�) if it is not closed. A default
tableau is closed if all of its branches are closed; otherwise it is open.

Definition 7 (Default Deducibility). We call any closed default tableau for
ϕ from Θ a sceptical proof of ϕ from Θ, notation Θ |∼ ϕ.

The expansion rules in Fig. 1 together with Def. 7 yield a sceptical proof
calculus which is is sound and complete (see [7] for details of this claim).

Theorem 1 (Soundess and Completeness.). Θ |∼ ϕ iff Θ |≈ ϕ.

In addition, notice that if we forbid the application of the rule (D), we obtain
a notion of deducibility ΦΘ � ϕ which yields a sound and complete proof calculus
for HL, i.e., ΦΘ � ϕ iff ΦΘ � ϕ (see [16]). We use � to syntactically check the side
condition of the rule (D), and decide whether it can be applied or not.

Definition 8 (Saturation). A branch of a default tableau is saturated, nota-
tion (�), if the application of any of the expansion rules in Fig. 1 is redundant.

It can be proven that every branch of a default tableau can be extended to
one that is saturated in a finite number of steps. Also, if a default tableau for ϕ
from Θ has a branch that is open and saturated, then Θ �|≈ ϕ. From these two
facts, it follows that default tableaux decide sceptical consequence.

4 Implementation

DefTab is an implementation of the tableaux proof calculus for sceptical default
consequence in Sec. 3. The architecture of DefTab is based on the hybrid logic
prover HTab [13], and incorporates the specific features for implementing default
reasoning. HTab implements a terminating tableaux algorithm for HL and comes
ready with some optimizations such as semantic branching and backjumping.
All these features, as well as others, are reported in detail in [13]. Given Θ
and ϕ as input, DefTab builds proof attempts of Θ |∼ ϕ by searching for Kripke
models for ϕ, and subsequently restricting these models with the use of sentences
from ΦΘ and defaults from ΔΘ. DefTab reports whether a default proof has been
found or not. In the latter case, it exhibits an extension of Θ from which the ϕ
does not follow; thus establishing that ϕ is not a default consequence of Θ. In
what follows we discuss some implementation details, including some comments
on optimizations. DefTab is available at http://tinyurl.com/deftab0.

http://tinyurl.com/deftab0

42 C. Areces et al.

Tableaux and Subtableaux. The tableaux algorithm of DefTab follows a
standard strategy for proof search, and the novel part is the treatment of the
rule (D). In such a case, it selects a default δ from the set ΔΘ, and checks if δ
is detached, according to Def. 2. This relies on subtableaux, that is, tableaux
executions that are independent of the main default tableaux. These subtableaux
are needed to check whether δ is detached in the branch; i.e., whether it is
triggered (i.e., δΠ is a consequence of the premises and the consequences already
obtained in the branch), and not blocked (i.e., if δX adds an inconsistency into
the branch). If δ is detached, then @0δ

X is added to the branch, δ is marked as
treated, and the algorithm continues with the expansion of the updated branch.
Once no rule can be applied, the algorithm returns TRUE if and only if ϕ is a
default consequence of Θ.

Subtableaux Caching. One of the main optimizations provided in DefTab
is caching, operating under the following premise. Subtableaux are executed to
check which default rules are triggered or blocked in the context of a branch.
Many of these checks are redundant, since the results of such subtableaux does
not change unless a default rule is applied to a branch. DefTab implements a
simple caching system that stores subtableaux results in a dictionary. Each time
a subtableaux is about to be executed, the set of initial formulas is checked
against the cache. If there is a cache hit, the result is taken from the cache and
a tableaux run is saved. Note that subtableaux do not involve the rule (D), that
is, they are purely tableaux of the underlying logic.

Default Rules Data Structures. At any given moment, DefTab maintains
defaults in two lists: available and triggered. The available list contains the
defaults of the input default theory. When the (D) rule is about to be applied,
several steps are performed to handle default rules systematically. First, the
available list is scanned, and each rule is checked to be triggered. Triggered rules
are moved into the triggered list, and the rest is left into the available list. Note
that non-triggered rules, may become triggered in the future after some default
is added to the branch. The triggered list is also scanned, and each rule is checked
to be blocked in the current branch. When a rule is blocked, it is deleted from the
triggered list and will never come back again in the branch. Once this is done,
DefTab uses that list to apply the rule (D). The tableaux branches as many times
as there are rules in the (non-blocked) triggered list. For each new branch, the
procedure removes the corresponding rule from the triggered list, and adds it
and its consequent formula to the branch.

Backjumping. Backjumping [14] is a standard optimization for the HL calculus
that greatly improves performance (see [13]). The overall idea is that, instead
of performing a simple backtracking when a branch is found to be closed, back-
jumping calculates the lowest level to which the execution of the tableaux may
directly come back when a clash is found. This requires all formulas in the

DefTab: A Tableaux System for Sceptical Consequence 43

tableaux to be annotated with a set of dependencies. A dependency is the level
of a branching rule application. For the specific case of default tableaux, we take
special care of tracking dependencies of the formulas introduced by the appli-
cation of rule (D). To do so, once a default π/χ is triggered, we bookkeep it in
the triggered list along with the dependencies of the formulas that triggered it,
according to Definition 2. Concretely, this is the union of the dependencies of all
defaults Δ such that ΦΘ ∪ ΔX |= π. When (D) rule is applied, the consequent
of a default is added to the current branch with these dependencies, plus the
dependency of the current tableaux level.

Usage. DefTab takes as input a file following the structure of the following
simple example file hybrid01.dt.

facts:

N0: <> N1;

defaults:

(N0: <>N1) --> (N1:<>N0);

consequence:

N0:<><>N0;

– The keyword facts indicates the beginning of
the set of formulas of the default theory.

– The keyword defaults indicates the beginning
of the set of defaults. The syntax for a default
π/χ is π --> χ.

– The keyword consequence indicates the for-
mula to be proven.

DefTab is executed from the command line as:

$./deftab -f hybrid01.dt

Indeed a sceptical consequence.

Elapsed time: 0.00 seconds

The output indicates that N0:<><>N0

(@n0��n0) is a sceptical conse-

quence of the default theory.

5 Testing Generation and Methodology

Hybrid and Default Formulas Generation. Another contribution of our
work is to provide a systematic way of constructing test cases for DHL provers.
To our knowledge, there is no standard test set for automated reasoning with
default logic, and less so for default reasoning based on HL.

We build test cases for DHL using the random formula generator hGen [2].
hGen enables us to generate formulas in conjunctive normal form (CNF) from
several fragments of HL, such as CPL, BML and HL−. Moreover, hGen also allows
us to specify the different parameters of a formula: number of clauses, size of
clauses and modal depths of each subformula of a clause, probability of that
an operator appears in the clause (e.g. modal, hybrid, universal), and the total
number of propositional symbols and nominals.

44 C. Areces et al.

We adapted hGen to generate normal default theories from random HL for-
mulas. The transformation depends on the satisfiability status of the original
HL formulas. The first case applies to satisfiable formulas of HL in CNF. Given
c1 . . . cn the clauses of an HL formula, we put each one of them as the conse-
quent of a default /ci, and put ⊥ as the consequence to be proved. As the
original set of clauses is satisfiable, and the consequence is never provable, all
the defaults will be applied (as putting as the prerequisite triggers every rule)
in all possible permutations. This is an easy way to stress our tool.

The second case works with unsatisfiable formulas of HL in CNF. Here, we use
an intentionally harder transformation. Given c1 . . . cn the clauses of the HL for-
mula, then for all i<n, we generate two rules: /ci ∨ ci+1 and ci ∨ ci+1/ci ∧ ci+1.
Finally, we add cn as consequence. In this case, not all defaults will be applied
to a same branch, but a great amount of them. Moreover, the formula cn may or
may not be a sceptical consequence of the default theory; this is another differ-
ence with the case of satisfiable formulas. This case not only serves to test the
scalability of our tool, but also its correctness.

Test Suite Structure. The Bash script testsuite.sh executes four steps:
formula generation, renaming, benchmark, and consistency check.

The formula generation step uses hGen to generate random sets of formulas
from CPL, BML, HL− and HL, respectively. Initially, each set contains 1000
formulas. Then, the Hybrid Logic prover HTab ([13]) is run to classify each set
of formulas into satisfiable (SAT) and unsatisfiable (UNSAT). This way, hGen
generates the corresponding default theories, as described in the previous section.
The renaming step is then performed to organize file names in each folder.

The benchmark step enables to specify a list of provers to be run. Currently,
it is performed with DefTab with cache disabled (NC) and DefTab with cache
enabled (C), but the script can be easily modified to run any new default prover.
The provers are executed on all input files of each combination of 4 languages
and 2 satisfiability values, and the results (execution time and answer) are stored
in log files. The script reports how many formulas could be solved within 10 s,
30 s, and 60 s. This is done by running the provers with the highest timeout
value; the other values are deduced from the prover’s running time.

Finally, the consistency check step looks for inconsistent outputs between
provers by comparing the log files generated in the previous step.

Although the preselected option is to run all these steps together, they can
also be run separately. This enables to run the benchmark step on a known set
of formulas, to reproduce results. Instructions on how to run the tests, the test
script and the set of formulas used to generate the following results can be found
at http://tinyurl.com/deftab0.

hGen parameters. For each language, we tuned hGen’s parameters to get a
good SAT/UNSAT balance of its output (ideally a 50/50 ratio). We also aimed
at getting a balanced difficulty of the translated default theories. That is, the sets
of default theories should be hard enough so that many of them make DefTab
timeout and we may measure improvements in the future, but not too hard so

http://tinyurl.com/deftab0

DefTab: A Tableaux System for Sceptical Consequence 45

we can already observe different results according to different timeout values.
The parameters for each language are: for CPL, 33 clauses and 10 proposition
symbols; for BML, 34 clauses, 10 proposition symbols, one relation and 2 nested
modal operators as maximum; for HL−, 15 clauses, 3 proposition symbols, 3
nominals, one relation and 6 nested modal and hybrid operators as maximum;
and for HL, 13 clauses, 2 proposition symbols, 2 nominals, one relation and
6 nested modal, hybrid and universal operators as maximum. Moreover, each
language has fine-tuned probabilities of the different logic connectives in order
to meet the SAT/UNSAT and timeout balances that the following results show.
All parameters can be found in the released test script.

Results. We report below a run of the benchmark script with 1000 formulas
per language, performed with DefTab with cache disabled (NC) and DefTab with
cache enabled (C). DefTab was compiled with GHC 8.10.7, and the tests were run
on the following platform: Ubuntu 22.04 operating system, Linux 5.19 kernel,
12th Gen Intel i7-1260P CPU with 16 cores, 16GB of RAM and SSD storage.

Formulas Timeout
10 secs.
(NC)

10 secs.
(C)

30 secs.
(NC)

30 secs.
(C)

60 secs.
(NC)

60 secs.
(C)

CPL SAT (516) 122 135 133 144 138 146

CPL UNSAT (484) 255 324 309 364 336 384

BML SAT (462) 356 399 384 417 398 425

BML UNSAT (538) 154 193 252 324 295 367

HL− SAT (534) 401 434 419 444 431 450

HL− UNSAT (466) 142 153 150 170 158 183

HL SAT (480) 284 321 309 331 320 343

HL UNSAT (520) 145 161 161 183 169 193

Finally, the following table describes the outcome of checking sceptical con-
sequence of those formulas that were originally unsatisfiable. We take therein all
the tests cases that finished with timeout of 60 s, solved using caching. The col-
umn label by ‘Consequence’ indicates the number of formulas for which running
DefTab returns it is indeed a sceptical consequence in the corresponding default
theories; while ‘Not Consequence’ indicates the number of formulas for which
DefTab returns they are not a sceptical consequence.

Formulas Results
Total Consequence Not Consequence

CPL UNSAT 384 24 360

BML UNSAT 367 322 45

HL− UNSAT 183 111 72

HL UNSAT 193 100 93

46 C. Areces et al.

These results are useful for checking consistency across the execution of dif-
ferent provers, or provers executed with different parameters, as we are cur-
rently doing with DefTab’s cache option. Moreover, we would like to compare
the obtained data with the results of running other provers for the different
fragments that are supported by DefTab, to assess both soundness and the per-
formance of our tool. This is part of our future work agenda.

6 Final Remarks

We reported on DefTab, a tableaux-based system to decide sceptical consequence
in Default Logic over Hybrid Modal Logic. To the best of our knowledge, DefTab
is the first prover combining Modal and Default Logic. This said, other provers
do exist for Default Logic. For instance, DeReS is a default logic reasoner with an
underlying propositional tableaux calculus [8]. This prover is designed to check
default consequence treating reasoning in the underlying logic as a “black box”.
This contrasts with DefTab which extends tableaux reasoning in the underlying
logic with the use of defaults. At present, DefTab only supports sceptical con-
sequence checking, while DeReS also supports credulous consequence checking.
We have not been able to find a working implementation of DeReS. However,
many of the ideas presented in [8] can be explored in our setting, in particular,
the kind of (graph-based) problems that are used to generate test cases.

Although not a default logic reasoner, in [15], a nonmonotonic reasoning plug-
in for OWL ontologies is presented. DefTab could approach this tool by imple-
menting multiple relations (roles) and role inclusions to its underlying modal
language. In [10] a tool supporting default reasoning over knowledge bases is
reported, this time not via a calculus implementation but via a translation into
conjunctive query programs in a Description Logic reasoner. After adapting our
calculus to handle Description Logic features, it would be interesting to use the
above-mentioned tools to perform a comparison with DefTab, both for correct-
ness and performance.

We provided a systematic way of testing our tool, by introducing a test suite
generation method based on hGen [2] and HTab [12,13]. This idea can be easily
adapted to any kind of default prover working over CPL, BML, HL− and HL. We
tested the performance of our tool using this test suite, and empirically showed
that DefTab’s subtableaux caching optimization positive impacts on performance.

For future work there are several other interesting lines of research. The
treatment of defaults in the calculus can be seen as parametric on the underly-
ing logic (modulo some basic properties, e.g., the possibility of using premises,
see [6]). DefTab was originally designed to handle Default Logic over Intuition-
istic Logic [7]. Herein, the tableaux-based procedure not only handles classical
reasoning instead of intuitionistic reasoning, but also it is extended to support
a family of Modal Logics (i.e., the fragments we described along the paper).
Moreover, our approach allowed us to design test suites that can be used to test
DefTab and other nonmonotonic provers. These ideas can be extended to better
assess the behaviour of the tools. We believe that our implementation is a first

DefTab: A Tableaux System for Sceptical Consequence 47

step towards having a modular prover that can be generalized to a wider family
of Default Logics.

Acknowledgments. We thank the reviewers for their valuable comments. Our work is
partially supported by the projects ANPCyT-PICT-2020-3780, ANPCyT-PICT-2021-
00400, CONICET PIP 11220200100812CO, the EU Grant Agreement 101008233 (MIS-
SION), and by the Laboratoire International Associé SINFIN.

References

1. Antoniou, G., Wang, K.: Default logic. In: Gabbay, D., Woods, J. (eds.) The many
valued and nonmonotonic turn in logic. vol. 8 of Handbook of the History of Logic,
pp. 517–555. North-Holland (2007)

2. Areces, C., Heguiabehere, J.: hGen: a random CNF formula generator for hybrid
languages. In: Methods for Modalities 3–M4M-3, Nancy, France, Nancy, France
(2003)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge U Press, Cam-
bridge (2001)

4. Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of Modal Logic. Else-
vier (2007)

5. Cassano, V., Areces, C., Castro, P.: Reasoning about prescription and descrip-
tion using prioritized default rules. In: Barthe, G., Sutcliffe, G., Veanes, M. (eds.)
22nd International Conference on Logic for Programming, Artificial Intelligence
and Reasoning (LPAR-22). vol. 57 of EPiC Series in Computing, pp. 196–213.
EasyChair (2018)

6. Cassano, V., Fervari, R., Areces, C., Castro, P.F.: Interpolation and beth defin-
ability in default logics. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019.
LNCS (LNAI), vol. 11468, pp. 675–691. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-19570-0 44

7. Cassano, V., Fervari, R., Hoffmann, G., Areces, C., Castro, P.F.: A tableaux cal-
culus for default intuitionistic logic. In: Fontaine, P. (ed.) CADE 2019. LNCS
(LNAI), vol. 11716, pp. 161–177. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-29436-6 10

8. Cholewinski, P., Marek, V., Truszczynski, M.: Default reasoning system DeReS.
In: 5th International Conference on Principles of Knowledge Representation and
Reasoning (KR 1996), pp. 518–528. Morgan Kaufmann (1996)

9. D’Agostino, M., Gabbay, D.M., Hahnle, R., Posegga, J. (eds.) Handbook of Tableau
Methods. Springer (1999). https://doi.org/10.1007/978-94-017-1754-0

10. Dao-Tran, M., Eiter, T., Krennwallner, T.: Realizing default logic over description
logic knowledge bases. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS
(LNAI), vol. 5590, pp. 602–613. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02906-6 52

11. Fitting, M.: Introduction. In: D’Agostino et al. [9], pp. 1–43
12. Hoffmann, G.: Lightweight hybrid tableaux. J. Appl. Logic 8(4), 397–408 (2010)
13. Hoffmann, G., Areces, C.: HTab: a terminating tableaux system for hybrid logic.

In: Areces, C., Demri, S. (eds.) Proceedings of the 5th Workshop on Methods for
Modalities, M4M 2007, Cachan, France, 29–30 November 2007. vol. 231 of ENTCS,
pp. 3–19. Elsevier (2007)

https://doi.org/10.1007/978-3-030-19570-0_44
https://doi.org/10.1007/978-3-030-19570-0_44
https://doi.org/10.1007/978-3-030-29436-6_10
https://doi.org/10.1007/978-3-030-29436-6_10
https://doi.org/10.1007/978-94-017-1754-0
https://doi.org/10.1007/978-3-642-02906-6_52
https://doi.org/10.1007/978-3-642-02906-6_52

48 C. Areces et al.

14. Hustadt, U., Schmidt, R.A.: Simplification and backjumping in modal tableau.
In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 187–201.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69778-0 22

15. Meyer, T., Moodley, K., Sattler, U.: DIP: a defeasible-inference platform for OWL
ontologies. CEUR Workshop Proceedings (2014)

16. Priest, G.: An Introduction to Non-classical Logic: From If to Is. Cambridge U
Press, Cambridge (2000)

17. Reiter, R.: A logic for default reasoning. AI 13(1–2), 81–132 (1980)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-69778-0_22
http://creativecommons.org/licenses/by/4.0/

Non-distributive Description Logic

Ineke van der Berg1,2 , Andrea De Domenico1(B) , Giuseppe Greco1 ,
Krishna B. Manoorkar1 , Alessandra Palmigiano1,3 ,

and Mattia Panettiere1

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
a.de.domenico@vu.nl

2 Department of Mathematical Sciences, Stellenbosch University,
Stellenbosch, South Africa

3 Department of Mathematics and Applied Mathematics,

University of Johannesburg, Johannesburg, South Africa

Abstract. We define LE-ALC, a generalization of the description logic
ALC based on the propositional logic of general (i.e. not necessarily dis-
tributive) lattices, and semantically interpreted on relational structures
based on formal contexts from Formal Concept Analysis (FCA). The
description logic LE-ALC allows us to formally describe databases with
objects, features, and formal concepts, represented according to FCA
as Galois-stable sets of objects and features. We describe ABoxes and
TBoxes in LE-ALC, provide a tableaux algorithm for checking the con-
sistency of LE-ALC knowledge bases with acyclic TBoxes, and show
its termination, soundness and completeness. Interestingly, consistency
checking for LE-ALC with acyclic TBoxes is in PTIME, while the com-
plexity of the consistency checking of classical ALC with acyclic TBoxes
is PSPACE-complete.

Keywords: Description logic · Tableaux algorithm · Formal Concept
Analysis · LE-logics

1 Introduction

Description Logic (DL) [2] is a class of logical formalisms, typically based on
classical first-order logic, and widely used in Knowledge Representation and
Reasoning to describe and reason about relevant concepts in a given application
domain and their relationships. Since certain laws of classical logic fail in cer-
tain application domains, in recent years, there has been a growing interest in
developing versions of description logics on weaker (non-classical) propositional
bases. For instance, in [20], an intuitionistic version of the DL ALC has been
introduced for resolving some inconsistencies arising from the classical law of
excluded middle when applying ALC to legal domains. In [6,19], many-valued

This paper is partially funded by the EU MSCA (grant No. 101007627). The first author
is funded by the National Research Foundation of South Africa (grant No. 140841).
The third and fourth authors are partially funded by the NWO grant KIVI.2019.001.

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 49–69, 2023.
https://doi.org/10.1007/978-3-031-43513-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_4&domain=pdf
http://orcid.org/0000-0003-2220-1383
http://orcid.org/0000-0002-8973-7011
http://orcid.org/0000-0002-4845-3821
http://orcid.org/0000-0003-3664-7757
http://orcid.org/0000-0001-9656-7527
http://orcid.org/0000-0002-9218-5449
https://doi.org/10.1007/978-3-031-43513-3_4

50 I. van der Berg et al.

(fuzzy) description logics have been introduced to account for uncertainty and
imprecision in processing information in the Semantic Web, and recently, frame-
works of non-monotonic description logics have been introduced [14,15,18].

One domain of application in which there is no consensus as to how classical
logic should be applied is Formal Concept Analysis (FCA). In this setting, formal
concepts arise from formal contexts P = (A,X, I), where A and X are sets (of
objects and features respectively), and I ⊆ A × X. Specifically, formal concepts
are represented as Galois-stable tuples (B, Y) such that B ⊆ A and Y ⊆ X
and B = {a ∈ A | ∀y(y ∈ Y ⇒ aIy)} and Y = {x ∈ X | ∀b(b ∈ B ⇒ bIx)}.
The formal concepts arising from a formal context are naturally endowed with
a partial order (the sub-concept/super-concept relation) as follows: (B1, Y1) ≤
(B2, Y2) iff B1 ⊆ B2 iff Y2 ⊆ Y1. This partial order is a complete lattice, which is
in general non-distributive. The failure of distributivity in the lattice of formal
concepts introduces a tension between classical logic and the natural logic of
formal concepts in FCA. This failure motivated the introduction of lattice-based
propositional (modal) logics as the (epistemic) logics of formal concepts [9,10].
Complete relational semantics of these logics is given by enriched formal contexts
(cf. Sect. 2.2), relational structures F = (P,R�,R�) based on formal contexts.

In this paper, we introduce LE-ALC, a lattice-based version of ALC which
stands in the same relation to the lattice-based modal logic of formal concepts
[12] as classical ALC stands in relation to classical modal logic: the language and
semantics of LE-ALC is based on enriched formal contexts and their associated
modal algebras. Thus, just like the language of ALC can be seen as a hybrid
modal logic language interpreted on Kripke frames, the language of LE-ALC can
be regarded as a hybrid modal logic language interpreted on enriched formal con-
texts.

FCA and DL are different and well known approaches in the formal repre-
sentation of concepts (or categories). They have been used together for several
purposes [1,4,17]. Thus, providing a DL framework which allows us to describe
formal contexts (possibly enriched, e.g. with additional relations on them) would
be useful in relating these frameworks both at a theoretical and at a practical
level. Proposals to connect FCA and DL have been made, in which concept
lattices serve as models for DL concepts. Shilov and Han [21] interpret the pos-
itive fragment of ALC concept names over concept lattices and show that this
interpretation is compatible with standard Kripke models for ALC. A similar
approach is used by Wrum [22] in which complete semantics for the (full) Lam-
bek calculus is defined on concept lattices. The approach of the present paper
for defining and interpreting non-distributive description logic and modal logic
in relation with concept lattices with operators differs from the approaches men-
tioned above in that it is based on duality-theoretic insights (cf. [10]). This allows
us not only to show that the DL framework introduced in the present paper is
consistent with the standard DL setting and its interpretation on Kripke models,
but also to show that several properties of these logics and the meaning of their
formulas can also be “lifted” from the classical (distributive) to non-distributive
settings (cf. [7,8,12] for extended discussions).

The main technical contribution of this paper is a tableaux algorithm for
checking the consistency of LE-ALC ABoxes. We show that the algorithm is

Non-distributive Description Logic 51

terminating, sound and complete. Interestingly, this algorithm has a polynomial
time complexity, compared to the complexity of the consistency checking of clas-
sical ALC ABoxes which is PSPACE-complete. The algorithm also constructs a
model for the given ABox which is polynomial in size. Thus, it also implies that
the corresponding hybrid modal logic has the finite model property.
Structure of the Paper. In Sect. 2, we give the necessary preliminaries on the DL
ALC, lattice-based modal logics and their relational semantics. In Sect. 3, we
introduce the syntax and the semantics of LE-ALC. In Sect. 4, we introduce a
tableaux algorithm for checking the consistency of LE-ALC ABoxes and show
that it is terminating, sound and complete. In Sect. 5, we conclude and discuss
some future research directions.

2 Preliminaries

2.1 Description Logic ALC
Let C and R be disjoint sets of primitive or atomic concept names and role
names. The set of concept descriptions or compound concept names over C and
R are defined recursively as follows.

C := A | � | ⊥ | C ∧ C | C ∨ C | ¬C | ∃r.C | ∀r.C

where A ∈ C and r ∈ R. An interpretation is a tuple I = (ΔI, ·I) s.t. ΔI is a
non-empty set and ·I maps every concept name A ∈ C to a set AI ⊆ ΔI, and
every role name r ∈ R to a relation rI ⊆ ΔI × ΔI. This mapping extends to all
concept descriptions as follows:

�I = ΔI ⊥I = ∅

(C ∧ D)I = CI ∩ DI (C ∨ D)I = CI ∪ DI

(∃r.C)I = {d ∈ ΔI | ∃e((d, e) ∈ rI & e ∈ CI} (¬C)I = ΔI \ CI

(∀r.C)I = {d ∈ ΔI | ∀e((d, e) ∈ rI ⇒ e ∈ CI}
Let S be a set of individual names disjoint from C and R, such that for every

a in S, aI ∈ ΔI. For any a, b ∈ S, any C ∈ C and r ∈ R, an expression of the
form a : C (resp. (a, b) : r) is an ALC concept assertion (resp. role assertion). A
finite set of ALC concept and role assertions is an ALC ABox. An assertion a : C
(resp. (a, b) : r) is satisfied in an interpretation I if aI ∈ CI (resp. if (aI, bI) ∈ rI).
An ALC TBox is a finite set of expressions of the form C1 ≡ C2. An interpretation
I satisfies C1 ≡ C2 iff CI

1 = CI
2. An ALC knowledge base is a tuple (A, T), where

A is an ALC ABox, and T is an ALC TBox. An interpretation I is a model for
a knowledge base (A, T) iff it satisfies all members of A and T . A knowledge
base (A, T) is consistent if there is a model for it. An ABox A (resp. TBox T)
is consistent if the knowledge base (A, ∅) (resp. (∅, T)) is consistent.

An ALC concept definition in T is an expression of the form A ≡ C where
A is an atomic concept. We say that A directly uses B if there is a concept
definition A ≡ C in T such that B occurs in C. We say that A uses B if A
directly uses B, or if there is a concept name B′ such that A uses B′ and B′

directly uses B. A finite set T of concept definitions is an acyclic TBox if

52 I. van der Berg et al.

1. there is no concept name in T that uses itself,
2. no concept name occurs more than once on the left-hand side of a concept

definition in T .

Checking the consistency of a knowledge base is a key problem in description
logics, usually solved via tableaux algorithms. In the ALC case, checking the
consistency of any knowledge base is EXPTIME-complete while checking the
consistency of a knowledge base with acyclic TBoxes is PSPACE-complete [2].

2.2 Basic Normal Non-distributive Modal Logic and Its Semantics

The logic introduced in this section is part of a family of lattice-based logics,
sometimes referred to as LE-logics (cf. [11]), which have been studied in the
context of a research program on the logical foundations of categorization theory
[8–10,12]. Let Prop be a (countable) set of atomic propositions. The language L
is defined as follows:

ϕ := ⊥ | � | p | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | �ϕ,

where p ∈ Prop, and � ∈ G and � ∈ F for finite sets F and G of unary �-type
(resp. �-type) modal operators. The basic, or minimal normal L-logic is a set
L of sequents ϕ ψ, with ϕ,ψ ∈ L, containing the following axioms for every
� ∈ F and � ∈ G:

p p ⊥ p p p ∨ q p ∧ q p � �� �p ∧ �q �(p ∧ q)
p � q p ∨ q p ∧ q q �⊥ ⊥ �(p ∨ q) �p ∨ �q

and closed under the following inference rules:

ϕ � χ χ � ψ

ϕ � ψ

ϕ � ψ

ϕ (χ/p) � ψ (χ/p)

χ � ϕ χ � ψ

χ � ϕ ∧ ψ

ϕ � χ ψ � χ

ϕ ∨ ψ � χ

ϕ � ψ

�ϕ � �ψ

ϕ � ψ

�ϕ � �ψ

Note that unlike in classical modal logic, we cannot assume that � and �

are inter-definable in LE-logics, hence we take all connectives as primitive.

Relational Semantics. The following notation, notions and facts are from [8,12].
For any binary relation T ⊆ U × V , and any U ′ ⊆ U and V ′ ⊆ V , we let T c

denote the set-theoretic complement of T in U × V , and

T (1)[U ′] := {v | ∀u(u ∈ U ′ ⇒ uTv)} T (0)[V ′] := {u | ∀v(v ∈ V ′ ⇒ uTv)}. (1)

In what follows, we fix two sets A and X, and use a, b (resp. x, y) for elements
of A (resp. X), and B,C,Aj (resp. Y,W,Xj) for subsets of A (resp. of X).

A polarity or formal context (cf. [13]) is a tuple P = (A,X, I), where A and
X are sets, and I ⊆ A × X is a binary relation. Intuitively, formal contexts can
be understood as abstract representations of databases [13], so that A and X
represent collections of objects and features, and for any object a and feature x,
the tuple (a, x) belongs to I exactly when object a has feature x.

Non-distributive Description Logic 53

As is well known, for every formal context P = (A,X, I), the pair of maps

(·)↑ : P(A) → P(X) and (·)↓ : P(X) → P(A),

defined by the assignments B↑ := I(1)[B] and Y ↓ := I(0)[Y], form a Galois
connection, and hence induce the closure operators (·)↑↓ and (·)↓↑ on P(A) and
on P(X) respectively. The fixed points of (·)↑↓ and (·)↓↑ are the Galois-stable
sets. A formal concept of a polarity P = (A,X, I) is a tuple c = (B, Y) such
that B ⊆ A and Y ⊆ X, and B = Y ↓ and Y = B↑. The subset B (resp. Y) is
the extension (resp. the intension) of c and is denoted by [[c]] (resp. ([c])). It is
well known (cf. [13]) that the sets B and Y are Galois-stable, and that the set
of formal concepts of a polarity P, with the order defined by

c1 ≤ c2 iff [[c1]] ⊆ [[c2]] iff ([c2]) ⊆ ([c1]),

forms a complete lattice P
+, namely the concept lattice of P.

For the language L defined above, an enriched formal L-context is a tuple
F = (P,R�,R�), where R� = {R� ⊆ A × X | � ∈ G} and R� = {R� ⊆
X × A | � ∈ F} are sets of I-compatible relations, that is, for all � ∈ G, � ∈ F ,
a ∈ A, and x ∈ X, the sets R

(0)
� [x], R

(1)
� [a], R

(0)
� [a], R

(1)
� [x] are Galois-stable in

P. For each � ∈ G and � ∈ F , their associated relations R� and R� provide
their corresponding semantic interpretations as operations [R�] and 〈R�〉 on the
concept lattice P

+ defined as follows: For any c ∈ P
+,

[R�]c = (R(0)
� [([c])], I(1)[R(0)

� [([c])]]) and 〈R�〉c = (I(0)[R(0)
� [[[c]]]], R(0)

� [[[c]]]).

We refer to the algebra F
+ = (P+, {[R�]}�∈G , {〈R�〉}�∈F) as the complex

algebra of F.
A valuation on such an F is a map V : Prop → P

+. For each p ∈ Prop, we
let [[p]] := [[V (p)]] (resp. ([p]) := ([V (p)])) denote the extension (resp. intension) of
the interpretation of p under V .

A model is a tuple M = (F, V) where F = (P,R�,R�) is an enriched formal
context and V is a valuation on F. For every ϕ ∈ L, we let [[ϕ]]M := [[V (ϕ)]]
(resp. ([ϕ])M := ([V (ϕ)])) denote the extension (resp. intension) of the interpreta-
tion of ϕ under the homomorphic extension of V . The following ‘forcing’ relations
can be recursively defined as follows:

M, a � p iff a ∈ [[p]]M M, x � p iff x ∈ ([p])M

M, a � � always M, x � � iff aIx for all a ∈ A
M, x � ⊥ always M, a � ⊥ iff aIx for all x ∈ X
M, a � ϕ ∧ ψ iff M, a � ϕ and M, a � ψ M, x � ϕ ∧ ψ iff (∀a ∈ A) (M, a � ϕ ∧ ψ ⇒ aIx)
M, x � ϕ ∨ ψ iff M, x � ϕ and M, x � ψ M, a � ϕ ∨ ψ iff (∀x ∈ X) (M, x � ϕ ∨ ψ ⇒ aIx).

As to the interpretation of modal formulas, for every � ∈ G and � ∈ F :

M, a � �ϕ iff (∀x ∈ X)(M, x � ϕ ⇒ aR�x) M, x � �ϕ iff (∀a ∈ A)(M, a � �ϕ ⇒ aIx)
M, x � �ϕ iff for all a ∈ A, ifM, a � ϕ then xR�a M, a � �ϕ iff (∀x ∈ X)(M, x � �ϕ ⇒ aIx)

54 I. van der Berg et al.

The definition above ensures that, for any L-formula ϕ,

M, a � ϕ iff a ∈ [[ϕ]]M, and M, x � ϕ iff x ∈ ([ϕ])M.

M |= ϕ ψ iff [[ϕ]]M ⊆ [[ψ]]M iff ([ψ])M ⊆ ([ϕ])M.

The interpretation of the propositional connectives ∨ and ∧ in the framework
described above reproduces the standard notion of join and the meet of formal
concepts used in FCA. The interpretation of the operators � and � is motivated
by algebraic properties and duality theory for modal operators on lattices (cf. [12,
Sect. 3] for an expanded discussion). In [8, Proposition 3.7], it is shown that the
semantics of LE-logics is compatible with Kripke semantics for classical modal
logic, and thus, LE-logics are indeed generalizations of classical modal logic.
This interpretation is further justified in [8, Sect. 4] by noticing that, under
the interpretations of the relation I as aIx iff “object a has feature x” and
R = R� = R−1

� as aRx iff “there is evidence that object a has feature x”, then,
for any concept c, the extents of concepts �c and �c can be interpreted as “the
set of objects which certainly belong to c” (upper approximation), and “the
set of objects which possibly belong to c” (lower approximation) respectively.
Thus, the interpretations of � and � have similar meaning in the LE-logic as in
the classical modal logic. A similar justification regarding similarity of epistemic
interpretations of � in classical and lattice-based modal logics is discussed in [9].
This transfer of meaning of modal axioms from classical modal logic to LE-logics
has been investigated as a general phenomenon in [7, Sect. 4.3], [12].

3 LE Description Logic

In this section, we introduce the non-classical DL LE-ALC, so that LE-ALC
will be in same relation with LE-logic as ALC is with classical modal logic.
This similarity extends to the models we will introduce for LE-ALC: in the
same way as Kripke models of classical modal logic are used as models of ALC,
enriched formal contexts, which provide complete semantics for LE-logic, will
serve as models of LE-ALC. In this specific respect, LE-ALC can be seen as a
generalization of the positive fragment (i.e. the fragment with no negations in
concept names) of ALC in which we do not assume distributivity laws to hold
for concepts. Consequently, the language of LE-ALC contains individuals of two
types, usually interpreted as the objects and features of the given database or
categorization. Let OBJ and FEAT be disjoint sets of individual names for objects
and features.

The set R of the role names for LE-ALC is the union of three disjoint sets
of relations: (1) the singleton set {I | I ⊆ OBJ × FEAT}; (2) a set R� = {R� ⊆
OBJ × FEAT | � ∈ G}; (3) a set R� = {R� ⊆ FEAT × OBJ | � ∈ G}. While I
is intended to be interpreted as the incidence relation of formal concepts, and
encodes information on which objects have which features, the relations in R�

Non-distributive Description Logic 55

and R� encode additional relationships between objects and features (cf. [8] for
an extended discussion).

For any set C of atomic concept names, the language of LE-ALC concepts is:

C := D | C1 ∧ C2 | C1 ∨ C2 | � | ⊥ | 〈R�〉C | [R�]C

where D ∈ C, R� ∈ R� and R� ∈ R�. This language matches the language of
LE-logic, and has an analogous intended interpretation on the complex algebras
of enriched formal contexts (cf. Sect. 2.2). As usual, ∨ and ∧ are to be interpreted
as the smallest common superconcept and the greatest common subconcept as
in FCA. The constants � and ⊥ are to be interpreted as the largest and the
smallest concept, respectively. We do not include ¬C as a valid concept name in
our language, since there is no canonical and natural way to interpret negations
in non-distributive settings.

The concept names 〈R�〉C and [R�]C in LE-ALC are intended to be inter-
preted as the operations 〈R�〉 and [R�] defined by the interpretations of their
corresponding role names in enriched formal contexts, analogously to the way in
which ∃r and ∀r in ALC are interpreted on Kripke frames. We do not use the
symbols ∀r and ∃r in the context of LE-ALC because, as discussed in Sect. 2.2,
the semantic clauses of modal operators in LE-logic use universal quantifiers,
and hence using the same notation verbatim would be ambiguous or misleading.

TBox assertions in LE-ALC are of the shape C1 ≡ C2, where C1 and C2 are
concepts defined as above.1 The ABox assertions are of the form:

aR�x, xR�a, aIx, a : C, x::C, ¬α,

where α is any of the first five ABox terms. We refer to the terms of first three
types as relational terms. The interpretations of the terms a : C and x::C are:
“object a is a member of concept C”, and “feature x is in the description of
concept C”, respectively.

An interpretation for LE-ALC is a tuple I = (F, ·I), where F = (P,R�,R�)
is an enriched formal context, and ·I maps:

1. individual names a ∈ OBJ (resp. x ∈ FEAT), to some aI ∈ A (resp. xI ∈ X);
2. relation names I, R� and R� to relations II, RI

� and RI
� in F;

3. any primitive concept D to DI ∈ F
+, and other concepts as follows:

⊥I = (X↓,X) �I = (A,A↑) (C1 ∧ C2)I = CI
1 ∧ CI

2

(C1 ∨ C2)I = CI
1 ∨ CI

2 ([R�]C)I = [RI
�]CI (〈R�〉C)I = 〈RI

�〉CI

where the operators [RI
�] and 〈RI

�〉 are defined as in Sect. 2.2.
The satisfiability relation for an interpretation I is defined as follows:

1. I |= C1 ≡ C2 iff [[CI
1]] = [[CI

2]] iff ([CI
2]) = ([CI

1]).
1 As is standard in DL (cf. [2] for more details), general concept inclusion of the form

C1 � C2 can be rewritten as concept definition C1 ≡ C2 ∧ C3, where C3 is a new
concept name.

56 I. van der Berg et al.

2. I |= a : C iff aI ∈ [[CI]] and I |= x::C iff xI ∈ ([CI]).
3. I |= aIx (resp. aR�x, xR�a) iff aIIIxI (resp. aIRI

�xI, xIRI
�aI).

4. I |= ¬α, where α is any ABox term, iff I �|= α.

An interpretation I is a model for an LE-ALC knowledge base (A, T) if I |= A
and I |= T .

The framework of LE-ALC formally brings FCA and DL together in two
important ways: (1) the concepts of LE-ALC are naturally interpreted as formal
concepts in FCA; (2) the language of LE-ALC is designed to represent knowledge
and reasoning in the setting of enriched formal contexts.

4 Tableaux Algorithm for ABox of LE-ALC

In this section, we define a tableaux algorithm for checking the consistency of
LE-ALC ABoxes. An LE-ALC ABox A contains a clash iff it contains both β
and ¬β for some relational term β. The expansion rules below are designed so
that the expansion of A will contain a clash iff A is inconsistent. The set sub(C)
of sub-formulas of any LE-ALC concept name C is defined as usual.

A concept name C ′ occurs in A (in symbols: C ′ ∈ A) if C ′ ∈ sub(C) for some
C such that one of the terms a : C, x::C, ¬a : C, or ¬x::C is in A. A constant
b (resp. y) occurs in A (b ∈ A, or y ∈ A), iff some term containing b (resp. y)
occurs in it.

The tableaux algorithm below constructs a model (F, ·I) for every consistent
A, where F = (P,R�,R�) is such that, for any C ∈ A, some aC ∈ A and xC ∈ X
exist such that, for any a ∈ A (resp. any x ∈ X), a ∈ [[CI]] (resp. x ∈ ([C])I) iff
aIxC (resp. aCIx). We call aC and xC the classifying object and the classifying
feature of C, respectively. To make our notation more easily readable, we will
write a�C , x�C (resp. a�C , x�C) instead of a[R�]C , x[R�]C (resp. a〈R�〉C , x〈R�〉C)
Moreover, for every R� ∈ R� and R� ∈ R�, we will also impose the condition
that a ∈ [[[R�]C]] (resp. x ∈ ([〈R�〉C])) iff aR�xC (resp. xR�aC), where aC and
xC are the classifying object and the classifying feature of C, respectively. Note
that we can always assume w.l.o.g. that any consistent ABox A is satisfiable in
a model with classifying objects and features (cf. Theorem3).

Algorithm 1. tableaux algorithm for checking LE-ALC ABox consistency
Input: An LE-ALC ABox A. Output: whether A is inconsistent.

1: if there is a clash in A then return “inconsistent”.
2: if no expansion rule is applicable to A then return “consistent”.
3: pick any applicable expansion rule R, apply R to A and proceed recursively.

Below, we list the expansion rules. The commas in each rule are metalinguistic
conjunctions, hence every tableau is non-branching.

Non-distributive Description Logic 57

Creation rule Basic rule Rules for � and ⊥

For any C ∈ A
create

aC : C, xC :: C

b : C, y :: C
I

bIy
�

b : � ⊥
y :: ⊥

Rules for the logical connectives

b : C1 ∨ C2, y :: C1, y :: C2∨A
bIy

b : C1 ∧ C2 ∧A
b : C1, b : C2

y :: C1 ∨ C2∨X
y :: C1, y :: C2

y :: C1 ∧ C2, b : C1, b : C2 ∧X
bIy

b : [R�]C, y :: C
�

bR�y

y :: 〈R�〉C, b : C
�

yR�b

Adjunction rules

�b : C
adj�

b : [R�]C

�y :: C
adj�〈R�〉C :: y

bR�y
R� �bIy, bI�y

yR�b
R�

�bIy, bI�y

Basic rules for negative assertions Appending rules

¬(b : C)¬b ¬(bIxC)

¬(x :: C) ¬x¬(aCIx)

bIxCxC
b : C

aCIy
aC

y :: C

In rules � and ⊥, b and y are any objects or features occurring in the tableau.
In the adjunction rules the individuals �b, �b, �y, and �y are new and unique
for each relation R� and R�, except for �aC = a�C and �xC = x�C .

The basic rule and the logical rules for the connectives encode the semantics of
the logical connectives in LE-ALC. The creation rule makes sure that, whenever
successful, the algorithm outputs models with classifying object aC and feature
xC for every concept name C ∈ A. The adjunction rules imply that every R� ∈
R� and R� ∈ R� are I-compatible. Appending and negative assertion rules
encode the defining property of classifying objects and features of concepts.

Remark 1 (Branching). Note that no expansion rule above involves branching.
Thus, unlike tableaux algorithms for ALC, Algorithm 1 does not involve any
branching. New elements are added to A only via adjunction and creation rules.

Example 1. Let A = {b : [R�][R�]C1, b : [R�][R�]C2, y::[R�](C1 ∧ C2),
¬(bR�y)}. It is easy to check that A has no LE-ALC model. The algorithm
applies on A as follows (We only do the partial expansion to show that the clash
exists):

Rule Premises Added terms

Creation x�C1::[R�]C1, x�C2::[R�]C2, xC1∧C2 ::C1 ∧ C2

� x�Ci
::[R�]Ci, b : [R�][R�]Ci bR�x�Ci

i = 1, 2

R� bR�x�Ci
�bIx�Ci

i = 1, 2

Appending �bIx�Ci
�b : [R�]Ci i = 1, 2

By applying the same process to �b : [R�]C1, �b : [R�]C2 and x�C1 ::[R�]C1,
x�C2 ::[R�]C2, we add the terms ��b : C1 and ��b : C2 to the tableau. Then the
further tableau expansion is as follows:

58 I. van der Berg et al.

Rule Premises Added terms

∧X xC1∧C2 ::C1 ∧ C2, ��b : C1, ��b : C2, ��b : C1 ��bIxC1∧C2

Appending ��bIxC1∧C2 ��b : C1 ∧ C2

adj� (twice) ��b : C1 ∧ C2 b : [R�][R�](C1 ∧ C2)
� b : [R�][R�](C1 ∧ C2), y::[R�](C1 ∧ C2) bR�y

Thus, there is a clash between ¬(bR�y) and bR�y in the expansion.

Example 2. Let A = {¬(bIy), y::C1,¬(b : C2), b : C1 ∨ C2, bR�y}. The following
table shows the tableau expansion for A. Let W := {C1, C2, C1 ∨ C2}.

Rule Premises Added terms

Initial ¬(bIy), y::C1, ¬(b : C2), b : C1 ∨ C2, bR�y
Creation aC : C, xC ::C, C ∈ W
Basic aC : C, xC ::C, C ∈ W aCIxC , C ∈ W
Appending aC1IxC1∨C2 , aC2IxC1∨C2 aC1 : C1 ∨ C2, aC2 : C1 ∨ C2

∨X xC1∨C2 ::C1 ∨ C2 xC1∨C2 ::C1, xC1∨C2 ::C2

Basic aC1 ::C1 ∨ C2, xC1∨C2 ::C1 aC1IxC1∨C2

Basic aC2 ::C1 ∨ C2, xC1∨C2 ::C1 aC2IxC1∨C2

R� bR�y �bIy, bI�y
¬b ¬(b : C1) ¬(bIxC2)

Note that no expansion rule is applicable anymore. It is clear that the
tableau does not contain any clashes. Thus, this ABox has a model. By the
procedure described in Sect. 4.2, this model is given by R� = {R�},R� =
{R�}, A = {aC1 , aC2 , aC1∨C2 , b,�b}, X = {xC1 , xC2 , xC1∨C2 , y,�y}, I =
{(aC , xC)C∈W , (aC1 , xC1∨C2), (aC2 , xC1∨C2), (�b, y), (b,�y)}, R� = {(b, y)},
R� = ∅.

4.1 Termination of the Tableaux Algorithm

In this section, we show that Algorithm 1 always terminates for any finite LE-
ALC ABox A. Since no rule branches out, we only need to check that the number
of new individuals added by the expansion rules is finite. Note that the only
rules for adding new individuals are the creation and adjunction rules. The
creation rules add one new object and feature for every concept C occurring in
the expansion of A. Thus, it is enough to show that the number of individuals
and new concepts added by applying adjunction rules is finite. To do so, we will
show that any individual constant introduced by means of any adjunction rule
will contain only finitely many modal operators applied to a constant occurring
in A or added by the creation rule and any new concept name added will contain
finitely many � and � operators applied to a concept occurring in A.

Definition 1. The �-depth �D and �-depth �D of C is defined as follows:

Non-distributive Description Logic 59

1. if C is an atomic concept, then �D(C) = �D(C) = 0;
2. �D(〈R�〉C) = �D(C) + 1 and �D(〈R�〉C) = �D(C);
3. �D([R�]C) = �D(C) and �D([R�]C) = �D(C) + 1;
4. �D(C1 ∨ C2) = max(�D(C1),�D(C2)) and �D(C1 ∨ C2) = min(�D(C1),

�D(C2));
5. �D(C1 ∧ C2) = min(�D(C1),�D(C2)) and �D(C1 ∧ C2) = max(�D(C1),

�D(C2)).

Definition 2. The �-depth �D and �-depth �D of any constants b and y are:

1. if b, y ∈ A, �D(b) = �D(b) = �D(y) = �D(y) = 0;
2. �D(aC) = �D(xC) = 0, �D(aC) = −�D(C), and �D(xC) = −�D(C);
3. �D(�b) = �D(b) + 1, �D(�b) = �D(b), �D(�b) = �D(b), �D(�b) = �D(b) − 1;
4. �D(�y) = �D(y) − 1, �D(�y) = �D(y), �D(�y) = �D(y), �D(�y) = �D(y) + 1.

The following lemma is key to give bounds on the �-depth and �-depth of
new concept names added in a tableau expansion.

Lemma 1. For any individual names b, y and for any R� ∈ R�, R� ∈ R�,

1. If bR�y is added to a tableau expansion, but bR�y �∈ A, then b : [R�]C and
y::C already occur in a previous expansion of A for some C.

2. If yR�b is added to a tableau expansion, but yR�b �∈ A, then y::〈R�〉C and
b : C already occur in a previous expansion of A for some C.

3. If bIy is added to a tableau expansion by any rule other than the adjunction
rules R� or R� applied to some term occurring in A, then the tableau can
(and hence, if A is consistent, it will at some point) be expanded with the
terms b : C and y::C (in zero or more steps) for some C.

4. If bIy is added to the expansion as described in the previous item, then either:
(i) The terms b : C and y::C ′ occur in some previous expansion of A for

some C, C ′ such that �D(C) = �D(C ′) and �D(C) = �D(C ′).
(ii) b = �d (resp. b = �d) for some d, and the terms d : [R�]C and y::C

(resp. y::〈R�〉C and b : C) occur in some previous expansion of A for
some C.

(iii) y = �w (resp. y = �w) for some w, and the terms w::〈R�〉C and b : C
(resp. b : [R�]C and w::C) occur in some previous expansion of A for
some C.

5. If b : C is added to the tableau by some expansion rule, there is d : C ′ s.t.
(i) d : C ′ ∈ A or is added by applying the creation rule.
(ii) b is obtained by applying some finite combination of � and � to d.
(iii) �D(C′) + �D(d) ≤ �D(C) + �D(b), and �D(C) + �D(b) ≤ �D(C′) + �D(d).
6. If y::C is added to the tableau by some expansion rule, there is w::C ′ s.t.
(i) w::C ′ ∈ A or is added by applying the creation rule.
(ii) y is obtained by applying some finite combination of � and � to w.
(iii) �D(C)+ �D(y) ≤ �D(C′)+ �D(w), and �D(C′)+ �D(w) ≤ �D(C)+ �D(y).

60 I. van der Berg et al.

Proof. Items 1 and 2 follow from the observation that new terms of the type
bR�y and yR�b are only added through the expansion rules for terms of the
forms b : [R�]C and y::〈R�〉C, respectively.

For item 3, the cases where bIy is introduced with the expansion rules for
b : C or y::C are straightforward. If the expansion rule for y::C1 ∧ C2 is applied,
then from the term xC1∧C2 ::C1 ∧ C2 we can get bIxC1∧C2 (since both b : C1 and
b : C2 must be present), finally obtaining b : C1 ∧ C2 from the appending rule.
The b : C1 ∨ C2 case is analogous. The only other rule that can add bIy is the
adjunction rule. However, note that this can only happen if yR�b or bR�y is
present. By item 1, if the term bR�y is added then b : [R�]C and y::C are in the
tableau and it also adds the terms �bIy and bI�y. Note that since b : [R�]C and
y::C are in the tableau, �b : C and �y::[R�]C must also be in it. The first term
can be obtained from b : [R�]C adding bR�xC to the tableau and applying the
adjunction rule and then the appending rule. Using the fact that a�C : [R�]C
is in the tableau after applying the creation rule, �y::[R�]C can be obtained
similarly. Therefore, the required condition is satisfied for both �bIy and bI�y.
We can deal with the terms of the form yR�b analogously.

For item 4, the only non-trivial case is when �bIy, bI�y or �bIy, bI�y are
added via an adjunction rule. In the first case, bR�y must be present, meaning
that item 1 is applicable and hence for some C, both b : [R�]C and y::C appear
in the tableau, satisfying the thesis. The other case is treated analogously.

We prove items 5 and 6 by simultaneous induction on the number of expan-
sion rules applied. The rules which can add new terms of the form b : C and
y::C are the expansion rules for terms of the form b : C1 ∧ C2, y::C1 ∨ C2, the
appending rules, and the adjunction rules.

If b : C is obtained from b : C ∧ C ′, either the latter is present in the original
tableau and the thesis follows trivially, or the induction hypothesis applies and
it follows by transitivity. The case where y::C comes from y::C ∨C ′ is analogous.

If b : [R�]C is obtained from �b : C via an adjunction rule, then it suffices to
apply the induction hypothesis to �b : C, noticing that no black operators can
appear in the starting tableau. The adjunction case for y::〈R�〉C is similar.

Without loss of generality, we only treat the case where the appending rule
is used to add a term of the form b : C. Notice that for the appending rule to be
applicable we must have bIxC in the tableau. Then by item 4, either:

(i) There exist terms b : C1 and xC ::C2 in the tableau such that �D(C1) =
�D(C2) and �D(C1) = �D(C2).

(ii) b = �d (resp. b = �d) for some d, and there exist terms d : [R�]C2 and
xC ::C2 (resp. xC ::〈R�〉C2 and b : C2) in the tableau for some C2.

(iii) xC = �w (resp. xC = �w) for some w, and there exist terms w::〈R�〉C2

and b : C2 (resp. b : [R�]C2 and w::C2) in the tableau for some C2.

In case (i), if C ≡ C2, the thesis follows easily, else we apply the induction
hypothesis to xC ::C2 to find a term w::C ′

2 in the original tableau such that

�D(C1) = �D(C2) + �D(xC) ≤ �D(C ′
2) + �D(w), (2)

Non-distributive Description Logic 61

�D(C ′
2) + �D(w) ≤ �D(C2) + �D(xC) = �D(C1) − �D(C), (3)

where xC is obtained by applying n �-operators to w for some n (note that xC

can not be obtained by application of �-operators). Thus, we have w = xC3

such that C = [R�]1 · · · [R�]nC3. Since xC3 ::C
′
2 is in the original tableau, it

must have been added by a creation rule, meaning that C ′
2 ≡ C3. Thus, we have

�D(w) = −�D(C ′
2), �D(w) = 0, �D(C ′

2) = �D(C), and �D(C ′
2) = �D(C) − n.

Using these equalities in (3) and (2) we obtain

�D(C1) + �D(b) ≤ �D(C) + �D(b) and �D(C) + �D(b) ≤ �D(C1) + �D(b).

Thus, if b : C1 ∈ A, then it is the witness we needed, otherwise it is sufficient to
apply the induction hypothesis to b : C1, and the result follows by transitivity.

In case (ii), suppose d : [R�]C2 and xC ::C2 are both in the tableau. If C ≡ C2,
then the proof follows easily applying the induction hypothesis once to b : C2 if it
is not in the original tableau. Otherwise, we can apply the induction hypothesis
to xC ::〈R�〉C2, obtaining, by the same argument as in case (i), �D(C2) ≤ �D(C)
and �D(C) ≤ �D(C2). Therefore,
�D([R�]C2)+�D(d) = �D(C2)+�D(d) = �D(C2)+�D(�d) ≤ �D(C)+�D(b),
�D(C) + �D(b) ≤ �D(C2) + �D(�d) = �D(C2) + �D(d) + 1 = �D([R�]C2) +
�D(d).

Thus, if d : [R�]C2 ∈ A, then it is the witness we need; otherwise, it is
sufficient to apply the induction hypothesis a second time to d : [R�]C2, and the
result then follows by transitivity. The proof for the remaining subcase, where
b : C ′ and xC ::〈R�〉C ′ are both present in the tableau, is done similarly.

The proof for case (iii) is analogous to (ii) and therefore omitted.

Definition 3. The �-depth (resp. �-depth) of an ABox A is
�D(A) := max{�D(C ′) | C ′ ∈ A} (resp. �D(A) := max{�D(C ′) | C ′ ∈ A}).

Corollary 1. Let C be any concept name added to the tableau expansion at
some step. Then �D(C) ≤ �D(A), and �D(C) ≤ �D(A).

Proof. By item 5 of Lemma 1, for any b : C added to the tableau we must
have another term d : C ′ in A or added by a creation rule, such that �D(C) ≤
�D(C)+�D(b) ≤ �D(C ′)+�D(d) = �D(C ′). The first inequality holds because
�D(b) is always non-negative, and the equality follows from the fact that, as d is
in the original tableau or added by a creation rule, its �-depth is zero. The proof
for the �-depth can be shown in a similar manner using item 6 of Lemma 1.

Definition 4. For any concept ABox term of the form t ≡ a : C or t ≡ x::C,
size(t) = 1+ |sub(C)|. For any relational term β, size(β) = 2. For any LE-ALC
ABox A, size(A) =

∑
t∈A size(t).

Theorem 1 (Termination). For any ABox A, the tableaux algorithm1 ter-
minates in a finite number of steps which is polynomial in size(A).

Proof. New individuals are added to the tableau only in the following ways:

62 I. van der Berg et al.

(1) individuals of the form aC or xC can be added by creation rules;
(2) individuals of the form �y, �y, �b, and �b can be added through the expan-

sions rules for bR�x and yR�a.

As to (1), by Corollary 1, the �-depth (resp. �-depth) of any C appearing in
an expansion of A is bounded by �D(A) (resp. �D(A)). Moreover, no new
propositional connective is ever added to create a new concept name in any of the
rules. Therefore, the total number of concept names occurring in an expansion of
A is bounded by size(A)∗(�D(A)+�D(A)). Thus, only finitely many constants
of type (1) can be added.
For (2), for any individual name b added by some expansion rule, b occurs in
b : C for some C. By Lemma 1 (5), there is a term d : C ′ ∈ A s.t.

�D(b) + �D(C) ≤ �D(d) + �D(C ′) = �D(C ′).

Therefore, �D(b) is bounded by �D(A). On the other hand, by item 6 of the
same lemma we also have 0 ≤ �D(C ′) + �D(d) ≤ �D(C) + �D(b).

The first inequality follows from the fact that d ∈ A, and thus �D(d) = 0
or d = aC′ , and thus �D(d) = −�D(C ′). Therefore, we must have −�D(C) ≤
�D(b), meaning that �D(b) is bounded below by −�D(A). Thus, the number
of connectives � and � in b is bounded by �D(A) + �D(A). Repeating the
same argument for the individual names of type y, the total number of new
constant names occurring in an expansion of A is bounded by size(A)∗(�D(A)+
�D(A)). Thus, only finitely many constants of type (2) are added. Overall, the
size of the tableau expansion (and hence the model) is O((size(A) ∗ (�D(A) +
�D(A))2 ∗ (|R�| + |R�|)). Since the tableaux algorithm for LE-ALC does not
involve any branching, the above theorem implies that the time complexity of
checking the consistency of an LE-ALC ABox A using the tableaux algorithm
is Poly(size(A)).

4.2 Soundness of the Tableau Algorithm

For any consistent ABox A, we let its completion A be its maximal expansion
(which exists due to termination). If there is no clash in A, we construct a model
(F, ·I) where A and X are the sets of names of objects and features occurring
in the expansion, and for any a ∈ A, x ∈ X, and any role names R� ∈ R�,
R� ∈ R� we have aIx, aR�x, xR�a iff such relational terms explicitly occur
in A. Let F = (A,X, I,R�,R�) be the relational structure obtained in this
manner. We define an interpretation I on it as follows. For any object name a,
and feature name x, we let aI := a and xI := x. For any atomic concept D, we
define DI = (xD

↓, aD
↑). Next, we show that I is a valid interpretation for LE-

ALC. To this end, we need to show that F is an enriched formal context, i.e. that
all R� and R� are I-compatible, and that DI is a concept in the concept lattice
P

+ of P = (A,X, I). The latter condition is shown in the next lemma, and the
former in the subsequent one.

Lemma 2. x↓↑
D = a↑

D and a↑↓
D = x↓

D for any D ∈ C.

Non-distributive Description Logic 63

Proof. By the creation rules, we always have aD : D and xD::D in A, meaning
that the tableau can be expanded with aDIxD. Therefore, we always have x↓↑

D ⊆
a↑

D. Suppose aDIy and bIxD for some y ∈ X, b ∈ A. Then by the appending
rules we have y::D ∈ A. This along with bIxD ∈ A immediately implies bIy ∈ A.
Thus, we also have a↑

D ⊆ x↓↑
D . We can prove the other equality analogously.

Lemma 3. All the relations R� ∈ R� and R� ∈ R� in F = (P,R�,R�) are
I-compatible.

Proof. We need to show that for any b ∈ A and y ∈ X, and any � ∈ G and
� ∈ F , (1) R

(0)
� [y] = (�y)↓, (2) R

(1)
� [b] = (�b)↑, (3) R

(0)
� [b] = (�b)↑, and (4)

R
(1)
� [y] = (�y)↓. We prove only (1) and (2). The proofs for (3) and (4) are

analogous.

1. For any b ∈ A, if bR�y ∈ A, then bI�y can be added by the adjunction rule,
and thus R

(0)
� [y] ⊆ (�y)↓. If bR�y /∈ A, then bI�y is not added by applying

adjunction rule to some bR�y in the original tableau. Thus, by item 1 of
Lemma 1, b : C,�y::C ∈ A. Since �y::C can only be added by the appending
rule if aCI�y ∈ A, and since this term can only be introduced by applying
the adjunction rule to the term �aCIy, some concept C ′ exists such that
�aC : C ′, y::C ′ ∈ A (again by item 3 of Lemma 1). Then by the adjunction
rule we have aC : [R�]C ′ ∈ A. Since b : C, x�C′ ::C, and y::C ′ are all in A,
bIx�C′ and b : [R�]C ′ must be in it as well. This, along with y::C ′ ∈ A,
ensures that bR�y is added to the tableau expansion at some step, and we
can conclude that (�y)↓ ⊆ R

(0)
� [y], as desired.

2. For every b ∈ A, if bR�y ∈ A, then by the adjunction rule we add �bIy.
Thus, R

(1)
� [b] ⊆ (�b)↑. If bR�y /∈ A, then by item 1 of Lemma 1, some terms

�b : C and y::C must occur in A for some C. So we have y::C and (by an
adjunction rule) b : [R�]C, and hence bR�y must occur in A. So �bIy ∈ A
implies bR�y ∈ A. Thus, (�b)↑ ⊆ R

(1)
� [b], as desired.

From the lemmas above, it immediately follows that the tuple M = (F, ·I), with
F and ·I defined at the beginning of the present section, is a model for LE-ALC.
The following lemma states that the interpretation of any concept C in the model
M is completely determined by the terms of the form bIxC and aCIy occurring
in the tableau expansion.

Lemma 4. Let M = (F, ·I) be the model defined by the construction above. Then
for any concept C and individuals b, x occurring in A,

(1) b ∈ [[C]]M iff bIxC ∈ A (2) x ∈ ([C])M iff aCIx ∈ A.

Proof. By induction on the complexity of C. The base case (when C is atomic)
is immediate by the construction of the model. For C = �, by rule �, and x�::�
from the creation rule, bIxT ∈ A for any b ∈ A. Therefore, x↓

� = A = [[�]]. For
item 2, for any y, and if aT Iy ∈ A, then by the appending rule y::� ∈ A. Then
by � and the basic rule bIy ∈ A for all b. Thus, ([�]) = A↑ ⊆ a↑

�. Moreover, if
y ∈ ([�]), then bIy ∈ A for any b. In particular aT Iy ∈ A. Thus, ([�]) = a↑

�. The
proof for ⊥ is analogous. For the induction step, we have four cases.

64 I. van der Berg et al.

1. Suppose C = C1 ∨ C2. For the first claim, notice that b ∈ [[C1 ∨ C2]] iff
∀y(y ∈ ([C1]) ∩ ([C2]) ⇒ bIy). By the induction hypothesis, this is equivalent
to

∀y(y::C1 ∈ A & y::C2 ∈ A =⇒ bIy ∈ A).

By the creation rule for C1 ∨ C2, we have xC1∨C2 ::C1 ∨ C2, and consequently
both xC1∨C2 ::C1 and xC1∨C2 ::C2 are added to the tableau. Thus, if the con-
dition y::C1 & y::C2 ⇒ bIy is satisfied for any y in A, then bIxC1∨C2 ∈ A. So
b ∈ [[C1 ∨ C2]] implies that bIxC1∨C2 ∈ A. Conversely, if bIxC1∨C2 ∈ A, then
by the appending rule b : C1 ∨ C2 ∈ A. Thus, for any y::C1 and y::C2 ∈ A,
bIy ∈ A due to rule ∨A. Hence, bIxC1∨C2 ∈ A implies

∀y(y::C1 ∈ A & y::C2 ∈ A =⇒ bIy ∈ A).

As observed before, this is equivalent to y ∈ ([C1 ∨ C2]), as desired.

For the second claim, notice that x ∈ ([C1 ∨ C2]) iff x ∈ ([C1]) and x ∈ ([C2]).
By induction hypothesis, this is equivalent to x::C1 and x::C2 occurring in A.
By the creation rule for C1∨C2, aC1∨C2 : C1∨C2 ∈ A. Since x::C1, x::C2 ∈ A,
we have aC1∨C2Ix ∈ A by the rule ∨X . Conversely, if aC1∨C2Ix ∈ A, then
x::C1 ∨ C2 ∈ A by the appending rules, which implies x::C1, x::C2 ∈ A, or
equivalently, x ∈ ([C1 ∨ C2]).

2. The proof for C = C1 ∧ C2 is similar to the previous one.
3. Suppose C = [R�]C1. For the first claim, note that b ∈ [[[R�]C1]] iff ∀y(y ∈

([C1]) ⇒ bR�y). By induction hypothesis, this is equivalent to ∀y(y::C1 ∈
A ⇒ bR�y ∈ A). Since xC1 ::C1 ∈ A, by the creation rule for C1, it follows
that bR�xC1 ∈ A. By the adjunction rule, this implies bI�xC1 = bIx�C1 ∈ A.
Conversely, if bIx�C1 ∈ A, then by the appending rule also b : [R�]C1 ∈ A.
That is, for any y, if y::C1 ∈ A, then bR�y ∈ A by the expansion rule for �.
As observed before, this implication is equivalent to b ∈ [[[R�]C1]], as desired.

For the second claim, notice that y ∈ ([[R�]C1]) iff ∀b(b ∈ [R�]C1 ⇒ bIy).
Equivalently (as proved previously), for all b, if b : [R�]C1 ∈ A, implies
bIy ∈ A. Combining this with the fact that the creation rule for [R�]C1

implies a�C1 ::[R�]C1 ∈ A, this implies that a�C1Iy ∈ A as well. Conversely,
suppose a�C1Iy ∈ A. Then for any b, if b : [R�]C1 ∈ A, then bIy ∈ A. This
is equivalent to y ∈ ([[R�]C1]).

4. The proof for C = 〈R�〉C1 is similar to the previous one.

Theorem 2 (Soundness). The model M = (F, ·I) defined above satisfies the
ABox A.

Proof. We proceed by cases.

1. By construction, M satisfies all terms of the form bR�y, bIy, or yR�b in A.
2. By construction, any relational term is satisfied by M iff it explicitly occurs in

A. Thus, either M satisfies all terms of the form ¬(bR�y), ¬(bIy), or ¬(yR�b)
occurring in A, or some expansion of A contains a clash.

Non-distributive Description Logic 65

3. For the terms of the form b : C, y::C, ¬(b : C), or ¬(y::C), we have b ∈ [[C]]
iff bIxC ∈ A, and y ∈ ([C]) iff aCIy ∈ A (Lemma 4). For any b : C, y::C,
¬(b : C), or ¬(y::C) occurring in A, we respectively add bIxC , aCIy, ¬(bIxC),
or ¬(aCIy) to A via the expansion rules, and thus M satisfies the constraints.

The following corollary is an immediate consequence of the termination and
soundness of the tableau procedure.

Corollary 2 (Finite Model Property). For any consistent LE-ALC ABox
A, some model of A exists the size of which is polynomial in size(A).

Proof. The model M of Theorem 2 is the required witness. The polynomial
bound on the size of M follows from the proof of Theorem1.

4.3 Completeness of the Tableau Algorithm

In this section, we prove the completeness of the tableau algorithm. The following
lemma is key to this end, since it shows that every model for an LE-ALC ABox
can be extended to a model with classifying object and features.

Lemma 5. For any ABox A, any model M = (F, ·I) of A can be extended to
a model M ′ = (F′, ·I′

) such that F
′ = (A′,X ′, I ′, {R′

�}�∈G , {R′
�}�∈F), A ⊆ A′

and X ⊆ X ′, and moreover for every � ∈ G and � ∈ F :

1. There exists aC ∈ A′ and xC ∈ X ′ such that:

CI′
= (I ′(0)[xI′

C], I ′(1)[aI′
C]), aI′

C ∈ [[CI′
]], xI′

C ∈ ([CI′
]), (4)

2. For every individual b in A there exist �b and �b in A′ such that:

I ′(1)[�b] = R
′(1)
� [bI′

] and I ′(1)[�b] = R
′(0)
� [bI′

], (5)

3. For every individual y in X there exist �y and �y in X ′ such that:

I ′(0)[�y] = R
′(1)
� [yI′

] and I ′(0)[�y] = R
′(0)
� [yI′

]. (6)

4. For any C, [[CI]] = [[CI′
]] ∩ A and ([CI]) = ([CI′

]) ∩ X.

Proof. Fix � ∈ G and � ∈ F . Let M ′ be defined as follows. For every concept
C, we add new elements aC and xC to A and X (respectively) to obtain the sets
A′ and X ′. For any J ∈ {I,R�}, any a ∈ A′ and x ∈ X ′, we set aJ ′x iff one of
the following holds:

1. a ∈ A, x ∈ X, and aJx;
2. x ∈ X, and a = aC for some concept C, and bJx for all b ∈ [[CI]];
3. a ∈ A, and x = xC for some concept C, and aJy for all y ∈ ([CI]);
4. a = aC1 and x = xC2 for some C1, C2, and bJy for all b ∈ [[CI

1]], and y ∈ ([CI
2]).

We set xR′
�a iff one of the following holds:

66 I. van der Berg et al.

1. a ∈ A, x ∈ X, and xR�a;
2. x ∈ X, and a = aC for some concept C, and xR�b for all b ∈ [[CI]];
3. a ∈ A, and x = xC for some concept C, and yR�a for all y ∈ ([CI]);
4. a = aC1 and x = xC2 for some C1, C2, and yR�b for all b ∈ [[CI

1]], y ∈ ([CI
2]).

For any b ∈ A, y ∈ X, let �b = a�(cl(b)), �b = a�(cl(b)), �y = x�(cl(y)), and
�y = x�(cl(y)), where cl(b) (resp. cl(y)) is the smallest concept generated by b

(resp. y). For any C, let CI′
= (I ′(0)[xC], I ′(1)[aC]). Then M ′ is as required.

Theorem 3 (Completeness). Let A be a consistent ABox and A′ be obtained
via the application of any expansion rule applied to A. Then A′ is also consistent.

Proof. If A is consistent, by Lemma 5, a model M ′ of A exists which satisfies
(4), (5) and (6). The statement follows from the fact that any term added by
any expansion rule is satisfied by M ′ where we interpret aC , xC , �b, �b, �y, �y
as in Lemma 5.

Remark 2. The algorithm can easily be extended to acyclic TBoxes, via the
unravelling technique (cf. [3] for details).

5 Conclusion and Future Work

In this paper, we define a two-sorted non-distributive description logic LE-ALC
to describe and reason about formal concepts arising from (enriched) formal
contexts from FCA. We describe ABox and TBox terms for the logic and define
a tableaux algorithm for it. This tableaux algorithm decides the consistency of
ABoxes and acyclic TBoxes, and provides a procedure to construct a model
when the input is consistent. We show that this algorithm is computationally
more efficient than the tableaux algorithm for ALC.

This work can be extended in several interesting directions.

Dealing with Cyclic TBoxes and RBox Axioms. In this paper, we introduced a
tableaux algorithm only for knowledge bases with acyclic TBoxes. We conjecture
that the following statement holds of general (i.e. possibly cyclic) TBoxes.
Conjecture. The tableaux algorithm introduced in this paper can be extended to
check the consistency of any knowledge base (A, T) (with possibly cyclic TBox
axioms) in time polynomial in size(A ∪ T).

Developing such an algorithm is a research direction we are currently pur-
suing. Another aspect we intend to develop in future work concerns giving a
complete axiomatization for LE-ALC. RBox axioms are used in description log-
ics to describe the relationship between different relations in knowledge bases
and the properties of these relations such as reflexivity, symmetry, and transi-
tivity. It would be interesting to see if it is possible to obtain necessary and/or
sufficient conditions on the shape of RBox axioms for which a tableaux algorithm
can be obtained. This has an interesting relationship with the problem in LE-
logic of providing computationally efficient proof systems for various extensions
of LE-logic in a modular manner [5,16].

Non-distributive Description Logic 67

Generalizing to Other Semantic Frameworks. The non-distributive DL intro-
duced in this paper is semantically motivated by a relational semantics for LE-
logics which establishes a link with FCA. A different semantics for the same
logic, referred to as graph-based semantics [12], provides another interpretation
of the same logic as a logic suitable for evidential and hyper-constructivist rea-
soning. In the future, we intend to develop description logics for reasoning in
the framework of graph-based semantics, to appropriately model evidential and
hyper-constructivist settings.

Generalizing to More Expressive Description Logics. The DL LE-ALC is the
non-distributive counterpart of ALC. A natural direction for further research is
to explore the non-distributive counterparts of extensions of ALC such as ALCI
and ALCIN .

Description Logic and Formal Concept Analysis. The relationship between FCA
and DL has been studied and used in several applications [1,4,17]. The frame-
work of LE-ALC formally brings FCA and DL together, both because its con-
cepts are naturally interpreted as formal concepts in FCA, and because its lan-
guage is designed to represent knowledge and reasoning in enriched formal con-
texts. Thus, these results pave the way to the possibility of establishing a closer
and more formally explicit connection between FCA and DL, and of using this
connection in theory and applications.

References

1. Atif, J., Hudelot, C., Bloch, I.: Explanatory reasoning for image understanding
using formal concept analysis and description logics. IEEE Trans. Syst. Man
Cybern. Syst. 44(5), 552–570 (2014)

2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

3. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logic. Cambridge University Press, Cambridge (2017)

4. Baader, F., Sertkaya, B.: Applying formal concept analysis to description logics.
In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 261–286. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24651-0 24

5. van der Berg, I., De Domenico, A., Greco, G., Manoorkar, K.B., Palmigiano, A.,
Panettiere, M.: Labelled calculi for the logics of rough concepts. In: Banerjee, M.,
Sreejith, A.V. (eds.) Logic and Its Applications, ICLA 2023. LNCS, vol. 13963, pp.
172–188. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26689-8 13

6. Borgwardt, S., Peñaloza, R.: Fuzzy description logics – a survey. In: Moral, S.,
Pivert, O., Sánchez, D., Maŕın, N. (eds.) SUM 2017. LNCS (LNAI), vol. 10564,
pp. 31–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67582-4 3

7. Conradie, W., et al.: Modal reduction principles across relational semantics. arXiv
preprint arXiv:2202.00899 (2022)

8. Conradie, W., et al.: Rough concepts. Inf. Sci. 561, 371–413 (2021)

https://doi.org/10.1007/978-3-540-24651-0_24
https://doi.org/10.1007/978-3-031-26689-8_13
https://doi.org/10.1007/978-3-319-67582-4_3
http://arxiv.org/abs/2202.00899

68 I. van der Berg et al.

9. Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg,
N.M.: Toward an epistemic-logical theory of categorization. In: Electronic Proceed-
ings in Theoretical Computer Science, EPTCS 251 (2017)

10. Conradie, W., Frittella, S., Palmigiano, A., Piazzai, M., Tzimoulis, A., Wijnberg,
N.M.: Categories: how i learned to stop worrying and love two sorts. In: Väänänen,
J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 145–
164. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52921-8 10

11. Conradie, W., Palmigiano, A.: Algorithmic correspondence and canonicity for non-
distributive logics. Ann. Pure Appl. Logic 170(9), 923–974 (2019)

12. Conradie, W., Palmigiano, A., Robinson, C., Wijnberg, N.: Non-distributive logics:
from semantics to meaning. In: Rezus, A. (ed.) Contemporary Logic and Comput-
ing, Landscapes in Logic, vol. 1, pp. 38–86. College Publications (2020)

13. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-59830-2

14. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Semantic characterization of
rational closure: from propositional logic to description logics. Artif. Intell. 226,
1–33 (2015)

15. Giordano, L., Gliozzi, V., Theseider Dupré, D.: A conditional, a fuzzy and a prob-
abilistic interpretation of self-organizing maps. J. Log. Comput. 32(2), 178–205
(2022)

16. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence
as a proof-theoretic tool. J. Log. Comput. 28(7), 1367–1442 (2016)

17. Jiang, Y.: Semantifying formal concept analysis using description logics. Knowl.
Based Syst. 186, 104967 (2019)

18. Lieto, A., Pozzato, G.L.: A description logic framework for commonsense concep-
tual combination integrating typicality, probabilities and cognitive heuristics. J.
Exp. Theoret. Artif. Intell. 32(5), 769–804 (2020)

19. Ma, Z.M., Zhang, F., Wang, H., Yan, L.: An overview of fuzzy description logics
for the semantic web. Knowl. Eng. Rev. 28(1), 1–34 (2013)

20. de Paiva, V., Haeusler, E.H., Rademaker, A.: Constructive description logics
hybrid-style. Electron. Notes Theoret. Comput. Sci. 273, 21–31 (2011)

21. Shilov, N.V., Han, S.Y.: A proposal of description logic on concept lattices. In:
Proceedings of the Fifth International Conference on Concept Lattices and their
Applications, pp. 165–176 (2007)

22. Wurm, C.: Language-theoretic and finite relation models for the (full) Lambek
calculus. J. Logic Lang. Inform. 26(2), 179–214 (2017). https://doi.org/10.1007/
s10849-017-9249-z

https://doi.org/10.1007/978-3-662-52921-8_10
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1007/s10849-017-9249-z
https://doi.org/10.1007/s10849-017-9249-z

Non-distributive Description Logic 69

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Sequent Calculi

A New Calculus for Intuitionistic Strong
Löb Logic: Strong Termination and

Cut-Elimination, Formalised

Ian Shillito1(B), Iris van der Giessen2, Rajeev Goré3,4, and Rosalie Iemhoff5

1 Australian National University, Canberra, Australia
ian.shillito@anu.edu.au

2 University of Birmingham, Birmingham, UK
3 Technical University of Vienna, Vienna, Austria

4 Polish Academy of Science, Warsaw, Poland
5 Utrecht University, Utrecht, The Netherlands

Abstract. We provide a new sequent calculus that enjoys syntactic cut-
elimination and strongly terminating backward proof search for the intu-
itionistic Strong Löb logic iSL, an intuitionistic modal logic with a prov-
ability interpretation. A novel measure on sequents is used to prove both
the termination of the naive backward proof search strategy, and the
admissibility of cut in a syntactic and direct way, leading to a straight-
forward cut-elimination procedure. All proofs have been formalised in
the interactive theorem prover Coq.

Keywords: Intuitionistic provability logic · Cut-elimination ·
Backward proof search · Interactive theorem proving · Proof theory

1 Introduction

Gödel-Löb logic GL extends classical modal logic K with the Gödel-Löb axiom
(ϕ → ϕ) → ϕ. GL is the provability logic of Peano Arithmetic PA, i.e. it

consists of all modal formulas that are true under any arithmetical interpretation
where ϕ means “ϕ is provable in PA” (expressed in the language of PA).

An intuitionistic version of GL is iGL and the intuitionistic counterpart of PA
is Heyting Arithmetic HA. For a long time, the provability logic of HA was an
open problem and was only known to be an extension of iGL. However, Mojtahedi
claims to have found a solution in a preprint [34] currently under review.

Several other logics also have provability interpretations, such as modalised
Heyting calculus mHC, Kuznetsov-Muravitsky logic KM, and intuitionistic
Strong Löb logic iSL [14,30,32,35]. All these intuitionistic modal logics except
mHC include the Gödel-Löb axiom and all except iGL contain the so-called com-
pleteness axiom ϕ → ϕ.

Important to note is that these logics are defined over the language with
only the -modality and without . In classical modal logic, is dual to and
reads as consistency in the provability interpretation. However, for intuitionistic
c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 73–93, 2023.
https://doi.org/10.1007/978-3-031-43513-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-43513-3_5

74 I. Shillito et al.

modal logics, in general, and are not interdefinable and several choices
can be made. Interestingly, intuitionistic modal logics defined over the language
with only the already reveal intrinsic intuitionistic characters. Important for
us is the aforementioned completeness principle, also known as the coreflection
principle. It trivializes in a classical setting, but has interesting intuitionistic
readings. Indeed, in our setting of provability, ϕ → ϕ reads as completeness:
“if ϕ is true then ϕ is provable” (see [45] for a discussion on the completeness
principle in extensions of Heyting Arithmetic). The coreflection principle also
appears in intuitionistic epistemic logic and lax logic (for overviews see, e.g.,
[18,32]).

Here, we consider iSL, the minimal intuitionistic modal logic with both the
Gödel-Löb axiom and the completeness axiom, which can also be axiomatised
over intuitionistic modal logic iK by the Strong Löb axiom (ϕ → ϕ) → ϕ.
The logic iSL is the provability logic of an extension of Heyting Arithmetic with
respect to so-called slow provability [46] and plays an important role in the
Σ1-provability logic of HA [3].

The Gödel-Löb axiom characterises transitive converse well-founded Kripke
frames for GL and also for the birelational frames for iGL, iSL, and KM. Inter-
estingly, for iSL, mHC, and KM, the modal relation is a part of the intuitionistic
relation. This semantics plays an important role in the study of iSL, e.g. in the
characterisation of its admissible rules [19]. A natural deduction system for iSL
can be found in [7]. The proof systems that we focus on here are sequent calculi.

From a proof-theoretic perspective, the “diagonal formula” ϕ in the modal
(GLR) rule for GL causes difficulties for direct cut-elimination because the stan-
dard induction on the size of the cut-formula and the height fail. Cut-elimination
is highly nontrivial as witnessed by decades of unsuccessful attempts and con-
troversies before the proof by Valentini [44] was finally shown to be correct [23].

Γ, Γ, ϕ ⇒ ϕ
(GLR)

Φ, Γ ⇒ ϕ,Δ

Γ,ϕ → ψ ⇒ ϕ Γ,ψ ⇒ ϕ
(→Li)

Γ, ϕ → ψ ⇒ ϕ

In backward proof search, the (GLR) rule causes loops because Γ is pre-
served upwards from conclusion to premise. For (GLR), a simple terminating
and complete strategy consists in applying (GLR) only if ϕ �∈ Γ . In sequent
calculi for intuitionistic logic, the traditional (→ Li) rule, shown above right,
can cause backward proof search to go into loops. For termination without loop
check, various authors have independently discovered the sequent calculus G4ip
which replaces the (→ Li) rule with multiple rules, depending on the form of
ϕ [12]. Iemhoff [29] developed G4-like calculi for several intuitionistic modal log-
ics.

Thus, in a sequent calculus for an intuitionistic provability logic, both the
modal rule and left implication rule have the potential to cause loops and
the modal rule can complicate direct cut-elimination! For logic iGL, van der
Giessen and Iemhoff have developed G3iGL and G4iGL [20], providing a direct
cut-elimination procedure for the former. The initial proof of cut-elimination for
G4iGL was indirect, via G3iGL, but Goré and Shillito later formalised direct cut-
elimination using the maximal height of derivations as induction parameter [26].

A New Calculus for Intuitionistic Strong Löb Logic 75

Recently, van der Giessen and Iemhoff [21] developed two sequent calculi,
G3iSL and G4iSL, for iSL for which they provided the analogue results compared
to G3iGL and G4iGL mentioned above. In particular, they show that backward
proof search in G4iSL weakly terminates: there exists a terminating (and com-
plete) backward proof search strategy, namely one similar to the above-described
for logic GL. However, not all strategies terminate on this calculus: the naive
backward proof search strategy, apply any rule in any order, does not.

Here, we present G4iSLt which replaces the G4iSL rules of the top row below,
by the rules in the bottom row. As suggested by van der Giessen and Iemhoff [21],
the new modal rule drops the explicit embedding of transitivity. But crucially,
the new left-implication rule drops both transitivity and contraction on ϕ → ψ
in the left premise. The right premise S = Φ, Γ, ψ ⇒ χ is kept untouched:

Φ, Γ, Γ, ϕ ⇒ ϕ

Φ, Γ ⇒ ϕ

Φ, Γ, Γ, ϕ → ψ, ϕ ⇒ ϕ S

Φ, Γ, ϕ → ψ ⇒ χ

Φ, Γ, ϕ ⇒ ϕ

Φ, Γ ⇒ ϕ

Φ, Γ, ψ, ϕ ⇒ ϕ S

Φ, Γ, ϕ → ψ ⇒ χ

Our results improve on the work of van der Giessen and Iemhoff [21]. First,
our new measure ensures that the naive backward proof search strategy for
our new calculus terminates. This is unusual for sequent calculi for provabil-
ity logics, and especially for intuitionistic provability logics. Second, we prove
direct cut-elimination for G4iSLt using a proof technique similar to the mhd
proof technique [6,24]. Third, all our results are formalised in Coq and can be
found here: https://ianshil.github.io/G4iSLT. We consequently contribute to the
rapidly growing literature of formalised proof theory [1,8,9,15,17,24,26,39]. We
also think that our work sheds light on what one might call proof-theoretic
meta considerations. Namely, it shows the subtle consequences of rule choices on
termination and cut-elimination.

In Sect. 2, we introduce the preliminaries of iSL, including our calculus G4iSLt.
Section 3 presents the admissibility of structural rules in G4iSLt. In Sect. 4, we
prove that backward proof search in G4iSLt strongly terminates. Finally, in
Sect. 5, we directly prove cut-admissibility for G4iSL using a proof technique
similar to the mhd proof technique [6,24].

2 Preliminaries

In this section we successively present the syntax, axiomatic system, Kripke
semantics and sequent calculus for the logic iSL.

2.1 Syntax

Let V = {p, q, r . . . } be a countably infinite set of propositional variables on
which equality is decidable, that is ∀p, q ∈ V, we can decide whether p = q
or-else p �= q. Modal formulae are defined using BNF notation as below:

ϕ:: = p ∈ V | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ → ϕ | ϕ

https://ianshil.github.io/G4iSLT

76 I. Shillito et al.

We use the greek letters ϕ,ψ, χ, δ, . . . for formulae and Γ,Δ,Φ, Ψ . . . for multisets
of formulae. We say that ϕ is a boxed formula if is its main connective. For a
multiset Γ , we define the multiset Γ := { ϕ : ϕ ∈ Γ}. By the unboxing of a
multiset Γ we mean the multiset Γ .

Following Goré et al. [24,26], we encode formulae as an inductive type MPropF
whose base case encodes V as the type nat of natural numbers because nat is
countably infinite and equality is decidable on it. A list of such formulae then
has the type list MPropF. The usual operations on lists “append” and “cons”
are respectively represented by ++ and :: but Coq also allows us to write lists
in infix notation using ;. Thus the terms ϕ1 :: ϕ2 :: ϕ3 :: nil and [ϕ1]
++ [ϕ2] ++ [ϕ3] and [ϕ1 ; ϕ2 ; ϕ3] all encode the list ϕ1, ϕ2, ϕ3.

We straightforwardly extend Dyckhoff’s notion of weight of a formula [11],
defined for the intuitionistic language, to the modal language.

Definition 1. The weight w(ϕ) of a formula ϕ is defined as follows:

w(⊥) = w(p) = 1
w(ψ ∨ χ) = w(ψ → χ) = w(ψ) + w(χ) + 1

w(ψ ∧ χ) = w(ψ) + w(χ) + 2
w(ψ) = w(ψ) + 1

The main motivation behind this weight is to ensure that w(ϕ → (ψ → χ)) <
w((ϕ ∧ ψ) → χ), which is crucial to show termination of naive backward proof
search on the sequent calculus G4ip for intuitionistic logic.

2.2 Axiomatic Systems as Consequence Relations

Traditional Hilbert calculi are designed to capture logics as sets of theorems, that
is sets of the form {ϕ :
 ϕ}. However, when considering logics as consequence
relations these systems are inadequate, and notably lead to historical confusions
about properties such as the deduction theorem [25,27].

Generalised Hilbert calculi manipulate expressions Γ
 ϕ, where Γ is a set of
formulae. They clearly distinguish between the notion of deducibility from a set
of assumptions, versus theoremhood. They are particularly useful for identifying
the appropriate form of deduction theorem holding for a logic [25]. Still, they
correspond to traditional Hilbert calculi when restricted to consecutions of the
shape ∅
 ϕ, as we do here. Thus, we can connect the generalised Hilbert calculus
here to the traditional Hilbert calculus considered by Ardeshir and Mojtahedi [3].

The generalised Hilbert calculus iSLH for iSL, shown in Fig. 1, extends the
one for intuitionistic modal logic iK with the Strong Löb axiom (ϕ → ϕ) → ϕ.
We write Γ
iSLH ϕ if Γ
 ϕ is provable in iSLH.

Note that if we replace the premise of the rule (Nec) by Γ
 ϕ we obtain an
equivalent calculus. This is implied by the completeness axiom ϕ → ϕ and the
holding of the deduction theorem in iSLH [18].

A New Calculus for Intuitionistic Strong Löb Logic 77

Fig. 1. Generalised Hilbert calculus iSLH for iSL

2.3 Kripke Semantics

We now present the Kripke semantics for iSL [3,32] to notably prove soundness
of our sequent calculus G4iSLt, and explain its rules (SLtR) and (→L).

The Kripke semantics of iSL is a restriction of the Kripke semantics for intu-
itionistic modal logics. More precisely, the semantic interpretation of connectives
is preserved, but the class of models is restricted. The models for this logic are
defined below, where for a set W , we write P(W) for the set of all subsets of W .

Definition 2. A Kripke model M for iSL is a tuple (W,≤, R, I), where W is
a non-empty set (of possible worlds), both ≤ (the intuitionistic relation) and R
(the modal relation) are subsets of W × W , and I : V → P(W), which satisfies
the following: ≤ is reflexive and transitive; R is transitive and converse well-
founded; (≤ ◦R) ⊆ R where “◦” is relational composition; R ⊆≤; and for all
p ∈ V and w, v ∈ W , if w ≤ v and w ∈ I(p) then v ∈ I(p).

Note the peculiarity of the models for iSL: R ⊆≤, that is the modal relation
is a subset of the intuitionistic relation. We recall the standard definition of
forcing for intuitionistic modal logics, and show that persistence holds.

Definition 3. Given a Kripke model M = (W,≤, R, I), we define the forcing
relation as follows, where v ≥ w is just w ≤ v:

M, w � p if w ∈ I(p)
M, w � ⊥ never
M, w � ϕ ∧ ψ if M, w � ϕ and M, w � ψ
M, w � ϕ ∨ ψ if M, w � ϕ or M, w � ψ
M, w � ϕ → ψ if ∀v ≥ w. M, v � ϕ implies M, v � ψ
M, w � ϕ if ∀v ∈ W. wRv implies M, v � ϕ

Local consequence is as below where M, w � Γ means ∀ϕ ∈ Γ,M, w � ϕ:

Γ |= ϕ iff ∀M.∀w. (M, w � Γ implies M, w � ϕ)

78 I. Shillito et al.

Lemma 1 (Persistence). For any model M = (W,≤, R, I), formula ϕ and
points w, v ∈ W , if w ≤ v and M, w � ϕ then M, v � ϕ.

Interestingly, as iSL satisfies the finite model property [46] it can also be
characterised by the class of finite frames where R is transitive and irreflexive.

2.4 Sequent Calculus

A sequent is a pair of a finite multiset Γ of formulae and a formula ϕ, denoted
Γ ⇒ ϕ. For a sequent Γ ⇒ ϕ we call Γ the antecedent of the sequent and ϕ the
consequent of the sequent. For multisets Γ and Δ, the multiset sum Γ � Δ is
the multiset whose multiplicity (at each formula) is a sum of the multiplicities
of Γ and Δ. We write Γ,Δ to mean Γ � Δ. For a formula ϕ, we write ϕ, Γ
and Γ, ϕ to mean {ϕ} � Γ . From the formalisation perspective, a pair of a list
of formulae (list MPropF) and a formula MPropF has type (list MPropF) *
MPropF, using the Coq notation * for forming pairs. The latter is the type we
give to sequents in our formalisation, for which we use the macro Seq. Thus the
sequent ϕ1, ϕ2, ϕ3 ⇒ ψ is encoded by the term [ϕ1 ; ϕ2 ; ϕ3] * ψ, which
itself can also be written as the pair ([ϕ1 ; ϕ2 ; ϕ3], ψ). Note that [ϕ1
; ϕ2 ; ϕ3] * ψ is different from [ϕ2 ; ϕ1 ; ϕ3] * ψ since the order of the
elements is crucial, so our lists do not capture multisets (yet).

A sequent calculus consists of a finite set of sequent rule schemas. Each rule
schema consists of a conclusion sequent schema and some number of premise
sequent schemas. A rule schema with zero premise schemas is called an initial
rule. The conclusion and premises are built in the usual way from propositional-
variables, formula-variables and multiset-variables. A rule instance is obtained
by uniformly instantiating every variable in the rule schema with a concrete
object of that type. This is the standard definition from structural proof theory.

Definition 4 (Derivation/Proof). A derivation of a sequent S in the sequent
calculus C is a finite tree of sequents such that (i) the root node is S; and (ii)
each interior node and its direct children are the conclusion and premise(s) of a
rule instance in C. A proof is a derivation where every leaf is the conclusion of
an instance of an initial rule.

Note that we explicitly define the notion of a derivation as an object rather
than define the notion of derivability, as is done in some papers. We do so as we
want to create a “deep” embedding of such derivations into Coq [9].

In what follows, it should be clear from context whether the word “proof”
refers to the object defined in Definition 4, or to the meta-level notion. We
say that a sequent is provable in G4iSLt if it has a proof in G4iSLt. We elide
the details of the encodings of sequent rules and derivations, as these can be
found elsewhere [1,39]. We define a predicate G4iSLt_prv on sequents to encode
provability in G4iSLt. Our encodings rely on the type Type, which bears com-
putational content, unlike Prop, and is crucially compatible with the extraction
function of Coq.

A New Calculus for Intuitionistic Strong Löb Logic 79

Before presenting our calculus, we recall standard notions from proof theory.

Definition 5 (Height). For any derivation δ, its height h(δ) is the maximum
number of nodes on a path from root to leaf.

Definition 6 (Admissibility, Invertibility, Height-Preservation). Let R
be a rule schema with premises S0, . . . , Sn and conclusion S. We say that R is:

admissible: if for every instance of R, the instance of S is provable whenever the
instances of S1, . . . , Sn are all provable;

invertible: if for every instance of R, the instances of S1, . . . , Sn are all provable
whenever the instance of S is provable;

height-preserving admissible: if for every instance of R, if there are proofs π0, . . . ,
πn of the instances of S0, . . . , Sn then there is a proof π of the instance of
S such that h(π) ≤ h(πi) for some 0 ≤ i ≤ n;

height-preserving invertible: if for every instance of R, if π is a proof of the
instance of S then there are proofs π0, . . . , πn of the instances of S0, . . . , Sn

such that h(πi) ≤ h(π) for all 0 ≤ i ≤ n.

The sequent calculus G4iSLt is given in Fig. 2. When defining rules we put
the label naming of the rule on the left of the horizontal line, while the label
appears on the right of the line in instances of rules.

Fig. 2. The sequent calculus G4iSLt, where Φ contains no boxed formula.

In (IdP), a propositional variable instantiating the featured occurrences of p
is principal. In a rule instance of (∧R), (∧L), (∨Ri), (∨L) or (→R), the principal

80 I. Shillito et al.

formula of that instance is defined as usual. In a rule instance of (p→L), both
a propositional variable instantiating p and the formula instantiating the fea-
tured p → ϕ are principal formulae of that instance. In a rule instance of (∧→L),
(∨→L), (→→L) or (→L), the formula instantiating respectively (ϕ ∧ ψ) → χ,
(ϕ ∨ ψ) → χ, (ϕ → ψ) → χ or ϕ → ψ is the principal formula of that instance.
In a rule instance of (SLtR) or (→L), ϕ is called the diagonal formula [38].

The non-modal rules are taken from the calculus for IPC for which backward
proof search strongly terminates [11]. Keypoint is that the usual intuitionistic
left implication rule is replaced by four implication rules depending on the main
connective in the antecedent of the principal formula, in such a way that each
premise is less complex than the conclusion. In particular, when considering
the rule (→→ L), an application of the “regular” left implication rule yields the
more complex left premise Γ, (ϕ → ψ) → χ ⇒ ϕ → ψ, which is (semantically)
equivalent to the simpler left premise stated in rule (→→ L).

We proceed to give semantic intuitions for the rules (SLtR) and (→L).
The (SLtR) rule has similarities with the rule (GLR) (shown below) from

sequent calculi for provability logics such as GL, but with two major differences:
(1) the non-boxed formulae Φ in the antecedent of the sequent are preserved from
conclusion to premise in (SLtR), while they are deleted in (GLR); and (2) the
formulae in Γ are not preserved upwards in (SLtR), while they are in (GLR).

Φ, Γ, ϕ ⇒ ϕ

Φ, Γ ⇒ ϕ
(SLtR)

Γ, Γ, ϕ ⇒ ϕ

Φ, Γ ⇒ ϕ
(GLR)

From a backward proof search perspective, both rules correspond, semantically,
to a “modal jump” from a point w which falsifies the conclusion Φ, Γ ⇒ ϕ to
a modal successor v which forces Γ but falsifies the succedent ϕ of the premise.
The underlying relation R in both logics is transitive and converse well-founded.
Using converse well-foundedness we can assume that v is the last modal succes-
sor making ϕ false, thus v forces ϕ in both logics. Transitivity implies that v
forces Γ in both logics, so all its successors force Γ . But, in iSL, the underly-
ing relation R is also persistent so v also forces Φ in iSL, but not in GL, thus
explaining difference (1). Thanks to persistence, v forcing Γ implies that all its
successors force Γ , meaning that v forces Γ already, thus explaining differ-
ence (2).

The two premises of (→L) capture how ϕ → ψ in the antecedent of the
conclusion can be true. The simple case is when ψ is true, which corresponds to
the right premise. The more complicated case is when ψ is not true, implying
that ϕ must also be not true. Now, ϕ true semantically means that ϕ is true
in all modal successors, hence ϕ not true means that ϕ is not true in a modal
successor. But converse well-foundedness implies the existence of a last modal
successor where ϕ is not true, with all its modal successors making ϕ true. The
left premise corresponds to this last modal successor, as it encodes that ϕ is not
true but ϕ is true. Moreover, this last modal successor is also an intuitionistic
successor as R ⊆≤. By persistence, this last successor must also make ϕ → ψ
true. But then, a simple modus ponens on ϕ and ϕ → ψ gives us ψ.

Finally, we show that G4iSLt indeed captures the set of theorems of iSL.

A New Calculus for Intuitionistic Strong Löb Logic 81

Theorem 1. For all ϕ we have: ∅
iSLH ϕ iff ⇒ ϕ is provable in G4iSLt.

Proof. We proved in Coq the two following results.

(1) Γ
iSLH ϕ implies there exists a finite Γ ′ ⊆ Γ s.t.
Γ ′ ⇒ ϕ is provable in G4iSLt

(2) Γ ⇒ ϕ is provable in G4iSLt implies Γ |= ϕ

The result (1), which relies on the admissibility of cut (Theorem 2), shows that
G4iSLt is (strongly) complete with respect to iSLH and gives us the left-to-right
direction of our theorem. The other direction involves the soundness of G4iSLt
w.r.t. the local consequence shown in (2), as well as the (non-formalised) result
of (weak) completeness of iSLH w.r.t. the local consequence obtained by Ardeshir
and Mojtahedi [3]. �

3 Admissible Rules in G4iSLt

This section aims at showing that the contraction rule is admissible. To do so,
it follows the work developed by Goré and Shillito [26] on the sequent calculus
GL4ip for the intuitionistic provability logic iGL, which extends itself on the
work of Dyckhoff and Negri [13] on G4ip. Most of the overall structure of the
argument is the same as for the case of GL4ip, except for the crucial and typical
left-unboxing rule (�), shown to be height-preserving admissible.

Most of the results of this section are proven by inductions on the weight of
formulae and/or height of derivations. We omit the Coq encodings for brevity.

Lemma 2 (Height-preserving invertibility of rules). The rules (∧R),
(∧L), (∨L), (→ R), (p→ L), (∧→ L), (∨→ L) are height-preserving invertible.

We present height-preserving admissible and admissible rules in Fig. 3.
The structural rules of weakening (Wkn), contraction (Ctr) and exchange

(Exc), are all (at least) admissible. The presence of the latter may be surprising,
as the sequents we use are based on multisets. However, as mentioned earlier,
our formalisation encodes sequents using lists and not multisets. So, the formal
proof of the height-preserving admissibility of (Exc) shows that list-sequents of
our formalisation mimic multiset-sequents of the pen-and-paper definition. In
fact, we designed the formalisation of G4iSLt so that it admits exchange [26].

The rule (�) is quite typical of the logic iSL, as it reflects one of its theorems:
the completeness axiom ϕ → ϕ. Indeed, this axiom implies that Γ entails Γ ,
allowing the replacement of Γ by Γ in the antecedent of a provable sequent
while preserving provability. The height-preserving admissibility of (�) is cru-
cially used in many places, notably Lemma 2 and the admissibility of cut.

The height-preserving admissibility of (→LIR) and (→→LIR) shows
height-preserving invertibility in the right premise of the rules (→L) and
(→→L).

The admissible rule (→L) is the traditional left-implication rule. We use this
rule to prove the admissibility of (→→LIL), resembling the invertibility in the
left premise of (→→L). In turn, (→→LIL) is crucial in the admissibility of (Ctr).

82 I. Shillito et al.

Fig. 3. Height-preserving admissible and admissible rules in G4iSLt.

In the following section we introduce a measure on sequents which we use to
show that the naive backward proof search strategy for G4iSLt terminates. This
measure could thus be used to derive the notion of maximum height of derivations
(mhd) for a sequent, as was done in previous works [24,26]. There, the mhd
measure was used as secondary induction measure in the proof of admissibility
of cut. Here, we simply use the termination measure instead.

4 Naive Backward Proof Search Terminates

Sequent calculi enjoying cut-elimination can often be used to decide whether a
given formula ϕ is deducible from a given set of assumptions Γ by strategically
applying the rules “backwards” from the end-sequent Γ ⇒ ϕ. To obtain a decision
procedure, we require a backward proof search strategy which terminates and is
complete, i.e. which provides a proof for any sequent provable in the calculus.

But often, terminating complete strategies necessitate a “loop check” mech-
anism, that stops the search if the same sequent appears twice on a branch. For
example, the sequent calculus LJ, for propositional intuitionistic logic, only has
a strategy with loop check as terminating complete strategy. The termination
of these strategies is messy to reason about, as in most cases their unguarded
version is not terminating and results in proof trees with infinite branches.

While some calculi have terminating complete strategies without loop checks,
like GLS for GL [24] and GL4ip for iGL [20], we consider a stronger kind of
calculus: calculi with strongly terminating backward proof search, such as G4ip
for intuitionistic propositional logic [12]. Backward proof search for a sequent
calculus is strongly terminating if and only if all backward proof search strategies
for this calculus, complete or not, terminate. This characterisation has other
equivalent forms: (1) the naive backward proof search strategy terminates, and
(2) there is a well-founded ordering on sequents decreasing upwards in all the

A New Calculus for Intuitionistic Strong Löb Logic 83

rules of the calculus. In contrast, backward proof search is weakly terminating if
and only if there is a terminating complete strategy for this calculus.

In this section we show that backward proof search for G4iSLt is strongly
terminating. More precisely, we show that the naive strategy terminates. To do
this, we need two ingredients: (1) a locally defined measure on sequents, and (2) a
well-founded order making this measure decrease upwards in the rules of G4iSLt.

4.1 Shortlex: A Well-Founded Order on list N

We define the shortlex order, which is a well-founded order on list N, i.e. the
set of all lists of natural numbers.

In the following, we use < to mean the usual ordering on natural numbers.
Let us recall the definition of the lexicographic order on lists of natural numbers.

Definition 7 (Lexicographic order). Let n ∈ N. We define the lexicographic
order <n

lex on lists of natural numbers of length n. For two lists of natural num-
bers [m1; · · · ;mn] and [k1; · · · ; kn], we write [m1; · · · ;mn] <n

lex [k1; · · · ; kn] if
there is a 1≤j ≤n such that: (1) mp = kp for all 1 ≤ p < j, and (2) mj < kj.

Note that as < is a well-founded order, then <n
lex is also well-founded [36].

Finally, we define the shortlex order, also called breadth-first [31] or length-
lexicographic order, over lists of natural numbers (viewed as n-tuples).

Definition 8 (Shortlex order). The shortlex order over lists of natural num-
bers, noted <<, is defined as follows. For two lists l0 and l1 of natural numbers,
we say that l0 << l1 whenever one of the following conditions is satisfied:

1. length(l0) < length(l1) ;
2. length(l0) = length(l1) = n and l0 <n

lex l1.

Intuitively, the shortlex order is ordering lists according to their length and
follows the lexicographic order whenever length does not discriminate. Note that
on top of being well-founded, << is obviously transitive.

4.2 A (list N)-Measure on Sequents

We proceed to attach to each sequent Γ ⇒ χ a “measure” Θ(Γ ⇒ χ) which
is a (finite) list of natural numbers, i.e. of type list N. For simplicity, in the
following we consider a fixed sequent Γ ⇒ χ for which we define the measure.

To introduce our measure, we first wish to explain why the measure used for
GL4ip [26], acting as a substitute of the Dershowitz-Manna order [10] considered
in Dyckhoff’s article on G4ip [11], does not work for our purpose. The explanation
of this failure justifies the modification we made to obtain the measure for G4iSLt.

The intuition behind the measure for GL4ip and G4ip is the following: for a
multiset we create an ordered list of counters for each weight of occurrences of
formulae of this weight. For more details, take a finite multiset of formulae Δ.
As it is finite, it contains a topmost formula of maximal weight n. We can create

84 I. Shillito et al.

a list of length n such that at each position m in the list (counting from right
to left) for 1 ≤ m ≤ n, we find the number of occurrences in Δ of topmost
formulae of weight m. Such a list gives the count of occurrences in Δ of formulae
of weight n in its leftmost (i.e. n-th) component, then of occurrences of formulae
of weight n−1 in the next (i.e. (n−1)-th) component, and so on until we reach 1.

The measure for GL4ip and G4ip consisted in attaching to Γ ⇒ χ the list
obtained by applying the above procedure on the multiset Γ � {χ}. Call this
function Θfail. This measure fails to show termination of the naive strategy for
G4iSLt, as it does not decrease upwards in the following application of (SLtR).

p ⇒ p
⇒ p

(SLtR)

We have that Θfail(⇒ p) = [1, 0] because p is the formula of maximum
weight 2, and it is the only formula with this weight occurring in the list, while
no formula of weight 1 appears in ⇒ p. In addition to that, we have that
Θfail(p ⇒ p) = [1, 1]. Consequently, we obtain Θfail(⇒ p)<< Θfail(p ⇒ p):
the measure increased upwards. So, the measure used for GL4ip and G4ip cannot
be used here. We need to define another one.

With enough scrutinising, one can notice that in G4iSLt the principal box of
a boxed formula in the antecedent of a sequent is a “deadweight”. More precisely,
once a formula ϕ is in the antecedent of a sequent, only two things can happen
to its outermost box: it is either deleted (via the modal rule (SLtR) or (→L)), or
else it is preserved (through all other rules). Intuitively, this observation suggests
that boxed formulae in the antecedent are destined to be unboxed eventually in
the upward application of rules, without having any other effect.

Consequently, as the top-level boxes in the antecedent of a sequent are dead-
weights, we can think about unboxing the antecedent of Γ ⇒ χ before applying
the procedure described above. This is precisely what we do: if Γ is of the shape
Γ0, Γ1 with no boxed formula in Γ0, we define Θ(Γ ⇒ χ) to be the list of natural
numbers obtained via the above machinery applied on the multiset Γ0�Γ1�{χ}.

For example, to compute Θ((p ∧ q), p ∨ q ⇒ q → p), we first unbox the
antecedent of this sequent by transforming (p ∧ q) into p ∧ q to obtain the
multiset {p ∧ q, p ∨ q, q → p}. Because p ∧ q is the only formula of maximum
weight four, our list of length four begins with 1. Since both p∨ q and q → p are
of weight three, the second element is 2. Finally, since there are no formulae of
weights two and one, we obtain Θ((p∧q), p∨q ⇒ q → p) = [1, 2, 0, 0]. Following
this explanation, observe that the issue we faced with ⇒ p and p ⇒ p is now
fixed: we first unbox p in p ⇒ p, hence Θ(p ⇒ p) = [2]<<[1, 0] = Θ(⇒ p).

Two things need to be noted about such lists. First, if no topmost occurrence
of a formula is of weight 1 ≤ k ≤ n, then a 0 appears in position k in the list.
This is the case for the weight 2 in the last example above. Second, as no formula
is of weight 0 we do not dedicate a position for this particular weight in our list.

A New Calculus for Intuitionistic Strong Löb Logic 85

4.3 Every Rule of G4iSLt Reduces Θ Upwards

We obtain the sought after result about our measure Θ: it decreases upwards
through the rules of G4iSLt on the << ordering.

Lemma 3. For all sequents S0, S1, ..., Sn and for all 1 ≤ i ≤ n, if there is an
instance of a rule r of G4iSLt of the form below, then Θ(Si)<< Θ(S0):

S1 . . . Sn

S0
r

Clearly, this result implies that the naive strategy for G4iSLt terminates: any
rule application makes the measure decrease on <<, ensuring termination via
well-foundedness of <<. Thus, backward proof search is strongly terminating.

Moreover, this lemma is quite crucial in the proof of admissibility of cut: as
we use Θ(Γ ⇒ χ) as secondary induction measure (through well-foundedness of
<<) there, we know that we can apply the secondary induction hypothesis on any
sequent S which is a premise of Γ ⇒ χ through a rule, as Θ(S)<< Θ(Γ ⇒ χ).

5 Cut-Elimination for G4iSLt

To reach cut-elimination, our main theorem, we first state and prove the admis-
sibility of the cut rule in a direct and purely syntactic way. More precisely, we
prove that the additive-cut rule, with cut formula ϕ, is admissible. This state-
ment and its formalisation are given below, where Γ is encoded as Γ0++Γ1.

Theorem 2 (Admissibility of additive-cut). The additive cut rule below is
admissible in G4iSLt.

Γ ⇒ ϕ ϕ, Γ ⇒ ψ

Γ ⇒ ψ
(Cut)

Theorem G4iSLt_cut_adm : forall ϕ Γ 0 Γ 1 χ,
(G4iSLt_prv (Γ 0++Γ 1,ϕ) * G4iSLt_prv (Γ 0++ϕ::Γ 1,χ)) ->

G4iSLt_prv (Γ 0++Γ 1,χ).

Proof. Let d1 (with last rule r1) and d2 (with last rule r2) be proofs in G4iSLt
of Γ ⇒ ϕ and ϕ, Γ ⇒ χ respectively, as shown below.

d1 r1
Γ ⇒ ϕ

d2 r2
ϕ, Γ ⇒ χ

We show that there is a proof in G4iSLt of Γ ⇒ χ. We reason by strong primary
induction (PI) on the weight of the cut-formula ϕ, giving the primary inductive
hypothesis (PIH). We also use a strong secondary induction (SI) on Θ(Γ ⇒ χ) of
the conclusion of a cut, giving the secondary inductive hypothesis (SIH). Crucially,
by using SIH we avoid the issues caused by the diagonal formula [23,44].

We consider r1. In total, there are thirteen cases for r1: one for each rule in
G4iSLt. However, we can reduce the number of cases to eight. We separate them
by using Roman numerals and showcase the most interesting ones.
(V) r1 = (→R) : Then r1 has the following form where ϕ = ϕ0 → ϕ1:

86 I. Shillito et al.

ϕ0, Γ ⇒ ϕ1
(→R)

Γ ⇒ ϕ0 → ϕ1

For the cases where ϕ0 → ϕ1 is principal in r2 and r2 �= (→ L), or where
r2 ∈ {(IdP), (⊥L)}, we refer to Dyckhoff and Negri’s proof [13] as the cuts
produced in these cases involve the traditional induction hypothesis PIH. We
are left with seven sub-cases, but here again focus on the most interesting ones.
(V-d) If r2 is (→→ L) where the cut formula is not principal in r2, then it must
have the following form where (γ0 → γ1) → γ2, Γ0 = Γ .

ϕ0 → ϕ1, γ1 → γ2, Γ0 ⇒ γ0 → γ1 ϕ0 → ϕ1, γ2, Γ0 ⇒ χ
(→→L)

ϕ0 → ϕ1, (γ0 → γ1) → γ2, Γ0 ⇒ χ

Thus, Γ ⇒ χ is of the form (γ0 → γ1) → γ2, Γ0 ⇒ χ and Γ ⇒ ϕ0 → ϕ1 is of the
form (γ0 → γ1) → γ2, Γ0 ⇒ ϕ0 → ϕ1. Using the admissible rule (→→LIR) on
the latter we obtain a proof of the sequent γ2, Γ0 ⇒ ϕ0 → ϕ1. Then consider the
following proof of the sequent γ1 → γ2, Γ0 ⇒ γ0 → γ1, where the rule (→→LIL)
deconstructs the implication (γ0 → γ1) → γ2, rule (Ctr) contracts γ1 → γ2 and
Lemma 2 is the invertibility of the rule (→R).

(γ0 → γ1) → γ2, Γ0 ⇒ ϕ0 → ϕ1
(→→LIL)

γ0, γ1 → γ2, γ1 → γ2, Γ0 ⇒ ϕ0 → ϕ1
(Ctr)

γ0, γ1 → γ2, Γ0 ⇒ ϕ0 → ϕ1

ϕ0 → ϕ1, γ1 → γ2, Γ0 ⇒ γ0 → γ1
Lem.2

ϕ0 → ϕ1, γ0, γ1 → γ2, Γ0 ⇒ γ1
SIH

γ0, γ1 → γ2, Γ0 ⇒ γ1
(→R)

γ1 → γ2, Γ0 ⇒ γ0 → γ1

The crucial point here is to see that the use of SIH is justified, in other words,
that Θ(γ0, γ1 → γ2, Γ0 ⇒ γ1)<< Θ((γ0 → γ1) → γ2, Γ0 ⇒ χ). This is the
case as the rule applications (→→L) and (→R) entail Θ(γ0, γ1 → γ2, Γ0 ⇒ γ1)
<< Θ(γ1 → γ2, Γ0 ⇒ γ0 → γ1)<< Θ((γ0 → γ1) → γ2, Γ0 ⇒ χ) by Lemma 3,
hence Θ(γ0, γ1 → γ2, Γ0 ⇒ γ1)<< Θ((γ0 → γ1) → γ2, Γ0 ⇒ χ) by transitivity
of <<. So, we are done. Note that the created cut could not be justified by usual
induction on height, as the admissibility of (→→LIL) is not height-preserving.
(V-f) If r2 is (→L) with a principal formula different from the cut formula,
then it must have the following form where γ0 → γ1, Φ, Γ0 = Γ .

ϕ0 → ϕ1, γ1, Φ, Γ0, γ0 ⇒ γ0 γ1, ϕ0 → ϕ1, Φ, Γ0 ⇒ χ
(→L)

ϕ0 → ϕ1, γ0 → γ1, Φ, Γ0 ⇒ χ

Thus, we have that Γ ⇒ χ and Γ ⇒ ϕ0 → ϕ1 are respectively of the form
γ0 → γ1, Φ, Γ0 ⇒ χ and γ0 → γ1, Φ, Γ0 ⇒ ϕ0 → ϕ1. Using the admissible

rule (→LIR) on the latter we obtain a proof of γ1, Φ, Γ0 ⇒ ϕ0 → ϕ1. Then,
we proceed as follows by combining the proof π second-below with the first one.

π
γ1, Φ, Γ0, �γ0 ⇒ γ0

γ1, Φ, �Γ0 ⇒ ϕ0 → ϕ1 γ1, ϕ0 → ϕ1, Φ, �Γ0 ⇒ χ
SIH

γ1, Φ, �Γ0 ⇒ χ
(�→L)

�γ0 → γ1, Φ, �Γ0 ⇒ χ

ϕ0, γ0 → γ1, Φ, Γ0 ⇒ ϕ1
(Wkn)

ϕ0, γ0 → γ1, Φ, Γ0, γ0 ⇒ ϕ1
(→LIR)

ϕ0, γ1, Φ, Γ0, γ0 ⇒ ϕ1
(�)

ϕ0, γ1, Φ, Γ0, γ0 ⇒ ϕ1
(→R)

γ1, Φ, Γ0, γ0 ⇒ ϕ0 → ϕ1 ϕ0 → ϕ1, γ1, Φ, Γ0, γ0 ⇒ γ0
SIH

γ1, Φ, Γ0, γ0 ⇒ γ0

A New Calculus for Intuitionistic Strong Löb Logic 87

Note that both uses of SIH are justified here, as the last rule in the first proof is
an instance of (→L) hence Θ(γ1, Φ, Γ0 ⇒ χ)<< Θ(γ0 → γ1, Φ, Γ0 ⇒ χ)
and Θ(γ1, Φ, Γ0, γ0 ⇒ γ0)<< Θ(γ0 → γ1, Φ, Γ0 ⇒ χ) by Lemma 3.
(VII) r1 =(→L): Then r1 is as follows, where γ0 → γ1, Φ, Γ0 = Γ .

γ1, Φ, Γ0, γ0 ⇒ γ0 γ1, Φ, Γ0 ⇒ ϕ
(→L)

γ0 → γ1, Φ, Γ0 ⇒ ϕ

Thus, the sequents Γ ⇒ χ and ϕ, Γ ⇒ χ are of the form γ0 → γ1, Φ, Γ0 ⇒ χ
and ϕ, γ0 → γ1, Φ, Γ0 ⇒ χ, respectively. Then, we proceed as follows.

γ1, Φ, Γ0, γ0 ⇒ γ0

γ1, Φ, Γ0 ⇒ ϕ

ϕ, γ0 → γ1, Φ, Γ0 ⇒ χ
(→LIR)

ϕ, γ1, Φ, Γ0 ⇒ χ
SIH

γ1, Φ, Γ0 ⇒ χ
(→L)

γ0 → γ1, Φ, Γ0 ⇒ χ

Note that the use of SIH is justified, as the last rule in this proof gives us
Θ(γ1, Φ, Γ0 ⇒ χ)<< Θ(γ0 → γ1, Φ, Γ0 ⇒ χ) by Lemma 3.
(VIII) r1 =(SLtR): Then ϕ is the diagonal formula in r1:

Φ, Γ0, ϕ0 ⇒ ϕ0
(SLtR)

Φ, Γ0 ⇒ ϕ0

where ϕ = ϕ0 and Φ, Γ0 = Γ . Thus, we have that Γ ⇒ χ and ϕ, Γ ⇒ χ are
respectively of the form Φ, Γ0 ⇒ χ and ϕ0, Φ, Γ0 ⇒ χ. We now consider r2.
(VIII-b) If r2 is (→L) it is of the following form, where Φ = γ0 → γ1, Φ0.

γ1, Φ0, γ0, ϕ0, Γ0 ⇒ γ0 γ1, Φ0, ϕ0, Γ0 ⇒ χ
(→L)

γ0 → γ1, Φ0, ϕ0, Γ0 ⇒ χ

We proceed as follows.

π0

γ1, Φ0, Γ0, �γ0 ⇒ γ0

�γ0 → γ1, Φ0, �Γ0 ⇒ �ϕ0
(�→LIR)

γ1, Φ0, �Γ0 ⇒ �ϕ0 γ1, Φ0, �ϕ0, �Γ0 ⇒ χ
SIH

γ1, Φ0, �Γ0 ⇒ χ
(�→L)

�γ0 → γ1, Φ0, �Γ0 ⇒ χ

where π0 is the first proof given below, which depends π1, the second one:
�γ0 → γ1, Φ0,�Γ0 ⇒ �ϕ0

(�)�γ0 → γ1, Φ0, Γ0 ⇒ �ϕ0
(Wkn)�γ0 → γ1, Φ0, Γ0,�γ0 ⇒ �ϕ0
(�→LIR)

γ1, Φ0, Γ0,�γ0 ⇒ �ϕ0

π1

γ1, Φ0,�γ0,�ϕ0, Γ0 ⇒ γ0
SIH

γ1, Φ0, Γ0,�γ0 ⇒ γ0

γ0 → γ1, Φ0, ϕ0, Γ0 ⇒ ϕ0
(Wkn)

γ0 → γ1, Φ0, γ0, ϕ0, Γ0 ⇒ ϕ0
(→LIR)

γ1, Φ0, γ0, ϕ0, Γ0 ⇒ ϕ0

ϕ0, γ1, Φ0, γ0, Γ0 ⇒ γ0
(Wkn)

ϕ0, γ1, Φ0, γ0, ϕ0, Γ0 ⇒ γ0
PIH

γ1, Φ0, γ0, ϕ0, Γ0 ⇒ γ0

Note that both uses of SIH are justified here as the rule application (→L)
entails Θ(γ1, Φ0, Γ0, γ0 ⇒ γ0)<< Θ(γ0 → γ1, Φ0, Γ0 ⇒ χ) and we have
Θ(γ1, Φ0, Γ0 ⇒ χ)<< Θ(γ0 → γ1, Φ0, Γ0 ⇒ χ) by Lemma 3.
(VIII-c) If r2 is (SLtR), then it is of the following form where χ = χ0.

88 I. Shillito et al.

Φ,ϕ0, Γ0, χ0 ⇒ χ0
(SLtR)

Φ, ϕ0, Γ0 ⇒ χ0

We proceed as follows.
Φ, Γ0, �ϕ0 ⇒ ϕ0

(SLtR)
Φ, �Γ0 ⇒ �ϕ0

(�)
Φ, Γ0 ⇒ �ϕ0

(Wkn)
Φ, Γ0, �χ0 ⇒ �ϕ0

�ϕ0, Φ, Γ0 ⇒ ϕ0
(Wkn)

�ϕ0, Φ, Γ0, �χ0 ⇒ ϕ0

ϕ0, Φ, Γ0, �χ0 ⇒ χ0
(Wkn)

ϕ0, �ϕ0, Φ, Γ0, �χ0 ⇒ χ0
PIH�ϕ0, Φ, Γ0, �χ0 ⇒ χ0

SIH
Φ, Γ0, �χ0 ⇒ χ0

(SLtR)
Φ, �Γ0 ⇒ �χ0

The use of SIH is justified because the last rule in this proof ensures that
Θ(Φ, Γ0, χ0 ⇒ χ0)<< Θ(Φ, Γ0 ⇒ χ0) by Lemma 3. �

The attentive reader may have noticed that our proof technique requires the
use of additive, and not multiplicative, cuts. Indeed, the use of SIH relies on the
decrease of the measure Θ, which is notably ensured by the upward application
of any rule of the calculus. More generally, in the proof of admissibility if the
cut we initially consider has Γ ⇒ χ as conclusion, then we can justify a cut with
conclusion Γ ′ ⇒ χ′ using SIH as long as we have a chain r0, . . . , rn of application
of rules of G4iSLt of the following form.

. . .

. . . Γ ′ ⇒ χ′ . . .

...

rn

. . .
Γ ⇒ χ

r0

However, the contraction rule does not ensure the decrease of the measure Θ
from conclusion to premise: it is not the case that Θ(Γ, ϕ, ϕ ⇒ χ)<< Θ(Γ, ϕ ⇒
χ). So, this prevents us from allowing one of r0, . . . , rn above to be (Ctr). This is
where multiplicative cuts are problematic: they most often use the contraction
rule as follows, where Γ ⇒ χ is the conclusion of the initial cut and Γ ′, Γ ′′ ⇒ χ′

is the conclusion of the cut we want to justify through SIH.

Γ ′ ⇒ ϕ ϕ, Γ ′′ ⇒ χ′
SIH

Γ ′, Γ ′′ ⇒ χ′

...
(Ctr)∗

Γ ⇒ χ

Unfortunately, the presence of the contraction rule above Γ ⇒ χ disallows us
from using SIH on Γ ′, Γ ′′ ⇒ χ′, as we are not ensured that the measure decreased
between the two sequents. So, our proof technique prohibited us from using
multiplicative cuts, forcing us to use additive ones. This observation was already
made by Goré and Shillito [26].

Using our purely syntactic proof of cut-admissibility above, we easily obtain a
cut-elimination procedure for the calculus G4iSLt extended with (cut), by simply
repetitively eliminating topmost cuts first. To effectively prove this statement in
Coq we explicitly encode the additive cut rule as follows:

A New Calculus for Intuitionistic Strong Löb Logic 89

(Γ0++Γ1 * ϕ) (Γ0++ϕ::Γ1 * χ)
(Γ0++Γ1 * χ)

We encode the calculus G4iSLt + (cut) as G4iSLt_cut_rules, i.e.
G4iSLt_rules enhanced with (cut). Finally, we turn to the elimination of addi-
tive cuts:

Theorem 3. The additive cut rule is eliminable from G4iSLt + (cut).

Theorem G4iSLt_cut_elimination : forall s,
(G4iSLt_cut_prv s) -> (G4iSLt_prv s).

The above theorem shows that any proof in G4iSLt + (cut) of a sequent,
i.e. G4iSLt_cut_prv s, can be transformed into a proof in G4iSLt of the same
sequent. As this theorem is in fact a constructive function based on Type, we can
use the extraction feature of Coq and obtain a cut-eliminating Haskell program.

6 Conclusion

This paper introduces a sequent calculus for iSL, denoted G4iSLt. It is an
improvement over the sequent calculus G4iSL from [21], because backward proof
search for G4iSLt is strongly terminating (instead of weakly terminating) shown
via a new well-founded measure, and cut-elimination is proved directly (instead
of indirectly via an equivalent calculus based on G3i [21]). All our results are
formalised in Coq in a constructive way. In turn, Coq’s extraction mechanism
can generate a Haskell program for the cut-elimination procedure for G4iSLt.

One of the reasons to develop G4iSLt is to use its strongly terminating proof
search to investigate uniform interpolation, a strengthening of Craig interpola-
tion, in the setting of intuitionistic provability logics. Typically, calculi with good
(weakly or strongly) terminating proof search form good grounds for constructive
proofs of uniform interpolation (see e.g. [2,5,22,28,37,41–43]).

We also suggest to develop a countermodel construction for G4iSLt similarly
to the one for G4iSL in [21]. Furthermore, as iSL is an intuitionistic modal logic
only defined with , there is the question how it can be extended by operators.
It is clear from the literature of intuitionistic modal logics that several choices
can be made (e.g. [4,16,33,40,47]), so we leave this for future work.

Acknowledgements. Iris van der Giessen would like to thank Sonia Marin and Mar-
ianna Girlando for an interesting discussion on the subtle choice of rules in proof
systems. We would like to thank the anonymous reviewers for their helpful comments
and suggestions. Van der Giessen is supported by a UKRI Future Leaders Fellow-
ship, ‘Structure vs Invariants in Proofs’, project reference MR/S035540/1. Rosalie
Iemhoff is supported by the Netherlands Organisation for Scientific Research under
grant 639.073.807 and by the EU H2020-MSCA-RISE-2020 Project 101007627. Rajeev
Goré is supported by FWF project P 33548 and the National Centre for Research and
Development, Poland (NCBR), and the Luxembourg National Research Fund (FNR),
under the PolLux/FNR-CORE project STV (POLLUX-VII/1/2019).

90 I. Shillito et al.

References

1. D’Abrera, C., Dawson, J., Goré, R.: A formally verified cut-elimination procedure
for linear nested sequents for tense logic. In: Das, A., Negri, S. (eds.) TABLEAUX
2021. LNCS (LNAI), vol. 12842, pp. 281–298. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86059-2_17

2. Afshari, B., Leigh, G.E., Menéndez Turata, G.: Uniform interpolation from cyclic
proofs: the case of modal mu-calculus. In: Das, A., Negri, S. (eds.) TABLEAUX
2021. LNCS (LNAI), vol. 12842, pp. 335–353. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-86059-2_20

3. Ardeshir, M., Mojtahedi, M.: The -provability logic of HA. Ann. Pure Appl.
Logic 169(10), 997–1043 (2018). https://doi.org/10.1016/j.apal.2018.05.001

4. Bellin, G., de Paiva, V., Ritter, E.: Extended Curry-Howard correspondence for a
basic constructive modal logic. In: Proceedings of Methods for Modalities, vol. 2
(2001). https://profs.sci.univr.it/~bellin/m4m.ps

5. Bílková, M.: Interpolation in modal logics. Ph.D. thesis, Univerzita Karlova, Prague
(2006). https://dspace.cuni.cz/handle/20.500.11956/15732

6. Brighton, J.: Cut elimination for GLS using the terminability of its regress process.
J. Philos. Logic 45(2), 147–153 (2016). https://doi.org/10.1007/s10992-015-9368-
4

7. Perini Brogi, C.: Investigations of Proof Theory and Automated Reasoning for
Non-classical Logics. Ph.D. thesis, Università degli Studi di Genova, Genova (2022)

8. Chaudhuri, K., Lima, L., Reis, G.: Formalized meta-theory of sequent calculi for
linear logics. Theor. Comput. Sci. 781, 24–38 (2019). https://doi.org/10.1016/j.
tcs.2019.02.023

9. Dawson, J.E., Goré, R.: Generic methods for formalising sequent calculi applied
to provability logic. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS,
vol. 6397, pp. 263–277. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16242-8_19

10. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8), 465–476 (1979). https://doi.org/10.1145/359138.359142

11. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symbolic
Logic 57(3), 795–807 (1992). https://doi.org/10.2307/2275431

12. Dyckhoff, R.: Intuitionistic decision procedures since Gentzen. In: Kahle, R.,
Strahm, T., Studer, T. (eds.) Advances in Proof Theory. PCSAL, vol. 28, pp.
245–267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29198-7_6

13. Dyckhoff, R., Negri, S.: Admissibility of structural rules for contraction-free sys-
tems of intuitionistic logic. J. Symbolic Logic 65(4), 1499–1518 (2000). https://
doi.org/10.2307/2695061

14. Esakia, L.: The modalized Heyting calculus: a conservative modal extension of the
intuitionistic logic. J. Appl. Non-Class. Logics 16, 349–366 (2006). https://doi.
org/10.3166/jancl.16.349-366

15. Férée, H., van Gool, S.: Formalizing and computing propositional quantifiers. In:
Krebbers, R., Traytel, D., Pientka, B., Zdancewic, S. (eds.) Proceedings of the 12th
ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2023, Boston, MA, USA, 16–17 January 2023, pp. 148–158. ACM (2023). https://
doi.org/10.1145/3573105.3575668

16. Fischer-Servi, G.: On modal logic with an intuitionistic base. Stud. Logica. 36,
141–149 (1977). https://doi.org/10.1007/bf02121259

https://doi.org/10.1007/978-3-030-86059-2_17
https://doi.org/10.1007/978-3-030-86059-2_17
https://doi.org/10.1007/978-3-030-86059-2_20
https://doi.org/10.1007/978-3-030-86059-2_20
https://doi.org/10.1016/j.apal.2018.05.001
https://profs.sci.univr.it/~bellin/m4m.ps
https://dspace.cuni.cz/handle/20.500.11956/15732
https://doi.org/10.1007/s10992-015-9368-4
https://doi.org/10.1007/s10992-015-9368-4
https://doi.org/10.1016/j.tcs.2019.02.023
https://doi.org/10.1016/j.tcs.2019.02.023
https://doi.org/10.1007/978-3-642-16242-8_19
https://doi.org/10.1007/978-3-642-16242-8_19
https://doi.org/10.1145/359138.359142
https://doi.org/10.2307/2275431
https://doi.org/10.1007/978-3-319-29198-7_6
https://doi.org/10.2307/2695061
https://doi.org/10.2307/2695061
https://doi.org/10.3166/jancl.16.349-366
https://doi.org/10.3166/jancl.16.349-366
https://doi.org/10.1145/3573105.3575668
https://doi.org/10.1145/3573105.3575668
https://doi.org/10.1007/bf02121259

A New Calculus for Intuitionistic Strong Löb Logic 91

17. Gattinger, M.: A Verified Proof of Craig Interpolation for Basic Modal Logic
via Tableaux in Lean (2022). https://malv.in/2022/AiML2022-basic-modal-
interpolation-lean.pdf

18. van der Giessen, I.: Uniform Interpolation and Admissible Rules: Proof-theoretic
investigations into (intuitionistic) modal logics. Ph.D. thesis, Utrecht University,
Utrecht (2022). https://dspace.library.uu.nl/handle/1874/423244

19. van der Giessen, I.: Admissible rules for six intuitionistic modal logics. Ann. Pure
Appl. Logic 174(4), 103233 (2023). https://doi.org/10.1016/j.apal.2022.103233

20. van der Giessen, I., Iemhoff, R.: Sequent calculi for intuitionistic gödel-Löb logic.
Notre Dame J. Formal Logic 62(2), 221–246 (2021). https://doi.org/10.1215/
00294527-2021-0011

21. van der Giessen, I., Iemhoff, R.: Proof theory for intuitionistic strong Löb logic
(2023). https://doi.org/10.48550/arXiv.2011.10383, (To appear in Special Volume
of the Workshop Proofs!, Paris 2017)

22. van der Giessen, I., Jalali, R., Kuznets, R.: Uniform interpolation via nested
sequents. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.) WoLLIC 2021.
LNCS, vol. 13038, pp. 337–354. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88853-4_21

23. Goré, R., Ramanayake, R.: Valentini’s cut-elimination for provability logic
resolved. Rev. Symb. Log. 5(2), 212–238 (2012). https://doi.org/10.1017/
S1755020311000323

24. Goré, R., Ramanayake, R., Shillito, I.: Cut-elimination for provability logic by ter-
minating proof-search: formalised and deconstructed using coq. In: Das, A., Negri,
S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp. 299–313. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-86059-2_18

25. Goré, R., Shillito, I.: Bi-intuitionistic logics: a new instance of an old problem.
In: Proceedings of the Thirteenth Conference on “Advances in Modal Logic” 24–
28 August 2020, pp. 269–288 (2020). https://www.aiml.net/volumes/volume13/
Gore-Shillito.pdf

26. Goré, R., Shillito, I.: Direct elimination of additive-cuts in GL4ip: verified and
extracted. In: Proceedings of the Fourteenth Conference on "Advances in Modal
Logic", 22–26 August 2022 (2022)

27. Hakli, R., Negri, S.: Does the deduction theorem fail for modal logic? Synthese
187(3), 849–867 (2012). https://doi.org/10.1007/s11229-011-9905-9

28. Iemhoff, R.: Uniform interpolation and the existence of sequent calculi. Ann. Pure
Appl. Logic 170(11), 1–37 (2019). https://doi.org/10.1016/j.apal.2019.05.008

29. Iemhoff, R.: The G4i analogue of a G3i calculus. Stud. Log. 110, 1493–1506 (2022).
https://doi.org/10.1007/s11225-022-10008-3

30. Kuznetsov, A.V., Muravitsky, A.Y.: On superintuitionistic logics as fragments of
proof logic extensions. Studia Logica 45(1), 77–99 (1986). https://www.jstor.org/
stable/20015249

31. Larchey-Wendling, D., Matthes, R.: Certification of breadth-first algorithms by
extraction. In: Hutton, G. (ed.) MPC 2019. LNCS, vol. 11825, pp. 45–75. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-33636-3_3

32. Litak, T.: Constructive modalities with provability smack. In: Bezhanishvili, G.
(ed.) Leo Esakia on Duality in Modal and Intuitionistic Logics. OCL, vol. 4, pp.
187–216. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-8860-
1_8

33. Mendler, M., de Paiva, V.: Constructive CK for contexts. Context Representa-
tion and Reasoning (CRR-2005) 13 (2005). https://www.cs.bham.ac.uk/~vdp/
publications/ck-paper2.pdf

https://malv.in/2022/AiML2022-basic-modal-interpolation-lean.pdf
https://malv.in/2022/AiML2022-basic-modal-interpolation-lean.pdf
https://dspace.library.uu.nl/handle/1874/423244
https://doi.org/10.1016/j.apal.2022.103233
https://doi.org/10.1215/00294527-2021-0011
https://doi.org/10.1215/00294527-2021-0011
https://doi.org/10.48550/arXiv.2011.10383
https://doi.org/10.1007/978-3-030-88853-4_21
https://doi.org/10.1007/978-3-030-88853-4_21
https://doi.org/10.1017/S1755020311000323
https://doi.org/10.1017/S1755020311000323
https://doi.org/10.1007/978-3-030-86059-2_18
https://www.aiml.net/volumes/volume13/Gore-Shillito.pdf
https://www.aiml.net/volumes/volume13/Gore-Shillito.pdf
https://doi.org/10.1007/s11229-011-9905-9
https://doi.org/10.1016/j.apal.2019.05.008
https://doi.org/10.1007/s11225-022-10008-3
https://www.jstor.org/stable/20015249
https://www.jstor.org/stable/20015249
https://doi.org/10.1007/978-3-030-33636-3_3
https://doi.org/10.1007/978-94-017-8860-1_8
https://doi.org/10.1007/978-94-017-8860-1_8
https://www.cs.bham.ac.uk/~vdp/publications/ck-paper2.pdf
https://www.cs.bham.ac.uk/~vdp/publications/ck-paper2.pdf

92 I. Shillito et al.

34. Mojtahedi, M.: On provability logic of HA (2022). https://doi.org/10.48550/arXiv.
2206.00445

35. Muravitsky, A.: Logic KM: a biography. In: Bezhanishvili, G. (ed.) Leo Esakia on
Duality in Modal and Intuitionistic Logics. OCL, vol. 4, pp. 155–185. Springer,
Dordrecht (2014). https://doi.org/10.1007/978-94-017-8860-1_7

36. Paulson, L.C.: Constructing recursion operators in intuitionistic type the-
ory. J. Symbol. Comput. 2(4), 325–355 (1986). https://doi.org/10.1016/S0747-
7171(86)80002-5

37. Pitts, A.M.: On an interpretation of second order quantification in first order intu-
itionistic propositional logic. J. Symbol. Logic 57(1), 33–52 (1992). https://doi.
org/10.2307/2275175

38. Sambin, G., Valentini, S.: The modal logic of provability: the sequential approach.
J. Philos. Logic 11, 311–342 (1982). https://doi.org/10.1007/BF00293433

39. Shillito, I.: New Foundations for the Proof Theory of Bi-Intuitionistic and
Provability Logics Mechanized in Coq. Ph.D. thesis, Australian National Uni-
versity, Canberra (2023). https://www.proquest.com/docview/2812065824?pq-
origsite=gscholar&fromopenview=true

40. Simpson, A.K.: The Proof Theory and Semantics of Intuitionistic Modal Logic.
Ph.D. thesis, University of Edinburgh (1994). https://era.ed.ac.uk/handle/1842/
407

41. Akbar Tabatabai, A., Iemhoff, R., Jalali, R.: Uniform lyndon interpolation for
basic non-normal modal logics. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.)
WoLLIC 2021. LNCS, vol. 13038, pp. 287–301. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-88853-4_18

42. Akbar Tabatabai, A., Iemhoff, R., Jalali, R.: Uniform lyndon interpolation for
intuitionistic monotone modal logic. In: Advances in Modal Logic 14, Papers from
the Fourteenth Conference on “Advances in Modal Logic”, 22–26 August 2022.
College Publications (2022). https://doi.org/10.48550/arXiv.2208.04607

43. Akbar Tabatabai, A., Jalali, R.: Universal proof theory: semi-analytic rules and
uniform interpolation. CoRR (2018). http://arxiv.org/abs/1808.06258

44. Valentini, S.: The modal logic of provability: cut-elimination. J. Philos. Logic 12,
471–476 (1983). https://doi.org/10.1007/BF00249262

45. Visser, A.: On the completeness principle: a study of provability in Heyting’s arith-
metic and extensions. Ann. Math. Logic 22(3), 263–295 (1982). https://doi.org/
10.1016/0003-4843(82)90024-9

46. Visser, A., Zoethout, J.: Provability logic and the completeness principle. Ann.
Pure Appl. Logic 170(6), 718–753 (2019). https://doi.org/10.1016/j.apal.2019.02.
001

47. Wolter, F., Zakharyaschev, M.: On the relation between intuitionistic and clas-
sical modal logics. Algebra Logic 36, 73–92 (1997). https://doi.org/10.1007/
BF02672476

https://doi.org/10.48550/arXiv.2206.00445
https://doi.org/10.48550/arXiv.2206.00445
https://doi.org/10.1007/978-94-017-8860-1_7
https://doi.org/10.1016/S0747-7171(86)80002-5
https://doi.org/10.1016/S0747-7171(86)80002-5
https://doi.org/10.2307/2275175
https://doi.org/10.2307/2275175
https://doi.org/10.1007/BF00293433
https://www.proquest.com/docview/2812065824?pq-origsite=gscholar&fromopenview=true
https://www.proquest.com/docview/2812065824?pq-origsite=gscholar&fromopenview=true
https://era.ed.ac.uk/handle/1842/407
https://era.ed.ac.uk/handle/1842/407
https://doi.org/10.1007/978-3-030-88853-4_18
https://doi.org/10.1007/978-3-030-88853-4_18
https://doi.org/10.48550/arXiv.2208.04607
http://arxiv.org/abs/1808.06258
https://doi.org/10.1007/BF00249262
https://doi.org/10.1016/0003-4843(82)90024-9
https://doi.org/10.1016/0003-4843(82)90024-9
https://doi.org/10.1016/j.apal.2019.02.001
https://doi.org/10.1016/j.apal.2019.02.001
https://doi.org/10.1007/BF02672476
https://doi.org/10.1007/BF02672476

A New Calculus for Intuitionistic Strong Löb Logic 93

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Some Analytic Systems of Rules

Timo Lang(B)

University College London, London, UK

timo.lang@ucl.ac.uk

Abstract. We define two simple systems of rules, i.e. calculi with a
global condition on the order of rule instances in a proof, for the
modal logics of shift-reflexive and Euclidean frames respectively. Cut-
elimination, and therefore the subformula property, can be derived
directly from the cut-elimination property of adjacent logics. We compare
our system to the calculus of grafted hypersequents, which has previously
been used to capture both logics.

We then discuss an attempt to obtain similar ‘modular’ cut-elimination
proofs in other systems of rules. This general attempt is carried out for two
more logics, namely the modal logic of serial frames and the intermediate
logic axiomatised by the law of the weak excluded middle.

1 Introduction

Among the various proof frameworks used in the investigation of nonclassical
logics, systems of rules as introduced by Negri [16] remain relatively little stud-
ied. Broadly speaking, a system of rules is a sequent-type calculus with a global
correctness condition on the order in which rules may be applied; they form an
instance of higher-level rules [20]. In [16], for example, it is shown that extending
the sequent calculus for intuitionistic logic with the system of rules

A,B, Γ1 ⇒ Π1 (A,B)L
A,Γ1 ⇒ Π1

...
Γ ⇒ Π

A,B, Γ2 ⇒ Π2 (A,B)R
B,Γ2 ⇒ Π2

...
Γ ⇒ Π (Lin)

Γ ⇒ Π

yields a calculus for Gödel Logic, i.e. the extension of intuitionistic logic by the
linearity axiom (A → B)∨(B → A). The schematic representation of the system
above is understood as follows: Both rules (A,B)L and (A,B)R can be used in
branches of the proof tree as long as those branches meet below in an instance
of (Lin). By using such global conditions it is possible to capture analytically
various logics that do not have a cutfree sequent calculus. For example, [16]
develops systems of rules based on the labelled sequent calculus for all normal
modal logics axiomatised by (generalised) Sahlqvist formulas. In [9] it is shown
that proofs in the hypersequent calculus can be rewritten as particular systems
of sequent rules, called 2-systems (and vice versa). A different use of global
conditions is shown in [1]: By replacing the (local) eigenvariable condition in

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 94–111, 2023.
https://doi.org/10.1007/978-3-031-43513-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-43513-3_6

Some Analytic Systems of Rules 95

first-order LK-proofs by a global condition, one obtains sound but potentially
much shorter proofs.

The study of cut-elimination in systems of rules is in a rather unsatisfying
stage. In [9] the analyticity of the systems of rules is obtained, but only indirectly
via cut-elimination in the hypersequent calculus. [16] argues that a standard
cut reduction argument goes through in the system of rules and illustrates one
reduction step. As already remarked in [9], the argument seems to apply only
to rules handling atomic formulas. This restriction is possible in the labelled
sequent calculus but is too strong in an unlabelled system.

In the first part of this article we develop grounded proofs, a simple sys-
tem of rules for the modal logics KT� and K5 of shift-reflexive and Euclidean
frames respectively. These logics are of interest because their proof theory is
less straightforward than that of other modal logics. In particular, neither shift-
reflexivity nor Euclideanness is a simple frame property [13] which would guaran-
tee the existence of a cutfree hypersequent calculus. The most elementary proof
system for KT� and K5 seems to be the grafted hypersequent calculus of Lell-
mann and Kuznets [12]. Nested [7], prefixed tableaux [14] and labelled sequent
calculi [15] are also available.

Our systems can be succinctly described as follows. For KT�, grounded
proofs can make use of all rules of a sequent calculus for KT, with the proviso
that every unsound modal rule has an instance of the rule (K) below it. For
K5, grounded proofs can make use of all rules of a hypersequent calculus for
S5, with the proviso that every unsound modal rule has an instance of the rule
(MM) below it:

Γ ⇒ A (K)�Γ ⇒ �A
Γ1 ⇒ A1 | . . . | Γn ⇒ An (MM)�Γ1, . . . ,�Γn ⇒ �A1, . . . ,�An

It is a remarkable feature of both systems that their cutfree completeness can
be proved directly, using only the deduction theorem and the cutfreeness of the
(hyper)sequent calculi for K, KT and S5. With these ingredients the proof is
almost trivial for KT�; for K5 we additionally have to prove a combinatorial
lemma about hypersequent derivations. In retrospect, grounded proofs can be
seen as proofs in the grafted hypersequent calculus that satisfy a normal form.
We make this observation precise by defining a translation from our system into
the grafted hypersequent calculus, thereby obtaining a new (and arguably much
simpler) proof of cut-elimination for the latter calculus.

