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Foreword 

Artificial Intelligence (“AI”) and Machine Learning, in particular, have been in the 
center of interest for science, business, and society alike for several years now, and 
for many, they might seem like an old friend whose capabilities we have come to 
know and appreciate. After all, Machine Learning-based AI seems to be almost 
everywhere now. Machine Learning algorithms give us recommendations when we 
look at our timeline in social media, when we listen to music or watch movies. 
They are able to transcribe our speech and answer simple questions when we talk 
to the digital assistants on our mobile phones. AI systems sometimes produce better 
diagnoses than human doctors in certain cases, and behind the scenes, they run many 
of today’s digital systems in business administration, production, and logistics. 
Perhaps some of us are even using the Machine Learning-powered capabilities of 
semi-autonomous driving in the latest automobiles. 

As impressive as these applications are—yet another revolution is already on its 
way. A new wave of AI technology is about to completely change our conception 
of the capabilities of artificially intelligent systems: Foundation Models. While up 
to now, AI systems were usually built by training learning algorithms on datasets 
specifically constructed for a particular task at hand, researchers and engineers are 
now using the almost limitless supply of available data, documents, and images 
on the Internet to train models relatively independently of the possible tasks for 
which they might be used later on. Using large document sets with trillions of words, 
and incorporating hundreds of billions of parameters, such deep network models 
construct a re-representation of their inputs and store them in a way that later allows 
them to be used for different tasks such as question/answering and even inference. 
Such models already produce results that were unimaginable before, and will lead 
to AI systems that are significantly more flexible, dramatically more powerful, and 
ultimately closer to a truly general AI. 

This book constitutes an excellent and in-depth introduction to the topic of 
Foundation Models, containing details about the major classes of such models and 
their use with text, speech, images, and video. It can thus serve as an overview for
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those interested in entering the area, as well as a more detailed reference for those 
interested in learning more about individual approaches. May this book contribute 
to making Foundation Models accessible to an even wider audience, and thus help 
to further spread and develop this exciting technology! 

Bonn, Germany Prof. Dr. Stefan Wrobel 
July 2022



Preface 

Forty years ago, when Deep Neural Networks were proposed, they were intended as 
a general-purpose computational device that would mimic the workings of the brain. 
However, due to the insufficient power of computers at that time, they could only be 
applied to small problems and disappeared from the focus of scientific research. 

It was only about 10 years ago that a variant, Convolutional Neural Networks, 
succeeded in identifying objects in images better than other methods. This was 
based on the availability of a very large training set of manually annotated images, 
the high computing power of graphic processing units, and the efficiency of new 
optimization techniques. Shortly thereafter, many specialized models could improve 
performance in other areas, for example, recurrent neural networks for predicting 
sequences or reinforcement learning models for controlling video games. However, 
the results of these deep neural networks were mediocre in most cases and usually 
could not match human performance. 

The field of language processing could particularly benefit from the idea that the 
meaning of each word was represented by a long vector, an embedding. Five years 
ago, this approach was decisively improved by Google engineers. They correlated 
these embeddings with the embeddings of the other words, which enabled them to 
compute new embeddings in the next layer, which adapt the embedding of a word to 
the context. For example, the word “bank” is usually a financial institution near the 
word “money” and a “sloping land” in the neighborhood of “river”. This operation 
was called self-attention and enabled the models to acquire an unprecedented 
amount of semantic information. Instead of processing a text word by word, all 
words were correlated at once, which increases the processing speed. 

These models can be used as language models that predict the next word given the 
previous words of a text. They do not require human annotations and can be trained 
on plain text, e.g. from the Internet. It turned out that the larger these models become 
and the more training text they process, the better they perform. A milestone was 
the GPT-3 model, which has 175 billion parameters and was trained on 570 GB of 
text. It was able to generate syntactically and semantically convincing text passages 
that were almost indistinguishable from human-generated texts.

vii
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Further experiments showed that these models can also be applied to other types 
of sequences besides text, e.g. pictures, videos, sound recordings, or sequences of 
molecules. Each time, small input patches are represented by embeddings and the 
relationship of the patches is acquired by self-attention. Since this can be done for 
different media at the same time, the embeddings act as a common cross-media 
representation. While earlier deep neural networks were designed for one task, 
these models can be applied to a variety of tasks and are therefore often called 
“Foundation Models”. They offer the perspective of capturing text, speech, images, 
and sensory impressions of the environment with a single high-performance model, 
coming close to the original vision of Neural Networks. 

The purpose of this book is to describe language models pre-trained on extensive 
training data. If these models have a sufficient number of parameters, they are 
called Foundation Models, which can perform new task simply by instruction and, 
moreover, can handle different media types. In particular, the technical vocabulary 
but also concepts, methods, and network architectures are introduced. Further, 
approaches to improve the models are presented and the performance but also the 
weaknesses of the models are discussed. An extensive section of the book provides 
an overview of the application of Foundation Models to various language processing 
tasks. Finally, the capabilities of the Foundation Models in cross-media processing 
are presented. 

The book enables researchers and decision-makers familiar with the fundamen-
tals of text and media processing to participate in the design of language models and 
Foundation Models and to better evaluate model properties in terms of their impact. 
For data analysts, students, engineers, and researchers, the book provides an ideal 
introduction to more advanced literature. 
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Chapter 1 
Introduction 

Abstract With the development of efficient Deep Learning models about a decade 
ago, many Deep Neural Networks have been used to solve pattern recognition tasks 
such as natural language processing and image recognition. An advantage of these 
models is that they automatically create features arranged in layers which represent 
the content and do not require manually constructed features. These models rely on 
Machine Learning employing statistical techniques to give machines the capability 
to ‘learn’ from data without being given explicit instructions on what to do. Deep 
Learning models transform the input in layers step by step in such a way that 
complex patterns in the data can be recognized. This chapter first describes how 
a text is pre-processed and partitioned into tokens, which form the basis for natural 
language processing. Then we outline a number of classical Machine Learning 
models, which are often used as modules in advanced models. Examples include 
the logistic classifier model, fully connected layers, recurrent neural networks and 
convolutional neural networks. 

Keywords Natural language processing · Text preprocessing · Vector space 
model · Static embeddings · Recurrent networks · Convolutional networks 

1.1 Scope of the Book 

With the development of efficient Deep Learning models about a decade ago, 
many Deep Neural Networks have been used to solve pattern recognition tasks 
such as natural language processing (NLP) and image processing. Typically, the 
models have to capture the meaning of a text or an image and make an appropriate 
decision. Alternatively they can generate a new text or image according to the task 
at hand. An advantage of these models is that they create intermediate features 
arranged in layers and do not require manually constructed features. Deep Neural 
Networks such as Convolutional Neural Networks (CNNs) [32] and Recurrent 
Neural Networks (RNNs) [65] use low-dimensional dense vectors as a kind of 
distributed representation to express the syntactic and semantic features of language. 
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2 1 Introduction

All these models can be considered as Artificial Intelligence (AI) Systems. AI 
is a broad research field aimed at creating intelligent machines, acting similar 
to humans and animals having natural intelligence. It captures the field’s long-
term goal of building machines that mimic and then surpass the full spectrum of 
human cognition. Machine Learning (ML) is a subfield of artificial intelligence 
that employs statistical techniques to give machines the capability to ‘learn’ from 
data without being given explicit instructions on what to do. This process is also 
called ‘training’, whereby a ‘learning algorithm’ gradually improves the model’s 
performance on a given task. Deep Learning is an area of ML in which an input 
is transformed in layers step by step in such a way that complex patterns in the 
data can be recognized. The adjective ‘deep’ refers to the large number of layers in 
modern ML models that help to learn expressive representations of data to achieve 
better performance. 

In contrast to computer vision, the size of annotated training data for NLP 
applications was rather small, comprising only a few thousand sentences (except 
for machine translation). The main reason for this was the high cost of manual 
annotation. To avoid overfitting, i.e. overadapting models to random fluctuations, 
only relatively small models could be trained, which did not yield high performance. 
In the last 5 years, new NLP methods have been developed based on the Transformer 
introduced by Vaswani et al. [67]. They represent the meaning of each word by a 
vector of real numbers called embedding. Between these embeddings various kinds 
of “attentions” can be computed, which can be considered as a sort of “correlation” 
between different words. In higher layers of the network, attention computations are 
used to generate new embeddings that can capture subtle nuances in the meaning 
of words. In particular, they can grasp different meanings of the same word that 
arise from context. A key advantage of these models is that they can be trained 
with unannotated text, which is almost infinitely available, and overfitting is not a 
problem. 

Currently, there is a rapid development of new methods in the research field, 
which makes many approaches from earlier years obsolete. These models are 
usually trained in two steps: In a first pre-training step, they are trained on a large 
text corpus containing billions of words without any annotations. A typical pre-
training task is to predict single words in the text that have been masked in the 
input. In this way, the model learns fine subtleties of natural language syntax and 
semantics. Because enough data is available, the models can be extended to many 
layers with millions or billions of parameters. 

In a second fine-tuning step, the model is trained on a small annotated training 
set. In this way, the model can be adapted to new specific tasks. Since the fine-
tuning data is very small compared to the pre-training data and the model has a 
high capacity with many millions of parameters, it can be adapted to the fine-
tuning task without losing the stored information about the language structure. 
It was demonstrated that this idea can be applied to most NLP tasks, leading to 
unprecedented performance gains in semantic understanding. This transfer learning 
allows knowledge from the pre-training phase to be transferred to the fine-tuned 
model. These models are referred to as Pre-trained Language Models (PLM).
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In the last years the number of parameters of these PLMs was systematically 
enlarged together with more training data. It turned out that in contrast to con-
ventional wisdom the performance of these models got better and better without 
suffering from overfitting. Models with billions of parameters are able to generate 
syntactically correct and semantically consistent fluent text if prompted with some 
starting text. They can answer questions and react meaningful to different types of 
prompts. 

Moreover, the same PLM architecture can simultaneously be pre-trained with 
different types of sequences, e.g. tokens in a text, image patches in a picture, sound 
snippet of speech, image patch sequences in video frames, DNA snippets, etc. They 
are able to process these media types simultaneously and establish connections 
between the different modalities. They can be adapted via natural language prompts 
to perform acceptably on a wide variety of tasks, even though they have not 
been explicitly trained on these tasks. Because of this flexibility, these models are 
promising candidates to develop overarching applications. Therefore, large PLMs 
with billions of parameters are often called Foundation Models [9]. 

This book is intended to provide an up-to-date overview of the current Pre-trained 
Language Models and Foundation Models, with a focus on applications in NLP: 

• We describe the necessary background knowledge, model architectures, pre-
training and fine-tuning tasks, as well as evaluation metrics. 

• We discuss the most relevant models for each NLP application group that 
currently have the best accuracy or performance, i.e. are close to the state of 
the art (SOTA). Our purpose here is not to describe a spectrum of all models 
developed in recent years, but to explain some representative models so that their 
internal workings can be understood. 

• Recently PLMs have been applied to a number of speech, image and video 
processing tasks giving rise to the term Foundation Models. We give an overview 
of most relevant models, which often allow the joint processing of different 
media, e.g. text and images 

• We provide links to available model codes and pre-trained model parameters. 
• We discuss strengths and limitations of the models and give an outlook on 

possible future developments. 

There are a number of previous surveys of Deep Learning and NLP [1–4, 10, 15, 16, 
27, 39, 50, 53, 54, 59, 66]. The surveys of Han et al. [22], Lin et al. [41], and Kalyan 
et al. [31] are the most up-to-date and comprehensive. Jurafsky and Martin [30] 
prepare an up-to-date book on this field. In addition, there are numerous surveys 
for specific model variants or application areas. Where appropriate, we provide 
references to these surveys. New terminology is usually printed in italics and models 
in bold. 

The rest of this chapter introduces text preprocessing and classical NLP models, 
which in part are reused inside PLMs. The second chapter describes the main 
architectures of Pre-trained Language Models, which are currently the workhorses 
of NLP. The third chapter considers a large number of PLM variants that extend 
the capabilities of the basic models. The fourth chapter describes the information
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captured by PLMs and Foundation Models and analyses their syntactic skills, world 
knowledge, and reasoning capabilities. 

The remainder of the book considers various application domains and identifies 
PLMs and Foundation Models that currently provide the best results in each 
domain at a reasonable cost. The fifth chapter reviews information extraction 
methods that automatically identify structured information and language features 
in text documents, e.g. for relation extraction. The sixth chapter deals with natural 
language generation approaches that automatically generate new text in natural 
language, usually in response to a prompt. The seventh chapter is devoted to models 
for analyzing and creating multimodal content that typically integrate content 
understanding and production across two or more modalities, such as text, speech, 
image, video, etc. The general trend is that more data, computational power, and 
larger parameter sets lead to better performance. This is explained in the last 
summary chapter, which also considers social and ethical aspects of Foundation 
Models and summarizes possible further developments. 

1.2 Preprocessing of Text 

The first step in preprocessing is to extract the actual text. For each type of text 
document, e.g. pdf, html, xml, docx, ePUB, there are specific parsers, which resolve 
the text into characters, words, and formatting information. Usually, the layout and 
formatting information is removed. 

Then, the extracted text is routinely divided into tokens, i.e. words, numbers, and 
punctuation marks. This process is not trivial, as text usually contains special units 
like phone numbers or email addresses that must be handled in a special way. Some 
text mining tasks require the splitting of text into sentences. Tokenizers and sentence 
splitters for different languages have been developed in the past decades and can be 
included from many programming toolboxes, e.g. Spacy [64]. 

In the past, many preprocessing methods aimed at generating new relevant 
features (part-of-speech tags, syntax parse trees) and removing unnecessary tokens 
(stemming, stop word removal, lemmatization). In most cases, this is no longer 
necessary with modern approaches that internally automatically derive the features 
relevant for the task at hand. 

In an optional final step, the word-tokens can be further subdivided and rear-
ranged. A simple technique creates character n-grams (i.e. all sequences of n 
adjacent characters in a word) as additional features. Alternatively, word n-grams 
can be formed consisting of n consecutive words. 

Currently, the most popular approach tries to limit the number of different words 
in a vocabulary. A common choice is byte-pair encoding [19]. This method first 
selects all characters as tokens. Then, successively the most frequent token pair is 
merged into a new token and all instances of the token pair are replaced by the 
new token. This is repeated until a vocabulary of prescribed size is obtained. Note 
that new words can always be represented by a sequence of vocabulary tokens and
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characters. Common words end up being a part of the vocabulary, while rarer words 
are split into components, which often retain some linguistic meaning. In this way, 
out-of-vocabulary words are avoided. 

The WordPiece [69] algorithm also starts by selecting all characters of the 
collection as tokens. Then it assumes that the text corpus has been generated by 
randomly sampling tokens according to their observed frequencies. It merges tokens 
a and b (inside words) in such a way that the likelihood of the training data is 
maximally increased [60]. There is a fast variant whose computational complexity 
is linear in the input length [63]. SentencePiece [35] is a package containing 
several subword tokenizers and can also be applied to all Asian languages. All the 
approaches effectively interpolate between word level inputs for frequent words and 
character level inputs for infrequent words. 

Often the language of the input text has to be determined [29, 57]. Most language 
identification methods extract character n-grams from the input text and evaluate 
their relative frequencies. Some methods can be applied to texts containing different 
languages at the same time [42, 71]. To filter out offensive words from a text, one 
can use lists of such toxic words in different languages [62]. 

1.3 Vector Space Models and Document Classification 

To apply Machine Learning to documents, their text has to be transformed into 
scalars, vectors, matrices, or higher-dimensional arrangements of numbers, which 
are collectively called tensors. In the previous section, text documents in a corpus 
were converted into a sequence of tokens by preprocessing. These tokens now have 
to be translated into tensors. 

The bag-of-words representation describes a given text document d by a vector 
. x of token counts. The vocabulary is a list of all different tokens contained in the 
collection of training documents, the training corpus. Ignoring the order of tokens, 
this bag-of-words vector records how often each token of the vocabulary appears in 
document d. Note that most vector entries will be zero, as each document will only 
contain a small fraction of vocabulary tokens. The vector of counts may be modified 
to emphasize tokens with high information content, e.g. by using the tf-idf statistic 
[43]. Table 1.1 summarizes different representations for documents used for NLP. 

Document classification methods aim to categorize text documents according to 
their content [33, 61]. An important example is the logistic classifier, which uses a 
bag-of-words vector . x as input and predicts the probability of each of the k possible 
output classes .y ∈ {1, . . . , k}. More precisely, there is a random variable Y which 
may take the values .1, . . . , k. To predict the output class y from the input . x, a score 
vector is first generated as 

.u = Ax + b (1.1)
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Table 1.1 Representations for documents used in NLP Models. 

Type Generated by ... Used by ... 

Bag-of-words Tokenization and counting Logistic classifier, SVM. 
Section 1.3. 

Simple embeddings Correlation and regression: 
topic models [7], Word2Vec 
[46], GloVe [51]. 

Classifiers, clustering, 
visualization, RNN, etc. 
Section 1.5 

Contextual embeddings Attention computation: ElMo 
[52], Transformer [67], GPT 
[55], BERT [17] and  many  
others. 

Fine-tuning with supervised 
training data. Section 2.1. 

using an affine transformation of the input . x. Here, the vector . x is transformed by 
a linear transformation . Ax and then a bias vector . b is added. The resulting score 
vector . u of length k is then transformed to a probability distribution over the k 
classes by the softmax function 

. softmax(u1, . . . , uk) = (exp(u1), . . . , exp(uk))

exp(u1) + · · · + exp(uk)
, . (1.2) 

p(Y =m|x; A, b) = softmax(Ax + b). (1.3) 

Since the softmax function converts any vector into a probability vector, we obtain 
the conditional probability of output class m as a function of input . x. The function 

.LRM(x) = softmax(Ax + b) (1.4) 

is called a logistic classifier model [48] with parameter vector .w = vec(A, b). In  
general, a function mapping the input . x to the output y or a probability distribution 
over the output is called a model .f (x;w). 

The model is trained using training data .T r = {(x[1], y[1]), . . . , (x[N ], y[N ])}, 
whose examples .(x[i], y[i]) have to be independent and identically distributed 
(i.i.d.). The task is to adjust the parameters . w such that the predicted probability 
.p(Y =m|x;w) is maximized. Following the Maximum Likelihood principle, this  
can be achieved by modifying the parameter vector . w such that the complete training 
data has a maximal probability [24, p. 31] 

.max
w

p(y[1]|x[1];w) ∗ · · · ∗ p(y[N ]|x[N ];w). (1.5) 

Transforming the expression by log and multiplying by .−1.0 gives the classification 
loss function .LMC(w), also called maximum entropy loss. 

.LMC(w) = −
[
logp(y[1]|x[1];w) + · · · + logp(y[N ]|x[N ];w)

]
. (1.6)
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To optimize the loss function, its gradient is computed and minimized by stochastic 
gradient descent or another optimizer (c.f. Sect. 2.4.1). 

The performance of classifiers is measured on separate test data by accuracy, 
precision, recall, F1-value, etc. [21, p. 410f]. Because the bag-of-words representa-
tion ignores important word order information, document classification by a logistic 
classifier is less commonly used today. However, this model is still a component in 
most Deep Learning architectures. 

1.4 Nonlinear Classifiers 

It turns out that the logistic classifier partitions the input space by linear hyperplanes 
that are not able to solve more complex classification tasks, e.g., the XOR problem 
[47]. An alternative is to generate an internal hidden vector . h by an additional affine 
transformation .A1x + b1 followed by a monotonically non-decreasing nonlinear 
activation function g and use this hidden vector as input for the logistic classifier to 
predict the random variable Y 

.h = g(A1x + b1), . (1.7) 

p(Y =m|x; w) = softmax(A2h + b2), (1.8) 

where the parameters of this model can be collected in a parameter vector . w =
vec(A1, b1, A2, b2). The form of the nonlinear activation function g is quite 
arbitrary, often .tanh(x) or a rectified linear unit .ReLU(x) = max(0, x) is used. 
.FCL(x) = g(A1x + b1) is called a fully connected layer. 

This model (Fig. 1.1) is able to solve any classification problem arbitrarily well, 
provided the length of . h is large enough [21, p. 192]. By prepending more fully 
connected layers to the network we get a Deep Neural Network, which needs 

Fig. 1.1 A neural network for classification transforms the input by layers with affine transforma-
tions and nonlinear activation functions, e.g. ReLU. The final layer usually is a logistic classifier
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fewer parameters than a shallow network to approximate more complex functions. 
Historically, it has been called Multilayer Perceptron (MLP). Liang et al. [40] show  
that for a large class of piecewise smooth functions, the sizes of hidden vectors 
needed by a shallow network to approximate a function is exponentially larger than 
the corresponding number of neurons needed by a deep network for a given degree 
of function approximation. 

The support vector machine [14] follows a different approach and tries to 
create a hyperplane, which is located between the training examples of the two 
classes in the input space. In addition, this hyperplane should have a large distance 
(margin) to the examples. This model reduces overfitting and usually has a high 
classification accuracy, even if the number of input variables is high, e.g. for 
document classification [28]. It was extended to different kernel loss criteria, 
e.g. graph kernels [56] which include grammatical features. Besides SVM, many 
alternative classifiers are used, such as random forests [24, p.588f] and gradient 
boosted trees [24, p.360], which are among the most popular classifiers. 

For these conventional classifiers the analyst usually has to construct input 
features manually. Modern classifiers for text analysis are able to create relevant 
features automatically (Sect. 2.1). For the training of NLP models there exist three 
main paradigms: 

• Supervised training is based on training data consisting of pairs .(x, y) of an 
input . x, e.g. a document text, and an output . y, where . y usually is a manual 
annotation, e.g. a sentiment. By optimization the unknown parameters of the 
model are adapted to predict the output from the input in an optimal way. 

• Unsupervised training just considers some data . x and derives some intrinsic 
knowledge from unlabeled data, such as clusters, densities, or latent represen-
tations. 

• Self-supervised training selects parts of the observed data vector as input . x and 
output . y. The key idea is to predict . y from . x in a supervised manner. For 
example, the language model is a self-supervised task that attempts to predict 
the next token .vt+1 from the previous tokens .v1, . . . , vt . For NLP models, this 
type of training is used very often. 

1.5 Generating Static Word Embeddings 

One problem with bag-of word representations is that frequency vectors of 
tokens are unable to capture relationships between words, such as synonymy 
and homonymy, and give no indication of their semantic similarity. An alternative 
are more expressive representations of words and documents based on the idea of 
distributional semantics [58], popularized by Zellig Harris [23] and John Firth [18]. 
According to Firth “a word is characterized by the company it keeps”. This states 
that words occurring in the same neighborhood tend to have similar meanings.



1.5 Generating Static Word Embeddings 9

Fig. 1.2 Word2vec predicts the words in the neighborhood of a central word by logistic classifier 
L. The input to L is the embedding of the central word. By training with a large set of documents, 
the parameters of L as well as the embeddings are learned [54, p. 2]  

Based on this idea each word can be characterized by a .demb-dimensional vector 
.emb(word) ∈ Rdemb , a  word embedding. Usually, a value between 100 and 1000 
is chosen for .demb. These embeddings have to be created such that words that 
occur in similar contexts have embeddings with a small vector distance, such 
as the Euclidean distance. A document then can be represented by a sequence 
of such embeddings. It turns out that words usually have a similar meaning, 
if their embeddings have a low distance. Embeddings can be used as input for 
downstream text mining tasks, e.g. sentiment analysis. Goldberg [20] gives an 
excellent introduction to static word embeddings. The embeddings are called static 
embeddings as each word has a single embedding independent of the context. 

There are a number of different approaches to generate word embeddings in an 
unsupervised way. Collobert et al. [13] show that word embeddings obtained by 
predicting neighbor words can be used to improve the performance of downstream 
tasks such as named entity recognition and semantic role labeling. 

Word2vec [45] predicts the words in the neighborhood of a central word with 
an extremely simple model. As shown in Fig. 1.2 it uses the embedding vector of 
the central word as input for a logistic classifier (1.3) to infer the probabilities of 
words in the neighborhood of about five to seven positions. The training target 
is to forecast all neighboring words in the training set with a high probability. 
For training, Word2Vec repeats this prediction for all words of a corpus, and the 
parameters of the logistic classifier as well as the values of the embeddings are 
optimized by stochastic gradient descent to improve the prediction of neighboring 
words. 

The vocabulary of a text collection contains k different words, e.g. .k = 100,000. 
To predict the probability of the i-th word by softmax  (1.2), k exponential terms 
.exp(ui) have to be computed. To avoid this effort, the fraction is approximated as 

.
exp(ui)

exp(u1) + · · · + exp(uk)
≈ exp(ui)

exp(ui) + ∑
j∈S exp(uj )

, (1.9)
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where S is a small sample of, say, 10 randomly selected indices of words. This 
technique is called noise contrastive estimation [21, p. 612]. There are several 
variants available, which are used for almost all classification tasks involving 
softmax computations with many classes. Since stochastic gradient descent works 
with noisy gradients, the additional noise introduced by the approximation of the 
softmax function is not harmful and can even help the model escape local minima. 
The shallow architecture of Word2Vec proved to be far more efficient than previous 
architectures for representation learning. 

Word2Vec embeddings have been used for many downstream tasks, e.g. docu-
ment classification. In addition, words with a similar meaning may be detected by 
simply searching for words whose embeddings have a small Euclidean distance to 
the embedding of a target word. The closest neighbors of “neutron”, for example, are 
“neutrons”, “protons”, “deuterium”, “positron”, and “decay”. In this way, synonyms 
can be revealed. Projections of embeddings on two dimensions may be used for the 
exploratory analysis of the content of a corpus. GloVe generates similar embedding 
vectors using aggregated global word-word co-occurrence statistics from a corpus 
[51]. 

It turns out that differences between the embeddings often have an interpre-
tation. For example, the result of . emb(Germany) − emb(Berlin) + emb(Paris)
has .emb(France) as its nearest neighbor with respect to Euclidean distance. This 
property is called analogy and holds for a majority of examples of many relations 
such as capital-country, currency-country, etc. [45]. 

FastText [8] representations enrich static word embeddings by using subword 
information. Character n-grams of a given length range, e.g., 3–6, are extracted 
from each word. Then, embedding vectors are defined for the words as well 
as their character n-grams. To train the embeddings all word and character n-
gram embeddings in the neighborhood of a central word are averaged, and the 
probabilities of the central word and its character n-grams are predicted by a 
logistic classifier. To improve the probability prediction, the parameters of the model 
are optimized by stochastic gradient descent. This is repeated for all words in a 
training corpus. After training, unseen words can be reconstructed using only their 
n-gram embeddings. Starspace [68] was introduced as a generalization of FastText. 
It allows embedding arbitrary entities (such as authors, products) by analyzing 
texts related to them and evaluating graph structures. An alternative are spherical 
embeddings, where unsupervised word and paragraph embeddings are constrained 
to a hypersphere [44]. 

1.6 Recurrent Neural Networks 

Recurrent Neural Networks were developed to model sequences .v1, . . . , vT of 
varying length T , for example the tokens of a text document. Consider the task to 
predict the next token .vt+1 given the previous tokens .(v1, . . . , vt ). As proposed by 
Bengio et al. [6] each token . vt is represented by an embedding vector .xt = emb(vt )
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Fig. 1.3 The RNN starts on the left side and successively predicts the probability of the next 
token with the previous tokens as conditions using a logistic classifier L. The hidden vector . ht

stores information about the tokens that occur before position t 

indicating the meaning of . vt . The previous tokens are characterized by a hidden 
vector . ht , which describes the state of the subsequence .(v1, . . . , vt−1). The  RNN is  
a function .RNN(ht , xt ) predicting the next hidden vector .ht+1 by 

.ht+1 = RNN(ht , xt ). (1.10) 

Subsequently, a logistic classifier (1.3) with parameters H and . g predicts a 
probability vector for the next token .vt+1 using the information contained in .ht+1, 

.p(Vt+1|v1, . . . , vt ) = softmax(H ∗ ht+1 + g), (1.11) 

as shown in Fig. 1.3. Here . Vt is the random variable of possible tokens at position t . 
According to the definition of the conditional probability the joint probability of the 
whole sequence can be factorized as 

. p(v1, . . . , vT ) = p(VT =vT |v1, . . . , vT −1) ∗ · · · ∗ p(V2=v2|v1) ∗ p(V1=v1).

(1.12) 

A model that either computes the joint probability or the conditional probability 
of natural language texts is called language model as it potentially covers all 
information about the language. A language model sequentially predicting the next 
word by the conditional probability is often referred to autoregressive language 
model. According to (1.12), the observed tokens .(v1, . . . , vt ) can be used as input 
to predict the probability of the next token .Vt+1. The product of these probabilities 
yields the correct joint probability of the observed token sequence .(v1, . . . , vT ). The  
same model .RNN(h, x) is repeatedly applied and generates a sequence of hidden 
vectors . ht . A  simple RNN just consists of a single fully connected layer 

.RNN(ht , xt ) = tanh

(
A ∗

[
ht

xt

]
+ b

)
. (1.13)
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The probabilities of the predicted words .v1, . . . , vT depend on the parameters 
.w = vec(H,g, A, b, emb(v1), . . . , emb(vT )). To improve these probabilities, we 
may use the stochastic gradient descent optimizer (Sect. 2.4.1) and adapt the 
unknown parameters in . w. Note that this also includes the estimation of new token 
embeddings .emb(vt ). A recent overview is given in [70, Ch. 8–9]. 

It turns out that this model has difficulties to reconstruct the relation between 
distant sequence elements, since gradients tend to vanish or “explode” as the 
sequences get longer. Therefore, new RNN types have been developed, e.g. the Long 
Short-Term Memory (LSTM) [26] and the Gated Recurrent Unit (GRU) [11], which 
capture long-range dependencies in the sequence much better. 

Besides predicting the next word in a sequence, RNNs have been successfully 
applied to predict properties of sequence elements, e.g. named entity recognition 
[36] and relation extraction [38]. For these applications bidirectional RNNs have 
been developed, consisting of a forward and a backward language model. The 
forward language model starts at the beginning of a text and predicts the next 
token, while the backward language model starts at the end of a text and predicts 
the previous token. Bidirectional LSTMs are also called biLSTMs. In addition, 
multilayer RNNs were proposed [72], where the hidden vector generated by the 
RNN-cell in one layer is used as the input to the RNN-cell in the next layer, and the 
last layer provides the prediction of the current task. 

Machine translation from one language to another is an important application of 
RNNs [5]. In this process, an input sentence first is encoded by an encoder RNN as 
a hidden vector . hT . This hidden vector is in turn used by a second decoder RNN 
as an initial hidden vector to generate the words of the target language sentence. 
However, RNNs still have difficulties to capture relationships over long distances 
between sequence elements because RNNs do not cover direct relations between 
distant sequence elements. 

Attention was first used in the context of machine translation to communicate 
information over long distances. It computes the correlation between hidden vectors 
of the decoder RNN and hidden vectors of the encoder RNN at different positions. 
This correlation is used to build a context vector as a weighted average of relevant 
encoder hidden vectors. Then, this context vector is exploited to improve the final 
translation result [5]. The resulting translations were much better than those with the 
original RNN. We will see in later sections that attention is a fundamental principle 
to construct better NLP model. 

ELMo [52] generates embeddings with bidirectional LSTM language models in 
several layers. The model is pre-trained as forward and backward language model 
with a large non-annotated text corpus. During fine-tuning, averages of the hidden 
vectors are used to predict the properties of words based on an annotated training 
set. These language models take into account the words before and after a position, 
and thus employ contextual representations for the word in the central position. 
For a variety of tasks such as sentiment analysis, question answering, and textual 
entailment, ELMo was able to improve SOTA performance.
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1.7 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) [37] are widely known for their success in 
the image domain. They start with a small quadratic arrangement of parameters 
called filter kernel, which is moved over the input pixel matrix of the image. 
The values of the filter kernel are multiplied with the underlying pixel values and 
generate an output value. This is repeated for every position of the input pixel 
matrix. During training the parameters of a filter kernel are automatically tuned 
such that they can detect local image patterns such as blobs or lines. Each layer of 
the network, which is also called convolution layer, consists of many filter kernels 
and a network contains a number of convolution layers. Interspersed max pooling 
layers perform a local aggregation of pixels by maximum. The final layer of a 
Convolutional Neural Network usually is a fully connected layer with a softmax 
classifier. 

Their breakthrough was AlexNet [34], which receives the RGB pixel matrix of an 
image as input and is tasked with assigning a content class to the image. This model 
won the 2012 ImageNet competition, where images had to be assigned to one of 
1000 classes, and demonstrated the superior performance of Deep Neural Networks. 
Even earlier the deep CNN of Cireşan et al. [12] achieved SOTA performance on a 
number of image classification benchmarks. A highly successful CNN is ResNet 
[25] which employs a so-called residual connection working as a bypass. It can 
circumvent many layers in the beginning of the training and is the key to training 
neural networks with many hundred layers. It resulted in image classifiers which 
have a higher accuracy than humans. 

While Recurrent Neural Networks were regarded as the best way to process 
sequential input such as text, some CNN-based architectures were introduced, which 
achieved high performance on some NLP tasks. Kim [32] proposed a rather shallow 
CNN for sentence classification. It contains an embedding layer, a convolutional 
layer, a max-pooling layer, and a fully connected layer with softmax output. 
1-D convolutions were applied to the embeddings of the input words, basically 
combining the information stored in adjacent words, treating them as n-grams. 
The embeddings are processed by a moving average with trainable weights. Using 
this architecture for classification proved to be very efficient, having a similar 
performance as recurrent architectures that are more difficult to train. 

Another interesting CNN architecture is wavenet [49], a deeper network used 
mainly for text-to-speech synthesis. It consists of multiple convolutional layers 
stacked on top of each other, with its main ingredient being dilated causal 
convolutions. Causal means that the convolutions at position t can only utilize prior 
information .x1, . . . , xt−1. Dilated means that the convolutions can skip input values 
with a certain step size k, i.e. that in some layer the features at position t are 
predicted using information from positions .t, t − k, t − 2k, . . . . This step size k 
is doubled in each successive layer, yielding dilations of size .k0, k1, k2, . . . . In this 
way, very long time spans can be included in the prediction. This model architecture 
has been shown to give very good results for text-to-speech synthesis.
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1.8 Summary 

Classical NLP has a long history, and machine learning models have been used in 
the field for several decades. They all require some preprocessing steps to generate 
words or tokens from the input text. Tokens are particularly valuable because they 
form a dictionary of finite size and allow arbitrary words to be represented by 
combination. Therefore, they are used by most PLMs. Early document representa-
tions like bag-of-words are now obsolete because they ignore sequence information. 
Nevertheless, classifiers based on them like logistic classifiers and fully connected 
layers, are important building blocks of PLMs. 

The concept of static word embeddings initiated the revolution in NLP, which 
is based on contextual word embeddings. These ideas are elaborated in the next 
chapter. Recurrent neural networks have been used to implement the first successful 
language models, but were completely superseded by attention-based models. 
Convolutional neural networks for image processing are still employed in many 
applications. PLMs today often have a similar performance on image data, and 
sometimes CNNs are combined with PLMs to exploit their respective strengths, 
as discussed in Chap. 7. 
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Chapter 2 
Pre-trained Language Models 

Abstract This chapter presents the main architecture types of attention-based 
language models, which describe the distribution of tokens in texts: Autoencoders 
similar to BERT receive an input text and produce a contextual embedding for each 
token. Autoregressive language models similar to GPT receive a subsequence of 
tokens as input. They produce a contextual embedding for each token and predict 
the next token. In this way, all tokens of a text can successively be generated. 
Transformer Encoder-Decoders have the task to translate an input sequence to 
another sequence, e.g. for language translation. First they generate a contextual 
embedding for each input token by an autoencoder. Then these embeddings are 
used as input to an autoregressive language model, which sequentially generates 
the output sequence tokens. These models are usually pre-trained on a large general 
training set and often fine-tuned for a specific task. Therefore, they are collectively 
called Pre-trained Language Models (PLM). When the number of parameters of 
these models gets large, they often can be instructed by prompts and are called 
Foundation Models. In further sections we described details on optimization and 
regularization methods used for training. Finally, we analyze the uncertainty of 
model predictions and how predictions may be explained. 

Keywords BERT · Language model · GPT-2 · Transformer · Pre-training · 
Fine-tuning · Sequence-to-sequence model 

A model that either computes the joint probability or the conditional probability 
of natural language texts is called a language model as it potentially covers all 
information about the language. In this chapter, we present the main architecture 
types of attention-based language models (LMs), which process texts consisting of 
sequences of tokens, i.e. words, numbers, punctuation, etc.: 

• Autoencoders (AE) receive an input text and produce a contextual embedding 
for each token. These models are also called BERT models and are described in 
Sect. 2.1.

© The Author(s) 2023 
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• Autoregressive language models (AR) receive a subsequence .v1, . . . , vt−1 of 
tokens of the input text. They generate contextual embeddings for each token 
and use them to predict the next token . vt . In this way, they can successively 
predict all tokens of the sequence. These models are also called GPT models and 
are outlined in Sect. 2.2. 

• Transformer Encoder-Decoders have the task to translate an input sequence in to 
another sequence, e.g. for language translation. First they generate a contextual 
embedding for each input token by an autoencoder. Then these embeddings are 
used as input to an autoregressive language model, which sequentially generates 
the output sequence tokens. These models are also called Transformers and are 
defined in Sect. 2.3.

In this chapter, we focus on NLP, where we consider sequences of text tokens. 
Historically, the transformer encoder-decoder was developed in 2017 by Vaswani 
et al. [141] to perform translation of text into another language. The autoencoder 
[39] and the autoregressive language model [118] are the encoder-part and the 
decoder-part of this transformer encoder-decoder and were proposed later. As they 
are conceptually simpler, they are introduced in preceding sections. A final section 
(Sect. 2.4) describes methods for optimizing models during training, determining a 
model architecture, and estimating the uncertainty of model predictions. 

It turned out that the models can first be trained on a large training set of general 
text documents and are able to acquire the distribution of tokens in correct and fluent 
language. Subsequently, they can be adapted to a specific task, e.g. by fine-tuning 
with a small supervised classification task. Therefore, the models are called Pre-
trained Language models. 

As we will see later, all models can be applied to arbitrary sequences, e.g. musical 
notes, sound, speech, images, or even videos. When the number of parameters of 
these models gets large, they often can be instructed by prompts and are called 
Foundation Models. 

2.1 BERT: Self-Attention and Contextual Embeddings 

Common words often have a large number of different meanings. For the word 
“bank”, for instance, the lexical database WordNet [94] lists 18 different senses 
from “sloping land” to “financial institution”. In a simple embedding of the word 
“bank” introduced in Sect. 1.5 all these meanings are conflated. As a consequence, 
the interpretation of text based on these embeddings is flawed. 

As an alternative, contextual embeddings or contextualized embeddings were 
developed, where the details of a word embedding depend on the word itself as 
well as on the neighboring words occurring in the specific document. Consequently, 
each occurrence of the same word in the text has a different embedding depending 
on the context. Starting with the Transformer [141], a number of approaches have 
been designed to generate these contextual embeddings, which are generally trained 
in an unsupervised manner using a large corpus of documents.
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BERT (Bidirectional Encoder Representations from Transformers) was pro-
posed by Devlin et al. [39] and is the most important approach for generating 
contextual embeddings. BERT is based on the concept of attention [8] and on 
prior work by Vaswani et al. [141]. The notion of attention is inspired by a brain 
mechanism that tends to focus on distinctive parts of memory when processing 
large amounts of information. The details of the computations are explained by 
Rush [126]. 

2.1.1 BERT Input Embeddings and Self-Attention 

As input BERT takes some text which is converted to tokens, e.g. by the Wordpiece 
tokenizer (Sect. 1.2) with a vocabulary of a selected size, e.g. 30,000. This means 
that frequent words like “dog” are represented by a token of their own, but more 
rare words like “playing” are split into several tokens, e.g. “play” and “##ing”, 
where “##” indicates that the token is part of a word. As all characters are retained 
as tokens, arbitrary words may be represented by a few tokens. In addition, there 
are special tokens like [CLS] at the first position of the input text and two “[SEP]” 
tokens marking the end of text segments. Finally, during training, there are [MASK] 
tokens as explained later. Each token is represented by a token embedding, a vector 
of fixed length .demb, e.g. .demb = 768. Input sequences of variable length are padded 
to the maximal length with a special padding token. 

Since all token embeddings are processed simultaneously, the tokens need an 
indication of their position in the input text. Therefore, each position is marked 
with position embeddings of the same length as the token embeddings, which 
encode the position index. The BERT paper encodes the position number by 
trainable embeddings, which are added to the input token embeddings [39]. Finally, 
BERT compares the first and second input segment. Therefore, the algorithm needs 
the information, which token belongs to the first and second segment. This is 
also encoded by a trainable segment embedding added to the token and position 
embedding. The sum of all embeddings is used as input embedding for BERT. An 
example is shown in Fig. 2.1. 

Self-Attention to Generate Contextual Embeddings 

BERT starts with input embeddings . xt of length .demb for each token . vt of the input 
sequence .v1, . . . , vT . These embeddings are transformed by linear mappings to so-
called query-vectors . q t , key-vectors . kt and value-vectors . vt . These are computed by 
multiplying . xt with the matrices .W (q), .W (k), and .W (v) with dimensions .demb × dq , 
.demb × dq and .demb × dv respectively 

.q
ᵀ
t = x

ᵀ
t W (q) k

ᵀ
t = x

ᵀ
t W (k) v

ᵀ
t = x

ᵀ
t W (v). (2.1)
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Fig. 2.1 The input of the BERT model consist of a sequence of embeddings corresponding to the 
input tokens. Each token is represented by a sum consisting of the embedding of the token text, the 
embedding of its segment indicator and an embedding of its position [39] 

Note that the query- and key-vectors have the same length. Then scalar products 
.q
ᵀ
r kt between the query-vector . qr of a target token . vr and the key-vectors . kt of all 

tokens of the sequence are computed: 

.(αr,1, . . . , αr,T ) = softmax

(
q
ᵀ
r k1√
dk

, . . . ,
q
ᵀ
r kT√
dk

)
. (2.2) 

Each scalar product yields a real-valued association score .(qᵀ
r kt )/

√
dk between 

the tokens, which depends on the matrices .W (q) and .W (k). This association score is 
called scaled dot-product attention. It is normalized to a probability score . αr,t by the 
softmax function. The factor .1/

√
dk avoids large values, where the softmax function 

has only tiny gradients. With these weights a weighted average of the value vectors 
. vt of all sequence elements is formed yielding the new embedding . ̆xr of length . dv

for the target token . vr : 

.x̆r = αr,1 ∗ v1 + · · · + αr,T ∗ vT . (2.3) 

This algorithm is called self-attention and was first proposed by Vaswani et al. [141]. 
Figure 2.2 shows the computations for the r-th token “mouse”. Note that the 
resulting embedding is a contextual embedding as it includes information about all 
words in the input text. A component of . vt gets a high weight whenever the scalar 
product .qᵀ

r kt is large. It measures a specific form of a correlation between . xr and 
. xt and is maximal if the vector .x

ᵀ
r W (q) points in the same direction as .x

ᵀ
t W (k). 

The self-attention mechanism in general is non-symmetric, as the matrices . W (q)

and .W (k) are different. If token . vi has a high attention to token . vj (i.e. . qᵀ
i kj

is large), this does not necessarily mean that . vj will highly attend to token . vi

(i.e. .qᵀ
j ki also is large). The influence of . vi on the contextual embedding of . vj

therefore is different from the influence of . vj on the contextual embedding of . vi . 
Consider the following example text “Fred gave roses to Mary”. Here the word 
“gave” has different relations to the remaining words. “Fred” is the person who 
is performing the giving, “roses” are the objects been given, and “Mary” is the 
recipient of the given objects. Obviously these semantic role relations are non-
symmetric. Therefore, they can be captured with the different matrices .W (q) and 
.W (k) and can be encoded in the embeddings.
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Fig. 2.2 Computation of a contextual embedding for a single token “mouse” by self-attention. By 
including the embedding of “cheese”, the embedding of mouse can be shifted to the meaning of 
“rodent” and away from “computer pointing device”. Such an embedding is computed for every 
word of the input sequence 

Self-attention allows for shorter computation paths and provides direct avenues 
to compare distant elements in the input sequence, such as a pronoun and its 
antecedent in a sentence. The multiplicative interaction involved in attention 
provides a more flexible alternative to the inflexible fixed-weight computation of 
MLPs and CNNs by dynamically adjusting the computation to the input at hand. 
This is especially useful for language modeling, where, for instance, the sentence 
“She ate the ice-cream with the X” is processed. While a feed-forward network 
would always process it in the same way, an attention-based model could adapt its 
computation to the input and update the contextual embedding of the word “ate” if 
X is “spoon”, or update the embedding of “ice-cream” if X refers to “strawberries” 
[17]. 