In the second part of this article we explore the theme of strongly modular
proofs of cut-elimination, i.e.: Proofs of cut-elimination that build on the cut-
elimination property of adjacent logics (K, KT and S5 in our example) but do
not require knowledge about how cut-elimination for these systems was obtained.
In other words, a proof of cut-elimination is strongly modular if it uses other
cut-elimination theorems as ‘blackboxes’. What is the scope of strongly modular
proofs? We show that for many logics, strongly modular proofs of cut-elimination
are possible in a simple sequent system with a global correctness condition called
revivability. This condition however is defined only abstractly, and so the use-
fulness of said result depends on finding a simpler equivalent characterisation of

96 T. Lang

revivability. We conclude by showing two examples where such a simple charac-
terisation is possible: The modal logic KD of serial frames and the intermediate
logic LQ axiomatised by the law of the weak excluded middle.

2 Preliminaries

Modal Logics. By a modal logic we mean any set of formulas in the lan-
guage {⊥,¬,∧,∨,→,�} that contains all propositional tautologies, the normal-
ity axiom �(p → q) → (�p → �q), and is closed under uniform substitution,
Modus Ponens (from A and A → B infer B) and Necessitation (from A infer
�A).

The smallest modal logic (with respect to ⊆) is K. For any modal logic L and
formula C, L+C denotes the smallest extension of L to a modal logic containing
all instances of C. The table below lists some modal logics relevant to this paper,
together with their corresponding frame condition (for proofs, see e.g. [5]).

modal logic frame condition first-order formula

KT := K + �p → p reflexive ∀x xRx

KT� := K + �(�p → p) shift-reflexive ∀x∀y. xRy → yRy

K5 := K + ¬�p → �¬�p Euclidean ∀x∀y∀z. xRy ∧ xRz → yRz

S5 := K5 + �p → p totally connected ∀x∀y. xRy

The deduction theorem has to be slightly adapted for modal logics. We define
�kA := � . . . �A (k boxes) for k > 0 and �0A := A. A modalized instance of C
is any formula of the form �kC0 where C0 is an instance of C and k ≥ 0. Then:

Theorem 1 (essentially [10, Theorem 2]). A ∈ K + C iff (∧Ω) → A ∈ K
for some finite set Ω of modalized instances of C.

Sequent Calculi. A sequent is a pair of finite multisets of formulas written
Γ ⇒ Δ. Its formula interpretation is ∧Γ → ∨Δ where ∧∅ := ¬⊥ and ∨∅ := ⊥.
We say that a sequent is valid in a logic if its formula interpretation is.

The propositional rules in Fig. 1 constitute a calculus LK for classical propo-
sitional logic.1 We obtain sequent calculi

– CK by adding the modal rule (K);
– CKT by adding both modal rules (K) and (T).

1 The metavariables in Fig. 1 are chosen such that by enforcing |Π| = 0 and |Δ| ≤ 1
one obtains a calculus for intuitionistic logic. This will be used in Sect. 4.3.

Some Analytic Systems of Rules 97

Fig. 1. Propositional, modal and structural hypersequent rules.

Derivations in sequent calculi will be denoted by letters α, β. The formula A
is said to be derivable in a sequent calculus if the sequent ⇒ A is. A sequent
calculus is called adequate for a logic if the formulas it derives are exactly the
theorems of the logic. Finally, a proof in a sequent calculus is cutfree if it does
not use the rule (cut), and a sequent calculus admits cut-elimination if every
sequent provable in it has a cutfree proof. The following is folklore:

Theorem 2. The calculi CK and CKT are adequate for the modal logics K and
KT respectively and admit cut-elimination.

3 Two Systems of Rules

The similarity of the modal logics KT� and K5 lies in the fact that they are
both ‘one step away’ from their companion logics KT and S5 respectively. That
is, in any shift-reflexive (Euclidean) frame the subframe induced by all worlds
reachable from some fixed world is reflexive (totally connected), and therefore
adequate for KT (S5). We formalize this observation for later reference.

Theorem 3. Let M be a Kripke model containing a world w, and let Mw be
obtained from M by restricting M ’s frame to worlds that are reachable from w
(using one or more steps) via the accessibility relation. Then:

1. M,v |= ϕ ⇐⇒ Mw, v |= ϕ for all worlds v in Mw and modal formulas ϕ;
2. If M is shift-reflexive, then Mw is reflexive;
3. If M is Euclidean, then Mw is totally connected.

From this one can easily deduce the following known equivalences:

Theorem 4. �A ∈ KT� ⇐⇒ A ∈ KT and �A ∈ K5 ⇐⇒ A ∈ S5.

98 T. Lang

Theorem 4 implies that we can use the sequent calculus CKT and the hyper-
sequent calculus HS5 (see Sect. 3.2) to derive formulas in the boxed fragment
of KT� and K5. But it is not immediate what Theorem 4 tells us about
the proofs of theorems in KT� and K5 that are not prefixed with �, e.g.
¬�p → �¬�p ∈ K5 or ��p → �p ∈ KT�.

3.1 KT�

We start by describing a simple system of rules for KT�, which is obtained by
imposing a global constraint on CKT-proofs. The crucial notion is the following:

Definition 1 (grounded CKT-proof). A proof in CKT is grounded if any
lowermost modal inference in it is (K).

In other words, only those instances of (T) are admitted in a grounded CKT-
proof that have an instance of (K) below. No exact pairing is required, i.e. the
same instance of (K) can ‘ground’ multiple instances of (T) above it. Figure 2
(left and middle) shows two grounded CKT-proofs with the modal rules high-
lighted.

Fig. 2. Grounded proofs in KT (left and middle) and in HS5 (right)

Theorem 5 (Soundness of grounded CKT-proofs). If there is a grounded
CKT-proof of Γ ⇒ Δ, then Γ ⇒ Δ is valid in KT�.

Proof. It suffices to show that the conclusion of an instance of (K) in a CKT-proof
is valid in KT�. Indeed, as the endsequent of a grounded CKT-proof is derivable
from the conclusions of its lowermost instances of (K) using only propositional
rules, it then follows that the endsequent is valid in KT� as well.2 So let

Γ ⇒ A (K)�Γ ⇒ �A

2 Note that if a grounded proof has no instances of (K) at all, then it is essentially a
propositional proof, and so the statement is trivial.

Some Analytic Systems of Rules 99

be such an instance. As its premise Γ ⇒ A is valid in KT, we can use the
deduction theorem (Theorem 1) to obtain a finite set Ω of modalized instances
of the reflexivity axiom �p → p such that the sequent Ω,Γ ⇒ A is valid in K.
Then, by (K), also �Ω,�Γ ⇒ �A is valid in K. As all formulas in �Ω are
modalized instances of the axiom of shift-reflexivity and therefore valid in KT�,
it follows that the reduced sequent �Γ ⇒ �A is valid in KT�. �
Theorem 6 (Cutfree completeness of grounded CKT-proofs). If Γ ⇒ Δ

is valid in KT�, then there is a grounded cutfree CKT-proof of it.

Proof. Let Γ ⇒ Δ be valid in KT�. By the deduction theorem there is a finite
set Ω of modalized instances of �(�p → p) such that Ω,Γ ⇒ Δ is valid in
K. We may write Ω as �Ω′, where Ω′ is now a set of modalized instances of
�p → p.

Consider a lowermost instance of (K) in a cutfree CK-proof α of Ω,Γ ⇒ Δ:

Ω′, Σ ⇒ A
(K)�Ω′,�Σ ⇒ �A

Here we assume harmlessly that �Ω′ in the conclusion of (K) contains exactly
the antecessors of Ω = �Ω′ in the endsequent, i.e. no contraction or weakening
has been applied to a formula in �Ω′ between this instance of (K) and the
endsequent. We now construct a cutfree grounded proof as follows. In α, replace
the proof of the premise (for all lowermost (K) simultaneously) with a cutfree
CKT-proof of Σ ⇒ A; this is possible as every formula in Ω′ is valid in KT, and
moreover KT admits cut-elimination. Apply (K) to obtain the sequent �Σ ⇒
�A, and now follow the original proof downwards while removing antecessors of
�Ω′ to eventually obtain Γ ⇒ Δ. �

3.2 K5

The system of rules for K5 will involve a hypersequent calculus for S5, so we
first introduce some notation. A hypersequent is a multiset of sequents written
Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn and its (modal) formula interpretation is �(∧Γ1 →
∨Δ1) ∨ . . . ∨ �(∧Γ1 → ∨Δ1). We say that a hypersequent is valid in a logic if
its formula interpretation is.

There are now two ways of assigning a formula to Γ ⇒ Δ, namely �(∧Γ →
∨Δ) “boxed” or ∧Γ → ∨Δ “flat”, depending on whether we treat Γ ⇒ Δ as a
one-component hypersequent or as a sequent. To avoid any ambiguity, we will
explicitly say in this section that Γ ⇒ Δ is flat-valid in a logic L if ∧Γ → ∨Δ ∈
L. Otherwise, by validity of a hypersequent (possibly with only one component)
we always mean the boxed interpretation above. In any modal logic L ⊇ KT
(so in particular, S5) we have the equivalence A ∈ L ⇐⇒ �A ∈ L and so the
notions of valid and flat-valid coincide on sequents. However, we will work in K5
where such an equivalence does not apply.

Definition 2. The rules of the hypersequent calculus HS5 are as follows:

100 T. Lang

– Any rule of LK, applied componentwise in a hypersequent;
– Additionally, we have rules (ew) and (ec), the modal rules (�5

L), (�5
R) (see

Fig. 1) and the modal merging rule (MM):

Γ1 ⇒ A1 | . . . | Γn ⇒ An (MM)�Γ1, . . . ,�Γn ⇒ �A1, . . . ,�An

There are a number of slightly different hypersequent calculi for S5 (see the
survey [3]) and any of these would be suitable for the system of rules we define
below. We use a variant due to Restall [18] as this calculus underlies the grafted
hypersequent calculus in [12] to which we later relate.

The only change from [18] is that we include the rule (MM). While being
redundant—(MM) is derivable from (�5

L) and (�5
R)—it will be useful to formu-

late the system of rules. Note that (MM) has no hypersequent context and so
its conclusion is always a sequent. For n = 1 the rule coincides with (K).

Theorem 7 ([18]). HS5 is adequate for S5 and admits cut-elimination.

Definition 3. A proof in HS5 is grounded if every lowermost modal rule in it
is (MM).

Figure 2 (right) shows a grounded HS5-proof of the characteristic K5-axiom.
While it is formally possible due to (ew) and (ec) that hypersequents with more
than one component appear in the lower part of a grounded HS5-proof, it is
easy to see that this is never necessary. We will therefore tacitly assume that
Definition 3 is extended by the clause: . . . and every hypersequent that is not
above an instance of (MM) has exactly one component. The following Lemma
will give us the soundness of grounded HS5-proofs.

Lemma 1. If the premise of an instance of (MM) is valid in S5, then its
conclusion is flat-valid in K5.

Proof. Assume contrapositively the conclusion �Γ1, . . . ,�Γn ⇒ �A1, . . . ,�An

is not flat-valid in K5. Then (∧i≤n�Γi) → (∨i≤n�Ai) fails at a world w of
an Euclidean model M . In particular, there are worlds v1, . . . , vn accessible
from w such that vi satisfies every formula in Γi but falsifies Ai. Now we use
Theorem 3. Pick an arbitrary world v in Mw (say, v1). As Mw is totally con-
nected, every world v1, . . . , vn is accessible from v. Hence �(∧Γi → Ai) fails at
v for every i ≤ n, and consequently so does ∨i≤n�(∧Γi → Ai), which is the
(boxed) interpretation of the premise Γ1 ⇒ A1 | . . . | Γn ⇒ An of (MM). Since
Mw is totally connected, it follows that this hypersequent is not valid in S5. �
Theorem 8 (soundness of grounded HS5-proofs). If there is a grounded
HS5-proof of Γ ⇒ Δ, then Γ ⇒ Δ is flat-valid in K5.

Proof. Similar to the proof of Theorem 5. The endsequent Γ ⇒ Δ of a grounded
proof is derivable from the conclusions of instances of (MM) using only propo-
sitional inferences. As these conclusions are flat-valid in S5 by Lemma 1, the
same follows3 for Γ ⇒ Δ. �
3 Note that propositional rules preserve both validity and flat-validity.

Some Analytic Systems of Rules 101

We now turn to the cutfree completeness of grounded HS5-proofs. This will
again be derived from the deduction theorem and cut-elimination for CK and
HS5. The situation in K5 is more complicated than in KT� for the following
reason: The outermost connective of the axiom �(�p → p) is a �, and thus the
first (read bottom-up) rule that will be applied to it when used as an assumption
in a CK-proof is (K), i.e. the very rule that separates the top from the bottom
part in our system of rules. In contrast, the outermost connective of ¬�p →
�¬�p is →. So if we follow an occurrence of the axiom upwards in the proof, it
will first be split into two different parts �p and �¬�p via (→L) and (¬R) that
only later encounter a modal rule. Thus at the part of the proof where we want
to introduce the rule (MM) to obtain a system of rules, the constituent formulas
of the axiom instances have been scattered among the branches of the CK-proof.
In a first step, we use the hypersequent structure to bring these scattered axiom
parts back together.

Lemma 2. The following rule is admissible in S5:

H | C,Γ1 ⇒ Δ1 H | ¬�C,Γ2 ⇒ Δ2

H | Γ1 ⇒ Δ1 | Γ2 ⇒ Δ2

Proof. The rule can easily shown to be sound using the Kripke semantics of S5.
It can also be derived from the generalised rule for cuts on boxed formulas that
Avron uses in his proof [2] of cut-elimination for S5. �

Fig. 3. Constructing a grounded HS5-proof

At this point we can already illustrate how the grounded HS5-proof will be
constructed in a very simple case—see Fig. 3. Here we start from a cutfree CK-
proof using only a single non-modalized axiom instance ¬�C → �¬�C. After
breaking up the axiom into two parts �C and �¬�C using invertible rules,
both parts are traced upwards in their respective branch α1 and α2 until they
are principal in an inference of (K). Then both premises of (K) are rejoined
using Lemma 2 into a single hypersequent, thereby eliminating the axiom parts.
Below this hypersequent we can simulate both proofs α1, α2 (this time omitting
the axiom parts) to arrive at the desired Γ ⇒ Δ.

102 T. Lang

To deal with the general case, we need to extend Lemma 2. For this we intro-
duce some notation: Given an index set I = {1, . . . , n} we write Γ, {Ci}i∈I ⇒ Δ
for the sequent Γ,C1, . . . , Cn ⇒ Δ, and H | [Γi ⇒ Δi]i∈I for the hypersequent
H | Γ1 ⇒ Δ1 | . . . | Γn ⇒ Δn.

Lemma 3. Let {Ci | i ∈ I} be a set of formulas. If the hypersequent

H | {Cj}j∈J , {¬�Ck}k∈I\J , ΓJ ⇒ ΔJ

is valid in S5 for all J ⊆ I, then so is H | [ΓJ ⇒ ΔJ]J⊆I .

Proof. By induction on |I|. For I = ∅ the statement is trivial. Thus let i0 ∈ I.
For J ⊆ I we call SJ the hypersequent

H | {Cj}j∈J , {¬�Ck}k∈I\J , ΓJ ⇒ ΔJ .

For any J ⊆ I with i0 ∈ J and L ⊆ (I \{i0}) we apply Lemma 2 (with C := Ci0)
to SJ and SL obtaining

H | {Cj}j∈J\{i0}, {¬�Ck}k∈I\J , ΓJ ⇒ ΔJ | {Cl}l∈L, {¬�Cm}m∈(I\{i0})\L, ΓL ⇒ ΔL

Call S∗
J the component with right hand side ΔJ . Keeping J fixed while let-

ting L ⊆ (I \ {i0}) vary, we can use the induction hypothesis to obtain the
hypersequent

H | S∗
J | [ΓL ⇒ ΔL]L⊆I\{i0}.

By another application of the induction hypothesis, now letting J vary across
subsets of I containing i0 (in other words: letting J ′ vary across subsets of I\{i0}
and setting J := J ′ ∪ {i0}), we obtain

H | [ΓJ ⇒ ΔJ]J⊆I,i0∈J | [ΓL ⇒ ΔL]L⊆I\{i0}

i.e. H | [ΓJ ⇒ ΔJ]J⊆I . �
Note that Lemma 2 is the instance of Lemma 3 where |I| = 1. We can now prove
the completeness theorem.

Theorem 9 (Cutfree completeness of grounded HS5-proofs). If Γ ⇒ Δ
is flat-valid in K5, then there is a cutfree grounded HS5-proof of it.

Proof. Let Γ ⇒ Δ by flat-valid in K5. By the deduction theorem, there is a
set Ω of modalized instances of ¬�p → �¬�p such that Ω,Γ ⇒ Δ is flat-
valid in K, and therefore has a cutfree CK-proof α. We can write Ω as �Ω1 ∪
{�Ci → �¬�Ci}i∈I where �Ω1 contains modalized instances of the axiom
with at least one box. By standard invertibility results in CK, we may assume
that the lowermost inferences in α are (→L) and (¬R) applied to all axioms
¬�Ci → �¬�Ci. In this way, we obtain 2|I|-many premises, which can succinctly
be described as follows: For every J ⊆ I, we have a premise TJ containing the
(negated) antecedents of all axioms with index j ∈ J and the consequents of all
other axioms, i.e.

TJ := �Ω1, {�Cj}j∈J , {�¬�Ck}k∈I\J , Γ ⇒ Δ.

Some Analytic Systems of Rules 103

We now fix cutfree CK-proofs αJ of TJ for every J ⊆ I. Letting PJ denote the
number of lowermost inferences of (K) in αJ , we enumerate them as

Ω1, {Cj}j∈J , {¬�Ck}k∈I\J , Γ p
J ⇒ Ap

J (K)p
J�Ω1, {�Cj}j∈J , {�¬�Ck}k∈I\J ,�Γ p

J ⇒ �Ap
J

where 0 < p ≤ PJ . Once again we assume harmlessly that the modalized axiom
instances and their parts in the antecedent have not been subject to contraction
or weakening. Let us assume moreover that PJ �= 0 for all J ⊆ I, i.e. there is at
least one instance of (K) in every αJ , as the other case is very simple.4

As the premise of (K)p
J is flat-valid in K and every formula in Ω1 is valid in

S5, it follows that the sequent

Sp
J := {Cj}j∈J , {¬�Ck}k∈I\J , Γ p

J ⇒ Ap
J

is flat-valid, and therefore also valid, in S5. Define F := {f : P(I) → N | 0 <
f(J) ≤ PJ} and fix one f ∈ F . We think of f as choosing one specific lowermost
instances (K)f(J)

J in every αJ . The family {S
f(J)
J }J⊆I is such that Lemma 3 is

applicable to it, and therefore the following hypersequent is valid in S5:

Hf := [Γ f(J)
J ⇒ A

f(J)
J]J⊆I

We now construct the grounded HS5-proof. Fix cutfree HS5-proofs βf of Hf

for every f ∈ F . Below each βf apply (MM) to obtain the sequent

{�Γ
f(J)
J }J⊆I ⇒ {�A

f(J)
J }J⊆I .

Letting J1, J2, . . . be an enumeration of P(I), we focus on the subfamily of
sequents

{�Γ
f(J)
J }J⊆I,J �=J1 ,�Γ p

J1
⇒ �Ap

J1
, {�A

f(J)
J }J⊆I,J �=J1

for fixed f ∈ F and varying 0 < p ≤ PJ1 . In other words, we consider all possible
values of f on J1 while keeping the other values fixed. Now observe that these
PJ1-many sequents look similar to the conclusions of the instances (K)p

J1
where

0 < p ≤ PJ1 , only that the axiom parts have been replaced. We can therefore
simulate5 the proof αJ1 below these sequents obtaining

{�Γ
f(J)
J }J⊆I,J �=J1 , Γ ⇒ Δ, {�A

f(J)
J }J⊆I,J �=J1

instead of the original endsequent TJ of αJ1 . Starting from this new family of
sequents (for all f ∈ F), we can repeat the above steps, simulating the proofs
αJ2 , αJ3 , αJ4 . . . until we eventually arrive at the sequent Γ, . . . , Γ ⇒ Δ, . . . ,Δ
from which we then obtain Γ ⇒ Δ by contraction. �
4 Assume (K) is never applied in αJ . Then no modal formula is ever principal in αJ

(note here that modal formulas do not appear in initial sequents, which we require
to be atomic). It is then easy to see that the modal formulas in the conclusion of αJ

can simply be removed to obtain a (still cutfree) CK-proof of Γ ⇒ Δ. This proves
the theorem, as a cutfree CK-proof is also a cutfree grounded HS5-proof.

5 Note that αJ1 has only propositional inferences below (K)p
J1

, so we do not have to
worry about the changed contexts breaking some instance of (K).

104 T. Lang

3.3 Grounded Proofs and Grafted Hypersequents

In [12] calculi for the logics KT� and K5 are defined. These build on the
notion of a grafted hypersequent Γ ⇒ Δ || Σ1 ⇒ Δ1 | . . . | Σn ⇒ Δn con-
sisting of a sequent Γ ⇒ Δ called the trunk and a hypersequent Σ1 ⇒ Δ1 |
. . . | Σn ⇒ Δn called the crown. If the crown is empty, we write Γ ⇒ Δ
instead of Γ ⇒ Δ ||. A grafted hypersequent corresponds to the modal formula
(∧Γ → ∨Δ) ∨ ∨n

i=1�(∧Σi → ∨Δi), i.e. one combines the flat interpretation of
the trunk with the boxed interpretation of the crown. As pointed out in [12],
grafted hypersequents are a restricted form of nested sequents.

We can now compare our systems of grounded proofs with the calculi in [12].
Let us first consider the grafted hypersequent calculus RK5 for K5. We refer
to [12, Figs. 1 and 2] for a complete list of the rules. The following presentation
should suffice for our purposes:

– The trunk rules are the rules of LK applied to the trunk, the crown remaining
unchanged;

– The crown rules are the rules of HS5 \ {(MM)} applied to the crown, where
it is required that the trunk is the empty sequent ⇒;

– Two transfer rules mediate between the trunk and the crown:

Γ ⇒ Δ || H |⇒ A
(�R)

Γ ⇒ Δ,�A || H
Γ ⇒ Δ || H | Σ,A ⇒ Π

(�L)
Γ,�A ⇒ Δ || H | Σ ⇒ Π

A grounded HS5-proof can be translated into a proof in RK5 as follows:

1. Replace every non-lowermost (MM) by its derivation via (�5
L) and (�5

R).
2. Replace every hypersequent H above some instance of (MM) by ⇒|| H.
3. Replace every lowermost (MM)-inference by transfer rules as shown below:

Γ1 ⇒ A1 | . . . | Γn ⇒ An

�Γ1, . . . , �Γn ⇒ �A1, . . . , �An
♦

⇒|| Γ1 ⇒ A1 | . . . | Γn ⇒ An
some (�L)’s

�Γ1, . . . , �Γn ⇒||⇒ A1 | . . . |⇒ An
some (�R)’s�Γ1, . . . , �Γn ⇒ �A1, . . . , �An

The grafted hypersequent calculus RKT� for the logic of shift-reflexive frames
is defined similarly; here it is only componentwise applications of CKT-rules
that are admitted in the crown (it follows that one only needs crowns with one
component). An analogous translation from grounded CKT-proofs to RKT� can
be defined. The translated proofs satisfy a normal form that already appears
in [12, see Def. 4.3].

As the translation described above does not introduce cuts, and as there are
cutfree grounded proofs for all theorems of KT� (Theorem 6) and K5 (The-
orem 8), we immediately obtain a new proof of the following (first established
in [12] via a syntactic reduction procedure):

Theorem 10. RK5 and RKT� admit cut elimination.

Some Analytic Systems of Rules 105

4 Strongly Modular Proofs of Cut-Elimination

The method of the previous section can be summarized as follows: Aiming to
show Γ ⇒ Δ in an extended system (KT� or S5), we start from a cutfree CK-
proof α of Ω,Γ ⇒ Δ for some (modularized) axiom instances Ω of the extended
logic. Then we inspect α and replace some parts of it with cutfree proofs in CKT

or HS5, this way getting rid of the axiom instance in Ω and thereby obtaining
a cutfree ‘grounded’ proof of Γ ⇒ Δ.

We emphasize the following: At no point in the argument one needed to under-
stand how cut-elimination for CK, CKT and HS5 is established. In other words,
these cut-elimination results are used as ‘blackboxes’ in the proof. Let us intro-
duce the following informal terminology: A proof of cut-elimination is

– weakly modular if it is obtained by modifying or extending the cut-elimination
proof of some other logic;

– strongly modular if it is obtained by using the cut-elimination property of
some other logic, irrespective of how this property was obtained.

Our proofs of Theorem 6 and Theorem 9 are strongly modular in this sense.
We are not aware of other such proofs in the literature.6 On the other hand,
weakly modular proofs are numerous: One might for example argue for cut-
elimination in CKT by describing how the reduction steps in the cut-elimination
algorithm for CK have to be extended to accommodate the additional rule (T).7

The disadvantage of this approach is of course that the reader has to know the
algorithm for CK. If such a proof were to be formalised, one would have to copy
and extend the complete formalisation of the proof for CK, instead of using CK’s
already established cut-elimination as a lemma in the formalised proof for CKT.
The most successful attempts at modularity in cut-elimination have been proofs
that are parametrized over a specific class of axioms or rules (e.g. [4,8,13,17]).

We believe strongly modular proofs of cut-elimination are interesting and
deserve further study. They have the potential of being both shorter8 and more
reliable through the reuse of already established theorems. Moreover, given the
general significance of cut-elimination, any method for obtaining it is important.

Of course, with only two9 examples at hand there is the possibility that we
have encountered a ‘happy coincidence’ rather than a general idea. Indeed the
situation of KT� and K5 is quite special in that they are sandwiched between
logics with cutfree calculi, i.e. K ⊆ KT� ⊆ KT and K ⊆ K5 ⊆ S5, and the
gap to the ‘upper logic’ KT or S5 is very small in a precise sense (Theorem 4).

In the remainder of this article we sketch an idea that could be useful for
obtaining strongly modular proofs of cut-elimination for other logics. We conduct
6 We do not count proofs using cutfreeness of another calculus for the same logic, or

a conservative extension thereof.
7 Also, a weakly modular proof of cut-elimination for grounded KT-proofs is obtained

by observing that all reduction steps in CKT’s cut-elimination preserve groundedness.
8 E.g., compare our proof for K5 with the one in the grafted hypersequent calculus [12].
9 Side remark: The result for KT� also applies to all modal logics K + �C where

K + C has a cutfree calculus.

106 T. Lang

the discussion in a semi-formal style. While there will not be enough evidence
for a ‘general method’, we do present two further examples where a strongly
modular proof is possible: The modal logic KD (using cut-elimination in K)
and the intermediate logic LQ (using cut-elimination in intuitionistic logic).

4.1 Calculi with Ghost Rules

We start from the general situation that L ⊆ M where L is some logic with a
cutfree sequent calculus CL. We seek a calculus for M that admits a strongly
modular proof of cut-elimination, relative to cut-elimination in CL. We addition-
ally assume that a deduction theorem holds between L and M. That is, a sequent
Γ ⇒ Δ is valid in M iff Ω,Γ ⇒ Δ is valid (and therefore cutfree provable) in L
for a suitable set of formulas Ω.

Our proofs of the completeness theorems (Theorems 6 and 9) suggest that
we should attempt to construct a cutfree M-proof of Γ ⇒ Δ by somehow trans-
forming a cutfree CL-proof α of Ω,Γ ⇒ Δ. Now one naive transformation might
immediately spring to mind: Can we simply take α and remove all occurrences
of Ω and its ancestors in α to obtain a cutfree proof α† of Γ ⇒ Δ?

The first question then is, in what system does α† qualify as a proof? Clearly
removing formulas from inferences in CL creates unsound rules. In a first step,
we therefore extend CL with ‘ghost rules’ : These are rules in which the principal
formula in the conclusion and its ancestors in the premises have been removed.
For examples, the ghost rules corresponding to (∧R) and (K) are

Γ ⇒ Δ Γ ⇒ Δ (∧R)†
Γ ⇒ Δ

and Γ ⇒ (K)†.�Γ ⇒
Different rules can have the same ghost rules, e.g. (∧R)† = (∨L)†. Some ghost
rules, e.g. (∧L)†, are ‘dummy inferences’ Γ ⇒ Δ/Γ ⇒ Δ that we do not add to
the system. If CL has initial sequents p ⇒ p then one or both occurrences of p
can be ancestors of Ω, and thus we need different ghost initial sequents:

(∗ ⇒)†⇒ p (⇒ ∗)†
p ⇒ (∗ ⇒ ∗)†⇒

Letting C†
L denote the calculus extended by such ghost inferences we see that α†

is (up to dummy inferences) a cutfree C†
L-proof of Γ ⇒ Δ. More generally we

infer from the deduction theorem that every sequent valid in M has a cutfree
proof in C†

L. But of course, C†
L also has many derivations which do not correspond

to proofs in M.

Definition 4. A class P of C†
L-proofs is cutfree-adequate for M if the endse-

quent of every P-proof is valid in M (‘soundness’) and there is a cutfree P-proof
of every M-valid sequent (‘completeness’).

Let us informally call M-revivable a C†
L-proof of Γ ⇒ Δ if we can insert

formulas and inferences into it to obtain a CL-proof of Ω,Γ ⇒ Δ, where Ω is a
set of M-valid formulas. The proof α† from the above discussion is the typical
example of an M-revivable proof.

Some Analytic Systems of Rules 107

By the deduction theorem and cut-elimination in CL it follows that the M-
revivable proofs in C†

L form a cutfree-adequate class for M.10 So what we have
obtained is indeed a strongly modular proof of cut-elimination for the system
of M-revivable C†

L-proofs. The property of being M-revivable can be seen as
a global correcteness condition on C†

L-proofs, and therefore constitutes—in its
broadest interpretation—a system of rules for C†

L. But of course this observa-
tion is rather11 useless in practice unless we can express the property of being
revivable in simpler terms, say via a condition on the order of rules being applied.

To conclude this article, we now discuss two logics—KD and LQ—where
this is the case. Their similarity lies in the fact that they admit a very strong
version of the deduction theorem, and this will allow us to express their notions
of ‘revivability’ in fairly simple terms. In doing so, we obtain both a system of
rules and a strongly modular proof of cut-elimination.

4.2 K ⊆ KD

The modal logic KD is the extension of K by the seriality axiom ¬�⊥; in
terms of the Kripke semantics, ¬�⊥ enforces that every world has at least one
successor. It is well-known (see, e.g., [13]) that extending CK with the rule

Γ ⇒ (D)�Γ ⇒
yields a sequent calculus CKD for KD admitting cut-elimination. We now present
a new proof of cut-elimination for KD that is strongly modular.

As the seriality axiom has no variables, the modalized instances of it are
exactly the formulas �k¬�⊥ for k ≥ 0. Following the methodology sketched
in the previous section, we now extend CK to a calculus C†

K with ghost rules.
Crucially, the ghost rule (K)† coincides with the rule (D) above.

Theorem 11. Those proofs in C†
K whose only ghost rule is (K)† form a cutfree-

adequate class for KD.

Proof. Let us first deal with completeness. If Γ ⇒ Δ is valid in KD, then there
is a set of modalized instances of ¬�⊥ such that Ω,Γ ⇒ Δ has a CK-proof
α. Using cut-elimination in CK, we may assume that α is cutfree. As there is
no right rule for ⊥, the CK-rules that can be applied in α to an ancestor of
a modalized instance of ¬�⊥ in Ω are only (¬L) and (K). Now obtain α† by
removing Ω and all its ancestors from the proof. As (¬L)† is a dummy rule, the
only ghost rule we need to create is (K)†. Thus α† is as desired.

10 The idea of systematically replacing systems of rules with axiom instances in order
to prove soundness already appears in [16].

11 One could maybe make the following remark: When looking for a simple cut-free
sequent calculus that endowed with some global correctness criterion captures the
logic M, one does not have to look further than C†

L.

108 T. Lang

We now turn to soundness. For this we have to ‘revive’ a C†
K-proof β of

Γ ⇒ Δ whose only ghost rule is (K)†. This is done as follows:

Γ ⇒ (K)†
�Γ ⇒ ♦

Γ ⇒ (w)
Γ ⇒ ⊥ (K)�Γ ⇒ �⊥ (¬L)�Γ,¬�⊥ ⇒

Now propagate the newly added ¬�⊥ downwards in the proof. We will have
to add �’s in front of it whenever we encounter the rule (K). Doing so for all
instances of (K)† we eventually obtain a CK-proof of Ω,Γ ⇒ Δ where Ω contains
modalized instances of ¬�⊥. Thus Γ ⇒ Δ is valid in KD. �

As restricting the ghost inferences in C†
K to (K)† yields exactly CKD, we have

obtained a new (and strongly modular) proof of cut-elimination for CKD.

4.3 IL ⊆ LQ

For our final example, we leave the realm of modal logics and consider an
intermediate logic instead. LQ extends IL by the law of weak excluded mid-
dle ¬p ∨ ¬¬p; it is known [11] that the following deduction theorem holds:
A ∈ LQ ⇐⇒ (∧i≤n¬pi ∨ ¬¬pi) → A ∈ IL where p1, . . . , pn are the vari-
ables occurring in A. Let CIL be the single-conclusion calculus obtained from
the first group of rules in Fig. 1 by stipulating that |Π| = 0 and |Δ| ≤ 1. CIL is
adequate for IL and admits cut-elimination.

Definition 5. A proof in C†
IL is LQ-grounded if the following holds:

1. The only ghost rules in it are (∨L)† and ghost initial sequents ⇒ p, p ⇒, ⇒.
2. Letting (∨L)†

1, . . . , (∨L)†
n denote all instance of (∨L)† in the proof, there are

sets L1, R1, . . . , Ln, Rn of ghost initial sequent occurrences such that
– every ghost initial sequent p ⇒ (resp. ⇒ p, resp. ⇒) appears in exactly

one Li (resp. exactly one Ri, resp. exactly one Ri and exactly one Lj);
– No two distinct variables appear in connected components, where being

connected is the reflexive, transitive and symmetric closure of the relation
Li ∼ Rj ⇐⇒ i = j ∨ Li ∩ Rj �= ∅

– Every branch of the proof containing a sequent in Li (Ri) goes through
the left (right) premise of (∨L)†

i . If it goes through the right premise, it
contains a sequent with empty right hand side above (∨L)†

i .

Figure 4 (middle) shows a simple LQ-grounded proof where n = 1.

Theorem 12. The class of LQ-grounded C†
IL-proofs is cutfree-adequate for LQ.

Proof. (Sketch). Completeness is similar to Theorem 11; LQ’s special deduction
theorem restricts the necessary ghost inferences to initial sequents and (∨L)†.

We now show soundness by ‘reviving’ an LQ-grounded proof of Γ ⇒ Δ.
Start by adding variables and (¬R)-inferences to the ghost initial sequents as
follows:

Some Analytic Systems of Rules 109

(p ⇒)∈Li ♦ (
p ⇒ pLi

p,¬pLi ⇒) (⇒ p)∈Ri ♦ (pRi ⇒ p) (⇒)∈Li∩Rj ♦ (
pRj ⇒ pLi

pRj ,¬pLi ⇒)

The superscripts act only as markers, i.e. p, pRi , pLi denote the same variable.
In replacing (⇒) ∈ Li ∩ Rj we add the variable p from a component connected
to Li or Rj (unique if it exists) and an arbitrary variable otherwise; in the other
cases the choice of the added variable is forced by the preexisting p. The ¬pLi ’s
are then propagated downwards until the left premise of (∨L)†

i . The pRi ’s are
propagated downwards until we encounter the first sequent Σ ⇒ with empty
right hand side, at which point we introduce double negations:

(Σ ⇒) ♦

⎛
⎜⎝

Σ, pRi ⇒
Σ ⇒ ¬pRi

Σ,¬¬pRi ⇒

⎞
⎟⎠

Propagate the ¬¬pRi ’s down to the right premise of (∨L)†
i and rewrite as follows:

Σ ⇒ Π Σ ⇒ Π (∨L)†
iΣ ⇒ Π

♦ Σ,¬pLi ⇒ Π Σ,¬¬pRi ⇒ Π
(∨L)

Σ,¬p ∨ ¬¬p ⇒ Π
Propagate the new formula ¬p ∨ ¬¬p to the endsequent. Doing so for all

i ≤ n, we obtain a CIL-proof of Ω,Γ ⇒ Δ where Ω contains instances of the
weak excluded middle axiom. Thus Γ ⇒ Δ is valid in LQ. �

It is instructive to compare LQ-grounded proofs to other calculi in the lit-
erature. For example, a hypersequent calculus for LQ [8] is obtained by adding
the rule (lq) (below left) to a hypersequent calculus for intuitionistic logic.12 The
corresponding 2-system of rules [9] is pictured on the right:

Σ,Σ′ ⇒
(lq)

Σ ⇒| Σ′ ⇒
Σ ⇒

...
Γ ⇒ Δ

Σ,Σ′ ⇒
Σ′ ⇒

...
Γ ⇒ Δ (bot)

Γ ⇒ Δ

Figure 4 hints at the translation of LQ-grounded proofs into both calculi.

Fig. 4. From LQ-grounded proofs to 2-systems (left) and hypersequents (right)

12 An interesting sequent calculus for LQ is presented in [6].

110 T. Lang

5 Conclusion and Future Work

We have defined grounded proofs, a system of rules for KT� and K5, and proved
the cut-elimination theorem. We showed how grounded proofs relate to grafted
hypersequents, thereby recovering and simplifying the cut-elimination theorem
for the latter calculus. We then elaborated on strongly modular proofs of cut-
elimination, providing two more examples through the logics KD and LQ.

Future work. Strongly modular proofs do not directly yield an algorithm for
eliminating cuts. We would like to know whether the arguments given here can
be used to write an algorithm that, e.g., eliminates cuts in grounded K5-proofs
by calling the cut-elimination algorithms for K and S5 as subroutines.

The method of obtaining strongly modular proofs through calculi with ghost
rules is in a very early stage and so much remains to be explored. As a first step,
one could try to extend the argument for LQ to all intermediate logics with a
similar deduction theorem, i.e. logics with the simple substitution property [19].

Acknowledgements. The author is indebted to the anonymous reviewers for many
corrections and helpful suggestions.

References

1. Aguilera, J.P., Baaz, M.: Unsound inferences make proofs shorter. J. Symb. Logic
84(1), 102–122 (2019)

2. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: Hodges, W. (ed.) Logic: Foundations to Applications, pp. 1–32
(1996)

3. Bednarska, K., Indrzejczak, A.: Hypersequent calculi for S5: the methods of cut
elimination. Logic Log. Philos. 24, 08 (2015)

4. Belnap, N.D.: Display logic. J. Philos. Logic 375–417 (1982)
5. Blackburn, P., van Benthem, J., Wolter, F.: Handbook of Modal Logic. Elsevier

(2006)
6. Boričić, B.R.: A cut-free Gentzen-type system for the logic of the weak law of

excluded middle. Stud. Logica. 45, 39–53 (1986)
7. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Logic 48(6),

551–577 (2009)
8. Ciabattoni, A., Galatos, N., Terui, K.: From axioms to analytic rules in nonclassical

logics. In: 2008 23rd Annual IEEE Symposium on Logic in Computer Science, pp.
229–240. IEEE (2008)

9. Ciabattoni, A., Genco, F.A.: Hypersequents and systems of rules: embeddings and
applications. ACM Trans. Comput. Logic (TOCL) 19(2), 1–27 (2018)

10. Fitting, M.: Modal proof theory. In: Blackburn, P., Van Benthem, J., Wolter, F.
(eds.) Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3,
pp. 85–138. Elsevier (2007)

11. Hosoi, T.: Pseudo two-valued evaluation method for intermediate logics. Stud.
Logica. 45, 3–8 (1986)

12. Kuznets, R., Lellmann, B.: Grafting hypersequents onto nested sequents. Logic J.
IGPL 24(3), 375–423 (2016)

Some Analytic Systems of Rules 111

13. Lahav, O.: From frame properties to hypersequent rules in modal logics. In: 2013
28th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 408–417.
IEEE (2013)

14. Massacci, F.: Strongly analytic tableaux for normal modal logics. In: Bundy, A.
(ed.) CADE 1994. LNCS, vol. 814, pp. 723–737. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-58156-1 52

15. Negri, S.: Proof analysis in modal logic. J. Philos. Log. 34, 507–544 (2005)
16. Negri, S.: Proof analysis beyond geometric theories: from rule systems to systems

of rules. J. Log. Comput. 26(2), 513–537 (2014)
17. Pattinson, D., Schröder, L: Generic modal cut elimination applied to conditional

logics. Logical Methods Comput. Sci. 7 (2011)
18. Restall, G.: Proofnets for S5: sequents and circuits for modal logic. In: Dimitra-

copoulos, C., Newelski, L., Normann, D. (eds.) Logic Colloquium 2005, pp. 151–
172. Cambridge University Press, Cambridge (2007)

19. Sasaki, K.: The simple substitution property of the intermediate propositional
logics. Bull. Section Logic 18(3) (1989)

20. Schroeder-Heister, P.: The calculus of higher-level rules, propositional quantifica-
tion, and the foundational approach to proof-theoretic harmony. Stud. Logica. 102,
1185–1216 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-58156-1_52
http://creativecommons.org/licenses/by/4.0/

A Cut-Free, Sound and Complete
Russellian Theory of Definite Descriptions

Andrzej Indrzejczak and Nils Kürbis(B)

Department of Logic, University of Lodz, Lodz, Poland
{andrzej.indrzejczak,nils.kurbis}@filhist.uni.lodz.pl

Abstract. We present a sequent calculus for first-order logic with
lambda terms and definite descriptions. The theory formalised by this
calculus is essentially Russellian, but avoids some of its well known draw-
backs and treats definite description as genuine terms. A constructive
proof of the cut elimination theorem and a Henkin-style proof of com-
pleteness are the main results of this contribution.

Keywords: Definite Descriptions · Predicate abstracts · Sequent
Calculus · Cut Elimination

1 Introduction

Definite descriptions (DD) are complex terms commonly applied not only in
natural languages but also in mathematics and computer science. In formal lan-
guages they are usually expressed by means of the iota operator, which forms
terms from formulas. Thus ıxϕ means ‘the (only) x satisfying ϕ’. A DD aims
to denote a unique object by virtue of a property that only it has. Sometimes a
DD fails, because nothing or more than one thing has the property. A DD that
succeeds to denote only one object is proper ; otherwise it is improper.

Definite descriptions, proper and improper, are ubiquitous not only in natural
languages but also in mathematics and science (like the proper ‘the sum of 7 and
5’ or the improper ‘the square root of n’). In formal languages the application of
functional terms is the prevailing way of representing complex names. However,
applying DD can outrun functional terms in many ways, since they are more
expressive than functional terms, in the sense that an arbitrary functional term
fn(t1, . . . , tn) can be represented as a description ıxFn+1(x, t1, . . . , tn), where
F is a predicate corresponding to the function f . On the other hand, not every
definite description, even if proper, can be expressed using functional terms; it
is possible only in the case of predicates expressing functional relations, whereas
every sentence can be used to form a DD. For example, both ‘the father of Ben’

Funded by the European Union (ERC, ExtenDD, project number: 101054714). Views
and opinions expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible for them.
c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 112–130, 2023.
https://doi.org/10.1007/978-3-031-43513-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_7&domain=pdf
http://orcid.org/0000-0003-4063-1651
http://orcid.org/0000-0002-3651-5458
https://doi.org/10.1007/978-3-031-43513-3_7

A Cut-Free, Sound and Complete Russellian Theory of Definite Descriptions 113

and ‘the daughter of Mary’ may be represented as terms using the iota operator,
but only the first may be represented as a functional term. Moreover, even if we
can use functional terms instead of DD we enrich a language with another sort
of functors in addition to predicates. This has an impact on the formalisation of
valid arguments in which very often the conclusion follows on the basis of the con-
tent expressed by functional terms which is directly expressed by predicates. For
example: ‘Adam has children’ follows from ‘Adam is the father of Ben’. However
to prove its validity, its formal representation a = f(b) � ∃x(Cxa) requires two
enthymematic premisses: ∀xy(Mxy ∨ Fxy ↔ Cyx) and ∀xy(x = f(y) ↔ Fxy).
Let us call the latter premiss a bridge principle allowing us to transfer infor-
mation conveyed by predicates to related functions and vice versa. In general
they have a form: ∀x1, . . . , xn, y(y = fn(x1, . . . , xn) ↔ Fn+1(y, x1, . . . , xn) and
show how the information encoded by the functional predicates is represented
by predicates. In the case of using DD instead of functional terms we do not
need such extra bridge principles, whereas in languages with functional terms
they are necessary in an analysis of obviously valid arguments.1

The usefulness of formal devices like the iota operator and other term-forming
operators has recently been better recognised (cf. Tennant’s [32] or Scott and
Benzmüller’s implementation of free logic using proof assistant Isabelle/HOL [3])
also in the fields connected with computer science, like differential dynamic logic
used for verification of hybrid systems [5] or description logics (see [1] or [25]).
Logics with DD are often implemented to enable formalisation of deep philosoph-
ical problems. e.g. Anselm’s ontological argument (see the work by Oppenheimer
and Zalta using the automated reasoning tool PROVER9 [26] or its encoding
by Blumson [4]).

Since several rival theories of DD were formulated, the applicability and
potential usefulness of DD was underestimated so far. It leads to a question
which approach is the best one, at least for some specific kind of applications. In
this paper we focus on the Russellian approach to definite descriptions ([28] and
[35]) which plays a central role in this area. Although Russell’s theory of DD has
some controversial points, it became a standard point of reference of almost all
works devoted to the analysis of definite descriptions. Moreover, it is still widely
accepted by formal logicians as a proper way of handling descriptions; the scores
of textbooks that use it as their official theory of definite descriptions count as
witnesses for this claim. Russell’s theory has also strong affinities to logics closely
connected with applications in constructive mathematics and computer science
like the logic of the existence predicate by Scott [30] or the definedness logic
(or the logic of partial terms) of Beeson [2] and Feferman [8]. These connections
were elaborated in [14].

Russell treated DD as incomplete signs and defined their use by contextual
definitions of the form:

ψ[x/ıyϕ] := ∃x(∀y(ϕ ↔ y = x) ∧ ψ)

1 Some other advantages of using DD instead of functional terms are discussed in more
detail in [17].

114 A. Indrzejczak and N. Kürbis

but this solution leads to scoping difficulties if ψ is not elementary. ¬ψ[x/ıyϕ],
e.g., is ambiguous: is the whole formula negated or only the predicate ψ? The
method which Russell introduced in [35] to draw scope distinctions is rather
clumsy. Fortunately, it is possible to develop a logic which treats DD as genuine
terms and yet retains desirable features of the Russellian approach. Such a logic
was formalised as a natural deduction system by Kalish, Montague, and Mar [18]
and by Francez and Więckowski [11]. These systems involve complex rules and
axioms, but recently Indrzejczak [16] provided an analytic and cut-free sequent
calculus equivalent to the Russellian logic as formalised in [18]. However, in all
these systems the formal counterpart of the Russellian policy of eliminating DD
from sentences must be restricted to predicate letters, which is connected with
the scoping difficulties of the Russellian approach just mentioned.

Can we offer any improvement on the state of the art? A possible strategy
of avoiding these problems is to treat DD by means of a binary quantifier; this
approach was formally developed by Kürbis (cf. [19–23]). However, if we want
to treat DD as terms, then the introduction of the lambda operator to construct
complex predicate abstracts from formulas offers a good solution. λxϕ means
‘the property of being ϕ’ and applied to some term, in particular to a DD, forms
a formula called a lambda atom. This device was introduced into studies of
modal predicate logic by Thomason and Stalnaker [31], and the idea was further
developed by Bressan [6] and Fitting [9], in particular, to distinguish between de
dicto and de re reading of modal operators. Independently, this technique was
used by Scales [29] in his formulation of attributional logic, where Aristotle’s
distinction between the negation of a sentence and of a predicate is formally
expressible. In fact, Scales seems to be the first one to apply predicate abstraction
to formalise a theory of DD which relates closely to Russell’s. Predicate abstracts
were also successfully applied by Fitting and Mendelsohn [10] to obtain a theory
of DD in a modal setting. This approach, with slight modifications, was further
developed independently by Orlandelli [27] and Indrzejczak [12] to obtain cut-
free sequent calculi for modal logics with DD and predicate abstracts.

In this article we focus on a different logic RL, first introduced in [17], which
also combines the iota and lambda operators. It avoids the shortcomings of the
Russellian approach while saving all its plausible features. Predicate abstracts
permit us to draw scope distinctions rather more elegantly than with the Rus-
sellian scope markers and their application is more general. RL is essentially
Russellian but with DD treated as genuine terms. Nonetheless, the reductionist
aspect of Russell’s approach is retained in several ways. On the level of syntax
the occurrences of DD are restricted to arguments of predicate abstracts to form
lambda atoms. On the level of semantics DD are not defined by an interpretation
function but by satisfaction clauses for lambda atoms. Eventually, on the level
of calculus DD cannot be instantiated for variables in quantifier rules but are
subject to special rules for lambda atoms. This strict connection of DD with
predicate abstracts avoids disadvantages of the Russellian approach connected
with scoping difficulties, and, at the same time, simplifies proofs of metalogical
properties.

A Cut-Free, Sound and Complete Russellian Theory of Definite Descriptions 115

RL was originally characterised semantically and formalised as an analytic
tableau calculus in [17], where it was also applied for proving the Craig inter-
polation theorem. Here we are completing the research on RL by providing an
adequate sequent calculus for which the cut elimination theorem is proved con-
structively. We characterise the language, semantics and axiomatisation of RL
in Sect. 2. Then we present the sequent calculus GRL for RL and show its equiv-
alence with an axiomatic Hilbert style system HRL. Section 4 contains a proof
of the cut elimination theorem, and Sect. 5 a Henkin-style proof of completeness.
The paper finishes with some comparative remarks.

2 Preliminaries

The language L of RL is standard, except that it contains the operators ı and λ.
Following the remarks on the functional terms from the Introduction, as well as
the original Russellian attitude towards terms, the ‘official’ language has neither
constant nor function symbols; in the completeness proof we add constants solely
for the purpose of constructing models from consistent sets. As is customary
in proof theoretic investigations since Gentzen, we distinguish free and bound
variables graphically in deductions. It is not customary to make this distinction in
semantics, and so there we won’t make it either. This blend of two customs should
not lead to confusion, and we are following Fitting and Mendelsohn [10] in this
respect. There are two disjoint sets V AR of variables and PAR of parameters.
The former plays the role of the bound, the latter of the free variables in the
presentation of the proof theory of RL; in the presentation of the semantics,
this restriction is relaxed and members of V AR are permitted as free variables.
The terms of the language in the strict sense are the variables and parameters.
Expressions formed by ı are admitted as terms in a more general sense: their
application is restricted to predicate abstracts and they are called quasi-terms.
We mention only the following formation rules for the more general notion of a
formula used in the semantics:

– If Pn is a predicate symbol (including =) and t1 . . . tn ∈ V AR ∪ PAR, then
Pn(t1, ..., tn) is a formula (atomic formula).

– If ϕ is a formula, then (λxϕ) is a predicate abstract.
– If ϕ is a formula, then ıxϕ is a quasi-term.
– If ϕ is a predicate abstract and t a term or quasi-term, then ϕt is a formula

(lambda atom).

ϕ[x/t] denotes the result of replacing x by t in ϕ. To save space, we’ll often write
ϕx

t instead of ϕ[x/t]. If t is a variable y, it is assumed that y is free for x in
ϕ, that is, no occurrence of y becomes bound in ϕ in the replacement. To save
space and simplify things in the statement of semantics and in the completeness
proof in Sect. 4, we treat ∨,→,∃ as defined notions.

A model is a structure M = 〈D, I〉, where for each n-argument predicate
Pn, I(Pn) ⊆ Dn. An assignment v is a function v : V AR ∪ PAR −→ D. An
x-variant v′ of v agrees with v on all arguments, save possibly x. We write vx

o to

116 A. Indrzejczak and N. Kürbis

denote the x-variant of v with vx
o (x) = o. The notion of satisfaction of a formula

ϕ with v, in symbols M,v |= ϕ, is defined as follows, where t ∈ V AR ∪ PAR:

M, v |= P n(t1, ..., tn) iff 〈v(t1), . . . , v(tn)〉 ∈ I(P n)

M, v |= t1 = t2 iff v(t1) = v(t2)

M, v |= (λxψ)t iff M, vx
o |= ψ, where o = v(t)

M, v |= (λxψ)ıyϕ iff there is an o ∈ D such that M, vx
o |= ψ, and

M, vx
o |= ϕ[y/x], and for any y-variant v′ of vx

o ,
if M, v′ |= ϕ, then v′(y) = o

M, v |= ¬ϕ iff M, v �|= ϕ,
M, v |= ϕ ∧ ψ iff M, v |= ϕ and M, v |= ψ,
M, v |= ∀xϕ iff M, vx

o |= ϕ, for all o ∈ D

A formula ϕ is satisfiable if there are a model M and an assignment v such that
M,v |= ϕ. A formula is valid if, for all models M and assignments v, M,v |= ϕ.
Semantically, HRL is identified with the set of valid formulas, RL with the set
of valid sequents. A set of formulas Γ is satisfiable iff there is some structure M
and an assignment v such that M satisfies every member of Γ with v. A sequent
Γ ⇒ Δ is satisfied by a structure M with an assignment v if and only if, if for
all ϕ ∈ Γ , M,v |= ϕ, then for some ψ ∈ Δ, M,v |= ψ. We symbolise this by
M,v |= Γ ⇒ Δ. A sequent Γ ⇒ Δ is valid iff it is satisfied by every structure
with every assignment v. In this case we write |= Γ ⇒ Δ.

Note that we do not characterise DD semantically by means of interpretation
function I as it is usually done (for example in [10,27])). The syntactic restriction
making DD only arguments in lambda atoms allows us to define them together
as a separate satisfaction clause instead. It is closer to the original Russellian
treatment of descriptions and simplifies the completeness proof.

Before presenting the sequent calculus, we briefly give the Hilbert system
HRL. As we noted Russell treated DD as incomplete symbols and eliminated
them by means of contextual definitions. Adopting the following axiom corre-
sponding to his definitions would be too simplistic:

R ψ(ıyϕ) ↔ ∃x(∀y(ϕ ↔ y = x) ∧ ψ)

R must be restricted to atomic ψ or it is necessary to add means for marking
scope distinctions. Whitehead and Russell chose the latter part, but their method
is far from ideal. It is possible to avoid the problem in more elegant fashion with
the help of a λ operator. In particular, we can use it to distinguish the application
of the negated predicate ¬ψ to ıyϕ from negating the application of ψ to it. In the
present context scoping difficulties arise only in relation to DD, and the problem
is solved by restricting predication on DD to predicate abstracts. Accordingly,
atomic formulas are built from predicate symbols and variables/parameters only.
This is in full accordance with Russell, since the language of Principia contains
no primitive constant and function symbols: they are introduced by contextual

A Cut-Free, Sound and Complete Russellian Theory of Definite Descriptions 117

definitions by means of DD. We modify R to reflect the restriction that ı terms
require λ abstracts:

Rλ (λxψ)ıyϕ ↔ ∃x(∀y(ϕ ↔ y = x) ∧ ψ)

This way we avoid problems with scope while permitting complex as well as
primitive predicates to be applied to DD. The axiomatic system HRL for our
logic RL results from a standard axiomatization of pure first-order logic with
identity and quantifier rules restricted to parameters by adding the axiom Rλ

and β-conversion for λ but restricted again to parameters: (λxψ)t ↔ ψ[x/t],
where t is a parameter. The adequacy of HRL will be demonstrated below.

3 Sequent Calculus

We now formalise the Russellian logic RL as a sequent calculus GRL. Sequents
Γ ⇒ Δ are ordered pairs of finite multisets of formulas, called the antecedent
and the succedent, respectively. GRL is essentially the calculus G1c of Troelstra
and Schwichtenberg [34] with rules for identity and lambda atoms: see Fig. 1.

Let us recall that formulas displayed in the schemata are active, whereas
the remaining ones are parametric, or form a context. In particular, all active
formulas in the premisses are called side formulas, and the one in the conclusion
is the principal formula of the respective rule application. Proofs are defined in
the standard way as finite trees with nodes labelled by sequents. The height of
a proof D of Γ ⇒ Δ is defined as the number of nodes of the longest branch in
D. �k Γ ⇒ Δ means that Γ ⇒ Δ has a proof with height at most k. � means
that there is a proof of the expression standing to its right, be it a formula (in
the case of HRL) or a sequent (in the case of GRL).

We need some auxiliary results. In particular, since (= −) is Leibniz’ Principle
restricted to atomic formulas, we must prove its unrestricted form.

Lemma 1. 1. � b1 = b2, ϕ[x/b1] ⇒ ϕ[x/b2], for any formula ϕ.
2. If �k Γ ⇒ Δ, then �k Γ [b1/b2] ⇒ Δ[b1/b2], where k is the height of a proof.

Proof. 1. follows by induction over the complexity of formulas, which is standard
for all cases except those concerning lambda atoms with DD. We note that ϕz

b
y
c

is the same as ϕy
c

z
b , etc. We write [(λxψ)ıyϕ]zb1 to denote substitutions in lambda

atoms in more readable fashion. To simplify proofs applications of weakening
and contraction rules to derive shared contexts are omitted from now on. Let D
be the following deduction, where the leaves are axioms and c a fresh parameter:

ϕy
c

z
b1 ⇒ ϕy

c
z
b1 ϕy

a
z
b1 ⇒ ϕy

a
z
b1 c = a ⇒ c = a

(ı2 ⇒)
[(λxψ)ıyϕ]zb1 , ϕy

a
z
b1 , ϕy

c
z
b1 ⇒ c = a

Then we derive � b1 = b2, [(λxψ)ıyϕ]]zb1 ⇒ [(λxψ)ıyϕ]zb2 :

118 A. Indrzejczak and N. Kürbis

Fig. 1. Calculus GRL

A Cut-Free, Sound and Complete Russellian Theory of Definite Descriptions 119

b1 = b2, ϕ
y
a

z
b1 ⇒ ϕy

a
z
b2 b1 = b2, ψ

x
a

z
b1 ⇒ ψx

a
z
b2 D

(⇒ ı)
b1 = b2, ϕ

y
a

z
b1 , ψx

a
z
b1 , [(λxψ)ıyϕ]zb1 ⇒ [(λxψ)ıyϕ]zb2(ı1 ⇒)

b1 = b2, [(λxψ)ıyϕ]zb1 , [(λxψ)ıyϕ]zb1 ⇒ [(λxψ)ıyϕ]zb2(C ⇒)
b1 = b2, [(λxψ)ıyϕ]zb1 ⇒ [(λxψ)ıyϕ]zb2

The two left leaves are provable by the induction hypothesis (if b1, b2 are not
present in ψ or ϕ, we have an axiomatic sequent).

The proof of 2 is by a standard induction on the height of proofs; the rules
for lambda atoms with DD are treated similarly to the rules for quantifiers. ��

Let us now show that the Russellian axiom Rλ is provable in GRL. We will
provide proofs for two sequents corresponding to two implications. Let D be:

ϕy
a ⇒ ϕy

a ϕy
a1 ⇒ ϕy

a1 a1 = a ⇒ a1 = a
(ı2 ⇒)

(λxψ)ıyϕ, ϕy
a, ϕy

a1 ⇒ a1 = a

The following establishes one half of Rλ:

D ϕy
a, a1 = a ⇒ ϕy

a1(⇒↔)
(λxψ)ıyϕ, ϕy

a ⇒ ϕy
a1 ↔ a1 = a

(⇒ ∀)
(λxψ)ıyϕ, ϕy

a ⇒ ∀y(ϕ ↔ y = a) ψx
a ⇒ ψx

a
(⇒ ∧)

(λxψ)ıyϕ, ψx
a , ϕy

a ⇒ ∀y(ϕ ↔ y = a) ∧ ψx
a

(⇒ ∃)
(λxψ)ıyϕ, ψx

a , ϕy
a ⇒ ∃x(∀y(ϕ ↔ y = x) ∧ ψ)

(ı1 ⇒)
(λxψ)ıyϕ, (λxψ)ıyϕ ⇒ ∃x(∀y(ϕ ↔ y = x) ∧ ψ)

(C ⇒)
(λxψ)ıyϕ ⇒ ∃x(∀y(ϕ ↔ y = x) ∧ ψ)

where the only nonaxiomatic sequent is provable by lemma 1.1. Next, where D
is:

ϕy
b ⇒ ϕy

b b = a ⇒ b = a
(↔⇒)

ϕy
b ↔ b = a, ϕy

b ⇒ b = a
(∀ ⇒) ∀y(ϕ ↔ y = a), ϕy

b ⇒ b = a

the following establishes the other half of Rλ:

ψx
a ⇒ ψx

a

a = a ⇒ a = a(= +) ⇒ a = a ϕy
a ⇒ ϕy

a
(↔⇒)

ϕy
a ↔ a = a ⇒ ϕy

a
(∀ ⇒) ∀y(ϕ ↔ y = a) ⇒ ϕy

a D
(⇒ ı) ∀y(ϕ ↔ y = a), ψx

a ⇒ (λxψ)ıyϕ
(∧ ⇒) ∀y(ϕ ↔ y = a) ∧ ψx

a ⇒ (λxψ)ıyϕ
(∃ ⇒) ∃x(∀y(ϕ ↔ y = x) ∧ ψ) ⇒ (λxψ)ıyϕ

Conversely, the three rules for lambda atoms with DD are derivable in G1
with Rλ added in the form of two axiomatic sequents. To derive (ı1 ⇒), let R⇒

λ

be (λxψ)ıyϕ ⇒ ∃x(∀y(ϕ ↔ y = x) ∧ ψ):

120 A. Indrzejczak and N. Kürbis

R⇒
λ

a = a ⇒ a = a(= +) ⇒ a = a ϕy
a, ψx

a , Γ ⇒ Δ
(↔⇒)

ϕy
a ↔ a = a, ψx

a , Γ ⇒ Δ
(∀ ⇒) ∀y(ϕ ↔ y = a), ψx

a , Γ ⇒ Δ
(∧ ⇒) ∀y(ϕ ↔ y = a) ∧ ψx

a , Γ ⇒ Δ
(∃ ⇒) ∃x(∀y(ϕ ↔ y = x) ∧ ψ), Γ ⇒ Δ

(Cut)
(λxψ)ıyϕ, Γ ⇒ Δ

To derive (ı2 ⇒), use (Cut) with (λxψ)ıyϕ ⇒ ∃x(∀y(ϕ ↔ y = x) ∧ ψ) and:

Γ ⇒ Δ, ϕy
b1

Γ ⇒ Δ, ϕy
b2

b1 = b2, Γ ⇒ Δ
(= −)

b1 = a, b2 = a, Γ ⇒ Δ
(↔⇒)

b1 = a, ϕy
b2

↔ b2 = a, Γ ⇒ Δ
(↔⇒)

ϕy
b1

↔ b1 = a, ϕy
b2

↔ b2 = a, Γ ⇒ Δ
(∀ ⇒) ∀y(ϕ ↔ y = a), ∀y(ϕ ↔ y = a), Γ ⇒ Δ
(C ⇒) ∀y(ϕ ↔ y = a), ψx

a , Γ ⇒ Δ
(∧ ⇒) ∀y(ϕ ↔ y = a) ∧ ψx

a , Γ ⇒ Δ
(∃ ⇒) ∃x(∀y(ϕ ↔ y = x) ∧ ψ), Γ ⇒ Δ

The following derives (⇒ ı):

ϕy
a, Γ ⇒ Δ, a = b

Γ ⇒ Δ, ϕy
b a = b, ϕy

b ⇒ ϕy
a

(Cut)
a = b, Γ ⇒ Δ, ϕy

a
(⇒↔)

Γ ⇒ Δ, ϕy
a ↔ a = b

(⇒ ∀)
Γ ⇒ Δ, ∀y(ϕ ↔ y = b) Γ ⇒ Δ, ψx

b
(⇒ ∧)

Γ ⇒ Δ, ∀y(ϕ ↔ y = b) ∧ ψx
b

(⇒ ∃)
Γ ⇒ Δ, ∃x(∀y(ϕ ↔ y = x) ∧ ψ)

where the right premiss of (Cut) is provable by lemma 1.1, and the conclusion
of the rule follows by (Cut) with ∃x(∀y(ϕ ↔ y = x) ∧ ψ) ⇒ (λxψ)ıyϕ.

Since the proofs of the interderivability of the axiom of λ conversion and
(λ ⇒), (⇒ λ) are trivial we are done and conclude with:

Theorem 1. �HRL ϕ iff �GRL ⇒ ϕ

4 Cut Elimination

We will show that (Cut) is eliminable from every proof in GRL using the general
strategy of cut elimination proofs applied originally for hypersequent calculi
in Metcalfe, Olivetti and Gabbay [24], which works well also in the context
of standard sequent calculi (see [15]). Such a proof has a particularly simple
structure and allows us to avoid many complexities inherent in other methods
of proving cut elimination. In particular, we avoid well known problems with
contraction, since two auxiliary lemmata deal with this problem in advance. We
assume that all proofs are regular in the sense that every parameter a which is

A Cut-Free, Sound and Complete Russellian Theory of Definite Descriptions 121

fresh by the side condition of the respective rule must be fresh in the entire proof,
not only on the branch where the application of this rule takes place. There is
no loss of generality since every proof may be systematically transformed into a
regular one by lemma 1.2. The following notions are crucial for the proof:

1. The cut-degree is the complexity of the cut-formula ϕ, i.e. the number of
logical constants (connectives, quantifiers and operators) occurring in ϕ; it is
denoted by dϕ.

2. The proof-degree (dD) is the maximal cut-degree in D.

The proof of the cut elimination theorem is based on two lemmata which suc-
cessively make a reduction: first of the height of the right, and then of the height
of the left premiss of cut. ϕk, Γ k denote k > 0 occurrences of ϕ, Γ , respectively.

Lemma 2 (Right reduction). Let D1 � Γ ⇒ Δ,ϕ and D2 � ϕk,Π ⇒ Σ with
dD1, dD2 < dϕ, and ϕ principal in Γ ⇒ Δ,ϕ, then we can construct a proof D
such that D � Γ k,Π ⇒ Δk, Σ and dD < dϕ.

Proof. By induction on the height of D2. The basis is trivial, since Γ ⇒ Δ,ϕ
is identical with Γ k,Π ⇒ Δk, Σ. The induction step requires examination of
all cases of possible derivations of ϕk,Π ⇒ Σ, and the role of the cut-formula
in the transition. In cases where all occurrences of ϕ are parametric we simply
apply the induction hypothesis to the premisses of ϕk,Π ⇒ Σ and then apply
the respective rule – it is essentially due to the context independence of almost
all rules and the regularity of proofs, which together prevent violation of side
conditions on eigenvariables. If one of the occurrences of ϕ in the premiss(es) is
a side formula of the last rule we must additionally apply weakening to restore
the missing formula before the application of the relevant rule.

In cases where one occurrence of ϕ in ϕk,Π ⇒ Σ is principal we make use of
the fact that ϕ in the left premiss is also principal; for the cases of contraction
and weakening this is trivial. We consider the cases of lambda atoms with DD.
Hence D1 finishes with:

Γ⇒ Δ,ϕ[y/b] Γ⇒ Δ,ψ[x/b] ϕ[y/a], Γ ⇒ Δ, a = b

Γ ⇒ Δ, (λxψ)ıyϕ

and D2 finishes with:

ϕ[y/a′], ψ[x/a′], (λxψ)ıyϕk−1,Π⇒ Σ

(λxψ)ıyϕk,Π⇒ Σ

or
(λxψ)ıyϕk−1, Π⇒ Σ, ϕ[y/b1] (λxψ)ıyϕk−1, Π⇒ Σ, ϕ[y/b2] b1 = b2, (λxψ)ıyϕk−1, Π ⇒ Σ

(λxψ)ıyϕk, Π ⇒ Σ

In the first case, by the induction hypothesis and lemma 1.2 we obtain
ϕ[y/b], ψ[x/b], Γ k−1,Π⇒ Δk−1, Σ and by two cuts with the leftmost and cen-
tral premiss of (⇒ ı) in D1 we obtain Γ k+1,Π⇒ Δk+1, Σ, which by contraction
yields the result.

122 A. Indrzejczak and N. Kürbis

In the second case note first that by lemma 1.2 from the rightmost premiss
of (⇒ ı) in D1 we obtain

a. ϕ[y/b1], Γ ⇒ Δ, b1 = b and
b. ϕ[y/b2], Γ ⇒ Δ, b2 = b.

Again by the induction hypothesis from the three premisses we get:

1. Γ k−1,Π⇒ Δk−1, Σ, ϕ[y/b1]
2. Γ k−1,Π⇒ Δk−1, Σ, ϕ[y/b2]
3. b1 = b2, Γ

k−1,Π⇒ Δk−1, Σ

We proceed as follows with a series of the applications of cut, followed by con-
tractions, using the provable sequent b1 = b, b2 = b ⇒ b1 = b2:

2 b

Γ k, Π⇒ Δk, Σ, b2 = b

1 a

Γ k, Π⇒ Δk, Σ, b1 = b

b1 = b, b2 = b ⇒ b1 = b2 3

b1 = b, b2 = b, Γ k−1, Π⇒ Δk−1, Σ

b2 = b, Γ 2k−1, Π2⇒ Δ2k−1, Σ2

Γ 3k−1, Π3⇒ Δ3k−1, Σ3

Γ k, Π⇒ Δk, Σ

��

Lemma 3 (Left reduction). Let D1 � Γ ⇒ Δ,ϕk and D2 � ϕ,Π ⇒ Σ with
dD1, dD2 < dϕ, then we can construct a proof D such that D � Γ,Πk ⇒ Δ,Σk

and dD < dϕ.

Proof. By induction on the height of D1 but with some important differences to
the proof of the right reduction lemma. First note that we do not require ϕ to be
principal in ϕ,Π ⇒ Σ, so it includes the case where ϕ is atomic. In all these cases
we just apply the induction hypothesis. This guarantees that even if an atomic
cut formula was introduced in the right premiss by (= −) the reduction of the
height is achieved only on the left premiss, and we always obtain the expected
result. Now, in cases where one occurrence of ϕ in Γ ⇒ Δ,ϕk is principal, we
first apply the induction hypothesis to eliminate all other k − 1 occurrences of
ϕ in the premisses and then we apply the respective rule. Since the only new
occurrence of ϕ is principal, we can make use of the right reduction lemma again
and obtain the result, possibly after some applications of structural rules. ��

Now we are ready to prove the cut elimination theorem:

Theorem 2. Every proof in GRL can be transformed into cut-free proof.

Proof. By double induction: primary on dD and subsidiary on the number of
maximal cuts (in the basis and in the inductive step of the primary induction).
We always take the topmost maximal cut and apply lemma 3 to it. By successive
repetition of this procedure we reduce either the degree of a proof or the number
of cuts in it until we obtain a cut-free proof. ��

A Cut-Free, Sound and Complete Russellian Theory of Definite Descriptions 123

5 Adequacy

In this section, we’ll make use of the fact that for every set there is a correspond-
ing multiset, so if Γ , Δ are sets of formulas, we may write Γ ⇒ Δ. We recall that
we treat ∨,→,∃ as defined notions. For the completeness proof we assume that a
denumerable set of individual constants may be added to the language. I assigns
objects in the domain D of the model 〈D, I〉 to these constants. For brevity we
introduce the notation Iv, where if t is a variable or parameter, Iv(t) = v(t) and
where t is a constant, Iv(t) = I(t).

Recall the distinction between terms and pseudo-terms, the former variables
and parameters and now also constants, the latter iota terms. In the following
lemma, t denotes a variable, parameter or constant, not a DD, hence the proof
is standard, with the case of lambda atoms similar to the case of quantifiers.
In the rest of this section, too, t will refer to terms only. In particular, there
is no need to consider pseudo-terms in the Lindenbaum-Henkin construction
(theorem 4), because in substitution in the formulas concerned only terms can
be used. Pseudo-terms are treated, just as they are in the semantics, as occurring
in lambda atoms, and thus like the logical constants by the consideration of the
consistent addition of formulas to a set in the construction of its maximally
consistent extension.

Lemma 4 (The Substitution Lemma.). M,v |= ϕx
t iff M,vx

Iv(t) |= ϕ, if t is
free for x in ϕ.

Proof. See e.g. [7, 133f] and adjust. ��

Next, the soundness of GRL.

Theorem 3 (Soundness of GRL). If � Γ ⇒ Δ, then |= Γ ⇒ Δ

Proof. By induction on the height of the proof. Since it is well-known that the
rules of G1 are validity preserving, and it is obvious for both lambda rules, we
show this property only for (ı2 ⇒) and (⇒ ı), leaving (ı1 ⇒) as an exercise.

(ı2 ⇒). Suppose (1) |= Γ ⇒ Δ,ϕy
b1

, (2) |= Γ ⇒ Δ,ϕy
b2

, (3) |= b1 = b2, Γ ⇒ Δ,
and �|= (λxψ)ıyϕ, Γ ⇒ Δ. By the last, there are a structure M = 〈D, I〉 and
assignment v, such that M,v |= (λxψ)ıyϕ, for all γ ∈ Γ , M,v |= γ and for all
δ ∈ Δ, M,v �|= δ. Thus by (1), (2) and (3): (4) M,v |= ϕy

b1
, (5) M,v |= ϕy

b2
and (6) M,v �|= b1 = b2. And there is an o ∈ D such that M,vx

o |= ψ, and
M,vx

o |= ϕ[y/x], and (7) for any y-variant v′ of vx
o , if M,v′ |= ϕ, then v′(y) = o.

By the conventions on the use of free and bound variables in sequents, x is not free
in ϕy

b1
or ϕy

b2
, so v and vx

o agree on them, and so by (4) and (5) M,vx
o |= ϕy

b1
and

M,vx
o |= ϕy

b2
. By the substitution lemma, M,vx

o
y
Iv(b1)

|= ϕ and M,vx
o

y
Iv(b2)

|= ϕ.
So the y-variants v′ and v′′ of vx

o that assign Ivx
o
(b1) and Ivx

o
(b2) to y satisfy ϕ

with M , so by (7) Iv′(b1) = Iv′′(b2) = o. But v′ and v′′ differ from v only in
what they assign to x and y, and by (6) Iv(b1) �= Iv(b2). Contradiction.

(⇒ ı). Suppose (1) |= Γ ⇒ Δ,ϕy
b , (2) |= Γ ⇒ Δ,ψx

b , (3) |= ϕy
a, Γ ⇒ Δ, a = b,

but �|= Γ ⇒ Δ, (λxψ)ıyϕ, a not free in any formulas in Γ and Δ nor in ϕ. Then

124 A. Indrzejczak and N. Kürbis

there are a structure M = 〈D, I〉 and assignment v such that for all γ ∈ Γ ,
M,v |= γ, for all δ ∈ Δ, M,v �|= δ and (4) M,v �|= (λxψ)ıyϕ. So by (1),
M,v |= ϕy

b , by (2), M,v |= ψx
b , and by (4), it is not the case that there is an

o ∈ D such that M,vx
o |= ψ, and M,vx

o |= ϕy
x, and for any y-variant v′ of vx

o , if
M,v′ |= ϕ, then v′(y) = o, i.e. for every o ∈ D, either M,vx

o �|= ψ, or M,vx
o �|= ϕy

x,
or for some y-variant v′ of vx

o , M,v′ |= ϕ and v′(y) �= o. Consider Iv(b). We have
either (5) M,vx

Iv(b) �|= ψ, or (6) M,vx
Iv(b) �|= ϕy

x, or (7) for some y-variant v′ of
vx

Iv(b), M,v′ |= ϕ and v′(y) �= Iv(b). By the substitution lemma from (5) and
(6) we have M,v �|= ψx

b and M,v �|= ϕx
y

y
b , and as ϕy

x
x
b is the same as ϕy

b , this
contradicts consequences of (1) and (2). By conventions on the use of free and
bound variables in sequents, x and y are not free in any of their formulas, so vx

Iv(b)

agrees with v on all formulas in Γ , Δ, so for all γ ∈ Γ , M,vx
Iv(b) |= γ, and for all

δ ∈ Δ, M,vx
Iv(b) �|= δ. So by (3), if M,vx

Iv(b) |= ϕy
a, then M,vx

Iv(b) |= a = b. By the
substitution lemma and the semantic clause for identity, if M,vx

Iv(b)
y
Iv(a) |= ϕ,

then Iv(a) = Iv(b). Now evidently vx
Iv(b)

y
Iv(a)(y) = Iv(a), so vx

Iv(b)
y
Iv(a)(y) = Iv(b).

But vx
Iv(b)

y
Iv(a) is a y-variant of vx

Iv(b), and the reasoning holds for any such y-
variant, contradicting (7). ��

Let ⊥ represent an arbitrary contradiction. A set of formulas Γ is inconsistent
iff Γ � ⊥. Γ is consistent iff it is not inconsistent. A set of formulas Γ is maximal
iff for any formula A, either A ∈ Γ or ¬A ∈ Γ . A set of formulas Γ is deductively
closed iff, if Γ � A, then A ∈ Γ . We state without proof this standard result:

Lemma 5. Any maximally consistent set is deductively closed.

Extend L to a language L+ by adding countably new constants ordered by
a list C = c1, c2 We will say that such a constant occurs parametrically if its
occurrence satisfies the restrictions imposed on parameters in (⇒ ∀) and (ı1 ⇒).

Theorem 4. Any consistent set of formulas Δ can be extended to a maximally
consistent set Δ+ such that:
(a) for any formula ϕ and variable x, if ¬∀xϕ ∈ Δ+, then for some constant c,
ϕx

c �∈ Δ+;
(b) for any formulas ϕ, ψ and variables x, y, if (λxψ)ıyϕ ∈ Δ+, then for some
constant c, ϕy

c , ψx
c ∈ Δ+ and for all terms t, if ϕy

t ∈ Δ+, then t = c ∈ Δ+;
(c) for any formulas ϕ, ψ and variables x, y, if ¬(λxψ)ıyϕ ∈ Δ+, then for all
terms t, either ϕy

t �∈ Δ+, or for some constant c, ϕy
c ∈ Δ+ and c = t �∈ Δ+, or

ψx
t �∈ Δ+.

Proof. Extend Δ by following an enumeration φ1, φ2 . . . of the formulas of L+

on which every formula occurs infinitely many times as follows:

Δ0 = Δ
If Δn, φn is inconsistent, then

Δn+1 = Δn.
If Δn, φn is consistent, then:

A Cut-Free, Sound and Complete Russellian Theory of Definite Descriptions 125

(i) If φn has neither the form ¬∀xϕ nor (λxψ)ıyϕ nor ¬(λxψ)ıyϕ, then
Δn+1 = Δn, φn.

(ii) If φn has the form ¬∀xϕ, then
Δn+1 = Δn,¬∀xϕ,¬ϕx

c

where c is the first constant of C that does not occur in Δn or φn.
(iii) If φn has the form (λxψ)ıyϕ, then

Δn+1 = Δn, (λxψ)ıyϕ, ϕy
c , ψx

c

where c is the first constant of C that does not occur in Δn or φn.
(iv) If φn has the form ¬(λxψ)ıyϕ, then

Δn+1 = Δn,¬(λxψ)ıyϕ,Σn

where Σn is constructed in the following way. Take a sequence of formulas
σ1, σ2 . . . of the form ϕy

t → (ψx
t → ¬(ϕy

c → c = t)), where t is a term in Δn, φn,
and c is a constant of C not in Δn, φn or any previous formulas in the sequence.
Let T = t1, t2, . . . be an enumeration of all terms occurring in Δn, φn. In case
Δ0 contains infinitely many formulas, it must be ensured that C is not depleted
of constants needed later. So pick constants from C by a method that ensures
some constants are always left over for later use. The following will do. Let σ1

be ϕy
t1 → (ψx

t1 → ¬(ϕy
c1

→ c1 = t1)), where t1 is the first term of T and c1 is
the first constant of C not in Δn, φn; let σ2 be ϕy

t2 → (ψx
t2 → ¬(ϕy

c2
→ c2 = t2)),

where t2 is the second term on T and c2 is the 22 = 4th constant of C not in
Δn, φn, σ1. In general, let σn be ϕy

tn
→ (ψx

tn
→ ¬(ϕy

cn
→ cn = tn)), where tn is

the nth term of T and cn is the 2nth constant of C not in Δn, φn nor any σi,
i < n. The entire collection of σis is Σn.

Δn+1 is consistent if Δn, φn is:

Case (i). Trivial.

Case (ii). Suppose Δn+1 = Δn,¬∀xϕ,¬ϕx
c is inconsistent. Then for some finite

Δ′
n ⊆ Δn: � Δ′

n,¬∀xϕ,¬ϕx
c ⇒ ⊥. Hence � Δ′

n,¬∀xϕ ⇒ ϕx
c by deductive

properties of negation. c does not occur in any formula in Δ′
n nor in ¬∀xϕ,

so it occurs parametrically, and so by (⇒ ∀), � Δ′
n,¬∀xϕ ⇒ ∀xϕ. Hence �

Δ′
n ⇒ ∀xϕ, again by deductive properties of negation. But then Δ′

n,¬∀xϕ is
inconsistent, and hence so is Δn,¬∀xϕ.

Case (iii). Suppose Δn+1 = Δn, (λxψ)ıyϕ, ϕy
c , ψx

c is inconsistent. Then for some
finite Δ′

n ⊆ Δn, � Δ′
n, (λxψ)ıyϕ, ϕy

c , ψx
c ⇒ ⊥. c does not occur in Δ′

n, (λxψ)ıyϕ,
so it occurs parametrically, and hence by (ı1 ⇒), � Δ′

n, (λxψ)ıyϕ ⇒ ⊥, that is
to say Δ′

n, (λxψ)ıyϕ is inconsistent, and so is Δn, (λxψ)ıyϕ.

Case (iv). Suppose Δn+1 = Δn,¬(λxψ)ıyϕ,Σn is inconsistent. Then for some
finite Δ′

n ⊆ Δn and a finite {σj . . . σk} ⊆ Σn, � Δ′
n,¬(λxψ)ıyϕ, σj . . . σk ⇒ ⊥.

Let σk be ϕy
tk

→ (ψx
tk

→ ¬(ϕy
ck

→ ck = tk)). Then by the deductive properties
of implication and negation:

� Δ′
n,¬(λxψ)ıyϕ, σj . . . σk−1 ⇒ ϕy

tk

� Δ′
n,¬(λxψ)ıyϕ, σj . . . σk−1 ⇒ ψx

tk

� Δ′
n,¬(λxψ)ıyϕ, σj . . . σk−1, ϕ

y
ck

⇒ ck = tk

126 A. Indrzejczak and N. Kürbis

ck was chosen so as not to occur in any previous σi, i < k, nor in Δn, φn.
Hence it occurs parametrically and the conditions for (⇒ ı) are fulfilled. Thus
� Δ′

n,¬(λxψ)ıyϕ, σj . . . σk−1 ⇒ (λxψ)ıyϕ. But � Δ′
n,¬(λxψ)ıyϕ, σj . . . σk−1 ⇒

¬(λxψ)ıyϕ. So Δ′
n,¬(λxψ)ıyϕ, σj . . . σk−1 is inconsistent. Repeat this process

from σk−1 all the way down to σj , showing that Δ′
n,¬(λxψ)ıyϕ is inconsistent.

Hence so is Δn,¬(λxψ)ıyϕ.

Let Δ+ be the union of all Δi. Δ+ is maximal, for if neither ϕ not ¬ϕ are in Δ+,
then there is a Δk ⊆ Δ+ such that Δk, ϕ � ⊥ and Δk,¬ϕ � ⊥, but then Δk is
inconsistent, contradicting the method of construction of Δk. Δ+ is consistent,
because otherwise some Δi would have to be inconsistent, but they are not.

Δ+ satisfies (a) by construction.
To see that it satisfies (b), suppose (λxψ)ıyϕ ∈ Δ+. Then there is a Δn+1 =

Δn, (λxψ)ıyϕ, ϕy
c , ψx

c , and so ϕy
c , ψx

c ∈ Δ+. Suppose ϕy
t ∈ Δ+. Then there is

a Δ′ ⊆ Δ+ such that � Δ′ ⇒ ϕy
c , � Δ′ ⇒ ϕy

t and by properties of identity
� t = c ⇒ t = c. But then by (ı2 ⇒), � Δ′, (λxψ)ıyϕ ⇒ t = c, hence t = c ∈ Δ+

by the deductive closure of Δ+.
To see that it satisfies (c), suppose ¬(λxψ)ıyϕ ∈ Δ+, but for some term t,

ϕy
t ∈ Δ+, (1) for all constants c, if ϕy

c ∈ Δ+, then c = t ∈ Δ+, and ψx
t ∈ Δ+. As

every formula occurs infinitely many times on the enumeration of formulas of L+,
there is a Δn that contains ϕy

t and ψx
t and Δn+1 = Δn,¬(λxψ)ıyϕ,Σn. Thus

ϕy
t → (ψx

t → ¬(ϕy
b → b = t)) ∈ Σn, for some constant b of C. Consequently, this

formula is in Δ+, too. By the deductive properties of implication and negation
and the deductive closure and consistency of Δ+, (2) ϕy

b ∈ Δ+ and b = t �∈ Δ+.
But by (1) and (2), b = t ∈ Δ+. Contradiction.

This completes the proof of Theorem 4. ��

Theorem 5. If Δ is a consistent set of formulas, then Δ is satisfiable.

Proof. Extend Δ to a maximally consistent set Δ+ as per Theorem 4. We con-
struct a structure M = 〈D, I〉 and function v : V AR ∪ PAR → D from Δ+

which will satisfy Δ. D is the set of equivalence classes of terms under identities
t1 = t2 ∈ Δ+. Denote the equivalence class to which t belongs by [t]. For all
predicate letters P , 〈[t1], ..., [tn]〉 ∈ I(Pn) iff Pn(t1, ..., tn) ∈ Δ+. For all variables
v(x) = [x], and for all parameters v(a) = [a]. In these latter cases Iv = v, and
for all new constants of C, Iv(c) = [c]. We’ll show by induction over the number
of logical constants (connectives, quantifiers, ı and λ symbols) in formula ϕ that
M,v |= ϕ if and only if ϕ ∈ Δ+.

Suppose ϕ is an atomic formula. (a) ϕ is Pn(t1, ..., tn). Then M,v |= Pn(t1, ..., tn)
iff 〈Iv(t1), ..., Iv(tn)〉 ∈ I(Pn), iff 〈[t1] . . . [tn]〉 ∈ I(Pn), iff Pn(t1, ..., tn) ∈ Δ+.
(b) ϕ is t1 = t2. Then M,v |= t1 = t2 iff Iv(t1) = Iv(t2), iff [t1] = [t2], and as
these are equivalence classes under identities in Δ+, iff t1 = t2 ∈ Δ+.

For the rest of the proof suppose M,v |= ϕ if and only if ϕ ∈ Δ, where ϕ has
fewer than n connectives. We skip the standard cases of ¬,∧,∀ (see e.g. [7]).

Case 4. ϕ is (λxψ)t.

A Cut-Free, Sound and Complete Russellian Theory of Definite Descriptions 127

(λxψ)t ∈ Δ+ iff ψx
t ∈ Δ+ by deductive closure of Δ+, iff M,v |= ψx

t by induction
hypothesis. t must be free for x in ψ, hence by the substitution lemma, M,v |=
ψx

t iff M,vx
Iv(t) |= ψ, iff M,vx

[t] |= ψ and Iv(t) = [t], as the latter holds by
construction of M , and this in turn is the case iff M,v |= (λxψ)t by the first
semantic clause for lambda atoms.

Case 5. ϕ is (λxψ)ıyχ.
(a) If (λxψ)ıyχ �∈ Δ+, then by deductive closure ¬(λxψ)ıyχ ∈ Δ+, and so for
all terms t, either χy

t �∈ Δ+, or for some constant c, χy
c ∈ Δ+ and c = t �∈ Δ+,

or ψx
t �∈ Δ+. [t] ∈ D iff t is a term, so by induction hypothesis, for all [t] ∈ D,

either M,v � χy
t , or there is a [c] ∈ D such that M,v |= χy

c and M,v � c = t,
or M,v � ψx

t . χy
t is the same formula as χy

x
x
t , so M,v � χy

x
x
t . Furthermore, x

and y are not free in χy
c , so for any o ∈ D, M,v |= χy

c iff M,vx
o |= χy

c . By
the substitution lemma, either M,vx

Iv(t) � χy
x, or M,vx

Iv(t) � ψ, or there is a
[c] ∈ D such that M,vx

Iv(t)
y
Iv(c) |= χ and M,vx

Iv(t)
y
Iv(c) � y = x. Iv(t) = [t] and

Iv(c) = [c], so either M,vx
[t] � χy

x, or M,vx
[t] � ψ, or there is a [c] ∈ D such that

M,vx
[t]

y
[c] |= χ and M,vx

[t]
y
[c] � y = x, i.e. vx

[t]
y
[c](y) �= [t]. vx

[t]
y
[c] is a y-variant of vx

[t],
hence M,v � (λxψ)ıyχ.
(b) If (λxψ)ıyχ ∈ Δ+, then for some constant c, ψx

c , χy
c ∈ Δ+ and for all terms

t, if χy
t ∈ Δ+, then c = t ∈ Δ+. By induction hypothesis, M,v |= ψx

c and
M,v |= χy

c . As y is either identical to x or x is not free in χ, χy
c is the same

formula as χy
x

x
c and Iv(c) = [c], so by the substitution lemma M,vx

[c] |= ψ and
M,vx

[c] |= χy
x. Furthermore, for all [t] ∈ D, if M,v |= χy

t , then M,v |= c = t,
i.e. Iv(t) = Iv(c), i.e. Iv(t) = [c]. Let v′ be a y-variant of vx

[c], i.e. v′ = vx
[c]

y
[s],

for some [s] ∈ D. Either y is identical to x or x is not free in χ, so vx
[c]

y
[s]

and v agree on the assignments of elements of D to all variables in χ except
possibly y, and so M,vx

[c]
y
[s] |= χ iff M,vy

[s] |= χ. So suppose now M,v′ |= χ and
v′(y) �= [c]. v′(y) = [s], so [c] �= [s]. Then M,vy

[s] |= χ, and also if M,v |= χy
s , then

M,v |= c = s, i.e. Iv(s) = Iv(c), i.e. Iv(s) = [c]. But Iv(s) = [s], so Iv(s) �= [c].
Hence M,v � χy

s , and so by the substitution lemma, M,vy
[s] � χ. Contradiction.

Finally, restrict the language again to the language of Δ: structure M con-
structed from Δ+ satisfies Δ. This completes the proof of Theorem 5. ��

Theorem 6 (Completeness for Sequents). If |= Γ ⇒ Δ, then � Γ ⇒ Δ.

Proof. Let ¬Δ be the negation of all formulas in Δ. If |= Γ ⇒ Δ, then Γ,¬Δ
is not satisfiable. Hence by Theorem 5 it is inconsistent, and as they are both
finite, � Γ,¬Δ ⇒ ⊥. Hence by the properties of negation � Γ ⇒ Δ. ��

Theorem 7 (Completeness for Sets). If Γ |= A, then Γ � A.

Proof. Suppose Γ |= A. Then Γ,¬A is not satisfiable, hence by Theorem 5 it is
inconsistent and Γ,¬A � ⊥. So for some finite Σ ⊆ Γ,¬A, Σ ⇒ ⊥. If ¬A ∈ Σ,
then by the deductive properties of negation, Σ − {¬A} ⇒ A, and as Σ − {¬A}
is certain to be a subset of Γ , Γ � A. If ¬A �∈ Σ, then Σ ⇒ A by the properties
of negation, and again Γ � A. ��

128 A. Indrzejczak and N. Kürbis

By theorem 1 and 7 we also obtain the (strong) completeness of HRL.

6 Conclusion

Summing up, RL saves the essential features of the Russellian approach to def-
inite descriptions. It avoids problems like the arbitrary restriction of axiom R
to predicate symbols and scoping difficulties. In the semantics it retains the
reductionist Russellian flavour in the sense that DD are not characterised by an
interpretation function, but instead they are treated as a case in the clauses of
the forcing definition for lambda atoms. In this respect RL is different from the
approach provided by Fitting and Mendelsohn [10] which is closer to the Fregean
tradition.

The rules of GRL are in principle direct counterparts of the tableau rules
from [17] but with two important exceptions. The tableau rule corresponding to
(= −) is not restricted to atomic formulas and the tableau rule corresponding
to (ı2 ⇒) is not branching. Its counterpart in sequent calculus would be:

(ı2 ⇒′)
b1 = b2, Γ⇒ Δ

(λxψ)ıyϕ, ϕ[y/b1], ϕ[y/b2], Γ⇒ Δ

Such a non-branching rule is certainly much better for proof search, but it is not
possible to prove the cut elimination theorem in its presence. The same applies
to (= −) without restriction to atomic formulas. In both cases the occurrences
of arbitrary formulas ϕ in the antecedent of the conclusion can be cut formulas
and, in case the cut formula in the left premiss of the cut application is principal,
it is not possible to make a reduction of the complexity of the cut formulas.

There is an interesting advantage of introducing the sequent characterisation
of RL over tableau formalisation from [17]. Since no rule specific to GRL has
more than one active formula in the succedent they are also correct in the setting
of intuitionistic logic as characterised by G1i [34]. It is sufficient to change the
background calculus for the intuitionistic version (with (↔⇒), (⇒ ∨) split into
two rules, and (⇒ C), (⇒ W) deleted) and check that all proofs from Sect. 3,
4 hold also for a (syntactically characterised) intuitionistic version of RL. By
comparison, the changes in the tableau setting would be rather more involved
and connected with the introduction of labels for naming the states of knowledge
in the constructed model.

The approach provided here may be modified also to cover some more expres-
sive logics (like modal ones) and some other theories of DD like those proposed
in the context of free logics. Some preliminary work in this direction is found in
[12] and [13]. On the other hand the problems briefly mentioned in Sect. 1 need
serious examination and this may be carried out only after the implementation
of the presented formal systems. This is one of the most important future tasks.

Acknowledgements. We would like to thank Michał Zawidzki for his comments and
suggestions.

A Cut-Free, Sound and Complete Russellian Theory of Definite Descriptions 129

References

1. Artale, A., Mazzullo, A., Ozaki, A., Wolter, F.: On free description logics with def-
inite descriptions. In: Proceedings of the 18th International Conference on Princi-
ples of Knowledge Representation and Reasoning, pp. 63–73. IJCAI Organization
(2021)

2. Beeson, M.: Foundations of Constructive Mathematics. Springer (1985). https://
doi.org/10.1007/978-3-642-68952-9

3. Benzmüller, C., Scott, D.S.: Automating free logic in HOL, with an experimental
application in category theory. J. Autom. Reason. 64, 53–72 (2020)

4. Blumson, B.: Anselm’s God in Isabelle/HOL URL (2020). https://www.isa-afp.
org/browser_info/current/AFP/AnselmGod/document.pdf

5. Bohrer, B., Fernández, M., Platzer, A.: dLι: definite descriptions in differential
dynamic logic. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp.
94–110. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_6

6. Bressan, A.: A General Interpreted Modal Calculus. Yale University Press, Yale
(1972)

7. Enderton, H.B.: A Mathematical Introduction to Logic. Harcourt Academic Press,
San Diego (2000)

8. Feferman, S.: Definedness. Erkenntnis 43, 295–320 (1995)
9. Fitting, M.: A modal logic epsilon-calculus. Notre Dame J. Formal Logic 16(1),

1–16 (1975)
10. Fitting, M., Mendelsohn, R. L.: First-Order Modal Logic. Synthese Library, vol.

277. Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5292-1
11. Francez, N., Więckowski, B.: A proof-theoretic semantics for contextual definite-

ness. In: Moriconi, E, Tesconi, L. (eds.) Proceedings of the Second Pisa Colloquium
in Logic, Language and Epistemology. Edizioni ETS, Pisa, pp. 181–212 (2014)

12. Indrzejczak, A.: Existence, definedness and definite descriptions in hybrid modal
logic. In: Olivetti, N., Verbrugge, R., Negri, S., Sandu, G. (eds.) Advances in Modal
Logic, vol. 13, pp. 349–368. College Publications, Rickmansworth (2020)

13. Indrzejczak, A.: Free definite description theory - sequent calculi and cut elimina-
tion. Logic Log. Philos. 29(4), 505–539 (2020)

14. Indrzejczak, A.: Free logics are cut-free. Stud. Logica. 109, 859–886 (2021)
15. Indrzejczak, A.: Sequents and Trees. An Introduction to the Theory and Applica-

tions of Propositional Sequent Calculi, Birkhäuser (2021)
16. Indrzejczak, A.: Russellian definite description theory–a proof-theoretic approach.

Rev. Symbolic Logic 16(2), 624–649 (2023)
17. Indrzejczak, A., Zawidzki, M.: When Iota meets Lambda. Synthese 201(2), 1–33

(2023)
18. Kalish, D., Montague, R., Mar, G.: Logic. Techniques of Formal Reasoning, 2 ed.

Oxford University Press, New York, Oxford (1980)
19. Kürbis, N.: A binary quantifier for definite descriptions in intuitionist negative free

logic: natural deduction and normalization. Bull. Sect. Logic 48(2), 81–97 (2019)
20. Kürbis, N.: Two treatments of definite descriptions in intuitionist negative free

logic. Bull. Sect. Logic 48(4), 299–317 (2019)
21. Kürbis, N.: Definite descriptions in intuitionist positive free logic. Logic Log. Philos.

20(2), 327–358 (2021)
22. Kürbis, N.: Proof-theory and semantics for a theory of definite descriptions. In:

Das, A., Negri, S. (eds.) Autom. Reason. Analytic Tableaux Related Methods.
Springer, Berlin, Heidelberg (2021)

https://doi.org/10.1007/978-3-642-68952-9
https://doi.org/10.1007/978-3-642-68952-9
https://www.isa-afp.org/browser_info/current/AFP/AnselmGod/document.pdf
https://www.isa-afp.org/browser_info/current/AFP/AnselmGod/document.pdf
https://doi.org/10.1007/978-3-030-29436-6_6
https://doi.org/10.1007/978-94-011-5292-1

130 A. Indrzejczak and N. Kürbis

23. Kürbis, N.: A binary quantifier for definite descriptions for cut free free logics.
Stud. Logica. 110(1), 219–239 (2022)

24. Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Springer
(2008). https://doi.org/10.1007/978-1-4020-9409-5

25. Neuhaus, F., Kutz, O., Righetti, G.: Free description logic for ontologists. In: Ham-
mar, K. et al. (eds.), Proceedings of the Joint Ontology Workshops co-located with
the Bolzano Summer of Knowledge (BOSK 2020). vol. 2708, Bozen-Bolzano (2020)

26. Oppenheimer, P.E., Zalta, E.N.: A computationally-discovered simplification of the
ontological argument. Australas. J. Philos. 89, 333–349 (2011)

27. Orlandelli, E.: Labelled calculi for quantified modal logics with definite descrip-
tions. J. Log. Comput. 31(3), 923–946 (2021)

28. Russell, B.: On Denoting. Mind XIV, 479–494 (1905)
29. Scales, R.: Attribution and Existence. Ph.D. Dissertation. University of California,

Irvine (1969)
30. Scott, D.: Identity and existence in intuitionistic logic. In: Fourman, M., Mulvey,

C., Scott, D. (eds.) Applications of Sheaves. LNM, vol. 753, pp. 660–696. Springer,
Heidelberg (1979). https://doi.org/10.1007/BFb0061839

31. Stalnaker, R.C., Thomason, R.H.: Abstraction in first-order modal logic. Theoria
34(3), 203–207 (1968)

32. Tennant, N.: A general theory of abstraction operators. Philos. Q. 54(214), 105–133
(2004)

33. Thomason, R. H.: Some completeness results for modal predicate calculi. In: Lam-
bert, K. (ed.) Philosophical Problems in Logic, Reidel, pp. 56–76 (1970)

34. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Oxford University Press,
Oxford (1996)

35. Whitehead, A.N., Russell, B.: Principia Mathematica, vol. I. Cambridge University
Press, Cambridge (1910)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-1-4020-9409-5
https://doi.org/10.1007/BFb0061839
http://creativecommons.org/licenses/by/4.0/

Towards Proof-Theoretic Formulation
of the General Theory of Term-Forming

Operators

Andrzej Indrzejczak(B)

Department of Logic, University of Lodz, Lodz, Poland

andrzej.indrzejczak@filhist.uni.lodz.pl

Abstract. Term-forming operators (tfos), like iota- or epsilon-operator,
are technical devices applied to build complex terms in formal languages.
Although they are very useful in practice their theory is not well devel-
oped. In the paper we provide a proof-theoretic formulation of the general
approach to tfos provided independently by several authors like Scott,
Hatcher, Corcoran, and compare it with an approach proposed later by
Tennant. Eventually it is shown how the general theory can be applied
to specific areas like Quine’s set theory NF.

Keywords: Term-Forming Operators · Abstraction Operator ·
Definite Descriptions · Sequent Calculus · Quine

1 Introduction

In formal languages terms are usually treated as these elements of language
which only refer to the objects in the domain of discourse. In particular, this way
of treating terms is prevailing in proof theory and automated deduction where
usually only functional terms are approved. In contrast, in natural languages,
naming expressions are used very often not only for referring to objects but also
for conveying information about them. In the earlier stages of development of
mathematical logic several formal devices were introduced for this aim which
currently are rather neglected. These term-forming operators, also called shortly
tfos or vbtos (variable binding term operators), include, among others:

– iota-operator (Peano): ıxϕ - the (only) x such that ϕ;
– epsilon-operator (Hilbert): εxϕ - a(n) x such that ϕ;
– abstraction-operator: {x : ϕ} - the set of (all) x satisfying ϕ;
– counting-operator (Frege): �xϕ - the number of x such that ϕ;
– lambda-operator (Church): λxϕ - the property of being ϕ.

Funded by the European Union (ERC, ExtenDD, project number: 101054714). Views
and opinions expressed are however those of the author(s) only and do not necessarily
reflect those of the European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible for them.

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 131–149, 2023.
https://doi.org/10.1007/978-3-031-43513-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_8&domain=pdf
http://orcid.org/0000-0003-4063-1651
https://doi.org/10.1007/978-3-031-43513-3_8

132 A. Indrzejczak

It seems that currently only the lambda-operator is treated as an important
tool and found diverse applications in recursion theory, type theory and proof
theory. Abstraction-operator, although commonly used in practice, is rather not
treated seriously in the formal development of set theories. The remaining ones
are sadly treated as formal tools having only some historical value. Since the role
of complex terms as information conveying tools is crucial in communication it
is important to fill this gap.

Recently, some more attention was paid to proof theory of definite descrip-
tions. In particular, cut-free sequent calculi were provided for Fregean [11], Rus-
sellian [17] and free description theories [13]. The latter theories were also char-
acterised in terms of tableau systems [18] and tableau calculus was also used to
develop a Russelian theory in the language enriched with lambda-operator [19].
Some modal logics of definite descriptions were also developed in terms of cut-
free sequent calculus [10], in particular, the logic of Fitting and Mendelsohn [5]
was independently formalised as a labelled sequent calculus [28] and as a hybrid
system [12]. Alternatively, interesting natural deduction and sequent calculi were
proposed for free and intuitionistic logics of definite descriptions characterised
in terms of binary quantifier [21–25].

Since definite descriptions are amenable to proof theoretic treatment it is
tempting to suspect that for other tfos we can obtain equally interesting results.
Perhaps one should start with posing a question whether a general theory of
such operators is possible? In fact at least two different attempts to develop such
a theory were proposed. The earlier approach was independently introduced by
several authors, including: Scott [32], Da Costa [3,4], Hatcher [7,8], Corcoran and
Herring [1,2]. It was formulated semantically and as an axiomatic theory. In what
follows it will be called simply S-theory (after Scott). The second approach was
introduced by Neil Tennant [33], and then developed in [35] as a general theory of
abstraction operators (see also [34,36]). This T-theory was formulated in terms
of natural deduction system and with adequate semantical characterisation. In
what follows we will examine these two approaches and show how they can be
formulated as well-behaved sequent calculi in Sect. 3. Then, in Sect. 4 we consider
their specification with respect to set-abstraction operator. For this aim we focus
on Quine’s version of set theory NF (New Foundations) [29] (see also [30]) but
the proposed systems may be modified to apply to other formulations of set
theory as well.

2 Preliminaries

We will be using standard first-order predicate languages with quantifiers ∀,∃,
identity predicate = and arbitrary term-forming operator τ making complex
terms from formulae of the language. The definition of a term and formula is
standard, by simultaneous recursion on both categories. In the presented system
the only terms are variables and complex terms constructed by means of arbi-
trary unary tfo τ . The complex terms are written as τxϕ where ϕ is a formula
in the scope of respective operator.

General Theory of Term-Forming Operators 133

In accordance with Gentzen’s custom we divide individual variables into
bound V AR = {x, y, z, . . .} and free variables (parameters) PAR = {a, b, c, . . .}.
It makes easier an elaboration of some technical issues concerning substitution
and proof transformations. In the metalanguage ϕ,ψ, χ denote any formulae
and Γ,Δ,Π,Σ their multisets. Metavariables t, t1, . . . denote arbitrary terms.
ϕ[t1/t2] is officially used for the operation of correct substitution of a term t2
for all occurrences of a term t1 (a variable or parameter) in ϕ, and similarly
Γ [t1/t2] for a uniform substitution in all formulae in Γ . Ocassionally, we will use
simplified notation ϕ(t) to denote the result of correct substitution.

First-order logic in general will be abbreviated as FOL or FOLI if identity is
primitive. CFOL(I), PFFOL(I), NFFOL(I) denote the classical, positive free and
negative free versions. The basic system GC for CFOL consists of the following
rules:

(Cut)
Γ ⇒ Δ, ϕ ϕ, Π ⇒ Σ

Γ, Π ⇒ Δ, Σ
(AX) ϕ, Γ ⇒ Δ, ϕ

(¬⇒)
Γ ⇒ Δ, ϕ

¬ϕ, Γ ⇒ Δ
(⇒¬)

ϕ, Γ ⇒ Δ

Γ ⇒ Δ, ¬ϕ
(W⇒)

Γ ⇒ Δ

ϕ, Γ ⇒ Δ

(⇒∧)
Γ ⇒ Δ, ϕ Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ ∧ ψ
(∧⇒)

ϕ, ψ, Γ ⇒ Δ

ϕ ∧ ψ, Γ ⇒ Δ
(⇒W)

Γ ⇒ Δ

Γ ⇒ Δ, ϕ

(∨⇒)
ϕ, Γ ⇒ Δ ψ, Γ ⇒ Δ

ϕ ∨ ψ, Γ ⇒ Δ
(⇒∨)

Γ ⇒ Δ, ϕ, ψ

Γ ⇒ Δ, ϕ ∨ ψ
(C⇒)

ϕ, ϕ, Γ ⇒ Δ

ϕ, Γ ⇒ Δ

(→⇒)
Γ ⇒ Δ, ϕ ψ, Γ ⇒ Δ

ϕ → ψ, Γ ⇒ Δ
(⇒→)

ϕ, Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ → ψ
(⇒C)

Γ ⇒ Δ, ϕ, ϕ

Γ ⇒ Δ, ϕ

(↔⇒)
Γ⇒ Δ, ϕ, ψ ϕ, ψ, Γ⇒ Δ

ϕ↔ψ, Γ⇒ Δ
(∀⇒)

ϕ[x/t], Γ⇒ Δ

∀xϕ, Γ⇒ Δ
(⇒∃)

Γ⇒ Δ, ϕ[x/t]

Γ⇒ Δ, ∃xϕ

(⇒↔)
ϕ, Γ⇒ Δ, ψ ψ, Γ ⇒ Δ, ϕ

Γ⇒ Δ, ϕ↔ψ
(⇒∀)

Γ⇒ Δ, ϕ[x/a]

Γ⇒ Δ, ∀xϕ
(∃⇒)

ϕ[x/a], Γ⇒ Δ

∃xϕ, Γ⇒ Δ

where a is a fresh parameter (eigenvariable), not present in Γ,Δ and ϕ.
If instead of (∀⇒) and (⇒∃) we introduce:

(∀⇒)
ϕ[x/b], Γ⇒ Δ

∀xϕ, Γ⇒ Δ
(⇒∃)

Γ⇒ Δ, ϕ[x/b]

Γ⇒ Δ, ∃xϕ

we obtain a pure variant GPC which is adequate for CFOL with variables as the
only terms but in general incomplete for extensions with some tfos.

The variant GF for PFFOL can be obtained by changing all quantifier rules
into:

(∀⇒)F ϕ[x/t], Γ⇒ Δ

Et,∀xϕ, Γ⇒ Δ
(⇒∀)F Ea, Γ⇒ Δ,ϕ[x/a]

Γ⇒ Δ,∀xϕ

(∃⇒)F Ea,ϕ[x/a], Γ⇒ Δ

∃xϕ, Γ⇒ Δ
(⇒∃)F Γ⇒ Δ,ϕ[x/t]

Et, Γ⇒ Δ,∃xϕ

134 A. Indrzejczak

where E is the existence predicate, which is usually defined as Et := ∃x(x = t).
This form of rules follows from the fact that in free logics terms may designate
nonexistent objects whereas quantifiers have existential import. For pure version
GPF again we use b instead of t in (∀⇒)F and (⇒∃)F .

Moreover, in negative free logic atomic formulae with such terms are false
which implies that Et → t = t and ϕ(t) → Et, for any atomic formula ϕ. Hence
to obtain GNF (or GPNF) for NFFOL we have to add to GF (or GPF) the rule
requiring all predicates to be strict in the sense that they are satisfied only by
denoting terms:

(Str)
Et, Γ⇒ Δ

ϕ(t), Γ⇒ Δ
where ϕ is atomic.

Identity can be characterised in GC (GPC) and GF (GPF) in several ways
(see [16]). For our purposes we use the following rules:

(Ref)
t = t, Γ⇒ Δ

Γ⇒ Δ
(2LL)

Γ ⇒ Δ, t1 = t2 Γ ⇒ Δ,ϕ[x/t1]
Γ ⇒ Δ,ϕ[x/t2]

where ϕ is atomic.
GCI, GPCI, GFI, GPFI will denote the respective calculi with the rules for

identity added. In case of NFFOLI, due to strictness condition, reflexivity does
not hold unconditionally and we must weaken the first rule, using instead:

(Ref)N t=t,Γ⇒Δ
Et,Γ⇒Δ

GNFI, GPNFI will denote the respective calculi for NFFOLI with the rules
for identity having (Ref)N .

Proofs are defined in the standard way as finite trees with nodes labelled
by sequents. The height of a proof D of Γ ⇒ Δ is defined as the number of
nodes of the longest branch in D. �k Γ ⇒ Δ means that Γ ⇒ Δ has a proof
with height at most k. Let us recall that formulae displayed in the schemata
are active, whereas the remaining ones are parametric, or form a context. In
particular, all active formulae in the premisses are called side formulae, and the
one in the conclusion is the principal formula of the respective rule application.

Note that the Cut-elimination theorem holds for all above mentioned calculi
(see e.g. [15]) and the full Leibniz’ Law LL: t1 = t2, ϕ[x/t1] ⇒ ϕ[x/t2] (for
arbitrary formula ϕ) is also provable.

3 The General Theory

The S-theory of tfos is expressed by two general principles:

EXT: ∀x(ϕ(x) ↔ ψ(x)) → τxϕ(x) = τxψ(x)
AV: τxϕ(x) = τyϕ(y)

or, equivalently, by one principle:

EXTAV: ∀xy(x = y → (ϕ(x) ↔ ψ(y))) → τxϕ(x) = τyψ(y)

General Theory of Term-Forming Operators 135

Such a general theory was first developed on the basis of positive free first-
order logic with identity by Scott [32]. However, the remaining authors used
the classical first-order logic with identity as the basis. In both cases the gen-
eral completeness theorem was provided and several important model theoretic
results which hold for CFOLI (see in particular Da Costa [4]). In what follows,
we will pay more attention to classical case since for several kinds of tfos, in
particular for descriptions, it is rather difficult to find reasonable theories, in
contrast to the situation in free logic (see [26]).

Several possible objections can be raised against such a theory. In a sense it
is too general and too weak, on the other hand, for specific kind of operators it
may be too strong, in particular in the setting of classical logic. Let us illustrate
these remarks with some examples. For example, for ı-operator Rosser [30] is
enforced to add (in CFOLI) to EXT and AV the following axiom:

∃1xϕ(x) → ∀x(x = ιxϕ(x) ↔ ϕ(x))

which still gives incomplete logic as noticed by Hailperin [6]. Da Costa [4]
adds:

∃1xϕ(x) → ∀x(x = ιxϕ(x) → ϕ(x)) and

¬∃1xϕ(x) → ιxϕ(x) = ιx(x �= x)

In fact, the theory of descriptions axiomatised by the addition of these two
axioms to EXT and AV is redundant, since the latter principles can be proven
with their help. This theory is in fact equivalent to Fregean/Carnapian theory of
descriptions (often called the chosen object theory), in particular in the formu-
lation of Kalish and Montague [20]. However, we call an S-theory every theory
of arbitrary tfo where EXT and AV hold either as axioms or as derived theses.

On the other hand, for some theories of definite descriptions these two princi-
ples are too strong. For example, in the Russellian theory [31,37] both principles
do not hold. Instead we have their weaker versions:

wEXT: Eıxϕ(x) → ((ϕ(x) ↔ ψ(x)) → ıxϕ(x) = ıxψ(x))

wAV: Eıxϕ(x) → ıxϕ(x) = ıyϕ(y).

In other cases of tfos, like set-abstraction operator or counting operator, EXT
may be even more disastrous, since for the latter it yields one half of the Fregean
ill-famed V law, in fact this half which is sufficient for deriving contradiction.
Similar problems with set-abstraction will be discussed below.

3.1 The Formalisation of S-Theory

To obtain an adequate sequent calculus for S-theory we add to GCI the following
two rules:

136 A. Indrzejczak

(Ext)
ϕ(a), Γ ⇒ Δ, ψ(a) ψ(a), Γ ⇒ Δ, ϕ(a)

Γ ⇒ Δ, τxϕ(x) = τxψ(x)
(AV)

τxϕ(x) = τyϕ(y), Γ⇒ Δ

Γ⇒ Δ

where a is a fresh parameter.
Alternatively, we can add just one rule corresponding to EXTAV:

a = b, ϕ(a), Γ ⇒ Δ,ψ(b) a = b, ψ(b), Γ ⇒ Δ,ϕ(a)
(ExtAV)

Γ ⇒ Δ, τxϕ(x) = τyψ(y)

where both a, b are fresh parameters.

Theorem 1. GCI+{(Ext), (AV)} and GCI+{(ExtAV)} are equivalent to
axiomatic formulations of S-theory of tfos.

Proof. It is sufficient to prove respective axioms in GCI+{(Ext), (AV)} or in
GCI+{(ExtAV)} and to show that the above rules are derivable in GCI with
added axioms EXT, AV or EXTAV. We will show this for the more compact
version with (ExtAV) and EXTAV; proofs for the remaining rules and axioms
are similar and simpler. Provability of EXTAV:

a = b ⇒ a = b ϕ(a) ↔ ψ(b), ϕ(a) ⇒ ψ(b)
(→⇒)

a = b → (ϕ(a) ↔ ψ(b)), a = b, ϕ(a) ⇒ ψ(b)
(∀ ⇒) ∀xy(x = y → (ϕ(x) ↔ ψ(y))), a = b, ϕ(a) ⇒ ψ(b) D

(ExtAV) ∀xy(x = y → (ϕ(x) ↔ ψ(y))) ⇒ τxϕ(x) = τyψ(y)

where the rightmost leaf is provable and D is an analogous proof of ∀xy(x =
y → (ϕ(x) ↔ ψ(y))), a = b, ψ(b) ⇒ ϕ(a).

Derivability of (ExtAV):

a = b, ϕ(a), Γ ⇒ Δ,ψ(b) a = b, ψ(b), Γ ⇒ Δ,ϕ(a)
(⇒↔)

a = b, Γ ⇒ Δ,ϕ(a) ↔ ψ(b)
(⇒→)

Γ ⇒ Δ, a = b → (ϕ(a) ↔ ψ(b))
(⇒ ∀)

Γ ⇒ Δ,∀xy(x = y → (ϕ(x) ↔ ψ(y))) D
(Cut)

Γ ⇒ Δ, τxϕ(x) = τyψ(y)

where both leaves are premisses and D is a proof of ∀xy(x = y → (ϕ(x) ↔
ψ(y))) ⇒ τxϕ(x) = τyψ(y) from the axiom ⇒ EXTAV . 	

Let us consider the question of cut elimination for either of the two for-
malisations of S-theory. We can observe that the choice of the rule (2LL) for
representation of LL was connected with the shape of (Ext) or (ExtAV). In
both calculi identities can appear as the principal formulae of some rule applica-
tion only in the succedent. This makes it safe for proving cut elimination since
identities in antecedents can only appear either as parametric formulae or as for-
mulae introduced by weakening. In both cases if identity is a cut formula under
consideration it is eliminable either by induction on the height of cut or directly.

General Theory of Term-Forming Operators 137

Still there is a problem connected with the application of (∀ ⇒) and (⇒ ∃) to
complex terms. If for example ∀xϕ is a cut formula which was in both premisses
of cut introduced as the principal formula, and in the right premiss x was instan-
tiated with τyψ, then the formula ϕ[x/τyψ] may have higher complexity than
∀xϕ and the induction on the complexity of cut formulae fails. This problem
may be overcome either by introduction of more complex way of measuring the
complexity of formulae (see e.g. [11]) or by replacing the basic calculus GCI with
its pure version GPCI. Of course, the restriction of all quantifier rules to param-
eters makes the calculus with complex terms incomplete. However, to avoid the
loss of generality we can add to GPCI the rule:

a = τxϕ(x), Γ ⇒ Δ
(a ⇒)

Γ ⇒ Δ

where a is a fresh parameter.

Theorem 2. The calculus GPCI+{(Ext), (AV)} (or GPCI+{(ExtAV)}) with
added (a ⇒) is equivalent to GCI+{(Ext), (AV)} (or GCI+{(ExtAV)})
Proof. It is enough to show that (a ⇒) is derivable in GCI:

⇒ τxϕ(x) = τxϕ(x)
(⇒ ∃) ⇒ ∃y(y = τxϕ(x))

a = τxϕ(x), Γ ⇒ Δ
(∃ ⇒)∃y(y = τxϕ(x)), Γ ⇒ Δ

(Cut)
Γ ⇒ Δ

and that unrestricted (∀ ⇒), (⇒ ∃) are derivable in GPC with (a ⇒):

Γ ⇒ Δ,ϕ(τxψ(x)) ϕ(τxψ(x)), a = τxψ(x) ⇒ ϕ(a)
(Cut)

a = τxψ(x), Γ ⇒ Δ,ϕ(a)
(⇒ ∃)

a = τxψ(x), Γ ⇒ Δ,∃xϕ
(a ⇒)

Γ ⇒ Δ,∃xϕ

where the rightmost sequent being an instance of LL is provable. Similar proof
works for (∀ ⇒). 	

Let us call GPCI+{(Ext), (AV)} (or GPCI+{(ExtAV)}) with added (a ⇒)
simply GS (GS’). Note that for both systems the following lemma holds:

Lemma 1. 1. � t1 = t2, ϕ[x/t1] ⇒ ϕ[x/t2], for any formula ϕ.
2. If �k Γ ⇒ Δ, then �k Γ [b1/b2] ⇒ Δ[b1/b2], where k is the height of a proof.

Proof. 1. follows by induction on the complexity of ϕ and is standard for all
cases. The proof of 2 is by induction on the height of proofs. 	

The first result is Leibniz’ Law (LL) stated in full generality, i.e. covering also
complex terms. Since (2LL) yields only LL restricted to atomic formulae, we need
its unrestricted form for completeness. The second result is a substitution lemma
which is necessary for unifying terms while proving the cut elimination theorem.
Note that it is restricted to parameters only but in the case of GS (GS’), which
is an extension of GPCI, it is sufficient since only parameters are instantiated
for bound variables in all applications of quantifier rules.

138 A. Indrzejczak

Theorem 3. The cut elimination theorem holds for GS and GS’.

Proof. The proof is standard and essentially requires two inductions: on the
complexity of cut formula and on the height of the derivations of both premisses
of cut. In general we can follow the strategy applied for example in [15]; here we
focus only on the crucial points connected with the new rules which could lead
to troubles.

Consider the situation where the cut formula in the left premiss is the prin-
cipal formula of the application of (2LL). It is an atomic formula, possibly an
identity. Since in no logical rule atomic formula in the antecedent can be a prin-
cipal formula, so in the right premiss a suitable cut formula is either introduced
by weakening or is just a parametric formula. In the first case it is directly elim-
inated, in the second it is eliminated by induction on the height of the proof.
The case where the right premiss is axiomatic is also directly eliminable.

The cases where in the left premiss the cut formula is the principal formula
of the application of (Ext) or (ExtAV) are treated in a similar way. Eventually,
rules like (AV) or (a ⇒) have no impact on the elimination of cuts since there
are no principal formulae in the conclusion. 	

Although we cannot totally avoid the loss of the subformula property in GS
and GS’, the introduction of complex terms is separated from quantifier rules
and technically it is more desirable. In fact, from the semantic point of view we
are not really in need of introducing an arbitrary complex term in the premiss
while doing a proof-search. The rule is required only for these terms which either
occur already in Γ,Δ, or have in their scope the formulae from Γ,Δ. It can be
shown by providing Hintikka-style completeness proof for this system which is
possible since Henkin-style proofs were provided by the mentioned authors; we
omit the details because of space restrictions.

In fact, for the needs of proof-search we could simplify GS (GS’) a little bit.
In particular we could use a more convenient one-premiss rule of Negri and von
Plato [27] for LL of the form:

ϕ(t2), Γ ⇒ Δ
(1LL)

t1 = t2, ϕ(t1), Γ ⇒ Δ

for all cases where at least one of t1, t2 is a parameter and ϕ(t1) is not an identity
with both arguments being complex terms. In fact, the only troublesome cases
of LL which could make a clash in the proof of cut elimination are three:

1. b = t, t = t′ ⇒ b = t′

2. t = t′, ϕ(t) ⇒ ϕ(t′)
3. t = t′, t′ = t′′ ⇒ t = t′′

where t, t′ are complex terms, and only for these cases a two-premiss rule (2LL)
is necessary.

Also note that instead of (Ref) we can use more restricted version:

General Theory of Term-Forming Operators 139

b = b, Γ ⇒ Δ
(Ref ′)

Γ ⇒ Δ

since τxϕ(x) = τxϕ(x) is derivable by (Ext) or (ExtAV).

3.2 The Formalisation of T-Theory

The theory of abstraction-operators developed by Tennant, which we call here a
T-theory of tfos, is generally much stronger than S-theory. But we must empha-
size that it is formulated in the setting of much weaker logic, namely NFFOLI
(negative free FOLI), where not only quantifier rules are weaker but also the
identity is not (unconditionally) reflexive.

Tennant’s theory of tfo is based on the following natural deduction rules:

(τI) If ϕ(a), Ea � aRt and aRt � ϕ(a) and Et, then t = τxϕ(x);
(τE1) If t = τxϕ(x) and ϕ(b) and Eb, then bRt
(τE2) If t = τxϕ(x), then Et
(τE3) If t = τxϕ(x) and bRt, then ϕ(b)

where a is an eigenvariable, and R is a specific relation involved in the charac-
terisation of τ . For example, R is = for the case of ı, and ∈ for set-abstraction
operator. The corresponding sequent rules are:

Γ ⇒ Δ,Et Ea, ϕ(a), Γ ⇒ Δ, aRt aRt, Γ ⇒ Δ,ϕ(a)
(⇒ τ)

Γ ⇒ Δ, t = τxϕ(x)

where a is not in Γ,Δ,ϕ

Γ ⇒ Δ,Eb Γ ⇒ Δ,ϕ(b) Γ ⇒ Δ, t = τxϕ(x)
(⇒ τE1)

Γ ⇒ Δ, bRt

Γ ⇒ Δ, t = τxϕ(x)
(⇒ τE2)

Γ ⇒ Δ,Et

Γ ⇒ Δ, bRt Γ ⇒ Δ, t = τxϕ(x)
(⇒ τE3)

Γ ⇒ Δ,ϕ(b)

To get more standard SC we can apply the rule-generation theorem (see e.g.
[14]) and obtain left introduction rules for τ :

Γ ⇒ Δ,Eb Γ ⇒ Δ,ϕ(b) bRt, Γ ⇒ Δ
(τ ⇒ 1)

t = τxϕ(x), Γ ⇒ Δ

Et, Γ ⇒ Δ
(τ ⇒ 2)

t = τxϕ(x), Γ ⇒ Δ

140 A. Indrzejczak

Γ ⇒ Δ, bRt ϕ(b), Γ ⇒ Δ
(τ ⇒ 3)

t = τxϕ(x), Γ ⇒ Δ

Note that if we transfer these rules to the setting of CFOLI we do not need
formulae of the form Et, and the rule (τ ⇒ 2), being specific to negative free
logic, is superfluous. As a result we obtain the following three rules:

ϕ(a), Γ ⇒ Δ, aRt aRt, Γ ⇒ Δ,ϕ(a)
(⇒ τ)

Γ ⇒ Δ, t = τxϕ(x)

where a is not in Γ,Δ,ϕ

Γ ⇒ Δ,ϕ(b) bRt, Γ ⇒ Δ
(τ ⇒)

t = τxϕ(x), Γ ⇒ Δ

Γ ⇒ Δ, bRt ϕ(b), Γ ⇒ Δ
(τ ⇒)

t = τxϕ(x), Γ ⇒ Δ

In general what we obtain with these rules is equivalent to the following
principle, often called Lambert axiom:

LA: ∀y(y = τxϕ(x) ↔ ∀x(ϕ(x) ↔ xRy))

which is derivable also in the setting of NFFOLI. In the setting of CFOLI it is
equivalent to Hintikka axiom:

HA: t = τxϕ(x) ↔ ∀x(ϕ(x) ↔ xRt)

for which we demonstrate syntactically the equivalence with the stated rules. In
one direction we have:

ϕ[x/a] ⇒ ϕ[x/a] aRt ⇒ aRt
(τ ⇒)

t = τxϕ(x), ϕ[x/a] ⇒ aRt

aRt ⇒ aRt ϕ[x/a] ⇒ ϕ[x/a]

t = τxϕ(x), aRt ⇒ ϕ[x/a]
(⇒↔)

t = τxϕ(x) ⇒ ϕ[x/a] ↔ aRt
(⇒ ∀)

t = τxϕ(x) ⇒ ∀x(ϕ(x) ↔ xRt)

In the second direction:

aRt ⇒ aRt ϕ[x/a] ⇒ ϕ[x/a]
(↔⇒)

ϕ[x/a] ↔ aRt, aRt ⇒ ϕ[x/a]
(∀ ⇒) ∀x(ϕ(x) ↔ xRt), aRt ⇒ ϕ[x/a]

ϕ[x/a] ⇒ ϕ[x/a] aRt ⇒ aRt

ϕ[x/a] ↔ aRt, ϕ[x/a] ⇒ aRt

∀x(ϕ(x) ↔ xRt), ϕ[x/a] ⇒ aRt
(⇒ τ) ∀x(ϕ(x) ↔ xRt) ⇒ t = τxϕ(x)

Derivability of the specific rules is straightforward. Notice that from HA as
additional axioms we obtain:

(a) t = τxϕ(x) ⇒ ∀x(ϕ(x) ↔ xRt) and
(b) ∀x(ϕ(x) ↔ xRt) ⇒ t = τxϕ(x).

From the premisses of any variant of (τ ⇒), applying weakening we deduce:

General Theory of Term-Forming Operators 141

Γ ⇒ Δ, bRt, ϕ[x/b] bRt, ϕ[x/b], Γ ⇒ Δ
(↔⇒)

ϕ[x/b] ↔ bRt, Γ ⇒ Δ
(∀ ⇒) ∀x(ϕ(x) ↔ xRt), Γ ⇒ Δ

which, by cut with (a) yields the conclusion of (τ ⇒). In a similar way we deduce
Γ ⇒ Δ,∀x(ϕ(x) ↔ xRt) from premisses of (⇒ τ), and by cut with (b) we obtain
the conclusion of this rule.

One should note that T-theory is much stronger than S-theory; both central
principles EXT and AV are provable (in fact even in the setting of NFFOLI by
means of the weaker rules).

aRτxϕ(x) ⇒ aRτxϕ(x) ϕ[x/a], ϕ[x/a] ↔ ψ[x/a] ⇒ ψ[x/a]
(τ ⇒)

τxϕ(x) = τxϕ(x), ϕ[x/a] ↔ ψ[x/a], aRτxϕ(x) ⇒ ψ[x/a]
(Ref)

ϕ[x/a] ↔ ψ[x/a], aRτxϕ(x) ⇒ ψ[x/a]
(∀ ⇒) ∀x(ϕ(x) ↔ ψ(x)), aRτxϕ(x) ⇒ ψ[x/a] D
(⇒ τ) ∀x(ϕ(x) ↔ ψ(x)) ⇒ τxϕ(x) = τxψ(x)

where the second leaf is directly provable and D is an analogous proof of
∀x(ϕ(x) ↔ ψ(x)), ψ[x/a] ⇒ aRτxϕ(x).

aRτxϕ(x) ⇒ aRτxϕ(x) ϕ[x/a] ⇒ ϕ[y/a]
(τ ⇒)

τxϕ(x) = τxϕ(x), aRτxϕ(x) ⇒ ϕ[y/a]
(Ref)

aRτxϕ(x) ⇒ ϕ[y/a]

ϕ[y/a] ⇒ ϕ[x/a] aRτxϕ(x) ⇒ aRτxϕ(x)

τxϕ(x) = τxϕ(x), ϕ[y/a] ⇒ aRτxϕ(x)

ϕ[y/a] ⇒ aRτxϕ(x)
(⇒ τ)

⇒ τxϕ(x) = τyϕ(y)

Note that ϕ[x/a] and ϕ[y/a] are identical since ϕ(x) and ϕ(y) are alphabetic
variants.

One may even prove the converse of EXT:

ϕ[x/a] ⇒ ϕ[x/a] aRτxϕ(x) ⇒ aRτxϕ(x)
(τ ⇒)

τxϕ(x) = τxϕ(x), ϕ[x/a] ⇒ aRτxϕ(x)
(Ref)

ϕ[x/a] ⇒ aRτxϕ(x) ψ[x/a] ⇒ ψ[x/a]
(τ ⇒)

τxϕ(x) = τxψ(x), ϕ[x/a] ⇒ ψ[x/a] D
τxϕ(x) = τxψ(x) ⇒ ϕ[x/a] ↔ ψ[x/a]

(⇒ ∀)
τxϕ(x) = τxψ(x) ⇒ ∀x(ϕ(x) ↔ ψ(x))

where D is a similar proof of τxϕ(x) = τxψ(x), ψ[x/a] ⇒ ϕ[x/a].
To realise how strong is this principle on the ground of CFOLI notice that

when t is instantiated with τxϕ(x) we obtain:

τxϕ(x) = τxϕ(x) ↔ ∀x(ϕ(x) ↔ xRτxϕ(x)).

which by (unrestricted) reflexivity of = yields:

∀x(ϕ(x) ↔ xRτxϕ(x)).

For several term-forming operators, at least on the ground of CFOLI, it is
too strong. For example if we instantiate this principle with iota-operator (where
R is =) we run into contradiction:

142 A. Indrzejczak

1. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax) → ∀x(Ax ∧ ¬Ax ↔ x = ıx(Ax ∧ ¬Ax))
2. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)
3. ∀x(Ax ∧ ¬Ax ↔ x = ıx(Ax ∧ ¬Ax)) 1, 2
4. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax)) ↔ ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)) 3
5. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax)) 4, 2

Similarly in the case of set-abstraction operator (where R is ∈) we obtain just
unrestricted axiom of comprehension which immediately leads to Russell’s para-
dox. Hence it is crucial to establish what is R for the specific tfo to decide if Ten-
nant’s rules may be safely added to GCI or GPCI. Therefore, we do not attempt
here to state T-theory as a general calculus GT. Instead we will consider in the
next section the application of his theory to set-abstraction operator, since even in
this context one may introduce restrictions which can prevent us against troubles.

4 Application to Set-Abstracts

Several kinds of set theory with set-abstraction operator as primitive can be
rather easily developed on the basis of S- or T-theory as formalised in the pre-
ceding section. In fact, both Scott [32] and Tennant [33] applied their theories
to set-abstract operators but in the context of free logic the unrestricted axiom
of comprehension does not lead to Russell’s paradox. However we work here in
the setting of CFOL so the rules responsible for its derivation must be somehow
restricted. For these reasons we decided to examine the possible formalisations
of Quine’s NF (New Foundations) as developed in [30], where the comprehen-
sion axiom is suitably restricted by means of the outer syntactic side condition
which is independent of the structure of rules. In fact, NF is not very popular
formalisation of set theory due to some peculiarities. However, it has also several
advantages which we are not going to discuss here because of the space restric-
tions1. In particular, the syntactic simplicity of NF make it a very convenient
theory for proof-theoretic investigations.

Before we focus on sequent calculi for NF let us start with some general pre-
liminaries concerning arbitrary formalisation of set theory. It often goes unno-
ticed that it may be developed in the language where only ∈ is a primitive
predicate or in the language with = primitive, which is rather more popular
choice. In the latter case we assume that we have already some axioms/rules for
= , so the only specific axiom we need for sets is:

ExtAx : ∀xy(∀z(z ∈ x ↔ z ∈ y) → x = y)

since the converse is already provable by LL.

If we start with CFOL (only ∈ primitive), = may be defined either in the
Leibnizian spirit:

=L: t = t′ := ∀z(t ∈ z ↔ t′ ∈ z)
1 See in particular its presentation in [30] and discussion in [8,9].

General Theory of Term-Forming Operators 143

or in the way Quine prefers:

=Q: t = t′ := ∀z(z ∈ t ↔ z ∈ t′)

The first choice leads to the standard characterisation of = and the axiom
ExtAx is still required. The second one is different since ExtAx is provable but
still we cannot obtain the full characterisation of identity. Therefore we must
add a special form of LL as an extensionality axiom:

ExtAx′: ∀xyz(x = y → (x ∈ z → y ∈ z))

and this is the way Quine proceeded with the development of NF. The second
axiom is the axiom of abstraction:

ABS: ∀x(x ∈ {y : ϕ(y)} ↔ ϕ[y/x])

where ϕ is stratified. Assuming that the only predicate is ∈ this condition may
be defined roughly as follows: it is possible to define a mapping from variables of
ϕ into integers in a way that for each atom we have i ∈ i + 1. In case we admit
=, a mapping should yield i = i. In what follows we will admit both kinds of
formulae as atomic, briefly called ∈-atoms and =-atoms.

We will consider two approaches to construction of cut-free sequent calculus
for NF. Although the rules (Ext), (AV) will be not primitive but derivable in
both, the first one, following closely Quinean formulation, is closer to the general
GS, whereas the second starts with Tennant’s rules suitably restricted.

4.1 The S-Approach to NF

There is no sense to take the instances of (Ext) and (AV) as primitive rules
since it will not save us from addition of most of the specific rules for set-
abstraction operators and =. So it is better to follow quite closely the original
Quinean axiomatisation of NF. A difference with the latter is connected with
the treatment of identity, since we take it as a primitive predicate characterised
by rules. However, we do not take the primitive rules of GPCI for identity as
primitive but rather provide new rules based on =Q. Hence we take GPC as the
basis and add:

a ∈ t, Γ ⇒ Δ, a ∈ t′ a ∈ t′, Γ ⇒ Δ, a ∈ t
(⇒=)

Γ ⇒ Δ, t = t′

Γ ⇒ Δ, b ∈ t, b ∈ t′ b ∈ t, b ∈ t′, Γ ⇒ Δ
(=⇒)

t = t′, Γ ⇒ Δ

These rules correspond to =Q. Moreover, we add two rules corresponding to the
axiom ABS:

(Abs ⇒)
ϕ[x/t], Γ⇒ Δ

t ∈ {x : ϕ(x)}, Γ⇒ Δ
(⇒ Abs)

Γ⇒ Δ,ϕ[x/t]
Γ⇒ Δ, t ∈ {x : ϕ(x)}

144 A. Indrzejczak

with ϕ stratified.
We omit easy proofs of the equivalence of stated rules with respective axioms:

ABS and the object language counterpart of =Q. Proofs of these axioms, as well
as derivability of our rules in GPC enriched with axiomatic sequents expressing
ABS and =Q are straightforward and similar to proofs from Theorem 1. Instead
we will show that although we have neither (Ext) nor (AV) as primitive rules
they are derivable in such a system for stratified ϕ.

Lemma 2. Derivability of (Ext) and (AV)

Proof. :

ϕ(a), Γ ⇒ Δ, ψ(a)
(Abs ⇒ Abs)

a ∈ {x : ϕ(x)}, Γ ⇒ Δ, a ∈ {x : ψ(x)}
ψ(a), Γ ⇒ Δ, ϕ(a)

a ∈ {x : ψ(x)}, Γ ⇒ Δ, a ∈ {x : ϕ(x)}
(⇒=)

Γ ⇒ Δ, {x : ϕ(x)} = {x : ψ(x)}

The proof of (AV) or alternatively, of (ExtAV) is similar. 	

But the rules (⇒=) and (=⇒) are not sufficient for obtaining the complete
characterisation of identity in NF. In particular they are not sufficient for the
case corresponding to the specific instance of LL expressed by the axiom ExtAx′

Note that in general we must be able to prove:

1. t = t′, t′′ = t′ ⇒ t = t′′

2. t = t′, t′′ ∈ t ⇒ t′′ ∈ t′

3. t = t′, t ∈ t′′ ⇒ t′ ∈ t′′

With case 1 there is no problem; it is derivable by (⇒=), (=⇒), similarly
as other properties of =, including reflexivity and symmetry. The case 2 would
be provable by (=⇒) provided instead of b we are allowed to use any term
t′′. So this case is problematic and needs reformulation of the rules which in
general destroys the subformula property and may be troublesome in proving
the cut elimination theorem. The case 3 corresponds exactly to ExtAx′ and
requires a separate rule which possibly covers also the case 2. To avoid troubles
we might follow the general solution introduced for GS and use the rule (2LL)
as two-premiss right-sided rule but it does not work since (Abs ⇒) introduces
an ∈-atom as a principal formula in the antecedent. As a result while proving
cut elimination we cannot make a reduction of the following cut instance:

Γ ⇒ Δ, t = t′ Γ ⇒ Δ, t′ ∈ {x : ϕ}
(2LL)

Γ ⇒ Δ, t ∈ {x : ϕ}
ϕ(t),Π ⇒ Σ

(Abs ⇒)
t ∈ {x : ϕ},Π ⇒ Σ

(Cut)
Γ,Π ⇒ Δ,Σ

It seems that in the presence of (Abs ⇒) and (⇒ Abs) the only solution is to
add a 3-premiss version of LL:

General Theory of Term-Forming Operators 145

Γ ⇒ Δ, t = t′ Γ ⇒ Δ,ϕ(t) ϕ(t′), Γ ⇒ Δ
(3LL)

Γ ⇒ Δ

where ϕ(t) and ϕ(t′) are either t′′ ∈ t and t′′ ∈ t′ or t ∈ t′′ and t′ ∈ t′′.
Summing up we obtain a system GSNF which adds to GPC the following

rules: (=⇒), (⇒=), (Abs ⇒), (⇒ Abs) and (3LL) ((Ref) is derivable).

Theorem 4. GSNF is an adequate formalisation of NF.

Moreover the cut elimination theorem can be proved for GSNF in a similar
fashion as in [13] where similar solution was provided for sequent calculi for
free description theories. Note however that the situation with the subformula
property is even worse than in GS (GS’) due to the presence of (3LL). Is it
possible to obtain a better formalisation of NF by means of Tennant’s rules?

4.2 The T-Approach to NF

If we want to apply the approach of Tennant to NF we have = as a primitive
predicate not only present in the language but already characterised by specific
rules so we start with GPCI and add the following Tennant’s-style rules:

ϕ(a), Γ ⇒ Δ, a ∈ t a ∈ t, Γ ⇒ Δ,ϕ(a)
(⇒:)

Γ ⇒ Δ, t = {x : ϕ(x)}

Γ ⇒ Δ,ϕ(b) b ∈ t, Γ ⇒ Δ
(:⇒)

t = {x : ϕ(x)}, Γ ⇒ Δ

Γ ⇒ Δ, b ∈ t ϕ(b), Γ ⇒ Δ
(:⇒)

t = {x : ϕ(x)}, Γ ⇒ Δ

where a is not in Γ,Δ,ϕ, t is any term and ϕ is stratified.
Note that (Ext) and (AV) are derivable which follows from the proofs of

EXT and AV presented in Sect. 3.2. As we noticed there, also the axiom ABS is
provable, so we do not need special rules (Abs ⇒), (⇒ Abs) too. We do not need
to care even about the axiom ExtAx since it is provable:

c ∈ a ↔ c ∈ b, c ∈ a ⇒ Δ, c ∈ b
(∀ ⇒)

∀z(z ∈ a ↔ z ∈ b), c ∈ a ⇒ c ∈ b

c ∈ a ↔ c ∈ b, c ∈ b ⇒ c ∈ a

∀z(z ∈ a ↔ z ∈ b), c ∈ b ⇒ c ∈ a
(⇒:)

∀z(z ∈ a ↔ z ∈ b) ⇒ a = {x : x ∈ b}
c ∈ b ⇒ c ∈ b

(⇒:)
⇒ b = {x : x ∈ b}

(2LL)
∀z(z ∈ a ↔ z ∈ b) ⇒ a = b

(⇒→)
⇒ ∀z(z ∈ a ↔ z ∈ b) → a = b

(⇒ ∀)
⇒ ∀xy(∀z(z ∈ x ↔ z ∈ y) → x = y)

146 A. Indrzejczak

It seems that T-approach is better than S-approach to NF since it is more
economical. However, if we think about cut elimination we must consider care-
fully the problem of primitive rules for identity. Although we first stated that we
add the special Tennant’s-style rules to GPCI and we used (2LL) in the above
proof it seems that we cannot keep (2LL) since in general we face the same prob-
lem with cut elimination as in the case of S-system illustrated in Subsect. 4.1. To
prove the cut elimination theorem we must again either generally replace (2LL)
with (3LL) or to follow the strategy introduced in [17] and separate the rules
for LL dealing with special cases of atomic formulae. One possibility is to keep:

Γ ⇒ Δ, t = t′ Γ ⇒ Δ,ϕ(t)
(2LL′)

Γ ⇒ Δ,ϕ(t′)

for ϕ being ∈-atom and restrict (3LL) only to =-atoms:

Γ ⇒ Δ, t = t′ Γ ⇒ Δ, t = t′′ t′ = t′′, Γ ⇒ Δ
(3LL′)

Γ ⇒ Δ

This way we obtain a system GTNF which adds to GPC the rules: (:⇒), (⇒:
), (2LL′), (3LL′), (Ref). (2LL′) deals only with ∈-atoms and all properties of
identity are derivable by (Ref) and (3LL).

Theorem 5. GTNF is an adequate formalisation of NF.

The cut elimination theorem is provable for GTNF as well. Unfortunately,
the situation with the subformula property is similar to that in the system GSNF
from the preceding subsection. However, there are possible some simplifications
obtained by reduction of the applications of (3LL′) if at least two of t, t′, t′′ are
parameters. Consider the cases with at most one term t complex:

1. a = b, a = c ⇒ b = c
2. t = b, t = c ⇒ b = c
3. a = t, a = b ⇒ t = b
4. a = b, a = t ⇒ b = t

(2LL′) may be modified to cover identities from case 1 and 2:

Γ ⇒ Δ, t = t′ Γ ⇒ Δ,ϕ(t)
(2LL′′)

Γ ⇒ Δ,ϕ(t′)

for ϕ(t′) being ∈-atom or =-atom of the form b = c (a third term in the premisses
may be complex or a parameter). For cases 3 and 4 we may add the rules:

Γ ⇒ Δ, a = t t = b, Γ ⇒ Δ
(Tr)

a = b, Γ ⇒ Δ

General Theory of Term-Forming Operators 147

or

Γ ⇒ Δ, a = t b = t, Γ ⇒ Δ
(E)

a = b, Γ ⇒ Δ

Any of them will do the task. For example, if we take (E) we have a direct proof
of 4 and the following proof of 3:

a = t ⇒ a = t
b = t ⇒ b = t ⇒ b = b t = b ⇒ t = b (3LL′)

b = t ⇒ t = b (E)
a = t, a = b ⇒ t = b

As a result we have to keep (3LL′) only for all cases where at least two of
t, t′, t′′ are complex terms at the price of adding (Tr) or (E). Let us call such a
modified system GTNF’.

5 Conclusion

We have provided a proof theoretic treatment of the general theory of tfos intro-
duced independently by several authors (S-theory), and proposed a modification
of a different approach (T-theory) in a way which allows us to compare their
relative strength. Moreover, we examined the ways in which both approaches
may be extended to cover set theory NF of Quine. All obtained sequent systems
satisfy the cut elimination theorem, but do not satisfy the subformula property.
Hence, in the case of the systems for NF, we cannot obtain a syntactical consis-
tency proof on the basis of the cut elimination theorem, because of the rules like
(3LL). Still these systems, in particular a system GTNF described in the last
subsection, allow us to keep a stricter control over the construction of proof.

The natural next step of this research is connected with the application of,
possibly modified, systems GS, GS’, or (suitably restricted) rules of Tennant’s
approach, to other kinds of term-forming operators, and careful examination of
their specific features.