In practice all query, key, and value vectors are computed in parallel by . Q =
XW (q), .K = XW (k), .V = XW (v), where . X is the .T × demb matrix of input 
embeddings [141]. The query-vectors . q t , key-vectors . kt and value vectors . vt are 
the rows of . Q, . K , . V respectively. Then the self-attention output matrix ATTL(X) is 
calculated by one large matrix expression 

.X̆ = ATTL(X) = ATTL(Q,K,V ) = softmax

(
QKᵀ
√

dk

)
V , (2.4)



24 2 Pre-trained Language Models

resulting in a .T × dv-matrix . X̆. Its  r-th row contains the new embedding . ̆xr of the 
r-th token . vr . 

A number of alternative compatibility measures instead of the scaled dot-product 
attention (2.2) have been proposed. They are, however, rarely used in PLMs, as 
described in the surveys [27, 46]. 

It turns out that a single self-attention module is not sufficient to characterize 
the tokens. Therefore, in a layer .dhead parallel self-attentions are computed with 
different matrices .W (q)

m , .W (k)
m , and .W (v)

m , .m = 1, . . . , dhead, yielding partial new 
embeddings 

.X̆m = ATTL(XW
(q)
m ,XW (k)

m ,XW (v)
m ). (2.5) 

The emerging partial embeddings .x̆m,t for a token . vt are able to concentrate on 
complementary semantic aspects, which develop during training. 

The BERT.BASE model has .dhead=12 of these parallel attention heads. The  
lengths of these head embeddings are only a fraction .demb/dhead of the original 
length .demb. The resulting embeddings are concatenated and multiplied with a 
.(dhead ∗ dv) × demb-matrix .W(o) yielding the matrix of intermediate embeddings 

.X̆ =
[
X̆1, . . . , X̆dhead

]
W 0, (2.6) 

where .W 0 is a parameter matrix. If the length of the input embeddings is .demb, 
the length of the query, key, and value vector is chosen as .dk = dv = demb/dhead. 
Therefore, the concatenation again creates a .T ×demb matrix . X̆. This setup is called 
multi-head self-attention. Because of the reduced dimension of the individual heads, 
the total computational cost is similar to that of a single-head attention with full 
dimensionality. 

Subsequently, each row of . X̆, the intermediate embedding vectors . ̆x
ᵀ
t , is  

converted by a fully connected layer FCL with a ReLU activation followed by 
another linear transformation [141] 

.x̃
ᵀ
t = FCL(x̆t ) = ReLU(x̆

ᵀ
t ∗ W 1 + b

ᵀ
1 ) ∗ W 2 + b

ᵀ
2 . (2.7) 

The matrices .W 0,W 1,W 2 and the vectors .b1, b2 are parameters. These transfor-
mations are the same for each token . vt of the sequence yielding the embedding . ̃xt . 

To improve training speed, residual connections are added as a “bypass”, which 
simply copy the input. They were shown to be extremely helpful for the optimization 
of multi-layer image classifiers [54]. In addition, layer normalization [6] is used  
for regularization (Sect. 2.4.2), as shown in Fig. 2.3. Together the multi-head self-
attention (2.5), the concatenation (2.6), and the fully connected layer (2.7) form an  
encoder block. 

This procedure is repeated for a number of k layers with different encoder blocks, 
using the output embeddings of one block as input embeddings of the next block. 
This setup is shown in Fig. 2.4. The embeddings .x̃k,t of the last encoder block
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Fig. 2.3 Multi-head self-attention computes self-attentions for each layer l and head m with 
different matrices .W (q)

l,m, .W
(k)
l,m, and  .W (v)

l,m. In this way, different aspects of the association 
between token pairs, e.g. “mouse” and “cheese”, can be computed. The resulting embeddings are 
concatenated and transformed by a feedforward network. In addition, residual connections and 
layer normalization improve training convergence [39] 

Fig. 2.4 Parallel computation of contextual embeddings in each encoder block by BERT. The 
output embeddings of an encoder block are used as input embeddings of the next encoder block. 
Finally, masked tokens are predicted by a logistic classifier L using the corresponding contextual 
embedding of the last encoder block as input



26 2 Pre-trained Language Models

provides the desired contextual embeddings. The structure of an encoder block 
overcomes the limitations of RNNs (namely the sequential nature of RNNs) by 
allowing each token in the input sequence to directly determine associations with 
every other token in the sequence. BERT.BASE has .k=12 encoder blocks. It was 
developed at Google by Devlin et al. [39]. More details on the implementation of 
self-attention can be found in these papers [38, 41, 126]. 

2.1.2 Training BERT by Predicting Masked Tokens 

The BERT model has a large number of unknown parameters. These parameters are 
trained in a two-step procedure. 

• Pre-training enables the model to acquire general knowledge about language in 
an unsupervised way. The model has the task to fill in missing words in a text. 
As no manual annotation is required, pre-training can use large text corpora. 

• Fine-tuning adjusts the pre-trained model to a specific task, e.g. sentiment 
analysis. Here, the model parameters are adapted to solve this task using a smaller 
labeled training dataset. 

The performance on the fine-tuning task is much better than without pre-training 
because the model can use the knowledge acquired during pre-training through 
transfer learning. 

To pre-train the model parameters, a training task is designed: the masked 
language model (MLM). Roughly 15% of the input tokens in the training documents 
are selected for prediction, which is performed by a logistic classifier (Sect. 1.3) 

.p(Vt |v1, . . . , vt−1, vt+1 . . . , vT ) = softmax(Ax̃k,t + b), (2.8) 

receiving the embedding .x̃k,t of the last layer at position t as input to predict the 
random variable . Vt of possible tokens at position t . This approach avoids cycles 
where words can indirectly “see themselves”. 

The tokens to be predicted have to be changed, as otherwise the prediction would 
be trivial. Therefore, a token selected for prediction is replaced by: 

• a special [MASK] token for 80% of the time (e.g., “the mouse likes cheese” 
becomes “the mouse [MASK] cheese”); 

• a random token for 10% of the time (e.g., “the mouse likes cheese” becomes “the 
mouse absent cheese”); 

• the unchanged label token for 10% of the time (e.g., “the mouse likes cheese” 
becomes “the mouse likes cheese”). 

The second and third variants were introduced, as there is a discrepancy between 
pre-training and the subsequent fine-tuning, were there is no [MASK] token. The 
authors mitigate this issue by occasionally replacing [MASK] with the original 
token, or by sampling from the vocabulary. Note that in 1.5% of the cases a
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random token is inserted. This occasional noise encourages BERT to be less biased 
towards the masked token (especially when the label token remains unchanged) 
in its bidirectional context encoding. To predict the masked token, BERT has to 
concentrate all knowledge about this token in the corresponding output embedding 
of the last layer, which is the input to the logistic classifier. Therefore, it is often 
called an autoencoder, which generates extremely rich output embeddings. 

In addition to predicting the masked tokens, BERT also has to predict, whether 
the next sentence is a randomly chosen sentence or the actual following sentence 
(next sentence prediction). This requires BERT to consider the relation between two 
consecutive pieces of text. Again a logistic classifier receiving the embedding of the 
first [CLS] token is used for this classification. However, this task did not have a 
major impact on BERT’s performance, as BERT simply learned if the topics of both 
sentences are similar [158]. 

In Fig. 2.4 the task is to predict a high probability of the token “likes” for the 
input text “The mouse [MASK] cheese”. At the beginning of the training this 
probability will be very small (.≈ 1/no. of tokens). By backpropagation for each 
unknown parameter the derivative can be determined, indicating how the parameters 
should be changed to increase the probability of “likes”. The unknown parameters 
of BERT comprise the input embeddings for each token of the vocabulary, the 
position embeddings for each position, matrices.W (q)

l,m, .W
(k)
l,m, .W

(v)
l,m for each layer 

l and attention head m (2.4), the parameters of the fully connected layers (2.7) as  
well as .A, b of the logistic classifier (2.8). BERT uses the Adam algorithm [69] for  
stochastic gradient descent. 

The BERT.BASE model has a hidden size of .demb =768, .k=12 encoder blocks 
each with .dhead=12 attention heads, and a total of 110million parameters. The 
BERT.LARGE model has a hidden size of .demb =1024, and .k=24 encoder blocks 
each with .dhead=16 attention heads and a total of 340million parameters [39]. The 
English Wikipedia and a book corpus with 3.3 billion words were encoded by the 
WordPiece tokenizer [154] with a vocabulary of 30,000 tokens and used to pre-train 
BERT. No annotations of the texts by humans were required, so the training is self-
supervised. The pre-training took 4 days on 64 TPU chips, which are very fast GPU 
chips allowing parallel processing. Fine-tuning can be done on a single Graphical 
Processing Unit (GPU). 

To predict the masked tokens, the model has to learn many types of language 
understanding features: syntax ([MASK] is a good position for a verb), seman-
tics (e.g. the mouse prefers cheese), pragmatics, coreference, etc. Note that the 
computations can be processed in parallel for each token of the input sequence, 
eliminating the sequential dependency in Recurrent Neural Networks. This par-
allelism enables BERT and related models to leverage the full power of modern 
SIMD (single instruction multiple data) hardware accelerators like GPUs/TPUs, 
thereby facilitating training of NLP models on datasets of unprecedented size. 
Reconstructing missing tokens in a sentence has long been used in psychology. 
Therefore, predicting masked tokens is also called a cloze task from ‘closure’ in 
Gestalt theory (a school of psychology).
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It turns out that BERT achieves excellent results for the prediction of the masked 
tokens, and that additional encoder blocks markedly increase the accuracy. For 
example, BERT is able to predict the original words (or parts of words) with an 
accuracy of 45.9%, although in many cases several values are valid at the target 
position [125]. In contrast to conventional language models, the MLM takes into 
account the tokens before and after the masked target token. Hence, it is called a 
bidirectional encoder. In addition, self-attention directly provides the relation to 
distant tokens without recurrent model application. Finally, self-attention is fast, as 
it can be computed in parallel for all input tokens of an encoder block. 

2.1.3 Fine-Tuning BERT to Downstream Tasks 

Neural networks have already been pre-trained many years ago [16], but the success 
of pre-training has become more evident in recent years. During pre-training BERT 
learns general syntactic and semantic properties of the language. This can be 
exploited for a special training task during subsequent fine-tuning with a modified 
training task. This approach is also called transfer learning as the knowledge 
acquired during pre-training is transferred to a related application. In contrast to 
other models, BERT requires minimal architecture changes for a wide range of 
natural language processing tasks. At the time of its publication, BERT improved 
the SOTA on various natural language processing tasks. 

Usually, a fine-tuning task requires a classification, solved by applying a logistic 
classifier L to the output embedding .x̃k,1 of the [CLS] token at position 1 of 
BERT’s last encoder block. There are different types of fine-tuning tasks, as shown 
in Fig. 2.5. 

• Text classification assigns a sentence to one of two or more classes. Examples are 
the classification of restaurant reviews as positive/negative or the categorization 
of sentences as good/bad English. Here the output embedding of the start token 
[CLS] is used as input to L to generate the final classification. 

• Text pair classification compares two sentences separated by “[SEP]”. Examples 
include classifying whether the second sentence implies, contradicts, or is neutral 
with respect to the first sentence, or whether the two sentences are semantically 
equivalent. Again the output embedding of the start token [CLS] is used as 
input to L. Sometimes more than one sentence is compared to the root sentence. 
Then outputs are computed for every sentence pair and jointly normalized to a 
probability. 

• Word annotation marks each word or token of the input text with a specific 
property. An example is Named Entity Recognition (NER) annotating the tokens 
with five name classes (e.g. “person”, “location”, .. . . , “other”). Here the same 
logistic model L is applied to every token output embedding .x̃k,t at position t 
and yields a probability vector of the different entity classes.
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Fig. 2.5 For fine-tuning, BERT is enhanced with an additional layer containing one or more 
logistic classifiers L using the embeddings of the last layer as inputs. This setup may be employed 
for text classification and comparison of texts with the embedding of [CLS] as input of the logistic 
classifier. For sequence tagging, L predicts a class for each sequence token. For span prediction, 
two logistic classifiers . L1 and . L2 predict the start and end of the answer phrase [39] 

• Span prediction tags a short sequence of tokens within a text. An example is 
question answering. The input to BERT consists of a question followed by 
“[SEP]” and a context text, which is assumed to contain the answer. Here two 
different logistic classifiers L and . L̃ are applied to every token output embedding 
.x̃k,t of the context and generate the probability that the answer to the question 
starts/ends at the specific position. The valid span (i.e. the end is not before 
the start) with the highest sum of start/end scores is selected as the answer. An 
example is the input “[CLS] When did Caesar die ? [SEP] . . . On the Ides of 
March, 44 BC, Caesar was assassinated by a group of rebellious senators . . . ”, 
where the answer to the question is the span “Ides. start of March, 44 BC. end”. Span 
prediction may be applied to a number of similar tasks. 

Therefore, BERT just needs an extra layer with one or more logistic classifiers for 
fine-tuning. During fine-tuning with a downstream application, parameters of the 
logistic models are learned from scratch and usually all parameters in the pre-trained 
BERT model are adapted. The parameters for the logistic classifiers of the masked 
language model and the next sentence prediction are not used during fine-tuning.
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2.1.4 Visualizing Attentions and Embeddings 

According to Bengio et al. [14], a good representation of language should capture 
the implicit linguistic rules and common sense knowledge contained in text data, 
such as lexical meanings, syntactic relations, semantic roles, and the pragmatics of 
language use. The contextual word embeddings of BERT can be seen as a big step 
in this direction. They may be used to disambiguate different meanings of the same 
word. 

The self-attention mechanism of BERT computes a large number of “associa-
tions” between tokens and merges embeddings according to the strengths of these 
associations. If .x1, . . . , xT are the embeddings of the input tokens .v1, . . . , vT , the  
associations .qᵀ

r kt are determined between the query .qᵀ
r = x

ᵀ
r W (q) and the key 

.k
ᵀ
t = x

ᵀ
t W (k) vectors (2.1). Then a sum of value vectors .vᵀt = x

ᵀ
t W (v) weighted 

with the normalized associations is formed yielding the new embeddings (2.3). 
This is repeated with different matrices .W (q)

l,m,W
(k)
l,m,W

(v)
l,m in m self-attention 

heads and l layers. Each layer and head the new embeddings thus captures different 
aspects of the relations between the embeddings of each layer. For BERT.BASE we 
have .l = 12 layers and .m = 12 bidirectional self-attention heads in each layer 
yielding 144 different “associations” or self-attentions. For the input sentence “The 
girl and the boy went home. She entered the door.” Figure 2.6 shows on the left side 
the strength of associations for one of the 144 self-attention heads. Between every 
pair of tokens of the sentence an attention value is calculated and its strength is 
symbolized by lines of different widths. We see that the pronoun “she” is strongly 
associated with “the girl”. In the subsequent calculations (c.f. Fig. 2.2) the  word  
“she” is disambiguated by merging its embedding with the embeddings of “the” and 
“girl” generating a new contextual embedding of “she”, which includes its relation 
to “girl”. On the right side of the figure the input “The girl and the boy went home. 
He entered the door.” is processed. Then the model creates an association of “boy” 
with “he”. 

Fig. 2.6 Visualization of a specific self-attention in the fifth layer of a BERT model with BERTviz 
[142]. If the next sentence contains the pronoun “she” this is associated with “the girl”. If this  
pronoun is changed to “he” it is related to “the boy”. Image created with BERTviz [142], with 
kind permission of the author
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Fig. 2.7 Visualization of some of the 144 self-attention patterns computed for the sentence “[CLS] 
the cat sat on the mat [SEP] the cat lay on the rug[SEP]” with BERTviz. Image reprinted with kind 
permission of the author [142] 

Figure 2.7 shows a subset of the self-attention patterns for the sentence “[CLS] 
the cat sat on the mat [SEP] the cat lay on the rug [SEP]”. The self-attention 
patterns are automatically optimized in such a way that they jointly lead to an 
optimal prediction of the masked tokens. It can be seen that the special tokens 
[CLS] and [SEP] often are prominent targets of attentions. They usually function as 
representatives of the whole sentence [124]. Note, however, that in a multilayer PLM 
the embeddings generated by different heads are concatenated and transformed by 
a nonlinear transformation. Therefore, the attention patterns of a single head do 
not contain the complete information [124]. Whenever the matrices are randomly 
initialized, the self-attention patterns will be completely different, if the training 
is restarted with new random parameter values. However, the overall pattern of 
attentions between tokens will be similar. 

Figure 2.10 shows on the left side a plot of six different senses of the token 
embeddings of “bank” in the Senseval-3 dataset projected to two dimensions by 
T-SNE [140]. The different senses are identified by different colors and form well-
separated clusters of their own. Senses which are difficult to distinguish, like “bank 
building” and “financial institution” show a strong overlap [153]. The graphic
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demonstrates that BERT embeddings have the ability to distinguish different senses 
of words which are observed frequently enough. 

There is an ongoing discussion on the inner workings of self attention.Tay 
et al [134] empirically evaluated the importance of the dot product .qᵀ

r ks on 
natural language processing tasks and concluded that query-key interaction is 
“useful but not that important”. Consequently they derived alternative formulae, 
which in some cases worked well and failed in others. A survey of attention 
approaches is provided by de Santana Correia et al. [37]. There are a number 
of different attention mechanisms computing the association between embedding 
vectors [50, 61, 104, 151]. However, most current large-scale models still use the 
original scaled dot-product attention with minor variations, such as other activation 
functions and regularizers (c.f. Sect. 3.1.4). 

The fully connected layers .FCL(x̆t ) in (2.7) contain 2/3 of the parameters of 
BERT, but their role in the network has hardly been discussed. Geva et al. [49] 
show that fully connected layers operate as key-value memories, where each key 
is correlated with text patterns in the training samples, and each value induces a 
distribution over the output vocabulary. For a key the authors retrieve the training 
inputs, which yield the highest activation of the key. Experts were able to assign 
one or more interpretations to each key. Usually lower fully connected layers were 
associated with shallow patterns often sharing the last word. The upper layers are 
characterized by more semantic patterns that describe similar contexts. The authors 
demonstrate that the output of a feed-forward layer is a composition of its memories. 

2.1.5 Natural Language Understanding by BERT 

An outstanding goal of PLMs is Natural Language Understanding (NLU). This 
cannot be evaluated against a single task, but requires a set of benchmarks covering 
different areas to assess the ability of machines to understand natural language text 
and acquire linguistic, common sense, and world knowledge. Therefore, PLMs are 
fine-tuned to corresponding real-world downstream tasks. 

GLUE [146] is a prominent benchmark for NLU. It is a collection of nine NLU 
tasks with public training data, and an evaluation server using private test data. 
Its benchmarks cover a number of different aspects, which can be formulated as 
classification problems: 

• Determine the sentiment (positive/negative) of a sentences (SST-2). 
• Classify a sentence as grammatically acceptable or unacceptable (CoLA). 
• Check if two sentences are similar or are paraphrases (MPRC, STS-B, QQP). 
• Determine if the first sentence entails the second one (MNLI, RTE). 
• Check if sentence B contains the answer to question A (QNLI). 
• Specify the target of a pronoun from a set of alternatives (WNLI).
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Each task can be posed as text classification or text pair classification problem. 
The performance of a model is summarized in a single average value, which has 
the value 87.1 for human annotators [145]. Usually, there is an online leaderboard 
where the performance of the different models are recorded. A very large repository 
of leaderboards is on the PapersWithCode website [109]. Table 2.1 describes the 
tasks by examples and reports the performance of BERT.LARGE. BERT was able to 
lift the SOTA of average accuracy from 75.2 to 82.1%. This is a remarkable increase, 
although the value is still far below the human performance of 87.1 with much room 
for improvement. Recent benchmark results for NLU are described in Sect. 4.1 for 
the more demanding SuperGLUE and other benchmarks. 

BERT’s Performance on Other Fine-Tuning Tasks 

The pre-training data is sufficient to adapt the large number of BERT parameters 
and learn very detailed peculiarities about language. The amount of training data 
for pre-training usually is much higher than for fine-tuning. Fine-tuning usually 
only requires two or three passes through the fine-tuning training data. Therefore, 
the stochastic gradient optimizer changes most parameters only slightly and sticks 
relatively close to the optimal pre-training parameters. Consequently, the model is 
usually capable to preserve its information about general language and to combine 
it with the information about the fine-tuning task. 

Because BERT can reuse its general knowledge about language acquired during 
pre-training, it produces excellent results even with small fine-tuning training data 
[39]. 

• CoNLL 2003 [128] is a benchmark dataset for Named entity recognition (NER), 
where each token has to be marked with a named entity tag, e.g. PER (for 
person),  LOC  (for  location),  . . . ,  O  (for  no  name)  (Sect. 5.3). The task involves 
text annotation, where a label is predicted for every input token. BERT increased 
SOTA from 92.6% to 92.8% F1-value on the test data. 

• SQuAD 1.0 [120] is a collection of 100k triples of questions, contexts, and 
answers. The task is to mark the span of the answer tokens in the context. 
An example is the question “When did Augustus die?”, where the answer “14 
AD” has to be marked in the context “. . . the  death of Augustus in AD 14 . . . ”  
(Sect. 6.2). Using span prediction BERT increased the SOTA of SQuAD from 
91.7% to 93.2%, while the human performance was measured as 91.2%. 

From these experiments a large body of evidence has been collected demonstrating 
the strengths and weaknesses of BERT [124]. This is discussed in Sect. 4.2. 

In summary, the advent of the BERT model marks a new era of NLP. It combines 
two pre-training tasks, i.e., predicting masked tokens and determining whether the 
second sentence matches the first sentence. Transfer learning with unsupervised pre-
training and supervised fine-tuning becomes the new standard.
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Table 2.1 GLUE language understanding tasks. BERT.LARGE was trained for three epochs on the 
fine-tuning datasets [38]. The performance of the resulting models is printed in the last column 
yielding an average value of 82.1 

Task Description Example Metric BERT 

CoLA Is the sentence 
grammatical or 
ungrammatical? 

“This building is than that 
one.” . → Ungrammatical 

Matthews 
correlation 

60.5 

SST-2 Is the movie positive, 
negative, or neutral? 

“The movie is funny, smart, 
visually inventive, and most 
of all, alive.” . → Positive 

Accuracy 94.9 

MRPC Is the sentence B a 
paraphrase of 
sentence A? 

A: “Today, Taiwan reported 
35 new infections.” B: 
“Taiwan announced another 
35 probable cases at noon.” 
. → Paraphrase 

Accuracy 89.3 

STS-B How similar are 
sentences A and B? 

A: “Elephants are walking 
down a trail.” B: “A herd of 
elephants is walking down a 
trail.” . → Similar 

Pearson/ 
Spearman 
correlation 

86.5 

QQP Are the two questions 
similar? 

A: “How can I increase the 
speed of my Internet 
connection while using a 
VPN?” B: “How can Internet 
speed be increased by 
hacking through DNS?” 
. → Not Similar 

Accuracy 72.1 

MNLI-mm Does sentence A 
entail or contradict 
sentence B? 

A: “Tourist information 
offices can be very helpful.” 
B: “Tourist information 
offices are never of any help.” 
. → Contradiction 

Accuracy 85.9 

QNLI Does sentence B 
contain the answer to 
the question in 
sentence A? 

A: “Which collection of 
minor poems are sometimes 
attributed to Virgil.” B: “A 
number of minor poems, 
collected in the Appendix 
Vergiliana, are often 
attributed to him.” 
. → contains answer 

Accuracy 92.7 

RTE Does sentence A 
entail sentence B? 

A: “Yunus launched the 
microcredit revolution, 
funding 50,000 beggars, 
whom Grameen Bank 
respectfully calls ‘Struggling 
Members.”’ B: “Yunus 
supported more than 50,000 
Struggling Members.” 
. → Entailed 

Accuracy 70.1 

WNLI Sentence B replaces 
sentence A’s pronoun 
with a noun - is this 
the correct noun? 

A: “Lily spoke to Donna, 
breaking her concentration.” 
B: “Lily spoke to Donna, 
breaking Lily’s 
concentration.” . → Incorrect 

Accuracy 60.5
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2.1.6 Computational Complexity 

It is instructive to illustrate the computational effort required to train PLMs. Its 
growth determines the time needed to train larger models that can massively 
improve the quality of language representation. Assume D is the size of the hidden 
embeddings and the input sequence has length T , then the intermediate dimension of 
the fully connected layer FCL is set to 4D and the dimension of the keys and values 
are set to .D/H as in Vaswani et al. [141]. Then according to Lin et al. [81] we get 
the following computational complexities and parameters counts of self-attention 
and the position-wise FCL (2.7): 

Module Complexity # Parameters 

Self-attention .O(T 2 ∗ D) . 4D2

Position-wise FCL .O(T ∗ D2) . 8D2

As long as the input sequence length T is small, the hidden dimension D 
mainly determines the complexity of self-attention and position-wise FCL. The  
main limiting factor is the FCL. But when the input sequences become longer, 
the sequence length T gradually dominates the complexity of these modules, so 
that self-attention becomes the bottleneck of the PLM. Moreover, the computation 
of self-attention requires that an attention score matrix of size .T × T is stored, 
which prevents the computation for long input sequences. Therefore, modifications 
reducing the computational effort for long input sequences are required. 

To connect all input embeddings with each other, we could employ different 
modules. Fully connected layers require .T ∗ T networks between the different 
embeddings. Convolutional layers with a kernel width K do not connect all pairs 
and therefore need .O(logK(T )) layers in the case of dilated convolutions. RNNs 
have to apply a network T times. This leads to the following complexities per layer 
[81, 141] 

Sequential Maximum 

Layer type Complexity per layer operations path length 

Self-attention .O(T 2 ∗ D) .O(1) . O(1)

Recurrent .O(T ∗ D2) .O(T ) . O(T )

Fully connected .O(T 2 ∗ D2) .O(1) . O(1)

Convolutional .O(K ∗ T ∗ D2) .O(1) . O(logK(T ))

Restricted self-attention .O(R ∗ T ∗ D) .O(1) . O(T/R)

The last line describes a restricted self-attention, where self-attention only 
considers a neighborhood of size R to reduce computational effort. Obviously the 
computational complexity per layer is a limiting factor. In addition, computation for 
recurrent layers need to be sequential and cannot be parallelized, as shown in the
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column for sequential operations. The last column shows the path length, i.e. the 
number of computations to communicate information between far-away positions. 
The shorter these paths between any combination of positions in the input and output 
sequences, the easier it is to learn long-range dependencies. Here self-attention 
has a definite advantage compared to all other layer types. Section 3.2 discusses 
advanced approaches to process input sequences of larger length. In conclusion, 
BERT requires less computational effort than alternative layer types. 

2.1.7 Summary 

BERT is an autoencoder model whose main task is to derive context-sensitive 
embeddings for tokens. In a preliminary step, tokens are generated from the words 
and letters of the training data in such a way that most frequent words are tokens 
and arbitrary words can be composed of tokens. Each token is encoded by an input 
embedding. To mark the position of each input token, a position embedding is added 
to the input embedding. 

In each layer of BERT, the lower layer embeddings are transformed by self-
attention to a new embedding. Self-attention involves the computation of scalar 
products between linear transformations of embeddings. In this way, the embed-
dings in the next layer can adapt to tokens from the context, and the embed-
dings become context-sensitive. The operation is performed in parallel for several 
attention heads involving different linear projections. The heads can compute 
associations in parallel with respect to different semantic features. The resulting 
partial embeddings are concatenated to a new embedding. In addition to self-
attention heads, each encoder block contains a fully connected layer as well as 
normalization operations. 

The original BERT model consists of six encoder blocks and generates a final 
embedding for each input token. BERT is pre-trained on a very large document 
collection. The main pre-training task is to predict words from the input sequence, 
which have been replaced by a [MASK] token. This is done by using the last 
layer embedding of the token as input to a logistic classifier, which predicts the 
probabilities of tokens for this position. During pre-training the model parameters 
are optimized by stochastic gradient descent. This forces the model to collect all 
available information about that token in the output embedding. The first input token 
is the [CLS] token. During pre-training, it is used for next sentence prediction, where 
a logistic classifier with the [CLS]-embedding as input has to decide, if the first and 
second sentence of the input sequence belong together or not. 

Typically, the pre-trained model is fine-tuned for a specific task using a small 
annotated training dataset. An example is the supervised classification task of 
whether the input text expresses a positive, negative or neutral sentiment. Again 
a logistic classifier with the [CLS]-embedding as input has to determine the 
probability of the three sentiments. During pre-training all parameters of the model 
are adjusted slightly. It turns out that this transfer learning approach has a much
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higher accuracy than supervised training only on the small training dataset, since 
the model can use knowledge about language acquired during pre-training. 

Experiments show that BERT is able to raise the SOTA considerably in many 
language understanding tasks, e.g. the GLUE benchmark. Other applications are 
named entity recognition, where names of persons, locations, etc. have to be 
identified in a text, or question answering, where the answer to a question has to 
be extracted from a paragraph. An analysis of computational complexity shows that 
BERT requires less computational effort than alternative layer types. Overall, BERT 
is the workhorse of natural language processing and is used in different variants to 
solve language understanding problems. Its encoder blocks are reused in many other 
models. 

Chapter 3 describes ways to improve the performance of BERT models, espe-
cially by designing new pre-training tasks (Sect. 3.1.1). In Chap. 4 the knowledge 
acquired by BERT models is discussed. In the Chaps. 5–7, we describe a number 
of applications of BERT models such as relation extraction (Sect. 5.4) or document 
retrieval (Sect. 6.1). 

2.2 GPT: Autoregressive Language Models 

2.2.1 The Task of Autoregressive Language Models 

To capture the information in natural language texts the conditional probability 
of tokens can be described by a language model. These autoregressive language 
models aim to predict the probability of the next token in a text given the previous 
tokens. If .Vt+1 is a random variable whose values are the possible tokens . vt+1
at position .t + 1, we have to calculate the conditional probability distribution 
.p(Vt+1|v1, . . . , vt ). According to the definition of conditional probability the 
probability of the complete text .v1, . . . , vT can be computed as 

.p(V1=v1, . . . , VT =vT ) = p(VT =vT |v1, . . . , vT −1) ∗ · · · ∗ p(V1=v1). (2.9) 

Therefore, the conditional probability can represent all information about valid 
sentences, including adequate and bad usage of language. Qudar et al. [115] provide 
a recent survey of language models. 

In Sect. 1.6, we used RNNs to build language models. However, these had 
problems determining long-range interactions between tokens. As an alternative, 
we can employ self-attention to infer contextual embeddings of the past tokens 
.v1, . . . , vt and predict the next token .vt+1 based on these embeddings. 

Consequently, we need to restrict self-attention to the tokens .v1, . . . , vt . This is  
the approach taken by the Generative Pre-trained Transformer (GPT) [116, 118]. 
Before training, the text is transformed to tokens, e.g. by byte-pair encoding 
(Sect. 1.2). On input, these tokens are represented by token embeddings and 
position embeddings (Sect. 2.1.1). During training the GPT-model performs the self-
attention computations described in Sect. 2.1.1 in the same way as for BERT. For
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predicting the probabilities of different tokens at position .t + 1, the self-attentions 
are restricted to previous tokens .v1, . . . , vt and their embeddings. The probability 
of the possible next tokens at position .t + 1 is computed by a logistic classifier 

.p(Vt+1|v1, . . . , vt ) = softmax(Ax̃k,t + b), (2.10) 

which takes as input the embedding .x̃k,t of the last layer k at position t to predict the 
random variable .Vt+1 of possible tokens at position .t +1 (Fig. 2.8). This approach is 
called masked self-attention or causal self-attention because the prediction depends 
only on past tokens. Since GPT generates the tokens by sequentially applying the 
same model, it is called an autoregressive language model. 

2.2.2 Training GPT by Predicting the Next Token 

The training objective is adapted to the language modeling task of GPT. Figure 2.8 
shows the range of computations for two consecutive tokens. By teacher forcing the 
model uses the observed tokens .v1, . . . , vt up to position t to compute self-attentions 
and predict the token probabilities for the next token .vt+1. This is justified by the 
factorization (2.9) of the full distribution. Note that the contextual embedding of 
a token . vs , .s < t , changes each time when a new token .vt+1, vt+2, . . . is taken 
into account in the masked self-attention. As GPT considers only the tokens before 
the target token .vt+1, it is called an unidirectional encoder. An intuitive high-level 
overview over GPT is given by Alammar [3]. 

During training the model parameters have to be changed by optimization such 
that the probabilities of observed documents (2.9) get maximal. By this Maximum 
Likelihood estimation (MLE) the parameters can be optimized for a large corpus 
of documents. To avoid numerical problems this is solved by maximizing the log-
likelihood, sum of logarithms of (2.9) 

. logp(v1, . . . , vT ) = logp(vT |v1, . . . , vT −1) + · · · + logp(v2|v1) + logp(v1).

(2.11) 

Alternatively we can minimize the negative log-likelihood .− logp(v1, . . . , vT ). 
GPT-2 can process an input sequence of 1024 tokens with an embedding size 

of 1024. In its medium version it has 345M parameters and contains 24 layers, 
each with 12 attention heads. For the training with gradient descent a batch size of 
512 was utilized. The model was trained on 40GB of text crawled from Reddit, a 
social media platform. Only texts that were well rated by other users were included, 
resulting in a higher quality data set. The larger model was trained on 256 cloud 
TPU v3 cores. The training duration was not disclosed, nor the exact details of 
training. 

The quality of a language model may be measured by the probability 
.p(v1, . . . , vT ) of a given text collection .v1, . . . , vT . If we normalize its inverse
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Fig. 2.8 The input of the GPT model are the embeddings of tokens .v1, . . . , vt up to position t . 
GPT computes contextual self-embeddings of these tokens in different layers and uses the output 
embedding of the last token .vt =“to” in the highest layer to predict the probabilities of possible 
tokens at position .t + 1 with a logistic classifier L. This probability should be high for the actually 
observed token “new” (left). Then the observed token .vt+1 =“new” is appended to the input 
sequence and included in the self-attention computation for predicting the probabilities of possible 
tokens at position .t + 2, which should be high for “york” (right) 

by the number T of tokens we get the perplexity [28] 

.ppl(v1, . . . , vT ) := p(v1, . . . , vT )−
1
T . (2.12) 

A low perplexity indicates a high probability of the text. If we assume that 
the conditional probabilities .p(vt |v1, . . . , vt−1) are identical for all t , we get 
.ppl(v1, . . . , vT ) = 1/p(vt |v1, . . . , vt−1), i.e. the inverse probability of the next 
token. GPT-2 was able to substantially reduce the perplexity on a number of 
benchmark data sets, e.g. from 46.5 to 35.8 for the Penn Treebank corpus [117] 
meaning that the actual words in the texts were predicted with higher probability. 

Visualizing GPT Embeddings 

Kehlbeck et al. [66] investigated the relative location of embeddings in multivariate 
space for both BERT and GPT-2, each with 12 layers. They calculated 3-D 
projections using both principal component analysis (PCA) [111] and UMAP [89]. 
The latter can preserve the local structure of neighbors, but—differently to PCA—is 
unable to correctly maintain the global structure of the data. These 3d-scatterplots 
can be interactively manipulated on the website [66]. It turns out that GPT-2 forms 
two separate clusters: There is a small cluster containing just all tokens at position 
0, while the embeddings at other positions form ribbon-like structures in the second 
cluster. 

Careful investigations have indicated that most embedding vectors are located 
in a narrow cone, leading to high cosine similarities between them [25]. The 
authors identify isolated clusters and low dimensional manifolds in the contextual 
embedding space. Kehlbeck et al. [66] show that tokens with the same part-of-
speech tag form ribbon-like structures in the projections (Fig. 2.9 left). Function 
words are all located on a tight circular structure, whereas content words like nouns
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Fig. 2.9 Visualization of embeddings with PCA together with the corresponding part-of speech 
tags. On the left side are GPT-2 embeddings of layer 0 of tokens of positions .> 0 which form 
ribbon-like structures for the different POS tags, with function words close to the top. On the right 
side the embeddings of BERT for layer 0 are shown. Image reprinted with kind permission of the 
author [66] 

and verbs are located in other elongated structures and have overlap with other POS-
tags. The embeddings generated by BERT form one or more clusters (Fig. 2.9 right). 
They are quite separated for function words, but show some overlap for content 
words like nouns, verbs, or adjectives. 

The GPT-2 embeddings of content words like “banks” and “material” at 
positions .> 0 form elongated band-structures, as shown in the right part of Fig. 2.10. 
For higher layers the PCA projections get more diffuse. The user can read the token 
context by pointing to each dot. 

Token-based self-similarity is the mean cosine similarity of the same token found 
in different sentences. In BERT as well as GPT-2, the self-similarity is higher 
for content than function words [66]. This may indicate that function words have 
more diverse semantic roles in different contexts. It is interesting to evaluate the 10 
nearest neighbors of a token with respect to cosine similarity. In the lower layers, 
for both models the nearest tokens were in most cases the same tokens, except 
for a few content words. In the higher layers this changed and different tokens 
were the nearest tokens. This shows that more and more context is included in the 
embeddings of higher layers. 

The authors also investigated the embeddings generated by a number of other 
PLM types. They find that their structure is very different as they form different 
clusters and manifolds. They argue that this structure has to be taken into account 
for new applications of the models.
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Fig. 2.10 Plot of BERT-embeddings of different senses of “bank” projected to two dimensions 
by T-SNE (left). The legend contains a short description of the respective WordNet sense and the 
frequency of occurrence in the training data. Image[153]. The right side shows PCA projections 
of the embeddings of “banks” (lower strip) and “material” (middle strip) as well as other  words  
computed for different contexts. Image interactively generated, printed with kind permission of the 
authors [66] 

2.2.3 Generating a Sequence of Words 

After training the GPT model can predict the probabilities of the tokens at the next 
position .t + 1 given the previous tokens .v1, . . . , vt . To generate a text we have to 
select a sequence of tokens according to these probabilities. 

• Random sampling selects the next token according to the predicted probabilities. 
This approach sometimes can select very improbable tokens such that the prob-
ability of the whole sentence gets too low. Although the individual probabilities 
are tiny, the probability of selecting an element of the group of improbable tokens 
is quite high. In addition, the estimates of small probability are often affected by 
errors. 

• Top-k sampling takes into account only the k tokens with the highest probability 
to generate the next token. The probability mass is redistributed among them [42] 
and used for randomly selecting a token. 

• Top-p sampling considers the smallest set of top candidates with the cumulative 
probability above a threshold (e.g. .p = 0.95) and then selects the next 
token according to the redistributed probabilities [58]. This approach limits the 
probability mass of rare tokens which are ignored. 

There are also strategies which explicitly avoid previously generated tokens by 
reducing the corresponding scores in the update formula [67]. Both top-k and top-p 
sampling usually generate plausible token sequences and are actually employed to 
generate texts.
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There are a number of approaches to improve token selection. Meister et al. [90] 
found that human-produced text tends to have evenly distribution of “surprise”. This 
means that the next token should on average not be too rare and not be too frequent. 
They propose a number of sampling criteria, e.g. a variance regularizer. 

Martins et al. [86] argue that softmax-generated output distributions are unre-
alistic, as they assign a positive probability to every output token. They propose 
the Entmax transformation which generates a sparse probability distribution from 
the computed scores, where part of the probabilities are exactly zero. The Entmax 
transformation can be controlled by a parameter .α ≥ 1. For  .α = 1 we get softmax 
and .α = ∞ recovers .argmax. For intermediate values .∞ > α > 1.0 some 
tokens get exactly zero probability. Entmax losses are convex and differentiable 
and therefore may be trained by backpropagation. As in top-p sampling and in 
opposition to top-k sampling, Entmax sampling considers a varying number of 
tokens depending on the context. Experiments show that Entmax leads to better 
perplexities and less repetitions than other approaches. Compared with top-p 
sampling it has a higher variation in the number of tokens considered. 

Khandelwal et al. [68] try to improve the estimated probabilities of the language 
model by statistics of token n-grams. They perform a nearest neighbor search on the 
last tokens already processed. As distance measure they use the distances of the pre-
trained embedding space. From the retrieved nearest neighbors they get additional 
evidence on the probable next token, which is merged with the token probabilities of 
the language model. In this way, they are able to improve the perplexity of language 
models. The approach is particularly helpful in predicting rare patterns, e.g. factual 
knowledge. 

Yang et al. [157] analyze the properties of the softmax function. They find that 
the standard softmax does not have enough capacity to model natural language, 
as it restricts the rank of the mapping to probabilities. They propose to predict 
probabilities by a Mixture of Softmaxes, a convex combination of different logistic 
classifiers, which is more expressive than a single softmax. The authors show that 
this modification yields better perplexities in language modeling and also improves 
the performance of other transformer architectures [101]. 

2.2.4 The Advanced Language Model GPT-2 

GPT-2 [118] is the first language model, which is able to generate documents of 
grammatically correct and semantically plausible text. Its largest version has 48 
encoder blocks with 1.5B parameters and covers sequences of 1600 tokens. Given 
an initial text the model adapts to the style and content of this text and generates an 
answer, which often cannot be distinguished from human-generated continuations. 
Longer generated texts, however, sometimes tend to be repetitive and less coherent. 

For GPT-2 top-k truncated sampling was used to generate the example text [117] 
shown in Fig. 2.11. As can be seen there are no syntax errors and the generated 
content is plausible. The authors remark that one in two trials were of high quality.
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Fig. 2.11 Given the input text, GPT-2 generates a continuation by top-k sampling [117]. Quoted 
with kind permission of the authors 

The model adapts to the style and content of the input text. This allows the user to 
generate realistic and coherent continuations about a topic they like. Obviously the 
topic has to be mentioned in the Reddit training data, which covers a broad spectrum 
of themes such as news, music, games, sports, science, cooking, and pets. 

The model was able to solve many tasks better than previous models without 
being trained on the specific task. This type of learning is called zero-shot learning. 
For example, GPT-2 had a perplexity of 35.8 on the test set of the Penn Treebank 
compared to the inferior prior SOTA of 46.5 [117]. This was achieved without 
training GPT-2 on the Penn Treebank corpus [135]. 

2.2.5 Fine-Tuning GPT 

By fine-tuning, GPT-2 may be adapted to new types of text, for example new genres 
of text. To create song lyrics, for example, St-Amant [4] uses a dataset of 12,500 
English rock song lyrics and fine-tunes GPT-2 for 5 epochs. Then the model is 
able to continue the lyrics of pop songs, which had not been seen by the model 
during training. The model had a high BLEU score of 68 when applied to song 
lyrics. Another experiment describes the generation of poetry [19]. 

Similar to BERT, a pre-trained GPT-2 can also be modified to perform a 
classification task. An example is fine-tuning to the classification of the sentiment 
of a document as positive or negative. Radford et al. [116] encode the classification 
task as a text with specific tokens and a final end token [END]. Then the model has 
to predict the sequence. The embedding of [END] in the highest layer is used as
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input to a logistic classifier, which is trained to predict the probability of classes. 
The authors found that including language modeling (2.11) of the fine-tuning data 
as an auxiliary objective to fine-tuning improved generalization and accelerated 
convergence. They were able to improve the score on GLUE (Sect. 2.1.5) from 
68.9 to 72.8 and achieved SOTA in 7 out of 8 GLUE tasks for natural language 
understanding. The results show that language models capture relevant information 
about syntax and semantics. 

However, GPT operates from left to right when predicting the next token. In the 
sentences “I went to the bank to deposit cash” and “I went to the bank to sit down”, 
it will create the same context-sensitive embedding for “bank” when predicting “sit” 
or “deposit”, although the meaning of the token “bank” is different in both contexts. 
In contrast, BERT is bidirectional and takes into account all tokens of the text when 
predicting masked tokens. This fact explains why BERT for some tasks shows a 
better performance. 

2.2.6 Summary 

GPT has an architecture similar to a BERT model that generates the tokens of 
a sentence one by one. It starts with an input sequence of tokens, which can be 
empty. Tokens are encoded as a sum of token embeddings and position embeddings. 
GPT uses the same encoder blocks as BERT, but the computations are masked, 
i.e. restricted to the already generated tokens. For these tokens the model produces 
contextual embeddings in several layers. The embedding of the last token in the top 
layer is entered into a logistic classifier and this calculates the probability of the 
tokens for the next position. Subsequently, the observed token is appended to the 
input at the next position and the computations are repeated for the next but one 
position. Therefore, GPT is called an autoregressive language model. 

During training the parameters are changed by stochastic gradient descent in such 
a way that the model predicts high probabilities of the observed tokens in the training 
data. The maximum likelihood criterion is used, which optimizes the probability of 
the input data. When the model has been trained on a large text dataset it can be 
applied. Conditional to a start text it can sequentially compute the probability of the 
next token. Then a new token can be selected according to the probabilities. 

If all alternative tokens are taken into account, rare tokens are often selected. 
Usually, the number of eligible tokens is restricted to k high-probability tokens 
(top-k sampling) or only high-probability tokens are included up to a prescribed 
probability sum p (top-p sampling). In this way, much better texts are generated. 
Advanced language models like GPT-2 have billions of parameters and are able to 
generate plausible stories without syntactic errors. 

GPT models can also be fine-tuned. A first type of fine-tuning adapts the model 
to a specific text genre, e.g. poetry. Alternatively, GPT can be used as a classifier, 
where the output embedding of the most recently generated token for an input text is 
input to a logistic classifier. With this approach, GPT-2 was able to improve SOTA for
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most natural language understanding task in the GLUE benchmark. This shows that 
GPT-2 has acquired a comprehensive knowledge about language. However, since 
self-attention is only aware of past tokens, models like BERT are potentially better 
as they can take into account all input tokens during computations. 

Chapter 3 discusses how to improve the performance of GPT models, in 
particular by using more parameters (Sect. 3.1.2). These large models with billions 
of parameters can be instructed to perform a number of tasks without fine-tuning 
(Sect. 3.6.3). In the Chaps. 5–7, we describe a number of applications of GPT-
models such as question-answering (Sect. 6.2.3), story generation (Sect. 6.5), or 
image generation from text (Sect. 7.2.6). 

2.3 Transformer: Sequence-to-Sequence Translation 

2.3.1 The Transformer Architecture 

Translation models based on Recurrent Neural Networks (Sect. 1.6) have a major  
limitation caused by the sequential nature of RNNs. The number of operations 
required to determine the relation between tokens . vs and . vt grows with the distance 
.t − s between positions. The model has to store the relations between all tokens 
simultaneously in a vector, making it difficult to learn complex dependencies 
between distant positions. 

The Transformer [141]—similar to RNN-translation models—is based on an 
encoder and a decoder module (Fig. 2.13). The encoder is very similar to BERT, 
while the decoder resembles GPT. It is a sequence-to-sequence model (Seq2seq), 
which translates a source text of the input language to a target text in the target 
language. Instead of relating distant tokens by a large number of computation steps, 
it directly computes the self-attention between these token in parallel in one step. 

The encoder generates contextual embeddings .x̃1, . . . , x̃Tsrc of the source text 
tokens .v1, . . . , vTsrc with exactly the same architecture as the BERTmodel (Fig. 2.4). 
The original transformer [141] uses 6 encoder blocks. The generated embeddings of 
the last layer are denoted as .x̆1, . . . , x̆Tsrc . 

The transformer decoder step by step computes the probability distributions 
.p(St |s1, . . . , st−1, v1, . . . , vTsrc) of target tokens . st similar to the Recurrent Neural 
Network. Note that the source tokens . vi as well as observed target tokens . sj are 
taken as conditions. By the definition of conditional probability this yields the total 
probability of the output distribution 

. p(S1=s1, . . . , ST =sT |v1, . . . , vTsrc) (2.13)

= p(ST =sT |s1, . . . , sT −1, v1, . . . , vTsrc) · · · p(S1=s1|v1, . . . , vTsrc),

where . St is a random variable with the possible target tokens . st at position t as its 
values. This probability is maximized during training.
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Fig. 2.12 The transformer [141] uses k encoder blocks with the same architecture as in BERT 
(Fig. 2.4) to generate contextual embeddings of all tokens of the input text. The decoder block 
is an autoregressive language model (Fig. 2.8) and sequentially predicts the next token in the 
target language. Each encoder block contains a multi-head self-attention for the current sequence 
of output tokens. By cross-attention the information from the input sequence is included. The 
calculations are repeated for all current input tokens and are very similar to the self-attention 
computations. The resulting vector is transformed by a fully connected layer yielding the 
embeddings of that layer 

We denote the already translated tokens by .s0, s1, . . . , st−1 were . s0 is the token 
“[BOS]” indicating the beginning of the output text. The decoder first computes 
a self-attention for these tokens using the formula (2.4) as for BERT. As only 
part of the target tokens are covered and the rest is ‘masked’, this layer is called 
masked multi-head self-attention yielding intermediate contextual embeddings 
.s̃0, s̃1, . . . , s̃t−1 for the target tokens .s0, s1, . . . , st−1. 

Cross-Attention 

Then the decoder performs a cross-attention .CATL(Ṽ , X̆) with the input text 
embeddings of the highest encoder block (Fig. 2.12). Here the query-vectors are 
computed for the embeddings of the target tokens .S̃t = (s̃0, s̃1, . . . , s̃t−1) provided 
by the respective decoder block. The key and value vectors are computed for the 
embeddings .X̆ = x̆1, . . . , x̆Tsrc of the last encoder block. Note that cross attention 
employs the same Eq. (2.4) with matrices .W (q),W (k),W (v) as the BERT self-
attentions. This is done in parallel and called multi-head cross-attention. In this
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Fig. 2.13 The transformer [141] uses an encoder with the same architecture as BERT to generate 
embeddings of all tokens of the input sentence. Each encoder block performs multi-head self-
attention of the input sequence followed by a fully connected layer (FCL) . The decoder is similar 
to a GPT model and sequentially predicts the next token in the target language. Each encoder block 
contains a multi-head cross-attention including the final embeddings of the encoder. Using the last 
output embedding of the final decoder block, a logistic classifier L predicts probabilities of the 
next token of the output sentence 

way, information from the source text is taken into account. Subsequently, the 
embeddings computed by different heads are concatenated (2.6) and the result is 
transformed by a fully connected layer with ReLU activation (2.7). In addition, 
residual “bypass” connections are used as well as layer normalization [6] for  
regularization. The output of the fully connected layer yields a new ‘output’ 
embedding .s̃0, . . . , s̃t−1 for the target tokens .s1, . . . , st−1. Together these layers are 
called a decoder block (Fig. 2.13). 

The next decoder block gets the computed token output embeddings of the 
previous block as input and computes a new embedding of the target tokens 
.s1, . . . , st−1. The decoder consists of several decoder blocks (6 in the original 
model). Using the output embedding .s̆t−1 of the righmost token .st−1 in the last 
decoder block, the token probabilities .p(St = st |s1, . . . , st−1, v1, . . . , vTsrc) of the 
next token . st of the target text at position t are predicted by a logistic classifier, e.g. 
for the token “Maus” in Fig. 2.13. 

Note that for the prediction of a further token at position .t + 1 the observed 
token . st is added to the computation (2.13) of the self-attentions in the decoder. 
Hence, the decoder embeddings change and all decoder computations have to be 
repeated. In this respect the model still works in a recursive way. Nevertheless, all
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self-attentions and cross-attentions in each layer are computed in parallel. However, 
the computations for the encoder are only performed once. 

Sequences of variable length are padded with a special token up to the maximal 
length. This is done for the input and the output sequence. If a sequence is very 
short, a lot of space is wasted. Therefore, the sequence length may be varied in 
different mini-batches called buckets in the training data. 

The transformer has a large set of parameters. First it requires embeddings of the 
input and target token vocabularies. Then there are the .W (q),W (k),W (v) matrices 
for the multi-head self-attention, the masked multi-head self-attention and the multi-
head cross-attention of the different heads and layers. In addition, the parameters of 
the fully connected networks and the final logistic classifier have to be specified. 
While the base model had an input sequence length of 512 and 65M parameters, the 
big model had an input sequence length of 1024 and 213M parameters [141]. The 
values of all these parameters are optimized during training. 

The training data consists of pairs of an input sentence and the corresponding 
target sentence. Training aims to generate the target tokens with maximal probability 
for the given input tokens to maximize the joint conditional probability (2.13) of the  
output sequence by stochastic gradient descent. In our example in Fig. 2.13 for the 
given input text “The mouse likes cheese” the product of conditional probabilities of 
the output tokens “Die Maus mag Käse” has to be maximized. The original model 
[141], for instance, used 36M sentences of the WMT English-French benchmark 
data encoded as 32,000 wordpiece tokens. Both the encoder and decoder are trained 
simultaneously by stochastic gradient descent end-to-end, requiring 3.5 days with 
8 GPUs.  

Cross-attention is the central part of the transformer, where the information from 
the input sentence is related to the translated output sentence. In Fig. 2.14 a German  
input sentence is displayed together with its English translation. Both sentences are 
tokenized by byte-pair encoding, where the beginning of a word is indicated by “_”. 
Below the strength of cross-attentions between the input tokens and output tokens 
is depicted for two different heads. Obviously the first input token “_The” has a 
special role. 

2.3.2 Decoding a Translation to Generate the Words 

After training, the Transformer is able to predict the probabilities of output tokens 
for an input sentence. For a practical translation, however, it is necessary to generate 
an explicit sequence of output tokens. Computing the output sequence with maximal 
probability is computationally hard, as then all output possible sequences have to be 
considered. Therefore, an approximate solution is obtained using greedy decoding 
or beam search. 

Greedy decoding simply picks the most likely token with the highest probability 
at each decoding step until the end-of-sentence token is generated. The problemwith 
this approach is that once the output is chosen at any time step t , it is impossible to
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_The _log _file _can _be _sent _secret ly _with _email _or _FTP _to 
_a _specified _receiver 

_Die _Protokoll datei _kann _heimlich _per _E-Mail _oder _FTP _an 
_einen _bestimmte n _Empfänger _gesendet _werden . 

Fig. 2.14 An English input sentence tokenized by Byte-Pair encoding and the translated tokenized 
German output sentence. Below are two cross-attention graphs from different heads of the 4-th 
decoder layer [126]. Dark values indicate a low cross-attention score. Image source: [126] 

go back and change the selection. In practice there are often problems with greedy 
decoding, as the available probable continuation tokens may not fit to a previously 
assigned token. As the decision cannot be revised, this may lead to suboptimal 
generated translations. 

Beam search [52] keeps a fixed number k of possible translations .s1, . . . , st of 
growing length (Fig. 2.15). At each step each translation of length t is enlarged by k 
different tokens at position .t +1 with the highest conditional probabilities . p(St+1 =
st+1|s1, . . . , st , v1, . . . , vTsrc). From these .k∗k token sequences only the k sequences 
with largest total probabilities .p(s1, . . . , st+1|v1, . . . , vTsrc) are retained. A complete 
translation (containing the end-of-sentence token) is added to the final candidate list. 
The algorithm then picks the translation with the highest probability (normalized by 
the number of target words) from this list. For .k = 1 beam search reduces to greedy 
decoding. In practice, the translation quality obtained via beam search (size of 4) is 
significantly better than that obtained via greedy decoding. Larger beam sizes often 
lead to suboptimal solutions [31]. However, beam search is computationally very 
expensive (25%–50% slower depending on the base architecture and the beam size) 
in comparison to greedy decoding [29].
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Fig. 2.15 Beam search is a technique for decoding a language model and producing text. At every 
step, the algorithm keeps track of the k most probable partial translations (bold margin). The score 
of each translation is equal to its log probability. The beam search continues until it reaches the 
end token for every branch [78] 

2.3.3 Evaluation of a Translation 

Traditionally, evaluation is done by comparing one or more reference translations 
to the generated translation, as described in the survey [127]. There are a number of 
automatic evaluation metrics: 

BLEU compares counts of 1-grams to 4-grams of tokens. The BLEU metric 
ranges from 0 to 1, where 1 means an identical output with the reference. Although 
BLEU correlates well with human judgment [110], it relies on precision alone and 
does not take into account recall—the proportion of the matched n-grams out of the 
total number of n-grams in the reference translation. 

ROUGE [80] unlike BLEU is a recall-based measure and determines which 
fraction of the words or n-grams in the reference text appear in the generated text. It 
determines, among other things, the overlap of unigrams or bigrams as well as the 
longest common subsequence between a pair of texts. Different versions are used: 
ROUGE-1 measures the overlap of unigram (single words) between the pair of texts. 
ROUGE-2 determines the overlap of bigrams (two-words sequences) between the 
pair of texts. ROUGE-L: measures the length of the longest sequence of words (not 
necessarily consecutive, but still in order) that is shared between both texts. This 
length is divided by the number of words in the reference text. 

METEOR [75] was proposed to address the deficits of BLEU. It performs a word-
to-word alignment between the translation output and a given reference translation. 
The alignments are produced via a sequence of word-mapping modules. These
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check, if the words are exactly the same, same after they are stemmed using the 
Porter stemmer, and if they are synonyms of each other. After obtaining the final 
alignment, METEOR computes an F-value, which is a parameterized harmonic mean 
of unigram precision and recall. METEOR has also demonstrated to have a high level 
of correlation with human judgment, often even better than BLEU. 

BERTscore [164] takes into account synonyms and measures the similarity 
of embeddings between the translation and the reference. It computes the cosine 
similarity between all token embeddings of both texts. Then a greedy matching 
approach is used to determine assignments of tokens. The maximum assignment 
similarity is used as BERTscore. 

For high-quality translations, however, there is a noticeable difference between 
human judgment and automatic evaluation. Therefore, most high-end comparisons 
today use human experts to assess the quality of translation and other text generation 
methods. Since the transformer was proposed by Vaswani et al. [141] in 2017, its 
variants were able to raise the SOTA in language translation performance, e.g. for 
translation on WMT2014 English-French from 37.5 to 46.4 BLEU score. 

The transformer architecture was analyzed theoretically. Yun et al. [160, 161] 
showed that transformers are expressive enough to capture all continuous sequence 
to sequence functions with a compact domain. Pérez et al. [112] derived that the full 
transformer is Turing complete, i.e. can simulate a full Turing machine. 

2.3.4 Pre-trained Language Models and Foundation Models 

A model language model either computes the joint probability or the conditional 
probability of natural language texts and potentially includes all information about 
the language. BERT is an autoencoder language models containing encoder blocks 
to generate contextual embeddings of tokens. GPT is an autoregressive language 
models which predicts the next token of a sequence and restricts self-attention 
to tokens which already have been generated. Transformers (or Transformer 
encoder-decoders) use a transformer encoder to convert the input text to contextual 
embeddings and generate the translated text with an autoregressive transformer 
decoder utilizing the encoder embeddings as inputs (Fig. 2.16). These models are the 
backbone of modern NLP and are collectively called Pre-trained Language Models 
(PLM). 

All these models, especially BERT and GPT, are initialized via pre-training 
on a large corpus of text documents. During pre-training, parts of the input are 
hidden from the model, and the model is trained to reconstruct these parts. This 
has proven to be extremely effective in building strong representations of language 
and in finding parameter initializations for highly expressive NLP models that can 
be adapted to specific tasks. Finally, these models provide probability distributions 
over language that we can sample from. 

Most network types have some built-in assumptions called inductive bias. Con-
volutional networks have local kernel functions that are shifted over the input matrix
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Fig. 2.16 Autoencoders like BERT (left) and autoregressive LMs like GPT-2 (middle) use 
transformer blocks to generate contextual embeddings of tokens. The transformer (right) combines 
a transformer encoder and an autoregressive transformer decoder to produce a translation. All 
models predict the probability of tokens with a logistic classifier L. Collectively these models are 
called Pre-trained Language Models (PLMs) 
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Fig. 2.17 Timeline for the development of embeddings, pre-training and fine-tuning 

and therefore have an inductive bias of translation invariance and locality. Recurrent 
networks apply the same network to each input position and have a temporal 
invariance and locality. The BERT architecture makes only few assumptions about 
the structural dependency in data. The GPT model is similar to the RNN as it 
assumes a Markovian structure of dependencies to the next token. As a consequence, 
PLMs often require more training data to learn the interactions between different 
data points, but can later represent these interactions more accurately than other 
model types. 

Historically, learned embedding vectors were used as representations of words 
for downstream tasks (Fig. 2.17). As early as 2003 Bengio et al. [15] proposed a 
distributed vector representation of words to predict the next word by a recurrent 
model. In 2011 Collobert et al. [32] successfully employed word embeddings 
for part-of-speech tagging, chunking, named entity recognition, and semantic role 
labeling. In 2013 Mikolov et al. [93] derived their word embeddings using a logistic 
classifier. In 2015 Dai et al. [33] trained embeddings with an RNN language model 
in a self-supervised way and later applied it to text classification. In 2017 McCann 
et al. [87] pre-trained multilayer LSTMs for translation computing contextualized 
word vectors, which are later used for various classification tasks.
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In the same year Vaswani et al. [141] developed the attention-only transformer 
for language translation. In 2018 Howard et al. [59] pre-trained a language model 
(ULMFiT), and demonstrated the effectiveness of fine-tuning to different target 
tasks by updating the full (pre-trained) model for each task. In the same year Howard 
et al. [116] used a pre-trained autoregressive part of the transformer [141] to solve  
a large number of text understanding problems by fine-tuned models. At the same 
time Devlin et al. [39] pre-trained the autoencoder using the masked language model 
objective and adapted this BERT model to many downstream tasks by fine-tuning. 
In 2019 Radford et al. [118] presented the GPT-2 language model, which was able 
to generate semantically convincing texts. Brown et al. [21] proposed the GPT-3 
model, which could be instructed to solve NLP-tasks by a task description and 
some examples. In 2021 Ramesh et al. [121] applied language modeling to text 
and pictures and were able to create impressive pictures from textual descriptions. 
Borgeaud et al. [18] presented the Retro model that answers questions by retrieving 
information from a text collection of 2 trillion tokens and composes an answer in 
natural language. 

Almost all state-of-the-art NLP models are now adapted from one of a few Pre-
trained Language Models, such as BERT, GPT-2, T5, etc. PLMs are becoming larger 
and more powerful, leading to new breakthroughs and attracting more and more 
research attention. Due to the huge increase in performance, some research groups 
have suggested that large-scale PLMs should be called Foundation Models, as they  
constitute a ‘foundational’ breakthrough technology that can potentially impact 
many types of applications [17, p. 3]. In this book, we reserve the term ‘Foundation 
Models’ for large Pre-trained Language Models with more than a billion parameters, 
since these models are able of generating fluent text, can potentially handle different 
media, and can usually be instructed by prompts to perform specific tasks. 

If one of these models is improved, this high degree of homogeneity can lead to 
immediate benefits for many NLP applications. On the other hand all systems could 
share the same problematic biases present in a few basic models. As we will see 
in later chapters PLM-based sequence modeling approaches are now applied to text 
(Sect. 2.2), speech (Sect. 7.1), images (Sect. 7.2), videos (Sect. 7.3), computer code 
(Sect. 6.5.6), and control (Sect. 7.4). These overarching capabilities of Foundation 
Models are depicted in Fig. 2.18. 

The next Sect. 2.4 discusses some common techniques for optimizing and 
regularizing pre-trained language models. In addition, some approaches to modify 
the architecture of these networks are presented. In Chap. 3 we present a number 
of approaches to improve the capabilities of PLMs, especially by modifying the 
training tasks (Sect. 3.1.3). In the Chaps. 5–7 we discuss a number of applications 
of PLMs. Chapter 5 covers traditional NLP tasks like named entity recognition and 
relation extraction, where PLMs currently perform best. Most important applica-
tions of Foundation Models are on the one hand text generation and related tasks 
like question-answering and dialog systems, which are introduced in Chap. 6. On  
the other hand Foundation Models can simultaneously process different media and 
perform tasks like image captioning, object detection in images, image generation 
following a text description, video interpretation, or computer game control, which
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Fig. 2.18 A Foundation Model can integrate the information in the data from different modalities. 
Subsequently it can be adapted, e.g. by fine-tuning, to a wide range of downstream tasks [17, p. 6].  
Credits for image parts in Table A.1 

are discussed in Chap. 7. Because of the potential social and societal consequences 
of such Foundation Models, it is particularly important that researchers in this field 
keep society’s values and human rights in mind when developing and applying these 
models. These aspects are summarized in Sect. 8.2. 

Available Implementations 

• The source code for many pre-trained language models (BERT, GPT, Transform-
ers) as well as pre-trained models for different languages and text corpora can 
be downloaded from Hugging Face https://huggingface.co/transformers/, Fairseq 
https://github.com/pytorch/fairseq, TensorFlow https://www.tensorflow.org/ and 
PyTorch https://pytorch.org/. These toolkits also allow the flexible formulation 
of Deep Neural Networks and provide the automatic computation of gradients as 
well as optimization methods. All are able to execute computations in parallel 
and distribute them to different CPUs and Graphical Processing Units (GPUs). 

• PLMs are getting larger than the memory of a single GPU and require to 
distribute training code among several GPUs. This is supported by libraries 
like FastSeq https://github.com/microsoft/fastseq, LightSeq https://github.com/ 
bytedance/lightseq, and FastT5 https://github.com/Ki6an/fastT5. 

• DeepSpeed [122] was used to train the MT-NLG autoregressive LM with 530B 
parameters (Sect. 3.1.2) https://github.com/microsoft/DeepSpeed. 

• Ecco [2] https://github.com/jalammar/ecco and BertViz [144] https://github.com/ 
jessevig/bertviz are tools to visualize the attentions and embeddings of PLMs. 

• Transformers-interpret https://github.com/cdpierse/transformers-interpret is a 
model explainability tool designed for the Hugging Face package. 

• Captum [70] is a library https://captum.ai/ to generate interpretations and expla-
nations for the predictions of PyTorch models.
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2.3.5 Summary 

A transformer is a sequence-to-sequence model, which translates a source text of 
the input language into a target text in the target language. It consists of an encoder 
with the same architecture as an autoencoder BERT model that computes contextual 
embeddings of tokens of the source text. The decoder resembles an autoregressive 
GPT model and sequentially generates the tokens of the target text. Internally, 
contextual embeddings of the target tokens are computed in the different layers. 
Each decoder block has an additional cross-attention module in which the query 
vectors are taken from the embeddings of the target tokens and the key and value 
vectors are computed for the embeddings of the source tokens of the last layer. 
In this way, the information from the source text is communicated to the decoder. 
The embedding of the last token in the top layer is entered into a logistic classifier 
and this calculates the probability of the tokens for the next position. Subsequently, 
the observed token at the next position is appended to the target input and the 
computations are repeated for the next but one position. 

During training the parameters of the transformer are adapted by stochastic 
gradient descent in such a way that the model assigns high probabilities to the 
observed target tokens of the translation in the training data. When the model has 
been trained on a large text dataset it can be applied for translation. Conditional on 
an input text, it can sequentially compute the probability of the next token of the 
translation. 

During application of a trained model either the token with the maximal 
probability is selected or several alternatives are generated by beam search and the 
final output sequence with maximal probability is chosen. The evaluation of the 
translations quality is difficult as different translations may be correct. A number of 
metrics, e.g. BLEU, have been developed, which compare the machine translation 
to one or more reference translations by comparing the number of common word 
n-grams with .n = 1, . . . , 4. Often the results are assessed by human raters. 
The transformer was able to generate better translation than prior models. In the 
meantime the translation quality for a number of language pairs is on par with 
human translators. 

In the previous sections, we discussed autoencoder BERT models, autoregressive 
GPT models and the encoder-decoder Transformers. Collectively these models are 
called pre-trained language models, as transfer learning with a pre-training step 
using a large training set and a subsequent fine-tuning step is a core approach for all 
three variants. The self-attention and cross-attention modules are central building 
blocks used by all three models. Despite the development of many variations in 
recent years, the original architecture developed by Vaswani et al. [141] is still 
commonly employed. 

It turns out that these models can be applied not only to text, but to various 
types of sequences, such as images, speech, and videos. In addition, they may be 
instructed to perform various tasks by simple prompts. Therefore, large PLMs are 
also called Foundation Models, as they are expected to play a crucial role in the 
future development of text and multimedia systems.
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2.4 Training and Assessment of Pre-trained Language 
Models 

This section describes some techniques required to train and apply PLMs. 

• We need optimization techniques which can process millions and billions of 
parameters and training examples. 

• Specific regularization methods are required to train the models and to avoid 
overfitting. 

• The uncertainty of model predictions has to be estimated to asses the perfor-
mance of models. 

• The explanation of model predictions can be very helpful for the acceptance of 
models. 

Approaches to solving these problems are discussed in this section. PLMs are 
usually specified in one of the current Deep Learning frameworks. Most popular 
are TensorFlow provided from Google [137] and PyTorch from Meta [114]. Both 
are based on the Python programming language and include language elements to 
specify a network, train it in parallel on dedicated hardware, and to deploy it to 
different environments. A newcomer is the JAX framework [22], which is especially 
flexible for rapid experimentation. It has a compiler for linear algebra to accelerate 
computations for machine learning research. 

2.4.1 Optimization of PLMs 

Basics of PLM Optimization 

For the i.i.d. training sample .T r = {(x[1], y[1]), . . . , (x[N ], y[N ])} parameter 
optimization for Deep Neural Networks aims to find a model that minimizes the 
loss function . L(x[i], y[i];w)

.min
w

L(w) = L(x[1], y[1];w) + · · · + L(x[N ], y[N ];w). (2.14) 

First-order optimization methods, also known as gradient-based optimization, are 
based on first-order derivatives. A requirement is that the loss function .L(w) is 
smooth, i.e. is continuous and in addition differentiable at almost all parameter 
values .w = (w1, . . . , wk). Then the partial derivatives .

∂L(w)
∂wj

of .L(w) with respect 
to any component . wj of . w can be computed at almost all points. The gradient of 
.L(w) in a specific point . w is the vector 

.
∂L(w)

∂w
=

(
∂L(w)

∂w1
, . . . ,

∂L(w)

∂wk

)ᵀ
. (2.15)
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Fig. 2.19 On all points of a grid the negative gradients are computed for this two-dimensional 
function .L(w) (left). The gradient descent algorithm follows the negative gradients and approaches 
the local minima (right). The blue lines are the paths taken during minimization. Image credits in 
Table A.1 

The gradient points into the direction, where .L(w) in point . w has its steepest 
ascent. Consequently, the direction of the steepest descent is in the opposite 
direction .− ∂L(w)

∂w
. The batch gradient descent algorithm therefore changes the 

current parameter .w(t) in the direction of the negative gradient to get closer to the 
minimum 

.w(t+1) = w(t) − λ
∂L(w)

∂w
. (2.16) 

The learning rate . λ determines the step-size or how much to move in each iteration 
until an optimal value is reached. As the gradient is usually different for each 
parameter .w(t) it has to be recomputed for every new parameter vector (Fig. 2.19). 
The iteration process is repeated until the derivative becomes close to zero. A 
zero gradient indicates a local minimum or a saddle point [51, p. 79]. In practical 
applications it is sufficient to repeat the optimization beginning with different .w-
values and stop, if the derivative is close to zero. 

Deep Neural Networks often require many millions of training examples. The 
repeated computation of the gradient for all these examples is extremely costly. The 
Stochastic Gradient Descent (SGD) algorithm does not use the entire dataset but 
rather computes the gradient only for a small mini-batch of m training examples at 
a time. In general, a mini-batch has sizes m ranging from 32 up to 1024, with even 
higher values for recent extremely large models. Subsequently, the parameters of 
the model are changed according to (2.16). 

For each iteration a new mini-batch is selected randomly from the training data. 
According to the law of large numbers the gradients computed from these mini-
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batches fluctuate around the true gradient for the whole training set. Therefore, the 
mini-batch gradient on average indicates an adequate direction for changing the 
parameters. Mertikopoulos et al. [91] show that by iteratively reducing the learning 
rate to 0, the SGD exhibits almost sure convergence, avoids spurious critical points 
such as saddle points (with probability 1), and stabilizes quickly at local minima. 
There are a number of variations of the SGD algorithm, which are described below 
[65]. 

An important step of optimization is the initialization of parameters. Their initial 
values can determine whether the algorithm converges at all and how fast the 
optimization approaches the optimum. To break symmetry, the initial parameters 
must be random. Furthermore, the mean and variance of the parameters in each layer 
are set such that the resulting outputs of the layer have a well-behaved distribution, 
e.g. expectation 0.0 and variance 1.0. In addition, all gradients also should have 
such a benign distribution to avoid exploding or vanishing gradients. All Deep 
Learning software frameworks contain suitable initialization routines. A thorough 
introduction is given by Goodfellow et al. [51, p. 292]. 

Variants of Stochastic Gradient Descent 

Momentum is a method that helps SGD to increase the rate of convergence in 
the relevant direction and reduce oscillations. Basically a moving average .u(t) of 
recent gradients with a parameter .γ ≈ 0.9 is computed and the parameter update is 
performed with this average by 

.u(t) = γu(t−1) − λ
∂L(w)

∂w
where w(t) = w(t−1) − u(t). (2.17) 

Note that in addition to the parameter vector .w(t) the moving average .u(t) of 
the same length has to be stored requiring the same memory as the parameter 
vector . w. This can consume a large additional memory size if the number of 
parameters approaches the billions. In recent years a number of further optimizers 
were developed [65]: 

• AdaGrad adapts the learning rate dynamically based on the previous gradients. 
It uses smaller learning rates for features occurring often, and higher learning 
rates for features occurring rarely. 

• AdaDelta modifies AdaGrad. Instead of accumulating all past gradients, it 
restricts the accumulation window of the past gradients to some fixed size k. 

• RMSProp is also a method in which the learning rate is adapted for each of 
the parameters. The idea is to divide the learning rate for a weight by a running 
average of the magnitudes of recent gradients for that weight. 

• Adam combines the advantages of both AdaGrad and RMSProp. Adam is based 
on adaptive estimates of lower-order moments. It uses running averages of both 
the gradients and the second moments of the gradients.
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Due to the extremely large number of parameters of PLMs second order optimiza-
tion methods like Conjugate Gradient or Quasi-Newton are rarely employed. As the 
number of second order derivatives grows quadratically, only crude approximations 
may be used. An example is Adam, as described before. 

An important architectural addition to PLMs to improve training are residual 
connections, which were proposed by Vaswani et al. [141] for the Transformer. 
Residual connections have been shown to be very successful for image classification 
networks such as ResNet [54] and allowed training networks with several hundred 
layers. The identity shortcuts skip blocks of layers to preserve features. Zhang 
et al. [163] analyze the representational power of networks containing residual 
connections. 

Parallel Training for Large Models 

Recently, there have been suggestions to reduce the optimization effort by employ-
ing larger mini-batches. You et al. [159] propose the LAMB optimizer with 
layerwise adaptive learning rates to accelerate training of PLMs using large mini-
batches. They prove the convergence of their approach to a stationary point in 
a general nonconvex setting. Their empirical results demonstrate the superior 
performance of LAMB. It is possible to reduce the BERT training time from 3 days 
to just 76min with very little hyperparameter tuning and batch sizes of 32,868 
without any degradation of performance. The LAMB program code is available 
online [97]. In addition, the memory requirements of the optimization may be 
reduced [119] to enable parallelization of models resulting in a higher training 
speed. 

Large models such as GPT-3 have many billion parameters that no longer fit 
into the memory of a single computational device, e.g. a GPU. Therefore, the 
computations have to be distributed among several GPUs. There are different 
parallelization techniques [156]: 

• Data parallelism assigns the same model code and parameters to each GPU but 
different training examples [72]. Gradients are computed in parallel and finally 
summarized. 

• Pipeline parallelism partitions the model into different parts (e.g. layers) that are 
executed on different GPUs. If a part is computed it sends its results to the next 
GPU. This sequence is reversed in the backward pass of training. 

• Within-layer model parallelism distributes the weights of a single layer across 
multiple GPUs. 

The implementation of a parallelization strategy for a model is a tedious process. 
Support is given by the DeepSpeed library [122] that makes distributed training 
easy, efficient, and effective. Recently the GSPMD system [156] was developed 
which automates this process and is able to combine different parallelism paradigms 
in a unified way. GSPMD infers the distribution of computations to a network of 
GPUs based on limited user annotations to the model definition. It was, for instance, 
applied to distribute models with 1 trillion parameters on 2048GPUs.
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2.4.2 Regularization of Pre-trained Language Models 

If a model contains too many parameters it can nearly perfectly adapt to the 
training data by optimization, reflecting nearly all details of the training data. 
During this overfitting the model learns the random variations expressed in the 
training data and deviates from the mean underlying distribution. Consequently, 
it has usually a lower performance on test data and a larger generalization error. 
To avoid this phenomenon, the representational capacity of the model has to be 
reduced by regularization methods, which often have the same effect as reducing 
the number of parameters. Well known approaches for Deep Learning models are 
the . L2 regularization and . L1 regularization penalizing large parameter values, or 
Dropout temporarily setting randomly selected hidden variables to 0. A survey of 
regularization strategies for Deep Neural Networks is given by Moradi et al. [96]. 

The training of PLMs is often non-trivial. One problem is the occurrence 
of vanishing or exploding gradients, which is connected to the problem of the 
vanishing or exploding variance of input values of different layers [55]. Batch 
normalization normalizes the values of the components of hidden units to mean 0.0 
and variance 1.0 and thus reduces the variation of input values. For a mini-batch of 
training cases the component values are aggregated to compute a mean and variance, 
which are then used to normalize the input of that component on each training 
case [62]. It can be shown that batch normalization makes hidden representations 
increasingly orthogonal across layers of a Deep Neural Network [35]. 

In their paper on the Transformer, Vaswani et al. [141] use a variant called layer 
normalization [6] for regularization. The authors compute the mean and variance of 
the different components of hidden units for each training example and use this to 
normalize the input to mean 0.0 and variance 1.0. In addition, they apply dropout to 
the output of self-attention. Finally, they use label smoothing [133] where the loss 
function is reformulated such that the observed tokens are not certain but alternative 
tokens may be possible with a small probability. This is a form of regularization 
which makes optimization easier. The RMSNorm [162] is a variant of the layer 
normalization, which only normalizes the input by division with the root-mean-
square error without shifting the mean. In experiments, it compares favorably with 
the layer normalization [101]. 

2.4.3 Neural Architecture Search 

The structure of the self-attention block was manually designed, and it is not 
clear, whether it is optimal in all cases. Therefore, there are some approaches to 
generate the architecture of PLMs in an automatic way called Neural Architecture 
Search (NAS). A survey is provided by He et al. [56], who argue that currently the 
contributions of architecture search to NLP tasks are minor. Zöller [166] evaluate 
architecture search for machine learning models.
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Wang et al. [149] propose an architecture search space with flexible encoder-
decoder attentions and heterogeneous layers. The architecture search produces 
several transformer versions and finally concentrates on hardware restrictions to 
adapt the computations to processors at hand. The authors report a speedup of 3 and 
a size reduction factor of 3.7 with no performance loss. For relation classification 
Zhu et al. [165] design a comprehensive search space. They explore the search 
space by reinforcement learning strategy and yield models which have a better 
performance. 

Architecture search may also be formulated as a ranking task. RankNAS [60] 
solves this by a series of binary classification problems. The authors investigate 
translation and language models. For translation the usual encoder-decoder is 
included in a super-net, where each of the .1023 subnetworks is a unique architecture. 
The importance of an architectural feature (e.g., the number of layers) is measured 
by the increase in the model error after permuting the feature. The authors use 
an evolutionary optimization strategy and evaluate their approach on translation 
(WMT2014 En-De). They get increases in BLEU-values at a fraction of cost of other 
approaches. 

Recently differentiable architecture search has been developed, which embeds 
architecture search in a continuous search space and finds the optimal architecture 
by gradient descent. This leads to an efficient search process that is orders of 
magnitude faster than the discrete counterparts. This idea is applied by Fan et 
al. [43], who propose a gradient-based NAS algorithm for machine translation. 
They explore attention modules and recurrent units, automatically discovering 
architectures with better performances. The topology of the connection among 
different units is learned in an end-to-end manner. On a number of benchmarks 
they were able to improve the performance of the Transformer, e.g. from 28.8 
to 30.1 BLEU scores for the WMT2014 English-to-German translation. There are 
other successful architecture search approaches for neural translation [130], named 
entity recognition [64], and image classification models [34, 147, 148], which may 
possibly be applied to other NLP tasks. 

2.4.4 The Uncertainty of Model Predictions 

Variations in the outcome of a PLM can have two main sources: 

• Epistemic uncertainty reflects our limited knowledge about the real world. The 
real world situation corresponding to the training set can change causing a 
distribution shift. Moreover, the collected documents can have biases or errors 
and cover unwanted types of content. It is clear that the structure of the real 
world and the PLM differ. Therefore, a PLM can only approximate the correct 
conditional probabilities of language. This type of uncertainty is often called 
structural uncertainty and is difficult to estimate.
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• Aleatoric uncertainty is caused by random variations which can be assessed 
more easily. The training data is usually a sample of the underlying data in 
the population and therefore affected by the sampling variation. If a model 
is randomly re-initialized, it generates a completely different set of parameter 
values which leads to different predictions. Finally, language models predict 
probabilities of tokens and the generation of new tokens is also affected by 
uncertainty. The Bayesian framework offers a well-founded tool to assess this 
type of uncertainty in Deep Learning [44]. 

A recent survey of methods for estimating the model uncertainty is provided by 
Gawlikowski et al.[47]. We will describe three approaches to capture model uncer-
tainty: Bayesian statistics, a Dirichlet distributions, and ensemble distributions. 

Bayesian Neural Networks 

Bayesian Neural Networks directly represent the uncertainty of the estimated 
parameters .w = (w1, . . . , wdw) by the posterior distribution 

.p(w|X,Y ) ∝ p(y|X,w)p(w). (2.18) 

Here . X and . Y are the observed inputs and outputs in the training set and . p(Y |X,w)

is the likelihood, i.e. the probability of the outputs given . X and a parameter vector 
. w. The  prior distribution .p(w) describes the distribution of parameters before data 
is available. The distribution of predictions for a new input . ̃x is given by 

.p(ỹ|x̃,X,Y ) =
∫

p(ỹ|x̃,w)p(w|X,Y )dw. (2.19) 

The integral usually cannot be solved analytically and has to be approximated. Often 
a Monte Carlo approximation is used, which infers the integral by a sum over 
different parameter values .w[i] distributed according to the posterior distribution 
.p(w|X,Y ). If .ỹ[i] = f (x̃,w[i]) is a deterministic network predicting the output for 
a parameter .w[i] and input . ̃x, the resulting sample .ỹ[1], . . . , ỹ[k] can be considered 
as a sample of the output distribution .p(ỹ|x̃,X,Y ) [108]. 

Bayesian predictive distributions can be approximated in different ways: 

• Sampling approaches use a Markov Chain Monte Carlo algorithm to generate 
parameter values distributed according to the posterior distributions, from which 
realizations can be sampled [102]. Markov ChainMonte Carlo defines a sampling 
strategy, where first a new parameter value . w is randomly generated and then the 
algorithm computes the probability to accept . w, or to keep the previous parameter 
value. Welling et al. [150] combined this approach with stochastic gradient 
descent and demonstrated that Bayesian inference on Deep Neural Networks can 
be done by a noisy SGD. A review of the favorable convergence properties has
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been given by Nemeth et al. [103]. Practical evaluations of this technique are 
performed by Wenzel et al. [152]. 

• Variational inference approximates the posterior distribution by a product . q(w)

of simpler distributions, which are easier to evaluate [9]. Using multiple GPUs 
and practical tricks, such as data augmentation, momentum initialization and 
learning rate scheduling, and learning rate scheduling, Osawa et al. [105] 
demonstrated that variational inference can be scaled up to ImageNet size data-
sets and architectures. 

It can be shown [45] that dropout regularization (Sect. 2.4.2) can be considered 
as approximate variational inference. Hence, the predictive uncertainty can be 
estimated by employing dropout not only during training, but also at test time. A 
variant called Drop connect randomly removes incoming activations of a node, 
instead of dropping an activation for all following nodes. This approach yields a 
more reliable uncertainty estimate and can even be combined with the original 
dropout technique [88]. 

• Laplace approximation considers the logarithm of the posterior distribution 
around a local mode . ŵ and approximate it by a normal distribution . N(ŵ, [H +
βI ]−1) over the network weights [9]. H is the Hessian, the matrix of second 
derivatives, of .logp(w|X,Y ). This approximation may be computed for already 
trained networks and can be applied to Deep Neural Networks [76]. A problem is 
the large number of coefficients of H , which limits the computations to elements 
on the diagonal. Extensions have been proposed by George et al. [48]. 

Estimating Uncertainty by a Single Deterministic Model 

Most PLMs predict tokens by a discrete probability distribution. If the softmax 
function is used to compute these probabilities, the optimization over the training 
set usually leads to very extreme probabilities close to 0 or 1. The network is often 
overconfident and generates inaccurate uncertainty estimates. To assess uncertainty, 
the difference between the estimated distribution and the actual distribution has 
to be described. If .v1, . . . , vdv is the vocabulary of tokens and . π a discrete 
distribution over these tokens, then we can use the Dirichlet distribution . p(π |α(x))

to characterize a distribution over these discrete distributions. The vector . α depends 
on the input . x and has a component . αi for each . vi . The  sum .

∑
i αi characterizes the 

variance. If it gets larger, the estimate for the probability of . vi has a lower variance. 
Malinin et al. [85] use the expected divergence between the empirical distribution 

and the predicted distribution to estimate the .p(π |α(x)) for a given input . x. In the  
region of the training data the network is trained to minimize the expected Kullback-
Leibler (KL) divergence between the predictions of in-distribution data and a low-
variance Dirichlet distribution. In the region of out-of-distribution data a Dirichlet 
distribution with a higher variance is estimated. The distribution over the outputs 
can be interpreted as a quantification of the model uncertainty, trying to emulate the 
behavior of a Bayesian modeling of the network parameters [44].
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Liu et al. [83] argue that the distance between training data elements is relevant 
for prediction uncertainty. To avoid that the layers of a network cause a high 
distortion of the distances of the input space, the authors propose a spectral nor-
malization. This SNGP approach limits the distance .‖h(x[1]) − h(x[2])‖ compared 
to .‖x[1] − x[2]‖, where .x[1] and .x[2] are two inputs and .h(x) is a deep feature 
extractor. Then they pass .h(x) into a distance-aware Gaussian Process output layer. 
The Gaussian Process posterior is approximated by a Laplace approximation, which 
can be predicted by a deterministic Deep Neural Network. 

The authors evaluate SNGP on BERT.BASE to decide, if a natural utterance input 
is covered by the training data (so that it can be handled by the model) or outside. 
The model is only trained on in-domain data, and their predictive accuracy is 
evaluated on in-domain and out-of-domain data. While ensemble techniques have 
a slightly higher prediction accuracy, SNGP has a better calibration of probabilities 
and out-of-distribution detection. An implementation of the approach is available 
[138]. 

A number of alternative approaches are described in [47, p. 10f], which also 
discuss mixtures of Dirichlet distributions to characterize predictive uncertainty. In 
general single deterministic methods are computational less demanding in training 
and evaluation compared to other approaches. However, they rely on a single 
network configuration and may be very sensitive to the underlying network structure 
and the training data. 