Eventually it is also interesting to investigate if the obtained systems allow us
to prove other desirable properties in constructive way. One of such important
points is the interpolation theorem. Since it was proved semantically for the
general S-theory in [4], it is an important task to find a constructive proof as
well. However, the method of split-sequents due to Maehara, which is usually
applied in the setting of sequent calculi, fails for the presented systems since
it does not work with rules like (a ⇒). The problem is connected with the fact
that the complex term occuring in the active formula in the premiss may contain
some predicates which do not occur in the rest of the respective division of a
split-sequent but occur in the interpolant (and of course in the other division of a
split-sequent). In this case the interpolant of the premiss fails to be an interpolant
of the conclusion, where the active formula is deleted. Only the weaker form of
interpolation can be proved in which we require that interpolants have only
parameters (but not predicates) common to both divisions of the split-sequent.
It is an open problem if such difficulties can be overcome.

148 A. Indrzejczak

References

1. Corcoran, J., Herring, J.: Notes on a semantical analysis of variable-binding term
operators. Logique et Anal. (N.S.) 55, 644–657 (1971)

2. Corcoran, J., Hatcher, W.R., Herring, J.: Variable-binding term operators,
Zeitschr. f. math. Logik u. Grund. d. Math. 18, 177–182 (1972)

3. Da Costa, N.C.A.: Review of Corcoran, Hatcher and Herring 1972. Zentralblatt f.
Math. 257, 8–9 (1973)

4. Da Costa, N.C.A.: A model-theoretical approach to variable-binding term opera-
tors. In: Mathematical Logic in Latin America, pp. 133–162, North-Holland (1980)

5. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Synthese Library, vol.
277, Springer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5292-1

6. Hailperin, T.: Remarks on identity and description in firts-order axiom systems. J.
Symb. Log. 19(1), 14–20 (1954)

7. Hatcher, W., S.: Foundations of Mathematics. Saunders. Philadelphia (1968)
8. Hatcher, W.S.: The logical foundations of Mathematics. Pergamon Press (1982)
9. Holmes, M.R.: The set-theoretical program of Quine succeeded, but nobody

noticed. Modern Logic. 4(1), 1–47 (1994)
10. Indrzejczak, A.: Cut-free modal theory of definite descriptions. In: Bezhanishvili,

N., D’Agostino, M., Studer, T. (eds.) Advances in Modal Logic 12, pp. 359–378.
College Publications, Rickmansworth (2018)

11. Indrzejczak, A.: Fregean description theory in proof-theoretic setting. Logic Log.
Philos. 28(1), 137–155 (2019)

12. Indrzejczak, A.: Existence, definedness and definite descriptions in hybrid modal
logic. In: Olivetti, N., Verbrugge, R., Negri, S., Sandu, G. (eds.) Advances in Modal
Logic 13, pp. 349–368. College Publications, Rickmansworth (2020)

13. Indrzejczak, A.: Free definite description theory - sequent calculi and cut elimina-
tion. Logic Log. Philos. 29(4), 505–539 (2020)

14. Indrzejczak, A.: Sequents and Trees. An Introduction to the Theory and Applica-
tions of Propositional Sequent Calculi. Birkhäuser (2021)

15. Indrzejczak, A.: Free Logics are cut-free. Stud. Logica. 109, 859–886 (2021)
16. Indrzejczak, A.: A novel approach to equality. Synthese. 199, 4749–4774 (2021)
17. Indrzejczak, A.: Russellian definite description theory–a proof-theoretic approach.

Rev. Symbolic Logic. 16(2), 624–649 (2023)
18. Indrzejczak, A., Zawidzki, M.: Tableaux for Free Logics with Descriptions. In:

Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp. 56–73.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86059-2 4

19. Indrzejczak, A., Zawidzki, M.: When Iota meets Lambda. Synthese 201(2), 1–33
(2023)

20. Kalish, D., Montague, R., Mar, G.: Logic. Techniques of Formal Reasoning (2nd
ed.). Oxford University Press, New York, Oxford (1980)

21. Kürbis, N.: A binary quantifier for definite descriptions in intuitionist negative
free logic: natural deduction and normalization. Bull. Section Logic 48(2), 81–97
(2019)

22. Kürbis, N.: Two treatments of definite descriptions in intuitionist negative free
logic. Bull. Sect. Logic 48(4), 299–317 (2019)

23. Kürbis, N.: Definite descriptions in intuitionist positive free logic. Logic Log. Philos.
30(2), 327–358 (2021)

24. Kürbis, N.: Proof-theory and semantics for a theory of definite descriptions. In:
Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp. 95–111.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86059-2 6

https://doi.org/10.1007/978-94-011-5292-1
https://doi.org/10.1007/978-3-030-86059-2_4
https://doi.org/10.1007/978-3-030-86059-2_6

General Theory of Term-Forming Operators 149

25. Kürbis, N.: A binary quantifier for definite descriptions for cut free free logics.
Stud. Logica. 110(1), 219–239 (2022)

26. Lambert, K.: Free Logics. Character, and Some Applications Thereof. Academia
Verlag. Sankt Augustin, Their Foundations (1997)

27. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press,
Cambridge (2001)

28. Orlandelli, E.: Labelled calculi for quantified modal logics with definite descrip-
tions. J. Log. Comput. 31(3), 923–946 (2021)

29. Quine, W.V.: New foundations for mathematical logic. Amer. Math. Monthly 44,
70–80 (1937)

30. Rosser, J.B.: Logic for Mathematicians. McGraw-Hill (1953)
31. Russell, B.: On Denoting. Mind XIV 479–494 (1905)
32. Scott, D.: Existence and description in formal logic. In: Shoenman, R. (ed.)

Bertrand Russell, Philosopher of the Century, pp. 181–200. Georg Allen and Unwin
Ltd., London (1967)

33. Tennant, N.: Natural Logic. Edinburgh (1978)
34. Tennant, N.: Anti-Realism and Logic. Oxford (1987)
35. Tennant, N.: A general theory of abstraction operators. Philosoph. Quat. 54(214),

105–133 (2004)
36. Tennant, N.: The Logic of Number. Oxford (2022)
37. Whitehead, A.N., Russell, B.: Principia Mathematica, vol. I. Cambridge University

Press, Cambridge (1910)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Theorem Proving

Lemmas: Generation, Selection,
Application

Michael Rawson1 , Christoph Wernhard2(B) , Zsolt Zombori3,5 ,
and Wolfgang Bibel4

1 TU Wien, Vienna, Austria
michael@rawsons.uk

2 University of Potsdam, Potsdam, Germany
info@christophwernhard.com

3 Alfréd Rényi Institute of Mathematics, Budapest, Hungary
zombori@renyi.hu

4 Technical University Darmstadt, Darmstadt, Germany
bibel@gmx.net

5 Eötvös Loránd University, Budapest, Hungary

Abstract. Noting that lemmas are a key feature of mathematics, we
engage in an investigation of the role of lemmas in automated theo-
rem proving. The paper describes experiments with a combined system
involving learning technology that generates useful lemmas for auto-
mated theorem provers, demonstrating improvement for several repre-
sentative systems and solving a hard problem not solved by any system
for twenty years. By focusing on condensed detachment problems we sim-
plify the setting considerably, allowing us to get at the essence of lemmas
and their role in proof search.

1 Introduction

Mathematics is built in a carefully structured way, with many disciplines and
subdisciplines. These are characterized by concepts, definitions, axioms, theo-
rems, lemmas, and so forth. There is no doubt that this inherent structure of
mathematics is part of the discipline’s long-lasting success.

Research into Automated Theorem Proving (ATP) to date has taken little
notice of the information provided by this structure. Even state-of-the-art ATP
systems ingest a conjecture together with pertinent definitions and axioms in a
way completely agnostic to their place in the mathematical structure. A compar-
atively small but nevertheless important part of the structure of mathematics is

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
– Project-ID 457292495, by the North-German Supercomputing Alliance (HLRN), by
the ERC grant CoG ARTIST 101002685, by the Hungarian National Excellence Grant
2018-1.2.1-NKP-00008 and the Hungarian Artificial Intelligence National Laboratory
Program (RRF-2.3.1-21-2022-00004).
c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 153–174, 2023.
https://doi.org/10.1007/978-3-031-43513-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_9&domain=pdf
http://orcid.org/0000-0001-7834-1567
http://orcid.org/0000-0002-0438-8829
http://orcid.org/0000-0001-8622-5304
http://orcid.org/0000-0003-3892-0171
https://doi.org/10.1007/978-3-031-43513-3_9

154 M. Rawson et al.

the identification and application of lemmas. It is this aspect which is the focus
of the work presented here.

The purpose of lemmas in mathematics is at least threefold. First, and per-
haps most importantly, lemmas support the search for proofs of assertions. If
some lemma applies to a given problem, a proof may be found more easily. Sec-
ond, it is often the case that a lemma may be applied more than once. If this
happens, its use will shorten the length of the overall proof since the proof of
the lemma need only be carried out once, not repeatedly for every application.
Third, the structuring effect of proofs by the use of lemmas is an important fea-
ture for human comprehension of proofs. In our work we are motivated primarily
by the first two of these three aspects.

These considerations give rise to the crucial question: how can we find useful
lemmas for proving a given problem? Here we mean useful in the sense of the two
aforementioned aspects: lemmas should be applicable to the problem at hand,
preferably many times. In full generality this is a difficult question indeed, which
will require much further research. In this first step we restrict the question
to a narrow range of problems, known in literature as condensed detachment
(CD) problems [41]. Proofs of CD problems can be represented in a simple
and accessible form as proof structure terms, enabling structure enumeration to
enhance proof search and lemma maintenance, as well as feature extraction for
learning. Our investigation thus focuses on the question of how ATP performance
may be improved for CD problems by the generation and selection of useful
lemmas before search begins.

CD problems are of the form “axiom(s) and Det imply a goal” where Det rep-
resents the well-known modus ponens rule, or condensed detachment. They have
a single unary predicate. A typical application is the investigation of an axiom-
atization of some propositional logic, whose connectives are then represented by
function symbols. In order to support this study experimentally, we have built
a combined system for dealing with these problems. It features SGCD [74] as
prover and lemma generator along with a learning module based on either an
easily-interpreted linear model over hand-engineered features, or a graph neural
network supporting end-to-end learning directly from lemmas.

Our work results in a number of inter-related particular contributions:

1. Incorporation of proof structure terms into ATP with Machine Learning
(ML). Consideration of features of the proof structure terms, explicitly in
linear-model ML or implicitly in a neural ML model. A novel ATP/ML
dataflow that is centered around proof structure terms.

2. Experimentally validated general insights into the use of learned lemmas for
provers of different paradigms, with different ways to incorporate lemmas,
and based on two alternate ML models. At the same time pushing forward
the state of the art on proving CD problems. Insights include: SGCD is com-
petitive with leading first-order provers; Learned lemmas significantly extend
the set of problems provable by the leading first-order prover Vampire; Provers
without internal lemma maintenance, such as Connection Method (CM) [6–8]
systems, are drastically improved; Vampire and SGCD are able to handle a

Lemmas: Generation, Selection, Application 155

few hundreds of supplied lemmas; Learning based on manual features and on
automatic feature extraction perform similarly.

3. An automatic proof of the Meredith single axiom theorem LCL073-1, which
has persisted in the TPTP rated 1.00 since 1997. The first and only system
to succeed was OTTER [39], after intensive massaging by Wos [84]. It was
proven by SGCD in a novel systematic way.

4. An implemented framework with the new techniques for generation, selection
and application of lemmas.

Structure of the Paper. Section 2 presents condensed detachment and its
embedding into the CM by way of so-called D-terms, as well as background
material on lemmas and machine learning in ATP. Section 3 introduces a method
for generating and selecting useful lemmas and presents experimental results with
it, leading up to the proof of LCL073-1 in Sect. 4. We conclude with a summary
and outlook for further work in this area in Sect. 5.

Supplementary material is provided in the appendix of the preprint ver-
sion [54]. All experiments are fully reproducible and the artifacts are avail-
able at https://github.com/zsoltzombori/lemma, commit df2faaa. We use CD
Tools [74] and PIE [71,72], implemented in SWI-Prolog [77], for reasoning tasks
and PyTorch [47] for learning.

2 Background and Related Work

In a very general sense, lemmas in ATP factorize duplication. This may be
between different proofs that make use of the same lemma, or within a single
proof where a lemma is used multiple times. It may not even be a particular
formula that is shared, but a pattern, such as a resonator [81]. In the presence
of machine learning, we may think of even more abstract entities that are fac-
torized: the principles by which proofs are written, repeated in different proofs
or contexts.

Depending on the proving method, lemmas in ATP play different roles.
Provers based on saturation, typically resolution/superposition (RS) systems [3],
inherently operate by generating lemmas: a resolvent is itself a lemma derived
from its parents. Nevertheless, one may ask for more meaningful lemmas than the
clauses of the proof. This is addressed with cut introduction [14,20,78], which
studies methods to obtain complex lemmas from resolution proofs. Such lem-
mas provide insight about the high-level structure of proofs, extract interesting
concepts and support research into the correspondence between natural mathe-
matical notions and possible proof compressions. Other approaches to interesting
theorems or lemmas are described for example in [52,65].

Another question concerning lemmas and ATP systems is whether perfor-
mance can be improved by supplementing the input with lemmas. This is par-
ticularly applicable if lemmas are obtained with methods that are different from

https://github.com/zsoltzombori/lemma

156 M. Rawson et al.

those of the prover. Otherwise, it may have obtained these by itself.1 As we will
see, leading ATP systems such as Vampire and E [59] can indeed be improved
in this way. Different methods does not necessarily mean different systems: it is
possible to use different configurations of the same system for lemma generation
and proving, as well as for intermediate operations. This was the workflow used
by Larry Wos to prove the challenge problem LCL073-1 with OTTER [84]. Our
SGCD system also supports this, which played a major role in its ability to prove
the aforementioned challenge problem.

Lemmas play a quite different role for a family of provers which we call
CM-CT for Connection Method/Clausal Tableaux, exemplified by PTTP [61],
SETHEO [33], and leanCoP [45,46]. Underlying conceptual models are model
elimination [35], clausal tableaux [31] and the CM. They enumerate proof struc-
tures while propagating variable bindings initialized by the goal through unifi-
cation, and hence proceed in an inherently goal-driven way. While they are good
at problems that benefit from goal direction, in general they are much weaker
than RS provers and have not been among the top provers at CASC for about
two decades. This is attributed to the fact that they do not re-use the proof of
one subgoal as the solution of another: they do not use lemmas internally.

The lack of lemmas was identified early as a weakness of CM-CT [15], so
there have been various proposed remedies [2,15,17,19,32,45,60,62]. Despite
some insight and success, this did not yet elevate CM-CT to the level of the
best RS systems. Nevertheless, the expectation remains that CM-CT provers
would benefit from supplying lemmas as additional input. Hence, we included
two CM-CT systems in our experiments, leanCoP and CMProver [12,71,72] and
show that the expectation is greatly confirmed. Two other systems considered
here, SGCD and CCS [73], can be viewed as CM-CT systems extended to support
specific forms of lemma generation and application.

Lemmas can be maintained within the prover as an inherent part of the
method, as in saturation. They may also be created and applied by different
systems, or different instances of the same system [13,55]. Larry Wos calls this
lemma adjunction [83]. Lemmas created by one system are passed to a second
system in two principal ways. First, they can be passed as additional axioms, in
the hope that the second system finds a shorter proof in the wider but shallower
search space. Second, external lemmas can be used to replace search. The second
system then starts with the given lemmas as if they were the cached result of
its previous computation. Moreover, the provided lemmas can be restricted in
advance by heuristic methods, such as by a machine-learned model. SGCD sup-
ports this replacing lemma incorporation. The basic distinction between aug-
menting and replacing search with lemmas was already observed by Owen L.
Astrachan and Mark E. Stickel [2] in the context of improving CM-CT provers.

1 We note here that in some cases systems cannot generate certain lemmas because
of e.g. ordering restrictions.

Lemmas: Generation, Selection, Application 157

2.1 Machine Learning for ATP

The past decade has seen numerous attempts to leverage machine learning in
the automated theorem proving effort. Early systems mostly focused on premise
selection, e.g. [1,68,70], aiming to reduce the number of axioms supplied as input
to the prover, or on selection of heuristics, e.g. [11]. Other works provide internal
guidance directly at the level of inferences during search, e.g. [18,24,25,27,34,
53,85]. The emergence of generative language models has also led to some initial
attempts at directly generating next proof steps, e.g. [48,49,67], moving the
emphasis away from search.

In contrast to these lines of work, our focus is on learning the utility of
lemmas. Close to our aims is [26,28], trying to identify globally useful lemmas in
a collection of millions of proofs in HOL Light. Besides differences in the formal
system, what distinguishes our work is that we learn a much more focused model:
we put great emphasis on evaluating lemmas in the context of a particular goal
and axiom set; in fact, our entire system was designed around the question
whether a given lemma is moving the goal closer to the axioms. We argue that
the D-term representation of all involved components (goal, lemma, axioms,
proof) makes our framework particularly suitable for the lemma selection task.

We employ an iterative improvement approach first used in MaLARea [68]:
in each iteration, we run proof search guided by a learned model, extract training
data from proving attempts, and fit a new model to the new data. These steps
can be repeated profitably until performance saturates.

2.2 Condensed Detachment: Proofs as Terms

Condensed detachment (CD) was developed in the mid-1950s by Carew A.
Meredith as an evolution of substitution and detachment [30,43,50,51]. Reason-
ing steps are by detachment, or modus ponens, under implicit substitution by
most general unifiers. Its primary application is the investigation of axiomatiza-
tions of propositional logics at a first-order meta-level. CD also provides a tech-
nical approach to the Curry-Howard correspondence, “formulas as types” [22,23]
and is considered in witness theory [57]. Many early successes in ATP were on
CD problems [40,66], but success was also found in the reverse direction. Refine-
ments of the OTTER prover in the 1990s, some of which have found their ways
into modern RS provers, were originally conceived and explored in the setting
of CD [16,40,69,79–82,84].

From a first-order ATP perspective, a CD problem consists of axioms, i.e.
positive unit clauses; a goal theorem, i.e. a single negative ground unit clause
representing a universally-quantified atomic goal theorem after Skolemization;
and the following ternary Horn clause that models detachment.

Det def= P(i(x, y)) ∧ P(x) → P(y).

The premises of Det are called the major and minor premise, respectively. All
atoms in the problem have the same predicate P, which is unary and stands for

158 M. Rawson et al.

something like provable. The formulas of the investigated propositional logic are
expressed as terms, where the binary function symbol i stands for implies.

CD may be seen as an inference rule. From an ATP perspective, a CD infer-
ence step can be described as a hyperresolution from Det and two positive unit
clauses to a third positive unit clause. A CD proof is a proof of a CD prob-
lem constructed with the CD inference rule. CD proofs can be contrasted with
other types of proof, such as a proof with binary resolution steps yielding non-
unit clauses. Prover9 [38] chooses positive hyperresolution by default as its only
inference rule for CD problems and thus produces CD proofs for these.

It is, however, another aspect of CD that makes it of particular interest for
developing new ATP methods, which only recently came to our attention in
the ATP context [75]: the structure of CD proofs can be represented in a very
simple and convenient way as full binary trees, or as terms. In ATP we find this
aspect in the CM, where the proof structure as a whole is in focus, in contrast
to extending a set of formulas by deduction [9]. This view of CD is made precise
and elaborated upon in [76], on which the subsequent informal presentation is
based. We call the structure representations of CD proofs D-terms. A D-term is a
term recursively built from numeral constants and the binary function symbol D
whose arguments are D-terms. In other words, it is a full binary tree where the
leaf nodes are labeled with constants. Four examples of D-terms are

1, 2, D(1, 1), D(D(2, 1),D(1,D(2, 1))).

A D-term represents the structure of a proof. A proof in full is represented by
a D-term together with a mapping of constant D-terms to axioms. Conversion
between CD proofs and D-terms is straightforward: the use of an axiom corre-
sponds to a constant D-term, while an inference step corresponds to a D-term
D(d1, d2) where d1 is the D-term that proves the major premise and d2 the minor.

Through first-order unification, constrained by axioms for the leaf nodes and
the requirements of Det for inner nodes, it is possible to obtain a most general
formula proven by a D-term [76]. We call it the most general theorem (MGT) of
the D-term with respect to the axioms, unique up to renaming of variables. For
a given axiom map, not all D-terms necessarily have an MGT: if unification fails,
we say the D-term has no MGT. It is also possible that different D-terms have
the same MGT, or that the MGT of one is subsumed by the MGT of another.
A D-term is a proof of the problem if its MGT subsumes the goal theorem.

As an example, let the constant D-term 1 be mapped to P(i(x, i(x, x))),
known as Mingle [66]. Then, the MGT of the D-term 1 is just this axiom. The
MGT of the D-term D(1, 1) is P(i(x, i(x, x)), i(x, i(x, x))), that is, after renam-
ing of variables, P(y)σ where σ is the most general unifier of the set of pairs
{{P(i(x, y)), P(i(x′, i(x′, x′)))}, {P(x), P(i(x′′, i(x′′, x′′)))}}.

D-terms, as full binary trees, facilitate characterizing and investigating struc-
tural properties of proofs. While, for a variety of reasons, it is far from obvious
how to measure the size of proofs obtained from ATP systems in general, for
D-terms there are at least three straightforward size measures:

– The tree size of a D-term is the number of its inner nodes.

Lemmas: Generation, Selection, Application 159

– The height of a D-term is the length of the longest root-leaf path.
– The compacted size of a D-term is the number of distinct compound subterms,

or, in other words, the number of inner nodes of its minimal DAG.

Alternative names in the literature are length for compacted size, level for height
and CDcount [69] for tree size. The D-term D(D(1,D(1, 1)),D(D(1, 1), 1)), for
example, has tree size 5, compacted size 4 and height 3. Factor equations provide
a compact way of writing D-terms: distinct subproofs with multiple incoming
edges in the DAG receive numeric labels, by which they are referenced. The
D-term D(D(1, 1),D(D(1,D(1, 1)),D(1,D(1, 1)))), for example, can be written as
2 = D(1, 1), 3 = D(1, 2), 4 = D(2,D(3, 3)).

CD problems have core characteristics of first-order ATP problems: first-order
variables, at least one binary function symbol and cyclic predicate dependency.
But they are restricted: positive unit clauses, one negative ground clause, and
one ternary Horn clause. Equality is not explicitly considered. The generalization
of CD to arbitrary Horn problems is, however, not difficult [73].

2.3 Condensed Detachment for ATP and Lemmas

From an ATP point of view, D-terms provide access to proofs as a whole. This
exposes properties of proofs that are not merely local to an inference step, but
spread across the whole proof. It suggests a shift in the role of the calculus
from providing a recipe for building the structure towards an inductive structure
specification. Moreover, D-terms as objects provide insight into all proofs: for
example, growth rates of the number of binary trees for tree size, height and
compacted size are well-known with entries in The On-Line Encyclopedia of
Integer Sequences [44] and provide upper bounds for the number of proofs [76]. A
practical consequence for ATP is the justification of proof structure enumeration
techniques where each structure appears at most once.

CD proofs suggest and allow for a specific form of lemmas, which we call
unit or subtree lemmas, reflecting two views on them. As formulas, they are
positive unit clauses, which can be re-used in different CD inference steps. In
the structural view, they are subterms, or subtrees, of the overall D-term. If
they occur multiply there, they are factored in the minimal DAG of the overall
D-term. The views are linked in that the formula of a lemma is the MGT of
its D-term. The compacted size measure specified above takes into account the
compression achievable by unit/subtree lemmas. From the perspective of proof
structure compression methods, unit/subtree lemmas have the property that
the compression target is unique, because each tree is represented by a unique
minimal DAG. CM-CT provers do not support such lemmas, which is the main
reason for their notorious weakness on CD problems.

2.4 SGCD—Structure Generating Theorem Proving

SGCD (Structure Generating Theorem Proving for Condensed Detachment) [74]
is the central system used in our experiments as prover as well as lemma genera-
tor. It realizes an approach to first-order theorem proving combining techniques

160 M. Rawson et al.

known from the CM and RS that was not fully recognized before. It generalizes
(for CD problems) bottom-up preprocessing for and with CM-CT provers [60]
and hypertableaux [4]. SGCD works by enumeration of proof structures together
with unification of associated formulas, which is also the core method of the CM-
CT provers. Structures for which unification fails are excluded. Each structure
appears at most once in the enumeration.

Let the proof structures be D-terms. Partition the set of all D-terms according
to some level such that those in a lower level are strict subterms of those in a
higher level. Tree size or height are examples of such a level. Let

enum_dterm_mgt_pairs(+Level, ?DTerm, ?Formula)

be a Prolog2 predicate enumerating D-terms and corresponding MGTs at a cer-
tain level, with respect to given axioms that do not explicitly appear as param-
eter. We say that the predicate generates these pairs in an axiom-driven way.
If the predicate is invoked with the formula argument instantiated by a ground
formula, it enumerates D-terms that prove the formula at the specified level.
The predicate is then used goal-driven, like a CM-CT prover. Invoking it for
increasing level values realizes iterative deepening. There are further instantia-
tion possibilities: if only the D-term is instantiated and the level is that of the
D-term, its MGT is computed. If both D-term and formula are instantiated, the
predicate acts as verifier.

The implementation includes several generators, concrete variants of the
enum_dterm_mgt_pairs predicate for specific level characterizations. SGCD
maintains a cache of 〈level ,D-term, formula〉 triples used to obtain solutions
for subproblems in levels below the calling level. This cache is highly config-
urable. In particular, the number of entries can be limited, where only the best
triples according to specified criteria are kept. Typical criteria are height or size
of the formula, a heuristic shared with RS provers. Subsumed entries can be
deleted, another feature in common with RS. Novel criteria are also supported,
some of which relate the formula to the goal. Most criteria are based on the
formula component of the triples, the MGT. Due to rigid variables [21], MGTs
are not usually available in CM-CT provers [76] and cannot be used as a basis
for heuristics.

When lemmas are provided to SGCD, they are used to initialize the cache,
replacing search at levels lower than the calling level.3 SGCD further maintains a
set of abandoned 〈level ,D-term, formula〉 triples, those that are generated but do
not qualify for entering the cache or were removed from the cache. These are kept
as a source for heuristic evaluation of other triples and for lemma generation.

For theorem proving, SGCD proceeds as shown in Fig. 1. Input parame-
ter g is the goal formula, while parameters maxLevel and preAddMaxLevel
are configurable. enum_dterm_mgt_pairs represents a particular generator that
is also configurable. It enumerates argument bindings nondeterministically: if
it succeeds in the inner loop, an exception returns the D-term d. C is the
2 Prolog serves here as a suitable specification language.
3 Replacement can be subject to heuristic restrictions.

Lemmas: Generation, Selection, Application 161

cache. The procedure merge_news_into_cache(N,C) merges newly generated
〈level ,D-term, formula〉 triples N into the cache C. If maxLevel is configured
as 0, the method proceeds in purely goal-driven mode with the inner loop per-
forming iterative deepening on the level m. Similarity to CM-CT provers can be
shown empirically by comparing the sets of solved TPTP problems [74]. Gener-
ally successful configurations of preAddMaxLevel typically have values 0–3.

Fig. 1. The nested loops of the SGCD theorem proving method.

3 Improving a Prover via Learned Lemma Selection

We employ machine learning to identify lemmas that can enhance proof search.
Unlike the standard supervised scenario in which we learn from some train-
ing problems and evaluate performance on separate test problems, we take a
reinforcement learning approach of self-improvement that has already been suc-
cessfully applied in several theorem proving projects since [68]. In this approach,
we perform proof search with a base prover on our entire problem set and learn
from the proof attempts.4 The learning-assisted prover is evaluated again in the
problem set to see if it can find more or different problems. If there is improve-
ment, the process can be repeated until performance saturates. In a bit more
detail, our system has the following components.

1. Base Prover: Performs proof search and its main role is to provide training
data to the utility model.

2. Utility Model: The model takes 〈conjecture, lemma, axioms〉 triples and
outputs a utility score, i.e., some measure of how useful the lemma is for
proving the conjecture from the axioms. The utility model is trained from
the D-terms emitted by the base prover.

3. Lemma Generator: Produces a large set of candidate lemmas for each
problem separately. All candidates are derivable from the axioms.

4. Evaluated Prover: For each problem, we evaluate the candidate sets with
the utility model and select the best ones. These lemmas are provided to
the evaluated prover which performs proof search on the problem set. The
evaluated prover can be identical to or different from the base prover.

4 We currently only learn from successful proof attempts and sketch an extension to
learning from failure.

162 M. Rawson et al.

Base Prover. Any prover that emits proofs as D-terms is suitable as a base
prover. Given a D-term proof tree P of some formula C from axiom set As, any
connected subgraph S of P can be considered as the proof of a lemma L. If S
is a full tree, it proves a unit lemma, which is the formula associated with its
root. Otherwise, it proves a Horn clause, whose head is the root formula of S
and whose body corresponds to the open leaves of S. We currently focus on unit
lemmas and leave more general subgraphs for future work. To approximate the
utility of lemma L for proving C from As, there are several easy-to-compute
logical candidates, such as the reduction in tree size, tree height or compressed
size. A more refined measure is obtained if we reprove C with the lemma L
added to the axioms As and observe how the number of inference steps changes.5
This is slower to compute, but takes into account the particularities of the base
prover, hence provides more focused guidance. In our experiments, we find that
the best performance is obtained by reproving and then computing utility U
as the inference step reduction normalized into [−1, 1], where −1 means that
the problem could not be solved within the original inference limit and 1 is
assigned to the lemma that yields the greatest speedup. We end up with tuples
〈C,As, L, U〉 to learn from.

Utility Model Training. We experiment with gradient-descent optimization
for two classes of functions: linear models and graph neural networks (GNNs).
Our linear model is based on 51 manually-identified features, some of them
novel, described in [54, App. A]. For each feature fi there is an associated weight
parameter wi to produce the final predicted utility

U(f ;w) =
∑

i

fiwi

The second, more involved model is a GNN. Describing this model is beyond
the scope of this paper: see e.g. [58] for a gentle introduction. What is crucial
for our purposes is that no manual feature extraction is involved: a specialized
neural network processes the D-terms of involved formulas directly and learns
to extract useful features during optimization. As input, the model is given a
graph, losslessly encoding D-terms of the lemma to be evaluated, the conjecture
and the axioms. The precise network architecture is provided in [54, App. B].

Candidate Lemma Generation. Candidate lemmas are generated sepa-
rately for each problem via the structure enumeration mechanism of SGCD,
as explained in Fig. 1. The goal g is provided and preAddMaxLevel is set to 0,
making SGCD proceed axiom-driven, generating lemmas level by level. However,
it does intersperse the goal-driven inner loop, which is only trying to prove the
goal on the level directly above the last cached level. SGCD may terminate with

5 The number of inferences is a measure provided by the Prolog engine and is not
identical to the number of steps in the FOL calculus.

Lemmas: Generation, Selection, Application 163

a proof, in which case further lemma generation is pointless. Otherwise it ter-
minates after maxLevel is reached, generation of new levels is exhausted, or a
time limit is reached. We then use the cache C and the abandoned triples as
the generated output lemmas. Furthermore, there are many ways to configure
SGCD. We obtained the best results generating by tree size and by PSP-level
(explained below), combined with known good heuristic restrictions. In particu-
lar we restrict the size of the lemma formulas to the maximum of the size of the
axioms and the goal, multiplied by some factor (usually 2–5). We also restrict
the number of elements in the cache, typically to 1,000. The lemmas are sorted
by formula size measures, smaller preferred, to determine which are retained in
the cache.

Proof structure generation by PSP-level is a novel technique introduced in
[74,76], based on an observation by Łukasiewicz and Meredith. In a detachment
step, often the D-term that proves one premise is a subterm of the D-term that
proves the other. We turn this relationship into a proof structure enumeration
method: structures in level n + 1 are D-terms where one argument D-term is
at level n and the other argument is a subterm of that D-term. The method is
incomplete, but combines features of DAG enumeration while being compatible
with a simple global lemma maintenance as realized with SGCD’s cache [76].

Table 1. Features of the considered provers: whether their proofs are available as D-
terms (possibly after some conversion), whether they were used with replacing lemma
incorporation (Sect. 2), whether they operate goal-driven, and the underlying method.

SGCD Prover9 CMProver leanCoP CCS-Vanilla Vampire E

D-terms • • • − • − −
Replacing lemmas • − − − • − −
Goal-driven •/− − • • • − −
CM-CT − − • • − − −
RS − • − − − • •

Evaluated Prover. For each problem, we evaluate the candidate set with the
utility model and select k lemmas with the highest predicted utility, where k is
a hyperparameter. The evaluated prover then tries to solve the problems with
the help of the selected lemmas. The lemmas can either be treated as additional
axioms—applicable to any prover—or have a specialized treatment if the prover
provides for it: in particular, SGCD and CCS-Vanilla use the lemmas to replace
inner lemma enumeration.6 The evaluated prover can be any prover, since there
is no specialized requirement to handle lemmas as new axioms. If, however, it
6 Before the obtained input lemmas are passed to a prover we supplement them with

the lemmas for all their subproofs, i.e. we close the set of D-terms under the sub-
term relationship. This proved beneficial in experiments (see, e.g., [54, App. D]). An
alternative would be to perform this closure on all generated lemmas before selection.

164 M. Rawson et al.

is the base prover—or any other system that emits proofs as D-terms, then the
learning procedure can be iterated as long as there are new problems solved.

3.1 Learning-Based Experiments

We experiment with a total of 312 CD problems, including all 196 pure CD
problems from TPTP 8.1.2 [64], enriched with single-axiom versions of all the
problems to which a technique by Tarski [37], as specified by Rezuş [56], was
applicable. We test several representative ATP systems, including state-of-the-
art systems for both general first-order reasoning and for CD problems.

Table 1 gives an overview of the considered provers. CCS-Vanilla is CCS [73] in
a restricted configuration to find only those CD proofs with minimal compacted
size, identifying problems that can clearly be solved with exhaustive search. It
operates goal-driven, like the CM-CT provers, but by enumerating DAGs instead
of trees through a local lemma maintenance mechanism. Vampire and E represent
the state of the art of first-order ATP. Provers that produce D-terms as proofs
(SGCD, Prover9, CMProver, CCS) can serve as base provers. We always rely on
SGCD for lemma candidate generation. All provers are recent public versions:
Vampire 4.5.1, E 2.6, leanCoP 2.1. We provide results in terms of time limits,
although for the Prolog provers SGCD, CMProver and CCS-Vanilla we used a
roughly-equivalent inference limit to avoid fluctuations due to server workload.

Improving the Base Prover. In our first experiment, we evaluate base provers
after learning from their own proof attempts. The provers are given k = 200 best
lemmas according to the linear utility model. Table 27 shows problems solved
by four base provers without lemmas (Base case) and with two iterations of
learning. The Total row gives the number of theorems proved by any of the
three iterations shown. The stronger the base model, the harder it is to improve.
CMProver and CCS-Vanilla are purely goal-driven and benefit greatly, reaching
over 37% improvement for larger time limits. SGCD and Prover9 improve over
5% for shorter time limits, but this effect gradually vanishes as the time limit is
increased.

Table 2. Number of problems solved over 2 iterations of training a linear model.

SGCD Prover9 CMProver CCS-Vanilla
Time 50 s 100 s 500 s 30 m 50 s 100 s 500 s 30 m 50 s 100 s 500 s 30 m 50 s 100 s 500 s 30 m

Base 266 275 285 285 240 252 259 262 82 85 94 103 81 88 99 105
Iter 1 280 282 284 281 250 254 262 257 83 93 105 121 96 101 117 130
Iter 2 281 283 281 283 247 247 267 265 79 98 95 126 96 97 120 128
Total 282 284 286 286 253 258 269 267 91 105 112 141 106 105 133 145

An analysis, provided in [54, App. D], reveals that in the proofs not found
during lemma generation and found by SGCD after the provision of lemmas,
7 Further visualizations of our experiments are provided in [54, App. C].

Lemmas: Generation, Selection, Application 165

63–96% of the distinct subterms originate from the lemmas, i.e., a substantial
portion of the proofs are built up from the provided lemmas.

Learned Lemmas to Enhance Other Provers. Next, we fix SGCD as base
prover and evaluate other provers, namely Vampire, E, Prover9 and leanCoP.
Again, the provers are given k = 200 best lemmas according to the linear utility
model. Table 3 shows the greatest boost is for the purely goal-driven leanCoP,
where there is over 40% improvement for all time limits. Second is Vampire with
8–15% improvement, followed by Prover9 and E with around 3% improvement.
Interestingly, E does not solve more problems with the lemmas, but it solves
different ones, hence the improvement. These results suggest a great deal of
transferability of the benefits of the lemma selector.

Table 3. Number of problems solved by Vampire (casc), E (autoschedule), Prover9 and
leanCoP without and with additional lemmas using various time limits.

Vampire E Prover9 leanCoP
Time 50 s 100 s 500 s 30 m 50 s 100 s 500 s 30 m 50 s 100 s 500 s 30 m 50 s 100 s 500 s 30 m

Base 221 224 252 263 253 264 275 281 236 244 257 260 70 71 77 77
Lemmas 249 257 274 283 256 266 275 275 246 250 261 269 100 103 111 113
Total 249 257 276 284 269 276 287 286 248 252 264 269 100 103 111 113

Changing the Number of Lemmas Added. Adding lemmas has potential
to shorten proofs, but it also widens the search space, so it is not obvious how
many lemmas are beneficial. In the next experiment, we again fix SGCD as base
prover and evaluate SGCD and Vampire with different number of lemmas selected.
Table 4 shows that as little as 25 added lemmas yield substantial improvement,
7% for Vampire and 4% for SGCD, and performance does not drop as we add
more lemmas: even at 500 we see no negative effect of the expanded search space.

Table 4. Number of problems solved by Vampire (casc) and SGCD as we alter the
number k of supplemented lemmas. We use a time limit of 100 s.

Vampire SGCD
Lemma count 10 25 50 100 200 500 10 25 50 100 200 500

Base 227 227 227 227 227 227 275 275 275 275 275 275
Lemmas 226 242 246 258 257 258 278 285 284 281 283 284
Total 231 243 247 258 257 258 282 285 284 283 284 285

166 M. Rawson et al.

Linear vs GNN Model. The preceding experiments suggest that even a simple
linear model can provide useful guidance when features are carefully selected.
Table 5 shows that the GNN—which processes the formulas directly and has
no access to expert designed features—also successfully learns to identify useful
lemmas for SGCD and even slightly surpasses the linear model. LCL125-1 can
only be solved by the GNN-assisted prover, even at extremely large time limits.

Table 5. Number of problems solved by SGCD over 2 iterations of training both a
linear and a graph neural network model, for time limits 50 s, 100 s, 500 s and 30 min.

Linear GNN
Time 50 s 100 s 500 s 30m 50 s 100 s 500 s 30m

Base 266 275 285 285 266 275 285 285
Iter 1 280 282 284 281 272 282 283 284
Iter 2 281 283 281 283 279 282 282 284
Total 282 284 286 286 279 285 287 287

3.2 Discussion of Learning-Based Experiments

When enhanced by learning-based lemma selection, SGCD solves 287 of the 312
problems. These include 28 problems not solved by the leading first-order prover
Vampire [29], which solves 263 problems in its CASC [63] portfolio mode. Supple-
mented with our lemmas, Vampire is boosted to 284 solved problems. In combina-
tion, boosted SGCD and Vampire give 293 solved problems. Taking into account
the solutions obtained by further provers with our lemmas, we obtain a total of
297. For detailed results see [54, App. E] and http://cs.christophwernhard.com/
cdtools/exp-lemmas/lemmas.html.

A notable observation is that all systems—with the exception of E—improve
when provided with selected lemmas. We argue that our framework addresses
fundamental weaknesses of both purely goal-driven systems such as CMProver,
leanCoP and CCS-Vanilla, as well as those of saturation style systems such as
Vampire and E. For the former, it is their inability to generate lemmas, which
results in unduly long proofs. For the latter, it is their unrestricted expansion
of the branching of the search space. We find that goal-driven systems demon-
strate huge improvement when lemmas are added: usually 20–40% depending on
the configuration. The improvement is much more modest for saturation style
systems, partly because their baselines are already stronger and partly because
learned lemma selection still has a large room for improvement. This is the focus
of our immediate future work. SGCD already provides a balance between goal-
driven search and axiom-driven lemma generation and we only see significant
improvement from lemmas when the time limit on proof search is smaller. Our
manual feature-based linear model allows for exploiting expert knowledge. How-
ever, we see more potential in automated feature extraction via GNNs. The fact

http://cs.christophwernhard.com/cdtools/exp-lemmas/lemmas.html
http://cs.christophwernhard.com/cdtools/exp-lemmas/lemmas.html

Lemmas: Generation, Selection, Application 167

that the two models perform similarly suggests that we are not providing enough
training data for the GNN to manifest its full capabilities.

4 Proving LCL073-1

LCL073-1 was proven by Meredith in the early 1950s with substitution and
detachment [42] but it remains outstandingly hard for ATP, where it came to
attention in 1992 [40]; TPTP reports rating 1.0 and status Unknown since 1997.
Only Wos proved it in the year 2000 with several invocations of OTTER [84],
transferring output and insight between runs. The problem has a single axiom,

P(i(i(i(i(i(x, y), i(n(z), n(u))), z), v), i(i(v, x), i(u, x)))),

and the goal P(i(i(a, b), i(i(b, c), i(a, c)))), known as Syll [66]. The wider context
is showing that a single axiom entails the elements of a known axiomatization of
a propositional logic. Experiments with SGCD in our workflow led to a proof of
LCL073-1 (Fig. 2, also [54, App. F]) surprisingly quickly. Its compacted size is 46,
between that of Meredith (40, reconstructed with CD in [84]) and that of Wos
(74). Our workflow is much simpler than Wos’, basically the same as our other
experiments but restricted to one phase of lemma generation and incorporation,
with only heuristic lemma selection, no learning. Nevertheless, success is fragile
with respect to configuration, where reasons for failure or success are not obvious.

Fig. 2. The D-term of our proof of LCL073-1 represented by factor equations.

Our configuration parameters are not problem specific, although we started
out with lemma generation by PSP-level because it led earlier to a short proof of
LCL038-1 [74,76]. We first call SGCD to generate lemmas by PSP-level enumera-
tion, configured with a cache size of 5,000, terminating after 60 s with exhaustion
of the search space.8 Lemma features are computed for the 98,198 generated
lemmas and written to disk, taking another 120 s. Lemmas are then ordered
lexicographically according to five features relating to sharing of symbols and
subterms with the goal, and to formula dimensions, taking a further 70 s. These
five features are lf_h_height, lf_h_excluded_goal_subterms, lf_h_tsize,
lf_h_distinct_vars, dcterm_hash, see [54, App. A] for their specification. We
now call SGCD again, configured such that it performs PSP-level enumeration
for axiom-driven phases, interleaved with level enumeration by height for goal-
driven phases with 0 as preAddMaxLevel . It incorporates the first 2,900 ordered

8 Notebook hardware, IntelR© CoreTM i7-1260P processor, 32 GB RAM.

168 M. Rawson et al.

lemmas9 as input by replacement (Sect. 2). The cache size limit is set to 1,500,
a value used in other generally successful configurations. Formulas occurring as
subformulas of an earlier-proven formula are excluded, a variation of the organic
property [37,76]. The proof is then found in 20 s, total time elapsed about 270 s.

The D-term dimensions 〈compacted size, tree size, height〉 are 〈46, 3276, 40〉,
compared to Meredith’s 〈40, 6172, 30〉10 and Wos’ 〈74, 9207, 48〉. The maximal
size (occurrences of non-constant function symbols) of a lemma formula (MGT of
a subproof) in the proof is 19, the maximal height (tree height, disregarding the
predicate symbol) 9, and the maximal number of variables 7. Of the 46 lemmas
in the proof 12 are present in the 2,900 input lemmas. Among the 46 lemma for-
mulas 35 are weakly organic [76] and 4 involve double negation. N-simplification
[76] applies to 65 occurrences but does not effect a size reduction. The proof
is S- and C-regular [76]. Certain configurations of SGCD for the proving phase
also yield further proofs. In experiments so far, these are enumerated after the
presented proof and have larger compacted size.

Proof structure enumeration by PSP-level [76] is the main key to finding
our proof of LCL073-1. It is used for lemma generation and for axiom-driven
proof search, whereas goal-driven phases use height instead. The structure of
the proof reflects this: all steps with the exception of the root can be considered
PSP steps, i.e. one premise is a subproof of the other. The particular challenge
of the problem lies in the fact that it was solved by a human (Meredith). Unlike
in recent ATP successes for Boolos’ curious inference [5,10], where the key is two
particular second-order lemmas, the key here is a proof-structural principle for
building-up proofs by lemmas. Intuitively it might express a form of economy,
building proofs from proofs at hand, that belonged to Meredith’s repertoire.

5 Conclusion

We presented encouraging results about the use of lemmas in proof search.
Provers are provided with lemmas generated via structure enumeration, a feature
of the CM, and filtered with either learned guidance or manual heuristics. As a
first step with this new methodology, we focus on the class of CD problems where
we obtained strong results with our own system and substantial improvement of
general first-order provers based on different paradigms, including the long-time
competition leader Vampire. Moreover, our approach has led to the—in a sense
first—automatic proof for the well-known Meredith single axiom problem with
TPTP difficulty rating 1.0.

An important and novel aspect in our work was the explicit consideration of
proof structures, which for CD have a particularly simple form in D-terms. Proof
structures of the CM have a direct correspondence to these [76], such that the
9 2,900 is one of the fragile parameters. Depending on features chosen for ordering

lemmas, there are ranges around 3,000 where the problem is solved.
10 The length reported in [84] is the compacted size if also the proofs of the two other

goals required to prove completeness of the single axiom are considered. The notion
of compacted size straightforwardly generalizes from trees to sets of trees [76].

Lemmas: Generation, Selection, Application 169

CM may guide the way to generalizations for more expressive logics. Another
course of generalization is to move from unit lemmas, i.e. sharing of subtrees of
D-terms, to more powerful lemmas. Preliminary work shows a correspondence
between Horn clause lemmas, D-terms with variables, proofs in the connection
structure calculus [15], and combinatory compression [73].

The learning-based experiments show little difference in performance between
using a simple linear model and a more sophisticated graph neural network. We
believe this is due to the small problem corpus, which yields a limited training
signal. Hence, we plan to scale the system up to larger problem sets.

Our work also sheds new light on perspectives for the CM. It is well-known
that the lack of inherent lemma maintenance is a disadvantage of the CM com-
pared to resolution, which can be overcome with the connection structure cal-
culus [15], a generalization of the CM. Here we see in experiments a drastic
improvement of the CM-CT provers by supplementing their input with exter-
nally generated lemmas. SGCD, which grew out of the CM-CT approach and
integrates repeated lemma generation into the proving process, keeps up with
RS provers on CD problems, and can even be applied to improve these by sup-
plying its lemmas as additional input.

Acknowledgments. We thank Jens Otten for inspiring discussions at the outset of
the current project and anonymous reviewers for helpful suggestions to improve the
presentation. The Hungarian Artificial Intelligence National Laboratory (RRF-2.3.1-
21-2022-00004) and the ELTE TKP 2021-NKTA-62 funding scheme.

References

1. Alemi, A.A., Chollet, F., Een, N., Irving, G., Szegedy, C., Urban, J.: DeepMath –
deep sequence models for premise selection. In: Lee, D., et al. (eds.) NIPS 2016,
pp. 2243–2251. Curran Associates Inc., USA (2016). http://dl.acm.org/citation.
cfm?id=3157096.3157347

2. Astrachan, O.L., Stickel, M.E.: Caching and lemmaizing in model elimination the-
orem provers. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 224–238.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55602-8_168

3. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, chap. 2, pp. 19–99.
Elsevier (2001). https://doi.org/10.1016/B978-044450813-3/50004-7

4. Baumgartner, P., Furbach, U., Niemelä, I.: Hyper tableaux. In: Alferes, J.J.,
Pereira, L.M., Orlowska, E. (eds.) JELIA 1996. LNCS, vol. 1126, pp. 1–17. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61630-6_1

5. Benzmüller, C., Fuenmayor, D., Steen, A., Sutcliffe, G.: Who finds the short proof?
Logic J. IGPL (2023). https://doi.org/10.1093/jigpal/jzac082

6. Bibel, W.: Automated Theorem Proving, 2nd edn. Vieweg, Braunschweig (1987).
First edition 1982. https://doi.org/10.1007/978-3-322-90102-6

7. Bibel, W.: Deduction: Automated Logic. Academic Press, Cambridge (1993)
8. Bibel, W., Otten, J.: From Schütte’s formal systems to modern automated deduc-

tion. In: The Legacy of Kurt Schütte, pp. 217–251. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-49424-7_13

http://dl.acm.org/citation.cfm?id=3157096.3157347
http://dl.acm.org/citation.cfm?id=3157096.3157347
https://doi.org/10.1007/3-540-55602-8_168
https://doi.org/10.1016/B978-044450813-3/50004-7
https://doi.org/10.1007/3-540-61630-6_1
https://doi.org/10.1093/jigpal/jzac082
https://doi.org/10.1007/978-3-322-90102-6
https://doi.org/10.1007/978-3-030-49424-7_13
https://doi.org/10.1007/978-3-030-49424-7_13

170 M. Rawson et al.

9. Bonacina, M.P.: A taxonomy of theorem-proving strategies. In: Wooldridge, M.J.,
Veloso, M. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 43–84.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48317-9_3

10. Boolos, G.: A curious inference. J. Philos. Logic 16, 1–12 (1987). https://doi.org/
10.1007/BF00250612

11. Bridge, J.P., Holden, S.B., Paulson, L.C.: Machine learning for first-order theo-
rem proving. J. Autom. Reason. 53(2), 141–172 (2014). https://doi.org/10.1007/
s10817-014-9301-5

12. Dahn, I., Wernhard, C.: First order proof problems extracted from an article in the
Mizar mathematical library. In: Bonacina, M.P., Furbach, U. (eds.) FTP 1997, pp.
58–62. RISC-Linz Report Series No. 97-50, Joh. Kepler Univ. Linz (1997). https://
www.logic.at/ftp97/papers/dahn.pdf

13. Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT – a distributed and learning
equational prover. J. Autom. Reason. 18(2), 189–198 (1997). https://doi.org/10.
1023/A:1005879229581

14. Ebner, G., Hetzl, S., Leitsch, A., Reis, G., Weller, D.: On the generation of quan-
tified lemmas. J. Autom. Reason. 63(1), 95–126 (2018). https://doi.org/10.1007/
s10817-018-9462-8

15. Eder, E.: A comparison of the resolution calculus and the connection method, and
a new calculus generalizing both methods. In: Börger, E., Büning, H.K., Richter,
M.M. (eds.) CSL 1988. LNCS, vol. 385, pp. 80–98. Springer, Heidelberg (1989).
https://doi.org/10.1007/BFb0026296

16. Fitelson, B., Wos, L.: Missing proofs found. J. Autom. Reason. 27(2), 201–225
(2001). https://doi.org/10.1023/A:1010695827789

17. Fuchs, M.: Lemma generation for model elimination by combining top-down and
bottom-up inference. In: Dean, T. (ed.) IJCAI 1999, pp. 4–9. Morgan Kaufmann
(1999). http://ijcai.org/Proceedings/99-1/Papers/001.pdf

18. Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: Learning to prove
with tactics. CoRR abs/1804.00596 (2018). https://doi.org/10.48550/arXiv.1804.
00596

19. Hester, J.: Novel methods for first order automated theorem proving. Ph.D. thesis,
University of Florida (2021)

20. Hetzl, S., Leitsch, A., Weller, D.: Towards algorithmic cut-introduction. In:
Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 228–242.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-6_19

21. Hähnle, R.: Tableaux and related methods. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 1, chap. 3, pp. 101–178. Elsevier (2001).
https://doi.org/10.1016/b978-044450813-3/50005-9

22. Hindley, J.R.: Basic Simple Type Theory. Cambridge University Press, Cambridge
(1997). https://doi.org/10.1017/CBO9780511608865

23. Hindley, J.R., Meredith, D.: Principal type-schemes and condensed detachment. J.
Symbolic Logic 55(1), 90–105 (1990). https://doi.org/10.2307/2274956

24. Holden, S.B.: Machine learning for automated theorem proving: learning to solve
SAT and QSAT. Found. Trends R© Mach. Learn. 14(6), 807–989 (2021). https://
doi.org/10.1561/2200000081

25. Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6_20

26. Kaliszyk, C., Urban, J.: Learning-assisted theorem proving with millions of lemmas.
J. Symb. Comput. 69, 109–128 (2015). https://doi.org/10.1016/j.jsc.2014.09.032

https://doi.org/10.1007/3-540-48317-9_3
https://doi.org/10.1007/BF00250612
https://doi.org/10.1007/BF00250612
https://doi.org/10.1007/s10817-014-9301-5
https://doi.org/10.1007/s10817-014-9301-5
https://www.logic.at/ftp97/papers/dahn.pdf
https://www.logic.at/ftp97/papers/dahn.pdf
https://doi.org/10.1023/A:1005879229581
https://doi.org/10.1023/A:1005879229581
https://doi.org/10.1007/s10817-018-9462-8
https://doi.org/10.1007/s10817-018-9462-8
https://doi.org/10.1007/BFb0026296
https://doi.org/10.1023/A:1010695827789
http://ijcai.org/Proceedings/99-1/Papers/001.pdf
https://doi.org/10.48550/arXiv.1804.00596
https://doi.org/10.48550/arXiv.1804.00596
https://doi.org/10.1007/978-3-642-28717-6_19
https://doi.org/10.1016/b978-044450813-3/50005-9
https://doi.org/10.1017/CBO9780511608865
https://doi.org/10.2307/2274956
https://doi.org/10.1561/2200000081
https://doi.org/10.1561/2200000081
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.1016/j.jsc.2014.09.032

Lemmas: Generation, Selection, Application 171

27. Kaliszyk, C., Urban, J., Michalewski, H., Olsák, M.: Reinforcement learning of
theorem proving. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., Garnett, R. (eds.) NeurIPS 2018, pp. 8836–8847 (2018). https://
papers.nips.cc/paper/2018/file/55acf8539596d25624059980986aaa78-Paper.pdf

28. Kaliszyk, C., Urban, J., Vyskočil, J.: Lemmatization for stronger reasoning in large
theories. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp.
341–356. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24246-0_21

29. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

30. Lemmon, E.J., Meredith, C.A., Meredith, D., Prior, A.N., Thomas, I.: Calculi
of pure strict implication. In: Davis, J.W., Hockney, D.J., Wilson, W.K. (eds.)
Philosophical Logic, pp. 215–250. Springer, Dordrecht (1969). https://doi.org/10.
1007/978-94-010-9614-0_17. Reprint of a technical report, Canterbury University
College, Christchurch (1957)

31. Letz, R.: Tableau and Connection Calculi. Structure, Complexity, Implementation.
Habilitationsschrift, TU München (1999). http://www2.tcs.ifi.lmu.de/~letz/habil.
ps. Accessed 19 July 2023

32. Letz, R., Mayr, K., Goller, C.: Controlled integration of the cut rule into connection
tableaux calculi. J. Autom. Reason. 13(3), 297–337 (1994). https://doi.org/10.
1007/BF00881947

33. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: SETHEO: a high-performance the-
orem prover. J. Autom. Reason. 8(2), 183–212 (1992). https://doi.org/10.1007/
BF00244282

34. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: Eiter, T., Sands, D. (eds.) LPAR-21. EPiC, vol. 56, pp. 85–105 (2017). https://
doi.org/10.29007/8mwc

35. Loveland, D.W.: Automated Theorem Proving: A Logical Basis. North-Holland,
Amsterdam (1978)

36. Łukasiewicz, J.: Selected Works. North Holland (1970). Edited by L. Borkowski
37. Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes

rendus des séances de la Soc. d. Sciences et d. Lettres de Varsovie 23 (1930).
English translation in [36], pp. 131–152

38. McCune, W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/~mccune/
prover9

39. McCune, W.: OTTER 3.3 reference manual. Technical report, ANL/MCS-TM-263,
Argonne National Laboratory (2003). https://www.cs.unm.edu/~mccune/otter/
Otter33.pdf. Accessed 19 July 2023

40. McCune, W., Wos, L.: Experiments in automated deduction with condensed
detachment. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 209–223.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55602-8_167

41. Meredith, C.A., Prior, A.N.: Notes on the axiomatics of the propositional calculus.
Notre Dame J. Formal Logic 4(3), 171–187 (1963). https://doi.org/10.1305/ndjfl/
1093957574

42. Meredith, C.A.: Single axioms for the systems (C, N), (C, O) and (A, N) of the
two-valued propositional calculus. J. Comput. Syst. 1, 155–164 (1953)

43. Meredith, D.: In memoriam: Carew Arthur Meredith (1904–1976). Notre Dame J.
Formal Logic 18(4), 513–516 (1977). https://doi.org/10.1305/ndjfl/1093888116

44. OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences (2021).
http://oeis.org

https://papers.nips.cc/paper/2018/file/55acf8539596d25624059980986aaa78-Paper.pdf
https://papers.nips.cc/paper/2018/file/55acf8539596d25624059980986aaa78-Paper.pdf
https://doi.org/10.1007/978-3-319-24246-0_21
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1007/978-94-010-9614-0_17
https://doi.org/10.1007/978-94-010-9614-0_17
http://www2.tcs.ifi.lmu.de/~letz/habil.ps
http://www2.tcs.ifi.lmu.de/~letz/habil.ps
https://doi.org/10.1007/BF00881947
https://doi.org/10.1007/BF00881947
https://doi.org/10.1007/BF00244282
https://doi.org/10.1007/BF00244282
https://doi.org/10.29007/8mwc
https://doi.org/10.29007/8mwc
http://www.cs.unm.edu/~mccune/prover9
http://www.cs.unm.edu/~mccune/prover9
https://www.cs.unm.edu/~mccune/otter/Otter33.pdf
https://www.cs.unm.edu/~mccune/otter/Otter33.pdf
https://doi.org/10.1007/3-540-55602-8_167
https://doi.org/10.1305/ndjfl/1093957574
https://doi.org/10.1305/ndjfl/1093957574
https://doi.org/10.1305/ndjfl/1093888116
http://oeis.org

172 M. Rawson et al.

45. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3),
159–182 (2010). https://doi.org/10.3233/AIC-2010-0464

46. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb.
Comput. 36(1–2), 139–161 (2003). https://doi.org/10.1016/S0747-7171(03)00037-
3

47. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learn-
ing library. In: Advances in Neural Information Processing Systems, vol. 32, pp.
8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

48. Piotrowski, B., Urban, J.: Guiding inferences in connection tableau by recurrent
neural networks. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI),
vol. 12236, pp. 309–314. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-53518-6_23

49. Polu, S., Sutskever, I.: Generative language modeling for automated theorem prov-
ing. CoRR abs/2009.03393 (2020). https://doi.org/10.48550/arXiv.2009.03393

50. Prior, A.N.: Logicians at play; or Syll, Simp and Hilbert. Australas. J. Philos.
34(3), 182–192 (1956). https://doi.org/10.1080/00048405685200181

51. Prior, A.N.: Formal Logic, 2nd edn. Clarendon Press, Oxford (1962). https://doi.
org/10.1093/acprof:oso/9780198241560.001.0001

52. Pudlák, P.: Search for faster and shorter proofs using machine generated lemmas.
In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR 2006. CEUR Workshop
Proceeding, vol. 192, pp. 34–53. CEUR-WS.org (2006). http://ceur-ws.org/Vol-
192/paper03.pdf

53. Rawson, M., Reger, G.: lazyCoP: lazy paramodulation meets neurally guided
search. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842,
pp. 187–199. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86059-
2_11

54. Rawson, M., Wernhard, C., Zombori, Z., Bibel, W.: Lemmas: generation, selection,
application. CoRR abs/2303.05854 (2023). https://doi.org/10.48550/arXiv.2303.
05854

55. Reger, G., Tishkovsky, D., Voronkov, A.: Cooperating proof attempts. In: Felty,
A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 339–355.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_23

56. Rezuş, A.: Tarski’s Claim thirty years later. In: Witness Theory - Notes on λ-
calculus and Logic, Studies in Logic, vol. 84, pp. 217–225. College Publications
(2020). Preprint (2016). http://www.equivalences.org/editions/proof-theory/ar-
tc-20160512.pdf

57. Rezuş, A.: Witness Theory - Notes on λ-calculus and Logic. Studies in Logic, vol.
84. College Publications (2020)

58. Sanchez-Lengeling, B., Reif, E., Pearce, A., Wiltschko, A.B.: A gentle introduction
to graph neural networks. Distill (2021). https://doi.org/10.23915/distill.00033

59. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6_29

60. Schumann, J.M.P.: DELTA — a bottom-up preprocessor for top-down theorem
provers. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 774–777. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-58156-1_58

61. Stickel, M.E.: A Prolog technology theorem prover: implementation by an extended
Prolog compiler. J. Autom. Reason. 4(4), 353–380 (1988). https://doi.org/10.1007/
BF00297245

https://doi.org/10.3233/AIC-2010-0464
https://doi.org/10.1016/S0747-7171(03)00037-3
https://doi.org/10.1016/S0747-7171(03)00037-3
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/978-3-030-53518-6_23
https://doi.org/10.1007/978-3-030-53518-6_23
https://doi.org/10.48550/arXiv.2009.03393
https://doi.org/10.1080/00048405685200181
https://doi.org/10.1093/acprof:oso/9780198241560.001.0001
https://doi.org/10.1093/acprof:oso/9780198241560.001.0001
http://ceur-ws.org/Vol-192/paper03.pdf
http://ceur-ws.org/Vol-192/paper03.pdf
https://doi.org/10.1007/978-3-030-86059-2_11
https://doi.org/10.1007/978-3-030-86059-2_11
https://doi.org/10.48550/arXiv.2303.05854
https://doi.org/10.48550/arXiv.2303.05854
https://doi.org/10.1007/978-3-319-21401-6_23
http://www.equivalences.org/editions/proof-theory/ar-tc-20160512.pdf
http://www.equivalences.org/editions/proof-theory/ar-tc-20160512.pdf
https://doi.org/10.23915/distill.00033
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/3-540-58156-1_58
https://doi.org/10.1007/BF00297245
https://doi.org/10.1007/BF00297245

Lemmas: Generation, Selection, Application 173

62. Stickel, M.E.: Upside-down meta-interpretation of the model elimination theorem-
proving procedure for deduction and abduction. J. Autom. Reason. 13(2), 189–210
(1994). https://doi.org/10.1007/BF00881955

63. Sutcliffe, G.: The CADE ATP system competition – CASC. AI Mag. 37(2), 99–101
(2016)

64. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 59(4), 483–502 (2017). https://doi.org/10.1007/s10817-017-9407-7

65. Sutcliffe, G., Gao, Y., Colton, S.: A grand challenge of theorem discovery.
In: Worksh. Challenges and Novel Applications for Automated Reasoning,
19th IJCAR, pp. 1–11 (2003). https://www.cs.miami.edu/home/geoff/Papers/
Conference/2003_SGC03_CNAAR-1-11.pdf

66. Ulrich, D.: A legacy recalled and a tradition continued. J. Autom. Reason. 27(2),
97–122 (2001). https://doi.org/10.1023/A:1010683508225

67. Urban, J., Jakubův, J.: First neural conjecturing datasets and experiments. In:
Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 315–
323. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_24

68. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner
for automated reasoning with semantic guidance. In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_37

69. Veroff, R.: Finding shortest proofs: an application of linked inference rules. J.
Autom. Reason. 27(2), 123–139 (2001). https://doi.org/10.1023/A:1010635625063

70. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving
by deep graph embedding. In: Guyon, I., et al. (eds.) NIPS 2017, pp. 2783–2793
(2017). http://papers.nips.cc/paper/6871-premise-selection-for-theorem-proving-
by-deep-graph-embedding

71. Wernhard, C.: The PIE system for proving, interpolating and eliminating. In:
Fontaine, P., Schulz, S., Urban, J. (eds.) PAAR 2016. CEUR Workshop Proceed-
ings, vol. 1635, pp. 125–138. CEUR-WS.org (2016). http://ceur-ws.org/Vol-1635/
paper-11.pdf

72. Wernhard, C.: Facets of the PIE environment for proving, interpolating and elimi-
nating on the basis of first-order logic. In: Hofstedt, P., Abreu, S., John, U., Kuchen,
H., Seipel, D. (eds.) INAP/WLP/WFLP -2019. LNCS (LNAI), vol. 12057, pp. 160–
177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46714-2_11

73. Wernhard, C.: Generating compressed combinatory proof structures – an approach
to automated first-order theorem proving. In: Konev, B., Schon, C., Steen, A.
(eds.) PAAR 2022. CEUR Workshop Proceedings, vol. 3201. CEUR-WS.org (2022).
https://arxiv.org/abs/2209.12592

74. Wernhard, C.: CD Tools – Condensed detachment and structure generating theo-
rem proving (system description). CoRR abs/2207.08453 (2023). https://doi.org/
10.48550/arXiv.2207.08453

75. Wernhard, C., Bibel, W.: Learning from Łukasiewicz and Meredith: investiga-
tions into proof structures. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS
(LNAI), vol. 12699, pp. 58–75. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-79876-5_4

76. Wernhard, C., Bibel, W.: Investigations into proof structures. CoRR
abs/2304.12827 (2023, submitted). https://doi.org/10.48550/arXiv.2304.12827

77. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. The-
ory Pract. Logic Program. 12(1–2), 67–96 (2012). https://doi.org/10.1017/
S1471068411000494

https://doi.org/10.1007/BF00881955
https://doi.org/10.1007/s10817-017-9407-7
https://www.cs.miami.edu/home/geoff/Papers/Conference/2003_SGC03_CNAAR-1-11.pdf
https://www.cs.miami.edu/home/geoff/Papers/Conference/2003_SGC03_CNAAR-1-11.pdf
https://doi.org/10.1023/A:1010683508225
https://doi.org/10.1007/978-3-030-53518-6_24
https://doi.org/10.1007/978-3-540-71070-7_37
https://doi.org/10.1023/A:1010635625063
http://papers.nips.cc/paper/6871-premise-selection-for-theorem-proving-by-deep-graph-embedding
http://papers.nips.cc/paper/6871-premise-selection-for-theorem-proving-by-deep-graph-embedding
http://ceur-ws.org/Vol-1635/paper-11.pdf
http://ceur-ws.org/Vol-1635/paper-11.pdf
https://doi.org/10.1007/978-3-030-46714-2_11
https://arxiv.org/abs/2209.12592
https://doi.org/10.48550/arXiv.2207.08453
https://doi.org/10.48550/arXiv.2207.08453
https://doi.org/10.1007/978-3-030-79876-5_4
https://doi.org/10.1007/978-3-030-79876-5_4
https://doi.org/10.48550/arXiv.2304.12827
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1017/S1471068411000494

174 M. Rawson et al.

78. Woltzenlogel Paleo, B.: Atomic cut introduction by resolution: proof structuring
and compression. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI),
vol. 6355, pp. 463–480. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17511-4_26

79. Wos, L., et al.: Automated reasoning contributes to mathematics and logic. In:
Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 485–499. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-52885-7_109

80. Wos, L.: Automated reasoning and Bledsoe’s dream for the field. In: Boyer, R.S.
(ed.) Automated Reasoning: Essays in Honor of Woody Bledsoe, pp. 297–345.
Automated Reasoning Series, Kluwer Academic Publishers (1991). https://doi.
org/10.1007/978-94-011-3488-0_15

81. Wos, L.: The resonance strategy. Comput. Math. Appl. 29(2), 133–178 (1995).
https://doi.org/10.1016/0898-1221(94)00220-F

82. Wos, L.: The power of combining resonance with heat. J. Autom. Reason. 17(1),
23–81 (1996). https://doi.org/10.1007/BF00247668

83. Wos, L.: Lemma inclusion versus lemma adjunction. Assoc. Autom. Reason.
Newsl. 44 (1999). https://aarinc.org/Newsletters/044-1999-09.html. Accessed 19
July 2023

84. Wos, L.: Conquering the Meredith single axiom. J. Autom. Reason. 27(2), 175–199
(2001). https://doi.org/10.1023/A:1010691726881

85. Zombori, Z., Urban, J., Brown, C.E.: Prolog technology reinforcement learning
prover. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 489–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1_33

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-17511-4_26
https://doi.org/10.1007/978-3-642-17511-4_26
https://doi.org/10.1007/3-540-52885-7_109
https://doi.org/10.1007/978-94-011-3488-0_15
https://doi.org/10.1007/978-94-011-3488-0_15
https://doi.org/10.1016/0898-1221(94)00220-F
https://doi.org/10.1007/BF00247668
https://aarinc.org/Newsletters/044-1999-09.html
https://doi.org/10.1023/A:1010691726881
https://doi.org/10.1007/978-3-030-51054-1_33
https://doi.org/10.1007/978-3-030-51054-1_33
http://creativecommons.org/licenses/by/4.0/

Machine-Learned Premise Selection
for Lean

Bartosz Piotrowski1(B), Ramon Fernández Mir2, and Edward Ayers3

1 University of Warsaw and Czech Technical University, Warsaw, Poland
bartoszpiotrowski@post.pl

2 University of Edinburgh, Edinburgh, Scotland
3 Carnegie Mellon University, Pittsburgh, USA

Abstract. We introduce a machine-learning-based tool for the Lean
proof assistant that suggests relevant premises for theorems being proved
by a user. The design principles for the tool are (1) tight integration with
the proof assistant, (2) ease of use and installation, (3) a lightweight and
fast approach. For this purpose, we designed a custom version of the ran-
dom forest model, trained in an online fashion. It is implemented directly
in Lean, which was possible thanks to the rich and efficient metaprogram-
ming features of Lean 4. The random forest is trained on data extracted
from mathlib – Lean’s mathematics library. We experiment with various
options for producing training features and labels. The advice from a
trained model is accessible to the user via the suggest_premises tactic
which can be called in an editor while constructing a proof interactively.

Keywords: premise selection · machine learning · Lean proof assistant

1 Introduction

Formalizing mathematics in proof assistants is an ambitious and hard under-
taking. One of the major challenges in constructing formal proofs of theorems
depending on multiple other results is the prerequisite of having a good familiar-
ity with the structure and contents of the library. Tools for helping users search
through formal libraries are currently limited.

In the case of the Lean proof assistant [13], users may look for relevant lemmas
in its formal library, mathlib [5], either by (1) using general textual search tools
and keywords, (2) browsing the related source files manually, (3) using mathlib’s
suggest or library_search tactics.

Approaches (1) and (2) are often slow and tedious. The limitation of approach
(3) is the fact that suggest or library_search propose lemmas that strictly match
the goal at the current proof state. This is often very useful, but it also means
that these tactics often fail to direct the user to relevant lemmas that do not

The results were supported by the Hoskinson Center for Formal Mathematics (BP,
RFM, EA), the Kościuszko Foundation (BP), and the Principal’s Career Development
Scholarship of the University of Edinburgh (RFM).
c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 175–186, 2023.
https://doi.org/10.1007/978-3-031-43513-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_10&domain=pdf
https://doi.org/10.1007/978-3-031-43513-3_10

176 B. Piotrowski et al.

match the current goal exactly. They may also suggest too many trivial lemmas
if the goal is simple.

The aim of this project is to make progress towards improving the situation
of a Lean user looking for relevant lemmas while building proofs. We develop a
new tool that efficiently computes a ranking of potentially useful lemmas selected
by a machine learning (ML) model trained on data extracted from mathlib. This
ranking can be accessed and used interactively via the suggest_premises tactic.

The project described here belongs to the already quite broad body of work
dealing with the problem of fact selection for theorem proving [1,7,9,11,12,15,
16]. This problem, commonly referred to as the premise selection problem, is
crucial when performing automated reasoning in large formal libraries – both
in the context of automated (ATP) and interactive (ITP) theorem proving, and
regardless of the underlying logical calculus. Most of the existing work on premise
selection focuses on the ATP context. Our main contribution is the development
of a premise selection tool that is practically usable in a proof assistant (Lean
in that case), tightly integrated with it, lightweight, extendable, and equipped
with a convenient interface. The tool is available in a public GitHub repository:
https://github.com/BartoszPiotrowski/lean-premise-selection.

2 Dataset Collection

A crucial requirement of a useful ML model is a high-quality dataset of training
examples. It should represent the learning task well and be suitable for the ML
architecture being applied.

In this work, we use simple ML architectures that cannot process raw theorem
statements and require featurization as a preprocessing step. The features need
to be meaningful yet simple so that the model can use them appropriately.
Our approach is described in Sect. 2.1. The notion of relevant premise may be
understood differently depending on the context. In Sect. 2.2, we describe the
different specifications of this notion that we used in our experiments.

The tool developed in this work is implemented and meant to be used in
Lean 4 together with mathlib 4. However, since, at the time of writing, Lean 4’s
version of the library is still being ported from Lean 3, we use mathlib3port1 as
our main data source.

2.1 Features

The features, similar to those used in [8,15], consist of the symbols used in the
theorem statement with different degrees of structure. In particular, three types
of features are used: names, bigrams and trigrams.

As an illustration, take this theorem about groups with zero:

theorem div_ne_zero (ha : a �= 0) (hb : b �= 0) : a / b �= 0 := . . .

This statement comes from one of the source files of mathlib. When producing
the features for it, we do not use it directly as printed above but rather we take

1 https://github.com/leanprover-community/mathlib3port (commit f4e5dfe).

https://github.com/BartoszPiotrowski/lean-premise-selection
https://github.com/leanprover-community/mathlib3port

Machine-Learned Premise Selection for Lean 177

its elaborated counterpart – a much more detailed version where all the hidden
assumptions are made explicit by the Lean’s elaborator so that the expression
precisely conforms to Lean’s dependent type theory.

The most basic form of featurization is the bag-of-words model, where we
simply collect all the names (and numerical constants) involved in the theorem.

Following this definition, we obtain names �= , 0, and /, which are visible in the
source version of the statement,2 plus many more hidden names only appearing
in the elaborated expression, e.g., OfNat.ofNat that is related to interpreting
numerical literals as natural numbers.

During the featurization we distinguish features coming from the conclu-
sion and the hypotheses (assumptions) of the theorem, and we mark them by
prepending either T or H, respectively.

For our running example of theorem div_ne_zero, all this results in the list
of names that looks as follows:

H:OfNat.ofNat H:MonoidWithZero.toZero H:0 H:Ne T:HDiv.hDiv T:0 T:Ne . . .

It would be desirable, however, to keep track of which symbols appear next
to each other in the syntactic trees of the theorem hypotheses and its statement.
Thus, we extract bigrams that are formed by the head symbol and each of its
arguments (separated by / below).

H:Ne/OfNat.ofNat H:OfNat.ofNat/0 T:OfNat.ofNat/0 T:Ne/OfNat.ofNat . . .

Similarly, we also consider trigrams, taking all paths of length 3 from the
syntactic tree of the expression.

H:Ne/OfNat.ofNat/0 H:Ne/OfNat.ofNat/Zero.toOfNat0 . . .

2.2 Relevant Premises

To obtain the list of all the premises used in a proof of a given theorem it suffices
to traverse the theorem’s proof term3 and keep track of all the constants whose
type is a proposition. For instance, the raw list of premises that appear in the
proof of div_ne_zero is:

GroupWithZero.noZeroDivisors
div_eq_mul_inv
mul_ne_zero
inv_ne_zero
Eq.refl

For more complicated examples, this approach results in a large number of
premises including lemmas used implicitly by tactics (for instance, those picked
by the ‘simplify’ tactic simp), or simple facts that a user would rarely write
2 In fact, we use translations of these symbols from the elaborated counterpart of the

theorem; so, for instance, we use Ne instead of the notation �=, etc.
3 A proof term is an internal Lean expression whose type is the theorem, constructed

based on the proof written by a user, possibly using tactics.

178 B. Piotrowski et al.

Table 1. Filters’ statistics. An example is a theorem with a non-empty list of premises.
Because applying the source or math filter may result in an empty set of premises, the
numbers of obtained training examples differ across the filters.

all source math

Total premises 96 915 28 784 67 462
Total examples 41 755 20 571 40 187
Premises per example 3.12 2.35 2.09

explicitly. Three different filters are applied to mitigate this issue: all, source,
and math. They are described below and their overall effect is shown in Table 1.

1. The all filter preserves almost all premises from the original, raw list, remov-
ing those that were generated automatically by Lean. They contain a leading
underscore in their names, e.g., RingTheory.MatrixAlgebra._auxLemma.1. In
our example, there are no such premises. Examples from this filter are not
appropriate for training an ML advisor for interactive use as the suggestions
would contain many lemmas used implicitly by tactics. Yet, such an advisor
could be used for automated ITP approaches such as hammers [3].

2. The source filter leaves only those premises that appear in the proof’s source
code. The idea is to model the explicit usage of premises by a user. Following
our example, we would take the following proof as a string and list only the
three premises appearing there:

by rw [div_eq_mul_inv]; exact mul_ne_zero ha (inv_ne_zero hb)

3. The math filter preserves only lemmas that are clearly of mathematical nature,
discarding basic, technical ones. The names of all theorems and definitions
from mathlib are extracted and used as a white list. In particular, this means
that many basic lemmas from Lean’s core library (e.g. Eq.refl from our exam-
ple) are filtered out.

In addition to our base datasets containing one data point per theorem, we
also created a dataset (labeled as intermediate) representing intermediate proof
states. In the standard data sets we recorded features of an initial proof state (the
hypotheses and the conclusion of the theorem to be proved) and the premises
used in a full proof. In the intermediate data set we instead record features of
a proof state encountered during constructing a proof, and premises used in the
next proof step only.

To this end, we used LeanInk,4 a helper tool for Alectryon [17] – a toolkit that
aids exploration of tactical proof scripts without running the proof assistant.
Given a Lean file, LeanInk generates all the states that a user might be able
to see in the infoview (a panel in Lean that displays goal states and other
information about the prover’s state) by clicking on the file. The file is split

4 https://github.com/leanprover/LeanInk.

https://github.com/leanprover/LeanInk

Machine-Learned Premise Selection for Lean 179

into fragments, each containing a string of Lean code, represented by a list of
tokens, together with the proof states before and after. In this way, the file can
be loaded statically simulating the effect of running Lean. Furthermore, it can be
configured to keep track of typing information, which is key to detecting which
tokens are premises. We modified LeanInk so that every fragment that appears
inside a proof is treated as its own theorem by our extractor. We gather all the
premises found in the list of tokens and featurize the hypotheses and goals in
the “before” proof state.

This dataset consists of 91 292 examples and 143 165 premises, which gives an
average of around 1.57 premises per example. It represents a more fine-grained
use of the premises, which does not exactly correspond to our main objective of
providing rankings of premises on the level of theorem statements. We treat it
as an auxiliary dataset potentially useful for augmenting our base data sets.

3 Machine Learning Models

The task modelled here with ML is predicting a ranking of likely useful premises
(lemmas and theorems) conditioned by the features of the statement of a theorem
being proved by a user. The nature of this problem is different than common
applications of classical ML: both the number of features and labels (premises) to
predict is large, and the training examples are sparse in the feature space. Thus,
we could not directly rely on traditional implementations of ML algorithms, and
using custom-built versions was necessary. As one of our design requirements was
tight integration with the proof assistant, we implemented the ML algorithms
directly in Lean 4, without needing to call external tools. This also served as a
test for the maturity and efficiency of Lean 4 as a programming language.

In Sects. 3.1 and 3.2 we describe two machine learning algorithms imple-
mented in this work: k-nearest neighbours (k-NN) and random forest.

3.1 k-Nearest Neighbours

This is a classical and conceptually simple ML algorithm [6], which has already
been used multiple times for premise selection [2,9,10]. It belongs to the lazy
learning category, meaning that it does not result in a prediction model trained
beforehand on the dataset, but rather the dataset is an input to the algorithm
while producing the predictions.

Given an unlabeled example, k-NN produces a prediction by extracting the
labels of the k most similar examples in the dataset and returning an averaged
(or most frequent) label. In our case, the labels are lists of premises. We com-
pose multiple labels into a ranking of premises according to the frequency of
appearance in the concatenated labels.

The similarity measure in the feature space calculates how many features
are shared between the two data points, but additionally puts more weight on
those features that are rarer in the whole training dataset D. The formula for

180 B. Piotrowski et al.

the similarity of the two examples x1 and x2 associated with sets of features f1

and f2, respectively, is given below.

M(x1, x2) =

∑
f∈f1∩f2

t(f)
∑

f∈f1
t(f) +

∑
f∈f2

t(f) − ∑
f∈f1∩f2

t(f)
, t(f) = log

(|D|
|Df |

)2

,

where Df are those training examples that contain the feature f .
The advantages of k-NN are its simplicity and the lack of training. A disad-

vantage, however, is the need to traverse the whole training dataset in order to
produce a single prediction (a ranking). This may be slow, and thus not optimal
for interactive usage in proof assistants.

3.2 Random Forest

As an alternative to k-NN, we use random forest [4] – an ML algorithm from the
eager learning category, with a separate training phase resulting in a prediction
model consisting of a collection of decision trees. The leaves of the trees contain
labels, and their nodes contain decision rules based on the features. In our case,
the labels are sets of premises, and the rules are simple tests that check if a given
feature appears in an example.

When predicting, unlabeled examples are passed down the trees to the leaves,
the reached labels are recorded, and the final prediction is averaged across the
trees via voting. The trees are trained in such a way as to avoid correlations
between them, and the averaged prediction from them is of better quality than
the prediction from a single tree.

Our version of random forest, adapted to deal with sparse binary features
and a large number of labels, is similar to the one used in [19], where the task
was to predict the next tactic progressing a proof in Coq proof assistant. There,
the features were also sparse, however, the difference is that here we need to
predict sets of labels (premises), not just one label (the next tactic).

Our random forest is trained in an online manner, i.e., it is updated sequen-
tially with single training examples – not with the entire training dataset at
once, as is typically done. The rationale for this is to make it easy to update
the model with data coming from new theorems proved by a user. This allows
the model to immediately provide suggestions taking into account these recently
added theorems.5

Algorithm 1 provides a sketch of how a training example updates a tree – for
all the details see the actual implementation in our public GitHub repository.6
A crucial part of the algorithm is the MakeSplitRule function creating node
splitting rules. Searching for the rules resulting in optimal splits would be costly,
thus this function relies on heuristics.

Figure 1 schematically depicts how a simple decision tree from a trained ran-
dom forest predicts a set of premises for an input example.

5 This mode, however, has not yet been tested in the current stage of this work.
6 The decision tree implementation is in a file PremiseSelection/Tree.lean.

https://github.com/BartoszPiotrowski/lean-premise-selection/blob/main/PremiseSelection/Tree.lean

Machine-Learned Premise Selection for Lean 181

Fig. 1. A schematic example of a decision tree from a trained random forest. Lowercase
letters (a, b, c, ...) designate features of theorem statements, whereas uppercase letters
(P, Q, R, ...) designate names of premises. The input (a featurized theorem statement)
is being passed down the tree (along the green arrows) so that each node tests for a
presence of a single feature, and passes the input example to the left (or right) sub-tree
in the negative (or positive) case. The output is a set of premises in the reached leaf.
(Color figure online)

Algorithm 1. Updating a tree with a training example in a random forest.
1: function AddExampleToTree(T , e) δ T – tree to update, e – training example
2: match T with
3: Node(R, Tl, Tr): δ R – binary rule, Tl, Tr – left and right subtrees
4: match R(e) with δ passing example e down the tree to a leaf
5: Left: return Node(R, AddExampleToTree(Tl, e), Tr)
6: Right: return Node(R, Tl, AddExampleToTree(Tr, e))
7: Leaf(E): δ E – examples stored in the leaf
8: E ← Append(E, e)
9: if SplitCondition(E) then δ testing if the leaf should be split

10: R ← MakeSplitRule(E) δ making semi-optimized new split rule
11: El, Er ← Split(R, E) δ splitting examples into two parts
12: return Node(R, Leaf(El), Leaf(Er)) δ new subtree growing the tree
13: else
14: return Leaf(E) δ the original leaf augmented with example e

4 Evaluation Setup and Results

To assess the performance of the ML algorithms, the data points extracted from
mathlib were split into training and testing sets. The testing examples come from
the modules that are not dependencies of any other modules (there are 592 of
them). This simulates a realistic scenario in which a user utilizing the suggestion
tool develops a new mathlib module. The rest of the modules (2436) served as
the source of training examples.

Two measures of the quality of the rankings produced by ML are defined:
Cover and Cover+. Assuming a theorem T depends on the set of premises P of
size n, and R is the ranking of premises predicted by the ML advisor for T , these
measures are defined as follows:

182 B. Piotrowski et al.

Cover(T) =

∣
∣P ∩ R[:n]

∣
∣

n
, Cover+(T) =

∣
∣P ∩ R[:n + 10]

∣
∣

n
,

where R[:k] is a set of k initial premises from ranking R. Both Cover and
Cover+ return values in [0, 1]. Cover gives the score of 1 only for a “perfect”
prediction where the premises actually used in the proof form an initial segment
of the ranking. Cover+ may also give a perfect score to less precise predictions.
The rationale for Cover+ is that the user in practice may look through 10 or
more suggested premises. This is often more than the n premises actually used
in the proof, so we consider initial segments of length n + 10 in Cover+.

Both k-NN and random forest are evaluated on data subject to all three
premise filters described in Sect. 2.2. For each of these variants of data, three
combinations of features are tested: (1) names only, (2) names and bigrams, (3)
names, bigrams, and trigrams. The hyper-parameters for the ML algorithms
were selected by an experiment on a smaller dataset. For k-NN, the number
of neighbours was fixed to 100. For random forest, the number of trees was
set to 300, each example was used for training a particular decision tree with
probability equal to 0.3, and the training algorithm passed through the whole
training data 3 times.

Table 2 shows the results of the experiment. In terms of the Cover metric,
random forest performed better than k-NN for all data configurations. However,
for Cover+ metric, k-NN surpassed random forest for the math filter.

It turned out that the union of names and bigrams constitutes the best
features for all the filters and both ML algorithms. It likely means that the more
complex trigrams did not help the algorithms to generalize well but rather
caused over-fitting on the training set.

The results for the all filter appear to be much higher than for the other two
filters. However, this is because applying all results in many simple examples
containing just a few common, basic premises (e.g., just a single rfl lemma).
They increase the average score.

Overall, random forest with names+ bigrams (n+b) features gives the best
results. An additional practical advantage of this model over k-NN is the speed
of outputting predictions. For instance, for the source filter and n+b features,
the average times of predicting a ranking of premises per theorem were 0.28 s
and 5.65 s for random forest and k-NN, respectively.

Additionally, we evaluated the ML models on the intermediate dataset,
using n+b features. The random forest achieved Cover = 0.09 and Cover+ = 0.24,
whereas k-NN resulted in Cover = 0.08 and Cover+ = 0.21 on the testing part of
the data. Then, we used the intermediate dataset in an attempt to improve the
testing results on the base dataset with the source filter (as intermediate only
contains premises exposed in the source files). We used the intermediate data
as a pre-training dataset, first training a random forest on it, and later on the
base data. We also used intermediate to augment the base data, mixing the two
together. However, neither in the pre-training, nor in the augmentation mode
statistically significant improvements in the testing performance were achieved.
It is possible that the prediction quality from the practical perspective actually

Machine-Learned Premise Selection for Lean 183

Table 2. Average performance of random forest and k-NN on testing data, for three
premises filters and three kinds of features. The type of features is indicated by a one-
letter abbreviation: n = names, b = bigrams, t = trigrams. For each configuration,
Cover and Cover+ measures are reported (the latter in brackets). In each row, the best
Cover result is bolded.

premises machine learning model
random forest k-nearest neighbours
n n+b n+b+t n n+b n+b+t

all 0.56 (0.67) 0.57 (0.67) 0.47 (0.58) 0.51 (0.65) 0.52 (0.66) 0.51 (0.62)
source 0.28 (0.36) 0.29 (0.36) 0.28 (0.36) 0.25 (0.35) 0.25 (0.36) 0.26 (0.35)
math 0.25 (0.32) 0.26 (0.33) 0.16 (0.24) 0.22 (0.34) 0.23 (0.34) 0.16 (0.26)

improved, being more proof-state-dependent and not only theorem-dependent,
but it did not manifest in our theorem-dependent evaluation.

The evaluation may be reproduced by following the instructions in the linked
source code.7

5 Interactive Tool

The ML predictor is wrapped in an interactive tactic suggest_premises that users
can type into their proof script. It will invoke the predictor and produce a list of
suggestions. This list is displayed in the infoview. The display makes use of the
new remote-procedure-call (RPC) feature in Lean 4 [14], to then asynchronously
run various tactics for each suggestion. Given a suggested premise p, the system
will attempt to run tactics apply p, rw [p] and simp only [p], and return
the first successful tactic application that advances the state. This will then be
displayed to the user as shown in Fig. 2. She can select the resulting tactic to
insert into the proof script. By using an asynchronous approach, we can display
results rapidly without waiting for a slow tactic search to complete.

6 Future Work

There are several directions in which the current work may be developed.
The results may be improved by augmenting the dataset with, for instance,

synthetic theorems, as well as developing better features, utilizing the well-
defined structure of Lean expressions.

The evaluation may be extended to assess the proof-state level performance,
and to compare with the standard Lean’s suggestion tactics: library_search

7 https://github.com/BartoszPiotrowski/lean-premise-selection#reproducing-
evaluation.

https://github.com/BartoszPiotrowski/lean-premise-selection#reproducing-evaluation
https://github.com/BartoszPiotrowski/lean-premise-selection#reproducing-evaluation

184 B. Piotrowski et al.

Fig. 2. The interactive tool in Visual Studio Code. The left pane shows the source file
with the cursor over a suggest_premises tactic. The right pane shows the goal state
at the cursor position and, below, the suggested lemmas to solve the goal. Suggestions
annotated with a checkbox advance the goal state, suggestions annotated with confetti
close the current goal. Clicking on a suggested tactic (e.g. apply mul_left_eq_self)
automatically appends to the proof script on the left.

and suggest. It could be beneficial to combine these tactics – which use sctrict
matching – with our tool based on statistical matching.

Applying modern neural architectures in place of the simpler ML algorithms
used here is a promising path [7,12,16,18]. It would depart from our philosophy
of a lightweight, self-contained approach as the suggestions would come from an
external tool, possibly placed on a remote server. However, given the strength
of the current neural networks, we could hope for higher-quality predictions.
Moreover, neural models do not require hand-engineered features. The results
presented here could serve as a baseline for comparison.

Finally, premise selection is an important component of ITP hammer sys-
tems [3]. The presented tool may be readily used for a hammer in Lean, which
has not yet been developed.

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reason. 52(2),
191–213 (2014). https://doi.org/10.1007/s10817-013-9286-5

2. Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-
based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219–244 (2016).
https://doi.org/10.1007/s10817-016-9362-8

3. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards
QED. J. Formaliz. Reason. 9(1), 101–148 (2016). https://doi.org/10.6092/issn.
1972-5787/4593

https://doi.org/10.1007/s10817-013-9286-5
https://doi.org/10.1007/s10817-016-9362-8
https://doi.org/10.6092/issn.1972-5787/4593
https://doi.org/10.6092/issn.1972-5787/4593

Machine-Learned Premise Selection for Lean 185

4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
5. The mathlib Community. The lean mathematical library. In: Proceedings of the

9th ACM SIGPLAN International Conference on Certified Programs and Proofs,
pp. 367–381. CPP 2020, Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3372885.3373824

6. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS,
Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

7. Irving, G., Szegedy, C., Alemi, A.A., Eén, N., Chollet, F., Urban, J.:
DeepMath - deep sequence models for premise selection. In: Lee, D.D.,
Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016(December), pp. 5–10, 2016. Barcelona,
Spain, pp. 2235–2243 (2016), https://proceedings.neurips.cc/paper/2016/hash/
f197002b9a0853eca5e046d9ca4663d5-Abstract.html

8. Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding
machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.)
CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-62075-6_20

9. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reason. 53(2), 173–213 (2014). https://doi.org/10.1007/s10817-014-9303-
3

10. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3), 245–256
(2015). https://doi.org/10.1007/s10817-015-9330-8

11. Kühlwein, D., van Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview
and evaluation of premise selection techniques for large theory mathematics. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol.
7364, pp. 378–392. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31365-3_30

12. Mikula, M., et al.: Magnushammer: A transformer-based approach to premise
selection. CoRR abs/2303.04488 (2023).https://doi.org/10.48550/arXiv.2303.
04488,https://doi.org/10.48550/arXiv.2303.04488

13. Moura, L., Ullrich, S.: The lean 4 theorem prover and programming language.
In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp.
625–635. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_37

14. Nawrocki, W., Ayers, E.W., Ebner, G.: An extensible user interface for Lean 4. In:
14th International Conference on Interactive Theorem Proving, ITP 2023, July 31-
August 4, 2023, Białystok, Poland. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2023)

15. Piotrowski, B., Urban, J.: ATPboost: Learning Premise Selection in Binary Set-
ting with ATP Feedback. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR
2018. LNCS (LNAI), vol. 10900, pp. 566–574. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-94205-6_37

16. Piotrowski, B., Urban, J.: Stateful premise selection by recurrent neural networks.
In: Albert, E., Kovács, L. (eds.) LPAR 2020: 23rd International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, Alicante, Spain, 22–
27 May 2020. EPiC Series in Computing, vol. 73, pp. 409–422. EasyChair (2020).
https://doi.org/10.29007/j5hd

https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/978-0-387-84858-7
https://proceedings.neurips.cc/paper/2016/hash/f197002b9a0853eca5e046d9ca4663d5-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/f197002b9a0853eca5e046d9ca4663d5-Abstract.html
https://doi.org/10.1007/978-3-319-62075-6_20
https://doi.org/10.1007/s10817-014-9303-3
https://doi.org/10.1007/s10817-014-9303-3
https://doi.org/10.1007/s10817-015-9330-8
https://doi.org/10.1007/978-3-642-31365-3_30
https://doi.org/10.1007/978-3-642-31365-3_30
https://doi.org/10.48550/arXiv.2303.04488
https://doi.org/10.48550/arXiv.2303.04488
https://doi.org/10.48550/arXiv.2303.04488
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-319-94205-6_37
https://doi.org/10.1007/978-3-319-94205-6_37
https://doi.org/10.29007/j5hd

186 B. Piotrowski et al.

17. Pit-Claudel, C.: Untangling mechanized proofs. In: Proceedings of the 13th
ACM SIGPLAN International Conference on Software Language Engineering,
pp. 155–174. SLE 2020, Association for Computing Machinery, New York,
NY, USA (2020). https://doi.org/10.1145/3426425.3426940,https://pit-claudel.fr/
clement/papers/alectryon-SLE20.pdf

18. Tworkowski, S., et al.: Formal premise selection with language models. In: The 7th
Conference on Artificial Intelligence and Theorem Proving, AITP 2022(Septem-
ber), pp. 4–9, 2022. Aussois and online, France (2022). http://aitp-conference.org/
2022/abstract/AITP_2022_paper_32.pdf

19. Zhang, L., Blaauwbroek, L., Piotrowski, B., Černỳ, P., Kaliszyk, C., Urban, J.:
Online machine learning techniques for coq: a comparison. In: Kamareddine, F.,
Sacerdoti Coen, C. (eds.) CICM 2021. LNCS (LNAI), vol. 12833, pp. 67–83.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81097-9_5

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3426425.3426940
https://pit-claudel.fr/clement/papers/alectryon-SLE20.pdf
https://pit-claudel.fr/clement/papers/alectryon-SLE20.pdf
http://aitp-conference.org/2022/abstract/AITP_2022_paper_32.pdf
http://aitp-conference.org/2022/abstract/AITP_2022_paper_32.pdf
https://doi.org/10.1007/978-3-030-81097-9_5
http://creativecommons.org/licenses/by/4.0/

gym-saturation: Gymnasium Environments
for Saturation Provers (System

description)

Boris Shminke(B)

Université Côte d’Azur, CNRS, LJAD, Nice, France
boris.shminke@univ-cotedazur.fr

Abstract. This work describes a new version of a previously published
Python package — gym-saturation: a collection of OpenAI Gym envi-
ronments for guiding saturation-style provers based on the given clause
algorithm with reinforcement learning. We contribute usage examples
with two different provers: Vampire and iProver. We also have decou-
pled the proof state representation from reinforcement learning per se
and provided examples of using a known ast2vec Python code embed-
ding model as a first-order logic representation. In addition, we demon-
strate how environment wrappers can transform a prover into a problem
similar to a multi-armed bandit. We applied two reinforcement learn-
ing algorithms (Thompson sampling and Proximal policy optimisation)
implemented in Ray RLlib to show the ease of experimentation with the
new release of our package.

Keywords: Automated theorem proving · Reinforcement learning ·
Saturation-style proving · Machine learning

1 Introduction

This work describes a new version (0.10.0, released 2023.04.25) of a pre-
viously published [28] Python package — gym-saturation1: a collection of
OpenAI Gym [6] environments for guiding saturation-style provers (using the
given clause algorithm) with reinforcement learning (RL) algorithms. The new
version partly implements the ideas of our project proposal [29]. The main
changes from the previous release (0.2.9, on 2022.02.26) are:

– guiding two popular provers instead of a single experimental one (Sect. 3)
– pluggable first-order logic formulae embeddings support (Sect. 4)

1 https://pypi.org/project/gym-saturation/.

This work has been supported by the French government, through the 3IA Côte d’Azur
Investment in the Future project managed by the National Research Agency (ANR)
with the reference numbers ANR-19-P3IA-0002.
c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 187–199, 2023.
https://doi.org/10.1007/978-3-031-43513-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_11&domain=pdf
http://orcid.org/0000-0002-1291-9896
https://pypi.org/project/gym-saturation/
https://doi.org/10.1007/978-3-031-43513-3_11

188 B. Shminke

– examples of experiments with different RL algorithms (Sect. 5)
– following the updated Gymnasium [35] API instead of the outdated OpenAI

Gym

gym-saturation works with Python 3.8+. One can install it by pip install
gym-saturation or conda install -c conda-forge gym-saturation. Then,
provided Vampire and/or iProver binaries are on PATH, one can use it as any
other Gymnasium environment:

import gymnasium

import gym_saturation

v0 here is a version of the environment class, not the prover
env = gymnasium.make("Vampire-v0") # or "iProver-v0"
edit and uncomment the following line to set a non-default problem
env.set_task("a-TPTP-problem-path")
observation, info = env.reset()
print("Starting proof state:")
env.render()
truncation means finishing an episode in a non-terminal state
e.g. because of the externally imposed time limit
terminated, truncated = False, False
while not (terminated or truncated):

apply policy (e.g. a random available action)
action = env.action_space.sample(mask=observation["action_mask"])
print("Given clause:", observation["real_obs"][action])
observation, reward, terminated, truncated, info = env.step(action)

print("Final proof state:")
env.render()
env.close()

2 Related Work

Guiding provers with RL is a hot topic. Recent projects in this domain
include TRAIL (Trial Reasoner for AI that Learns) [2], FLoP (Finding Longer
Proofs) [37], and lazyCoP [26]. We will now compare the new gym-saturation
features with these three projects.

Usually, one guides either a new prover created for that purpose (lazyCoP;
FLoP builds on fCoP [14], an OCaml rewrite of older leanCoP [19]) or an exper-
imental patched version of an existing one (TRAIL relies on a modified E [27]).
Contrary to that, gym-saturation works with unmodified stable versions of
Vampire [15] and iProver [10].

In addition, known RL-guiding projects are prover-dependent: FLoP could,
in principle, work with both fCoP and leanCoP but reported only fCoP experi-
ments. TRAIL claims to be reasoner-agnostic, but to our best knowledge, no one

gym-saturation: Gymnasium Environments for Saturation Provers 189

has tried it with anything but a patched E version it uses by default. [26] men-
tions an anonymous reviewer’s suggestion to create a standalone tool for other
existing systems, but we are not aware of further development in this direction.
Quite the contrary, we have tested gym-saturation compatibility with two dif-
ferent provers (Vampire and iProver).

Deep learning models expect their input to be real-valued tensors and not,
for example, character strings in the TPTP [32] language. Thus, one always uses
a representation (or embeddings) — a function mapping a (parsed) logic formula
to a real vector. In lazyCoP and FLoP parts of embedding functions belong to
the underlying provers, making it harder to vary and experiment with (e.g., one
needs Rust or OCaml programming skills to do it). gym-saturation leaves the
choice of representation open and supports any mapping from TPTP-formatted
string to real vectors. The version described in this work also provides a couple
of default options.

3 Architecture and Implementation Details

3.1 Architecture

gym-saturation is compatible with Gymnasium [35], a maintained fork of now-
outdated OpenAI Gym standard of RL-environments, and passes all required
environment checks. As a result of our migration to Gymnasium, its maintainers
featured gym-saturation in a curated list of third-party environments2.

Previously, gym-saturation guided an experimental pure Python prover [28]
which happened to be too slow and abandoned in favour of existing highly effi-
cient provers: Vampire and iProver.

Although the gym-saturation user communicates with both iProver and
Vampire in the same manner, under the hood, they use different protocols. For
Vampire, we relied on the so-called manual (interactive) clause selection mode
implemented several years ago for an unrelated task [11]. In this mode, Vampire
interrupts the saturation loop and listens to standard input for a number of a
given clause instead of applying heuristics. Independent of this mode, Vampire
writes (or not, depending on the option show_all) newly inferred clauses to
its standard output. Using Python package pexpect, we attach to Vampire’s
standard input and output, pass the action chosen by the agent to the former
and read observations from the latter. In manual clause selection mode, Vampire
works like a server awaiting a request with an action to which it replies (exactly
what an environment typically does).

iProver recently added support of being guided by external agents. An agent
has to be a TCP server satisfying a particular API specification. So, iProver
behaves as a client which sends a request with observations to some server and
awaits a reply containing an action. To make it work with gym-saturation, we
implemented a relay server. It accepts a long-running TCP connection from a
running iProver thread and stores its requests to a thread-safe queue, and pops
2 https://gymnasium.farama.org/environments/third_party_environments/.

https://gymnasium.farama.org/environments/third_party_environments/

190 B. Shminke

a response to it from another such queue filled by gym-saturation thread. See
Fig. 1 for a communication scheme.

Fig. 1. gym-saturation interacting with iProver

3.2 Implementation Details

Clause Class. A clause is a Python data class having the following keys and
respective values:

– literals — a string of clause literals in the TPTP format, e.g.
‘member(X0,bb) | member(X0,b)’

– label — a string label of a clause, e.g. ‘21’. Some provers (e.g. Vampire)
use integer numbers for labelling clauses, but others (e.g. iProver) use an
alphanumeric mixture (e.g. ‘c_54’)

– role — a string description of a clause role in a proof (hypothesis, negated
conjecture, axiom, et cetera)

– inference_rule — a string name of an inference rule used to produce the
clause. It includes not only resolution and superposition but also values like
‘axiom’ and ‘input’ (for theorem assumptions)

– inference_parents — a tuple of clause labels if needed by the inference rule
(‘axiom’ doesn’t need any, ‘factoring’ expects only one, ‘resolution’ — two,
et cetera)

– birth_step — an integer step number when the clause appeared in the proof
state. Axioms, assumptions, and the negated conjecture have birth step zero.

gym-saturation: Gymnasium Environments for Saturation Provers 191

All these fields except the birth_step (computed by the environment itself)
are already available as separate entities (and not parts of TPTP-formatted
strings) in iProver and Vampire output.

Environment Class

Observation is a Python dictionary with several keys:

– real_obs is a tuple of all clauses (processed and unprocessed). It can be
transformed to tensor representation by so-called observation wrappers3. The
gym-saturation provides several such wrappers for cases of external embed-
dings service or hand-coded feature extraction function

– action_mask is a numpy [13] array of the size max_clauses (a parameter
which one can set during the environment object instantiation) having a value
1.0 at index i if and only if a clause with a zero-based order number i currently
exists and can be a given clause (e.g. not eliminated as redundant). All other
values of action_mask are zeros. This array simplifies tensor operations on
observation representations.

Limiting the total number of clauses in a proof state is a proxy of both random-
access memory (each clause needs storage space) and time (a prover has to
process each clause encountered) limits typical for the CASC [33] competition.
One can add a standard Gymnasium time-limit wrapper to limit the number of
steps in an episode. Setting wall-clock time and RAM limits is not typical for
RL research.

Action is a zero-based order number of a clause from real_obs. If a respective
action_mask is zero, an environment throws an exception during the execution
of the step method.

Reward is 1.0 after a step if we found the refutation at this step and 0.0 otherwise.
One can change this behaviour by either Gymnasium reward wrappers or by
collecting trajectories in a local buffer and postprocessing them before feeding
the trainer.

Episode is terminated when an empty clause $false appears in the proof state
or if there are no more available actions.

Episode is truncated when there are more than max_clauses clauses in the proof
state. Since the state is an (extendable) tuple, we don’t raise an exception when
a prover generates a few more clauses.

Info dictionary is always empty at every step by default.

3 https://gymnasium.farama.org/api/wrappers/observation_wrappers/.

https://gymnasium.farama.org/api/wrappers/observation_wrappers/

192 B. Shminke

Render modes of the environment include two standard ones (‘human’ and
‘ansi’), the first one printing and the second one returning the same TPTP
formatted string.

Multi-task Environment. The latest gym-saturation follows a Meta-World
benchmark [36] style and defines set_task method with one argument — a
TPTP problem full path. If one resets an environment without explicitly setting
a task in advance, the environment defaults to a simple group theory problem
(any idempotent element equals the identity). Having a default task helps us
keep compatibility with algorithms not aware of multi-task RL. One can inherit
from gym-saturation environment classes to set a random problem at every
reset or implement any other desirable behaviour.

4 Representation Subsystem

4.1 Existing First-Order Formulae Representations and Related
Projects

As mentioned in Sect. 2, to apply any deep reinforcement learning algorithm,
one needs a representation of the environment state in a tensor form first. There
are many known feature engineering procedures. It can be as simple as clause
age and weight [25], or information extracted from a clause syntax tree [18] or
an inference lineage of a clause [30]. Representing logic formulae as such is an
active research domain: for example, in [23], the authors proposed more than a
dozen different embedding techniques based on formulae syntax. In communities
other than automated deduction, researchers also study first-order formulae rep-
resentation: for example, in [5], the authors use semantics representation rather
than syntax. One can also notice that first-order logic (FOL) is nothing more
than a formal language, so abstract syntax trees of FOL are not, in principle,
that different from those of programming language statements. And of course,
encoding models for programming languages (like code2vec [4] for Java) exist,
as well as commercially available solutions as GPT-3 [7] generic code embeddings
and comparable free models like LLaMA [34].

To make the first step in this direction, we took advantage of existing pre-
trained embedding models for programming languages and tried to apply them
to a seemingly disconnected domain of automated provers.

4.2 ast2vec and Our Contributions to It

In [20], the authors proposed a particular neural network architecture they called
Recursive Tree Grammar Autoencoders (RTG-AE), which encodes abstract syn-
tax trees produced by a programming language parser into real vectors. Being
interested in education applications, they also published the pre-trained model
for Python [21]. To make use of it for our purpose, we furnished several technical
improvements to their code (our contribution is freely available4):
4 https://gitlab.com/inpefess/ast2vec.

https://gitlab.com/inpefess/ast2vec

gym-saturation: Gymnasium Environments for Saturation Provers 193

– a TorchServe [24] handler for HTTP POST requests for embeddings
– request caching with the Memcached server [9]
– Docker container to start the whole subsystem easily on any operating system

Fig. 2. gym-saturation communication with ast2vec

To integrate the ast2vec server with gym-saturation environments, we
added Gymnasium observation wrappers, one of them mapping a clause in the
TPTP language to a boolean-valued statement in Python (in particular, by
replacing logic operation symbols, e.g. = in TPTP becomes == in Python). See
Fig. 2 for a communication diagram. In principle, since a clause doesn’t contain
any quantifiers explicitly, one can rewrite it as a boolean-valued expression in
many programming languages for which pre-trained embeddings might exist.

4.3 Latency Considerations

Looking at Fig. 2, one might wonder how efficient is such an architecture. The
average response time observed in our experiments was 2ms (with a 150ms
maximum). A typical natural language processing model which embeds whole
texts has a latency from 40ms to more than 600ms [17] (depending on the model
complexity and the length of a text to embed) when run on CPU, so there is
no reason to believe that ast2vec is too slow. When evaluating a prover, one
usually fixes the time limit: for example, 60 s is the default value for Vampire.
Being written in C++ and with a cornucopia of optimisation tweaks, Vampire

194 B. Shminke

can generate around a million clauses during this relatively short timeframe.
Thus, to be on par with Vampire, a representation service must have latency
around 60µs (orders of magnitude faster than we have). There can be several
ways to lower the latency:

– inference in batches (one should train the embedding model to do it; ast2vec
doesn’t do it out of the box). The improvement may vary

– use GPU. NVIDIA reports around 20x improvement vs CPU [16]. However,
throwing more GPUs won’t be as efficient without batch inference from the
previous point

– request an embedding for a binary object of an already parsed clause instead
of a TPTP string. It means not repeating parsing already done by a prover,
which might lower the latency substantially. To do this, one will have to patch
an underlying prover to return binary objects instead of TPTP strings

– use RPC (remote procedure call) instead of REST protocol. TorchServe relies
on REST and parcels in JSON format, and in gRPC [12], they prefer the
binary protobuf format. One rarely expects sub-millisecond latency from
REST, although for RPC, 150µs is not unusual. This point doesn’t make
much sense without the previous one

5 Usage Examples

We provide examples of experiments easily possible with gym-saturation as
a supplementary code to this paper5. We don’t consider these experiments as
being of any scientific significance per se, serving merely as illustrations and basic
usage examples. Tweaking the RL algorithms’ meta-parameters and deep neural
network architectures is out of the scope of the present system description.

We coded these experiments in the Ray framework, which includes an RLlib
— a library of popular RL algorithms. The Ray is compatible with Tensor-
flow [1] and PyTorch [22] deep learning frameworks, so it doesn’t limit a potential
gym-saturation user by one.

In the experiments, we try to solve SET001-1 from the TPTP with
max_clauses=20 (having no more than twenty clauses in the proof state) for
guiding Vampire and max_clauses=15 for iProver. This difference is because
even a random agent communicating to iProver manages to always solve
SET001-1 by generating no more than twenty clauses. We wanted training to
start, but keep the examples as simple as possible, so we chose to harden the
constraints instead of moving on to a more complicated problem.

In one experiment, we organise clauses in two priority queues (by age and
weight) and use an action wrapper to map from a queue number (0 or 1) to the
clause number. That means we don’t implant these queues inside provers but
follow a Gymnasium idiomatic way to extend environments. Of course, Vampire
and iProver have these particular queues as part of their implementation, but
our illustration shows one could use any other priorities instead. It transforms
5 https://github.com/inpefess/ray-prover/releases/tag/v0.0.3.

https://github.com/inpefess/ray-prover/releases/tag/v0.0.3

gym-saturation: Gymnasium Environments for Saturation Provers 195

our environment into a semblance of a 2-armed bandit, and we use Thompson
sampling [3] to train. This experiment reflects ideas similar to those described
in [31].

In another experiment, we use ast2vec server for getting clause embeddings
and train a Proximal Policy Optimisation (PPO) algorithm as implemented in
the Ray RLlib. The default policy network there is a fully connected one, and
we used 256 × 20 tensors as its input (256 is an embedding size in ast2vec, and
20 is the maximal number of clauses we embed). So, the policy chooses a given
clause given the embeddings of all clauses seen up to the current step (including
those already chosen or judged to be redundant/subsumed). Such an approach
is more similar to [37].

Fig. 3. Episode reward mean vs the total number of steps. The blue line is for a random
agent and the orange one — for the PPO. Both agents guide Vampire (Color figure
online)

We provide Fig. 3 as a typical training process chart.

6 Conclusion and Future Work

We contributed a new version of gym-saturation, which continued to be free
and open-source software, easy to install and use while promising assistance
in setting up experiments for RL research in the automated provers domain.
In the new version, we enabled anyone interested to conduct experiments with
RL algorithms independently of an underlying prover implementation. We also
added the possibility of varying representations as external plug-ins for further
experimentation. We hope that researchers having such an instrument can focus
on more advanced questions, namely how to generate and prioritise training
problems to better transfer search patterns learned on simpler theorems to harder
ones.

196 B. Shminke

Our experience with adding Vampire and iProver support to gym-saturation
shows that working tightly with corresponding prover developers is not manda-
tory, although it might help immensely. Implementing the prover guidance
through the standard I/O (as in Vampire) seems to be relatively easy, and we
hope more provers will add similar functionality in future to be more ML-friendly.
Such provers could then profit from using any other external guidance (see [8]
for a different system using the same iProver technical features as we did).

We identify a discerning and computationally efficient representation service
as a bottleneck for our approach and envision an upcoming project of creating
a universal first-order logic embedding model usable not only by saturation-
style provers but also tableaux-based ones, SMT-solvers, semantic reasoners,
and beyond.

Acknowledgements. We would like to thank Konstantin Korovin for the productive
discussion and for adding the external agents’ communication feature to iProver, with-
out which this work won’t be possible. We also thank anonymous reviewers for their
meticulous suggestions on improving the present paper.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/. Software available from tensorflow.org

2. Abdelaziz, I., et al.: Learning to guide a saturation-based theorem prover. IEEE
Trans. Pattern Anal. Mach. Intell. 45(1), 738–751 (2023). https://doi.org/10.1109/
TPAMI.2022.3140382

3. Agrawal, S., Goyal, N.: Thompson sampling for contextual bandits with linear pay-
offs. In: Dasgupta, S., McAllester, D. (eds.) Proceedings of the 30th International
Conference on Machine Learning. Proceedings of Machine Learning Research,
vol. 28, pp. 127–135. PMLR, Atlanta, Georgia, USA (17–19 Jun 2013). https://
proceedings.mlr.press/v28/agrawal13.html

4. Alon, U., Zilberstein, M., Levy, O., Yahav, E.: Code2Vec: learning distributed
representations of code. Proceed. ACM Programm. Lang. 3(POPL), 1–29 (2019).
https://doi.org/10.1145/3290353

5. Ballout, A., da Costa Pereira, C., Tettamanzi, A.G.B.: Learning to classify logical
formulas based on their semantic similarity. In: Aydoğan, R., Criado, N., Lang,
J., Sanchez-Anguix, V., Serramia, M. (eds.) PRIMA 2022: Principles and Practice
of Multi-Agent Systems, pp. 364–380. PRIMA 2022. LNCS, vol. 13753. Springer,
Cham (2023). https://doi.org/10.1007/978-3-031-21203-1_22

6. Brockman, G., et al.: OpenAI Gym. arXiv (2016).https://doi.org/10.48550/arXiv.
1606.01540

7. Brown, T.B., et al.: Language models are few-shot learners. In: Proceedings of
the 34th International Conference on Neural Information Processing Systems.
NIPS2020, Curran Associates Inc., Red Hook, NY, USA (2020). https://proceed
ings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-
Paper.pdf

8. Chvalovský, K., Korovin, K., Piepenbrock, J., Urban, J.: Guiding an instantiation
prover with graph neural networks. In: Piskac, R., Voronkov, A. (eds.) Proceedings
of 24th International Conference on Logic for Programming, Artificial Intelligence

https://www.tensorflow.org/
https://doi.org/10.1109/TPAMI.2022.3140382
https://doi.org/10.1109/TPAMI.2022.3140382
https://proceedings.mlr.press/v28/agrawal13.html
https://proceedings.mlr.press/v28/agrawal13.html
https://doi.org/10.1145/3290353
https://doi.org/10.1007/978-3-031-21203-1_22
https://doi.org/10.48550/arXiv.1606.01540
https://doi.org/10.48550/arXiv.1606.01540
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

gym-saturation: Gymnasium Environments for Saturation Provers 197

and Reasoning. EPiC Series in Computing, vol. 94, pp. 112–123. EasyChair (2023).
https://doi.org/10.29007/tp23. https://easychair.org/publications/paper/5z94

9. Danga Interactive Inc: Memcached (2023). https://github.com/memcached/
memcached

10. Duarte, A., Korovin, K.: Implementing superposition in iProver (system descrip-
tion). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 388–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1_24

11. Gleiss, B., Kovács, L., Schnedlitz, L.: Interactive visualization of saturation
attempts in vampire. In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS,
vol. 11918, pp. 504–513. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-34968-4_28

12. gRPC authors: gRPC - An RPC library and framework (2023). https://github.
com/grpc/grpc

13. Harris, C.R., et al.: Array programming with NumPy. Nature 585(7825), 357–362
(2020). https://doi.org/10.1038/s41586-020-2649-2

14. Kaliszyk, C., Urban, J., Vyskočil, J.: Certified connection tableaux proofs for HOL
light and TPTP. In: Proceedings of the 2015 Conference on Certified Programs and
Proofs, pp. 59–66. CPP 2015, Association for Computing Machinery, New York,
NY, USA (2015). https://doi.org/10.1145/2676724.2693176

15. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_1

16. Mukherjee, P., Weill, E., Taneja, R., Onofrio, D., Ko, Y.J., Sharma, S.: Real-
time natural language understanding with BERT using TensorRT (2019). https://
developer.nvidia.com/blog/nlu-with-tensorrt-bert/

17. Nguyen, V., Srihari, N., Chadha, P., Chen, C., Lee, J., Rodge, J.: Opti-
mizing T5 and GPT-2 for real-time inference with NVIDIA TensorRT
(2021). https://developer.nvidia.com/blog/optimizing-t5-and-gpt-2-for-real-time-
inference-with-tensorrt/

18. Olsák, M., Kaliszyk, C., Urban, J.: Property invariant embedding for automated
reasoning. In: Giacomo, G.D. et al. (eds.) ECAI 2020–24th European Conference
on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, vol.
325, pp. 1395–1402. IOS Press (2020). https://doi.org/10.3233/FAIA200244

19. Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb.
Comput. 36(1), 139–161 (2003). https://doi.org/10.1016/S0747-7171(03)00037-3.
First Order Theorem Proving

20. Paaßen, B., Koprinska, I., Yacef, K.: Recursive tree grammar autoencoders. Mach.
Learn. 111, 3393–3423 (2022). https://doi.org/10.1007/s10994-022-06223-7

21. Paassen, B., McBroom, J., Jeffries, B., Koprinska, I., Yacef, K.: Mapping
python programs to vectors using recursive neural encodings. J. Educ. Data
Min. 13(3), 1–35 (2021). https://doi.org/10.5281/zenodo.5634224. https://jedm.
educationaldatamining.org/index.php/JEDM/article/view/499

22. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32.
Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper_files/paper/
2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

23. PurgaŁ, S., Parsert, J., Kaliszyk, C.: A study of continuous vector representations
for theorem proving. J. Logic Comput. 31(8), 2057–2083 (2021). https://doi.org/
10.1093/logcom/exab006

https://doi.org/10.29007/tp23
https://easychair.org/publications/paper/5z94
https://github.com/memcached/memcached
https://github.com/memcached/memcached
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-34968-4_28
https://doi.org/10.1007/978-3-030-34968-4_28
https://github.com/grpc/grpc
https://github.com/grpc/grpc
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/2676724.2693176
https://doi.org/10.1007/978-3-642-39799-8_1
https://developer.nvidia.com/blog/nlu-with-tensorrt-bert/
https://developer.nvidia.com/blog/nlu-with-tensorrt-bert/
https://developer.nvidia.com/blog/optimizing-t5-and-gpt-2-for-real-time-inference-with-tensorrt/
https://developer.nvidia.com/blog/optimizing-t5-and-gpt-2-for-real-time-inference-with-tensorrt/
https://doi.org/10.3233/FAIA200244
https://doi.org/10.1016/S0747-7171(03)00037-3
https://doi.org/10.1007/s10994-022-06223-7
https://doi.org/10.5281/zenodo.5634224
https://jedm.educationaldatamining.org/index.php/JEDM/article/view/499
https://jedm.educationaldatamining.org/index.php/JEDM/article/view/499
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1093/logcom/exab006
https://doi.org/10.1093/logcom/exab006

198 B. Shminke

24. PyTorch serve contributors: TorchServe (2023). https://github.com/pytorch/serve
25. Rawson, M., Reger, G.: Old Or heavy? Decaying gracefully with age/weight shapes.

In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 462–476. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_27

26. Rawson, M., Reger, G.: lazyCoP: lazy paramodulation meets neurally guided
search. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842,
pp. 187–199. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86059-
2_11

27. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine,
P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 495–507. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-29436-6_29

28. Shminke, B.: Gym-saturation: an OpenAI Gym environment for saturation provers.
J. Open Source Softw. 7(71), 3849 (2022). https://doi.org/10.21105/joss.03849

29. Shminke, B.: Project proposal: a modular reinforcement learning based automated
theorem prover. arXiv (2022). https://doi.org/10.48550/ARXIV.2209.02562

30. Suda, M.: Improving ENIGMA-style clause selection while learning from history.
In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI), vol. 12699, pp.
543–561. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79876-5_31

31. Suda, M.: Vampire getting noisy: will random bits help conquer chaos? (Sys-
tem description). In: Blanchette, J., Kovács, L., Pattinson, D. (eds.) Automated
Reasoning. IJCAR 2022. LNCS, vol. 13385, pp. 659–667. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-10769-6_38

32. Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF
to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017). https://doi.org/
10.1007/s10817-017-9407-7

33. Sutcliffe, G.: The 10th IJCAR automated theorem proving system competition
- CASC-J10. AI Commun. 34(2), 163–177 (2021). https://doi.org/10.3233/AIC-
201566

34. Touvron, H., et al.: LLaMA: open and efficient foundation language models. arXiv
(2023). https://doi.org/10.48550/arXiv.2302.13971

35. Towers, M., et al.: Gymnasium (2023). https://doi.org/10.5281/zenodo.8127026
36. Yu, T., et al.: Meta-world: a benchmark and evaluation for multi-task and meta

reinforcement learning. In: Kaelbling, L.P., Kragic, D., Sugiura, K. (eds.) Pro-
ceedings of the Conference on Robot Learning. Proceedings of Machine Learn-
ing Research, vol. 100, pp. 1094–1100. PMLR (30 Oct-01 Nov 2020). https://
proceedings.mlr.press/v100/yu20a.html

37. Zombori, Z., Csiszárik, A., Michalewski, H., Kaliszyk, C., Urban, J.: Towards find-
ing longer proofs. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI),
vol. 12842, pp. 167–186. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-86059-2_10

https://github.com/pytorch/serve
https://doi.org/10.1007/978-3-030-29436-6_27
https://doi.org/10.1007/978-3-030-86059-2_11
https://doi.org/10.1007/978-3-030-86059-2_11
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.21105/joss.03849
https://doi.org/10.48550/ARXIV.2209.02562
https://doi.org/10.1007/978-3-030-79876-5_31
https://doi.org/10.1007/978-3-031-10769-6_38
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.3233/AIC-201566
https://doi.org/10.3233/AIC-201566
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.5281/zenodo.8127026
https://proceedings.mlr.press/v100/yu20a.html
https://proceedings.mlr.press/v100/yu20a.html
https://doi.org/10.1007/978-3-030-86059-2_10
https://doi.org/10.1007/978-3-030-86059-2_10

gym-saturation: Gymnasium Environments for Saturation Provers 199

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Non-wellfounded Proofs

A Linear Perspective on Cut-Elimination
for Non-wellfounded Sequent Calculi
with Least and Greatest Fixed-Points

Alexis Saurin(B)

IRIF, CNRS, Université de Paris Cité & INRIA, Paris, France
alexis.saurin@irif.fr

Abstract. This paper establishes cut-elimination for µLL∞, µLK∞ and
µLJ∞, that are non-wellfounded sequent calculi with least and greatest
fixed-points, by expanding on prior works by Santocanale and Fortier [20]
as well as Baelde et al. [3,4]. The paper studies a fixed-point encoding
of LL exponentials in order to deduce those cut-elimination results from
that of µMALL∞. Cut-elimination for µLK∞ and µLJ∞ is obtained by
developing appropriate linear decorations for those logics.

Keywords: LL · µ-calculus · Non-wellfounded proofs · cut elimination

1 Introduction

On the Non-Wellfounded Proof-Theory of Fixed-Point Logics. In the context of
logics with induction and coinduction (such as logics with inductive definitions à
la Martin Löf [6,9,10,25], or variants of the μ-calculus [11,22,23]), the need for a
(co)inductive invariant (in the form of the Park’s rule for induction) is replaced
by the ability to pursue the proof infinitely, admitting non-wellfounded branches,
when considering non-wellfounded and circular proofs (also called cyclic, or reg-
ular proofs, since the proof tree is a regular tree, with finitely many distinct
subtrees). In such frameworks, sequent proofs may be finitely branching but
non-wellfounded derivation trees and infinite branches shall satisfy some valid-
ity condition. (Otherwise one could derive any judgement, see Fig. 1(a).) Various
validity conditions have been considered in the literature [3].

The non-wellfounded and circular proof-theory of fixed-points attracted a
growing attention first motivated by proof-search [1,7,8,16–18,28] and more
recently by a Curry-Howard perspective, studying the dynamics of the cut-
elimination in those logics [4,20,29] where formulas correspond to (co)inductive
types. Notice also that when interested in the computational content of proofs,
we will not focus solely on the regular fragment as we expect, for instance, that
we can write a regular program that computes a non-ultimately periodic stream.

This work was partially funded by the ANR project RECIPROG, project reference
ANR-21-CE48-019-01.
c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 203–222, 2023.
https://doi.org/10.1007/978-3-031-43513-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_12&domain=pdf
https://doi.org/10.1007/978-3-031-43513-3_12

204 A. Saurin

Fig. 1. (a) Example of an invalid circular pre-proof (b) Schema of the multicut rule

Cut-Elimination and LL. When studying the structure of proofs and their cut-
elimination properties, LL, Girard’s Linear Logic [21], is a logic of choice: the
careful treatment of structural rules gives access to a lot of information and a
fine-grained control over cut-reduction. The constrained use of structural rules
indeed renders the cut-elimination theorem more informative than in LJ and of
course LK. Interestingly it provided a positive feedback on the understanding of
LJ and LK: by decorating intuitionistic and classical proofs with enough expo-
nential modalities (!, ?), they can become LL proofs and one can therefore refine
the original cut-elimination relations [12,21]. This approach impacted the under-
standing of evaluation strategies of programming languages such as call-by-name
and call-by-value notably. Another way to view this is by noting that, in LK, the
additive and multiplicative presentations of conjunction (resp. disjunction) can
be shown to be interderivable thanks to structural rules. This fails in LL and it
is the reason why LL has well-established additive – ⊕,�,�, 0 – (resp. multi-
plicative �,⊗,⊥, 1) fragments. It is the role of the exponential fragment to relate
the additive and multiplicative worlds, by mean of the fundamental equivalence:
! A ⊗ ! B �� !(A�B) (and its dual, ? A� ? B �� ?(A ⊕ B)). The exponential
modalities are precisely introduced where structural rules are needed to restore
the equivalence between the additive and multiplicative conjunctions; in cate-
gorical models of LL [26], this principle is referred to as Seely isomorphisms.

Cut-Elimination for Non-Wellfounded Proofs. Proving cut-elimination results
for non-wellfounded proofs in the presence of least and greatest fixed-points
requires to use reasoning techniques coping with the non-inductive structure
of the considered formulas (fixed-points formulas regenerate) and proof objects
(which are non-wellfounded). For instance, Santocanale and Fortier [20] proved
cut-elimination for the regular fragment of non-wellfounded proofs of purely
additive linear logic with fixed points, μALL∞, while Baelde et al. [4] proved
cut-elimination for non-wellfounded proofs with additive and multiplicative con-
nectives, μMALL∞. In both cases, the proof relies on a generalization of the
cut-rule, the multicut rule (which abstracts a portion of a proof tree consti-
tuted only of cut inferences see Fig. 1(b)) and on a reasoning by contradiction
to prove that one can eliminate cuts at the limit of an infinite cut reduction
sequence, while preserving the validity condition. Baelde et al. [3,4] use a so-
called “locative” approach by modelling sequents as sets of formulas paired with
addresses which determines uniquely the formula occurrence in a sequent and
makes explicit the ancestor relation used to trace the progress along branches.

A Linear Perspective on Cut-Elimination 205

Moreover, the cut-elimination proof proceeds by a rather complex semantical,
roundabout, argument relying on a soundness theorem.

In a slightly different direction, Das and Pous [15] proved a cut-elimination
result for Kleene algebras and their variants. This can be viewed as a non-
commutative version of intuitionistic MALL with a particular form of inductive
construction, Kleene’s star. Kuperberg et al [24] and more specifically Pinault’s
PhD thesis [27] as well as Das [13] examine non-wellfounded versions of System
T based on [15], exploring the computational content of non-wellfounded proofs.

Neither Santocanale and Fortier’s [20,29], nor Baelde et al. [3,4] works cap-
tured full linear logic: the exponentials are missing and the proofs cannot deal
with them in a simple way. Indeed, the proof for μALL strongly relies on the
assumption the sequents are pairs of formulas (A � B) while in μMALL, the
locative approach taken by Baelde et al. is not well-suited to work with struc-
tural rules: the extension of the proof would be possible though highly technical.
In contrast, our motto in the present work is to work with traditional sequents
as lists of formulas and to exploit the (co)inductive nature of LL exponentials.

On the (Co)Inductive Nature of Exponential Modalities in Linear Logic. The
original works by Baelde and Miller on fixed-points in linear logic [2,5] focus on
μMALL only and present an encoding of the exponential modalities of LL using
least and greatest fixed points. Indeed, the ? and ! modalities have an infinitary
character which is well-known from the early days of linear logic (see Section
V.5 of Girard’s seminal paper [21]) and which is in fact respectively inductive
for ? and coinductive for !; let us discuss it briefly here.

One can decide to contract a ?-statement any finite number of times before
it is ultimately weakened or derelicted. It is therefore natural to represent ? A
with formula ?•A = μX.A ⊕ (⊥ ⊕ (X�X)): A allows for dereliction, ⊥ for
weakening and X�X will regenerate, by unfolding, two copies of ?•A, making the
contraction derivable. The ⊕ and μ connectives respectively provide the ability
to choose either of those three inferences and to repeat finitely this process.

On the other hand, a !-formula is a formula which, during cut-elimination,
shall maintain a proper interaction with any number of contractions, weakenings
or derelictions: a proof concluded with a promotion shall be able to react to any
number of duplications or erasure before the promotion actually interact with
a dereliction to open the exponential box : from that follows the coinductive
character of ! A modelled as !•A = νX.A�(1�(X ⊗X)).

As discussed above and formally established by Baelde and Miller [5], the
exponential rules can be derived in the finitary sequent calculus μMALL: to any
LL provable sequent can be associated a provable μMALL sequent via the above
translations of the exponentials. However, until now one can hardly say more
about this embedding for two deep reasons: (i) the fundamental Seely isomor-
phisms which relate the additive and multiplicative versions of conjunction (resp.
disjunction) are still derivable through this encoding but they are no more iso-
morphisms and (ii) on the provability level as well, the encoding is not faithful:
the μMALL provability of the translation of an LL sequent s does not entail the
LL provability of s itself (counter-example due to Das [14]). A contribution of

206 A. Saurin

the present paper is to put to work Baelde and Miller’s encoding, showing that,
in the case of non-wellfounded proofs, its structure is faithful enough to extract
information of the cut-reduction behaviour of the logic.

Contributions and Organization of the Paper. The main result of this paper
is a cut-elimination theorem for μLL∞, the non-wellfounded sequent calcu-
lus for linear logic extended with least and greatest fixed points. Our proof
proceeds by encoding LL exponentials in μMALL∞ and studying μLL∞ cut-
reduction sequences through their simulation in μMALL∞ which may be a trans-
finite sequence. In Sect. 2, we introduce our logics, μMALL∞, μLL∞, μLK∞ and
μLJ∞, altogether with their non-wellfounded proofs and validity conditions. We
adapt μMALL∞ cut-elimination theorem [4] to our setting where sequents are
lists and prove a compression lemma for μMALL∞ transfinite cut-reduction
sequences. Section 3 constitutes the core of our paper: we define μLL∞ cut-
reduction rules, study the encoding of exponentials in μMALL∞ and show that
μLL∞ cut-reduction steps can be simulated in μMALL∞, before proving μLL∞

cut-elimination theorem. We prove in Sect. 4, as corollaries, cut-elimination for
μLK∞ and μLJ∞, the non-wellfounded sequent-calculi for classical and intu-
itionistic logic. While our result for μLL∞ shows that any fair cut-reduction
sequence produces a cut-free valid proof, our two other cut-elimination results
are truly (infinitary) weak-normalization results. We finally conclude in Sect. 5
with perspectives. A major advantage of our approach is that μMALL∞ cut-
elimination proof and, to some extent, the validity conditions, are regarded as
black boxes, simplifying the presentation of the proof and making it reusable
wrt. other validity conditions or μMALL∞ proof techniques. An additional by-
product of our approach, to the theory of linear logic, is to illustrate the fact
that Seely isomorphisms are not needed to reach a cut-free proof.

A companion technical report containing additional details on the definitions
as well as full proofs is available online [30].

2 Non-Wellfounded Proofs: µMALL∞, µLL∞, µLK∞,
µLJ∞

2.1 µ-Signatures and Formulas

Definition 1 (μ-signature). A μ-signature is a set C of pairs (c, p) of a con-
nective symbol c and a tuple p of elements of {+,−}. The arity of c, ar(c), is
the length of p, while the elements of p indicate the mono/antitonicity of the
connective in the given component. The empty tuple will be denoted as ()1.

Example 2 (μ-signature associated with μMALL, μLL, μLK, μLJ). The μ-
signatures associated with μMALL, μLL, μLK, μLJ are:

1 µ-signature can be enriched to consider quantifiers but we restrict to the proposi-
tional case here.

A Linear Perspective on Cut-Elimination 207

– μMALL signature: CμMALL = {�,⊗,⊕,�} × {(+,+)} ∪ {0, 1,�,⊥} × {()} ;
– one-sided μLL signature: CμLL1

= CμMALL ∪ {!, ?} × {(+)} ;
– two-sided μLL signature: CμLL2

= CμLL1
∪ {(�, (−,+)), (·⊥, (−))} ;

– μLK signature: CμLK = {∧,∨} × {(+,+)} ∪ {(⇒, (−,+))} ∪ {�,F} × {()};
– μLJ signature: CμLJ = CμLK.

Definition 3 (Pre-formulas). Given a μ-signature C, a countable set V of
fixed-point variables and a set of atomic formulas A, the set of pre-formulas
over S is defined as the least set FS such that: (α) A ∪ V ⊆ FS ; (β) for every c
of arity n in C and F1, . . . , Fn ∈ FS , c(F1, . . . , Fn) ∈ FS ; (γ) for every X ∈ V
and pre-formula F ∈ FS , μX.F ∈ FS and νX.F ∈ FS .

Definition 4 (Positive and negative occurrences of a variable). Given
a μ-signature C and a fixed-point variable X ∈ V, one defines by induction
on pre-formulas the fact, for X, to occur positively (resp. negatively) in a pre-
formula : (α) X occurs positively in X; (β) X occurs positively (resp. negatively)
in c(F1, . . . , Fn), for (c, p) ∈ C, if there is some 1 ≤ i ≤ n such that X occurs
positively (resp. negatively) in Fi and pi = + or there is some 1 ≤ i ≤ n such that
X occurs negatively (resp. positively) in Fi and pi = −; (γ) X occurs positively
(resp. negatively) in σY.F , for σ ∈ {μ, ν}, if Y �= X and X occurs positively
(resp. negatively) in F .

Definition 5 (μ-formula). A μ-formula F over a signature S is a pre-formula
containing no free fixed-point variable and such that for any sub-pre-formula of
F of the form σX.G, all occurrences of X in G are positive.

Definition 6. One-sided μLL formulas are those formulas defined over the sig-
nature CμLL1

together with a set of atomic formulas {a, a⊥ | a ∈ A} for a count-
able set A. Negation (_)⊥ is the involution on pre-formulas defined by:

(a⊥)⊥ = a; ⊥⊥ = 1; �⊥ = 0; (F�G)⊥ = F⊥ ⊗G⊥; (F ⊕ G)⊥ = F⊥
�G⊥;

(? F)⊥ = !F⊥; X⊥ = X; (νX.F)⊥ = μX.F⊥.

Definition 7 (μ-Fischer-Ladner subformulas). Given a μ-signature C and
a μ-formula F , FL(F) is the least set of formulas such that:

– F ∈ FL(F);
– c(F1, . . . , Fn) ∈ FL(F) ⇒ F1, . . . , Fn ∈ FL(F) for c ∈ C;
– σX.B ∈ FL(F) ⇒ B[σX.B/X] ∈ FL(F) for σ ∈ {μ, ν}.
Example 8. Let us consider F = νX.((a�a⊥)⊗ (!X ⊗μY.X)). FL(F) is the set
{F, (a�a⊥) ⊗ (! F ⊗μY.F), a�a⊥, a, a⊥, ! F ⊗μY.F, ! F, μY.F}.

The finiteness of FL(F) makes it an adequate notion of subformula:

Proposition 9. For any μ-signature S and μ-formula F , FL(F) is finite.

208 A. Saurin

Fig. 2. (a) µMALL∞ Inferences (b)µLL∞ Exponential Inferences

2.2 µMALL∞, µLL∞, µLK∞ & µLJ∞ Inference Rules

Now, we define the inference rules associated with the above μ-signatures.

Definition 10 (Sequents and inferences). A sequent s = Γ � Δ over a μ-
signature S is a pair of finite lists Γ,Δ of S-formulas: Γ is the antecedent and
Δ the succedent. An inference rule r, usually presented by a schema, is the
data of a conclusion sequent, premise sequents, together with an ancestor
relation relating formulas of the conclusion with formulas of the premises. A
rule has a subset of distinguished principal formulas of the conclusion.

Convention 1. In the following, the ancestor relation will be depicted as colored
lines joining related formulas. The principal formulas of an inference are the
formulas which are explicitly spelled out in the conclusion sequent of an inference,
not described via a context meta-variable. A formula occurrence of an inference
is said to be active if it is principal or related to a principal formula by the
ancestor relation. We will freely use the derived rules obtained by pre- and
post-composition with the exchange rule, adapting the ancestry relation
accordingly. Finally, for one-sided sequent calculi with an involutive negation ·⊥,
we may write Γ � Δ for sequents � Γ⊥,Δ to clarify the computational behaviour
of our examples (keeping the rule names unchanged).

Definition 11 (μMALL∞, μLL∞, μLK∞, μLJ∞). μMALL∞ inferences are given
in Fig. 2. Those for one-sided μLL∞ in Fig. 2(a) and 2(b). Those for μLK∞

in Fig. 3. Those for μLJ∞ by considering only inference from Fig. 3 where the
succedent of both premises and conclusion sequents are singletons.

In the above sequent calculi, every inference but the cut satisfies the subfor-
mula property wrt. FL-subformulae. The 2-sided μLL∞ sequent calculus, over
CμLL2

, is defined as usual and not recalled here for space constraints.

A Linear Perspective on Cut-Elimination 209

Fig. 3. µLK∞ Two-sided Inferences

2.3 Pre-proofs and Validity Conditions

Definition 12 (Pre-proofs). The set PS,I of I-pre-proofs associated to
some of the above μ-signatures S and sets of inferences I is the set of finite or
infinite trees whose nodes are correctly labelled with inferences and sequents.

Pre-proofs are equipped with a metric structure as follows: we define a dis-
tance d : PS,I × PS,I → R as: d(π, π′) = 0 if π = π′ and d(π, π′) = 2−k where
k is the length of the shortest position where π and π′ differ otherwise.

Example 13. Consider μLJ formulas N = μX.� ∨ X and S = νX.N ∧ X. They
represent nats and streams of nats. The μLJ∞ derivations of Fig. 4 respectively
represent natural numbers, successor function, n::n + 1::n + 2:: . . . , the double
functions and the function that builds a stream enumerating the natural num-
bers from its input: the cut-elimination process considered below will ensure
that cutting πk with πenum will infinitarily reduce to πk

from. Figure 5 shows other
examples of μLL∞ pre-proofs, discussed with the validity condition.

The back-edge arrow to a lower sequent is notation to describe a fixed-point
definition of the proof object: the subproof rooted in the source is equal to the
proof rooted in the target. Trivially there is a unique solution.

In the following, we assume given a μ-signature S and a sequent calculus S for
this signature and we shall define the valid S-proofs as a subset of S-pre-proofs,
by introduction a thread-based validity condition .

Definition 14 (Thread and validity). Given a pre-proof π and an infinite
branch β = (si)i∈ω in π, a thread for β is an infinite sequence θ of formula
occurrences such that ∀i ∈ ω, θi is a formula occurrence of si and θi and θi+1

are ancestor of each other. θ is said to support β.
A formula F is recurring in a thread θ of β if there are infinitely many i

such that θi is an occurrence of F .
A thread θ is valid if it contains infinitely often the principal formula (occur-

rence) of a ν or μ rule and if the set of recurring formulas of θ has a least element
(for the usual subformula ordering) which is (i) a ν formula when the least ele-
ment occurs in the succedents or (ii) a μ formula if it occurs in the antecedents.
A pre-proof is valid if all its infinite branches have a suffix supported by a valid
thread.

210 A. Saurin

Fig. 4. Examples of µLJ∞ pre-proofs

Example 15 ((Non-)valid pre-proofs). Consider the pre-proof in Fig. 5(a), with
F = νX.((a�a⊥) ⊗ (!X ⊗ μY.X)) and G = μY.F . The rightmost branch is
supported by the green thread for which the least recurring formula is F , a ν-
formula. All other branches are valid: this pre-proof is valid. Consider now the
same pre-proof but with F = νX.((a�a⊥)⊗(!X⊗G)) and G = μY.νX.((a�a⊥)⊗
(!X ⊗ Y)). G is now a subformula of F and G, a μ-formula, and becomes the
least recurring formula of all threads along the right-most infinite branch. This
branch is invalid: the pre-proof is not a proof. Examples of μLL∞ invalid pre-
proofs are given in Fig. 1(a),5(b–c). In Fig. 4, πdouble has a left thread on N while
πn

from, πenum have right threads on S: they are valid.

2.4 Non-Locative µMALL∞ Cut-Elimination Theorem

The validity condition defines a subset of pre-proofs, ensuring good proper-
ties for those non-wellfounded derivations that satisfy the validity condition. In
this paper, we will mainly be interested in cut-elimination theorem, which was
proved for μMALL∞ [4] and that we review in this subsection. In [4], a somehow
stronger result than cut-elimination is proved: infinitary strong normalization
with respect to the class of fair reduction sequences.

The only new result developed in this subsection is the lifting of the
occurrence-based cut-elimination result of [4] to our setting system, for which
we first introduce the multicut inference and review the main multicut-reduction
steps for μMALL∞ before defining fair reductions. The cut-elimination results
of [4,20] do not rewrite cuts, per se, but subtrees of cuts in the form of an abstrac-
tion called multicut which is a variable arity inference defined as follows:

Definition 16. The multicut inference is given by the data of (i) a conclu-
sion sequent s, (ii) a non-empty list of premises (s1, . . . , sn), n ≥ 1, (iii) an
ancestor relation ι which is an injective map from the conclusion formulas to
the premise formulas and relates identical formulas and additionally (iv) a cut-
connectedness relation |= which is a total, symmetric, binary relation among
the formula occurrences of the premises which are not ancestor of a conclusion

A Linear Perspective on Cut-Elimination 211

Fig. 5. Examples of valid and invalid pre-proofs

formula, which relates dual formulas2 and which satisfies a connectedness and
acyclicity condition (see [3,4]). The multicut inference has no principal formula.

We write this multicut rule as: s1 . . . sn
mcut(ι, ⊥⊥)s

.

In the following, we only consider μMALL∞ pre-proofs with specific multicuts:

Definition 17 (μMALL∞
m). μMALL∞

m (pre)proofs are those (pre)proofs built
from μMALL∞ inferences and the multicut, such that (i) any branch contains
at most one multicut and (ii) any occurrence of a cut is above a multicut infer-
ence.

In the following, we shall always assume, even without mentioning it, that
we consider proofs in μMALL∞

m (as well as μLL∞
m , μLJ∞

m , μLK∞
m). We need the

following definition (from [4]), identifying the premises of an mcut which are
cut-connected to a given formula occurrence:

Definition 18 (Restriction of a mcut-context). Consider an occurrence of
a mcut

s1 . . . sn
mcut(ι, ⊥⊥)

s
and assume si to be � F1, . . . , Fk. We define

CFj
, 1 ≤ j ≤ k, to be the least set of sequent occurrences contained in {s1, . . . , sn}

such that:
(i) If ∃k, l such that (k, l) |= (i, j), then sk ∈ CFj

;
(ii) for any k, k′ �= i, if sk ∈ CFj

and ∃l, l′ such that (k, l) |= (k′, l′), then sk′ ∈ CFj
.

We define C∅ = ∅ and CF,Γ = CF ∪ CΓ .

When relating μLL∞ and μMALL∞ mcut-sequences below, we shall consider
not only finite sequence nor ω-indexed sequences but also transfinite sequences.
Those are sequences of triples of a proof, a redex and the position of the redex
in the proof tree. A position p has a depth dpth(p) which is its length.

Definition 19 (mcut-reduction rules, transfinite sequences). μMALL∞

mcut-reduction sequences are directly adapted from [3,4]. Given an ordinal λ, a
transfinite reduction sequence of length λ, or λTRS, is a λ-indexed sequence
(πi, ri, pi)i∈λ such that πi −→pi

ri
πi+1, for any i such that i + 1 ∈ λ, where the

reduction occurs at position pi reducing mcut-redex ri.
2 When working with two-sided sequents, |= will relate identical formulas, one in a

succedent, the other in an antecedent.

212 A. Saurin

Definition 20 (Weak and strong convergence). A (transfinite) mcut reduc-
tion sequence (πi, ri, pi)i∈α is weakly converging if for any limit ordinal β ∈ α,
lim(πi)i∈β = πβ. (πi, ri, pi)i∈α is strongly converging if it is weakly converg-
ing and moreover for any limit ordinal β ∈ α, lim(dpth(pi))i∈β = +∞.

Remark 21. The cut-reduction rules preserve the property that every branch of
a proof has at most one multicut inference: μMALL∞

m is closed by cut-reduction.

A μMALL∞
m pre-proof π may contain multiple cut-redexes: π −→p1

r1
π1 and

π −→p2
r2

π2. As usual, a notion of residual associates to (r1, p1), a set of redexes
of π2, (r1, p1)/(r2, p2) which is generalized to reduction sequences: (r1, p1)/σ.

Definition 22 (Fair reduction sequences). A reduction sequence (πi,
ri, pi)i∈ω is fair if for all i ∈ ω and r, p such that πi −→p

r π′ there is some
j ≥ i such that πj does not contain a residual of (r, p) anymore.

Theorem 23. Every fair mcut-reduction sequence of μMALL∞ valid proofs of
� Γ (strongly) converges to a cut-free valid proof of � Γ .

2.5 Compressing Transfinite µMALL∞ Cut-Reduction Sequences

In the previous paragraph, we introduced not only ω-indexed sequences, but
transfinite μMALL∞ cut-reduction sequences as we shall need reduction beyond
ω when simulating μLL∞ cut-elimination in μMALL∞. We shall now prove that
a class of transfinite μMALL∞ mcut-reduction sequences can be compressed to
ωTRS. This result can be viewed as adapting to our setting the compression
lemma from infinitary rewriting [31], even though we require more on the struc-
ture of the compressed sequences as it will be useful to establish μLL∞ cut-
elimination.

Definition 24 (Depth-increasing). A μMALL∞ cut reduction sequence σ =
(πi, ri, pi)i∈ω is depth-increasing if (dpth(pi))i∈ω is (weakly) increasing.

Definition 25 (Reordering). An mcut reduction sequence σ = (πi, ri, pi)i∈α

is a reordering of σ′ = (π′
i, r

′
i, p

′
i)i∈β if there is a bijection o between α and β

such that for any i ∈ α, (r′
o(i), p

′
o(i)) = (ri, pi).

Proposition 26 (Compression lemma). Let σ = (πi, ri, pi)i∈α be a strongly
converging μMALL∞ transfinite cut-reduction sequence. There exists a μMALL∞

cut-reduction sequence Comp(σ) = (π′
i, r

′
i, p

′
i)i∈β which is a reordering of σ,

depth-increasing, strongly converging with the same limit as σ and such that
β = α if α is finite and β = ω otherwise.

3 Cut-Elimination Theorem for µLL∞

The aim of this section is to prove the following theorem:

A Linear Perspective on Cut-Elimination 213

Theorem 27. For any valid μLL∞ proof π, fair μLL∞ mcut-sequences from π
converge to cut-free μLL∞ proofs.

The idea of the proof and outline of the present section are as follows:

1. We shall first define the cut-reduction rules for μLL∞ by extending μMALL∞

multicut-reduction with rules for reducing exponential cuts.
2. We then encode exponentials with fixed-points and translate μLL∞ sequents

(resp. pre-proofs) into μMALL∞, preserving validity both ways.
3. We will then simulate μLL∞ reductions in μMALL∞: a single μLL∞ step may

require an infinite, or even transfinite, μMALL∞ mcut-reduction sequence.
4. Finally, we will study the simulation of fair μLL∞ cut-reduction sequences.

Even though the simulation of μLL∞ sequences builds transfinite sequences,
we shall see that one can associate a(n almost) fair μMALL∞ mcut-reduction
sequence to any fair μLL∞ mcut-reduction sequence, and conclude.
The next four subsections will closely follow the above pathway.

3.1 Cut-Elimination Rules for µLL∞

μLL∞ mcut-reduction is defined by extending μMALL∞ multicut-reduction with
the steps given in Fig. 6. The reduction rules for the exponentials assume a
condition on the premisses of the multi-cut rule: all the proofs (hereditarily) cut-
connected to some distinguished formula must have promotions as last inferences.

Definition 28 ((!p)-ready contexts). A subset of the subproofs of a multicut
is said to be (!p)-ready if all its elements are concluded with an (!p) rule. C! will
denote a (!p)-ready context and C!

Γ a context restriction which is (!p)-ready.

Remark 29. The condition for triggering the exponential key reductions
(?w)/(!p) and (?c)/(!p) as well as the (!p)-commutation rule is expressed in
terms of (!p)-readiness: for every ?-formula ?G in the context of a promotion
which shall either commute or cut-reduce with a ?-rule, we require that C?G is
(!p)-ready.

3.2 Embedding µLL∞ in µMALL∞

To extend the cut-elimination result from μMALL∞ to μLL∞, we encode the
exponential connectives using fixed points as follows, following Baelde [2]:

Definition 30. ?•(F) = μX.F ⊕ (⊥ ⊕ (X�X)); !•(F) = νX.F�(1�(X ⊗ X))

This straightforwardly induces an embedding of μLL∞ into μMALL∞:

Definition 31 (Embedding of μLL∞sequents into μMALL∞).
(a)• = a if a is an atom (σX.F)• = σX.(F)• , σ ∈ {μ, ν}
(u)• = u if u ∈ {1,⊥,�, 0} (?F)• = ?•(F •)
(A � B)• = (A)• � (B)• if � ∈ {�,⊕,�,⊗} (!F)• = !•(F •)

214 A. Saurin

Fig. 6. µLL∞ mcut-reduction rules

Definition 32 (μMALL∞derivability of the exponentials). μLL∞ exponen-
tial rules can be encoded in μMALL∞ as shown in Fig. 7. We denote the derivable
rules by ?d•, ?c•, ?w• and !p• respectively. (!p• uses a circular proof.)

Proposition 33 (Preservation of validity). π is a valid μLL∞ proof of � Γ
iff π• is a valid μMALL∞ proof of � Γ •.

Proof (Proof sketch). We simply relate the infinite branches in both pre-proofs.
Assuming that π is valid, consider the special case of an infinite branch β of π•

that, when entering the encoding of a promotion, follows the left-most premise of
the (�) rule. To such an infinite branch it is easy to associate an infinite branch
b of π. b is valid and supported by a thread t with least formula νX.F . (νX.F)•

is the least recurring formula in the thread θ associated with t in β: β is valid.

A Linear Perspective on Cut-Elimination 215

Fig. 7. µMALL∞ encoding of the exponential inferences

3.3 Simulation of µLL∞ Cut-Elimination Steps

Now we have to show that μLL∞ cut-elimination steps can be simulated by the
previous encoding. E.g., the commutation rule for dereliction is simulated by a
(μ)/(Cut) commutation followed by a (⊕)/(Cut) commutation as follows:

� F,G, Γ
(?d•)�?•F,G, Γ � G⊥,Δ

(Cut)�?•F, Γ,Δ

−→2

� F,G, Γ � G⊥,Δ
(Cut)� F, Γ,Δ

(?d•)�?•F, Γ,Δ
The challenge is to show that the simulation of reductions also holds (i) for

the reductions involving (!p) as well as (ii) for reductions occurring above a
promotion rule (aka. in a box) since the encoding of [!p] uses an infinite, circular
derivation. In the promotion commutation case for instance, we have:

� F, ?•G, ?•Γ
(!p•)�!•F, ?•G, ?•Γ

� G⊥, ?•Δ
(!p•)

�!•G⊥, ?•Δ
(Cut)�!•F, ?•Γ, ?•Δ

−→ω � F, ?•G, ?•Γ

� G⊥, ?•Δ
(!p•)

�!•G⊥, ?•Δ
(Cut)� F, ?•Γ, ?•Δ

(!p•)�!•F, ?•Γ, ?•Δ

Proposition 34. Each μLL∞ mcut-reduction r can be simulated in μMALL∞

by a (possibly infinite) sequence of mcut-reductions, denoted r•.

Remark 35. Conversely, one can wonder whether a possible reduction in π• nec-
essarily comes from the simulation of a reduction step in π. It is almost the
case except when the reduction in π• comes from exponential cuts requiring
a (!p)-ready context (ie. (!p) commutation as well as (?w)/(!p) and (?c)/(!p)
key cases, see above): in those cases indeed, if the context is “partially ready”
– meaning that some, but not all, the required premises are promoted – a prefix
of the sequence simulating the reduction step can indeed be performed, before
being stuck. As consequence – and we shall exploit it in the next section when
proving μLL∞ cut-elimination – the simulation of a fair reduction sequence is
not necessarily fair, but only as long as the above cases are involved:

216 A. Saurin

Proposition 36. There exists a fair reduction ρ from some μLL∞ (pre-)proof
π such that ρ• is an ω-indexed unfair μMALL∞ cut-reduction sequence.

3.4 Proof of µLL∞ Cut-Elimination Theorem

μLL∞ cut-elimination theorem follows from the following two lemmas:

Lemma 37. Let π be a μLL∞-proof of � Γ and σ = (πi, ri, pi)i∈ω a fair μLL∞

cut-reduction sequence from π. σ converges to a cut-free μLL∞-pre-proof of � Γ .

Lemma 38. Let π be a μLL∞ pre-proof of � Γ and let us consider a cut-
reduction sequence σ = (πi, ri, pi)i∈ω in μLL∞ from π that converges to a cut-free
μLL∞ pre-proof π′. σ• is a strongly converging (possibly transfinite) sequence.

Proof (Sketch for Thm. 27). Let π be a μLL∞-proof of � Γ and σ = (πi, ri, pi)i∈ω

be a fair μLL∞ mcut-reduction sequence from π. Consider the associated (trans-
finite) μMALL∞ mcut-reduction sequence σ• from π• obtained by simulation.
By Lemma 37, σ converges (strongly) to a cut-free μLL∞ pre-proof π′.

Let us prove that π′ is valid. By Lemma 38, σ• is a transfinite mcut-reduction
sequence from π• strongly converging to π′•. By Prop. 26, σ• can be compressed
into ρ = (π′

i, r
′
i, p

′
i)i∈ω an ω-indexed depth-increasing μMALL∞ mcut-reduction

sequence which converges to π′• and contains the same reductions as σ•. By
Proposition 36, ρ may not be fair: this prevents us from concluding directly
by Proposition 33 but we can still conclude. Let us consider ρf a fair reduction
sequence obtained from ρ by reducing those redexes which cause the lack of
fairness of ρ and let us consider the limit of ρf , πf . To any infinite branch β of
π′•, one can associate a branch βf of πf : it coincides with β except when the
next inference of βf is on a (! F)• (in a sequent, say, � (! F)•

, ?•Δ• which is not
principal along β). In that case, we expand βf by following the unique premise
of the (ν) rule, the second premise of the first (�) rule and the first premise
of the second (�) rule, reaching � 1, ?•Δ•, in which case we know that the 1
is not principal (and never will be) and we follow back β. βf has exactly the
same threads as β: finite threads may only be extended finitely on occurrences
of (! F)•. Since ρf is fair, βf is valid and so is β.

We can then conclude that π′• is cut-free and valid and, using preservation
of validity (Proposition 33), that π′ is a valid cut-free μLL∞-proof. ��

Infinitary cut-elimination for μLL∞ two-sided sequent calculus is an easy
corollary of Theorem 27. Indeed, fair cut-reduction sequences in two-sided μLL∞

are mapped to fair reduction sequences in one-sided μLL∞ from which follows:

Corollary 39. Fair 2-sided μLL∞ valid mcut-reduction sequences eliminate
cuts.

A Linear Perspective on Cut-Elimination 217

4 Cut-Elimination Theorem for µLK∞ and µLJ∞

Cut-elimination theorems for both μLK∞ and μLJ∞ can be established as corol-
laries of Theorem 27. For lack of space, we directly go to our results and postpone
to future work a detailed study of the generalizations to non-wellfounded sequent
calculi of the linear embeddings of LK and LJ into LL developed since Girard
seminal paper. We shall comment on those translations in the conclusion.

4.1 µLK∞ Cut-Elimination: Skeletons and Decorations

To any μLL∞ formulas and μLL∞ proofs, one can associate their skeletons, that is
corresponding μLK∞ formulas and proofs, after erasing of the linear information:

Definition 40 (Skeleton). Sk(A) is defined by induction on A ∈ μLL∞:
Sk(A⊗B) = Sk(A) ∧ Sk(B) Sk(A�B) = Sk(A) ∨ Sk(B) Sk(! A) = Sk(A)
Sk(A�B) = Sk(A) ∧ Sk(B) Sk(A ⊕ B) = Sk(A) ∨ Sk(B) Sk(? A) = Sk(A)

Sk(1) = Sk(�) = � Sk(⊥) = Sk(0) = F Sk(a) = a
Sk(A � B) = Sk(A) ⇒ Sk(B) Sk(σX.A) = σX.Sk(A) Sk(X) = X

with σ ∈ {μ, ν}.
Given a 2-sided μLL∞ pre-proof π of Γ � Δ with last rule r and premises

(πi)1≤i≤n, Sk(π) is the μLK∞ pre-proof of Sk(Γ) � Sk(Δ) defined corecursively,
by case on r: (i) if r ∈ {(!p), (?d)}, Sk(π) = Sk(π1); (ii) otherwise, apply the
μLK∞ rule corresponding to r with premises (Sk(πi))1≤i≤n.

Proposition 41. Sk(·) transports valid μLL∞-proofs to valid μLK∞ proofs.

μLK∞ cut-elimination follows from the existence of μLK∞ linear decorations.

Proposition 42. For any μLK∞ sequent s and any μLK∞ proof π of s, there
is a linear decoration of π, that is a μLL∞ proof πd such that Sk(πd) = π.

Definition 43 (μLK∞cut-reduction). μLK∞ mcut-reduction relation is
defined as follows: −→μLK∞= {(Sk(π),Sk(π′)) | π −→mcut π′ & π �= π′}.
Theorem 44. μLK∞ enjoys cut-elimination.

4.2 µLJ∞ Cut-Elimination

The linear decoration for μLJ∞ is simply Girard’s call-by-value translation [21]
extended to fixed-points on formulas and proofs as follows:

[X]j = !X; [μX.F]j = !μX.[F]j ; [νX.F]j = ! νX.[F]j .

⎡
⎣

π

Γ � F [σX.F/X]
(σr)

Γ � σX.F

⎤
⎦

j

=

[π]j

[Γ]j � [F]j [σX.[F]j/X]
(σr)

[Γ]j � σX.[F]j
(!pr)

[Γ]j � [σX.F]j

and

⎡
⎣

π

Γ, F [σX.F/X] � G
(σl)

Γ, σX.F � G

⎤
⎦

j

=

[π]j

[Γ]j , [F]j [σX.[F]j/X],� [G]j
(σl)

[Γ]j , σX.[F]j � [G]j
(!dl)

[Γ]j , [σX.F]j � [G]j

.

The translation is consistent with μLJ∞- and μLL∞-positivity conditions.

218 A. Saurin

Definition 45 (μILL∞). μILL formulas are defined inductively as:
I, J :: = a | ! X | I � J | I�J | I ⊕ J | � | 0 | μX.I | νX.I | ! I.

A μILL sequent is a sequent of μILL formulas with exactly one formula in the
succedent. A μILL∞ proof is a μLL∞ proof containing only μILL sequents.

The translation preserves validity, following from [X]j = !X, by induction.

Lemma 46. The following hold:

– For any μLJ formulas A,B, σ ∈ {μ, ν}, [A[σX.B/X]]j = [A]j [σX.[B]j/X].
– For any μLJ formula A, [A]j is a μILL formula.
– If π is a μLJ∞ proof of Γ � F , then [π]j is a μILL∞ proof of [Γ]j � [F]j.

On μILL∞ proofs, the skeletons of the previous section can be reused: Sk(·)
transports valid μILL∞ proof to valid μLJ∞ proofs. Moreover μILL∞ proofs are
closed by μLL∞ cut-reductions from which we deduce, as for μLK∞, that:

Theorem 47. μLJ∞ enjoys cut-elimination.

5 Conclusion

In the present paper, we established several cut-elimination results for non-
wellfounded proof systems for logics with least and greatest fixed-points expand-
ing on previous works [4,20]: (i) for μMALL∞ with sequents as lists in con-
trast sequents as sets of locative occurrences [4], (ii) for the 1-sided and 2-sided
sequent calculi of μLL∞, (iii) for μLK∞ and (iv) for μLJ∞. We also established
additional results from a compression lemma for μMALL∞ strongly converging
cut-reduction sequences to linear embeddings of μLK∞ and μLJ∞ into μLL∞.

On the Meaning and Expressiveness of Tree-Exponential Modalities. The proof
of our main result proceeds by encoding LL exponentials in μMALL∞ following an
encoding first considered by Baelde and Miller, and studying μLL∞ cut-reduction
sequences through their simulation in μMALL∞, which was first conjectured in
Doumane’s thesis [18]. We think that the present paper does not only demon-
strate the usefulness of the encoding but that it also suggests new questions.
Indeed, this encoding has interesting features:

– this “rigid” tree-like exponential does not exhibit the Seely isomorphism but,
even though those isomorphisms are common in axiomatizations of categorical
models of linear logic, it is not necessary to have them as isomorphisms to
build a denotational model of linear logic (that is, which quotients proofs up to
cut-equivalence): the present work is actually an example of this fact. (They
are crucial, though, to encode the λ-calculus in linear logic, as additional
equations are needed, which are realized by Seely isos.)

A Linear Perspective on Cut-Elimination 219

– These exponentials allow for a realization of a somehow non-uniform promo-
tion: indeed, while a proof of � !•F, ?•Γ has to provide a proof of � F, ?•Γ ,
the circular definition of the promotion is not the only possible definition:
one can consider as well promotions that would provide a distinct value each
time a box is opened (e.g. a proof of � !•μX.1 ⊕ X may provide distinct
integers depending on how structural rules managed the resource). See [30]
for a detailed discussion.

This tree-like exponential is being investigated with Ehrhard and Jafarrahmani.

Benefiting from Advances in Infinitary Rewriting. Our cut-elimination proof by
encoding μLL∞ into μMALL∞ relies on a simulation of reductions sequences
which makes use of transfinite reductions sequences and compression results.
Those techniques are inspired and adapted from the literature on infinitary
rewriting. We plan to make clearer the connection between non-wellfounded
proof theory and infinitary rewriting in the future, even though in the present
state it was not possible to readily apply results from infinitary rewriting such
as the compression lemma which we has to reprove in our setting [31]. Moreover,
we did not make use of coinductive formulations of infinitary rewriting [19]. That
is another direction for future work: currently, we do not know how to use those
formulations of infinitary rewriting because the sequences we consider by simu-
lation are not given as (strongly) converging sequences. We plan to reconsider
this and benefit from the coinductive approach to infinite reduction sequences.

On Linear Translations for Fixed-Point Logics and Non-Wellfounded Proofs.
We obtained a cut-elimination theorem for μLK∞ and μLJ∞ thanks to linear
translations which deserve some comments. While the linear translation used for
μLJ∞ is standard (it is a call-by-value translation dating back to Girard’s seminal
paper), the treatment of classical logic was more complex. Indeed, usual linear
translation for classical logic introduce, at places, cuts. Due to the sensitivity
of the straight-thread validity condition with respect to the presence of cuts
in cycles, we could not use those translations. However, we plan to investigate
whether a more standard translation can be used in the specific case of bouncing
validity [3].

A Treatment of Cut-Elimination Which Is Agnostic to Validity Conditions.
Last but not least, a major advantage of our approach is that μMALL∞ cut-
elimination proof and, to some extent, the validity conditions, are regarded as
black boxes, simplifying the presentation of the proof and making it reusable
wrt. other validity condition or μMALL∞ proof techniques. The proof seems to
be reusable easily with bouncing validity for instance (even though setting up an
adequate definition of bouncing validity for μLL∞ is quite tricky). A fragment
which seems promising and that we wish to investigate in the near future, is
μMELL∞ equipped with bouncing validity [3].

Acknowledgements. First, I would like to deeply thank David Baelde and Amina
Doumane for their extensive collaboration and brilliant ideas on the topic of µMALL∞;

220 A. Saurin

the idea of a cut-elimination proof exploiting the fixed-point encoding of the exponen-
tials emerged in joint discussions with them. Many thanks to Esaïe Bauer, Anupam
Das, Abhishek De, Claudia Faggian, Guilhem Jaber, Farzad Jafarrahmani, Paul-André
Melliès and Luc Pellissier for helpful discussions and constructive feedback on earlier
versions of this draft. Last, the author would like to thank the anonymous reviewers
for their work and for bringing very relevant suggestions for the present paper as well
as for future works.

References

1. Afshari, B., Leigh, G.E.: On closure ordinals for the modal mu-calculus. In
Rocca, S.R.D., (eds), Computer Science Logic 2013 (CSL 2013). vol. 23 of Leibniz
International Proceedings in Informatics (LIPIcs), pp. 30–44, Dagstuhl, Germany
(2013). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. http://drops.dagstuhl.
de/opus/volltexte/2013/4188, https://doi.org/10.4230/LIPIcs.CSL.2013.30

2. Baelde, D.: Least and greatest fixed points in linear logic. ACM Trans. Comput.
Logic 13(1) (2012). https://doi.org/10.1145/2071368.2071370

3. Baelde, D., Doumane, A., Kuperberg, D., Saurin, A.: Bouncing threads for circu-
lar and non-wellfounded proofs: towards compositionality with circular proofs. In:
Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pp. 63:1–63:13. ACM (2022)

4. Baelde, D., Doumane, A., Saurin, A.: Infinitary proof theory: the multiplicative
additive case. In: 25th EACSL Annual Conference on Computer Science Logic,
CSL 2016, August 29 - September 1, 2016, Marseille, France, volume 62 of LIPIcs,
pp. 42:1–42:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016). http://
www.dagstuhl.de/dagpub/978-3-95977-022-4

5. Baelde, D., Miller, D.: Least and greatest fixed points in linear logic. In: Dershowitz,
N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 92–106. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75560-9_9

6. Brotherston, J.: Sequent Calculus Proof Systems for Inductive Definitions. PhD
thesis, University of Edinburgh, November 2006

7. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 131–146. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22438-6_12

8. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35182-2_25

9. Brotherston, J., Simpson, A.: Complete sequent calculi for induction and infinite
descent. In: 22nd Annual IEEE Symposium on Logic in Computer Science (LICS
2007), pp. 51–62. IEEE (2007)

10. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J.
Logic Comput. 21(6), 1177–1216 (2011)

11. Brünnler, K., Studer, T.: Syntactic cut-elimination for a fragment of the
modal mu-calculus. Ann. Pure Appl. Logic 163(12), 1838–1853 (2012). https://
www.sciencedirect.com/science/article/pii/S0168007212000760, https://doi.org/
10.1016/j.apal.2012.04.006

12. Danos, V., Joinet, J.-B., Schellinx, H.: A new deconstructive logic: linear logic. J.
Symb. Log. 62(3), 755–807 (1997)

http://drops.dagstuhl.de/opus/volltexte/2013/4188
http://drops.dagstuhl.de/opus/volltexte/2013/4188
https://doi.org/10.4230/LIPIcs.CSL.2013.30
https://doi.org/10.1145/2071368.2071370
http://www.dagstuhl.de/dagpub/978-3-95977-022-4
http://www.dagstuhl.de/dagpub/978-3-95977-022-4
https://doi.org/10.1007/978-3-540-75560-9_9
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-642-35182-2_25
https://www.sciencedirect.com/science/article/pii/S0168007212000760
https://www.sciencedirect.com/science/article/pii/S0168007212000760
https://doi.org/10.1016/j.apal.2012.04.006
https://doi.org/10.1016/j.apal.2012.04.006

A Linear Perspective on Cut-Elimination 221

13. Das, A.: A circular version of Gödel’s T and its abstraction complexity. CoRR,
abs/2012.14421 (2020)

14. Das, A.: Personal communication, June 2023
15. Das, A., Pous, D.: Non-wellfounded proof theory for (Kleene+action)(algebras

+lattices). In: Annual Conference for Computer Science Logic (CSL). vol. 119 of
LIPIcs, pp. 19:1–19:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

16. Dax, C., Hofmann, M., Lange, M.: A proof system for the linear time µ-calculus.
In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 273–284.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836_26

17. Doumane, A.: Constructive completeness for the linear-time µ-calculus. In: 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reyk-
javik, Iceland, 20–23 June 2017, pp. 1–12. IEEE Computer Society (2017). https://
doi.org/10.1109/LICS.2017.8005075

18. Doumane, A.: On the infinitary proof theory of logics with fixed points. PhD thesis,
Paris Diderot University (2017)

19. Endrullis, J., Hansen, H.H., Hendriks, D., Polonsky, A., Silva, A.: Coinductive
foundations of infinitary rewriting and infinitary equational logic. Log. Methods
Comput. Sci. 14(1) (2018). https://doi.org/10.23638/LMCS-14(1:3)2018

20. Fortier, J., Santocanale, L.: Cuts for circular proofs: semantics and cut-elimination.
In: Rocca, S.R.D. (eds.) Computer Science Logic 2013 (CSL 2013), CSL 2013, 2–5
September 2013, Torino, Italy, volume 23 of LIPIcs, pp. 248–262. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2013)

21. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

22. Kozen, D.: Results on the propositional µ-calculus. Theor. Comput. Sci.
27(3), 333–354 (1983). Special Issue Ninth International Colloquium on
Automata, Languages and Programming (ICALP) Aarhus, Summer (1982).
http://www.sciencedirect.com/science/article/pii/0304397582901256, https://doi.
org/10.1016/0304-3975(82)90125-6

23. Kozen, D.: A finite model theorem for the propositional µ-calculus. Studia Logica
47(3), 233–241 (1988). https://doi.org/10.1007/BF00370554

24. Kuperberg, D., Pinault, L., Pous, D.: Cyclic proofs, system T, and the power of
contraction. Proc. ACM Program. Lang. 5, 1–28 (2021)

25. Martin-Löf, P.: Hauptsatz for the intuitionistic theory of iterated inductive def-
initions. In: Fenstad, J.E. (edn.) Proceedings of the Second Scandinavian Logic
Symposium. vol. 63 of Studies in Logic and the Foundations of Mathematics,
pp. 179–216. Elsevier (1971). https://www.sciencedirect.com/science/article/pii/
S0049237X08708474, https://doi.org/10.1016/S0049-237X(08)70847-4

26. Melliès, P.-A.: Categorical semantics of linear logic. In: Interactive models of com-
putation and program behavior, Panoramas et Synthèses, pp. 213. Société Math-
ématique de France (2009)

27. Pinault, L.: From automata to cyclic proofs : equivalence algorithms and descriptive
complexity. (Des automates aux preuves cycliques : algorithmes d’équivalence et
complexité descriptive). PhD thesis, University of Lyon, France (2021)

28. Rowe, R.N.S., Brotherston, J.: Automatic cyclic termination proofs for recursive
procedures in separation logic. In: Bertot, Y., Vafeiadis, V., (eds). Proceedings of
the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017,
Paris, France, 16–17 January 2017, pp. 53–65. ACM (2017). https://doi.org/10.
1145/3018610.3018623

https://doi.org/10.1007/11944836_26
https://doi.org/10.1109/LICS.2017.8005075
https://doi.org/10.1109/LICS.2017.8005075
https://doi.org/10.23638/LMCS-14(1:3)2018
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
http://www.sciencedirect.com/science/article/pii/0304397582901256
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1007/BF00370554
https://www.sciencedirect.com/science/article/pii/S0049237X08708474
https://www.sciencedirect.com/science/article/pii/S0049237X08708474
https://doi.org/10.1016/S0049-237X(08)70847-4
https://doi.org/10.1145/3018610.3018623
https://doi.org/10.1145/3018610.3018623

222 A. Saurin

29. Santocanale, L.: A calculus of circular proofs and its categorical semantics. In:
Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 357–371.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6_25

30. Saurin, A.: A linear perspective on cut-elimination for non-wellfounded sequent
calculi with least and greatest fixed points (extended version). long version of the
present paper (2023). https://hal.science/hal-04169137

31. Terese. Term Rewriting Systems. vol. 55 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press (2003)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-45931-6_25
https://hal.science/hal-04169137
http://creativecommons.org/licenses/by/4.0/

Ill-Founded Proof Systems
for Intuitionistic Linear-Time Temporal

Logic

Bahareh Afshari1, Lide Grotenhuis2, Graham E. Leigh1, and Lukas Zenger3(B)

1 Department of Philosophy, Linguistics and Theory of Science,
University of Gothenburg, Gothenburg, Sweden

{bahareh.afshari,graham.leigh}@gu.se
2 Institute of Logic, Language and Computation, University of Amsterdam,

Amsterdam, The Netherlands
l.m.grotenhuis@uva.nl

3 Institute of Computer Science, University of Bern, Bern, Switzerland
lukas.zenger@unibe.ch

Abstract. We introduce ill-founded sequent calculi for two intuitionistic
linear-time temporal logics. Both logics are based on the language of intu-
itionistic propositional logic with ‘next’ and ‘until’ operators and are eval-
uated on dynamic Kripke models wherein the intuitionistic and temporal
accessibility relations are assumed to satisfy one of two natural confluence
properties: forward confluence in one case, and both forward and back-
ward confluence in the other. The presented sequent calculi are cut-free
and incorporate a simple form of formula nesting. Soundness of the calculi
is shown by a standard argument and completeness via proof search.

Keywords: Sequent calculus · Intuitionistic logic · Temporal logic ·
Ill-founded proofs

1 Introduction

Intuitionistic modal and temporal logics have found tangible applications in com-
puter science [7,9,12,13,16,22] and with that comes the motivation for devel-
oping succinct proof systems that facilitate establishing fundamental properties
such as decidability and algorithmic proof search. Temporal logic describes a
range of modal logics in which modal and ‘fixed point’ operators are interpreted
as temporal relations. An important example is linear-time temporal logic LTL,
whose temporal operators include a ‘next’ operator X and an ‘until’ operator U.
The formula XA is interpreted as ‘A is true in the next time-step’, and AUB as
‘A is true until B is true’. The until operator satisfies the equivalence

A U B iff B ∨ (A ∧ X(A U B)),

Supported by the Swiss National Science Foundation [200021L_196176], Dutch
Research Council [OCENW.M20.048], the Knut and Alice Wallenberg Foundation
[2020.0199], and the Swedish Research Council [2017-05111].
c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 223–241, 2023.
https://doi.org/10.1007/978-3-031-43513-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_13&domain=pdf
https://doi.org/10.1007/978-3-031-43513-3_13

224 B. Afshari et al.

showing that AUB is a fixed point of the propositional function p �→ B∨(A∧Xp).
Advances in the proof theory of temporal logics evidence that ill-founded cal-

culi are particularly suitable for capturing the behaviour of fixed point operators
in a syntactic way [1,8,10,15]. So far, the study of such proof systems has focused
on classical logic and their applicability to intuitionistic temporal logics remains
largely unexplored. One of the obstacles in directly applying the techniques from
the classical setting is the interaction of the temporal and intuitionistic relation
in the intuitionistic Kripke semantics.

A standard way to present the semantics of intuitionistic propositional logic
is in terms of Kripke models (W,≤, V), where ≤ is a partial order on the set
of worlds W and V a valuation that is monotone in ≤. A key property of this
semantics is the monotonicity lemma: for all v, v′ ∈ W , if v ≤ v′ and v |= A
then v′ |= A. The semantics of intuitionistic modal/temporal logics can be given
in terms of intuitionistic Kripke models (W,≤, V) equipped with an additional
relation R on W used to interpret the modal operators. In order to keep the
monotonicity property, modalities are interpreted as follows.

w |= �A iff ∀w′ ≥ w ∀v(w′Rv implies v |= A)
w |= ♦A iff ∀w′ ≥ w ∃v(w′Rv and v |= A)

One can also use the classical truth conditions for modalities and instead impose
confluence properties on R and ≤ to ensure monotonicity. Two confluence prop-
erties considered in the literature are:

Forward confluence if v ≥ w and wRw′ then there exists v′ ≥ w′ with vRv′.
Backward confluence if wRw′ and w′ ≤ v′ then there exists v ≥ w with vRv′.

In the setting of intuitionistic LTL, forward confluence alone suffices to obtain the
monotonicity lemma [3]. Since Simpson [20] argues that an intuitionistic reading
of possible world semantics results in models that also satisfy backward conflu-
ence, intuitionistic modal logic is generally used to refer to the logic obtained
when adopting both conditions. Nevertheless, logics corresponding to weaker
frame conditions, often called constructive modal logics, have also received con-
siderable interest (see e.g. [2,23]).

In this work, the language of linear temporal logic is interpreted over models
satisfying forward confluence and models satisfying both forward and backward
confluence; following the terminology in [3], they are referred to as expanding
and persistent models, respectively. To date, neither logic has been given a sound
and complete axiomatisation.1 For each of the resulting logics, we present a cut-
free, ill-founded sequent calculus. Both calculi employ a simple form of nested
sequents so that formulas can be operated on at different temporal steps. This
form of nesting has been used by Kojima and Igarashi [14] to obtain a finitary
calculus for a constructive interpretation of LTL without the until operator.

A standard technique for showing completeness of an ill-founded calculus is
to set up a proof search game between two players, Prover and Refuter, such
1 A Hilbert-style axiomatisation exists for the ‘eventually’ only fragment over expand-

ing models [5] but the case of persistent models is unknown.

Ill-Founded Proof Systems for Intuitionistic Linear-Time 225

that a winning strategy for Prover corresponds to a proof and a winning strategy
for Refuter to a countermodel (see e.g. [1,19]). When applying this technique to
the intuitionistic case, one needs to ensure that the constructed ‘countermodel’
satisfies the required frame conditions. We present such a proof search game
for both logics. The use of nested sequents is crucial for the game as it enables
postponing the application of non-invertible rules until all relevant information
about future time steps is determined.

Intuitionistic temporal logics have been studied in different contexts, the most
notable of which are metaprogramming and topological dynamics. The former
involves the addition of temporal operators to λ-calculi with the aim of modelling
aspects of metaprogramming such as staged computation (see e.g. [7,21,24]). The
latter concerns the use of intuitionistic temporal logics to reason about dynami-
cal topological systems. Fernández-Duque [11] introduced the logic ITLc, in which
formulas of LTL are interpreted in general topological models, and showed that
its restriction to the ‘eventually’ operator ♦ is decidable.2 Boudou et al. [4] show
the decidability of the same fragment interpreted in expanding models, denoted by
ITLe, and provide a Hilbert-style axiomatisation for both logics in [5]. A calculus
with ω-branching inference rules is given in [6] for ITLe extended with the ‘hence-
forth’ operator. To date, no recursive axiomatisation of the validities in persistent
models is known.

Outline. Section 2 introduces the syntax and semantics of intuitionistic linear
temporal logic iLTL. Section 3 presents the proof system iLTLe

nest, which is proven
sound and complete with respect to expanding models in Sects. 4 and 5. In
Sect. 6, we outline how iLTLe

nest can be adapted to obtain a system iLTLp
nest that

is sound and complete with respect to persistent models.

2 Syntax and Semantics

Fix a countable set Prop of atomic propositions. Formulas of iLTL are defined
inductively as follows:

A,B:: = ⊥ | p | A ∧ B | A ∨ B | A → B | XA | A U B

where p ∈ Prop. We denote formulas by A,B, etc., and atomic propositions by
p, q, etc. We define the formula XnA inductively by X0A := A and Xn+1A :=
XXnA.

Formulas of iLTL are evaluated on dynamic models, which are intuitionis-
tic Kripke models equipped with a time function that maps each world to its
temporal successor.

Definition 1. A dynamic model is a tuple M = (W,≤, f, V) where

1. W is a non-empty set,
2. ≤ is a partial order on W ,
3. f : W −→ W is a function and

2 In our notation, the eventually operator ♦ can be defined as ♦A := ⇒ U A.

226 B. Afshari et al.

Fig. 1. Forward and backward confluence.

4. V : W −→ P(Prop) is a valuation function that is monotone in ≤, i.e., for
all w, v ∈ W , if w ≤ v, then V (w) ⊆ V (v).

Elements of W are called worlds. If w, v ∈ W such that f(w) = v, then v is
called the temporal successor of w. If w ≤ v, then v is called an intuitionistic
successor of w. We inductively define f0(w) := w and fn+1(w) := f(fn(w)).

Given a dynamic model M = (W,≤, V, f), the truth relation M,w |= A where
w ∈ W is defined inductively on A as follows.

M,w |= ⊥
M,w |= p iff p ∈ V (w),
M,w |= A ∧ B iff M,w |= A and M,w |= B,
M,w |= A ∨ B iff M,w |= A or M,w |= B,
M,w |= A → B iff for all v ≥ w if M,v |= A, then M,v |= B,
M,w |= XA iff M,f(w) |= A,
M,w |= A U B iff there exists an n < ω such that M,fn(w) |= B and for all

m < n we have M,fm(w) |= A.

Validity and satisfiability over a class of dynamic models are defined in the
standard way.

We consider dynamic models that satisfy certain confluence properties,
namely forward and backward confluence, which are illustrated in Fig. 1.

Definition 2. A dynamic model M = (W,≤, f, V) is

– expanding if M is forward confluent: for all w, v ∈ W ,

if w ≤ v, then f(w) ≤ f(v),

– persistent if M is expanding and backward confluent: for all w, v′ ∈ W ,

if v′ ≥ f(w), then there exists v ≥ w with f(v) = v′.

We denote by iLTLe and iLTLp the set of iLTL-validities over expanding and
persistent models, respectively. It is easy to check that the temporal version of
the K-axiom, namely X(A → B) → (XA → XB), is valid over expanding models.
The converse (XA → XB) → X(A → B) is only valid over persistent models,
and so we have iLTLe � iLTLp.

With a straightforward induction, one can prove the monotonicity lemma for
expanding models. Note that the lemma thus also holds for persistent models.

Lemma 1. Let M = (W,≤, V, f) be an expanding model, w, v ∈ W and A a
formula. If M,w |= A and w ≤ v, then M,v |= A.

Ill-Founded Proof Systems for Intuitionistic Linear-Time 227

3 Nested Ill-Founded Proofs

In this section we present an ill-founded sequent calculus that is sound and
complete with respect to the class of expanding models. Proofs in this calculus
are finitely-branching trees that admit infinitely long branches. Importantly, the
calculus has no explicit induction rule and does not make use of the cut-rule.

To ensure soundness, infinite branches are required to satisfy a global sound-
ness condition, which is presented in a standard way using formula traces. To
ensure completeness, the calculus incorporates a simple form of nesting.

Definition 3. A nested iLTL-formula is a tuple (A,n), denoted by An, with A
an iLTL-formula and n < ω. A sequent is an ordered pair 〈Γ,Δ〉, written as
Γ ⇒ Δ, where Γ and Δ are finite sets of nested formulas.

For the remainder of this paper we call nested formulas simply formulas. For-
mulas that are not nested are called plain. Observe that sequents Γ ⇒ Δ may
contain multiple formulas in Δ, i.e. we consider a multi-succedent calculus. The
intended interpretation of a nested formula An is the plain formula XnA. The
interpretation of a sequent Am1

1 , . . . , Amk

k ⇒ Bn1
1 , . . . , Bnl

l is the plain formula
∧

1≤i≤k

XmiAi →
∨

1≤j≤l

Xnj Bj

We write M,w |= An if M,w |= XnA and M,w |= Γ ⇒ Δ if M,w satisfies the
interpretation of Γ ⇒ Δ. For any set Γ of nested formulas, we define Γ+1 =
{An+1 : An ∈ Γ}.

Definition 4. The sequent calculus iLTLe
nest consists of the rules in Fig. 2. Rules

without premises are called axioms.

The propositional rules of iLTLe
nest are based on the multi-succedent calculus

G3im from Negri and von Plato [18] and the nesting is inspired by the work
of Kojima and Igarashi [14]. The rule →L differs from the presentation in Negri
and von Plato insofar that there is no weakening in the left premise, resulting
in invertibility of →L. The choice to use a multi-succedent instead of a single-
succedent calculus is motivated by the former’s better compatibility with proof
search. Observe that the rule →R has only a single formula in the succedent of the
premise, ensuring that the law of excluded middle is not derivable. Moreover, →R
can only be applied to implications with nesting level 0. Relaxing this restriction
by allowing implications of arbitrary nesting depth is unsound for expanding
models but sound and complete for persistent models (see Sect. 6).

The U-rules capture the equivalence A U B ≡ B ∨ (A ∧ X(A U B)) and the
‘shift’ rule S captures modal necessitation. The rules XL and XR are purely
structural as XAn has the same interpretation as An+1. Moreover, note that all
rules except S and →R are invertible in the sense that the conclusion is valid

228 B. Afshari et al.

Fig. 2. Rules of the system iLTLe
nest. The symbols Γ, Δ, Σ and Π range over arbitrary

finite sets of nested formulas which may be empty.

if and only if the premises are.3 We will therefore refer to S and →R as the
non-invertible rules and to all other rules as the invertible rules.

It will be helpful to refer to formulas according to their role in a particular
rule application. For each rule, the distinguished formula in the conclusion is
called principal and the distinguished formulas in the premises are called its
residuals; for example, in →L the principal formula is A → Bn and its residuals
are A → Bn, An and Bn. In S, all formulas in the conclusion are principal and
each formula in the premise is the residual of its corresponding principal formula;
in particular, formulas in Σ and Π have no residual. In every rule application,
any formula that is neither principal nor residual is called a side formula.

A derivation in iLTLe
nest of a sequent σ is a finite or infinite tree whose nodes

are labelled according to the rules of iLTLe
nest and whose root is labelled by

σ. We will read trees ‘upwards’, so the nodes labelled by premises are viewed
as successors of the node labelled by the conclusion. A path through such a
derivation T is a finite or infinite sequence ρ0, ρ1, . . . of nodes of T such that for
each index i, ρi+1 is a direct successor of ρi in T .

Definition 5. Let ρ be a path through a derivation T . A (formula) trace on ρ
is a finite or infinite sequence of nested formulas A0, A1, . . . such that for each
index i the following hold.

1. Ai occurs on the left-hand side of the sequent labelling ρi;
3 This is a semantic notion of invertibility. The syntactic invertibility of these rules,

meaning that the conclusion is provable if and only if the premises are, will follow
from soundness and completeness.

Ill-Founded Proof Systems for Intuitionistic Linear-Time 229

2. if Ai is a principal formula in the rule applied at ρi, then Ai+1 is a residual
formula of Ai in ρi+1;

3. if Ai is a side formula in the rule applied at ρi, then Ai+1 = Ai.

For any rule R, we say that a trace (Ai)i actively passes through R if there is an
index j such that Aj is a principal formula in an application of R.

Definition 6. A formula trace is good if it actively passes through infinitely
many applications of the rule UL.

The following lemma describes a straightforward yet key property of good for-
mula traces.

Lemma 2. If (Ai)i is a good formula trace, then there is a plain formula of the
form A U B and some j < ω such that for all k ≥ j, Ak is of the form A U Bmk

or X(A U B)mk for mk < ω.

A proof in iLTLe
nest is defined as follows.

Definition 7. An iLTLe
nest-derivation T of a sequent σ is a proof of σ if

1. every leaf in T is labelled by an axiom;
2. every infinite branch of T contains an infinite path that has a good formula

trace.

4 Soundness

This section establishes soundness of iLTLe
nest with respect to the class of expand-

ing models. The proof proceeds via a standard argument using signatures: maps
that associate a natural number to each ‘relevant’ formula in a sequent σ. We
assume towards a contradiction that there is a proof π of an invalid sequent σ.
Then, using a countermodel of σ, we find an infinite path ρ of invalid sequents
in π and assign a signature to each of them. By ensuring that these signatures
never increase and decrease when passing through the UL-rule, it then follows
that a good formula trace on ρ corresponds to an infinite descent of natural
numbers. The aforementioned ‘relevant’ formulas are called eventualities.

For a sequent σ, let Γσ and Δσ denote, respectively, the left-hand and right-
hand side of σ.

Definition 8. An eventuality is a formula of the form Xj(AUB)n with n, j < ω.
Given a sequent σ, a formula E is an eventuality of σ if E is an eventuality
occurring in Γσ.

Let Uk be the operator defined inductively by A U0 B = B and A Uk+1 B =
A ∧ X(A UkB). For an eventuality E = Xj(A U B)n and k < ω define

E[k] := Xj(A UkB)n.

Given a sequent σ, a signature for σ is a map τ which assigns a natural number to
each eventuality of σ. By Γσ[τ] we denote the set obtained from Γσ by replacing
each eventuality E with E[τ(E)]. Furthermore, we let σ[τ] denote the sequent
Γσ[τ] ⇒ Δσ.

230 B. Afshari et al.

Theorem 1. Every sequent provable in iLTLe
nest is valid over the class of expand-

ing models.

Proof. Let π be a iLTLe
nest-proof of σ and suppose, for contradiction, that σ is

not valid. Let M = (W,≤, f, V) be an expanding model and w ∈ W such that
M,w |= σ. For brevity, we will identify each node in π with the sequent that
labels it.

We will inductively define a path (σi)i of sequents through π, a sequence of
worlds (wi)i in M and a sequence of signatures (τi)i such that the following hold
for every i < ω:

1. τi is a signature for σi;
2. wi |= ∧

Γσi
[τi] and wi |= ∨

Δσi
(and thus wi |= σi[τi] and wi |= σi);

3. for every eventuality E of σi, the following hold:
(a) τi(E) is the least natural number k such that wi |= E[k];
(b) if E is a side formula in the rule application with conclusion σi, then E

is an eventuality of σi+1 and τi+1(E) ≤ τi(E).

We define (σi)i, (wi)i and (τi)i as follows.
Set σ0 = σ. Since w |= σ, there exists a v ≥ w such that v |= ∧

Γσ and
v |= ∨

Δσ. Set w0 = v and for every eventuality E in Γσ, define τ0(E) to be the
least k such that w0 |= E[k].

Suppose σi, wi and τi are given. We use a case distinction based on the rule
applied at σi in π (i.e. the rule that has σi as conclusion). Note that this rule
cannot be an axiom, since wi |= σi. We only show the cases →R, XL, S, and UL;
the other cases are treated in a straightforward way.

→R Suppose σi = (Γ ⇒ A → B0,Δ) with A → B0 principal in the rule appli-
cation. Let σi+1 = (Γ,A0 ⇒ B0). Since wi |= A → B0, there exists a
wi+1 ≥ wi such that wi+1 |= A0 and wi+1 |= B0. For any eventuality E
in Γ ∪ {A0}, let τi+1 map E to the least k such that wi+1 |= E[k]. Since
wi+1 ≥ wi, by monotonicity (Lemma 1) we have τi+1(E) ≤ τi(E) for each
eventuality E in Γ .

XL Suppose σi = (Γ,XAn ⇒ Δ) with XAn principal in the rule application.
Let σi+1 = (Γ,An+1 ⇒ Δ) and wi+1 = wi. If An+1 is an eventuality, define
τi+1(An+1) := τi(XAn). On other eventualities, τi+1 acts as τi.

S Suppose σi = (Σ,Γ+1 ⇒ Δ+1,Π) such that Γ ⇒ Δ is the premise of the rule
application. Let σi+1 = (Γ ⇒ Δ), wi+1 = f(wi) and τi+1(An) = τi(An+1)
for every eventuality An in Γ .

UL Suppose σi = (Γ,AUBn ⇒ Δ) with AUBn principal in the rule application.
If τi(A U Bn) = 0, let σi+1 = (Γ,Bn ⇒ Δ) and wi+1 = wi. If Bn is
an eventuality and not in Γ , let τi+1 map Bn to the least k such that
wi+1 |= Bn[k]. On other eventualities, τi+1 acts as τi.
Alternatively, if τi(A U Bn) > 0, let σi+1 = (Γ,An,X(A U B)n ⇒ Δ) and
wi+1 = wi. If An is an eventuality and not in Γ , let τi+1 map An to the
least k such that wi+1 |= An[k]. Define τi+1(X(A U B)n) = τi(A U Bn) − 1.
On other eventualities, τi+1 acts as τi.

Ill-Founded Proof Systems for Intuitionistic Linear-Time 231

It is easy to verify that (σi)i, (wi)i and (τi)i satisfy properties 1–3.
Since π is a proof, the infinite branch (σi)i must contain a good trace (Ai)i≥j

starting in some sequent σj . By Lemma 2, we may assume that this trace only
passes actively through the rules XL, S and UL, and it cannot pass through
the latter in a degenerative way.4 Now consider the infinite sequence (τi(Ai))i≥j

of natural numbers. Note that, by property 3(b), if Ai is a side formula then
τi+1(Ai+1) ≤ τi(Ai). Moreover, if Ai is principal in an application of XL or S then
τi+1(Ai+1) = τi(Ai), and if Ai is principal in a (non-degenerative) application
of UL then τi+1(Ai+1) < τi(Ai). As the trace is good, the latter case occurs
infinitely often, and so we obtain an infinite, strictly decreasing sequence of
natural numbers and thereby a contradiction.

5 Completeness

This section establishes completeness of iLTLe
nest with respect to the class of

expanding models. For each sequent σ we construct an infinite two-player game
between Prover (Prov) and Refuter (Ref) such that a winning strategy for Prov
corresponds to a proof of σ and a winning strategy for Ref to the existence of a
countermodel for σ. The game will be played on a proof search tree, which is a
finitely branching, ill-founded tree that presents a systematic search for a proof
of σ. In this tree, non-invertible rules will only be applied to saturated sequents.

Definition 9. A sequent Γ ⇒ Δ is left-saturated if the following hold.

1. if A ∧ Bn ∈ Γ , then An, Bn ∈ Γ ;
2. if A ∨ Bn ∈ Γ , then An ∈ Γ or Bn ∈ Γ ;
3. if A → Bn ∈ Γ , then An ∈ Δ or Bn ∈ Γ ;
4. if XAn ∈ Γ , then An+1 ∈ Γ ;
5. if AUBn ∈ Γ , then there exists an m ≥ n such that Bm ∈ Γ and Ak ∈ Γ for

all n ≤ k < m.

The sequent is saturated if, in addition,

6. if A ∧ Bn ∈ Δ, then An ∈ Δ or Bn ∈ Δ;
7. if A ∨ Bn ∈ Δ, then An, Bn ∈ Δ;
8. if XAn ∈ Δ, then An+1 ∈ Δ;
9. if A U B0 ∈ Δ, then B0, A0 ∈ Δ or B0,X(A U B)0 ∈ Δ.

Given a sequent σ, we say that a formula φ is saturated in σ if σ satisfies the
relevant saturation clause for φ.

Note that the saturation clause for right U-formulas is restricted to the zeroth
nesting level. The saturation clause for left U-formulas is needed to ensure that
the valuation of the countermodel constructed from a failed proof search is mono-
tone. This will become evident once we define such countermodels later in this
section.
4 Formally, a trace (Ai)i passes degeneratively through UL if there is an Aj of the form

A U Bn such that Aj+1 ∈ {An, Bn}.

232 B. Afshari et al.

As we are working with set sequents, formulas can simultaneously function
as principal and side formulas. To avoid creating infinite branches with no good
trace, one needs to be explicit about how rules may be applied in the proof
search tree. We call an application of a rule succinct if the principal formula(s)
is not also a side formula, and preserving if the principal formula(s) is also a
side formula. For example, an application of XL of the form given in Fig. 2 is
succinct if XAn ∈ Γ and preserving if XAn ∈ Γ . Rule applications of →R and
S are always succinct. Note that succinct and preserving are dual notions; we
find it useful to refer to them as separate concepts as they each highlight a key
property of the proof search tree.

Definition 10. A proof search tree T for a sequent σ is a finite or infinite
tree whose nodes are labelled according to the rules of iLTLe

nest and in which the
following holds.

1. The root of T is labelled by σ.
2. A node of T is a leaf if and only if it is labelled by an axiom.
3. Every left rule application is succinct.
4. Every right rule application except →R is preserving.
5. No invertible rule is applied to a sequent in which the principal formula is

already saturated.
6. Instead of the rules →R and S, we have the rule

Σ,Γ+1, A0
0 ⇒ B0

0 . . . Σ, Γ+1, A0
k ⇒ B0

k Γ ⇒ Δ

Σ,Γ+1 ⇒ (A0 → B0)0, . . . , (Ak → Bk)0,Δ+1,Π
C,

where it is required that every formula in Σ ∪ Π is of nesting level 0, Π does
not contain a formula of the form A → B0 and the conclusion is a saturated
sequent. We call the premises of the form Σ,Γ+1, A0

i ⇒ B0
i the left premises,

and Γ ⇒ Δ the right premise of C.

The ‘choice’ rule C represents a choice between non-invertible rules that Prov has
to make once the sequent is saturated. Note that the empty sequent is saturated;
an empty sequent in a proof search tree can only be the conclusion of a C-rule
and has another empty sequent as its only direct successor.

Given a sequent σ, one can build a proof search tree as follows. First try
to saturate all left formulas by succinctly applying invertible left rules. If a
left-saturated sequent is obtained, saturate all right formulas by preservingly
applying invertible right rules, then apply C and start over. Observe that it is
possible that some branches in a proof search tree do not contain a saturated
sequent due the fifth saturation clause.

The following lemmas describe some key properties of proof search trees. For
a node s in a proof search tree, we write Γs ⇒ Δs to denote the sequent labelling
the node s.

Lemma 3. If T is a proof search tree wherein s ∈ T is the conclusion of a
C-application with right premise t ∈ T , then the following hold.

Ill-Founded Proof Systems for Intuitionistic Linear-Time 233

1. t is labelled by a left-saturated sequent;
2. if r ≥ t and no C-application occurs between t and r, then Γr = Γt.

Lemma 4. Every infinite branch of a proof search tree T contains infinitely
many applications of UL or C.

Proof. Let (ρi)i<λ be a branch of T (where λ ≤ ω). Suppose there exists a suffix
(ρi)j≤i<λ that contains no applications of UL or C. Due to property 3 to 5 of
the proof search tree, there exists a k ≥ j such that all formulas except for left
U-formulas will be saturated in ρk. The only rules which may be applied at that
point are UL or C, showing that (ρi)i<λ must be finite.

Lemma 5. Every infinite branch of a proof search tree T that contains only
finitely many C-applications has a suffix with a good formula trace.

Proof. Let β be an infinite branch of T with finitely many C-applications. Let ρ
be a suffix of β that starts after the last C-application. By the previous lemma,
ρ must contain infinitely many applications of UL. We show that ρ contains a
good trace.

Consider the tree Tρ of formula traces on ρ (add a fresh node as the root).
Now let T ′

ρ be the tree obtained from Tρ by identifying consecutive nodes that are
labelled by the same formula. Note that T ′

ρ cannot be finite, since ρ must contain
infinitely many applications of UL and this rule may not be applied to formulas
that also function as a side formula. By König’s lemma, T ′

ρ contains an infinite
branch. Note that this branch corresponds to an infinite formula trace (Ai)i on
ρ that does not stagnate on a side formula, that is, (Ai)i actively passes through
a left rule infinitely often. Property 3 to 5 of the proof search tree and absence of
C-applications then imply that (Ai)i actively passes through UL infinitely often.

We are now ready to define the notion of a refutation which corresponds to a
winning strategy for Ref.

Definition 11. A refutation of a sequent σ is a subtree R of a proof search tree
T for σ such that the following hold.

1. R contains the root of T .
2. Every branch of R is infinite.
3. If a node s in R is (labelled by) the conclusion of an application of C in T ,

then R contains all direct successors of s in T .
4. If a node s in R is (labelled by) the conclusion of an application of any rule

other than C in T , then R contains exactly one direct successor of s in T .
5. No infinite branch of R contains a path with a good formula trace.

Note that the final condition above together with Lemma 4 implies that every
branch in a refutation must contain infinitely many applications of the C-rule.

Proposition 1. Every sequent with a refutation has an expanding counter-
model.

234 B. Afshari et al.

The proof of the above proposition is provided in the following section. For
now, we turn to defining the proof search game which is instrumental in the
completeness proof.

Given a sequent σ and a proof search tree T for σ, the proof search game
G(T, σ) is defined as follows. The game is played by two players Prov and Ref.
The arena of the game is the proof search tree T . Each play starts in the root of
T , which is labelled by σ. If the current play is in position t, where t is a node of
T , and t is owned by player P ∈ {Prov,Ref}, then P plays by choosing a direct
successor of t in T . Prov owns all positions that are conclusions of applications
of the C-rule while every other position is owned by Ref. If a play reaches a node
that has no successors (i.e. an axiom), then the play ends and is called finite;
otherwise the play is called infinite. Observe that every play directly corresponds
to a branch of T . The winning conditions are as follows: finite plays are won by
Prov and infinite plays are won by Prov if the infinite branch of T to which the
play corresponds contains a good trace, and won by Ref otherwise. We make use
of the standard notion of a (winning) strategy for players. The following lemma
is then a straightforward consequence of the winning conditions of the game
G(T, σ).

Lemma 6. If there is a winning strategy for Prov in G(T, σ), then σ has a
iLTLe

nest-proof, and if there is a winning strategy for Ref, then σ has a refutation.

As the set of winning plays (for each player) is Borel, it follows from Martin’s
determinacy theorem [17] that the game G(T, σ) is determined for any sequent
σ and proof search tree T . That is, exactly one player has a winning strategy
in G(T, σ). As every sequent has a proof search tree, completeness of iLTLe

nest is
then obtained as a direct consequence of Proposition 1 and Lemma 6.

Theorem 2. Every sequent valid over the class of expanding models is provable
in iLTLe

nest.

5.1 Proof of Proposition 1

Let R be a refutation of σ. Recall that, for any node s ∈ R, Γs ⇒ Δs denotes
the sequent labelling s. We define a dynamic model M = (W,≤, f, V) as follows.

1. W = R/∼, where s ∼ t iff there exists a path between s and t in which no
C-application occurs.

2. Define the function f by

f(w) = v iff there exist s ∈ w and t ∈ v such that s is the conclusion
and t is the right premise of the same C−application.

Note that f is a total function, since every branch of R contains infinitely
many C-applications and every C-application has a right premise.

3. First define the relation ≤0 on W by

w ≤0 v iff there exist s ∈ w and t ∈ v such that s is the conclusion
and t a left premise of the same C−application.

Ill-Founded Proof Systems for Intuitionistic Linear-Time 235

Then let ≤ be the transitive reflexive closure of the relation

≤1 := {(fn(w), fn(v)) : w ≤0 v and n < ω}.

4. Define the valuation by V (w) = {p ∈ Prop : p0 ∈ Γw} where Γw =
⋃

s∈w Γs.

Similar to Γw we write Δw for
⋃

s∈w Δs.

Lemma 7. M is an expanding model.

Proof. Forward confluence follows directly from the definition of ≤1. For mono-
tonicity of the valuation, note that it suffices to show that the relation ≤1 is
monotone in V . In the following, we write [t] for the equivalence class of t with
respect to ∼.

Let w, v ∈ W with w ≤1 v. Then there exist n < ω and s, t ∈ R such that
w = fn([s]), v = fn([t]) and t is a left premise of a C-application on s. Note
that this means that w is reached from [s] by applying the C-rule n times while
always taking the right premise, and similarly for v and [t]. From Lemma 3 and
definition of C, it follows that for any atomic proposition p,

p0 ∈ Γfn([s]) implies pn ∈ Γ[s], (1)

pn ∈ Γ[t] implies p0 ∈ Γfn([t]). (2)

So we have the following chain of implications

p0 ∈ Γfn([s])
(1)
=⇒ pn ∈ Γ[s] =⇒ pn ∈ Γ[t]

(2)
=⇒ p0 ∈ Γfn([t]),

where the middle implication follows from the definition of C. This shows V (w) ⊆
V (v) as required.

Lemma 8. For any w ∈ W , we have M,w |= ∧
Γw and M,w |= ∨

Δw.

Proof. Let A be a formula. By induction on the logical complexity of A, we
simultaneously prove that for any w ∈ W and n < ω we have (a) w |= An if
An ∈ Γw and (b) w |= An if An ∈ Δw.

We only treat the propositional case and the connectives → and U. The
proof relies on the C-rule being applied only on a saturated conclusion. Thus
the sequent Γw ⇒ Δw is saturated for every w ∈ W .

We begin with (a). Suppose An ∈ Γw. If A ∈ Prop, then A0 ∈ Γfn(w) and
thus w |= XnA. If A = B U C, by saturation there exists an m ≥ n such that
Cm ∈ Γw and Bk ∈ Γw for all n ≤ k < m. Thus w |= An by the IH. This leaves
the case A = B → C. Let s ∈ w be the (unique) conclusion of a C-application.
By definition of →L, we have Cn ∈ Γw or B → Cn ∈ Γs. In the first case,
the IH implies w |= Cn hence w |= An. The second case is more involved. We
have A0 ∈ Γfn(w) by Lemma 3. Define u := fn(w) and let v ≥ u. We will
restrict ourselves to the case that v ≥1 u; the argument can be extended to the
general case using the monotonicity lemma. Let r, t ∈ R and m < ω be such
that u = fm([r]), v = fm([t]) and t is a left premise of a C-application with

236 B. Afshari et al.

conclusion r. Since A0 ∈ Γu, we have Am ∈ Γr (by Lemma 3), which implies
that Am ∈ Γt. As before, we then have Cm ∈ Γ[t] or Am ∈ Γt′ , where t′ ∈ [t] is
the conclusion of a C-application. This implies v |= C0 (by the IH) or A0 ∈ Γv

(by Lemma 3). In the second case, saturation implies that C0 ∈ Γv or B0 ∈ Δv.
Applying the IH, either v |= C0 or v |= B0. Thus u |= A0 and thereby w |= An.

We now consider (b). Suppose An ∈ Δw. If A ∈ Prop, then An /∈ Γw since
no sequent in R can be an axiom. By the same argument used to obtain (1), we
have A0 /∈ Γfn(w) and thus w |= XnA. If A = B → C, then A0 ∈ Δfn(w). As the
C-rule must be applied to some (namely the highest) sequent in the equivalence
class fn(w), it must be the case that fn(w) has an intuitionistic successor v such
that B0 ∈ Γv and C0 ∈ Δv. The IH then implies fn(w) |= A0 and thus w |= An.

Finally, if A = B U C, then A0 ∈ Δfn(w) because UR-applications are pre-
serving. Saturation and the IH implies fn(w) |= C0 and either fn(w) |= B0 or
A1 ∈ Δfn(w). Similarly, for every m ≥ n, if A1 ∈ Δfm(w) then fm+1(w) |= C0

and either fm+1(w) |= B0 or A1 ∈ Δfm+1(w). So either there exists an m ≥ n

such that fm(w) |= B0 and fk(w) |= C0 for all n ≤ k ≤ m, or fm(w) |= C0 for
all m ≥ n. Either way, w |= An.

We conclude that the expanding model M falsifies σ.

5.2 A Sequent Unprovable with Bounded Nesting

We have shown that the calculus iLTLe
nest is complete with respect to the class

of expanding models via a proof search argument. However, our argument does
not yield regular completeness. Observe that in the construction of the proof
search tree, there is no bound given on the nesting depth occurring in sequents.
Indeed, in order to saturate U-formulas on the left, one has to keep unfolding
them until the left premise is chosen, which, in case of a successful branch,
might never happen. Hence, proofs might have arbitrary large nesting depth
and there is thus no guarantee that infinite branches will contain repetitions.
This observation raises the question of whether the completeness proof can be
adapted to obtain a bound on the nesting depth occurring in iLTLe

nest-proofs.
Unfortunately, this is not possible, as there are sequents that are not provable
in iLTLe

nest with bounded nesting depth. An example for this is the sequent

♦(A ∨ B)0 ⇒ C → ♦A0, C → ♦B0,

where ♦A := � UA and � := ⊥ → ⊥. For brevity, instead of the U-rules we will
use the following rules for ♦.

Γ,An ⇒ Δ Γ,X♦An ⇒ Δ

Γ,♦An ⇒ Δ
♦L

Γ ⇒ An,X♦An,Δ

Γ ⇒ ♦An,Δ
♦R

It is easy to see that any formula in the ♦-fragment of iLTL is provable in iLTLe
nest

if and only if it is provable in iLTLe
nest with the ♦-rules instead of the U-rules.

Let us now consider the following proof π of the sequent ♦(A ∨ B)0 ⇒ C →
♦A0, C → ♦B0.

Ill-Founded Proof Systems for Intuitionistic Linear-Time 237

π0

A ∨ B0 ⇒ Δ

π1

A ∨ B1 ⇒ Δ

...
♦(A ∨ B)2 ⇒ C → ♦A0, C → ♦B0

XL
X♦(A ∨ B)1 ⇒ C → ♦A0, C → ♦B0

♦L
♦(A ∨ B)1 ⇒ C → ♦A0, C → ♦B0

XL
X♦(A ∨ B)0 ⇒ C → ♦A0, C → ♦B0

♦L
♦(A ∨ B)0 ⇒ C → ♦A0, C → ♦B0

The subproof π0 is given as follows.

id
A0, C0 ⇒ A0,X♦A0

♦R
A0, C0 ⇒ ♦A0

→R
A0 ⇒ C → ♦A0, C → ♦B0

id
B0, C0 ⇒ B0,X♦B0

♦R
B0, C0 ⇒ ♦B0

→R
B0 ⇒ C → ♦A0, C → ♦B0

∨L
A ∨ B0 ⇒ C → ♦A0, C → ♦B0

The subproof π1 is similar, the only difference being that the formulas ♦A0 and
♦B0 have to be unfolded twice to reach an axiom instead of just once. In the
same way, we obtain the subproofs πi for each i < ω.

Note that π is indeed a proof, as it contains only one infinite branch and this
branch contains a good trace, and that the nesting depth in π is unbounded.
Furthermore, note that any proof of this sequent will have an infinite branch
on the right with unbounded nesting levels. Working bottom-up, applying any
other rule than ♦L to the root sequent results in an unprovable sequent, and
applying any rule other than XL to its right premise results in an unprovable
sequent as well. The same argument applies to each sequent in the right-most
branch of π.

Interestingly, allowing analytic cuts there is a proof of this sequent with
nesting depth bounded by 1, the cut formula being ♦A ∨ ♦B0.

6 Persistency

The system iLTLe
nest can be adapted to a sound and complete proof system for

the logic iLTLp of validities over persistent models.

Definition 12. The sequent calculus iLTLp
nest consists the rules of iLTLe

nest except
S and →R which are replaced by

Γ,An ⇒ Bn

Γ ⇒ A → Bn,Δ
→Rp

Derivations, paths, (good) formula traces and proofs are defined for iLTLp
nest just

as for iLTLe
nest, and it is easy to see that Lemma 2 still holds. To prove soundness,

one can simply follow the proof of Theorem 1 and in the case for →Rp invoke
the validity of (XA → XB) → X(A → B) over the class of persistent models.

To show completeness, we will adapt the proof search for iLTLe
nest by intro-

ducing different levels of saturation.

238 B. Afshari et al.

Definition 13. Let k < ω. A sequent Γ ⇒ Δ is k-saturated if it satisfies clauses
1-8 of Definition 9 and the additional clause
9. for all n ≤ k, if A U Bn ∈ Δ, then Bn, An ∈ Δ or Bn,X(A U B)n ∈ Δ.

Given a sequent σ, we say that a formula A is k-saturated in σ if σ satisfies the
relevant k-saturation clause for A.

Note that 0-saturation is equivalent to our earlier notion of saturation.
To keep track of the level of saturation in sequents, the proof search tree

will be labelled by indexed sequents Γ ⇒k Δ, that is, sequents equipped with a
natural number k < ω.
Definition 14. A persistent proof search tree T for a sequent Γ ⇒ Δ is a finite
or infinite tree whose nodes are labelled with indexed sequents following the rules
of iLTLp

nest such that:
1. The root of T is labelled by Γ ⇒0 Δ.
2. A node of T is a leaf if and only if it is labelled by an axiom.
3. Invertible rule applications leave the index of a sequent unchanged.
4. Every left rule application is succinct.
5. Every right rule application apart from →Rp is preserving.
6. No invertible rule is applied to a sequent of index k in which the principal

formula is already k-saturated.
7. In place of the rule →Rp, the rule

Γ, Ak
0 ⇒0 Bk

0 · · · Γ, Ak
j ⇒0 Bk

j Γ ⇒k+1 (A0 → B0)
k, . . . , (Aj → Bj)

k, Δ

Γ ⇒k (A0 → B0)
k, . . . , (Aj → Bj)

k, Δ
Cp

is utilised, where Δ may not contain a formula of the form A → Bk and the
conclusion of the rule is a k-saturated sequent.

It is easy to see that every sequent has a persistent proof search tree and that
Lemma 3, 4 and 5 also hold for persistent proof search trees. Following Definition
11, we define a persistent refutation as a subtree of a persistent proof search tree
satisfying properties 1-5 of Definition 11, with C replaced by Cp. As before, the
fifth property ensures that every branch in a persistent refutation passes through
the Cp-rule infinitely often.

Via a game-theoretic argument, we obtain completeness of iLTLp
nest as a corol-

lary of the following proposition.
Proposition 2. If a sequent σ has a persistent refutation, then it has a persis-
tent countermodel.
Due to space limit the proof is omitted. The main difference to the proof of
Proposition 1 is that, when constructing a persistent countermodel from a per-
sistent refutation, right premises of the Cp-rule are not viewed as temporal suc-
cessors but as a further description of the current world w. In the limit, this
description fully determines the temporal ‘successors’ fn(w) for every n, whereby
these successors can be added accordingly. Due to this limit construction, worlds
in the obtained countermodel may have infinitely many intuitionistic successors,
which is not the case for the countermodel obtained in Proposition 1.

Ill-Founded Proof Systems for Intuitionistic Linear-Time 239

7 Conclusion

This investigation is part of a larger programme of devising sequent calculi for
intuitionistic modal logic with fixed points to establish fundamental properties
such as decidability and algorithmic proof search. To this aim, we introduce
ill-founded cut-free sequent calculi for intuitionistic linear-time temporal logic
over expanding and persistent models, denoted iLTLe and iLTLp respectively.
The presented systems and the techniques devised to establish soundness and
completeness are inspired by the study of ill-founded proof systems for classical
temporal logics. In particular, we have illustrated how the method of proof search
can be adapted to the intuitionistic realm.

A natural direction for future research is to extend iLTLe and iLTLp to logics
containing greatest fixed point operators such as ‘henceforth’ and, more gener-
ally, ‘release’. The latter is the classical dual of U which is not definable from
U in the intuitionistic setting [3]. Although we believe that our approach can
be extended to handle more expressive temporal logics, an adaptation of the
proof search strategy is by no means trivial. The presence of greatest fixed point
formulas on the left-hand side of a sequent presents a challenge in ensuring that
the model constructed from a refutation satisfies monotonicity.

Another possible direction is to devise complete cyclic calculi for iLTL-based
logics. The main difficulty in turning an ill-founded proof into a cyclic one lies in
our reliance on nested sequents. In the completeness proof, there is no guarantee
that every infinite branch in a proof contains a repeated sequent. Indeed, as
shown in Sect. 5.2, the sequent ♦(A∨B)0 ⇒ C → ♦A0, C → ♦B0 admits a proof
in iLTLe

nest only with an unbounded nesting depth. This implies that a simple
definition of repetition in an infinite branch will not result in a complete cyclic
system. Incorporating the cut-rule into the systems, one can obtain a proof of the
sequent wherein the nesting depth is at most 1. Since the required application of
cut in this example requires only analytic formulas, it is worthwhile investigating
whether the presented systems can be turned into cyclic systems with analytic
cuts.

References

1. Afshari, B., Leigh, G.E., Menéndez Turata, G.: A cyclic proof system for full com-
putation tree logic. In: Klin, B., Pimentel, E. (eds.) 31st EACSL Annual Confer-
ence on Computer Science Logic (CSL 2023). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 252, pp. 1–19. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, Dagstuhl, Germany (2023). https://doi.org/10.4230/LIPIcs.CSL.
2023.5

2. Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and Kripke seman-
tics for constructive S4 modal logic. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol.
2142, pp. 292–307. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44802-0_21

3. Balbiani, P., Boudou, J., Diéguez, M., Fernández-Duque, D.: Intuitionistic linear
temporal logics. ACM Trans. Comput. Logic 21(2), 3365833 (2019). https://doi.
org/10.1145/3365833

https://doi.org/10.4230/LIPIcs.CSL.2023.5
https://doi.org/10.4230/LIPIcs.CSL.2023.5
https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1145/3365833
https://doi.org/10.1145/3365833

240 B. Afshari et al.

4. Boudou, J., Diéguez, M., Fernández-Duque, D.: A decidable intuitionistic temporal
logic. In: Goranko, V., Dam, M. (eds.) 26th EACSL Annual Conference on Com-
puter Science Logic (CSL 2017). Leibniz International Proceedings in Informat-
ics (LIPIcs), vol. 82, pp. 1–17. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.CSL.2017.14. http://
drops.dagstuhl.de/opus/volltexte/2017/7701

5. Boudou, J., Diéguez, M., Fernández-Duque, D.: Complete intuitionistic temporal
logics for topological dynamics. J. Symb. Log. 87(3), 995–1022 (2022)

6. Chopoghloo, S., Moniri, M.: A strongly complete axiomatization of intuitionistic
temporal logic. J. Log. Comput. 31(7), 1640–1659 (2021). https://doi.org/10.1093/
logcom/exab041

7. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555–604 (2001). https://doi.org/10.1145/382780.382785

8. Dax, C., Hofmann, M., Lange, M.: A proof system for the linear time μ-calculus.
In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 273–284.
Springer, Heidelberg (2006). https://doi.org/10.1007/11944836_26

9. De Paiva, V., Artemov, S.: Journal of Applied Logics, Volume 8, Number 8,
September 2021. Special Issue: Intuitionistic Modal Logic and Applications. Col-
lege Publications (2021). https://books.google.se/books?id=45ipzgEACAAJ

10. Doumane, A.: Constructive completeness for the linear-time μ-calculus. In: 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reyk-
javik, Iceland, 20–23 June 2017, pp. 1–12. IEEE Computer Society (2017)

11. Fernández-Duque, D.: The intuitionistic temporal logic of dynamical systems.
Logic. Methods Comput. Sci. 14, 35 (2018)

12. Jeltsch, W.: Temporal logic with “until”, functional reactive programming with
processes, and concrete process categories. In: Proceedings of the 7th workshop on
Programming languages meets program verification, pp. 69–78 (2013)

13. Kamide, N., Wansing, H.: Combining linear-time temporal logic with constructive-
ness and paraconsistency. J. Appl. Log. 8(1), 33–61 (2010)

14. Kojima, K., Igarashi, A.: Constructive linear-time temporal logic: Proof systems
and Kripke semantics. Inf. Comput. 209, 1491–1503 (2011). https://doi.org/10.
1016/j.ic.2010.09.008

15. Kokkinis, I., Studer, T.: Cyclic proofs for linear temporal logic. Ontos Math. Logic
6, 171–192 (2016)

16. Maier, P.: Intuitionistic LTL and a new characterization of safety and liveness.
In: Marcinkowski, J., Tarlecki, A. (eds.) Computer Science Logic, pp. 295–309.
Springer, Berlin Heidelberg, Berlin, Heidelberg (2004)

17. Martin, D.A.: Borel determinacy. Annal. Math. 102(2), 363–371 (1975). http://
www.jstor.org/stable/1971035

18. Negri, S., von Plato, J., Ranta, A.: Structural Proof Theory. Cambridge University
Press, New York (2001)

19. Niwinski, D., Walukiewicz, I.: Games for the mu-calculus. Theoret. Comput. Sci.
163(1&2), 99–116 (1996)

20. Simpson, A.: The proof theory and semantics of intuitionistic modal logic, Ph. D.
thesis, University of Edinburgh (1994)

21. Taha, W., Nielsen, M.F.: Environment classifiers. SIGPLAN Not. 38(1), 26–37
(2003)

22. Tsukada, T., Igarashi, A.: A logical foundation for environment classifiers. In:
Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 341–355. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02273-9_25

https://doi.org/10.4230/LIPIcs.CSL.2017.14
http://drops.dagstuhl.de/opus/volltexte/2017/7701
http://drops.dagstuhl.de/opus/volltexte/2017/7701
https://doi.org/10.1093/logcom/exab041
https://doi.org/10.1093/logcom/exab041
https://doi.org/10.1145/382780.382785
https://doi.org/10.1007/11944836_26
https://books.google.se/books?id=45ipzgEACAAJ
https://doi.org/10.1016/j.ic.2010.09.008
https://doi.org/10.1016/j.ic.2010.09.008
http://www.jstor.org/stable/1971035
http://www.jstor.org/stable/1971035
https://doi.org/10.1007/978-3-642-02273-9_25

Ill-Founded Proof Systems for Intuitionistic Linear-Time 241

23. Wijesekera, D.: Constructive modal logics I. Ann. Pure Appl. Logic 50(3), 271–301
(1990)

24. Yuse, Y., Igarashi, A.: A modal type system for multi-level generating extensions
with persistent code. In: International Conference on Principles and Practice of
Declarative Programming: Proceedings of the 8th ACM SIGPLAN symposium on
Principles and practice of declarative programming; 10–12 July 2006, pp. 201–212.
PPDP 2006, ACM (2006)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Proof Systems for the Modal µ-Calculus
Obtained by Determinizing Automata

Maurice Dekker, Johannes Kloibhofer, Johannes Marti(B), and Yde Venema

ILLC, University of Amsterdam, Amsterdam, Netherlands
pmauricedekker@gmail.com, {j.kloibhofer,y.venema}@uva.nl,

johannes.marti@gmail.com

Abstract. Automata operating on infinite objects feature prominently
in the theory of the modal μ-calculus. One such application concerns the
tableau games introduced by Niwiński & Walukiewicz, of which the win-
ning condition for infinite plays can be naturally checked by a nondeter-
ministic parity stream automaton. Inspired by work of Jungteerapanich
and Stirling we show how determinization constructions of this automa-
ton may be used to directly obtain proof systems for the μ-calculus. More
concretely, we introduce a binary tree construction for determinizing non-
deterministic parity stream automata. Using this construction we define
the annotated cyclic proof system BT, where formulas are annotated
by tuples of binary strings. Soundness and Completeness of this system
follow almost immediately from the correctness of the determinization
method.

Keywords: modal mu-calculus · derivation system · determinisation
of Büchi and parity automata · non-wellfounded and cyclic proofs

1 Introduction

The Modal μ-calculus. The modal μ-calculus is a natural extension of basic modal
logic with explicit least and greatest fixpoint operators. Allowing the formula-
tion of various recursive phenomena, this extension raises the expressive power
of the language (at least when it comes to bisimulation-invariant properties of
transition systems) to that of monadic second-order logic [12]. The μ-calculus
is generally regarded as a universal specification language, since it embeds most
other logics that are used for this purpose, such as LTL, CTL, CTL∗ and PDL.
Despite its expressive power the μ-calculus has still reasonable computational
properties; its model checking problem is in quasi-polynomial time [4] and its
satisfiability problem is exptime-complete [7]. Another interesting feature of
the theory of the modal μ-calculus lies in its connections with other fields, in
particular the theory of finite automata operating on infinite objects, and that
of infinite games.

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 242–259, 2023.
https://doi.org/10.1007/978-3-031-43513-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-43513-3_14

Proof Systems for the Modal μ-Calculus 243

Derivation Systems. Given the importance of the modal μ-calculus, there is
a natural interest in the development and study of derivation systems for its
validities. And indeed, already in [15] Kozen proposed an axiomatization. Despite
the naturality of this axiom system, he only established a partial completeness
result, and it took a substantial amount of time before Walukiewicz [25] managed
to prove soundness and completeness for the full language.

Kozen’s axiomatization amounts to a Hilbert-style derivation system, making
it less attractive for proof search. If one is interested in a cut-free system, a good
starting point is the two-player tableau-style game introduced by Niwiński &
Walukiewicz [19]. Here we will present their system in the shape of a derivation
system NW (this change of perspective can be justified by identifying winning
strategies for one of the players in the game with NW-proofs). NW is a one-
sided sequent system which allows for infinite proofs: although its proof rules are
completely standard (and finitary), due to the unfolding rules for the fixpoint
operators, derivations may have infinite branches. A crucial aspect of the NW-
system is that one has to keep track of the traces of individual formulas along
the infinite branches. A derivation will only count as a proper proof if each of
its infinite branches is successful, in the sense that it carries a so-called ν-trace:
a trace which is dominated by a greatest fixpoint operator.

This condition is easy to formulate but not so nice to work with. One could
describe the subsequent developments in the proof theory for the modal μ-
calculus as a series of modifications of the system NW which aim to get a grip
on the complexities and intricacies of the above-mentioned traces, and in par-
ticular, to use the resulting “trace management” for the introduction of finitary,
cyclic proof systems. Landmark results were obtained by Jungteerapanich [13]
and Stirling [23], who introduced cyclic proof systems for the μ-calculus, two
calculi that we will identify here under the name JS.

Automata and Derivation Systems. Applications of automata theory are ubiq-
uitous in the theory of the modal μ-calculus, and the area of proof theory is
no exception. In particular, Niwiński & Walukiewicz [19] observed that infinite
matches of their game, corresponding to infinite branches in an NW-derivation,
can be seen as infinite words or streams over some finite alphabet. It follows that
stream automata (automata operating on infinite words) can be used to deter-
mine whether such a match/branch carries a ν-trace. Niwiński & Walukiewicz
used this perspective to link their results to the exponential-time complexity of
the satisfiability problem for the μ-calculus.

A key contribution of Jungteerapanich and Stirling [13,23] was to bring
automata inside the proof system. The basic idea would be to decorate each
sequent in a derivation with a state of the stream automaton which recognizes
whether an infinite branch is successful or not; starting from the root, the suc-
cessive states decorating the sequents on a given branch simply correspond to
a run of the automaton on this branch. For this idea to work one needs the
stream automaton to be deterministic. To see this, observe that two successful
but distinct branches in a derivation would generally require two distinct runs,

244 M. Dekker et al.

and in the case of a nondeterministic automaton, these two runs might already
diverge before the two branches split.

Interestingly, there is a natural stream automaton recognizing the success-
ful branches of an NW-derivation: One may simply take the states of such an
automaton to be the formulas in the (Fischer-Ladner) closure of the root sequent.
But given the nondeterministic format of this automaton, before it can be used
in a proof system, we need to transform it into an equivalent deterministic one.
This explains the relevance of constructions for determinizing stream automata
to the proof theory of the modal μ-calculus.

Determinization of Stream Automata. Using the ideas we just sketched, one may
obtain sound and complete derivation systems for the modal μ-calculus in an easy
way. For any deterministic automaton A that recognizes the successful branches
in NW-derivations, one could simply introduce new-style sequents consisting of
an NW-sequent decorated with a state of A, and adapt the proof rules of NW
incorporating the transition map of A. This could be done in such a way that the
stream of decorations of an infinite branch corresponds to the run of A on the
stream of sequents of the same branch. The trace condition of NW-derivations
could then be replaced by the acceptance condition of A (which is generally
much simpler, since it does not refer to traces).

More interesting is to use specific determinization constructions, in order
to design more attractive proof systems or to prove results about the deriva-
tion system (and thus, potentially, about the μ-calculus). In particular, some
determinization constructions are based on a power construction, meaning that
the states of the deterministic automaton consist of macrostates (subsets of the
nondeterministic original) with some additional structure. Such constructions
allow for proof calculi where this additional structure is incorporated into the
sequents. For instance, the derivation system JS is based on the well-known Safra
construction [20], in which the states of the deterministic automaton consist of
macrostates of the original automaton that are organised by means of so-called
Safra trees. Concretely, the (augmented) sequents in JS consist of a set of anno-
tated formulas, with the annotations indicating the position of the formula in
the Safra tree and a so-called control which provides additional information on
the Safra tree.

Our Contribution. Our overall goal is to explicitize the role of automata theory
in the design of derivation systems for the modal μ-calculus (and other fixpoint
logics). Our point is that distinct determinization constructions lead to distinct
sequent system, and that we may look for alternatives to the Safra construction.
Concretely the contribution of this paper is threefold:

1. We provide a new determinization construction for both Büchi and parity
stream automata which is based on binary trees. Our construction is similar
to constructions related to so-called profile trees [8,16].

2. We apply our construction to obtain a new derivation system BT for the
modal μ-calculus. While our system is similar in spirit to the system JS, a

Proof Systems for the Modal μ-Calculus 245

key difference is that our sequents consist of annotated formulas, and nothing
else.

3. We establish the soundness and completeness of BT. A distinguishing feature
of our approach is that (up to some optimizations) this result is a direct
consequence of the soundness and completeness of NW and the adequacy of
our determinization construction.

Related Work. There is an extensive literature on applications of automata the-
ory in the theory of the modal μ-calculus, among others [6,11,12,26]. Jungteer-
apanich and Stirling [13,23] were the first to obtain an annotated proof system
inspired by the determinization of automata. The proof system Focus for the
alternation-free μ-calculus designed by Marti & Venema [18] originates with a
rather simple determinization construction for so-called weak automata. In [17],
Leigh & Wehr also take a rather general approach towards the use of deter-
minization constructions in the design of derivation systems, but they confine
attention to the Safra construction.

Overview of Paper. In the next section we provide the necessary background
material on binary trees, on ω-automata, on the modal μ-calculus and the proof
system NW; doing so we fix our notation. In Sect. 3 we introduce a new deter-
minization method for nondeterministic Büchi and parity automata. We will
use this construction to prove the soundness and completeness of the proof sys-
tem BT, which we introduce in Sect. 4. All missing proofs can be found in the
extended version of this paper [5].

2 Preliminaries

Binary Trees. We let 2∗ denote the set of binary strings; we write < for the
lexicographical order of 2∗, and � for the (initial) substring relation given by
s � t if sr = t for some r. Substitution for binary strings is defined in the
following way: Let s, t, s̃, r ∈ 2∗ be such that s = ts̃, then s[t\r] denotes the
binary string rs̃. A binary tree is a finite set of binary strings T ⊆ 2∗ such that
s0 ∈ T ⇒ s ∈ T and s0 ∈ T ⇔ s1 ∈ T . Here we let leaves(T) = {s ∈ T | s0 /∈ T}
denote its set of leaves, and minL(T) its minimal leaf of T , i.e. the unique leaf
of the form 0 · · · 0. A set of binary strings L is a set of leaves of a binary trees
if for all s �= t ∈ L we have s �� t and tree(L) = {s ∈ 2∗ | ∃t ∈ L : s � t} is a
binary tree.

Stream Automata. A non-deterministic automaton over a finite alphabet Σ is a
quadruple A = 〈A,Δ, aI ,Acc〉, where A is a finite set, Δ : A × Σ → P(A) is the
transition function of A, aI ∈ A its initial state and Acc ⊆ Aω its acceptance
condition. An automaton is called deterministic if |Δ(a, y)| = 1 for all pairs
(a, y) ∈ A × Σ. A run of an automaton A on a stream w = y0y1y2... ∈ Σω is a
stream a0a1a2... ∈ Aω such that a0 = aI and ai+1 ∈ Δ(ai, yi) for all i ∈ ω. A
stream w is accepted by A if there is a run of A on w, which is in Acc; we define
L(A) to be the set of all accepting streams of A.

246 M. Dekker et al.

The acceptance condition can be given in different ways: A Büchi condition
is given as a subset F ⊆ A. The corresponding acceptance condition is the set
of runs, which contain infinitely many states in F . A parity condition is given as
a map Ω : A → ω. The corresponding acceptance condition is the set of runs α
such that min{Ω(a) | a occurs infinitely often in α} is even. A Rabin condition
is given as a set R = ((Gi, Bi))i∈I of pairs of subsets of A. The corresponding
acceptance condition is the set of runs α for which there exists i ∈ I such
that α contains infinitely many states in Gi and finitely many in Bi. Automata
with these acceptance conditions are called Büchi, parity and Rabin automata,
respectively.

Modal μ-calculus: Syntax. The set Lμ of formulas of the modal μ-calculus is
generated by the grammar

ϕ ::= p | p | ⊥ | | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | �ϕ | �ϕ | μx.ϕ | νx.ϕ,

where p and x are taken from a fixed set Prop of propositional variables and in
formulas of the form μx.ϕ and νx.ϕ there are no occurrences of x in ϕ.

Formulas of the form μx.ϕ (νx.ϕ) are called μ-formulas (ν-formulas, respec-
tively); formulas of either kind are called fixpoint formulas. We write η, λ ∈ {μ, ν}
to denote an arbitrary fixpoint operator. We use standard terminology and nota-
tion for the binding of variables by the fixpoint operators and for substitutions,
and make sure only to apply substitution in situations where no variable capture
will occur. An important use of the substitution operation concerns the unfolding
χ[ξ/x] of a fixpoint formula ξ = ηx.χ.

Given two formulas ϕ,ψ ∈ Lμ we write ϕ →C ψ if ψ is either a direct boolean
or modal subformula of ϕ, or else ϕ is a fixpoint formula and ψ is its unfolding.
The closure Clos(Φ) ⊆ Lμ of Φ ⊆ Lμ is the least superset of Φ that is closed
under this relation. It is well known that Clos(Φ) is finite iff Φ is finite. A trace
is a sequence (ϕn)n<κ, with κ ≤ ω, such that ϕn →C ϕn+1, for all n + 1 < κ.

We define a dependence order on the fixpoint formulas occurring in Φ, written
Fix(Φ), by setting ηx.ϕ <Φ λy.ψ (where smaller in <Φ means being of higher
priority) if Clos(ηx.ϕ) = Clos(λy.ψ) and ηx.ϕ is a subformula of λy.ψ. One
may define a parity function Ω : Fix(Φ) → ω, which respects this order (i.e.,
Ω(ηx.ϕ) < Ω(λy.ψ) if ηx.ϕ <Φ λyψ) and satisfies Ω(ηx.ϕ) is even iff η = ν. Let
maxΩ(Φ) = max{Ω(νx.ϕ) | νx.ϕ ∈ Fix(Φ)}.

It is well known that any infinite trace τ = (ϕn)n<κ features a unique formula
ϕ that occurs infinitely often on τ and is a subformula of ϕn for cofinitely many
n. This formula is always a fixpoint formula, and where it is of the form ηx.ψ
we call τ an η-trace.

Since the semantics of the modal μ-calculus only plays an indirect role in our
paper, we refrain from giving the definition.

Non-wellfounded Proofs. A sequent Γ is a finite set of μ-calculus formulas, pos-
sibly with additional structure such as annotations. Rules have the following
form, possibly with additional side conditions:

Proof Systems for the Modal μ-Calculus 247

R :
Γ1 · · · Γn

Γ

[Γ]x
...

Dx : Γ
Γ

A rule R, where n = 0, is called an axiom. The rules Dx are called discharge
rules. Each discharge rule is marked by a unique discharge token taken from a
fixed infinite set D = {x, y, ...}.

Definition 1. A derivation system P is a set of rules. A P derivation π =
(T, P,S,R, f) is a quintuple such that (T, P) is a, possibly infinite, tree with nodes
T and parent relation P ; S is a function that maps every node u ∈ T to a non-
empty sequent Σu; R is a function that maps every node u ∈ T to its label R(u),
which is either (i) the name of a rule in P or (ii) a discharge token; and f is a
partial function that maps some nodes u ∈ T to its principal formula f(u) ∈ S(u).
If a specific formula ϕ in the conclusion of a rule is designated, then f(u) = ϕ
and otherwise f(u) is undefined. To qualify as a derivation, such a quintuple is
required to satisfy the following conditions:

1. If a node is labeled with the name of a rule then it has as many children as
the rule has premises, and the annotated sequents at the node and its children
match the specification of the rules.

2. If a node is labeled with a discharge token then it is a leaf. For every leaf l
that is labeled with a discharge token x ∈ D there is exactly one node u ∈ T
that is labeled with Dx. This node u and its child are proper ancestors of l.
In this situation we call l a discharged leaf, and u its companion; we write c
for the function that maps a discharged leaf l to its companion c(l) and write
p(l) for the path in T from c(l) to l.

A derivation π′ = (T ′, P ′,S′,R′, f′) is a subderivation of π = (T, P,S,R, f) if
(T ′, P ′) is a subtree of (T, P) and S′,R′, f′ and S,R, f are equal on (T ′, P ′). A
derivation π is called regular if it has finitely many distinct subderivations.

Definition 2. Let π = (T, P,S,R, f) be a derivation. We define two graphs we
are interested in: (i) The usual proof tree Tπ = (T, P) and (ii) the proof tree
with back edges T C

π = (T, PC), where PC = P ∪{(l, c(l)) | l is a discharged leaf}
is the parent relation plus back-edges for every discharged leaf.

A strongly connected subgraph in T C
π is a set S of nodes, such that for every

u, v ∈ S there is a PC-path from u to v.

The NW Proof System. The rules of the derivation system NW, which is directly
based on the tableau games introduced by Niwiński & Walukiewicz [19], are
given in Fig. 1.

In order to decide whether an NW derivation qualifies as a proper proof,
one has to keep track of the development of individual formulas along infinite
branches of the proofs.

248 M. Dekker et al.

Fig. 1. Rules of NW

Definition 3. Let Γ, Γ ′ be sequents, ξ be a formula such that Γ is the conclusion
and Γ ′ is a premise of a rule in Fig. 1 with principal formula ξ. We define the
active and passive trail relation AΓ,ξ,Γ ′ ,PΓ,ξ,Γ ′ ⊆ Γ × Γ ′. Both relations are
defined via a case distinction on ξ:

Case ξ = �ϕ: Then Γ = �ϕ,�Λ,Δ and Γ ′ = ϕ,Λ. We define AΓ,ξ,Γ ′ ,=
{(�ϕ,ϕ)} ∪ {(�χ, χ) | χ ∈ Λ} and PΓ,ξ,Γ ′ = ∅.

Case ξ = ϕ ∨ ψ: Then Γ = ϕ ∨ ψ,Λ and Γ ′ = ϕ,ψ,Λ. We define AΓ,ξ,Γ ′ =
{(ϕ ∨ ψ,ϕ), (ϕ ∨ ψ,ψ)} and PΓ,ξ,Γ ′ = {(χ, χ) | χ ∈ Λ}.

The relations for the remaining rules are defined analogously.
The trail relation TΓ,ξ,Γ ′ ⊆ Γ ×Γ ′ is defined as AΓ,ξ,Γ ′ ∪PΓ,ξ,Γ ′ . Finally, for

nodes u, v in an NW proof π, such that P (u, v), we define Tu,v = TS(u),f(u),S(v)

Note that for any two nodes u, v with P (u, v) and (ϕ,ψ) ∈ Tu,v, we have
either (ϕ,ψ) ∈ Au,v and ϕ →C ψ, or else (ϕ,ψ) ∈ Pu,v and ϕ = ψ. The idea is
that A connects the active formulas in the premise and conclusion, whereas P
connects the side formulas.

Definition 4. Let π = (T, P,S,R, f) be an NW derivation. A branch of π is
simply a (finite or infinite) branch of the underlying tree (T, P) of π. A trail
on a branch α = (vn)n<κ is a sequence τ = (ϕn)n<κ of formulas such that
(ϕi, ϕi+1) ∈ Tvi,vi+1 , whenever i + 1 < κ. We obtain the tightening τ̂ of such
a τ by erasing all ϕi+1 from τ for which (ϕi, ϕi+1) belongs to the passive trail
relation Pvi,vi+1 . We call τ a ν-trail if its tightening τ̂ is a ν-trace (and so, in
particular, it is infinite).

Definition 5. An NW proof π is an NW derivation such that on every infinite
branch of π there is a ν-trail. We write NW � Γ if there is an NW proof of Γ ,
i.e., an NW proof, where Γ is the sequent at the root of the proof.

Soundness and Completeness of NW for guarded formulas, (i.e., where in
every subformula ηx.ψ all free occurrences of x in ψ are in the scope of a modal-
ity) follows from the results by Niwiński & Walukiewicz [19]. As pointed out
in [2], it follows from [24] and [10] that the result in fact holds for arbitrary
formulas. By Theorem 6.3 in [19], NW-proofs can be assumed to be regular, and
this observation applies to unguarded formulas as well.

Theorem 1 (Soundness & Completeness). Let Γ be a sequent, then
∨

Γ
is valid iff NW � Γ iff Γ has a regular NW-proof.

Proof Systems for the Modal μ-Calculus 249

3 Determinization of Automata with Binary Trees

3.1 Büchi automata

Let Σ be an alphabet and B = 〈B,Δ, bI , F 〉 a nondeterministic Büchi automaton
over Σ. We want to present an equivalent deterministic Rabin automaton.

The run tree of B on a word w = (wi)i∈ω is a pair R = (R, l), where R is
the full infinite binary tree and l labels every node s with Bs ⊆ B, such that
l(ε) = {bI} and for |s| = i: l(s1) = Δ(Bs, wi) ∩ F and l(s0) = Δ(Bs, wi) ∩ F ,
where we define Δ(Bs, y) =

⋃

b∈Bs
Δ(b, y). It describes all possible runs of B on

w, using the 1 s to keep track of visited states in F .
The profile tree, introduced in [9], is a pruned version of the run tree, where

1) at each level all but the (lexicographically) greatest occurrence of a state b
are removed and 2) nodes labelled by the empty set are deleted. This results in a
tree of bounded width, where every node has 0,1 or 2 children. It can be proved
that B accepts a stream w iff the corresponding profile tree has a branch with
infinitely many 1 s.

In [8] a determinization method was defined, where macrostates encode levels
of the profile tree. In our approach macrostates encode a compressed version of
the whole profile tree up to some level: Nodes u, v are identified (iteratively),
if v is the unique child of u. This results in finite binary trees, where leaves are
labelled by subsets of B. In every step of the transition function we add one
level of the run tree and then prune and compress the tree to obtain a binary
tree again. Whenever a 1 is compressed (in the sense of a node being identified
with its right child) we know that a state in F has been visited and mark the
node green. A run of the deterministic automaton is accepted if there is a node,
which never gets removed and is marked green infinitely often. Figure 2 contains
an example of this determinization construction.

Formally we define the deterministic Rabin automaton B
D = 〈BD, δ, b′

I , R〉
as follows: An element S in the carrier BD of B

D is called a macrostate and
consists of

– a subset BS of B,
– a map f : BS → 2∗, such that1 ran(f) is a set of leaves of a binary tree and
– a colouring map c : tree(ran(f)) → {green, red,white}.

We define TS to be the binary tree tree(ran(f)), that has ran(f) as its leaves
and say that a binary string s is in play if s ∈ TS . If it is clear from the context
we occasionally abbreviate TS by T . We will sometimes denote a macrostate by
a set of pairs (b, s), usually written as bs, where b ∈ BS and s = f(b) and deal
with the colouring c implicitly.

The initial macrostate b′
I consists of the singleton {bε

I}, where c(ε) = white.
To define the transition function δ let S be in BD and y ∈ Σ. We define δ(S, y) =
S′, where starting from the empty set we build up S′ in the following steps:

1. Move: For every as ∈ S and b ∈ Δ(a, y), add bs to S′.
1 Here ran(f) denotes the co-domain of f .

250 M. Dekker et al.

Fig. 2. A nondeterministic Büchi automaton B on the left and its determinization B
D

on the right. The diagram in the middle shows the internal structure of the macrostates
m0, m1, m2 and m3 of B

D. Binary trees are represented in the obvious way (i.e., the
root is the string ϕ, and for every node the left child appends 0 and the right child
appends 1). The transitions of B

D are split in two parts: In the first part one level
of the run tree is added, corresponding to the steps 1 and 2 in the definition of the
transition function. In the second part (the dashed arrows) the tree is pruned and
compressed, corresponding to the steps 3 and 4. The acceptance condition of B

D is
such that the word aω is accepted by B

D because the string ϕ is always in play, marked
green infinitely often and never red.

2. Append: For every as ∈ S′, where a /∈ F , change as to as0. For every as ∈ S′,
where a ∈ F , change as to as1.

3. Resolve: If as and at are in S′, where s < t, delete as.
4. Compress/Colour: Let c(t) = white for every t ∈ TS′

. Now we compress and
colour T in the following way, until there exists no witness t ∈ T , such that
(a) or (b) is applicable:2

(a) For any t ∈ T , such that t0 ∈ T and t1 /∈ T , change every as ∈ S′, where
t0 � s, to as[t0\t]. For any s ∈ T , where t � s, let c(s) = red.

(b) For any t ∈ T , such that t0 /∈ T and t1 ∈ T , change every as ∈ S′, where
t1 � s, to as[t1\t]. For any s ∈ T such that t = s0 · · · 0, let c(s) = green,
if c(s) �= red. In particular let c(t) = green if c(t) �= red. For any s ∈ T ,
where t � s, let c(s) = red.

We define BD as the set of macrostates that can be reached from b′
I in this way.

A run of B
D is accepting if there is a binary string s, which is in play cofinitely

often such that c(s) is green infinitely often and red only finitely often.

Theorem 2. B accepts a word w iff B
D accepts w.

Remark 1. For a Büchi automaton of n states, our construction yields a deter-
ministic automaton B

D with nO(n) states and a Rabin condition of O(2n) pairs,

2 As shown in Proposition 1 of [5] this procedure does not depend on the order in
which witnesses are chosen, and thus produces a unique binary tree.

Proof Systems for the Modal μ-Calculus 251

see Lemma 5 of [5]. With some adaptations we could also match the optimal
Rabin condition, which is known to be linear-size [20].

This can be achieved by adding an labelling function as follows: Let L =
{1, . . . , 2n − 1} be the set of potential labels. Macrostates are defined as before,
where an additional injective function l : TS → L is added. For the initial state
we let l(ε) = 1. The steps 1–4 in the transition function remain the same, where
we add a final step 5 in which we define the new labeling function l′: We let
l′(s) = l(s) for all s that already occurred in TS and for all s ∈ TS′ \ TS we let
c(s) = red and choose new, distinct labels in L, i.e. ones which do not occur in
ran(l). The binary tree TS′

has at most n leaves, hence it has at most 2n − 1
many nodes and this is always possible.

The new acceptance condition has the following form: A run of the automaton
is accepting if there is a label k ∈ L, such that c(l−1(k)) is green infinitely often
and red only finitely often. Here c(l−1(k)) is defined to be red if k /∈ ran(l). This
is a Rabin condition with O(n) pairs. Notably we still have nO(n) macrostates,
thus the determination method is optimal.

3.2 Parity Automata

We now extend the approach to parity automata. Let Σ be an alphabet and
A = 〈A,ΔA, aI , Ω〉 be a nondeterministic parity automaton.

In order to present the intuitive idea behind the construction we first trans-
form A into an equivalent nondeterministic Büchi automaton B. Let m be the
maximal even priority of Ω. For even k = 0, 2, ...m we define A0, A2, ..., An as
copies of A without the states of priority smaller than k, i.e. Ak = 〈Ak,Δk, Fk〉
with Ak = {ak | a ∈ A∧Ω(a) ≥ k}, Δk = ΔA|Ak

and Fk = {ak ∈ Ak | Ω(a) = k}.
Now we define the nondeterministic Büchi automaton B = 〈B,ΔB , bI , F 〉:3

B =A ∪
m
⋃

k=0
k even

Ak, bI = aI , F =
m
⋃

k=0
k even

Fk,

ΔB =ΔA ∪
m
⋃

k=0
k even

Δk ∪ {(a, y, bk) ∈ A × Σ × Ak | b ∈ ΔA(a, y), k = 0, 2, ...,m}.

Although Ak is not an automaton, as it does not have an initial state, we can
define the Büchi automaton A∪Ak = 〈A∪Ak,ΔB |A∪Ak

, aI , Fk〉 for k = 0, ...,m.
The intuition behind the determinization of the parity automaton A is the

following: We apply the binary tree construction to every automaton A ∪ Ak for
k = 0, 2, ...,m, which is possible as there are no paths from Ak to Aj if k �= j
and none of the accepting states of B are in the set A. The annotation of a
state a ∈ A will then be the tuple (s0, s2, ..., sm), where sk is the annotation at
the state ak ∈ A ∪ Ak. Note that the automaton A

D will be different from the
automaton obtained from the binary tree construction on the whole B.
3 For easier notation we represent the transition function B × Σ → P(B) by its

corresponding relation (i.e., subset of B × Σ × B).

252 M. Dekker et al.

To make that formal we need some definitions. A treetop L is a set of leaves
of a binary tree, where potentially the minimal leaf is missing, i.e. L is a finite
set of binary strings such that for all s �= t ∈ L it holds s �� t and tree(L) = {s ∈
2∗ | ∃t ∈ L : s � t} ∪ {s0 | s = 0 · · · 0 and s1 ∈ L} is a binary tree.

For even m let TSeq(m) = {(s0, s2, ..., sm) | s0, s2, ..., sm ∈ 2∗} be the set
of sequences of length m

2 + 1, where s0, ..., sm are binary strings. Let πk be the
projection function, which maps σ = (s0, ..., sm) to sk for k = 0, 2, ...,m. We
define a partial order < on TSeq(m): Let (s0, ..., sm) < (t0, ..., tm) if there exists
l ∈ {0, ...,m} such that sl < tl and sj = tj for j = 0, ..., l − 2.

We now define the deterministic Rabin automaton A
D = 〈AD, δA, a′

I , RA〉.
Let m be the maximal even priority of Ω in A. An element S in the carrier AD

of A
D consists of a tuple (AS , f, c0, ..., cm), where

– AS is a subset of A,
– f : AS → TSeq(m), such that ran(πk ◦ f) is a treetop for k = 0, ...,m and
– ck is a colouring map from tree(ran(πk ◦ f)) → {green, red,white} for k =

0, 2, ...,m.

We define TS
k to be the binary tree tree(ran(πk ◦ f)) for k = 0, 2, ...,m and say

a binary string s is in play at position k if s ∈ TS
k . If the context is clear we

will abbreviate TS
k with Tk. Again we sometimes denote a macrostate by a set

of pairs (a, σ), usually written as aσ, where a ∈ AS and σ = f(a) and deal with
the colourings ck implicitly.

The initial macrostate a′
I consists of the singleton {a

(ε,...,ε)
I }. To define the

transition function δA let S be in AD and y ∈ Σ. We define δA(S, y) = S′, where
S′ is constructed in the following steps:

1. (a) Move: For every aσ ∈ S and b ∈ ΔA(a, y), add bσ to S′.
(b) Reduce: For every aσ ∈ S′, change aσ to aσ′

, where σ′ is obtained from
σ = (s0, ..., sm) by replacing every sj with j > Ω(a) by minL(Tj).

2. Append: For every aσ ∈ S′ and σ = (s0, ..., sm), change aσ to aσ′
, where σ′ =

(s00, ..., sk−20, sk1, sk+20, ..., sm0) if Ω(a) = k is even, and σ′ = (s00, ..., sm0)
if Ω(a) = k is odd.

3. Resolve: If aσ and aτ are in S′ and σ < τ , delete aσ.
4. Compress/Colour: Do for every k = 0, 2, ...,m: Let ck(t) = white for any

t ∈ Tk. Now we compress and colour Tk inductively in the following way,
until there exists no witness t ∈ Tk, such that (a) or (b) is applicable:
(a) For any t ∈ Tk, such that t0 ∈ Tk and t1 /∈ Tk, change every

aσ ∈ S′, where σ = (s0, ..., sm), and t0 � sk, to aσ′
, where σ′ =

(s0, ..., sk[t0\t], ..., sm). For any s ∈ Tk, where t � s, let ck(s) = red.
(b) For any t ∈ Tk, such that t0 /∈ Tk, t1 ∈ Tk and t �= 0 · · · 0, change

every aσ ∈ S′, where σ = (s0, ...sm), and t1 � sk, to aσ′
, where σ′ =

(s0, ..., sk[t1\t], ..., sm). For any s ∈ Tk such that t = s0 · · · 0, let ck(s) =
green, if ck(s) �= red. In particular let ck(t) = green if ck(t) �= red. For
any s ∈ Tk, where t � s, let ck(s) = red.

Proof Systems for the Modal μ-Calculus 253

A run of A
D is accepting if there is k ∈ {0, 2, ...,m} and a binary string s, which

is in play at position k cofinitely often such that ck(s) is green infinitely often
and red only finitely often.

Theorem 3. Let A be a parity automaton and A
D the deterministic Rabin

automaton defined from A. Then L(A) = L(AD).

Remark 2. For a parity automaton A of size n with highest even priority
m, our construction produces a deterministic Rabin automaton with nO(m·n)

macrostates and O(m · 2n) Rabin pairs, see Lemma 6 of [5].

4 BT Proofs

4.1 Proof Systems

We present two non-wellfounded proof systems for the modal μ-calculus, namely
BT and BT∞. The idea is that annotated sequents in the BT system correspond
to macrostates of A

D, where A is a nondeterministic parity automaton checking
the trace condition in an NW proof. The rules of BT resemble the transition
function of A

D.
Let Φ be a set of formulas, the sequent we want to prove, and let m =

maxΩ(Φ) be the maximal even priority of Ω. Annotated sequents are sets of
pairs (ϕ, σ), usually written as ϕσ, where ϕ ∈ Clos(Φ) and σ ∈ TSeq(m). For
an annotated sequent Γ we let ΓN be the set of annotations occurring in Γ , i.e.
ΓN = {σ ∈ TSeq(m) | ∃ϕ s.t. ϕσ ∈ Γ}. We let ΓN

k be the set of binary strings
occurring at the k-th position of the annotations in Γ , i.e., ΓN

k = πk[ΓN]. We
say that a string s occurs in ΓN

k if there exists t ∈ ΓN
k such that s � t.

For σ = (s0, ..., sm) ∈ TSeq(m) we define σ · 1k = (s0, ..., sk1, ..., sm) and
σ · 0k = (s0, ..., sk0, ..., sm). For an annotated sequent Γ we let Γ ·0k denote the
annotated sequent {ϕσ·0k | ϕσ ∈ Γ}.

Let Γ be an annotated sequent and ϕσ ∈ Γ . We define σ � kΓ to be the tuple
of binary strings obtained from σ = (s0, ..., sm) by replacing every sj with j > k
by minL(tree(ΓN

j). If the context Γ is clear we write σ � k instead of σ � kΓ .
The rules Compresss0

k and Compresss1
k are schemata for k = 0, 2, ...,m and

s ∈ 2∗. In these rules the notation ϕ
(...,sti,...)
i is to be read such that sti is the

binary string in the k-th position of the annotation. We will write Compress for
any of those rules and write Compresss

k for either Compresss0
k or Compresss1

k .
Note that, if one ignores the annotations, the rules Ax1, Ax2, R∨, R∧, Rμ,

Rν and R� in Fig. 3 are the same as the rules of NW. As mentioned above
annotated sequents in the BT system correspond to macrostates of A

D, where A

is a nondeterministic parity automaton checking the trace condition in an NW
proof. The rules of BT correspond to the transition function δA of A

D, where
the transformations of δA are distributed over multiple rules: Step 1(a) of δA is
carried out in every rule and step 1(b) and step 2 correspond to the modification
of the annotations in the rules Rμ and Rν . Notably, we do not add zeros to the
annotations if the zeros would get deleted anyway in step 4 of the transition
function. The rules Resolve and Compress are additional and correspond to steps
3 and 4 of δA.

254 M. Dekker et al.

Fig. 3. Rules of BT

Definition 6. A BT derivation π is a derivation defined from the rules in Fig. 3,
such that the rules are applied with the following priority: first Resolve, then
Compress, and then all other rules.

Just as annotated sequents correspond to macrostates of the deterministic
automaton A

D, the soundness condition of BT∞ and BT correspond to the
acceptance condition of A

D: We say that a pair (k, s) is preserved at a node, if
s is in play at position k at the corresponding macrostate and not marked red;
and progresses if it is marked green.

Definition 7. Let π be a BT derivation of Φ, m = maxΩ(Φ) and S be a set of
nodes in π. Let k ∈ {0, 2, ...,m} and s ∈ 2∗. We say that the pair (k, s)

– is preserved on S if
• s occurs in S(v)N

k for every v in S and
• if R(v) = Compresst

k for a node v in S, then t �� s,
– progresses (infinitely often) on S if there is s′ = s0 · · · 0 such that R(v) =

Compresss′1
k for some v in S (for infinitely many v ∈ S).

Definition 8. Let π be a BT derivation. An infinite branch α = (ui)i∈ω in π is
successful if there are N and (k, s) such that (k, s) is preserved and progresses
infinitely often on {ui | i ≥ N}. A BT∞ proof is a BT derivation without
occurrences of Dx and such that all infinite branches are successful. A BT proof
is a finite BT derivation such that for each strongly connected subgraph S in
T C

π there exists (k, s) that is preserved and progresses on S.
We write BT � Γ (BT∞ � Γ) if there is a BT (BT∞) proof of Γ , i.e., a

proof, where Γ is the sequent at the root of the proof.

Proof Systems for the Modal μ-Calculus 255

Remark 3. In the proof system JS introduced by Jungteerapanich and Stirling
[13,23] annotated sequents are of the form θ � ϕa1

1 , ..., ϕan
n , where a1, ..., an are

sequences of names and the so-called control θ is a linear order on all names
occurring in the sequent. In contrast to JS our sequents consist of formulas with
annotations and nothing else, that is, no control. On the other hand the sound-
ness condition of BT is less local: It speaks about strongly connected subgraphs,
whereas in JS only paths between leafs and its companions have to be checked.
We see that the control in JS gives information on the structure of the cyclic
proof tree. Interestingly, we could also add a control to our sequents and obtain a
soundness condition that talks about paths, if desired. Similarly, in [1] a control
was added to a cyclic system for the first-order μ-calculus introduced by [22] to
obtain a path-based system.

4.2 Soundness and Completeness

The intuitive idea behind the BT∞ proof system is the following: Starting with
an NW proof, we can define a nondeterministic parity automaton A, that checks
if an infinite branch carries a ν-trail. Using the determinization method from
Sect. 3 we simulate macrostates of A

D by annotated formulas in the proof system.
Thus an infinite branch in BT∞ resembles an infinite run of A

D. This will be
formalised in the Soundness and Completeness proofs.

Tracking Automaton. Let Φ be a sequent of formulas, ηx1.ψ1, ..., ηxn.ψn the
fixpoint formulas in Fix(Φ) and Ω the parity function on Fix(Φ).

We define a nondeterministic parity automaton that checks if there is a ν-
trail on an infinite branch of some NW proof of Φ. The alphabet Σ consists of
all triples (Γ, ξ, Γ ′), where Γ ⊆ Clos(Φ) is the conclusion and Γ ′ ⊆ Clos(Φ) is
the premise of a rule in Fig. 1 with principal formula ξ. We define the following
nondeterministic parity automaton A = (A,Δ, aI , ΩA):

– A = aI ∪ Clos(Φ) ∪ {ηx.ψ∗ | ηx.ψ ∈ Clos(Φ)},
– For each γ ∈ A and (Γ, ξ, Γ ′) ∈ Σ:

1. if γ = aI , then Δ(γ, (Γ, ξ, Γ ′)) = Φ,
2. if γ = ξ = ηx.ψ then Δ(γ, (Γ, ξ, Γ ′)) = {ηx.ψ∗},
3. if γ = ηx.ψ∗, then Δ(γ, (Γ, ξ, Γ ′)) = {γ′ | (ψ[x\ηx.ψ], γ′) ∈ TΓ,ξ,Γ ′} and
4. else Δ(γ, (Γ, ξ, Γ ′)) = {γ′ | (γ, γ′) ∈ TΓ,ξ,Γ ′}.

– For all states ηx.ψ∗ let ΩA(ηx.ψ∗) = Ω(ηx.ψ). For all other states a let
ΩA(a) = maxΩ(Φ) if maxΩ(Φ) is odd and ΩA(a) = maxΩ(Φ) + 1 else.

Let α = (vn)n∈ω be an infi-
nite branch in an NW-proof π. We define w(α) ∈ Σω to be the infinite word
(S(v0), f(v0),S(v0))(S(v0), f(v0),S(v1))(S(v1), f(v1),S(v2))....

Lemma 1. Let α be an infinite branch in an NW proof. Then α carries a ν-trail
iff w(α) ∈ L(A).

Combining Lemma 1 and Theorem 3 from Sect. 3 we get

256 M. Dekker et al.

Lemma 2. Let π be an NW derivation. Then π is an NW proof iff for every
infinite branch α in π it holds w(α) ∈ L(AD).

Lemma 3. Let Γ be a sequent. Then NW � Γ iff BT � Γ ε.

Proof (Sketch). Let π be an NW proof of a sequent Γ . Inductively we translate
every node v in π to a node v′ plus some additional nodes, such that v′ is labeled
by the same sequent as v plus annotations. This can be achieved by replacing
every rule in NW by its corresponding rule in BT and adding the rules Resolve
and Compress whenever applicable. This yields a BT derivation ρ. It remains
to show that every infinite branch α = (vi)i∈ω in ρ is successful. Let α̂ be the
corresponding infinite branch in π. Due to Lemma 2 it holds that α̂ ∈ L(AD).
Thus there is (k, s) such that s is in play at position k cofinitely often and ck(s) is
green infinitely often and red only finitely often. As the annotations in α resemble
the annotations in the run of A

D on α̂ it follows that there is some N ∈ ω such
that (k, s) is preserved and progresses infinitely often on {vi | i ≥ N}.

Conversely let ρ be a BT proof of Γ ε. We let π be the NW derivation defined
from ρ by omitting the rules Resolve and Compress and reducing the other rules
to the corresponding NW rules. We have to show that every infinite branch
α in π is successful. Let α′ = (vi)i∈ω be the corresponding infinite branch in
ρ. Because ρ is a BT proof there is N ,(k, s) such that (k, s) is preserved and
progresses infinitely often on {vi | i ≥ N}. Again the annotations in α′ resemble
the annotations in the run of A

D on α, thus (k, s) witnesses the acceptance of
the run of L(AD) on α and Lemma 2 concludes the proof.

Theorem 4 (Soundness and Completeness). Let Γ be a sequent. Then
there is a BT∞-proof of Γ ε iff

∨

Γ is valid.

Proof. This follows from Lemma 3 and Theorem 1.

4.3 Cyclic BT Proofs

As NW proofs can be assumed to be regular and annotations are added deter-
ministically we can also assume BT∞ proofs to be regular. A standard argument
then transforms regular BT∞ proofs into BT proofs and vice versa.

Lemma 4. An annotated sequent is provable in BT iff it is provable in BT∞.

Theorem 5 (Soundness and Completeness). Let Γ be a sequent. Then
there is a BT-proof of Γ ε iff

∨

Γ is valid..

Remark 4. The number of distinct subtrees in a regular BT∞ proof can be
bounded by the number of distinct annotated sequents. This follows because
the same statement holds for NW proofs [19] and because in the proof of Lemma
3 annotations and extra rules are added deterministically to sequents in NW
proofs.

Let Φ be a sequent, n = |Clos(Φ)| and m = maxΩ(Φ). There are at most
nO(m·n) many distinct annotated sequents occurring in a proof of Φ, because

Proof Systems for the Modal μ-Calculus 257

annotated sequents resemble macrostates in A
D and as seen in Remark 2 there

are at most nO(m·n) distinct macrostates in A
D.

Combining these two observations with the proof of Lemma 4 yields that the
height of a BT proof of a sequent Φ can be bound by nO(m·n). This is the same
complexity as in JS [13].

Remark 5. Given a BT derivation π, we can check if π is a BT proof in coNP.
We can give the following algorithm in NP, that checks if π is not a BT proof:
Choose non-deterministically a strongly connected subgraph S and check if there
exists (k, s) that is preserved and progresses on S, the latter can be done in
polynomial time. The complexity of proof checking can be compared to linear
time in JS and PSPACE in NW. Note that, if we add a control to the BT proof
system, the soundness condition boils down to checking paths between leafs and
its companions. In that case proof checking could also be done in linear time.

5 Conclusions and Future Work

We hope that this paper contributes to the theory of non-wellfounded and cyclic
proof systems by discussing applications of automata theory in the field. We
have argued for the relevance of the notion of determinizing stream automata
in the design of proof systems for the modal μ-calculus. More concretely, we
have introduced a determinization construction based on binary trees and used
this to obtain a new derivation system BT which is cyclic, cutfree, and sound
and complete for the collection of valid Lμ-formulas. In the remainder of this
concluding section we point out some directions for future research.

First of all, our approach is not restricted to the modal μ-calculus, but will
apply to non-wellfounded and cyclic derivation systems for many other logics
as well. For instance, in the proof systems LKIDω [3] for first-order logic with
inductive definitions, cyclic arithmetic CA [21] and similar systems the trace con-
dition is of the form that on every infinite branch there is a term/variable which
progresses infinitely often. This condition can be checked by a nondeterministic
Büchi automaton and thus our method would yield an annotated proof system,
where the annotations are binary strings, which label the terms/variables.

Second, in Remark 3 we discussed some relative advantages and disadvan-
tages of the systems JS and BT. It would be interesting to either design a system
that combines the advantages of both systems (i.e. sequents consisting of anno-
tated formulas only as in BT, and a local condition for proof checking as in JS),
or prove that such a system cannot exist.

Finally, it would be interesting (and in fact, it was one of the original aims
of our work), to connect annotation-based sequent calculi such as JS and BT
to Kozen’s Hilbert-style proof system and to see whether a more structured
automata-theoretic approach would yield an alternative proof of Walukiewicz’
completeness result. Note that this was also the goal of Afshari & Leigh [2];
unfortunately, it was recently shown by the second author [14] that the system
Clo, a key system in Afshari & Leigh’s approach linking JS to Kozen’s axioma-
tization, is in fact incomplete.

258 M. Dekker et al.

References

1. Afshari, B., Enqvist, S., Leigh, G.E.: Cyclic proofs for the first-order μ-calculus.
Logic J. IGPL (2022). https://doi.org/10.1093/jigpal/jzac053

2. Afshari, B., Leigh, G.E.: Cut-free completeness for modal μ-calculus. In: Proceed-
ings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavík, Iceland. IEEE Press (2017)

3. Brotherston, J.: Sequent calculus proof systems for inductive definitions. Ph.D.
thesis (2006). https://era.ed.ac.uk/handle/1842/1458

4. Calude, C., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games
in quasipolynomial time. In: Hatami, H., McKenzie, P., King, V. (eds.) Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, (STOC
2017), pp. 252–263 (2017)

5. Dekker, M., Kloibhofer, J., Marti, J., Venema, Y.: Proof systems for the modal
μ-calculus obtained by determinizing automata (2023). https://doi.org/10.48550/
arXiv.2307.06897

6. Doumane, A.: Constructive completeness for the linear-time μ-calculus. In: 2017
32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp.
1–12 (2017). https://doi.org/10.1109/LICS.2017.8005075

7. Emerson, E., Jutla, C.: The complexity of tree automata and logics of programs.
SIAM J. Comput. 29(1), 132–158 (1999)

8. Fogarty, S., Kupferman, O., Vardi, M.Y., Wilke, T.: Profile trees for Büchi word
automata, with application to determinization. Inf. Comput. 245, 136–151 (2015)

9. Fogarty, S., Kupferman, O., Wilke, T., Vardi, M.: Unifying Büchi complementation
constructions. Log. Methods Comput. Sci. 9(1) (2013). https://doi.org/10.2168
%2Flmcs-9%281%3A13%292013

10. Friedmann, O., Lange, M.: Deciding the unguarded modal μ-calculus. J. Appl.
Non-Class. Logics 23(4), 353–371 (2013). https://doi.org/10.1080/11663081.2013.
861181

11. Janin, D., Walukiewicz, I.: Automata for the modal μ-calculus and related results.
In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60246-1_160

12. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional μ-
calculus with respect to monadic second order logic. In: Montanari, U., Sassone, V.
(eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996).
https://doi.org/10.1007/3-540-61604-7_60

13. Jungteerapanich, N.: Tableau systems for the modal μ-calculus. Ph.D. thesis,
School of Informatics; The University of Edinburgh (2010). http://hdl.handle.net/
1842/4208

14. Kloibhofer, J.: A note on the incompleteness of Afshari & Leigh’s system Clo
(2023). https://doi.org/10.48550/arXiv.2307.06846

15. Kozen, D.: Results on the propositional μ-calculus. Theoret. Comput. Sci. 27,
333–354 (1983)

16. Löding, C., Pirogov, A.: Determinization of Büchi Automata: Unifying the
Approaches of Safra and Muller-Schupp. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik GmbH, Wadern/Saarbruecken, Germany (2019). http://drops.
dagstuhl.de/opus/volltexte/2019/10696/

17. Leigh, G.E., Wehr, D.: From GTC to reset: generating reset proof systems from
cyclic proof systems. Technical report (2023). https://doi.org/10.48550/arXiv.
2301.07544. http://arxiv.org/abs/2301.07544

https://doi.org/10.1093/jigpal/jzac053
https://era.ed.ac.uk/handle/1842/1458
https://doi.org/10.48550/arXiv.2307.06897
https://doi.org/10.48550/arXiv.2307.06897
https://doi.org/10.1109/LICS.2017.8005075
https://doi.org/10.2168%2Flmcs-9%281%3A13%292013
https://doi.org/10.2168%2Flmcs-9%281%3A13%292013
https://doi.org/10.1080/11663081.2013.861181
https://doi.org/10.1080/11663081.2013.861181
https://doi.org/10.1007/3-540-60246-1_160
https://doi.org/10.1007/3-540-61604-7_60
http://hdl.handle.net/1842/4208
http://hdl.handle.net/1842/4208
https://doi.org/10.48550/arXiv.2307.06846
http://drops.dagstuhl.de/opus/volltexte/2019/10696/
http://drops.dagstuhl.de/opus/volltexte/2019/10696/
https://doi.org/10.48550/arXiv.2301.07544
https://doi.org/10.48550/arXiv.2301.07544
http://arxiv.org/abs/2301.07544

Proof Systems for the Modal μ-Calculus 259

18. Marti, J., Venema, Y.: A focus system for the alternation-free μ-calculus. In: Das,
A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp. 371–388.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86059-2_22

19. Niwinski, D., Walukiewicz, I.: Games for the μ-Calculus. Theor. Comput. Sci.
163(1&2), 99–116 (1996). https://doi.org/10.1016/0304-3975(95)00136-0

20. Safra, S.: On the complexity of ω-automata. In: Proceedings of the 29th Symposium
on the Foundations of Computer Science, pp. 319–327. IEEE Computer Society
Press (1988)

21. Simpson, A.: Cyclic arithmetic is equivalent to peano arithmetic. In: Esparza, J.,
Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 283–300. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7_17

22. Sprenger, C., Dam, M.: On the structure of inductive reasoning: circular and tree-
shaped proofs in the μcalculus. In: Gordon, A.D. (ed.) FoSSaCS 2003. LNCS,
vol. 2620, pp. 425–440. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36576-1_27

23. Stirling, C.: A tableau proof system with names for modal μ-calculus. In: Voronkov,
A., Korovina, M. (eds.) HOWARD-60. A Festschrift on the Occasion of Howard
Barringer’s 60th Birthday. EPiC Series in Computing, vol. 42, pp. 306–318. Easy-
Chair (2014). https://doi.org/10.29007/lwqm

24. Studer, T.: On the proof theory of the modal μ-calculus. Studia Logica 89(3),
343–363 (2008). https://doi.org/10.1007/s11225-008-9133-6

25. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional μ-
calculus. Inf. Comput. 157, 142–182 (2000)

26. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Belgian Math. Soc. 8, 359–391 (2001)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-86059-2_22
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.29007/lwqm
https://doi.org/10.1007/s11225-008-9133-6
http://creativecommons.org/licenses/by/4.0/

Modal Logics

Extensions of K5: Proof Theory
and Uniform Lyndon Interpolation

Iris van der Giessen1(B), Raheleh Jalali2,3 , and Roman Kuznets4

1 University of Birmingham, Birmingham, UK
i.vandergiessen@bham.ac.uk

2 Utrecht University, Utrecht, Netherlands
3 Czech Academy of Sciences, Prague, Czechia

4 TU Wien, Vienna, Austria

roman@logic.at

Abstract. We introduce a Gentzen-style framework, called layered
sequent calculi, for modal logic K5 and its extensions KD5, K45, KD45,
KB5, and S5 with the goal to investigate the uniform Lyndon interpo-
lation property (ULIP), which implies both the uniform interpolation
property and the Lyndon interpolation property. We obtain complexity-
optimal decision procedures for all logics and present a constructive proof
of the ULIP for K5, which to the best of our knowledge, is the first such
syntactic proof. To prove that the interpolant is correct, we use model-
theoretic methods, especially bisimulation modulo literals.

1 Introduction

The uniform interpolation property (UIP) is an important property of a logic.
It strengthens the Craig interpolation property (CIP) by making interpolants
depend on only one formula of an implication, either the premise or conclusion.
A lot of work has gone into proving the UIP, and it is shown to be useful in
various areas of computer science, including knowledge representation [17] and
description logics [25]. Early results on the UIP in modal logic include positive
results proved semantically for logics GL and K (independently in [9,32,35])
and negative results for logics S4 [10] and K4 [5]. A proof-theoretic method to
prove the UIP was first proposed in [30] for intuitionistic propositional logic and
later adapted to modal logics, such as K and T in [5]. A general proof-theoretic
method of proving the UIP for many classical and intuitionistic (non-)normal
modal logics and substructural (modal) logics based on the form of their sequent-
calculi rules was developed in the series of papers [2,3,16].

I. van der Giessen—Supported by a UKRI Future Leaders Fellowship, ‘Structure vs
Invariants in Proofs’, project reference MR/S035540/1.
R. Jalali—Acknowledges the support of the Netherlands Organization for Scientific
Research under grant 639.073.807 and the Czech Science Foundation Grant No. 22-
06414L.
R. Kuznets—Supported by the Austrian Science Fund (FWF) ByzDEL project
(P33600).

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 263–282, 2023.
https://doi.org/10.1007/978-3-031-43513-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_15&domain=pdf
http://orcid.org/0000-0002-3321-8087
http://orcid.org/0000-0001-5894-8724
https://doi.org/10.1007/978-3-031-43513-3_15

264 I. van der Giessen et al.

Apart from the UIP, we are also interested in the uniform Lyndon inter-
polation property (ULIP) that is a strengthening of the UIP in the sense that
interpolants must respect the polarities of the propositional variables involved.
Kurahashi [18] first introduced this property and proved it for several normal
modal logics, by employing a semantic method using layered bisimulations. A
sequent-based proof-theoretic method was used in [1] to show the ULIP for sev-
eral non-normal modal logics and conditional logics.

Our long-term goal is to provide a general proof-theoretic method to (re)prove
the UIP for modal logics via multisequent calculi (i.e., nested sequents, hyperse-
quents, labelled hypersequents, etc.). Unlike many other ways of proving inter-
polation, the proof-theoretic treatment is constructive in that it additionally
yields an algorithm for constructing uniform interpolants. Towards this goal, we
build on the modular treatment of multicomponent calculi to prove the CIP for
modal and intermediate logics in [8,19,21,23,24]. First steps have been made
by reproving the UIP for modal logics K, D, and T via nested sequents [12] and
for S5 via hypersequents [11,13], the first time this is proved proof-theoretically
for S5.

In this paper, we focus on logics K5, KD5, K45, KD45, KB5, and S5. The ULIP
for these logics was derived in [18, Prop. 3] from the logics’ local tabularity [28]
and Lyndon interpolation property (LIP) [20].

Towards a modular proof-theoretic treatment, we introduce a new form of
multisequent calculi for these logics that we call layered sequent calculi, the
structure of which is inspired by the structure of the Kripke frames for the
concerned logics from [27]. For S5, this results in standard hypersequents [4,26,
31]. For K5 and KD5, the presented calculi are similar to grafted hypersequent
calculi in [22] but without explicit weakening. Other, less related, proof systems
include analytic cut-free sequent systems for K5 and KD5 [34], cut-free sequent
calculi for K45 and KD45 [33], and nested sequent calculi for modal logics [7].

The layered sequent calculi introduced in this paper adopt a strong version
of termination that only relies on a local loop-check based on saturation. For
all concerned logics, this yields a decision procedure that runs in co-NP time,
which is, therefore, optimal [15]. We provide a semantic completeness proof via
a countermodel construction from failed proof search.

Finally, layered sequents are used to provide the first proof-theoretic proof of
the ULIP for K5. The method is adapted from [11,13] in which the UIP is proved
for S5 based on hypersequents. We provide an algorithm to construct uniform
Lyndon interpolants purely by syntactic means using the termination strategy of
the proof search. To show the correctness of the constructed interpolants, we use
model-theoretic techniques inspired by bisimulation quantification in the setting
of uniform Lyndon interpolation [18].

An extended version of the paper with more detailed proofs is found in [14].

2 Preliminaries

The language of modal logics consists of a set Pr of countably many (proposi-
tional) atoms p, q, . . ., their negations p, q, . . ., propositional connectives ∧ and ∨,

Extensions of K5: Proof Theory and Uniform Lyndon Interpolation 265

Table 1. Modal axioms and their corresponding frame conditions.

Axiom Formula Frame condition

k �(ϕ → ψ) → (�ϕ → �ψ) none

5 ♦ϕ → �♦ϕ Euclidean: wRv ∧ wRu ⇒ vRu

4 �ϕ → ��ϕ transitive: wRv ∧ vRu ⇒ wRu

d �ϕ → ♦ϕ serial: ∀w∃v(wRv)

b ϕ → �♦ϕ symmetric: wRv ⇒ vRw

t �ϕ → ϕ reflexive: ∀w(wRw)

boolean constants � and ⊥, and modal operators � and ♦. A literal � is either
an atom or its negation, and the set of all literals is denoted by Lit. We define
modal formulas in the usual way and denote them by lowercase Greek letters
ϕ,ψ, We define ϕ using the usual De Morgan laws to push the negation
inwards (in particular, p := p) and ϕ → ψ := ϕ ∨ ψ. We use uppercase Greek
letters Γ,Δ, . . . to refer to finite multisets of formulas. We write Γ,Δ to mean
Γ ∪ Δ and Γ, ϕ to mean Γ ∪ {ϕ}. The set of literals of a formula ϕ, denoted
Lit(ϕ), is defined recursively: Lit(�) = Lit(⊥) = ∅, Lit(�) = � for � ∈ Lit,
Lit(ϕ ∧ ψ) = Lit(ϕ ∨ ψ) = Lit(ϕ) ∪ Lit(ψ), and Lit(�ϕ) = Lit(♦ϕ) = Lit(ϕ).

We consider extensions of K5 with any combination of axioms 4, d, b, and t
(Table 1). Several of the 16 combinations coincide, resulting in 6 logics: K5,
KD5, K45, KD45, KB5, and S5 (Table 2). Throughout the paper, we assume
L ∈ {K5,KD5,K45,KD45,KB5,S5} and write 	L ϕ iff ϕ ∈ L.

Definition 1 (Logic K5). Modal logic K5 is axiomatized by the classical tau-
tologies, axioms k and 5, and rules modus ponens (from ϕ and ϕ → ψ infer ψ)
and necessitation (from ϕ infer �ϕ).

Throughout the paper we employ the semantics of Kripke frames and models.

Definition 2 (Kripke semantics). A Kripke frame is a pair (W,R) where
W is a nonempty set of worlds and R ⊆ W × W a binary relation. A Kripke
model is a triple (W,R, V) where (W,R) is a Kripke frame and V : Pr → P(W)
is a valuation function. A formula ϕ is defined to be true at a world w in a
model M = (W,R, V), denoted M, w � ϕ, as follows: M, w � �, M, w � ⊥ and

M, w � p iff w ∈ V (p)
M, w � p iff w /∈ V (p)
M, w � ϕ ∧ ψ iff M, w � ϕ and M, w � ψ
M, w � ϕ ∨ ψ iff M, w � ϕ or M, w � ψ
M, w � �ϕ iff for all v ∈ W such that wRv, M, v � ϕ
M, w � ♦ϕ iff there exists v ∈ W such that wRv and M, v � ϕ.

Formula ϕ is valid in M = (W,R, V), denoted M � ϕ, iff for all w ∈ W ,
M, w � ϕ. We call ∅ �= C ⊆ W a cluster (in M) iff C × C ⊆ R, i.e., the
relation R is total on C. We write wRC iff wRv for all v ∈ C.

266 I. van der Giessen et al.

Table 2. Semantics for extensions of K5 (see [27,29]). Everywhere not ρRρ for the
root ρ, set C is a finite cluster, and � denotes disjoint union.

Logic L Axiomatization Class of L-frames (W, R)

K5 Definition 1 W = {ρ} or W = {ρ} � C

KD5 K5 + d W = {ρ} � C

K45 K5 + 4 W = {ρ} or (W = {ρ} � C and ρRC)

KD45 K5 + d + 4 W = {ρ} � C and ρRC

KB5 K5 + b W = {ρ} or W = C

S5 K5 + t W = C

We work with specific classes of Kripke models sound and complete w.r.t.
the logics. The respective frame conditions for the logic L, called L-frames, are
defined in Table 2. A model (W,R, V) is an L-model iff (W,R) is an L-frame.
Table 2 is a refinement of Theorem 3, particularly shown for K45, KD45, and KB5
in [29]. More precisely, we consider rooted frames and completeness w.r.t. the
root, i.e., 	L ϕ iff for all L-models M with root ρ, M, ρ � ϕ (we often denote
the if-condition as �L ϕ). For each logic, this follows from easy bisimulation
arguments.

Theorem 3 ([27]). Any normal modal logic containing K5 is sound and com-
plete w.r.t. a class of finite Euclidean Kripke frames (W,R) of one of the follow-
ing forms: (a) W = {ρ} consists of a singleton root and R = ∅, (b) the whole W
is a cluster (any world can be considered its root), or (c) W\{ρ} is a cluster for
a (unique) root ρ ∈ W such that ρRw for some w ∈ W\{ρ} while not ρRρ.

Definition 4 (UIP and ULIP). A logic L has the uniform interpolation
property (UIP) iff for any formula ϕ and p ∈ Pr there is a formula ∀pϕ such
that

(1) Lit(∀pϕ) ⊆ Lit(ϕ) \ {p, p},
(2) 	L ∀pϕ → ϕ, and
(3) 	L ψ → ϕ implies 	L ψ → ∀pϕ for any formula ψ with p, p /∈ Lit(ψ).

A logic L has the uniform Lyndon interpolation property (ULIP) [1,18] iff
for any formula ϕ and � ∈ Lit, there is a formula ∀�ϕ such that

(i) Lit(∀�ϕ) ⊆ Lit(ϕ) \ {�},
(ii) 	L ∀�ϕ → ϕ, and
(iii) 	L ψ → ϕ implies 	L ψ → ∀�ϕ for any formula ψ with � /∈ Lit(ψ).

We call ∀pϕ (∀�ϕ) the uniform (Lyndon) interpolant of ϕ w.r.t. atom p (lit-
eral �).

These are often called pre-interpolants as opposed to their dual post-interpolants
that, in classical logic, can be defined as ∃pϕ = ∀pϕ and ∃�ϕ = ∀�ϕ (see, e.g.,
[1,5,11,18] for more explanations).

Extensions of K5: Proof Theory and Uniform Lyndon Interpolation 267

Theorem 5. If a logic L has the ULIP, then it also has the UIP.

Proof. We define a uniform interpolant of ϕ w.r.t. atom p as a uniform Lyndon
interpolant ∀p∀pϕ of ∀pϕ w.r.t. literal p. We need to demonstrate conditions
LIP(1)–(3) from Definition 4. First, it follows from ULIP(i) that Lit(∀p∀pϕ) ⊆
Lit(∀pϕ) \ {p} ⊆ Lit(ϕ) \ {p, p}. Second, 	L ∀p∀pϕ → ∀pϕ and 	L ∀pϕ → ϕ by
ULIP(ii), hence, 	L ∀p∀pϕ → ϕ. Finally, if 	L ψ → ϕ where p, p /∈ Lit(ψ), then
by ULIP(iii), 	L ψ → ∀pϕ as p /∈ Lit(ψ) and 	L ψ → ∀p∀pϕ as p /∈ Lit(ψ). ��

3 Layered Sequents

Definition 6 (Layered sequents). A layered sequent is a generalized one-
sided sequent of the form

G = Γ1, . . . , Γn, [Σ1], . . . , [Σm], [[Π1]], . . . , [[Πk]] (1)

where Γi, Σi,Πi are finite multisets of formulas, n,m, k ≥ 0, and if k ≥ 1, then
m ≥ 1. A layered sequent is an L-sequent iff it satisfies the conditions in the
rightmost column of Table 3. Each Σi, each Πi, and

⋃
i Γi is called a sequent

component of G. The formula interpretation of a layered sequent G above is:

ι(G) =
∨n

i=1

(∨
Γi

) ∨
∨m

i=1
�

(∨
Σi

) ∨
∨k

i=1
��

(∨
Πi

)
.

Layered sequents are denoted by G and H. The structure of a layered sequent
can be viewed as at most two layers of hypersequents ([]-components Σi and
[[]]-components Πi forming the first and second layer respectively) possibly
nested on top of the sequent component

⋃
i Γi as the root. Following the arboreal

terminology from [22], the root is called the trunk while []- and [[]]-components
form the crown. Analogously to nested sequents representing tree-like Kripke
models, the structure of L-sequents is in line with the structure of L-models
introduced in Sect. 2. We view sequents components as freely permutable, e.g.,
[[Π1]], Γ1, [Σ1], Γ2 and Γ1, Γ2, [Σ1], [[Π1]] represent the same layered sequent.

Table 3. Layered sequent calculi L.L: in addition to explicitly stated rules, all L.L
have axioms idP and id∈ and rules ∨, ∧, ♦c, and t (see Fig. 1). Note that the rules of
system L.L may only be applied to L-sequents.

Calculus Sequent rules Conditions on layered sequents

L.K5 �t ♦t �c′ n ≥ 1, m, k ≥ 0

L.KD5 �t ♦t �c′ dt dc′ n ≥ 1, m, k ≥ 0

L.K45 �t ♦t �c n ≥ 1, m ≥ 0, k = 0

L.KD45 �t ♦t �c dt dc n ≥ 1, m ≥ 0, k = 0

L.KB5 �t′ �c n = 0, m ≥ 2, k = 0 or n = 1, m = 0, k = 0

L.S5 �c n = 0, m ≥ 1, k = 0

268 I. van der Giessen et al.

Remark 7. The layered calculi presented here generalize grafted hypersequents
of [22] and, hence, similarly combine features of hypersequents and nested
sequents. In particular, layered sequents are generally neither pure hypersequents
(except for the case of S5) nor bounded-depth nested sequents. The latter is due
to the fact that the defining property of nested sequents is the tree structure
of the sequent components, whereas the crown components of a layered sequent
form a cluster. Although formally grafted hypersequents are defined with one
layer only, this syntactic choice is more of a syntactic sugar than a real dis-
tinction. Indeed, the close relationship of one-layer grafted hypersequents for
K5 and KD5 in [22] to the two-layer layered sequents presented here clearly
manifests itself when translating grafted hypersequents into the prefixed-tableau
format (see grafted tableau system for K5 [22, Sect. 6]). There prefixes for the
crown are separated into two types, limbs and twigs, which match the separation
into []- and [[]]-components.

For a layered sequent (1), we assign labels to the components as follows:
the trunk is labeled •, []-components get distinct labels •1, •2, . . . , and [[]]-
components get distinct labels 1, 2, We let σ, τ, . . . range over these labels.
The set of labels is denoted Lab(G) and σ ∈ G means σ ∈ Lab(G). We write
σ : ϕ ∈ G (or σ : ϕ if no confusion occurs) when a formula ϕ occurs in a sequent
component of G labeled by σ.

Example 8. G = ϕ,ψ, [χ], [ξ], [[θ]] is a layered sequent with the trunk and three
crown components: two []-components and one [[]]-component. Since it has
both the trunk and a [[]]-component, it can only be a K5- or KD5-sequent. A cor-
responding labeled sequent is G = ϕ•, ψ•, [χ]•1, [ξ]•2, [[θ]]1, with the set Lab(G) =
{•, •1, •2, 1} of four labels. Similarly, for the KB5/S5-sequent H = [σ], [δ], a cor-
responding labeled sequent is H = [σ]•1, [δ]•2 with Lab(H) = {•1, •2}.

Fig. 1. Layered sequent rules: brackets � � and � � range over both [] and [[]].

Extensions of K5: Proof Theory and Uniform Lyndon Interpolation 269

We sometimes use unary contexts, i.e., layered sequents with exactly one hole,
denoted { }. Such contexts are denoted by G{ }. The insertion G{Γ} of a finite
multiset Γ into G{ } is obtained by replacing { } with Γ . The hole { } in a
component σ can also be labeled G{ }σ. We use the notations � � and � � to
refer to either of [] or [[]].

Using Fig. 1 and the middle column of Table 3, we define layered sequent
calculi L.K5, L.KD5, L.K45, L.KD45, L.KB5, and L.S5, where L.L is the calculus
for the logic L. Following the terminology from [22], we split all modal rules into
trunk rules (subscript t) and crown rules (subscript c) depending on the position
of the principal formula. We write 	L.L G iff G is derivable in L.L.

Definition 9 (Saturation). Labeled formula σ : ϕ ∈ G is saturated for L.L iff

– ϕ equals p or p for an atom p, or equals ⊥, or equals �;
– ϕ = ϕ1 ∧ ϕ2 and σ : ϕi ∈ G for some i;
– ϕ = ϕ1 ∨ ϕ2 and both σ : ϕ1 ∈ G and σ : ϕ2 ∈ G;
– ϕ = �ϕ′, the unique rule applicable to σ : �ϕ′ in L.L is either �t or �c (i.e.,

a rule creating a []-component), and •i : ϕ′ ∈ G for some i;
– ϕ = �ϕ′, the unique rule applicable to σ : �ϕ′ in L.L is �c′ (i.e., a rule

creating a [[]]-component), and i : ϕ′ ∈ G for some i.

In addition, we define for any label σ and formula ϕ:

– σ : ♦ϕ is saturated w.r.t. • ∈ Lab(G);
– σ : ♦ϕ is saturated w.r.t. a label •i ∈ Lab(G) iff •i : ϕ ∈ G;
– σ : ♦ϕ is saturated w.r.t. a label i ∈ Lab(G) iff σ = • or i : ϕ ∈ G;
– σ : ♦ϕ is dt-saturated iff σ �= • or •i : ϕ ∈ G for some i;
– σ : ♦ϕ is dc-saturated iff σ = • or •i : ϕ ∈ G for some i;
– σ : ♦ϕ is d′

c-saturated iff σ = • or i : ϕ ∈ G for some i.

G is propositionally saturated iff all ∨- and ∧-formulas are saturated in G. L-
sequent G is L-saturated iff a) each non-♦ formula is saturated, b) each σ : ♦ϕ
is saturated w.r.t. every label in Lab(G), c) each σ : ♦ϕ is d-saturated whenever
d ∈ L.L ∩ {dt, dc, dc′}, and d) G is not of the from H{�} or H{q, q} for some
q ∈ Pr.