Representing the Predictive Distribution by Ensembles 

It is possible to emulate the sampling variability of a training set by resampling 
methods. A well-founded approach is bagging, where . nb samples of size  n are 
drawn with replacement from a training set of n elements [20, 107]. For the i-th 
sample a model may be trained yielding a parameter . ŵ[i]. Then the distribution 
of predictions .f (x, ŵ

[i]
) represent the uncertainty in the model prediction for an 

input . x, and it can be shown that their mean value . 1
nb

∑
i f (x, ŵ

[i]
) has a lower 

variance than the original model prediction [73]. In contrast to many approximate 
methods, ensemble approaches may take into account different local maxima of the 
likelihood function and may cover different network architectures. There are other 
methods to introduce data variation, e.g. random parameter initialization or random 
data augmentation. A survey on ensemble methods is provided by Dong et al. [40]. 

Besides the improvement in the accuracy, ensembles are widely used for 
representing prediction uncertainty of Deep Neural Networks [73]. In empirical 
investigations, the approach was at least as reliable as Bayesian approaches (Monte 
Carlo Dropout, Probabilistic Backpropagation) [73]. Reordering the training data 
and a random parameter initialization induces enough variability in the models 
for the prediction of uncertainty, while bagging may reduce the reliability of 
uncertainty estimation [77]. Compared to Monte Carlo Dropout, ensembles yield 
more reliable and better calibrated prediction uncertainties and are applicable to 
real-world training data [13, 53]. Already for a relatively small ensemble size of
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five, deep ensembles seem to perform best and are more robust to data set shifts 
than the compared methods [106]. 

Although PLMs have been adapted as a standard solution for most NLP tasks, 
the majority of existing models is unable to estimate the uncertainty associated 
with their predictions. This seems to be mainly caused by the high computational 
effort of uncertainty estimation approaches. In addition, the concept of uncertainty 
of a predicted probability distribution is difficult to communicate. However, it is 
extremely important to get a diagnosis, when a PLM is given an input outside the 
support of its training data, as then the predictions get unreliable. 

Among the discussed approaches the ensemble methods seem to be most reliable. 
However, they require a very high computational effort. New algorithms like SNGP 
are very promising. More research is needed to reduce this effort or develop 
alternative approaches. Recently benchmark repositories and datasets have been 
developed to provide high-quality implementations of standard and SOTA methods 
and describe best practices for uncertainty and robustness benchmarking [99]. 

Implementations 
Uncertainty Baselines [10, 98] provide a collection high-quality implementations of 
standard and state-of-the-art methods for uncertainty assessment. 

2.4.5 Explaining Model Predictions 

PLMs such as BERT are considered as black box models, as it is hard to understand, 
what they really learn and what determines their outputs. Hence, a lot of research 
goes into investigating the behavior of these models. There are three main reasons 
to explain the model predictions. Trust in the model predictions is needed, i.e. that 
the model generates reliable answers for the problem at hand and can be deployed 
in real-world applications. Causality asserts that the change of input attributes leads 
to sensible changes in the model predictions. Understanding of the model enables 
domain experts to compare the model prediction to the existing domain knowledge. 
This is a prerequisite for the ability to adjust the prediction model by incorporating 
domain knowledge. 

Explanations can also be used to debug a model. A striking example was an 
image classification, where a horse was not detected by its shape, but by a label in 
the image [74]. Explanations are most important for critical decisions that involve 
humans or can cause high damage. Examples are health care, the judicial system, 
banking, or self-driving cars. 

Explanation methods roughly can be grouped into local explanations or global 
explanations. A local explanation provides information or justification for the 
model’s prediction for a specific input . x, whereas global explanations cover the 
model in general. A large majority of models aims at local explanations, as these 
may be used to justify specific predictions. Surveys on methods for the explanation 
of PLMs are provided by Danilevsky et al. [36], Burkart and Huber [23], Xu et al.
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[155], Bauckhage et al. [11], Tjoa and Guan [139], and Belle and Papantonis [12]. 
Molnar [95] devotes a whole book to this topic and Bommasani et al. [17, p. 125] 
provide a recent overview. For language models different types of explanation can 
be used: 

• Feature importance measures the influence of single input features, e.g. tokens, 
on the prediction. It often corresponds to the first derivative of a feature with 
respect to the output [79]. As the meaning of input tokens is easily understood, 
this type of explanation is readily interpretable by humans. 

• Counterfactual explanations investigate, how an input . x has to be modified, to 
generate a different target output. 

• Surrogate models explain model predictions by a second, simpler model. One 
well-known example is LIME [123], which trains a local linear model around a 
single input . x of interest. 

• Example-driven explanations illustrate the prediction of an input . x by selecting 
other labeled instances that are semantically similar to . x. This is close to the 
nearest neighbor approach to prediction and has, for instance, been used for text 
classification [1]. 

• Source citation is a general practice of scientific work in which a claim is 
supported by citing respectable scientific sources. The same can be done for a 
text generated by language models with a retrieval component [57]. 

Other approaches like a sequence of reasoning steps or rule invocations are unusable 
for PLMs with many millions of parameters. 

The self-attention mechanism is the central function unit of PLMs. BertViz [144] 
is a visualization tool that allows users to explore the strength of attention between 
different tokens for the heads and layers in a PLM and allows users to get a quick 
overview of relevant attention heads. However, Jain et al. [63] demonstrate that 
attention does not correlate with feature importance methods and counterfactual 
changes of attention do not lead to corresponding changes in prediction. This may, 
for instance, be caused by the concatenation of head outputs and their subsequent 
processing by a fully connected nonlinear layer. Attentions are noisy predictors of 
the overall importance of components, but are not good at identifying the importance 
of features [129]. 

Linear Local Approximations 

An important concept is the contribution of input . xi towards an output . yj , e.g. a  
class probability. Gradient-based explanations estimate the contribution of input . xi

towards an output . yj , e.g. a class probability, by computing the partial derivative 
.∂yj /∂xi . This derivative is often called saliency and can be interpreted as linear 
approximation to the prediction function at input . x. LIME [123] defines a local 
linear regression model around a single input . x. Because of correlation of features, 
the coefficients of the input features depend on the presence or absence of the other 
input features. The SHAP approach therefore determines the influence of a feature
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Fig. 2.20 Contributions for the question classification task (left). Red marks positive influence, 
blue negative, and black tokens are neutral. Contributions for the task of translating “good morning 
ladies and gentlemen” to the German “Guten Morgen Damen und Herren” are shown on the right 
side [132]. Words are tokenized to word pieces 

by the average influence of the feature for all combinations of other features [84]. 
The authors show the favorable theoretical properties of this approach and derive 
several efficient computation strategies. 

Nonlinear Local Approximations 

Sundararajan et al. [132] formulate two basic requirements for this type of expla-
nation. Sensitivity: if the inputs .x[1] and .x[2] differ in just one feature and lead 
to different predictions, then the differing feature should be given a non-zero 
contribution. Implementation invariance: i.e., the attributions are always identical 
for two functionally equivalent networks. As the prediction functions are usually 
nonlinear, gradient-based methods violate both requirements and may focus on 
irrelevant attributes. 

Integrated Gradients [132] generates an approximation to the prediction 
function .F : Rn → [0, 1], which captures nonlinear dependencies. To assess the 
difference from baseline input .x[1] to another input . x[2], the authors compute the 
mean value of gradients .∂F (x)/∂x of the output with respect to inputs along the line 
from .x[1] to .x[2] by an integral. It can be shown that this approach meets the above 
requirements. The authors apply the approach to question classification according 
to the type of the answer (Fig. 2.20). The baseline input is the all zero embedding 
vector. Another application considers neural machine translation. Here the output 
probability of every output token is attributed to the input tokens. As baseline all 
tokens were zeroed except the start and end markers. A similar analysis is based on 
a Taylor expansion of the prediction function [7] .  

Liu et al. [82] propose a generative explanation framework which simultaneously 
learns to make classification decisions and generate fine-grained explanations for 
them. In order to reach a good connection between classification and explanation 
they introduce a classifier that is trained on their explanation. For product reviews 
they, for instance, generate the following positive explanations “excellent picture,
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attractive glass-backed screen, hdr10 and dolby vision” and negative reasons “very 
expensive”. The authors introduce an explanation factor, which represents the 
distance between the probabilities of the classifier trained on the explanations vs. 
the classifier trained on the original input and the gold labels. They optimize their 
models with minimum risk training. 

Explanation by Retrieval 

Recently, Deep Learning models have been playing an increasingly important role in 
science and technology. The algorithms developed by Facebook are able to predict 
user preferences better than any psychologist [24, 71]. AlphaFold, developed by 
DeepMind, makes the most accurate predictions of protein structures based on their 
amino acids [131]. And the PaLM and Retro models are capable of generating 
stories in fluent English, the latter with the knowledge of the Internet as background. 
However, none of the programs were actually able to justify their decisions and 
cannot indicate why a particular sequence was generated or on what information a 
decision was based on. 

In 2008, Anderson [5] predicted the end of theory-based science. In his view, 
theories are an oversimplification of reality, and the vast amount of accumulated 
data contains knowledge in a much more detailed form, so theories are no longer 
necessary. This is also the problem of Explainable AI, which aims to explain the 
decisions of Deep Learning models. It is always faced with a trade-off where 
predictive accuracy must be sacrificed in order to interpret the model output. 

As large autoregressive language models are combined with retrieval com-
ponents, document retrieval can be used not only to incorporate more accurate 
knowledge into the language generation process, but also to support the generated 
answers by authoritative citations. Metzler et al. [92] argues that future PLMs should 
justify created text by referring to supporting documents in the training data or 
background document collection. To implement this approach Nakano et al. [100] 
combine GPT-3 with the search engine BING to enhance language generation for 
question-answering by retrieved documents. Their WebGPT [100] first creates a 
text in natural language (Sect. 6.2.3). After that, it enhances the generated sentences 
by different references to the found documents, similar to the way a scientist 
expands his texts by references. By this procedure WebGPT is able to justify and 
explain the created answer. This could be a way to make the generated text more 
trustworthy. Note that the advanced dialog model LaMDA can include links to 
external documents supporting an answer (Sect. 6.6.3). 

Explanation by Generating a Chain of Thought 

Large autoregressive PLMs like GPT-3 are able to produce a very convincing 
continuation of a start text, and, for instance, generate the answer for a question. 
It turned out that their ability to generate the correct answer could drastically be
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Fig. 2.21 Explaining by a chain of thoughts. The first box contains two examples of thought 
chains, which are used for every query. This chain-of-thought prompt was input to the PaLM 
model together with the input query, and the model output was generated by PaLM [30, p. 38] 

improved by giving a few examples with a chain of thought (Sect. 3.6.4) for deriving 
the correct answer. This has been demonstrated for the PaLM language model [30]. 

A generated thought chain can be used for other purposes. First, it can be checked 
whether the model produces the correct answer for the “right reasons”, rather than 
just exploiting superficial statistical correlations. In addition, the explanation can 
potentially be shown to an end-user of the system to increase or decrease their 
confidence in a given prediction. Finally, for some queries (e.g., explaining a joke), 
the explanation itself is the desired output [30]. 

Figure 2.21 contains a few-shot query and the resulting answer. For application 
only a few example chains of thought are necessary, which can be reused. To 
generate the best answer for the question greedy decoding has to be used, yielding 
the optimal prediction. As PaLM shows, the enumeration of argument steps works 
empirically. However, a sound theory of how models actually use such arguments 
internally is still lacking. Further, it is not known under which circumstances the 
derivation of such a chain of thoughts succeeds. It should be investigated to what 
extent the reasoning of a model corresponds to the reasoning steps performed by 
humans.
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Implementations 
Ecco [2] and BertViz [143] are tools to visualize the attentions and embeddings 
of PLMs. An implementation and a tutorial on integrated gradients is available for 
TensorFlow [136]. Captum [26, 70] is an open-source library to generate interpre-
tations and explanations for the predictions of PyTorch models containing most of 
the approaches discussed above. Transformers-interpret [113] is an alternative open-
source model explainability tool for the Hugging Face package. 

2.4.6 Summary 

Similar to other large neural networks, PLMs are optimized with simple stochastic 
gradient descent optimizers that are able to approach the region of minimal cost 
even for huge models with billions of parameters and terabytes of training data. 
This requires parallel training on computing networks which can be controlled by 
suitable software libraries. There are many recipes in the literature for setting hyper-
parameters such as batch size and learning rate schedules. Important ingredients 
are residual connections to be able to optimize networks with many layers and 
regularization modules to keep parameters in a manageable range. 

Neural architecture search is a way to improve performance and reduce memory 
requirements of networks. A number of approaches have been proposed that signifi-
cantly speed up training. Some methods provide models with better performance 
and lower memory footprint. There are new differential methods that have the 
potential to derive better architectures with little effort. 

PLMs aim to capture relations between language concepts and can only do 
so approximately. Therefore, it is important to evaluate their inherent uncertainty. 
Three different approaches to analyze the uncertainty are described. Among these, 
ensemble methods appear to be the most reliable, but involve a high computational 
cost. New algorithms such as SNGP, which are based on a single model, are very 
promising. 

To enable a user to decide whether a model result makes sense, it is necessary 
to explain how the result was obtained. Explanations can be provided by showing 
the importance of features for a result, by exploring the PLM by related examples 
or by approximating the PLM with a simple model. Some libraries are available 
that allow routine use of these methods. A new way of explaining texts generated 
by PLMs is to enhance the texts with appropriate citations of relevant supporting 
documents. Finally, a PLM can be instructed by chain-of-thought prompts to provide 
an explanation for the model response. This type of explanation is particularly easy 
to understand and can reflect the essential parts of a chain of arguments. 

The next chapter discusses approaches to improve the three basic PLM types by 
new pre-training tasks or architectural changes. The fourth chapter examines the 
knowledge, which can be acquired by PLMs and that can be used to interpret text 
and to generate new texts.
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Chapter 3 
Improving Pre-trained Language Models 

Abstract This chapter describes a number of different approaches to improve 
the performance of Pre-trained Language Models (PLMs), i.e. variants of BERT, 
autoregressive language models similar to GPT, and sequence-to-sequence models 
like Transformers. First we may modify the pre-training tasks to learn as much 
as possible about the syntax and semantics of language. Then we can extend the 
length of the input sequence to be able to process longer inputs. Multilingual models 
are simultaneously trained with text in different languages. Most important is the 
inclusion of further knowledge into the PLM to produce better predictions. It turns 
out that by increasing the number of parameters, the size of the training data and the 
computing effort the performance of the models can always be increased. There are 
a number of different fine-tuning strategies which allow the model to be adapted to 
special tasks. In addition, models may be instructed by few-shot prompts to solve 
specific tasks. This is especially rewarding for larger PLMs, which therefore are 
called Foundation Models. 

Keywords Pre-training objective · Input size · Multilingual model · Long 
dependencies · Additional knowledge · Fine-tuning 

This chapter describes a number of different approaches to improve the performance 
of Pre-trained Language Models (PLMs), i.e. variants of BERT, autoregressive lan-
guage models similar to GPT, and sequence-to-sequence models like Transformers. 
When these models have a large number of parameters, they can be instructed by 
input prompts to solve new tasks and are called Foundation Models. 

• Modification of the pre-training tasks. During pre-training with a large corpus 
the PLM should learn as much as possible about the syntax and semantics of 
language. By adapting and enhancing the pre-training objectives the performance 
of PLMs can be improved markedly, as shown in Sect. 3.1. 

• Increase of the input size. The length of the input sequence restricts the context, 
which can be taken into account by a PLM. This is especially important for 
applications like story generation. Simply increasing input length does not work, 
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as then the number of parameters grows quadratically. In Sect. 3.2, alternatives 
for establishing sparse attention patterns for remote tokens are explored. 

• Multilingual training simultaneously trains the same model in different lan-
guages. By appropriate pre-training targets the models can generate a joint 
meaning representation in all languages. Especially for languages with little 
training data better results can be achieved Sect. 3.3. 

• Adding extra knowledge. PLMs can be enhanced by including additional 
information not covered by the training data. This is important as due to the 
restricted number of parameters PLMs cannot memorize all details included in 
the training data. Moreover, strict rules are usually represented only as weak 
associations and need to be reinforced. By incorporating facts and rules from an 
outside knowledge base (KB) or an additional text collection PLMs can obtain 
necessary information and keep the content up-to-date, as shown in Sect. 3.4. 

• Changing the model size. Theoretical results show that model performance 
improves when the PLMs become larger (Foundation Models). Hence, there is a 
general trend to increase model size, e.g. by forming mixture-of-experts. On the 
other hand, it may be necessary to reduce the computation effort and the memory 
footprint of a PLM. There are a number of techniques to achieve this without 
sacrificing much performance, as described in Sect. 3.5. 

• Fine-tuning for specific applications. This can be performed according to 
different strategies, e.g. with several fine-tuning steps or multiple fine-tuning 
tasks. Larger PLMs usually can be instructed by prompts to perform specific 
tasks and are called Foundation Models. In addition, few-shot prompts may 
be optimized to achieve a more adequate model reaction. This is described in 
Sect. 3.6. 

Note that nearly all proposals may be combined for most model types, resulting in 
the vast number of model variants that is currently discussed. 

3.1 Modifying Pre-training Objectives 

The basic BERT model [49] has two pre-training tasks: the prediction of masked 
tokens with the masked language model (MLM) and next sentence prediction (NSP) 
(Sect. 2.1). These tasks were chosen heuristically and there are many plausible 
loss functions and architectures. Researchers have investigated many alternative 
training objectives, model structures, and attention mechanisms. In this section, the 
most promising of these variations of the BERT and Transformer architecture are 
discussed and their relative merits are compared. 

An important question is the level of aggregation of the input sequence. Here 
subword tokens are standard. One option is to use raw letters as input. However, 
this may lead to a high computational burden, as the computational cost of self-
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attention grows quadratically with the size of the input. Another option is the use of 
domain-adapted knowledge to model the input sequence by learned tokenizations or 
patch embeddings (e.g. for image representation, Sect. 7.2). These methods reduce 
the input complexity, but may potentially ignore useful information in the input [19]. 

3.1.1 Autoencoders Similar to BERT 

To improve BERT’s performance a number of alternatives to capture knowledge 
from the unlabeled data were proposed: 

• RoBERTa dynamically changes masks during training. 
• ALBERT replaces the matrices for self-attention by a matrix product and shares 

parameters across all layers. 
• Predicting single masked tokens can be generalized. SpanBERT masks spans 

of tokens and predicts them. ELECTRA detects randomly replaced tokens at 
arbitrary positions. XLNet permutes the order of tokens in a sentence and predicts 
tokens left to right similar to a language model. 

• DeBERTa disentangles the embeddings for content and position. 

The details are given in the following paragraphs. Popular loss functions are defined 
in Table 3.1. A list of prominent autoencoders is provided in Table 3.2. They  
can be compared by their performance on natural language understanding tasks 
(Sect. 2.1.5) like GLUE [218]. 

RoBERTa [127] is an enhanced BERT model boosted by tweaking parts of 
the pre-training process. The authors improved the BERT.BASE architecture by the 
following changes: (1) Instead of using the same mask for all epochs, they replicate 
training sequences with different masks. (2) They remove the Next-Sentence-
Prediction objective and found that performance is best, when all sentences in 
a batch are from the same document. (3) Larger batches with larger step sizes 
increase perplexity for both the masked language model task and downstream task 
performance. (4) A 10-fold increase of training data to 160GB, which is used in 
large batches. The resulting model achieves an impressive SOTA result of 88.5 on 
GLUE (language understanding [217]), and the reading comprehension tasks RACE 
and SQuAD [173]. 

SpanBERT [98] introduces a span-level pre-training approach. Rather than 
masking single tokens during pre-training, spans of one or more complete words are 
masked covering about 15% of the tokens. A new span-boundary objective (SBO) 
is introduced, where tokens inside of the masked span are predicted, using only 
representations of the tokens just outside the boundaries of the span combined with 
positional information. The details are shown in Fig. 3.1. SBO is used together with 
the usual MLM objective. Finally, the authors omit the next sentence prediction task 
as in [127] and only use single text fragments/sentences for training. The authors 
find that masking random spans is more effective than masking linguistic units. 
SpanBERT has the same configuration as BERT.LARGE and is pre-trained on the
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Table 3.1 Loss functions for PLMs. A sequence is denoted by .x = (x1, . . . , xT ) and . z =
(z1, . . . , zR) is a related sequence, e.g. a translation 

Name Loss function Description 

MC multivariate 
classification 

.LMC = − logp(y|x) For each training instance 
.(x, y), e.g. logistic classifier, 
Sect. 1.3 

NM neighborhood model .LNM =
− ∑T

t=1
∑

i∈N(t) logp(xi |xt )

For neighborhood . N(t) =
.{t−k, . . . , t−1, t+1, . . . , t+k}, 
e.g. word2vec, Sect. 1.5 

LM language model .LLM = − ∑T
t=1 logp(xt |x<t ) e.g. RNN Sect. 1.6, GPT  

Sect. 2.2.2 

S2S 
sequence-to-sequence 
model 

.LS2S =
− ∑nz

t=1 logp(zt |z<t , x)

For input sequence 
.x = (x1, . . . , xT ) and 
translation . z = (z1, . . . , zR)

Sects. 1.6 and 2.3 

MLM masked language 
model 

.LMLM =
− ∑

t∈m(x) logp(xt |x̃)

.m(x) contains the indices of 
masked tokens in . x. In . ̃x the 
masked tokens are replaced by 
MASK, e.g. BERT, Sect. 2.1 

TLM translation masked 
language model 

.LT LM = − ∑
t∈m(x) logp(xt |x̃) .m(x) contains the indices of 

masked tokens. . ̃x contains a 
sentence and its translation. 
Masked tokens are replaced by 
MASK, e.g. mBERT, Sect. 3.3 

SBO span boundary 
objective 

.LSMLM =
− ∑

(i:j)∈m(x) logp(xi:j |x̃)

.m(x) contains the spans . (i : j)

of masked tokens in . x. In . ̃x the 
masked tokens are replaced by 
other tokens, e.g. SpanBERT, 
Sect. 3.1.1 

PLM permutation 
language model 

.LPLM = − ∑T
t=1 logp(zt |z<t ) .z = perm(x) is a permutation 

of . x, e.g. XLNet, Sect. 3.1.1 

NSP next sentence 
prediction 

.LNSP = − logp(ξ |x, z) .ξ=1 if text . z after x (else . z is 
randomly selected), e.g. BERT, 
Sect. 2.1 

SOP sentence order 
prediction 

.LSOP = − logp(ξ |x, z) .ξ=1 if text . z after . x (else . x after 
. z), e.g. ALBERT, Sect. 3.1.1 

RTD replaced token 
detection 

.LRT D =
− log

∑T
t=1 p(xt=x̃t |x̃)

In . ̃x randomly selected elements 
of . x were replaced, e.g. 
ELECTRA, Sect. 3.1.1 

BooksCorpus and the EnglishWikipedia. SpanBERT achieves a new SOTA of 79.6% 
F1 on the OntoNotes coreference task [164], which requires identifying pronouns 
and the corresponding nouns or two phrases referring to the same thing (Sect. 5.4.1).
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Table 3.2 Autoencoders similar to BERT. The pre-training and fine-tuning loss functions are 
defined in Table 3.1. The benchmark figures are only a hint, as they depend on the number of 
parameters and the computing effort 

Model Section Pre-training Fine-tuning Extra Benchmark 

ELMo [156] 1.6 BiLM MC Use bidirectional 
LSTM 

GLUE 71.0 

BERT [49] 2.1 MLM + NSP MC Predict masked tokens GLUE 80.5 

RoBERTa [127] 3.1.1 MLM MC Train longer, new 
mask in new epoch 

GLUE 88.5 

SpanBERT [98] 3.1.1 PLM, SBO MC Predict spans of 
tokens 

GLUE 82.8 

ELECTRA [223] 3.1.1 RTD MC Replaced token 
detection 

GLUE 89.4 

StructBERT [39] 3.1.1 RTD MC Reorder shuffled 
tokens 

GLUE 89.0 

ALBERT [113] 3.1.1 MLM + SOP MC Factorized 
embeddings, 
parameter sharing 

GLUE 89.4 

XLNET [240] 3.1.1 PLM MC Predict permuted 
tokens 

GLUE 90.5 

DeBERTa [76] 3.1.1 MLM MC, S2S Disentangled attention GLUE 90.0 

Prod. Key [112] 3.1.1 MLM MC Nearest neighbor – 

UniLM [8] 3.1.3 MLM, LM MC, LM Uni- and bidirectional GLUE 87.3 

BigBird [247] 3.2.1 MLM MC, S2S Sparse attention 
mechanism 

TriviaQA 84.5 

Fig. 3.1 SpanBERT [98] concatenates the embeddings outside the border of a span with a position 
embedding. With this input a 2-layer model predicts the probabilities of masked tokens 

StructBERT [223] enhances the original BERT MLM objective by the task to 
predict the order of shuffled token triples. In addition, the order of three sentences 
has to be detected. Using models with the same number of parameters, StructBERT 
can increase the SOTA on GLUE in comparison to BERT and RoBERTa to 83.9 and 
89.0, respectively.
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Electra [39] proposes a new pre-training task called replaced token detection 
(RTD). In the paper a generator network, trained with a masked language model 
loss, is combined with a discriminator network. Some tokens in the input sequence 
are replaced with plausible alternatives which are generated by a small language 
model (about .1/4 of the size of the discriminator). The discriminator network has 
to predict for every token, whether it is a replacement or not. This corruption 
procedure solves a mismatch in BERT, where MASK tokens appear in pre-training 
but not in fine-tuning. The model learns from all input tokens instead of just the 
small masked subset, making it more computationally efficient than e.g. BERT 
and RoBERTa, while performing better on several tasks, e.g. 89.4% on the GLUE 
language understanding task. 

ALBERT (a lite BERT) [113] uses two parameter-reduction techniques to tackle 
the huge memory consumption of BERT and its slow training speed. The first tweak 
is untying the dimensionality of the WordPiece embeddings from the hidden layer 
size of BERT. Instead of using a single embedding matrix M , the authors factorize 
.M = A ∗ B, such that the joint number of parameters in A and B is much lower 
than the number of parameters in M . The second tweak is sharing all parameters 
across all layers of BERT, which is shown to stabilize training and keep the number 
of parameters fixed even if more layers are added. In addition to the two tweaks, a 
new sentence order prediction (SOP) is introduced. Specifically, the model has to 
predict if the order of two sentences is correct or reversed. The authors report that 
this task improves accuracy compared to BERT’s NSP task, which could be solved 
by comparing the topics of the two sentences. It is still unclear, however, if this is 
the best way to incorporate text structure in training. ALBERT achieved new SOTA 
results on GLUE and SQuAD. 

XLNet solves an autoregressive pre-training task instead of predicting masked 
words [240]. This addresses the problem that BERT’s [MASK] token only appears 
during pre-training and not in fine-tuning. The words in a sequence, e.g. “The. 1
mouse. 2 likes. 3 cheese. 4”, are reordered together with their position information 
(indices) by a random permutation, e.g. “cheese. 4 The. 1 likes. 3 mouse. 2”. The task 
is to successively predict the tokens in the permuted sequence similarly to a GPT 
language model. The model has to predict, e.g. p(mouse|2, cheese. 4, The. 1, likes. 3). 
Note that the model must additionally know the position, here 2, of the word 
to be predicted. The transformer, however, mixes the position information with 
the content information by forming a sum. Hence, the position information is 
inseparable from the token embedding. 

Therefore, the authors decided to compute an additional self-attention embedding 
called query stream, which as query only receives the target position and then can 
compute the attention with the key and value vectors (Sect. 2.1.1). The resulting 
embedding encodes the position of the token to be predicted and correlations to other 
tokens, but has no information on the content of that token. This information can be 
added as input to the model. The normal self-attention and the query stream have 
the same parameter matrices Q (query),K (key), V (value). To save training effort, 
XLNet only predicts a few tokens at the end of the permuted sequence. In addition, 
XLNet integrates the segment recurrence mechanism and relative encoding scheme
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of Transformer-XL (Sect. 3.2.2) into pre-training, which empirically improves the 
performance especially for tasks involving a longer text sequence. 

When a token is predicted information about tokens before and after it may 
be used. Therefore, the model is a bidirectional encoder. With BERT, if the two 
tokens “New” and “York” are masked, both words are predicted independently, 
ignoring valuable information. In contrast, XLNet properly handles the dependence 
of masked tokens. XLNet was able to outperform BERT and RoBERTa on many 
tasks, e.g. the GLUE language understanding tasks, reading comprehension tasks 
like SQuAD (Sect. 2.1.5), text classification tasks such as IMDB (movie review 
classification) [130]. 

Product Keys [112] replace the dot-product attention by a nearest neighbor 
search. A query . qr is split into two sub-queries .q

[1]
r and . q

[2]
r . For each sub-query the 

k closest sub-keys .k
[1]
i and .k

[2]
j are selected. From the . k2 combinations of sub-keys 

the highest dot products can be efficiently computed and the k highest combinations 
are selected. The results are normalized with the softmax function and used for 
the computation of a weighted sum of value vectors. During optimization only 
the k optimal keys are affected reducing the training effort. The approach allows 
very large transformers to be defined with only a minimal computational overhead. 
With 12 layers the authors achieve the same performance as a 24 layer BERT 
model using only half of the computation time. In a comprehensive comparison 
of transformer architectures [142] the approach yields an increase for SuperGLUE 
NLU task (Sect. 4.1.2) from 71.7% for the standard T5 model to 75.2%. 

DeBERTa [76] uses a  disentangled attention mechanism, where each word is 
represented by two different types of vectors encoding content and position. The 
attention weights between tokens are computed using different matrices for content 
and relative position. In addition, DeBERTa includes absolute word positions in 
the last layer to capture different syntactic roles in the sentence. During fine-
tuning the model employs an “adversarial” training approach, where embeddings 
are normalized to probability vectors. Then the model is trained to be robust against 
small perturbations of embeddings. According to the authors, this improves the 
performance of fine-tuned models. The large version of the model with 1.5B param-
eters has superior performance in several application areas, e.g. in natural language 
understanding (Sect. 4.1.2), where DeBERTa surpasses the human performance on 
the SuperGLUE benchmark [219] for the first time, increasing the macro-average 
score to 89.9%. 

Bengio et al. [12] argue that representations, e.g. embeddings, should be disen-
tangled and should represent different content aspects, e.g. syntax, style, semantics, 
in different parts of the embedding vector. Locatello et al. [129] have proven that  
this is not possible in an unsupervised way. Hence, some explicit supervision or 
prior information has to be used to generate interpretable subvectors of embeddings. 

DeBERTaV3 [75] substitutes theMLM loss of DeBERTa with the replaced token 
detection (RTD) of Electra (Sect. 3.1.1). In addition, a new gradient-disentangled 
embedding sharing method is employed that improves both training efficiency and 
the quality of the pre-trained model. Its largest version has a 128k-token vocabulary,
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24 layers, and 304M parameters. For the GLUE benchmark with fine-tuning, the 
model increases the score by 1.4% to a new SOTA of 91.4%. The multi-language 
version of the model mDeBERTa.BASE outperforms XLM-R.BASE by 3.6% in terms 
of the cross lingual transfer accuracy on the XNLI task (Sect. 3.3.1). 

3.1.2 Autoregressive Language Models Similar to GPT 

By increasing the number of parameters and the training set size the capabilities of 
GPT models can be markedly improved. An overview is given in Table 3.3. 

GPT-3 [25] is a language model with extreme dimensions. Its largest version has 
96 layers, 96 attention heads, 175 billion parameters and covers sequences of length 
2048. It was trained on a text collection of books, Wikipedia and web pages of 
about 500 billion tokens. The details of the architecture are not known yet. GPT-3 is 
structurally similar to GPT-2, and therefore its higher level of accuracy is attributed 
to its increased capacity and higher number of parameters. The model achieved an 
unprecedented performance in language modeling, question answering, etc. Some 
results are compiled in Table 3.4 and many more in the paper [25]. 

Table 3.3 Autoregressive language models (LM) similar to GPT. ‘Details’ provides the number 
of parameters and specific features. The ‘benchmark’ figures are only a hint, as they depend on the 
selected number of parameters and the computing effort. Best benchmark value printed in bold 

Model Section Details Benchmark 

GPT-2 [167] 2.2 1.6B LM to generate text Lambada 0-shot 63.2% 

Retro [21] 6.2.3 7B LM with retrieval to generate text Lambada 73.0% 

Megatron-LM [193] 3.1.2 8.3B LM to generate text Lambada 66.5% 

Turing-NLG [179] 3.1.2 17B LM to generate text Lambada 68.0% 

Chinchilla [83] 3.1.2 70B LM to generate text Lambada 0-shot 77.4% 

GPT-3 [25] 3.1.2 175B long sequence LM to generate 
text 

Lambada 0-shot 76.2% 

WebGPT [25] 6.2.3 175B GPT-3 + Bing search engine Same as GPT-3 

InstructGPT [151] 3.6.5 175B GPT-3 fine-tuned for 
instructions 

Same as GPT-3 

OPT [151] 3.1.2 free 175B LM similar to GPT-3 Lambada 0-shot 74.7% 

BLOOM [151] 3.1.2 176B LM for European languages Lambada 0-shot 67.2% 

PanGu-. α [248] 3.1.2 200B long sequence LM to generate 
text 

Chinese benchmarks 

Gopher [168] 3.1.2 280B LM to generate text Lambada 0-shot 74.5% 

MT-NLG [4] 3.1.2 530B Megatron variant Lambada 76.6% 

PaLM [35] 3.1.2 540B shared key-value projections Lambada 0-shot 77.9% 
GLaM [51] 3.5.2 1200B mixture-of-experts LM Lambada 0-shot 73.7% 

WuDao-2.0 [178] 3.5.2 1750B mixture-of-experts LM Lambada: better than 
Turing-NLG
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Table 3.4 Comparing different versions of PaLM, GPT-3, Chinchilla, Gopher, OPT, GLaM, and 
BLOOM on a number of popular benchmarks covering text completion, pronoun coreference, 
common sense reasoning and question answering (QA) [22, 25, 35, 51]. FLOPS measures the 
computational effort in floating point operations per second. Best benchmark values printed in 
bold 

PaLM PaLM PaLM GPT-3 Chinchilla Gopher OPT GLaM BLOOM 

Model size (billion 
parameters) 

8 62 540 175 70 280 175 1200 176 

Num. training 
Tokens (billion) 

780 795 780 400 1400 300 180 1600 350 

Training effort 
(.1021 FLOPS) 

37.4 295.7 2527 314.0 588.0 504.0 .≈ 50 . ≈ 105

Lambada 0-shot 
(text compl.) 

69.5 75.4 77.9 76.2 77.4 74.5 73.7 67.2 

HellaSWAG 0-shot 
(text compl.) 

68.7 79.7 83.4 78.9 80.8 79.2 79.0 77.1 73.0 

PIQA 0-shot 
(common sense) 

77.1 80.5 82.3 80.5 81.8 81.8 78.5 80.4 

Winogrande 0-shot 
(coreference) 

66.3 77.0 81.1 70.2 74.9 70.1 74.0 73.4 70.1 

BoolQ 0-shot (QA) 68.3 84.8 88.0 60.5 83.7 79.3 64.0 83.0 

Natural questions 
0-shot (QA) 

8.4 18.1 21.2 14.6 16.6 10.1 21.5 

Natural questions 
few-shot (QA) 

14.6 27.6 36.0 29.9 31.5 24.5 

Trivia QA 0-shot 
(QA) 

39.5 67.3 76.9 64.3 67.0 52.8 68.0 

Trivia QA few-shot 
(QA) 

48.5 72.7 81.4 71.2 73.2 63.6 

Average task metric 51.2 64.8 69.8 60.7 65.2 59.5 

GPT-3 is able to generate fluent texts and covers a huge amount of world 
knowledge, as the example in Fig. 3.2 shows. Examples of generated texts can be 
found in many locations [23, 149]. The amount and quality of knowledge captured 
by PLMs is discussed in Chap. 4. In contrast to other language models, GPT-3 
can be instructed by a few sentences to perform quite arbitrary tasks (few-shot 
learning). This is a very simple way to use GPT-3 to solve quite specific tasks such 
as translating into another language, summarizing a document, correcting grammar, 
writing an essay on a given topic, etc. Details are discussed in Sect. 3.6.3. 

At the end of 2021 OpenAI provided an API to fine-tune GPT-3 with user-specific 
data [123]. In this way, the model can be adapted to a specific domain language 
and, in addition, be prepared to perform specific classification tasks. In general, this 
yields higher quality results than prompt design. In addition, no few-shot examples 
are necessary anymore. Details of fine-tuning GPT-3 are discussed in Sect. 3.6.2. 
Table 3.4 compares GPT-3 with other more recent language models on a number of 
popular benchmarks. There is a clear advantage of the new PaLM model.
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Fig. 3.2 Text generated by GPT-3 in response to an input. Quoted with kind permission of the 
authors [25, p. 28] 

GPT-J-6B is an open-source GPT model with 28 layers, 16 heads, a context size 
of 2048, and 6B parameters [221]. It has a similar performance as the GPT-3 version 
with 6.7B parameters. There is an interactive web demo where users can enter 
their prompts and a continuation text is generated [220]. GPT-Neo [16] is another 
free version of GPT with 2.7B parameters. It was trained on the Pile, a 825GB 
data set containing data from 22 diverse sources, including academic sources (e.g. 
ArXiv), Internet webpages (e.g. StackExchange), dialogs from subtitles, GitHub, 
etc. It outperforms the GPT-3 version with the same parameter size on some natural 
language understanding tasks [89]. Recently, GPT-NeoX-20B [215] was released. 
It has 44 layers, an internal vector dimension of 6144, 64 heads and uses batches of 
size 3.1M for training. In the LAMBADA benchmark (Sect. 4.1.3) with the task of 
predicting the missing last word of the last sentence of each passage, it achieves an 
accuracy of 72.0%. This value is close to GPT-3 with 75.2%. 

Megatron-LM [193] scale language models such as GPT-2 and BERT efficiently 
by introducing intra-layer model parallelism. The authors place self-attention heads 
as well as feed-forward layers on different GPUs, reducing the memory burden 
of a single GPU. They present a GPT-variant with 8.3B parameters and a 3.9B
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parameter model similar to BERT. Highlights of the approach include 76% scaling 
efficiency when using 512GPUs. Their GPT model reduces the WikiText-103 [134] 
SOTA perplexity from 15.8 to 10.8 and their BERT model increases RACE (reading 
comprehension) [110] accuracy to 90.9%. 

Jurassic-1 [122] is an autoregressive language model similar to GPT-3 with 
178B parameters. The authors chose a token vocabulary of 256k instead of 50k for 
GPT-3, which also included frequent multi-word expressions such as named entities 
and common phrases. The training text could be represented with 28% fewer tokens 
than GPT-3. Hence, the model can process queries up to 1.4. × faster when using the 
same architecture. The model used a maximal sequence length of 2048 tokens. In 
spite of the larger vocabulary only 2% of all parameters were required for the input 
embeddings. The model was trained on 300B tokens drawn from public text corpora 
using a final batch size of 3.2M tokens. 

PanGu-. α [248] is a model of Huawei similar to GPT-3 with up to 200B 
parameters. It was trained on 1.1TB Chinese text, and was applied to a large number 
of tasks in zero-shot, one-shot, and few-shot settings without any fine-tuning. The 
model has a performance comparable to GPT-3. 

OPT-175B (Open Pre-trained Transformer) [253] is a suite of 8 GPTmodels with 
125M to 175B parameters developed by Meta. It was trained on publicly available 
datasets with 180B tokens. The largest models has 96 layers, each with 96 heads. 
Although OPT-175B has the same parameter count as GPT-3, its training required 
only 1/7th of computing effort of GPT-3. The model was evaluated on 16 NLP tasks 
and showed approximately the same performance as GPT-3 (Table 3.4). All trained 
models up to 30B parameters are freely available. The large 175B parameter model 
is only available to academic researchers upon request to discourage the production 
of fake news. The model can be trained and deployed on only 16 NVIDIA V100 
GPUs. Some benchmark results are provided in Table 3.4. 

BLOOM [139] is an autoregressive large language model with 176B parameters. 
It has 70 layers with 112 attention-heads per layer and 2048 token sequence length. 
It was developed by the BigScience initiative of over 1000 AI researchers to provide 
a free large language model for everyone who wants to try. Its training data covers 
46 natural languages (English 30%, Chinese 16%, French 12%, Spanish 11%, . . . )  
and 11% code (java, php, . . . )  with  350B tokens. The 176B BLOOM model has 
been trained using the Megatron-DeepSpeed library [26] offering different types of 
parallelism. The model can be evaluated on 8 large GPUs. Hence, BLOOM is one of 
the largest trained model available for research purposes. Some benchmark results 
are provided in Table 3.4. 

Gopher [168] employed the GPT-2 architecture with two modifications. For 
regularization the authors used RMSNorm (Sect. 2.4.2) instead of LayerNorm and 
they employed the relative positional encoding scheme [44] instead of absolute 
positional encoding. Gopher has 80 layers with 128 attention heads and 280B 
parameters. All models were trained on 300B tokens with a context window of 
2048 tokens and a batch size of up to 6M tokens. For the large models a 16 bit 
float numbers was used to reduce memory and increase training throughput.
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Six model versions with different numbers of parameters were trained to assess 
the effect of model size. The authors present a comprehensive evaluation on 152 
tasks described in Table 4.3. Gopher shows an improvement on 100 of 124 tasks. 
One of these is the LAMBADA benchmark [154] where Gopher generates a zero-shot 
score of 74.5, which is only slightly below the value 76.6 of MT-NLG model with 
530B parameters [106]. For instance Gopher achieves SOTA for all 12 benchmarks 
on humanities covering areas like econometrics and psychology surpassing the best 
supervised results for 11 benchmarks. Some results are provided in Table 3.4 while 
Sect. 4.1.4 describes more details. 

Chinchilla [83] is a mid-size encoder model with 70B parameters, which has 
the same compute budget as the larger Gopher model, but four times as much 
data. Chinchilla consistently has a better performance than Gopher (Table 3.4) and 
significantly outperforms GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing 
NLG (530B) on a large set of downstream evaluation tasks. For every doubling of 
model size the number of training tokens should also be doubled. This is a much 
larger scaling rate than that predicted by Kaplan et al. [102] in Sect. 3.5.1. 

Turing-NLG [179] introduces an autoregressive language model with 78 trans-
former layers, a hidden vector-size of 4256, 28 attention heads and 17B parameters. 
As a model with more than 1.3B parameters cannot fit into a single GPU with 
32GB memory it must be parallelized, or broken into pieces, across multiple GPUs. 
Turing-NLG leverages a SOTA Deep Learning hardware with high communication 
bandwidth, the Megatron-LM framework, and the DeepSpeed library, which further 
optimizes the training speed and reduces the resources needed. The model achieved 
SOTA performance on language modeling tasks and also proved to be effective for 
zero-shot question answering and abstractive summarization. 

Its successor MT-NLG [4] is a 105-layer encoder model with 530B parameters 
and was trained across 280GPUs with a huge batch size of 1920. Similar to GPT-
3 it improves performance on zero-, one- and few-shot tasks. For the LAMBADA 
benchmark [154], for example, the model has to predict the last word of paragraph 
(Sect. 4.1.3). On this benchmark MT-NLG improves the few-shot accuracy of GPT-
3 (86.4%) to the SOTA 87.2%. 

PaLM [35] is an autoregressive language model developed by Google with 540B 
parameters. It has 118 layers, 48 heads and an input sequence length of 2048. 
There are also smaller versions with 8B and 62B parameters. It uses a standard 
autoregressive decoder with SwiGLU activation function and shared query-value 
projections for the heads of a layer, which improves autoregressive decoding speed. 
The model is trained on a high-quality dataset with 780B tokens, where sloppy 
and toxic language have been filtered. Each training example is used only once. 
The training set contains social media conversation (50%), multilingual web pages 
(27%), books (13%), source code files (5%), multilingual Wikipedia articles (4%), 
and news articles (1%). Training required 3072 TPU chips for 1368 h, resulting in a 
total emission that is 50% higher than the emissions for a direct round-trip flight in 
an aircraft between San Francisco and New York [35, p. 18]. 