Theorem 10. Proof search in L.L modulo saturation terminates and provides
an optimal-complexity decision algorithm, i.e., runs in co-NP time.

Proof. Given a proof search of layered sequent G, for each layered sequent H in
this proof search, consider its labeled formulas as a set FH = {σ : ϕ | σ : ϕ ∈ H}.
Let s be the number of subformulas occurring in G and N be the number of
sequent components in G. Since we only apply rules (that do not equal idP or id�)
to non-saturated sequents, sets FH will grow for each premise. Going bottom-up
in the proof search, at most s labels of the form •i and at most s labels of the
form i can be created, and each label can have at most s formulas. Therefore, the
cardinality of sets FH are bounded by s(N+s+s), which is polynomial in the size
of FG . Hence, the proof search terminates modulo saturation. Moreover, since

270 I. van der Giessen et al.

each added labeled formula is linear in the size FG and the non-deterministic
branching in the proof search is bounded by (N + s + s)s(N + s + s), again a
polynomial in the size of FG , this algorithm is co-NP, i.e., provides an optimal
decision procedure for the logic. ��
Definition 11 (Interpretations). An interpretation of an L-sequent G into
an L-model M = (W,R, V) is a function I : Lab(G) → W such that the following
conditions apply whenever the respective type of labels exists in G:

1. I(•) = ρ, where ρ is the root of M;
2. I(•)R I(•i) for each label of the form •i ∈ Lab(G);
3. I(•i)R I(j) and I(j)R I(•i) for all labels of the form •i and j in Lab(G);
4. Not I(•)R I(j) for any label of the form j ∈ Lab(G).

Note that none of the conditions (1)–(4) apply to layered S5-sequents.

Definition 12 (Sequent semantics). For any given interpretation I of an
L-sequent G into an L-model M,

M, I � G iff M, I(σ) � ϕ for some σ : ϕ ∈ G.

G is valid in L, denoted �L G, iff M, I � G for all L-models M and interpreta-
tions I of G into M. We omit L and M when clear from the context.

The proof of the following theorem is based on a countermodel construction
(for more standard parts of the proof we refer to the Appendix of [14]):

Theorem 13 (Soundness and completeness). For any L-sequent G,

	L.L G ⇐⇒ �L ι(G) ⇐⇒ �L G.

Proof. We show a cycle of implications. The left-to-middle implication, i.e., that
	L.L G =⇒ �L ι(G), can be proved by induction on the L.L-derivation of G.

For the middle-to-right implication, i.e., �L ι(G) =⇒ �L G, let G be a sequent
of form (1). We prove that M, I � G implies M, I(•) � ι(G) (if n = 0, use 1
in place of •). By definition, I(•) is the root of M. If M, I � G, then I(•) � ϕ
for all ϕ ∈ ⋃n

i=1 Γi, for each 1 ≤ i ≤ m we have I(•i) � ψ for all ψ ∈ Σi,
and for each 1 ≤ i ≤ k we have I(i) � χ for all χ ∈ Πi. By Definition 11, in
case k ≥ 1 label •1 is in G and I(•)RI(•1)RI(i) for each 1 ≤ i ≤ k. Therefore
M, I(•) � ι(G).

Finally, we prove the right-to-left implication by contraposition using a coun-
termodel construction: from a failed proof search of G, construct an L-model
refuting G from (1). In a failed proof-search tree (Theorem 10), since �L.L G, at
least one saturated leaf

G′ = Γ ′, [Σ′
1], . . . , [Σ

′
m], [Σ′′

1], . . . , [Σ′′
m′], [[Π′

1]], . . . , [[Π
′
k]], [[Π′′

1]], . . . , [[Π′′
k′]],

is such that
⋃

i Γi ⊆ Γ ′, Σi ⊆ Σ′
i, and Πi ⊆ Π′

i (or for KB5, if G = Γ , then
G′ = Γ ′ for Γ ⊆ Γ ′ or [Σ], [Σ1], . . . , [Σm] with Γ ⊆ Σ). Define M = (W,R, V):

W = Lab(G′), V (p) = {σ | σ : p ∈ G′},

R = {(•, •i) | •i ∈ Lab(G′)} ∪ {(σ, τ) | σ, τ ∈ Lab(G′), σ, τ �= •}.

Since G′ is saturated, M is an L-model. Taking I of G into M as the identity
function (or I(•) = 1 in case of KB5), we have M, I � G as desired. ��

Extensions of K5: Proof Theory and Uniform Lyndon Interpolation 271

4 Uniform Lyndon Interpolation

Definition 14 (Multiformulas). The grammar

� ::= σ : ϕ | (� � �) | (� � �)

defines multiformulas, where σ : ϕ is a labeled formula. Lab(�) denotes the set
of labels of �. An interpretation I of a layered sequent G into a model M is
called an interpretation of a multiformula � into M iff Lab(�) ⊆ Lab(G). If I is
an interpretation of � into M, we define M, I � � as follows:
M, I � σ : ϕ iff M, I(σ) � ϕ,
M, I � �1 � �2 iff M, I � �1 and M, I � �2,
M, I � �1 � �2 iff M, I � �i for at least one i = 1, 2.

Multiformulas �1 and �2 are said to be equivalent, denoted �1 ≡L �2, or simply
�1 ≡ �2, iff M, I � �1 ⇔ M, I � �2 for any interpretation I of both �1 and �2

into an L-model M.

Lemma 15 ([21]). Any multiformula � can be transformed into an equivalent
one in SDNF (SCNF) as a �-disjunction (�-conjunction) of �-conjunctions
(�-disjunctions) of labeled formulas σ : ϕ such that each label of � occurs exactly
once per conjunct (disjunct).

Definition 16 (Bisimilarity) . Let M = (W,R, V) and M′ = (W ′, R′, V ′)
be models and � ∈ Lit. We say M′ is �-bisimilar to M, denoted M′ ≤� M
iff there is a nonempty binary relation Z ⊆ W × W ′, called an �-bisimulation
between M and M′, such that the following hold for every w ∈ W and w′ ∈ W ′:

literals�. if wZw′, then a) M, w � q iff M′, w′ � q for all atoms q /∈ {�, �} and
b) if M′, w′ � �, then M, w � �;

forth. if wZw′ and wRv, then there exists v′ ∈ W ′ such that vZv′ and w′R′v′;
back. if wZw′ and w′R′v′, then there exists v ∈ W such that vZv′ and wRv.

M and M′ are bisimilar, denoted M ∼ M′, iff there is a relation Z �= ∅

satisfying forth and back, as well as part a) of literals� for any p ∈ Pr, in
which case Z is called a bisimulation. We write (similarly for ∼ instead of ≤�):

– (M′, w′) ≤� (M, w) iff there is an �-bisimulation Z, such that wZw′;
– (M′, I ′) ≤� (M, I) for functions I : X → W and I ′ : X → W ′ iff there is an

�-bisimulation Z such that I(σ)Z I ′(σ) for each σ ∈ X.

Note that ≤� is a preorder and we have M′ ≤� M iff M ≤� M′. By analogy
with [6, Theorem 2.20], we have the following immediate observation, which
additionally holds for multiformulas � (we provide a proof in [14]):

Lemma 17. Let I and I ′ be interpretations of a layered sequent G into mod-
els M and M′ respectively.

1. Let � /∈ Lit(G). If (M′, I ′) ≤� (M, I), then M, I � G implies M′, I ′ � G.
2. If (M, I) ∼ (M′, I ′), then M, I � G iff M′, I ′ � G.

272 I. van der Giessen et al.

Definition 18 (BLUIP). Logic L is said to have the bisimulation layered-
sequent uniform interpolation property (BLUIP) iff for every literal � and every
L-sequent G, there is a multiformula A�(G), called BLU interpolant, such that:

(i) Lit
(
A�(G)

) ⊆ Lit(G)\{�} and Lab
(
A�(G)

) ⊆ Lab(G);
(ii) for each interpretation I of G into an L-model M,

M, I � A�(G) implies M, I � G;

(iii) for each L-model M and interpretation I of G into M, if M, I � A�(G),
then there is an L-model M′ and interpretation I ′ of G into M′ such that

(M′, I ′) ≤� (M, I) and M′, I ′
� G.

Lemma 19. The BLUIP for L implies the ULIP for L.

Proof. Let ∀�ϕ = A�(ϕ). We prove the properties of Definition 4. Variable prop-
erty is immediate. For Property (ii), assume �L A�(ϕ) → ϕ. By completeness,
we have M, ρ � A�(ϕ) and M, ρ � ϕ for some L-model M with root ρ. As ρ is
the root, it can be considered as an interpretation by Definition 11. By condi-
tion (ii) from Definition 18 we get a contradiction. For (iii), let ψ be a formula
such that � /∈ Lit(ψ) and suppose �L ψ → A�(ϕ). So there is an L-model M with
root ρ such that M, ρ � ψ and M, ρ � A�(ϕ). Again, ρ is treated as an inter-
pretation, and by (iii) from Definition 18, there is an L-model M′ with root ρ′

such that (M′, ρ′) ≤� (M, ρ) and M′, ρ′
� ϕ. By Lemma 17, M′, ρ′ � ψ, hence

�L ψ → ϕ as desired. ��
To show that calculus L.K5 enjoys the BLUIP for K5, we need two important

ingredients: some model modifications that are closed under bisimulation and
an algorithm to compute uniform Lyndon interpolants.

Definition 20 (Copying). Let M = (W,R, V) be a K5-model with root ρ and
cluster C. Model N ′ = (W � {wc}, R′, V ′) is obtained by copying w ∈ C iff
R′ = R � ({wc} × C) � (C × {wc}) � {(ρ,wc) | (ρ,w) ∈ R} � {(wc, wc)}, and
V ′(p) = V (p)�{wc | w ∈ V (p)} for any p ∈ Pr. Model N ′′ = (W �{wc}, R′′, V ′)
is obtained by copying w away from the root iff R′′ = R′ \ {(ρ,wc)}.
Lemma 21. Let model N be obtained by copying a world w from a K5-model M
(away from the root). Let I : X → M and I ′ : X → N be interpretations such
that for each x ∈ X, either I(x) = I ′(x) or I(x) = w while I ′(x) = wc. Then,
N is a K5-model and (M, I) ∼ (N , I ′).

In the construction of interpolants, we use the following rules d′
t and dd and

sets Gc and �♦Gc of formulas from the crown of G:

Gc = {ϕ | σ : ϕ ∈ G, σ �= •} �♦Gc = {�ϕ | �ϕ ∈ Gc} � {♦ϕ | ♦ϕ ∈ Gc}
Γ,

[{ψ | ♦ψ ∈ Γ}]
Γ,♦�

d′
t

Γ
and

G,
[{ψ | ♦ψ ∈ G}], [[{χ | ♦χ ∈ Gc}

]]

dd G

Extensions of K5: Proof Theory and Uniform Lyndon Interpolation 273

Rule d′
t shows similarities with rule dt from logics KD5 and KD45, but is only

applied in the absence of the crown. Rule d′
t is sound for K5 because it can be

viewed as a composition of an (admissible) cut on �⊥ and ♦� in the trunk,
followed by �t in the left premise on �⊥ that creates the first crown component
(though ⊥ is dropped from it), which is populated using several ♦t-rules for
♦ψ ∈ Γ . The label of this crown component is always •1. Rule dd provides
extra information in the calculation of the uniform interpolant and is needed
primarily for technical reasons. We highlight the two new sequent components
created by the last instance of dd using special placeholder labels •d and d for the
respective brackets. These labels are purely for readability purposes and revert
to the standard •j and k labels after the next instance of dd.

Table 4. Recursive construction of Aλ(t, Σc; G) for G that are not K5-saturated.

G matches Aλ(t, Σc; G) equals

1. G′{
}σ σ :

2. G′{q, q}σ σ :

3. G′{ϕ ∨ ψ} Aλ

(
t, Σc; G′{ϕ ∨ ψ, ϕ, ψ})

4. G′{ϕ ∧ ψ} Aλ

(
t, Σc; G′{ϕ ∧ ψ, ϕ})

� Aλ

(
t, Σc; G′{ϕ ∧ ψ, ψ})

5. G′, �ϕ
h

�
i=1

(
• : �δi � �

τ∈G
τ : γi,τ

)

where j is the smallest integer such that •j /∈ G and the SCNF

of Aλ

(
t, Σc; G′, �ϕ, [ϕ]•j

)
is

h

�
i=1

(
•j : δi � �

τ∈G
τ : γi,τ

)
,

6. G′, �Σ, �ϕ�σ

h

�
i=1

(
σ : �δi � �

τ∈G
τ : γi,τ

)

where j is the smallest integer such that j /∈ G and the SCNF

of Aλ

(
t, Σc; G′, �Σ, �ϕ�σ, [[ϕ]]j

)
is

h

�
i=1

(
j : δi � �

τ∈G
τ : γi,τ

)
,

7. G′, ♦ϕ, [Σ] Aλ

(
t, Σc; G′, ♦ϕ, [Σ, ϕ]

)

8. G′, �Σ, ♦ϕ� Aλ

(
t, Σc; G′, �Σ, ♦ϕ, ϕ�

)

9. G′, �Σ, ♦ϕ�, �Π� Aλ

(
t, Σc; G′, �Σ, ♦ϕ�, �Π, ϕ�

)

To compute a uniform Lyndon interpolant ∀�ξ for a formula ξ, we first com-
pute a BLU interpolant A�(0, ∅; ξ•) by using the recursive function A�(t, Σc;G)
with three parameters we present below. The main parameter is a K5-sequent G,
while the other two parameters are auxiliary: t ∈ {0, 1} is a boolean variable such
that t = 1 guarantees that rule dd has been applied at least once for the case
when G contains diamond formulas; Σc ⊆ �♦Gc is a set of modal formulas that
provides a bookkeeping strategy to prevent redundant applications of rule dd.

To calculate A�(t, Σc;G) our algorithm makes a choice of which row from
Table 4 to apply by trying each of the following steps in the specified order:

1. If possible, apply rows 1–2, i.e., stop and return A�(t, Σc;G) = σ : �.

274 I. van der Giessen et al.

2. If some formula ϕ ∨ ψ (resp. ϕ ∧ ψ) from G is not saturated, compute
A�(t, Σc;G) according to row 3 (resp. 4) applied to this formula.

3. If some formula �ϕ ∈ G is not saturated (resp. ♦ϕ ∈ G is not saturated
w.r.t. σ ∈ G), compute A�(t, Σc;G) according to the unique respective row
among 5–9 applicable to this formula (w.r.t. σ).

4. If Steps 1–3 do not apply, i.e., G is saturated, proceed as follows:
(a) if G has no ♦-formulas, stop and return A�(t, Σc;G) = LitDis�(G) where

LitDis�(G) = �
σ:�′∈G,�′∈Lit\{�}

σ : �′ (2)

(b) else, if G = Γ consists of the trunk only, apply rule d′
t as follows:

A�(t, Σc;Γ) =

(
• : �⊥ �

h

�
i=1

(• : ♦δi � • : γi

))
�

(• : ♦� � LitDis�(Γ)
)

(3)

where the SDNF of A�

(
0, Σc; Γ,

[{ψ | ♦ψ ∈ Γ}]
•1

)
is

h

�
i=1

(
•1 : δi � • : γi

)
(4)

(c) else, if t = 1 and �♦Gc ⊆ Σc, stop and return A�(t, Σc;G) = LitDis�(G).
(d) else, apply the rule dd as follows (where w.l.o.g. •1 ∈ G):

A�(t, Σc;G) =
h

�
i=1

(

• : ♦δi � •1 : ♦δ′
i ��

τ∈G
τ : γi,τ

)

(5)

where SDNF of A�

(
1,�♦Gc; G,

[{ψ | ♦ψ ∈ G}]•d
,
[[{χ | ♦χ ∈ Gc}

]]
d

)
is

h

�
i=1

(

•d : δi � d : δ′
i ��

τ∈G
τ : γi,τ

)

(6)

The computation of the algorithm can be seen as a proof search tree
(extended with rules d′

t and dd). In this proof search, call A�(t, Σc;G) is suf-
ficient (to be a BLU interpolant for G) if each branch going up from it either
stops in Steps 1 or 4a or continues via Steps 4b or 4d. Otherwise, it is insuffi-
cient, if one of the branches stops in Step 4c, say, calculating A�(1, Σc;H). In
this case, A�(1, Σc;H) is not generally a BLU interpolant for H, but these leaves
provide enough information to find a BLU interpolant from some sequent down
the proof search tree.

Example 22. Consider the layered sequent G = ϕ for ϕ = p∨♦♦(p∨q). We show
how to construct A�(0, ∅;ϕ) for � = p. First, we compute the proof search tree
decorated with (t, Σc) to the left of each line, according to the algorithm, using
the following abbreviations Γ = ϕ, p,♦♦(p ∨ q) and Σ1 = ♦(p ∨ q), p ∨ q, p, q:

Extensions of K5: Proof Theory and Uniform Lyndon Interpolation 275

(1, {♦(p ∨ q)}) Γ, [Σ1]•1, [♦(p ∨ q), p ∨ q, p, q]•d, [[p ∨ q, p, q]]d ∨
(1, {♦(p ∨ q)}) Γ, [Σ1]•1, [♦(p ∨ q), p ∨ q]•d, [[p ∨ q]]d

dd
(0, ∅) Γ, [♦(p ∨ q), p ∨ q, p, q]•1 ∨

(0, ∅) Γ, [♦(p ∨ q), p ∨ q]•1
t

(0, ∅) Γ, [♦(p ∨ q)]•1 Γ,♦�
d′

t(0, ∅) ϕ, p,♦♦(p ∨ q)
∨

(0, ∅) p ∨ ♦♦(p ∨ q)

H = ϕ, p,♦♦(p ∨ q), [♦(p ∨ q), p ∨ q, p, q]•1, [♦(p ∨ q), p ∨ q, p, q]•d, [[p ∨ q, p, q]]d in
the left leaf is a saturated sequent with ♦-formulas, crown components, t = 1,
and �♦Hc = {♦(p ∨ q)} ⊆ {♦(p ∨ q)} = Σc. Hence, by Step 4c,

Ap(1, {♦(p ∨ q)};H) = • : p � •1 : q � •d : q � d : q. (7)

Applications of rule ∨ do not change the interpolant (Step 2, row 3). To compute
Ap(0, ∅;Γ, [Σ1]•1) for the conclusion of dd, we convert (7) into an SDNF

(
• : p � �

σ∈{•1,•d,d}
σ :

)
� �

τ∈{•1,•d,d}

(
τ : q � �

σ∈{•,•1,•d,d}\{τ}
σ :

)
.

Now, by Step (d), and converting into a new SDNF, we get Ap(0, ∅;Γ, [Σ1]•1) ≡
(• : (p ∧ ♦�) � •1 : (� ∧ ♦�)

)
�

(• : (� ∧ ♦�) � •1 : (q ∧ ♦�)
)
�

(• : (� ∧ ♦q) � •1 : (� ∧ ♦�)
)

�
(• : (� ∧ ♦�) � •1 : (� ∧ ♦q)

)
.

Further applications of ∨ and t keep this interpolant intact. Note that the
application of d′

t does not require to continue proof search for the right branch.
Instead, Step 4b prescribes that Ap(0, ∅;ϕ, p,♦♦(p ∨ q)) ≡ (• : p � • : ♦�)

�

((• : (p ∧ ♦� ∧ ♦(� ∧ ♦�))
)

�
(• : (� ∧ ♦� ∧ ♦(q ∧ ♦�))

)
�

(• : (� ∧ ♦q ∧ ♦(� ∧ ♦�))
)

�
(• : (� ∧ ♦� ∧ ♦(� ∧ ♦q))

)
� • : �⊥

)
.

Simplifying, we finally obtain

Ap(0, ∅;ϕ) ≡ • :
(
(p∨♦�)∧ (

(p∧♦�)∨♦q ∨♦♦q ∨�⊥)) ≡ • : (p∨♦♦q). (8)

To check that p ∨ ♦♦q is a uniform Lyndon interpolant for ϕ w.r.t. literal p,
it is sufficient to verify that (8) is a BLU interpolant for G by checking the
conditions in Definition 18. We only check BLUIP(iii) as the least trivial. If
M, I � • : (p ∨ ♦♦q) for an interpretation I into a K5-model M = (W,R, V),
then, by Definitions 14 and 11, M, ρ � p∨♦♦q for the root ρ of M. For � = p, we
have an �-bisimulation (M′, I) ≤� (M, I) for M′ = (W,R, V ′) with V ′(p) = {ρ}
and V ′(r) = V (r) for r �= p since literalsp allows to turn p from true to false.
It is easy to see that M′, ρ � p ∨ ♦♦(p ∨ q). Thus, M′, I � • : ϕ.

We have the following properties of the algorithm (we provide a proof in
[14]).

276 I. van der Giessen et al.

Lemma 23. All recursive calls A�(t, Σc;G) in a proof search tree of A�(0, ∅;ϕ)
have the following properties:

1. The algorithm is terminating.
2. When Step 4b is applied, t = 0 and every branch going up from it consists of

Steps 2–3 followed by either final Step 1 or continuation via Step 4d.
3. After Step 4d is applied, every branch going up from it consists of Steps 2

followed by a call A�(1,�♦Gc;G, [Θ]•d, [[Φ]]d) of one of the following types:
(a) sufficient and final when calculated via Step 1;
(b) sufficient and propositionally saturated when calculated via Step 3, with

every branch going up from there consisting of more Steps 2–3, followed
by either final Step 1 or continuation via Step 4d;

(c) insufficient and saturated when calculated via Step 4c.

Theorem 24. Logic K5 has the BLUIP and, hence, the ULIP.

Proof. It is sufficient to prove that, once the algorithm starts on A�(0, ∅;ϕ), then
every sufficient call A�(t, Σc;G) in the proof search returns a BLU interpolant
for a K5-sequent G. Because the induction on the proof-search is quite technical
and involves multiple cases, we demonstrate only a few representative cases and
omitting simple ones, e.g., BLUIP(i), altogether. We present more cases in the
Appendix of [14].

BLUIP(ii) We show that M, I � A�(t, Σc;G) implies M, I � G for any
interpretation I of G into any K5-model M = (W,R, V). The hardest
among Steps 1–3 is Step 3 using row 5 in Table 4. Let G = G′,�ϕ and
M, I � A�(t, Σc;G′,�ϕ) for

A�(t, Σc; G′,�ϕ) =
h

�
i=1

(

• : �δi ��
τ∈G

τ : γi,τ

)

, (9)

i.e., for each 1 ≤ i ≤ h either M, ρ � �δi or M, I(τ) � γi,τ for some τ ∈ G.
For an arbitrary v such that ρRv and the the smallest j such that •j /∈ G,
clearly Iv = I � {(•j, v)} is an interpretation of G′,�ϕ, [ϕ]•j into M. Since
M, Iv(•j) � δi whenever M, ρ � �δi, it follows that for each 1 ≤ i ≤ h
either M, Iv(•j) � δi or M, Iv(τ) � γi,τ for some τ ∈ G, i.e., M, Iv �
A�

(
t, Σc;G′,�ϕ, [ϕ]•j

)
for

A�

(
t, Σc; G′,�ϕ, [ϕ]•j

) ≡
h

�
i=1

(

•j : δi ��
τ∈G

τ : γi,τ

)

. (10)

By IH, M, Iv � G′,�ϕ, [ϕ]•j whenever ρRv. If M, ρ � �ϕ, then M, I � G.
Otherwise, M, Iv(•j) � ϕ for some v with ρRv. For it, M, Iv � G′, hence,
M, I � G.
The only other case we consider (here) is Step 4d. Let M, I � A�(t, Σc;G)
for A�(t, Σc;G) from (5), i.e., for some 1 ≤ i ≤ h we have M, ρ � ♦δi, and
M, I(•1) � ♦δ′

i, and M, I(τ) � γi,τ for all τ ∈ G. In particular, M, v � δi for

Extensions of K5: Proof Theory and Uniform Lyndon Interpolation 277

some ρRv and M, u � δ′
i for some I(•1)Ru. Let M′ be obtained by copying

u into u′ away from the root in M and let J = I � {(•d, v), (d, u′)} be a
well-defined interpretation. M′,J � A�(1,�♦Gc;G, [{ψ | ♦ψ ∈ G}]•d, [[{χ |
♦χ ∈ Gc}]]d), as (6) is true for M′ and J . By IH, M′,J � G, [{ψ | ♦ψ ∈
G}]•d, [[{χ | ♦χ ∈ Gc}]]d. If M′, v � ψ for some ♦ψ ∈ G or M′, u′ � χ for
some ♦χ ∈ Gc, then M′,J � G because of ♦ψ or ♦χ respectively. Otherwise,
also M′,J � G. Since we have (M, I) ∼ (M′,J) by Lemma 21, we have
M, I � G by Lemma 17(2) in all cases.

BLUIP(iii) We show the following statement by induction restricted to suffi-
cient calls: if M, I � A�(t, Σc;G), then M′,J ′

� G for some interpretation J ′

of G into another K5-model M′ such that (M′,J ′) ≤� (M, I). Here we only
consider Step 4 as the other steps are sufficiently similar to K and S5 cov-
ered in [12,13]. Among the four subcases, Step 4a is tedious but conceptually
transparent. Step 4c is trivial because the induction statement is only for suf-
ficient calls while Step 4c calls are insufficient by Lemma 23. Out of remaining
two steps we only have space for Step 4d, which is conceptually the most
interesting because its recursive call may be insufficient, precluding the use
of IH for it. Let M, I � A�(t, Σc;G) for A�(t, Σc;G) from (5).

We first modify M and I to obtain an injective interpretation I ′ into a
K5-model N ′ = (W ′, R′, V ′) such that W ′\Range(I ′) is not empty and parti-
tioned into pairs (v, u) with I ′(•)Rv and not I ′(•)Ru. To this end we employ
copying as per Definition 20, constructing a sequence of interpretations Ii

from G into models Ni = (Wi, Ri, Vi) starting from N0 = M and I0 = I as
follows:
1. If Ii(τ1) = Ii(τ2) for τ1 �= τ2, obtain Ni+1 by copying Ii(τ2) to a new

world w and redirect τ2 to this new world, i.e., Ii+1 = Ii � {(τ2, w)} \
{(τ2, Ii(τ2))}.

2. If IK−1 is injective but WK−1\Range(IK−1) = ∅, obtain NK by copying
IK−1(•1) to a new world y. Set IK = IK−1. Now WK \ Range(IK) �= ∅.

3. Finally, define the two sets Y = {y ∈ WK \ Range(IK) | IK(•)RKy} and
Z = {z ∈ WK \ Range(IK) | not IK(•)RKz} and obtain N ′ by copying:

– for each y ∈ Y , copy IK(•1) away from the root to a new world y2;
– for each z ∈ Z, copy IK(•1) to a new world z1.

Then I ′ = IK is an injective interpretation of G into N ′.
Note that W ′ \Range(I ′) = Y �Z �{y2 | y ∈ Y }�{z1 | z ∈ Z} �= ∅. Further,
I ′(•)R′y for all y ∈ Y , and not I ′(•)R′y2 for all y ∈ Y , and I ′(•)R′z1 for
all z ∈ Z, and not I ′(•)R′z for all z ∈ Z. Thus, we obtain the requisite
partition P = {(y, y2) | y ∈ Y } � {(z1, z) | z ∈ Z} �= ∅ of the non-empty
W ′ \ Range(I ′).

It is clear that (N ′, I ′) ∼ (M, I). So N ′, I ′
� A�(t, Σc;G) by Lemma 17,

i.e., for each 1 ≤ i ≤ h we have N ′, ρ � ♦δi for ρ = I ′(•), or N ′, I ′(•1) � ♦δ′
i,

or N ′, I ′(τ) � γi,τ for some τ ∈ G. Thus, for any (v, u) ∈ P and each 1 ≤
i ≤ h, we have N ′, v � δi, or N ′, u � δ′

i, or N ′, I ′(τ) � γi,τ for some τ ∈ G.
Hence, (6) is false under injective interpretation Jv,u = I ′ � {(•d, v), (d, u)}
into N ′, i.e., abbreviating Θ = {ψ | ♦ψ ∈ G} and Φ = {χ | ♦χ ∈ Gc}, we get
N ′,Jv,u � A�(1,�♦Gc;G, [Θ]•d, [[Φ]]d).

278 I. van der Giessen et al.

Ordinarily, here we would use IH, but this is only possible for sufficient
calls, which, alas, is not guaranteed for (6). What is known by Lemma 23(3)
is that every branch going up from (6) leads to a call of the form

A�(1,�♦Gc; G, [Θj]•d, [[Φj]]d), (11)

where Θj ⊇ Θ and Φj ⊇ Φ, that returns multiformula �j and is either
sufficient or insufficient but saturated. Let Ξ denote the multiset of these
multiformulas �j returned by all these calls. Since Step 2 is the only one used
between that call and all the calls comprising (11), it is clear that (6) is their
conjunction, i.e., A�(1,�♦Gc;G, [Θ]•d, [[Φ]]d) ≡ ��j∈Ξ �j . Collecting all this
together, we conclude that for each pair (v, u) ∈ P there is some �v,u ∈ Ξ
such that

N ′,Jv,u � �v,u. (12)

We distinguish between two cases. First, suppose for at least one pair (v, u) ∈
P there is a sufficient �v,u = A�(1,�♦Gc;G, [Θv,u]•d, [[Φv,u]]d) satisfying (12).
By IH for this �v,u there is an interpretation J ′

0 into a K5-model M′ such that
(M′,J ′

0) ≤� (N ′,Jv,u) and M′,J ′
0 � G, [Θv,u]•d, [[Φv,u]]d. Thus, M′,J ′

� G
for J ′ = J ′

0 �Lab(G). Finally, by restricting to labels of G, we can see that

(M′,J ′) ≤� (N ′, I ′) ∼ (M, I). (13)

Otherwise, (12) does not hold for any pair (v, u) ∈ P and any sufficient
�v,u ∈ Ξ. In this case, N ′,Jv,u � ��j∈Ξ �j guarantees the existence of an
insufficient �v,u ∈ Ξ for each pair (v, u) ∈ P such that (12) holds. Since all
these �v,u are insufficient, we cannot use IH. Instead, we construct M′ and J ′

directly by changing � from true to false if needed based on G within Range(I ′)
and based on �v,u’s outside of this range. Thanks to I ′ being injective, we do
not need to worry about conflicting requirements from different components
of G. Similarly, P being a partition prevents conflicts outside Range(I ′). Let
M′ = (W ′, R′, U ′) be N ′ with V ′ changed into U ′. We define V ′↓�T as the
valuation that makes � false in all worlds from T ⊆ W ′, i.e., (V ′↓�T)(q) =
V ′(q) for all q /∈ {�, �}, while

(V ′↓�T)(p) =

{
V ′(p) \ T if � = p,

V ′(p) ∪ T if � = p

for p ∈ {�, �}. Using this notation, we define U ′ = V ′↓�TG where

TG = {I ′(σ) | σ : � ∈ G} � {v | (v, u) ∈ P and • d : � ∈ �v,u}�
{u | (v, u) ∈ P and d : � ∈ �v,u}.

(14)

Finally, J ′ = I ′. It is clear that (13) holds for these M′ and J ′.

Extensions of K5: Proof Theory and Uniform Lyndon Interpolation 279

It remains to show that M′,J ′
� G. This is done by mutual induction on the

construction of formula ϕ for the following three induction statements

σ : ϕ ∈ G =⇒ M′, I ′(σ) � ϕ, (15)
•d : ϕ ∈ �v,u =⇒ M′, v � ϕ, (16)
d : ϕ ∈ �v,u =⇒ M′, u � ϕ. (17)

Case ϕ = �′ ∈ Lit \ {�, �}. By Lemma 23(3), all �v,u are computed by
Step 4c due to their insufficiency, i.e., �v,u = LitDis�(G, [Θv,u]•d, [[Φv,u]]d).
(16) and (17) follow from (12) and (2) because M′ agrees with N ′ on
�′ /∈ {�, �}. Similarly, since Jv,u agrees with J ′ = I ′ on Lab(G), (15)
follows by using �v,u for any (v, u) ∈ P �= ∅.

Case ϕ = � is analogous to the previous one. The only difference is the
reason why M′ agrees with N ′ on �. Here, σ : � ∈ G implies σ : � /∈ G
because G was processed by Step 4d not Step 1. Therefore, I ′(σ) /∈ TG
by the injectivity of I ′, and � was not made true in I ′(σ), ensuring (15).
The argument for (16) and (17) is similar, except •d/d : � is taken from
�v,u processed by Step 4c not Step 1.

Case ϕ = �. All of (15)–(17) follow from (14).
Cases ϕ = ϕ1 ∧ ϕ2 and ϕ = ϕ1 ∨ ϕ2 are standard and follow by IH due to

saturation of G for (15) and �v,u for (16) and (17).
Case ϕ = �ξ. If σ : �ξ ∈ G, then by saturation of G, there is a τ such that

τ : ξ ∈ G and I ′(σ)R′I ′(τ): if σ = •, then τ = •j for some j, while if
σ �= •, then τ �= •. By IH(15), M′, I ′(τ) � ξ, and M′, I ′(σ) � �ξ.
If •d/d : �ξ ∈ �v,u, then �ξ ∈ �♦Gc by conditions of Step 4c due to (11),
i.e., �ξ ∈ Gc. By saturation of G, there is a τ �= • such that τ : ξ ∈ G.
Since v, u, and I ′(τ) are all in the cluster C of M′, we have vR′I ′(τ) and
uR′I ′(τ). It remains to use IH(16) and IH(17).

Case ϕ = ♦ξ. First consider σ = • and • : ♦ξ ∈ G. Since I ′(•) = ρ is the root,
ρR′w implies either w = I ′(•j) for some j or w /∈ Range(I ′). In the former
case, •j : ξ ∈ G by saturation of G, so M′, w � ξ by IH(15). In the latter
case, (w, u) ∈ P for some u. Recall for A�(1,�♦Gc;G, [Θw,u]•d, [[Φw,u]]d)
that we have Θw,u ⊇ Θ = {ψ | ♦ψ ∈ G} � ξ. Hence, •d : ξ ∈ �w,u and
M′, w � ξ by IH(16). Since M′, w � ξ for all I ′(•) = ρR′w, we conclude
M′, I ′(•) � ♦ξ.

If σ �= • and σ : ♦ξ ∈ G, the argument is similar. But additionally we
may have w = I ′(k) for some k or (v, w) ∈ P for some v. In the former
case, k : ξ ∈ G by saturation of G, so M′, w � ξ by IH(15). In the latter
case, Φv,w ⊇ Φ = {χ | ♦χ ∈ Gc} � ξ. Hence, d : ξ ∈ �v,w and M′, w � ξ
by IH(17). Since M′, w � ξ for all I ′(σ)R′w, we conclude M′, I ′(σ) � ♦ξ.

If •d/d : ♦ξ ∈ �v,u, then, similar to the analogous subcase of �ξ,
conditions of Step 4c imply that ♦ξ ∈ Gc, i.e., τ0 : ♦ξ ∈ G for some τ0 �= •.
Then τ : ξ ∈ G for all τ �= • by saturation of G. Thus, M′, I ′(τ) � ξ for
all τ �= • by IH(15). For each y /∈ Range(I ′) such that ρR′y, there is x
such that (y, x) ∈ P and •d : ξ ∈ �y,x because Θy,x ⊇ Θ � ξ. Hence,
M′, y � ξ by IH(16). Finally, for each x /∈ Range(I ′) such that not ρR′x,

280 I. van der Giessen et al.

there is y such that (y, x) ∈ P and d : ξ ∈ �y,x because Φy,x ⊇ Φ � ξ.
Hence, M′, x � ξ by IH(17). We have shown that M′, w � ξ whenever
vR′w (uR′w). Thus, M′, v � ♦ξ and M′, u � ♦ξ. ��

5 Conclusion

We presented layered sequent calculi for several extensions of modal logic K5:
namely, K5 itself, KD5, K45, KD45, KB5, and S5. By leveraging the simplicity
of Kripke models for these logics, we were able to formulate these calculi in a
modular way and obtain optimal complexity upper bounds for proof search. We
used the calculus for K5 to obtain the first syntactic (and, hence, constructive)
proof of the uniform Lyndon interpolation property for K5.

Due to the proof being technically involved, space considerations prevented
us from extending the syntactic proof of ULIP to KD5, K45, KD45, KB5, and S5.
For S5, layered sequents coincide with hypersequents, and we plan to upgrade the
hypersequent-based syntactic proof of UIP from [11] to ULIP (see also [13]). As
for KD5, K45, KD45, and KB5, the idea is to modify the method presented here
for K5 by using the layered sequent calculus for the respective logic and making
other necessary modifications, e.g., to rule dd, to fit the specific structure of the
layers. We conjecture that the proof for K45, KD45, and KB5 would be similar
to that for S5, whereas KD5 would more closely resemble K5.

Acknowledgments. Iris van der Giessen and Raheleh Jalali are grateful for the pro-
ductive and exciting four-week research visit to the Embedded Computing Systems
Group at TU Wien. The authors thank the anonymous reviewers for their useful com-
ments.

References

1. Akbar Tabatabai, A., Iemhoff, R., Jalali, R.: Uniform Lyndon interpolation for
basic non-normal modal and conditional logics. Eprint 2208.05202, arXiv (2022).
https://doi.org/10.48550/arXiv.2208.05202

2. Akbar Tabatabai, A., Iemhoff, R., Jalali, R.: Uniform Lyndon interpolation for
intuitionistic monotone modal logic. Eprint 2208.04607, arXiv (2022). https://doi.
org/10.48550/arXiv.2208.04607

3. Akbar Tabatabai, A., Jalali, R.: Universal proof theory: semi-analytic rules and
uniform interpolation. E-print 1808.06258, arXiv (2018). https://doi.org/10.48550/
arXiv.1808.06258

4. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic:
From Foundations to Applications: European Logic Colloquium, pp. 1–32. Claren-
don Press (1996)

5. B́ılková, M.: Interpolation in modal logics. Ph.D. thesis, Charles University Prague
(2006). https://dspace.cuni.cz/handle/20.500.11956/15732

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001).
https://doi.org/10.1017/CBO9781107050884

https://doi.org/10.48550/arXiv.2208.05202
https://doi.org/10.48550/arXiv.2208.04607
https://doi.org/10.48550/arXiv.2208.04607
https://doi.org/10.48550/arXiv.1808.06258
https://doi.org/10.48550/arXiv.1808.06258
https://dspace.cuni.cz/handle/20.500.11956/15732
https://doi.org/10.1017/CBO9781107050884

Extensions of K5: Proof Theory and Uniform Lyndon Interpolation 281

7. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Logic 48, 551–577
(2009). https://doi.org/10.1007/s00153-009-0137-3

8. Fitting, M., Kuznets, R.: Modal interpolation via nested sequents. Ann. Pure Appl.
Logic 166, 274–305 (2015). https://doi.org/10.1016/j.apal.2014.11.002

9. Ghilardi, S.: An algebraic theory of normal forms. Ann. Pure Appl. Logic 71,
189–245 (1995). https://doi.org/10.1016/0168-0072(93)E0084-2

10. Ghilardi, S., Zawadowski, M.: Undefinability of propositional quantifiers in the
modal system S4. Stud. Logica. 55, 259–271 (1995). https://doi.org/10.1007/
BF01061237

11. van der Giessen, I.: Uniform Interpolation and Admissible Rules. Proof-theoretic
investigations into (intuitionistic) modal logics. Ph.D. thesis, Utrecht University
(2022). https://doi.org/10.33540/1486

12. van der Giessen, I., Jalali, R., Kuznets, R.: Uniform interpolation via nested
sequents. In: Silva, A., Wassermann, R., de Queiroz, R. (eds.) WoLLIC 2021.
LNCS, vol. 13038, pp. 337–354. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-88853-4 21

13. van der Giessen, I., Jalali, R., Kuznets, R.: Uniform interpolation via nested
sequents and hypersequents. E-print 2105.10930, arXiv (2021). https://doi.org/
10.48550/arXiv.2105.10930

14. van der Giessen, I., Jalali, R., Kuznets, R.: Extensions of K5: proof theory and
uniform Lyndon interpolation. E-print 2307.11727, arXiv (2023). https://doi.org/
10.48550/arXiv.2307.11727

15. Halpern, J.Y., Rêgo, L.C.: Characterizing the NP-PSPACE gap in the satisfiability
problem for modal logic. J. Log. Comput. 17, 795–806 (2007). https://doi.org/10.
1093/logcom/exm029

16. Iemhoff, R.: Uniform interpolation and the existence of sequent calculi. Ann. Pure
Appl. Logic 170, 102711 (2019). https://doi.org/10.1016/j.apal.2019.05.008

17. Koopmann, P.: Practical Uniform Interpolation for Expressive Description Logics.
Ph.D. thesis, University of Manchester (2015). https://www.research.manchester.
ac.uk/portal/files/54574261/FULL TEXT.PDF

18. Kurahashi, T.: Uniform Lyndon interpolation property in propositional modal log-
ics. Arch. Math. Logic 59, 659–678 (2020). https://doi.org/10.1007/s00153-020-
00713-y

19. Kuznets, R.: Craig interpolation via hypersequents. In: Probst, D., Schuster, P.
(eds.) Concepts of Proof in Mathematics, Philosophy, and Computer Science. Ontos
Mathematical Logic, vol. 6, pp. 193–214. De Gruyter (2016). https://doi.org/10.
1515/9781501502620-012

20. Kuznets, R.: Proving Craig and Lyndon interpolation using labelled sequent calculi.
In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. 320–
335. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8 21

21. Kuznets, R.: Multicomponent proof-theoretic method for proving interpolation
properties. Ann. Pure Appl. Logic 169, 1369–1418 (2018). https://doi.org/10.
1016/j.apal.2018.08.007

22. Kuznets, R., Lellmann, B.: Grafting hypersequents onto nested sequents. Logic J.
IGPL 24, 375–423 (2016). https://doi.org/10.1093/jigpal/jzw005

23. Kuznets, R., Lellmann, B.: Interpolation for intermediate logics via hyper- and
linear nested sequents. In: Advances in Modal Logic, vol. 12, pp. 473–492. College
Publications (2018). http://www.aiml.net/volumes/volume12/Kuznets-Lellmann.
pdf

https://doi.org/10.1007/s00153-009-0137-3
https://doi.org/10.1016/j.apal.2014.11.002
https://doi.org/10.1016/0168-0072(93)E0084-2
https://doi.org/10.1007/BF01061237
https://doi.org/10.1007/BF01061237
https://doi.org/10.33540/1486
https://doi.org/10.1007/978-3-030-88853-4_21
https://doi.org/10.1007/978-3-030-88853-4_21
https://doi.org/10.48550/arXiv.2105.10930
https://doi.org/10.48550/arXiv.2105.10930
https://doi.org/10.48550/arXiv.2307.11727
https://doi.org/10.48550/arXiv.2307.11727
https://doi.org/10.1093/logcom/exm029
https://doi.org/10.1093/logcom/exm029
https://doi.org/10.1016/j.apal.2019.05.008
https://www.research.manchester.ac.uk/portal/files/54574261/FULL_TEXT.PDF
https://www.research.manchester.ac.uk/portal/files/54574261/FULL_TEXT.PDF
https://doi.org/10.1007/s00153-020-00713-y
https://doi.org/10.1007/s00153-020-00713-y
https://doi.org/10.1515/9781501502620-012
https://doi.org/10.1515/9781501502620-012
https://doi.org/10.1007/978-3-319-48758-8_21
https://doi.org/10.1016/j.apal.2018.08.007
https://doi.org/10.1016/j.apal.2018.08.007
https://doi.org/10.1093/jigpal/jzw005
http://www.aiml.net/volumes/volume12/Kuznets-Lellmann.pdf
http://www.aiml.net/volumes/volume12/Kuznets-Lellmann.pdf

282 I. van der Giessen et al.

24. Kuznets, R., Lellmann, B.: Interpolation for intermediate logics via injective nested
sequents. J. Log. Comput. 31, 797–831 (2021). https://doi.org/10.1093/logcom/
exab015

25. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in
expressive description logics. In: Walsh, T. (ed.) IJCAI 2011, vol. 2, pp. 989–995.
AAAI Press (2011). https://www.ijcai.org/Proceedings/11/Papers/170.pdf

26. Minc, G.E.: On some calculi of modal logic. In: Orevkov, V.P. (ed.) The Calculi
of Symbolic Logic. I, Proceedings of the Steklov Institute of Mathematics, vol. 98
(1968), pp. 97–124. AMS (1971)

27. Nagle, M.C.: The decidability of normal K5 logics. J. Symb. Log. 46, 319–328
(1981). https://doi.org/10.2307/2273624

28. Nagle, M.C., Thomason, S.K.: The extensions of the modal logic K5. J. Symb. Log.
50, 102–109 (1985). https://doi.org/10.2307/2273793

29. Pietruszczak, A., Klonowski, M., Petrukhin, Y.: Simplified Kripke-style semantics
for some normal modal logics. Stud. Logica. 108(3), 451–476 (2019). https://doi.
org/10.1007/s11225-019-09849-2

30. Pitts, A.M.: On an interpretation of second order quantification in first order intu-
itionistic propositional logic. J. Symb. Log. 57, 33–52 (1992). https://doi.org/10.
2307/2275175

31. Pottinger, G.: Uniform, cut-free formulations of T , S4, and S5. J. Symb. Logic 48,
900 (1983). https://doi.org/10.2307/2273495

32. Shavrukov, V.Y.: Subalgebras of diagonalizable algebras of theories containing
arithmetic, Dissertationes Mathematicae, vol. 323. Institute of Mathematics, Pol-
ish Academy of Sciences (1993). http://matwbn.icm.edu.pl/ksiazki/rm/rm323/
rm32301.pdf

33. Shvarts, G.F.: Gentzen style systems for K45 and K45D. In: Meyer, A.R., Taitslin,
M.A. (eds.) Logic at Botik 1989. LNCS, vol. 363, pp. 245–256. Springer, Heidelberg
(1989). https://doi.org/10.1007/3-540-51237-3 20

34. Takano, M.: A modified subformula property for the modal logics K5 and K5D.
Bull. Sect. Logic 30(2), 115–122 (2001)

35. Visser, A.: Uniform interpolation and layered bisimulation. In: Hájek, P. (ed.)
Gödel 1996: Logical Foundations of Mathematics, Computer Science and Physics
– Kurt Gödel’s Legacy, Lecture Notes in Logic, vol. 6, pp. 139–164. ASL (1996).
https://doi.org/10.1017/9781316716939.010

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1093/logcom/exab015
https://doi.org/10.1093/logcom/exab015
https://www.ijcai.org/Proceedings/11/Papers/170.pdf
https://doi.org/10.2307/2273624
https://doi.org/10.2307/2273793
https://doi.org/10.1007/s11225-019-09849-2
https://doi.org/10.1007/s11225-019-09849-2
https://doi.org/10.2307/2275175
https://doi.org/10.2307/2275175
https://doi.org/10.2307/2273495
http://matwbn.icm.edu.pl/ksiazki/rm/rm323/rm32301.pdf
http://matwbn.icm.edu.pl/ksiazki/rm/rm323/rm32301.pdf
https://doi.org/10.1007/3-540-51237-3_20
https://doi.org/10.1017/9781316716939.010
http://creativecommons.org/licenses/by/4.0/

On Intuitionistic Diamonds (and Lack
Thereof)

Anupam Das and Sonia Marin(B)

University of Birmingham, Birmingham, UK
{a.das,s.marin}@bham.ac.uk

Abstract. A variety of intuitionistic versions of modal logic K have
been proposed in the literature. An apparent misconception is that all
these logics coincide on their �-only (or ♦-free) fragment, suggesting
some robustness of ‘�-only intuitionistic modal logic’. However in this
work we show that this is not true, by consideration of negative transla-
tions from classical modal logic: Fischer Servi’s IK proves strictly more
♦-free theorems than Fitch’s CK , and indeed iK , the minimal �-normal
intuitionistic modal logic.

On the other hand we show that the smallest extension of iK by a
normal ♦ is in fact conservative over iK (over ♦-free formulas). To this
end, we develop a novel proof calculus based on nested sequents for intu-
itionistic propositional logic due to Fitting. Along the way we establish
a number of new metalogical results.

Keywords: Modal logic · Intuitionistic logic · Negative translation ·
Proof theory · Nested sequents · Cut-elimination

1 Introduction

Usual (propositional) modal logic extends the language of classical propositional
logic (CPL) by two modalities, � and ♦, informally representing ‘necessity’ and
‘possibility’, resp. This informality is made precise by relational semantics. This
semantics gives rise to the ‘standard translation’, allowing us to distill the normal
modal logic K as a well-behaved fragment of the first-order logic (FOL).

Notably, over classical logic, � and ♦ are De Morgan dual, just like ∀ and
∃: we have ♦A = ¬�¬A. However, in light of the association with FOL, one
would naturally expect an intuitionistic counterpart of modal logic not to satisfy
any such reduction. The pursuit of a reasonable definition for an ‘intuitionistic’
modal logic goes back decades, including works such as [7–9,14] as early as
the 1950s-60s, more developments [13,25,29,32] in the 1970s, and a growing
interest [6,12,17,26,28,30,31,34,35] in the 1980s. See [33] or [20] for a survey.

The smallest such logic that is typically considered is iK , obtained by sim-
ply extending intuitionistic propositional logic (IPL) by the axiom k1 and rules
mp,nec from Fig. 1, but not including any axioms involving ♦, e.g. [6,36]. It

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 283–301, 2023.
https://doi.org/10.1007/978-3-031-43513-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_16&domain=pdf
https://doi.org/10.1007/978-3-031-43513-3_16

284 A. Das and S. Marin

Fig. 1. Axioms and rules for intuitionistic modal logics.

seems that Fitch [14] was the first one to propose a way to treat ♦ in an intu-
itionistic setting by considering a version of CK , extending iK with k2. CK
enjoys a rather natural proof-theoretic formulation [35] that simply adapts the
sequent calculus for K according to the usual intuitionistic restriction: each
sequent may have just one formula on the RHS. What is more, cut-elimination
for this simple calculus is just a specialisation of the classical case.

IK , which includes all axioms and rules in Fig. 1, was introduced by [28]
and is equivalent to the logic proposed by [31], or even to [12] in the context of
intuitionistic tense logic. In [33] Simpson gives logical arguments in favour of IK ,
namely as a logic that corresponds to intuitionistic FOL along the same standard
translation that lifts K to classical FOL. The price to pay, however, is steep:
there is no known cut-free sequent calculus complete for IK . On the other hand,
Simpson demonstrates how the relational semantics of classical modal logic may
be leveraged to recover a labelled sequent calculus. The cut-elimination theorem,
this time, specialises the cut-elimination theorem for intuitionistic FOL.

Contribution. An apparently widespread perception about intuitionistic modal
logics is that iK and IK (and so all logics in between) coincide on their ‘�-only’
(i.e. ♦-free) fragments. We show that this is not true by giving an explicit sep-
aration of IK from iK (also CK) by a ♦-free formula, and go on to initiate a
comparison of the various logics by their ♦-free fragments. For the first sepa-
ration, we show IK validates a form of Gödel-Gentzen translation from K , but
that CK does not; the simplest such separation arising from this is given by
¬¬�⊥ → �⊥. An important question at this point is whether it is even possible
to conservatively extend iK by a normal ♦, i.e. is CK + k3 + k5 ♦-free conserva-
tive over CK ? We answer this positively by designing a new system for the logic
based on Fitting’s nested sequents for IPL [16] and proving a cut-elimination
result. Our results are summarised in Fig. 2.

Some of the ideas behind this work were announced and discussed on The
Proof Theory Blog in 2022 [11] (but have not been peer-reviewed before). We
shall reference that discussion further in Sect. 4.

2 Preliminaries

Let us fix a countable set of propositional variables, written p, q etc. When work-
ing in predicate logic, we shall simultaneously construe these as unary predicate
symbols, and further fix a (infix) binary relation symbol R.

On Intuitionistic Diamonds (and Lack Thereof) 285

Fig. 2. Comparison of ♦-free fragments. Solid arrows denote inclusion, dashed arrows
denote non-inclusion. All new results of this work are in red, where faded arrows are
consequences of the non-faded ones. The dotted blue ? arrow is apparently open. (Color
figure online)

Throughout this paper we shall work with (modal propositional) formulas,
written A,B etc., generated by:

A ::= ⊥ | p | (A ∨ B) | (A ∧ B) | (A → B) | ♦A | �A

We may write ¬A := A → ⊥, and frequently omit brackets to aid legibility when
it is unambiguous. We write, say, A → B → C for A → (B → C).

Due to space constraints, we shall not cover any formal semantics in this
work; however it is insightful to recall how modal formulas may be viewed as
a fragment of first-order predicate logic. The standard translation is a certain
action of modal formulas on first-order variables given by a predicate formula:

Definition 1 (Standard translation). For modal formulas A we define the
predicate formula A(x) by:

⊥(x) := ⊥
p(x) := px

(A ∨ B)(x) := A(x) ∨ B(x)
(A ∧ B)(x) := A(x) ∧ B(x)

(A → B)(x) := A(x) → B(x)
(♦A)(x) := ∃y(xRy ∧ A(y))
(�A)(x) := ∀y(xRy → A(y))

For the reader familiar with the usual relational semantics of modal logic,
note that the formula A(x) simply describes the evaluation of the modal formula
A at a ‘world’ x, within predicate logic. From this point of view we have:

Definition 2. K is the set of modal formulas A s.t. A(x) is classically valid.

2.1 Some Axiomatisations and Characterisations

The intuitionistic modal logics we consider will always be extensions of intuition-
istic propositional logic (IPL) by some of the axioms and rules in Fig. 1. Let us
first point out the following well-known axiomatisation:

286 A. Das and S. Marin

Proposition 3 (see, e.g., [4,5]). The ♦-free fragment of K is axiomatised by
classical propositional logic (CPL), k1, mp and nec.

In classical modal logic it suffices at this point to set ♦A ↔ ¬�¬A in order to
recover the full axiomatisation of K , but this will not (in general) be the case
for intuitionistic modal logics we are concerned with.

Fig. 3. The cut-free sequent calculus LCK, obtained from the calculus for K by requir-
ing exactly one formula on the RHS.

Definition 4. We define the following intuitionistic modal logics:

– iK extends IPL by k1 and is closed under mp and nec;
– CK extends IPL by k1, k2 and is closed under mp and nec;
– IK extends IPL by all the axioms k1-k5 and is closed under mp and nec.

iK was studied in, e.g., [6] and [36]. The logic CK + k5 was considered in [35],
while the restriction to CK itself was given a categorical treatment in [3] and
further in [23]. IK was first defined in [30] and [28], and investigated in details
in [33]. Note that it is clear from the definitions that iK ⊆ CK ⊆ IK .

Since we do not work with formal semantics, we shall introduce certain proof
theoretic characterisations of the logics above in order to more easily reason
about (non-)provability. At the same time, these characterisations will expose
some naturality underlying the logics iK ,CK and IK .

First, let us point out that classical modal logic K has a simple sequent
calculus, extending the usual propositional fragment of Gentzen’s LK by the
modal rules (see, e.g., [15]):

Γ,A ⇒ Δ
♦

�Γ,♦A ⇒ ♦Δ

Γ ⇒ Δ,A
�

�Γ ⇒ ♦Δ,�A

Here Γ and Δ are sets of formulas (cedents) and ⇒ is just a syntactic delimiter.
A sequent Γ ⇒ Δ is understood logically as

∧
Γ → ∨

Δ, its formula translation.
Note in particular here the symmetry of the two rules, underpinned by the De
Morgan duality between ♦ and � in classical modal logic.

The characteristic property of the logic CK is that it is obtained from the
sequent calculus for K by imposing the usual intuitionistic restriction: each
sequent must have exactly one formula on the RHS. Formally, writing LCK for
the (cut-free) sequent calculus given in Fig. 3, we have the well-known result:

On Intuitionistic Diamonds (and Lack Thereof) 287

Theorem 5 (e.g., implied by [35]). LCK is sound and complete for CK .

This has an entirely syntactic proof, simulating the axiomatisation of CK using
a ‘cut’ rule and proving cut-elimination (for the completeness direction). An
immediate (and well-known) consequence of this result is the following, justifying
the leftmost node of Fig. 2:

Corollary 6. CK is conservative over iK , over ♦-free formulas.

Proof (idea). By the subformula property of LCK only ♦-free formulas appear
in any proof with ♦-free conclusion. It is easily verified that any inference step
whose premisses and conclusion are ♦-free are already derivable in iK .

Let us now turn to IK . One of the principal motivations behind IK is its
compatibility with the standard translation, analogous to classical K :

Theorem 7 (Intuitionistic standard translation, [33]). IK is the set of
modal formulas whose standard translations are intuitionistically valid.

This result corresponds to Simpson’s ‘Requirement 6’ in his PhD thesis [33]. Note
here the analogy to K ’s relationship with classical predicate logic, cf. Definition 2.
The proof of the above theorem is a priori nontrivial and is beyond the scope of
this work. Importantly, this result induces a proof-theoretic characterisation of
IK similar to that of CK , only beginning from a different underlying calculus.
Namely, IK can be obtained from the ‘labelled’ calculus for K (e.g. [24]) by
requiring that each sequent has exactly one formula on the RHS.

Remark 8. Before closing this section it is worthwhile to mention that several
other logics intermediate to CK and IK have been studied. One notable choice
is Wijesekara’s CK + k5, sometimes called WK (e.g. in [10]). Wijesekera used a
minor adaptation of LCK to allow empty RHS (as well as singleton), resulting in
a calculus that is sound and (cut-free) complete for WK [35]. We shall return to
this idea later but for now let us point out that a similar argument to Corollary 6
above indeed shows that even WK is ♦-free conservative over iK . This will be
subsumed by our later result for CK + k3 + k5.

3 Separating CK and IK over the ♦-Free Fragment

In this section we shall justify the main subject matter of this work: the compar-
ison of ♦-free fragments of intuitionistic modal logics. That such an investigation
is even nontrivial is surprising: for decades now numerous papers have claimed
that iK ,CK , IK all coincide on their ♦-free fragments.1 In this section we show
that this is not the case.

1 It is not the purpose of this paper to enumerate all such cases in the literature (nor
do we believe it is fruitful to do so), but we point the reader to the blog post [11]
for more background underlying this perception.

288 A. Das and S. Marin

3.1 The Gödel-Gentzen Negative Translation

Gödel and Gentzen (independently) introduced certain double negation trans-
lations for embedding classical first-order predicate logic into its intuitionistic
counterpart [18,19]. Inspired by the ‘standard translation’ of Definition 1, we
duly adapt this translation to the language of modal logic:

Definition 9 (Gödel-Gentzen negative translation). For each modal for-
mula A we define another modal formula AN as follows:

⊥N := ⊥
pN := ¬¬p

(A ∨ B)N := ¬(¬AN ∧ ¬BN)
(A ∧ B)N := AN ∧ BN

(A → B)N := AN → BN

♦AN := ¬�¬AN

�AN := �AN

Note that the image of ·N is {∨,♦}-free: it is formed from only the ‘negative’
connectives ⊥,∧,→,�. For the reader familiar with the usual Gödel-Gentzen
translation ·N on first-order predicate formulas, note that our translation above
is justified by the standard translation from Definition 1: AN (x) is the same
as A(x)N , up to double negations in front of atomic relational formulas xRy.
Nonetheless due to this slight difference, and for self-containment of the exposi-
tion, we better give the necessary characterisations explicitly.

3.2 IK Validates Gödel-Gentzen

Lemma 10 (Negativity). IK proves the following:

¬¬⊥ → ⊥
¬¬¬A → ¬A

¬¬(A ∧ B) → ¬¬A ∧ ¬¬B
¬¬(A → B) → ¬¬A → ¬¬B

¬¬�A → �¬¬A

Proof. The non-modal cases are already theorems of IPL, so it remains to check
the final � case:

A → ¬¬A IPL
�(A → ¬¬A) necessitation
�A → �¬¬A by k1

�A → ♦¬A → ♦⊥ by k2

�A → ¬♦¬A by k5

¬¬�A → ¬♦¬A ∵ ¬�A → ¬¬¬�A
¬¬�A → ♦¬A → �⊥ by ex falso quodlibet, ⊥ → �⊥
¬¬�A → �¬¬A by k4

Let us point out that k3 was not used in the argument above. We shall keep
track of k3 (non-)use during this section and state stronger results later. From
here by structural induction on formulas, using the above Lemma, we have:

On Intuitionistic Diamonds (and Lack Thereof) 289

Lemma 11 (Double-negation elimination). IK � ¬¬AN → AN .

Theorem 12. If K � A then IK � AN .

Proof (sketch). Referring to Proposition 3, simply take an axiomatic K proof
of A and replace every formula by its image under ·N . Any non-constructive
reasoning is justified by appealing to Lemma 11 above.2

Let us point out that no modal reasoning was used to justify Lemma 11 and
Theorem 12, further to what we used for Lemma 10. Thus it is immediate that
CK + k4 + k5 also validates the Gödel-Gentzen translation:

Corollary 13. If K � A then CK + k4 + k5 � AN .

Example 14. Instantiating the �-case of the proof of Lemma 10 by A = ⊥, and
since IPL � ¬¬⊥ → ⊥, we have that CK + k4 + k5 � ¬¬�⊥ → �⊥.

3.3 CK Does not validate Gödel-Gentzen

On the other hand, it is easy to show that CK does not validate the Gödel-
Gentzen translation. In particular the simplest such separation is given by:

Proposition 15. CK �� ¬¬�⊥ → �⊥.

Proof. By case analysis on cut-free bottom-up proof search in LCK. The only
applicable rule is → -r, requiring us to prove ¬¬�⊥ ⇒ �⊥. At this stage there
are two possible choices:

– weaken ¬¬�⊥ on the LHS: this would require us to prove ⇒ �⊥, which is
not even classically valid.

– apply → -l on ¬¬�⊥ on the LHS:3 this requires us to prove ⇒ ¬�⊥ (the left
premiss) which is, again, not even classically valid.

Recalling Lemma 10 for IK , what breaks down here for CK is the negativity
of the �, i.e. ¬¬�A → �¬¬A. Its underivability in CK is immediate from
Proposition 15 above, cf. Example 14. In particular we have:

Corollary 16. CK + k4 + k5 (and so also IK) proves strictly more ♦-free the-
orems than CK (and so also iK).

2 Note that a common axiomatisation of CPL simply extends IPL by ¬¬A → A.
3 Recall that ¬A := A → ⊥.

290 A. Das and S. Marin

4 Perspectives

4.1 On Other Separations and ♦-Free Axiomatisations

Despite the separation in the preceding section, iK and CK are known to val-
idate some other double-negation translations, see e.g. [22]. Of course none of
these translations rely on negativity of the �, i.e. ¬¬�A → �¬¬A. Our sepa-
ration was announced (but not peer-review published) in a post on The Proof
Theory Blog in August 2022 [11]. The discussion therein covered several other
separating formulas too. In particular, Alex Simpson reported such a separation
C = (¬�⊥ → �⊥) → �⊥ privately communicated to him in 1996 by Carsten
Grefe. Let us point out that this latter separation is already a consequence of
Proposition 15, as even IPL already proves C → ¬¬�⊥ → �⊥: it is an instance
of the IPL theorem ((¬A → A) → A) → ¬¬A → A by A = �⊥.

In the same discussion it was mentioned that the ♦-free fragment of IK was
not finitely ♦-free axiomatisable. We could not find this result in the literature,
nor could we easily verify it independently. While its status is beyond the scope
of this work, let us make an observation:

Proposition 17. We have:

1. The ♦-free fragment of CK + k4 + k5 is finitely ♦-free axiomatised.
2. The {∨,♦}-free fragment of IK is finitely {∨,♦}-free axiomatised and coin-

cides with that of CK + k4 + k5.

Proof (sketch). Replacing ♦· by ¬�¬· and ·∨ · by ¬(¬·∧¬·) in the axioms k1-k5

yields theorems of CK + k4 + k5. Both results follow from here by carrying out
the same replacement everywhere in an axiomatic proof, construing the modified
versions of k1-k5 as the underlying axiomatisation.

Note that an immediate consequence of the result above is that, if indeed the
♦-free fragment of IK is not finitely axiomatised, then it is separated from the
♦-free fragment of CK +k4 +k5, and any such separation must make crucial use
of ∨, cf. the blue arrow in Fig. 2.

4.2 On ♦-Normality and the Problem of CK + k3 + k5

The ♦-free separation of iK and IK forces us to question some of the ‘canonical’
aspects of ‘�-only intuitionistic modal logic’ iK . Above all, it is not clear whether
fixing iK (or the ♦-free fragment of CK) forces, say, abnormality of the ♦;
equivalently, does normality of the ♦, i.e. k3 + k5, force more ♦-free theorems
over iK (or CK)? Let us point out that in the post [11] there was significant
discussion about the status of CK + k3 + k5, with no definitive resolution about
its ♦-free fragment with respect to iK ,CK , IK . The remainder of this paper is
devoted to a resolution of this question; namely, CK + k3 + k5 is indeed ♦-free
conservative over iK , cf. Fig. 2.

Before turning to that, let us briefly discuss why the status of CK + k3 +
k5 is somewhat nontrivial. Recalling Remark 8, it would be natural to further

On Intuitionistic Diamonds (and Lack Thereof) 291

generalise the calculus LCK to a ‘multi-succedent’ version, allowing any number
of formulas on the RHS, not just 1 (or 0 for WK). The RHS singleton restriction
now only applies to the � and → -r rules. The idea is that, while 0 formulas
on the RHS corresponds to k5, many could correspond to k3. Indeed this seems
promising in light of the following (cut-free) multi-succedent proofs of those
axioms:

k3 :

IPL
A ∨ B ⇒ A, B

♦
♦(A ∨ B) ⇒ ♦A, ♦B

∨-r
♦(A ∨ B) ⇒ ♦A ∨ ♦B

→-r ⇒ ♦(A ∨ B) → (♦A ∨ ♦B)

k5 :

⊥-l ⊥ ⇒
♦

♦⊥ ⇒
⊥-r

♦⊥ ⇒ ⊥
→-r ⇒ ♦⊥ → ⊥

The calculus is hence readily seen to be sound for CK +k3 +k5. However it does
not enjoy cut-elimination, due to issues with commutative cases arising from the
single succedent restriction on the � rule and the → -r rule. In particular, while
CK + k3 + k5 � ♦(A ∨ (B → C)) → (♦A ∨ (�B → ♦C)), e.g. by the proof,

id

A ⇒ A
id

B → C ⇒ B → C
∨−l

A ∨ (B → C) ⇒ A, B → C
♦

♦(A ∨ (B → C)) ⇒ ♦A, ♦(B → C)

id

B ⇒ B
id

C ⇒ C
→−l

B → C, B ⇒ C
♦

♦(B → C), �B ⇒ ♦C
→−r

♦(B → C) ⇒ �B → ♦C
cut

♦(A ∨ (B → C)) ⇒ ♦A, �B → ♦C

note that it has no cut-free such proof, by consideration of rule applications.

5 Nested Sequent Calculus for CK + k3 + k5

In this section we will introduce a nested sequent calculus nJ♦,� for CK +k3+k5,
by extending Fitting’s calculus for IPL [16] by natural modal rules. We prove
a cut-elimination result for nJ♦,�, which will imply the ♦-free conservativity of
CK +k3 +k5 over CK . We shall mostly follow the notation employed by Fitting,
but deviate in minor conventions to facilitate our ultimate cut-elimination result.
All results are self-contained.

A (nested) sequent, written S etc., is an expression Γ ⇒ X where Γ is a set of
formulas and X is a set of formulas and nested sequents. We interpret sequents
by a formula translation: fm(Γ ⇒ Δ,X) :=

∧
Γ → (∨

Δ ∨ ∨
S∈X fm(S)

)
.

A (nested sequent) context, written S[], is defined as expected. Note that it
is implicit in this notation that the context hole must only occur where a nested
sequent may be placed to produce a correct nested sequent, i.e., for S[] a context
and S′ a nested sequent, S[S′] is always a nested sequent.

Example 18 (Contexts). A ⇒ B, (C,D ⇒ E, []) is a context, but A, [] ⇒ B,C
and A ⇒ B, (C, [] ⇒ D) are not.

292 A. Das and S. Marin

We may also write contexts for sets (of nested sequents and formulas), e.g.
X[], etc., where again X[S] must always be a correct set of nested sequents and
formulas. A consequence of the definition of nested sequent is that we can safely
substitute sets in place of context hole, i.e. if Y is a set of nested sequents and
formulas then (X[Y] and) S[Y] is a (set of) nested sequent(s and formulas).

5.1 System nJ♦,�

The system nJ is given by the structural rules and (left and right) logical rules
from Fig. 4. It is equivalent to the nested calculus given by Fitting in [16], but
we shall not use this fact: its soundness and completeness for IPL will be a
consequence of later results. To define its extension by modalities, we must first
generalise the usual notion of a modality distributing over a sequent:

Fig. 4. System nJ♦,�.

Definition 19 (Promotion). For sets X define X◦ by:

∅
◦ := ∅ A◦ := A (X,Y)◦ := X◦, Y ◦ (Γ ⇒ X)◦ := �Γ ⇒ X◦

For (set-)contexts X[], we define X◦[] the same way and by setting []◦ := [].

On Intuitionistic Diamonds (and Lack Thereof) 293

Remark 20 (Promotion and ♦-normality). The intention is that X◦ is a conse-
quence of ♦fm(X). The ∅ case is justified by k5, while the ‘,’ case is justified
by k3. The ‘⇒’ case is justified by the ‘Fischer Servi’ property: ♦(A → B) →
�A → ♦B. This is a consequence already of CK :

IPL
A → B,A ⇒ B

♦
♦(A → B),�A ⇒ ♦B

2→ ⇒ ♦(A → B) → �A → ♦B

A right-, is a comma ‘,’ on the RHS of some ⇒ (immediately, not hereditar-
ily). A sequent (or context) is right-,-free if it has no right-,.

Definition 21. The system nJ♦,� consists of all the rules in Fig. 4.

Example 22. Recall the formula ♦(A ∨ (B → C)) → (♦A ∨ (�B → ♦C)) from
Subsect. 4.2, which is a consequence of CK + k3 + k5 but has no cut-free proof
in the ‘multi-succedent’ version of LCK. We here give a nJ♦,� proof of it:

id ⇒ A ⇒ A, (B ⇒ C)

id ⇒⇒ A, (B → C, B ⇒ C, B)
id ⇒⇒ A, (C, B ⇒ C)

→-l ⇒⇒ A, (B → C, B ⇒ C)
⇒ ⇒ B → C ⇒ A, (B ⇒ C)

∨-l ⇒ A∨(B → C) ⇒ A, (B ⇒ C)
♦ ⇒ ♦(A ∨ (B → C)) ⇒ ♦A, (�B ⇒ ♦C)

→-r ⇒ ♦(A ∨ (B → C)) ⇒ ♦A, �B→♦C
∨-r ⇒ ♦(A ∨ (B → C)) ⇒ ♦A∨(�B → ♦C)

→-r ⇒ ♦(A ∨ (B → C))→(♦A ∨ (�B → ♦C))

We have coloured red the ‘principal’ part of an inference step. Note at the top
the necessity of applying the ⇒ rule before → -l, bottom-up, in order to prove
⇒ B → C ⇒ A, (B ⇒ C).

The main result of this section is:

Theorem 23 (Soundness and completeness). nJ♦,� �⇒ A if and only if
CK + k3 + k5 � A.

To show the completeness (if) direction we will need to first give a simulation
using a ‘cut’ rule, then prove cut-elimination. To avoid case explosion later in the
presence of modal rules, it will facilitate our ultimate cut-elimination argument
to consider a ‘context-joining’ cut, à la Tait. For this, we first need to generalise
the usual notion of sequent union:

294 A. Das and S. Marin

Definition 24 (Context joining). For contexts S[], S′[] define S[] · S′[] by:

– [] · S[] := S[];
– (Γ ⇒ X,S[]) · (Γ ′ ⇒ X ′, S′[]) := Γ, Γ ′ ⇒ X,X ′, (S[] · S′[])

Note that, by a basic induction on the structure of contexts, we have that ·
is associative, commutative and idempotent. We shall sometimes write simply
(S ·S′)[] for (S[] ·S′[]), as abuse of notation. We shall also sometimes extend this
notation to set-contexts, X[] · X ′[], by adding the clause (X,Y []) · (X ′, Y ′[]) :=
X,X ′, (Y [] · Y ′[]). From here the cut rule is defined as:

S[Γ ⇒ X,A] S′[Γ ′, A ⇒ X ′]
cut

(S · S′)[Γ, Γ ′ ⇒ X,X ′]
(1)

5.2 Metalogical Results

By induction on the structure of nJ♦,� + cut proofs it is routine to establish the
‘only if’ direction of our main result Theorem 23:

Proposition 25 (Soundness). If nJ♦,� +cut � S then CK +k3 +k5 � fm(S).

The most interesting case is the ♦ rule, which is justified by Remark 20. Among
the non-modal rules the most interesting cases are the ‘switch’ rule ⇒ and the
branching rules, which make use of the following lemma:

Lemma 26. The following are intuitionistically valid:

((A → B) ∨ C) → (A → (B ∨ C))
((A ∨ B) → C) ↔ ((A → C) ∧ (B → C))

(A → (B ∧ C)) ↔ ((A → B) ∧ (A → C))
(A ∨ (B ∧ C)) ↔ ((A ∨ B) ∧ (A ∨ C))

Let us write ⇒n for
n

︷ ︸︸ ︷⇒ · · · ⇒. Note that, if S is a nested sequent, then so is
⇒n S, for all n ≥ 0. We have a routine (cut-free) simulation of CK in nJ♦,�:

Lemma 27 (Simulation of LCK). If LCK � Γ ⇒ A then nJ♦,� �⇒n Γ ⇒ A
for all n ≥ 0.

Proof (sketch). The proof is by straightforward induction on the structure of a
(cut-free) LCK proof of Γ ⇒ A. Almost all rules of LCK are essentially special
cases of their analogues in nJ♦,�; the only exception is the right implication rule,
which is simulated as follows:4

Γ, A ⇒ B
→-r

Γ ⇒ A → B
�

⇒n+1 Γ, A ⇒ B
⇒ ⇒n Γ ⇒ A ⇒ B

→-r ⇒n Γ ⇒ A → B

4 Note here the necessity of proving the statement for all n ≥ 0 as inductive invariant.

On Intuitionistic Diamonds (and Lack Thereof) 295

Proposition 28 (Cut-completeness with cut). If CK + k3 + k5 � A then
nJ♦,� + cut �⇒ A.

Proof (sketch). By induction on an axiomatic CK + k3 + k5 proof of A. In light
of Lemma 27 above, and the presence of cut , it suffices to prove k3 and k5:

id ⇒ A ⇒ A, B
id ⇒ B ⇒ A, B

∨-l ⇒ A ∨ B ⇒ A, B
♦ ⇒ ♦(A ∨ B) ⇒ ♦A, ♦B

∨-r ⇒ ♦(A ∨ B) ⇒ ♦A ∨ ♦B
→-r ⇒ ♦(A ∨ B) → (♦A ∨ ♦B)

⊥-l ⇒ ⊥ ⇒
♦ ⇒ ♦⊥ ⇒

w-r ⇒ ♦⊥ ⇒ ⊥
→-r ⇒ ♦⊥ → ⊥

6 Cut-Elimination Argument

The goal of this section is to prove:

Theorem 29 (Cut-elimination). If nJ♦,� + cut � S then also nJ♦,� � S.

From here note that our main result follows immediately:

Proof (of Theorem 23). Immediate from Theorem 29 above, Soundness (Propo-
sition 25) and Completeness with cut (Proposition 28).

The size of a proof is its number of inference steps. The degree of a cut is the
number of symbols in its cut-formula, i.e. the formula A distinguished in (1). Our
ultimate argument for cut-elimination is based on a typical double induction:

Proof (of Theorem 29, sketch). We proceed by induction on the multiset of cut-
degrees in a proof. We start with a(ny) topmost cut, employing a subinduction
on the size of the subproof rooting it, permuting the cut upwards in order to
apply the subinductive hypothesis. At key cases the multiset of cut-degrees will
decrease and we instead apply the main inductive hypothesis on the entire proof;
sometimes we may need to first apply the subinductive hypothesis. In terms of
the permutation strategy, we always permute cuts over non-modal rules (on
either side) maximally, so that our modal cut-reductions only apply when the
inference step immediately above each side of a cut is modal.

The next subsection is devoted to describing some of the cut-reductions.
Before that let us give the desired consequence of cut-elimination for nJ♦,�,
namely the classification of the ♦-free fragment of CK + k3 + k5, cf. Fig. 2:

Corollary 30. CK + k3 + k5 is conservative over iK , over ♦-free formulas.

Proof (sketch). If CK + k3 + k5 proves a ♦-free formula A, then there is a nJ♦,�
proof P of ⇒ A by Theorem 23. By the subformula property, P must be ♦-
free itself, so the only modal rule occurring in P is the �-rule, whose formula
translation is derivable already in iK . (Note that the formula translation of ♦-
free nested sequents is always ♦-free). All other rules are derivable already in
IPL.

296 A. Das and S. Marin

6.1 Cut-Reduction Cases (Non-modal)

To facilitate the description of the cut-reduction cases we will need to ‘bootstrap’
nJ♦,� somewhat. We say a rule r is size-preserving admissible for a system L if,
whenever there is a proof in L + r of S, there is a proof in L of S of the same or
smaller size.

Proposition 31. The following rules are size-preserving admissible for nJ♦,�:
S[R[X], Y]

,
S[R[X,Y]]

(2)
S[X]

⇒-i
S[⇒ X]

(3)

Thanks to the way we have presented our rules, almost all cut-reduction
cases are ‘the same’ as those for usual sequent calculi for intuitionistic and/or
modal logic, only under a sequent context. We highlight here some cases that
need special attention.

For key cases, when the cut-formula is principal for a logical rule on both
sides of a cut, the corresponding reduction is almost always the same as that
for the usual (multi-succedent) sequent calculus for IPL, only under a sequent
context. The only exception is for →, since its right-introduction rule is different
from that of the sequent calculus. The key case for → is:

S[Γ ⇒ X, (A ⇒ B)]
→-r

S[Γ ⇒ X,A → B]

S′[Γ ′, A → B ⇒ X ′, A] S′[Γ ′, B ⇒ X ′]
→-l

S′[Γ ′, A → B ⇒ X ′]
cut

(S · S′)[Γ, Γ ′ ⇒ X,X ′]
�

S[Γ ⇒ X, (A ⇒ B)]
⇒-l

S[Γ ⇒ X, A → B] S′[Γ ′, A → B ⇒ X′, A]
cut

(S · S′)[Γ, Γ ′ ⇒ X, X′, A]

S[Γ ⇒ X, (A ⇒ B)]
⇒

S[Γ, A ⇒ X, (⇒ B)]
⇒-e

S[Γ, A ⇒ X, B]
cut

(S · S′)[Γ, Γ ′ ⇒ X, X′, B] S′[Γ ′, B ⇒ X′]
cut

(S · S′)[Γ, Γ ′ ⇒ X, X′]

Referring to our cut-elimination argument, note we must apply the subinductive
hypothesis to the topmost cut before calling the main inductive hypothesis.

Any cut immediately preceded by an identity step (on either side) can be
reduced to an identity step, eliminating the cut. Also all commutations of a cut
above a logical rule are routine, as the ⇒-depth of the cut-formula is not affected.

Almost all permutations when a cut is preceded by a structural step are
routine. The only exception is a permutation over a ⇒ step. Before we can
present this we need to set up some notation. First, let us write ⇒X[] for ⇒d

where d is the ⇒-depth of the hole [] in X[]. I.e.,

⇒[] :=
⇒X,S[] := ⇒S[]

⇒Γ⇒X[] := ⇒⇒X[]

On Intuitionistic Diamonds (and Lack Thereof) 297

We shall sometimes write ⇒X for ⇒X[], as abuse of notation. By a straightfor-
ward induction on the structure of set-contexts we have that ⇒X [] ·X[] = X[].
Now we can give the critical ⇒-permutation by:

S[Γ ⇒ X, A]

S′[Γ ′ ⇒ X ′[Δ, A, Σ ⇒ Y]]
⇒

S′[Γ ′, Δ, A ⇒ X ′[Σ ⇒ Y]]
cut

(S · S′)[Γ, Γ ′, Δ ⇒ X, X ′[Σ ⇒ Y]]

�

S[Γ ⇒ X, A]
⇒-i∗ ..

S[Γ ⇒ X, (⇒X′
A)] S′[Γ ′ ⇒ X ′[Δ, A, Σ ⇒ Y]]

cut

(S · S′)[Γ, Γ ′ ⇒ X, X ′[Δ, Σ ⇒ Y]]
⇒

(S · S′)[Γ, Γ ′, Δ ⇒ X, X ′[Σ ⇒ Y]]

Note the importance here of size-preserving admissibility of ⇒ -i, Proposi-
tion 31, in order to appeal to the subinductive hypothesis.

6.2 Cut-Reduction Cases (Modal)

Defining the modal cut-reductions is facilitated by the observation that (S◦
0 ·

S◦
1)[] = (S0 ·S1)◦[], proved again by a straightforward induction on the structure

of sequent-contexts. The case analysis for modal cut-reductions is routine but
lengthy; all reductions allow immediate appeal to the (sub)inductive hypothesis:

– (♦-♦) If a cut is preceded on both sides by a ♦ step, then the cut-formula
on the right must be the distinguished ♦-formula of the ♦ rule in Fig. 4. We
employ a case analysis on the relative location of the distinguished ♦ formula
and the cut formula on the left, but each situation is handled similarly. If, e.g.,
the distinguished ♦ formula and cut formula occur in parallel in the sequent
context we have the following reduction:

S0[Γ, A ⇒ X0][Δ0 ⇒ Y0, B]
♦

S◦
0 [�Γ, ♦A ⇒ X◦

0][�Δ0 ⇒ Y ◦
0 , ♦B]

S1[X1][Δ1, B ⇒ Y1]
♦

S◦
1 [X◦

1][�Δ1, ♦B ⇒ Y ◦
1]

cut

(S◦
0 · S◦

1)[(�Γ, ♦A ⇒ X◦
0), X◦

1][�Δ0, �Δ1 ⇒ Y ◦
0 , Y ◦

1]

�
S0[Γ, A ⇒ X0][Δ0 ⇒ Y0, B] S1[X1][Δ1, B ⇒ Y1]

cut

(S0 · S1)[(Γ, A ⇒ X0), X1][Δ0, Δ1 ⇒ Y0, Y1]
♦

(S◦
0 · S◦

1)[(�Γ, ♦A ⇒ X◦
0), X◦

1][�Δ0, �Δ1 ⇒ Y ◦
0 , Y ◦

1]

– (♦-�) It is not possible for a cut to be preceded by a ♦ step on the left and a
� step on the right, since the former has only ♦ formulas in positive positions
and the latter has only � formulas in negative positions.

– (�-♦) If a cut is preceded by a � rule on the left and a ♦ rule on the right
then the cut-formula must be a � formula, and so cannot be the distinguished
♦ formula of the ♦ step. We again employ a case analysis on the relative
location of the distinguished ♦ formula and cut formula on the right, but

298 A. Das and S. Marin

each situation is handled similarly. If, e.g., the distinguished ♦ formula occurs
(relatively) deeper than the cut formula, we have the following reduction:

S0[Γ0 ⇒ A]
�

S◦
0 [�Γ0 ⇒ �A]

S1[Γ1, A ⇒ X[Δ, B ⇒ Y]]
♦

S◦
1 [�Γ1, �A ⇒ X◦[�Δ, ♦B ⇒ Y ◦]]

cut

(S◦
0 · S◦

1)[�Γ0, �Γ1 ⇒ X◦[�Δ, ♦B ⇒ Y ◦]]

�
S0[Γ0 ⇒ A] S1[Γ1, A ⇒ X[Δ, B ⇒ Y]]

cut

(S0 · S1)[Γ0, Γ1 ⇒ X[Δ, B ⇒ Y]]
♦

(S0 · S1)
◦[�Γ0, �Γ1 ⇒ X◦[�Δ, ♦B ⇒ Y ◦]]

– (�-�) If a cut is preceded on both sides by a � rule, then the only possible
reduction, due to right-,-freeness in the right premiss, is:

S0[Γ0 ⇒ A]
�

S◦
0 [�Γ0 ⇒ �A]

S1[A, Γ1 ⇒ R[Δ ⇒ B]]
�

S◦
1 [�A, �Γ1 ⇒ R◦[�Δ ⇒ �B]]

cut

(S◦
0 · S◦

1)[�Γ0, �Γ1 ⇒ R◦[�Δ ⇒ �B]]

�
S0[Γ0 ⇒ A] S1[A, Γ1 ⇒ R[Δ ⇒ B]]

cut

(S0 · S1)[Γ0, Γ1 ⇒ R[Δ ⇒ B]]
�

(S0 · S1)
◦[�Γ0, �Γ1 ⇒ R◦[�Δ ⇒ �B]]

7 Conclusions

We showed that iK and CK are separated from IK by their ♦-free theorems,
and have moreover initiated a comparison of intuitionistic modal logics by their
♦-free fragments. In particular, we have verified using proof theoretic techniques
that the extension of iK by a normal ♦ is indeed conservative over iK , over
♦-free formulas. Again, our results are summarised in Fig. 2.

Our nested sequent system nJ♦,� is based on Fitting’s for IPL in [16], but
let us point out that he did not give a cut-elimination result. Naturally our cut-
elimination result Theorem 29 also implies cut-elimination for the nested calculus
nJ for IPL. Let us emphasise that, just as iK ,CK , IK are proof-theoretically
natural by the characterisations in Subsect. 2.1, so too is CK +k3 +k5: it is just
the extension of the calculus nJ for IPL by modal rules.

From here it would be fruitful to understand how to adequately extend (bire-
lational) semantics for CK to CK + k3 + k5. This could also yield an alternative
(and perhaps simpler) proof of completeness of nJ♦,� for CK + k3 + k5.5 We
have also not addressed the decidability of logics in this work, but let us point
out that we believe that CK +k3 +k5 might be proved decidable by eliminating
⇒ -e in nJ♦,� and employing a basic loop checking argument.

There has been significant work on computational interpretations of CK
e.g. [1–3,21,27]. However, one shortfall of CK here is that its interpretations

5 We are aware of ongoing work by Nicola Olivetti and Han Gao investigating this.

On Intuitionistic Diamonds (and Lack Thereof) 299

do not lift to K along the Gödel-Gentzen translation; while alternative double-
negation translations are available, cf. [22], these do not seem robust against
modest extensions, e.g. when including a global modality �∗. On the other hand
the fact that IK validates Gödel-Gentzen, Theorem 12, suggests that it is better
designed for computational interpretations, in particular for interpreting classical
modal logic K . Under the standard translation, it would be interesting to classify
the Curry-Howard interpretation of IK as a suitable fragment of dependent type
theory. Let us point out that Simpson already gives a termination and confluence
proof for a version of intuitionistic natural deduction specialised to IK in his
thesis [33].

Acknowledgements. The authors would like to thank The Proof Theory Blog com-
munity for all the feedback from their post [11]. In particular this work would not have
been possible without several insightful interactions with Alex Simpson, Reuben Rowe,
Nicola Olivetti, Tiziano Dalmonte, Dale Miller, Dominik Kirst, Iris van der Giessen,
and Marianna Girlando. We thank Nicola Olivetti in particular for encouraging us to
publish these results.

This (alphabetically) first author was supported by a UKRI Future Leaders Fel-
lowship, ‘Structure vs Invariants in Proofs’, project reference MR/S035540/1.

References

1. Acclavio, M., Catta, D., Straßburger, L.: Game semantics for constructive modal
logic. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp.
428–445. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86059-2_25

2. Arisaka, R., Das, A., Straßburger, L.: On nested sequents for constructive modal
logic. Log. Methods Comput. Sci. (2015)

3. Bellin, G., De Paiva, V., Ritter, E.: Extended curry-howard correspondence for a
basic constructive modal logic. In: Proceedings of Methods for Modalities, vol. 2
(2001)

4. Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of Modal Logic. Elsevier,
Amsterdam (2006)

5. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, vol. 53. Cambridge Uni-
versity Press, Cambridge (2001)

6. Božić, M., Došen, K.: Models for normal intuitionistic modal logics. Stud. Logica
43(3), 217–245 (1984)

7. Bull, R.A.: A modal extension of intuitionist logic. Notre Dame J. Form. Log. 6(2),
142–146 (1965). https://doi.org/10.1305/ndjfl/1093958154

8. Bull, R.A.: MIPC as the formalisation of an intuitionist concept of modality. J.
Symb. Log. 31(4), 609–616 (1966)

9. Curry, H.B.: The elimination theorem when modality is present1. J. Symb. Log.
17(4), 249–265 (1952)

10. Dalmonte, T.: Wijesekera-style constructive modal logics. In: Fernández-Duque,
D., Palmigiano, A., Pinchinat, S. (eds.) Advances in Modal Logic, AiML 2022,
Rennes, France, 22–25 August 2022, pp. 281–304. College Publications (2022)

11. Das, A., Marin, S.: Brouwer meets Kripke: constructivising modal logic (2022).
Post on The Proof Theory Blog. https://prooftheory.blog/2022/08/19/brouwer-
meets-kripke-constructivising-modal-logic/. Accessed 24 May 2023

https://doi.org/10.1007/978-3-030-86059-2_25
https://doi.org/10.1305/ndjfl/1093958154
https://prooftheory.blog/2022/08/19/brouwer-meets-kripke-constructivising-modal-logic/
https://prooftheory.blog/2022/08/19/brouwer-meets-kripke-constructivising-modal-logic/

300 A. Das and S. Marin

12. Ewald, W.B.: Intuitionistic tense and modal logic. J. Symb. Log. 51(1), 166–179
(1986)

13. Fischer-Servi, G.: On modal logic with an intuitionistic base. Stud. Logica 36,
141–149 (1977). https://doi.org/10.1007/bf02121259

14. Fitch, F.B.: Intuitionistic modal logic with quantifiers. Port. Math. 7(2), 113–118
(1948)

15. Fitting, M.: Modal proof theory. Handbook of Modal Logic, pp. 85–136 (2006)
16. Fitting, M.: Nested sequents for intuitionistic logics. Notre Dame J. Form. Log.

55(1) (2014)
17. Font, J.M.: Modality and possibility in some intuitionistic modal logics. Notre

Dame J. Form. Log. 27(4), 533–546 (1986)
18. Gentzen, G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Math. Ann.

112(1), 493–565 (1936)
19. Gödel, K.: Zur intuitionistischen Arithmetik und Zahlentheorie. Ergebnisse eines

mathematischen Kolloquiums 4, 34–38 (1933)
20. Kavvos, G.A.: The many worlds of modal λ-calculi: I. curry-howard for neces-

sity, possibility and time. CoRR abs/1605.08106 (2016). http://arxiv.org/abs/
1605.08106

21. Kavvos, G.A.: Dual-context calculi for modal logic. In: 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, 20–
23 June 2017, pp. 1–12. IEEE Computer Society (2017). https://doi.org/10.1109/
LICS.2017.8005089

22. Litak, T., Polzer, M., Rabenstein, U.: Negative translations and normal modality.
In: Miller, D. (ed.) 2nd International Conference on Formal Structures for Com-
putation and Deduction (FSCD 2017). Leibniz International Proceedings in Infor-
matics (LIPIcs), Dagstuhl, Germany, vol. 84, pp. 27:1–27:18. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.FSCD.
2017.27. http://drops.dagstuhl.de/opus/volltexte/2017/7741

23. Mendler, M., de Paiva, V.: Constructive CK for contexts. In: Context Representa-
tion and Reasoning (CRR-2005), vol. 13 (2005)

24. Negri, S.: Proof analysis in modal logic. J. Philos. Log. 34, 507–544 (2005)
25. Ono, H.: On some intuitionistic modal logics. Publ. Res. Inst. Math. Sci. 13(3),

687–722 (1977)
26. Ono, H., Suzuki, N.Y.: Relations between intuitionistic modal logics and interme-

diate predicate logics. Rep. Math. Logic 22, 65–87 (1988)
27. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Math. Struct.

Comput. Sci. 11(4), 511–540 (2001). Notes to an invited talk at the Workshop on
Intuitionistic Modal Logics and Applications (IMLA’99)

28. Plotkin, G., Stirling, C.: A framework for intuitionistic modal logics. In: Proceed-
ings of the 1st Conference on Theoretical Aspects of Reasoning about Knowledge
(TARK), pp. 399–406 (1986)

29. Satre, T.W.: Natural deduction rules for modal logics. Notre Dame J. Form. Log.
13(4), 461–475 (1972)

30. Servi, G.F.: Semantics for a class of intuitionistic modal calculi. In: Dalla Chiara,
M.L. (ed.) Italian Studies in the Philosophy of Science. Boston Studies in the
Philosophy of Science, vol. 47, pp. 59–72. Springer, Dordrecht (1980). https://doi.
org/10.1007/978-94-009-8937-5_5

31. Servi, G.F.: Axiomatizations for some intuitionistic modal logics. Rendiconti del
Seminario Matematico dell’ Università Politecnica di Torino 42(3), 179–194 (1984)

32. Siemens, D.F.: Fitch-style rules for many modal logics. Notre Dame J. Form. Log.
18(4), 631–636 (1977). https://doi.org/10.1305/ndjfl/1093888133

https://doi.org/10.1007/bf02121259
http://arxiv.org/abs/1605.08106
http://arxiv.org/abs/1605.08106
https://doi.org/10.1109/LICS.2017.8005089
https://doi.org/10.1109/LICS.2017.8005089
https://doi.org/10.4230/LIPIcs.FSCD.2017.27
https://doi.org/10.4230/LIPIcs.FSCD.2017.27
http://drops.dagstuhl.de/opus/volltexte/2017/7741
https://doi.org/10.1007/978-94-009-8937-5_5
https://doi.org/10.1007/978-94-009-8937-5_5
https://doi.org/10.1305/ndjfl/1093888133

On Intuitionistic Diamonds (and Lack Thereof) 301

33. Simpson, A.: The proof theory and semantics of intuitionistic modal logic. Ph.D.
thesis, University of Edinburgh (1994)

34. Suzuki, N.Y.: An algebraic approach to intuitionistic modal logics in connection
with intermediate predicate logics. Stud. Logica 48(2), 141–155 (1989)

35. Wijesekera, D.: Constructive modal logics I. Ann. Pure Appl. Logic 50(3), 271–301
(1990)

36. Wolter, F., Zakharyaschev, M.: On the relation between intuitionistic and clas-
sical modal logics. Algebra Logic 36, 73–92 (1997). https://doi.org/10.1007/
BF02672476

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/BF02672476
https://doi.org/10.1007/BF02672476
http://creativecommons.org/licenses/by/4.0/

CoNP Complexity for Combinations
of Non-normal Modal Logics

Tiziano Dalmonte1(B) and Andrea Mazzullo2

1 Free University of Bozen-Bolzano, Bolzano, Italy
tiziano.dalmonte@unibz.it

2 University of Trento, Trento, Italy
andrea.mazzullo@unitn.it

Abstract. We study the complexity of the validity/derivability problem
for combinations of non-normal modal logics in the form of logic fusions,
possibly extended with simple interaction axioms. We first present cut-
free sequent calculi for these logic combinations. Then, we introduce
hypersequent calculi with invertible rules, and show that they allow for
a coNP proof search procedure. In the last part of the paper, we consider
the case of combinations of logics sharing a universal modality. Using the
hypersequent calculi, we show that these logics remain coNP-complete,
and also provide an equivalent axiomatisation for them.

Keywords: Non-normal modal logics · Combination of logics ·
Fusion · Universal modality · Complexity · Hypersequent calculus

1 Introduction

Modal logics that combine different modalities have widespread diffusion. On the
one hand, modal logics designed for applications usually contain multiple oper-
ators, possibly with interactions among them. On the other hand, non-standard
modal logics, such as intuitionistic or description modal logics, have been con-
nected with classical logics with combined modalities [18,19,46,47], an observa-
tion that allowed for a fruitful transfer of results among the different formalisms.

Concerning logics designed for applications, several systems contain modal-
ities that display a non-normal behaviour, as they do not satisfy some princi-
ples that are validated by any normal operator. Significant examples are epis-
temic logics without omniscience [4], deontic logics [1], agency and ability logics
[6,14,26], coalition logics [37,43]. At the same time, the recent introduction of
non-normal systems based on intuitionistic or description logic [9,10,12,40,41]
naturally raises the question of their connections with classical systems with
combined non-normal modalities.

Multimodal logics obtained as combinations of normal systems have been
extensively studied, with a specific focus on fusions and products [19,20,45],
and the transfer of properties from the single systems to their combinations.

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 302–321, 2023.
https://doi.org/10.1007/978-3-031-43513-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_17&domain=pdf
http://orcid.org/0000-0002-7153-0506
http://orcid.org/0000-0001-8512-1933
https://doi.org/10.1007/978-3-031-43513-3_17

CoNP Complexity for Combinations of Non-normal Modal Logics 303

Concerning fusions of normal logics, it is known for instance that decidabil-
ity, interpolation [45] and semantic completeness [17,30] are always preserved,
whereas the complexity of the satisfiability/validity problem is not: while fusions
of PSpace logics generally remain PSpace, the same does not hold for fusions
of systems with coNP validity (respectively, NP satisfiability) problem, as wit-
nessed by the PSpace bimodal logics S52, KD452, K4.32 and S4.32 [25,42], in
contrast with their coNP monomodal counterparts1 (see [19] for an overview
on transfer results).

Although most studies focus on combinations of normal modal logics, similar
questions have been also addressed for fusions of non-normal systems. In partic-
ular, decidability [3,23] and superamalgamation [21,22] (an algebraic property
corresponding to a form of interpolation) are known to be preserved, while com-
pleteness is not [15,16]. By contrast, less is understood about the transfer of
complexity results, which is the topic of the present work.

Non-normal modal logics (NNMLs in the following) are good examples of
coNP modal logics. These logics are defined by extending classical propositional
logic with the congruence rule A ↔ B/�A ↔ �B and combinations of standard
modal axioms (cf. Sec. 2). As shown by Vardi [44], in this family of logics,
the complexity of the validity problem strictly depends on the presence of the
agglomeration axiom �A ∧ �B → �(A ∧ B): the logics with this axiom are in
PSpace, whereas the logics without it are coNP-complete.2 Differently from
the coNP normal systems mentioned above, the same complexity bounds hold
for the multi-modal formulations of these logics where all modalities are of the
same kind [44]. For this reason, combinations of NNMLs are promising in terms
of preservation of coNP complexity.

In this paper, we investigate the complexity of the validity problem for some
kinds of combinations of coNP NNMLs. In particular, we consider all coNP
NNMLs of the classical cube [7,34] as well as their coNP extensions with non-
iterative modal axioms. We first consider the fusions of NNMLs, roughly corre-
sponding to the disjoint union of the modal axiomatisations of the combined sys-
tems, as well as their extensions with interaction axioms of the form �iA → �jA
(that correspond, for instance, to the well-known principles of ‘ought implies can’
and ‘does implies can’ of deontic and agency logics (see e.g. [1,6,14])). In the
last part of the paper we also consider the case of combinations of NNMLs shar-
ing a universal modality. While most studies on property transfers are based
on algebraic or model-theoretical techniques, we adopt here a proof-theoretical
approach. We first present cut-free sequent calculi for these logic combinations.
Then we present a reformulation of the calculi in terms of hypersequents where
1 In the following, when mentioning the complexity of a logic, we always refer to the

complexity of its validity problem. Dual results immediately follow for the corre-
sponding satisfiability problem: in particular, coNP-complete logics have an NP-
complete satisfiability problem. If not differently specified, the complexity bounds
are tight: by coNP logic, respectively PSpace logic, we mean that the logic is
coNP-complete, respectively PSpace-complete.

2 More precisely, Vardi [44] shows that the satisfiability problems for these logics are
NP-complete.

304 T. Dalmonte and A. Mazzullo

Fig. 1. Diagram of non-normal monomodal logics.

all the rules are invertible, and show that they provide a coNP decision proce-
dure for validity in the logics. In the last part of the paper, we consider the case
of combinations of logics sharing a universal modality. Using the hypersequent
calculi, we show that these logics remain coNP-complete.

2 Non-normal Modal Logics and Their Combinations

Given a set of unary modalities {�1, ...,�n}, we denote L[�1, ...,�n] the propo-
sitional modal language based on a set Atm = {p1, p2, p3, ...} of countably many
propositional variables, containing the Boolean operators ⊥, →, and the modal-
ities �1, ...,�n. We consider �,¬,∧,∨,♦i to be defined as usual.

Non-normal monomodal logics are defined in a language L[�i], for some i ∈
N, by extending any axiomatisation of classical propositional logic (containing
modus ponens), formulated in L[�i], with the rule REi below, and a combination
of the following axioms:

A ↔ BREi �iA ↔ �iB
Mi �i(A ∧ B) → �iA
Ni �i�

Ti �iA → A
Di �iA → ¬�i¬A
Pi ¬�i⊥

The minimal non-normal monomodal logic defined in L[�i], denoted by Ei, only
contains REi (that is, it does not contain any additional modal axiom). Given
a list of modal axioms Σi in L[�i] (without repetitions), the other non-normal
monomodal systems are denoted by EΣi. We call monotonic any system EΣi

such that Mi ∈ Σi. Moreover, we use Li to denote any logic defined in L[�i].
We consider the standard notion of derivability in axiomatic modal systems:

a rule B1, ..., Bn/A is derivable in a logic Li if there is a finite sequence of
formulas ending with A in which every formula is an (instance of an) axiom
of Li, or it belongs to {B1, ..., Bn}, or it is obtained from previous formulas by
the application of a rule of Li. A formula A is derivable in Li, written 	Li

A, if
the rule ∅/A is derivable in Li. Finally, a formula A is (locally) derivable from a
set of formulas Φ in Li, written Φ 	Li

A, if there is a finite set {B1, ..., Bn} ⊆ Φ
such that 	Li

B1 ∧ ... ∧ Bn → A. We recall that the axioms Mi and Ni are
respectively equivalent to the monotonicity rule A → B/�iA → �iB and to the
necessitation rule A/�iA. Note also that the axioms Pi and Di are equivalent in
normal modal logics (i.e., modal logics extending Ki), but are not equivalent in
non-normal ones. In particular, the following derivability relations hold: 	ETi Pi,
	ETi

Di, 	EMDi
Pi, 	ENDi

Pi. By virtue of these relations, the considered family
contains 17 distinct monomodal logics, displayed in Fig. 1.

CoNP Complexity for Combinations of Non-normal Modal Logics 305

In this paper, we study multimodal logics obtained by combining non-normal
monomodal logics in the following way. First, let L1, ..., Ln be n non-normal
monomodal logics respectively formulated in the languages L[�1], ..., L[�n]
sharing the same propositional variables and Boolean operators, but with dis-
tinct modalities �1, ..., �n. Moreover, let I be an acyclic set of pairs (i, j) with
1 ≤ i, j ≤ n (that is, there is no chain (i, j1), (j1, j2), ..., (jk, i)).

Definition 1. The combination 〈L1...LnI〉 is the smallest multimodal logic in
the language L[�1, ...,�n] that contains L1 ∪ ... ∪ Ln as well as the interaction
axioms �iA → �jA, for all (i, j) ∈ I, and is closed under the rules of L1, ...,
Ln (that is, modus ponens and RE1, ..., REn).

Note that 〈L1...Ln∅〉 corresponds to the fusion of L1, ..., Ln [45]. The reason for
restricting to acyclic sets I is that in presence of cycles (i, j1), (j1, j2), ..., (jk, i),
the modalities �i, �j1 , ..., �jk

become all indistinguishable. In the following,
for every logic 〈L1...LnI〉, we denote I∗ the transitive closure of I.

The standard semantics of non-normal monomodal logics is given in terms
of so-called neighbourhood models. Dealing with multimodal logics, we consider
here models endowed with n neighbourhood functions, one for each modality.

Definition 2. A n-neighbourhood model is a tuple M = (W,N1, ...,Nn,V),
where W is a non-empty set of worlds, V : Atm −→ P(W) is a valuation func-
tion, and each Ni is a neighbourhood function W −→ P(P(W)) possibly satis-
fying the following conditions for all w ∈ W, where α, β ⊆ W:

(Mi-c) if α ∈ Ni(w) and α ⊆ β, then β ∈ Ni(w); (Ni-c) W ∈ Ni(w);
(Ti-c) if α ∈ Ni(w), then w ∈ α; (Pi-c) ∅ /∈ Ni(w);
(Di-c) if α ∈ Ni(w), then W \ α /∈ Ni(w); (Intij-c) Ni(w) ⊆ Nj(w).

Given a monomodal logic EΣi and a neighbourhood function Ni, we say that Ni

is a EΣi-function if it satisfies Condition (σi-c), for every σi ∈ Σi. Moreover,
we say that a model M = (W,N1, ...,Nn,V) is a model for a multimodal logic
〈L1...LnI〉, or it is a 〈L1...LnI〉-model, if Ni is a Li-function for all 1 ≤ i ≤ n,
and M satisfies (Intij-c) for all (i, j) ∈ I.

The relation M, w ∵ A is defined as usual for propositional variables and
Boolean connectives, while for �i it is as follows, where �A�M = {v | M, v ∵ A}:

M, w ∵ �iA iff �A�M ∈ Ni(w).

We consider the usual notions of validity in a model M and validity in a class
of models C: M |= A iff M, w ∵ A, for all w of M; and C |= A iff M |= A,
for all M ∈ C, respectively. In the following, we omit to specify M, and simply
write w ∵ A or �A�, when it is clear from the context.

In this paper, we study the complexity of the validity problem for the logics
〈L1...LnI〉, that is, the problem of deciding, given a formula A of L[�1, ...,�n],
whether A is valid in the class of all 〈L1...LnI〉-models. Due to the following com-
pleteness result, the validity problem for 〈L1...LnI〉 is equivalent to the derivabil-
ity problem for 〈L1...LnI〉, that is, the problem of deciding whether A is derivable
in the axiomatic system 〈L1...LnI〉 (Definition 1).

306 T. Dalmonte and A. Mazzullo

Fig. 2. Sequent rules.

Theorem 1. A formula A of L[�1, ...,�n] is derivable in 〈L1...LnI〉 if and only
if it is valid in the class of all 〈L1...LnI〉-models.

Proof. Soundness is routine by showing that all axioms and rules are, respec-
tively, valid and validity preserving in the corresponding models. For complete-
ness, we adapt the standard proof for non-normal monomodal logics (cf. [7]). As
usual, we call 〈L1...LnI〉-maximal consistent (or maxcons) any set Φ of formulas
of L[�1, ...,�n] such that Φ �	〈L1...LnI〉 ⊥, and for all A ∈ L[�1, ...,�n], A /∈ Φ
implies Φ ∪ {A} 	〈L1...LnI〉 ⊥. Moreover, we denote [A] the class of 〈L1...LnI〉-
maxcons sets s.t. A ∈ Φ. The usual properties of maxcons sets hold, in particular:
if Φ �	〈L1...LnI〉 ⊥, then there is Ψ 〈L1...LnI〉-maxcons s.t. Φ ⊆ Ψ . We define the
canonical model for 〈L1...LnI〉 as M = (W,N1, ...,Nn,V), where W is the class
of all 〈L1...LnI〉-maxcons sets, and for all p ∈ Atm, V(p) = [p]. Moreover, for all
1 ≤ i ≤ n and all Φ ∈ W, we define α ∈ Ni(Φ) iff α = [A] for some �jA ∈ Φ
s.t. j = i or (j, i) ∈ I∗, or α ⊇ [B] for some �kB ∈ Φ s.t. k = i or (k, i) ∈ I∗,
and Mi ∈ Li, or Mk ∈ Lk, or Mu ∈ Lu for some u s.t. (k, u), (u, i) ∈ I∗. We can
show that M is a 〈L1...LnI〉-model, and that for all A ∈ L[�1, ...,�n], �A� = [A].
Then the completeness of 〈L1...LnI〉 follows in the usual way. ��

3 Sequent Calculi

In this section, we present sequent calculi for all the considered combinations of
NNMLs. We show that the calculi are sound and cut-free complete with respect
to the corresponding axiomatic systems.

In the following, we use capital Greek letters Γ,Δ,Π,Θ to denote possibly
empty multisets of formulas. As usual, we call sequent any pair Γ ⇒ Δ of finite
multisets of formulas. Sequents are interpreted in the language of the logic by the
formula interpretation ι(Γ ⇒ Δ) =

∨
Γ →

∧
Δ, if Γ �= ∅, and ι(Γ ⇒ Δ) =

∧
Δ,

if Γ = ∅, where
∧

∅ = ⊥.

CoNP Complexity for Combinations of Non-normal Modal Logics 307

Fig. 3. Modal rules of sequent calculi for non-normal monomodal logics.

Sequent calculi for non-normal monomodal logics are studied in [27,28,31,
34,36].3 For each logic Li, the corresponding sequent calculus S.Li contains the
propositional rules init, ⊥L, →L, →R and suitable modal rules from Fig. 2, as
summarised in Fig. 3.

Concerning the other rules in Fig. 2, note that the order of the indexes i, j is
relevant for eij and mij (�iA is in Γ while �jB is in Δ), while it is not relevant
for dij and mdij (both �iA and �jB are in Γ). Accordingly, we assume dij = dji

and mdij = mdji, whereas eij �= eji and mij �= mji. The sequent calculi for the
combinations of NNMLs are defined as follows.

Definition 3. The sequent calculus S〈L1...LnI〉 for 〈L1...LnI〉 contains, for all
1 ≤ i ≤ n, all the rules of S.Li different from d′

i, as well as the following rules:

eij, if (i, j) ∈ I∗, and mi /∈ S.Li, and mj /∈ S.Lj, and there is no k such that
(i, k), (k, j) ∈ I∗ and mk ∈ S.Lk;

mij, if (i, j) ∈ I∗, and mi ∈ S.Li or mj ∈ S.Lj or there is k s.t. mk ∈ S.Lk and
(i, k), (k, j) ∈ I∗;

ni, if there is j such that (j, i) ∈ I∗ and nj ∈ S.Lj;
di, if there is j such that (i, j) ∈ I∗, and eij ∈ S〈L1...LnI〉, and dj ∈ S.Lj;

mdi, if there is j such that (i, j) ∈ I∗, and mij ∈ S〈L1...LnI〉, and dj ∈ S.Lj or
mdj ∈ S.Lj;

dij, if there is k such that (1) (i, k) ∈ I∗, and (2) (j, k) ∈ I∗ or k = j, and
(3) dk ∈ S.Lk, and (4) eik, ejk ∈ S〈L1...LnI〉,

mdij, if there is k s.t. (1) (i, k) ∈ I∗, (2) (j, k) ∈ I∗ or k = j, (3) dk ∈ S.Lk or
mdk ∈ S.Lk, and (4) mik ∈ S〈L1...LnI〉 or mjk ∈ S〈L1...LnI〉;

pi, if there is j such that j = i or (i, j) ∈ I∗, and pj ∈ S.Lj or there is k such
that nk ∈ S〈L1...LnI〉, and djk ∈ S〈L1...LnI〉 or mdjk ∈ S〈L1...LnI〉;

d′
i, if pi /∈ S〈L1...LnI〉, and there is j s.t. j = i or (i, j) ∈ I∗, and d′

j ∈ S.Lj.
ti, if there is j such that (i, j) ∈ I∗ and tj ∈ S.Lj.

The rules listed in Definition 3 are necessary in order to ensure cut-free
completeness of the sequent calculi in presence of interactions. Two examples of
calculi resulting from the definition are as follows:

3 Here we only consider pure Gentzen-style sequent calculi for NNMLs. Other sequent
calculi for NNMLs have been defined in the literature in terms of labelled sequent
calculi [13,24,35], nested or hypersequent calculi [11,33,34], and display calculi [8].

308 T. Dalmonte and A. Mazzullo

S〈EN1,ET2,EM3{(1, 2), (2, 3)}〉 = {e1, n1, e2, t2,m3,m1,2,m1,3,m2,3, t1,
n2, n3};

S〈EN1,EM2,ED3{(1, 3), (2, 3)}〉 = {e1, n1,m2, e3, d3, e1,3,m2,3, n3, d1,3,
d1,md2,3, p3, p1, p2}.

As usual, initial sequents are formulated only for propositional variables but
can be extended to arbitrary formulas. We say that a rule is admissible in
S〈L1...LnI〉 if whenever the premisses are derivable in S〈L1...LnI〉, the conclusion
is also derivable, and that a single-premiss rule is height-preserving admissible
in S〈L1...LnI〉 (hp-admissible for short) if whenever the premiss is derivable,
the conclusion is derivable with a derivation of at most the same height. More-
over, we say that a rule S1, ...,Sn/S ′ is height-preserving invertible in S〈L1...LnI〉
(hp-invertible) if the rule S ′/Si is hp-admissible for all premisses Si. One can
show that the propositional rules of S〈L1...LnI〉 are hp-invertible, by contrast the
modal rules are not (with the exception of ti). As an easy example, consider the
sequents p ⇒ q and �ip ⇒ �iq,�i(p ∨ r), respectively premiss and conclusion
of an instance of mi, where the conclusion is derivable and the premiss is not.

Proposition 1. In every calculus S〈L1...LnI〉, the following structural rules
Lwk, Rwk, Lctr and Rctr are hp-admissible, and the following rule cut is admis-
sible:

Γ ⇒ Δ
Lwk

Γ, A ⇒ Δ
Γ ⇒ Δ

Rwk
Γ ⇒ A, Δ

Γ, A, A ⇒ Δ
Lctr

Γ, A ⇒ Δ

Γ ⇒ A, A, Δ
Rctr

Γ ⇒ A, Δ

Γ ⇒ A, Δ Π, A ⇒ Θ
cut

Γ, Π ⇒ Δ, Θ

Proof. Hp-admissibility of Lwk, Rwk, Lctr and Rctr is proved as usual by mutual
induction on the height of the derivation of their premisses (with d′

i ensuring
that contraction is admissible also in the calculi with di). Admissibility of cut is
proved by induction on the lexicographically ordered pairs (c, h), where c is the
weight of the cut formula, and h = h1 +h2 is the cut height, where h1 and h2 are
the heights of the derivations of the premisses of cut. The proof is standard and
distinguishes some cases according to whether the cut formula is or not principal
in the last rules applied in the derivation of the premisses of cut. Here we only
show two representative cases, where the cut formula is principal in the last rule
applied in the derivation of both premisses of cut.
(eiu − mduj) The derivation on the left is converted into the one on the right:

A ⇒ B B ⇒ Aeiu
Γ, �iA ⇒ �uB, Δ

B, C ⇒
mduj

Π, �uB, �jC ⇒ Θ
cut

Γ, Π, �iA, �jC ⇒ Δ, Θ

�
A ⇒ B B, C ⇒

cut
A, C ⇒

mdij
Γ, Π, �iA, �jC ⇒ Δ, Θ

where the application of cut has a lower height, and mdij ∈ S〈L1...LnI〉 by
Definition 3. Indeed, eiu ∈ S〈L1...LnI〉 implies (i, u) ∈ I∗. Moreover, since
mduj ∈ S〈L1...LnI〉, following Definition 3 there are three possibilities: (1)
(u, j) ∈ I∗, and muj ∈ S〈L1...LnI〉, and dj ∈ S〈L1...LnI〉 or mdj ∈ S〈L1...LnI〉;

CoNP Complexity for Combinations of Non-normal Modal Logics 309

or (2) (j, u) ∈ I∗, and mju ∈ S〈L1...LnI〉, and du ∈ S〈L1...LnI〉 or mdu ∈
S〈L1...LnI〉; or (3) there is k such that (u, k), (j, k) ∈ I∗, and muk ∈ S〈L1...LnI〉
or mjk ∈ S〈L1...LnI〉, and dk ∈ S〈L1...LnI〉 or mdk ∈ S〈L1...LnI〉. If (1), then
(i, j) ∈ I∗ and mij ∈ S〈L1...LnI〉. If (2), then (i, u), (j, u) ∈ I∗. If (3), then
(i, k), (j, k) ∈ I∗. In all these cases, by Definition 3, mdij ∈ S〈L1...LnI〉.
(mij − pj) The derivation on the left is converted into the one on the right:

A ⇒ Bmij
Γ, �iA ⇒ �jB, Δ

B ⇒ pj
Π, �jB ⇒ Θ

cut
Γ, Π, �iA ⇒ Δ, Θ

�
A ⇒ B B ⇒

cut
A ⇒ pi

Γ, Π, �iA ⇒ Δ, Θ

where the application of cut has a lower height, and pi ∈ S〈L1...LnI〉 by
Definition 3. Indeed, mij ∈ S〈L1...LnI〉 implies (i, j) ∈ I∗. Moreover, since
pj ∈ S〈L1...LnI〉 we have three possibilities: (1) pj ∈ S.Lj ; or (2) there is k such
that (j, k) ∈ I∗ and pk ∈ S.Lk; or (3) there are k, u such that (j, k), (k.u) ∈ I∗,
nu ∈ S〈L1...LnI〉, and dku ∈ S〈L1...LnI〉 or mdku ∈ S〈L1...LnI〉. If (1), then by
Definition 3, pi ∈ S〈L1...LnI〉. If (2) or (3), then (i, k) ∈ I∗, and in both cases
by Definition 3, pi ∈ S〈L1...LnI〉. ��
Theorem 2. Γ ⇒ Δ is derivable in S〈L1...LnI〉 if and only if

∨
Γ →

∧
Δ is

derivable in 〈L1...LnI〉
Proof. (⇒) For each rule S/S ′ or S1,S2/S ′ of S〈L1...LnI〉, we need to show that
the corresponding rule ι(S)/ι(S ′) or ι(S1), ι(S2)/ι(S ′) is derivable in 〈L1...LnI〉.
We consider as an example the rule mdij , and write 	 for 	〈L1...LnI〉. First, it is
easy to see that 	 �iA → �jA for all (i, j) ∈ I∗. Now suppose that 	 A∧B → ⊥,
hence 	 A → ¬B. By Definition 3, there is k such that (i, k) ∈ I∗ or k = i,
(j, k) ∈ I∗ or k = j, dk ∈ S.Lk or mdk ∈ S.Lk, and mik ∈ S〈L1...LnI〉 or
mjk ∈ S〈L1...LnI〉. Then, by def. of monomodal calculi, Dk ∈ Lk. Suppose that
mik ∈ S〈L1...LnI〉. One can show that the rule C → D/�iC → �kD is derivable
in 〈L1...LnI〉 for any C, D. Then since 	 A → ¬B, we have 	 �iA → �k¬B.
Moreover, we have 	 �jB → �kB. Then by Dk, 	 �iA ∧ �jB → ⊥, thus
	

∨
Γ ∧ �iA ∧ �jB →

∧
Δ for all Γ , Δ. If mjk ∈ S〈L1...LnI〉 the proof is

analogous. (⇐) By showing that all axioms and rules of 〈L1...LnI〉 are derivable,
respectively admissible, in S〈L1...LnI〉, with modus ponens simulated by cut in
the usual way. ��

In this paper, we provide a proof of coNP-complexity for the validity prob-
lem for the logics 〈L1...LnI〉 following a strategy based on a reformulation of the
calculi S〈L1...LnI〉 in terms of hypersequents, as explained in the next section.
Alternatively, it could be possible to devise a strategy directly based on the cal-
culi S〈L1...LnI〉 only.4 To this goal, two key observations are in order. First, it
is easy to see that in any proof tree T for Γ ⇒ Δ in S〈L1...LnI〉, every branch
of T has polynomial length with respect to the length n of Γ ⇒ Δ. Second, for
every non-invertible modal rule, at most quadratically many premisses (w.r.t. n)
are possible. This would allow one to obtain certificates for non-derivability in
S〈L1...LnI〉 verifiable in polynomial time by a deterministic Turing machine. We
leave as future work further investigation in this direction.
4 We thank one reviewer for suggesting us this possibility.

310 T. Dalmonte and A. Mazzullo

4 Invertible Calculi and CoNP Complexity

In this section, we present a proof of coNP complexity for the logics 〈L1...LnI〉
based on a reformulation of the sequent calculi S〈L1...LnI〉 where all the rules are
invertible. In particular, in order to make the modal rules invertible, we rewrite
all the rules using hypersequents, following the strategy of [11]. We show that
the hypersequent calculi H〈L1...LnI〉 provide a coNP decision procedure for
the validity problem in 〈L1...LnI〉. Specifically, we present a coNP proof search
algorithm in H〈L1...LnI〉 that explicitly constructs a derivation for every valid
hypersequent/formula. Moreover, we show that from every failed derivation one
can extract a countermodel of the input hypersequent: this means that we can
construct a countermodel of every non-valid formula.

A hypersequent H [2] is a finite multiset of sequents, and is written Γ1 ⇒ Δ1 |
... | Γk ⇒ Δk, where Γ1 ⇒ Δ1, ..., Γk ⇒ Δk are called the components of H. The
hypersequent rules for 〈L1...LnI〉 are direct reformulation of the sequent rules,
and are displayed in Fig. 4. Essentially, backward applications of the hyperse-
quent modal rules introduce a new component which coincides with the premiss
of the corresponding sequent rule. In this way, all information contained in the
conclusion is preserved into the premisses, thus making alternative rule appli-
cations still possible in bottom-up proof search. Concerning the propositional
rules, we consider a cumulative formulation of them where the principal formu-
las are kept into the premisses. As we will see, this allows us to easily extract
countermodels from failed proofs.

Differently from sequents, hypersequents cannot be interpreted as formulas
of L[�1, ...,�n] (we will come back to this problem in the next section). Hyper-
sequents are evaluated on n-neighbourhood models as: M, w ∵ Γ ⇒ Δ if and
only if M, w ∵ ι(Γ ⇒ Δ); M |= Γ ⇒ Δ if and only if M, w ∵ Γ ⇒ Δ, for all
w of M; and M |= Γ1 ⇒ Δ1 | ... | Γk ⇒ Δk if and only if M |= Γ� ⇒ Δ�, for
some 1 ≤ ≤ k.

Definition 4. The hypersequent calculus H〈L1...LnI〉 for 〈L1...LnI〉 is defined
as S〈L1...LnI〉 (Definition 3), with the difference that the rules are formulated in
their hypersequent version (Fig. 4).

We first show that the calculi are sound and complete with respect to the
corresponding logics. Since hypersequents do not have a formula interpretation,
we consider a semantic proof of soundness.

Proposition 2. If H is derivable in H〈L1...LnI〉, then H is valid in every n-
neighbourhood model for 〈L1...LnI〉.

Proof. It is immediate to see that the initial hypersequents init and ⊥L are
valid in every model. We need to show that all rules of H〈L1...LnI〉 are validity
preserving in every model for 〈L1...LnI〉. We consider as an example the rule
mdij : Suppose that M |= H | Γ,�iA,�jB ⇒ Δ | A,B ⇒. If M |= H |
Γ,�iA,�jB ⇒ Δ we are done. Otherwise M |= A,B ⇒, that is, �A� ⊆ �¬B�.
As a consequence of Definition 3, mdij belongs to H〈L1...LnI〉 in two cases: (1)

CoNP Complexity for Combinations of Non-normal Modal Logics 311

Fig. 4. Hypersequent rules.

(i, j) ∈ I∗ and M satisfies (Dj-c) and (Mi-c) or (Mj-c), or (2) there is k such
that (i, k), (j, k) ∈ I∗ and M satisfies (Dk-c) and (Mi-c) or (Mj-c) or (Mk-c). If
(1), then suppose w ∵ �iA, that is �A� ∈ Ni(w). If (Mi-c), then �¬B� ∈ Ni(w),
and by (Intij-c), �¬B� ∈ Nj(w). Otherwise by (Intij-c), �A� ∈ Nj(w), and by
(Mj-c), �¬B� ∈ Nj(w). Thus by (Dj-c), �B� /∈ Nj(w). If (2), let us assume (Mk-
c), the other cases being similar. Suppose w ∵ �iA∧�jB. Then �A� ∈ Ni(w) and
�B� ∈ Nj(w). By (Intik-c) and (Intjk-c), �A�, �B� ∈ Nk(w), thus �B�, �¬B� ∈
Nk(w), against (Dk-c). Thus in both cases w �∵ �iA ∧ �jB. Since this holds for
every w, we have M |= �iA,�jB ⇒, hence M |= H | Γ,�iA,�jB ⇒ Δ. ��

To prove completeness, we consider here a simple proof that relies on the cut-
free completeness of the sequent calculi, although a direct proof of cut elimination
analogous to the one in the previous section could be given. The proof is based
on the following observation, which can be easily proved by induction on the
height of the derivation of the premiss of the rules.

Lemma 1. The rules of external weakening and external contraction are height-
preserving admissible in H〈L1...LnI〉:

H
Ewk H | Γ ⇒ Δ

H | Γ ⇒ Δ | Γ ⇒ Δ
Ectr H | Γ ⇒ Δ

312 T. Dalmonte and A. Mazzullo

Proposition 3. If Γ ⇒ Δ is derivable in S〈L1...LnI〉, then Γ ⇒ Δ is derivable
in H〈L1...LnI〉.

Proof. By induction on the height of the derivation of Γ ⇒ Δ in S〈L1...LnI〉,
considering the last rule applied in the derivation. For initial sequents and propo-
sitional rules the proof is immediate. For modal rules, suppose that Γ ⇒ Δ is
obtained from S1 and (possibly) S2 by the application of the sequent rule R.
Then by i.h., S1 and S2 are derivable in H〈L1...LnI〉, and by Ewk, Γ ⇒ Δ | S1

and Γ ⇒ Δ | S2 are derivable in H〈L1...LnI〉. Then by the hypersequent version
of the rule R, Γ ⇒ Δ is derivable in H〈L1...LnI〉. ��

Another immediate consequence of the height-preserving admissibility of
external weakening is that all the rules of H〈L1...LnI〉 are height-preserving
invertible in the calculi. It follows that one single proof search is sufficient to
establish whether a hypersequent is derivable or not. However, as a difference
with sequent rules, backward applications of the hypersequent rules increase the
complexity of the hypersequents, thus proof search in H〈L1...LnI〉 does not ter-
minate per se. In order to retrieve termination but also obtain an optimal proof
search, following [11] (cf. also [32]), we consider a proof search strategy based on
the following loop checking condition and on a fixed order of rule applications.

Definition 5. An application of a hypersequent rule with premisses G1, ..., Gn

and conclusion H satisfies the local loop checking condition (LLCC) if for each
premiss Gi, there exists a component Γ ⇒ Δ in Gi such that for no component
Π ⇒ Θ of the conclusion H we have set(Γ) ⊆ set(Π) and set(Δ) ⊆ set(Θ).
Moreover, having fixed an enumeration R1, ..., Rm of the rules of H〈L1...LnI〉,
we say that the backward application of a rule Ri with conclusion H satisfies the
priority order (PO) if there is no Rj backward applicable to H with j < i.

Bottom-up proof search with LLCC and PO is described by Algorithm 1.
We now show that bottom-up proof search with LLCC and PO is complete, and
that it provides a coNP procedure for deciding derivability in 〈L1...LnI〉.

Proposition 4. If H is derivable in H〈L1...LnI〉, then it is derivable with a
derivation in which all rule applications satisfy the LLCC and the PO.

Proof. First, we show by induction on the height n of the derivation D of H in
H〈L1...LnI〉 that if H is derivable in H〈L1...LnI〉, then it is derivable respecting
the LLCC: If n = 0, then H is an initial hypersequent and D trivially satisfies
LLCC. For n+1, let R be the last rule applied in D. If R satisfies the LLCC, then
we apply the i.h. to its premisses and are done. Otherwise, there is a premiss Gi of
R such that for all components Γ ⇒ Δ in Gi, there is Π ⇒ Θ in H s.t. set(Γ) ⊆
set(Π) and set(Δ) ⊆ set(Θ). Then H can be obtained from Gi by means of
height-preserving applications of the structural rules. Again, by applying the
i.h. we obtain a derivation of H where every rule application satisfies the LLCC.
Moreover, given the invertibility of the rules, any derivation can be transformed
into one satisfying PO by rearranging the order of the rule applications. ��

CoNP Complexity for Combinations of Non-normal Modal Logics 313

Proposition 5. For every logic 〈L1...LnI〉, Algorithm 1 runs in coNP.

Proof. The algorithm is presented in the form of a non-deterministic Turing
machine with only universal states (that is, states that are accepting if every
transition leads to some accepting state), thus in order to prove that it runs
in coNP, we need to show that every computation takes polynomial time. Let
H be the input hypersequent and n be the size of H defined as the sum of the
lengths of the formulas occurring in it. Since every backward application of a rule
introduces a formula or a component, the number of possible rule applications,
whence the number of computation steps, is bounded by the maximal length
of the hypersequents that can be generated by the procedure. Given that all
formulas occurring in a hypersequent are subformulas of some formulas occurring
in H, and that the LLCC avoids multiple occurrences of the same formulas in
the same components, every component has length at most O(n). Moreover,
new components are generated by a modal formula or a pair of modal formulas.
Because of the LLCC, no matter in which component their occur, the same
formula or pair of formulas cannot generate more than one component. Then
the number of components is bounded by O(n) + O(n) + O(n2). It follows that
every hypersequent has a maximal length of O(n3). Finally, checking that a
premiss does not violate the LLCC takes polynomial time in the length of the
conclusion. Thus the whole execution takes polynomial time. ��

Algorithm 1: Decision procedure for derivability in H〈L1...LnI〉.
Input: A hypersequent H and the code of a calculus H〈L1...LnI〉.
Output: derivable, if H is derivable; a hypersequent otherwise.

1 if there is a component Γ ⇒ Δ in H with ⊥ ∈ Γ or Γ ∩ Δ �= ∅ then
2 return derivable and halt;
3 else if there is a rule backward applicable to H respecting the LLCC then
4 pick the first applicable rule according to PO;
5 universally choose a premiss G of this rule application;
6 check that the premiss does not violate the LLCC;
7 check recursively whether G is derivable, output the answer and halt;
8 else
9 return H and halt;

10 end

In order for the procedure to succeed, it is necessary that all executions
terminate on an initial hypersequent, hence a single failed execution is sufficient
to ensure the non-derivability of the input hypersequent. In this latter case, the
procedure constructs a hypersequent which is not initial and it is such that no
rule is backward applicable to it without violating the LLCC. We call such a
hypersequent saturated. We now show that from a saturated hypersequent we
can extract a countermodel of the input hypersequent.

314 T. Dalmonte and A. Mazzullo

Definition 6. Let H = Γ1 ⇒ Δ1 | . . . | Γk ⇒ Δk be a saturated hyperse-
quent returned by Algorithm 1 on input G and H〈L1...LnI〉. For all formulas B
occurring in H and all 1 ≤ i ≤ n, we define

�B�i = { | B ∈ Γ�};

�B�i =

{
W \ { | B ∈ Δ�}, if Li is not monotonic;
W, if Li is monotonic;

ηi =

{
{W}, if there is j such that j = i or (i, j) ∈ I∗, and Nj ∈ Lj ;
∅, otherwise.

Then the model M = (W,N1, ...,Nn,V) is defined with W = { | Γ� ⇒ Δ� ∈ H};
for all p ∈ Atm, V(p) = { | p ∈ Γ�}; and for all 1 ≤ i ≤ n and all 1 ≤ ≤ k,

Ni() = ηi ∪ {α ⊆ W | there is �jB ∈ Γ� such that j = i or (j, i) ∈ I∗,
and �B�j ⊆ α ⊆ �B�j}.

Proposition 6. Let H be a saturated hypersequent returned by Algorithm 1 on
input G and H〈L1...LnI〉, and M be the model defined on the basis of H as in
Definition 6. Then for all formulas B and all worlds of M, it holds:

– if B ∈ Γ�, then M, ∵ B;
– if B ∈ Δ�, then M, �∵ B.

Moreover, M is a 〈L1...LnI〉-model.

Proof. The first claim is proved by induction on the construction of B. For B = p,
B = ⊥ and B = C ∧ D the proof is standard. Suppose B = �iC ∈ Γ�. By i.h.,
�C�i ⊆ �C� ⊆ �C�i. Then by definition, �C� ∈ Ni(), thus M, ∵ �iC. Now
suppose B = �iC ∈ Δ�. If there is no �iD ∈ Γ� or �jD ∈ Γ� with (j, i) ∈ I∗,
then if ηi = ∅, then Ni() = ∅, hence M, �∵ �iC. If instead ηi = {W}, then
Ni() = {W}, moreover by Definition 3, ni ∈ S〈L1...LnI〉, hence by Definition
4, ni ∈ H〈L1...LnI〉. Thus, since H is saturated, there is Γm ⇒ Δm in H where
C ∈ Δm, then by i.h., M,m �∵ C, hence �C� �= W, thus �C� /∈ Ni(), hence
M, �∵ �iC. Otherwise let �jD ∈ Γ� with j = i or (j, i) ∈ I∗. If Li is monotonic,
then by the rule mji there is Γm ⇒ Δm in H such that D ∈ Γm and C ∈ Δm,
while if Li is not monotonic, then by the rule eji there is Γm ⇒ Δm in H such
that D ∈ Γm and C ∈ Δm, or C ∈ Γm and D ∈ Δm. In the first case, by i.h.,
�D�j �⊆ �C�, and in the second case, �D�j �⊆ �C� or �C� �⊆ �D�j . Since this holds
for all �jD ∈ Γ� with j = i or (j, i) ∈ I∗, �C� /∈ Ni(), thus M, �∵ �iC.

We now prove that M is a 〈L1...LnI〉-model. From the definition of Ni it
follows immediately that (Intij-c) is satisfied for all (i, j) ∈ I∗, that (Mi-c) is
satisfied if Mi ∈ Li, and that (Ni-c) is satisfied if Ni ∈ Li. We show (Di-c) as an
example for the other conditions: Suppose that Di ∈ Li and, by contradiction,
α ∈ Ni() and W \ α ∈ Ni(). By def. of the monomodal calculi, di ∈ S.Li or
mdi ∈ S.Li. Moreover, by def. of Ni, there is �jB ∈ Γ� s.t. j = i or (j, i) ∈ I∗,
and �B�j ⊆ α ⊆ �B�j , and either there is �uC ∈ Γ� s.t. u = i or (u, i) ∈ I∗, and
�C�u ⊆ W\α ⊆ �C�u, which implies �B�j ∩�C�u = ∅ and W\�B�j ∩W\�C�u =

CoNP Complexity for Combinations of Non-normal Modal Logics 315

Fig. 5. Hypersequent rules for universal modality.

∅, or W \ α = W and ηi = {W}. There are four possible cases. (1) If j = u
and B = C, then by Definition 3, d′

j ∈ S〈L1...LnI〉 or pj ∈ S〈L1...LnI〉, hence
by Definition 4, d′

j ∈ H〈L1...LnI〉 or pj ∈ H〈L1...LnI〉. Thus by saturation of
H, there is Γm ⇒ Δm in H s.t. B ∈ Γm or B ∈ Δm. Then m ∈ �B�j or
m ∈ W \ �B�j . Since �B�j = �C�u and �B�j = �C�u, this gives a contradiction.
(2) If j = u and B �= C, by Definition 3 and 4 we have dj ∈ H〈L1...LnI〉
or mdj ∈ H〈L1...LnI〉. (3) If j �= u, by Definition 3 and 4, dju ∈ H〈L1...LnI〉
or mdju ∈ H〈L1...LnI〉. In both cases, by saturation there is Γm ⇒ Δm in
H s.t. B,C ∈ Γm or B,C ∈ Δm, which implies m ∈ �B�j ∩ �C�j or m ∈
W \ �B�j ∩ W \ �C�j , giving a contradiction. (4) W \ α = W and ηi = {W},
that is α = ∅. By Definition 3 and 4, pj ∈ H〈L1...LnI〉. Thus there is Γm ⇒ Δm

in H s.t. B ∈ Γm, then �B�j �= ∅, then α �= ∅, giving a contradiction. It follows
that α /∈ Ni() or W \ α /∈ Ni(). ��

Note that the model M of Proposition 6 is also a countermodel for the input
hypersequent G. Indeed, since backward rule applications never delete formulas
or components, for all components Γ ⇒ Δ in G, there is Π ⇒ Θ in H such that
set(Γ) ⊆ set(Π) and set(Δ) ⊆ set(Θ). Thus the world corresponding to Π ⇒ Θ
in M falsifies also Γ ⇒ Δ. In the light of this model extraction, Algorithm 1
can be easily reformulated in order to provide a NP decision procedure for the
satisfiability problem in 〈L1...LnI〉, with the algorithm taking as input hyperse-
quents of the form A ⇒. On the basis of the above results, we can conclude the
following.

Theorem 3. The validity problem for 〈L1...LnI〉 is coNP-complete.

5 Adding the Universal Modality

As we have seen, hypersequents cannot be interpreted in the language of NNMLs.
The reason is that the hypersequent construct “ |” semantically corresponds to a
disjunction of validities of sequents. In order to make the hypersequent calculi
fully internal, we now extend the language with a universal modality U , and
add to the calculi suitable hypersequent rules for it. This operation allows us
to treat another kind of logic combinations, namely the combination of NNMLs
whose common language also contains U (together with the propositional vari-
ables and the Boolean connectives). Differently from the combinations intro-
duced in Sect. 2, we define these logic combinations not based on the axiomatic
systems, but based on the hypersequent calculi. We show that this extension of
the calculi still provides a coNP proof search procedure, and also allows one

316 T. Dalmonte and A. Mazzullo

to extract suitable countermodels. Based on the hypersequent calculi and the
formula interpretation of the hypersequents, we also provide an axiomatisation
for the resulting logics.

Let L[�1, ...,�n]U be the language containing the modalities �1, ..., �n as
well as U . Hypersequents are now interpreted in L[�1, ...,�n]U by considering
the standard formula interpretation of hypersequent calculi for S5 [2,38]:

ι(Γ1 ⇒ Δ1 | ... | Γn ⇒ Δn) = U(
∧

Γ1 →
∨

Δ1) ∨ ... ∨ U(
∧

Γn →
∨

Δn).

Moreover, let L1, ..., Ln be n non-normal monomodal logics respectively formu-
lated in the languages L[�1], ..., L[�n], with �1, ..., �n all distinct but sharing
the same propositional variables, Boolean operators, and universal modality U .

Definition 7. For every calculus H〈L1...LnI〉 from Sect. 4, the corresponding
calculus H〈L1...LnI〉U in L[�1, ...,�n]U contains the rules of H〈L1...LnI〉, plus
the rules UL, UR and Ut in Fig. 5. Moreover, we call 〈L1...LnI〉U -model any
〈L1...LnI〉-model (Definition 2), where U is interpreted as M, w ∵ UA if and
only if M, v ∵ A for all worlds v of M.

The rules for U are taken from [38] (see also [39] for similar rules, while
different hypersequent rules for S5 can be found in [29] and references therein).
We start by showing that some of the results proved for H〈L1...LnI〉 immediately
extend to H〈L1...LnI〉U .

Proposition 7. If H is derivable in H〈L1...LnI〉U , then H is valid in every
〈L1...LnI〉U -model.

Proof. By extending the proof of Proposition 2. We consider as an example the
rule UL: Suppose that M |= H | Γ,UA ⇒ Δ | Σ,A ⇒ Π. If M |= H | Γ,UA ⇒
Δ we are done. Otherwise M |= Σ,A ⇒ Π, and since M |= UA or M |= ¬UA,
from M �|= Γ,UA ⇒ Δ we get M |= UA. Then M |= Σ ⇒ Π. ��

Proposition 8. Algorithm 1 on inputs H in L[�1, ...,�n]U and H〈L1...LnI〉U

runs in coNP.

Proof. The proof is exactly as the one of Proposition 5, observing that every
formula UA can generate at most one component (cf. [32]). Note that LLCC
and Algorithm 1 remain well-defined on the new inputs. ��

Proposition 9. Let H = Γ1 ⇒ Δ1 | . . . | Γk ⇒ Δk be a saturated hyper-
sequent returned by Algorithm 1 on input G and H〈L1...LnI〉U , and M =
(W,N1, ...,Nn,V) be the model defined on the basis of G as in Definition 6.
Then for all formulas B of L[�1, ...,�n]U and all ∈ W, it holds: if B ∈ Γ�,
then M, ∵ B, and if B ∈ Δ�, then M, �∵ B. Moreover, M is a 〈L1...LnI〉U -
model.

Proof. The proof extends the one of Proposition 6 with the case B = UC, which
is standard: If UC ∈ Γ�, then by UL and Ut, C ∈ Γm for all m ∈ W, then by i.h.,
M,m ∵ C for all m ∈ W, that is M, ∵ UC. If UC ∈ Δ�, then by UR there is
Γm ⇒ Δm in H with C ∈ Δm. By i.h., M,m �∵ C, thus M, �∵ UC. ��

CoNP Complexity for Combinations of Non-normal Modal Logics 317

As before, on the basis of Proposition 9, we can obtain from the algo-
rithm a NP decision procedure for satisfiability of L[�1, ...,�n]U formulas in
〈L1...LnI〉U -models. As a further consequence, Proposition 9 entails that the
calculi H〈L1...LnI〉U are complete with respect to the corresponding models.
Indeed, if the proof search procedure fails on input H, then it constructs a satu-
rated hypersequent G that extends H. From Proposition 9 we get a H〈L1...LnI〉U -
countermodel of G, whence of H, which means that H is not 〈L1...LnI〉U -valid.

Theorem 4. H is derivable in H〈L1...LnI〉U with LLCC and PO if and only if
H is valid in every 〈L1...LnI〉U -model.

We now take advantage of the completeness of the calculi H〈L1...LnI〉U and
of the formula interpretation of hypersequents to provide an axiomatisation for
the corresponding logics.

Definition 8. A logic 〈L1...LnI〉U is axiomatically defined as the corresponding
logic 〈L1...LnI〉 (Definition 1), but, for each 1 ≤ i ≤ n, replacing REi, Mi, Ni,
Di and Pi with the corresponding axiom EU

i , MU
i , NU

i , DU
i and PU

i below, and
adding KU , TU , 5U and RNU (S5 axioms for U):

EU
i U(A → B) ∧ U(B → A) → U(�iA → �iB) KU U(A → B) ∧ UA → UB

MU
i U(A → B) → U(�iA → �iB) TU UA → A

NU
i UA → U�iA 5U UA ∨ U¬UA

DU
i U(A → B) ∧ U(B → A) → U(�iA → ¬�i¬B) A

RNU UAP U
i U¬A → U¬�iA

Ti is the only axiom that does not change. 〈L1...LnI〉U is an extension of
〈L1...LnI〉 as REi is derivable in 〈L1...LnI〉U for all 1 ≤ i ≤ n, and Mi, Ni, Di

or Pi is derivable if, respectively, MU
i , NU

i , DU
i or PU

i belongs to 〈L1...LnI〉U .
Consider as an example Mi: From A∧B → A, by RNU , U(A∧B → A), then by
MU

i , U(�i(A ∧ B) → �iA), thus by TU , �i(A ∧ B) → �iA. We now show that
each logic 〈L1...LnI〉U is equivalent to the corresponding calculus H〈L1...LnI〉U .

Proposition 10. If A is derivable in 〈L1...LnI〉U , then ⇒ A is derivable in
H〈L1...LnI〉U , and if H is derivable in H〈L1...LnI〉U , then ι(H) is derivable in
〈L1...LnI〉U .

Proof. For the first claim, one can show that the axioms of 〈L1...LnI〉U are
derivable in H〈L1...LnI〉U . For the second claim, we prove that for every rule
H/H′ or H1,H2/H′ of H〈L1...LnI〉U , the corresponding rule ι(H)/ι(H′) or
ι(H1), ι(H2)/ι(H′) is derivable in 〈L1...LnI〉U . The proof follows the lines of the
proof of Theorem 2 (⇒), considering that depending on the logics, additional
axioms such as U(A → B) ∧ U(B → A) → U(�iA → ¬�j¬B) can be derivable.

Finally, considering the properties of the calculi H〈L1...LnI〉U and their equiv-
alence with the systems 〈L1...LnI〉U , we can conclude the following.

Theorem 5. 〈L1...LnI〉U is sound and complete with respect to the class of all
〈L1...LnI〉U -models. Moreover, the validity problem for 〈L1...LnI〉U is coNP-
complete.

318 T. Dalmonte and A. Mazzullo

6 Conclusion

We have proved that the validity/derivability problem for fusions of standard
coNP NNMLs, as well as for their extensions with interaction axioms of the
form �iA → �jA, remains coNP-complete, and that the same result holds for
combinations of logics sharing also a universal modality. In this respect, combi-
nations of NNMLs display a different behaviour than combinations of standard
coNP normal logics such as S5, KD45, K4.3 and S4.3, whose fusions are instead
PSpace.

As we have seen, fully invertible hypersequent calculi offer a good point of
view on the problem, as they allow one to decompose its global complexity into
the one of the single rule applications. As a further advantage, the hypersequent
calculi H〈L1...LnI〉 allow one to explicitly construct derivations of valid hyper-
sequents/formulas, as well as to construct countermodels of non-valid hyperse-
quents/formulas. Furthermore, after the integration of the rules for U from [38],
the calculi H〈L1...LnI〉U directly construct countermodels where both U and the
neighbourhood functions behave correctly. This can be compared with alterna-
tive techniques such as the submodel generation [5] that might be non-trivial to
apply in presence of the neighbourhood functions.

On the other hand, the definition of cut-free calculi for the logics with inter-
action axioms requires an intricate combinatorial analysis, in future work we
would like to study calculi that allow for a modular definition of the logic com-
binations. We would also like to study logics with iterative axioms such as 4, 5,
B, as well as product-like combinations for NNMLs.

Acknowledgements. We thank Alessandro Gianola and Anton Gnatenko for helpful
discussions and the anonymous reviewers for detailed comments that helped us to
improve the paper. This research has been partially supported by the project D2G2
funded through the Call for International Cooperation Projects Germany-South Tyrol
by the Province of Bolzano and DFG (DFG grant n. 500249124). Andrea Mazzullo
acknowledges the support of the MUR PNRR project FAIR - Future AI Research
(PE00000013) funded by the NextGenerationEU.

References

1. Anglberger, A.J., Gratzl, N., Roy, O.: Obligation, free choice, and the logic of
weakest permissions. Rev. Symbolic Logic 8(4), 807–827 (2015)

2. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: Logic: From Foundations to Applications, pp. 1–32. Oxford
Science Publications (1996)

3. Baader, F., Ghilardi, S., Tinelli, C.: A new combination procedure for the word
problem that generalizes fusion decidability results in modal logics. Inf. Comput.
204(10), 1413–1452 (2006)

4. Balbiani, P., Fernández-Duque, D., Lorini, E.: The dynamics of epistemic attitudes
in resource-bounded agents. Stud. Logica. 107(3), 457–488 (2019)

5. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, vol. 53. Cambridge Uni-
versity Press, Cambridge (2001)

CoNP Complexity for Combinations of Non-normal Modal Logics 319

6. Brown, M.A.: On the logic of ability. J. Philos. Log. 17(1), 1–26 (1988)
7. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-

bridge (1980)
8. Chen, J., Greco, G., Palmigiano, A., Tzimoulis, A.: Non-normal modal logics and

conditional logics: semantic analysis and proof theory. Inf. Comput. 287, 104756
(2022)

9. Dalmonte, T.: Wijesekera-style constructive modal logics. In: Advances in Modal
Logic, vol. 14, pp. 281–304. College Publications (2022)

10. Dalmonte, T., Grellois, C., Olivetti, N.: Intuitionistic non-normal modal logics: a
general framework. J. Philos. Log. 49(5), 833–882 (2020)

11. Dalmonte, T., Lellmann, B., Olivetti, N., Pimentel, E.: Hypersequent calculi for
non-normal modal and deontic logics: countermodels and optimal complexity. J.
Log. Comput. 31(1), 67–111 (2021)

12. Dalmonte, T., Mazzullo, A., Ozaki, A., Troquard, N.: Non-normal modal descrip-
tion logics. In: JELIA 2023 (2023, to appear)

13. Dalmonte, T., Olivetti, N., Negri, S.: Non-normal modal logics: bi-neighbourhood
semantics and its labelled calculi. In: Advances in Modal Logic, vol. 12, pp. 159–
178. College Publications (2018)

14. Elgesem, D.: The modal logic of agency. Nord. J. Philos. Log. 2(2), 1–46 (1997)
15. Fajardo, R., Finger, M.: How not to combine modal logics. In: Proceedings of IICAI

2005, pp. 1629–1647. IICAI (2005)
16. Fine, K., Schurz, G.: Transfer theorems for multimodal logics. In: Logic and Reality:

Essays on the Legacy of Arthur Prior, pp. 169–213. Oxford University Press (1996)
17. Finger, M., Weiss, M.A.: The unrestricted combination of temporal logic systems.

Log. J. IGPL 10(2), 165–189 (2002)
18. Fischer Servi, G.: Axiomatizations for some intuitionistic modal logics. Rendiconti

del Seminario Matematico - PoliTO 42(3), 179–194 (1984)
19. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional

Modal Logics: Theory and Applications. Elsevier Science B.V. (2003)
20. Gabbay, D.M., Shehtman, V.B.: Products of modal logics, Part 1. Log. J. IGPL

6(1), 73–146 (1998)
21. Ghilardi, S., Gianola, A.: Interpolation, amalgamation and combination (the non-

disjoint signatures case). In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS
(LNAI), vol. 10483, pp. 316–332. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66167-4_18

22. Ghilardi, S., Gianola, A.: Modularity results for interpolation, amalgamation and
superamalgamation. Ann. Pure Appl. Logic 169(8), 731–754 (2018)

23. Ghilardi, S., Santocanale, L.: Algebraic and model theoretic techniques for fusion
decidability in modal logics. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003.
LNCS (LNAI), vol. 2850, pp. 152–166. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-39813-4_10

24. Gilbert, D.R., Maffezioli, P.: Modular sequent calculi for classical modal logics.
Stud. Logica. 103(1), 175–217 (2015)

25. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics
of knowledge and belief. Artif. Intell. 54(3), 319–379 (1992)

26. Horty, J.F., Belnap, N.: The deliberative stit: a study of action, omission, ability,
and obligation. J. Philos. Log. 24(6), 583–644 (1995)

27. Indrzejczak, A.: Sequent calculi for monotonic modal logics. Bull. Sect. Logic 34(3),
151–164 (2005)

28. Indrzejczak, A.: Admissibility of cut in congruent modal logics. Logic Log. Philos.
20(3), 189–203 (2011)

https://doi.org/10.1007/978-3-319-66167-4_18
https://doi.org/10.1007/978-3-319-66167-4_18
https://doi.org/10.1007/978-3-540-39813-4_10
https://doi.org/10.1007/978-3-540-39813-4_10

320 T. Dalmonte and A. Mazzullo

29. Indrzejczak, A.: Sequents and Trees. Birkhäuser Cham (2021)
30. Kracht, M., Wolter, F.: Properties of independently axiomatizable bimodal logics.

J. Symbolic Logic 56(4), 1469–1485 (1991)
31. Lavendhomme, R., Lucas, T.: Sequent calculi and decision procedures for weak

modal systems. Stud. Logica. 66(1), 121–145 (2000)
32. Lellmann, B.: Hypersequent rules with restricted contexts for propositional modal

logics. Theoret. Comput. Sci. 656, 76–105 (2016)
33. Lellmann, B., Pimentel, E.: Proof search in nested sequent calculi. In: Davis, M.,

Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp.
558–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-
7_39

34. Lellmann, B., Pimentel, E.: Modularisation of sequent calculi for normal and non-
normal modalities. ACM Trans. Comput. Log. 20(2), 7:1–7:46 (2019)

35. Negri, S.: Proof theory for non-normal modal logics: the neighbourhood formalism
and basic results. IfCoLog J. Log. Their Appl. 4(4), 1241–1286 (2017)

36. Orlandelli, E.: Sequent calculi and interpolation for non-normal modal and deontic
logics. Logic Log. Philos. 30(1), 139–183 (2020)

37. Pauly, M.: A modal logic for coalitional power in games. J. Log. Comput. 12(1),
149–166 (2002)

38. Poggiolesi, F.: A cut-free simple sequent calculus for modal logic S5. Rev. Symbolic
Logic 1(1), 3–15 (2008)

39. Restall, G.: Proofnets for S5: sequents and circuits for modal logic. In: Logic Col-
loquium 2005, vol. 28, pp. 151–172. Cambridge University Press (2007)

40. Seylan, I., Erdur, R.C.: A tableau decision procedure for ALC with monotonic
modal operators and constant domains. ENTCS 231, 113–130 (2009)

41. Seylan, I., Jamroga, W.: Description logic for coalitions. In: AAMAS 2009, pp.
425–432. IFAAMAS (2009)

42. Spaan, E.: Complexity of modal logics. Ph.D. thesis (1993)
43. Troquard, N.: Reasoning about coalitional agency and ability in the logics of

“bringing-it-about.” Auton. Agents Multi-Agent Syst. 28, 381–407 (2014)
44. Vardi, M.Y.: On the complexity of epistemic reasoning. In: Proceedings LICS 1989,

pp. 243–252. IEEE Computer Society (1989)
45. Wolter, F.: Fusions of modal logics revisited. In: Advances in Modal Logic, vol. 1,

pp. 361–379. CSLI Publications (1996)
46. Wolter, F., Zakharyaschev, M.: The relation between intuitionistic and classical

modal logics. Algebra Logic 36(2), 73–92 (1997)
47. Wolter, F., Zakharyaschev, M.: Intuitionistic modal logics as fragments of classical

bimodal logics. In: Logic at Work, pp. 168–186. Springer (1999)

https://doi.org/10.1007/978-3-662-48899-7_39
https://doi.org/10.1007/978-3-662-48899-7_39

CoNP Complexity for Combinations of Non-normal Modal Logics 321

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Resolution Calculi for Non-normal Modal
Logics

Dirk Pattinson1(B) , Nicola Olivetti2 , and Cláudia Nalon3

1 School of Computing, The Australian National University, Canberra, Australia
dirk.pattinson@anu.edu.au

2 Aix Marseille University, CNRS, LIS, Marseille, France
nicola.olivetti@lis-lab.fr

3 Department of Computer Science, University of Braśılia, Braśılia, Brazil

nalon@unb.br

Abstract. We present resolution calculi for the cube of classical non-
normal modal logics. The calculi are based on a simple clausal form that
comprises both local and global clauses. Any formula can be efficiently
transformed into a small set of clauses. The calculi contain uniform rules
and provide a decision procedure for all logics. Their completeness is based
on a new and crucial notion of inconsistency predicate, needed to ensure
the usual closure properties of maximal consistent sets. As far as we know
the calculi presented here are the first resolution calculi for this class of
logics.

Keywords: Modal Logic · Automated Reasoning · Resolution

1 Introduction

Non-normal modal logics (NNMLs) have been studied since the seminal work
by Kripke in the 1960s, and then developed prominently by Montague, Sege-
berg, Scott, and Chellas in the 1970s. They are called non-normal as they do
not satisfy all axioms of minimal normal modal logic K. NNMLs are used in
a variety of contexts. In epistemic reasoning they offer a simple (preliminary)
solution to the problem of logical omniscience. In deontic logic, they allow to
avoid some well-known paradoxes of classical deontic logic, and enable us to
represent conflicting obligations. Multi-agent non-normal modalities have been
used to capture notions of agency and ability, where �φ is read as “the agent can
bring about φ”, for a formula φ [12]. Moreover, the non-normal monotonic logic
EM coincides with the 2-agent case of Pauly’s coalition logic with determinacy.
Finally NNMLs are the formalism of choice to express normality and typicality,
or truth in most of the cases, as a modality [43].

In this paper we consider the classical cube of NNMLs. It comprises the
minimal modal logic E, the smallest modal logic closed under congruence (only),
and extensions of E with one or more of the axioms C, M and N. This results in a

C. Nalon was partially supported by FAPDF 11/2021, DPG/UnB 004/2022.

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 322–341, 2023.
https://doi.org/10.1007/978-3-031-43513-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_18&domain=pdf
http://orcid.org/0000-0002-5832-6666
http://orcid.org/0000-0001-6254-3754
http://orcid.org/0000-0002-9792-5346
https://doi.org/10.1007/978-3-031-43513-3_18

Resolution Calculi for Non-normal Modal Logics 323

cube of 8 systems, where the stronger one (defined by all three axioms M, N, and
C) is just the normal modal logic K. NNMLs have a well-understood semantics
defined in terms of neighbourhood models [7]. In these models, each world w is
associated with a set of neighbourhoods N(w), where each neighbourhood is a
set of worlds itself. If we accept the traditional interpretation of a proposition
as the set of worlds in which it holds (its truth set), we can think of N(w) as
a set of propositions associated with w, i.e. precisely those propositions that
are necessary, known, obligatory, . . . at the world w. The classical cube arises
by imposing closure properties on the set of neighbourhoods (or propositions)
associated with a world, and captured syntactically by the axioms.

From an automated reasoning and proof theoretic view, NNMLs are not as
well studied as normal modal logics. Cut-free Gentzen calculi for NNML have
been studied in [22,23,25,41,42]. Labelled calculi of different kinds have been
proposed in [10,15,37], where the neighbourhood semantics is represented syn-
tactically through two different labels, for worlds and neighbourhoods. Situated
between these two approaches, there are calculi that augment sequents with addi-
tional structure, but without fully representing the neighbourhood semantics:
linear nested sequents with an additional nesting operator [26] and structured
hypersequents [9]. All these calculi have different purposes and properties. Cut-
free Gentzen calculi typically provide a straightforward decision procedure, in
some cases of optimal complexity, and help to prove interpolation [42]. Labelled
calculi, and also the approach taken in [9], allow us to extract countermodels of
unprovable sequents. The structured calculi of [26] provide a uniform and mod-
ular formulation of NNML when extended with axioms of the standard modal
cube. An algorithmic alternative to deduction has been proposed in [16], where
the satisfiability problem in NNML is reduced to a set of SAT problems. This
essentially implements the proof of the complexity bound for these logics given
by Vardi [52].

This paper presents a different approach to reasoning in NNMLs and intro-
duces resolution calculi for all logics in the NNML cube. Resolution methods
usually rely on normal forms, which not only helps in the design of the inference
rules, but also allow for simple implementations. Moreover, although the com-
plexity of the method is high – proofs might be exponential in the size of the input
for some problems [21] – resolution for classical logics is widely implemented
[11,17,27,28,47,49,50] with excellent performance in practice [48]. Resolution
calculi have been designed for several modal logics, including the normal modal
logic K and its extensions in the modal cube, either as direct method or using
translations into more expressive logics, e.g. as in [1–6,8,13,14,29–31,36] and
[38–40]. Recent evaluations [18,31–35,44] show that resolution-based provers for
K also perform well when compared with tableaux, SAT, and translation based
procedures for modal logics [11,17–20,24,47,49–51].

To the best of our knowledge, ours are the first resolution calculi for NNMLs.
We use a very simple, congruential translation of formulae into sets of local and
global clauses, where the latter are required to hold at any point in the model.
Completeness is established via canonical models, and the main conceptual nov-
elty is the analysis of maximally consistent sets using inconsistency predicates.

324 D. Pattinson et al.

As we demonstrate by example, our modal resolution calculus does not derive
the modal literal ¬l from a set C of clauses if C ∪ {l} is inconsistent. Rather, it
derives a (set of) literals e such that {e, l} are inconsistent over C. This allows us
to show that maximally consistent sets are negation complete and disjunction
complete. Also, inconsistency predicates allow us to lift statements of global sat-
isfiability of clauses to resolution derivability, which in turn establishes premisses
of resolution rules that we need to establish completeness.

The paper is structured as follows. In the next section we present the language
of NNMLs and their axiomatisations. We then present the calculi for each modal
logic in the NNML cube in Sect. 3, together with results for termination and
soundness. Completeness is shown in Sect. 4. The completeness results show
that proof systems for stronger logics are obtained modularly by adding rules to
the weaker systems. We conclude in Sect. 5.

2 Syntax, Semantics, and Axiomatisation

Definition 1. We fix a countable set V of propositional variables. The language
L of the basic unimodal logic is given by the grammar L � φ, ψ := p | ¬φ | �φ |
φ ∨ ψ where p ∈ V.

Other connectives �,⊥,∧,→ and � are defined in the standard way, and we use
the usual operator precedence ∧,∨,→,↔ from strongest to weakest. We denote
the set of subformulae of φ ∈ L and their negations by subf(φ), where leading
double negations are eliminated.

Terminology 2. Variables and their negations are called propositional literals,
and modal literals are of the form �p or ¬�p where p ∈ V is a propositional
variable. A literal is either a propositional or a modal literal. We write Lit(V)
for the set of literals with variables in V.

Formulae are interpreted with respect to neighbourhood models.

Definition 3. A neighbourhood frame is a pair (W,N) where W is a set (of
worlds) and N : W → P(P(W)) is a (neighbourhood) function, where P(S)
denotes the powerset of S. A neighbourhood model is a neighbourhood frame
endowed with a valuation, that is, a triple (W,N, θ) where (W,N) is a neigh-
bourhood frame and θ : V → P(W) is a (valuation) function.

Definition 4. Truth of a formula φ ∈ L at a world w ∈ W of a neighbourhood
model M = (W,N, θ) is given inductively by:

M,w |= p ⇐⇒ w ∈ θ(p)
M,w |= φ ∨ ψ ⇐⇒ M,w |= φ or M,w |= ψ

M,w |= ¬φ ⇐⇒ M,w |= φ
M,w |= �φ ⇐⇒ �φ�M ∈ N(w)

where �φ�M = {w ∈ W | M,w |= φ} is the truth set of φ.

Resolution Calculi for Non-normal Modal Logics 325

Table 1. Axioms and frame properties, where (W, N) is a frame, α, β ⊆ W , w ∈ W .

Axiom Frame Property

C: (�φ ∧ �ψ) → �(φ ∧ ψ) Closed under intersection:

α ∈ N(w) ∧ β ∈ N(w) → α ∩ β ∈ N(w)

M: �(φ ∧ ψ) → �φ Supplemented: α ∈ N(w) ∧ α ⊆ β → β ∈ N(w)

N: �� Contains the unit: W ∈ N(w)

Fig. 1. The classical modal cube. Arrows indicate proper inclusion.

A formula φ ∈ L is satisfiable in a neighbourhood model M = (W,N, θ) if
there is w ∈ W such that M,w |= φ. A set Γ = {γ1, . . . , γn}, n ∈ N, is satisfiable
if and only if there is a neighbourhood model (W,N, θ) and a world w ∈ W such
that M,w |= γi, for all 1 ≤ i ≤ n. A formula φ is satisfiable in a class C of
neighbourhood models if there exists M ∈ C such that φ is satisfiable in M . We
denote by E the class of all neighbourhood models.

The axiomatisation for the minimal logic E comprises the axiomatisation of
classical propositional logic and the rule RE: from φ ↔ ψ derive �φ ↔ �ψ. We
also consider the extensions of E with the axioms given in Table 1. Neighbour-
hood models modularly characterise the classical cube of NNMLs given in Fig. 1
in the sense that a formula φ is a theorem of E if and only if it is valid in the
class E of all neighbourhood models [7]. Furthermore, φ is a theorem of EΣ with
Σ ⊆ {C,M,N} if and only if it is valid in the class of neighbourhood models that
satisfy each of the additional axioms, whose corresponding frame conditions are
given in Table 1. That is, the following holds [7, Theorem 7.5].

Theorem 5. The logic E (resp. EC, EM, EN, EMC, ECN, EMN, EMCN)
is characterised by the class E (resp. EC, EM, EN , EMC, ECN , EMN , EMCN)
of neighbourhood models.

We also note that axioms M and N are, respectively, equivalent to the rules
RM (φ → ψ / �φ → �ψ) and RN (φ / �φ), and that the axiom K (�(φ →
ψ) → �φ → �ψ) is derivable from M and C. As a consequence, the top system
EMCN is equivalent to K, the weakest normal modal logic [7, Theorem 8.9].
Monotonicity and aggregation correspond to regularity, that is, the system with
both M and C is equivalent to the regular system R [7, Theorem 8.11].

We conclude this section by providing the well-known results about the com-
plexity of the satisfiability problem for the logics here considered [52].

326 D. Pattinson et al.

Theorem 6. Let EΣ with Σ ⊆ {M,N}. The satisfiability problem for EΣ is in
NP and the satisfiability problem for ECΣ is in PSPACE.

3 Resolution Calculi

Our resolution calculi operates over sets of formulae in a specific normal form:
disjunctions of (propositional or modal) literals. Formulae can be transformed
into this form by means of renaming [45] which creates new propositions together
with their definitions in the resulting formula. The idea here is simple. To trans-
late the formula �φ, say, to clausal form, we stipulate �φ to be equivalent to�p, and additionally p to be equivalent to φ – but the latter has to be true in
every world of a neighbourhood model. Hence �φ is satisfiable if and only if
the formulae �p and G(p ↔ φ) are satisfiable. Here G(·) is a global modal-
ity that stipulates that a formula is true at every world in a model. For a
neighbourhood model (W,N, θ), w ∈ W , and a formula φ ∈ L, we have that
M,w |= G(φ) ⇐⇒ M,w′ |= φ, for all w′ ∈ W , where M,w |= φ is as in
Definition 4. Alternatively (and equivalently), M,w |= G(φ) ⇐⇒ �φ� = W .

A clause is a formula in one of the following forms:

– local clauses:
∨

i li, where the li are propositional or modal literals; or
– global clauses: G(

∨
i li), where the li are propositional or modal literals.

We often think of a clause as a set of literals and sometimes use set notation,
that is, we identify l1 ∨ . . . ∨ ln with the set {l1, . . . , ln}, for n ∈ N. This allows
us to also use set theoretic notation on clauses. For instance, for a literal l and
clause γ, we may write l ∈ γ and say that l is an element of γ. Similarly, γ1 ⊆ γ2

means that all literals of γ1 are literals of γ2.
It is easy to see that every formula can be represented as a set of clauses.

As most logics in the cube are non-monotonic, we only replace the argument of� with an equivalent formula. As a consequence, the rewriting steps and intro-
duction of new variables by renaming consistently use bi-implications (↔). For
a fixed formula φ ∈ L, we let η = ηφ : subf(φ) −→ V \ V(φ) be an injective
renaming function that associates a fresh propositional variable to every (possi-
bly negated) subformula of φ.

Proposition 7. A formula φ is satisfiable if, and only if, {η(φ)} ∪ R(G(η(φ) ↔
φ)) is satisfiable, where R is defined as follows and t, p ∈ V:

R(G(t ↔ p)) = {G(¬t ∨ p),G(t ∨ ¬p)}
R(G(t ↔ ¬ψ)) = {G(¬t ∨ ¬η(ψ)),G(t ∨ η(ψ))} ∪ R(G(η(ψ) ↔ ψ))

R(G(t ↔ ψ ∨ ψ′)) = {G(¬t ∨ η(ψ) ∨ η(ψ′)),G(t ∨ ¬η(ψ)),G(t ∨ ¬η(ψ′))}
∪ R(G(η(ψ) ↔ ψ)) ∪ R(G(η(ψ′) ↔ ψ′))

R(G(t ↔ �ψ)) = {G(¬t ∨ �η(ψ)),G(t ∨ ¬�η(ψ))} ∪ R(G(η(ψ) ↔ ψ))

Moreover, the size of {η(φ)} ∪ {R(G(η(φ) ↔ φ))} is linear on the size of φ.

Resolution Calculi for Non-normal Modal Logics 327

The proof is standard. We can transform a model that satisfies φ into a model
where η(φ) has exactly the same truth set as φ by just changing the valuation
of the renaming symbol. Conversely, models that satisfy the transformation are
automatically models of φ. The number of recursive calls is proportional to the
number of subformulae of φ, hence the linear complexity bound.

The inference rules for the modal logic E and its extensions are given in
Table 2. In the table, C and D are clauses, l are literals and p are propositional
variables, possibly subscripted or primed. Inference rules are presented using
standard notation with premisses and conclusion, called the resolvent separated
by a horizontal line. Every inference rule except G2L has a local and a global
variant, expressed by a leading L (resp. G) in its name. The second letter of the
rule name indicates the logic axiomatised by the rule, so that e.g. GMRES is
sound for the monotone modal logic EM. In the following, we give the intuition
for the global inference rules that can be readily translated to their local variants.
We consider the following four groups of inference rules.
- Inference rules for all classical modal logics: The rule GRES is a syntactical
variation of the propositional resolution rule [46], the only differences being that
reasoning is carried out within the global modality and that l occurring in the
premisses may be a modal literal. The rule G2L asserts that local satisfiability is
a consequence of its global counterpart. The rule GERES expresses that �p and
¬�p′ are inconsistent whenever p and p′ are globally equivalent, i.e. have the
same truth set. By virtue of the side condition, we have three non-redundant
instances: (1) G(C) = G(¬p ∨ p′) and G(C ′) = G(p ∨ ¬p′), which means that
p and p′ are semantically equivalent; (2) G(C) = G(¬p) and G(C ′) = G(¬p′),
in which case p and p′ are globally false and so semantically equivalent; or (3)
G(C) = G(p′) and G(C ′) = G(p), where p and p′ are semantically equivalent as
they are both globally true. All other instances are already contradictory or can
be reduced to the above by means of GRES.
- Inference rules for classical modal logics with aggregation that validate the
axiom C. The rules GCRES1 and GCRES2 are sound in classical modal logics
containing the axiom C. They are similar to the rule GERES, but the side con-
ditions for clauses Ci ensure that (p1 ∧ . . . ∧ pn ↔ p) is globally true.
- Inference rules for monotone classical modal logics that validate the axiom M:
The rule GMRES is sound in logics that are monotone. This rule is a weaker
version of GERES where congruence is required. For monotone logics, the rule
RM (from φ → ψ derive �φ → �ψ) holds. The side condition gives three concrete
instances: (1) C = G(¬p∨p′), thus, from �p in the first premiss we have that �p′

holds, which contradicts with ¬�p′ in the second premiss; (2) C = G(¬p), that is,
p is globally false and, ex falso sequitur quodlibet, we again have that �p′ holds,
which contradicts the modal literal in the second premiss; or (3) C = G(p′), from
which we can derive ¬�p, using the contrapositive of RM, which contradicts with
the modal literal in the first premiss.
- Inference rules for classical modal logics with the unit that validate the axiom
N: The rule GNRES is sound for these logics, as the premiss G(p) says that ¬�p

328 D. Pattinson et al.

Table 2. Inference Rules

LRES

(D ∨ l)

(D© ∨ ¬l)

(D ∨ D©)

GRES

G(D ∨ l)

G(D© ∨ ¬l)

G(D ∨ D©)

G2L

G(D)

D

LERES

(D ∨ �p)

(D© ∨ ¬�p©)

G(C)

G(C©)

(D ∨ D©)

GERES

G(D ∨ �p)

G(D© ∨ ¬�p©)

G(C)

G(C©)

G(D ∨ D©)

where C ⊆ (¬p ∨ p©) and C© ⊆ (p ∨ ¬p©)

LMRES

(D ∨ �p)

(D© ∨ ¬�p©)

G(C)

(D ∨ D©)

GMRES

G(D ∨ �p)

G(D© ∨ ¬�p©)

G(C)

G(D ∨ D©)

LNRES

(D ∨ ¬�p)

G(p)

D

GNRES

G(D ∨ ¬�p)

G(p)

G(D)

where C ⊆ (¬p ∨ p©)

LCRES1

(D1 ∨ �p1)

. . .

(Dn ∨ �pn)

(D© ∨ ¬�p)

G(¬p1 ∨ . . . ∨ ¬pn ∨ p)

G(C1)

. . .

G(Cn)

(D1 ∨ . . . ∨ Dn ∨ D©)

GCRES1

G(D1 ∨ �p1)

. . .

G(Dn ∨ �pn)

G(D© ∨ ¬�p)

G(¬p1 ∨ . . . ∨ ¬pn ∨ p)

G(C1)

. . .

G(Cn)

G(D1 ∨ . . . ∨ Dn ∨ D©)

where Ci ⊆ (¬p ∨ pi) and pi ∈ Ci

LCRES2

(D1 ∨ �p1)

. . .

(Dn ∨ �pn)

(D© ∨ ¬�p)

G(¬p1 ∨ . . . ∨ ¬pn)

G(¬p)

(D1 ∨ . . . ∨ Dn ∨ D©)

GCRES2

G(D1 ∨ �p1)

. . .

G(Dn ∨ �pn)

G(D© ∨ ¬�p)

G(¬p1 ∨ . . . ∨ ¬pn)

G(¬p)

G(D1 ∨ . . . ∨ Dn ∨ D©)

(or its global occurrence) cannot be satisfied, therefore it must be the case that
the resolvent G(D) is satisfied.

The basic resolution calculus, RESE, comprises the inference rules LRES,
GRES, G2L, LERES and GERES. For the extensions of E, the calculi can be
obtained in a modular way, that is, by just adding the rules that are sound
with respect to the axioms for the logic. However, it is easy to see that, for

Resolution Calculi for Non-normal Modal Logics 329

Table 3. Inference rules corresponding to each logic

Calculus Inference Rules

RESE LRES, GRES, G2L, LERES, GERES

RESEC LRES, GRES, G2L, LCRES1, GCRES1, LCRES2, GCRES2

RESEM LRES, GRES, G2L, LMRES, GMRES

RESEN LRES, GRES, G2L, LERES, GERES, LNRES, GNRES

RESEMC LRES, GRES, G2L, LCRES1, GCRES1, LCRES2, GCRES2, LMRES, GMRES

RESECN LRES, GRES, G2L, LCRES1, GCRES1, LCRES2, GCRES2, LNRES, GNRES

RESEMN LRES, GRES, G2L, LMRES, GMRES, LNRES, GNRES

RESEMCN LRES, GRES, G2L,LCRES1, GCRES1, LCRES2, GCRES2, LMRES, GMRES,

LNRES, GNRES

instance, when considering monotone logics, whenever LERES or GERES can be
applied, the rules LMRES or GMRES can also be applied, generating exactly the
same resolvent. Thus, LERES and GERES are both redundant in the calculi for
monotone logics. In Table 3 we give the rules for the calculus for each considered
logic, but where redundant inference rules are suppressed. We denote by RESL

the resolution calculus for a particular logic L.
The following definitions are needed before we establish our main results.

Definition 8. Let C be a finite set of clauses and L = EΣ with Σ ⊆ {C,M,N}.
A derivation from C in RESL is a sequence of sets of clauses C0, C1, . . . where
C0 = C and for every i ∈ N, Ci+1 = Ci ∪{D} where the resolvent D was obtained
from Ci by applying the rules of RESL given in Table 3. We require that D ∈ Ci

and that D is not a tautology (that is, a clause containing l and ¬l).

Definition 9. Let C be a finite set of clauses and C0, C1, . . . a derivation from C
in RESL where L = EΣ with Σ ⊆ {C,M,N}. If there is k ∈ N such that ε ∈ Ck,
then C0, C1, . . . , Ck is a refutation of C. If there is k ∈ N such that any resolvent
D obtained from Ck by applying the rules of RESL given in Table 3 to Ck is such
that D ∈ Ck, then Ck is saturated, and Ck is the saturation of C.

The following two theorems establish termination and soundness of the calculi.

Theorem 10. Let L = EΣ with Σ ⊆ {C,M,N}, C be a finite set of clauses and
C0, C1, . . . be a derivation from C in RESL. Then there is k ∈ N such that Ck is
saturated, or C0, C1, . . . , Ck is a refutation.

As there is a finite number of literals in C and no inference rule introduces new
literals, there is also an upper bound on the number of clauses that can be
generated by RESL. Hence either the empty clause is generated at some Ck or no
new clauses can be generated. Thus, any derivation in RESL terminates.

Theorem 11. Let L = EΣ with Σ ⊆ {C,M,N}. Then RESL is sound.

330 D. Pattinson et al.

The proof is by induction on the number of steps of a derivation: as every step
of a derivation is satisfiability preserving, as argued above, then all derivations
from satisfiable sets of clauses only generate satisfiable sets of clauses.

We present two examples before establishing completeness in the next section.

Example 12. We show that �(p ∨ q) → �(p ∨ ¬�(a ∨ ¬a) ∨ q) is valid in the
logic EN by using the calculus RESEN. For the refutation, we negate the formula
and obtain φ = �(p ∨ q) ∧ ¬�(p ∨ ¬�(a ∨ ¬a) ∨ q). We show next the relevant
clauses resulting from the transformation, where we have that φ1 = �(p ∨ q),
φ2 = ¬�(p ∨ ¬�(a ∨ ¬a) ∨ q), and φ3 = (p ∨ ¬�(a ∨ ¬a) ∨ q):

1. tφ
2. G(¬tφ ∨ tφ1)
3. G(¬tφ ∨ tφ2)
4. G(¬tφ1 ∨ �tp∨q)
5. G(¬tp∨q ∨ tp ∨ tq)
6. G(tp∨q ∨ ¬tp)
7. G(tp∨q ∨ ¬tq)

8. G(¬tφ2 ∨ ¬�tφ3)
9. G(¬tφ3 ∨ tp ∨ tq ∨ ¬�ta∨¬a)

10. G(tφ3 ∨ ¬tp)
11. G(tφ3 ∨ ¬tq)
12. G(ta∨¬a ∨ ¬ta)
13. G(ta∨¬a ∨ ¬t¬a)
14. G(t¬a ∨ ta)

The steps of the refutation are as follows:

15. G(ta∨¬a ∨ ta) [GRES, 13, 14]
16. G(ta∨¬a) [GRES, 15, 12]
17. G(¬tφ3 ∨ tp ∨ tq) [GNRES, 16, 9]
18. G(¬tφ3 ∨ tp∨q ∨ tp) [GRES, 17, 7]
19. G(¬tφ3 ∨ tp∨q) [GRES, 18, 6]
20. G(tφ3 ∨ ¬tp∨q ∨ tp) [GRES, 11, 5]

21. G(tφ3 ∨ ¬tp∨q) [GRES, 20, 10]
22. G(¬tφ1 ∨ ¬tφ2) [GERES, 4, 8, 19, 21]
23. G(¬tφ ∨ ¬tφ1) [GRES, 22, 3]
24. G(¬tφ) [GRES, 23, 2]
25. ¬tφ [G2L, 24]
26. ε [LRES, 25, 1]

Example 13. We now show that φ = �p ∧ �q → �(p ∧ q) is valid in EC. The
transformation of ¬φ produces, among others, Clauses (1)–(7). The refutation
is refreshingly short: it is obtained in two steps after an application of GCRES1:

1. tφ
2. G(¬tφ ∨ �tp)
3. G(¬tφ ∨ �tq)
4. G(¬tφ ∨ ¬�tp∧q)
5. G(¬tp∧q ∨ tp)

6. G(¬tp∧q ∨ tq)
7. G(tp∧q ∨ ¬tp ∨ ¬tq)
8. G(¬tφ) [GCRES1, 2, 3, 4, 5, 6, 7]
9. ¬tφ [G2L, 8]

10. ε [LRES, 9, 1]

4 Completeness

We prove completeness by means of a canonical model construction. Our max-
imally consistent sets comprise both local and global clauses. The proof of the
truth lemma hinges on the fact that maximally consistent sets are negation com-
plete, that is, they contain either a literal or its negation. In completeness proofs
of Hilbert systems, the argument is as follows. If M is a maximally consistent

Resolution Calculi for Non-normal Modal Logics 331

set, and neither φ ∈ M nor ¬φ ∈ M , then both M ∪ {φ} and M ∪ {¬φ} are
inconsistent, that is, M ∪{φ} �⊥ and M ∪{¬φ} �⊥. Hence M � ¬φ and M � φ
which contradicts the consistency of M , so that our supposition that neither
φ ∈ M nor ¬φ ∈ M must have been false.

However, this argument is not available for resolution calculi, where we take
a set C of local or global clauses to be consistent if C � ε. In the simplest calculus,
RESE, consider the set C = {G(¬p∨q),G(¬q∨p),¬�q}. Then clearly C∪{�p} � ε,
but it is patently false that C � ¬�p.

However, something nearly as useful eventuates: We have that C � ¬�q,
and �p and ¬�q together are inconsistent over C (using a single application of
LERES). That is, while we cannot derive ¬�p, at least we can derive a literal,
here ¬�q, that is inconsistent with �p over C. This is captured in the notion
of inconsistency predicate, where, in full generality, we need to consider the
inconsistency of n-element sets to accommodate instances of LNRES (where we
are going to designate singleton sets as inconsistent) and the LCRES rules (where
inconsistent sets can contain any finite number of elements). We formulate this
for an arbitrary resolution calculus.

Definition 14. A modal resolution calculus is a relation � between clause sets
and clauses that is closed under propositional resolution. That is, C � D ∨ l and
C � D′ ∨ ¬l then C � D ∨ D′, for all local clauses D and literals l. Let � be
a modal resolution calculus and C be a set of global clauses. An inconsistency
predicate for C and � is a subset P ⊆ P(Lit(V)) such that the following three
conditions hold:

1. Every element I = {l1, . . . , ln} ∈ P is inconsistent over C, that is, there are
global clauses Γ1, . . . , Γn such that {Γ1, . . . , Γk, l1, . . . , ln} � ε and C � Γi for
all 1 ≤ i ≤ k.

2. The set P is closed under cut, that is A ∪ B ∈ P whenever A ∪ {l} ∈ P and
B ∪ {¬l} ∈ P.

3. Propositional literals are only inconsistent with their negations, i,e. A =
{p,¬p} whenever p ∈ A ∈ P for a propositional variable p ∈ V.

The formulation of inconsistency predicate instantiates to all modal calculi in
the paper, where for a calculus RES, we say that C � D if D is in the saturation
of C. We think of an element {l1, . . . , ln} of an inconsistency predicate not as a
clause, but rather as a conjunction of singleton clauses (that is inconsistent as
per the first requirement). The second requirement formalises the semantically
sound condition

⋂
i ai ∩ ⋂

j bj = ∅ whenever x ∩ ⋂
i ai = ∅ = (W \ x) ∩ ⋂

j bj

for subsets x, ai, bj ⊆ W of a set W . We require that, in the formulation of the
condition, that A ∪ B is inconsistent, i.e., C proves a sufficient number of global
clauses Γ that, together with A ∪ B, allows us to derive the empty clause ε.

As an example, and a stepping stone to prove the completeness of classical
modal logic, we have the following:

Lemma 15. Let � be the calculus for classical modal logic and let C be a set of
global clauses. Then the set PE containing

332 D. Pattinson et al.

– the set {l,¬l} for every (propositional or modal) literal l ∈ Lit(V), and
– the set {�p,¬�q} for every pair p, q ∈ V of propositions such that C � G(C)

and C � G(C ′) for sub-clauses C ⊆ (¬p ∨ q) and C ′ ⊆ (¬q ∨ p).

is an inconsistency predicate for � and C.

Proof (Sketch). The inconsistency requirement is clear, as every element of an
inconsistency predicate is an instance of a resolution rule. For cut closure, apply
GRES to premisses of a rule inducing a cut.

The following definition is an adaptation of the deduction theorem to modal
resolution calculi. The reader is encouraged to instantiate this to the case of the
modal logic E (and the inconsistency predicate of Lemma 15), as we do in the
example following the definition.

Definition 16. An inconsistency predicate P is compatible with a modal reso-
lution calculus � if for every local clause D and every (propositional or modal)
literal l with C ∪ {l} � D, either D = l or there is n ≥ 0 and D1, . . . , Dn,
E1, . . . , En such that

– D = D1 ∨ · · · ∨ Dn

– C � Ei ∨ Di for all 1 ≤ i ≤ n
– {l, e1, . . . , en} ∈ P for all e1, . . . , en with ei ∈ Ei.

For the case of classical modal logic, the definition of compatibility takes the
following form.

Example 17. If � is the resolution calculus for the classical modal logic E, the
inconsistency predicate PE from Lemma 15 is binary. As a consequence, the
above definition can only be instantiated with n = 1. Hence PE is compatible,
if for all literals l and all local clauses D with C ∪ {l} � D either D = l or there
is a local clause E such that C � E ∨ D and {l, e} ∈ PE for all e ∈ E.

As a second example, and to make further progress to completeness of the res-
olution calculus � for classical modal logic, we establish that the inconsistency
predicate PE from Lemma 15 is indeed compatible.

Lemma 18. The inconsistency relation PE from Lemma 15 is compatible with
the resolution calculus � for classical modal logic.

The proof proceeds by induction on the derivation of C ∪ {l} and is omitted.
Finally, we can reap some of the benefits of our work, and take the next step

towards showing that maximally consistent sets are negation complete, i.e. for
every literal l, they contain either l or ¬l.

Lemma 19. Let C be a set of local or global clauses, l be a literal and P be a
compatible inconsistency predicate. If C ∪ {l} � ε and C ∪ {¬l} � ε, then C � ε.

Resolution Calculi for Non-normal Modal Logics 333

Proof. We demonstrate the proof for the special case of a binary inconsistency
relation P, i.e. every set A ∈ P has two elements. As C ∪ {l} � ε, we have a
local clause E such that C � E, and {e, l} ∈ P for all e ∈ E by compatibility.
Similarly, as C ∪ {¬l} � ε, we have a local clause E′ with {¬l, e′} ∈ P for all
e′ ∈ E′. If either E = ε or E′ = ε we are done. If not, we have {e, e′} ∈ P for
all e ∈ E and e′ ∈ E′ as P is cut closed. This allows us to construct a resolution
proof of ε from C � E and C � E′ as P is an inconsistency predicate.

Remark 20. For classical modal logic, we have shown that C ∪ {l} � D, then
either D = l or C � E ∨ D where {l, e} ∈ P for all e ∈ E, where P is the
inconsistency predicate from Lemma 15.

One might hypothesise whether E can always be chosen to be a singleton,
or at least a sub-singleton. We show, by means of example, that neither is the
case. First, we cannot always choose E as singleton: For C = {p} and l = q, we
have that C ∪ {l} � p but we do not have C � E ∨ p for any singleton clause E
(here, E = ε satisfies the condition).

We also cannot always choose E to be a sub-singleton clause. For example,
put C = {¬�q ∨ ¬�p ∨ D,G(¬p ∨ q),G(p ∨ ¬q)}. Then C ∪ {�p} � D, but there
is no sub-singleton clause E so that C � E ∨ D.

We have now collected all the preliminaries to define and investigate maximally
consistent sets, i.e. the worlds of the canonical model.

Definition 21. Let C be a set of global clauses. A local extension of C is a set
M of clauses that extends C by local clauses only. That is, a local extension of
C is a set M of clauses that satisfies {Γ ∈ M | Γ global} = C.

A local extension of C is maximally consistent if M is consistent (M � ε) and
every other consistent local extension of M ′ of Γ that encompasses M (M ′ ⊇ M)
satisfies M = M ′.

Calculi with a compatible inconsistency relation are negation complete.

Lemma 22. Let � be a modal calculus with a compatible inconsistency relation,
and let M be a maximally consistent local extension of a set C of global clauses.
Then, for every (propositional or modal) literal l, we have l ∈ M or ¬l ∈ M .

Proof. If neither l ∈ M nor ¬l ∈ M , then M ∪ {l} � ε and M ∪ {¬l} � ε.
Applying Lemma 19 now contradicts the consistency of M .

As we have insisted that resolution calculi are closed under propositional reso-
lution, they are also disjunction complete:

Corollary 23. Let � be a modal resolution calculus with a compatible inconsis-
tency relation, and let M be a maximally consistent local extension of a set C of
global clauses. If l1 ∨ · · · ∨ ln ∈ M , then there exists 1 ≤ i ≤ n such that li ∈ M .

Proof. If neither li ∈ M , then all ¬li ∈ M and we conclude inconsistency of M .

334 D. Pattinson et al.

Compatible inconsistency predicates allow us to assert properties relative to
derivations of a clause with the help of an additional singleton clause. The fol-
lowing lemma generalises this to a finite number of singleton clauses, but requires
that the singleton clauses be propositional. This allows us to harness the fact that
propositional literals are only inconsistent with their negation, which is enough
to establish the hypotheses of the form G(C) where C ⊆ D is a sub-clause of a
propositional clause D.

Lemma 24. Let � be a modal resolution calculus with compatible inconsistency
predicate. Moreover, suppose that C is a set of global clauses, l1, . . . , ln are propo-
sitional literals and D is a (local) clause such that li /∈ D for all i = 1, . . . , n,
and C ∪ {l1, . . . , ln} � D. Then there is a sub-clause E0 ⊆ ¬l1 ∨ · · · ∨ ¬ln such
that C � E ∨ D.

Proof. By induction on the number n of literals, where n = 0 is evident. If
C∪{l1, . . . , ln+1} � D, we have that C∪{l1, . . . , ln} � E0∨D where {e, ln+1} ∈ P,
for all e ∈ E0. This implies that either E0 = ε or E0 = ¬ln+1. The claim follows
by applying the inductive hypothesis.

The above lemma fails without assuming that the li are propositional literals,
as illustrated by the example at the beginning of this section.

In the proof of the truth lemma, we need to show derivability of premisses
(of modal rules) based on the truth set of formulae in maximally consistent sets.
The following corollary establishes this for local clauses, which we will then lift
to global derivability.

Corollary 25. Consider a modal resolution calculus with a compatible incon-
sistency predicate, and let C be a set of global clauses, and let D = l1 ∨· · ·∨ ln be
a propositional clause such that all maximally consistent local extensions M of
C contain at least one li (i = 1, . . . , n). Then there exists a sub-clause D0 ⊆ D
such that C � D0.

The next property is obviously present in the calculus RE and its extensions.

Definition 26. A modal resolution calculus has the global lifting property if,
for any set C of global clauses, and a local clause D, we have that C � G(D)
whenever C � D.

For our calculi, this essentially means that rules with a global clause as a con-
clusion only have global clauses as premisses.

Lemma 27. The calculus RESE, as well as all other calculi discussed in this
paper, has the global lifting property.

We finally turn to canonical models, where we isolate the construction that is
identical for all of the logics that we treat here.

Definition 28 (Canonical Model). Let C be a set of global clauses. The
C-canonical model, or the canonical model based on C, is the triple (W,N, θ)
where

Resolution Calculi for Non-normal Modal Logics 335

– W is the set of all maximally consistent local extensions of C
– θ(p) = {M ∈ W | p ∈ M}
– N(M) = {θ(p) | �p ∈ M}.

Here, consistent and maximally consistent refers to consistency in the modal
resolution calculus RESE for classical modal logic.

This gives the truth lemma for classical modal logic.

Lemma 29 (Truth Lemma). For the calculus RE, let (W,N, θ) be the C-
canonical model for some set C of global clauses. Then, for M ∈ W , M |= Γ
whenever Γ ∈ M , for all local clauses Γ .

Proof. By disjunction completeness, it suffices to show the claim for singleton
clauses. The propositional cases and �p ∈ M are easy. For the only interesting
case assume ¬�p ∈ M , and assume for a contradiction that θ(p) ∈ N(M). By
construction, there must be a variable q ∈ V with �q ∈ M and θ(p) = θ(q).
That is p ∈ M ′ ⇐⇒ q ∈ M ′ for all maximally consistent local extensions M ′

of C. By Corollary 25 and Lemma 27 we obtain the premisses of the modal rule
that proves M � ε, contradiction.

Remark 30. In the proof of the truth lemma, the modal rule was only used in
a very specific form, i.e. D = D′ = ε in definition of the modal rule. The more
general form of the rule is needed to establish Lemma 18. The reader is also
invited to convince themselves that completeness fails without the more general
form, for example to show that C = {G(¬p ∨ q),G(¬q ∨ p),G(¬q ∨ r),G(¬r ∨
q),¬�p ∨ ¬�q,�r} is inconsistent.

We have used the rule GRES in the proof of Lemma 18. The rule GERES
is hidden in the proof of Lemma 27. The reader is invited to convince them-
selves that GERES is needed to show the inconsistency of {G(¬p∨ q ∨�r),G(p∨
¬q),G(¬�s),G(s),G(r),G(¬�q)}.

Corollary 31. Let C be a set of local or global clauses. If C is unsatisfiable in
the class of neighbourhood models, then C � ε.

4.1 Monotone Modal Logic

To show completeness for the resolution calculus for monotone modal logic, we
follow the same approach, and start with a compatible inconsistency predicate.

Lemma 32. Let � be the calculus for monotone modal logic and let C be a set
of global clauses. Then the set PM containing

– the set {l,¬l} for every (propositional or modal) literal l ∈ Lit(V), and
– the set {�p,¬�q} for every pair p, q ∈ V of propositions such that C � G(C)

for a sub-clauses C ⊆ ¬p ∨ q.

is a compatible inconsistency predicate for � and C.

336 D. Pattinson et al.

The proof is very similar to that of classical modal logic (Lemma 15 and Lemma
18). The canonical model construction is an adaptation of the construction for E
where the construction ensures that the set of neighbourhoods is upward closed.

Definition 33. Let C be a set of global clauses. The C-canonical model for the
calculus RESEM is the triple (W,N, θ) where W and θ are the same as for classical
modal logic (Definition 28) and the neighbourhood function N is defined by

N(M) = {α ⊆ W | θ(p) ⊆ α for some �p ∈ M}.

where M ∈ W is a maximally consistent, local extension of C.

It is obvious that canonical models for RESEM are monotone by construction,
but we need to re-establish the truth lemma for the calculus RESEM as the
construction of the model has changed.

Lemma 34 (Truth Lemma for EM). For the calculus RESEM, let (W,N, θ)
be the C-canonical model for some set C of global clauses. Then, for M ∈ W ,
M |= Γ whenever Γ ∈ M , for all local clauses Γ .

The proof is in fact a simplification of the corresponding proof for classical modal
logic, and we obtain completeness similar to Corollary 31.

Corollary 35. Monotone modal logic is complete, i.e. any consistent set C of
local or global clauses satisfies C � ε whenever C is unsatisfiable in the class of
monotone neighbourhood models.

4.2 Logics with Unit

We now adapt the construction to also incorporate logics with unit, i.e. the modal
logics EN and EMN that – in addition to the frame conditions for E and EM –
additionally require that the entire set of worlds is always a neighbourhood of any
world. To show completeness for these logics, we need to provide a compatible
inconsistency relation, which – in contrast to the logics E and EM – will no
longer be binary.

Lemma 36. Let � be the calculus RESEN (resp. RESEMN) and let C be a set
of global clauses. Let U = {¬�p | C � G(p)}. Then the set P ∪ U is compatible
inconsistency predicate for � and C, where P is the inconsistency relation for the
calculus RESE (resp. RESEM).

Proof. The inconsistency requirement follows as the predicate closely resembles
the modal rules of the calculus. To see cut closure, suppose that {¬�p} and
{¬�q,�p} ∈ P ∪ U . Then the premisses that derive inconsistency of both sets
can be combined to derive inconsistency of the cut {¬�q}. For compatibility, we
additionally need to consider the case n = 0 from Example 17, and extend the
inductive proof of Lemma 18, where LNRES as last applied rule precisely induces
this case.

Resolution Calculi for Non-normal Modal Logics 337

This allows us to show completeness, again with a slight variation of the canonical
model construction. The definition of the canonical model just adds the entire
set of worlds to all neighbourhoods.

Definition 37. The canonical model for the logic EN and EMN is the triple
(W,N, θ) where W and N are as for the logic E (or EM) and N(w) = N0(w) ∪
{W}, where N0 is the neighbourhood function of the canonical model for the
logic E (resp. EM).

The truth lemma follows as before, where we apply the rule LNRES to show
inconsistency in case W ∈ N(θ).

Lemma 38 (Truth Lemma for EN and EMN). Let (W,N, θ) be the canon-
ical model for the logic EN or EMN, respectively, over a set C of global clauses.
Then, for M ∈ W , M |= Γ whenever Γ ∈ M , for all local clauses Γ .

Proof. In addition to the cases for E and EM, consider, for a contradiction, that
¬�p ∈ M and M |= �p where θ(p) = W . In this case, C � G(p) whence M � ε,
contradicting consistency of M using LNRES.

Completeness for EN and EMN follows as before.

Corollary 39. The calculi RESEN and RESEMN are complete, i.e. C � ε when-
ever C is inconsistent, for any set C of global clauses.

4.3 Logics with Aggregation

We now turn to completeness for logics that additionally satisfy aggregation,
i.e. the axiom C from Table 1. Our proof strategy is entirely similar to that of
the previous cases, and we start with a compatible inconsistency relation. The
format of the LCRES-rules is precisely chosen for the inconsistency relation below
to be closed under cut which necessitates to generalise the C-axiom from binary
conjunctions to arbitrary finite conjunctions.

Lemma 40. Let P be the inconsistency relation for the calculi RESE, RESEM,
RESEN or RESEMN, and let

U ={{¬�p0,�p1, . . . ,�pn} | C � G(Ci) for i = 0, . . . , n and clauses
C0 ⊆ ¬p0 ∨ p1 ∨ · · · ∨ pn, Ci ⊆ ¬p0 ∨ pi for i = 1, . . . , n}.

Then P ∪ U is a compatible inconsistency relation for a set C of global clauses
and the calculus RESEC, RESEMC, RESECN or RESEMCN, respectively.

The proof is as before, noting that the inconsistency predicate is again modelled
on the shape of the modal rules. The canonical model now takes the following
form, where we distinguish between the different logics.

338 D. Pattinson et al.

Definition 41. Let C be a set of global clauses. The canonical model for C and
the logics EC, ECN, EMC or EMCN, respectively, is the triple (W,N, θ)
where W and θ are as before (Definition 28) and N is given by

NEC(M) = {θ(p1) ∩ · · · ∩ θ(pn) | �p1, . . . ,�pn ∈ M} for EC
NECN(M) = NEC(M) ∪ W for ECN
NEMC(M) = {α ⊆ W | β ⊆ α for some β ∈ NEC(M)} for EMC

NEMCN(M) = NEMC(M) ∪ {W} for EMCN

for a maximally consistent local extension M ∈ W of C.

As before, we have a truth lemma that gives completeness.

Lemma 42. Let RES be one of RESEC, RESECN, RESEMC or RESEMCN, let
(W,N, θ) be the canonical model for RES, and let C be a set of global clauses.
Then M |= D whenever D ∈ M , for all local clauses D and all maximally
RES-consistent local extensions M of C.

Proof. The interesting case here is EC as the others are extensions of EC that
we have previously discussed. Again, we just consider ¬�p ∈ M and assume
for a contradiction that M |= �p. Then there are p1, . . . , pn such that θ(p) =
θ(p1) ∩ · · · ∩ θ(pn) and �p1, . . . ,�pn ∈ M . From the former we conclude the
premiss of LCRES1 or LCRES2 depending on the sub-clauses we derive through
Corollary 25 and arrive at a contradiction to the consistency of M .

Completeness now follows as in the other cases we have discussed before.

Corollary 43 (Completeness). The calculi RESEC, RESECN, RESEMC and
RESEMCN are complete with respect to the classes of models EC, ECN , EMC
and EMCN , respectively.

5 Conclusion and Future Work

We have presented the first resolution calculi for the cube of classical non-normal
modal logics. The calculi manipulate sets of modal clauses of a very simple form.
Their completeness is based on the notion of inconsistency predicate. Moreover,
we have seen that resolution calculi appear to be modular, i.e. rules can just be
combined to obtain a stronger calculus. Is this a coincidence? Are there general
principles that enable this compositionality? This is what we are going to explore
in a follow up paper. Also, the shape of our calculi, i.e. the modal resolution
rules, when compared to the Hilbert axioms, insinuate that there might be a
more principled way of synthesising resolution systems from Hilbert axioms. We
aim to investigate this as a next step.

Resolution Calculi for Non-normal Modal Logics 339

References

1. Abadi, M., Manna, Z.: Modal theorem proving. In: Siekmann, J.H. (ed.) CADE
1986. LNCS, vol. 230, pp. 172–189. Springer, Heidelberg (1986). https://doi.org/
10.1007/3-540-16780-3 89

2. Areces, C., de Nivelle, H., de Rijke, M.: Prefixed resolution: a resolution method
for modal and description logics. In: CADE 1999. LNCS (LNAI), vol. 1632, pp.
187–201. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7 13

3. Auffray, Y.: Linear strategy for propositional modal resolution. Inf. Process. Lett.
28(2), 87–92 (1988)

4. del Cerro, L.F.: Resolution modal logics. In: Proceedings of Advanced NATO Study
Institute on Logics and Models for Verification and Specification of Concurrent
Systems, La Colle-sur-Loup, France, pp. 46–78 (1984)

5. del Cerro, L.F.: A simple deduction method for modal logic. Inf. Process. Lett.
14(2), 49–51 (1982)

6. Chan, M.C.: The recursive resolution method for modal logic. N. Gener. Comput.
5, 155–183 (1987)

7. Chellas, B.F.: Modal Logic. Cambridge (1980)
8. Cialdea, M.: Resolution for some first-order modal systems. Theor. Comput. Sci.

85, 213–229 (1991)
9. Dalmonte, T., Lellmann, B., Olivetti, N., Pimentel, E.: Hypersequent calculi for

non-normal modal and deontic logics: countermodels and optimal complexity. J.
Log. Comput. 31(1), 67–111 (2021)

10. Dalmonte, T., Olivetti, N., Negri, S.: Non-normal modal logics: bi-neighbourhood
semantics and its labelled calculi. In: Bezhanishvili, G., D’Agostino, G., Metcalfe,
G., Studer, T. (eds.) Proceedings of the AiML 2018 (2018)

11. Duarte, A., Korovin, K.: Implementing superposition in iProver (system descrip-
tion). In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 388–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 24

12. Elgesem, D.: The modal logic of agency. Nord. J. Philos. Log. 2, 1–46 (1997)
13. Enjalbert, P., del Cerro, L.F.: Modal resolution in clausal form. Theor. Comput.

Sci. 65, 1–33 (1989)
14. Fitting, M.C.: Destructive Modal Resolution. CUNY Technical Report (1989)
15. Gilbert, D.R., Maffezioli, P.: Modular sequent calculi for classical modal logics.

Stud. Logica. 103(1), 175–217 (2015)
16. Giunchiglia, E., Tacchella, A., Giunchiglia, F.: SAT-based decision procedures for

classical modal logics. J. Autom. Reason. 28(2), 143–171 (2002)
17. Gleißner, T., Steen, A.: Leo-III (2022). https://doi.org/10.5281/zenodo.4435994.

Accessed 24 July 2023
18. Goré, R., Kikkert, C.: CEGAR-tableaux: improved modal satisfiability via modal

clause-learning and SAT. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS
(LNAI), vol. 12842, pp. 74–91. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-86059-2 5

19. Goré, R., Olesen, K., Thomson, J.: Implementing tableau calculi using BDDs:
BDDTab system description. In: Demri, S., Kapur, D., Weidenbach, C. (eds.)
IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 337–343. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08587-6 25

20. Götzmann, D., Kaminski, M., Smolka, G.: Spartacus: a tableau prover for hybrid
logic. Electron. Notes Theor. Comput. Sci. 262 (2010)

https://doi.org/10.1007/3-540-16780-3_89
https://doi.org/10.1007/3-540-16780-3_89
https://doi.org/10.1007/3-540-48660-7_13
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.5281/zenodo.4435994
https://doi.org/10.1007/978-3-030-86059-2_5
https://doi.org/10.1007/978-3-030-86059-2_5
https://doi.org/10.1007/978-3-319-08587-6_25

340 D. Pattinson et al.

21. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39(2–3), 297–308
(1985)

22. Indrzejczak, A.: Sequent calculi for monotonic modal logics. Bull. Section Logic
34(3), 151–164 (2005)

23. Indrzejczak, A.: Admissibility of cut in congruent modal logics. Logic Log. Philos.
21, 189–203 (2011)

24. Kaminski, M., Tebbi, T.: InKreSAT: modal reasoning via incremental reduction to
SAT. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 436–442.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2 31

25. Lavendhomme, R., Lucas, T.: Sequent calculi and decision procedures for weak
modal systems. Stud. Logica. 65, 121–145 (2000)

26. Lellmann, B., Pimentel, E.: Modularisation of sequent calculi for normal and non-
normal modalities. ACM Trans. Comput. Logic 20(2), 7:1–7:46 (2019)

27. McCune, W.W.: OTTER Users’ Guide, Version 3.3 (2003). Argonne National Lab-
oratory

28. McCune, W.W.: Prover9 and mace4 (2010). http://www.cs.unm.edu/∼mccune/
prover9/. Accessed 24 July 2023

29. Mints, G.: Gentzen-type systems and resolution rules part I propositional logic.
In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 198–231.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52335-9 55

30. Nalon, C., Dixon, C.: Clausal resolution for normal modal logics. J. Algorithms
62, 117–134 (2007)

31. Nalon, C., Dixon, C., Hustadt, U.: Modal resolution: proofs, layers, and refine-
ments. ACM Trans. Comput. Logic 20(4), 23:1–23:38 (2019)

32. Nalon, C., Hustadt, U., Dixon, C.: KSP: a resolution-based prover for multimodal
K. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp.
406–415. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1 28

33. Nalon, C., Hustadt, U., Dixon, C.: KSP: a resolution-based prover for multimodal
K, abridged report. In: Sierra, C. (ed.) Proceedings of the IJCAI 2017, pp. 4919–
4923. IJCAI/AAAI Press (2017)

34. Nalon, C., Hustadt, U., Dixon, C.: KSP a resolution-based theorem prover for Kn:
architecture, refinements, strategies and experiments. J. Autom. Reason. 64(3),
461–484 (2020)

35. Nalon, C., Hustadt, U., Papacchini, F., Dixon, C.: Local reductions for the modal
cube. In: Proceedings of the IJCAR 2022 (2022)

36. Nalon, C., Marcos, J., Dixon, C.: Clausal resolution for modal logics of conflu-
ence. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI),
vol. 8562, pp. 322–336. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08587-6 24

37. Negri, S.: Proof theory for non-normal modal logics: the neighbourhood formalism
and basic results. IfCoLog J. Appl. Log. 4(4), 1241–1286 (2017)

38. de Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-based methods for modal
logics. Logic J. IGPL 8(3), 265–292 (2000)

39. Ohlbach, H.J.: Semantics-based translation methods for modal logics. J. Log. Com-
put. 1(5), 691–746 (1990)

40. Ohlbach, H.J., Schmidt, R.A., Hustadt, U.: Translating graded modalities into
predicate logics. In: Wansing, H. (ed.) Proof Theory of Modal Logic, Applied Logic
Series, vol. 2, pp. 253–291. Kluwer Academic Publishers (1996)

41. Orlandelli, E.: Proof analysis in deontic logics. In: Cariani, F., Grossi, D., Meheus,
J., Parent, X. (eds.) DEON 2014. LNCS (LNAI), vol. 8554, pp. 139–148. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08615-6 11

https://doi.org/10.1007/978-3-642-38574-2_31
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
https://doi.org/10.1007/3-540-52335-9_55
https://doi.org/10.1007/978-3-319-40229-1_28
https://doi.org/10.1007/978-3-319-08587-6_24
https://doi.org/10.1007/978-3-319-08587-6_24
https://doi.org/10.1007/978-3-319-08615-6_11

Resolution Calculi for Non-normal Modal Logics 341

42. Orlandelli, E.: Sequent calculi and interpolation for non-normal modal and deontic
logics. Logic Log. Philos. 30(1), 139–183 (2020)

43. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Heidelberg (2017)
44. Papacchini, F., Nalon, C., Hustadt, U., Dixon, C.: Efficient local reductions to

basic modal logic. In: Platzer, A., Sutcliffe, G. (eds.) CADE 2021. LNCS (LNAI),
vol. 12699, pp. 76–92. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
79876-5 5

45. Plaisted, D.A., Greenbaum, S.A.: A structure-preserving clause form translation.
J. Log. Comput. 2, 293–304 (1986)

46. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

47. Schulz, S.: E 2.6 (2022). http://wwwlehre.dhbw-stuttgart.de/∼sschulz/E/Downl
oad.html. Accessed 24 July 2023

48. Sutcliff, G. (ed.): Proceedings of the 11th IJCAR ATP System Competition
(CASC-J11) (2022). https://www.tptp.org/CASC/J11/. Accessed 24 July 2023

49. The SPASS Team: Spass 3.9 (2016). http://www.spass-prover.org/. Accessed 24
July 2023

50. The Vampire Team: Vampire 4.7 (2022). https://github.com/vprover/vampire/relea
ses. Accessed 24 July 2023

51. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771 26

52. Vardi, M.Y.: On the complexity of epistemic reasoning. In: Proceedings of the LICS
1989, pp. 243–252. IEEE Computer Society (1989)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-79876-5_5
https://doi.org/10.1007/978-3-030-79876-5_5
http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/Download.html
http://wwwlehre.dhbw-stuttgart.de/~sschulz/E/Download.html
https://www.tptp.org/CASC/J11/
http://www.spass-prover.org/
https://github.com/vprover/vampire/releases
https://github.com/vprover/vampire/releases
https://doi.org/10.1007/11814771_26
http://creativecommons.org/licenses/by/4.0/

Canonicity of Proofs in Constructive
Modal Logic

Matteo Acclavio1(B), Davide Catta2, and Federico Olimpieri3

1 University of Southern Denmark, Odense, Denmark
acclavio@imada.sdu.dk

2 Università degli studi di Napoli, Federico II, Naples, Italy
3 University of Leeds, Leeds, UK

Abstract. In this paper we investigate the Curry-Howard correspon-
dence for constructive modal logic in light of the gap between the proof
equivalences enforced by the lambda calculi from the literature and by
the recently defined winning strategies for this logic.

We define a new lambda-calculus for a minimal constructive modal
logic by enriching the calculus from the literature with additional reduc-
tion rules and we prove normalization and confluence for our calculus.
We then provide a typing system in the style of focused proof systems
allowing us to provide a unique proof for each term in normal form, and
we use this result to show a one-to-one correspondence between terms in
normal form and winning innocent strategies.

Keywords: Constructive Modal Logic · Lambda Calculus · Game
Semantics

1 Introduction

Proof theory is the branch of mathematical logic whose aim is studying the
properties of logical arguments (i.e., proofs) as well as the structure of proofs
and their invariants. For this purpose, the most used representations of proofs
are based on tree-like data structures inductively defined using inference rules
of a proof system.1 Natural deduction and sequent calculus are among the most
used proof systems due to their intuitive representation. Both these proof systems
were originally devised by Gentzen in order to prove the consistency of first-order
arithmetic. Their versatility resulted in their employment for a wide variety of
logics.

The first author is supported by Villum Fonden, grant no. 50079. The second author
is supported by the PRIN project RIPER (No. 20203FFYLK) The third author is
supported by the US Air Force Office for Scientific Research under award number
FA9550-21-1-0007.
1 It is worth noting that some proof systems (in the sense of [13]) allows to represent

proofs using structures such as infinite trees (for non-well-founded proof systems, see,
e.g., [16]), graphs (see proof nets [23,24], combinatorial proofs [28] or proof diagrams
[3]) or structures defined in a compositional way (see open deduction [25] and deep
inference [51]).

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 342–363, 2023.
https://doi.org/10.1007/978-3-031-43513-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_19&domain=pdf
https://doi.org/10.1007/978-3-031-43513-3_19

Canonicity of Proofs in Constructive Modal Logic 343

However, having formalisms able to represent proofs is not enough to define
“what is a proof” since different derivations, or derivations in different proof
systems, could represent the same abstract object. A notion of proof identity is
therefore required to define a proof as a proper mathematical entity [19]. Such
a notion of identity is provided by delineating the conditions under which two
distinct formal representations of a proof represent the same logical argument.
The definition of these conditions are often driven by semantic considerations (by
performing specific transformations on two derivations, they can be transformed
to the same object) or intuitive ones (two derivations only differ for the order in
which the same rules are applied to the same formulas).

Natural deduction is often considered a satisfactory formalism since it allows
to define a more canonical representation of proofs with respect to sequent calcu-
lus: sequent calculus derivations differing because of some rules permutations are
represented (via a standard translation) by the same natural deduction deriva-
tion. Moreover, natural deduction provides a one-to-one correspondence between
derivations and lambda-terms, called the Curry-Howard correspondence [49].

Constructive Modal Logic. Classical modal logics are obtained by extending
classical logic with unary operators, called modalities, that qualify the truth of a
judgment. The most used modalities are the � (called box) and its dual opera-
tor ♦ (called diamond) which are usually interpreted as necessity and possibility.
According to the interpretation of such modalities, modal logics find applications,
for example, in knowledge representation [52], artificial intelligence [41] and the
formal verification of computer programs [20,37,46]. The work of Fitch [22] initi-
ated the investigation of the proof theory of modal logics extending intuitionistic
logic, leading to numerous results on the topic [21,27,36,40,47].

In particular, the Curry-Howard correspondence has been extended to various
constructive modal logics [7,10,17,32,33,45]. Intuitionistic logic can be extended
with modalities in different ways (for an overview see [48]): while in classical
logic axioms involving only � provide also description of the behavior of ♦,
for intuitionistic logic this is no more the case since the duality of the two
modalities does not hold anymore. This leads to different approaches. Construc-
tive modal logics consider minimal sets of axioms to guarantee the definition
of the behaviors of the � and ♦ modalities. A second approach, referred to as
intuitionistic modal logic, considers additional axioms in order to validate the
Gödel-Gentzen translation [15]. In this work we consider a minimal fragment
of the constructive modal logic CK only containing the implication → and the
modality �. This fragment is enough to define types for a λ-calculus with a
Let constructor [7] which can be interpreted as an explicit substitution and, for
this reason, we more concisely denote by N [M1, . . . Mn/x1, . . . , xn]� instead of
Let M1, . . . Mn be x1, . . . , xn in N .

Recent works on the the proof equivalence of constructive modal logics [6]
expose a complexity gap between the proof equivalences induced by the natural
deduction [10] and winning innocent strategies [5] for this logic. This discrepancy
cannot be observed in intuitionistic propositional logic where there are one-to-
one correspondences between natural deduction derivations, lambda terms and

344 M. Acclavio et al.

innocent winning strategies. In particular, in the logic CK we observe sequent
calculus proofs which correspond to the same winning strategy but which can-
not be represented by the same natural deduction derivation in the systems
provided in [10,32] (or equivalently corresponding to different modal λ-terms).
By means of example, consider the terms x [z/x]� and x [z, w/x, y]� and their
(unique) typing derivations shown in Fig. 1 (see Fig. 3 for the typing system).
Intuitively, the two terms x [z/x]� and x [z, w/x, y]� should be semantically

Fig. 1. The typing derivations of the modal λ-terms x [z/x]� and x [z, w/x, y]�.

equivalent since the explicit substitution of the variable y in the term x is vac-
uous. Said differently, if we explicit the substitution encoded by the constructor
Let, both terms x [z/x]� and x [z, w/x, y]� should reduce to the term z.

In fact, this undesirable behavior disappear when considering the Winning
Innocent Strategies for CK defined in [5]. In this syntax, both the above natural
deduction derivations correspond to the same strategy below.

(1)

Contribution. In this paper we define a new modal λ-calculus for CK by con-
sidering additional rewriting rules that allow us to retrieve a one-to-one corre-
spondence between terms in normal form and winning innocent strategies, that
is, providing more canonical representatives for proofs with respect to natu-
ral deduction and modal λ-terms defined in the literature. From the technical
point-of-view, we obtain this result by extending the operational semantics of
the modal λ-calculus with the appropriate new reduction rules for the explicit
substitution encoded by the Let, dealing with contraction and weakening oper-
ating on the variables bound by the Let. We call this set of rules the κ-reduction,
which we show to be strongly normalizing using elementary combinatorial meth-
ods. In order to deal with the interaction of the η-reduction with β-reduction,
we define a restricted η-reduction following an approach similar to the one used
in [18,31,43]. We prove strong normalization and confluence for our new opera-
tional semantics.

After proving confluence and strong normalization for our modal λ-calculus,
we provide a canonical typing system inspired by focused sequent calculi (see,

Canonicity of Proofs in Constructive Modal Logic 345

e.g., [8]) providing a unique typing derivation for each term in normal form.
We conclude by establishing a one-to-one correspondence between the winning
strategies defined in [5] and proofs of this calculi, therefore with terms in normal
form.

Related Work. To the best of our knowledge, the first paper proposing a
Curry-Howard correspondence for the logic CK is [10]. In this work, the authors
provide a natural deduction system for the logic CK by enriching the standard
system for intuitionistic propositional logic with a generalized elimination rule
capable of taking into account the behavior of the �-modality. At the level of
lambda calculus, they enrich the syntax of terms by adding a new constructor
Let defined as follows:

Let x1, . . . xn be N1, . . . , Nn in M (which we denote M [N1, . . . , Nn/x1, . . . , xn]�) (2)

providing a notation which can be interpreted as an explicit substitution of the
variable xi with the term Ni for all occurrences of x1 . . . , xn inside a term M .
For this calculus, the authors only consider the usual η and β reductions plus
the following reduction:

Let y be P in (Let x be N in M) � Let x be (Let y be P inN) in (Let x be x in M)(
in our syntax this reduction is written as M [N/x]� [P/y]� � M [x/x]� [N [P/y]� /x]�

)

In [32] the author considers the usual η and β reduction with an the fol-
lowing additional β-reduction rule specifically designed to handle the explicit
substitution construct.

M
[

#»

P ,R
[

#»

N/ #»z
]

�
,

#»

Q/ #»x , y, #»w
]

�
�β2 M {R/y}

[
#»

P ,
#»

N,
#»

Q/ #»x , #»z , #»w
]

�
(3)

In the same paper, the author provides a detailed proof of strong normalization
and confluence for modal lambda terms with respect to the standard η and
β reduction, plus this new β2 reduction. However, also this calculus does not
manage to fix the aforementioned problem with canonicity.

An alternative natural deduction system (and λ-calculus) is proposed in [33],
where the symmetry between elimination and introduction rules typical of nat-
ural deduction is restored. However, this result requires to define a sequent cal-
culus where sequents have a more complex structure (dual-contexts), and lacks
an in-depth study of the operational semantics because the η-expansion is not
considered in the calculus.

Outline of the Paper. In Sect. 2 we recall the definition of the fragment of the
logic CK we consider in this paper, as well as the main results on the proof theory
for this logic, its natural deduction and lambda calculus. In Sect. 3 we define the
modal λ-calculus we consider in this paper, proving its strong normalization
and confluence properties. In Sect. 4 we provide a typing system in the style of
focused sequent calculi, where we are able to narrow the proof search of the
type assignment of our normal terms to a single derivation. In Sect. 5 we recall

346 M. Acclavio et al.

the definition of the game semantics for the logic we consider and we prove the
one-to-one correspondence between terms in normal form and winning strategies.

For reason of space, we omit in the paper the proofs of those technical lemmas
that are not particularly interesting (mostly by induction and case analysis).
These proofs can be found in the extended version of this paper [4].

2 Preliminaries

In this section we recall the definition of the (fragment of the) constructive
modal logic CK we consider in this paper, and we recall the definition and some
terminology for modal λ-terms. We are interested in a minimal constructive
modal logic whose formulas are defined from a countable set of propositional
variables A = {a, b, c, . . .} using the following grammar:

A := a | (A → A) | �A (4)

We say that a formula is modality-free if it contains no occurrences of the
modality �. A formula is a →-formula if it is of the form A → B. In the
following we use Krivine’s convention [38] and write (A1, . . . , An) → C as a
shortcut for (A1 → (· · · → (An → C) · · ·)) A sequent is an expression Γ � C
where Γ is a finite (possibly empty) list of formulas and C is a formula. If
Γ = A1, . . . , An and σ a permutation over {1, . . . , n}, then we may write σ(Γ)
to denote Aσ(1), . . . , Aσ(n).

In this paper we consider the logic CK defined by extending the conjunction-
free and disjunction-free fragment of intuitionistic propositional logic with the
modality � whose behavior is defined by the necessitation rule and the axiom
K1 below.

Nec := if A is provable, then also �A is K1 := �(A → B) → (�A → �B)

The sequent calculus SCK, whose rules are provided in Fig. 2, is a sound and
complete proof system for the logic CK. This system have been extracted from
the one presented in [39] and satisfies cut-elimination.

2.1 A Lambda Calculus for CK

The set of (untyped) modal λ-terms is defined inductively from a countable set
of variables V = {x, y, . . .} using the following grammar:

M,N := x | λx.M | (MN) | M
[

#»

N/ #»x
]

�
where

{
#»

N = N1, . . . , Nn is a list of terms and
#»x = x1, . . . xn is a list of distinct variables.

modulo the standard α-equivalence (denoted =α, see [9]) and modulo the equiv-
alence generated by the following permutations (for any σ permutation over the
set {1, . . . , n}) over the order of substitutions in the [·/·]� constructor:
[

#»

N/ #»x
]

�
:= [N1, . . . , Nn/x1, · · · , xn]� =

[
Nσ(1), . . . , Nσ(n)/xσ(1), . . . , xσ(n)

]
� =:

[
σ(

#»

N)/σ(#»x)
]

�
for any σ permutation over {1, . . . , n}.

Canonicity of Proofs in Constructive Modal Logic 347

Fig. 2. Sequent calculus rules of the sequent system SCK, where σ is a permutation
over {1, . . . , n}

Fig. 3. Typing rules in the natural deduction system NDCK for modal λ-terms.

As usual, application associates to the left, and has higher precedence than
abstraction. For example, λxyz.xyz := λx.(λy.(λz.((xy)z))). A modal λ-term is
a (explicit) substitution if it is of the form M

[
#»

N/ #»x
]

�
, an application if of the

form MN , and a λ-abstraction if of the form λx.M .
The set of subterms of a term M (denoted SUB(M)) is defined as follows:

Sub(x) = {x} , Sub(λx.M) = Sub(M) ∪ {λx.M} , Sub(MN) = Sub(M) ∪ Sub(N) ∪ {MN} ,

Sub(M [N1, . . . , Nn/x1, . . . , xn]�) = Sub(M) ∪
(⋃

i∈{1,...,n} Sub(Ni)
)

∪ {M [N1, . . . , Nn/x1, . . . , xn]�} .

Its length |M | and its set of free variables FV(M) are defined as:

|M | =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if M = x

|N | + 1 if M = λx.N

max{|N |, |P |} + 1 if M = NP

max{|N |, |P1|, . . . , |Pn|} + 1 if M = N
[

#»

P/ #»x
]

�

FV(M) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{x} if M = x

FV(N) \ {x} if M = λx.N

FV(N) ∪ FV(P) if M = NP
⋃

i FV(Pi) if M = N
[

#»

P/ #»x
]

�

We denote |M |x the number of the occurrences of the free variable x in a term
M and we may write |M |x = 0 if x /∈ FV(M) and we say that a term M
is linear in the variables x1, . . . , xn if |M |xi

= 1 for all i ∈ {1, . . . , n}. We
denote by M {N1, . . . , Nn/x1, . . . , xn} the result of the standard capture avoiding
substitution of the occurrences of the variable x1, . . . , xn in M with the term
N1, . . . , Nn respectively (see, e.g., [50]).

A variable declaration is an expression x : A where x is a variable and A is a
type, that is, a formula as defined in Equation (4). A (typing) context is a finite
list Γ := x1 : A1, . . . , xn : An of distinct variable declarations. Given a context
Γ = x1 : A1, . . . , xn : An, we say that a variable x appears in Γ if x = xi for a
i ∈ {1, . . . , n} and we denote by Γ, y : B the context x1 : A1, . . . , xn : An, y : B
implicitly assuming that y does not appear in Γ . A type assignment is an expres-
sion of the form Γ � M : A where Γ is a context, M a modal λ-term and A a
type.

348 M. Acclavio et al.

Definition 1. Let Γ � M : A be an type assignment. A typing derivation (or
derivation for short) of Γ � M : A in NDCK is a finite tree of type assignment
constructed using the rules in Fig. 3 in such a way it has root Γ � M : A and
each leaf is the conclusion of a Id-rule. A type assignment is derivable (in NDCK)
if there is a derivation with conclusion the given type assignment.

We denote by Λ (resp. by Λ� and Λλ) the set of modal λ-terms (resp. the set
of substitutions and λ-abstractions in Λ) admitting a derivable type assignment
in NDCK.

3 A New Modal Lambda Calculus

In this section we define a new modal lambda calculus by enriching the opera-
tional semantics of the previous calculi with additional reduction rules aiming at
recovering canonicity, proving confluence and strong normalization properties.

To define our term rewriting rules, we require special care when they are
applied in a proper sub-term. This is due to the fact that the explicit substitution
encoded by [·/·]� could capture free variables. For this reason, we introduce
the notion of term with a hole as a term of the form C [◦] containing a single
occurrence of a special variable ◦. More precisely, the set CwH of terms with a
hole and the two sets CwHη1 and CwHη2 of specific terms with a hole are defined
by the following grammars:

CwH : C [◦] := ◦ | λx.C [◦] | MC [◦] | C [◦] M | C [◦] [
»

M/ #»x] | M
[

#»

N1,C [◦] ,
#»

N2/
#»x 1, x, #»x 2

]

�
CwHη1 : E [◦] := ◦ | λx.E [◦] | ME [◦] | E′ [◦]M | E [◦]

[
»

M/ #»x
]

�
| M

[
#»

N1,E,
#»

N2/
#»x 1, x, #»x 2

]

�
CwHη2 : D [◦] := ◦ | λx.D [◦] | MD [◦] | D [◦] M | D [◦]

[
»

M/ #»x
]

�
| M

[
#»

N1,D′ [◦],
#»

N2/
#»x 1, x, #»x 2

]

�
with E′ [◦] �= [◦] �= D′ [◦]

We denote by C [M] the term obtained by replacing the hole ◦ in C [◦] with
the term M . By means of example, if C [◦] = ◦ then C [M] = M and if E [◦] =
(λx.xN) [◦/x]� then E [M] = (λx.xN) [M/x]�. The reduction relations of our
calculus are provided in Fig. 4, where the ground steps and the rules for extending
them to specific contexts are provided.

Remark 1. The term constructor Let (i.e., [·/·]� from Equation (2)) plays no role
in the standard η and β reduction rules from the literature, where it behaves
as a black-box during reduction. The inertness of this constructor with respect
to normalization is indeed what makes the lambda calculus in [10,32] unable to
identify terms whose expected behavior is the same as, for example, the following
pairs of terms:

x [v/x]� and x [v, w/x, y]� xyz [v, v/y, z]� and xyy [v/y]�
(5)

Our operational semantics extends the one provided in [32]. The novelty of
our approach is the definition of the κ-reduction and the restriction of the η-
reduction. The former is needed to being able to identify modal λ-terms with the

Canonicity of Proofs in Constructive Modal Logic 349

Fig. 4. Definition of the ground steps of the reduction relations, and the rules for their
extension to terms with holes.

same expected computational meaning, as the ones in Eq. (5). The latter is care-
fully defined to avoid η-redexes that would make the reduction non-terminating,
using a well-known technique in term rewriting theory (see, e.g., [31,43]).

The need of these restrictions can be observed in the two following (unre-
stricted) η-reduction chains, which are both forbidden by our restricted rule from
Fig. 4.

M �η λx.Mx �η λx.(λy.My)x �η . . .
whenever Γ � M : A → B

and M �η x [M/x]� �η x [y [M/y]� /x]� �η . . .
whenever Γ � M : �A

Moreover, our definition rules out interactions between the η and β reductions
which could lead to infinite chains, as the ones shown below.

λx.M �η λy.(λx.M)y �β λy.(M {x/y})=α λx.M or
x [M/x]� �η x [y [M/y]� /x]� �β y [M/y]� =αx [M/x]� .

Definition 2. We define the following reduction relations:

�βη=�β ∪ �η �βκ=�η ∪ �κ �βηκ=�β ∪ �η ∪ �κ (6)

For any ξ ∈ {β, η, κ, βη, βκ, βηκ}, we denote by �+
ξ its transitive closure, by

�=
ξ its reflexive closure, by �∗

ξ its reflexive and transitive closure, and by ≡ξ

the equivalence relation it enforces over terms, that is, its reflexive, symmetric
and transitive closure. Given a term M , we denote by nfξ(M) the set of its
�ξ-normal form. A term M is strongly normalizable for �ξ if it admits no
infinite �ξ-chains A reduction �ξ is strongly normalizing if every term M is
strongly normalizable for it. A reduction �ξ is confluent if given M �∗

ξ N1 and
M �∗

ξ N2 there exists a term N such that N1 �∗
ξ N and N2 �∗

ξ N .

350 M. Acclavio et al.

The substitution lemma and subject reduction theorem holds for the reduction
�βηκ.

Lemma 1. [Substitution Lemma] Let Γ, x : B � M : C and Γ � N : B be
derivable type assignments. Then Γ, x : B � M {N/x} : C is a derivable type
assignment.

Theorem 1. Let Γ � M : C be derivable. If M �βηκ N , then Γ � N : C.

Proof. Because of Lemma 1, it suffices to check the cases when M reduces to N
in one ground step of �βηκ:

– if M �β1 N , then M = (λx.P)Q and N = P {Q/x}. The case where M �β2

N uses a similar argument. The result follows the fact that if Γ, x : B � M : C
and Γ � N : B are derivable type assignment, then Γ, x : B � M {N/x} : C
by Lemma 1.

– if M �η1 N , then C = A → B and N = λx.Mx. The result follows by
applying the rule Abs. The case where M �η2 N uses a similar argument;

– if M �κ1 N1, then M = M ′[P1, . . . , Pk, N, Pk+1, . . . , Pn/x1, . . . ,
xk, x, xk+1, . . . , xn]� such that x is not free in M , C = �B, and N1 =
M ′

[
#»

P ,
#»

Q/ #»x , #»y
]

�
. Then there are derivations for Γ � Pi : Ai for all

i ∈ {1, . . . , n} (for some Ai) and a derivation for x1 : A1, . . . , xk : Ak, x :
A, xk+1 : Ak+1 . . . , xn : An � M ′ : B. Therefore we have a derivation for
x1 : A1, . . . , xn : An � M ′ : B since weakening is admissible (that is, whenever
Γ, x : A � M : C is derivable and x does not occur free in M , then Γ � M : C
is also derivable2. Then we have a derivation of Γ � N : C with bottom-most
rule a �-subst with right-most premise x1 : A1, . . . , xn : An � M ′ : B. and a
premise Γ � Pi : Ai for each i ∈ {1, . . . , n};

– if M �κ2 N1, then we conclude similarly to the previous point since we have

M = M
′
[

#»
P , N, N,

#»
Q/

#»x , y1, y2,
#»z

]
�

and N1 = M {y, y/y1, y2}
[

#»
P , N,

#»
Q/

#»x , y,
#»z

]
�

.

We can prove local confluence of �βηκ by case analysis of the critical pairs
using the following lemma.

Lemma 2. Let P, P ′ and Q modal λ-terms. If P �βηκ P ′, then P {Q/x} �∗
βηκ

P ′ {Q/x}. Moreover, there is a NQ such that Q {P/x} �∗
βηκ NQ and

Q {P ′/x} �∗
βηκ NQ.

Proposition 1. The reduction �βηκ is locally confluent.

Proof. We show that if there are M , N1 and N2 with N1 �= N2 such that
M �βηκ N1 and M �βηκ N2, then there exists N such that N1 �∗

βηκ N
and �∗

βηκ N . Without loss of generality we have the following cases:

2 The admissibility of weakening is easily proven by induction on the size of a deriva-
tion.

Canonicity of Proofs in Constructive Modal Logic 351

1. if M �β1 N1 with M = (λx.P)Q and N1 = P {Q/x}, then N2 can only be
obtained by applying �βηκ the subterms P and Q of M . We conclude by
Lemma 2;

2. if M �β2 N1 with M = M ′
[

#»

P ,R
[

#»

N/ #»z
]

�
,

#»

Q/ #»x , y, #»w
]

�
and with

N1 = M ′ {R/y}
[

#»

P ,
#»

N,
#»

Q/ #»x , #»z , #»w
]

�
, then N2 must be a term obtained by

applying �βηκ on R or on one of the terms in
#»

P ,
#»

N or
#»

Q. We conclude again
by Lemma 2;

3. if M �η1 N1, then Γ � M : A → B and N1 = λx.Mx. Therefore, for any N2

such that M �βηκ N2 we have that Γ � N2 : A → B (by subject reduction).
Then

– either N2 is not an abstraction and we conclude by letting N = λx.N2x.
– otherwise N2 = λy.M ′ and we conclude since N1 �η1 λx.N2x �β1 N2.

4. if M �η2 N1 with Γ � M : �A and N1 = x [M/x]�, then we conclude with a
similar argument with respect to the previous point by letting N = x [N2/x]�.

5. if M �κ N1, then either M = M ′
[

#»

P ,N,
#»

Q/ #»x , x, #»y
]

�
reduces via �κ1 to

N1 = M ′
[

#»

P ,
#»

Q/ #»x , #»y
]

�
, or M = M ′

[
#»

P ,N,N,
#»

Q/ #»x , y1, y2,
#»z

]

�
reduces via

�κ2 to N1 = M {y, y/y1, y2}
[

#»

P ,N,
#»

Q/ #»x , y, #»z
]

�
. In both cases we conclude

with an argument similar to the one in Case (2).

In order to prove the termination of �βηκ, we define the following measures.

Definition 3. Let M be a modal λ-term. We define the following multisets of
derivable type assignments:

Est1(M) =
{
B → C | P ∈ Sub(M) \ Λλ such that M �= PQ and Γ � P : B → C

}

Est2(M) =
{

�B | P ∈ Sub(M) \ Λ� such that M �= Q
[

#»

N1, P,
#»

N2/
#»x 1, x, #»x 2

]

�
and Γ � P : �B

}

We then define ‖M‖η := ‖M‖1
η + ‖M‖2

η with

‖M‖1
η :=

∑

A∈Est1(M)

‖A‖1
η and ‖M‖2

η :=
∑

A∈Est2(M)

‖A‖2
η

where
‖a‖1

η = 0 ‖A → B‖1
η = ‖A‖1

η + ‖B‖1
η + 1 ‖�A‖1

η = ‖A‖1
η

‖a‖2
η = 0 ‖A → B‖2

η = ‖A‖2
η + ‖B‖2

η ‖�A‖2
η = ‖A‖2

η + 1

We also define ‖M‖κ as the size of substitution subterms of M as follows:

‖x‖κ = 0 ‖λxM‖κ = ‖M‖κ ‖MN‖κ = ‖M‖κ + ‖N‖κ

‖M [N1, . . . , Nn/x1, . . . , xn]� ‖κ = ‖M‖κ + ‖N‖κ + n

Example 1. Intuitively, the measure ‖ · ‖η does not take into account all the
subterms of M , but only the ones on which we can apply the restricted �η .
For an example, consider the modal λ-term M = (λza→a.z)y with ‖M‖η = 3
because all four subterms of M are of type a →-formula, but the subterm λz.z
is an abstraction, therefore no �η can be applied on it. If M �η N , because of
the restrictions on �η , we have that

352 M. Acclavio et al.

– either N = (λz.z)(λv.yv) with ‖N‖η = 2 because no �η can be applied to
the subterms y and λz.z (they occur on the left of an application) or λv.yv
(it is an abstraction), but only to the subterms z and the whole term N ;

– or N = λva.((λz.z)y)v with ‖N‖η = 2 because �η can only be applied to
the subterms z and y.

Lemma 3. Let M and N be modal λ-terms. If M �η N , either ‖N‖η < ‖M‖η

or there is N ′ such that N �η N ′ and ‖N ′‖η < ‖M‖η.

Lemma 4. The following commutations between �β , �η and �κ hold:

– if M �κ N �β N ′, then there is M ′ such that M �β M ′ and M ′ �∗
κ N ′ ;

– if M �η N �κ N ′, then there is M ′ such that M �κ M ′ and M ′ �∗
η N ′ ;

– if M �β N �η N ′, then there is M ′ such that M �η M ′ and M ′ �∗
β N ′ .

Theorem 2. The reduction relation �βηκ is strongly normalizing and conflu-
ent.

Proof. After Proposition 1, it suffices to prove that �βηκ is strongly normalizing
to conclude by Newman’s lemma that �βηκ is also confluent.

To prove strong normalization we use the fact that the reductions �β , �η

and �κ are strongly normalizing: for �β the proof can be found in [32], for �η

the proof is by induction on ‖ · ‖η using Lemma 3, and for �κ it follows the fact
that, by definition of ‖ · ‖κ, we have that ‖M‖κ > ‖N‖κ whenever M �κ N . To
conclude that �βηκ also is strongly normalizing, the standard result (see, e.g.,
[50]) in rewriting theory ensuring that given two strongly normalizing reduction
relations �1 and �2 with �1 confluent, if M �2 N implies the existence of
a reduction nf1(M) �+

2 nf1(N) for any M and N , , then �1 ∪ �2 is strongly
normalizing. In our case, the fact that M �2 N implies nf1(M) �+

2 nf1(N) is a
corollary of Lemma 4.

Definition 4. The set Λ̂ is the set of modal λ-terms defined inductively as fol-
lows:

– if x is a variable, T1, . . . , Tn ∈ Λ̂, and there are derivations for the types
assignments Γ � x : (A1, . . . , An) → C with C atomic and Γ � Ti : Ai for all
i ∈ {1, . . . , n}, then xT1 · · · Tn ∈ Λ̂. Variables are the special case with n = 0;

– if T ∈ Λ̂ and there is a derivation of Γ, x : A � T : C, then λxA.T ∈ Λ̂;
– if M ∈ Λ̂, FV(M) = {x1, . . . , xn} and the type assignment x1 : B1, . . . , xn :

Bn � M : C is derivable, and if there are n distinct terms T1, . . . , Tn ∈ Λ
of the shape Ti = yiUi1 · · · Uiki

with Uij ∈ Λ̂ for all i ∈ {1, . . . , n} and j ∈
{1, . . . , ki}, such that the type assignment Γ � Ti : �Bi is derivable for all
i ∈ {1, . . . , n}, then M [T1, . . . , Tn/x1, . . . , xn]� ∈ Λ̂.

Proposition 2. The set Λ̂ is the set of modal λ-terms in βηκ-normal form
nfβηκ(Λ).

Proof. By definition, every Λ̂ ⊆ nfβηκ(Λ) is �βηκ-normal. To prove the converse
we proceed by induction on the structure of M ∈ nfβηκ(Λ):

Canonicity of Proofs in Constructive Modal Logic 353

– if M = x, then M ∈ Λ̂ by definition;
– if M = λx.M ′ ∈ nfβηκ(Λ), then also M ′ ∈ nfβηκ(Λ). By inductive hypothesis,

this implies M ′ ∈ Λ̂. Therefore λx.M ′ ∈ Λ̂;
– if M = PQ ∈ nfβηκ(Λ), then both P and Q are in nfβηκ(Λ) and there is

a derivable type assignment Γ � M : C, and derivable type assignments
Γ � P : A → C and Γ � Q : A. We have that no �η -rule can be applied
to C because M ∈ nfη(Λ); thus C must be atomic. We know that P cannot
be in Λλ since M ∈ nfβ(Λ) and P cannot be in Λ� because Γ � P : A → C
is derivable. Then by inductive hypothesis we have that P = xT1, . . . Tn for
some T1, . . . , Tn ∈ Λ̂. We conclude that PQ ∈ Λ̂;

– if M = P [Q1, . . . , Qn/x1, . . . , xn]� ∈ nfβηκ(Λ), then there is a derivable type
assignment x1 : B1, . . . , xn : Bn � P : C and derivable type assignments Γ �
Qi : �Bi for all i ∈ {1, . . . , n}. Since M ∈ nfβηκ(Λ), then no �βηκ-rule can
be applied to M , nor to P ; thus P ∈ nfβηκ(Λ). Similarly, since M ∈ nfβηκ(Λ),
then Qi /∈ Λ� (otherwise we could apply �2

β), Qi ∈ nfβκ(Λ) (since no �βκ-
rule can be applied to Qi) and Qi cannot be in nfη(Λ) (because Qi : �Bi

and otherwise �η -steps could be applied on M) for all i ∈ {1, . . . , n}. We
conclude that M ∈ Λ̂.

Fig. 5. Typing rules of the typing system CKF.

4 A Canonical Type System for CK

In this section we present an alternative typing system for modal λ-terms where
each term in Λ̂ admits exactly one typing derivation. The rules of this system (we
call CKF) are provided in Fig. 5 and are conceived to reduce the non-determinism
of the typing process, following the same approach used in designing focused
sequent calculi [8,12,42]. Derivations and derivability in CKF are defined analo-
gously to Definition 1, using rules in CKF instead of rules in NDCK. We remark
that the structural rules of weakening and contraction are admissible in the
system.

We can now prove a result of canonicity of CKF with respect to typing deriva-
tions of modal λ-terms in nfβηκ(Λ).

354 M. Acclavio et al.

Theorem 3. Let T ∈ Λ̂ and Γ � T : A be a derivable type assignment. Then
there is a unique (up to ex-rules) derivation of Γ � T : A in CKF.

Proof. The proof of this theorem follows from the correspondence between the
inductive definition of terms in Λ̂ (Definition 4) and the shape of the typing rules
of CKF. Details are provided the extended version of this paper [4].

5 Game Semantics for CK

In this section we recall definitions and results on the winning innocent strategies
for the logic CK defined in [5]. For this purpose, we first recall the construction
extending Hyland-Ong arenas [29,44] for intuitionistic propositional formulas to
represent formulas containing modalities, and then we recall the characterization
of the winning innocent strategies representing proofs in CK. We conclude by
proving the full-completeness result between for those strategies by showing a
one-to-one correspondence between strategies for type assignments of terms in
normal forms and their (unique) typing derivations in CKF.

5.1 Arenas with Modalities

We recall the definition of arenas with modalities from [5] extending the encoding
of arenas from [26,30]. For this purpose, we assume the reader familiar with the
definition of two-color directed graph (or 2-dag’s for short), i.e., directed acyclic
graphs with two disjoint sets of directed edges → and � (details can be found
in [5,26]).

Definition 5. The arena of a formula F is the 2-dag [[F]] with vertices are
labeled by elements in L = A ∪ {�} inductively defined as follows:

[[a]] = a [[A → B]] = [[A]] −� [[B]] [[�A]] = � ∼� [[A]] (7)

where a and � denote the graphs consisting of a single vertex labeled by a and
� respectively, and where the binary operation −� and ∼� on 2-dag’s are defined
as follows:

G−�H = 〈 VG VH ,
G�H→ ∪ (

→
RG �

→
RH) ,

G�H� 〉 and G∼�H = 〈 VG VH ,
G�H→ ,

G�H� ∪ (
→
RG �

→
RH) 〉 with

VG VH =
{
(vi, i) | i ∈ {0, 1} and v0 ∈ VG and v1 ∈ VH

}
and �((vi, i)) = �(vi)

G�H
� =

{
((vi, i), (wi, i)) | i ∈ {0, 1} and (v0, w0) ∈ G

� and (v1, w1) ∈ H
�

}
for each � ∈ {→, �}

(
→
RG �

→
RH) =

{
((v, 0), (w, 1)) v ∈ →

RG , w ∈ →
RH

}
where

→
RX := {v ∈ VX | v

X→w for no w ∈ VX}

The arena of a sequent A1, . . . , An � C is the arena A of [[(A1, . . . , An) → C]].

Remark 2. By construction, an arena G of a formula or a sequent Γ � C always
admits a unique non �-labeled vertex in

→
RG , i.e., a unique vertex v with �(v) �= �

such that there is no w ∈ VG such that v
G→w.

Canonicity of Proofs in Constructive Modal Logic 355

We draw 2-dag’s by representing a vertex v by its label �(v). If v and w are
vertices of an 2-dag, then we draw if v→w and if v�w. By means of example,
consider the arena below.

(8)

Remark 3. All arenas of the form
[[

(Aσ(1), . . . , Aσ(n)) → C
]]

have the same rep-
resentation for any σ permutation over {1, . . . , n}. More in general, it can
be shown that the arena of any two equivalent formulas modulo Currying
A → (B → C) ∼ B → (A → C) can be depicted by the same arena. How-
ever, whenever there may be ambiguity because of the presence of two vertices
with the same label, we may represent the vertex v = ((· · · (v′, i1) · · ·), in) (where
i1, . . . , in ∈ {0, 1}) by �(v)i1,...,in

instead of simply �(v) = �(v′) (see Example 2).

Definition 6. Let [[F]] be an arena and v one of its vertices. The depth of v is
the number d(v) of vertices in a →-path from v to a vertex in

→
R[[F]]

3. The address
of v is defined as the unique sequence of modal vertices add(v) = m1, . . . ,mh in
V[[F]] corresponding to the sequence of modalities in the path in the formula tree
of F connecting the node of v to the root. If add(v) = m1, . . . ,mh, we denote
by addk(v) = mk its kth element and we call the height of v (denoted hv) the
number of elements in add(v).

Example 2. Below an alternative representation of its arena of the formula
(
a →

�(b → (c → �d))
) → �(e → f) in Equation (8) where the ambiguity of the

vertex representation is avoided by the use of indices, the corresponding formula-
tree, and the complete list of the addresses of all vertices in this arena.

5.2 Games and Winning Innocent Strategies

In this subsection, we briefly recall the definitions of games and winning strate-
gies from [5] required to make the paper self-contained. Note that differently from
the previous works, we here include the additional information of the pointer
3 As proven in [6,26], arenas are stratified, that is, all the →-path from a vertex v to

any vertex in
→
R[[F]] have the same length. Therefore the number d(v) is well-defined.

356 M. Acclavio et al.

function in the definition of views. This information is crucial for the results
in Sect. 4 where we provide a one-to-one correspondence between our winning
strategies and modal λ-terms.

Definition 7. Let A be an arena. We call a move an occurrence of a vertex v
of A with �(v) �= �. The polarity of a move v is the parity of d(v): a move is a
◦-move (resp. a •-move) if d(v) is even (resp. odd).

A pointed sequence in A is a pair p = 〈s, f〉 where s = s0, . . . , sn is a finite
sequences of moves in A and a pointer function f : {1, . . . , n} → {0, . . . , n − 1}
such that f(i) < i and si

A→sf(i). The length of p (denoted |p|) is defined as the
length of s, that is, |p| = n + 1. Note that we also use ε to denote the empty
pointed sequence 〈ε, ∅〉.
Remark 4. It follows by definition of view that the player ◦ (resp. •) can only
play vertices whose d(v) is even (resp. odd). For this reason, for each v ∈ VG we
write v◦ (resp. v•) if the parity of d(v) even (resp. odd).

Note that the parity of a modality in the address of a move may not be the
same as the parity of the move itself. By means of example, consider the vertex
c in Example 2 which belongs in the scope of two modalities �011110 and �010

with odd parity.

Given two pointed sequences p = 〈s, f〉 and p′ = 〈s′, f ′〉 in A, we write p � p′

whenever s is a prefix of s′ (thus |s| ≤ |s′|) and f(i) = f ′(i) for all i ∈ {1, . . . , |p′|}
and we say that p is a predecessor of p′ if p � p′ and |p| = |p′| − 1.

Definition 8. Let A be an arena. A play on A is a pointed sequence p = 〈s, f〉
such that, either s = ε, or si and si+1 have opposite polarities for all i ∈
{0, . . . , |p| − 1}.

The game of A (denoted GA) is the set of prefix-closed sets of plays over A.
A view is a play p = 〈s, f〉 such that either p = ε or the following properties

hold:
- p is ◦-shortsighted : f(2k) = 2k − 1 for every 2k ∈ {2, . . . , |p|};
- p is •-uniform : �(s2k+1) = �(s2k) for every 2k + 1 ∈ {0, . . . , |p|}.

A winning innocent strategy (or WIS for short) for the game GA is a finite
non-empty prefix-closed set S of views in GA such that:

- S is ◦-complete: if p ∈ S and p as odd length,
then every successor of p (in GA) is also in S ;

- p is •-total: if p ∈ S and p has even length,
then exactly one successor of p (in GA) is in S ;

A view is maximal in S if it is not prefix of any other view in S . S is trivial if
S = {ε}. We say that S is a WIS for a sequent A1, . . . , An � C if S is a WIS for
[[A1, . . . , An � C]].

The definition of WIS above is a reformulation of the one in the literature
of game semantics for intuitionistic propositional logic [14,26,29]. In presence
of modalities, this definition requires to be refined to guarantee the possibility
of gather modalities in batches corresponding to the modalities introduced by a

Canonicity of Proofs in Constructive Modal Logic 357

Fig. 6. Examples of WISs for arenas not corresponding to proofs.

single application of the K� (see Fig. 2). By means of example, consider the fol-
lowing arenas and their corresponding WISs, which cannot represent valid proofs
in CK because of the impossibility of applying rules handling the modalities in
a correct way.

Example 3. Consider the formulas F1 = (�a) → a and F2 = (�a → �b) →
�(a → b) and their arenas in Fig. 6. The set of views S1 and S2 are WISs for F1

and F2 respectively. However, these formulas are not provable in SCK because
the proof search fails (see Fig. 6). In particular, in the first case, no K� can be
applied because only there is a mismatch between the modalities on the left-hand
side and on the right-hand side of the sequent; in the second case the problem is
more subtle and, intuitively, is related to the fact that each K� can remove only
a single �◦ at a time, corresponding to the modality of the unique formula on
the right-hand side of the sequent.

Therefore, in order to capture provability in CK, the notion of winning strate-
gies has to be refined as follows.

Definition 9. Let p = (s, f) be a view in a strategy S on an arena A, and let
hp = 1+max{hv | v ∈ p}. We define the batched view of p as the hp ×n matrix
F (p) =

(
F (p)0, . . . , F (p)n

)
with elements in VG ∪ {ε} such that the each column

F (p)i is defined as follows:

F (p)i =

⎛

⎜
⎝

F (p)hp

i
...

F (p)0i

⎞

⎟
⎠ where

⎧
⎪⎨

⎪⎩

F (p)hp

i = addhpi (pi), . . . , F (p)hp−hpi
+1

i = add1(pi)

F (p)hp−hpi
i = ε, . . . , F (p)1i = ε

F (p)0i = pi

We say that p is well-batched if |add(s2k)| = |add(s2k+1)| for every 2k ∈ {0, . . . ,

|p| − 1}. Each well-batched view p induces an equivalence relation
Gp∼ over VG

generated by:

u
Gp∼1w iff u = F (p)h

2k and w = F (p)h
2k+1 for a 2k < n − 1 and a h ≤ hp

(9)

358 M. Acclavio et al.

A WIS S is linked if it contains only well-batched views and if for every p ∈ S

the
Gp∼-classes are of the shape {v•

1 , . . . , v•
n, w◦}.

A CK-winning innocent strategy (or CK-WIS for short) is a linked WIS S . 4

Example 4. Consider the arenas in Fig. 6. The batched view of the (unique) max-

imal views in S1 and S2 are
(

ε �•

a◦ a•

)
and

(
�◦

10 �•
010 �◦

000 �◦
10

b◦ b• a◦ a•

)
respectively. The

first is not well-batched because a◦ has height 0 while a• has height 1, while the
second, even if well-batched, is not linked because the

Gp∼-class {�◦
10,�•

010,�◦
000}

contains two �◦.

The definition of CK-WISs allows us to obtain a full-completeness result with
respect to CK which, together with the good compositionality properties of CK-
WISs shown in [5,11], provides a full-complete denotational semantics for the
logic CK. That is, every given CK-WIS is the encoding of a derivation in CK, and
if a derivation D reduces via cut-elimination to a derivation D′, then they are
encoded by the same CK-WIS.

Theorem 4 ([5]). The set of CK-WISs is a full-complete denotational model for
CK.

5.3 Full Completeness for Modal Lambda Terms in Normal Form

We can prove the full completeness result using the type system CKF and rely-
ing on Theorem 3. For this purpose, we have to extend the definition of α-
equivalence from terms to type assignments in order to avoid technicality in
our proofs, since in arenas we keep no track of variable names. For example,
consider the α-equivalent terms λx.x and λy.y whose derivation should be con-
sidered non-equivalent due to the fact that α-equivalence does not extends to
type assignments, therefore the two occurrence of the axiom rule with conclusion
x : a � x : a and y : a � y : a should be considered distinct.5

Definition 10. Let A1, . . . , An � C be a sequent. We define Λ(Γ � C) as the
set of terms M such that the typing derivation x1 : A1, . . . , xn : An � M : C is
derivable, that is,

Λ(Γ � C) =
{

M ∈ Λ | x1 : A1, . . . , xn : An � M : C is derivable for some x1, . . . , xn

}
.

If M,N ∈ Λ(Γ � C), we define M =Γ ;C
α N as the smallest equivalence rela-

tion generated by the rule
.
4 We here provide a simpler definition of CK-WISs w.r.t. the one in [5]. In fact, we are

able here to simplify this definition because we are considering the ♦-free fragment
of CK.

5 Note that another possible way to deal with this problem is to label non-modal ver-
tices of arenas by pairs of propositional atoms and variables instead of propositional
variables only.

Canonicity of Proofs in Constructive Modal Logic 359

Fig. 7. Rules to construct a CK-WIS from a type derivation in CKF. For reasons of
readability, we assume there is an implicit map identifying the moves in the arenas of
the type assignment in the premises with the moves in the arena of the type assignment
in the conclusion. Note that c◦ and c• are occurrences of the same atom c, but we have
decorate them to improve readability.

From now on, we consider derivations up the α-equivalence defined above,
that is, we consider derivations up to renaming of the variables occurring in a
typing context.

Theorem 5. There is a one-to-one correspondence between terms in Λ̂∩Λ(Γ �
C) and CK-WIS for Γ � C.

Proof. Given a CK-WIS S for Γ � C, we can define a (unique) typing derivation
DS in CKF of a term TS ∈ Λ̂ ∩ Λ(Γ � C) by induction on the lexicographic order
over the pairs (|S |, |C|) reasoning on the inductive definition of Λ̂.

Similarly, given a type assignment Γ � T : C. for a T ∈ Λ̂, then, by Theorem
3, there is a (unique) derivation DT in CKF. We define ST as the CK-WIS defined
by induction on the number of rules in DT using the rules in Fig. 7. We conclude
since we have that STS = S and TST

= T by definition.

6 Conclusion

In this paper we introduced a new modal λ-calculus for the ♦-free fragment
of the constructive modal logic CK (without conjunction or disjunction). This

360 M. Acclavio et al.

lambda calculus builds on the work in [32], by adding a restricted η-reduction as
well as two new reduction rules dealing with the explicit substitution constructor
used to model the modality �. We proved normalization and confluence for this
calculus and we provide a one-to-one correspondence between the set of terms in
normal form and the set of winning strategies for the logic CK introduced in [5].

We foresee the possibility of extending the result presented in this paper
to the entire disjunction-free fragment of CK, for which winning strategies are
already defined in [5]. For this purpose, we should consider additional term
constructors for terms whose type is a conjunction, as well as a new Let-like
operator to model terms whose type is the modality ♦-formula similar to the
one proposed in [10]. For this reason, in future works we plan to reformulate
our lambda-calculus in the light of the novel line of research on calculi with
explicit substitutions [1,2,34,35]. This approach would allow us to simplify some
of the technicalities and achieve a more elegant operational semantics. Another
interesting prospective is to extend our approach to operational semantics to the
Fitch-style modal λ-calculus studied in [53].

At the same time, we plan to make explicit that our game semantics pro-
vides a concrete model for the cartesian closed categories provided with a strong
monoidal endofunctor [10,33]. Indeed, categorical semantics of the calculus in
[10] is modeled by means of cartesian closed categories equipped with a strong
monoidal endofunctor taking into account the proof-theoretical behavior of the
�-modality. We further conjecture that the syntactic category obtained via the
quotient of modal terms modulo the relations we introduce in this paper is
indeed a free cartesian closed category on a set of atoms with a strong monoidal
endofunctor.

References

1. Accattoli, B.: Exponentials as substitutions and the cost of cut elimination in
linear logic. In: Baier, C., Fisman, D. (eds.) LICS 2022: 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, Haifa, Israel, 2–5 August 2022, pp.
49:1–49:15. ACM (2022). https://doi.org/10.1145/3531130.3532445

2. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization
theorem. Association for Computing Machinery, New York (2014). https://doi.org/
10.1145/2535838.2535886

3. Acclavio, M.: Proof diagrams for multiplicative linear logic: syntax and semantics.
J. Autom. Reason. 63(4), 911–939 (2019). https://doi.org/10.1007/s10817-018-
9466-4

4. Acclavio, M., Catta, D., Olimpieri, F.: Canonicity of proofs in constructive modal
logic (extended version) (2023). https://doi.org/10.48550/arXiv.2304.05465

5. Acclavio, M., Catta, D., Straßburger, L.: Game semantics for constructive modal
logic. In: Das, A., Negri, S. (eds.) TABLEAUX 2021. LNCS (LNAI), vol. 12842, pp.
428–445. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86059-2_25

6. Acclavio, M., Straßburger, L.: Combinatorial proofs for constructive modal logic.
In: Advances in Modal Logic 2022, Rennes, France (2022). https://hal.inria.fr/hal-
03909538

https://doi.org/10.1145/3531130.3532445
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1007/s10817-018-9466-4
https://doi.org/10.1007/s10817-018-9466-4
https://doi.org/10.48550/arXiv.2304.05465
https://doi.org/10.1007/978-3-030-86059-2_25
https://hal.inria.fr/hal-03909538
https://hal.inria.fr/hal-03909538

Canonicity of Proofs in Constructive Modal Logic 361

7. Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and Kripke seman-
tics for constructive S4 modal logic. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol.
2142, pp. 292–307. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44802-0_21

8. Andreoli, J.M.: Focussing and proof construction. Ann. Pure Appl. Logic 107,
131–163 (2001)

9. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types.
Perspectives in logic. Cambridge University Press, Cambridge (2013). http://
www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-
sets/lambda-calculus-types

10. Bellin, G., De Paiva, V., Ritter, E.: Extended Curry-Howard correspondence for a
basic constructive modal logic. In: Proceedings of Methods for Modalities (2001)

11. Catta, D.: Les preuves vues comme des jeux et réciproquement: sémantique
dialogique de langages naturel ou logiques. (Proofs as games and games as proofs:
dialogical semantics of logical and natural languages). Ph.D. thesis, University of
Montpellier, France (2021). https://tel.archives-ouvertes.fr/tel-03588308

12. Chaudhuri, K., Marin, S., Straßburger, L.: Modular focused proof systems for intu-
itionistic modal logics. In: Kesner, D., Pientka, B. (eds.) 1st International Confer-
ence on Formal Structures for Computation and Deduction, FSCD 2016, Porto,
Portugal, 22–26 June 2016, LIPIcs, vol. 52, pp. 16:1–16:18. Leibniz-Zentrum fuer
Informatik (2016)

13. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symb. Logic 44(1), 36–50 (1979)

14. Danos, V., Herbelin, H., Regnier, L.: Game semantics & abstract machines. In:
Proceedings, 11th Annual IEEE Symposium on Logic in Computer Science, New
Brunswick, New Jersey, USA, 27–30 July 1996, pp. 394–405. IEEE Computer Soci-
ety (1996). https://doi.org/10.1109/LICS.1996.561456

15. Das, A., Marin, S.: Brouwer meets kripke: constructivising modal logic. https://
prooftheory.blog/2022/08/19/brouwer-meets-kripke-constructivising-modal-
logic/. Accessed 19 Aug 2022

16. Das, A., Pous, D.: Non-wellfounded proof theory for
(Kleene+action)(algebras+lattices). In: Computer Science Logic (CSL), Birm-
ingham, United Kingdom (2018). https://doi.org/10.4230/LIPIcs.CSL.2018.19.
https://hal.archives-ouvertes.fr/hal-01703942

17. Davies, R., Pfenning, F.: A modal analysis of staged computation. J. ACM 48(3),
555–604 (2001). https://doi.org/10.1145/382780.382785

18. Di Cosmo, R., Kesner, D.: Combining algebraic rewriting, extensional lambda cal-
culi, and fixpoints. Theor. Comput. Sci. 169(2), 201–220 (1996). https://doi.org/
10.1016/S0304-3975(96)00121-1

19. Došen, K.: Identity of proofs based on normalization and generality. Bull. Symb.
Logic 9, 477–503 (2003)

20. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982). https://
doi.org/10.1016/0167-6423(83)90017-5

21. Fairtlough, M., Mendler, M.: Propositional lax logic. Inf. Comput. 137(1), 1–33
(1997)

22. Fitch, F.: Intuitionistic modal logic with quantifiers. Portugaliae Mathematica
7(2), 113–118 (1948)

23. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/
10.1016/0304-3975(87)90045-4

https://doi.org/10.1007/3-540-44802-0_21
https://doi.org/10.1007/3-540-44802-0_21
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
https://tel.archives-ouvertes.fr/tel-03588308
https://doi.org/10.1109/LICS.1996.561456
https://prooftheory.blog/2022/08/19/brouwer-meets-kripke-constructivising-modal-logic/
https://prooftheory.blog/2022/08/19/brouwer-meets-kripke-constructivising-modal-logic/
https://prooftheory.blog/2022/08/19/brouwer-meets-kripke-constructivising-modal-logic/
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://hal.archives-ouvertes.fr/hal-01703942
https://doi.org/10.1145/382780.382785
https://doi.org/10.1016/S0304-3975(96)00121-1
https://doi.org/10.1016/S0304-3975(96)00121-1
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4

362 M. Acclavio et al.

24. Girard, J.Y.: Proof-nets?: the parallel syntax for proof-theory. In: Ursini, A.,
Agliano, P. (eds.) Logic and Algebra. Marcel Dekker, New York (1996)

25. Guglielmi, A., Gundersen, T., Parigot, M.: A proof calculus which reduces syntactic
bureaucracy. In: Lynch, C. (ed.) Proceedings of the 21st International Conference
on Rewriting Techniques and Applications, LIPIcs, vol. 6, pp. 135–150. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2010). https://doi.org/10.
4230/LIPIcs.RTA.2010.135. http://drops.dagstuhl.de/opus/volltexte/2010/2649

26. Heijltjes, W., Hughes, D., Straßburger, L.: Intuitionistic proofs without syntax. In:
LICS 2019–34th Annual ACM/IEEE Symposium on Logic in Computer Science,
pp. 1–13. IEEE, Vancouver (2019). https://doi.org/10.1109/LICS.2019.8785827.
https://hal.inria.fr/hal-02386878

27. Heilala, S., Pientka, B.: Bidirectional decision procedures for the intuitionistic
propositional modal logic IS4. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 116–131. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73595-3_9

28. Hughes, D.: Proofs Without Syntax. Ann. Math. 164(3), 1065–1076 (2006).
https://doi.org/10.4007/annals.2006.164.1065

29. Hyland, J.M.E., Ong, C.L.: On full abstraction for PCF: i, ii, and III. Inf. Comput.
163(2), 285–408 (2000). https://doi.org/10.1006/inco.2000.2917

30. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF: I. Models, observables
and the full abstraction problem, II. Dialogue games and innocent strategies, III.
A fully abstract and universal game model. Inf. Comput. 163, 285–408 (2000)

31. Jay, C.B., Ghani, N.: The virtues of eta-expansion. J. Funct. Program. 5(2), 135–
154 (1995). https://doi.org/10.1017/S0956796800001301

32. Kakutani, Y.: Call-by-name and call-by-value in normal modal logic. In: Shao, Z.
(ed.) APLAS 2007. LNCS, vol. 4807, pp. 399–414. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-76637-7_27

33. Kavvos, G.A.: Dual-context calculi for modal logic. Log. Methods Comput. Sci.
16(3) (2020). https://doi.org/10.23638/LMCS-16(3:10)2020

34. Kesner, D.: The theory of calculi with explicit substitutions revisited. In: Duparc,
J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 238–252. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74915-8_20

35. Kesner, D.: A theory of explicit substitutions with safe and full composition. Log.
Methods Comput. Sci. 5(3) (2009). http://arxiv.org/abs/0905.2539

36. Kojima, K.: Semantical study of intuitionistic modal logics. Ph.D. thesis, Kyoto
University (2012)

37. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–
354 (1983). https://doi.org/10.1016/0304-3975(82)90125-6

38. Krivine, J.: Lambda-calculus, types and models. Ellis Horwood series in computers
and their applications, Masson (1993)

39. Kuznets, R., Marin, S., Straßburger, L.: Justification logic for constructive modal
logic. J. Appl. Logics IfCoLog J. Logics Appl. 8(8), 2313–2332 (2021). https://hal.
inria.fr/hal-01614707

40. Mendler, M., Scheele, S.: Cut-free Gentzen calculus for multimodal CK. Inf. Com-
put. 209(12), 1465–1490 (2011)

41. Meyer, J.J., Veltmanw, F.: Intelligent agents and common sense reason-
ing. In: Blackburn, P., Van Benthem, J., Wolter, F. (eds.) Handbook of
Modal Logic, Studies in Logic and Practical Reasoning, vol. 3, pp. 991–
1029. Elsevier (2007). https://doi.org/10.1016/S1570-2464(07)80021-8. http://
www.sciencedirect.com/science/article/pii/S1570246407800218

https://doi.org/10.4230/LIPIcs.RTA.2010.135
https://doi.org/10.4230/LIPIcs.RTA.2010.135
http://drops.dagstuhl.de/opus/volltexte/2010/2649
https://doi.org/10.1109/LICS.2019.8785827
https://hal.inria.fr/hal-02386878
https://doi.org/10.1007/978-3-540-73595-3_9
https://doi.org/10.1007/978-3-540-73595-3_9
https://doi.org/10.4007/annals.2006.164.1065
https://doi.org/10.1006/inco.2000.2917
https://doi.org/10.1017/S0956796800001301
https://doi.org/10.1007/978-3-540-76637-7_27
https://doi.org/10.23638/LMCS-16(3:10)2020
https://doi.org/10.1007/978-3-540-74915-8_20
http://arxiv.org/abs/0905.2539
https://doi.org/10.1016/0304-3975(82)90125-6
https://hal.inria.fr/hal-01614707
https://hal.inria.fr/hal-01614707
https://doi.org/10.1016/S1570-2464(07)80021-8
http://www.sciencedirect.com/science/article/pii/S1570246407800218
http://www.sciencedirect.com/science/article/pii/S1570246407800218

Canonicity of Proofs in Constructive Modal Logic 363

42. Miller, D., Volpe, M.: Focused labeled proof systems for modal logic. In: Davis, M.,
Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 266–
280. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48899-7_19

43. Mints, G.E.: Closed categories and the theory of proofs. J. Soviet Math. (1981).
https://doi.org/10.1007/BF01404107

44. Murawski, A.S., Ong, C.-H.L.: Discreet games, light affine logic and PTIME com-
putation. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp.
427–441. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44622-2_29

45. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Math. Struct.
Comput. Sci. 11(4), 511–540 (2001). https://doi.org/10.1017/S0960129501003322

46. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science, Providence, Rhode Island, USA, 31 October–1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

47. Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Almquist and Wiksell
(1965)

48. Simpson, A.: The Proof Theory and Semantics of Intuitionistic Modal Logic. Ph.D.
thesis, University of Edinburgh (1994)

49. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Else-
vier, Amsterdam (2006)

50. Terese: Term rewriting systems. Cambridge University Press (2003)
51. Tubella, A.A., Straßburger, L.: Introduction to Deep Inference (2019). https://hal.

inria.fr/hal-02390267. lecture
52. Vakarelov, D.: Modal logics for knowledge representation systems. Theor. Comput.

Sci. 90, 433–456 (1991)
53. Valliappan, N., Ruch, F., Tom’e Corti nas, C.: Normalization for fitch-style modal

calculi. Proc. ACM Program. Lang. 6(ICFP), 772–798 (2022). https://doi.org/10.
1145/3547649

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-48899-7_19
https://doi.org/10.1007/BF01404107
https://doi.org/10.1007/3-540-44622-2_29
https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://hal.inria.fr/hal-02390267
https://hal.inria.fr/hal-02390267
https://doi.org/10.1145/3547649
https://doi.org/10.1145/3547649
http://creativecommons.org/licenses/by/4.0/

Linear Logic and MV-Algebras

Proof-Theoretic Semantics
for Intuitionistic Multiplicative Linear

Logic

Alexander V. Gheorghiu1(B) , Tao Gu1(B) , and David J. Pym1,2(B)

1 University College London, London WC1E 6BT, UK
{alexander.gheorghiu.19,tao.gu.18,d.pym}@ucl.ac.uk

2 Institute of Philosophy, University of London, London WC1H 0AR, UK

Abstract. This work is the first exploration of proof-theoretic seman-
tics for a substructural logic. It focuses on the base-extension semantics
(B-eS) for intuitionistic multiplicative linear logic (IMLL). The starting
point is a review of Sandqvist’s B-eS for intuitionistic propositional logic
(IPL), for which we propose an alternative treatment of conjunction that
takes the form of the generalized elimination rule for the connective. The
resulting semantics is shown to be sound and complete. This motivates
our main contribution, a B-eS for IMLL, in which the definitions of the
logical constants all take the form of their elimination rule and for which
soundness and completeness are established.

Keywords: Logic · Semantics · Proof Theory · Proof-theoretic
Semantics · Substructural Logic · Multiplicative Connectives

1 Introduction

In model-theoretic semantics (M-tS), logical consequence is defined in terms of
models; that is, abstract mathematical structures in which propositions are inter-
preted and their truth is judged. As Schroeder-Heister [33] explains, in the stan-
dard reading given by Tarski [38,39], a propositional formula ϕ follows model-
theoretically from a context Γ iff every model of Γ is a model of ϕ; that is,

Γ |= ϕ iff for all models M, if M |= ψ for all ψ ∈ Γ, then M |= ϕ

Therefore, consequence is understood as the transmission of truth. Importantly,
on this plan, meaning and validity are characterized is terms of truth.

Proof-theoretic semantics (P-tS) is an alternative approach to meaning and
validity in which they are characterized in terms of proofs—understood as objects
denoting collections of acceptable inferences from accepted premisses. This is
subtle. It is not that one desires a proof system that precisely characterizes the
consequences of the logic of interest, but rather that one desires to express the
meaning of the logical constants in terms of proofs and provability. Indeed, as
Schroeder-Heister [33] observes, since no formal system is fixed (only notions of
c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 367–385, 2023.
https://doi.org/10.1007/978-3-031-43513-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_20&domain=pdf
http://orcid.org/0000-0002-7144-6910
http://orcid.org/0000-0001-5749-0758
http://orcid.org/0000-0002-6504-5838
https://doi.org/10.1007/978-3-031-43513-3_20

368 A. V. Gheorghiu et al.

inference) the relationship between semantics and provability remains the same
as it has always been—in particular, soundness and completeness are desirable
features of formal systems. Essentially, what differs is that proofs serve the role
of truth in model-theoretic semantics. The semantic paradigm supporting P-tS is
inferentialism—the view that meaning (or validity) arises from rules of inference
(see Brandom [5]).

To illustrate the paradigmatic shift from M-tS to P-tS, consider the propo-
sition ‘Tammy is a vixen’. What does it mean? Intuitively, it means, somehow,
‘Tammy is female’ and ‘Tammy is a fox’. On inferentialism, its meaning is given
by the rules,

Tammy is a fox Tammy is female

Tammy is a vixen

Tammy is a vixen

Tammy is female

Tammy is a vixen

Tammy is a fox

These merit comparison with the laws governing ∧ in IPL, which justify the
sense in which the above proposition is a conjunction:

ϕ ψ

ϕ ∧ ψ
ϕ ∧ ψ

ϕ

ϕ ∧ ψ

ψ

There are two major branches of P-tS: proof-theoretic validity (P-tV) in the
Dummett-Prawitz tradition (see, for example, Schroeder-Heister [32]) and base-
extension semantics (B-eS) in the sense of, for example, Sandqvist [28–30]. The
former is a semantics of arguments, and the latter is a semantics of a logic, but
both are proof-theoretic semantics. This paper is concerned with the latter as
explained below.

Tennant [40] provides a general motivation for P-tV: reading a consequence
judgement Γ �ϕ proof-theoretically—that is, that ϕ follows by some reasoning
from Γ—demands a notion of valid argument that encapsulates what the forms
of valid reasoning are. That is, we require explicating the semantic conditions
required for an argument that witnesses

ψ1, . . . , ψn; therefore, ϕ

to be valid. A particular motivation comes from the following programmatic
remarks by Gentzen [37]:

The introductions represent, as it were, the ‘definitions’ of the symbols
concerned, and the eliminations are no more, in the final analysis, than the
consequences of these definitions. This fact may be expressed as follows: In
eliminating a symbol, we may use the formula with whose terminal symbol
we are dealing only ‘in the sense afforded it by the introduction of that
symbol’.

Dummett [9] developed a philosophical understanding of the normalization
results of Prawitz [25], which give a kind of priority to the introduction rules, that
yields a notion of valid arguments. The result is P-tV—see Schroeder-Heister [32]
for a succinct explanation.

Proof-Theoretic Semantics for Intuitionistic Multiplicative Linear Logic 369

Fig. 1. Sandqvist’s Support in a Base

More generally, P-tV is about defining a notion of validity of objects witness-
ing that a formula ϕ follows by some reasoning from a collection of formulae Γ.
This is quite different from simply giving an interpretation of proofs from some
formal system; for example, while the version of P-tV discussed above is closely
related to the BHK interpretation of IPL, it is important to distinguish the
semantic and computational aspects—see, for example, Schroeder-Heister [32].

Meanwhile, B-eS proceeds via a judgement called support defined inductively
according to the structure of formulas with the base case (i.e., the support of
atoms) given by proof in a base. A base is a set of inference rules over atomic
propositions, thought of as defining those atoms—an example is the set of rules
above that define ‘Tammy is a vixen’. Though this approach is closely related to
possible world semantics in the sense of Beth [2] and Kripke [17]—see, for exam-
ple, Goldfarb [13] and Makinson [18]—it remains subtle. For example, there are
several incompleteness results for intuitionistic logics—see, for example, Piecha
et al. [20,21,23], Goldfarb [13], Sandqvist [27–30], Stafford [36]. Significantly, a
sound and complete B-eS for IPL has been given by Sandqvist [29]. Gheorghiu
and Pym [10] have shown that this B-eS captures the declarative content of
P-tV.

Sandqvist’s B-eS for IPL is the point of departure for this paper. Fix a set
of atomic propositions A. Given a base B, we write �B p to denote that p ∈ A
can be derived in B. Support in a base B—denoted �B—is defined by the
clauses of Fig. 1 in which Γ �= ∅. We desire to give an analogous semantics for
intuitionistic multiplicative linear logic (IMLL). We study this logic as it is the
minimal setting in which we can explore how to set-up B-eS (and P-tS in general)
for substructural logics, which enables extension to, for example, (intuitionistic)
Linear Logic [11] and the logic of Bunched Implications [19]. Again, the aim is
not simply to give a proof-theoretic interpretation of IMLL, which already exist,
but to define the logical constants in terms of proofs.

A compelling reading of IMLL is its resource interpretation, which is inher-
ently proof-theoretic—see Girard [11]. Accordingly, looking at (Inf), we expect
that ϕ being supported in a base B relative to some multiset of formulas Γ
means that the ‘resources’ garnered by Γ suffice to produce ϕ. We may express

370 A. V. Gheorghiu et al.

this by enriching the notion of support with multisets of resources P and U
combined with multiset union—denoted , . Then, that the resources garnered
by Γ are given to ϕ is captured by the following property:

Γ �P
B ϕ iff for any X ⊇ B and any U , if �U

X Γ, then �P,U
X ϕ

Naively, we may define ⊗ as a resource-sensitive version of (∧); that is,

�P
B ϕ ⊗ ψ iff there are P1,P2 such that P = (P1 ,P2), �P1

B ϕ, and �P2
B ψ

While the semantics is sound, proving completeness is more subtle. We aim to
follow the method by Sandqvist [30], and this clause is not suitable because the
following is not the case for IMLL:

Γ �ϕ ⊗ ψ iff there are Δ1,Δ2 such that Γ = (Δ1 ,Δ2), Δ1 �ϕ, and Δ2 �ψ

—a counter-example is the case where Γ is the (singleton) multiset consisting of
ϕ⊗ψ, which denies any non-trivial partition into smaller multisets. We therefore
take a more complex clause, which is inspired by the treatment of disjunction in
IPL, that enables us to prove completeness using the approach by Sandqvist [29].

There is an obvious difference between the B-eS for IPL and its standard
possible world semantics by Kripke [17]—namely, the treatment of disjunction
(∨) and absurdity (⊥). The possible world semantics has the clause,

M, x � ϕ ∨ ψ iff M, x � ϕ or M, x � ψ

If such a clause is taken in the definition of validity in a B-eS for IPL, it leads
to incompleteness —see, for example Piecha and Schroeder-Heister [20,21]. To
yield completeness, Sandqvist [30] uses a more complex form that is close to
the elimination rule for disjunction in natural deduction (see Gentzen [37] and
Prawitz [24])—that is,

�B ϕ ∨ ψ iff for any C such that B ⊆ C and any p ∈ A,
if ϕ �C p and ψ �C p, then �C p

One justification for the clauses is the principle of definitional reflection (DR)
(see Hallnäs [14,15] and Schroeder-Heister [31]):

whatever follows from all the premisses of an assertion also follows from
the assertion itself

Taking the perspective that the introduction rules are definitions, DR provides
an answer for the way in which the elimination rules follow. Similarly, it justifies
that the clauses for the logical constants take the form of their elimination rules.

Why does the clause for conjunction (∧) not take the form given by DR?
What DR gives is the generalized elimination rule,

ϕ ∧ ψ
[ϕ,ψ]

χ
χ

Proof-Theoretic Semantics for Intuitionistic Multiplicative Linear Logic 371

We may modify the B-eS for IPL by replacing (∧) with the following:

(∧∗) �B ϕ ∧ ψ iff for any C ⊇ B and any p ∈ A, if ϕ,ψ �C p, then �C p

We show in Sect. 2.3 that the result does indeed characterize IPL. Indeed, it is
easy to see that the generalized elimination rule and usual elimination rule for
∧ have the same expressive power.

Note, we here take the definitional view of the introduction rules for the
logical constants of IPL, and not of bases themselves, thus do not contradict the
distinctions made by Piecha and Schroeder-Heister [22,34].

Taking this analysis into consideration, we take the following definition of
the multiplicative conjunction that corresponds to the definitional reflection of
its introduction rule:

�P
B ϕ ⊗ ψ iff for any X ⊇ B, resources U, and p ∈ A,

if ϕ ,ψ �U
X p, then �P ,U

X p

We show in Sect. 4 that the result does indeed characterize IMLL.
The paper is structured as follows: in Sect. 2, we review the B-eS for IPL given

by Sandqvist [29]; in Sect. 3, we define IMLL and provide intuitions about its B-
eS; in Sect. 4, we formally define the B-eS for IMLL and explain its soundness and
completeness proofs. The paper ends in Sect. 5 with a conclusion and summary
of results.

2 Base-Extension Semantics for IPL

In this section, we review the B-eS for IPL given by Sandqvist [29]. In Sect. 2.1,
we give a terse but complete definition of the B-eS for IPL. In Sect. 2.2, we
summarize the completeness proof. Finally, in Sect. 2.3, we discuss a modification
of the treatment of conjunction. While IPL is not the focus of this paper, this
review provides intuition and motivates the B-eS for IMLL in Sect. 3. Specifically,
the analysis of the treatment of conjunction in IPL motivates the handling of
the multiplicative conjunction in IMLL.

Throughout this section, we fix a denumerable set of atomic propositions A,
and the following conventions: p, q, . . . denote atoms; P,Q, . . . denote finite sets
of atoms; ϕ,ψ, θ, . . . denote formulas; Γ,Δ, . . . denote finite sets of formulas.

We forego an introduction to IPL, which is doubless familiar—see van
Dalen [7]. For clarity, note that we distinguish sequents Γ � ϕ from judgements
Γ �ϕ that say that the sequent is valid in IPL.

2.1 Support in a Base

The B-eS for IPL begins by defining derivability in a base. A (properly) second-
level atomic rule—see Piecha and Schroeder-Heister [22,34]— is a natural deduc-
tion rule of the following form, in which q, q1, ..., qn are atoms and Q1,...,Qn are

372 A. V. Gheorghiu et al.

(possibly empty) sets of atoms:

q

[Q1]
q1 ...

[Qn]
qn

q

Importantly, atomic rules are taken per se and not closed under substitution.
They may be expressed inline as (Q1 � q1, . . . ,Qn � qn) ⇒ q—note, the axiom
case is the special case when the left-hand side is empty, ⇒ q. They are read
as natural deduction rules in the sense of Gentzen [37]; thus, ⇒ q means that
the atom q may be concluded whenever, while (Q1 � q1, . . . ,Qn � qn) ⇒ q means
that one may derive q from a set of atoms S if one has derived qi from S assuming
Qi for i = 1, ..., n.

A base is a set of atomic rules. We write B,C , . . . to denote bases, and ∅ to
denote the empty base (i.e., the base with no rules). We say C is an extension
of B if C is a superset of B, denoted C ⊇ B.

Definition 1 (Derivability in a Base). Derivability in a base B is the least
relation �B satisfying the following:

(Ref-IPL) S, q �B q.
(App-IPL) If atomic rule (Q1 � q1, . . . ,Qn � qn) ⇒ q is in B, and S,Qi �B qi

for all i = 1, . . . , n, then S �B q.

This forms the base case of the B-eS for IPL:

Definition 2 (Sandqvist’s Support in a Base). Sandqvist’s support in a
base B is the least relation �B defined by the clauses of Fig. 1. A sequent Γ � ϕ
is valid—denoted Γ �ϕ—iff it is supported in every base,

Γ �ϕ iff Γ �B ϕ holds for any B

Every base is an extension of the empty base (∅), therefore Γ �ϕ iff Γ �∅ ϕ.
Sandqvist [29] showed that this semantics characterizes IPL:

Theorem 1 (Sandqvist [29]). Γ �ϕ iff Γ �ϕ

Soundness—that is, Γ �ϕ implies Γ �ϕ—follows from showing that �respects
the rules of Gentzen’s [37] NJ; for example, Γ �ϕ and Δ �ψ implies Γ,Δ �ϕ∧ψ.
Completeness—that is, Γ � ϕ implies Γ � ϕ—is more subtle. We present the
argument in Sect. 2.2 as it motivates the work in Sect. 4.3.

2.2 Completeness of IPL

We require to show that Γ �ϕ implies that there is an NJ-proof witnessing Γ �ϕ.
To this end, we associate to each sub-formula ρ of Γ ∪ {ϕ} a unique atom r, and
construct a base N such that r behaves in N as ρ behaves in NJ. Moreover,
formulas and their atomizations are semantically equivalent in any extension
of N so that support in N characterizes both validity and provability. When
ρ ∈ A, we take r := ρ, but for complex ρ we choose r to be alien to Γ and ϕ.

Proof-Theoretic Semantics for Intuitionistic Multiplicative Linear Logic 373

Fig. 2. Atomic System N

Example 1. Suppose ρ := p ∧ q is a sub-formula of Γ ∪ {ϕ}. Associate to it a
fresh atom r. Since the principal connective of ρ is ∧, we require N to contain
the following rules:

p q
r

r
p

r
q

We may write (p ∧ q)� for r so that these rules may be expressed as follows:
p q

(p ∧ q)�
(p ∧ q)�

p
(p ∧ q)�

q �

Formally, given a judgement Γ �ϕ, to every sub-formula ρ associate a unique
atomic proposition ρ� as follows:

– if ρ �∈ A, then ρ� is an atom that does not occur in any formula in Γ ∪ {ϕ};
– if ρ ∈ A, then ρ� = ρ.

By unique we mean that (·)� is injective—that is, if ρ �= σ, then ρ� �= σ�. The
left-inverse of (·)� is (·)�, and the domain may be extended to the entirety of
A by identity on atoms not in the codomain of (·)�. Both functions act on sets
pointwise—that is, Σ� := {ϕ� | ϕ ∈ Σ} and P� := {p� | p ∈ P}. Relative to (·)�,
let N be the base containing the rules of Fig. 2 for any sub-formulas ρ and σ of
Γ and ϕ, and any p ∈ A.

Sandqvist [29] establishes three claims that deliver completeness:

(IPL-AtComp) Let S ⊆ A and p ∈ A and let B be a base: S �B p iff S �B p.
(IPL-Flat) For any sub-formula ξ of Γ ∪ {ϕ} and N ′ ⊇ N : �N ′ ξ� iff �N ′ ξ.
(IPL-Nat) Let S ⊆ A and p ∈ A: if S �N p, then S� �p�.

The first claim is completeness in the atomic case. The second claim is that ξ�

and ξ are equivalent in N —that is, ξ� �N ξ and ξ �N ξ�. Consequently,

Γ� �N ′ ϕ� iff Γ �N ′ ϕ

The third claim is the simulation statement which allows us to make the final
move from derivability in N to derivability in NJ.

Proof (Theorem 1—Completeness). Assume Γ � ϕ and let N be its bespoke
base. By (IPL-Flat), Γ� �N ϕ�. Hence, by (IPL-AtComp), Γ� �N ϕ�. Whence,
by (IPL-Nat), (Γ�)� �(ϕ�)�, i.e. Γ �ϕ, as required. �

374 A. V. Gheorghiu et al.

2.3 Base-Extension Semantics for IPL, Revisited

Goldfarb [13,23] has also given a (complete) proof-theoretic semantics for IPL,
but it mimics Kripke’s [17] semantics. What is interesting about the B-eS in
Sandqvist [29] is the way in which it is not a representation of the possible
world semantics. This is most clearly seen in (∨), which takes the form of the
‘second-order’ definition of disjunction—that is,

U + V = ∀X ((U → X) → (U → X) → X)

—see Girard [12] and Negri [41]. This adumbrates the categorical perspective on
B-eS given by Pym et al. [26]. Proof-theoretically, the clause recalls the elimina-
tion rule for the connective restricted to atomic conclusions,

ϕ ∨ ψ
[ϕ]
p

[ψ]
p

p

Dummett [9] has shown that such restriction in NJ is without loss of expressive
power. Indeed, all of the clauses in Fig. 1 may be regarded as taking the form of
the corresponding elimination rules.

The principle of definitional reflection, as described in Sect. 1 justifies this
phenomenon. According to this principle, an alternative candidate clause for
conjunction is as follows:

(∧∗) �∗B ϕ ∧ ψ iff for any C ⊇ B and any p ∈ A, if ϕ,ψ �∗C p, then �∗C p

Definition 3. The relation �∗B is defined by the clauses of Fig. 1 with (∧∗) in
place of (∧). The judgement Γ �∗ ϕ obtains iff Γ �∗B ϕ for any B.

The resulting semantics is sound and complete for IPL:

Theorem 2. Γ �∗ ϕ iff Γ �ϕ.

Proof. We assume the following: for arbitrary base B, and formulas ϕ,ψ, χ,

(IPL∗-Monotone) If �∗B ϕ, then �∗C ϕ for any C ⊇ B.
(IPL∗-AndCut) If �∗B ϕ ∧ ψ and ϕ,ψ �∗B χ, then �∗B χ.

The first claim follows easily from (Inf). The second is a generalization of (∧∗); it
follows by induction on the structure of χ—an analogous treatment of disjunction
was given by Sandqvist [29].

By Theorem 1, it suffices to show that Γ �∗ ϕ iff Γ �ϕ. For this it suffices
to show �∗B θ iff �B θ for arbitrary B and θ. We proceed by induction on the
structure of θ. Since the two relations are defined identically except in the case
when the θ is a conjunction, we restrict attention to this case.

First, we show �B θ1 ∧ θ2 implies �∗B θ1 ∧ θ2. By (∧∗), the conclusion is
equivalent to the following: for any C ⊇ B and p ∈ A, if θ1, θ2 �∗C p, then �∗C p.

Proof-Theoretic Semantics for Intuitionistic Multiplicative Linear Logic 375

Therefore, fix C ⊇ B and p ∈ A such that θ1, θ2 �∗C p. By (Inf), this entails
the following: if �∗C θ1 and �∗C θ2, then �∗C p. By (∧) on the assumption (i.e.,
�B θ1∧θ2), we obtain �B θ1 and �B θ2. Hence, by the induction hypothesis (IH),
�∗B θ1 and �∗B θ2. Whence, by (IPL∗-Monotone), �∗C θ1 and �∗C θ2. Therefore,
�∗C p. We have thus shown �∗B θ1 ∧ θ2, as required.

Second, we show �∗B θ1∧θ2 implies �B θ1∧θ2. It is easy to see that θ1, θ2 �∗B θi

obtains for i = 1, 2. Applying (IPL∗-AndCut) (setting ϕ = θ1, ψ = θ2) once with
χ = θ1 and once with χ = θ2 yields �∗B θ1 and �∗B θ2. By the IH, �B θ1 and
�B θ2. Hence, �B θ1 ∧ θ2, as required. �

A curious feature of the new semantics is that the meaning of the context-
former (i.e., the comma) is not interpreted as ∧; that is, defining the context-
former as

�∗B Γ,Δ iff �∗B Γ and �∗B Δ

we may express (Inf)

Γ �∗B ϕ iff for any C ⊇ B, if �∗C Γ, then �∗C ϕ

The clause for contexts is not the same as the clause for ∧ in the new semantics.
Nonetheless, as shown in the proof of Theorem 2, they are equivalent at every
base—that is, �∗B ϕ,ψ iff �∗B ϕ ∧ ψ for any B.

This equivalence of the two semantics yields the following:

Corollary 1. For arbitrary base B and formula ϕ, �B ϕ iff, for any X ⊇ B
and every atom p, if ϕ �X p, then �X p.

The significance of this result is that we see that formulas in the B-eS are
precisely characterized by their support of atoms.

3 Intuitionistic Multiplicative Linear Logic

Having reviewed the B-eS for IPL, we turn now to intuitionistic multiplicative
linear logic (IMLL). We first define the logic and then consider the challenges
of giving a B-eS for it. This motivates the technical work in Sect. 4. Henceforth,
we abandon the notation of the previous section as we do not need it and may
recycle symbols and conventions.

Fix a countably infinite set A of atoms.

Definition 4 (Formula). The set of formulas (FormIMLL) is defined by the
following grammar:

ϕ,ψ:: = p ∈ A | ϕ ⊗ ψ | I | ϕ � ψ

We use p, q, . . . for atoms and ϕ,ψ, χ, . . . for formulas. In contrast to the
work on IPL, collections of formulas in IMLL are more typically multisets. We
use P,Q, . . . for finite multisets of atoms, and Γ,Δ, . . . to denote finite multisets
of formulas.

376 A. V. Gheorghiu et al.

Fig. 3. The Sequential Natural Deduction System NIMLL for IMLL

We use [·] to specify a multiset; for example, [ϕ,ϕ, ψ] denotes the multiset
consisting of two occurrence of ϕ and one occurrences of ψ. The empty multiset
(i.e., the multiset with no members) is denoted ∅. The union of two multisets Γ
and Δ is denoted Γ ,Δ. We may identify a multiset containing one element with
the element itself; thus, we may write ψ ,Δ instead of [ψ] ,Δ to denote the union
of multiset Δ and the singleton multiset [ψ]. Thus, when no confusion arises, we
may write ϕ1 , . . . ,ϕn to denote [ϕ1, ..., ϕn].

Definition 5 (Sequent). A sequent is a pair Γ � ϕ in which Γ is a multiset of
formulas and ϕ is a formula.

We characterize IMLL by proof in a natural deduction system. Since it is a
substructural logic, we write the system in the format of a sequent calculus as
this represents the context management explicitly. We assume general familiarity
with sequent calculi—see, for example, Troelstra and Schwichtenberg [41].

Definition 6 (System NIMLL). The sequential natural deduction system for
IMLL, denoted NIMLL, is given by the rules in Fig. 3.

A sequent Γ � ϕ is a consequence of IMLL—denoted Γ � ϕ—iff there is a
NIMLL-proof of it.

One may regard IMLL as IPL without the structural rules of weakening and
contraction—see Došen [8]. In other words, adding the following rules to NIMLL
recovers a sequent calculus for IPL:

Γ � ϕ

Δ ,Γ � ϕ
w

Δ ,Δ ,Γ � ϕ

Δ ,Γ � ϕ
c

To stay close to the work in Sect. 2, it is instructive to consider the natu-
ral deduction presentation, too. The rule figures may be the same, but their
application is not; for example,

ϕ ψ

ϕ ⊗ ψ
means if Γ � ϕ and Δ � ψ, then Γ ,Δ � ϕ ⊗ ψ

(i.e., not ‘if Γ � ϕ and Γ � ψ, then Γ � ϕ ⊗ ψ’)

Here, it is important that the context are multisets, not as sets.