PaLM was evaluated on hundreds of natural language inference, mathematical, 
reasoning and knowledge intensive tasks and achieved SOTA accuracy in the large
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Fig. 3.3 Evaluation of PaLM, GPT-3, Gopher, and Chinchilla (left). Previous models were only 
evaluated on a subset of tasks, so this graph shows the aggregated results on the 58 tasks where all 
three models have been evaluated [35]. The medium accuracy of PaLM is better than the average 
performance of humans. The right side shows the results for four specific BIG-tasks. A detailed 
comparison between the performance of three PaLM models of different size as well as human 
levels is presented in [35, p. 15f]  

majority of benchmarks, e.g. in 28 of 29 most widely evaluated English language 
understanding benchmarks (cf. Table 3.4). This demonstrates that the scaling effects 
continue to hold for large Foundation Models. Figure 3.3 shows the results on BIG-
bench data compared to prior models. PaLM 540B 5-shot outperforms the prior 
SOTA on 44 out of the 58 common tasks, and on average is significantly better 
than the other models (Gopher, Chinchilla, GPT-3). Moreover, PaLM 540B 5-shot 
achieves a higher score than the average score of the humans asked to solve the same 
tasks. When fine-tuned on SuperGLUE, the model outperforms the best decoder-
only model and is competitive with encoder-decoder models, which in general 
perform better for fine-tuning. A significant number of tasks showed discontinuous 
improvements from model scale, meaning that the performance improvement from 
the smaller version to the largest model was higher than expected. 

PaLM has been fine-tuned on program code documents. The resulting model is 
called PaLM-Coder [35, p.23]. The quality of the code is measured by the pass@k 
metric, in which for each problem in the test set, k samples of source code are 
generated by PaLM-Coder, and a problem is counted as solved if any sample solves 
the problem. PaLM-Coder is able to solve a number of benchmark tasks with about 
a pass@1-value of about 50. There is an elaborate evaluation of the properties of the 
PaLM-Coder model.
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Fig. 3.4 Few-shot example of a chain-of-thought prompt for a common sense question-answering 
task [35, p. 38]. The same two example chains of thought were combined with different prompts 
requiring an answer 

For about a quarter of tasks the authors observe a discontinuous jump in accuracy, 
if the model is increased from 58B to 540B parameters, far exceeding the ‘power 
law’ postulated by Kaplan et al. [102] (Sect. 3.5.1). Examples are ‘english proverbs’ 
and ‘logical sequence’ shown in Fig. 3.3. This suggests that new abilities of PLMs 
can evolve when the model reaches a sufficient size, and that these abilities also 
develop beyond the model sizes studied so far. 

The training data contains 22% multilingual documents. For translation between 
different languages, the few-shot PaLM model comes close to or even exceeds the 
fine-tuned SOTA. For English-French translation, Palm 540B few-shot achieves 44.0 
BLEU compared to a SOTA of 45.6. For German-English, PaLM 540B few-shot 
reaches 47.5 BLEU vs. a 45.6 BLEU SOTA. For other tasks like summarization and 
question answering, Palm 540B few-shot comes close to the fine-tuned models, and 
can outperform them in a few cases. 

Reasoning with a number of intermediate steps was always difficult for language 
models. Recently chain-of-thought prompting (Sect. 3.6.4) was proposed which 
adds intermediate reasoning steps [226] into the few-shot prompts (Fig. 3.4). 
Following this recipe, the PaLM model similarly produces its own intermediate 
steps for a multistep problem before giving the final answer. This leads to a boost in 
performance for a number of benchmark tasks. Using this technique PaLM is even 
able to explain jokes, as Fig. 3.5 demonstrates.
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Fig. 3.5 By using thought-chain-prompts PaLM can explain jokes [35] 

3.1.3 Transformer Encoder-Decoders 

The Transformer encoder-decoder [212] was pre-trained with a translation task 
(Sect. 2.3). To improve performance a number of alternatives were proposed: 

• Different targets to restore corrupted pre-training data are proposed by MASS, 
BART and PEGASUS. Examples are predicting masked spans, ordering per-
muted sentences, or inserting omitted tokens. 

• T5 formulates many language understanding and language generation tasks as 
text translations and handles them with the same model. 

• Longformer, Reformer and Transformerl-XL extend the size of the input text 
without increasing the number of parameters. They are discussed in Sect. 3.2. 

The details are given in the following paragraphs. A representative list of trans-
former encoder-decoders is provided in Table 3.5. 

MASS [196] is based on the transformer architecture. In contrast to the original 
transformer, a sequence of consecutive tokens in the encoder is masked and the 
decoder’s task is to predict the masked tokens recursively (Fig. 3.6). Therefore, 
MASS can jointly train the encoder and decoder to develop the capability of 
extracting embeddings and language modeling. MASS is fine-tuned on language 
generation tasks such as neural machine translation, summarization and con-
versational response generation. It shows significant performance improvements 
compared to prior transformer architectures. 

BART [119] uses a standard Transformer-based encoder-decoder architec-
ture. The pre-training task is to recover text corrupted by a number of different 
approaches (Fig. 3.6): predict masked tokens as with BERT; predict deleted tokens 
and their positions, predict the missing tokens replaced by a single mask, reconstruct 
a permuted sentence as with XLNet, and find the beginning of a rotated document. 
BART was fine-tuned on a number of tasks like GLUE, SQuAD, summarization, 
and machine translation. BART achieved the best performance with the prediction 
of missing tokens replaced by a single mask. A large version of BART was trained
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Table 3.5 Transformer encoder-decoders. The pre-training and fine-tuning loss functions are 
defined in Table 3.1. Benchmarks: En-De WMT2014 English-to-German BLEU, GLUE Sect. 4.1.1 
accuracy, SuperGLUE Sect. 4.1.2 accuracy, TriviaQA [99] Sect. 6.2.1 accuracy, Penn Treebank 
[136] perplexity. The benchmark figures are only a hint, as they depend on the number of 
parameters and the computing effort 

Model Section Pre-training Fine-tuning Extra Benchmark 

Transformer [212] 2.3 S2S S2S Predict translated 
tokens 

En-De 26.4 

UniLM [8] 3.1.3 MLM, LM MC, LM Uni- and 
bidirectional 

GLUE 87.3 

MASS [196] 3.1.3 S2S S2S Predict masked 
tokens 

En-De 28.3 

BART [119] 3.1.3 DAE MC, LM, S2S Restore corrupted 
text 

GLUE 88.4 

T5 [170] 3.1.3 S2S MC, LM, S2S Solve many NLP 
tasks as S2S  
problems 

GLUE 89.7 

GLM [54] 3.1.3 LM LM Solve all task by 
autoregressive 
prediction 

SuperGLUE 
82.9 

Longformer [10] 3.2.1 MLM, S2S LM, MC, S2S Sparse attention 
mechanism 

TriviaQA 
77.3 

Reformer [108] 3.2.2 LM, S2S LM, MC, S2S Locality-sensitive 
hashing, reversible 
residual layers 

En-De 29.1 

Transformer-XL [44] 3.2.2 MLM, S2S MC, S2S Sparse attention 
mechanism 

Penn-Tree 
Bank 54.5 

Fig. 3.6 Different pre-training tasks to restore corrupted text by the transformer. Span masking is 
the task for MASS [196]. BART uses all tasks from token masking to document rotation [119] 

with a hidden size of 1024 and 12 encoder and decoder layers with a similar dataset 
as used by RoBERTa. The resulting performance was similar to that of RoBERTa. 
For abstractive summarization, e.g. on the CNN/Daily Mail benchmark [78], BART 
achieves SOTA.
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Fig. 3.7 Every task in T5 is expressed as a translation task, where the type of the task is a prefix 
to the input text (on the left) and the model produces the corresponding output (right) . Adapted 
from [170, p.3] with kind permission of the authors 

PEGASUS [251] proposed pre-training large Transformer-based Seq2seq mod-
els on massive text corpora with a new objective: gap-sentences generation, where 
sentences instead of tokens are masked or removed. The model has to generate these 
modified parts as a one sentence output. On 12 document summarization tasks the 
model achieves SOTA performance. 

T5 [170] is based on the standard transformer architecture. Pre-training is 
performed on a huge training set by restoring corrupted texts, which is formulated as 
a sequence-to-sequence tasks. The comparison of different pre-training tasks listed 
in Fig. 3.6 found that, similar to BART, text infilling achieves the best results. If 
the original text is “Thank you for inviting me to your party last week .” the model 
receives the input “Thank you [X] me to your party [Y] week .” with masked phrases 
and has to generate the output “[X] for inviting [Y] last [Z]” to reconstruct the 
masked phrases. 

Salient span masking [72] was especially effective. To focus on relevant phrases 
a BERT-tagger was trained to recognize named entities (person names, locations, 
etc. Sect. 2.1.3), and dates were identified by regular expressions. If the model 
had to recreate these spans the model performance was significantly increased. By 
predicting the omitted tokens, the model is able to collect an enormous amount of 
information on syntactic and semantic knowledge. Extensive comparisons show that 
the sequence-to-sequence architecture yields better results than other architectures, 
e.g. autoregressive language models. 

T5 is pre-trained on a multitask mixture of unsupervised and supervised tasks 
using a training dataset of 750GB of cleaned English web text. Its largest version 
has 24 layers, 128 attention heads, and 11B parameters. For each task the data is 
converted into a text-to-text format (Fig. 3.7). The model achieves SOTA results on 
many benchmarks, for example summarization, question answering, text classifica-
tion, and more. The results for GLUE is 90.3% [11].
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Primer [195] proposes two modifications of the original self-attention architec-
ture. First the ReLU activation function is squared. In addition, a convolution layer 
is added after each of the multi-head projections for query Q, key  K , and value V . 
For the original T5 architecture this reduces the training cost by a factor 4. 

UniLM2 [8] simultaneously pre-trains a bidirectional language models and a 
sequence-to-sequence model for language generation. The model parameters are 
shared between the two tasks, and the encoding results of the context tokens are 
reused. The model uses two mask types, one for bidirectional masking similar to 
BERT and pseudo masks for language modeling. With special self-attention masks 
and position embeddings, the model can perform both language modeling tasks 
in one forward pass without redundant computation of context. The model beats 
BART.BASE for reading comprehension on SQuAD 1.1 and T5.BASE for abstractive 
summarization on CNN/Daily Mail. 

GLM (General Language Model) [54, 55] is a successor of UniLM2 aiming to 
combine the different learning paradigms of BERT, GPT and the transformer. For 
pre-training GLM has the task to generate multiple text spans in an autoregressive 
way basically using the GPT architecture. From the input text . x = (x1, . . . , xT )

a number m spans .xi1 , . . . , xi1+li are sampled. Each span is replaced with a single 
[MASK] token yielding the corrupted input .xcorrupt. The model then successively 
generates the tokens of the spans having access to the corrupted input and the 
already generated tokens of the spans (Fig. 3.8). Within the input text all tokens 
are connected by self attention while in the output section a masked self-attention 
is used. Each span is finished by an [END] token. To identify the positions of 
generated tokens two positions are encoded by embeddings: the input position and 
the position within a span. Note that the mask prediction can be done in arbitrary 
sequence and the model has to predict the length of the spans during reconstruction. 

For fine-tuning, text classification tasks are converted to word predictions. To 
assess the sentence “The waiters were friendly.” in a sentiment classification task 

Fig. 3.8 During pre-training GLM has the task to reconstruct masked single words or multi-word 
phrases. The position of generated words in the text and in the masks are indicated by position 
embeddings, which are added to the token embeddings. The generated answers are terminated by 
an [END] token [54]
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the input is extended to “The waiters were friendly. It’s really [MASK].” where 
[MASK] has to be replaced by “good” or “bad”. For a text generation task 
a [MASK] token is appended to the input text. Then the model generates the 
continuation as the output text in an autoregressive way. In contrast to BERT the 
model observes the dependency between masked tokens yielding more consistent 
predictions. In comparison to XLNet no additional attention for position encoding 
is needed reducing the computational requirements. Compared to T5, GLM predicts 
the spans in arbitrary order and requires fewer extra tokens. 

To evaluate the model performance, Du et al. [54] train  GLM.BASE and 
GLM.LARGE with the same training data and parameter counts (110M and 340M) 
as BERT.BASE and BERT.LARGE. For both model configurations, GLM outperforms 
BERT on SuperGLUE (Sect. 4.1.2), e.g. GLM.LARGE has an average score of 77.0 
compared to 72.0 for BERT.LARGE. On a larger pre-training dataset for a model 
with the same size as RoBERTa they yield an average SuperGLUE score of 82.9 
compared to 81.5 for RoBERTa. They show that by multitask learning, a single 
model with the same parameters can simultaneously achieve higher accuracy in 
NLU, generating text given an input, and solve other tasks such as summarization 
[53]. 

Larger models like GLaM [51] and WuDao-2.0 [257] have a mixture-of-experts 
architecture and are described in Sect. 3.5.2. 

3.1.4 Systematic Comparison of Transformer Variants 

As an example of a fair comparison of architectural features, we report the following 
experimental analysis of PLMs, where Narang et al. [142] evaluated the effect of 
a number of transformer modifications. The following transformer features were 
investigated: 

• Activation functions: In addition to the ReLU-activation in the feedforward layers 
11 different activations functions were assessed. 

• Normalization: Together with the original layer normalization, five different 
regularization techniques were explored. 

• Number of layers: The number . dL of layers was varied between 6 and 24. To keep 
the comparison fair, the number of parameters was held constant by varying the 
number . dH of heads and the widths . dff of internal embeddings. 

• Token embeddings: The original transformer embeddings were compared to five 
variants of factored embeddings. In addition, the sharing of transformer blocks 
was investigated. 

• Softmax: The standard softmax to compute token probabilities was contrasted to 
three softmax variants. 

• Architecture: The authors compared the base transformer with 17 other architec-
tures. In most cases, the number of parameters was kept about the same.
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The authors evaluated the variants in two settings: Transfer learning based on the 
T5 transformer (Sect. 3.1.3) and supervised machine translation on the WMT2014 
En-De [17]. With some caution, the results can also be applied to other types of 
PLMs like BERT and GPT. 

Each architecture variant of T5 was pre-trained on the C4 dataset [171] of  
806GB using the “span corruption” masked language modeling objective. Subse-
quently, T5 was fine-tuned on three tasks: the SuperGLUE language understanding 
task [219], the XSum abstractive summarization dataset [143], and the WebQuestions 
benchmark [13], where no additional knowledge was provided as background 
information. The computing effort and the number of parameters for each model 
was fixed to the same level. An exception was an architecture with significantly 
fewer parameters, which was trained for longer. 

Several activation functions achieve a better performance compared to the 
ReLU activation, especially SwiGLU and GEGLU, which are gated linear units 
(GLU) forming a product with another activation [189]. The improvement can be 
observed for pre-training, fine-tuning, and supervised training without affecting the 
computation time. For SuperGLUE, for instance, an increase from 71.7% to about 
76.0% can be observed. Replacing layer normalization with RMS normalization 
[249] causes performance gains for all tasks. The SuperGLUE score, for example, 
was improved from 71.7% to 75.5%. In addition, the training speed was higher. 

As expected, increasing the depth of a models usually led to a better performance 
even if the number of parameters is kept constant. On SuperGLUE the model with 
18 layers achieved a score of 76.5% compared to 71.7% for the base model. Similar 
improvements can be observed for WebQuestions and translation, while there were 
no improvements for the summarization task. This is in line with theoretical results 
(Sect. 3.5.1). A drawback is that deeper models require more computation time. 

Architectures, which share parameters in different layers, usually lead to a 
decreased performance. The effect of using the same embeddings for encoders 
and decoders is mixed. Factorization of embeddings into a matrix product usually 
cause inferior results. If a Mixture of Softmaxes [239] is used to predict the output 
probabilities, the performance usually is better, e.g. an increase to 76.8% for 
SuperGLUE. However, this approach requires up to 40% more computation effort. 

Of the architectural variants evaluated, two combinations of the Synthesizers with 
dot-product attention (Sect. 3.2.2) perform better than the standard Transformer. 
The Synthesizers do not compute a “correlation” of embeddings but determine 
the attention weights from a single embedding or randomly. Switch Transformer, 
Mixture-of-experts, and Product key memories all have significantly more parame-
ters than the baseline transformer but are able to improve performance. The Switch 
transformer ([56] Sect. 3.5.2) has many more parameters than the base T5 model. 
To reach the same performance as Switch, T5 needs seven times more training 
FLOPS (floating point operations per second). The Mixture-of-experts model [116] 
distributes computations to 2 expert models in both the encoder and the decoder. 
Product key memory ([112] Sect. 3.1.1) replaces the dot-product attention by a 
nearest neighbor search.
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For all other 12 architectures, there were no improvements over the standard 
transformer [142]. This is different to the findings of the papers proposing the mod-
els. A reason seems to be that changes of the transformer architecture are difficult to 
transfer to other code bases and applications. Therefore, the authors propose to try 
out new modifications on different low-level implementations. In addition, a new 
approach should be evaluated on a variety of downstream applications including 
transfer learning, supervised learning, and language modeling. Hyperparameter 
optimization should be kept fixed to assure the robustness of the approach. Finally, 
the mean and standard deviation of results should be reported to avoid the selection 
of a single best result. 

3.1.5 Summary 

The modification of pre-training tasks has a profound influence on the performance 
of PLMs. Many different types of pre-training losses have been evaluated, such as 
masked phrase prediction, replaced token detection, or sentence order recognition. 
According to the benchmarks, the prediction of permuted tokens by XLNET is 
especially rewarding because XLNET takes into account the dependency between 
masked tokens. In addition, DeBERTa’s disentangled token and position embed-
dings are able to boost the performance in downstream classifiers. With respect 
to applications, autoencoders like BERT are particular important for information 
extraction in Chap. 5. 

For autoregressive PLMs like GPT, a number of variants with larger model 
size and larger training data have been presented. However, in most cases, the 
pre-training tasks were not changed. The training of the larger models required 
improvements in the parallel computing infrastructure and resulted in an unprece-
dented performance in text generation. By creating custom start texts (prompting), 
the models can solve a large number of specific tasks with very high accuracy 
without further fine-tuning (Sect. 3.6.3). The amount and quality of knowledge 
captured by PLMs is surprisingly high and is discussed in Chap. 4. In terms of 
applications, autoregressive PLMs are used in particular for text (Chap. 6) and image 
generation (Sect. 7.2). Because of their versatility and the tremendous increase in 
performance, recent large-scale PLMs are called Foundation Models. 

Encoder-decoder transformers were introduced for translating a text from one 
language to another. A number of new pre-training tasks were evaluated for these 
models. Some of them are similar to the tasks for autoencoders, such as predicting 
masked spans or inserting omitted tokens. Others were adapted to the input-
output architecture, e.g. the reconstruction of sentence permutations and document 
rotations. Here BART and T5 achieved the best performances in the GLUE and 
SuperGLUE natural language understanding tasks. By creating additional synthetic 
training examples, the performance of T5 and other models can be increased 
(Sect. 3.6.6).
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A systematic comparison of transformer architectures demonstrated that several 
architectural changes increased performance. The SwiGLU and GEGLU activation 
function instead of ReLU increased accuracy for SuperGLUE by more than 4%. 
Similar gains were observed when using RMS normalization instead of layer 
normalization. Increasing the model depth resulted in better performance even when 
the number of parameters was held constant. Synthesizers, mixtures-of-experts, and 
Product keys replacing scalar products by k-means clustering also performed better 
than the standard transformer. 

T5 and GLM demonstrate that transformers, controlled by instructive prompts, 
can be used to solve arbitrary problems of text classification, text generation, and 
text translation. They thus combine the capabilities of BERT, GPT, and translation 
models. Transformers are used extensively in complex text generation tasks, e.g. 
machine translation (Sect. 6.3), dialog (Sect. 6.6), and image generation (Sect. 7.2). 

3.2 Capturing Longer Dependencies 

A well-known concern with self-attention is the quadratic time and memory com-
plexity, which can hinder the scalability of the model in many settings (Sect. 2.1.6). 
If the sequence length T is increased to 2T then four times as many associations 
(attentions) between tokens have to be computed. This limits the direct applicability 
of models when a task requires larger contexts, such as answering questions or 
summarizing a document. Moreover, a larger memory is required to store the 
attentions for training. Therefore, a number of concepts have been proposed to cover 
long sequences without excessive computational and memory demands. 

• Sparse attention matrices are employed by BigBird, the Sparse Transformer, 
Longformer, and GPT-3 to reduce the number of parameters. 

• Clustering tokens by locality-sensitive hashing reduces the number of attentions 
computed by the Reformer. 

• Low-rank-approximation of attention matrices or by a kernel-based formulation 
of self-attention decreases the number of parameters of the Performer and the 
Linear Transformer. 

• Transformer-XL and the Linear Transformer reuse computations from previous 
text segments in an autoregressive manner to lower computational overhead. 

Surveys of techniques for enlarging the input sequence are provided by Tay et al. 
[207] and Fournier et al. [59]. 

3.2.1 Sparse Attention Matrices 

BigBird [247] reduces the number of attention computations by omitting entries 
according to some pre-determined pattern from the matrix of attention relations.
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Fig. 3.9 Attention mechanism used in BigBird [247] to compute the association between input 
tokens. Matrix indicating attention between pairs of tokens: attentions between sequence neighbors 
(left), global attentions to a few tokens (second left), random attentions (third from left), the 
combined BigBird attentions (right). White blocks indicate omitted attention pairs 

BigBird extends transformer-based models, e.g. BERT, and uses a set of g global 
tokens attending on all tokens of the sequence. In addition, each token . vt attends to 
a set of . nl local neighboring tokens and to a set of . nr random tokens. The resulting 
association matrices are shown in Fig. 3.9. If the numbers g, . nl , and . nr do not 
increase with sequence length T the number of attentions grows linearly with T . 

The model is constructed in such a way that the length of the path between 
arbitrary token pairs along intermediate tokens is kept small, as in a small-world 
graph. The authors prove that their model allows to express all continuous sequence-
to-sequence functions with only .O(T ) inner products (Table 3.6). In addition, 
they show that under standard assumptions BigBird is Turing complete, i.e. can 
perform arbitrary computations (see also [246]). The BigBird attention module can 
be used in BERT, autoregressive language models, and Transformer architectures. 
In a number of applications BigBird using a sequence length of 4096 is able to 
improve the SOTA, e.g. for question answering requiring multi-hop reasoning from 
the given evidences. Note that BigBird without random attention performed better 
than BigBird with random attention in a set of experiments. 

Prior models using these concepts were the Sparse Transformer [33] and the 
Longformer [10], which similarly to WaveNet [148] employ strided or “dilated” 
neighborhoods. Here not all adjacent neighbors are attended by a token, but only 
every d-th neighbor with .d > 1. If  k layers are used, this construction covers . dk

neighbors and thus allows associations over large distances. The Extended Trans-
former Construction (ETC) model [3] generalizes the idea of global tokens, which 
can communicate associations between far-away tokens of the whole sequence. 

GPT-3 [25] (Sect. 3.1.2) is a recent language model with 96 layers, 96 attention 
heads, 175 billion parameters covering sequences of length 2048. To cope with the 
excessive sequence length the authors used “alternating dense and locally banded 
sparse attention patterns in the layers of the transformer, similar to the Sparse 
Transformer” [33]. The details of the architecture are not yet known. The model 
achieved an unprecedented performance in language modeling, question answering, 
etc., which is discussed in Sect. 3.6.3.
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Table 3.6 Important models with sparse self-attention for long dependencies. T is the sequence 
length, g number of global tokens, k is window size. (cf. [207]) 

Complexity Low Sparse/random Learnable 
Model O(·) rank/Kernels Recurrence Memory patterns patterns 

Transformer-XL 
[44] 

T 2 – X – – – 

Reformer [108] T log T – – – – X 

Routing 
transformer 
[180] 

T log T – – X – X 

Compressive 
transformer 
[169] 

T 2 – X X – – 

ETC [3] g2 + T g – – X X – 

GPT–3 [25] T
√

T – – – X – 

Performer [34] T X – – – – 

Linear 
transformer 
[105] 

T X – – – – 

BigBird [247] T – – X X – 

S4 [68] T X – – – – 

3.2.2 Hashing and Low-Rank Approximations 

The Reformer [108] introduces locality-sensitive hashing to cluster tokens with 
similar key/query vectors. This approach hashes similar input items into the same 
“buckets” with high probability. For each cluster the same query/key parameters are 
used. In this way, tokens are aggregated in a data-driven fashion. In a similar way, 
the Routing Transformer [180] clusters tokens by k-means clustering. 

Transformer-XL [44] reuses computation results from prior segments of a 
sequence. With this recurrence mechanism applied to every two consecutive 
segments of a corpus, it essentially creates a segment-level recurrence in the hidden 
states. With multiple layers, the effective context being utilized can go way beyond 
just two segments. A similar approach is used by the Compressive Transformer 
[169]. Segatron is a variant that encodes a paragraph index in a document, a sentence 
index in a paragraph, and token index in a sentence as embeddings to be added to 
the token embedding. This modification leads to a better perplexity in language 
modeling. 

The Performer [34] reduces the computational load by employing low rank 
approximations of the self-attention matrix. It uses a random kernel with positive 
orthogonal random features to compute the self-attention. By orthogonality, the 
authors avoid computing the full square matrix of products, since the dot product 
of orthogonal features is 0. Hence, computation requirements grow linearly with 
sequence length. The authors are able to prove that their model allows nearly-
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unbiased estimation of the full attention matrix as well as uniform convergence and 
lower variance of the approximation. 

The Linear Transformer [105] also uses a kernel-based formulation of self-
attention reducing complexity to linear. For predicting the future elements from past 
inputs, the authors are able to construct an iterative algorithm similar to RNNs that 
is dramatically faster than standard transformers. The model has been shown to 
improve inference speeds up to three orders of magnitude without much loss in 
predictive performance. 

The Transformer-LS (Long-Short Transformer) [258] has a local sliding win-
dow attention between neighboring tokens and a long-range attention with dynamic 
projections to represent relationships between distant tokens. The dynamic low-rank 
projections depends on the content of the input sequence. The authors claim that the 
approach is more robust against insertion, deletion, paraphrasing, etc. The scheme 
achieves SOTA perplexities in language modeling for different benchmarks, e.g. 0.99 
for enwik8 and SOTA results as vision transformer on ImageNet. 

The Combiner [174] represents groups of embeddings by key vectors. The 
probability that a given token . vt attends to a token . vs is described by a product, 
where . vt first attends to the key vector that represents a group of locations containing 
. vs multiplied by the probability of choosing . vs within that group. In this way, 
the Combiner can be applied to sequences of length up to 12,000. The approach 
is able to achieve SOTA perplexity on large benchmarks. In addition, it improves 
the average performance on the Long Range Arena benchmark [209] specifically 
focused on evaluating model quality for long documents. 

The Synthesizer [206] replaces the pairwise dot products of attention with 
“synthesizing functions” that learn attention matrices, which may or may not depend 
on the input tokens (cf. Sect. 3.1.4). In the Dense Synthesizer, each token embedding 
. xi , .i = 1, . . . , T , in a layer is projected to a vector of the length T using a 
two-layered nonlinear feed-forward network with a ReLU activation. The values 
of this vector are used as weights to determine the mixture of values to form the 
output embedding. Hence, no “correlations” between embeddings are computed to 
determine their similarity, as it is done for the standard self-attention. There is an 
extreme variant, where the mixing proportions are set randomly. Nevertheless, on 
multiple tasks such as machine translation, language modeling, dialogue generation, 
masked language modeling and document classification, this “synthetic” attention 
demonstrates competitive performance compared to vanilla self-attention. The 
combination of Random Synthesizers with normal dot-product attention is able to 
beat T5 on several benchmarks. 

The Perceiver [93] defines an asymmetric attention mechanism iteratively 
converting the long input sequence .x1, . . . , xT (e.g. the 50k pixels of an image) into 
a shorter sequence of latent units .u1, . . . ,un (e.g. .n = 512) that form a bottleneck 
through which the inputs must pass (Fig. 3.10). With cross-attention (Sect. 2.3.1) 
the Q-transformed latent sequence embeddings .Qui and the K-transformed long 
input sequence embeddings .Kxj form a scalar product .(Qui )

ᵀ(Kxj ). It is used  
as a weight for the V -transformed long sequence embedding .V xj to generate the 
new short embeddings. The Perceiver is basically a BERT model with a sequence
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Fig. 3.10 If the input sequence is too long, a short latent sequence is defined by the Perceiver. By
cross-attention between the long sequence and the latent sequence the information is compressed.
A standard transformer block computes the self-attentions between the latent sequence elements,
which in the end generates a classification [93] 

length of n instead of T , which avoids that the computing effort scales quadratically 
with the input length. The iterative approach enables the model to devote its limited 
capacity to the most relevant inputs. In experiments the Perceiver was able to beat 
the leading ResNet-50 CNN with respect to image classification [93]. Perceiver IO 
[92] projects the resulting n output embeddings of a Perceiver to a larger sequence 
of output embeddings by another cross-attention operation, which, for instance, gets 
the position embeddings of output elements as query vectors. The Perceiver AR 
[73] extends the Perceiver to generate an output sequentially similar to the encoder-
decoder transformer. 

S4 [68] is a Structured State Space Sequence model based on the Kalman filter 
for the observation of a state model with errors [101]. A continuous state space 
model is defined by 

.x′(t) = Ax(t) + Bu(t) y(t) = Cxt + Du(t), (3.1) 

which maps an input signal .u(t) to output .y(t) through a latent state .x(t). The  
authors reparametrize the matrices . A and decompose them as the sum of a low-rank 
and skew-symmetric term. Moreover, they compute its generating function of the 
associated infinite sequence truncated to some length L in frequency space. The
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low-rank term can be corrected by the Woodbury identity for matrix inversion. The 
skew-symmetric term can be diagonalized and can be reduced to a Cauchy kernel 
[153]. 

The . A matrix is initialized with an special upper-triangular “HIPPO” matrix that 
allows the state .x(t) to memorize the history of the input .u(t). The authors prove 
that in complex space . C the corresponding state-space model can be expressed by 
matrices .(� − PQ∗,B,C) for some diagonal matrix . � and vectors . P ,Q,B,C ∈
C. These are the 5N trainable parameters of S4, where N is the state dimension. 
Overall, S4 defines a sequence-to-sequence map of shape (batch size, sequence 
length, hidden dimension), in the same way as related sequence models such as 
Transformers, RNNs, and CNNs. For sequence length L this requires a computing 
effort of .∼O(N + L) and .O(N + L) memory space, which is close to the 
lowest value for sequence models. Gu et al. [69] provide a detailed exposition and 
implementation of the S4 model. 

In empirical evaluations it turned out that S4 for an input length of 1024 is 1.6 
times faster than the standard transformer and requires only 43% of its memory. For 
an input length of 4096, S4 is 5 times faster and requires just 9% of the memory of 
the standard transformer. For the benchmarks of the Long Range Arena benchmark 
S4 increased SOTA average accuracy from 59.4% to 80.5% (Table 3.7). Moreover, 
S4 was able to solve the extremely challenging Path-X task that involves reasoning 
over sequences of length 16k where all previous models have failed. Finally, S4 
was able to perform raw speech signal classification on sequences of length 16k and 
achieves a new SOTA of 98.3% accuracy. S4 involves a genuine breakthrough in 
long range sequence processing. In addition, S4 is better in long-range time-series 
forecasting, e.g. reducing Mean Square Error by 37% when forecasting 30 days of 
weather data. DSS [70] is a variant of S4 that is simpler to formulate and achieves a 
slightly lower performance. 

3.2.3 Comparisons of Transformers with Long Input 
Sequences 

The Long Range Arena [209] aims to evaluate the performance on tasks with long 
input sequences from 1k to 16k tokens. It contains six different benchmark datasets 
covering text, images, mathematical expressions, and visual spatial reasoning. The 
tasks include ListOps (computations in a list-notation), text classification (classify 
IMDB reviews using character sequences), document retrieval (based on document 
embeddings), image classification (based on a sequence of pixels), and pathfinder 
(detection of circles) in two versions. The authors evaluate nine transformer 
architectures with the ability to process long inputs. 

The results are shown in Table 3.7. For the hierarchically structured data of 
ListOps, it turns out that kernel-based approaches, for instance the Performer and 
the Linear Transformer, are not appropriate. For text classification, kernel-based
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Table 3.7 Accuracy results for the Long-Range Arena Benchmark. The best score is printed in 
bold, results improving the standard transformer are underlined (cf. [209]) 

Model ListOps Text classif. Retrieval Image classif. Pathfinder Path-X Average 

Transformer 36.3 64.3 57.5 42.4 71.4 .× 54.4 

Reformer 37.3 56.1 53.4 38.1 68.5 .× 50.7 

Synthesizer 37.0 61.9 54.7 41.6 69.5 .× 52.9 

BigBird 36.0 64.0 59.3 40.8 74.9 .× 55.0 

Linear transf. 16.1 65.9 53.1 42.3 75.3 .× 50.6 

Performer 18.0 65.4 53.8 42.8 77.0 .× 51.4 

S4 58.4 76.0 87.1 87.3 86.1 88.1 80.5 

methods perform particularly well. For image classification most models do well, 
except for the Reformer. The pathfinder task is solved by all models with an 
acceptable performance, with the Performer doing best. However, all models except 
S4 fail on the extended Pathfinder task and are not able to find a solution. In terms 
of all benchmarks, S4 is the best model by a wide margin. 

With respect to speed, the Performer was best, being 5.7 times faster than the 
standard transformer on sequences of length 4k. Memory consumption ranged from 
9.5GB for the standard transformer to about 1.1GB for the Linear Transformer. All 
other models except the Synthesizer require less than 3 GB with S4 doing well in 
both aspects. 

3.2.4 Summary 

There are a variety of proposals for PLMs to efficiently process long input 
sequences. Often a sparse attention matrix is employed, where only a part of the 
possible attentions is used to establish the connection between far-away positions. 
Usually, full attention is computed for near positions. Some tokens have a global 
attention to communicate information between positions not connected directly. A 
prominent example is BigBird, which adds random attentions. Its computational 
effort only grows linearly with input size and it still can perform arbitrary sequence 
computations. There are other architectures like the Performer and the Linear 
Transformer, which also exhibit linear growth. 

Some architectures either approximate the attention matrices by low-rank factor-
izations or aggregate tokens, which express similar content (Reformer, Combiner). 
Another approach is to use a recurrence mechanism such that computations are 
reduced for far-away tokens (Transformer-XL, Linear Transformer, Transformer-
LS, Perceiver). An alternative is the factorization of the self-attention matrix 
(Performer) or its replacement with simpler computations (Synthesizer). Recently, 
the S4 model has been proposed that applies a state-space model to long-range 
prediction. It uses an architecture based on complex number computations, which
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is completely different from the usual transformer setup. It outperforms all prior 
models by a large margin and is efficient in terms of computation time and memory. 

The performance of these approaches was evaluated with six different bench-
marks of the Long Range Arena. It turned out that S4 beats the other models 
with respect to all benchmarks. All approaches were able to reduce memory 
consumption compared to the standard transformer. The larger input length allow 
new applications, e.g. in raw speech processing, image processing or genomics 
[247]. 

3.3 Multilingual Pre-trained Language Models 

There are more than 7100 languages in the world [9], and each language can 
express almost all facts and concepts. Therefore, PLMs should also be able to 
generate consistent representations for concepts in different languages. Languages 
differ to some extent in the basic word order of verbs, subjects, and objects in 
simple declarative sentences. English, German, French, and Mandarin, for example, 
are SVO languages (subject-verb-object) [100]. Here, the verb is usually placed 
between the subject and the object. Hindi and Japanese, on the other hand, are SOV 
languages, meaning that the verb is placed at the end of the main clause. Irish and 
Arabic, on the other hand, are VSO languages. Two languages that have the same 
basic word order often have other similarities. For example, VO languages generally 
have prepositions, while OV languages generally have postpositions. Also, there 
may be a lexical gap in one language, where no word or phrase can express the exact 
meaning of a word in the other language. An example is the word “Schadenfreude” 
in German, which roughly translates to “have joy because some other person has 
bad luck”. More such differences are discussed by Jurafsky and Martin [100]. 

To gain cross-lingual language understanding, a PLM has to be trained with more 
than one language and has to capture their structural differences. During training, 
PLMs can establish an alignment between concepts in different languages. 

• Training large PLMs models, e.g. T5 or BERT, on multilingual data with a joint 
token vocabulary leads to models that transfer information between languages by 
exploiting their common structure. 

• BERT-like models can be trained to associate the words of a sentence in one 
language with the words of its translation to another language by masked 
language modeling. However, it has been shown that multilingual processing is 
possible, even when little or no parallel training data is available. 

• Transformer encoder-decoder models are explicitly trained to translate a text 
from one language to another language. 

Training a language model with several languages in parallel can improve the 
performance—especially for languages with little training data. This could already 
be demonstrated for static word embeddings [194].
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3.3.1 Autoencoder Models 

mBERT (multilingual BERT) [48] is a standard BERT model. It has been pre-
trained with the MLM loss on non-parallel Wikipedia texts from 104 languages 
and has a shared token vocabulary of 110k WordPiece tokens for all languages. 
This implies that Chinese is effectively character-tokenized. Each training sample is 
a document in one language, and there are no cross-lingual dictionaries or training 
criteria. To demonstrate its properties the model was fine-tuned to a multilingual 
version XNLI [40] of the Natural Language Inference (NLI) benchmark, i.e. the 
task to predict, whether the first sentence entails the second. It turns out that mBERT 
may be fine-tuned with a single language on NLI and still yields good test results 
on related languages [40, 232]. 

The results for 6 languages [111] are shown in Table 3.8. Compared to fine-
tuning XNLI with all languages, there is only a small drop in accuracy for related 
languages, e.g. Spanish and German, if the fine-tuning is done with XNLI in English 
and the evaluation in the other language. For the other languages the reduction 
of performance is larger, but the results are still good. There is even a transfer of 
information between languages with different scripts, e.g. for Arabic and Urdu. The 
authors also consider the embeddings of a word and its translation. It turns out that 
the cosine similarity between a word and its translation is 0.55, although there is no 
alignment between languages. 

Karthikeyan et al. [104] investigate the factors for the success of mBERT. 
They find that mBERT has cross-lingual capabilities even if there is absolutely no 
overlap in the token vocabulary. Moreover, a higher number of identical tokens in 
both vocabularies contributes little to the performance improvements. Comparing 
different language pairs the authors show that a large network depth and a high 
total number of parameters of a bilingual BERT are crucial for both monolingual 
and cross-lingual performance, whereas the number of attention heads is not a 
significant factor. On the other hand, the structural similarity of the source and 
target language, i.e. word order and frequency of words, has a large influence on 
cross-lingual performance. 

XLM [111] improves the transfer of knowledge between different languages 
by using translated sentences from different language pairs during pre-training. 
The authors concatenate a sentence with its translations to another language for 

Table 3.8 Cross-lingual natural language inference (XNLI) [40] test accuracy for 6 languages. 
Fine-tuning with XNLI for all languages is compared to fine-tuning with XNLI only for English. 
Results for mBERT [48] and XLM [111] 

Fine-tune with . . . Model English Chinese Spanish German Arabic Urdu 

All languages mBERT 81.9 76.6 77.8 75.9 70.7 61.6 

English only mBERT 81.4 63.8 74.3 70.5 62.1 58.3 

All languages XLM 85.0 78.6 80.8 80.3 76.5 63.2 

English only XLM 85.0 76.5 78.9 77.8 73.1 57.3
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Fig. 3.11 The translation language modeling (TLM) task is applied to pairs of translated 
sentences. To predict a masked English word, the model can attend to both the English sentence 
and its French translation, and is thus encouraged to align English and French representations [111] 

training and introduce a new translation language modeling (TLM) objective for 
improving cross-lingual pre-training. To predict masked words in the input sentence, 
the algorithm can attend to the words in the translated sentence. In this way, the 
model learns to correlate words from different languages. An example is shown in 
Fig. 3.11. As shown in Table 3.8, XLM has a much higher cross-lingual accuracy 
for XNLI compared to mBERT. The transfer from a model fine-tuned in English to 
other languages incurs only a small loss. The experiments show that TLM is able 
to increase the XNLI accuracy for 3.6% on average. The model was also evaluated 
for unsupervised machine translation from German and other languages to English, 
yielding a very good performance (cf. Sect. 6.3). 

Unicoder [88] is an improved XLM model with three additional training 
tasks. Cross-lingual word alignment learns to associate the corresponding words in 
translated sentences. Cross-lingual paraphrase detection takes two sentences from 
different languages as input and classifies whether they have the same meaning. 
The document-level cross-lingual masked language model applies the MLM task to 
documents where part of the sentences are replaced by their translations. On XNLI 
the authors report an average accuracy improvement of 1.8%. 

XLM-R is an optimized version of XLM [41]. It is based on RoBERTa and 
trained on a huge multilingual CommonCrawl dataset of 2.5TB covering 100 
languages with a common vocabulary of 250k tokens. It increased the SOTA on 
the XNLI-score to 79.2%. For cross-lingual question answering, models are fine-
tuned on the English SQuAD dataset and evaluated on 7 other languages. XLM-R 
improves the F1 score on this SQuAD version by 9.1%–70.7%. It outperforms 
mBERT on cross-lingual classification by up to 23% accuracy on low-resource 
languages. The performance of XLM-R is nearly as good as that of strong 
monolingual models. 

These results support the observation that the performance of PLMs can be 
improved by training on large volumes of text [102]. More languages lead to 
better cross-lingual performance on low-resource languages under the condition that
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the model capacity is large enough. Combined with the approach of Aghajanyan 
et al. [2], which avoids too large changes in representation during fine-tuning 
(Sect. 3.6), the XLM-R.LARGE model increases the SOTA in XNLI to 81.4%. If 
an additional criterion of separating semantically-equivalent sentences in different 
languages from other sentences is added to XLM-R, the accuracy on semantic tasks 
is increased [228]. Even larger models like XLM-RXXL [66] with 10.7B parameters 
were pre-trained on CC-100, which consists of 167B tokens of non-parallel text also 
covering low-resource languages, and increased the XNLI performance by 2.4%. 

RemBERT [37] redistributes the parameters of multilingual models. First the 
authors showed that using different input and output embeddings in state-of-the-art 
pre-trained language models improved model performance. Then they demonstrated 
that assigning more parameters to the output embeddings increased model accuracy, 
which was maintained during fine-tuning. As a consequence Transformer represen-
tations were more general and more transferable to other tasks and languages. The 
Xtreme collection [86] is a multitask benchmark for evaluating the cross-lingual 
generalization capabilities of multilingual representations across 40 languages and 
9 tasks. RemBERT outperformed XLM-R on Xtreme, despite being trained only on 
a smaller subset of training data and ten additional languages. 

PLMs like BERT generate contextual token embeddings. However, the user 
often needs contextual embeddings for passage or sentences to compare their 
content. LaBSE [57] is a language-agnostic generator of passage embeddings, 
where source and target sentences are encoded separately using a shared BERT-
based encoder. The representations of [CLS] in the final layer were taken as the 
sentence embeddings for each input. LaBSE combined a masked language model 
(MLM) and a translation language model (TLM) loss with a margin criterion. This 
criterion computes the cosine distance .cos(x, y) between the passage embeddings . x

and the embedding . y of its correct translation. Then it is required that . cos(x, y)−m

is larger than .cos(x, yi ), where m is a positive margin and the . yi are embeddings 
of arbitrary other passages. LaBSE was trained using 17B monolingual sentences 
and 6B bilingual translated sentences. The resulting sentence embeddings markedly 
improve the retrieval accuracy SOTA of sentences in cross-lingual information 
retrieval (cf. Sect. 6.1). The code and pre-trained models are available. 

3.3.2 Seq2seq Transformer Models 

mT5 is a multilingual version of the T5 Seq2seq transformer (Sect. 3.1.3) with up 
to 13B parameters [236]. It was pre-trained using a training dataset of web pages 
covering 101 languages with about 48B tokens and a common vocabulary of 250k 
tokens. For pre-training, the model had to predict masked phrases in monolingual 
documents in the same way as T5. Similar to T5 the model may be instructed to 
perform different tasks by a prefix, e.g. “summarize”. These tasks were trained by 
fine-tuning on the corresponding datasets.
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For the XNLI benchmark [40] the model has to decide, if the first sentence entails 
the second sentence. When the model is fine-tuned on XNLI with English data and 
performance is measured for 15 languages, accuracy is 84.8% compared to 65.4% 
for mBERT, 69.1% for XLM, and 79.2% for XLM-R. Although the texts in the 
different languages are not parallel, the model is able to exploit structural similarities 
between languages to solve the task. The code of this model is available at [235]. 
Similar models are used for multilingual translation (Sect. 6.3). mT6 [31] enhances 
the training of mT5 with pairs of translated sentences and defines new training 
tasks. Experimental results show that mT6 has improved cross-lingual capabilities 
compared to mT5. A further improvement is Switch [56] with a mixture-of-experts 
(MoE) architecture of mT5 requiring only one fifth of the training time of mT5 while 
yielding a performance gain across all 101 languages (Sect. 3.5.2). 

mBART [126] is a multilingual encoder-decoder based on the BART model 
(Sect. 3.1.3). The input texts are corrupted by masking phrases and permuting 
sentences, and a single Transformer model is pre-trained to recover the corrupted 
text. This is performed for the training documents covering 25 languages. Sub-
sequently, the pre-trained model is fine-tuned with a translation task between a 
single language pair. In addition, back-translation may be used, where another 
model is trained to translate the target sentence back to the source language and 
an additional loss encourages to reconstruct the source sentence. mBART adds 
a language symbol both to the end of the encoder input and the beginning of 
the decoder input. This enables models to know the languages to be encoded 
and generated. It turns out that pre-training improves translation, especially for 
languages with little parallel training data. In addition, back-translation markedly 
ameliorates the translation results. Many experiments are performed to analyze 
the effect of different algorithmic features. Pre-training is especially important if 
complete documents are translated instead of single sentences. 

mBART may also be used for unsupervised machine translation, where no 
parallel text of any kind is used. Here the authors initialize the model with pre-
trained weights and then learn to predict the monolingual sentences from the source 
sentences generated by back-translation. The results for languages with similar 
structure are very good, e.g. for En-De mBART achieves a BLEU-value of 29.8, 
which is close to the supervised value of 30.9. Note that mBART has a similar 
performance as MASS (Sect. 3.1.3). For dissimilar pairs of languages, e.g. English-
Nepali, mBART has reasonable results where other approaches fail. 

MARGE [118] is a multilingual Seq2seq model that is trained to reconstruct a 
document x in one language by retrieving documents .z1, . . . , zk in other languages. 
It was trained with texts in 26 languages from Wikipedia and CC-News. A document 
was encoded by the output embedding of the first token of a Transformer [212]. 
A retrieval model scores the relevance .f (x, zj ) of the target document x to each 
evidence document . zj by embedding each document and computing their cosine 
similarities. A transformer receives the embedded texts of .z1, . . . , zk and auxiliary 
relevance scores .f (x, zj ) from retrieval as input and is trained to generate the target 
document x as output. The similarity score is used to weight the cross-attention 
from the decoder to the encoder, so that the decoder will pay more attention to
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more relevant evidence documents. The models jointly learn to do retrieval and 
reconstruction, given only a random initialization. In a zero-shot setting the model 
can do document translation with BLEU scores of up to 35.8 in the WMT2019 
De-En benchmark, as well as abstractive summarization, question answering and 
paraphrasing. Fine-tuning gives additional strong performance on a range of tasks 
in many languages, showing that MARGE is a generally applicable pre-training 
method. 

XLNG [32] pre-trains the same Seq2seq model simultaneously using an MLM 
and a translation TLM loss (Table 3.1). The pre-training objective generates 
embeddings for different languages in a common space, enabling zero-shot cross-
lingual transfer. In the fine-tuning stage monolingual data is used to train the 
pre-trained model on natural language generation tasks. In this way, the model 
trained in a single language can directly solve the corresponding task in other 
languages. The model outperforms methods based on machine translation for zero-
shot cross-lingual question generation and abstractive summarization. In addition, 
this approach improves performance for languages with little training data by 
leveraging data from resource-rich languages. 

3.3.3 Autoregressive Language Models 

Generative models like GPT-3 are trained on huge collections of documents which 
usually contain texts from different languages. By this training data, the model 
also acquires the knowledge about these languages and generates joint contextual 
representations of meanings. As described in Sect. 3.6.3, it is able to translate 
between languages if given an appropriate prompt and some examples (few-shot 
learning). On WMT2016 En. →De, for instance, GPT-3 achieves a few-shot BLEU 

of 29.7 compared to a supervised SOTA of 41.2, whereas in the De. →En direction 
GPT-3 outperforms the current SOTA of 40.2 BLEU with 40.6 BLEU [25]. 

Winata et al. [231] evaluate in detail the multilingual capabilities of GPT-2, 
GPTNEO and T5 with 1.6B, 6B, and 3B parameters respectively. The models are 
able to use the context from English to predict the answer in non-English languages. 
The authors find that the largest model GPTNEO always performs best on a set 
of multilingual benchmarks. The performance depends on the language pair. The 
models, for instance, achieve higher performance for En. →Es than for the other two 
target languages (De and Fr). For the MultiNLU benchmark [187] the error 12.1% 
of the SOTA model fully trained on the target language is not much lower than the 
error of 17.3% for few-shot prompts of GPTNEO.
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3.3.4 Summary 

Machine translation is one of the most widely used applications of NLP. Languages 
have both structural and lexical differences that make translation difficult. The joint 
processing of multiple languages must take these differences into account. 

When BERT is trained with documents from multiple languages, it is able to 
transfer knowledge between languages, e.g. solve language inference tasks, even if 
it has no access to parallel texts. Knowledge transfer is improved in XLM by using 
the translation language modeling loss, such that translated sentences are employed 
to reconstruct masked tokens. There are a number of improved versions of XLM 
that are able to increase the accuracy of cross-language inference. 

Encoder-decoder models such as T5 can be generalized to multiple languages and 
induce powerful multilingual embeddings. mT5 can be controlled by a prefix and 
solves various task like translation, summarization, and language inference. mT6 
and Switch are more effective variants of mT5. mBART is pre-trained by recovering 
corrupted text in different languages. It can even be used for unsupervised machine 
translation. XNLG generates joint embeddings in a multilingual space and MARGE 
leverages retrieval of background documents to reconstruct a target document. 
Both models are able to perform multiple tasks such as abstractive summarization, 
question answering, and paraphrasing. Note, however that specialized models are 
used for translating single language pairs (Sect. 6.3.1). 

Autoregressive language models such as GPT-3 are trained on huge corpora, 
which also contain multilingual documents. Therefore, these models can also be 
instructed by few-shot learning to perform multilingual tasks such as translations or 
question answering. However, performance is usually not as good as for dedicated, 
fine-tuned models. 

3.4 Additional Knowledge for Pre-trained Language Models 

During unsupervised pre-training, PLMs like BERT and GPT2 are forced to predict 
missing words from the context. They are optimized to predict either the next word 
in a sequence or some masked words (e.g. “Einstein was [MASK] in the city of 
Ulm.”). Trained on this task, they obviously gather knowledge about real-world 
facts and relations from the training data. PLMs do surprisingly well in reproducing 
facts and relations based on unsupervised training. In Sect. 4.2 we discuss, what 
knowledge is covered by standard PLMs. It turns out, however that due to the 
still limited number of parameters only a fraction of knowledge contained in the 
training data can be remembered by a PLM. In addition, events that occurred after 
the training are missed.



114 3 Improving Pre-trained Language Models

Fig. 3.12 A PLM gets an input text and collects additional knowledge from different sources. This 
knowledge may be added beforehand or can be retrieved on demand. Subsequently, an output is 
generated using the additional knowledge 

This section presents methods for extending factual knowledge in PLMs, either 
during training or on the fly during actual model usage Fig. 3.12. A  Knowledge 
Base (KB) describes knowledge about the world, e.g. by entities and their relations. 
We outline a number of different approaches with which information in KBs or 
other knowledge sources such as text collections can be incorporated into PLMs 
(Table 3.9): 

Knowledge Base Embeddings: There are techniques to represent the entities and 
relations in a KB by embeddings. A number of approaches try to combine these 
embeddings with the token embeddings created by a PLM. In this way, the 
information in the KB can be injected into the PLM and used for downstream 
tasks. 

Textual Encoding of Tables: Often additional knowledge is available in tables. 
The entries in these tables can be encoded in a special text format. A PLM can 
be trained with this text to acquire the knowledge in the rows and columns, in a 
similar way as the relation between the words of two languages can be learned. 

Textual Encoding of KB Relations: An alternative way to use KB information 
starts with identifying entities or concepts in a text. The relations available for 
these entities and concepts can be extracted from the KB and can be included in 
the training process either as text or in another appropriate form. 

Adding Retrieved Facts: When a PLM needs to answer a question or create a text, 
it can formulate a query on the topic and retrieve corresponding text content from 
a KB or the Internet. This textual information may be picked up by a transformer 
and enhance the output. In this way, the model can use comprehensive and up-
to-date information on the fly.
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Table 3.9 Models integrating additional knowledge (cf. [166, p. 10]). Benchmarks: GLUE nat-
ural language understanding Sect. 4.1.1, TACRED relation extraction Sect. 5.4.2 [199], TriviaQA 
question answering Sect. 6.2.1 [99], English all word WSD [14], Nat. Quest question answering 
[109] Sect. 6.1.2 

Model Train task Fine-tuning Extra Benchmark 

Using knowledge base embeddings in pre-trained language models 

ERNIE(THU) [255] MLM+NSP + 
masked NEs 

GLUE, etc. KB NE embeddings 
combined with 
token embeddings 

GLUE 79.6 

KnowBERT [157] MLM+NSP +EL GLUE, etc Translate token 
embeddings . ↔ KB 
NE embeddings 

KEPLER [224] MLM+KE GLUE, etc Combine token 
embeddings with 
NE embeddings; use 
TransE loss 

TACRED 
71.5 F1 

Using textual information from knowledge bases 

K-Adapter [222] MLM + rel. extr. – Add parallel adapter 
network to 
RoBERTa 

TACRED 
72.0 F1 

WKLM [234] MLM+ERD – Detect replaced NEs 
in text 

TriviaQA 
63.1 F1 

CoLAKE [202] MLM – Create graph from 
textual relation 
triples and tokens 

GLUE 86.3 

LUKE [234] MLM+ERD – Masked language 
modeling for text 
and contained 
entities 

TACRED 
72.7% F1 

EWISER [14] MLM Word sense 
classification 

Include wordnet 
supersense graph 

English all 
word WSD 
80.1% F1 

Using text passages retrieved from text collections 

FiD [91] MLM, S2S QA Encode query and 
KB by BERT; 
combine query and 
retrieved docs with 
Seq2seq 

Nat. Quest. 
51.4% acc. 

Retro [21] LM Language 
generation with 
periodical retrieval 

Nat. Quest. 
45.5% acc. 

Enhancing Logical Consistency: PLMs sometimes do not generate logically con-
sistent content. By additional fine-tuning tasks a model can be trained to respect 
logical consistency. 

Surveys of methods to incorporate domain knowledge into Deep Neural Networks 
are given by Dash et al. [45] and Yu et al. [243]. 
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3.4.1 Exploiting Knowledge Base Embeddings 

Typically, Knowledge Bases are graph structures where the nodes correspond to 
entities and the edges represent relations connecting the entities. Many large-scale 
KBs, such as WordNet [137], YAGO [200], Freebase [18], DBpedia [15], and DiffBot 
[77] have been released in recent years with millions of entities. Figure 3.13 shows 
a small subset of the WordNet hierarchy. In most cases a KB can be described by 
triples .(h, r, t), where h and t are entities in a set E, and r is a relation holding 
between these entities. To assess the semantic contents of a KB, it was proposed to 
encode its entities as well as its relations as embeddings in a low-dimensional space, 
allowing to determine the similarity of entities and relations [43]. Subsequently, 
these embeddings can be used to disambiguate entities (entity linking, Sect. 5.3.3), 
or predict new relations (Sect. 5.4). 

For the embeddings .emb(word) of words generated by Word2Vec [135] it  
turned out that relations between entities often are represented in the space of 
word embeddings as vector differences between entity embeddings (Sect. 1.5). An 
example is the relation between a country and its capital, for which we have 
approximately .emb(Germany) − emb(Berlin) ≈ emb(France) − emb(Paris) . 

The TransE model [20] is built on this pattern. TransE adapts the embeddings in 
such a way that whenever .(h, r, t) holds and .emb(h) and .emb(t) are the embeddings 
of h and t , then equation .emb(h) + emb(r) ≈ emb(t) should be approximately 
valid for some vector .emb(r), which is considered as the embedding of the relation 
r . Consequently, for all triples .(h, r, t) in the set S of correct triples the TransE-loss 

Fig. 3.13 Small part of the WordNet knowledge base describing the relations between English 
words. It contains synsets of word with approximately the same meaning, which are related by the 
hypernym (is-a) meronym (has-part) and member-of relations [137]
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Fig. 3.14 KEPLER [224] trains a conventional BERT-like model by the MLM-loss. For a 
knowledge base with text entries it generates entity embeddings using the special .<S> token 
and encodes relations by the TransE-loss. Both loss functions are added during training 

.fr(h, t) = ‖emb(h) + emb(r) − emb(t)‖22 should become 0. The TransE-model 
uses the hinge loss to approximate this goal, which modifies the embeddings in 
such a way that .fr(h, t) for correct relation triples gets lower than .fr(h̃, t̃) for 
randomly selected incorrect triples .(h̃, r, t̃). The models and embeddings are trained 
with relations from WordNet and Freebase. 

There are a number of more elaborate models to encode relations from KBs, as 
described in the surveys [43, 94]. TransH overcomes TransE’s inability to model 
complex relations, and TransD aims to reduce the parameters by proposing two 
different mapping matrices for head and tail. But these alternatives are rarely 
used for contextual embeddings. Another method for KB representation is tensor 
factorization [144, 145]. This approach, however, is not based on word embeddings 
and therefore mainly used for KB completion and not to enhance PLMs. 

In the rest of the section we describe approaches, which merge KB-embeddings 
usually computed by TransE and token embeddings generated by language models. 
A difficulty is to establish a relation between the token embeddings and the entities, 
which usually contain several tokens. 

KEPLER [224] consists of a BERT-like language model generating token 
embeddings by the MLM objective. In addition, it computes embeddings for entities 
from descriptive text in the KB using a special token “.<S>” at the beginning of 
the input text. This token is trained to produce an embedding of the named entity 
argument of the relation, e.g. for the input “.<S> Johannes Kepler” in Fig. 3.14. In  
this way, the arguments h and t of the relation are embedded. The embedding of the 
relation r is either a parameter to be trained, or it may be determined by the text 
verbalizing the relation. These embeddings are fed into the TransE loss and used as 
an extra training criterion in addition to MLM (Fig. 3.14). In a number of language 
understanding tasks the approach is able to achieve good results. On the relation 
extraction benchmark TACRED [254] the approach reaches 71.5% F1-value. 

KnowBERT [157] explicitly models entity spans in the input text and uses 
an entity linker to retrieve precomputed entity embeddings from a KB to form 
knowledge enhanced entity-span representations. The KB-embeddings are precom-
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puted with a loss function similar to TransE. Projection mappings are used to 
transform LM-embeddings to KB-embeddings and vice versa. Information from 
the best matching KB-embeddings is averaged and retransformed to enhance the 
LM-embeddings. These computations form an additional layer of BERT. Wikipedia 
and WordNet were used as KBs. To test KnowBERT’s ability to retrieve facts 
from the KB, a relation was formulated and one argument of the relation was 
masked. KnowBERT reaches a mean reciprocal rank (MRR) of 0.31, indicating 
that on average the correct entity appeared on rank 3, whereas for BERT it shows 
up on rank 9. Hence, the model generates better answers than BERT, but is only 
approximately able to reproduce the relations of the KB. However, it often leads to 
improvements in downstream tasks. 

ERNIE-THU [255] relates named entities in a KB to the named entities in a 
document in a similar way, and transforms embeddings between these two spaces. 
E-BERT [162] is similar in spirit to KnowBert, but it requires no expensive further 
pre-training of the BERT encoder. Facts as Experts [213] also links factual informa-
tion and entities using embeddings, and in this way can inject new information into 
the model. 

In summary the methods presented in this section directly infuse domain-specific 
knowledge expressed by relation embeddings into token embeddings of PLMs. 
There are, however, a number of disadvantages. The KB entity embeddings are 
separately pre-trained with some knowledge embedding models (e.g., TransE [20]) 
and fixed during training of the PLMs. Thus KB-embedding and token embeddings 
are not learned simultaneously. Moreover, the KB entity embeddings often cannot 
fully capture the rich contextual and relational information of an entity in the KB. 
Furthermore, they are static and do not depend on the context. In addition, they rely 
to a great extent on the performance of the linking algorithm and on the reliability 
of graph embeddings. This means that in general other approaches perform better, 
e.g. for relation extraction (Sect. 5.4). 

3.4.2 Pre-trained Language Models for Graph Learning 

Relations between objects and concepts can be joined in a graph and provide a 
uniform representation for the relatedness of many items. Using the structure of 
a graph many properties of nodes can be predicted. In recent years there was 
a great effort to design models which can capture the composition of a graph 
and predict its parts, e.g. node2vec [67] or  graph convolutional networks [107]. 
However, the node representations obtained by such deep models tend to be over-
smoothed and also become very vague. PLMs potentially are able to improve the 
representation by self-attention over long distances. Xia et al. [233] provide a survey 
on PLMs for graphs. Nodes and edges are characterized by different feature and 
position embeddings, and are processed with different types of PLMs. Prominent 
applications are recommender systems exploiting user-product graphs and drug 
discovery evaluating molecule structures.
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Graph-BERT [250] is trained on sample nodes taken from a large graph together 
with their context. These samples are drawn using the closeness according to the 
PageRank algorithm [24] and contain no direct link information. Nodes are char-
acterized by feature embeddings, embeddings based on the PageRank information, 
and hop-based distance embeddings. These embeddings are summarized and form 
the input of a BERT model. The model is pre-trained to reconstruct the information 
of masked nodes and to predict the relation between two nodes by evaluating 
their cosine similarity. The model is fine-tuned for node classification and graph 
clustering. Graph-BERT achieves the second-best accuracies for node classification 
on three graph benchmarks [128, p. 16].  

GPT-GNN [87] proposes an autoregressive PLM to perform an iterative recon-
struction on given graphs. The method assumes a random order on the edges and 
nodes. Given the edges and nodes up to a specific position, it predicts the properties 
of the next nodes/edges. GPT-GNN generates one masked node and its edges at 
a time and optimizes the parameterized models via maximizing the likelihood of 
the node and edges generated in the current iteration. Then, it iteratively generates 
nodes and edges until all masked nodes are generated. The model is trained on a 
graph of 178M scientific papers with their features, the venue and the authors, and 
on a graph with 83M Amazon reviews, users and products. On both benchmarks the 
model has the best accuracies. 

MPG [120] consists of a BERT model encoding node and edge features. As a 
pre-training task, the model has to learn whether two graphs divided into two halves 
actually belong together or whether the halves are a random pair. The model is 
applied to the modeling of molecules and achieves SOTA results on a range of 14 
benchmarks, especially drug discovery. 

GraphFormers [238] jointly models a graph structure together with sequences 
of words. Each node of the graph contains a text. A center node and its neighbors 
are tokenized into sequences of tokens. The model has special transformer layers for 
computing the embeddings of text tokens and for the derivation of node embeddings 
by aggregating the corresponding text embeddings. The model is pre-trained with 
the task to predict, if two nodes are linked or not. GraphFormers is tested on three 
benchmark tasks, e.g. a graph with scientific papers characterized by their titles and 
their citation graph. The model consistently outperforms all prior approaches in the 
prediction of links. 

3.4.3 Textual Encoding of Tables 

Tabular data probably makes up the majority of all business and administrative 
data today. Examples are retail transactions, official statistics, processing data from 
industrial applications, etc. A survey on the interpretation of tables on the web is 
provided by de Alwis et al. [46]. Previous work often relies on manually selected 
features, cannot handle the flexible schemas in web tables, and does not generalize 
well across tasks.
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Fig. 3.15 Learning table relations with TURL [47]. On the left side the table caption and the 
column headers are trained. On the right side the row markers together with input entities (cells in 
a specific row) are processed 

Fig. 3.16 TaBERT [241] encodes the rows of a table as text in a special format. The “context” 
contains corresponding text. Each table cell is represented as (column header, column value type, 
value). Here the first table row is encoded by the line starting with [CLS] 

TURL [47] characterizes a relational table by the table caption C (a short 
text, may be enhanced by section title), column headers . hi (a sequence of tokens) 
describing the table scheme .H = {h1, . . . , hm} and cell values, where each cell 
may represent an entity, e.g. a person. Cells in the same row share some relation, 
and cells in the same column share another relation. This requires a structure-
aware attention mechanism implemented by a visibility matrix, which restricts the 
attention to specific columns and rows. 

TURL is pre-trained according to the masked language model loss on a large 
unstructured dataset consisting of the table captions and headers. Subsequently, the 
relation between entities in the same row or column can be learned. Entities in a 
table are masked, and the model has the task to predict them based on the table 
context and the visibility matrix. By this target TURL can learn factual relations 
from the table and encode them into entity embeddings (Fig. 3.15). 

The model is trained on 570k tables extracted from Wikipedia. All columns 
containing at least one linked cell are marked as entity columns. After fine-tuning, 
the model is able to predict the masked contents of table cells in the test set with 
precision of 54.8%, beating competing approaches. An ablation study shows that 
the visibility attention matrix is essential for achieving a high performance. 

TaBERT [241] aims to include both, natural language text and structured table 
data. TaBERT is trained on 26.6M tables and surrounding text from English 
Wikipedia and the WDC WebTable Corpus [115]. Each table cell is described 
as (column header, column value type, value). Subsequently, the table rows are 
encoded as text, as shown in Fig. 3.16. For pre-training 20% of the columns of
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a table are randomly selected and the model has to predict the masked column 
names and types. In addition, the cell values are reconstructed according to a special 
scheme. The model is fine-tuned on the WikiTableQuestions benchmark [155], 
which contains questions requiring compositional, multi-hop reasoning over a series 
of entries in the given table. To reduce effort only table rows containing query tokens 
are encoded. TaBERT is able to increase the SOTA accuracy on this benchmark 
to 51.8%. The authors show that their table cell encoding is more effective than 
alternatives. RPT [205] proposes a similar scheme for table encoding. BRIDGE 
[124] is a system for semantic parsing, which converts information from text and 
tables to an SQL query extracting information from a database. 

Tapas [81] is a variant of BERT optimized for table processing. The table is 
flattened row-by-row, tokenized and enhanced with position embeddings. Following 
embeddings are added: a row id embedding, a column id embedding, and a rank 
embedding indicating the rank in the sorted sequence, e.g. for numbers. The model 
is pre-trained on 6.2M table-text pairs from the English Wikipedia with the task to 
restore words in both table and text that have been replaced with a mask. The model 
can do this with relatively high accuracy (71.4% accuracy on a test set). 

During fine-tuning the model learns to answer questions from a table, e.g. 
“Which wrestler had the most number of reigns?” for a table with wrestling 
results. [CLS] and a query are prepended to the flattened table and both parts are 
distinguished by an additional segment embedding. The model has two output types: 
(1) a score for each table cell with the probability that this cell will be part of 
the answer and (2) a probability of the result type (none, count, sum, average) for 
[CLS] to produce the final answer. Together the result indicates which operation 
should be performed over which table cells to generate the final answer. On several 
benchmarks Tapas reaches SOTA results, e.g. improving from 55.1% to 67.2% for 
SQA benchmark [90]. The source code and pre-trained models are available at 
Hugging Face. 

The results show that the models described above are able to extract information 
from tables and answer question about the table content. This makes it possible to 
use a large source of information, since tables are ubiquitous in text documents and 
web pages. In principle, the approach can also be used by large Foundation Models 
to include table information in the text they generate. 

TableGPT [63] generate a text from a table using the GPT-2 language model. It 
enhances GPT-2 for table-to-text generation with two auxiliary tasks, table structure 
reconstruction and content matching, for improving text fidelity. 

3.4.4 Textual Encoding of Knowledge Base Relations 

A number of proposals try to verbalize KB-relations as text. In this way, KB-
relations may be directly incorporated in the training text of the language models. 

WKLM [234] randomly replaces a fraction of the entity mentions in the original 
document with names of other entities of the same type. The model is trained to


 -2016 35693 a -2016
35693 a
 


122 3 Improving Pre-trained Language Models

Fig. 3.17 CoLAKE [202] identifies entities and encodes them with specific embeddings. Type 
embeddings distinguish words, entities and relations. The input embeddings are the sum of 
token/entity, position, and type embeddings. For all entities in the input text relations are extracted 
from the Knowledge Base and appended after “[SEP]”, e.g. mother(Harry  Potter, Lily Potter). A  
masking mechanism ensures that relation elements can attend only to their corresponding elements 
in the input text. During pre-training the model has to predict masked tokens and entities 

distinguish the correct entity mention from the randomly chosen ones. In addition, 
the model has to predict masked token. The types of entities are obtained from 
Wikidata [214]. In this way, the model can better capture entity information from 
natural language and yields better results for entity-related NLP tasks. WKLM is 
able to predict relation arguments much better than BERT. In question answering 
(SQuAD and open domain, Sect. 6.2) the model is also able to reach SOTA 
results. Similar approaches [191, 203, 234] propose entity and phrase masking and 
replacement schemes. 

CoLAKE [202] extracts the knowledge context of an entity from large-scale 
knowledge bases. The model links entity mentions to the underlying entities in a 
KB by an entity linker. The mention nodes are then replaced by their linked entities. 
The CoLAKE model is initialized with the RoBERTa.BASE model. It is trained on 
Wikipedia with 3million entity embeddings and 822 relation embeddings aligned 
to the Wikidata5M KB [224] on 26M training samples. The example input “[CLS] 
Harry Potter points his wand at Lord Voldemort [SEP]” is shown in Fig. 3.17. The  
type of inputs (word, entity, relation) is encoded as type embeddings and added 
to the token and position embeddings. To introduce a relation from the KB, e.g. 
“(Harry Potter, mother, Lily Potter)”, the relation node “mother” and the entity 
node “Lily Potter” are introduced with the position embeddings 2 and 3, as the first 
relation argument “Harry Potter” is located at position 1. Self attention is computed 
between text inputs. There is a masking mechanism restricting the self-attention for 
relation elements, e.g. to the pairs “(Harry Potter, mother)” as well as “(mother, Lily 
Potter)” in our example. 

During pre-training about 15% of the input elements (words, entities, relations) 
are masked and have to be predicted by the model. As entity nodes simultaneously 
appear in the input text and the knowledge base this helps to align the representations
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of language and relations. Masking relation nodes helps CoLAKE to learn contex-
tualized representation for relations. On the language understanding tasks of GLUE 
the CoLAKE model achieves a similar average of 86.3 as RoBERTa. An alternative 
task consist of the completion of relation triplets .(h, r, t) using a sentence describing 
the relation. It turns out that CoLAKE is much better than its competitors, e.g. the 
correct relation is inferred from two entities in 72.1% of the cases. 

LUKE [237] treats words and entities in a given text as independent tokens, 
and outputs contextualized representations of both. The model is based on BERT 
and trained to predict randomly masked words and entities in a large entity-
annotated corpus derived from Wikipedia. It contains an entity-aware self-attention 
mechanism that is an extension of BERT’s self-attention. It takes into account 
embeddings indicating if a token represents text or an entity. LUKE yields SOTA 
results in relation classification, entity typing and NER. K-adapter [222] is a related  
approach using RoBERTa (Sect. 3.1.1) as fixed background model and building 
several independent “Adapters” to include knowledge from different KBs. 

EWISER [14] similarly targets word sense disambiguation (WSD). Starting with 
BERT embeddings, it computes scores for WordNet synsets (sets of words with 
similar meaning). Exploiting the interdependence of the synset graph the approach 
computes final scores that a word belongs to a synset. It achieves a new SOTA on a 
number of WSD benchmarks (Sect. 5.2). 

PET (Pattern-Exploiting Training) [184] as an alternative constructs an addi-
tional training set using only a few labeled examples. Consider a 5-star scale rating 
for a restaurant in the Yelp dataset [185]. The authors add text to the reviews to 
express the ratings, e.g. “All in all it was great”. Using this approach the authors 
convert the Yelp dataset to a task for predicting masked words, e.g. “All in all it was 
[MASK]”. However, they provide the verbalized labels only for a small number of 
examples. Subsequently, they predict the best class for the non-labeled examples 
and train the model with the predicted classes as well as the language modeling loss 
to avoid catastrophic forgetting. This can be done in several iterations. Although 
only a few labels have been used, the model performs better on Yelp than standard 
supervised approaches. The SuperGLUE benchmark data covers eight challenging 
NLP tasks. With just 32 labeled examples the PET approach trained according to the 
above schema yields a better average (75.4%) than GPT-3 (71.8%) with the same 
number of few-shot examples. This shows that good results can be achieved with 
a small model (223M) and only few labeled examples. Note that the fine-trained 
SOTA for SuperGLUE is 90.4% using T5 and Meena. 

TeKGen [1] is a data-to-text sequence-to-sequence model to verbalize a com-
plete KB. It is applied to the English Wikidata knowledge base [214] with . ≈ 6M 
entities and about 1500 relations. The model starts with a large training corpus 
of heuristically aligned Wikipedia text and Wikidata triples. Relations sharing a 
common entity subject are converted to the input subject relation. 1 object. 1,  . . . ,  
relation. n object. n for the T5 transformer (Sect. 3.1.3). As an example “To kill a 
Mockingbird, author: Harper Lee, publication date: 11 July 1960” is translated to 
“To Kill a Mockingbird is a novel by Harper Lee published in 1960.” The T5 model 
is fine-tuned and subjected to an addition check to generate good verbalizations.
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The resulting dataset of verbalized triples was used in a question answering task. 
It was able to increase the accuracy in the Natural QuestionsNatural Questions 
(NQ) benchmark [109] (Sect. 6.1.2) from 38.8% to 41.5%. KGPT [30] in a similar 
way converts structural knowledge into the serialized text and lets model learn 
knowledge-text alignments. 

In summary these methods transform KB relations into text, e.g. as complete 
sentences expressing relations or as concatenated triples (e.g., [head text, relation 
text, tail text]) into LMs for training or fine-tuning. This text is transformed into 
contextual embeddings and the model is trained to detect the underlying relation. 
The drawback is that focusing on knowledge base completion tends to over-adapt 
the models to this specific task, which comes at the cost of generalization. 

3.4.5 Enhancing Pre-trained Language Models by Retrieved 
Texts 

An open domain question answering system has the task of answering questions 
not restricted to a specific domain [27]. Consider the following example from the 
TriviaQA benchmark [99]. “Question: The Dodecanese Campaign of WWII that 
was an attempt by the Allied forces to capture islands in the Aegean Sea was the 
inspiration for which acclaimed 1961 commando film?” “Answer: The Guns of 
Navarone”. It is not plausible that the model can reproduce such a specific response 
from the knowledge stored in its parameters, even if it was present in the data 
before training. Therefore, it would be desirable for the system to be able to gather 
additional evidence by a retriever collecting relevant documents from a large text 
repository. Subsequently, it has to align the retrieved information with the question 
and generate an answer by another PLM, a reader. New web search techniques 
can be used for this approach. They are based on comparing embeddings for 
words or passages consisting of several sentences. There are numerous applications 
such as question answering, summarization, and dialog systems. In Sect. 6.1 this is 
discussed in more detail. Recent surveys are provided by Zhu et al. [259] and Yu et 
al. [244]. 

DPR (Dense Passage Retriever) [103] employs a PLM to encode KB-passages 
. di , e.g. from Wikipedia, as embeddings .emb(di). This can be achieved by fine-
tuning a BERT model to encode passages by the embedding of the token [CLS]. 
These embeddings can be stored in an index for fast access. Then the DPR retriever 
processes the query sequence x by another BERT model and generates the query 
embedding .emb(x). A number of .k = 100 passages . dj with maximal inner product 
.emb(x)ᵀemb(dj ) is retrieved by a nearest-neighbor search. Both BERT encoders 
can be trained together to generate appropriate embeddings using weak supervision 
in the form of question-answer pairs (cf. Sect. 6.1.5). If, for instance, the query is 
“Who is the bad guy in lord of the rings”, the algorithm can retrieve “Sala Baker 
is best known for portraying the villain Sauron in the Lord of the Rings trilogy”,
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because “bad guy” and “villain” have similar embeddings. Therefore, DPR can 
find passages with similar meaning, expressed with different words. Karpukhin et 
al. [103], for instance, show that already with 1000 training examples the dense 
retriever is better than the classical keyword search. For 40k training examples the 
top-20 retrieved passages contain the correct answer in about 79% of the time, while 
this value is only 59% for the classical retrieval. An in-depth discussion is given in 
Sect. 6.1.5. 

The DPR reader is another BERT model. Similar to BERT’s text pair classi-
fication, it is fine-tuned to predict a probability for each retrieved passage that 
this passage contains the correct answer. In addition, it selects a span of tokens 
by span prediction, which probably provides the answer. In the example it selects 
“Sala Baker” as the answer. Together both components form a retriever-reader 
architecture, which recently became popular. The approach can be easily applied to 
KBs with billions of passages [103, 201]. On the Natural Questions [109] it yields 
a test set accuracy of 41.5%. 

DensePhrases is a different system creating embeddings for phrases of up 
to 20 words in the KB, which are computed without knowing the query [114]. 
The processing of the retrieved phrases directly yields the answer without much 
computational effort. Using careful workflow optimization the authors achieve near-
SOTA results with a much lower processing time than dense passage retrieval 
systems, e.g. a test set accuracy of 40.9% on Natural Questions. 

FiD (Fusion in Decoder) [91] employs DPR as retriever. In the reader step it 
uses the special tokens “question:”, “title:”, and “context:”. These tokens mark 
the question, the retrieved passage title and the passage text and are concatenated 
forming the input. Subsequently, these k retrieved triples are fed one-by-one into 
a transformer encoder like T5 [170] (770M parameters), which independently 
processes each triples by the encoder. Only in the decoder the passages are handled 
jointly and the text of the answer is generated. This approach drastically reduces the 
computational effort. The transformer is fine-tuned on a QA-task. The architecture 
of the model is shown in Fig. 3.18. Raffel et al.  [170] provided evidence that 
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Fig. 3.18 A retrieval enhanced language model [91] encodes the query and the KB passages as 
embeddings and uses a pre-trained retriever to find passages corresponding to the query. The reader 
is a Seq2seq model (T5) combining the query and the passages to generate the answer. This model 
setup is fine-tuned with different benchmark datasets
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generative models like T5 are even competitive for QA-tasks such as SQuAD [173], 
where answers are spans in a given document. 

The system achieves a test set exact match accuracy of 51.4% on the Natural 
Questions benchmark compared to 41.5% for DPR. The TriviaQA benchmark [99] 
contains a set of trivia questions with answers that were originally scraped from the 
Web. On this benchmark the model yields SOTA results with 80.1% exact match 
accuracy [211]. This is better than the accuracy of other much larger models, 
like GPT3 with 175B parameters (71.2% EM), or T5 without retrieval and 11B 
parameters (60.5% EM). It turns out that increasing the number of retrieved passages 
strongly enhances the answer quality. 

There are a number of new approaches to augment PLMs with text from an 
external KB. In Sect. 6.1 we describe different PLMs for retrieval that can be used by 
web search engines. In Sect. 6.2 we investigate systems for question answering that 
often employ a PLM-based retrieval mechanism and an additional PLM to generate 
the answer text. It combines the query, the knowledge acquired during training, as 
well as the information in the retrieved documents. 

In summary, combining language models with retrieval is currently the most 
efficient way to incorporate additional information into PLMs. The new information 
is focused on the current query and thus very informative. The retrieval model 
can access semantically related passages within fractions of a second using new 
approximate open-source nearest neighbor index structures. By relying on embed-
dings, synonyms and paraphrases can be found and the meaning of words can be 
disambiguated. In addition, the underlying knowledge bases can be updated on the 
fly to keep the information current. 

3.4.6 Summary 

The knowledge covered by the textual training data can be leveraged in various 
ways to improve the performance of PLMs. Entities and relations from a knowledge 
base can be represented by embeddings, e.g. by TransE. However, the utilization 
of these embeddings for PLMs is not very efficient and error-prone. A more 
promising alternative is the direct use of table content or knowledge base relations 
by specialized PLMs, which capture relationships between entities and table cells 
by specific self-attention patterns. Similar to Graph-CNNs PLMs have been directly 
used to acquire the relationship between the nodes of a graph by encoding the 
features of links by embeddings in a BERT-like model. Along this line a promising 
way to transfer relational knowledge from a graph to a language model is proposed 
by GraphFormers. 

A very simple and efficient approach of incorporating tables and knowledge 
bases in PLMs is the creation of text that expresses the information content. This can 
be used by the PLM either as conditioning text or during training. However, the most 
promising way to include knowledge is retrieval, since most information is stored 
in the form of unstructured text on the Web or databases. Here, the retriever-reader



3.5 Changing Model Size 127

architecture emerged as an effective way to collect relevant passages. Subsequently, 
the PLM generates new text by combining the internal knowledge, the start text, and 
the retrieved passages. 

Much effort was devoted to the extension of the length of input sequences 
(Sect. 3.2). This was mainly achieved by sparse attention patterns reducing the 
increase in computational effort from quadratic to linear with S4 as a leading 
approach. Nevertheless, larger input sequences still have limited range of context 
both within the same sample and outside of it. 

In contrast, retrieval can cover an indefinite context within the same sample by 
gathering appropriate passages, even if there is no simultaneous attention over the 
whole context. In addition, retrieval can access relevant information in huge docu-
ment collections. Either the highly developed traditional keyword search engines 
may be used. Alternatively dense retrieval may be employed which compares 
embeddings of the query and passages using approximate nearest neighbor search 
over an index. It turns out that relatively small retrieval-based models outperform 
large Foundation Models like GPT-3. FiD, for example, achieves an exact match 
accuracy of 51.4% on the Natural Questions benchmark compared to 29.9% for 
GPT-3. Retrieval is extensively used by recent models such as WebGPT and Retro. 

3.5 Changing Model Size 

The size of a model, especially its number of parameters, has a marked influence 
on the performance of the model, its memory requirements and the computational 
resources required for training. In the first section we discuss that models with 
more parameters potentially have a better performance. This, however, requires a 
larger computational effort during training and model utilization. An alternative 
are mixture-of-experts models, which define a number of parallel model structures 
which selectively compute a solution. This is described in the second section. 

As initial versions of successful models often are extremely large, a variety of 
model compression and acceleration techniques have been developed. They reduce 
memory requirements and training time without noticeable degradation of accuracy, 
and allow the models to be deployed on low resource computing devices, such as cell 
phones. There are three main techniques for model size reduction [65]—parameter 
compression and reduction, low-rank factorization, and knowledge distillation— 
which are outlined in the subsequent sections. 

3.5.1 Larger Models Usually Have a better Performance 

As a rule for machine learning, the number of parameters of a model should be 
limited to avoid overfitting, i.e. adapting to random fluctuations in the data. It turned 
out that this does not hold for PLMs if the amount of training data and the number of
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model parameters are increased simultaneously. Larger PLMs have been shown to 
have better performance on NLP tasks, which is underscored by theoretical work on 
PLMs [19, p. 117]. The benefits of increasing the number of parameters come from 
two factors: additional computations at training and inference time, and increased 
memorization of the training data. Kaplan et al. [102] empirically investigated 
in detail the dependency between the number of model parameters R (excluding 
embeddings), the size N of the training data, and the amount of computing effort C 
used for training. They evaluated a large number of models and draw the following 
conclusions: 

• The performance of the models depends largely on the size quantities .R,N,C. 
Other architectural features such as width or depth have only a weak influence. 

• The performance follows a smooth power-law dependency with each of .R,N,C, 
if the other quantities are not too small. As an example the loss is approximately 
.L ≈ (N/(5.4 ∗ 1013))−0.095. 

• If R and N are increased at the same rate, the model accuracy grows reliably. If 
one of these factors is held constant the improvement gets lower. To get the best 
performance, the model size R should grow with the factor 8, if the data N is 
increased 5 times. 

• Training loss has a predictable dependency on computing effort and can be 
extrapolated. 

• The performance of fine-tuning of a pre-trained model on a different training task 
depends strongly on the loss for the pre-training validation set. Therefore, transfer 
to a different distribution induces a constant penalty, but roughly improves with 
the performance on the pre-training set. 

• Large models are better able to extract information from data than small models. 
They reach the same level of accuracy with fewer optimization steps and using 
fewer data points. If there is only a fixed amount of computation time, but no 
restrictions on size or data, one should use very large models and stop before 
convergence (Fig. 3.19). The optimal batch size depends on the gradient noise, 
which is easy to measure during training [132] and is larger than assumed before. 

These findings show that the success of larger PLMs is a systematic feature. A 
larger number of model parameters is much more sample efficient than thought 
before, when overfitting was a major problem for smaller training tasks. This also 
explains the success of large models like T5, BigBird, or GPT-3. Hernandez et 
al. [80] investigate empirical scaling laws for the transfer from pre-training to fine-
tuning. Figure 3.20 plots the training efforts of some Deep Learning models during 
the last two decades.
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Fig. 3.19 A series of language model training runs with varying model sizes [102]. The left 
graph shows that larger models require fewer samples to reach a fixed test loss. The right graph 
demonstrates that the model size should grow with compute budget. Image reprinted with kind 
permission of the authors [102, p. 4]  

Fig. 3.20 Number of parameters for Deep Learning Models since 2017 [188]. Note that the 
parameter scale is logarithmic. The number of parameters roughly increased from 100M up to 
1000B 

3.5.2 Mixture-of-Experts Models 

As discussed above a model with more parameters usually can achieve a better 
performance. A simple way to increase the number of parameters without a higher 
training effort is a mixture-of-experts architecture. It was already proposed in the 
nineties by Nowlan et al. [147] and has a strong resemblance to decision tree models
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[152]. It consists of a single gating module and a number of expert modules with 
identical architecture but different parameters. Each expert specializes in only a 
subset of the data, and the gating module assigns each input to the appropriate 
experts. Specifically, the gating network computes a probability distribution over 
the experts indicating how well each expert is able to process the incoming input. A 
reduction in computational effort can be achieved, if only a few expert modules 
are actually used. The model is trained by stochastic gradient descent, which 
can compute the parameter gradient despite the discontinuities if some expert is 
exchanged. Increasing the number of experts keeps the computational cost constant 
because the model always selects the same small number of experts for each input, 
regardless of the total number of experts. The architecture enables massive models 
and is particularly efficient for distributed systems where the experts are spread 
across different computational devices. 

Clark et al. [38] analyze the theoretical properties of such routing networks, 
where each input is processed only by subnetworks with a fraction of the network’s 
parameters.The authors analyze three different architectures and get the following 
results. 

• Routing improves the performance of PLMs in all investigated sizes and variants. 
• Improvement follows a power-law in the number of experts E that diminishes 

with model size N , and can be further generalized across routing architectures. 

The analysis is based on the evaluation of several magnitudes of size, including 
models with hundreds of experts and hundreds of billions of parameters. 