Proof-Theoretic Semantics for Intuitionistic Multiplicative Linear Logic 377

The strict context management in IMLL yields the celebrated ‘resource inter-
pretations’ of Linear Logic—see Girard [11]. The leading example of which is,
perhaps, the number-of-uses reading in which a proof of a formula ϕ � ψ
determines a function that uses its arguments exactly once. This reading is,
however, entirely proof-theoretic and is not expressed in the truth-functional
semantics of IMLL—see Girard [11], Allwein and Dunn [1], and Coumans et
al. [6]. Though these semantics do have sense of ‘resource’ it is not via the
number-of-uses reading, but instead denotational in the sense of the treatment
of resources in the truth-functional semantics of the logic of Bunched Implica-
tions [19]. The number-of-uses reading is, however, reflected in the categorical
semantics—see Seely [35] and Biermann [3,4].

How do we render support sensitive to the resource reading? The subtlety is
that for Γ �ϕ (where Γ �= ∅), we must somehow transmit the resources captured
by Γ to ϕ. From Corollary 1, we see that in B-eS the content of a formula is
captured by the atoms it supports. Therefore, we enrich the support relation
with an multiset of atoms P ,

Γ �P
B ϕ iff for any X ⊇ B and any U, if �U

X Γ, then �P,U
X ϕ

where

�U
B Γ1 ,Γ2 iff there are U1 and U2 such that U = (U1 ,U2), �U1

X Γ1, and �U2
X Γ2

This completes the background on IMLL.

4 Base-extension Semantics for IMLL

In this section, we give a B-eS for IMLL. It is structured as follows: first, we
define support in a base in Sect. 4.1; second, we prove soundness in Sect. 4.2;
finally, we prove completeness in Sect. 4.3.

4.1 Support in a Base

The definition of the B-eS proceeds in line with that for IPL (Sect. 2) while
taking substructurality into consideration.

Definition 7 (Atomic Sequent). An atomic sequent is a pair P � p in which
P is a multiset of atoms and q is an atom.

Definition 8 (Atomic Rule). An atomic rule is a pair P ⇒ p in which P is
a (possibly empty) finite set of atomic sequents and p in an atom.

Definition 9 (Base). A base B is a (possibly infinite) set of atomic rules.

Definition 10 (Derivability in a Base). The relation �B of derivability in
B is the least relation satisfying the following:

(Ref) p �B p

378 A. V. Gheorghiu et al.

Fig. 4. Base-extension Semantics for IMLL

(App) If Si ,Pi �B pi for i = 1, . . . , n and (P1 � p1, . . . ,Pn � pn) ⇒ p ∈ B, then
S1 , . . . ,Sn �B p.

Note the differences between Definition 1 and Definition 10: first, in (Ref), no
redundant atoms are allowed to appear, while in (Ref-IPL) they may; second,
in (App), the multisets S1,...,Sn are collected together as a multiset, while in
(App-IPL), there is one set. These differences reflect the fact in the multiplicative
setting that ‘resources’ can neither be discharged nor shared.

Definition 11 (Support). That a sequent Γ � ϕ is supported in the base
B using resources S—denoted Γ �S

B ϕ—is defined by the clauses of Fig. 4 in
which Γ and Δ are non-empty finite multisets of formulas. The sequent Γ � ϕ is
supported using resources S—denoted Γ �S ϕ—iff Γ �S

B ϕ for any base B. The
sequent Γ � ϕ is valid—denoted Γ � ϕ—iff Γ � ϕ is supported using the empty
multiset of resources (i.e., Γ �∅ ϕ).

It is easy to see that Fig. 4 is an inductive definition on a structure of formulas
that prioritizes conjunction (⊗) over implication (�)—an analogous treatment
in IPL with disjunction (∨) prioritized over implication (→) has been given by
Sandqvist [29]. As explained in Sect. 3, the purpose of the multisets of atoms
S in the support relation �S

B is to express the susbtructurality of the logical
constants. The naive ways of using multisets of formulas rather than multisets
of atoms—for example, Γ �Δ

B ϕ iff �Γ,Δ
B ϕ—results in impredicative definitions

of support.
We read (Inf) as saying that Γ �S

B ϕ (for Γ �= ∅) means, for any extension
X of B, if Γ is supported in X with some resources U (i.e. �U

X Γ), then ϕ is
also supported by combining the resources U with the resources S (i.e., �S ,U

X ϕ).
The following observation on the monotonicity of the semantics with regard

to base extensions follows immediately by unfolding definitions:

Proposition 1. If Γ �S
B ϕ and C ⊇ B, then Γ �S

C ϕ.

From this proposition we see the following: Γ �S ϕ iff Γ �S
∅

ϕ, and Γ � ϕ iff
Γ �∅

∅
ϕ. As expected, we do not have monotonicity on resources—that is, Γ �S ϕ

Proof-Theoretic Semantics for Intuitionistic Multiplicative Linear Logic 379

does not, in general, imply Γ �S ,T ϕ for arbitrary T. This exposes the different
parts played by bases and the resources in the semantics: bases are the setting
in which a formula is supported, resources are tokens used in that setting to
establish the support.

A distinguishing aspect of support is the structure of (Inf). In one direction,
it is merely cut, but in the other it says something stronger. The completeness
argument will go through the atomic case (analogous to the treatment of IPL in
Sect. 2.2), and the following proposition suggests that the setup is correct:

Proposition 2. The following two propositions are equivalent for arbitrary base
B, multisets of atoms P,S, and atom q, where we assume P = [p1, . . . ,pn]:

1. P ,S �B q.
2. for any X ⊇ B and multisets of atoms T1, . . . ,Tn, if Ti �X pi holds for all

i = 1, . . . , n, then T1 , . . . ,Tn ,S �X q.

It remains to prove soundness and completeness.

4.2 Soundness

Theorem 3 (Soundness). If Γ � ϕ, then Γ � ϕ.

The argument follows a typical strategy of showing that the semantics respects
the rules of NIMLL—that is, for any Γ,Δ, ϕ, ψ, and χ:

(Ax) ϕ � ϕ
(�I) If Γ, ϕ � ψ, then Γ � ϕ � ψ
(�E) If Γ � ϕ � ψ and Δ � ϕ, then Γ ,Δ � ψ
(⊗I) If Γ � ϕ and Δ � ψ, then Γ ,Δ � ϕ ⊗ ψ
(⊗E) If Γ � ϕ ⊗ ψ and Δ ,ϕ ,ψ � χ, then Γ ,Δ � χ
(II) � I
(IE) If Γ � χ and Δ � I, then Γ ,Δ � χ

These follow quickly from the fact that the clauses of each connective in Fig. 4
takes the form of its elimination rules. The only subtle cases are (⊗E) and (IE).

To show (IE), suppose Γ � χ and Δ � I. We require to show Γ ,Δ � χ. By
(Inf), we fix some base B and multisets of atoms P and Q such that �P

B Γ and
�Q
B Δ. It remains to verify �P,Q

B χ. When χ is atomic, this follows immediately
from �P

B χ and �Q
B I by (I). To handle non-atomic χ, we require the following:

Lemma 1. For arbitrary base B, multisets of atoms S,T, and formula χ, if 1.
�S
B I, 2. �T

B χ, then 3. �S,T
B χ.

This lemma follows by induction on the structure of χ, with the base case given
by (I). One cannot use this general form to define I as it would result in an
impredicative definition of support.

Similarly, we require the following to prove (⊗E):

380 A. V. Gheorghiu et al.

Fig. 5. Atomic System M

Lemma 2. For arbitrary base B, multisets of atoms S,T, and formulas ϕ,ψ, χ,
if 1. �S

B ϕ ⊗ ψ, 2. ϕ ,ψ �T
B χ, then 3. �S,T

B χ.

With these results, we may prove soundness:

Proof (Theorem 3 —sketch). We demonstrate (⊗I) and (⊗E).
(⊗I). Assume Γ � ϕ and Δ � ψ. We require to show Γ ,Δ � ϕ ⊗ ψ. By (Inf),

the conclusion is equivalent to the following: for any base B, for any multisets
of atoms T and S , if �T

B Γ and �S
B Δ, then �T ,S

B ϕ ⊗ ψ. So we fix some B and
T, S such that �T

B Γ and �S
B Δ, and show that �T,S

B ϕ ⊗ ψ. By (⊗), it suffices to
show, for arbitrary C ⊇ B, multiset of atoms U, and atom p, if ϕ ,ψ �U

C p, then
�T,S,U
C p. So we fix some C ⊇ B, multiset of atoms U, and atom p such that

ϕ ,ψ �U
C p, and the goal is to show that �T,S,U

C p. From the assumptions Γ � ϕ

and Δ � ψ, we see that �S,T
B ϕ , ψ obtains. Therefore, by monotonicity, �S,T

C ϕ ,ψ
obtains. By (Inf), this suffices for ϕ ,ψ �U

C p, to yield �T ,S,U
C p, as required.

(⊗E). Assume Γ � ϕ ⊗ ψ and Δ ,ϕ ,ψ � χ. We require to show Γ ,Δ � χ. By
(Inf), it suffices to assume �S

B Γ and �T
B Δ and show that �S,T

B χ. First, Γ � ϕ⊗ψ
together with �S

B Γ entails that �S
B ϕ ⊗ ψ. Second, by (Inf), Δ , ϕ , ψ � χ is

equivalent to the following:

for any X and P,Q, if �P
X Δ and �Q

X ϕ ,ψ, then �P,Q
X χ

Since �T
B Δ, setting P := T and Q := S, yields,

for any X ⊇ B, if �S
X ϕ ,ψ, then �T,S

X χ (1)

Now, given �S
B ϕ ⊗ ψ and (1), we can apply Lemma 2 and conclude �S,T

B χ. �

4.3 Completeness

Theorem 4 (Completeness). If Γ � ϕ, then Γ � ϕ.

The argument follows the strategy used by Sanqvist [29] for IPL—see Sect. 2.2.
We explain the main steps.

Let Ξ be the set of all sub-formulas of Γ ∪ {ϕ}. Let (·)� : Ξ → A be an
injection that is fixed on Ξ ∩ A—that is, p� = p for p ∈ Ξ ∩ A. Let (·)� be the
left-inverse of (·)�—that is p� = χ if p = χ�, and p� = p if p is not in the image

Proof-Theoretic Semantics for Intuitionistic Multiplicative Linear Logic 381

of (·)�. Both act on multisets of formulas pointwise; that is, Δ� := [δ� | δ ∈ Δ]
and P� := [p� | p ∈ P].

We construct a base M such that ϕ� behaves in M as ϕ behaves in NIMLL.
The base M contains all instances of the rules of Fig. 5 when σ and τ range over
Ξ, and p ranges over A. We illustrate how M works with an example.

Example 2. Consider the sequent Γ � ϕ where Γ = [p1 ,p2 ,p1 ⊗ p2 � q,p1] and
ϕ = q ⊗ p1. By definition, Ξ := {p1,p2,p1 ⊗ p2 � q,p1 ⊗ p2, q, q ⊗ p1}, and,
therefore, the image of (·)� is {p1,p2, q, (p1 ⊗ p2 � q)�

, (p1 ⊗ p2)
�
, (q ⊗ p1)

�}.
That Γ � ϕ obtains is witnessed by the following NIMLL-proof:

axp1 � p1
axp2 � p2 ⊗Ip1 ,p2 � p1 ⊗ p2

ax
p1 ⊗ p2 � q � p1 ⊗ p2 � q

�Ep1 ,p2 ,p1 ⊗ p2 � q � q axp1 � p1 ⊗Ip1 ,p2 ,p1 ⊗ p2 � q ,p1 � q ⊗ p1

The base M is designed so that we may simulate the rules of NIMLL; for
example, the ⊗E is simulated by using (App) on ⊗�

E,

(∅ � (σ ⊗ τ)�
, σ� ,τ � � γ�) ⇒ γ� means if Δ� �M (σ ⊗ τ)� and Σ� ,σ� ,τ � �M γ�

then Δ� ,Σ� �M γ�

In this sense, the proof above is simulated by the following steps:

(i) By (Ref), (1) p1 �M p1; (2) p2 �M p2; (3) (p1 ⊗ p2 � q)� �M (p1 ⊗ p2 � q)�

(ii) By (App), using (⊗I) on (1) and (2), we obtain (4) p1 ,p2 �M (p1 ⊗ p2)
�

(iii) By (App), using (�E)� on (3) and (4), we obtain (5) (p1 ⊗ p2 � q)� , p1 ,
p2 �M q

(iv) By (App), using (⊗I)
� on (1) and (5). we have (p1 ⊗ p2 � q)� ,p1 ,p2 ,p1 �M

(q ⊗ p1)
�.

Significantly, steps (i)–(iv) are analogues of the steps in the proof tree above. �

Theorem 4 (Completeness) follows from the following three observations,
which are counterparts to (IPL-AtComp), (IPL-Flat), and (IPL-Nat) from
Sect. 2.2:

(IMLL-AtComp) For any B, P, S, and q, P ,S �B q iff P �S
B q.

(IMLL-Flat) For any ξ ∈ Ξ, X ⊇ M and U, �U
X ξ� iff �U

X ξ.
(IMLL-Nat) For any P and q, if P �M q then P� � q�.

(IMLL-AtComp) follows from Proposition 2 and is the base case of complete-
ness. (IMLL-Flat) formalizes the idea that every formula ξ appearing in Γ � ϕ
behaves the same as ξ� in any base extending M . Consequently, Γ� �M ϕ� iff
Γ �M ϕ. (IMLL-Nat) intuitively says that M is a faithful atomic encoding of
NIMLL, witnessed by (·)�. This together with (IMLL-Flat) guarantee that every
ξ ∈ Ξ behaves in M as ξ� in M , thus as

(
ξ�

)�
= ξ in NIMLL.

382 A. V. Gheorghiu et al.

Proof. (Theorem 4 —Completeness). Assume Γ � ϕ and let M be the bespoke
base for Γ � ϕ. By (IMLL-Flat), Γ� �∅

M ϕ�. Therefore, by (IMLL-AtComp), we

have Γ� �M ϕ�. Finally, by (IMLL-Nat),
(
Γ�

)� � (
ϕ�

)�
, namely Γ �ϕ. �

5 Conclusion

Proof-theoretic semantics (P-tS) is the paradigm of meaning in logic based on
proof, as opposed to truth. A particular form of P-tS is base-extension semantics
(B-eS) in which one defines the logical constants by means of a support relation
indexed by a base—a system of natural deduction for atomic propositions—
which grounds the meaning of atoms by proof in that base. This paper provides
a sound and complete base-extension semantics for intuitionistic multiplicative
linear logic (IMLL).

The B-eS for IPL given by Sandqvist [29] provides a strategy for the problem.
The paper begins with a brief but instructive analysis of this work that reveals
definitional reflection (DR) as an underlying principle delivering the semantics;
accordingly, in Sect. 2.3, the paper modifies the B-eS for IPL to strictly adhere to
DR and proves soundness and completeness of the result. Moreover, the analysis
highlights that essential to B-eS is a transmission of proof-theoretic content: a
formula ϕ is supported in a base B relative to a context Γ iff, for any extension
C of B, the formula ϕ is supported in C whenever Γ is supported in C .

With this understanding of B-eS of IPL, the paper gives a ‘resource-sensitive’
adaptation by enriching the support relation to carry a multiset of atomic
‘resources’ that enable the transmission of proof-theoretic content. This captures
the celebrated ‘resource reading’ of IMLL which is entirely proof-theoretic—see
Girard [11]. The clauses of the logical constants are then delivered by DR on
their introduction rules. Having set up the B-eS for IMLL in this principled way,
soundness and completeness follow symmetrically to the preceding treatment of
IPL.

To date, P-tS has largely been restricted to classical and intuitionistic propo-
sitional logics. This paper provides the first step toward a broader analysis. In
particular, the analysis in this paper suggests a general methodology for deliver-
ing B-eS for other substructural logics such as, inter alia, (intuitionistic) Linear
Logic [11] (LL) and the logic of Bunched Implications [19] (BI). While it is
straightforward to add the additive connectives of LL, with the evident seman-
tic clauses following IPL and with the evident additional cases in the proofs, it
is less apparent how to handle the exponentials. For BI, the primary challenge
is to appropriately account for the bunched structure of contexts, and to enable
and confine weakening and contraction to the additive context-former.

Developing the P-tS for substructural logics is valuable because of their
deployment in the verification and modelling of systems. Significantly, P-tS has
shown the be useful in simulation modelling—see, for example, Kuorikoski and
Reijula [16]. Of course, more generally, we may ask what conditions a logic must
satisfy in order to provide a B-eS for it.

Proof-Theoretic Semantics for Intuitionistic Multiplicative Linear Logic 383

Acknowledgements. We are grateful to Yll Buzoku, Diana Costa, Sonia Marin, and
Elaine Pimentel for many discussion on the P-tS for substructural logics, and to Jonte
Deakin for his careful reading of and feedback on an earlier draft of this article. Simi-
larly, we would like to thank the reviewers for their helpful comments and remarks.

References

1. Allwein, G., Dunn, J.M.: Kripke models for linear logic. J. Symbolic Logic 58(2),
514–545 (1993)

2. Beth, E.W.: Semantic construction of intuitionistic logic. Indag. Math. 17(4), 327–
338 (1955)

3. Bierman, G.M.: What is a categorical model of intuitionistic linear logic? In:
Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 78–93.
Springer, Heilderberg (1995). https://doi.org/10.1007/bfb0014046

4. Bierman, G.M.: On Intuitionistic Linear Logic. Ph.D. thesis, University of Cam-
bridge (1994). available as Computer Laboratory Technical report 346

5. Brandom, R.: Articulating Reasons: An Introduction to Inferentialism. Harvard
University Press, Cambridge (2000)

6. Coumans, D., Gehrke, M., van Rooijen, L.: Relational semantics for full linear
logic. J. Appl. Log. 12(1), 50–66 (2014). https://doi.org/10.1016/j.jal.2013.07.005

7. van Dalen, D.: Logic and Structure, 5th edn. Universitext, Springer (2013)
8. Došen, K.: A Historical Introduction to Substructural Logics. In: Schroeder-

Heister, P.J., Došen, K. (eds.) Substructural Logics. Oxford University Press (1993)
9. Dummett, M.: The Logical Basis of Metaphysics. Harvard University Press, Cam-

bridge (1991)
10. Gheorghiu, A.V., Pym, D.J.: From Proof-theoretic Validity to Base-extension

Semantics for Intuitionistic Propositional Logic. https://arxiv.org/abs/2210.05344.
Accessed 08 Feb 2023

11. Girard, J.Y.: Linear Logic: its Syntax and Semantics. In: Girard, J.Y., Lafont,
Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 1–42. London Mathematical
Society Lecture Note Series, Cambridge University Press (1995)

12. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press,
Cambridge (1989)

13. Goldfarb, W.: On Dummett’s “proof-theoretic justifications of logical laws”. In:
Piecha, T., Schroeder-Heister, P. (eds.) Advances in Proof-Theoretic Semantics.
TL, vol. 43, pp. 195–210. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-22686-6 13

14. Hallnäs, L.: Partial inductive definitions. Theoret. Comput. Sci. 87(1), 115–142
(1991)

15. Hallnäs, L.: On the proof-theoretic foundation of general definition theory. Synthese
148, 589–602 (2006)

16. Jaakko Kuorikoski, S.R.: Making It Count: An Inferentialist Account of Com-
puter Simulation (2022) https://doi.org/10.31235/osf.io/v9bmr, https://osf.io/
preprints/socarxiv/v9bmr. Accessed Jan 2023

17. Kripke, S.A.: Semantical analysis of intuitionistic logic I. In: Studies in Logic and
the Foundations of Mathematics, vol. 40, pp. 92–130. Elsevier (1965)

18. Makinson, D.: On an inferential semantics for classical logic. Log. J. IGPL 22(1),
147–154 (2014)

19. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symbolic Logic
5(2), 215–244 (1999)

https://doi.org/10.1007/bfb0014046
https://doi.org/10.1016/j.jal.2013.07.005
https://arxiv.org/abs/2210.05344
https://doi.org/10.1007/978-3-319-22686-6_13
https://doi.org/10.1007/978-3-319-22686-6_13
https://doi.org/10.31235/osf.io/v9bmr
https://osf.io/preprints/socarxiv/v9bmr
https://osf.io/preprints/socarxiv/v9bmr

384 A. V. Gheorghiu et al.

20. Piecha, T.: Completeness in proof-theoretic semantics. In: Piecha, T., Schroeder-
Heister, P. (eds.) Advances in Proof-Theoretic Semantics. TL, vol. 43, pp. 231–251.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-22686-6 15

21. Piecha, T., de Campos Sanz, W., Schroeder-Heister, P.: Failure of completeness in
proof-theoretic semantics. J. Philos. Log. 44(3), 321–335 (2015)

22. Piecha, T., Schroeder-Heister, P.: The definitional view of atomic systems in proof-
theoretic semantics. In: The Logica Yearbook 2016, pp. 185–200. College Publica-
tions London (2017)

23. Piecha, T., Schroeder-Heister, P.: Incompleteness of intuitionistic propositional
logic with respect to proof-theoretic semantics. Stud. Logica. 107(1), 233–246
(2019)

24. Prawitz, D.: Natural Deduction: A Proof-Theoretical Study. Dover Publications,
New York (1965)

25. Prawitz, D.: Ideas and results in proof theory. In: Studies in Logic and the Foun-
dations of Mathematics, vol. 63, pp. 235–307. Elsevier (1971)

26. Pym, D.J., Ritter, E., Robinson, E.: Proof-theoretic Semantics in Sheaves
(Extended Abstract). In: Proceedings of the Eleventh Scandinavian Logic Sym-
posium – SLSS 11 (2022)

27. Sandqvist, T.: An Inferentialist Interpretation of Classical Logic. Ph.D. thesis,
Uppsala University (2005)

28. Sandqvist, T.: Classical logic without bivalence. Analysis 69(2), 211–218 (2009)
29. Sandqvist, T.: Base-extension semantics for intuitionistic sentential logic. Logic J.

IGPL 23(5), 719–731 (2015)
30. Sandqvist, T.: Hypothesis-discharging rules in atomic bases. In: Wansing, H. (ed.)

Dag Prawitz on Proofs and Meaning, vol. 7, pp. 313–328. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-11041-7 14

31. Schroeder-Heister, P.: Rules of definitional reflection. In: Logic in Computer Science
– LICS, pp. 222–232. IEEE (1993)

32. Schroeder-Heister, P.: Validity concepts in proof-theoretic semantics. Synthese
148(3), 525–571 (2006)

33. Schroeder-Heister, P.: Proof-theoretic versus model-theoretic consequence. In:
Pelis, M. (ed.) The Logica Yearbook 2007. Filosofia (2008)

34. Piecha, T., Schroeder-Heister, P.: Atomic systems in proof-theoretic semantics:
two approaches. In: Redmond, J., Pombo Martins, O., Nepomuceno Fernández, Á.
(eds.) Epistemology, Knowledge and the Impact of Interaction. LEUS, vol. 38, pp.
47–62. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26506-3 2

35. Seely, R.A.G.: Linear logic, ∗-autonomous categories and cofree coalgebras. In:
Categories in Computer Science and Logic, vol. 92. American Mathematical Society
(1989)

36. Stafford, W.: Proof-theoretic semantics and inquisitive logic. J. Philos. Logic 50,
1199–1229 (2021)

37. Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. North-Holland Pub-
lishing Company, Amsterdam (1969)

38. Tarski, A.: O pojȩciu wynikania logicznego. Przegla̧d Filozoficzny 39 (1936)
39. Tarski, A.: On the concept of following logically. Hist. Philos. Logic 23(3), 155–196

(2002). https://doi.org/10.1080/0144534021000036683
40. Tennant, N.: Entailment and Proofs. Proc. Aristot. Soc. 79, 167–189 (1978)
41. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University

Press, Cambridge (2000)

https://doi.org/10.1007/978-3-319-22686-6_15
https://doi.org/10.1007/978-3-319-11041-7_14
https://doi.org/10.1007/978-3-319-26506-3_2
https://doi.org/10.1080/0144534021000036683

Proof-Theoretic Semantics for Intuitionistic Multiplicative Linear Logic 385

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

The MaxSAT Problem in the Real-Valued
MV-Algebra

Zuzana Haniková1(B) , Felip Manyà2 , and Amanda Vidal2

1 Institute of Computer Science of the Czech Academy of Sciences,
Prague, Czech Republic

zuzana@cs.cas.cz
2 Artificial Intelligence Research Institute (IIIA, CSIC), Bellaterra, Spain

{felip,amanda}@iiia.csic.es

Abstract. This work addresses the maximum satisfiability (MaxSAT)
problem for a multiset of arbitrary formulas of the language of proposi-
tional Łukasiewicz logic over the MV-algebra whose universe is the real
interval [0,1]. First, we reduce the MaxSAT problem to the SAT problem
over the same algebra. This solution method sets a benchmark for other
approaches, allowing a classification of the MaxSAT problem in terms of
metric reductions introduced by Krentel. We later define an alternative
analytic method with preprocessing in terms of a Tseitin transformation
of the input, followed by a reduction to a system of linear constraints,
in analogy to the earlier approaches of Hähnle and Olivetti. We discuss
various aspects of these approaches to solving the problem.

Keywords: Maximum satisfiability · Satisfiability · Łukasiewicz
logic · MV-algebra

1 Introduction

Satisfiability is a semantic problem: it relates not just to a logic (here, the infinite-
valued Łukasiewicz logic), but to a semantics interpreting that logic (here, the
MV-algebra on the real unit interval with natural order, called “standard MV-
algebra” and denoted [0, 1]Ł).

A propositional formula ϕ(x1, . . . , xn) of the language of Łukasiewicz logic is
satisfiable in an MV-algebra A provided there is an assignment of elements of
the universe of A to x1, . . . , xn that yields the value 1A (i.e., the top element in
the lattice order of A). This definition determines, for a given MV-algebra A, a
unique set of its satisfiable formulas SAT(A). The satisfiability notion extends
immediately to a finite list of formulas 〈ϕ1, . . . , ϕm〉, which is satisfiable in A if
and only if so is the conjunction of the formulas on the list.1

1 It is important to specify which MV-algebra is considered, since for many infinite
MV-algebras A, and even many subalgebras of [0, 1]Ł, the set SAT(A) is distinct
from SAT([0, 1]Ł) [16, Theorem 6.6]. Some extant works on satisfiability refer to
“infinite-valued Łukasiewicz logic” while in fact working with the algebra [0, 1]Ł.

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 386–404, 2023.
https://doi.org/10.1007/978-3-031-43513-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_21&domain=pdf
http://orcid.org/0000-0003-3252-4370
http://orcid.org/0000-0002-8366-1458
http://orcid.org/0000-0001-6730-6491
https://doi.org/10.1007/978-3-031-43513-3_21

The MaxSAT Problem in the Real-Valued MV-Algebra 387

This paper works with the standard MV-algebra [0, 1]Ł without mentioning
it explicitly from now on; thus we write SAT for SAT([0, 1]Ł) and likewise for
the MaxSAT problems considered in this paper. If another algebra, distinct from
[0, 1]Ł, is considered, it will be indicated explicitly.

The focus of this paper is not on satisfiability, but on maximum satisfiability,
an optimization problem (with a natural decision version): given a multiset (i.e., a
list) of arbitrary formulas of the language of Łukasiewicz logic, find the maximum
number among them that can be satisfied under a single assignment, over all
assignments. The formulas are not required to be in a normal form. It has been
recognized early on by Mundici [22] that formulas of Łukasiewicz logic are a
suitable device for counting ; his paper gives a reduction of the (decision version
of) the Boolean MaxSAT problem to the problem SAT; see also [25].

The MaxSAT problem for a list of arbitrary formulas over the three-element
MV-chain has been addressed in [19], using semantic tableaux; the approach
generalizes to other finite MV-chains, but not to MV-chains with infinitely many
elements. Earlier results in satisfiability go back to Mundici’s proof of the NP-
completeness of the SAT problem, obtained by bounding the denominators of a
satisfying assignment. This line of research was continued in [1,2], see also [27].

Our main contribution consists in showing that the MaxSAT problem can be
reduced to the SAT problem, in Sect. 3, and can then be used as a benchmark to
assess the analytic method in Sect. 4; a similar analysis could then be performed
with any other calculi for the maximum satisfiability problem.

This paper is structured as follows. Section 2 defines the problem and intro-
duces technical tools. Section 3 gives a method for solving the MaxSAT problem
in [0, 1]Ł based on a Cook reduction of MaxSAT to the SAT problem. Section 4
outlines an analytic method with preprocessing via a Tseitin transformation,
using a variant of the approach of [12,24], where each branch of a tableau tree
ends with solving a system of linear constraints. The method is proved sound
and complete. Eliminating the branching of the tree can also be achieved, using
established tools.

2 Problem Formulation and Preliminaries

The language of propositional Łukasiewicz logic Ł, denoted L(Ł), has two basic
connectives: ¬ (negation, unary) and ⊕ (strong disjunction, binary). Other con-
nectives are definable: 1 is x⊕¬x; 0 is ¬1; x�y is ¬(¬x⊕¬y) (strong conjunction);
x → y is ¬x ⊕ y; x ↔ y is (x → y) � (y → x); x ∨ y is (x → y) → y (weak
disjunction); and x ∧ y is ¬(¬x ∨ ¬y) (weak conjunction).

Well-formed formulas of L(Ł) are built up from an infinite set of propositional
variables Var = {xi}i∈N using the connectives of L(Ł). The basic language is
a point of reference for complexity considerations; other connectives are used
as shortcuts. If ϕ is a formula of L(Ł) in the basic language, |ϕ| denotes the
number of occurrences of propositional variables in ϕ. Given that ¬¬α ↔ α is
a theorem of Ł for any formula α ∈ L(Ł), we will assume double negation does
not occur in formulas. With this convention in place, the number of occurrences
of connectives in ϕ is bounded by 2|ϕ|. Thus |ϕ| is a good notion of length of ϕ.
Moreover ||ϕ|| denotes the number of distinct subformulas of ϕ.

388 Z. Haniková et al.

MV-algebras can be introduced using Mundici’s Γ -functor [10,20]: any MV-
algebra is isomorphic to Γ (G, u) for a lattice-ordered Abelian group G with a
strong unit u (in particular, define x ⊕ y = u ∧ (x + y) and ¬x = u − x for
x, y ∈ G; then Γ (G, u) = 〈[0, u],⊕,¬〉 is an MV-algebra). The standard MV-
algebra [0, 1]Ł is Γ (R, 1), interpreting the basic connectives in [0, 1] as follows:
for any assignment v, v(¬ϕ) = 1−v(ϕ) and v(ϕ⊕ψ) = min(1, v(ϕ)+v(ψ)). Any
assignment to variables of ϕ in language L(Ł) extends to all its subformulas in the
interpretation provided by [0, 1]Ł; this also determines the notion of satisfiability
in [0, 1]Ł and the set of satisfiable formulas of [0, 1]Ł, denoted SAT.

The interpretations of ⊕, �, ∧ and ∨ are commutative and associative, so
one can write x1 ⊕ · · · ⊕ xn without worrying about order and parentheses. We
write xn for x � · · · � x∨ ∧{ ∧

n occurrences

and nx for x ⊕ · · · ⊕ x∨ ∧{ ∧
n occurrences

. Also, ∨ and ∧ distribute over

each other and � distributes over ∨.
Unlike the Boolean MaxSAT problem over the two-element Boolean algebra,

here we work with arbitrary formulas of L(Ł). We formulate both the optimiza-
tion and the decision version of the MaxSAT problem.

MaxSAT-OPT
Instance: multiset 〈ϕ1, . . . , ϕm〉 of formulas of L(Ł) in variables {x1, . . . , xn}.
Output: the maximum integer k ≤ m such that there is an assignment v to
{x1, . . . , xn} that satisfies at least k formulas in the multiset 〈ϕ1, . . . , ϕm〉.
MaxSAT-DEC
Instance: multiset 〈ϕ1, . . . , ϕm〉 of formulas of L(Ł) in variables {x1, . . . , xn}
and a positive integer k ≤ m.
Output: (Boolean) Is MaxSAT-OPT(〈ϕ1, . . . , ϕm〉(x1, . . . , xn)) at least k?

Let A be an integer m×n matrix. Let x be an n-vector of variables and b be
an integer m-vector. The solvability of the system of inequalities Ax ≤ b
in R can be tested in polynomial time [28].

More generally, for the system Ax ≤ b, one can ask about the maximal size
(number of lines) of a subsystem that is solvable in R. This problem is known
as the maximum feasible subsystem [4] of a system of linear constraints: the
solution is a natural number k bounded by m (the total number of lines in the
system). This problem is NP-hard. We shall refer to this problem as Max-FS
problem. Notice that the system is not defined as a set, so the same constraint
may appear multiple times.

There are many variants of the Max-FS problem, indeed many were already
suggested in the paper [4]. We will use a variant that partitions the linear con-
straints into two groups: those that need to be satisfied by any feasible solution
(often called hard constraints; the paper [4] refers to them as “mandatory”) and
those the satisfied number of which is to be maximized (often called soft con-
straints; [4] refers to them as “optional”) over all feasible solutions. This variant
of Max-FS problem will be called Max-FS with hard and soft constraints
within this paper.

The MaxSAT Problem in the Real-Valued MV-Algebra 389

3 Canonical Method

First we give a polynomial-time, many-one (a.k.a. Karp) reduction of MaxSAT-
DEC to SAT. Our reduction is similar to those used in [25] (which, in turn,
refers to [22]) and in [15]. The differences arise from the fact that, in our case, an
unsatisfied formula can take any value below 1 (but not necessarily 0), and this
needs to be addressed in the definition of the set of formulas in the reduction.

Let 〈ϕ1, . . . , ϕm〉(x1, . . . , xn) and k ≤ m be an instance of MaxSAT-DEC.
It is well known that one can implicitly define any rational value in [0, 1]Ł with
a formula of L(Ł): an early example of suitable formulas can be found in [30].
Let k ≥ 2 and y be a new variable, not among (x1, . . . , xn), and let

ρ1/k := y ↔ ¬((k − 1)y)

Then we have that ρ1/k implicitly defines the rational value 1/k in [0, 1]Ł
(see, e.g., [25, Lemma 2]): that is, an assignment v in [0, 1]Ł sends ρ1/k to 1 if
and only if it sends y to 1/k. Moreover, the length of this formula is linear in
k ≤ m, therefore linear in the size of the instance on input.

For 1 ≤ i ≤ m, consider a new variable yi,k, let Φϕi,k be the set of formulas

{ (ϕi ↔ k yi,k) ∨ ¬yi,k , (yi,k ↔ y) ∨ ¬yi,k }
and let Φk be the list of formulas

∨
1≤i≤m{Φϕi,k}.

Theorem 1. The pair 〈ϕ1, . . . , ϕm〉(x1, . . . , xn) and k with 2 ≤ k ≤ m belongs
to MaxSAT-DEC if and only if the set {ρ1/k} ∪ Φk ∪ {⊕m

i=1 yi,k} belongs to
SAT.

Proof. For the left-to-right direction, assume v to be an assignment satisfying—
without loss of generality—the first k formulas of the list. Consider then the
assignment v′ that coincides with v on the variables x1, . . . , xn and puts v′(y) =
1/k and

v′(yi,k) =

{
1/k if i ≤ k

0 otherwise.

The assignment v′ clearly satisfies ρ1/k. Next, since v′(y1,k) = . . . = v′(yk,k) =
1/k, also v′(

⊕m
i=1 yi,k) = 1. Lastly, the formulas in Φk are satisfied under v′:

the formulas (yi,k ↔ y) ∨ ¬yi,k are trivially satisfied, since each yi,k is indeed
sent to either 1/k (and hence, v′(y)) or to 0. For the other formulas in Φk, first
v′(ϕj) = 1 and kv′(yj,k) = k1/k = 1 for each 1 ≤ j ≤ k, and v′(¬yj,k) = 1 for
k < j ≤ m, hence they are all satisfied.

For the right-to-left direction, let v be an assignment satisfying {ρ1/k}∪Φk ∪
{⊕m

i=1 yi,k}. From Φk and ρ1/k we know v(yi,k) is either 1/k or 0. Therefore, for
v(

⊕m
i=1 yi,k) = 1, necessarily at least k many y-variables are evaluated to 1/k.

Assume, again without loss of generality, that v(y1,k) = . . . = v(yk,k) = 1/k.
From Φk, we get that v((ϕi ↔ k yi,k) ∨ ¬yi,k) = 1 for each 1 ≤ i ≤ m. In
particular, since v(¬yj,k) �= 1 for every 1 ≤ j ≤ k, necessarily v((ϕj ↔ k yj,k))
for each such j. Together with the previously observed fact that yj,k = 1/k for
each such j, this implies that v(ϕ1) = . . . = v(ϕk) = 1, concluding the proof.

390 Z. Haniková et al.

For k = 1, it is immediate that 〈ϕ1, . . . , ϕm〉 and k is in MaxSAT-DEC if and
only if (. . . (ϕ1 ∨ ϕ2) ∨ . . .) ∨ ϕm is in SAT. Given that for m = k = 1 both
problems coincide, we get:

Corollary 1. The problem MaxSAT-DEC is NP-complete.

This reduction from MaxSAT-DEC to SAT provides a practical approach
to the MaxSAT problem in [0, 1]Ł, provided that we use a competitive algorithm
for solving SAT (i.e., the satisfiability problem in [0, 1]Ł). We could rely on either
of the following two SAT solvers, which have been shown rather efficient. The
first one is the tableau with constraints method proposed by Hähnle [12] that
reduces SAT to Mixed Integer Programming (MIP) and can therefore use any
available MIP solver. The second one is the Satisfiability Modulo Theory (SMT)
methods proposed by Ansótegui et al. that reduces SAT to an SMT satisfiability
problem and can use any available SMT solver [6,7,32]. These methods can take
advantage of the latest developments and innovations in MIP and SMT solvers,
avoiding the need to implement a SAT solver from scratch.

A polynomial-time Turing (a.k.a. Cook) reduction of MaxSAT-OPT to
MaxSAT-DEC can be given, as we proceed to explain. It is this approach that
prompts our referring to this method of solving MaxSAT-OPT as canonical,
given its wide scope of applicability to optimization problems (see, e.g., [29]).
The reduction uses an unspecified algorithm for MaxSAT-DEC as an oracle;
as usual with oracle computations, any call to the oracle counts as one step in
the computation and under this proviso, the oracle computation runs in time
polynomial in the input size (Σm

i=1|ϕi|). Indeed, given an instance 〈ϕ1, . . . , ϕm〉, it
is easy to arrive at the optimal value for MaxSAT-OPT using binary search on
the discrete, polynomial-size search space {1, . . . ,m} of possible solutions, using
at most �log m� oracle calls. Considering that MaxSAT-DEC is NP-complete
by Corollary 1, we have the following:

Corollary 2. MaxSAT-OPT is in FPNP.

For this conclusion, it is not important that the oracle solves MaxSAT-
DEC; any oracle solving an NP-complete problem (an NP-oracle) would suit,
and indeed one can use any algorithm for SAT, relying on Theorem 1. In view of
the obvious reduction from MaxSAT-DEC to MaxSAT-OPT, the two prob-
lems are equivalent in the sense that if either has a polynomial-time algorithm,
so does the other. This is standard, and it is why the decision version of an
optimization problem is often considered in lieu of the problem as such.

Can one do better than O(log m) oracle calls? Below, we provide a classifi-
cation of the problem in terms of Krentel’s work [17] that suggests a negative
answer subject to P �= NP. Krentel ranks optimization problems in FPNP

in terms of the number of calls to an NP-oracle. For z : N −→ N a smooth
function (i.e., z is non-decreasing and polynomial-time computable in unary
representation), FPNP[z(n)] is the class of functions computable in polynomial
time with an NP oracle with at most z(|x|) oracle calls for instance x, where |x|
denotes the length of x. By definition, FPNP coincides with FPNP[nO(1)] since
a polynomial-time algorithm can make no more than a polynomial amount of
oracle calls.

The MaxSAT Problem in the Real-Valued MV-Algebra 391

For Σ a finite alphabet let f, g : Σ∗ −→ N. A metric reduction [17] from f to g
is a pair (h1, h2) of polynomial-time computable functions where h1 : Σ∗ −→ Σ∗

and h2 : Σ∗ × N −→ N such that f(x) = h2(x, g(h1(x))) for all x ∈ Σ∗. The
notion of a metric reduction is a natural generalization of polynomial-time many-
one reduction to optimization problems. It follows from the definition that for
each smooth function z as above, FPNP[z(n)] is closed under metric reductions.

Theorem 2. ([17], see also [29]) Assume P �= NP.
Then FPNP[O(log log n)] � FPNP[O(log n)] � FPNP[nO(1)].

Recall that Boolean algebras form a subvariety of MV-algebras. In particular,
in any Boolean algebra, the interpretations of the strong and the weak disjunc-
tion coincide, as do the interpretations of the strong conjunction and the weak
conjunction. When mapping the Boolean connectives to the L(Ł) connectives,
we take ¬ for the Boolean negation, ∨ for the Boolean disjunction, and � as the
Boolean conjunction.

Moreover, in every nontrivial MV-algebra A, the set consisting of its bottom
element 0A and its top element 1A is closed under all operations of A and the
subalgebra of A on the universe consisting of these two elements is isomorphic
to the two-element Boolean algebra.

Now let us recall the MaxSAT problem in the two-element Boolean algebra
for CNF formulas, given as multisets of clauses.

Classical-MaxSAT-OPT
Instance: multiset 〈C1, . . . , Cm〉 of Boolean clauses in variables {x1, . . . , xn}.
Output: the maximum integer k ≤ m such that there is an assignment v in the
two-element Boolean algebra on {0, 1} to {x1, . . . , xn} that satisfies at least k
clauses.

Krentel [17] proves the following result: Classical-MaxSAT-OPT is complete
for FPNP[O(log m)] under metric reductions.

We now prepare a few technical tools for eventually giving a metric reduc-
tion of Classical-MaxSAT-OPT to MaxSAT-OPT. Following [16, Def. 7.1],
consider the language L(Ł) including the definable connectives and define:

(i) a literal is a variable (such as x) or a negation thereof (such as ¬x).
(ii) A (�,∨)-formula is built up from literals using arbitrary combination of �

and ∨.
(iii) In particular, a clause is built up from literals using only ∨.

Lemma 1. ([16, Thm. 7.4])

– The interpretation of any (�,∨)-formula with n variables in [0, 1]Ł is a convex
function in [0, 1]n;

– any (�,∨)-formula (in particular, any clause) is satisfiable in [0, 1]Ł if and
only if it is satisfiable in the two-element Boolean algebra {0, 1}.

392 Z. Haniková et al.

Lemma 2. Let C1, . . . , Cl be clauses in L(Ł) in variables {x1, . . . , xn}. Assume
ā ∈ [0, 1]n is such that Ci(ā) = 1 for each 1 ≤ i ≤ l. Then there is an element
b̄ ∈ {0, 1}n such that Ci(b̄) = 1 for 1 ≤ i ≤ l.

Proof. We construct b̄ from ā in n independent steps. Let b̄1 := ā. The j-th
step takes a b̄j , assuming the property that Ci(b̄j) = 1 for each 1 ≤ i ≤ l,
and produces b̄j+1 with the same property, replacing the real value in the j-th
coordinate of b̄j with a Boolean value (i.e., either a 0 or a 1). Lastly, we set
b̄ := b̄n+1: all coordinates of b̄ are Boolean.

We describe the j-th step. We simplify notation by writing b̄′ for b̄j . We
thus have b̄′ = 〈b′

1, . . . , b
′
n〉. Consider the j-th component of this vector: if b′

j is
0 or 1, we set b̄j+1 := b̄j , whereby the step is finished. If 0 < b′

j < 1, define
b̄′
0 := 〈b′

1, . . . , b
′
j−1, 0, b′

j+1, . . . , b
′
n〉 and b̄′

1 := 〈b′
1, . . . , b

′
j−1, 1, b′

j+1, . . . , b
′
n〉. By

assumption, we have C1(b̄′) = 1. From Lemma 1, the interpretation of C1 is a
convex function. Now assume that either C1(b̄′

0) �= 1 or C1(b̄′
1) �= 1. Then there

is a convex combination of C1(b̄′
0) and C1(b̄′

1) that is strictly below C1(b̄′), a
contradiction with the convexity fact. We conclude that C1(b̄′

0) = C1(b̄′
1) = 1. An

analogous argument holds for the remaining clauses C2, . . . , Cl. This means that
we can set either b̄j+1 := b̄′

0 or b̄j+1 := b̄′
1 and we will indeed have Ci(b̄j+1) = 1

for each 1 ≤ i ≤ l.

Theorem 3. MaxSAT-OPT is complete for FPNP[O(log m)] under metric
reductions.

Proof. Containment was obtained in Corollary 2 and the discussion preceding it.
We prove hardness. We claim that the metric reduction of Classical-MaxSAT-
OPT to MaxSAT-OPT is provided by a pair of identity functions. Take an
arbitrary instance of Classical-MaxSAT-OPT problem, namely a multiset
〈C1, . . . , Cm〉 of Boolean clauses in variables {x1, . . . , xn}, and interpret it as
a multiset of clauses in L(Ł) (no change in notation is needed, see above). By
Lemma 1, the interpretation of each Ci for i = 1, . . . ,m in [0, 1]Ł is a convex
function. The convexity of the interpretation is not violated by rewriting each
Ci in the basic connectives of L(Ł); this yields formulas 〈C∗

1 , . . . , C∗
m〉. Feed

this m-tuple to the algorithm solving MaxSAT-OPT. The output is a natural
number k ≤ m which indicates the maximal number among 〈C∗

1 , . . . , C∗
m〉 that

are simultaneously satisfiable by an assignment in [0, 1]Ł. We assume without loss
of generality that the first k formulas in the list are satisfied by some assignment;
hence so are the first k among 〈C1, . . . , Cm〉. By Lemma 2, the same clauses
(hence, the same number of clauses) are also simultaneously satisfiable by a
Boolean assignment. This gives a lower bound on the number of simultaneously
satisfiable clauses among 〈C1, . . . , Cm〉 in {0, 1}. At the same time, the two-
element Boolean algebra is a subalgebra of [0, 1]Ł, so any assignment in {0, 1}n

is also an assignment in [0, 1]n: therefore, considering that k was the answer of the
algorithm solving MaxSAT-OPT, no more than k clauses among 〈C1, . . . , Cm〉
can be simultaneously satisfiable in {0, 1}, because otherwise k would not be
optimal for MaxSAT-OPT. Therefore k is the optimal value.

The MaxSAT Problem in the Real-Valued MV-Algebra 393

The binary search algorithm always makes a logarithmic number of oracle
calls, no matter what the instance is. Also, the complexity analysis as given does
not take into account the efficiency of the computations executed by the oracle;
all that is known about the oracle is that it correctly decides a particular NP-
complete problem. Considering the experience obtained in Boolean MaxSAT
solvers based on Boolean SAT solvers, there might be alternatives to binary
search that might turn out to be more efficient in practice, where one departs
from the paradigm that emphasizes worst-case complexity. A typical Boolean
MaxSAT solver does a linear search, either from unsatisfiable to satisfiable (core-
guided approach), or from satisfiable to unsatisfiable (model-guided approach)
[8,18]. The solvers heavily exploit the fact that the formulas in the multiset
are Boolean clauses (i.e., a normal form is assumed) and that a SAT solver also
returns a satisfying assignment or an unsatisfiable core; moreover, the calls to the
SAT solver need not be its independent runs. These parallels invite an openness
of mind when implementing MaxSAT solvers for Łukasiewicz logic.

4 Tableau-Like Method

4.1 Satisfiability

We give first a decision method for the SAT problem, combining several
approaches that might be termed analytic. SAT and its complexity have been
investigated in depth [1,2,6,7,9,12,14,16,21,23,26]. In particular, tableau cal-
culi have been proposed in [12,24]. Presenting our decision method for SAT has
several goals. It outlines our approach to a simpler problem than MaxSAT-
OPT, to be modified in Subsect. 4.2. Our method for SAT can then be used as
a lower bound on the complexity of the method for MaxSAT-OPT in Subsect.
4.2. Furthermore, the method, in its variant generating a tree with an exponen-
tial number of branches, provides a simple proof for SAT in NP and an upper
bound on the runtime of a deterministic algorithm for SAT.

The method operates in two subsequent stages. The first one is a variant of
Tseitin transformation of an arbitrary formula to a formula in normal form [31];
in classical logic, the target normal form is a CNF, while in our case, the target
normal form is a system of equations in the language L(Ł). The transformation
preserves satisfiability, involves only a polynomial increase in size, and adds new
variables. A variant of the transformation was used for testing SAT in [9].

Let ||ϕ|| denote the number of pairwise distinct subformulas in ϕ.2 Recall at
this point the formula ρ1/k from Sect. 3 and its subformula (k−1)y. If brackets in
this subformula nest to the right (or to the left), then ||(k − 1)y|| is proportional
to |(k−1)y|. But if (k−1)y is bracketed as a balanced binary tree, then ||(k−1)y||
is proportional to log2(|(k − 1)y|).

2 ϕ is viewed as a string, any subformula is a substring, and subformulas are the same
if and only if the strings are. Thus x ⊕ (x ⊕ x) is distinct from (x ⊕ x) ⊕ x. Per
convention ¬¬ψ does not occur as subformula for any ψ, since ¬¬ψ ↔ ψ in Ł.

394 Z. Haniková et al.

The second stage is a tableau-like procedure that utilizes the system of equa-
tions obtained in the first stage as labels for nodes in a rooted linear tree, and
expands the nodes using simple rules that translate these equations of L(Ł) into
linear equations in the reals. Subsequently, each branch is evaluated for solvabil-
ity in the reals, analogously to [12,24].

The algorithm for SAT is given below. The presentation is informal.

Decision method TŁSAT. Let ϕ(x1, . . . , xn) be an input formula.

1. List subformulas. Let L be the list of all pairwise distinct subformulas
occurring in ϕ, including ϕ and all its variables. Let l be the number of items
in L. If ϕ does not contain any double negations, we have l = ||ϕ||. We assume
that if α is a subformula of β, then α occurs before β in L.

2. Name subformulas. Introduce new pairwise distinct variables zi for the i-th
formula in L with 1 ≤ i ≤ l. These will be called “z-variables”. It is assumed
that the z variables are also distinct from each xj for 1 ≤ j ≤ n.3

3. Equations on names. Let S be the list of equations in the language {¬,⊕}
obtained by initializing S as empty and taking the following step for each
item in the list L:

– if x is a propositional variable in ϕ and 1 ≤ i ≤ l and zi is the variable
for x, include in S the equation

x = zi;
– if ¬α is a subformula of ϕ and 1 ≤ i, j ≤ l and zi is the variable for α

and zj is the variable for ¬α, include in S the equation
zj = ¬zi;

– if α ⊕ β is a subformula of ϕ and 1 ≤ i, j, k ≤ l and zi, zj , zk are the
variables for α, β, α ⊕ β respectively, include in S the equation

zi ⊕ zj = zk.
Having each item of L processed, S contains equations in the language L(Ł).
The number of equations in S is l.

4. Initialize tree. Initialize a rooted tree T, linear at this stage, with l nodes.
From the root down, label each node of T with one equations from S. Start
with equations containing the x-variables and mark them final. Then process
those containing ¬ and subsequently those containing ⊕ and mark each as
active.4

5. Boundary constraints. Append before the root 2l new nodes labelled 0 ≤
zi ≤ 1 for each i = 1, . . . , l. Mark each as final.

6. Target constraint. Append as new root of the tree a node labelled zl = 1
for zl the variable introduced for ϕ. (By convention taken in step 1, zl is
assigned to ϕ.) Mark final.

3 This is a convention in favour of clarity of presentation. Avoiding introduction of
new variables for atoms x1, . . . , xn would save n new variables.

4 The structure of T will be linear up to a certain point and binary from there on.
This is the case because a) the equations with the x-variables are not expanded, and
b) all the equations with ¬ are expanded before any of the equations with ⊕, and
the expansion rule for ¬ does not lead to branching. Cf. Example 1.

The MaxSAT Problem in the Real-Valued MV-Algebra 395

7. Expand tree. From the root of T towards the leaves, process each node N :
– If the label of N is marked final (i.e, does not contain ¬ or ⊕), leave it

intact and proceed to the next node.
– If the label of N is marked active (contains ¬ or ⊕), mark it passive, and

below each leaf of T, append a new subtree with labelled nodes using the
following expansion rules (one new node per each constraint), marking
each new label final :

zi ⊕ zj = zk

zi + zj ≤ 1 zi + zj ≥ 1
zi + zj = zk zk = 1

zi = ¬zj

zi = 1 − zj

An application of the rule on the left involves branching below each leaf
of T. The labels in the conclusions of these rules are linear constraints in
real numbers. The mark final indicates the algorithm leaves them intact.
Having processed all nodes of T, each branch of T defines a system of linear
constraints marked final in an unambiguous way.

8. Solve systems. From the leftmost branch to the right, test the system of
constraints on the branch for solvability in R5 until a branch is found whose
system of constraints is solvable. In such a case, return ‘yes’ and exit.

9. Default. Return ‘no’ and exit.

Typically in an analytic tableau method (cf. eg. Hähnle [12]), one starts with a
given formula ϕ and decomposes it, taking one occurrence of a connective in each
step and expanding the tableau using the given tableau rules. If a subformula of
ϕ occurs multiple times in ϕ, it is processed multiple times and each time, new
variables are introduced with it: cf. e.g. [12, section 5.1] where new variables i1
and i2 are introduced for each occurrence of an implication. This is a feature of
the analytic method. With creating the set of subformulas first, we avoid this
and have potentially less new variables. (Cf. also the introduction in [24], where
our method might therefore not qualify as purely analytic.)

Example 1. A simple example will illustrate the generation of the tree and the
resulting systems of constraints. Consider the formula ((x ⊕ ¬y) ⊕ ¬(x ⊕ y)) ⊕
¬(x ⊕ y). A list of its subformulas is the following:

〈x, y,¬y, x⊕y, x⊕¬y,¬(x⊕y), (x⊕¬y)⊕(¬(x⊕y)), ((x⊕¬y)⊕¬(x⊕y))⊕¬(x⊕y)〉

In order to present the example in a compact way, we write three initial nodes
only: the first, with the boundary, target and ground equations; the second, with
the equations from S with symbol ¬, and the third, with the equations from S
with symbol ⊕. Below this, we expand the tree as described by the algorithm.
We omit marks (active, passive, final). We use vertical dots to indicate the tree
that would be included in their place is a copy of the one depicted at its side.

5 The testing procedure is in P. For the purpose of testing, one can render each equality
ax = b as two inequalities ax ≤ b and −ax ≤ −b.

396 Z. Haniková et al.

z8 = 1, {0 ≤ zi ≤ 1}1≤i≤8, z1 = x, z2 = y

z6 = ¬z4, z3 = ¬z2,

z8 = z7 ⊕ z6, z7 = z5 ⊕ z6, z5 = z1 ⊕ z3, z4 = z1 ⊕ z2

z6 = 1 − z4, z3 = 1 − z2

z8 = 1

z7 + z6 ≥ 1

z7=1

z5+z6≥1

...

z7 = z5 + z6

z5 + z6 ≤ 1

z5 = 1

z1 + z3 ≥ 1

z4 = 1

z1 + z2 ≥ 1

z4 = z1 + z2

z1 + z2 ≤ 1

z5 = z1 + z3

z1 + z3 ≤ 1

z4 = 1

z1 + z2 ≥ 1

z4 = z1 + z2

z1 + z2 ≤ 1

z8=z7+z6

z7+z6≤1

...

Lemma 3. The expansion rules in step 7 of TŁSAT preserve the following
invariant: for any assignment v of values in [0, 1] to all z-variables, v satis-
fies the equation in the premise in the algebra [0, 1]Ł if and only if v satisfies all
constraints in at least one branch in the conclusions of the rule in the algebra R.

Proof. Notice that the expansion rules work as a switch between the signature
of L(Ł) and language of real closed fields. (Where by slight abuse of language,
we only differentiate between the two sets of the operation symbols, but not the
relation symbols.) In both cases the statement is a straightforward consequence
of the semantics of the connectives ¬ and ⊕ in [0, 1]Ł. We prove the case for ⊕.
Top-to-bottom: let v be an assignment of values in [0, 1] to z-variables introduced
in step 2, and consider zi, zj , zk s.t. v(zi)⊕ v(zj) = v(zk) is true in [0, 1]Ł. Then
it must be the case that either v(zi)+v(zj) ≤ 1 and v(zi)+v(zj) = v(zk) holds in
R, or v(zi)+v(zj) ≥ 1 in which case we also have v(zk) = 1 in R. Bottom to top:
again let v be an assignment of values in [0, 1] to z-variables. If v(zi)+ v(zj) ≤ 1
and v(zi) + v(zj) = v(zk) both hold in R, we have v(zi) ⊕ v(zj) = v(zk) is true
in [0, 1]Ł. If v(zi) + v(zj) ≥ 1 and v(zk) = 1 in R, we have v(zi) ⊕ v(zj) = v(zk)
is true in [0, 1]Ł. This exhausts possible cases.

Theorem 4. The method TŁSAT is sound and complete for SAT.

Proof. The soundness claim states that whenever the method answers ‘yes’
on input ϕ, then there is an assignment v to x1, . . . , xn such that v(ϕ) = 1.
So assume that there is a branch B of T such that the system of constraints

The MaxSAT Problem in the Real-Valued MV-Algebra 397

given by B is solvable, under some assignment v to variables on B, and fix v. In
particular, for i = 1, . . . , n, the variable xi gets value v(xi) (notice each xi occurs
on every branch). The assignment v extends to ϕ in a unique way and one shows
by induction on the structure of ϕ, using Lemma 3, that for any subformula ψ of
ϕ, we have v(ψ) = v(zj) for zj with j ∈ {1, . . . , l} being the z-variable assigned
to ψ in step 2. In particular, v(ϕ) = 1.

The completeness claim states that if v(ϕ) = 1 for some assignment v,
then the method yields ‘yes’ on input ϕ. So fix v s.t. v(ϕ) = 1. We claim there
is a branch of T with a solvable system of equations. First produce the full tree
T. Then assign values to all z-variables, starting from those that are names for
x1, . . . , xn, and then inductively on the structure of ϕ using again that v(ψ) =
v(zj) for a zj assigned to ψ in step 2. This is consistent with equations obtained
in step 3. By abuse of language, call this assignment v. The assignment v makes it
possible to travel downward from the root of T via labelled nodes, using Lemma
3 to show that v satisfies each label: in particular if T branches due to a node
with label zi ⊕ zj = zk, then (assuming the label in the premise is satisfied by
v), Lemma 3 guarantees that there is at least one branch on which the new (and
hence, all) labels are satisfied by v. Finally a leaf L of T is reached: since Lemma
3 was applied at each expansion, and since the boundary and the final constraint
clearly hold under v, all final constraints on the branch determined by L hold
under v.

Lemma 4. The problem SAT on instance ϕ can be solved deterministically by
constructing the tree T and testing the solvability of systems of linear constraints
in R on no more than 2||ϕ|| branches. Each branch has at most 4||ϕ|| + 1 con-
straints and ||ϕ|| + n variables.

Proof. Branching of the tree takes place at each occurrence of ⊕ in S; the num-
ber of such occurrences is bounded by ||ϕ||. Each branch has at most 2||ϕ||
constraints for subformulas, plus 2||ϕ|| boundary constraints, plus a target con-
straint. (Here we do not consider the possibility of replacing each equation with
two inequalities.) Each branch of the tree uses all the variables: n input variables
x1, . . . , xn and ||ϕ|| z-variables.

Corollary 3. The problem SAT is in NP, in particular, a formula is satisfiable
if and only if there is a polynomial-size witness consisting of a tableau branch of
the method TŁSAT and matching system of constraints solvable in R.

Proof. Since the method TŁSAT is sound and complete for SAT by Theorem 4,
any satisfiable formula has the following polynomial-size certificate of its own
satisfiability in [0, 1]Ł: the system of equations in z-variables constructed in step
3, and a branch of the tree T, defined by a list of instructions specifying which
branch to take upon each application of ⊕-rule, combined with a system C of
constraints that matches the indicated branchings (in the sense that the equa-
tions with ⊕ have been expanded according to the specified branch) and such
that C is solvable in R. On the other hand, the soundness and completeness
theorem also says that an unsatisfiable formula cannot have such a certificate.

398 Z. Haniková et al.

Furthermore, any decision tree obtained from the above procedure can be
linearized, using the methods of [12]. In particular, any instance of the applica-
tion of the branching rule introduced in step 7 can be replaced by an instance
of an application of the following lemma (observing the condition that distinct
Boolean variables will be used for distinct instances):

Lemma 5. (Cf. [12, Sect. 5.1], [13, Lemma 6.2.19]) Assume a1, a2, a3 ∈ [0, 1].
Then a1 ⊕ a2 = a3 holds in [0, 1]Ł if and only if there is an y ∈ {0, 1} such that
all of the following constraints hold in R:

(i) a1 + a2 ≤ 1 + y
(ii) y ≤ a1 + a2

(iii) a3 ≤ a1 + a2

(iv) a1 + a2 ≤ a3 + y
(v) y ≤ a3.

Proof. Assume a1 ⊕ a2 = a3 holds in [0, 1]Ł. Case 1: a1 + a2 ≤ 1, then from
the assumption we have a1 + a2 = a3. We set y := 0. The fact that a1, a2, a3 ∈
[0, 1] implies (ii) and (v); the remaining constraints in the Lemma follow from
a1 + a2 = a3. Case 2: a1 + a2 > 1. The assumption implies a3 = 1; we set y := 1,
we get (v). The fact that a1, a2, a3 ∈ [0, 1] implies (i) and (iv). From a1 + a2 > 1
we get (ii) and (iii).
Now assume there is an y ∈ {0, 1} such that all constraints listed hold in R.
Case 1: y = 0. We have (i) a1 + a2 ≤ 1 and (iii,iv) a3 ≤ a1 + a2 ≤ a3. Hence
a1 ⊕ a2 = a3. Case 2: y = 1. We have (v) 1 ≤ a3 and (ii) 1 ≤ a1 + a2. Hence
a1 ⊕ a2 = a3.

This modification eventually yields, in step 8, a single MIP problem — one of
the extant competitive ways to address the SAT problem. A major advantage of
using a MIP solver is the advanced possibility of applying heuristics, whereas in
the simple version above, the only optimization considered is aborting the com-
putation upon finding a branch with a solvable system.6 That is: by design, the
algorithm TŁSAT needs to generate and perhaps eventually test exponentially
many systems of equations. However, from the viewpoint of the worst-case deter-
ministic complexity, the MIP method does not differ substantially from testing
the (possibly exponentially many) branches.

4.2 Maximum Satisfiability

In this Subsection we adapt the previous method to the MaxSAT-OPT prob-
lem from Sect. 2. It is easily observed that usual methods for SAT, the method
from the previous Subsection among them (even if it easily adapts to test joint
satisfiability of a list of formulas), are not applicable for MaxSAT-OPT; cf. [19]
for a discussion. One problem is that they yield a Boolean value. Taking any sat-
isfiable formula α and considering the m-element list 〈α, . . . , α〉, for any m > 1,
6 One might optimize by testing immediately on every generated branch and exiting

the computation upon finding one with a solvable system. In our exposition though,
we prefer to consider the size of the full decision tree.

The MaxSAT Problem in the Real-Valued MV-Algebra 399

clearly a complete method needs to produce the answer m on this input. The
tableau approaches of [12,24] uses MIP solvers on branches, also returning a
Boolean value. Another feature of the method from the previous Subsection is
that it considers distinct subformulas as a set; thus any repetition of the same
formula in the list on input would be obliterated.

These considerations invite the approach of preserving the Tseitin-like proce-
dure of listing equations obtained from the subformulas, but combining it with:

– updating the target constraint for a multiset of formulas on input, and
– updating the query about the system of constraints obtained on each branch.

The following algorithm updates the decision method TŁSAT from the Sub-
sect. 4.1. To highlight the differences, each step only gives the information that
has changed compared to the previous case.

Optimization method TŁMaxSAT for computing MaxSAT-OPT.
Let 〈ϕ1, . . . , ϕm〉 be a list of formulas in variables x1, . . . , xn.

1. List subformulas. Let L be the list of all pairwise distinct subformulas
occurring in ϕ1, . . . , ϕm, including each formula ϕ1, . . . , ϕm with 1 ≤ i ≤ m
and all variables x1, . . . , xn. Let l be the number of items in L. Conventions
as in step 1 of TŁSAT.

2. Name subformulas. As before.
3. Equations on names. As before.
4. Initialize tree. As before.
5. Boundary constraints. As before.
6. Mark hard constraints. For each node in T up to this point, mark all

constraints as hard constraints.
7. Target constraints. Append before the root of T a new chain with labels

zji
≥ 1 for zji

the variable introduced for ϕi, with i = 1, . . . ,m, preserv-
ing the multiplicity of ϕi in the input list. Mark these constraints as soft
constraints.

8. Expand tree. As before, preserving in the expansion that a hard constraint
produces hard constraints.

9. Solve systems. From the leftmost branch to the right, taking one branch at
a time. Each branch defines, via the final label, a system of linear constraints
in R, with the target constraints from step 7 marked soft and all other con-
straints marked hard. Thus each branch defines an instance of the Max-FS
problem with hard and soft constraints. Obtain the solution (i.e., a natural
number, possibly 0) to the instance on each branch.7

10. Maximize. Return the maximum of satisfied soft constraints among the
constraint systems over all the branches, and exit.

7 Since all equalities are marked hard, any feasible solution to the Max-FS task will
need to satisfy all of them. More generally, see [5, Concluding remarks] for handling
soft constraints that are equalities.

400 Z. Haniková et al.

Example 2. Let us consider the list of formulas 〈(x ⊕ ¬y) ⊕ ¬x,¬x, x ⊕ ¬y, x〉.
A list of its subformulas (according to the definition in step 1) is the following:

〈x, y,¬x,¬y, x ⊕ ¬y, (x ⊕ ¬y) ⊕ ¬x〉

In order to depict the example in a compact way we use the same conventions
as in Example 1. Furthermore, we will print in bold the soft constraints.

z6 = 1, z3 = 1, z5 = 1, z1 = 1, {0 ≤ zi ≤ 1}1≤6

z3 = ¬z1, z4 = ¬z2

z5 = z1 ⊕ z4, z6 = z5 ⊕ z3

z3 = 1 − z1

z4 = 1 − z2

z5 = 1

z1 + z4 ≥ 1

z6 = 1

z5 + z3 ≥ 1

z6 = z5 + z3

z5 + z3 ≤ 1

z5 = z1 + z4

z1 + z4 ≤ 1

z6 = 1

z5 + z3 ≥ 1

z6 = z5 + z3

z5 + z3 ≤ 1 x

Theorem 5. The method TŁMaxSAT is sound and complete for MaxSAT-
OPT.

Proof. The soundness claim states that whenever the method returns k ∈ N

on input 〈ϕ1, . . . , ϕm〉, then there is an assignment v to variables x1, . . . , xn that
satisfies k formulas among 〈ϕ1, . . . , ϕm〉. If TŁMaxSAT returns k, that means the
tree T was constructed with a branch B and a system of constraints given by B
that yielded k upon solving the Max-FS problem with hard and soft constraints,
and that this was the maximum solution among all branches. Fix such a v and
notice that v defines values for x1, . . . , xn. Using Lemma 3, all hard constraints
from the system, in particular, all constraints from steps 3, 5 and 8 are satisfied
by v, and so are k of the target constraints. If ψ is a subformula of some ϕi with
i ∈ {1, . . . , m}, we have v(ψ) = v(zj) whenever zj is the z-variable assigned to
ψ, by induction. In particular, from step 7 we have that there are k formulas ϕi

among 〈ϕ1, . . . , ϕm〉 such that v(ϕi) = 1.
The completeness claim states that if, for some assignment v, there are k

items ϕi on the list 〈ϕ1, . . . , ϕm〉 such that v(ϕi) = 1, then the method TŁMaxSAT

yields at least k on that instance. So assume that v(ϕi) = 1 for at least k such
items and fix v. We claim there is a branch B of T with a system of constraints
that yields at least k upon solving its instance of Max-FS problem. First con-
struct the tree T. From v, we get values for x1, . . . , xn, the z-variables that are
their names, and using equations from step 3 for the remaining z-variables. The
assignment v indicates a leaf of T that defines a branch B via a series of (possibly

The MaxSAT Problem in the Real-Valued MV-Algebra 401

non-unique) choices on the hard constraints. If ψ is a subformula of some ϕi with
i ∈ {1, . . . , m}, also v(ψ) = v(zj) whenever zj is the z-variable assigned to ψ, all
the hard constraints and at least k soft constraints are satisfied on B under v.
Since k formulas on input are satisfied by v, also k soft constraints are satisfied.
Thus the method TŁMaxSAT, which returns a maximum over all branches, will
yield a value no less than k.

To put side by side the efficiency of the method TŁSAT from Subsect. 4.1
with the method TŁMaxSAT above, we assume a modification of TŁSAT that
takes as input a finite list of arbitrary formulas 〈ϕ1, . . . , ϕm〉 and tests their
joint satisfiability. Then we obtain comparable trees from both methods, the
main difference being in the target constraints. Each branch of the tree obtained
from TŁSAT defines a set of constraints the solvability of which is in P. It is
typically not necessary to test solvability on all the branches. On the other
hand, if 〈ϕ1, . . . , ϕm〉 is an input to TŁMaxSAT, then on each branch of the
generated tree, it is indeed necessary to solve the Max-FS problem with hard
and soft constraints that the branch defines, because the method eventually
takes a maximum over all the branches. Moreover, the problem on each branch
is NP-hard [4]. In this sense, the complexity of the method TŁSAT is a lower
bound on the complexity of the method TŁMaxSAT as presented above.

One can conceive optimizing the method TŁMaxSAT by observing that, firstly,
the multiset of soft constraints remains the same over all the branches, and
secondly, if any subset S′ of a set S of hard constraints is unsolvable, then so is
S. We refrain from pursuing these considerations here, since they are addressed
by the methods used in MIP solvers. The following lemma comes in useful.

Lemma 6. The tree obtained from the TŁMaxSAT method can be linearized at
the cost of adding at most ||ϕ|| Boolean variables. The linearization method does
not affect the soft constraints.

Proof. Any branching in step 8 of the algorithm can be replaced by expanding
the tree with new nodes (without branching) using Lemma 5. The constraints
obtained from the Lemma are all marked hard. This step therefore does not
impact the set of possible solutions to the hard constraints in the system. The
soft constraints are the same on all the branches, therefore the soft constraints
in the linearization are well defined.

An extension of the Max-FS problem with Boolean variables among the set
of hard constraints can also be rendered as a MIP problem with hard and soft
constraints, with the Boolean variables not occurring in the soft constraints.
Section 3 gives as benchmark for MaxSAT-OPT log m calls to a MIP solver
for SAT with inputs of size O(Σm

i=1|ϕi| + m2).

5 Concluding Remarks and Future Work

Envisaged work on this material will consider finite-valued reductions of the
SAT problem via upper bounds on denominators [1–3] to obtain a comparison

402 Z. Haniková et al.

with variants of TŁSAT for deterministic worst-case complexity for arbitrary
formulas. Also, it remains to be seen whether upper bounds on denominators (a
“small-model theorem”, cf., e.g., [11]) can be used to classify the decision version
of the above Max-FS problem with Boolean variables among its hard constraints
within FPNP for a conclusive comparison with the canonical approach. Another
line of possible work stems from a generalized notion of satisfiability, considering,
instead of the MaxSAT family of problems, their MaxSATr version, for a rational
r ∈ (0, 1], asking for the maximum number of formulas that are assigned a value
greater than or equal to r by a single assignment.

Acknowledgements. We thank three anonymous reviewers for their useful and
inspiring comments. Haniková was supported by the long-term strategic devel-
opment financing of the ICS (RVO:67985807) and by mobility grant no. CSIC-
20–12 of the Czech Academy of Sciences. Manyà was supported by grants
PID2019-111544GB-C21, PID2022-139835NB-C21 and TED2021-129319B-I00 funded
by MCIN/AEI/10.13039/501100011033. Vidal was supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No. 101027914.

References

1. Aguzzoli, S.: An asymptotically tight bound on countermodels for Łukasiewicz
logic. Int. J. Approximate Reasoning 43(1), 76–89 (2006)

2. Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued Łukasiewicz logic. J. Logic
Lang. Inf. 9(1), 5–29 (2000)

3. Aguzzoli, S., Gerla, B.: Finite-valued reductions of infinite-valued logics. Archive
Math. Logic 41(4), 361–399 (2002)

4. Amaldi, E., Kann, V.: The complexity and approximability of finding maximum
feasible subsystems of linear relations. Theor. Comput. Sci. 147, 181–210 (1995)

5. Amaldi, E., Pfetsch, M.E., Leslie, E., Trotter, J.: On the maximum feasible sub-
system problem, IISs and IIS-hypergraphs. Math. Program. Ser. A 95, 533–554
(2003)

6. Ansótegui, C., Bofill, M., Manyà, F., Villaret, M.: Building automated theorem
provers for infinitely-valued logics with satisfiability modulo theory solvers. In:
Proceedings, 42nd International Symposium on Multiple-Valued Logics (ISMVL),
Victoria, BC, Canada, pp. 25–30. IEEE CS Press (2012)

7. Ansótegui, C., Bofill, M., Manyà, F., Villaret, M.: Automated theorem provers for
multiple-valued logics with satisfiability modulo theory solvers. Fuzzy Sets Syst.
292, 32–48 (2016)

8. Bacchus, F., Järvisalo, M., Ruben, M.: Maximum satisfiability. In: Handbook of
Satisfiability, second edition, pp. 929–991. IOS Press (2021)

9. Bofill, M., Manyà, F., Vidal, A., Villaret, M.: New complexity results for
Łukasiewicz logic. Soft. Comput. 23, 2187–2197 (2019)

10. Chang, C.C.: A new proof of the completeness of the Łukasiewicz axioms. Trans.
Am. Math. Soc. 93(1), 74–80 (1959)

11. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities.
Inf. Comput. 87(1–2), 78–128 (1990)

12. Hähnle, R.: Many-valued logic and mixed integer programming. Ann. Math. Artif.
Intell. 12(3–4), 231–264 (1994)

The MaxSAT Problem in the Real-Valued MV-Algebra 403

13. Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4. Kluwer, Dor-
drecht (1998)

14. Haniková, Z.: Computational complexity of propositional fuzzy logics. In: Cintula,
P., Hájek, P., Noguera, C. (eds.) Handbook of Mathematical Fuzzy Logic, vol. 2,
pp. 793–851. College Publications (2011)

15. Haniková, Z.: On the complexity of validity degrees in Łukasiewicz logic. In:
Anselmo, M., Della Vedova, G., Manea, F., Pauly, A. (eds.) CiE 2020. LNCS,
pp. 175–188. Springer International Publishing, Cham (2020). https://doi.org/10.
1007/978-3-030-51466-2_15

16. Haniková, Z., Savický, P.: Term satisfiability in FLew-algebras. Theor. Comput.
Sci. 631, 1–15 (2016)

17. Krentel, M.W.: The complexity of optimization problems. J. Comput. Syst. Sci.
36, 490–509 (1988)

18. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satis-
fiability, second edition, pp. 903–927. IOS Press (2021)

19. Li, C.M., Manyà, F., Vidal, A.: Tableaux for maximum satisfiability in Łukasiewicz
logic. In: IEEE 50th International Symposium on Multiple-Valued Logic (ISMVL),
pp. 243–248. IEEE Computer Society, Miyazaki (2020)

20. Mundici, D.: Mapping abelian �-groups with strong unit one-one into MV-algebras.
J. Algebra 98(1), 76–81 (1986)

21. Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theor.
Comput. Sci. 52(1–2), 145–153 (1987)

22. Mundici, D.: Ulam game, the logic of MaxSAT, and many-valued partitions. In:
Dubois, D., Klement, E.P., Prade, H. (eds.) Fuzzy Sets, Logics and Reasoning
about Knowledge, pp. 121–137. Kluwer (1999)

23. Mundici, D., Olivetti, N.: Resolution and model building in the infinite-valued
calculus of Łukasiewicz. Theor. Comput. Sci. 200, 335–366 (1998)

24. Olivetti, N.: Tableaux for Łukasiewicz Infinite-valued Logic. Stud. Logica. 73, 81–
111 (2003)

25. Preto, S., Manyà, F., Finger, M.: Linking Łukasiewicz Logic and Boolean Maximum
Satisfiability, ISMVL, pp. 164–169. IEEE Computer Society, Miyazaki (2023)

26. Schockaert, S., Janssen, J., Vermeir, D.: Satisfiability checking in Łukasiewicz logic
as finite constraint satisfaction. J. Autom. Reasoning 49, 493–550 (2012)

27. Schockaert, S., Janssen, J., Vermeir, D., De Cock, M.: Finite satisfiability in
infinite-valued Łukasiewicz logic. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS
(LNAI), vol. 5785, pp. 240–254. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04388-8_19

28. Schrijver, A.: Theory of Linear and Integral Programming. Wiley-Interscience
Series in Discrete Mathematics and Optimization, John Wiley & Sons, Chichester
(1998)

29. Stockmeyer, L.J.: Computational Complexity. In: Coffman, E.G., et al. (eds.)
Handbooks in OR & MS, Vol. 3, pp. 455–517. Elsevier Science Publishers (1992)

30. Torrens, A.: Cyclic elements in MV-algebras and post algebras. Math. Logic Q.
40(4), 431–444 (1994)

31. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Slisenko, A.O. (ed.) Studies in mathematics and mathematical logic, Part II, pp.
115–125. Steklov Mathematical Institute (1968)

32. Vidal, A.: MNiBLoS: a SMT-based solver for continuous t-norm based logics and
some of their modal expansions. Inf. Sci. 372, 709–730 (2016)

https://doi.org/10.1007/978-3-030-51466-2_15
https://doi.org/10.1007/978-3-030-51466-2_15
https://doi.org/10.1007/978-3-642-04388-8_19
https://doi.org/10.1007/978-3-642-04388-8_19

404 Z. Haniková et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Separation Logic

The Logic of Separation Logic: Models
and Proofs

Frank S. de Boer1,2, Hans-Dieter A. Hiep1,2(B), and Stijn de Gouw3

1 Centrum Wiskunde and Informatica (CWI), Amsterdam, The Netherlands
hdh@cwi.nl

2 Leiden Institute of Advanced Computer Sciences (LIACS), Leiden,
The Netherlands

3 Open University (OU), Heerlen, The Netherlands

Abstract. The standard semantics of separation logic is restricted to
finite heaps. This restriction already gives rise to a logic which does
not satisfy compactness, hence it does not allow for an effective, sound
and complete axiomatization. In this paper we therefore study both the
general model theory and proof theory of the separation logic of finite and
infinite heaps over arbitrary (first-order) models. We show that we can
express in the resulting logic finiteness of the models and the existence of
both countably infinite and uncountable models. We further show that a
sound and complete sequent calculus still can be obtained by restricting
the second-order quantification over heaps to first-order definable heaps.

1 Introduction

Separation logic [Rey02], in the sequel also referred to by SL, extends first-
order logic with the separating connectives of conjunction and implication for
reasoning about programs which feature the dynamic allocation of variables
that are stored at locations of that part of the memory called the ‘heap’. The
separating conjunction allows to specify properties of a partition of the heap
into two disjoint sub-heaps. The separating implication (also called ‘the magic
wand’) allows to express properties of disjoint extensions of the heap. Both
separating connectives involve a second-order quantification over heaps (which
are represented by binary relations).

In this paper we study both the model theory and the proof theory of SL.
The standard model of SL (as introduced in [Rey02]) extends the standard model
of arithmetic with the so-called ‘points-to’ relation which provides a formaliza-
tion of the heap in terms of the graph of a finitely-based partial function. This
function assigns to each location of the heap its stored value, or is undefined if
the location is not allocated. In the standard semantics of SL (here also called
weak SL), the domains of heaps are finite, that is, only finitely many locations
are allocated. Reasoning about finite heaps however requires an infinitary logic
because the logic of finite heaps, and that of finite model theory in general, does
not satisfy the compactness property: it is straightforward to express for each
natural number that the domain of the heap contains at least that number of

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 407–426, 2023.
https://doi.org/10.1007/978-3-031-43513-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_22&domain=pdf
https://doi.org/10.1007/978-3-031-43513-3_22

408 F. S. de Boer et al.

elements. It follows that every finite subset of this infinite set of sentences is
satisfiable, but clearly no finite heap satisfies the entire set.

To study the generalmodel andproof theory of full SL1 we (1) extend its seman-
tics to arbitrary first-order models and (2) generalize the notion of a heap to a par-
tial function on the underlying domain of the given (first-order) model: no restric-
tions are imposed on the cardinality of the domain of heap, in contrast to weak SL
which restricts to finite heaps. Our main model-theoretic results are that in this
general setting we can express: (1) finiteness of models, (2) well-foundedness of the
points-to relation, and (3) existence of countably infinite and uncountable models.
As a consequence we have that full SL satisfies neither compactness nor the down-
ward and upward Löwenheim-Skolem theorems (see [CK13]). Non-compactness
implies that there does not exist an effective, sound and complete proof theory for
SL. In fact, we will show that the well-foundedness of the points-to relation can
already be expressed in full SL using only separating conjunction. Consequently,
full SL without separating implication is already non-compact. For full SL without
separating implication but in which separating conjunction only occurs positively,
the fragment which we call separation logic light (SLL), we do have compactness,
but its semantic consequence relation is not compact and therefore also does not
allow for an effective, sound and complete proof theory.

The question thus arises whether there exists an alternative interpretation of
SL that does allow for an effective, sound and complete proof theory. Clearly, the
main complexity of SL stems from the (second-order) quantification over heaps
(or sub-heaps, as in the case of the separating conjunction). For second-order
logic a sound and complete axiomatization can be obtained by generalizing its
semantics by means of so-called general models. Such models extend first-order
models with a set of possible interpretations of the second-order variables. For
example, instead of interpreting a monadic predicate over all possible subsets
of the given first-order domain, a general model restricts its interpretation to a
given set of such subsets. This generalization of the semantics of second-order
logic allows for a sound and complete axiomatization by restricting to so-called
Henkin models. A Henkin model is a general model for second-order logic which
additionally satisfies the comprehension axiom

∃R∀x1, . . . , xn(R(x1, . . . , xn) ↔ φ(x1, . . . , xn))

for any second-order formula φ(x1, . . . , xn) which does not contain the n-ary
relation symbol R. In the arithmetic comprehension axiom φ(x1, . . . , xn) is first-
order.

Generalizing the semantics of SL accordingly in terms of a given set of possi-
ble heaps, which does not necessarily contain all heaps, we can formulate in SL
the following version of the arithmetic comprehension axiom

�(∀x, y((x α→ y) ↔ φ(x, y)))
1 Here we adopt the terminology for second-order logic [Vää01], where the semantics

of full second-order logic does not impose any restrictions on the cardinality of the
interpretation of the predicates/relations, in contrast to weak second-order logic which
restricts to finite interpretations (of the predicates/relations).

The Logic of Separation Logic: Models and Proofs 409

which expresses the existence of a heap such that its graph, as denoted by the
points-to relation α→, satisfies the ‘pure’ first-order formula φ(x, y) (i.e., φ does
not involve the separation connectives and the points-to relation). The �-
modality (formally defined in Sect. 3) expresses the existence of a heap which
satisfies the associated formula. Such an instance of the arithmetic comprehen-
sion axiom holds if there exists a heap which is characterized by the formula
φ(x, y). We cannot generalize this axiom to arbitrary SL formulas because it is
not obvious how to avoid contradictions like �(∀x, y((x α→ y) ↔ ¬(x α→ y))).
Simply requiring that the points-to relation does not occur in φ(x, y) does not
work because the separating connectives implicitly refer to it. Therefore, we
introduce a new interpretation of SL that restricts the (second-order) quantifi-
cation to first-order definable heaps. For this new interpretation we introduce a
sequent calculus which is sound and complete. The completeness proof is based
on the construction of a model for a consistent theory (a theory from which
false is not derivable), following [Hen49]. From the completeness proof we further
derive that this new interpretation satisfies both compactness and the downward
Löwenheim-Skolem theorem. By the seminal theorem of Lindström we then infer
that this new interpretation is as expressive as first-order logic.

Related Work. The model theory of SL has been focused mainly on finite heaps.
For example, the computability and complexity results in [CYO01] depend on
this assumption. Surprisingly, in [BDL12] the authors show that weak SL is as
expressive as weak second-order logic [Man96], which is a semantics of second-
order logic where quantification is restricted to finite relations. In [DD16] this
result is further refined by the restriction to two variables and the separat-
ing implication (no separating conjunction) which still is as expressive as weak
second-order logic. In [EIP20] the satisfiability problem for SL with k record
fields has been studied for finite heaps, but over arbitrary first-order models.
A tableaux method for a propositional fragment of SL has been developed in
[GM10] which has been proven sound and complete. Extensions to first-order SL
are discussed assuming finite heaps. In fact, the tableaux method introduced is
based on a labelling mechanism for encoding finite heap structures.

In contrast, when investigating complete proof systems for SL the assump-
tion of the finiteness of heaps has to be dropped, thus allowing for infinite
heaps, because, as already observed above, finiteness leads to non-compactness.
Our general model theory shows that this generalization of SL, full SL, is also
non-compact, and therefore does not allow for a finitary sound and complete
logic either. Consequently, to obtain such a logic one either has to syntacti-
cally restrict SL or further abstract or generalize its semantics. In [DLM21], for
example, a sound and complete sequent calculus is described for a quantifier-free
subset of SL. On the other hand, examples of further abstractions and gener-
alizations are [HT16] and [Pym02], and both describe a finitary logic which is
sound and complete. In [Pym02], models are based on very general preordered
commutative monoids and there is no points-to relation. In [HT16], special com-
mutative monoids called separation algebras are used to give semantics to the
separating connectives. The elements of such separation algebras represent heaps

410 F. S. de Boer et al.

as relations on the underlying (first-order) domain. This allows for a standard
set-theoretic interpretation of the points-to relation. However, the semantics of
separating conjunction is defined in terms of the abstract monoid, and as such
is decoupled from the set-theoretic interpretation of the points-to relation. For
example, a first-order specification (using plain conjunction) of an enumeration
of the elements of the domain of a (finite) heap as a set does not in general
correspond with an enumeration using separation conjunction.

A sound and complete axiomatization of the points-to relation in the general
context of first-order SL respecting its standard set-theoretic interpretation thus
remains a main challenge.

Second-order logic allows for a straightforward translation of the (weak or
full) semantics of SL, and one can use second-order logic to reason about validity
in SL. This approach is followed for example by the IRIS project [JKJ+18] which
formalizes the semantics of weak SL in the higher-order logic of Coq [HH14]. By
restricting the semantics of the separating connectives to (first-order) definable
heaps, our approach instead transforms a compositional second-order logical
description of the semantics of SL into corresponding rules of a standard first-
order sequent calculus. The resulting calculus allows us to reason, in a natural
manner, in first-order logic about the (hierarchical) heap structures generated
by the rules for the separating connectives. As such it does not involve the
additional tree structures of the so-called bunched contexts of the sequent calculi
of [HT16] and [Pym02]. Also [Kri08] avoids the use of bunched contexts in a
modal sequent calculus for propositional SL, which is proven sound. However it
is incomplete because it provides limited support for equational reasoning about
the modal contexts (so-called ‘worlds’) associated with the SL formulas.

Plan of the Paper. In the next section we introduce the syntax and semantics
of full SL. In Sect. 3 we investigate the expressiveness of full SL. Section 4 intro-
duces a restriction of the semantics to definable heaps. In Sect. 5 we introduce
the sequent calculus, and discuss soundness and completeness. Finally, in the
conclusion section we wrap up, and discuss some future work.

2 Separation Logic

In this section we introduce the syntax of SL and define its classical seman-
tics with respect to arbitrary first-order models. For an intuitive introduction to
separation logic, see [Rey05]. Given a first-order signature of function and pred-
icate symbols2 and a countably infinite set of first-order variables x, y, z, . . ., the
first-order terms of this signature are denoted by t, t′,

We have the following inductive definition of formulas of separation logic.

Definition 1 (Syntax of SL). We define

p ::= (t1 = t2) | R(t1, . . . , tn) | (¬p) | (p ∧ q) | ∃x(p) | (p ∗ q) | (p −∗ q)

2 We allow for a countably infinite set of such symbols.

The Logic of Separation Logic: Models and Proofs 411

where R is a n-ary relation symbol. As a special case we have the binary ‘points-
to’ relation symbol α→ (also called the weak/loose points-to).

Let M = (D, I) denote a first-order model, where D denotes the non-empty
domain and I provides an interpretation of the function and predicate symbols
as functions and relations over D. A valuation s assigns elements of the domain
D of M to the first-order variables x, y, z, We omit the standard inductive
definition of the value Is(t) of a term t. Given a model M = (D, I), we denote
by M,h, s |= p that p holds in the model M , under the interpretation h ⊆ D×D
of the binary relation symbol α→, where h denotes a so-called heap, represented
as the graph of a partial function with finite domain.

Definition 2 (Semantics of SL). We have the following main cases.

– M,h, s |= (t α→ t′) if and only if 〈Is(t), Is(t′)〉 ∈ h.
– M,h, s |= (p ∗ q) if and only if M,h1, s |= p and M,h2, s |= q, for some heaps

h1, h2 ⊆ D × D such that h = h1 ∪ h2 and h1 ⊥ h2.
– M,h, s |= (p −∗ q) if and only if M,h′, s |= p implies M,h ∪ h′, s |= q, for all

heaps h′ ⊆ D × D such that h ⊥ h′.

Other cases are the Tarksi-style semantics of classical logic [Yan01, Table 5.2].

In the above definition we use the set-theoretic operation of union of binary
relations as sets of pairs. On the other hand, by h1 ⊥ h2 we denote that the
domains of the relations h1 and h2 are disjoint3. As such, we can introduce
the strict/tight points-to relation �→ of SL, defined by M,h, s |= t �→ t′ if
and only if h = {〈Is(t), Is(t′)〉}, as a derived concept: it can be expressed by
(t α→ t′) ∧ ∀x, y((x α→ y) → (x = t ∧ y = t′)). The concept emp of the empty
relation can also be expressed by ∀x, y(x �α→ y). Intuitionistic SL only allows
for the weak/loose points-to relation. The strict version cannot be expressed in
intuitionistic SL because of its monotonicity property that the truth of a formula
is preserved by extensions of the domain of the heap [Rey00]. In this article we
focus on classical separation logic only.

Let (xi α→ −) abbreviate ∃y(xi α→ y). The sentences φn defined by

∃x1, . . . , xn((x1 α→ −) ∗ . . . ∗ (xn α→ −))

then state that there exist at least n allocated elements of the underlying domain
of the given first-order model. Note that the semantics of the separating con-
junction implies that xi �= xj for i �= j. It is also possible to formulate the same
property using propositional conjunction instead of separating conjunction by
explicitly stating this fact, that the variables are not aliases. Now collect all φn

in a set. Clearly, every finite subset of this set of sentences is satisfied by a finite
heap, but that there does not exist a finite heap satisfying all these sentences.

3 The domain of an arbitrary relation R ⊆ D × D is the set d ∈ D for which there
exists a d′ ∈ D such that 〈d, d′〉 ∈ R. Note that for heaps h1 ⊥ h2 is equivalent to
h1 ∩ h2 = ∅.

412 F. S. de Boer et al.

This simple counterexample to compactness provides the basic motivation to
study the above semantics of SL extended to unbounded heaps, i.e. heaps which
potentially have an infinite domain.

Further, for technical convenience only, we generalize the semantics to arbi-
trary binary relations. For an arbitrary (binary) relation R ⊆ D × D on the
underlying domain D of the given first-order model, we define M,R, s |= p as
above, where the interpretation of the separating connectives ranges over arbi-
trary subsets of D × D. In fact, in this generalized semantics, which we call
relational SL, we can model the restriction to heaps simply by syntactically
restricting the separating implication to assertions of the form (p ∧ fun) −∗ q,
where fun denotes the assertion ∀x, y, z((x α→ y ∧ x α→ z) → y = z). Let p′

denote the result of restricting syntactically all occurrences of the separating
implication in p to heaps (as described above). It follows that the evaluation of
p′ ∧ fun is restricted to heaps.

It is worthwhile to observe here that there exists a straightforward formaliza-
tion of relational SL in second-order logic. For any formula p as defined above we
define inductively the second-order formula p(R), where R is a binary relation.

Definition 3 (Logical formalization of relational SL).
We have the following main cases.

– (t α→ t′)(R) = R(t, t′),
– (p ∗ q)(R) = ∃R1, R2(R = R1 � R2 ∧ p(R1) ∧ q(R2)),
– (p −∗ q)(R) = ∀R1, R2((R2 = R1 � R ∧ p(R1)) → q(R2)).

Here we denote by R = R1 � R2, for any binary relation symbols R,R1, R2,
the conjunction of the formulas ∀x, y(R(x, y) ↔ (R1(x, y) ∨ R2(x, y))) and
∀x, y, z(¬R1(x, y) ∨ ¬R2(x, z)). We denote by M, s |= φ the standard truth defi-
nition of a second-order formula φ, where the evaluation s additionally interprets
the second-order variables. Correctness of this translation, that is, M,R, s |= p
if and only if M, s[R := R] |= p(R) (where s[R := R] denotes the update of s
which assigns to the binary variable R the relation R), can be established by a
straightforward induction on p.

3 Model Theory: Compactness and Countability

To explore the general model theory of SL we introduce the modalities �p and �p
as abbreviations of true ∗ (emp∧ (true −∗ p)) and ¬(true ∗ ¬p), respectively4.
For M = (D, I) we have M,R, s |= �p if and only if M,R′, s |= p, for every
R′ ⊆ D×D. Further, we have M,R, s |= �p if and only if M,R′, s |= p, for every
sub-relation R′ of R (that is, R′ ⊆ R). By �p we denote the formula ¬�¬p. It
follows that M,R, s |= �p if and only if M,R′, s |= p, for some R′ ⊆ D × D.

Characterizing Finite Models. The above �-modality allows to express that the
domain D of a model M = (D, I) is finite, by asserting that every injective
4 We note that � and � are, respectively, � and ♦ in [HT16]. However in [HT16] they

are introduced not as abbreviations but as primitive concepts.

The Logic of Separation Logic: Models and Proofs 413

function f : D → D is a surjection: Let inj be the conjunction of the formulas
fun (as defined above), ∀x, y, z((x α→ z ∧ y α→ z) → x = y), and ∀x∃y(x α→ y).
We have that M,R, s |= inj if and only if R : D → D is injective (note that the
domain of R is D because M,R, s |= ∀x∃y(x α→ y)). And so M,R, s |= �(inj →
∀x∃y(y α→ x)) if and only if D is finite. Note that the occurrences of α→ in the
scope of the �-modality are universally bounded, and the interpretation of α→
thus ranges over all R ⊆ D × D.

Characterizing Countable Infinity. We next show that countability of the under-
lying domain of a model can be expressed, using the above two modalities. We
will be working with chains related by α→, and in that sense we speak of a pre-
decessor of x, being any y such that (y α→ x), and successor of x, being any y
such that (x α→ y). Let enum be the conjunction of the following formulas:

– the above formula inj ,
– the formula ∃!x∀y(y �α→ x)5, which states the existence of a unique minimal

element (that is, an element that has no predecessor),
– the formula �(emp ∨ ∃x((x α→ −) ∧ ∀y((y α→ −) → (y �α→ x))), which

expresses that the points-to relation α→ is well-founded.

Note that a relation R is well-founded iff every (non-empty) sub-relation of R has
a minimal element (with respect to that sub-relation). This fact can be expressed
by the use of the formula enum. Let M,R, s |= enum. We show that R encodes an
enumeration 〈dn〉n of D (still we have M = (D, I)). We define the sequence 〈dn〉n

by induction on n: for d0 we take the (unique) minimal element, and for dn+1 we
take the unique element d ∈ D such that 〈dn, d〉 ∈ R. Note that inj implies that
every element of D has a unique ‘successor’ and that dn+1 �∈ {d0, . . . , dn}. Well-
foundedness ensures that every element of D appears in the enumeration 〈dn〉n.
Because otherwise we can construct an infinite descending chain of elements
not appearing in the enumeration 〈dn〉n (since d0 denotes the unique minimal
element with respect to the functional interpretation R of α→, it follows that for
any d ∈ D which does not appear in the enumeration 〈dn〉n there exists a d′ ∈ D
which also does not appear in the enumeration 〈dn〉n and 〈d′, d〉 ∈ R).

We thus have that M,R, s |= enum implies that the domain of M is countably
infinite. The formula �enum further abstracts from the current interpretation of
the points-to relation α→, so that if the domain of M is countably infinite then
M,R, s |= �enum, for arbitrary R (and s).

The class of uncountable models is characterized by ¬(�enum ∨ fin), where
fin denotes the above formula which characterizes the class of finite models.

Summarizing, the logic of full SL is neither compact nor does it satisfy the
Löwenheim-Skolem theorem because it can distinguish between countable and
uncountable models. Further, we observe that the above expressiveness results
do not depend on the interpretation of the points-to relation as an arbitrary
relation. That is, these results also hold for the semantics restricted to (infinite)
heaps.
5 ∃!xp is an abbreviation of ∃x(p ∧ ∀y(p[y/x] → y = x)), where p[y/x] denotes the

substitution of x by y.

414 F. S. de Boer et al.

Interestingly, since we can express that the points-to relation α→ is well-
founded (see above), even restricting to the separating conjunction gives rise
to non-compactness: given a countably infinite set of individual constants cn,
n ≥ 0, let Γ consist of the above formula �(emp∨∃x((x α→ −)∧∀y((y α→ −) →
(y �α→ x))) and the formulas cn+1 α→ cn, n ≥ 0. Clearly, every finite subset of
Γ is satisfiable but Γ itself is not. Note that we do not need to require that all
the ci �= cj , for every i �= j, because in case the formulas cn+1 α→ cn, n ≥ 0, are
satisfied and additionally ci = cj holds, for some i �= j, we have a loop in the
interpretation of α→. Further, restricting SL to separating conjunction also does
not satisfy the upward Löwenheim-Skolem theorem, because, as argued above,
M,R, s |= enum implies (infinite) countability of the domain of M .

Separation Logic Light. What about further restricting to positive occurrences of
the separating conjunction? Since we then can push negation inside, this restric-
tion can be formally defined by the following syntax describing SLL (‘separation
logic light’):

p ::= (¬)R(t1, . . . , tn) | (p ∨ q) | (p ∧ q) | ∃x(p) | ∀x(p) | (p ∗ q)

Here R denotes either a n-ary relation symbol or the points-to relation α→.
Thus, in this version of SL, negation can only be applied to atomic formulas.
To show that the notion of satisfiability of SLL is compact, we introduce the
following first-order translation p@R, where R is a binary predicate different from
α→, ◦ denotes conjunction/disjunction, and Q denotes the existential/universal
quantifier.

(¬)R(t1, . . . , tn)@R′ = (¬)R(t1, . . . , tn)
(t α→ t′)@R = R(t, t′)
(p ◦ q)@R = p@R ◦ q@R
Qx(p)@R = Qx(p@R)
(p ∗ q)@R = R = R1 � R2 ∧ p@R1 ∧ q@R2

The binary relation symbols R1 and R2 are ‘fresh’. It follows that p is satisfiable
if and only if p@R is satisfiable. More precisely, M,R, s |= p if and only if
there exists a (first-order) model M ′ such that M ′, s |= p@R. Consequently,
compactness of first-order logic implies compactness of SLL: Let Γ be an infinite
set of formulas of SLL and Γ ′ = {p@R | p ∈ Γ}6, for some binary relation
symbol R. If every finite subset of Γ is satisfiable, so is every finite subset of Γ ′.
By the compactness of first-order logic Γ ′ is satisfiable, and so is Γ . Along the
same lines it follows that if Γ is satisfiable then there exists a model M = (D, I)
such that D is countable and M,R, s |= p, for every p ∈ Γ .

Note however that compactness of the satisfiability relation does not imply
that the (semantic) consequence relation is compact. In fact, non-compactness
of the consequence relation for SLL follows directly from the above argument
6 Note that Γ ′ may require the introduction of an infinite number of fresh (binary)

relation symbols. This is however no problem because first-order logic allows for a
countably infinite set of function and relation symbols.

The Logic of Separation Logic: Models and Proofs 415

involving well-founded relations: Let Γ denote the set formulas cn+1 α→ cn,
n ≥ 0. It follows that Γ |= true ∗ (¬emp ∧ ∀x((x α→ −) → ∃y(y α→ x))).
But clearly, there does not exist a finite subset Γ0 of Γ such that Γ0 |= true ∗
(¬emp ∧ ∀x((x α→ −) → ∃y(y α→ x))).

Some Open Problems. The question remains whether restricting to separating
conjunction satisfies the downward Löwenheim-Skolem theorem. A counterex-
ample to the downward Löwenheim-Skolem theorem would be the expressibility
of uncountable models. This seems to require the �p modality (and thus the
separating implication).

Another interesting question is whether we can express finiteness of the
domain of the current interpretation of the points-to relation, that is, does there
exist a formula p in SL such that M,R, s |= p if and only if the domain of the
relation R is finite?

A main open problem is a formalization of the relation between full SL and
second-order logic. Intuitively, one of the main differences is the local perspec-
tive of SL, which is determined by the current heap. Remarkably, as already
mentioned in the introduction, [BDL12] presents a rather intricate encoding
of (dyadic) weak second-order logic into weak SL. Apparently this restriction
to finite heaps allows to break the local perspective. Our conjecture however
is that full SL is strictly less expressive than (dyadic) second-order logic. To
illustrate how subtle this difference may be, consider the following extension of
separation logic with a binding operator ↓R(p) which binds the binary vari-
able R in the evaluation of p to the current interpretation of the points-to
relation. In other words, it corresponds to a bounded (second-order) quantifi-
cation ∃R((R = α→) ∧ p), where, R = α→ abbreviates the first-order formula
∀x, y(R(x, y) ↔ (x α→ y)). Alternatively, we can directly define M,R, s |= ↓R(p)
if and only if M,R, s[R := R] |= p. This definition thus assumes an extension of
the valuation s to (binary) second-order variables. The expressive power of this
binding operator lies in that it allows to ‘break the spell’ of the local perspec-
tive since the bound binary variable allows in the local context of the current
interpretation of the points-to relation to refer to those ‘outer’ ones that have
generated it (by the separating connectives). This extension of SL allows for a
simple, compositional translation of (dyadic) second-order logic. We have the
following main case which translates ∃R(φ), where φ a dyadic second-order for-
mula (which is assumed not to contain occurrences of the points-to relation of
SL), into the SL formula �(↓R(p)).

4 Separation Logic of Definable Binary Relations

In this section we restrict the interpretation of the separating connectives to
first-order definable binary relations. By φ we now denote a first-order formula
which does not contain occurrences of the points-to relation α→ of SL. We omit
the standard inductive truth definition M, s |= φ of a first-order formula φ.

By φ(x1, . . . , xn) we denote that the free (first-order) variables of φ are among
the distinct variables x1, . . . , xn. A formula φ(x, y) is called a binary formula.

416 F. S. de Boer et al.

A binary formula is also simply denoted by φ, omitting its free variables x and
y. Given a model M = (D, I), and a first-order formula φ(x, y), we denote
by RelM (φ) the relation {〈s(x), s(y)〉 | M, s |= φ} ⊆ D × D. Note that the
evaluation of φ(x, y) only depends on the values of its free variables x and y,
that is, M, s |= φ if and only if M, s′ |= φ, where s(x) = s′(x) and s(y) = s′(y).
By φ(t, t′) we denote the result of replacing in φ(x, y) the variables x and y by
t and t′, respectively (if necessary renaming bound variables to ensure that the
variables of t and t′ do not become bound).

Definition 4 (First-order definability). Given a model M = (D, I), a rela-
tion R ⊆ D × D is first-order definable if R = RelM (φ), for some binary for-
mula φ(x, y).

Note that, given a model M = (D, I), I(R) = RelM (R), that is, for any
binary relation symbol R its interpretation I(R) is trivially a first-order definable
relation. We generalize the definition of R = R1�R2 to arbitrary binary formulas:
we denote by φ = φ1�φ2 that the binary formulas φ1(x, y) and φ2(x, y) represent
a partition of the binary formula φ(x, y) which is expressed by the conjunction
of ∀x, y(φ(x, y) ↔ (φ1(x, y) ∨ φ2(x, y))) and ∀x, y, z(¬φ1(x, y) ∨ ¬φ2(x, z)). The
latter formula, which states that the domains of the binary relations represented
by φ1(x, y) and φ1(x, y) are disjoint, we abbreviate by φ1 ⊥ φ2.

In the sequel we denote by M,R, s |= p the restriction of the relational seman-
tics of full SL (Definition 2 extended to binary relations) such that instead of
quantifying over arbitrary binary relations, the separating connectives involve
quantification over first-order definable binary relations. It is worthwhile to
observe here that, as for Henkin models of second-order logic [Hen50], the implicit
second-order quantification depends on the underlying signature of function and
relation symbols. Extending or restricting the signature affects the semantics of
formulas of the ‘old’ signature.

5 Sequent Calculus

To reason about the implicit quantification over definable (binary) relations, we
introduce rooted assertions of the form p@φ, where φ denotes a binary formula
and p is a formula of SL (see Definition 1). We define M, s |= p@φ if and only if
M,R, s |= p, where R = RelM (φ). The variables x and y of the binary formula
φ(x, y) are thus implicitly bound by the @-operator, that is, M, s |= p@φ if and
only if M, s′ |= p@φ, for any s and s′ such that s(z) = s′(z), for any free variable
occurring in p.

Note that the separating connectives are interpreted in terms of relations
which are definable by first-order formulas which do not involve the points-to
relation α→. This allows for the following alternative predicative definition7 of
the semantics of the separating connectives in rooted assertions (used in both
the soundness and completeness proofs). Here ψ ⊥ φ, for the binary formulas
ψ(x, y) and φ(x, y), denotes the formula ∀x, y, z(¬ψ(x, y) ∨ ¬φ(x, z)).
7 For a foundational discussion concerning predicativity, see [Cro17].

The Logic of Separation Logic: Models and Proofs 417

Fig. 1. Sequent calculus. The binary relation symbols R1, R2 and R introduced in the
rules L∗ and R−∗ are ‘fresh’. In the points-to rules p denotes a basic formula (which
does not contain occurrences of the separating connectives).

Lemma 1. We have

– M, s |= (p ∗ q)@φ if and only if there exist binary formulas φ1 and φ2 such
that M, s |= φ = φ1 � φ2, M, s |= p@φ1, and M, s |= q@φ2.

– M, s |= (p −∗ q)@φ if and only if M, s |= ψ ⊥ φ and M, s |= p@ψ implies
M, s |= q@(φ ∨ ψ), for all binary formulas ψ.

We now develop a calculus for sequents A1, . . . , An ⇒ B1, . . . , Bm, where
each Ai, i = 1, . . . , n, and Bj , j = 1, . . . , m, is constructed from first-order
formulas and rooted assertions, which can be further composed using propo-
sitional connectives and quantification of first-order variables. This calculus is
an extension of standard first-order sequent calculus (including cut), where the
standard rules are applicable with respect to top-level propositional connectives
and quantifiers. Figure 1 shows the left and right rules for separating conjunction
and implication. These rules closely follow the translation in Definition 3 of SL
into second-order logic, eliminating the explicit second-order quantification by
applying the standard proof rules for second-order quantification (which them-
selves are straightforward generalizations of the rules for first-order quantifica-
tion, instantiating the second-order variables by formulas). The binary relation
symbols R1, R2 and R introduced in the rules L∗ and R−∗ are ‘fresh’ binary
relation symbols, that is, they must not appear in the formulas of the conclusion
of the rules.

418 F. S. de Boer et al.

We also have rules which allow classical reasoning under rooted assertions:
(p ◦ q)@φ ↔ (p@φ) ◦ (q@φ), where ◦ denotes binary propositional connec-
tives, e.g., conjunction, disjunction, and implication, (¬p)@φ ↔ ¬(p@φ), and
(∃xp)@φ ↔ ∃x(p@φ) (and similarly (∀xp)@φ ↔ ∀x(p@φ)). Further, we have
∀x, y(φ ↔ ψ) → (p@φ ↔ p@ψ). It is straightforward to validate these rules,
but we omit the details of the semantics M, s |= A, which follows the standard
Tarski-style classical semantics, given the semantics of rooted assertions which
may appear in the place of atomic formulas.

In the so-called ‘points-to’ rules of Fig. 1 the formula p does not involve occur-
rences of the separating connectives. Such a formula of SL we call basic. Note that
it differs from pure first-order formulas in that basic formulas additionally may
involve the points-to relation. For such formulas we denote by p[φ/ α→], for any
binary formula φ(x, y), the result of replacing every atomic assertion (t α→ t′) in
p by φ(t, t′), which is a pure first-order formula. It follows that M, s |= p[φ/ α→]
if and only if M,RelM (φ), s |= p, for any basic formula p.

Example Proofs

Γ ⇒ q@R,R1 ⊥ R2 Γ ⇒ q@R, p@R1 Γ, q@(R1 ∨ R2) ⇒ q@R

R = R1 � R2, p@R1, (p −∗ q)@R2 ⇒ q@R
L−∗

(p ∗ (p −∗ q))@R ⇒ q@R
L∗

⇒ (p ∗ (p −∗ q))@R → q@R

⇒ ((p ∗ (p −∗ q)) → q)@R

As a first example of the use of the sequent calculus, above we have a derivation
of the sequent ⇒ ((p ∗ (p −∗ q)) → q)@R which represents the validity of
(p ∗ (p −∗ q)) → q. This derivation essentially consists of an application of the
rule L∗ followed by an application of the rule L−∗. In this derivation Γ denotes
the formulas R = R1 � R2, p@R1 generated by the application of rule L∗. The
second premise of the application of the rule L−∗ is derivable from an instance
of the axiom Γ,A ⇒ A,Δ. Note that ψ (in the L−∗ rule) is instantiated with R1.
The first and third premise follows from the fact that R = R1 � R2 reduces to
R1 ⊥ R2 and R = R1 ∪ R2 (that part of the proof is not shown above).

Next we show how to use the calculus in reasoning about the equivalence
of weakest preconditions that arise in the practice of verifying the correct-
ness of heap manipulating programs. Let p denote the weakest precondition
(u α→ −)∧ (z = 0 Φ u = v Σ v α→ z) of the heap update [u] := 0 which ensures the
postcondition v α→ z after assigning the value 0 to the location denoted by the
variable u (here φΦbΣψ abbreviates (b∧φ)∨ (¬b∧ψ)) (in [dBHdG23] a dynamic
logic extension of SL is introduced which generates this weakest precondition).
The standard rule for backwards reasoning in [Rey02] gives the weakest precon-
dition (u �→ −) ∗ (u �→ 0 −∗ v α→ z), which we denote by p′. These preconditions
are equivalent because both are the weakest.

Surprisingly, a proof of the implication p′ → p however exceeds the capability
of all the automatic SL provers in the benchmark competition for SL [SNPR+19].

The Logic of Separation Logic: Models and Proofs 419

In particular, of the automatic provers, only the CVC4-SL tool [RISK16] sup-
ports the fragment of SL that includes the separating implication connective.
However, from our own experiments with that tool, we found that it produces
an incorrect counter-example and reported this as a bug to one of the main-
tainers of the project (Andrew Reynolds). In fact, the latest version, CVC5-SL,
reports the same input as ‘unknown’, indicating that the tool is incomplete. In
the case of (semi) interactive SL provers (such as Iris [JKJ+18], and VerCors
[AH21,MRH22] that uses Viper [MSS16] as a back-end) we sought out expertise
and collaborated in our search for a tool-supported proof of the above equiva-
lence. Even after personally visiting the Iris team in Nijmegen (lead by Robbert
Krebbers) and the VerCors team in Twente (lead by Marieke Huisman), we
were unable to guide the tools to produce a proof of p′ → p. The problem here
seems similar to that of [HT16], in that their semantics of separating connectives,
which are formalized in terms of abstract monoids, are not compatible with the
set-theoretic interpretation of the points-to relation.

In fact, the equivalence between the above two formulas can be expressed in
quantifier-free separation logic, for which a complete axiomatization of all valid
formulas has been given in [DLM21]. In the sequent calculus we can express the
equivalence of p and p′ in terms of the sequent fun(R) ⇒ (p ↔ p′)@R. Here R is
an arbitrary binary relation symbol used to represent the current interpretation
of the points-to relation. We abbreviate ∀x, y, z((R(x, y) ∧ R(x, z)) → y = z)
by fun(R). A proof of the above sequent amounts to proving the sequents
fun(R), p′@R ⇒ p@R and fun(R), p@R ⇒ p′@R. Below we present a high-
level proof of the first sequent, abstracting from some basic first-order reasoning
in the calculus.

By an application of L∗ to derive the sequent fun(R), p′@R ⇒ p@R it suffices
to derive

fun(R), R = R1 � R2, (u �→ −)@R1, (u �→ 0 −∗ v α→ z)@R2 ⇒ p@R

for some fresh R1 and R2. Let ψ(x, y) denote the binary formula x = u ∧ y = 0.
Further, let Γ denote the set of formulas fun(R), R = R1 � R2, (u �→ −)@R1.
By an application of the rule L−∗ it then suffices to prove the following sequents
(from Γ ⇒ Δ we can derive Γ ⇒ A,Δ by right-weakening). First we prove
Γ ⇒ R2 ∩ ψ = ∅: By the points-to rules the rooted assertion (u �→ −)@R1

(appearing in Γ) reduces to ∃z(R1(u, z) ∧ ∀x, y(R1(x, y) → x = u ∧ y = z))
(the forall-part of the formula is due to the ‘strict’ points-to which states that
the domain contains u as its only location). Further, R2 ∩ ψ = ∅ logically boils
down to ¬∃x, y(R2(x, y) ∧ (x = u ∧ y = 0)), that is, ¬R2(u, 0), which in basic
first-order logic follows from ∃zR1(u, z) and the assumptions R = R1 � R2 and
fun(R).

Second, we prove Γ ⇒ (u �→ 0)@ψ: By the points-to rules (u �→ 0)@ψ
(using the expanded definition φ of u �→ 0 and the definition of the substitution
φ[ψ/ α→]) reduces to (u = u)∧(0 = 0)∧∀x, y((x = u ∧ y = 0) → (x = u ∧ y = 0))
which is equivalent to true.

420 F. S. de Boer et al.

And, finally, we prove Γ, (v α→ z)@(R2 ∨ ψ) ⇒ p@R: First note that (again,
by the points-to rules)

((u α→ −) ∧ (z = 0 Φ u = v Σ v α→ z))@R

reduces to
(∃zR(u, z)) ∧ (z = 0 Φ u = v Σ R(v, z)))

The assertion ∃zR(u, z) clearly follows from the assumptions R = R1 � R2 and
(u �→ −)@R1 in Γ . To prove z = 0 Φ u = v Σ R(v, z), we first reduce the assump-
tion (v α→ z)@(R2 ∨ ψ) to R2(v, z) ∨ (v = u ∧ z = 0). Now, if v = u then
¬R2(v, z), because of the assumptions fun(R), R = R1 � R2 and (u �→ −)@R1.
So we have that z = 0. Otherwise, we have R2(v, z), and thus R(v, z), because
R = R1 � R2.

Soundness and Completeness. We denote by � Γ ⇒ Δ that there exists a proof
of the sequent Γ ⇒ Δ. To define |= Γ ⇒ Δ, let σ denote a substitution which
assigns to every binary relation symbol R of the sequent Γ ⇒ Δ a binary formula
φ. Such a substitution σ simply replaces occurrences of R(t, t′) by φ(t, t′), where
σ(R) = φ(x, y). By |= Γ ⇒ Δ we then denote that M, s |= ∧

Γσ (that is,
M, s |= Aσ, for every A ∈ Γ) implies M, s |= ∨

Δσ (that is, M, s |= Bσ, for
some B ∈ Δ), for every M, s and every substitution σ.

In the soundness proof below we use these substitutions to instantiate the
fresh binary relation symbols introduced in the rules L∗ and R−∗. Note that
updating the interpretation of these symbols (as provided by M) would affect
the semantics of the separating connectives if binary formulas would refer to
these fresh binary relation symbols (note that they are only supposed not to
appear in formulas of the conclusion of the rules L∗ and R−∗).

We generalize the above notions of derivability and validity to possibly infi-
nite Γ : Γ � Δ indicates that � Γ ′ ⇒ Δ, for some finite Γ ′ ⊆ Γ , and Γ |= Δ indi-
cates that for every substitution σ we have that M, s |= Γσ (that is, M, s |= Aσ,
for every A ∈ Γ) implies M, s |= Bσ, for some B ∈ Δ.

Theorem 1 (Soundness). We have that � Γ ⇒ Δ implies |= Γ ⇒ Δ.

Proof. We prove that the rules for the separating connectives preserve validity.
The points-to rules are sound because M,RelM (φ), s |= p if and only if M, s |=
p[φ/ α→], for any basic formula p (note that p[φ/ α→] is a pure first-order formula
which does not depend on the heap).

L∗: Let M, s |= Γσ and M, s |= (pσ ∗ qσ)@φσ. We have to show that M, s |=∨
Δσ. By Lemma 1, there exist φ1 and φ2 such that M, s |= (φσ) = φ1 � φ2,

M, s |= pσ@φ1, and M, s |= qσ@φ2. Let σ′ = σ[R1, R2 := φ1, φ2]. Since R1

and R2 are fresh and as such do not appear in Γ, (p ∗ q)@φ, it follows that
M, s |= Γ ′σ′, where Γ ′ = Γ, φ = R1 � R2, p@R1, q@R2. By the validity of the
premise we thus obtain that M, s |= ∨

Δσ′. Since R1 and R2 also do not appear
in Δ, we conclude that M, s |= ∨

Δσ.
R∗: Let M, s |= Γσ and suppose that M, s �|= ∨

Δσ. From the validity of
the premises it then follows that M, s |= φσ = (φ1 � φ2)σ, M, s |= pσ@φ1σ, and
M, s |= qσ@φ2σ, By Lemma 1 we conclude M, s |= (pσ ∗ qσ)@φσ.

The Logic of Separation Logic: Models and Proofs 421

L−∗: Let M, s |= Γσ and M, s |= (pσ −∗ qσ)@φσ, and suppose that M, s �|=∨
Δσ. From the validity of the first two premises it then follows that M, s |=

φσ ⊥ ψσ and M, s |= pσ@ψσ. By Lemma 1 again, it follows that M, s |=
qσ@(φσ ∨ ψσ). By the validity of the third premise we thus derive that M, s �|=∨

Δσ, which a contradicts our assumption.
R−∗: Let M, s |= Γσ and suppose that M, s �|= ∨

Δσ. We have to show that
M, s |= (pσ −∗ qσ)@φσ. Let ψ be such that M, s |= ψ ⊥ (φσ) and M, s |= pσ@ψ.
Further, let R be a fresh variable and σ′ = s[R := ψ]. It follows that M, s |= Γ ′σ′,
where Γ ′ = Γ,R ⊥ φ, p@R and M, s �|= ∨

Δσ′. And so we derive from the validity
of the premise of the rule that M, s |= qσ@(φσ ∪ ψ). Since ψ was arbitrarily
chosen, by Lemma 1 again we conclude that M, s |= (pσ −∗ qσ)@φσ. ��

As a corollary we obtain that Γ � Δ implies Γ |= Δ.
Following the completeness proof of first-order logic as described in [Hen49],

it suffices to show that every consistent set of formulas is satisfiable (the so-
called ‘model existence theorem’). A set of formulas Γ is consistent if Γ �� ∅. We
first show that every consistent set of formulas can be extended to a maximal
consistent set. To this end we assume an infinite set of ‘fresh’ binary relation
symbols R that do not appear in Γ . We construct for any consistent set Γ a
maximal consistent extension Γ∞, assuming an enumeration of all formulas A
(which also covers all first-order formulas). We define Γ0 = Γ and Γn+1 satisfies
the general rule: if Γn, An �� ∅ then Γn ∪ {An} ⊆ Γn+1, otherwise Γn+1 = Γn.
Additionally, in case An is added and An is of the form ∃xA or a rooted assertion
(p ∗ q)@φ or ¬(p −∗ q)@φ, we also include corresponding witnesses in Γn+1:

– If An is of the form ∃xA we additionally add A(y), where A(y) results from
replacing all free occurrences of x in A by the fresh variable y which does not
appear in Γn.
Note that A(y) can indeed be added consistently because from Γn, A(y) � ∅ we
would derive Γn,∃xA � ∅, which contradicts the assumption that Γn,∃xA �� ∅.

– If An is of the form (p ∗ q)@φ we additionally add the formulas φ = R1 �
R2, R1 ⊥ R2, p@R1, and q@R2, where R1 and R2 are fresh (e.g., not appearing
in Γn).
Note that these formulas can indeed be added consistently because from
Γn, φ = R1�R2, R1 ⊥ R2, p@R1, q@R2 � ∅ we would derive Γn, (p ∗ q)@φ � ∅
(by rule L∗).

– If An is of the form ¬(p −∗ q)@φ (which is equivalent to ¬((p −∗ q)@φ)) we
additionally add the formulas R ⊥ φ, p@R(x, y), and ¬q@(φ∨R), where R is
fresh (e.g., not appearing in Γn).
Note that these formulas can indeed be added consistently because from
Γn, R ⊥ φ, p@R(x, y),¬q@(φ ∨ R) � ∅ we would derive Γn � (p −∗ q)@φ
(by rule R−∗), which contradicts the assumption that Γn,¬(p −∗ q)@φ �� ∅.

We define Γ∞ =
⋃

n Γn. By construction Γ∞ is maximal consistent. Given
a maximal consistent set of formulas Γ , let MΓ = (D, I), where D is the set
of equivalences classes [t] = {t′ | t = t′ ∈ Γ}. For any function symbol f and
relation symbol R (excluding the points-to relation α→) we define

422 F. S. de Boer et al.

– I(f)([t1], . . . , [tn]) = [f(t1, . . . , tn)],
– I(R)([t1], . . . , [tn]) = true if and only if R(t1, . . . , tn) ∈ Γ .

The above interpretation of the function and relational symbols is well-
defined because its definition does not depend on the choice of the representatives
(this follows from the equality axioms).

Given a maximal consistent set of formulas Γ and the model MΓ = (D, I),
a corresponding valuation s assigns to every variable x an equivalence class [t].
However, in the sequel we will represent such a valuation by a substitution s
which simply assigns to each variable a term. The value Is(x) of a variable x
then is given by the equivalence class [s(x)] of the term s(x).

Given a substitution s, for any term t and formula A (of the sequent calculus)
we denote by ts and As the result of replacing every free occurrence of a (first-
order) variable x in t and A by s(x). Note that (p@φ)s = ps@φ, because the
meaning of p@φ does not depend on the free variables x and y of the binary
formula φ(x, y).

Given a maximal consistent set of formulas Γ and the model MΓ = (D, I),
it follows that Is(t) = [ts], for every term t and substitution s.

Lemma 2. Given a maximal consistent set of formulas Γ and the model MΓ =
(D, I), we have M, s |= A if and only if As ∈ Γ , for every formula A and
substitution s.

Proof. The proof proceeds by induction on the following well-founded ordering
A < B on formulas of the sequent calculus: Let #A = (n,m), where n denotes
the number of occurrences of the separating connectives and the @-binding oper-
ator of A and m denotes the number of occurrences of the (standard) first-order
logical operations of A. Then A < B if #A < #B, where the latter denotes
the lexicographical ordering on N × N (w.r.t. the standard ‘smaller than’ order-
ing on the natural numbers). We treat the following main cases (for notational
convenience M denotes the model MΓ).

– Let M, s |= A, where A denotes the formula (p ∗ q)@φ. By Lemma 1 there
exist φ1 and φ2 such that M, s |= φ = φ1�φ2, M, s |= p@φ1 and M, s |= q@φ2.
From the induction hypothesis it follows that ps@φ1, qs@φ2, φ = φ1 �φ2 ∈ Γ
(note that the first-order formula φ = φ1 �φ2 does not contain free variables,
and thus is not affected by the substitution s). So we derive by rule R∗
that Γ � (ps ∗ qs)@φ. By maximal consistency of Γ , we then conclude that
(ps ∗ qs)@φ ∈ Γ , that is, As ∈ Γ .
On the other hand, let As ∈ Γ . That is, (ps ∗ qs)@φ ∈ Γ . By construction
φ = R1 � R2, ps@R1, qs@R2 ∈ Γ , for some witnesses R1 and R2. By the
induction hypothesis it then follows that M, s |= p@R1 and M, s |= p@R2.
Further, the induction hypothesis gives M, s |= φ = R1 �R2 (again, note that
the formula φ = R1 �R2 has no free variables, and thus is not affected by the
substitution s). We conclude by Lemma 1 that M, s |= (p ∗ q)@φ.

– Let M, s |= A, where A denotes the formula (p −∗ q)@φ. Suppose As �∈ Γ .
By the maximal consistency of Γ , we then have ¬(ps −∗ qs)@φ ∈ Γ . By

The Logic of Separation Logic: Models and Proofs 423

construction R ⊥ φ, ps@R,¬qs@(φ ∨ R) ∈ Γ , for some witness R, which
contradicts M, s |= (p −∗ q)@φ (after application of the induction hypothesis
and using Lemma 1 again).
On the other hand, let As ∈ Γ . To show that M, s |= (p −∗ q)@φ, let
M, s |= φ ⊥ ψ and M, s |= p@ψ, for some binary formula ψ. By the induction
hypothesis we have that φ ⊥ ψ, ps@ψ ∈ Γ . Suppose that qs@(φ∨ψ) �∈ Γ , that
is ¬qs@(φ ∨ ψ) ∈ Γ (Γ is maximal consistent), and thus Γ, qs@(φ ∨ ψ) � ∅.
Applying rule L−∗ we then derive Γ, (ps −∗ qs)@φ � ∅, which contradicts the
consistency of Γ ((ps −∗ qs)@φ ∈ Γ). So we have that qs@(φ∨ψ) ∈ Γ , that is,
M, s |= q@(φ ∨ ψ), by the induction hypothesis. Since ψ is chosen arbitrarily,
it follows by Lemma 1 that M, s |= (p −∗ q)@φ.

– Let A be a formula p@φ, where p denotes a basic formula. Let R = RelM (φ).
We then have M, s |= p@φ iff (by definition)
M,R, s |= p iff (straightforward induction on p)
M, s |= p[φ/ α→] iff (induction hypothesis for p[φ/ α→])
ps[φ/ α→] ∈ Γ iff (by the points-to rules)
ps@φ ∈ Γ . Note that applying the substitution s to p@φ and p[φ/ α→] results
in ps@φ and ps[φ/ α→]. ��

The downward Löwenheim-Skolem property follows. It should be noted that
we cannot remove from the constructed model the binary relation symbols which
are introduced as witnesses, as these determine the notion of first-order defin-
ability.

Theorem 2 (Completeness). We have that Γ |= Δ implies Γ � Δ.

Compactness follows. We thus derive (by Lindström’s theorem [Vää10]) that
this version of SL is as expressive as first-order logic.

6 Conclusion

We investigated the expressiveness of full SL over arbitrary first-order models.
We have shown that restricting the quantification over first-order definable heaps
gives rise to a semantic consequence relation that can be captured by a sound
and complete extension of the standard sequent calculus for first-order logic.

The main question remains what is the exact relationship between full SL
which allows for infinite heaps and second-order logic. In [KR04] a translation is
given of general second-order logic in a first-order logic with spatial conjunction.
Spatial conjunction (as defined in [KR04]) allows to split a global set of arbitrary
relations. As such it goes beyond the local scope of separating conjunction which
is restricted to the points-to relation. We conjecture that second-order logic is
strictly more expressive than full SL.

Acknowledgements. The authors thank the anonymous referees for providing many
constructive and useful suggestions for improvement.

424 F. S. de Boer et al.

References

[AH21] Armborst, L., Huisman, M.: Permission-based verification of red-black
trees and their merging. In: 2021 IEEE/ACM 9th International Conference
on Formal Methods in Software Engineering (FormaliSE), pp. 111–123.
IEEE (2021)

[BDL12] Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Inf. Comput.
211, 106–137 (2012)

[CK13] Chang, C.C., Keisler, H.J.: Model Theory: Third Edition. Dover Books on
Mathematics. Dover Publications (2013)

[Cro17] Crosilla, L.: Predicativity and Feferman. In: Jäger, G., Sieg, W. (eds.)
Feferman on Foundations: Logic, Mathematics, Philosophy. OCL, vol. 13,
pp. 423–447. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63334-3 15

[CYO01] Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity
results for a spatial assertion language for data structures. In: Hariha-
ran, R., Vinay, V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245,
pp. 108–119. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45294-X 10

[dBHdG23] de Boer, F., Hiep, H.-D., de Gouw, S.: Dynamic separation logic. In:
Mathematical Foundations of Programming Semantics (MFPS) (2023, to
appear)

[DD16] Demri, S., Deters, M.: Expressive completeness of separation logic with
two variables and no separating conjunction. ACM Trans. Comput. Log.
17(2), 12 (2016)

[DLM21] Demri, S., Lozes, É., Mansutti, A.: A complete axiomatisation for
quantifier-free separation logic. Log. Methods Comput. Sci. 17(3) (2021)

[EIP20] Echenim, M., Iosif, R., Peltier, N.: The Bernays-Schönfinkel-Ramsey class
of separation logic with uninterpreted predicates. ACM Trans. Comput.
Log. 21(3), 19:1–19:46 (2020)

[GM10] Galmiche, D., Méry, D.: Tableaux and resource graphs for separation logic.
J. Log. Comput. 20(1), 189–231 (2010)

[Hen49] Henkin, L.: The completeness of the first-order functional calculus. J.
Symb. Log. 14(3), 159–166 (1949)

[Hen50] Henkin, L.: Completeness in the theory of types. J. Symb. Logic 15(2),
81–91 (1950)

[HH14] Huet, G.P., Herbelin, H.: 30 years of research and development around
Coq. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2014, San Diego, CA, USA, 20–21 January 2014, pp. 249–
250. ACM (2014)

[HT16] Hóu, Z., Tiu, A.: Completeness for a first-order abstract separation logic.
In: Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp. 444–463.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47958-3 23

[JKJ+18] Jung, R., Krebbers, R., Jourdan, J.-H., Bizjak, A., Birkedal, L., Dreyer, D.:
Iris from the ground up: a modular foundation for higher-order concurrent
separation logic. J. Funct. Program. 28 (2018)

[KR04] Kuncak, V., Rinard, M.C.: On spatial conjunction as second-order logic.
CoRR, cs.LO/0410073 (2004)

https://doi.org/10.1007/978-3-319-63334-3_15
https://doi.org/10.1007/978-3-319-63334-3_15
https://doi.org/10.1007/3-540-45294-X_10
https://doi.org/10.1007/3-540-45294-X_10
https://doi.org/10.1007/978-3-319-47958-3_23

The Logic of Separation Logic: Models and Proofs 425

[Kri08] Krishnaswami, N.R.: A modal sequent calculus for propositional separa-
tion logic (2008)

[Man96] Manzano, M.: Extensions of First-Order Logic, vol. 19. Cambridge Uni-
versity Press, Cambridge (1996)

[MRH22] Monti, R.E., Rubbens, R., Huisman, M.: On deductive verification of an
industrial concurrent software component with VerCors. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13701, pp. 517–534. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-19849-6 29

[MSS16] Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastruc-
ture for permission-based reasoning. In: Jobstmann, B., Leino, K.R.M.
(eds.) VMCAI 2016. LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49122-5 2

[Pym02] Pym, D.J.: The semantics and proof theory of the logic of bunched impli-
cations. In: Applied Logic Series (2002)

[Rey00] Reynolds, J.C.: Intuitionistic reasoning about shared mutable data struc-
ture. In: Davies, J., Roscoe, B., Woodcock, J. (eds.) Millennial Perspectives
in Computer Science, Cornerstones of Computing, pp. 303–321. Macmillan
Education (2000)

[Rey02] Reynolds, J.C.: Separation logic: a logic for shared mutable data struc-
tures. In: Proceedings of the 17th IEEE Symposium on Logic in Computer
Science (LICS 2002), Copenhagen, Denmark, 22–25 July 2002, pp. 55–74.
IEEE Computer Society (2002)

[Rey05] Reynolds, J.C.: An overview of separation logic. In: Meyer, B., Woodcock,
J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 460–469. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69149-5 49

[RISK16] Reynolds, A., Iosif, R., Serban, C., King, T.: A decision procedure for
separation logic in SMT. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 244–261. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46520-3 16

[SNPR+19] Sighireanu, M., et al.: SL-COMP: competition of solvers for separation
logic. In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS
2019. LNCS, vol. 11429, pp. 116–132. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-17502-3 8

[Vää01] Väänänen, J.: Second-order logic and foundations of mathematics. Bull.
Symb. Logic 7(4), 504–520 (2001)

[Vää10] Väänänen, J.: Lindström’s theorem. Universal Logic: An Anthology, pp.
231–236 (2010)

[Yan01] Yang, H.: Local reasoning for stateful programs. Ph.D. thesis, University
of Illinois at Urbana-Champaign. (Technical Report UIUCDCS-R-2001-
2227) (2001)

https://doi.org/10.1007/978-3-031-19849-6_29
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-540-69149-5_49
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1007/978-3-319-46520-3_16
https://doi.org/10.1007/978-3-030-17502-3_8
https://doi.org/10.1007/978-3-030-17502-3_8

426 F. S. de Boer et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Testing the Satisfiability of Formulas
in Separation Logic with Permissions

Nicolas Peltier(B)

Université Grenoble Alpes, LIG, CNRS, Inria, Grenoble INP,
38000 Grenoble, France

nicolas.peltier@imag.fr

Abstract. We investigate the satisfiability problem for a fragment of
Separation Logic (SL) with inductively defined spatial predicates and
permissions. We show that the problem is undecidable in general, but
decidable under some restrictions on the rules defining the semantics
of the spatial predicates. Furthermore, if the satisfiability of permission
formulas can be tested in exponential time for the considered permission
model then SL satisfiability is Exptime complete.

1 Introduction

Separation Logic [14,22] (SL) is a dialect of bunched logic [18] that is widely used
in verification for reasoning on programs manipulating pointer-based data struc-
tures. It constitutes the theoretical basis of several industrial scale automated
static program analyzers [1,2,7]. SL formulas describe heaps, with atoms assert-
ing that some location (i.e., a memory address) is allocated and refers to some
tuple of locations (i.e., a record), combined with a special connective ∗, called
separating conjunction, which is used to compose heaps. Custom data structures
may be described in this setting by using spatial predicates, the semantics of
which is defined using inductive rules, similar to those used for defining recur-
sive structures in usual programming languages. Such rules allow one to describe
heaps of unbounded size with some particular structure such as lists or trees. In
this setting, existing work usually focuses on the fragment of SL called symbolic
heaps (defined as separating conjunctions of SL atoms).

Usually, SL formulas are interpreted in the standard heap model, where heaps
are defined as partial finite functions mapping locations to tuples of locations
and where the separating conjunction ∗ is interpreted as the disjoint union of
heaps. Both the satisfiability and entailment problems have been extensively
investigated for this heap model. It was proven that the satisfiability problem is
Exptime complete [6], whereas the entailment problem is undecidable in gen-
eral, and 2-Exptime complete provided the inductive rules meet some syntactic
conditions [11–13,15] which are general enough to capture usual data structures
used in programming. The combination of spatial reasoning with theory reason-
ing has also been thoroughly investigated, see for instance [16,19–21,23]).

c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 427–445, 2023.
https://doi.org/10.1007/978-3-031-43513-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_23&domain=pdf
https://doi.org/10.1007/978-3-031-43513-3_23

428 N. Peltier

However, richer models exist (see for instance [8]) accounting for additional
features of dynamic memory. The automation of reasoning in these models
received little attention. One such model that is of practical relevance is sep-
aration logic with permissions [3,5], where allocated locations are associated
with so called permissions used to model the ownership of a given heap region
(e.g., a process may have read or write permission over some location). The
heap composition operator that is used to define the interpretation of the sep-
arating conjunction is more complex in this framework than in the above case:
non disjoint heaps can be combined if they agree on all the locations on which
they are both defined and if the corresponding permissions can be combined (for
instance it is natural to assume that read permissions can be freely combined
but not write permissions). The framework is thus parameterized by some per-
mission model describing which permissions are available and how they can be
combined. In [10] algorithms are provided to decide the satisfiability and entail-
ment problems for SL formulas (symbolic heaps) with permissions in the case of
lists, i.e., when all allocated locations refer to a single location (i.e., to a record
of size 1) and when there is only one spatial predicate lsegp(x, y) denoting a
list segment from x to y, with permission p. The provided algorithms are generic
w.r.t. the permission model, and it is proven that these problems are in Np and
co-Np, respectively, assuming that some oracle exists for testing the satisfiability
of permission formulas in the considered model.

In the present paper, we investigate the satisfiability problem for SL formu-
las with permission defined over arbitrary spatial predicates, with user-defined
inductive rules. The goal is to allow for more genericity by tackling custom data
structures (such as trees, cyclic lists, doubly linked lists etc.) with arbitrary
permissions. The addition of permissions makes satisfiability testing much more
difficult: we prove that the problem is undecidable in general, and we devise
syntactic conditions on the inductive rules for which the problem is Exptime-
complete. The restrictions are similar – but stronger – to those given in [13] to
ensure the decidability of the entailment problem in the standard heap model. In
particular, the inductive rules defining the predicate lseg mentioned above fulfill
these restrictions1, as well as other usual data structures such as cyclic list, trees
etc. (however, doubly linked lists or trees with parent links are not captured).
The considered inductive rules use a special connective ◦ (different from ∗) that
is interpreted as a disjoint union. As we shall see, this is both more natural for
defining data structures (see also [5]) and required for deciding satisfiability.

2 Definitions

Syntax. We first briefly review some basic notations. If xxx and yyy are finite
sequences, then we denote by xxx.yyy the concatenation of xxx and yyy. We denote by
|xxx| the length of xxx and by xxx|i its i-th element (if 1 ≤ i ≤ |xxx|). If E ⊆ {1, . . . , |xxx|}
then xxx|E denotes the set {xxx|i | i ∈ E}. With a slight abuse of notations, a finite

1 provided the considered lists are not empty.

Testing the Satisfiability of Formulas in Separation Logic with Permissions 429

sequence xxx is sometimes identified with the set {xxx|i | i = 1, . . . , |xxx|}, for instance,
we may write x ∈ (uuu ∪ vvv) \ www to state that x occurs in uuu or vvv but not in www.

We consider a multisorted framework, with two sorts l (for locations) and
p (for permissions). Let Vl and Vp be two countably infinite disjoint sets of
variables with V def= Vl ∪ Vp, where Vl and Vp denote location variables and
permission variables, respectively. The set of permission terms Tp denotes the
set of terms built inductively as usual on the set of variables Vp and the binary
function ⊕ (written in infix notation). A points-to atom is an expression of the
form x

p	→ (y1, . . . , yk) with x, y1, . . . , yk ∈ Vl and p ∈ Tp. An equational atom is
an expression of the form x � y or x �� y with either x, y ∈ Vl or x, y ∈ Tp.

We consider two disjoint sets of predicate symbols Pp and P. The set Pp

denotes permission predicates, where each predicate P̂ ∈ Pp is associated with a
unique arity #(P̂). A permission atom is an expression of the form P̂ (p1, . . . , pn),
P̂ ∈ Pp, n = #(P̂) and p1, . . . , pn ∈ Tp. P is a finite set of spatial predicate
symbols. Each symbol P ∈ P is associated with a spatial arity #l(P) ∈ N and
with an arity #(P) ∈ N, with #(P) > #l(P) > 0 (#l(P) and #(P) − #l(P)
denote the number of arguments of P that are of sort l and p, respectively).
A predicate atom is an expression of the form P (x1, . . . , xn, p1, . . . , pm), with
n = #l(P), n + m = #(P), x1, . . . , xn ∈ Vl and p1, . . . , pm ∈ Tp. A spatial atom
is either a points-to atom or a predicate atom.

The set of formulas is built inductively as usual on the logical constants emp,
and ⊥ and on the set of spatial, equational and permission atoms, using the
special connectives ∗ and ◦ and existential quantification on variables of sort
l only (existential quantification over variables of type p is not allowed). The
connective ∗ is usually called separating conjunction, and we call ◦ the disjoint
conjunction (it is intended to capture the disjoint union of heaps2). Formulas
are taken up to associativity and commutativity of the symbols ∗ and ◦, up to
the commutativity of �, �� and up to prenex form. We denote by |φ| the size of
φ. For technical convenience, we assume that the symbols ◦ and ∗ have weight of
1 and 2, respectively, and that all atoms have size 1. For conciseness, a formula
∃x1 . . . ∃xn φ will often be written ∃xxxφ, with xxx = (x1, . . . , xn). A permission
formula is a formula containing no spatial atoms and no equational atom of the
form x � y or x �� y with x, y ∈ Vl (note that emp is a permission formula). A
formula is spatial if all the atoms occurring in it are spatial. A pure formula is a
formula that contains no spatial atom (it is not necessarily a permission formula,
as it may contain equations or disequations between locations) A symbolic heap is
a formula containing no occurrence of ◦, and a ◦-formula is a formula containing
no occurrence of ∗.

A variable x is free in a formula φ if it occurs in φ outside of the scope
of any quantifier binding x. The set of variables (freely) occurring in a term
(or formula) φ is denoted by fv(φ). A substitution is a function mapping every
variable in Vl to a variable in Vl and every variable in Vp to a term in Tp.

2 The connective ◦ is called strong separating conjunction in [5] and written ∗ (whereas
∗ is written ⇒∗). Our notations are mostly consistent with those in [10].

430 N. Peltier

The domain of a substitution σ (denoted by dom(σ)) is the set of variables x
such that σ(x) �= x. A substitution of domain {x1, . . . , xn} with σ(xi) = ti is
denoted by {xi ← ti | i = 1, . . . , n}, or {xxx ← ttt}, with xxx = (x1, . . . , xn) and
ttt = (t1, . . . , tn). For all formulas or terms φ, we denote by φσ the formula or
term obtained from φ by replacing every free occurrence of a variable x by σ(x).

Semantics. Permissions are interpreted in some permission model:

Definition 1 (Adapted from [10]). A permission model P is a triple

(PP,⊕P, (P̂P)P̂∈Pp
)

where PP is a non empty set, called the set of permissions, ⊕P : P2
P → PP is

a binary partial function that is commutative, associative and cancellative, and
P̂P ⊆ P#(P̂)

P , for all P̂ ∈ Pp. If π, π′ ∈ PP, we write π ≤P π′ if π = π′ ∨ (∃π′′ ∈
PP π′ = π ⊕ π′′).

In what follows, P always denotes a permission model. If π ∈ PP and n ∈ N,
we denote by πn the permission π ⊕P . . . ⊕P π (n times), note that πn is not
necessarily defined and implicitly depends on the considered permission model,
which will always be clear from the context. In contrast to [10], we do not assume
that a maximal “total” permission 1P exists, we allow instead for arbitrary
predicates over permissions (the total permission can be encoded as a unary
predicate symbol T , with TP = {1P}).

Example 2. Assume that Pp = ∅. A simple example of permission model is w =
({read, write},⊕w, ∅), with read⊕w read = read and write⊕w π is undefined
for all π ∈ {read, write}. Another example (from [4]) is f = (]0, 1],⊕f, ∅) where
]0, 1] denotes the interval of rational numbers, with π ⊕f π′ = π +π′ if π +π′ ≤ 1
and π ⊕f π′ is undefined otherwise (f stands for fractional).

Let L be a countably infinite set of locations. A store (for a given permission
model P) is a total mapping associating every variable in Vl to an element of
L and every variable in Vp to an element of PP. A store can be extended into
a partial mapping from Tp to PP inductively defined as follows: s(p1 ⊕ p2)

def=
s(p1) ⊕P s(p2). Note that the obtained mapping is partial since s(p1) ⊕P s(p2)
is not always defined. If x1, . . . , xn are pairwise distinct variables in Vl and
�1, . . . , �n ∈ L, we denote by s{xi ← �i | i = 1, . . . , n} the store s′ coinciding
with s on every variable not occurring in {x1, . . . , xn} and such that s′(xi) = �i

for all i = 1, . . . , n.
A heap (for a given permission model P) is a partial finite function from L

to L∗ × PP. The domain of a heap h is denoted by dom(h), and we denote
by |h| the finite cardinality of dom(h). A heap of domain �1, . . . , �n such
that h(�i) = (�i

1, . . . , �
i
ki

, πi) (for all i ∈ {1, . . . , n}) will be denoted as a set
{(�i, �

i
1, . . . , �

i
ki

, πi) | i = 1, . . . , n}. For every heap h we denote by loc(h) the set
{�i | �0 ∈ dom(h), h(�0) = (�1, . . . , �k, π), 0 ≤ i ≤ k}. A heap may be viewed as
a directed (labeled) graph: the locations in loc(h) are the vertices of the graph

Testing the Satisfiability of Formulas in Separation Logic with Permissions 431

and there is a edge from � to �′ if h(�) = (�1, . . . , �n, π) and �′ = �i for some
i ∈ {1, . . . , n}.

A subheap of h is any heap h′ such that dom(h′) ⊆ dom(h) and h′(�) = h(�) for
all � ∈ dom(h′). A p-weakening of h (w.r.t. some permission model P) is any heap
h′ such that dom(h′) = dom(h) and for all � ∈ dom(h), if h(�) = (�1, . . . , �n, π)
then h′(�) = (�1, . . . , �n, π′) with π′ ≤P π. We write h′ ≤l h (resp. h′ ≤p h) if h′

is a subheap (resp. a p-weakening) of h. The relation ≤ denotes the composition
of ≤l and ≤p. We write h ∼ h′ if h and h′ only differ by the permissions, i.e.,
dom(h) = dom(h′) and for all � ∈ dom(h), if h′(�) = (�1, . . . , �n, π′) then there
exists π such that h(�) = (�1, . . . , �n, π).

Example 3. Consider the permission model f defined in Example 2 with L = N.
Then

h0 = {(0, 0, 1, 0.1), (1, 0, 0, 0.2)}, h1 = {(0, 0, 1, 0.1)},
h2 = {(0, 0, 1, 0.1), (1, 0, 0, 0.1)} h3 = {(1, 0, 0, 0.1)}

are heaps, and we have, e.g., h0(0) = (0, 1, 0.1) (meaning that the location 0 is
allocated and refers to (0, 1), with permission 0.1), h1 ≤l h0, h2 ≤p h0, h3 ≤l h2,
and h3 ≤ h0. Moreover, h0 ∼ h2.