GLaM [51] is an autoregressive mixture-of-experts (MoE) model with up to 
1200B parameters. It replaces the fully connected layer of every second encoder 
block (Sect. 2.1.1) with 64 copies having different parameters. For each embedding, 
a gating module selects two of these 64 fully connected layer for processing. The 
architecture is shown in Fig. 3.21. The model was trained on a huge collection of 
1.6T tokens documents and quality-checked web pages. It has approximately 7 times 
more parameters than GPT-3 but requires only 1/3 of its training effort. In this way, 
the model has many more parameters increasing its representational capacity. As 
for a given input token, only two expert models are used, the computational effort 
for training and application is lower. The zero-shot and one-shot performance is 
better than for GPT-3 on 29 NLP tasks. Some results are compared to those of other 
models in Tables 3.3 and 3.4. GLaM is remarkable as it requires only 1/3 of the 
training effort of GPT-3 but it achieves a similar or better performance than GPT-3 
on NLP tasks. 

WuDao-2.0 [175, 178, 257] is a recent giant autoregressive language model with 
1750B parameters, ten times larger than GPT-3. It has mixture-of-experts layers, 
where a gating network selects a submodule for processing based on the input. 
WuDao-2.0 uses the FastMoE library [74] and employs the GLM 2.0 architecture 
(Sect. 3.1.3) combining the different learning paradigms of BERT, GPT and the 
encoder-decoder transformer [175]. 

The training data consist of 1.2TB Chinese text, 2.5TB Chinese graphic data and 
1.2TB English text data from the Pile corpus [61]. The Cogview model is used for
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Fig. 3.21 Architecture of GLaM [51]. For each input token, e.g., “likes”, the gating module 
dynamically selects two most relevant experts out of 64 available experts. This is indicated by 
the blue grid. The weighted average of the outputs from these two experts’ feedforward models 
is then passed to the next encoder block. For the other inputs different experts are selected. A 
mixture-of-experts layer is used in every second encoder block 

the joint processing of images Sect. 7.2. In addition, WuDao-2.0 can learn on the fly, 
draw pictures and compose poetry. These capabilities are a significant difference to 
GPT-3. 

The published performance claims are impressive. On the LAMA benchmark for 
measuring world knowledge [158] it scores higher than AutoPrompt [192]. For the 
SuperGLUE few-shot natural language understanding task [219] it achieves SOTA 
and surpasses GPT-3. For the Lambada benchmark (Sect. 4.1.3), where the last word 
of a paragraph has to be predicted, it yields better results than Microsoft Turing 
NLG. In addition, it increases SOTA for a number of text-graphics tasks (Sect. 7.2.8). 

Switch [56] is a variant of the transformer encoder-decoder T5 (Sect. 3.1.3). It 
has a mixture-of-experts architecture, which replaces the fully connected layer of 
each encoder block with .k = 128 copies having different parameters. There is a 
simple linear gating network, which selects one of the 128 single fully connected 
layers (the experts) per token. Hence, the number of parameters is drastically 
increased with approximately constant computational effort. For this architecture 
a gradient can be computed and the model may be optimized using a number 
of specific strategies and a special TensorFlow version. It turns out that Switch 
achieves the same loss level compared to the standard T5 version with 1/7 of the 
computing time. On a number of fine-tuning tasks the large Switch model with 
1600B parameters and 2048 experts yields better results than T5-large (Sect. 3.1.3) 
with 13B parameters requiring a quarter of the computational training effort. 

As an alternative to the gating network in the mixtures-of-experts architecture, 
it is possible to use hash values to activate different parts of the network. Token 
Switch [177] computes a hash value for each input token and routes the generated 
embeddings of each token to different feedforward networks based on the hash
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values. The authors show that their approach compares favorable to Switch and 
works well on comprehensive language modeling tasks. 

ST-MoE-32B [261] is a mixture-of-experts model with 269B parameters and a 
comparable training cost of a 32B dense model. The authors modify the routing 
algorithm which dispatches token embeddings to one or two experts, and resolve 
instability issues. The model is similar to a T5-Large encoder-decoder [170]. The 
ST-MoE-32B has 32 experts with an expert layer frequency of 1/4, such that every 
fourth feedforward layer of T5 is replaced by an MoE layer. The authors use the 
GEGLU activation function, which contains multiplicative elements [142] 

.FFNGEGLU(x,W, V, b, c) = GELU(xW + b) � (xV + c). (3.2) 

The authors compare a large number of variants and hyperparameters to improve 
training. 

The model achieves SOTA in many transfer learning benchmarks, e.g. for 
SuperGLUE with an average accuracy of 93.2% beating the PaLM LM with 540B 
parameters. Other SOTA results were reached for summarization (XSum [143] with 
27.1 ROUGE-2, CNN/Daily Mail [78] with 21.7 ROUGE-2), closed book question 
answering (WebQA [13] 47.4% exact match, Natural Questions [109] 41.9% 
exact match), and adversarially constructed tasks for common sense reasoning 
(Winogrande [182] 96.6%, ANLI R3 [146] 74.4%). 

3.5.3 Parameter Compression and Reduction 

Model quantization is a parameter reduction technique, where parameters are stored 
in low precision and therefore the computations in PLMs are also less precise. 
Conventional models normally use parameters of 32 bits or 16 bits, while parameters 
after quantization can have 8 bits or even 1 or 2 bits. Q-BERT [190], for example, 
quantizes Transformer models to ultra-low precision. This reduces the model size 
13-fold while only loosing 2.3% performance. The authors avoid the naive approach 
of simply reducing weight precision, but use additional training steps to adjust the 
quantized weights and allow higher precision for more “sensitive” parameters. Other 
authors propose to delete parameters with small values [64]. ALBERT [113] uses  
the same weights across all layers and achieves a significant parameter reduction. 
Nevertheless, ALBERT has the same or better performance compared to BERT. 

Another approach aims to reduce the number of parameters, e.g. by removing 
attention heads. It was shown that most attention heads focus only on nearly 
identical positional relations and can be replaced with fixed attention patterns [172]. 
It turned out that high performance is possible with only 1–2 attention heads per 
encoder unit instead of the 16 attention heads of the original model. A detailed 
overview on parameter compression techniques is provided by Ganesh et al. [60] .  

Another method to reduce model parameters is model pruning, which cuts off 
irrelevant parts in PLMs to achieve a smaller memory footprint and faster execution
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without compromising performance. It could be shown, for example that some 
attention heads of the transformer may be removed with little impact on the accuracy 
[256]. Other researchers prune the weights of attention layers and linear layers to 
reduce the number of parameters without reducing the accuracy [29, 64]. Note that 
model pruning does not always lead to speedups, as sparse computations may be 
hard to parallelize on GPUs. 

3.5.4 Low-Rank Factorization 

This technique employs matrix and tensor decomposition to reduce the number 
of parameters of full rank parameter matrices and already has been discussed 
in Sect. 3.2.2 for the extension of the input sequence length. Examples are the 
Performer [34] and the Linear Transformer [105] (Sect. 3.2.2). As an alternative, 
ALBERT (Sect. 3.1.1) approximates the embedding matrix as a product of two 
smaller matrices. 

3.5.5 Knowledge Distillation 

In machine learning the knowledge distillation approach [82] transfers knowledge 
from a large teacher model to a smaller student model. The large model can 
often be trained successfully to approximate a functional relation without using 
its full representational capacity. To reduce the high computational and memory 
requirements during application, a smaller model is trained to imitate the large 
model without sacrificing accuracy. 

The advantage of this approach is that the student model may be trained to 
approximate internal activations of the teacher model. Often the target probabilities 
generated by the teacher model are used to train the student network . Typically the 
outputs of the teacher model for an input . x is .z(x), which can be translated to a 
probability by a scaled softmax 

.y(x|τ) = [exp(z1(x)/τ), . . . , exp(zk(x))/τ ]
exp(z1(x)/τ) + · · · + exp(zk(x)/τ)

, (3.3) 

where .y(x|τ) is a probability vector and . τ is a parameter called temperature, which 
for a standard softmax is normally set to 1.0. The student model is trained to imitate 
the probabilities .ŷ(x|τ) generated by the teacher model by minimizing cross entropy 

.E(y|τ) = −
k∑

j=1

ŷj (x|τ) log yj (x|τ), (3.4)
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where .y(x|τ) is the output probability vector of the student model. If observed 
values are available the probabilities of the teacher model .yj (x|τ) may be replaced 
by 1.0 for the observed class and 0.0 otherwise. During training the temperature 
may be varied. A high temperature avoids extreme probability values and reduces 
the gradients. This may lead to a faster convergence in the beginning of the 
optimization. 

DistilBERT [183] uses MLM cross-entropy loss to predict token probabilities 
and in addition the cosine similarity between the embedding matrices of the teacher 
and student networks to train a smaller BERT model. It utilizes knowledge distilla-
tion during pre-training to reduce the size of BERT by 40% while retaining 99% of 
its original capabilities and making the inference 60% faster. MobileBERT [204] is  
based on a specific large BERT model and transfers information about multi-head-
attention as well as the resulting embeddings. Experiments show that MobileBERT 
is 4.3. × smaller and 5.5. × faster than BERT while achieving competitive results on 
well-known benchmarks. 

TinyBERT [97] proposes distillation of a BERT model during pre-training 
and fine-tuning. The model is adapted to: (1) the output of the embedding of 
selected layers; (2) the hidden states and attention matrices derived from selected 
Transformer layers; (3) the logit outputs of the prediction layer. As distillation 
is also performed during fine-tuning the model can be better adapted to the fine-
tuned BERT. On a number of benchmarks TinyBERT is on par with BERT.BASE and 
outperforms DistilBERT. 

Note that the knowledge distillation methods discussed above require the data 
used for pre-training the teacher model, which is often not released because of data 
copyright. It has not yet been evaluated whether distillation is also feasible with new 
data. The training time for knowledge distillation is high, because the teacher model 
needs to perform a forward prediction over the entire pre-training data to generate 
activation values or intermediate representations. 

Rogers et al. [176] list a large number of size reduction studies for BERT 
and report parameter size and computing time reduction as well as the resulting 
performance. For a number of approaches there is a marked reduction in memory 
and computing effort with nearly identical performance. 

3.5.6 Summary 

The number of model parameters, the size of the training data and the amount of 
computation effort for training are the determining factors for the performance of a 
model. Kaplan et al. [102] show by experiments that increasing parameter count and 
training set size reliably lead to a better performance and provide a detailed formula 
for the dependency. If a fixed compute budget is available, one should use a very 
large model and much data. 

Mixtures-of-experts follow this approach by increasing the number of parameters 
without requiring more computational effort. By routing inputs to specific subnet-



3.6 Fine-Tuning for Specific Applications 135

works they are able to increase performance compared to monolithic networks. 
Examples are GLaM, WuDao-2.0, and Switch. However, these networks have 
hundreds of billions of parameters and require a specific parallel computational 
infrastructure. 

Often the trained networks are too large and have to be reduced to fit to smaller 
computing devices. A viable approach is low-precision computation, which reduces 
memory requirements for parameter storing. Low-Rank factorization of matrices 
also has a lower memory footprint as a side effect. Finally, knowledge distillation 
may be employed to create a student model which imitates the inner working of 
a large trained teacher network. DistilBERT, for example, was able to reduce the 
memory size by 40%, kept 99% of the original performance and was 60% faster. 
There are a number of other size reduction approaches with similar results. 

3.6 Fine-Tuning for Specific Applications 

Self-supervised pre-training of language models on large text collections and subse-
quent fine-tuning them to solve specific tasks has become the standard paradigm in 
natural language processing and understanding. It has been shown that pre-trained 
language models such as BERT are excellent for generalization and can easily be 
fine-tuned to multiple tasks. However, sometimes simple fine-tuning to a domain-
specific task is not sufficient, and other transfer learning approaches have to be used 
to better adapt models to domain-shift in the data [166]. There are a number of 
surveys covering transfer learning in depth [230, 252, 260] 

Fine-tuning updates all the model layers, including the embedding layer, but there 
are larger changes in the higher layers [133]. First, we discuss whether fine-tuning 
can destroy the knowledge gained during pre-training. Standard fine-tuning adapts 
a large pre-trained PLM with many parameters to a relatively small fine-tuning 
training data set with little computational effort. We investigate whether overfitting 
occurs during this phase. Subsequent sections introduce different approaches for 
fine-tuning: 

• Intermediate Fine-Tuning performs an in-between fine-tuning step with a larger 
training set before a final target fine-tuning takes place. 

• Multitask fine-tuning enhances the model capabilities by simultaneously fine-
tuning on a number of tasks. 

• Fine-tuning a frozen model adapts a small additional layer to the fine-tuning task 
instead of changing all weights of the large pre-trained model. 

• Creating Prompts for Few-Shot Instructions aims to generate inputs for a large 
autoregressive PLM like GPT-3 to solve a task in a zero or few-shot approach.
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3.6.1 Properties of Fine-Tuning 

Fine-tuning of PLMs is commonly employed to adapt a pre-trained model to a 
specific task by supervised training. This adaption of the model from a source task to 
a related target task is also called transfer learning. Transfer learning is especially 
rewarding if we have abundant training data for self-supervised learning—as it is 
typical for non-annotated text—and only little annotated data for the target task. A 
survey of transfer learning is provided by Zhuang et al. [260]. Fine-tuning has a 
number of advantages: 

• The model acquires detailed knowledge about the language, its syntax and 
semantics by exploiting the content provided in the pre-training data. 

• Pre-trained models can easily be adapted to new tasks, e.g. by an additional layer 
with a simple classifier. The language representations of the pre-trained model 
support fine-tuning and are only slightly changed during this process. 

• Fine-tuning even with a small data set yields a much better performance than 
direct training of a classifier on the limited data. 

Autoencoder models like BERT are typically fine-tuned for classification tasks, 
where the logistic classifiers for masked language modeling and next sentence 
prediction have to be removed. Using the [CLS] token or other tokens as input, 
new logistic classifier models as well as all model parameters are trained end-to-end 
with the new task for a few epochs (Sect. 2.1.3). Compared to pre-training, fine-
tuning is relatively inexpensive. Usually, only a small fraction of the pre-training 
effort is required to achieve good results. 

Tripuraneni et al. [210] have theoretically proven that transfer learning requires 
far less data than learn tasks in isolation. They prove that transfer learning improves 
if the task diversity is enhanced. Bansal et al. [7] investigate the theoretical 
properties of fine-tuning a classifier using pre-trained embeddings. The authors 
prove that these classifiers have a smaller generalization gap between their train 
and test accuracy, than standard classifiers. 

Catastrophic Forgetting 

The question is whether fine-tuning can destroy the original capabilities of the 
model. This means, after fine-tuning a pre-trained model for a few epochs, it could 
lose predictive performance available after pre-training. A possible reason can be 
catastrophic forgetting, where all parameters are adapted to a new learning task 
while forgetting learned content. 

Merchant et al. [133] fine-tune BERT.BASE with three different tasks: (1) MNLI 
sentence pair classification task [229] measuring if the first sentence entails the 
second; (2) SQuAD question answering [173], where the answer to a question has to 
be marked in a text; (3) Dependency Parsing [50] to capture the syntactic structure of 
sentences. Then they investigate the performance of a number of probing classifiers
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before and after fine-tuning. The results demonstrate that the fine-tuned models only 
show a small decrease in the accuracy to detect linguistic concepts. The reduction 
cause by the MNLI task in most cases is less than 1%, while higher differences (less 
than 3%) are observed for SQuAD and dependency parsing. Therefore, catastrophic 
forgetting cannot be observed. The authors state that fine-tuning primarily changes 
the top layers of BERT, with dependency parsing also affecting deeper layers. More 
detailed results are provided by Wallat et al. [216]. 

Fine-tuning only benefits from the pre-training, if there are similarities between 
the two tasks. Hence, pre-training should have a loss function which enforces the 
learning of semantics at word, phrase and document level. In addition, its training 
documents should originate from a domain close to the fine-tuning task. Otherwise 
the vocabulary may not include many domain-specific words. As a result, domain-
specific words are split into a number of tokens which hinders model learning and 
degrades its performance in downstream tasks. In the next sections we will discuss 
alternative training regimes which improve BERT’s capabilities. 

Fine-Tuning and Overfitting 

During pre-training BERT’s parameters are adapted to the pre-training data, acquir-
ing universal language representations. As pre-training provides a good initializa-
tion, it avoids overfitting on the small fine-tuning datasets, if the fine-tuning error is 
not minimized too much. 

Since PLMs have a very large number of parameters, there is the risk of 
overfitting on the fine-tuning data. As a result, generalization from unseen data 
can be poor and counterstrategies may be required. D’Amour [42] present a 
comprehensive discussion of this underspecification phenomenon. Jiang et al. [95] 
introduces a form of regularization, which makes the model invariant to small 
perturbations of the input, inducing smoothness in the local neighborhood. They 
develop a class of Bregman proximal point optimization methods, which penalize 
large updates of the model at each iteration. Aghajanyan et al. [2] introduce the 
notion of representational collapse, stating that fine-tuned models lose their ability 
to generalize. They propose fine-tuning optimization based on trust-region theory, 
which alleviates representational collapse at a fraction of the cost of other recently 
proposed fine-tuning methods and, for instance, improves the best known results on 
fine-tuning RoBERTa on GLUE. 

Fine-tuning the same model with multiple random seeds can lead to large 
variance in task performance. Most papers argue that this effect is caused by 
catastrophic forgetting and the small size of the fine-tuning datasets. However, 
Mosbach et al. [140] show that often fine-tuning has an optimization problem due to 
vanishing gradients. In addition, it can often occur that a model does not generalize 
well, although it has the same fine-tuning loss as a successful model. This is an 
indication for the underspecification mention above. The authors recommend to 
use small learning rates with bias correction to avoid vanishing gradients early 
in training. In addition, they propose to use more iterations for fine-tuning. More 
recipes to improve fine-tuning are provided by Rogers et al. [176].
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3.6.2 Fine-Tuning Variants 

Fine-Tuning in Two Stages 

The intermediate training set should be closer to the final task. Although this 
approach can increase performance in some cases, an experimental evaluation 
demonstrates a decrease in performance in 44% of the cases [163]. An intermediate 
training with a task requiring high-level inference and reasoning abilities tend to 
work best, as was shown in a large experiment [165]. However, the authors also 
observe catastrophic forgetting of the pre-trained abilities. Gururangan et al. [71] 
have shown that a second phase of pre-training, using domain-specific data, leads to 
significant performance gains, both in high- and low-resource settings. In addition, 
pre-training on tasks-specific unlabeled data improves performance on various tasks 
and domains. 

Fine-Tuning for Multiple Tasks 

For each task, a task-specific layer is added to the underlying pre-trained model. 
Then the model is simultaneously trained with all tasks. However, it sometimes 
happens that performance does not increase compared to standard fine-tuning [141], 
perhaps because of contradicting requirements of tasks. As an alternative, a subset 
of fine-tuning tasks from the available datasets may be selected based on similarity 
measures [131]. 

HyperGrid [208] is a multitask learning approach evaluated on the T5 model. 
It learns grid-wise projections that help to specialize regions in weight matrices 
for different tasks. As an example, a single model is simultaneously adapted to all 
GLUE and SuperGLUE tasks at once. In spite of the multitude of tasks, the model 
has a slightly better performance on SuperGLUE than the single models. 

Meta-Learning to Accelerate Fine-Tuning 

During fine-tuning a pre-trained PLM is adapted to a new NLP task. It is usually 
trained for two or three epochs on a labeled fine-tuning dataset. Although this is 
much faster than pre-training the model on a large training corpus it still requires a 
lot of effort. To reduce this effort researchers tried to prepare the pre-trained model 
to fine-tuning by meta-learning. A survey of meta-learning is provided by Yin [242]. 

Usually, there is a set . T of related fine-tuning tasks . Ti . During meta-training 
a task  . Ti is sampled from a distribution .p(T). Then the model is trained with K 
training samples from .T train

i and then tested on the validation set of .T val
i . The
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validation error of . Ti is utilized as the training error of the meta-learning framework 
for the current iteration. The MAML algorithm [58] follows this pattern: 

• Copy .w[i] of the initial model parameters . w. 
• Train the model on the training set .T train

i with a K gradient updates: . ŵ[i] ←
w[i] − γ ∂Li(w

[i], T train
i )/∂w

• Apply the model with the updated parameters .ŵ
[i] on the validation set .T val

i . 
• Update the initial model parameters . w using the loss on the validation set . w ←

w − β∂Li(ŵ
[i]

, T val
i )/∂w

This scheme was applied to BERT [6]. The authors generate a large, rich, meta-
learning task distribution from unlabeled text by gathering tokens-to-be masked 
from a few vocabulary terms. On 17 NLP tasks, they show that this type of meta-
training leads to better few-shot generalization than language-model pre-training 
followed by fine-tuning. Chen et al. [28] provide data-dependent generalization 
bounds for these approaches. 

Fine-Tuning a Frozen Model by Adapters 

A downside of fine-tuning for task-adoption is that new model parameters are 
needed for every task. Task adapters [84] aim to mitigate this problem. The authors 
introduce adapter layers, which are inserted in a encoder block after the multi-head 
attention and the feedforward layer (2.7). Now, to fine-tune transformer models to 
new tasks, instead of relearning all parameters, all weights of the network are frozen 
except for the adapter layers and the normalization layers. On tasks like GLUE this 
yields a significant reduction of parameters that need to be trained while preserving 
model quality. 

Rather than having multiple adapters for different tasks, Stickland et al. [197] 
propose training a multitasking version of BERT that can be used for several tasks 
simultaneously. They add low-dimensional projected attention layers as bypass 
to BERT encoder blocks, which connect the input to layer-norm layers and the 
subsequent layer-norm layers. They sample data from the different tasks during 
training proportionally to the sizes of the respective training sets and use an 
annealing mechanism to converge towards equally distributed training samples by 
the end of the training. Their results surpass the results of a BERT.BASE model. 

MAD-X [160] is a framework to adapt multilingual models to arbitrary lan-
guages and tasks. The authors introduce language- and task-specific adapters, which 
consist of a linear down-projection to a small vector, a ReLU activation and a linear 
up-projection. The language specific adapters are trained with an MLM objective, 
while the rest of the model is frozen. The task-specific adapters are trained with 
the task-specific data, fixing the rest of the parameters. Finally, invertible adapters 
are added after the input embedding layer and before the output embedding layer 
to mitigate differences between the multilingual vocabulary and the target language
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vocabulary. MAD-X achieves SOTA for NER and common sense reasoning for a set 
of different languages. 

LoRA [85] freezes the weights of the pre-trained model and adds trainable 
bypasses to the model, which consist of trainable matrix transformations to a 
short vector and to the full rank. This drastically reduces the number of trainable 
parameters (1/30 for GPT-3 and 1/100 for GPT-2) while achieving better results than 
with traditional fine-tuning on many NLP tasks. AdapterHub [161] is a repository 
for adapters that as of writing contains around 380 adapters. AdapterHub is built 
on the Hugging Face transformer library for compatibility with existing transformer 
models. 

Fine-Tuning GPT-3 

GPT-3 is an extremely powerful Foundation Model, but it is not publicly available 
(Sect. 3.1.2). By using the API for fine-tuning GPT-3 with user-specific data [123], 
the model can be adapted to specific domain languages and particular tasks. 
This typically yields a higher quality than few-shot examples and prompt design 
described below. To fine-tune the 175B parameter model on a 1M token file for four 
epochs OpenAI charges about $120. The fine-tuning can be used in a number of 
ways [123]: 

• Completion: Generate a completion for a prompt. 
• Search: Given a search query and a set of documents or labels, the model ranks 

each document with a score based on its semantic similarity to the query. 
• Classification: Input is a query and a set of labeled examples, e.g., [“I am feeling 

awesome”, “Positive”]. Then GPT-3 will predict the most probable label for the 
query. This can be used similar to BERT for any type of classification task. 

• Answer: Input is a question, a set of documents with background information, and 
some examples. Based on the information in the documents and the examples, an 
answer is generated. This is similar to the reading comprehension task of question 
answering (Sect. 6.2). 

• Fine-tune: Adapts GPT-3 to a specific domain text. 
• Embeddings: Get a vector of contextual embeddings for an input text for further 

processing or exploration. 

It can be assumed that GPT-3 and other Foundation Models like PaLM fine-tuned in 
this way will increase SOTA in many areas due to their comprehensive knowledge 
about language. 

3.6.3 Creating Few-Shot Prompts 

For zero-shot learning the model just gets a task description or prompt, e.g.  
“Translate English to French: cheese =. >”, and directly generates the answer
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Fig. 3.22 The accuracy of few-shot learning of GPT-3 is increased by extending the model size 
as well as the number of presented examples [25]. The task is to remove random symbols from a 
word. A natural language description of the task can support the model especially in the one-shot 
regime. Image reprinted with kind permission of the authors [25, p. 4]  

“fromage”. For  one-shot or few-shot learning the model receives a task description 
as well as one or more examples, e.g. “Translate English to French: sea otter =. >

loutre de mer; cheese =. >”, which helps the model to find the answer “fromage”. 
This happens without training, the parameters of the model are not changed, and the 
model creates the answer based on the knowledge acquired during pre-training. 

In this way, GPT-3 can be instructed by natural language prompts to generate 
short stories, songs, answers to questions, press releases, technical manuals, and 
more [181]. It can adapt its output texts to specific styles, personalities or ideologies. 
Here are some of the recommended prompts used for few-shot learning [150]: 

• Summarization: the model receives a long story and the prompt “tl;dr:”. 
• Grammar correction “Original: She no went to the market. Standard American 

English:” 
• Translation: “English: I do not speak French. French: Je ne parle pas français. 

English: Where is the restroom?” French: 
• Generate an outline for an essay: “Create an outline for an essay about Walt 

Disney and his contributions to animation: 
I: Introduction” 

Figure 3.22 shows the accuracy of “few-shot learning” for different GPT-3 model 
sizes and different numbers of given examples. 

In a comprehensive survey Liu et al. [125] compile approaches to prompt design 
to create prompts for language models that reliably generate the desired response. 
For example, when we want to recognize the sentiment of the text “I missed the
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bus today.”, we may insert the prompt “I felt so ”, and use the language model to 
replace the blank. There are two types of prompts: cloze prompts [159], which fill in 
the blanks of a textual string by an autoencoder model similar to BERT, and prefix 
prompts [117], which continue a text by an autoregressive language model. 

For prompt mining [96], for instance, a large number of sentences with phrases x 
and y are collected. Subsequently, prompts are generated using the words between 
x and y, or on the dependency path generated by parser. Another approach is 
based on paraphrasing existing prompts, for instance by translation to another 
language and back-translation. The probability of desired answers may be increased 
by gradient-based search [192] as demonstrated with the AutoPrompt model. 
Alternative approaches are described in [62, 245]. It should be noted, however, that 
the output of a model instructed with few-shot prompts can be easily altered if an 
adversary adds some new prompts [79]. 

Instead of improving prompt tokens, which generate a desired output by the 
language model, one can optimize the input embeddings of some “virtual” tokens, 
such that the desired answer is created. The embeddings of this “continuous” prompt 
can be optimized by gradient descent while keeping the parameters of the language 
model fixed [121]. Lester et al. [117] apply this approach with a continuous prompt 
sequence of 100 tokens to the T5 transformer. On the SuperGLUE benchmark they 
achieve the same performance of 90.5% as for fine-tuning T5. This demonstrates 
that prompt tuning becomes competitive with fine-tuning and is much better than 
few-shot instructions. Note that the effort for prompt tuning is much lower than for 
fine-tuning, as the number of parameters is much smaller. It would be interesting to 
see this technique applied to recent autoregressive models like GPT-3 or PaLM. 

3.6.4 Thought Chains for Few-Shot Learning of Reasoning 

To improve the reasoning capabilities of language models, prompts can contain a 
chain of thought, a sequence of short sentences that imitate the reasoning process 
a person might have when answering a question [226]. Two examples are shown 
in Fig. 2.21. The idea is that a chain of thought allows language models to split a 
multistep problem into intermediate steps that are solved one at a time, rather than 
solving an entire multistep problem in a single pass. 

The approach has a number of advantages. First, the chain-of-thought approach 
enables a model to decompose complex reasoning tasks into simpler intermediate 
steps, which can be solved by the model. To solve an entire class of problems, only 
a few chains of thought need to be provided. Second, when a model performs the 
intermediate steps, it is easier to check where the model has introduced an error. This 
may give a clue how to improve the chain of thought. Chain of thought reasoning 
can be applied to symbolic manipulation, common sense reasoning and math tasks, 
and is potentially applicable to any task that humans can solve via language. 

Prompts also do not need to be restricted to input-output pairs or explanations 
and can cover many arguments, including things to avoid, rules of thumb, reasoning



3.6 Fine-Tuning for Specific Applications 143

chains, positive or negative examples. Mishra et al. [138] consider instructions 
for crowdworkers, which contain very detailed prescriptions how to solve a task. 
They compile a dataset of tasks, instructions and generated input-output pairs. 
Subsequently, they investigate how well models are able to generalize to similar 
tasks. The results show that PLMs benefit from instructions when evaluated in terms 
of generalization to unseen tasks (19% improvement). However, there is much room 
for improvement. 

Du et al. [52] investigate few-shot learning theoretically. They investigate the 
case that a model is pre-trained on a number of tasks with a large training set and 
subsequently fine-tuned on a related task. They theoretically derive bounds on the 
required sample size for the fine-tuning task, which can be reduced when there is a 
good common representation. 

3.6.5 Fine-Tuning Models to Execute Instructions 

Instead of querying autoregressive PLMs by few-shot instructions it is possible to 
fine-tune these models to execute instructions without additional examples. 

InstructGPT [151] is a new version of GPT-3. It is optimized to follow 
instructions instead of predicting the probable next words. Instead of needing a 
series of examples, GPT-3 now directly executes an instruction, e.g. “Write a short 
story about the moon and the stars:”, and the model generates a plausible story. In 
a first trial a dataset of 13k pairs of instructions and completions was collected 
to adapt GPT-3. GPT-3 was fine-tuned using this data. However, the model did 
not adequately match the intended human preferences. Therefore, the model was 
modified using a different training approach. 

To adjust GPT-3 a reinforcement learning approach with human feedback was 
used. The proximal policy optimization (PPO) [186] follows the policy gradient 
pattern. It approximates the conditional distribution .π(at |st ;w) of actions . at ∈ A
at step t conditional to the current observation .st ∈ S about the state of the 
environment and a vector . w of parameters. In usual reinforcement learning, the 
environment generates a reward and the algorithm tries to maximize the weighted 
sum of rewards. The gradient for this optimization (policy gradient) can be easily 
computed from the model. PPO computes an update at each step that minimizes 
the cost function while ensuring the deviation from the previous policy is relatively 
small [186]. 

The algorithm needs a numeric score to measure the quality of each generated 
sequence. To reduce the data necessary for optimization, a human can express 
preferences [198] between trajectories .τ = (y, x) for pairs of instructions . x and 
generated text . y. Informally, the goal is to produce trajectories which are preferred 
by the human, while querying the human as little as possible. To achieve this 
goal, a reward function .r(y, x) ∈ R is postulated [36] with the property that 
.(y[1], x[1]) is preferred to .(y[2], x[2]) if .r(y[1], x[1]) > r(y[2], x[2]). The original 
policy .π(at |st ;w) induces a conditional distribution .π(y|x;w). To construct this,
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Fig. 3.23 InstructGPT is trained in three steps [151, p. 3]. First GPT-3 is fine-tuned on instructions 
and the corresponding completions. Then a reward model is generated by optimizing the selection 
of a completion for an instruction. Finally, a policy is trained to generate token by token of the 
answer with maximal reward. Credits for image parts in Table A.1 

the reward function .r(y, x) is approximated by a deep neural network . ̂r(y, x;u)

with parameter . u. The network is trained by three alternating steps (Fig. 3.23): 

1. The policy .π(y|x;w) is used to generate set of trajectories .{τ 1, . . . , τ i}. The  
parameter . w is updated by reinforcement learning in order to maximize the 
reward .r̂(y, x;u). 

2. Pairs of trajectories .(σ [1], σ [2]) from the .{τ 1, . . . , τ i} are selected and submitted 
to a human for comparison. 

3. The parameters . u of the reward function .r̂(y, x;u) are optimized to correspond 
to the comparisons collected from the human up to now. 

For a set of 33k instructions, a reward model .r̂(y, x;u) was built with 6B 
parameters, where . x is the instruction and . y a completion [198]. It selects the best 
completion from a small set of proposed completions. Proximal policy optimization 
(PPO) was used as reinforcement model [151, p. 41]. To avoid catastrophic 
forgetting (Sect. 3.6.1), pre-training samples were mixed into fine-tuning. 

The reward model was then applied to create a final model by another reinforce-
ment learning step. During this process, InstructGPT generates a completion for 
an instruction. The reward model calculates a reward and the policy is updated to 
approximate the preferences encoded in the reward model. By mimicking human 
utterances, the model implicitly learns human intentions and preferences. This 
process is called alignment to human preferences and is extensively discussed by 
Askell et al. [5].
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InstructGPT Results 

The GPT-3 model with 175B parameters fined-tuned in a supervised way to the 13k 
instruction-completion examples was taken as the base model called SFT. The final 
completions were again scored by human raters [151]. The InstructGPT completions 
were preferred to the standard GPT-3 output in 85% of cases and to few-shot-GPT-3 
in 71% of cases. 

Specifically, raters found that InstructGPT attempts to follow the correct instruc-
tion in 92% of cases, compared to 85% for SFT and 75% for few-shot GPT-3 
[151, p. 53]. In addition, InstructGPT follows explicit constraints in 50% of the 
cases, compared to 43% for SFT and 34% for SFT and 28% for few-shot GPT-
3. Hallucinations were observed for 20% of the cases for InstructGPT compared 
to 16% for SFT and 50% for few-shot GPT-3. Finally, the raters found that the 
language use is appropriate for a customer assistant in 92% of the cases for 
InstructGPT, about 90% for SFT and about 85% for GPT-3 few-shot. InstructGPT 
was also evaluated on a few natural language benchmarks where it achieved very 
similar results to GPT-3 [151, p. 56].  

It turned out that InstructGPT is able to generalize to unseen labeler preferences. 
Thus, InstructGPT does not simply adapt to the preferences of a few training label-
ers. In addition, InstructGPT produces slightly less toxic language than standard 
GPT-3. However, InstructGPT still makes simple mistakes, e.g., given an instruction 
with a false premise, the model sometimes incorrectly assumes the premise is true. 
Note that the results depend on the subjective preferences of the labelers. 

Comparisons between alternatives are not necessarily the most effective 
approach to generate an improvement signal. For example, one could ask labelers to 
edit model responses to make them better, or generate critiques of model responses 
in natural language. There is also a vast space of options for designing interfaces 
for labelers to provide feedback to language models; this is an interesting human-
computer interaction problem. The authors note that the cost of aligning GPT-3 to 
human preferences described above is just 1.6% of the cost spent to train GPT-3. 
Therefore, it seems to make sense to put more effort into alignment than into the 
mere enlargement of the models. 

The results show that the InstructGPT techniques potentially make language 
models more helpful, truthful, and harmless. In a way InstructGPT works like an 
intelligent assistant for speech generation and information provision. However, the 
model is currently not fit for use in safety-critical applications, because failures 
cannot be ruled out. What is still missing is a comprehensive evaluation similar to 
Gopher or PaLM (Sect. 3.1.2) that shows the real utility of this approach. It can be 
expected that the combination of this approach with retrieval techniques as used 
for WebGPT (Sect. 6.2.3) and Retro (Sect. 6.2.3) will increase the performance, 
reliability, and correctness of InstructGPT.
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Fig. 3.24 FLAN instruction tuning fine-tunes a pre-trained language models on a set of tasks with 
instructions of ten different templates (left). The trained model can be applied to unseen tasks by 
formulating prompts according to these templates (right). Image adapted from [227, p. 1] with kind 
permission of the authors 

Instruction Tuning with FLAN 

FLAN [227] uses instruction tuning to improve the ability of the language model 
to respond to natural language prompts. The language model has to learn through 
supervision to perform tasks described by prompts, and to follow instructions, 
even for unfamiliar tasks (Fig. 3.24). The authors group 62 publicly available NLP 
datasets into twelve task clusters, e.g. “sentiment” “natural language inference”, 
“summarization”, etc. For each of the datasets they compose ten templates describ-
ing the task in natural language. Then an existing language model is fine-tuned to 
provide better answers to the prompts. 

The approach was applied to a LaMDA-PT language model with 137B param-
eters using retrieval and filters (Sect. 6.6.3). For 18 NLI tasks the FLAN model 
was compared to LaMDA-PT 137B, GPT-3 175B, and GLaM 64B. In 14 of 18 
cases FLAN substantially improved the performance of its unmodified counterpart 
and achieved better results than the competitors, while in 4 cases it was surpassed 
by GLaM [227]. FLAN even outperforms few-shot GPT-3 by a large margin on a 
number of tasks. 

3.6.6 Generating Labeled Data by Foundation Models 

The performance of GPT-3 and other Foundation Models in few-shot learning 
enables the generation of new high-quality training data for other models. By 
Unsupervised Data Generation (UDG) the creation of fine-tuning data for models 
of downstream tasks is possible that would otherwise be produced by manual human 
annotation. This approach is similar to Sect. 4.2.3.
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Fig. 3.25 New data can be generated by GPT-3 and other Foundation Models using the few-shot 
UDG strategy. Here the prompts for two examples, Amazon reviews and Copa common sense 
reasoning, and the generated answers are shown [225] 

The idea for data generation is to utilize the language model to learn the input-
label relation based on the task description and a few sample input-label pairs [225]. 
Instead of generating and predicting a label for a classification task the language 
model has to create the input text using the output class and a task description as 
input. For a classification task like product reviews on Amazon, the approach is able 
to produce 10k new examples for each class, covering a much larger spectrum as 
the currently available labeled data. It turns out that up to 32 few-shot examples still 
increase the quality of the generated training data. Examples are shown in Fig. 3.25. 
The authors use an additional module to filter out noisy examples. In this approach, 
a given training example is removed if the trained classifier does not match its label 
with high probability. 

The T5-XXL encoder-decoder model fine-tuned on SuperGLUE data enhanced 
with UDG data is able to improve the overall accuracy on the SuperGLUE task for 
natural language understanding to 90.4% and is even able to beat DeBERTa with 
90.3%. Moreover, the approach achieves very high performance scores on a list of 
text classification and sentiment analysis tasks [225]. 

3.6.7 Summary 

When pre-training Foundation Models on a big text collection and subsequent 
supervised fine-tuning on a small labeled dataset, PLMs achieved unprecedented 
performance on many NLP tasks. Fine-tuning has been shown to change model 
parameters only slightly and, in general, no catastrophic forgetting occurs. Usually, 
no overfitting is observed if fine-tuning is stopped after a few epochs. If necessary, 
there are some approaches to avoid overfitting. 

Fine-tuning can be performed in different ways. It has been suggested to use an 
intermediate fine-tuning with a more related dataset before the final fine-tuning on



148 3 Improving Pre-trained Language Models

the small dataset takes place. The results of such approaches have been mixed. Also, 
simultaneous fine-tuning to several tasks is possible. In some cases, it could improve 
performance. As an alternative, there are strategies to accelerate fine-tuning by 
meta-learning. To avoid that the full model is changed adapter layers can be defined, 
and only their parameters are adapted. This can drastically reduce the number of 
trainable parameters and nevertheless lead to good performance on the fine-tuning 
tasks. Finally, fine-tuning APIs have been recently provided for proprietary models 
like GPT-3. 

Foundation Models like GPT-3 and PaLM can be instructed by prompts to 
solve specific tasks without training. A large number of different prompts has been 
collected to order the model to complete a task. InstructGPT is a new version of 
GPT-3 that directly takes instructions and provides the answers for a large spectrum 
of tasks. The model was customized to carry out the instructions by adapting to user 
judgments through reinforcement learning. Instruction tuning is a variant, where a 
Foundation Model is fine-tuned to provide improved answers to instructions for a 
number of tasks. It turns out that afterwards the model generates better answers even 
for unseen tasks. 

Finally, big language models may be employed to generate high-quality training 
data for fine-tuning. Again, the few-shot learning technique is used to generate input 
texts for specific learning tasks. In this way, the scarce training data can be expanded 
and better fine-tuning results can be achieved. 
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Chapter 4 
Knowledge Acquired by Foundation 
Models 

Abstract During pre-training, a Foundation Model is trained on an extensive 
collection of documents and learns the distribution of words in correct and fluent 
language. In this chapter, we investigate the knowledge acquired by PLMs and the 
larger Foundation Models. We first discuss the application of Foundation Models to 
specific benchmarks to test knowledge in a large number of areas and examine if 
the models are able to derive correct conclusions from the content. Another group 
of tests assesses Foundation Models by completing text and by applying specific 
probing classifiers that consider syntactic knowledge, semantic knowledge, and 
logical reasoning separately. Finally, we investigate if the benchmarks are reliable 
and reproducible, i.e. whether they actually test the targeted properties and yield the 
same performance values when repeated by other researchers. 

Keywords Knowledge in foundation models · Common Sense knowledge · 
Logical coherence · Benchmark collections · Reproducibility 

During pre-training, Pre-trained Language Models (PLMs) and the larger Foun-
dation Models are trained on an extensive collection of documents and learn the 
distribution of words in correct and fluent language. During fine-tuning, the models 
are adapted to a specific task using the knowledge from the pre-training and 
requiring only a small set of manually labeled fine-tuning data. In this chapter, we 
investigate the knowledge acquired by these models by different types of tests: 

• We first assess PLMs and Foundation Models by specific benchmarks to test 
knowledge in a large number of areas and examine if the models are able to 
derive correct conclusions from the content (Sect. 4.1). Usually these benchmark 
collections have an aggregated performance measure averaging over different 
tests. Benchmark tests can be accomplished by fine-tuning models to perform 
specific classification tasks or by few-shot querying Foundation Models. 

• Then we assess Foundation Models by completing text and by applying specific 
probing classifiers without adapting model parameters (Sect. 4.2). We separately 
consider syntactic knowledge, semantic knowledge and logical reasoning and 

© The Author(s) 2023 
G. Paaß, S. Giesselbach, Foundation Models for Natural Language Processing, 
Artificial Intelligence: Foundations, Theory, and Algorithms, 
https://doi.org/10.1007/978-3-031-23190-2_4

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23190-2protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-23190-2_4
https://doi.org/10.1007/978-3-031-23190-2_4
https://doi.org/10.1007/978-3-031-23190-2_4
https://doi.org/10.1007/978-3-031-23190-2_4
https://doi.org/10.1007/978-3-031-23190-2_4
https://doi.org/10.1007/978-3-031-23190-2_4
https://doi.org/10.1007/978-3-031-23190-2_4
https://doi.org/10.1007/978-3-031-23190-2_4
https://doi.org/10.1007/978-3-031-23190-2_4
https://doi.org/10.1007/978-3-031-23190-2_4
https://doi.org/10.1007/978-3-031-23190-2_4


162 4 Knowledge Acquired by Foundation Models

demonstrate the achievements and deficits in different areas and for different 
model architectures. 

• Finally, we investigate if the benchmarks are reliable, i.e. actually test the targeted 
properties (Sect. 4.3). Moreover, we analyze if published benchmark results are 
reproducible and yield the same performance values if they are repeated by other 
researchers. 

4.1 Benchmark Collections 

In order to arrive at quantitative measures of common sense knowledge and 
commonsense reasoning, the community has compiled a number of benchmarks. 
These allow a standardized comparison of different aspects of natural language 
understanding and provide comparable scores for the strength and weaknesses 
of different PLMs. Benchmarks have been a key driver for the development of 
language models. A comprehensive collection of benchmarks and the corresponding 
leaderboards are provided by PapersWithCode [45]. A survey of actual benchmarks 
is given by Storks et al. [62]. 

A fair comparison of model architectures requires that the number of parameters, 
the size of the training data, and the computing effort for training are similar. This 
has been extensively discussed in Sect. 3.5.1. Therefore, many authors conduct 
extensive ablation studies to adjust their training resources to a standard, e.g. to 
BERT as a “benchmark model”. This is really important, as it helps the reader to get 
an intuition for the impact of pre-training resources. Nevertheless, comparability is 
often hampered by two problems: 

1. Some training datasets, e.g. the BooksCorpus of BERT, are not publicly avail-
able. 

2. These comparisons do not show the performance of a model when the size of 
data, the number of parameters, or the computing effort are increased. 

Therefore, statements like “Model architecture A is superior to model architecture 
B on performing task X.” in general are not valid, but have to be qualified [2], e.g. 
“Model architecture A is superior to model architecture B on performing task X, 
when pre-trained on a small/large corpus of low/high quality data from domain Y 
with computing effort Z.” 

4.1.1 The GLUE Benchmark Collection 

To test the ability of PLMs to capture the content of a document, the GLUE 
(Sect. 2.1.5) set of benchmarks has been developed. This is a collection of 9 
benchmarks testing different aspects of Natural Language Understanding (NLU). 
The joint performance is measured by a single score, which has the value 87.1 for
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human annotators. The tasks are described in detail by examples in Table 2.1. It  
turns out that variants of BERT fine-tuned to the different GLUE-tasks can yield 
better results than people. The results are determined for the large variants of the 
models and shown in Table 4.1. 

In the past years GLUE was routinely employed to demonstrate the NLU 
capabilities of PLMs. Currently, the best average value of 91.4 after fine-tuning was 
reached by DeBERTaV3 [18] (Sect. 3.1.1). It uses separate embeddings for content 
and position and employs a corresponding disentangled attention mechanism. There 
are only three tasks where PLMs are worse than humans, but only by a small margin. 
Note that ensembles of several models often yield slightly better results. Nangia et 
al. [42] also measures the performance of human teams of 5 people. The numbers 
are not comparable as cases were excluded when the teams arrived at split judgment. 
Newer models such as PaLM use SuperGLUE instead of GLUE because GLUE is 
considered too simple. 

4.1.2 SuperGLUE: An Advanced Version of GLUE 

Due to the progress in the last years, PLMs have reached human performance 
in most tasks and the GLUE is no longer able to discriminate between models. 
Therefore, the authors of GLUE proposed a more demanding test suite called 
SuperGLUE [68] as an advanced version of GLUE with eight challenging tasks. 
The tasks are similar to GLUE with longer contexts to consider. 

• BoolQ is a QA-task with questions collected from Google search and yes/no 
answers. 

• CB is a textual entailment task. 
• COPA is a causal reasoning task in which a system must determine either the 

cause or effect of a given premise from two possible choices. 
• MultiRC is a QA task where each instance consists of a context passage, a 

question about that passage, and a list of possible answers. 
• In ReCoRD each example consists of a news article and an article in which one 

entity is masked out. The system must predict the masked entity from a list of 
possible entities. 

• RTE requires detecting whether a hypothesis is implied by a premise. 
• WiC is a word sense disambiguation task, where for two given sentences the 

system has to determine if a polysemous word is used with the same sense in 
both sentences. 

• WSC is the Winograd Schema Challenge, where the system has to determine the 
correct noun phrase represented by a pronoun. 

The performance again is measured by a single average score with a value of 89.8 
for human annotators [66].



164 4 Knowledge Acquired by Foundation Models

Ta
bl
e 
4.
1 

R
es

ul
ts

 f
or

 t
he

 G
L

U
E

 b
en

ch
m

ar
k 

fo
r 

fo
ur

 d
if

fe
re

nt
 m

od
el

s 
an

d 
hu

m
an

 a
nn

ot
at

or
s.

 
T

he
 b

es
t 

va
lu

e 
of

 a
 P

L
M

 f
or

 e
ac

h 
ta

sk
 i

s 
pr

in
te

d 
in

 b
ol

d 
[1

8,
 

p.
 7

].
 H

um
an

 s
co

re
s 

be
tte

r 
th

an
 a

ll 
m

od
el

 s
co

re
s 

ar
e 

un
de

rl
in

ed
 

C
oL

A
Q

Q
P

M
N

L
I 

m
SS

T-
2

ST
S-

B
Q

N
L

I
R

T
E

W
N

L
I

M
R

PC
 

M
cc

A
cc

A
cc

A
cc

C
or

r
A

cc
A

cc
A

cc
F1

 

M
od

el
G

ra
m

m
ar

Pa
ra

ph
r.

E
nt

ai
l

Se
nt

im
.

Si
m

ila
r

Q
ue

st
io

n
E

nt
ai

l
C

or
ef

Pa
ra

ph
r.

A
vg

 

H
um

an
 [

42
]

66
.4

80
.4

92
.0

97
.8

92
.7

91
.2

93
.6

95
.9

86
.3

87
.1

 

B
E

R
T.

L
A

R
G

E
60

.6
91

.3
86

.6
93

.2
90

.0
92

.3
70

.4
65

.1
88

.0
84

.1
 

R
oB

E
R

Ta
. L

A
R

G
E

68
.0

92
.2

90
.2

96
.4

92
.4

93
.9

86
.6

89
.9

90
.9

88
.8

 

X
L

N
E

T.
L

A
R

G
E

69
.0

92
.3

90
.8

97
.0

92
.5

94
.9

85
.9

92
.5

90
.8

89
.2

 

D
eB

E
R

Ta
V

3. L
A

R
G

E
75
.3

93
.0

91
.8

96
.9

93
.0

96
.0

92
.7

–
92
.2

91
.4



4.1 Benchmark Collections 165

GPT-3 [7] is a huge language model (Sect. 3.1.2), which can be instructed to 
perform a task without fine-tuning (Sect. 3.2). With this few-shot learning GPT-
3 achieved an average SuperGLUE score of only 71.8 as shown in Table 4.2. 
Obviously fine-tuning the specific tasks seems to be important. Recently a fine-tuned 
DeBERTa ensemble (Sect. 3.1.1) surpassed human performance on SuperGLUE 
with an average score of 90.3. The most difficult task is a comparison of word 
senses in two sentences (WiC), where an accuracy of about 77% can be reached. 
The autoregressive LM PaLM 540B was fine-tuned on SuperGLUE and achieved 
an average of 90.4% on the test set [9, p. 13]. The best average of 91.2% 
was obtained by the ST-MoE32B mixture-of-experts model (Sect. 3.5.2) with 269B 
parameters [73]. This shows that Foundation Models are able to analyze complex 
text semantics. 

GLUE and SuperGLUE have been criticized, as the answers of the posed 
problems always can be reduced to a classification task and the systems do not 
have to formulate an answer in natural language. In addition, it turns out that the 
performance of PLMs is not very stable. It has been shown that the prediction of 
current models often change in an inconsistent way, if some words are replaced [51]. 
If, for instance, in a sentiment analysis the input “I love the flight” is classified as 
positive, then “I didn’t love the flight” should not be classified as neutral . Ribeiro 
et al. [51] show that inconsistencies like this often occur. They developed the 
CheckList system (Sect. 4.3.1), which automatically generates test examples for 
probing a model. 

4.1.3 Text Completion Benchmarks 

The task of an autoregressive language models is the reliable generation of the 
next word in a text. This has to obey grammatical correctness as well as semantic 
consistency. The LAMBADA benchmark [44] is a good test to demonstrate this 
ability. It consists of about 10,000 passages from the BooksCorpus containing 
unpublished novels. The task is to predict the missing last word of the last sentence 
of each passage. Examples were filtered by humans to ensure that models need to 
take into account the full passage of at least 50 tokens to induce the final word. 

An example is the passage “Both its sun-speckled shade and the cool grass 
beneath were a welcome respite after the stifling kitchen, and I was glad to relax 
against the tree’s rough, brittle bark and begin my breakfast of buttery, toasted 
bread and fresh fruit. Even the water was tasty, it was so clean and cold. It almost 
made up for the lack of .”, where “coffee” is the missing target word to be 
predicted. Examples which could be easily predicted by simpler language models 
were omitted. Examples were only selected, if the target word could be predicted by 
humans from the full passage but not from the last sentence. 

The GPT-3175B autoregressive language model [48] predicted the last word with 
76.2% [7, p. 12]. PaLM540B with few-shot instructions could increase the accuracy 
to 89.7 [9, p. 79]. This means that in nearly nine of ten cases, the predicted word 
was exactly the missing word in the test data.
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Another relevant benchmark for language modeling is WikiText-103 [38] of 28k  
articles from Wikipedia with 103M tokens. If large Foundation Models are applied 
to this corpus the following perplexities result: GPT-21.7B 17.5 [48], Megatron-
LM 10.8 [58], Gopher280B 8.1 [49, p. 61]. Recently a small Retro1.8B model with 
retrieval could reduce this perplexity to 3.9 [49, p. 12]. Note that there might 
be a partial overlap of Wikitext 103 with Retro’s training data not caught by 
deduplication. 

4.1.4 Large Benchmark Collections 

Recently large autoregressive language models like GPT-3, Gopher, and PaLM have 
been developed, which are trained on extremely large document collections with 
hundreds of billions of tokens. The models should perform well across a wide range 
of tasks. Therefore, instead of the limited GLUE benchmarks a large number of 
benchmarks covering many aspects of possible applications are used to evaluate 
their performance. 

A frequent opinion is that current benchmarks are insufficient and “saturate”, 
“have artifacts”, and are “overfitted by researchers”. Bowman et al. [5] argue that 
“evaluation for many natural language understanding (NLU) tasks is broken”. They 
complain that there are systems at the top of the leaderboards which fail in simple 
test cases (cf. [51]). As a consequence they formulate four requirements on new 
benchmarks: 

• A model should only reach good performance on the benchmark if it also has a 
good performance on actual applications. 

• The annotation of benchmarks should be accurate and not ambiguous (e.g. 36% 
of the answers in Natural Questions are ambiguous). 

• The benchmarks should be large and challenging enough to detect relevant 
performance differences between models. 

• Benchmarks should reveal plausibly harmful social biases in systems, and should 
not encourage the creation of biases. 

They summarize some promising developments that could support these challenges, 
including data collection involving both crowdworkers and domain experts, and 
larger-scale data validation. 

To address this criticism, two comprehensive collections of benchmarks have 
been defined. The Massive Multitask Language Understanding (MMLU) bench-
mark [20] emulates human exams with multiple choice questions, each with four 
responses. In addition to logical and mathematical reasoning it tests a model’s ability 
across a wide range of academic subjects from computer science to history and law. 
The other collection is the BIG-bench collaborative benchmark [1, 60], designed 
to evaluate language interpretation aspects like reading comprehension, question 
answering, world understanding, etc. Both benchmark collections include more than 
a hundred tasks.
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Table 4.3 Groups of evaluation benchmarks for Gopher and related models [49, p. 8]  

Task group # Tasks  Examples 

Language modeling 20 WikiText-103, The Pile: PG-19, arXiv, FreeLaw, . . . 

Reading comprehension 3 RACE-m, RACE-h, LAMBADA 

Fact checking 3 FEVER (2-way & 3-way), MultiFC 

Question answering 3 Natural questions, TriviaQA, TruthfulQA 

Common sense 4 HellaSwag, Winogrande, PIQA, SIQA 

Massive multitask language 
understanding (MMLU) [20] 

57 High school chemistry, astronomy, clinical 
knowledge, social science, math, . . . 

BIG-bench [60] 62 Causal judgement, epistemic reasoning, temporal 
sequences, logic, math, code, social reasoning, . . . 

The Gopher model with 280B parameters together with alternatives like GPT-3, 
Jurassic-1, and Megatron-Turing NLG (all discussed in Sect. 3.1.2) were tested on 
these and other benchmarks. Note that this was done with a total of 152 benchmarks 
described in Table 4.3. Gopher shows an improvement on 100 of 124 tasks (81%) 
compared to the previous SOTA scores. In language modeling (next word prediction) 
Gopher improves SOTA for 10 of 19 benchmarks. Note that all benchmark results 
were not obtained after fine-tuning but by zero-shot or few-shot learning. 

The distribution Gopher accuracies for thematic groups are shown in Fig. 4.1. 
Gopher is able to increase SOTA for 4 out of 7 math tasks, 5 out of 9 common 
sense tasks, 9 out of 12 logical reasoning tasks, 22 out of 24 fact checking 
and general knowledge tasks, all 24 STEM (Science Technology Engineering 
Mathematics) and medicine tasks, all 15 humanities and ethics task, and 10 out 
of 11 reading comprehension tasks. The average accuracies for common sense and 
general knowledge are about 50%, indicating that some knowledge exists but can 
be improved. Among these tests were benchmarks on logical reasoning, which, 
for instance, include “Formal Fallacies Syllogisms Negation” or “Logical Fallacy 
Detection”. Only two of the 19 benchmarks achieved an accuracy of more than 
60% [49, p. 58], indicating that even for this large model correct reasoning is a 
major obstacle. Obviously this spectrum of evaluation gives a deep insight into the 
capabilities of the compared models. It can be expected that the new Retro model 
(Sect. 6.2.3), which performs retrieval during language generation, will improve 
these results. 

The PaLM autoregressive language model with 580B parameters [9, p. 15] 
recently was evaluated with the BIG-bench benchmark. On the 150 tasks, PaLM 
with 5-shot prompts achieved an normalized average score of 46%, which was better 
than the average human score of 39%. However, the best human experts have a score 
of about 77%. The detailed results for the different BIG benchmark areas are not yet 
available. On a subset of 58 BIG-tasks, which were also used by prior models, PaLM 
obtained a 5-shot normalized score of about 55%, again above the human average 
of 49%, outperforming Chinchilla (47%) and Gopher (30%). GPT-3 achieved a 1-
shot performance of 16% on the 58 tasks. In general Foundation Models like Gopher 
and PaLM with several hundred billion parameters have ‘dramatically better’ results
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Fig. 4.1 Accuracies in percent of different groups covering 152 different benchmarks evaluated 
for the Gopher model [49, p. 57]. The 25% and 75% percentiles are given by the box, and the inner 
line is the median. The outside lines indicate variability outside the upper and lower quartiles 

on BIG than smaller models, even if the model architecture is not fundamentally 
different [1]. In this respect Foundation Models show a qualitatively new behavior. 

Researchers at Google have proposed to use the BIG-bench benchmark with 
currently 200 tasks as a replacement for the Turing test for “intelligence” [61]. 
In this way the knowledge of an AI-System can be checked at a large scale. 
Recently, a Google engineer published a dialog [31] with the LaMDA language 
model (Sect. 6.6.3). In his view this indicates that LaMDA is “sentient”. However, 
this aspect of human intelligence is not checked by knowledge and reasoning tests 
such as BIG and requires the development of new types of tests. 

4.1.5 Summary 

Benchmark collections are a popular way to demonstrate the superiority of a Pre-
trained Language Model for specific tasks. To show the merits of an architecture, 
however, also the number of parameters, the size of training data, and the computing
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effort has to be reported and compared, because these numbers also affect the model 
performance. 

The GLUE benchmark collection of nine language understanding tasks has 
demonstrated the considerable progress of PLMs during the last years. It tests the 
ability of PLMs to detect paraphrases, coreference relations, logical entailments 
and grammatical correctness. Meanwhile, the average accuracy exceeds the average 
human performance. The similar, more challenging SuperGLUE benchmark suite 
has been introduced, where human performance is also surpassed. For autoregres-
sive language models the LAMBADA benchmark requires an impressive ability to 
determine the most probable last word of a paragraph. Current models like PaLM 
are able to predict the last word with an accuracy of nearly 90% demonstrating its 
ability to capture the flow of arguments. 

Foundation Models are usually tested by extensive standardized test collections 
covering many aspects like common sense knowledge, emotional intelligence, logi-
cal reasoning, or social sciences. Recent Foundation Models like Gopher and PaLM, 
with several hundred billion parameters, have been able to achieve performance 
better than that the human average and ‘dramatically better’ than smaller models. 
However, these models still have a lower accuracy than human experts. Although the 
benchmarks are very expressive, they do not take into account the societal impact of 
the models and are unable to detect features like self-awareness and sentience. 

4.2 Evaluating Knowledge by Probing Classifiers 

In this section, we examine the extent to which PLMs acquire different types of 
knowledge. We discuss the covered knowledge for the small BERT model and later 
review the improvements for foundation models such as GPT-3 and PaLM. First, 
we consider their syntactic knowledge of correct language. Then, we investigate 
how much common sense knowledge is represented by PLMs. Finally, we explore 
whether the output produced by PLMs is logically consistent. 

4.2.1 BERT’s Syntactic Knowledge 

We discuss the syntactic knowledge incorporated in PLMs using BERT as an exam-
ple. In the course of pre-training BERT is able to capture syntactic knowledge [54]. 
Embeddings can encode information about parts of speech, syntactic phrases and 
syntactic roles. Probing classifiers can predict part-of-speech tags and supersense 
information with an accuracy of 85% [33]. Obviously, this information has to be 
encoded in BERT’s final embeddings. BERT also has knowledge of subject-verb 
agreement [17] and semantic roles [14]. It is also possible to extract dependency 
trees and syntactic constituency trees from BERT [21, 23, 27]. While probing 
indicates that the information can be extracted from the representation, it can be
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shown [13] that in some cases the features are not used for prediction. According to 
an empirical evaluation PLMs encode linguistic information with phrase features in 
the bottom layers, syntactic features in the middle layers and semantic features in 
the top layers [23]. 

However, BERT’s syntactic knowledge is incomplete and there is, for example, 
evidence that BERT often does not capture negations. For instance, BERT.LARGE is 
able to determine the correct supersense, e.g. “bird” in the masked sentence “A robin 
is a [MASK]” with high probability [14]. On the other hand, the model predicts 
“robin”, “bird”, “penguin”, “man”, “fly” with maximum probabilities for the mask 
in “A robin is not a [MASK]”, effectively ignoring the negation. 

Some benchmarks described in Sect. 4.1 check the syntactic knowledge of PLMs. 
An example is the GLUE’s CoLA task testing the grammatical correctness of 
sentences, which is the most difficult task of GLUE where the best models only yield 
about 75% correct answers (Table 4.1). SuperGLUE (Sect. 4.1.2) is a benchmark, 
which requires syntactic knowledge, e.g. for the textual entailment task COPA and 
the coreference resolution task WSC. While the fine-tuned BERT gets an average 
score of 69.0 the fine-tuned PaLM540B achieves an average of 91.4 (Table 4.2). 
Large foundation models such as PaLM, which has more than 1000 times as many 
parameters as BERT, are obviously able to capture syntactical knowledge much 
better than the ‘small’ BERT. 

4.2.2 Common Sense Knowledge 

World knowledge, also called common sense knowledge, consists of facts about 
our every day world, such as “fire is hot”. A simple method of checking world 
knowledge is to query BERT with cloze statements, for example, “Einstein was 
born in [MASK]”. BERT acquires some semantic knowledge about semantic roles 
and encodes information about entity types and relations [54]. For instance, in 
the sentence “to tip a [MASK]” the token “waiter” gets a high probability for 
the position of [MASK]. Petroni et al. [46] and Zhou et al. [72] experimented 
with such queries and concluded that BERT contains world knowledge competitive 
with traditional supervised information extraction methods. It has been shown that 
BERT’s contextual embeddings make up clusters corresponding to word senses [56]. 
This explains why BERT is quite capable of word sense disambiguation (Fig. 2.10). 

Petroni et al. [46] remark that certain types of factual knowledge are learned 
much more easily than others by the standard language model pre-training 
approaches. They state that without fine-tuning, BERT contains relational 
knowledge competitive with traditional NLP methods that have some access to 
oracle knowledge. In addition, BERT also does remarkably well on open-domain 
question answering against a supervised baseline. These capabilities of BERT are a 
great achievement. 

The language model GPT-3 has one hundred times more parameters than BERT 
and a dramatically better common sense knowledge. This, for example, can be seen
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from its answers (A) to the questions (Q): “Q: Are there any animals with three 
legs?” “A: No, there are no animals with three legs.” or “Q: Which is heavier, a 
football player or a car?” “A: A car is heavier than a football player.” [29]. In an 
initial experiment eighty persons were asked to assess, if short 200 word articles 
were written by humans or GPT-3. The persons judged incorrectly 48% of the time, 
doing only slightly better than random guessing [7]. 

However, the semantic knowledge of PLMs is not perfect. BERT, for instance, 
has difficulties with the representation of numbers and often has problems with 
the replacement of named entities (NEs), e.g. person names or location names. 
For example, replacing names in the coreference task changes 85% of coreference 
assignments of expressions that refer to the same entity [3]. Obviously the pre-
trained version of BERT struggles to generalize the relations involving one named 
entity to other named entities of the same type. Moreover, BERT has problems to 
transfer knowledge based on the roles or types of objects. In addition, it is possible 
to mislead BERT by adding some content to a cloze query. An example is the word 
“Talk” in “Talk? Birds can [MASK]”. A human would ignore “Talk?” and use his 
world knowledge to generate a result like “fly”. In contrast, PLMs can be misled 
and produce the wrong answer “talk” for the mask [26]. 

A related phenomenon is the invariance to paraphrases. Elazar et al. [12] 
generate a high-quality set of 328 paraphrases to express 38 relations. Examples 
are “X originally aired on [MASK]” and “X premiered on [MASK]”, which should 
give the same prediction for [MASK], if  “X” is replaced by some TV series like 
“Seinfeld”. Although the models in about 60% of the cases have access to the 
required knowledge to fill the mask correctly, BERT.LARGE yields a consistency in 
paraphrases in only 48.7% of the cases. This indicates that not every fact present in 
the training data is encoded in the parameters and that the model does not always 
detect the equivalence of paraphrases. The model variants RoBERTa and ALBERT 
achieve a lower consistency, although they are superior to BERT in other tasks. 

It is instructive to consider the influence of word order on the performance of 
BERT. Word order is taken into account by specific position embeddings, which 
are added to the token embeddings. It turns out, however that masked language 
models like BERT still achieve a high accuracy, if word positions are permuted. For 
pre-training Sinha et al. [59] perform sentence permutations, where each word in a 
sentence is randomly placed at a different position. The model was fine-tuned on 
GLUE, a set of classification tasks for natural language understanding (Sect. 2.1.5). 
If we ignore the CoLA-task, which checks linguistic acceptability, the model on 
average only looses 3.4% accuracy if the word order is permuted compared to the 
original RoBERTa results (88.7% on average). The authors conclude that BERT-like 
models achieve high performance on downstream tasks almost entirely by exploiting 
higher-order word co-occurrence statistics. 

Another aspect of common sense knowledge is time. When a PLM is applied 
to new documents it often does not know the meaning of new named entities and 
concepts [30]. Often, the model cannot infer the time and region of a document 
and may not be able to correctly combine facts from documents that originate 
from different time periods or geographical regions. A benchmark for assessing
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the temporal reasoning capabilities of PLMs in dialogs shows that BERT and T5 
have major deficits on this task [47]. In summary it can be expected that the 
new Retro (Sect. 6.2.3) or WebGPT (Sect. 6.2.3) models, which perform retrieval 
during language generation, will considerably mitigate the problems discussed in 
this section. 

To be able to check a multitude of different knowledge types in a standardized 
way large benchmarks like BIG-bench have been developed (Sect. 4.1.4). It com-
prises benchmarks on common sense, emotional intelligence, ethics, fact checking, 
general knowledge, humanities, mathematics, medicine, reading comprehension, 
science and social sciences. Figure 4.1 shows the performance of the Gopher model 
with 280B parameters on these benchmark groups. On most groups more than 
50% accuracy was achieved. The PaLM model with 540B parameters was able 
to improve these performance figures. On about .2/3 of these tasks PaLM using 
5-shot prompts achieves a better performance than average humans [9, p. 17].  
This indicates that PaLM has a much better common sense knowledge than earlier 
models. Nevertheless, PaLM surpasses the performance of human experts only in a 
small fraction of cases suggesting further headroom for improvement. 

An interesting idea is to use large pre-trained multilingual language models 
as a multilingual knowledge base [25]. The authors evaluate this for mBERT 
(Sect. 3.3.1), a standard BERT model, which has been pre-trained with the MLM 
loss on non-parallel Wikipedia texts from 104 languages. The authors find that 
correct entities can be retrieved for many languages. However, there is a clear 
performance gap between English and, e.g., Japanese and Thai. This suggests that 
mBERT does not store knowledge about entities in a language-independent way. It 
would be revealing if these experiments could be repeated with up-to-date language 
models like PaLM. 

4.2.3 Logical Consistency 

A set of statements is logically inconsistent if they cannot all be true at the same 
time. As an example consider the statements “John is Tom’s father. Tom is the 
daughter of John.” Sometimes, BERT is unable to reason, i.e. logically connect 
different pieces of knowledge. It reproduces, for instance, the relations that persons 
can walk into houses, and that houses are big, but it cannot infer that houses are 
bigger than persons [15, 52]. However, semantic knowledge problems tend to be 
smaller for models with more parameters. 

Richardson et al. [52] formulated nine different types of simple sentence pairs 
containing e.g. negations, quantifiers, comparatives, etc. These sentences express 
logical entailment, contradiction or neutrality. In addition, they also employ chains 
of hypernomy, e.g. poodle . ≤ dog . ≤ mammal . ≤ animal, and use these relations 
to generate new sentences expressing the corresponding logical properties. It turns 
out that BERT fine-tuned with the ‘logical tasks’ SNLI and MNLI predicts correct 
statements only with 47.3% accuracy of the cases.
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Ribeiro et al. [51] propose to generate a large number of simple examples to test 
relations by a CheckList procedure described in Sect. 4.3.1. It tests, for instance, 
whether negating a positive sentiment expression leads to a negative sentiment 
rating. For more than half of the tests with commercial and open-source models 
they observed failure rates of more than 50%. 

Even the larger model GPT-3 is not perfect, e.g. it incorrectly answers some 
common sense physics questions like “If I put cheese into the fridge, will it 
melt?” [7]. In addition, it has difficulties with logical reasoning, e.g. to determine 
if one sentence implies another. If a question is not covered in its training material, 
GPT-3 compiles the most probable answer and sometimes this is wrong, e.g. “Q: 
How many eyes does the sun have?” “A: The sun has one eye.” or “Q: Who was 
president of the United States in 1600?” “A: Queen Elizabeth I was president of 
the United States in 1600.” [29]. As another example consider the following input 
“You poured yourself a glass of cranberry, but then absentmindedly, you poured 
about a teaspoon of grape juice into it. It looks OK. You try sniffing it, but you 
have a bad cold, so you can’t smell anything. You are very thirsty. So you . . . ”. The  
continuation generated by GPT-3 is “drink it. You are now dead.”. GPT-3 assumes 
wrongly that “grape juice” is a poison and drinking it will kill you [36]. 

Improving Logical Consistency 

PLMs can improve logical reasoning capabilities if they are trained with appro-
priately generated textual expressions. By fine-tuning a BERT model with created 
sentences containing negations, hypernomy, etc., and testing with other generated 
sentences, Richardson et al. [52] achieve an accuracy of 98%. This approach is 
similar to the data generation strategy proposed in Sect. 3.6.6. 

Similarly, Clark et al. [10] generate datasets of the form (context, statement, 
answer), where context contains different logical facts and rules, statement is a 
logical question to prove and answer is either T or F. Facts, rules, and the question 
statements are then expressed in (synthetic) English. The problems require simulta-
neous consideration of a number of different statements to reach a conclusion, from 
depth 0 (simple lookup) to depth 5. During fine-tuning on this data, RoBERTa was 
trained to answer these questions as true or false. On the test data RoBERTa is able 
to answer the questions with 99% accuracy. If the facts and rules are paraphrased the 
accuracy drops to 66%. However, by training on paraphrased rules the model again 
reaches an accuracy beyond 90%. Clark et al. [10] suggest that by this approach 
the transformer can be considered as a “soft theorem prover” able to work with 
statements in language. 

It is possible to combine the implicit, pre-trained knowledge of an LM and 
explicit statements in natural language. Talmor et al. [64] show that models trained 
with such datasets can perform inferences involving implicit world knowledge and 
taxonomic knowledge (e.g. the WordNet hierarchy) . In addition, inference patterns 
provided by examples are used by the model to solve logical problems.
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There were a number of prior approaches to combine logical reasoning with 
neural networks. If a neural network provides probabilities for logical facts, then 
we can use a probabilistic reasoning system to enforce additional constraints. 
Examples are DeepProblog [35] that incorporates Deep Learning by means of 
neural predicates, i.e. statements whose probability is determined by a neural 
network. An alternative is probabilistic soft logic (PSL) [28], which allows first 
order probabilistic reasoning in relational domains. However, PLMs do not directly 
provide probabilities for facts. There have been approaches to translate natural 
language sentences to logical statements and apply logical reasoning. However, this 
“semantic parsing” [24] was not very successful. 

A number of researchers have developed methods for neural theorem proving. 
This work combines symbolic and neural methods to reason about results derived 
from language. Examples are e.g. Minervini et al. [39], which jointly embed logical 
predicates and text in a shared space by using an end-to-end differentiable model, 
or Weber et al. [70] which combine a Prolog prover with a language model to apply 
rule-based reasoning to natural language. The DeepCTRL approach [57] integrates  
rules with Deep Learning. It has a rule encoder which allows to control the strengths 
of the rules at inference. It can be applied to domains like healthcare, physical 
models or accounting, where obeying rules is essential. 

A simple but effective way to improve logical consistency is to increase the 
number of model parameters creating a Foundation Model. A large fraction of the 
tasks in the BIG-bench benchmark [1, 60] is devoted to checking logical consistency, 
e.g. the benchmark groups with analogical reasoning and logical reasoning. Gopher 
(Sect. 3.1.2) is a language model with 280B parameters. It was applied to about 
150 benchmarks, among them 19 logical reasoning tasks. In all but 4 benchmarks it 
could increase SOTA indicating that larger PLMs have better reasoning capabilities. 
Nevertheless, the average accuracy was only about 50%. It was not yet evaluated 
whether the recent Retro (Sect. 6.2.3) language model with retrieval of additional 
text documents is able to improve these results. 

PaLM (Sect. 3.1.2) is an even larger language model with 540B parameters. 
On the SuperGLUE logical tasks CB, COPA, RTE, it can drastically increase the 
scores compared to BERT, e.g. for COPA from 70.6 to 99.2 (Table 4.2). It has been 
evaluated on hundreds of benchmarks including those used for Gopher. It uses a 
new prompt technique to pose logical questions, where examples are presented to 
the system together with thought chains partitioning a reasoning task into smaller 
problems (Sect. 3.6.4). Two examples are shown in Fig. 2.21. Note that k-shot 
reasoning only requires a single sequence of k thought chain prompts to be provided 
for the training examples. The model then generates a thought chain for each test 
example. This can be used for error analysis and explaining the model behavior. 

Using this technique, PaLM is able to match or surpass the performance level of 
an average human asked to solve the task. As an example consider the StrategyQA 
benchmark [16], which contains questions like “Did Aristotle use a laptop?”. For  
this question the model has to collect facts on the lifespan of Aristotle and the year, 
when the first laptop was invented to arrive at the answer “No”. Without thought 
chain prompts PaLM reached 69%, while the use of thought chain prompts could
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improve the prior SOTA from 70% to 73.9%. As a comparison, average humans 
achieve 62.9%, while expert humans have an accuracy of 90%. 

There are other ways to improve learning with such intermediate outputs. Wang 
et al. [69] sample multiple chains of thought exploiting the diversity of reasoning 
paths and then return the most consistent final answer in the set. Since it is expensive 
to obtain chains-of-thought for a large number of examples, Zelikman et al. [71] 
generate explanations for a large dataset by bootstrapping a model in the few-shot 
setting and only retaining chains-of-thought that lead to correct answers. 

4.2.4 Summary 

Pre-trained PLMs have a huge number of parameters and are able to represent 
an enormous amount of syntactic and factual knowledge. This knowledge can 
be elicited by probing classifiers, the prediction of masked words, by generating 
answers to inputs, or by solving benchmark tasks. 

As far as syntactic knowledge is concerned, Foundation Models like GPT-3 
produce almost error-free text and ‘know’ a lot about syntactic rules. One problem 
is to adequately reflect the effect of negations. 

Even smaller models like BERT are capable of producing a lot of common-
sense knowledge. Here, the effect of substituting names or using paraphrases is 
problematic. Larger language models like GPT-3 are more robust, and the recently 
proposed language models with retrieval (WebGPT, Retro) are able to include 
relevant external documents for the current task. This information can reduce errors 
considerably. However, there is no comprehensive evaluation yet. One problem is 
the correct temporal and spatial location of information. Here, smaller models like 
BERT and T5 have large deficits. Foundation Models meanwhile surpass the average 
human score in 2/3 of the BIG-bench tests on common sense knowledge. They can 
even be used as a multilingual knowledge base, since models like PaLM cover many 
languages. 

Logical consistency of inferences is a problem, and the PLMs often associate 
answers that are plausible but wrong. The models are only able to make logical 
inferences for relationships mentioned in the training text, and they are often 
incapable of making abstractions and generalizing an observed relationship to 
other objects or entities of the same type. Logical consistency can be improved 
by generating additional training texts containing assumptions and valid logical 
consequences resulting from them. The direct inclusion of logical reasoning systems 
in Foundation Models was not very successful. The PaLM language model with 
540B parameters achieved a fundamental improvement of the accuracy of logical 
reasoning through the use of thought chain prompts. Here in a few-shot prompt a 
logical derivation is broken down into smaller logical substeps . At present, it is 
not clear, to what extent language models with retrieval can reduce the still existing 
deficits in logical reasoning.
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4.3 Transferability and Reproducibility of Benchmarks 

In this section, we consider whether benchmarks actually evaluate the properties 
they are supposed to test. We also discuss the extent to which they are reproducible. 

4.3.1 Transferability of Benchmark Results 

On a number of benchmarks, the performance of human annotators is exceeded 
by Foundation Models. This is an indication that the model has learned valuable 
contents about language. However, Ribeiro et al. [51] argue that this can be 
misleading, because the test sets often do not cover the right content. While 
performance on held-out test data is a useful measure, these datasets are often not 
comprehensive. Hence, there is the danger of overestimating the usability of the 
model in real applications. 

Benchmarks May Not Test All Aspects 

On the MRPC task of the GLUE benchmark for detecting paraphrases RoBERTa, 
BERT.LARGE, and humans have F1 scores of 90.9% [34], 89.3% [42] and 86.3% 
respectively. Therefore, both models perform better than humans. To test whether 
the models respect basic logical relationships, Ribeiro et al. [51] propose to generate 
a large number of simple examples using a CheckList procedure. This approach is 
similar to testing software by systematically generating a large variety of inputs in 
unit tests. 

The following scheme, for instance, can be used to check the effect of a 
negation in a sentiment classification task “I . <negation.> . <positive_verb. > the 
. <thing. >”. It generates sentences like “I didn’t love the food” or “I don’t enjoy 
sailing”. The authors formulate minimum functionality tests, which are useful to 
check if the model actually detected the reason of an outcome or used some 
unjustified association. In addition, they utilize invariance tests to find out, if neutral 
perturbations or paraphrases change the result. Finally, they create directional 
expectation tests, where a modification is known to change the result in an expected 
way. 

For MPRC it turned out that the failure rates of RoBERTa and BERT on these 
23 test templates are larger than 50% for 11 and 14 of the templates respectively. 
Therefore, the “superhuman” performance of the two models should be taken with 
a grain of salt. 

The authors also tested five current PLMs: BERT.BASE, RoBERTa.BASE, 
Microsoft’s Text Analytics, Google Cloud’s Natural Language, and Amazon’s 
Comprehend. They report the results of 17 tests for sentiment classification, where 
most problems occurred with negations. For instance, the following example “I 
thought the plane would be awful, but it wasn’t.” was misclassified by most models.
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Also very difficult is the detection of paraphrases with 23 tests templates. Here 
RoBERTa had for 11 and BERT for 14 of the test templates a failure rate of more 
than 50%. A similar failure rate was observed for reading comprehension when 
test cases were generated with logical templates. These results indicate that the 
examples in the original test sets of the benchmarks are too easy. 

To increase robustness of PLMs it is possible to generate adversarial examples 
[8, 65]. The authors discuss methods that augment training data with adversarial 
examples as well as methods that produce certificates of robustness. They also 
investigate methods to avoid spurious correlations, i.e. predictive patterns that work 
well on a specific dataset but do not hold in general. 

Talman et al. [63] checked, if the results for benchmarks may be transferred 
to similar datasets. They trained six PLMs on different benchmarks for natural 
language inference (NLI) containing sentence pairs manually labeled with the labels 
entailment, contradiction, and neutral. While six models perform well when the test 
set matches the training set, accuracy is significantly lower when a test set from 
another benchmark is used. BERT.BASE, for instance, yields a test accuracy of 90.4% 
for SNLI, which drops on average 21.2% for the test sets of the other benchmarks. 
The reason behind this drop is a slightly different definition of the task as well as 
small differences in the documents domains. Obviously, it cannot be expected that 
the performance of PLMs can simply be transferred to new data. 

Logical Reasoning by Correlation 

The Winograd schema challenge (WNLI) was developed by Levesque et al. [32] and 
is part of the GLUE benchmark collection. The test consists of a pair of sentences 
differing by exactly one word, each followed by a question [41], e.g. 

• The sports car passed the mail truck because it was going faster. Question: Which 
was going faster, the sports car or the mail truck? 

• The sports car passed the mail truck because it was going slower. Question: 
Which was going slower, the sports car or the mail truck? 

In this pair of sentences, the difference of one word changes which thing or person 
a pronoun refers to. Answering these questions correctly seems to require common 
sense reasoning and world knowledge. In addition, the authors have designed the 
questions to be “Google-proof”: The system should not be able to use a web search 
(or anything similar) to answer the questions. GPT-3 reaches a value of 88.6% using 
few-shot prompts without fine-tuning [7] and DeBERTa managed an accuracy of 
95.6% after fine-tuning [19]. This accuracy roughly equals human performance. 

As Mitchell [41] argues, this does not necessarily mean that neural network 
language models have attained human-like understanding. For a number of question 
pairs it seems possible to answer the question by some sort of correlation instead 
of actual world knowledge. If pre-trained on a large corpus the model will learn 
the high correlation between “sports car” and “fast” and between “mail truck” and 
“slow” for the above example. Therefore, it can give the correct answer on the
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coreference of “it” based on those correlations alone and not by recourse to any 
understanding. It turns out that many of the Winograd schema challenge question 
follow this pattern. A similar argument states [6, 37] that a model might heuristically 
accept a hypothesis by assuming that the premise entails any hypothesis whose 
words all appear in the premise. This means that the model can give the right answer 
without ‘understanding’ the situation in question. 

To reduce the deficits of the Winograd schema challenge a much larger Wino-
grande benchmark [55] was created using crowdsourcing. The researchers discarded 
sentences which could be answered by exploiting intuition and correlation. They 
used the embeddings created by RoBERTa (Sect. 3.1.1) to determine if these embed-
dings strongly indicated the correct response option. In this case they discarded the 
question pair and finally ended up with 44k sentences. An example for a question 
pair without correlation problems is: 

• The trophy doesn’t fit into the brown suitcase because it’s too large. (it: trophy) 
• The trophy doesn’t fit into the brown suitcase because it’s too small. (it: suitcase) 

While humans reach an accuracy of 94%, the best PLMs, standard models like 
RoBERTa only reached 79.1% accuracy. Recently, T5-XXL achieved an accuracy 
of about 91% [43] and the ST-MoE-32B mixture-of-experts model [73] with 269B 
parameters (Sect. 3.5.2) obtained 96.1%, drastically reducing the errors. It appears 
that in most cases the latter models are able to perform ‘reasoning’ without simply 
correlating statements. 

4.3.2 Reproducibility of Published Results in Natural 
Language Processing 

Many publications in NLP claim that their model achieves SOTA for some bench-
mark. Examples are the GLUE benchmark [67] for language understanding and 
the SQuAD data [50] for reading comprehension. There are two main problems 
with this approach. First it is difficult to assess, if the results are reproducible and 
significant. As Crane [11] demonstrates, there are usually a number of unreported 
conditions that affect the reproducibility of the result. An example is the random ini-
tialization of the network parameters. The resulting variance is often larger than the 
reported improvement in SOTA scores. However, the variance resulting from these 
phenomena is usually not reported. Other effects are the underlying programming 
frameworks and libraries, which change over time. Often the hyperparameters and 
the details of preprocessing and model configuration are not communicated. 

To document the model architecture, the training and evaluation process of 
a model, Mitchell et al. [40] proposed the description of relevant facts and 
hyperparameters in a model card. After a short high-level description of the model 
and its purpose the model card should contain nine different sections [40]: 

1. Basic information about the model, 
2. Intended uses and scope limitations,
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3. Model performance across a variety of relevant factors, 
4. Performance metrics, 
5. Evaluation data, 
6. Training data, 
7. Evaluation results according to the chosen metrics. 
8. Ethical consideration, risks and harms. 
9. Caveats and recommendations. 

More details are given by huggingface [22]. Even if models still can be published 
without a model card, the explicit documentation of the model can only benefit 
future users. Therefore, model cards should be provided if possible. For most recent 
models, a model card is provided even if the model is not open-source. 

A survey on reproducibility in NLP is given by Belz et al. [4]. They note 
that the performance results often depend on seemingly small differences in 
model parameters and settings, for example minimum counts for rare word or the 
normalization of writing. The authors state in their study on repeated experiments 
that only 14% of the 513 reported scores were the same. An annoying fraction 
of 59% of the scores were worse than the published numbers. Therefore, the 
experimental results published in papers should be treated with caution. 

Another issue is the question of what causes an increase in performance. As we 
have discussed above, a growth in the number of parameters and in the computing 
effort regularly leads to better results for PLMs (Sect. 3.5.1). As a consequence, it 
is often not clear, whether the architectural changes to a model yield the improved 
performance or just the number of additional parameters or the larger training set 
[53]. 

Obviously a first place in a leaderboard can be achieved with a larger model 
and more computing effort. This, however, “is not research news” according to 
Rogers [53]. In addition, these results are often not reproducible: Who can afford to 
retrain GPT-3 for 4.6 million dollars. As a consequence, the development of smaller 
but more innovative models is less rewarding, as it is difficult to beat the bigger 
model. Only if the authors of a new model can show that their architecture is better 
than the previous SOTA model with the same number of parameters and compute 
budget, they can claim to have made a valuable contribution. Rogers [53] proposes 
to provide a standard training corpus for a leaderboard and limit the amount of 
computation effort to that of a strong baseline model. As an alternative the size of 
the training data and the computational effort should be reported and taken into 
account in the final score. 

Available Implementations 

• There are model codes and trained models for RoBERTa and ELECTRA at 
Hugging Face https://huggingface.co/transformers/. 

• The code for DeBERTa is available at https://github.com/microsoft/DeBERTa 
and Hugging Face. 

• The Checklist code is at https://github.com/marcotcr/checklist.

https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://huggingface.co/transformers/
https://github.com/microsoft/DeBERTa
https://github.com/microsoft/DeBERTa
https://github.com/microsoft/DeBERTa
https://github.com/microsoft/DeBERTa
https://github.com/microsoft/DeBERTa
https://github.com/marcotcr/checklist
https://github.com/marcotcr/checklist
https://github.com/marcotcr/checklist
https://github.com/marcotcr/checklist
https://github.com/marcotcr/checklist
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4.3.3 Summary 

The transferability of benchmark results to real applications is not always granted. 
Even if a PLM is better than humans at logical reasoning on the test set, it may not 
be able to classify generated logical reasoning chains correctly. This indicates that 
the test set does not cover the full spectrum of possible examples. It is common for 
performance to be lower on related benchmarks because the domain or the definition 
of the task may deviate. 

There are cases where a logical conclusion is obtained not by logical deduc-
tion, but by a simple correlation of antecedent and consequent. This could be 
demonstrated for the Winograd task of the GLUE benchmark. To avoid this type of 
‘reasoning’ a new variant task called Winogrande was developed where correlations 
are unrelated to the reasoning task. Meanwhile, a Foundation Model with 269B 
parameters was also able to solve this task better than humans. 

A survey on the reproducibility of results in NLP demonstrated that the published 
performance often depends on a number of unreported effects, such as random 
number initialization. Often the variability of such effects is larger than the reported 
improvement. Therefore, it is necessary to report the variance caused by these 
effects. In addition, the details of the model architecture, its training and evaluation 
should be documented in a model card. In about 500 repeated experiments, an 
irritating rate of about 60% of final scores were lower than reported. Note that 
improvements due to more parameters, more training data, or higher computational 
effort are not indicative of a better model architecture. 
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