Heaps can be composed using the following partial operator. If h1, h2 are
heaps, then h1 � h2 is defined iff for all � ∈ dom(h1) ∩ dom(h2), we have hi(�) =
(�i

1, . . . , �
i
ki

, πi) (for all i = 1, 2) where k1 = k2, �1j = �2j for all j ∈ {1, . . . , k1} and
π1 ⊕P π2 is defined. Then h1 � h2 is defined as follows: if � ∈ dom(hi) \ dom(hj)
with (i, j) ∈ {(1, 2), (2, 1)} then (h1�h2)(�)

def= hi(�), and if � ∈ dom(h1)∩dom(h2)
then (h1 � h2)(�)

def= (�11, . . . , �
1
k1

, π1 ⊕P π2).

Example 4. Consider the permission model f defined in Example 2, with L = N

and the following heaps:

h0 = {(0, 0, 0.5), (1, 0, 0.6)} h1 = {(0, 0, 0.5), (1, 0, 0.2), (2, 0.1)}
h2 = {(0, 0, 0.5), (1, 0, 0.6)} h3 = {(0, 0, 0.1), (1, 0.1)}

Then h0 � h1 is defined, and we have: h0 � h1 = {(0, 0, 1), (1, 0, 0.8), (2, 0.1)}.
However, neither h0�h2 nor h0�h3 is defined (in the former case the permissions
of location 1 cannot be combined (as 0.6 + 0.6 > 1) and in the latter case the
location 1 is associated with distinct tuples, (0) and (), respectively.

A structure (for a given permission model P) is a pair (s, h) where s is a store
and h is a heap for P. It is injective if s is injective. A location � is allocated in
a structure (s, h) or in a heap h if � ∈ dom(h), and a variable x is allocated in
(s, h) if s(x) ∈ dom(h).

The semantics of spatial predicate is defined by inductive rules. A set of
inductive definitions (SID) is a set of rules of the form P (x1, . . . , xn, y1, . . . , ym)
⇐ φ where n = #l(P), n+m = #(P), x1, . . . , xn are pairwise distinct variables
in Vl, y1, . . . , ym are pairwise distinct variables in Vp, and φ is a formula such
that fv(φ) ⊆ {x1, . . . , xn, y1, . . . , ym}. We write P (z1, . . . , zn, p1, . . . , pm) ⇐R ψ
iff R contains a rule P (x1, . . . , xn, y1, . . . , ym) ⇐ φ with ψ = φ{xi ← zi, yj ←
pj | i ∈ {1, . . . , n}, j ∈ {1, . . . , m}}.

432 N. Peltier

Definition 5. (Semantics) For every permission model P and SID R, the sat-
isfiability relation |=P

R is the smallest relation between structures (for P) and
formulas such that:

1. (s, h) |=P
R emp iff h = ∅.

2. (s, h) |=P
R x

p	→ (y1, . . . , yk) if s(p) is defined and h = {(s(x), s(y1), . . . , s(yk),
s(p))}. Note that this entails that dom(h) = {s(x)}.

3. (s, h) |=P
R x � y (resp. (s, h) |=P

R x �� y) if h = ∅, s(x) and s(y) are defined
and s(x) = s(y) (resp. s(x) �= s(y)).

4. (s, h) |=P
R P̂ (p1, . . . , pn) with P̂ ∈ Pp if s(pi) is defined for all i ∈ {1, . . . , n},

(s(p1), . . . , s(pn)) ∈ P̂P and h = ∅.
5. (s, h) |=P

R P (x1, . . . , xn, π1, . . . , πm) with P ∈ P if there exists φ such that
P (x1, . . . , xn, π1, . . . , πm) ⇐R φ and (s, h) |=P

R φ.
6. (s, h) |=P

R φ1 ∗ φ2 if there exist heaps h1, h2 such that h1 � h2 is defined,
h = h1 � h2 and (s, hi) |=P

R φi for all i = 1, 2.
7. (s, h) |=P

R φ1 ◦ φ2 if there exists heaps h1, h2 such that dom(h1)∩dom(h2) = ∅,
h = h1 � h2 and (s, hi) |=P

R φi for all i = 1, 2.
8. (s, h) |=P

R ∃xφ if (s{x ← �}, h) |=P
R φ for some � ∈ L.

A structure (s, h) such that (s, h) |=P
R φ is an (R,P)-model of φ. A formula

admitting an (R,P)-model is (R,P)-satisfiable. Two formulas are sat-equivalent
(w.r.t. R, P) if they are both (R,P)-satisfiable or both (R,P)-unsatisfiable.

Example 6. The formula x
u	→ (y, z) ◦ x

u′
	→ (y′, z′) is (R,P)-unsatisfiable, as x

cannot be allocated in disjoint parts of the heap. x
u	→ (y) ∗ x

u′
	→ (y′) ∗ y �� y′

is also (R,P)-unsatisfiable, as x cannot refer to two distinct records, but x
u	→

(y, z) ∗ x
u′
	→ (y′, z′) admits the model (on the permission model f) (s, h) with

s(x) = 0, s(y) = s(y′) = 1, s(z) = s(z′) = 2, s(u) = 0.5, s(u′) = 0.2 and
h = {(0, 1, 2, 0.7)}.

Note that there is no logical constant � (true): no formula can be satisfied
on all heaps. The constant emp is similar to � but it states that the heap is
empty. For all formulas φ, ψ, we write φ |=P

R ψ iff the implication (s, h) |=P
R

φ =⇒ (s, h) |=P
R ψ holds for all structures (s, h), and φ ≡P

R ψ iff we have
both φ |=P

R ψ and ψ |=P
R φ. If φ contains no predicate symbols in P, then the

truth value of φ in (s, h) does not depend on R. We thus may write (s, h) |=P φ

instead of (s, h) |=P
R φ. If, moreover, φ is pure, then (s, h) |=P φ holds only if h

is empty. We will write s |=P φ to state that (s, ∅) |=P φ. Finally, if φ contains
only equalities between variables then its semantics does not depend on R and
P thus we write s |= φ to state that (s, ∅) |=P

R φ. Note that the semantics of
φ1 ◦ φ2 and φ1 ∗ φ2 coincide if φ1 or φ2 is pure, and also coincide with that of
the usual standard conjunction if both φ1 and φ2 are pure.

Testing the Satisfiability of Formulas in Separation Logic with Permissions 433

Shorthands. If xxx = (x1, . . . , xn) and yyy = (y1, . . . , ym) are sequences of variables
in Vl then xxx � yyy denotes the formula ⊥ if n �= m and (x1 � y1) ◦ . . . ◦(xn � yn)
otherwise. For every permission term p, we denote by def (p) the atom p � p.
By definition, (s, h) |=P

R def (p) iff s(p) is defined and h = ∅.

3 h-Regular Systems

We focus on SIDs of some particular form, defined below.

Definition 7. A rule is h-regular if it is of the following form:

P (x,yyy) ⇐ ∃u1, . . . , un (x
p	→ (v1, . . . , vk) ◦ Q1(u1, yyy1) . . . ◦ Qn(un, yyyn) ◦ φ)

where {u1, . . . , un} ⊆ {v1, . . . , vk}, yyyi is a vector of variables3, Qi ∈ P and φ is
pure. We assume by α-renaming that x,yyy do not occur in {u1, . . . , un}. A SID
R is h-regular if all the rules in R are h-regular.

Note that the right-hand side formula contains only the disjoint separation con-
nective ◦ and not the usual separating conjunction ∗. As we will see (Theorem
33) this is crucial for the decidability of the satisfiability problem. However, as
already observed in [5], this is also justified from a practical point of view. Assume
for instance that we want to define the predicate lseg introduced in [10], denot-
ing a list segment from x to y with some permission z. The following rules can be
used4: lseg(x, y, z) ⇐ x

z	→ (y) lseg(x, y, z) ⇐ ∃u (x z	→ (u) ◦ lseg(u, y, z)). A
structure (s, h) satisfies lseg(x, y, z) if h = {(�i, �i+1, s(z)) | i = 1, . . . , n} with
n > 0, s(x) = �1, s(y) = �n+1 and �i �= �j if i �= j and i, j ∈ {1, . . . , n}. This fits in
with the definition in [10] (except that n > 0). In contrast, if one uses instead the
connective ∗: lseg(x, y, z) ⇐ ∃u (x z	→ (u) ∗ lseg(u, y, z)), then one could obtain
models where the list “loops” on itself an arbitrary number of times, such as, for
instance (s, {(s(x), s(x), p))}), with s(y) = s(x) and p = s(z)n, for any n > 0 such
that s(z)n is defined. In the former definition, s(y) possibly occurs in {�1, . . . , �n},
but each location can only be allocated once.

Intuitively, h-regular sets of inductive rules generate heaps with a regular
structure (in the sense that it may be represented by a tree automaton [9]),
enriched with some additional edges (referring to the nodes corresponding to
the variables passed as parameters to the spatial predicates at some recursive
calls). These additional edges may refer to locations corresponding to free vari-
ables (e.g. the root of the structure) but also to existential variables (for instance
they may refer to the parent node in the tree). h-Regular SID are related to the
Pce systems introduced in [13] (for progressing, connected and established),
extended to formulas with permissions, but our conditions are slightly stronger,
because we require that every existential variable be allocated at the next recur-
sive call. Note that structures with mixed permissions are allowed, for instance
3 i.e., compound permission terms are not allowed in predicate atoms.
4 As h-regular rules allocate exactly one location, we assume that the segment is non

empty, the case of an empty segment must be considered apart.

434 N. Peltier

the rules P (x, z1, z2) ⇐ x
z1	→ () and P (x, z1, z2) ⇐ ∃u (x z1	→ (u) ◦ P (u, z2, z1))

defines a list with permissions alternating between z1 and z2. Rules with com-
pound permission terms in points-to or permission atoms are allowed (such as
P (x, y1, y2) ⇐ x

y1⊕y2	→ () ◦ def (y1 ⊕ y1)), but not those with compound permis-
sion terms in spatial predicate atoms5 (e.g., P (x, y1, y2) ⇐ x

y1	→ () ◦ Q(x, y1 ⊕y2)
is not h-regular).

For every quantifier-free formula φ, we denote by roots(φ) the set of variables
x (called the roots of φ) inductively defined as follows: roots(x

p	→ (y1, . . . , yk)) def=
{x}, roots(P (x, y1, . . . , yk)) def= {x}, roots(∃y φ) = roots(φ)\{y}, roots(φ) = ∅ if φ
is pure and roots(φ1 ∗φ2) = roots(φ1 ◦ φ2) = roots(φ1)∪ roots(φ2). By Definition
7, roots are always allocated:

Proposition 8. Let R be a h-regular SID. If (s, h) |=P
R φ and x ∈ roots(φ) then

s(x) ∈ dom(h). Consequently, every formula of the form φ1 ◦ φ2 with roots(φ1)∩
roots(φ2) �= ∅ is (R,P)-unsatisfiable.

The conditions in Definition 7 are actually not sufficient to ensure that the
satisfiability problem is decidable:

Theorem 9. If there exist (not necessary distinct) permissions π1, π2 ∈ PP

such that π1⊕Pπ2 is defined, then the (R,P)-satisfiability problem is undecidable
for h-regular SID R.

To ensure decidability, we need to further restrict the way existential variables
are passed as parameters during recursive calls. This is the goal of the next
definition.

Definition 10. Assume that R is h-regular. Given two spatial predicates P and
Q, of arities n and m respectively, we write P �	R Q if P (x, x1, . . . , xn−1) ∗
Q(x, y1, . . . , ym−1) is (R,P)-unsatisfiable6 (where x1, . . . , xn−1, y1, . . . , ym−1

denote pairwise distinct variables of the appropriate sorts). We denote by γR
the function associating every predicate symbol P of spatial arity n to a sub-
set of {2, . . . , n} inductively defined as follows: for every rule P (x1, . . . , xn,uuu) ⇐
∃y1, . . . , ym φ in R, for every predicate atom Q(z1, . . . , zk,uuuk) in φ with #l(Q) =
k and for all i ∈ {2, . . . , k}:

1. zi ∈ {y1, . . . , ym} ⇒ i ∈ γR(Q).
2. zi ∈ {xj | j ∈ γR(P)} =⇒ i ∈ γR(Q).

5 Otherwise the unfolding of spatial predicates could yield terms of arbitrary depth.
6 In practice, as this condition is hard to test, some stronger syntactic condition can

be tested instead, for instance one can check that all the formulas φ and φ′ such
that P (x, x1, . . . , xn−1) ⇐R φ and Q(x, y1, . . . , ym−1) ⇐R φ′ are of the form φ =
(x �→ (uuu) ◦ ψ) and φ′ = (x �→ (uuu′) ◦ ψ′) with |uuu| �= |uuu′| (this condition is used in
Theorem 33 and for the Exptime-hardness proof in Theorem 32.). More generally,
it is sufficient to test that the “shape” of the structures generated by P and Q, up
to a certain fixed unfolding depth, are incompatible.

Testing the Satisfiability of Formulas in Separation Logic with Permissions 435

Let Pω be a subset of P, such that: (3) P ∈ Pω =⇒ γR(P) = ∅; and (4)
P ∈ Pω ∧ Q ∈ P \ Pω =⇒ P �	R Q. A h-regular rule is ∃-restricted (w.r.t. R
and Pω) if it satisfies the following condition (using the notations of Definition
7):

5. ∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , n} (ui ∈ yyyj =⇒ Qi ∈ Pω).

A SID R is ∃-restricted if all the rules in R are ∃-restricted.

Conditions 1 and 2 in Definition 10 are meant to ensure that γR(P) denotes
the indices of the parameters of P that may (but do not have to) be instantiated
by some existential variable introduced during the unfolding of the inductive
rules in R (the other parameters may only be instantiated by variables occur-
ring in the initial formula). Condition 1 corresponds to a base case, where an
existential variable is passed as a parameter to a predicate symbol, and Condi-
tion 2 handles the inductive case, when the variable is carried through recursive
calls7. Then, Condition 5 ensures that an existential variable may only be passed
as a parameter to a predicate symbol if it is the root of a structure defined by
an atom Qi(yyyi) containing no variables introduced by unfolding (by Condition
3).

Example 11. The rules of the predicate lseg are ∃-restricted (with Pω = ∅).
Indeed, they contain only one existential variable u, which occurs only as the
first argument of a predicate. Hence Condition 5 in Definition 10 trivially holds.
If R contains no other rule then γR(lseg) = ∅. Note that γR(lseg) depends
on the entire set R. For instance, if R contains a rule P (x, y) ⇐ ∃u (x

y	→
(u) ◦ lseg(u, u, y)) then the second argument of lseg may be instantiated by
an existential variable hence γR(lseg) = {2}, and the latter rule is not ∃-
restricted. On the other hand, if Pω = {Q}, then the rules Q(x, y) ⇐ x

y	→
(), R(x, y) ⇐ ∃u, v (x

y	→ (u, v) ◦ lseg(u, v, y) ◦ Q(v, y)) are ∃-restricted, with
Pω = {Q}. Indeed, the variable u occurs only at the root of a predicate,
and the variable v is the root of Q(v, y). Note that lseg(x, y, z) ∗ Q(x, u) and
R(x, y) ∗ Q(x, u) are (R,P)-unsatisfiable, thus lseg �	R Q and R �	R Q.

Intuitively, the structures generated by ∃-restricted rules are regular tree-
shaped structures, enriched with two kinds of additional edges: (i) a bounded
number of arbitrary edges (corresponding to free variables, which may be freely
passed as arguments to any predicate, thus may be referred to in an arbitrary
way); (ii) an unbounded number of other edges (corresponding to existential
variables) which are only allowed to point to structures that contain no edge
of type (ii). Condition 4 ensures that the structures containing only edges of
type (i) do not overlap with those containing both kinds of edges. Note that
the conditions of Definition 10 always hold if the existential variables occur only
7 For generality, one could assume that all the equalities occurring in the rules are

propagated before γR is computed (so that existential variables are eliminated if
they are equal to a free variable), but this is not essential for our purposes hence the
corresponding formal definitions are omitted.

436 N. Peltier

as roots (with Pω = P or Pω = ∅). In this case there is no edge of type (ii),
i.e., the obtained structures are regular sets of trees with a bounded number
of additional edges (for instance trees with pointers to the root, or cyclic lists).
Note that doubly linked lists cannot be captured (as they contain an unbounded
number of additional edges from every node to the previous one). In the following
we devise an algorithm to test the (R,P)-satisfiability of symbolic heaps when
R is ∃-restricted.

4 A Decision Procedure for Testing Satisfiability

Before entering into technical details we start with a general overview of the
procedure for testing satisfiability (assuming the considered SID is ∃-restricted).

1. Starting with a formula of the form δ1 ∗ · · · ∗ δn where the δi’s are atoms,
we first reduce every spatial atom δi into an equivalent disjunction of ◦-
conjunctions δi

1 ◦ . . . ◦ δi
mi

such that the only free variables allocated by an
atom δi

j are its roots roots(δi
j) (as δi

j is an atom, card(roots(δi
j)) ≤ 1).

Due to the particular properties of the h-regular rules (more precisely, due
to the fact that the rules satisfy the “establishment” property of [13], i.e.,
every existential variable is allocated), this entails that, for all structures
(s, hi,j) satisfying δi

j , the domains of hi,j and hi′,j′ are either equal (if δi
j

and δi′
j′ have the same roots) or disjoint (otherwise). Indeed, the establish-

ment property ensures that the considered heaps have no “pending edges”
(i.e., no location that is referred to but not allocated), other than those
denoted by free variables. This step can be considered as the key part of
the procedure. It requires to (automatically) enrich the language with addi-
tional predicates and rules, and the termination of the transformation cru-
cially depends on the conditions on ∃-restricted rules. For instance, an atom
lseg(x, x) occurring in a formula with free variables x, y could be written
(x � y ◦ lseg(x, x)) ∨ lseg′(x, x, y) ∨ (lseg′(x, y, y) ◦ lseg′(y, x, x)) where
lseg′(u, v, w) denotes a list segment from u to v not allocating w. The previ-
ous decomposition depends on whether y is equal to x and whether y occurs
in the list segment from x to x.

2. By distributivity, we get at this point ∗-conjunctions of ◦-conjunctions of
atoms. Taking advantage of the previous property, we then reduce these for-
mulas into ◦-conjunctions of ∗-conjunctions of atoms, by regrouping the atoms
with the same roots, e.g., (P (x, y) ◦ Q(y, x))∗(P ′(x, y) ◦ Q′(y, x)) may be writ-
ten (P (x, y) ∗ P ′(x, y)) ◦(Q(y, x) ∗ Q′(y, x)).

3. Next, we show that a ∗-conjunction of atoms sharing the same root (such as
P (x, y) ∗ P ′(x, y) or Q(y, x) ∗ Q′(y, x)) can be denoted by a single atom, the
rules of which are obtained by “merging” the rules of the initial atoms.

4. At this point we get a ◦-conjunction of atoms. To ensure that the formula is
satisfiable it suffices to test that all these atoms have a model and that all
these models are compatible, w.r.t. the equality constraints, allocated loca-
tions and permission constraints. To this aim, we construct finite abstractions
of the models of the considered atoms using a bottom-up fixpoint algorithm.

In the next subsections, each of these steps is explained in details.

Testing the Satisfiability of Formulas in Separation Logic with Permissions 437

4.1 Normalization

We first show that every formula can be transformed into an equivalent formula
(that we call normalized) in which every allocated variable occurs as a root:

Definition 12. A formula φ is normalized if it is of the form ∃xxxψ where ψ is
quantifier-free and for all spatial atoms δ in ψ, for all (R,P)-models (s, h) of δ
and for all variables y ∈ fv(ψ): s(y) ∈ dom(h) ⇐⇒ y ∈ roots(ψ).

For instance, lseg(x, y) is not normalized, because y may be allocated (e.g., if
s(x) = s(y)) and does not occur in roots(lseg(x, y)) = {x}. To enforce this con-
dition, we introduce new predicate symbols (called derived predicates), the rules
of which can be automatically computed from those of the predicates already
occurring in this formula. We first define predicate symbols that ensure that
some given variable is not allocated.

Definition 13. For all predicate atoms P (xxx,ppp) (where xxx and ppp are vectors of
location variables and permission terms, respectively) and for all location vari-
ables v, we denote by P (xxx,ppp)[v]− any atom of the form Q(xxx, v,ppp), where Q is a
fresh predicate symbol, associated with the rules:

Q(yyy, w,zzz) ⇐ ∃uuu (Q1(yyy1, ppp1)[w]− ◦ . . . ◦ Qm(yyym, pppm)[w]− ◦ φ ◦yyy|1 �� w)

for all rules P (yyy,zzz) ⇐ ∃uuu (Q1(yyy1, ppp1) ◦ . . . ◦ Qm(yyym, pppm) ◦ φ) in R (up to AC),
where yyy,yyyi are vectors of location variables, zzz, pppi are vectors of permission vari-
ables, and φ contains no predicate atom.

For instance lseg(x, y, z)[u]− is a predicate atom Q(x, y, u, z) defined by
the following rules: {Q(x, y, u, z) ⇐ ∃x′(x z	→ (x′) ◦ Q(x′, y, u, z) ◦ x ��
u), Q(x, y, u, z) ⇐ x

z	→ (y) ◦ x �� u}. It denotes a list segment from x to y
not allocating u. The following result is straightforward to prove:

Proposition 14. For every ∃-restricted SID R, the set R enriched with the
rules associated with the predicate Q corresponding to P (xxx, p)[v]− in Definition
13 is ∃-restricted, with γR(Q) = γR(P) and Q ∈ Pω ⇐⇒ P ∈ Pω.

Intuitively the structures that satisfy P (xxx,ppp)[v]− are exactly those that satisfy
P (xxx,ppp) and do not allocate v:

Lemma 15. For all h-regular SID R, (s, h) |=P
R P (xxx, p)[v]− iff (s, h) |=P

R P (xxx, p)
and s(v) �∈ dom(h).

The operator δ 	→ δ[x]− can be applied recursively, e.g., one can consider atoms
of the form δ[x]−[y]−, etc. For all predicate atoms δ, we denote by unalloc(δ) the
set of variables inductively defined as follows: unalloc(δ[x]−) def= {x}∪unalloc(δ),
and unalloc(δ) def= ∅ if δ is not of the form δ′[x]−. The following proposition is an
immediate consequence of Lemma 15:

Proposition 16. If (s, h) |=P
R δ then s(x) �∈ dom(h), for all x ∈ unalloc(δ).

438 N. Peltier

Next, we define predicate symbols allowing one to remove some part of a
structure. Intuitively, the expression (φ −−• ψ) will hold exactly in the struc-
tures that satisfy ψ when a disjoint structure satisfying φ is added. For instance
given the rules tree(x, y) ⇐ ∃x1, x2 x

y	→ (x1, x2) ◦ tree(x1, y) ◦ tree(x2, y) and
tree(x, y) ⇐ x

y	→ (), tree(z, y) and tree(x, y) denote binary trees with roots
z and x, respectively, and tree(z, y) −−• tree(x, y) denotes a tree of root x with
a “hole” at z (the structures satisfying tree(z, y) −−• tree(x, y) are obtained
from models of tree(x, y) by removing the part of the heap that corresponds
to tree(z, y)). The formula φ −−• ψ is similar to the strong magic wand intro-
duced in [17] and to the context predicates in [12] and also close in spirit to the
separating implication of SL although the semantics are slightly different.

Definition 17. For all finite sequences of predicate atoms Pi(xxxi, pppi) (with i =
0, . . . , n), where xxxi and pppi are vectors of location variables and permission terms,
respectively, we denote by (P1(xxx1, ppp1) ◦ . . . ◦ P̂n(xxxn, pppn)) −−• P0(xxx0, ppp0) any atom
P (xxx,ppp) with xxx = xxx0.xxxn, ppp = ppp0.pppn, and such that P = P0 if n = 0 and
otherwise P is a fresh symbol associated with rules of the form

P (yyy,zzz) ⇐ ∃www (ψ1 ◦ . . . ◦ ψm ◦ φ)

for all rules

P0(yyy0, zzz0) ⇐ ∃www (Q1(uuu1, qqq1) ◦ . . . ◦ Qm(uuum, qqqm) ◦ φ)

in R and for all decompositions α1 ◦ . . . ◦ αm = P1(yyy1, zzz1) ◦ . . . ◦ Pn(yyyn, zzzn) (up
to AC, where the αi’s may be empty), where:

– yyyi and zzzi are sequences of pairwise distinct location and permission variables,
respectively, with |yyyi| = |xxxi| and |zzzi| = |pppi|;

– yyy = yyy0.yyyn, zzz = zzz1.zzzn;
– ψi is of one of the following forms:

• either αi −−• Qi(uuui, qqqi);
• or yyyj � uuui ◦zzzj � qqqi, if αi = Pj(yyyj , zzzj) and Pj = Qi.

For instance tree(z, y) −−• tree(x, y) denotes an atom P (x, z, y, y) with the
rules:

P (x, z, y1, y2) ⇐ ∃x1, x2 (x
y1	→ (x1, x2) ◦ P (x1, z, y1, y2) ◦ tree(x2, z, y1))

P (x, z, y1, y2) ⇐ ∃x1, x2 (x
y1	→ (x1, x2) ◦ tree(x1, z, y1) ◦ P (x2, z, y1, y2))

P (x, z, y1, y2) ⇐ ∃x1, x2 (x
y1	→ (x1, x2) ◦ x1 � z ◦ y1 � y2 ◦ tree(x2, z, y1))

P (x, z, y1, y2) ⇐ ∃x1, x2 (x
y1	→ (x1, x2) ◦ tree(x1, z, y1) ◦ x2 � z ◦ y1 � y2)

For readability, all the expressions of the form emp −−• tree(x2, z, y1) have been
replaced by tree(x2, z, y1). Note that the rules are not h-regular, as x1 and x2 do
not occur as roots in every rule, but they can easily be transformed into h-regular
rules by replacing x1 and x2 by z in the third and fourth rule, respectively (using
the equations x1 � z and x2 � z). The definition can be applied recursively (i.e.,
P0, . . . , Pn may be derived predicates). The next proposition is an immediate
consequence of Definition 17:

Testing the Satisfiability of Formulas in Separation Logic with Permissions 439

Proposition 18. Let R be a h-regular SID. The rules associated with any pred-
icate P corresponding to an expression α −−• δ (Definition 17) are h-regular, up
to the following equivalence: ∃x (x � y ◦ φ) ≡P

R φ{x ← y}. Moreover, the rules
are also ∃-restricted, with γR(P) = γR(P0) and P ∈ Pω ⇐⇒ P0 ∈ Pω. Finally
if α = emp then (α −−• δ) = δ.

Note that, however, the implication P ∈ Pω ∧ Q ∈ P \ Pω =⇒ P �	R Q
(Condition 4 in Definition 10) does not necessarily hold for derived predicates
P,Q. The following lemma states a form of modus ponens, relating the connective
◦ with −−•:

Lemma 19. If R is h-regular then P (xxx,ppp) ◦((P (xxx,ppp) ◦ α) −−• Q(yyy,qqq)) |=P
R α −−•

Q(yyy,qqq).

The next lemma states that every predicate atom allocating x can be written as
a ◦-formula in which x occurs as a root.

Lemma 20. Assume that R is ∃-restricted. Let yyy,ppp be vectors of location vari-
ables and permission terms, respectively. If (s, h) |=P

R Q(yyy,ppp), s(x) �= s(yyy|1)
and s(x) ∈ dom(h), then there exist atoms of the form P (x,zzz,qqq), Pi(xi, yyyi, qqqi)
(with i ∈ {1, . . . , n}), where zzz ⊆ yyy ∪ {x1, . . . , xn}, yyyi ⊆ {yyy|j | j �∈ γR(Q)},
qqq ⊆ ppp and qqqi ⊆ ppp, such that: (s, h) |=P

R ∃x1, . . . , xn (β ◦(β −−• Q(yyy,ppp))), with β =
P (x,zzz,qqq) ◦ ©m

i=1Pi(xi, yyyi, qqqi). Moreover, Pi ∈ Pω, {x1, . . . , xn} ⊆ (x,zzz)|γR(P)

and y ∈ yyy ∩ zzz ∧ y �∈ {yyy|j | j �∈ γR(Q)} =⇒ y ∈ (x,zzz)|γR(P).

Intuitively, since x is allocated and the rules are h-regular, then necessarily some
predicate atom of the form P (x,zzz,qqq) must be called at some point during the
unfolding of the rules. Using −−•, this predicate can be removed from the call
tree of Q(yyy,ppp) and lifted at the root level in the formula. The atom P (x,zzz,qqq)
may contain variables not occurring in Q(yyy,ppp) corresponding to existential vari-
ables introduced by unfolding. As the rules are ∃-restricted, all such variables xi

must themselves appear as the root of some predicate atom Pi(xi, yyyi, qqqi) which
contains (beside xi) only variables occurring in Q(yyy,ppp) (since γR(Pi) = ∅, due
to Condition 5 in Definition 10). Again, these atoms can be moved at the root
level.

Definition 21. For all atoms Q(yyy,ppp) we denote by δ[x]+ the set of formulas of
the form ∃x1, . . . , xn (β ◦(β −−• Q(yyy,ppp))) as defined in Lemma 20. We also denote
by δ[x]= the formula: δ ◦(x � yyy|1).

For every model of δ, δ[x]− holds if x is not allocated in δ, δ[x]= holds if x is
equal to the root of δ and δ[x]+ holds if x is allocated but is not the root of δ.
The following result follows immediately from Lemmata 19 and 20:

Lemma 22. Assume that R is ∃-restricted. Let x ∈ Vl. For every predicate
atom δ such that x �∈ roots(δ), and for all structures (s, h): (s, h) |=P

R δ iff there
exists ψ ∈ {δ[x]−, δ[x]=} ∪ δ[x]+ such that (s, h) |=P

R ψ.

440 N. Peltier

For instance the atom lseg(x, y, z) holds iff one of the formulas
lseg(x, y, z) ◦ x � y, lseg(x, y, z)[y]− or lseg(y, y, z) ◦(lseg(y, y, z) −−•
lseg(x, y, z)) holds. The second formula corresponds to the case where y is not
allocated, and the first and third ones correspond to the case where there is a
loop on y. By applying repeatedly Lemma 22 on every variable x and atom δ we
eventually obtain a disjunction of normalized formulas:

Lemma 23. Let R be a ∃-restricted SID. There exists an algorithm transform-
ing any symbolic heap φ containing no points-to atom into a set of normalized
formulas Ψ such that for all structures (s, h): (s, h) |=P

R φ iff there exists ψ ∈ Ψ

such that (s, h) |=P
R ψ. Furthermore, every formula in Ψ is a (quantified) sepa-

rating conjunction of ◦-formulas.

4.2 Commuting Separating and Disjoint Connections

The next step consists in showing that – under some particular conditions
enforced by the previous transformation – the operator ∗ can be pushed inner-
most in the formula (below the operator ◦). To this aim, we exploit an essential
property of h-regular SIDs, namely that all the locations that occur in the heap
of some model of a formula φ but are not allocated correspond to a variable in
fv(φ). We shall denote by cut(L,L′, h) the set of locations reachable from L in
h, from a path not crossing L′:

Definition 24. Let h be a heap, let L,L′ ⊆ L. We denote by cut(L,L′, h)
the set of locations inductively defined as follows: L ⊆ cut(L,L′, h), and if
�′ ∈ cut(L,L′, h), h(�′) = (�1, . . . , �k, π), i ∈ {1, . . . , k} and �i �∈ L′ then
�i ∈ cut(L,L′, h).

The following lemma characterizes the domain of the part of the heap satisfying
some formula φ:

Lemma 25. Let R be a h-regular SID and let φ be a ◦-formula containing no
quantifier. Let s be a store and let h, h′ be heaps, with h′ ≤ h . Let V be a set
of variables, with fv(φ) ⊆ V ∪ roots(φ) and s(V) ∩ dom(h′) = ∅. If (s, h′) |=P

R φ
then dom(h′) = cut(s(roots(φ)), s(V), h).

The commutation property, pushing ∗ below ◦, is given by Lemma 26:

Lemma 26. Let R be a h-regular SID. Let V ⊆ Vl and let φ be a normalized
formula, of the form φ = φ′ ◦(∗n

i=1(φi ◦ ψi) ∗ ψ′), where, for all i ∈ {1, . . . , n},
roots(φi) = V and (roots(ψi) ∪ roots(ψ′)) ∩ V = ∅. Then φ is (R,P)-satisfiable
iff (φ′ ◦∗n

i=1φi) ◦((∗n
i=1ψi) ∗ ψ′) is (R,P)-satisfiable.

Roughly speaking, as roots(φi) = V and φi is normalized, it is possible to prove,
using the characterization given in Lemma 25, that the parts of the heap that
correspond to the formulas φi have all the same domain. This entails that the
heaps corresponding to the formulas ψi and φi′ are disjoint, which permits to
prove that ∗n

i=1(φi ◦ ψi) can be written (∗n
i=1φi) ◦(∗n

i=1ψi), yielding the result.

Testing the Satisfiability of Formulas in Separation Logic with Permissions 441

4.3 Merging of Spatial Predicates

We show that, under some particular conditions, it is possible to replace the
separating conjunction of two spatial atoms having the same root by a single
spatial atom. The rules defining this atom are obtained by combining the rules
of the two initial atoms. More precisely, consider any h-regular SID R and two
spatial atoms P (x,yyy,ppp) and P ′(x,yyy′, ppp′) sharing the same root x, where yyy,yyy′ are
vectors of location variables and ppp and ppp′ are vectors of permission terms. We
denote by P (x,yyy,ppp)�P ′(x,yyy′, ppp′) any atom Q(x,yyy,yyy′, ppp,ppp′) where Q is associated
with rules of the form:

Q(v,www,www′, zzz,zzz′) ⇐ ∃u1, . . . , un v
q	→ (v1, . . . , vk)

◦ ©n
i=1(Qi(ui, yyyi, qqqi)�Q′

i(ui, yyy
′
i, qiqiqi

′)) ◦ φ ◦ φ′ ◦ ψ

with q
def= p ⊕ p′, for all pairs of rules of the following forms in R (with the

same numbers k and n, and up to α-renaming, so that the rules share the same
existential variables):

P (v,www,zzz) ⇐ ∃u1, . . . , un v
p	→ (v1, . . . , vk) ◦ ©n

i=1Qi(ui, yyyi, qqqi) ◦ φ

P ′(v,www′, zzz′) ⇐ ∃u1, . . . , un v
p′
	→ (v′

1, . . . , v
′
k) ◦ ©n

i=1Q
′
i(ui, yyy

′
i, qqq

′
i) ◦ φ′

where ψ = ©k
i=1(vi � v′

i). Note that all the produced rules are h-regular8.

Lemma 27. Let R be a h-regular SID. Let x ∈ Vl and let (s, h) be a structure
such that s(y) �∈ dom(h) holds for all variables y such that s(x) �= s(y). Then
(s, h) |=P

R P (x,yyy,ppp)�P ′(x,yyy′, ppp′) ⇐⇒ (s, h) |=P
R P (x,yyy,ppp) ∗ P ′(x,yyy′, ppp′).

The result crucially depends on the fact that the parts of the heap that corre-
spond to P (x,yyy,ppp) and P ′(x,yyy′, ppp′) respectively must share the same domain,
since otherwise, as R is h-regular, a free variable would be allocated, contradict-
ing the hypothesis. This ensures that the heap can be generated by the above
rules.

4.4 Heap Abstractions and Main Result

As we shall see later, the previous transformations can be used to transform any
symbolic heap into a ◦-formula (while preserving satisfiability). The final step
is to devise an algorithm to test the satisfiability of ◦-formulas. As it is done
in [6] for standard heap models, the algorithm works by constructing relevant
abstractions of the models of the predicate atoms. It suffices to keep track of
the truth value of the equational atoms, of the allocated variables and of the
permission atoms satisfied by the structure.

8 However ∃-restrictedness is not necessarily preserved.

442 N. Peltier

Definition 28. A heap abstraction is a tuple a = (Va,∼a, Aa, ρa) where Va is
a finite set of variables, ∼a is an equivalence relation on the variables of sort l
occurring in Va, Aa is a subset of Va ∩Vl, closed under ∼a (i.e., for all x, y ∈ Vl:
x ∈ Aa ∧ x ∼a y =⇒ y ∈ Aa), and ρa is a permission formula (with variables
in Va).

Definition 29. Let (s, h) be a structure and let a = (Va,∼a, Aa, ρa) be a heap
abstraction. We write (s, h) |=P a if all the following conditions are satisfied:
(i) For all variables x, y ∈ Va ∩ Vl: x ∼a y ⇐⇒ s(x) = s(y); (ii) for all
x ∈ Va ∩ Vl, x ∈ Aa ⇐⇒ s(x) ∈ dom(h); and (iii) s |=P ρa. A heap abstraction
is P-satisfiable if there exists a structure (s, h) such that (s, h) |=P a.

Proposition 30. A heap abstraction a is P-satisfiable iff ρa is P-satisfiable.

For all ◦-formulas φ, we define a set of heap abstractions A(φ) by mutual induc-
tion as follows. The sets A(φ) are the least sets of heap abstractions satisfy-
ing the following properties, for all finite sets of variables9 V ⊇ fv(φ) and
for all equivalence relations ∼ on V ∩ Vl: (i) if φ = x

p	→ (y1, . . . , yn) then
(V,∼, {y | y | y ∼ x}, def (p)) ∈ A(φ). (ii) if φ = x � y (resp. x �� y) with
x, y ∈ Vl and x ∼ y (resp. x �∼ y) then (V,∼, ∅, emp) ∈ A(φ); (iii) if φ is a
permission formula then (V,∼, ∅, φ) ∈ A(φ); (iv) if φ = ∃xψ, (V,∼, A, ρ) ∈ A(ψ)
then (V \ {x},∼′, A \ {x}, ρ) ∈ A(φ), where ∼′ denotes the restriction of ∼ to
the variables distinct from x, i.e., ∼′def= {(u, v) | u ∼ v ∧ u, v �= x} (note that x
cannot occur in ρ, since quantification over permission variables is not allowed);
(v) if φ = φ1 ◦ φ2, (V,∼, Ai, ρi) ∈ A(φi) (for all i = 1, 2) with A1 ∩ A2 = ∅, then
(V,∼, A1∪A2, ρ1 ◦ ρ2) ∈ A(φ); (vi) if φ = P (xxx,ppp) and φ ⇐R ξ then A(ξ) ⊆ A(φ).

Lemma 31. A ◦-formula φ is (R,P)-satisfiable iff at least one of the abstrac-
tions in A(φ) is P-satisfiable.

Putting things together we get the following result:

Theorem 32. If P-satisfiability is decidable for permission formulas, then there
exists an algorithm that, for every ∃-restricted SID, decides whether a given
formula φ is (R,P)-satisfiable. If, moreover, P-satisfiability is in Exptime,
then (R,P)-satisfiability is also in Exptime (for ∃-restricted SID). Finally,
for every permission model P, (R,P)-satisfiability is Exptime-hard (for ∃-
restricted SID).

5 Using Separating Conjunctions Inside Rules

To end the paper, we wish to point out that the satisfiability problem is undecid-
able from ∃-restricted SID if the disjoint separation ◦ is replaced by the standard
9 For technical convenience we do not impose any bound on the cardinality of V , hence

the set A(φ) is infinite. This simplifies the theoretical definition of the abstraction
for disjoint conjunctions. In practice only variables occurring in the initial formula
or in the rules need to be considered.

Testing the Satisfiability of Formulas in Separation Logic with Permissions 443

separating connective ∗ in the inductive definitions (see Definition 7). We think
that the result is of some theoretical interest, although, as explained above, rules
using ◦ are actually more convenient for describing data structures. The notions
of ∗-h-regular and ∗-∃-restricted SID are defined exactly as h-regular SID and
∃-restricted SID (Definitions 7 and 10) except that the symbol ◦ is replaced by
∗ everywhere (for conciseness the formal definitions are omitted).

Theorem 33. Let P be any permission model and assume that for every n ∈ N,
there exists π ∈ PP such that πn is defined. The (R,P)-satisfiability problem is
undecidable for ∗-∃-restricted SID.

6 Conclusion and Future Work

An algorithm was devised to test the satisfiability of symbolic heaps in Sepa-
ration Logic with inductively defined predicates and permissions, under some
(syntactic) conditions on the inductive rules giving the semantics of the spatial
predicates. The algorithm runs in exponential time, provided the satisfiability
of permission formulas is in Exptime. In addition, we showed that some nat-
ural relaxings of these conditions make the problem undecidable (under some
minimal assumptions on the permission model). The next step is to investigate
the entailment problem for the considered fragment. The techniques devised in
the present paper for transforming symbolic heaps into disjoint conjunctions of
atoms should serve as a basis for this purpose, but the extension is not straight-
forward. Another (much easier) extension that could be of practical relevance is
to consider formulas with labels (in the sense of [5]) which allow one to express
additional equality conditions on some parts of the structures. In our context,
labels would simply yield additional conditions on the decomposition generated
during the normalization step: two formulas sharing the same label should be
decomposed into formulas with the same set of roots. It could also be interesting
to relax some of the conditions on the rules, for instance to allow for existential
variables not occurring as roots in the rules. This is required to encode data
structures with forward pointers, such as skip lists. It is also unclear whether
Condition 4 in Definition 10 is required for decidability. Finally, the decision algo-
rithm could probably be extended to handle arbitrary combinations of disjoint
and separating conjunctions.

Acknowledgments. This work has been partially funded by the French National
Research Agency (ANR-21-CE48-0011)

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: modular automatic asser-
tion checking with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer,
Heidelberg (2006). https://doi.org/10.1007/11804192 6

https://doi.org/10.1007/11804192_6

444 N. Peltier

2. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: memory safety for systems-level code.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 15

3. Bornat, R., Calcagno, C., O’Hearn, P.W., Parkinson, M.J.: Permission accounting
in separation logic. In: Palsberg, J., Abadi, M., (eds.) Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2005, Long Beach, California, USA, 12–14 January 2005, pp. 259–270. ACM
(2005)

4. Boyland, J.: Fractional permissions. In: Clarke, D., Noble, J., Wrigstad, T.
(eds.) Aliasing in Object-Oriented Programming. Types, Analysis and Verifica-
tion. LNCS, vol. 7850, pp. 270–288. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36946-9 10

5. Brotherston, J., Costa, D., Hobor, A., Wickerson, J.: Reasoning over permissions
regions in concurrent separation logic. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020.
LNCS, vol. 12225, pp. 203–224. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-53291-8 13

6. Brotherston, J., Fuhs, C., Pérez, J.A.N., Gorogiannis, N.: A decision procedure
for satisfiability in separation logic with inductive predicates. In: Henzinger, T.A.,
Miller, D. (eds.), Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Sym-
posium on Logic in Computer Science (LICS), CSL-LICS 2014, Vienna, Austria,
14–18 July 2014, pp. 25:1–25:10. ACM (2014)

7. Calcagno, C., Distefano, D.: Infer: an automatic program verifier for memory safety
of C programs. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.)
NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-20398-5 33

8. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation logic.
In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10–12 July
2007, Wroclaw, Poland, Proceedings, pp. 366–378. IEEE Computer Society (2007)

9. Comon, H., et al.: Tree automata techniques and applications (1997). http://www.
grappa.univ-lille3.fr/tata

10. Demri, S., Lozes, É., Lugiez, D.: On symbolic heaps modulo permission theories. In:
Lokam, S.V., Ramanujam, R., (eds.), 37th IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, FSTTCS 2017,
11–15 December 2017, Kanpur, India, vol. 93 of LIPIcs, pp. 25:1–25:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2017)

11. Echenim, M., Iosif, R., Peltier, N.: Entailment checking in separation logic with
inductive definitions is 2-exptime hard. In: Albert, E., Kovács, L., (eds.) LPAR
2020: 23rd International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning, Alicante, Spain, 22–27 May 2020, vol. 73 of EPiC Series in
Computing, pp. 191–211. EasyChair (2020)

12. Echenim, M., Iosif, R., Peltier, N.: Decidable entailments in separation logic with
inductive definitions: beyond establishment. In: CSL 2021: 29th International Con-
ference on Computer Science Logic, EPiC Series in Computing. EasyChair (2021)

13. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 21–38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38574-2 2

14. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: ACM SIGPLAN Notices, vol. 36, pp. 14–26 (2001)

https://doi.org/10.1007/978-3-642-22110-1_15
https://doi.org/10.1007/978-3-642-36946-9_10
https://doi.org/10.1007/978-3-642-36946-9_10
https://doi.org/10.1007/978-3-030-53291-8_13
https://doi.org/10.1007/978-3-030-53291-8_13
https://doi.org/10.1007/978-3-642-20398-5_33
https://doi.org/10.1007/978-3-642-20398-5_33
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-642-38574-2_2

Testing the Satisfiability of Formulas in Separation Logic with Permissions 445

15. Katelaan, J., Zuleger, F.: Beyond symbolic heaps: deciding separation logic with
inductive definitions. In: Albert, E., Kovács, L., (eds.), LPAR 2020: 23rd Interna-
tional Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Alicante, Spain, 22–27 May 2020. vol. 73 of EPiC Series in Computing, pp. 390–408.
EasyChair (2020)

16. Le, Q.L.: Compositional satisfiability solving in separation logic. In: Henglein, F.,
Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol. 12597, pp. 578–602. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-67067-2 26

17. Nakazawa, K., Tatsuta, M., Kimura, D., Yamamura, M.: Cyclic theorem prover
for separation logic by magic wand. In: ADSL 18 (First Workshop on Automated
Deduction for Separation Logics). Oxford, United Kingdom (2018)

18. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symb. Log.
5(2), 215–244 (1999)

19. Navarro Pérez, J.A., Rybalchenko, A.: Separation logic modulo theories. In: Shan,
C. (ed.) APLAS 2013. LNCS, vol. 8301, pp. 90–106. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03542-0 7

20. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 54

21. Qiu, X., Garg, P., Stefanescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: Boehm, H., Flanagan, C., (eds.) ACM SIGPLAN PLDI
2013, pp. 231–242. ACM (2013)

22. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Pro-
ceedings of the LICS 2002 (2002)

23. Xu, Z., Chen, T., Wu, Z.: Satisfiability of compositional separation logic with
tree predicates and data constraints. In: de Moura, L. (ed.) CADE 2017. LNCS
(LNAI), vol. 10395, pp. 509–527. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63046-5 31

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-67067-2_26
https://doi.org/10.1007/978-3-319-03542-0_7
https://doi.org/10.1007/978-3-642-39799-8_54
https://doi.org/10.1007/978-3-319-63046-5_31
https://doi.org/10.1007/978-3-319-63046-5_31
http://creativecommons.org/licenses/by/4.0/

First-Order Logics

Nested Sequents for Quantified Modal
Logics

Tim S. Lyon1(B) and Eugenio Orlandelli2

1 Institute of Artificial Intelligence, TU Dresden, Dresden, Germany
timothy_stephen.lyon@tu-dresden.de

2 Department of the Arts, University of Bologna, Bologna, Italy
eugenio.orlandelli@unibo.it

Abstract. This paper studies nested sequents for quantified modal log-
ics. In particular, it considers extensions of the propositional modal log-
ics definable by the axioms D, T, B, 4, and 5 with varying, increasing,
decreasing, and constant domains. Each calculus is proved to have good
structural properties: weakening and contraction are height-preserving
admissible and cut is (syntactically) admissible. Each calculus is shown
to be equivalent to the corresponding axiomatic system and, thus, to be
sound and complete. Finally, it is argued that the calculi are internal—
i.e., each sequent has a formula interpretation—whenever the existence
predicate is expressible in the language.

Keywords: Cut elimination · Nested sequent · Quantified modal logic

1 Introduction

Generalisations of Gentzen-style sequent calculi have proven useful for developing
cut-free and analytic proof systems for many propositional non-classical logics,
including modal and intermediate ones. Among these generalisations are display
calculi [2], hypersequents [1], labelled calculi [23,25], and nested sequents [5,12].
They often allow one to give constructive proofs of important meta-theoretical
properties such as decidability [3], interpolation [9], and automatic countermodel
extraction [16]. These systems generalise the structural level of Gentzen-style
calculi in different ways in order to express wider classes of logics. In the case of
propositional modal logics they can express the structure of various relational
models. In particular, nested sequents encode tree-like relational models and
labelled calculi encode graph-like models. In contrast to other formalisms (e.g.
labelled sequents) nested sequents have the advantage of being internal calculi:
each nested sequent has a formula interpretation, and thus, such expressions are
not a major departure from the modal language.

Things become more difficult when we add the quantifiers. As is well known
[7,10], in quantified modal logics (QMLs) we have interaction formulas such as

CBF := �∀xA ⊃ ∀x�A and BF := ∀x�A ⊃ �∀xA

Tim S. Lyon was supported by the European Research Council (ERC) Consolidator
Grant 771779 (DeciGUT).
c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 449–467, 2023.
https://doi.org/10.1007/978-3-031-43513-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_24&domain=pdf
https://orcid.org/0000-0003-3214-0828
https://orcid.org/0000-0002-4021-8667
https://doi.org/10.1007/978-3-031-43513-3_24

450 T. S. Lyon and E. Orlandelli

whose validity depends on the interrelations between the domains of quantifica-
tion (Dw) of the different worlds (w) of the model: CBF is valid only if domains
are increasing—wRv implies Dw ⊆ Dv—and BF is valid only if domains are
decreasing—wRv implies Dw ⊇ Dv. Axiomatically, CBF is derivable from the
interaction of the axioms/rules for modalities and those for the classical quan-
tifiers, and BF is independent from them. However, the situation is radically
different for sequent calculi than for axiomatic calculi. The problem is that BF
becomes derivable when we add standard sequent rules for the quantifiers to
a calculus having separated left and right rules for the modalities—i.e., it is
derivable in all generalisations of Gentzen-style calculi mentioned above.

To overcome this issue for nested sequents, we employ a formulation tech-
nique motivated by labelled sequent calculi. One way of making CBF and BF
independent of the rules for quantifiers within labelled sequent calculi is to extend
the language with domain atoms of shape y ∈ D(w) whose intended meaning
is that ‘y belong to the quantificational domain of the label w’ [20,25]. In this
way, one can restrict the rules for the quantifiers to the terms belonging to the
domain of the label under consideration:

w : A(y/x), y ∈ D(w), w : ∀xA, Γ ⇒ Δ

y ∈ D(w), w : ∀xA, Γ ⇒ Δ

z ∈ D(w), Γ ⇒ Δ,w : A(z/x)
Γ ⇒ Δ,w : ∀xA

z fresh

As a consequence, CBF and BF are derivable only if we extend the basic calculus
with rules relating the domains of the distinct labels.

In this paper, we study nested sequent calculi for QMLs with varying, increas-
ing, decreasing, and constant domains. Similar to the use of domain atoms in
labelled sequents, we will formulate our nested calculi by extending the syntax
of sequents with signatures—i.e., multisets of terms that restrict the applicabil-
ity of the rules for the quantifiers at that node of the nested sequent—as was
done in [24] to define hypersequents for Gödel-Dummett logic with non-constant
domains. In particular, we will use the following rules for the universal quanti-
fier:

S{X, y;A(y/x),∀xA, Γ ⇒ Δ}
S{X, y;∀xA, Γ ⇒ Δ} L∀

S{X, z;Γ ⇒ Δ,A(z/x)}
S{X;Γ ⇒ Δ,∀xA} R∀, z fresh

and will add signature structural rules for increasing, decreasing, and constant
domains (Table 3).

As a consequence, we will be able to define nested calculi that are equiv-
alent to the labelled calculi considered in [25, Ch. 6] and [20, Ch. 12.1]. We
will show that our nested calculi have good structural properties—all rules are
height-preserving invertible, weakening and contraction are height-preserving
admissible, and cut is syntactically admissible—and that they characterise the
quantified extensions of the propositional modal logics in the cube of normal
modalities. One advantage of the present approach is that nested sequents with
signatures have a formula interpretation given that the language can express the
existence predicate E . In this paper, we will consider a language with identity so
that Ex can be expressed as ∃y(y = x) and it need not be taken as an additional

Nested Sequents for Quantified Modal Logics 451

primitive symbol; cf. [7]. Thus, our calculi utilise (nested) sequents as expressive
as the modal language, showing that our calculi are syntactically economical.

The rest of the paper is organised as follows: Sect. 2 sketches the QMLs con-
sidered in the paper, and Sect. 3 introduces the nested calculi for these logics.
Then, Sect. 4 shows that these calculi have good structural properties distinc-
tive of G3-style calculi, including syntactic cut-elimination, and Sect. 5 shows
that each calculus is sound and compete with respect to its intended semantics.
Finally, Sect. 6 presents some future lines of research.

2 Quantified Modal Logics

-Syntax. Let Rel be a set containing, for each n ∈ N, an at most countable set
of n-ary predicates Rn

1 , Rn
2 , . . . , and let Var be a denumerable set of individual

variables. The language L is defined by the following grammar:

A ::= Rn
i (x1, . . . , xn) |x1 = x2 | ⊥ |A ⊃ A | ∀xA |�A (L)

where x, x1, . . . , xn ∈Var and Rn
i ∈Rel. An atomic formula is a formula of

the shape Rn
i (x1, . . . , xn) or x1 = x2. We use the following metavariables:

x, y, z for variables; P,Q,R for atomic formulas; and A,B,C for formulas. An
occurrence of a variable x in a formula is free if it is not in the scope of
∀x; otherwise, it is bound. A sentence is a formula without free occurrences
of variables. The formulas ¬A, A ∧ B, A ∨ B, ∃xA, and ♦A are defined as
expected. We follow the usual conventions for parentheses. The weight of a
formula |A| is defined accordingly: |Rn

i (x1, . . . , xn)| = |x = y| = |⊥| = 0,
|A ⊃ B| = |A| + |B| + 1, and |∀xA| = |�A| = |A| + 1. We use A(y/x) to
denote the formula obtained from A by replacing each free occurrence of x with
an occurrence of y, possibly renaming bound variables to avoid capture: if y �≡ x,
then (∀yA)(y/x) ≡ ∀z((A(z/y))(y/x)), where z is fresh.

-Semantics. A frame is a triple F = 〈W, R,D〉, where:

– W is a non-empty set of worlds;
– R is a binary accessibility relation defined over W;
– D is a function mapping each w ∈ W to a possibly empty set of objects Dw

(the domain of w); we impose that D is such that Dv �= ∅ for some v ∈ W.

We say that F has:

1. increasing domains if for all w, v ∈ W, wRv implies Dw ⊆ Dv;
2. decreasing domains if for all w, v ∈ W, wRv implies Dw ⊇ Dv;
3. constant domains if for all w, v ∈ W, Dw = Dv;
4. varying domains if none of the above conditions hold.

A model M is a frame together with a valuation function V such that for
each w ∈ W and each Rn in Rel, V(w,Rn) ⊆ (DW)n, where DW =

⋃
v∈W Dv.

An assignment σ is a function mapping each variable to an object in DW . We
let σxβo be the assignment mapping x to o ∈ DW , which behaves like σ for all

452 T. S. Lyon and E. Orlandelli

Table 1. Axioms and corresponding properties

Name Axiom Property (w, v, u ∈ W) Name Axiom Property (w, v, u ∈ W)

D �A ⊃ ♦A ∀w∃u ∈ W(wRu) 5 ♦A ⊃ �♦A ∀w, v, u(wRv ∧ wRu ⊃ vRu)

T �A ⊃ A ∀w(wRw) CBF �∀xA ⊃ ∀x�A ∀w, v(wRv ⊃ Dw ⊆ Dv)

B A ⊃ �♦A ∀w, v(wRv ⊃ vRw) BF ∀x�A ⊃ �∀xA ∀w, v(wRv ⊃ Dw ⊇ Dv)

4 �A ⊃ ��A ∀w, v, u(wRv ∧ vRu ⊃ wRu) UI ∀xA ⊃ A[y/x] ∀w, v(Dw = Dv)

other variables. Observe that variables are rigid designators in that their value
does not change from one world to another.

The notion of satisfaction of a formula A at a world w of a model M under
an assignment σ—to be denoted by σ �M

w A, possibly omitting M—is defined
as follows:

σ �M
w Rn(x1, . . . , xn) iff 〈σ(x1), . . . , σ(xn)〉 ∈ V(w, Rn)

σ �M
w x = y iff σ(x) = σ(y)

σ ��M
w ⊥

σ �M
w A ⊃ B iff σ ��M

w A or σ �M
w B

σ �M
w ∀xA iff for each o ∈ Dw, σxλo �M

w A

σ �M
w �A iff for each v ∈ W, wRv implies σ �M

v A

The notions of truth at a world w (�M
w A), truth in a model M (�M A), validity

in a frame F (F � A), and validity in class C of frames (C � A) are defined as
usual. It is well-known that the formula:

CBF:= �∀xA ⊃ ∀x�A is valid over frames with increasing domains;
BF:= ∀x�A ⊃ �∀xA is valid over frames with decreasing domains;
UI:= ∀xA ⊃ A(y/x) is valid over frames with constant domains.

Over frames with non-constant domains the valid theory of quantification is
that of positive free logic instead of that of classical logic. This means that the
axiom UI is replaced by the weaker axiom UI◦ := ∀y(∀xA ⊃ A(y/x)). If we
extend the language with an existence predicate E—whose satisfaction clause
is σ |=M

w Ex iff σ(x) ∈ Dw—then we have the following weaker form of UI
that is valid UIE := ∀xA ∧ Ey ⊃ A(y/x). Over the language L the formula Ex
can be defined as ∃y(y = x), but over an identity-free language the existence
predicate has to be taken as an additional primitive symbol. This distinction has
an impact on the calculi introduced in the next section: nested sequents have a
formula interpretation when E is expressible in the language.

-Logics. A QML is defined to be the set of all formulas that are valid in some given
class of frames. In this paper, we consider logics that are defined by imposing
combinations of the properties in Table 1. We use Q.L for a generic logic and we
say that a formula is Q.L-valid if it belong to the logic Q.L. The formulas that

Nested Sequents for Quantified Modal Logics 453

Table 2. Axiomatisation of Q.K.

TAUT. Propositional tautologies REF. x = x

K. �(A ⊃ B) ⊃ (�A ⊃ B) REPL. x = y ∧ A(x/z) ⊃ A(y/z)

UI◦. ∀y(∀xA ⊃ A(y/x)) ND. x �= y ⊃ �(x �= y)

∀ -COMM. ∀x∀yA ⊃ ∀y∀xA

∀-DIST. ∀x(A ⊃ B) ⊃ (∀xA ⊃ ∀xB) MP. If A and A ⊃ B are theorem so is B

∀-VAQ. A ⊃ ∀xA, if x is not free in A N. If A is a theorem so is �A

UG. If A is a theorem so is ∀xA

are valid over the class of all frames is called Q.K and it is axiomatised by the
axioms and rules given in Table 2. We notice that UIE is a theorem of Q.K, see
[7, Lem. 2.1(iii)]. The additional axioms for the logics extending Q.K are given
in Table 1. We follow the usual conventions for naming logics—e.g., Q.S4 ⊕ CBF
is the set of formulas that are valid over all reflexive and transitive frames with
increasing domains and it is axiomatised by adding axioms T, 4, and CBF to
Q.K. We will not distinguish between a logic and its axiomatisation. This is
justified by the following theorem.

Theorem 1 ([7]). A formula is a theorem of Q.L if and only if it is Q.L-valid.

3 Nested Calculi for QML

A sequent is an expression X;Γ ⇒ Δ where X is a multiset of variables, called a
signature, and Γ, Δ are multisets of formulas of the language L. The signature of
a sequent is a syntactic counterpart of the existence atoms used in calculi where
UI is replaced by UI◦ or UIE , see [19]. Nested sequents are defined as follows:

S ::= X;Γ ⇒ Δ | S, [S], . . . , [S]

A nested sequent S codifies the tree of sequents tr(S), as shown in Fig. 1.

Fig. 1. The tree of the sequent X; Γ ⇒ Δ, [S1], . . . , [Sn].

Substitution of free variables are extended to (nested) sequents and to multisets
of formulas by applying them component-wise. The formula interpretation of a
sequent is defined as follows:

fm(X;Γ ⇒ Δ) ≡
∧

x∈X

Ex ∧
∧

Γ ⊃
∨

Δ

454 T. S. Lyon and E. Orlandelli

where Ex is short for the formula ∃y(y = x) and an empty conjunction (disjunc-
tion) is � (⊥, resp.). To provide a formula reading of nested sequents over the
identity-free language we could add E to the language or interpret formulas via
their universal closure. In the latter case, for example, the formula interpretation
of a sequent would be fm(X;Γ ⇒ Δ) ≡ ∀x ∈ X(

∧
Γ ⊃ ∨

Δ), and it seems our
nested calculi would capture the QMLs in [13].1 Nonetheless, we believe there
are independent reasons for studying QMLs over a language containing identity;
cf. [7,10]. The formula interpretation of a nested sequent is defined recursively
as:

fm(X;Γ ⇒ Δ, [S1], . . . , [Sn]) ≡ (
∧

x∈X

Ex ∧
∧

Γ ⊃
∨

Δ) ∨
n∨

k=1

� fm(Sk)

Rules are based on the notion of a hole {·}, which is a placeholder for a
subtree of (the tree of) a nested sequent and, thus, allows one to apply a rule at
an arbitrary node in the tree of a nested sequent. A context is defined as follows:

C:: = X;Γ ⇒ Δ, {·}, . . . , {·} | C, [C], . . . , [C]

In other words, a context C is a nested sequent with n ≥ 0 hole occurrences,
which do not occur inside formulas and must occur within consequent position.
We hitherto write contexts as S{·} · · · {·} indicating each of the holes occurring
within the context. The depth of a hole in a context is defined as the height of
the branch from that hole to the root (cf. [3]), and we write Depth(S{·}) ≥ n
for n ∈ N to mean that the depth of the hole in tr(S{·}) is n or greater.

We define substitutions of nested sequents into contexts recursively on the
number and depth of holes in a given context: suppose first that our context is
of the form S{·} ≡ X;Γ ⇒ Δ, {·}, [S1], . . . , [Sn] with a single hole at a depth of
0 and let S ′ ≡ Y,Π ⇒ Σ, [S ′

1], . . . , [S ′
k] be a nested sequent. Then,

S{S ′} ≡ X,Y ;Π,Γ ⇒ Δ,Σ, [S1], . . . , [Sn], [S ′
1], . . . , [S ′

k]

If our context is of the form S{·} ≡ X;Γ ⇒ Δ, [S1{·}], . . . , [Sn] with a sin-
gle hole at a depth greater then 0, then we recursively define S{S ′} to be
the nested sequent X;Γ ⇒ Δ, [S1{S ′}], . . . , [Sn]. This definition extends to a
context S{·} · · · {·} with n holes in the expected way, and for nested sequents
S1, . . . ,Sn, we let S{S1} · · · {Sn} denote the nested sequent obtained by replac-
ing, for each i ∈ {1, . . . , n}, the i-th hole {·} in S{·} · · · {·} with Si. We may
also write S{S1}{Si}n

i=2 to indicate S{S1} · · · {Sn} more succinctly. Plugging ∅
into a hole suggests the removal of the hole; for instance, if S{·}{·} ≡ x;A ⇒
B, {·}, [x, y,B,C ⇒ D, {·}], then S{·}{∅} ≡ x;A ⇒ B, {·}, [x, y;B,C ⇒ D].

The rules of the nested calculi for QMLs are given in Table 3. The minimal
calculus NQ.K contains initial sequents, the logical rules, and the rules for iden-
tity (rule Rig is needed—and is sound—because variables are rigid designators).
If Q.L is an extension of Q.K as discussed in Sect. 2, then NQ.L denotes the nested

1 We thank the anonymous reviewer who suggested this latter possibility.

Nested Sequents for Quantified Modal Logics 455

calculus extending NQ.K with the rules for the axioms of those logics. Observe
that to capture axioms D, CBF, BF, and UI we have added structural rules
instead of logical ones since the former have a better behaviour.

In [3], Brünnler only considers nested calculi (for propositional modal logics)
defined relative to 45-complete sets of axioms. This restriction is required to
ensure that the nested calculi contain all rules required for their completeness.
Similarly, in the first-order setting, we only consider nested calculi defined rela-
tive to properly closed sets of axioms, which is a generalisation of 45-completeness
and takes care of the interaction of B with CBF and BF (for example), ensuring
the completeness of our nested calculi.

Definition 1 (Properly Closed). Let L ⊆ {D,T,B,4,5,CBF,BF,UI}. We
define L to be properly closed iff if all Q.L-frames satisfy X ∈ {4,5,CBF,BF},
then X ∈ L. We define a nested calculus NQ.L to be properly closed iff (1) L is
properly closed, and (2) R5dom ∈ NQ.L iff 5 ∈ L and {CBF,BF} ∩ L �= ∅.
Remark 1. All nested calculi hitherto considered will be assumed properly closed.

Given a calculus NQ.L, an NQ.L-derivation of a nested sequent S is a tree
of nested sequents, whose leaves are initial sequents, whose root is S, and which
grows according to the rules of NQ.L. We consider only derivations of pure
sequents, meaning no variable has both free and bound occurrences and each
eigenvariable (i.e., a fresh variable participating in an R∀ inference) is distinct.
The height of an NQ.L-derivation is the number of nodes of one of its longest
branches. We say that S is NQ.L-derivable if there is an NQ.L-derivation of
S or of an alphabetical variant of S. We let NQ.L � S denote that S is NQ.L-
derivable. A rule is said to be (height-preserving) admissible in NQ.L, if, whenever
its premisses are NQ.L-derivable (with height at most n), also its conclusion is
NQ.L-derivable (with height at most n). A rule is said to be (height-preserving)
invertible in NQ.L, if, whenever its conclusion is NQ.L-derivable (with height
at most n), each premiss is NQ.L-derivable (with height at most n). For each
rule displayed in Table 3, the formulas explicitly displayed in the conclusion are
called principal, those explicitly displayed in the premisses are called auxiliary,
and everything else constitutes the context.

4 Properties and Cut-Elimination

We now show that our nested calculi satisfy fundamental admissibility and
invertibility properties. Ultimately, we will apply these properties in our proof
of syntactic cut-elimination.

Lemma 1 (Generalised Initial Sequents). NQ.L � S{X;A,Γ ⇒ Δ,A}, for
any arbitrary L-formula A.

Proof. By a standard induction on the weight of A. ��
Lemma 2. The sequents S{ ⇒ x = x} and S{x = y,A(x/z) ⇒ A(y/z)} are
NQ.L-derivable. ��

456 T. S. Lyon and E. Orlandelli

Table 3. Nested rules for QML

Initial Sequents: S{X; P, Γ ⇒ Δ, P} with P atomic

Logical Rules:

S{X; Γ ⇒ Δ, A} S{X; B, Γ ⇒ Δ}
S{X; A ⊃ B, Γ ⇒ Δ} L⊃

S{X; A, Γ ⇒ Δ, B}
S{X; Γ ⇒ Δ, A ⊃ B} R⊃ S{X; ⊥, Γ ⇒ Δ} L⊥

S{X, z; A(z/x), ∀xA, Γ ⇒ Δ}
S{X, z; ∀xA, Γ ⇒ Δ} L∀

S{X, y; Γ ⇒ Δ, A(y/x)}
S{X; Γ ⇒ Δ, ∀xA} R∀, y fresh

S{X; �A, Γ ⇒ Δ, [Y ; A, Π ⇒ Σ]}
S{X; �A, Γ ⇒ Δ, [Y ; Π ⇒ Σ]} L�

S{X; Γ ⇒ Δ, [∅; ⇒ A]}
S{X; Γ ⇒ Δ, �A} R�

Identity Rules:

S{X; x = x, Γ ⇒ Δ}
S{X; Γ ⇒ Δ} Ref

S{X; P (y/z), x = y, P (x/z), Γ ⇒ Δ}
S{X; x = y, P (x/z), Γ ⇒ Δ} Repl

S{X, x, y; x = y, Γ ⇒ Δ}
S{X, x; x = y, Γ ⇒ Δ} ReplX

S{X; x = y, Γ ⇒ Δ}{Y ; x = y, Π ⇒ Σ}
S{X; x = y, Γ ⇒ Δ}{Y ; Π ⇒ Σ} Rig

Rules for Propositional Axioms:

S{X; Γ ⇒ Δ, [∅; ⇒]}
S{X; Γ ⇒ Δ} RD

S{X; A, Γ ⇒ Δ, [Y ; �A, Π ⇒ Σ]}
S{X; Γ ⇒ Δ, [Y ; �A, Π ⇒ Σ]} RB

S{X; A, �A, Γ ⇒ Δ}
S{X; �A, Γ ⇒ Δ} RT

S{X; �A, Γ ⇒ Δ, [Y ; �A, Π ⇒ Σ]}
S{X; �A, Γ ⇒ Δ, [Y ; Π ⇒ Σ]} R4

S{X; �A, Γ ⇒ Δ}{Y ; �A, Π ⇒ Σ}
S{X; �A, Γ ⇒ Δ}{Y ; Π ⇒ Σ} R5, Depth(S{·}{∅})≥1

Rules for Domains:

S{X, x; Γ ⇒ Δ, [Y, x; Π ⇒ Σ]}
S{X, x; Γ ⇒ Δ, [Y ; Π ⇒ Σ]}

Rcbf

S{X, x; Γ ⇒ Δ, [Y, x; Π ⇒ Σ]}
S{X; Γ ⇒ Δ, [Y, x; Π ⇒ Σ]}

Rbf

S{X, x; Γ ⇒ Δ}
S{X; Γ ⇒ Δ} Rui

S{X, x; Γ ⇒ Δ}{Y, x; Π ⇒ Σ}
S{X, x; Γ ⇒ Δ}{Y ; Π ⇒ Σ} R5dom, Depth(S{∅}{·})≥1 and Depth(S{·}{∅})≥1

Proof. S{ ⇒ x = x} is derivable by applying an instance of rule Ref to the initial
sequent S{ x = x ⇒ x = x}. The case of S{x = y,A(x/z) ⇒ A(y/z)} is handled
by induction on |A(x/z)|. We consider only the case where A(x/z) = �B(x/z).

S{x = y,�B(x/z) ⇒ , [x = y,B(x/z) ⇒ B(y/z)]} IH

S{x = y,�B(x/z) ⇒ , [B(x/z) ⇒ B(y/z)}]
Rig

S{x = y,�B(x/z) ⇒ , [⇒ B(y/z)]} L�

S{x = y,�B(x/z) ⇒ �B(y/z)} R�

��
Lemma 3. The following R⊥ rule is height-preserving admissible in NQ.L:

S{X;Γ ⇒ Δ,⊥}
S{X;Γ ⇒ Δ} R⊥

Proof. By a straightforward induction on the height of the derivation D of the
premiss. The proof is almost trivial as any application of R⊥ to an initial sequent

Nested Sequents for Quantified Modal Logics 457

of an instance of L⊥ gives another initial sequent or instance of L⊥, respectively,
and R⊥ permutes above every other rule of NQ.L. ��
Lemma 4 (Substitution). The following rule of substitution of free variables
is height-preserving admissible in NQ.L:

S{X;Γ ⇒ Δ}
S(y/x){X(y/x);Γ (y/x) ⇒ Δ(y/x)} (y/x)

Proof. By induction on the height of the derivation D of the premiss. The only
interesting case is when the last step of D is an instance of R∀:

S{X, z2;Γ ⇒ Δ,A(z2/z1)}
S{X;Γ ⇒ Δ,∀z1A} R∀, z2 fresh

We transform the derivation of the premiss by applying the inductive hypothesis
twice to ensure the freshness condition is preserved: the first time to replace z2

with a fresh variable z3 and then to replace x with y. We conclude by applying
R∀ with z3 as the eigenvariable. ��

Typically, admissible structural rules operate on either formulas (e.g., see the
internal weakening rule IW below) or nesting structure (e.g., see the Merge rule
below) in nested calculi. An interesting observation in the first-order setting is
that admissible structural rules also act on the signatures occurring in nested
sequents. This gives rise to forms of weakening and contraction for terms, which
are reminiscent of analogous rules formulated in the context of hypersequents
with signatures [24].

Lemma 5 (Signature Structural Rules). The following rules of signature
weakening and signature contraction are height-preserving admissible in NQ.L:

S{X;Γ ⇒ Δ}
S{X,x;Γ ⇒ Δ} SW

S{X,x, x;Γ ⇒ Δ}
S{X,x;Γ ⇒ Δ} SC

Proof. By a standard induction on the height of the derivation D of the premiss.
Proving height-preserving admissibility of SC is trivial as the rule permutes
above all rules of NQ.L. Proving the height-preserving admissibility of SW is
also straightforward with the only interesting case arising when D ends with an
instance of R∀ with x as the eigenvariable. However, this case is easily managed
by applying the height-preserving admissible substitution (y/x) to ensure the
freshness condition for R∀ is satisfied, followed by the inductive hypothesis, and
an application of R∀. ��

As in the setting of first-order intuitionistic logics with increasing and con-
stant domains (see [14]), we find that our structural rules for domains give rise
to admissible logical rules generalising the L∀ rule. Such rules (presented in the
proposition below) combine the functionality of the associated domain structural
rules with the L∀ rule. The L∀bf and L∀cbf rules are instances of reachability
rules [16,17], which bottom-up operate by searching for terms along edges in a
nested sequent used to instantiate universal formulas.

458 T. S. Lyon and E. Orlandelli

Proposition 1. The following logical rules for ‘domain-axioms’ and for axiom
D are admissible in the nested calculi including the appropriate structural rules
for domains or RD:

S{X; A(y/x), ∀xA, Γ ⇒ Δ, [Y, y; Π ⇒ Σ]}
S{X; ∀xA, Γ ⇒ Δ, [Y, y; Π ⇒ Σ]}

L∀bf

S{X; A(y/x), ∀xA, Γ ⇒ Δ}
S{X; ∀xA, Γ ⇒ Δ} L∀ui

S{X, y;Γ ⇒ Δ, [Y ;A(y/x),∀xA,Π ⇒ Σ]}
S{X, y;Γ ⇒ Δ, [Y ;∀xA,Π ⇒ Σ]} L∀cbf

S{X;�A,Γ ⇒ Δ, [∅;A ⇒]}
S{X;�A,Γ ⇒ Δ} LD

Proof. The admissibility of L∀cbf from Rcbf and SW is proven as follows:

S{X, y;Γ ⇒ Δ, [Y ;A(y/x),∀xA,Π ⇒ Σ]}
S{X, y;Γ ⇒ Δ, [Y, y;A(y/x),∀xA,Π ⇒ Σ]} SW

S{X, y;Γ ⇒ Δ, [Y, y;∀xA,Π ⇒ Σ]} L∀

S{X, y;Γ ⇒ Δ, [Y ;∀xA,Π ⇒ Σ]} Rcbf

The cases of L∀bf and L∀ui are similar, and the case of LD follows immediately
from RD. ��
Lemma 6 (Weakenings). The following rules of internal and external weak-
ening are height-preserving admissible in NQ.L:

S{X;Γ ⇒ Δ}
S{X;Π,Γ ⇒ Δ,Σ} IW

S{X;Γ ⇒ Δ}
S{X;Γ ⇒ Δ, [Y ;Π ⇒ Σ]} EW

Proof. By induction on the height of the derivation D of the premiss. If D ends
with an instance of rule R∀ with y the eigenvariable, we apply the (height-
preserving admissible) substitution rule to replace y with a fresh variable z
occurring neither in S{X;Γ ⇒ Δ}, nor in Π,Σ (in the IW case) or in Y,Π,Σ
(in the EW case). Then, we apply the inductive hypothesis and an instance of R∀
to conclude S{X;Π,Γ ⇒ Δ,Σ} in the IW case and S{X;Γ ⇒ Δ, [Y ;Π ⇒ Σ]}
in the EW case. ��
Lemma 7 (Necessitation and Merge). The following rules are height-
preserving admissible in N.QL:

S
⇒ , [S]

Nec
S{X;Γ ⇒ Δ, [Y ;Π1 ⇒ Δ1], [Z;Π2 ⇒ Δ2]}

S{X;Γ ⇒ Δ, [Y,Z;Π1,Π2 ⇒ Δ1,Δ2]}
Merge

Proof. By a simple induction on the height of the derivation of the premiss. ��
Lemma 8 (Invertibility). Each rule of NQ.L is height-preserving invertible.

Proof. The proof is by induction on the height of the derivation. The height-
preserving invertibility of all rules but L⊃, R⊃, R∀ and R� follows from Lemmas
5 and 6, and the proof of the remaining cases is standard. ��

Nested Sequents for Quantified Modal Logics 459

Lemma 9 (Contraction). The following rules of left and right contraction are
height-preserving admissible in NQ.L:

S{X;Γ,A,A ⇒ Δ}
S{X;Γ,A ⇒ Δ} CL

S{X;Γ ⇒ Δ,A,A}
S{X;Γ ⇒ Δ,A} CR

Proof. By simultaneous induction on the height of the derivation of the premisses
of CL and CR. We consider only the non-trivial R∀ case for CR as the remaining
cases are similar or simpler. Assume that the last step of D is:

S{X, y;Γ ⇒ Δ,A(y/x),∀xA}
S{X;Γ ⇒ Δ,∀xA,∀xA} R∀

To resolve the case, we apply the height-preserving invertibility of R∀, the height-
preserving admissibility of (y/z) and SC, followed by the inductive hypothesis.
Finally, an application of R∀ gives the desired conclusion.

S{X, y;Γ ⇒ Δ,A(y/x),∀xA}
S{X, y, z;Γ ⇒ Δ,A(y/x), A(z/x)} Lemma 8

S{X, y, y;Γ ⇒ Δ,A(y/x), A(y/x)} (y/z)

S{X, y;Γ ⇒ Δ,A(y/x), A(y/x)} SC

S{X, y;Γ ⇒ Δ,A(y/x)} IH

S{X;Γ ⇒ Δ,∀xA} R∀

��
Due to the presence of R4 and R5 in specific nested calculi, our cut elimination

theorem (Theorem 2 below) requires us to simultaneously eliminate a second
form of cut that acts on modal formulas. We refer to this rule as L-Cut and note
that it is essentially Brünnler’s Y-cut rule [3]. Since the principal and auxiliary
formulas of R4 and R5 are of the same weight (i.e. both are �A), L-Cut is needed
to permute the cut upward in these special cases as cuts cannot be reduced to
formulas of a smaller weight.

Definition 2 (L-Cut and L-Str). Let NQ.L be properly closed. We define L-Cut
to be the following rule:

S{X;Γ ⇒ Δ,�A}{Yi;Πi ⇒ Σi}n
i=1 S{X;�A,Γ ⇒ Δ}{Yi;�A,Πi ⇒ Σi}n

i=1
L-CutS{X;Γ ⇒ Δ}{Yi;Πi ⇒ Σi}n

i=1

which is subject to the following side conditions:

– if 4,5 �∈ L, then n = 0;
– if 4 ∈ L and 5 �∈ L, then S{·}{·} is of the form S{X;Γ ⇒ Δ, {·}, {S1{·}n}};
– if 5 ∈ L and 4 �∈ L, then Depth(S{·}{∅}n) ≥ 1;
– otherwise, if 4,5 ∈ L, then no restriction on the shape of the rule is enforced.

460 T. S. Lyon and E. Orlandelli

Table 4. Structural rules for propositional axioms

S{X; Γ ⇒ Δ, [Y ; Π ⇒ Σ]}
S{X, Y ; Π, Γ ⇒ Δ, Σ} ST

S{X; Γ ⇒ Δ, [Y ; Π ⇒ Σ]}
S{X; Γ ⇒ Δ, [∅; ⇒ , [Y ; Π ⇒ Σ]]} S4

S{Y1; Π1 ⇒ Σ1, [X; Γ ⇒ Δ]}{Y2; Π2 ⇒ Σ2}
S{Y1; Π1 ⇒ Σ1}{Y2; Π2 ⇒ Σ2, [X; Γ ⇒ Δ]} S5, Depth(S{·}{∅})≥1

S{X; Γ ⇒ Δ, [Y ; Π2 ⇒ Σ2, [Z; Π1 ⇒ Σ1]]}
S{X, Z; Π1, Γ ⇒ Δ, Σ1, [Y ; Π2 ⇒ Σ2]}

SB

We define L-Str to be the following rule:

S{Y1;Π1 ⇒ Σ1, [X;Γ ⇒ Δ]}{Y2;Π2 ⇒ Σ2}
L-StrS{Y1;Π1 ⇒ Σ1}{Y2;Π2 ⇒ Σ2, [X;Γ ⇒ Δ]}

which is subject to the following side conditions:

– if 4,5 �∈ L, then S{·}{·} is of the form S{X;Γ ⇒ Δ, {·}, {·}};
– if 4 ∈ L and 5 �∈ L, then S{·}{·} is of the form S{X;Γ ⇒ Δ, {·}, {S1{·}}};
– if 5 ∈ L and 4 �∈ L, then Depth(S{·}{∅}) ≥ 1;
– otherwise, if 4,5 ∈ L, then no restriction on the shape of the rule is enforced.

Lemma 10 (Special Structural Rules). If NQ.L contains the rule RX for
the propositional axiom X, then the corresponding structural rule from Table 4
is admissible in NQ.L. Moreover, L-Str is admissible in NQ.L.

Proof. We argue the SB case by induction on the height of the given derivation;
the remaining cases are considered in the appended version of this paper [18].
We only consider the Rbf and R5dom cases of the inductive step as the remaining
cases are simple or similar.

S{Z;Π1 ⇒ Σ1, [X,x;Γ ⇒ Δ, [Y, x;Π2 ⇒ Σ2]]}
RbfS{Z;Π1 ⇒ Σ1, [X;Γ ⇒ Δ, [Y, x;Π2 ⇒ Σ2]]}

SBS{Z, Y, x;Π1,Π2 ⇒ Σ1, Σ2, [X;Γ ⇒ Δ]}
As our nested calculi are assumed to be properly closed, we know that if NQ.L
contains RB and Rbf , then it must contain Rcbf , showing that we can apply IH
first and then Rcbf as shown below.

S{Z;Π1 ⇒ Σ1, [X,x;Γ ⇒ Δ, [Y, x;Π2 ⇒ Σ2]]}
IHS{Z, Y, x;Π1,Π2 ⇒ Σ1, Σ2, [X,x;Γ ⇒ Δ]}

RcbfS{Z, Y, x;Π1,Π2 ⇒ Σ1, Σ2, [X;Γ ⇒ Δ]}
Last, we consider an interesting R5dom case:

Nested Sequents for Quantified Modal Logics 461

Z;Π1 ⇒ Σ1, [X1;Γ1 ⇒ Δ1, [X2, x;Γ2 ⇒ Δ2]], [S{Y, x;Π2 ⇒ Σ2}]
R5dom

Z;Π1 ⇒ Σ1, [X1;Γ1 ⇒ Δ1, [X2, x;Γ2 ⇒ Δ2]], [S{Y ;Π2 ⇒ Σ2}]
SB

Z,X2, x;Π1, Γ2 ⇒ Σ1,Δ2, [X1, Γ1 ⇒ Δ1], [S{Y ;Π2 ⇒ Σ2}]

To resolve the case, we apply the inductive hypothesis, followed by the height-
preserving admissible rule SW. We apply the SW rule n − 1 times adding the
variable x along the path from the root to Y, x;Π2 ⇒ Σ2, and then the Rcbf

rule n times to delete the n − 1 copies of x up to the root. We may apply Rcbf

as our nested calculi are properly closed, that is, B,BF ∈ L only if CBF ∈ L.

Z;Π1 ⇒ Σ1, [X;Γ1 ⇒ Δ1, [X2, x;Γ2 ⇒ Δ2]], [S{Y, x;Π2 ⇒ Σ2}]
IH

Z,X2, x;Π1, Γ2 ⇒ Σ1,Δ2, [X,Γ1 ⇒ Δ1], [S{Y, x;Π2 ⇒ Σ2}]
SW (n − 1 times)

Z,X2, x;Π1, Γ2 ⇒ Σ1,Δ2, [X,Γ1 ⇒ Δ1], [S{Y, x;Π2 ⇒ Σ2}]
Rcbf (n times)

Z,X2, x;Π1, Γ2 ⇒ Σ1,Δ2, [X,Γ1 ⇒ Δ1], [S{Y ;Π2 ⇒ Σ2}]
��

In our cut-elimination theorem below, we provide a procedure to eliminate
an additive (i.e. context-sharing) version of cut as in the work on nested sequents
for propositional modal logics by Brünnler [3]. We note that we could have con-
sidered an equivalent, multiplicative (i.e. context-independent) version—like the
cut rule shown eliminable in the tree-hypersequent systems of Poggiolesi [22]—
however, we find the additive version of the rule to be simpler as we can forgo
considerations of how to fuse nested sequents of a different form.2

Theorem 2 (Cut). L-Cut and the following rule of Cut are admissible in NQ.L:

S{X;Γ ⇒ Δ,A} S{X;A,Γ ⇒ Δ}
S{X;Γ ⇒ Δ} Cut

Proof. We consider an uppermost instance of L-Cut or Cut with A ≡ �B and A
the cut formula of each rule, respectively. We argue by simultaneous induction
on the lexicographic ordering of pairs (|A|, h1 + h2), where |A| is the weight of
A and h1 (h2) is the height of the derivation D1 (D2) of the left (right) premiss
of the instance of L-Cut or Cut under consideration.

Let us first consider the case where the weight of A is zero, i.e. A is a formula
of the form Rn

i (x1, . . . , xn), ⊥, or x = y. The first two cases are standard, so we
consider the case when A is of the form x = y. We suppose first that x = y is
not principal in the left premiss of Cut. If the left premiss is an initial sequent or
an instance of L⊥, then the conclusion will be as well, so we may assume that
the left premiss was derived by means of another rule. We suppose w.l.o.g. that
the left premiss was derived by means of a unary rule as the binary case for L ⊃
is similar, meaning our Cut is of the following form:

S1{X1;Γ1 ⇒ Δ1, x = y}
R1S{X;Γ ⇒ Δ,x = y}

S2{X2;x = y, Γ2 ⇒ Δ2}
R2S{X;x = y, Γ ⇒ Δ}

CutS{X;Γ ⇒ Δ}
2 Nested sequents and tree-hypersequents are equivalent formalisms; cf. [3,22].

462 T. S. Lyon and E. Orlandelli

As shown below, we can resolve the case by applying the height-preserving invert-
ibility of R1 to the right premiss of Cut, applying Cut with the premiss of R1,
and then applying R1 after (note that R1 is applicable after the Cut since x = y
is neither auxiliary nor principal in R1 by the shape of the rules in NQ.L).

S1{X1;Γ1 ⇒ Δ1, x = y}

S2{X2;x = y, Γ2 ⇒ Δ2}
R2S{X;x = y, Γ ⇒ Δ}
Lemma 8S1{X1;x = y, Γ1 ⇒ Δ1}
CutS1{X1;Γ1 ⇒ Δ1}

R1S{X;Γ ⇒ Δ}
If we suppose now that x = y is principal in the left premiss of Cut, then the left
premiss must be an initial sequent of the form S{X,x = y, Γ ⇒ Δ,x = y}. We
have cases according to whether x = y is principal or not in the right premiss.
If it is principal then the right premiss is either (i) an initial sequent or (ii)
the conclusion of an instance of a rule in {Repl, ReplX , Rig}. In case (i) the
conclusion of Cut is an initial sequent and in case (ii) the conclusion of Cut is
identical to the conclusion of its right premiss, which is cut-free derivable. Else,
the Cut is of the form shown below, where two copies of x = y must occur in
the right premiss since the contexts must match in Cut.

S{X;x = y, Γ ⇒ Δ,x = y}
S ′{X ′;x = y, x = y, Γ ′ ⇒ Δ′}

R2S{X;x = y, x = y, Γ ⇒ Δ}
CutS{X;x = y, Γ ⇒ Δ}

Applying the height-preserving admissible rule CL to the right premiss of Cut
gives the desired conclusion.

Let us suppose now that the weight of the cut formula is greater than zero.
We also assume that the cut formula is principal in both premisses of Cut and
consider the interesting cases when A ≡ ∀xB and A ≡ �B as all other cases
are standard, see [3, Thm. 5]. If the cut formula A ≡ ∀xB is principal in both
premisses of Cut, then our Cut is of the following form:

S{X, y, z;Γ ⇒ Δ,B(y/x)}
R∀S{X, z;Γ ⇒ Δ,∀xB}

S{X, z;B(z/x),∀xB, Γ ⇒ Δ}
L∀S{X, z;∀xB, Γ ⇒ Δ}

CutS{X, z;Γ ⇒ Δ}
We first shift the Cut upward by applying the height-preserving admissibility of
IW to the left premiss of Cut, and then apply Cut with the premiss of L∀ as
shown below, thus reducing h1 + h2.

S{X, y, z;Γ ⇒ Δ,B(y/x)}
R∀S{X, z;Γ ⇒ Δ,∀xB}

IWS{X, z;B(z/x), Γ ⇒ Δ,∀xB} S{X, z;B(z/x),∀xB, Γ ⇒ Δ}
CutS{X, z;B(z/x), Γ ⇒ Δ}

Let us refer to the above proof as D. We now reduce the weight of the cut formula
by applying Cut as shown below, giving the desired conclusion.

Nested Sequents for Quantified Modal Logics 463

S{X, y, z;Γ ⇒ Δ,B(y/x)}
(z/y)S{X, z, z;Γ ⇒ Δ,B(z/x)}
SCS{X, z;Γ ⇒ Δ,B(z/x)} D

CutS{X, z;Γ ⇒ Δ}
We now assume that the cut formula A ≡ �B is principal in both premisses

and we may assume w.l.o.g. that the cut is an instance of L-Cut. We consider the
case where the right premiss of L-Cut is an instance of RT and the left premiss of
L-Cut is an instance of R�. The remaining cases are proven in a similar fashion.
The trick is to use the height-preserving admissibility of the special structural
rules (see Lemma 10), namely, the ST rule. Our L-Cut is of the following form:

S{X;Γ ⇒ Δ, [∅; ⇒ B]}{Yi;Πi ⇒ Σi}n
i=1

R�S{X;Γ ⇒ Δ,�B}{Yi;Πi ⇒ Σi}n
i=1

S{X;�B,B, Γ ⇒ Δ}{Yi;�B,Πi ⇒ Σi}n
i=1

RTS{X;�B,Γ ⇒ Δ}{Yi;�B,Πi ⇒ Σi}n
i=1

L-CutS{X;Γ ⇒ Δ}{Yi;Πi ⇒ Σi}n
i=1

Let D1 and D2 denote the derivation of the left and right premiss of L-Cut,
respectively. To resolve the case, we first apply the height-preserving admissible
rule IW to the conclusion of D1, yielding the derivation D3 shown below top. We
then apply L-Cut to the conclusion of D3 and the premiss of D2 (where h1 + h2

is strictly smaller), giving the second derivation shown below, which we refer to
as D4. Finally, as shown in the third derivation below, we can apply Cut to B
(which has a strictly smaller weight than �B), and derive the desired conclusion
after applying a single application of the admissible rule ST to the left premiss.

D3

⎧
⎪⎨

⎪⎩

S{X;Γ ⇒ Δ, [∅; ⇒ B]}{Yi;Πi ⇒ Σi}n
i=1

R�S{X;Γ ⇒ Δ,�B}{Yi;Πi ⇒ Σi}n
i=1

IWS{X;B,Γ ⇒ Δ,�B}{Yi;Πi ⇒ Σi}n
i=1

D4

{
D3 S{X;�B,B, Γ ⇒ Δ}{Yi;�B,Πi ⇒ Σi}n

i=1
L-CutS{X;B,Γ ⇒ Δ}{Yi;Πi ⇒ Σi}n

i=1

S{X;Γ ⇒ Δ, [∅; ⇒ B]}{Yi;Πi ⇒ Σi}n
i=1

STS{X;Γ ⇒ Δ,B}{Yi;Πi ⇒ Σi}n
i=1 D4

CutS{X;Γ ⇒ Δ}{Yi;Πi ⇒ Σi}n
i=1

��

5 Soundness and Completeness

Theorem 3 (Soundness). If NQ.L � S then fm(S) is Q.L-valid.

Proof. We first note that nested application of rules is sound: for each context
S{·}, if A ⊃ B is Q.L-valid then fm(S{A}) ⊃ fm(S{B}) is Q.L-valid. This can be
shown by induction on the depth of the context S{·}; see [3, Lem. 3] for details.

The Q.L-soundness of the rules of NQ.L is proved by induction on the height
of the derivation. The cases of initial sequents and of propositional rules of

464 T. S. Lyon and E. Orlandelli

NQ.L are given in [3, Thm. 1]. We present the cases of L∀, Rcbf , Rig, and
R5dom, all other cases being similar. If fm(X, z;A(z/x),∀xA, Γ ⇒ Δ) is Q.L-
valid, then the Q.L-validity of fm(X, z;∀xA, Γ ⇒ Δ) follows by the soundness
of the axiom UIE . If fm(X,x;Γ ⇒ Δ, [Y, x;Π ⇒ Σ]) is Q.L.CBF-valid, then the
formula fm(X,x;Γ ⇒ Δ, [Y ;Π ⇒ Σ]) is as well because frames for Q.L.CBF have
increasing domains. The Q.L-validity of fm(S{X;x = y, Γ ⇒ Δ}{Y ;Π ⇒ Σ})
follows from that of fm(S{X;x = y, Γ ⇒ Δ}{Y ;x = y,Π ⇒ Σ}) since variables
are rigid designators—i.e., the validity of NI := x = y ⊃ �(x = y) and that
of ND allow identities to be duplicated up and down the accessibility relation,
respectively. Finally, we argue that R5dom preserves Q.L-validity when either
5,CBF ∈ L or 5,BF ∈ L. We show this holds for the following one-context
rules from which R5dom is NQ.L-derivable (if x is in the signature of a non-root
node, these rules bottom-up copy x into the signature of another non-root node):

S{[X,x;Γ ⇒ Δ], [Y, x;Π ⇒ Σ]}
S{[X,x;Γ ⇒ Δ], [Y ;Π ⇒ Σ]} R5dom1

S{[X,x;Γ ⇒ Δ, [Y, x;Π ⇒ Σ]]}
S{[X,x;Γ ⇒ Δ, [Y ;Π ⇒ Σ]]} R5dom2

S{[Y, x;Π ⇒ Σ, [X,x;Γ ⇒ Δ]]}
S{[Y ;Π ⇒ Σ, [X,x;Γ ⇒ Δ]]} R5dom3

If the premiss of one of these rules is Q.L-valid, then so is the respective con-
clusion since for 5-frames with increasing or decreasing domains the points sat-
isfying X,x;Γ ⇒ Δ and Y ;Π ⇒ Σ are mutually accessible and have the same
domain. ��
Theorem 4 (Completeness). If fm(S) is Q.L-valid, then NQ.L � S.

Proof. We show that Q.L � fm(S) implies NQ.L � S; the theorem follows by
the completeness of Q.L (Theorem 1). We proceed by induction on the height
of the derivation of fm(S) in Q.L. The NQ.L-admissibility of rule MP/UG/N
is a corollary of Theorem 2/Lemma 6/Lemma 7. We consider only axioms
UI◦ (assuming y �∈ A for simplicity), ND, and CBF. The cases of axioms
REF and REPL follows from Lemma 2 and the other cases are similar.

y;A(y/x),∀xA ⇒ A(y/x)
L. 1

y;∀xA ⇒ A(y/x)
L∀

y; ⇒ ∀xA ⊃ A(y/x)
R⊃

⇒ ∀y(∀xA ⊃ A(y/x))
R∀

x = y ⇒ x = y, [x = y ⇒]
L. 1

⇒ x = y, [x = y ⇒]
Rig

x �= y ⇒ [⇒ x �= y]
L¬+R¬

x �= y ⇒ �(x �= y)
R�

y;�∀xA ⇒ , [y;A(y/x),∀xA ⇒ A(y/x)]
L. 1

y;�∀xA ⇒ [y;∀xA ⇒ A(y/x)]
L∀

y;�∀xA ⇒ [∀xA ⇒ A(y/x)]
Rcbf

y;�∀xA ⇒ [⇒ A(y/x)]
L�

y;�∀xA ⇒ �A(y/x)
R�

�∀xA ⇒ ∀x�A
R∀

��

6 Conclusion and Future Work

We provided a uniform nested sequent presentation of quantified modal logics
characterised by combinations of fundamental properties. Due to the inclusion

Nested Sequents for Quantified Modal Logics 465

of equality in the language of the QMLs considered, our nested calculi permit
a formula translation by means of the (definable) existence predicate. As a con-
sequence, our systems possess both a good degree of modularity and utilise a
language as expressive as that of each logic, yielding more economical systems in
contrast to the labelled calculi given for the same QMLs, which employ a more
expressive language [20,25]. Beyond formula interpretability, our nested calculi
satisfy fundamental properties such as the admissibility of important structural
rules, invertibility of all rules, and syntactic cut-elimination.

In future work, we aim to investigate constructive proofs of interpolation
properties with our nested calculi (cf. [9,15]), to use (variations of) our nested
calculi to identify decidable QML fragments, as well as extend the present app-
roach to QMLs with non-rigid designators and, possibly, definite descriptions
based on λ-abstraction (see [10]) as was done in [21] for labelled sequent calculi.
Another open problem is to give nested sequents with a formula interpretation
for QMLs where the existence predicate is not expressible; we conjecture that this
might be achieved by using the ‘universally closed nesting’ defined by Brünner
for free logics [4].

We also aim to generalise our approach by employing a wider selection of
propagation rules [6,8] and reachability rules [16,17] in our systems. As shown
in various works [11,16], diverse classes of logics characterised by Horn properties
can be supplied cut-free nested calculi by utilising logical rules that propagate or
consume data along paths within nested sequents specified by formal grammars.
Applying this technique, we plan to see if we can capture a much wider class
of QMLs in a uniform and modular fashion, and plan to investigate admissibil-
ity and invertibility properties as well as cut-elimination in this more general
setting. It would also be worthwhile to examine the relationship between our
nested calculi and other calculi for QMLs; e.g., we could study the computa-
tional relationship between our nested calculi and the labelled calculi for QMLs,
showing how proofs can be translated and determining complexity bounds for
the relative sizes of proofs.

References

1. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: From Foundations to Applications: European Logic Colloquium,
USA, pp. 1–32. Clarendon Press (2010)

2. Belnap, N.D.: Display logic. J. Philos. Logic 11(4), 375–417 (1982). https://doi.
org/10.1007/BF00284976

3. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Logic 48, 551–577
(2009). https://doi.org/10.1007/s00153-009-0137-3

4. Brünnler, K.: How to universally close the existential rule. In: Fermüller, C.G.,
Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 172–186. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-16242-8_13

5. Bull, R.: Cut elimination for propositional dynamic logic without *. Math. Log. Q.
38(1), 85–100 (1992). https://doi.org/10.1002/malq.19920380107

https://doi.org/10.1007/BF00284976
https://doi.org/10.1007/BF00284976
https://doi.org/10.1007/s00153-009-0137-3
https://doi.org/10.1007/978-3-642-16242-8_13
https://doi.org/10.1002/malq.19920380107

466 T. S. Lyon and E. Orlandelli

6. Castilho, M., del Cerro, L., Gasquet, O., Herzig, A.: Modal tableaux with propaga-
tion rules and structural rules. Fundamenta Informaticae 32(3,4), 281–297 (1997).
https://doi.org/10.3233/FI-1997-323404

7. Corsi, G.: A unified completeness theorem for quantified modal logics. J. Symb.
Logic 67(2), 1483–1510 (2002). https://doi.org/10.2178/jsl/1190150295

8. Fitting, M.: Tableau methods of proof for modal logics. Notre Dame J. Formal
Logic 13(2), 237–247 (1972). https://doi.org/10.1305/ndjfl/1093894722

9. Fitting, M., Kuznets, R.: Modal interpolation via nested sequents. Ann. Pure Appl.
Logic 166(3), 274–305 (2015). https://doi.org/10.1016/j.apal.2014.11.002

10. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic. Springer, Dordrecht
(1998)

11. Goré, R., Postniece, L., Tiu, A.: On the correspondence between display postu-
lates and deep inference in nested sequent calculi for tense logics. Logical Methods
Comput. Sci. 7(2), 1–38 (2011). https://doi.org/10.2168/LMCS-7(2:8)2011

12. Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Logica. 53(1),
119–135 (1994). https://doi.org/10.1007/BF01053026

13. Kripke, S.: Semantical considerations on modal logic. Acta Philosophica Fennica
16, 83–94 (1963)

14. Lyon, T.: On the correspondence between nested calculi and semantic systems for
intuitionistic logics. J. Log. Comput. 31(1), 213–265 (2020). https://doi.org/10.
1093/logcom/exaa078

15. Lyon, T.: Syntactic interpolation for tense logics and bi-intuitionistic logic via
nested sequents. In: Fernández, M., Muscholl, A. (eds.) Annual Conference on
Computer Science Logic CSL 2020, vol. 152, pp. 28:1–28:16. Leibniz International
Proceedings in Informatics (2020). https://doi.org/10.4230/LIPIcs.CSL.2020.28

16. Lyon, T.: Refining labelled systems for modal and constructive logics with applica-
tions. Dissertation, Technische Universität Wien (2021). https://doi.org/10.34726/
hss.2021.97064

17. Lyon, T.: Nested Sequents for First-Order Modal Logics via Reachability Rules.
arXiv (2022, unpublished). https://doi.org/10.48550/arXiv.2210.00789

18. Lyon, T., Orlandelli, E.: Nested Sequents for Quantified Modal Logics. arXiv
(2023). https://doi.org/10.48550/arXiv.2210.00789

19. Maffezioli, P., Orlandelli, E.: Full cut elimination and interpolation for intuitionistic
logic with existence predicate. Bull. Section Logic 48(2), 137–158 (2019). https://
doi.org/10.18778/0138-0680.48.2.04

20. Negri, S., von Plato, J.: Proof Analysis: A Contribution to Hilbert’s Last Problem.
Cambridge University Press, Cambridge (2011)

21. Orlandelli, E.: Labelled calculi for quantified modal logics with definite descrip-
tions. J. Log. Comput. 31(3), 923–946 (2021). https://doi.org/10.1093/logcom/
exab018

22. Poggiolesi, F.: The method of tree-hypersequents for modal propositional logic. In:
Makinson, D., Malinowski, J., Wansing, H. (eds.) Towards Mathematical Philoso-
phy. TL, vol. 28, pp. 31–51. Springer, Dordrecht (2009). https://doi.org/10.1007/
978-1-4020-9084-4_3

23. Simpson, A.: The proof theory and semantics of intuitionistic modal logic. Dis-
sertation, University of Edinburgh (1994). https://www.cs.cmu.edu/~fp/courses/
15816-s10/papers/Simpson94.pdf

https://doi.org/10.3233/FI-1997-323404
https://doi.org/10.2178/jsl/1190150295
https://doi.org/10.1305/ndjfl/1093894722
https://doi.org/10.1016/j.apal.2014.11.002
https://doi.org/10.2168/LMCS-7(2:8)2011
https://doi.org/10.1007/BF01053026
https://doi.org/10.1093/logcom/exaa078
https://doi.org/10.1093/logcom/exaa078
https://doi.org/10.4230/LIPIcs.CSL.2020.28
https://doi.org/10.34726/hss.2021.97064
https://doi.org/10.34726/hss.2021.97064
https://doi.org/10.48550/arXiv.2210.00789
https://doi.org/10.48550/arXiv.2210.00789
https://doi.org/10.18778/0138-0680.48.2.04
https://doi.org/10.18778/0138-0680.48.2.04
https://doi.org/10.1093/logcom/exab018
https://doi.org/10.1093/logcom/exab018
https://doi.org/10.1007/978-1-4020-9084-4_3
https://doi.org/10.1007/978-1-4020-9084-4_3
https://www.cs.cmu.edu/~fp/courses/15816-s10/papers/Simpson94.pdf
https://www.cs.cmu.edu/~fp/courses/15816-s10/papers/Simpson94.pdf

Nested Sequents for Quantified Modal Logics 467

24. Tiu, A.: A hypersequent system for Gödel-Dummett logic with non-constant
domains. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI),
vol. 6793, pp. 248–262. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22119-4_20

25. Viganò, L.: Labelled Non-classical Logics. Springer, Heidelberg (2000)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-22119-4_20
https://doi.org/10.1007/978-3-642-22119-4_20
http://creativecommons.org/licenses/by/4.0/

A Naive Prover for First-Order Logic: A
Minimal Example of Analytic

Completeness

Asta Halkjær From and Jørgen Villadsen(B)

Technical University of Denmark, Kongens Lyngby, Denmark

jovi@dtu.dk

Abstract. The analytic technique for proving completeness gives a very
operational perspective: build a countermodel to the unproved formula
from a failed proof attempt in your calculus. We have to be careful, how-
ever, that the proof attempt did not fail because our strategy in finding
it was flawed. Overcoming this concern requires designing a prover. We
design and formalize in Isabelle/HOL a sequent calculus prover for first-
order logic with functions. We formalize soundness and completeness
theorems using an existing framework and extract executable code to
Haskell. The crucial idea is to move complexity from the prover itself to
a stream of instructions that it follows. The result serves as a minimal
example of the analytic technique, a naive prover for first-order logic,
and a case study in formal verification.

Keywords: First-Order Logic · Prover · Completeness · Isabelle/HOL

1 Introduction

We present a sound and complete (naive) prover for classical first-order logic
with functions. There are several ways to prove that a proof system for first-
order logic is complete. Gödel’s approach [14], later refined by Henkin [15] is now
known as the synthetic way. This technique abstractly builds maximal consistent
(and saturated) sets of formulas as a bridge between the proof system and the
semantics. This is a useful technique and has been used in formalizations of the
completeness of axiomatic systems for first-order logic [9] and epistemic logic [8],
a tableau system for hybrid logic [7] and more. Unfortunately, as pointed out by
Blanchette et al. [5] in the context of formalization in Isabelle/HOL, there is no
useful connection between this technique and the execution of an actual prover.

The technique by Beth and Hintikka [17] offers a more operational perspec-
tive. Here, we consider unsuccessful proof attempts in the given calculus and
build countermodels from these. Such a countermodel refutes the validity of the
formula that we tried to prove. To build such a countermodel, however, we must
ensure that the proof attempt was sufficiently sophisticated and, essentially, that
it would have found a proof if one existed. In proving this property of the proof
strategy, we are effectively designing a prover based on the calculus. This means
that, in practice, we can extract a prover from our completeness proof.
c© The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 468–480, 2023.
https://doi.org/10.1007/978-3-031-43513-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-43513-3_25&domain=pdf
http://orcid.org/0000-0002-3601-0804
http://orcid.org/0000-0003-3624-1159
https://doi.org/10.1007/978-3-031-43513-3_25

A Naive Prover for First-Order Logic 469

Blanchette et al. [5] have made this very concrete by developing a framework
in Isabelle/HOL for analytic completeness proofs. Their paper includes a first-
order logic example, but their entry in the Archive of Formal Proofs [3] only
includes a propositional example. In this paper, we describe a naive prover based
on the framework, designed to be as simple as possible. This augments the
framework with a concrete first-order logic example showcasing the analytic
technique. Moreover it serves as an introduction to automated reasoning by
making explicit the requirements for completeness of a prover for first-order logic.
It also serves as a small case study for formal verification in a proof assistant.

Then the question remains of how to design this proof strategy. We want it
to be sufficiently intricate to be both sound and complete, but we also want it
to be simple enough that we can reasonably demonstrate these properties (in a
proof assistant). We might follow something like Ben-Ari’s tableau algorithm [1]
(essentially sequent calculus), but we discover that it is surprisingly complex.
There are nodes with labels, branches with markings, and concerns about which
kinds of formulas to process first, later or even together. Instead, we will design
a prover with minimal structure that tries to apply sequent calculus proof rules
over and over, in the belief that we will eventually apply the right ones.

The problem changes from working out which rule to apply in a given situa-
tion, to designing a stream of instructions that will cover whatever we encounter
and embedding enough structure into these instructions to keep the prover itself
elementary. This perspective shift greatly simplifies the prover: the rules are
indexed by formulas and specify exactly what the prover should do in each case.
Moreover, the nodes in the proof tree are simply sequents, no additional state
is needed. The rules apply straightforwardly to these sequents to form the next
nodes of the tree. This simplifies the completeness proof and makes it a non-
issue to handle first-order logic with functions, which can otherwise require extra
consideration.

The formalization of the (naive) prover is available in the Archive of Formal
Proofs [11]. It consists of less than 900 lines of Isabelle/HOL listings, the majority
of which are proofs that are not included when exporting Haskell code for the
prover. A short, manually written Main.hs file augments the exported code
with a command line interface and pretty-printed output. The Isabelle theory
Export.thy includes instructions on how to export and compile the Haskell code
(which closely resembles the programs listed here). The code in this paper is
exported to LATEX by Isabelle from the formalization, but differs slightly in
names and layout for presentation reasons. Likewise, to focus on essentials, we
often omit the technical commands needed in the formalization.

2 Related Work

Blanchette [2] gives an overview of a number of verification efforts including the
metatheory of SAT and SMT solvers, the resolution and superposition calculi,
and a series of proof systems for propositional logic [18]. The aim is to develop
a methodology for formalizing modern research in automated reasoning and

470 A. H. From and J. Villadsen

the present work points in this direction with a minimal example of a formally
verified prover for classical first-order logic based on the sequent calculus.

The prover is based on the abstract completeness framework by Blanchette,
Popescu and Traytel [4,5]. Their formalization contains a simple example prover
for propositional logic, while their paper contains the ideas for a (naive) prover
for first-order logic. Our prover realizes these ideas by formalizing them in
Isabelle/HOL. Instead of a prover, Blanchette et al. [5] used the framework
to formalize soundness and completeness of a calculus for first-order logic with
equality in negation normal form. From and Jacobsen [10,12] used the framework
to formalize a much less naive prover for first-order logic based on the SeCaV
proof system [13]. Instead of indexed rules, they employ “multi-rules” that apply
to every applicable formula in a sequent at once and they store more than just
the sequent at each node in the proof tree. Their prover performs better, but
the formalization does not enjoy the simplicity of the naive prover, with close to
3000 lines of Isabelle/HOL against 900 lines.

The indexed rules of the naive prover automatically yield readable proofs. In
the same vein, THINKER by Pelletier [21] is a natural deduction proof system
and attached automated theorem prover, designed for “direct proofs”, as opposed
to proofs based on reduction to a resolution system. MUSCADET by Pastre [20]
is another automated theorem prover based on natural deduction. Neither of
these has been formally verified. Schulz and Pease [24] focused on readable code
rather than proofs. They have developed a saturation-based theorem prover in
Python for first-order logic to teach automated theorem proving by example.
They have not formally verified soundness and completeness, but our projects
are similar.

In the world of formalization, Schlichtkrull et al. [23] formalized an ordered
resolution prover for clausal first-order logic in Isabelle/HOL. Jensen et al. [16]
formalized the soundness, but not the completeness, of a prover for first-order
logic with equality in Isabelle/HOL. Villadsen et al. [25] verified a simple prover
for first-order logic in Isabelle/HOL aiming for students to understand both the
prover and the formalization. That work simplified a formalization by Ridge and
Margetson [22]. Neither of the last two provers support functions.

3 Isabelle/HOL Overview

We give a quick overview of the Isabelle/HOL features used in the present paper.
Nipkow and Klein [19, Part 1] give a more complete introduction.

The datatype command defines a new inductive type from a series of con-
structors, where each can be given custom syntax. The natural numbers are
built from the nullary constructor 0 and unary Suc. The constructors True and
False belong to the built-in type bool. The usual connectives and quantifiers
from first-order logic (−→, ∀ , etc.) are available for bool, as well as if-then-else
expressions. The parametric ′a list is the type of lists with elements of type ′a.
The type variable ′a stands in the place of another type. Lists are built from
[], the empty list, and #, an infix constructor that adjoins an element to an

A Naive Prover for First-Order Logic 471

datatype tm
= Var nat (#)
| Fun nat (tm list) (†)

datatype fm
= Falsity (⊥)
| Pre nat (tm list) (‡)
| Imp fm fm (infixr −→ 55)
| Uni fm (∀)

Fig. 1. The first-order logic syntax in Isabelle/HOL.

existing list. The notation [a, b, c] is shorthand for these primitive operations.
The function set turns a list into a set of its elements, map applies a given func-
tion to every element of a list, @ appends two lists, concat flattens a list of lists
and upt j k creates the list [j, j + 1, . . . , k − 1]. We use [∈] for list membership
and [÷] to remove all occurrences of a given element from a list. The two types
′a set and ′a fset form sets and finite sets respectively. The usual operations are
available on sets. On finite sets they are typically prefixed by f as in fimage.
Two additional types are important: sum types with the two unary constructors
Inl and Inr, and option types constructed by the unary Some or nullary None.
Constructors can be examined using case expressions.

The codatatype command defines a new coinductive type from a series of
constructors. The canonical example is the type ′a stream of “lists with no base
case”, i.e. infinite sequences. The functions shd and stl return the head and tail
of a stream, respectively, while flat transforms a stream of lists into a stream of
all the elements in the constituent lists, sset returns a set of its elements, smap
applies a function to every element, !! returns the element at a given index and
sdrop-while removes a prefix of a stream that satisfies a given predicate. The
stream nats contains all natural numbers.

The type A ⇒ B denotes a function from A to B. Type signatures are
specified after “::”. Types can be shortened using type synonyms. The term
UNIV stands for the set of all values of a given type. In this paper, both = and
≡ are used to form new definitions. Function application resembles functional
programming languages: f(x, y) is written as f x y and partial application is
allowed. Anonymous functions are built using λ-expressions, e.g. λn. n + n for
f(n) = n + n.

A locale in Isabelle/HOL fixes a number of terms, then assumes a num-
ber of properties about those terms. The meta-logical implication =⇒ separates
premises from conclusions in each assumption. The keyword and acts as a sep-
arator. A locale for a group, for instance, fixes a set and a binary operation and
assumes the group axioms.

4 First-Order Logic in Isabelle/HOL

Figure 1 contains a formalization of the syntax of first-order logic as a datatype
in Isabelle/HOL. The syntax is deeply embedded as an object in the meta-logic
so we can manipulate it. We use de Bruijn indices [6] to represent binding: each
variable n is bound by the quantifier that is n quantifiers away, moving outwards.

472 A. H. From and J. Villadsen

Fig. 2. The semantics of first-order logic in Isabelle/HOL.

A term t, type tm, is then either a variable #n for some de Bruijn index n (a
natural number) or a function application †f [. . .] for some natural number f
representing the function name and list of argument terms. [. . .]. A formula p,
type fm, is the constant for falsity, ⊥, a predicate ‡P [. . .] for some natural
number P representing the predicate name and list of argument terms [. . .], an
implication p1 −→ p2 between two formulas p1, p2 or a universally quantified
formula ∀p.

Figure 2 contains a formalization of the semantics in Isabelle/HOL. A model
consists of three denotations: one each for variables (E), function symbols (F)
and predicate symbols (G). Terms evaluate to a member of the domain, here
represented as a type variable, while formulas evaluate to truth values in the
higher-order logic. We can use the connectives and quantifiers of Isabelle/HOL
to interpret the first-order logic syntax. For the universal quantifier, we modify
the environment such that we evaluate the quantified variable 0 as every element
of the domain.

Figure 3 lists the rules for instantiating a quantifier with a term without cap-
turing any free variables in the process. The operation lift-tm increments every
variable in the term t by one. The operation sub-tm s t applies the substitution
s to every variable in term t. The operation sub-fm s p applies the substitution s
to the formula p, taking account of binders. In the case for ∀p, the substitution
is augmented using o

9 to preserve the bound variable #0 in p and to lift the
variables in the output of the substitution s to point past the binder. We write
the instantiation of a quantified formula ∀p with a concrete term t as 〈t〉p. The
notation 〈t〉 represents the simultaneous substitution that maps variable 0 to t
and every other variable n + 1 to n to account for the removed binder. Figure 4
lists the operations for generating a variable fresh to a list of formulas, i.e. one
that does not appear in any formula in the list.

A Naive Prover for First-Order Logic 473

Fig. 3. The simultaneous substitution and quantifier instantiation in Isabelle/HOL.

Fig. 4. The rules for generating a fresh variable in Isabelle/HOL.

Fig. 5. The syntax and semantics of sequents in Isabelle/HOL.

474 A. H. From and J. Villadsen

Fig. 6. The rules of the sequent calculus presented visually.

The calculus works on two-sided sequents, of type sequent, which are repre-
sented as pairs of lists of formulas (cf. Fig. 5). We can think of the left-hand side
as assumptions and the right-hand side as conclusions. Moreover, the left-hand
side is conjunctive, so we can assume all of the formulas there to be true, while
the right-hand side is disjunctive, so we only need to prove one.

Sequent calculus has the benefit of the subformula property : to prove a for-
mula we only need to look at its subformulas. Contrast this with axiomatic
systems using modus ponens (from p −→ q and p infer q), where we need to
guess a suitable “lemma” formula. However, a sequent calculus may still leave
too much freedom for comfort. In particular, we want to remove the need for
structural rules, since these are too applicable.

Figure 6 lists the underlying rules of the prover in a somewhat idiosyncratic
manner. The reason will become apparent later. Each rule has a name to the left
of the horizontal line. Below the horizontal line is the conclusion and above are
the premises, if any. Any side conditions are given to the right of the line. Note
that each rule is indexed by the exact (sub)formulas it works on: the rule Axiom
0 [] is distinct from the rule Axiom 1 [] etc. This rigidity means that we do not
need any structural rules. It also means that there is no pattern matching in
any of the rules and that the three primary operations are membership checking
([∈]), removal of concrete formulas ([÷]) and adding new formulas to a list (#).

The Idle rule appears for technical reasons (there should always be an
enabled rule). The Axiom rule is indexed by a predicate symbol P and argument
list ts and checks whether such a predicate appears on both sides of the sequent:
if so, the rule applies and there are no child sequents. The FlsL rule checks if ⊥
occurs among the assumptions, in which case the sequent is proved. The FlsR
rule, when it applies, drops all occurrences of ⊥ from the conclusions, since we

A Naive Prover for First-Order Logic 475

can never prove any of them. The ImpL and ImpR rules decompose implications
on either side of the sequent in the standard way. The UniL rule is indexed by
a term t and a formula p. If ∀p occurs on the left, then the rule instantiates it
with t, adding 〈t〉p to the left-hand side of the child sequent. The UniR rule
is only indexed by a formula p. When ∀p occurs on the right, it is instantiated
with a fresh variable and removed.

In order to obtain a prover based on the rules of the sequent calculus we use
the abstract completeness framework for Isabelle/HOL developed by Blanchette,
Popescu and Traytel [3,5]. This framework formalizes the mechanics of sequent
calculus and semantic tableaux provers in an abstract way that we can instantiate
with concrete rules. There are two possible perspectives on the framework: (i)
the proof perspective, where we use the framework to obtain theorems about
proof trees built from our rules and (ii) the code generation perspective, where
we use the framework to generate an executable prover. In this paper, both
perspectives come into play but the two perspectives can be used on their own.

The framework needs: a stream of rules, a function describing their effect, a
proof that some rule is always enabled and a guarantee that rules are persistent.
We formalize the calculus in Isabelle/HOL as a datatype of rules, rule, with
constructors Idle, Axiom, FlsL, FlsR, ImpL, ImpR, UniL and UniR, and an effect
function, eff, that encodes the relationship between premises and conclusions in
the manner expected by the framework.

5 Soundness and Completeness

Soundness requires that we do not prove a sequent without having proper rea-
sons to do so. It is a local property of our calculus that we can easily check.
Completeness, on the other hand, requires that we have sufficient rules avail-
able to prove every valid formula. Thus, proving completeness requires a more
involved strategy.

Lemma 1 (Local soundness). If all premises of a rule are valid, then its
conclusion is valid. In Isabelle, if eff r (A, B) = Some ss and ∀A B . (A, B)
|∈| ss −→ (∀ (E :: - ⇒ ′a). sc (E , F , G) (A, B)), then sc (E , F , G) (A, B).

Proof. By induction on the call structure of eff. The induction hypothesis then
applies to the sequents produced by eff. All cases except UniR are trivial. For
UniR, by the induction hypothesis, the premise holds under all variable deno-
tations: no matter the assignment to the fresh variable. This justifies forming
the universal quantifier and since the fresh variable does not appear elsewhere
in the sequent, the semantics there are unaffected.

Theorem 1 (Prover soundness). If a proof tree (attempt) is well formed and
finite, then the root sequent is valid. In Isabelle, if tfinite t and wf t, then sc (E ,
F , G) (fst (root t)).

Proof. By induction on the finite proof tree using Lemma 1.

476 A. H. From and J. Villadsen

Fig. 7. Formalizations of Hintikka sets and the countermodel M A.

For completeness we must now show that, for every valid sequent, the prover
finds a proof. We do so contrapositively: if the prover does not find a proof,
we produce a countermodel to the sequent. To do so, we characterize saturated
escape paths syntactically using Hintikka sets and show that such sets induce
countermodels. Figure 7 characterizes Hintikka sets in our setting. There are
two perspectives on these: one, that they characterize saturated escape paths
and two, that they characterize the semantics of the countermodel.

To understand the first perspective, read the set A as consisting of all formu-
las that appear as assumptions on the saturated escape path (on the left-hand
side of sequents) and the set B as consisting of all formulas that appear as con-
clusions (on the right-hand side of sequents). The Isabelle/HOL functions treeA
and treeB collect these sets, respectively.

Lemma 2 (Hintikka sets characterize saturated escape paths). Let A
and B be sets of assumption and conclusion formulas on a saturated escape
path. Then they fulfill all Hintikka requirements. In Isabelle, if epath steps and
Saturated steps, then Hintikka (treeA steps) (treeB steps).

Proof. We check each condition separately.
Basic states that a predicate cannot appear as both assumption and con-

clusion on the epath. Otherwise the Axiom rule would have terminated the
(infinite) epath.

FlsA states that ⊥ does not appear among the assumptions. Similar to the
above, the FlsL rule would have terminated the epath if so.

ImpA and ImpB break down implications in accordance with the ImpL and
ImpR rules. For a given p, q, if p −→ q appears in A (respectively B), then at
some point in the proof tree attempt, the rule ImpL p q (respectively ImpR p
q) becomes enabled. Since the epath is saturated, any enabled rule is eventually
taken and the effect matches the thesis.

UniA states that any universally quantified formula ∀p on the left is instan-
tiated with all possible terms. Fix an arbitrary term t. Since ∀p occurs as an
assumption, the specific rule UniL p t is eventually enabled, taken, and has the
desired effect.

A Naive Prover for First-Order Logic 477

UniB is similar, except the witnessing term is the fresh variable.

Remark 1. We see the usefulness of indexed rules in the above proof. If we
simply had an ImpR rule, rather than an ImpR p q rule for each formula p and
q, we would have to further argue that this rule eventually applies to exactly the
implication p −→ q we need it to. Perhaps we need to argue first that p −→ q
eventually reaches the front of the sequent or similar delicate reasoning. This is
where fairness concerns would show up. We have sidestepped the issue by using
very specific rules.

Consider now the second perspective. The countermodel in Fig. 7 uses the
term universe (also called Herbrand universe) where every variable and function
symbol evaluates to itself. Thus, the universal quantifier, which ranges over a
given domain, ranges over terms. Now, read the sets A and B as formulas we
wish to satisfy and falsify, respectively.

Lemma 3 (A Hintikka set induces a countermodel). Let A and B be sets
of formulas fulfilling the Hintikka requirements. Then M A satisfies formulas in
A and falsifies formulas in B. In Isabelle, if Hintikka A B then (p ∈ A −→ M
A p) ∧ (p ∈ B −→ ¬ M A p).

Proof. By well founded induction on the size of the formula, such that the induc-
tion hypothesis applies to subformulas and instances of universally quantified
formulas.

For ⊥ ∈ A, this contradicts FlsA so the thesis holds vacuously. For ⊥ ∈ B,
the thesis holds trivially since ⊥ is falsified by every model.

For †P ts ∈ A, the thesis holds by the definition of M. For †P ts ∈ B, we
cannot have †P ts ∈ A due to Basic and so the thesis holds by the definition of
M.

For p −→ q ∈ A and p −→ q ∈ B the theses hold by the induction hypothe-
ses at p and q and the conditions ImpA and ImpB, respectively.

For ∀p ∈ A and ∀p ∈ B the theses hold by the induction hypotheses at 〈t〉p
for all t and by the conditions UniA and UniB, respectively.

Any saturated escape path induces a countermodel, contradicting validity.

Theorem 2 (Prover completeness). For any valid sequent, the prover ter-
minates.

Proof. If the prover does not find a proof, then by the framework, the proof
attempt contains a saturated escape path. By Lemma 2, this epath fulfills the
Hintikka requirements. By Lemma 3, we can build a model that satisfies every
assumption formula and falsifies every conclusion formula. This model contra-
dicts the validity of the sequent.

We join the soundness and completeness theorems in a corollary on formulas.

Corollary 1. The prover terminates if, and only if, the given formula is valid.
In Isabelle, fix p :: fm and let t ≡ prover ([], [p]), then tfinite t ∧ wf t ←→ (∀ (E
:: - ⇒ tm) F G . [[E , F , G]] p).

478 A. H. From and J. Villadsen

References

1. Ben-Ari, M.: Mathematical Logic for Computer Science. Springer, Cham (2012).
https://doi.org/10.1007/978-1-4471-4129-7

2. Blanchette, J.C.: Formalizing the metatheory of logical calculi and automatic
provers in Isabelle/HOL (invited talk). In: Mahboubi, A., Myreen, M.O. (eds.)
Proceedings of the 8th ACM SIGPLAN International Conference on Certified Pro-
grams and Proofs, CPP 2019, pp. 1–13. ACM (2019). https://doi.org/10.1145/
3293880.3294087

3. Blanchette, J.C., Popescu, A., Traytel, D.: Abstract completeness. Archive of For-
mal Proofs (2014). https://isa-afp.org/entries/Abstract Completeness.html. For-
mal proof development

4. Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562,
pp. 46–60. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6 4

5. Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by
coinductive methods. J. Autom. Reason. 58(1), 149–179 (2016). https://doi.org/
10.1007/s10817-016-9391-3

6. de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem. In:
Nederpelt, R., Geuvers, J., de Vrijer, R. (eds.) Selected Papers on Automath,
Studies in Logic and the Foundations of Mathematics, vol. 133, pp. 375–388.
Elsevier (1994). https://doi.org/10.1016/S0049-237X(08)70216-7, reprinted from:
Indagationes Math, 34, 5, pp. 381–392, by courtesy of the Koninklijke Nederlandse
Akademie van Wetenschappen, Amsterdam

7. From, A.H.: Synthetic completeness for a terminating Seligman-style tableau sys-
tem. In: de’Liguoro, U., Berardi, S., Altenkirch, T. (eds.) 26th International Con-
ference on Types for Proofs and Programs, TYPES 2020, University of Turin, Italy,
2–5 March 2020. LIPIcs, vol. 188, pp. 5:1–5:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2020). https://doi.org/10.4230/LIPIcs.TYPES.2020.5

8. From, A.H.: Formalized soundness and completeness of epistemic logic. In: Silva,
A., Wassermann, R., de Queiroz, R.J.G.B. (eds.) WoLLIC 2021. LNCS, vol. 13038,
pp. 1–15. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88853-4 1

9. From, A.H.: A succinct formalization of the completeness of first-order logic. In:
Basold, H., Cockx, J., Ghilezan, S. (eds.) 27th International Conference on Types
for Proofs and Programs, TYPES 2021, Leiden, The Netherlands, 14–18 June 2021
(Virtual Conference). LIPIcs, vol. 239, pp. 8:1–8:24. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.TYPES.2021.8

10. From, A.H., Jacobsen, F.K.: Verifying a sequent calculus prover for first-order
logic with functions in Isabelle/HOL. In: Andronick, J., de Moura, L. (eds.) 13th
International Conference on Interactive Theorem Proving, ITP 2022, Haifa, Israel,
7–10 August 2022. LIPIcs, vol. 237, pp. 13:1–13:22. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ITP.2022.13

11. From, A.H.: A Naive prover for first-order logic. Archive of Formal Proofs (2022).
https://isa-afp.org/entries/FOL Seq Calc3.html, Formal proof development

12. From, A.H., Jacobsen, F.K.: A sequent calculus prover for first-order logic with
functions. Archive of Formal Proofs (2022). https://isa-afp.org/entries/FOL Seq
Calc2.html, Formal proof development

13. From, A.H., Jensen, A.B., Schlichtkrull, A., Villadsen, J.: Teaching a formalized
logical calculus. Electron. Proc. Theor. Comput. Sci. 313, 73–92 (2020). https://
doi.org/10.4204/EPTCS.313.5

https://doi.org/10.1007/978-1-4471-4129-7
https://doi.org/10.1145/3293880.3294087
https://doi.org/10.1145/3293880.3294087
https://isa-afp.org/entries/Abstract_Completeness.html
https://doi.org/10.1007/978-3-319-08587-6_4
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1007/s10817-016-9391-3
https://doi.org/10.1016/S0049-237X(08)70216-7
https://doi.org/10.4230/LIPIcs.TYPES.2020.5
https://doi.org/10.1007/978-3-030-88853-4_1
https://doi.org/10.4230/LIPIcs.TYPES.2021.8
https://doi.org/10.4230/LIPIcs.ITP.2022.13
https://isa-afp.org/entries/FOL_Seq_Calc3.html
https://isa-afp.org/entries/FOL_Seq_Calc2.html
https://isa-afp.org/entries/FOL_Seq_Calc2.html
https://doi.org/10.4204/EPTCS.313.5
https://doi.org/10.4204/EPTCS.313.5

A Naive Prover for First-Order Logic 479

14. Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monat-
shefte für Mathematik und Physik 37(1), 349–360 (1930). https://doi.org/10.1007/
BF01696781

15. Henkin, L.: The discovery of my completeness proofs. Bull. Symb. Log. 2(2), 127–
158 (1996). https://doi.org/10.2307/421107

16. Jensen, A.B., Larsen, J.B., Schlichtkrull, A., Villadsen, J.: Programming and ver-
ifying a declarative first-order prover in Isabelle/HOL. AI Commun. Eur. J. Artif.
Intell. 31(3), 281–299 (2018). https://doi.org/10.3233/AIC-180764

17. Kleene, S.C.: Mathematical Logic. Courier Corporation (2002)
18. Michaelis, J., Nipkow, T.: Formalized proof systems for propositional logic. In:

Abel, A., Forsberg, F.N., Kaposi, A. (eds.) 23rd International Conference on Types
for Proofs and Programs (TYPES 2017). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 104, pp. 5:1–5:16. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.TYPES.
2017.5

19. Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10542-0

20. Pastre, D.: Muscadet 2.3: a knowledge-based theorem prover based on natural
deduction. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol.
2083, pp. 685–689. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45744-5 56

21. Pelletier, F.J.: Automated natural deduction in THINKER. Stud. Logica. 60(1),
3–43 (1998). https://doi.org/10.1023/A:1005035316026

22. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theo-
rem prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005.
LNCS, vol. 3603, pp. 294–309. Springer, Heidelberg (2005). https://doi.org/10.
1007/11541868 19

23. Schlichtkrull, A., Blanchette, J.C., Traytel, D.: A verified prover based on ordered
resolution. In: Proceedings of the 8th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2019, pp. 152–165. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3293880.3294100

24. Schulz, S., Pease, A.: Teaching automated theorem proving by example: PyRes
1.2. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI),
vol. 12167, pp. 158–166. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-51054-1 9

25. Villadsen, J., Schlichtkrull, A., From, A.H.: A verified simple prover for first-order
logic. In: Konev, B., Urban, J., Rümmer, P. (eds.) Proceedings of the 6th Workshop
on Practical Aspects of Automated Reasoning. CEUR Workshop Proceedings, vol.
2162, pp. 88–104. CEUR-WS.org (2018). https://ceur-ws.org/Vol-2162/paper-08.
pdf

https://doi.org/10.1007/BF01696781
https://doi.org/10.1007/BF01696781
https://doi.org/10.2307/421107
https://doi.org/10.3233/AIC-180764
https://doi.org/10.4230/LIPIcs.TYPES.2017.5
https://doi.org/10.4230/LIPIcs.TYPES.2017.5
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/3-540-45744-5_56
https://doi.org/10.1007/3-540-45744-5_56
https://doi.org/10.1023/A:1005035316026
https://doi.org/10.1007/11541868_19
https://doi.org/10.1007/11541868_19
https://doi.org/10.1145/3293880.3294100
https://doi.org/10.1007/978-3-030-51054-1_9
https://doi.org/10.1007/978-3-030-51054-1_9
https://ceur-ws.org/Vol-2162/paper-08.pdf
https://ceur-ws.org/Vol-2162/paper-08.pdf

480 A. H. From and J. Villadsen

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Author Index

A
Acclavio, Matteo 342
Afshari, Bahareh 223
Alassaf, Ruba 24
Areces, Carlos 37
Ayers, Edward 175

B
Bibel, Wolfgang 153

C
Cassano, Valentin 37
Catta, Davide 342

D
Dalmonte, Tiziano 302
Das, Anupam 283
de Boer, Frank S. 407
De Domenico, Andrea 49
de Gouw, Stijn 407
Dekker, Maurice 242

E
Eisenhofer, Clemens 24

F
Fervari, Raul 37
From, Asta Halkjær 468

G
Gheorghiu, Alexander V. 367
Goré, Rajeev 73
Greco, Giuseppe 49
Grotenhuis, Lide 223
Gu, Tao 367

H
Haniková, Zuzana 386
Hiep, Hans-Dieter A. 407
Hoffmann, Guillaume 37

I
Iemhoff, Rosalie 73
Indrzejczak, Andrzej 112, 131

J
Jalali, Raheleh 263

K
Kloibhofer, Johannes 242
Kovács, Laura 24
Kürbis, Nils 112
Kuznets, Roman 263

L
Lang, Timo 94
Leigh, Graham E. 223
Lyon, Tim S. 449

M
Manoorkar, Krishna B. 49
Manyà, Felip 386
Marin, Sonia 283
Marti, Johannes 242
Mazzullo, Andrea 302
Mir, Ramon Fernández 175

N
Nalon, Cláudia 322

O
Olimpieri, Federico 342
Olivetti, Nicola 322
Orlandelli, Eugenio 449

P
Palmigiano, Alessandra 49
Panettiere, Mattia 49
Pattinson, Dirk 322

© The Editor(s) (if applicable) and The Author(s) 2023
R. Ramanayake and J. Urban (Eds.): TABLEAUX 2023, LNAI 14278, pp. 481–482, 2023.
https://doi.org/10.1007/978-3-031-43513-3

https://doi.org/10.1007/978-3-031-43513-3

482 Author Index

Peltier, Nicolas 427
Piotrowski, Bartosz 175
Pym, David J. 367

R
Rawson, Michael 24, 153

S
Saurin, Alexis 203
Shillito, Ian 73
Shminke, Boris 187

V
van der Berg, Ineke 49
van der Giessen, Iris 73, 263
Venema, Yde 242
Vidal, Amanda 386
Villadsen, Jørgen 468

W
Wernhard, Christoph 3, 153

Z
Zenger, Lukas 223
Zombori, Zsolt 153

	 Preface
	 Organization
	Abstracts of Invited Talks
	 Epistemic Logics of Structured Intensional Groups: Agents - Groups - Names - Types
	 First-Order Instantiation-Based Tableau
	 Combining Semantic Tableaux
	 Proof Systems and Termination
	 Always Look on Both Sides of Proof: Syntax and Semantics as the Yin and Yang of Structural Proof Theory
	 Contents

	Tableau Calculi
	Range-Restricted and Horn Interpolation through Clausal Tableaux
	1 Introduction
	2 Notation and Preliminaries
	2.1 Notation
	2.2 Clausal First-Order Tableaux
	2.3 Interpolation with Clausal Tableaux

	3 Interpolation and Range-Restriction
	3.1 CNF and DNF with Some Assumed Syntactic Properties
	3.2 Used Notions of Range-Restriction
	3.3 Results on Range-Restricted Interpolation
	3.4 Proving Range-Restricted Interpolation – The Hyper Property

	4 Horn Interpolation
	5 Obtaining Proofs with the Hyper Property
	6 Conclusion
	References

	Non-Classical Logics in Satisfiability Modulo Theories
	1 Introduction
	2 Background and Challenges
	3 Tableau as a Decision Procedure in CDCL(T)
	3.1 SMT-LIB Encoding and Custom SMT Theory
	3.2 Preprocessing (Abstr)
	3.3 Populating Languages (Fixed)
	3.4 Rule Application (Final)
	3.5 Backtracking (Push+pop)

	4 Implementation and Experiments
	5 Conclusion and Discussion
	References

	DefTab: A Tableaux System for Sceptical Consequence in Default Modal Logics
	1 Introduction
	2 Basic Definitions
	3 Default Tableaux Proof Calculus
	4 Implementation
	5 Testing Generation and Methodology
	6 Final Remarks
	References

	Non-distributive Description Logic
	1 Introduction
	2 Preliminaries
	2.1 Description Logic ALC
	2.2 Basic Normal Non-distributive Modal Logic and Its Semantics

	3 LE Description Logic
	4 Tableaux Algorithm for ABox of LE-ALC
	4.1 Termination of the Tableaux Algorithm
	4.2 Soundness of the Tableau Algorithm
	4.3 Completeness of the Tableau Algorithm

	5 Conclusion and Future Work
	References

	Sequent Calculi
	A New Calculus for Intuitionistic Strong Löb Logic: Strong Termination and Cut-Elimination, Formalised
	1 Introduction
	2 Preliminaries
	2.1 Syntax
	2.2 Axiomatic Systems as Consequence Relations
	2.3 Kripke Semantics
	2.4 Sequent Calculus

	3 Admissible Rules in G4iSLt
	4 Naive Backward Proof Search Terminates
	4.1 Shortlex: A Well-Founded Order on list N
	4.2 A (list N)-Measure on Sequents
	4.3 Every Rule of G4iSLt Reduces Upwards

	5 Cut-Elimination for G4iSLt
	6 Conclusion
	References

	Some Analytic Systems of Rules
	1 Introduction
	2 Preliminaries
	3 Two Systems of Rules
	3.1 KT
	3.2 K5
	3.3 Grounded Proofs and Grafted Hypersequents

	4 Strongly Modular Proofs of Cut-Elimination
	4.1 Calculi with Ghost Rules
	4.2 KKD
	4.3 ILLQ

	5 Conclusion and Future Work
	References

	A Cut-Free, Sound and Complete Russellian Theory of Definite Descriptions
	1 Introduction
	2 Preliminaries
	3 Sequent Calculus
	4 Cut Elimination
	5 Adequacy
	6 Conclusion
	References

	Towards Proof-Theoretic Formulation of the General Theory of Term-Forming Operators
	1 Introduction
	2 Preliminaries
	3 The General Theory
	3.1 The Formalisation of S-Theory
	3.2 The Formalisation of T-Theory

	4 Application to Set-Abstracts
	4.1 The S-Approach to NF
	4.2 The T-Approach to NF

	5 Conclusion
	References

	Theorem Proving
	Lemmas: Generation, Selection, Application
	1 Introduction
	2 Background and Related Work
	2.1 Machine Learning for ATP
	2.2 Condensed Detachment: Proofs as Terms
	2.3 Condensed Detachment for ATP and Lemmas
	2.4 SGCD—Structure Generating Theorem Proving

	3 Improving a Prover via Learned Lemma Selection
	3.1 Learning-Based Experiments
	3.2 Discussion of Learning-Based Experiments

	4 Proving LCL073-1
	5 Conclusion
	References

	Machine-Learned Premise Selection for Lean
	1 Introduction
	2 Dataset Collection
	2.1 Features
	2.2 Relevant Premises

	3 Machine Learning Models
	3.1 k-Nearest Neighbours
	3.2 Random Forest

	4 Evaluation Setup and Results
	5 Interactive Tool
	6 Future Work
	References

	gym-saturation: Gymnasium Environments for Saturation Provers (System description)
	1 Introduction
	2 Related Work
	3 Architecture and Implementation Details
	3.1 Architecture
	3.2 Implementation Details

	4 Representation Subsystem
	4.1 Existing First-Order Formulae Representations and Related Projects
	4.2 ast2vec and Our Contributions to It
	4.3 Latency Considerations

	5 Usage Examples
	6 Conclusion and Future Work
	References

	Non-wellfounded Proofs
	A Linear Perspective on Cut-Elimination for Non-wellfounded Sequent Calculi with Least and Greatest Fixed-Points
	1 Introduction
	2 Non-Wellfounded Proofs: MALL, LL, LK, LJ
	2.1 -Signatures and Formulas
	2.2 MALL, LL, LK & LJ Inference Rules
	2.3 Pre-proofs and Validity Conditions
	2.4 Non-Locative MALL Cut-Elimination Theorem
	2.5 Compressing Transfinite MALL Cut-Reduction Sequences

	3 Cut-Elimination Theorem for LL
	3.1 Cut-Elimination Rules for LL
	3.2 Embedding LL in MALL
	3.3 Simulation of LL Cut-Elimination Steps
	3.4 Proof of LL Cut-Elimination Theorem

	4 Cut-Elimination Theorem for LK and LJ
	4.1 LK Cut-Elimination: Skeletons and Decorations
	4.2 LJ Cut-Elimination

	5 Conclusion
	References

	Ill-Founded Proof Systems for Intuitionistic Linear-Time Temporal Logic
	1 Introduction
	2 Syntax and Semantics
	3 Nested Ill-Founded Proofs
	4 Soundness
	5 Completeness
	5.1 Proof of Proposition 1
	5.2 A Sequent Unprovable with Bounded Nesting

	6 Persistency
	7 Conclusion
	References

	Proof Systems for the Modal -Calculus Obtained by Determinizing Automata
	1 Introduction
	2 Preliminaries
	3 Determinization of Automata with Binary Trees
	3.1 Büchi automata
	3.2 Parity Automata

	4 BT Proofs
	4.1 Proof Systems
	4.2 Soundness and Completeness
	4.3 Cyclic BT Proofs

	5 Conclusions and Future Work
	References

	Modal Logics
	Extensions of K5: Proof Theory and Uniform Lyndon Interpolation
	1 Introduction
	2 Preliminaries
	3 Layered Sequents
	4 Uniform Lyndon Interpolation
	5 Conclusion
	References

	On Intuitionistic Diamonds (and Lack Thereof)
	1 Introduction
	2 Preliminaries
	2.1 Some Axiomatisations and Characterisations

	3 Separating CK and IK over the -Free Fragment
	3.1 The Gödel-Gentzen Negative Translation
	3.2 IK Validates Gödel-Gentzen
	3.3 CK Does not validate Gödel-Gentzen

	4 Perspectives
	4.1 On Other Separations and -Free Axiomatisations
	4.2 On -Normality and the Problem of CK+ k3 + k5

	5 Nested Sequent Calculus for CK+ k3 + k5
	5.1 System nJ,
	5.2 Metalogical Results

	6 Cut-Elimination Argument
	6.1 Cut-Reduction Cases (Non-modal)
	6.2 Cut-Reduction Cases (Modal)

	7 Conclusions
	References

	CoNP Complexity for Combinations of Non-normal Modal Logics
	1 Introduction
	2 Non-normal Modal Logics and Their Combinations
	3 Sequent Calculi
	4 Invertible Calculi and CoNP Complexity
	5 Adding the Universal Modality
	6 Conclusion
	References

	Resolution Calculi for Non-normal Modal Logics
	1 Introduction
	2 Syntax, Semantics, and Axiomatisation
	3 Resolution Calculi
	4 Completeness
	4.1 Monotone Modal Logic
	4.2 Logics with Unit
	4.3 Logics with Aggregation

	5 Conclusion and Future Work
	References

	Canonicity of Proofs in Constructive Modal Logic
	1 Introduction
	2 Preliminaries
	2.1 A Lambda Calculus for CK

	3 A New Modal Lambda Calculus
	4 A Canonical Type System for CK
	5 Game Semantics for CK
	5.1 Arenas with Modalities
	5.2 Games and Winning Innocent Strategies
	5.3 Full Completeness for Modal Lambda Terms in Normal Form

	6 Conclusion
	References

	Linear Logic and MV-Algebras
	Proof-Theoretic Semantics for Intuitionistic Multiplicative Linear Logic
	1 Introduction
	2 Base-Extension Semantics for IPL
	2.1 Support in a Base
	2.2 Completeness of IPL
	2.3 Base-Extension Semantics for IPL, Revisited

	3 Intuitionistic Multiplicative Linear Logic
	4 Base-extension Semantics for IMLL
	4.1 Support in a Base
	4.2 Soundness
	4.3 Completeness

	5 Conclusion
	References

	The MaxSAT Problem in the Real-Valued MV-Algebra
	1 Introduction
	2 Problem Formulation and Preliminaries
	3 Canonical Method
	4 Tableau-Like Method
	4.1 Satisfiability
	4.2 Maximum Satisfiability

	5 Concluding Remarks and Future Work
	References

	Separation Logic
	The Logic of Separation Logic: Models and Proofs
	1 Introduction
	2 Separation Logic
	3 Model Theory: Compactness and Countability
	4 Separation Logic of Definable Binary Relations
	5 Sequent Calculus
	6 Conclusion
	References

	Testing the Satisfiability of Formulas in Separation Logic with Permissions
	1 Introduction
	2 Definitions
	3 h-Regular Systems
	4 A Decision Procedure for Testing Satisfiability
	4.1 Normalization
	4.2 Commuting Separating and Disjoint Connections
	4.3 Merging of Spatial Predicates
	4.4 Heap Abstractions and Main Result

	5 Using Separating Conjunctions Inside Rules
	6 Conclusion and Future Work
	References

	First-Order Logics
	Nested Sequents for Quantified Modal Logics
	1 Introduction
	2 Quantified Modal Logics
	3 Nested Calculi for QML
	4 Properties and Cut-Elimination
	5 Soundness and Completeness
	6 Conclusion and Future Work
	References

	A Naive Prover for First-Order Logic: A Minimal Example of Analytic Completeness
	1 Introduction
	2 Related Work
	3 Isabelle/HOL Overview
	4 First-Order Logic in Isabelle/HOL
	5 Soundness and Completeness
	References

	Author Index

