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Preface

“Classification and Data Science in the Digital Age”, the 17th Conference of the In-
ternational Federation of Classification Societies (IFCS), is held in Porto, Portugal,
from July 19th to July 23rd 2022, locally organised by the Faculty of Economics of
the University of Porto and the Portuguese Association for Classification and Data
Analysis, CLAD.

The International Federation of Classification Societies (IFCS), founded in 1985,
is an international scientific organization with non-profit and non-political motives.
Its purpose is to promote mutual communication, co-operation and interchange of
views among all those interested in scientific principles, numerical methods, theory
and practice of data science, data analysis, and classification in a broad sense and in as
wide a range of applications as possible; to serve as an agency for the dissemination
of scientific information related to these areas of interest; to prepare international
conferences; to publish a newsletter and other publications. The scientific activities
of the Federation are intended for all people interested in theory of classification
and data analysis, and related methods and applications. IFCS 2022 – originally
scheduled for August 2021, and postponed due to the Covid-19 pandemic – will be
its 17th edition; previous editions were held in Thessaloniki (2019), Tokyo (2017)
and Bologna (2015).

Keynote lectures are addressed by Genevera Allen (Rice University, USA), Charles
Bouveyron (Université Côte d’Azur, Nice, France), Dianne Cook (Monash Univer-
sity, Melbourne, Australia), and João Gama (Faculty of Economics, University of
Porto & LIAAD INESC TEC, Portugal). The conference program includes two
tutorials: “Analysis of Data Streams” by João Gama (Faculty of Economics, Univer-
sity of Porto & LIAAD INESC TEC, Portugal) and “Categorical Data Analysis of
Visualization” by Rosaria Lombardo (Università degli Studi della Campania Luigi
Vanvitelli, Italy) and Eric Beh (University of Newcastle, Australia). IFCS 2022 has
highlighted topics, which lead to Semi-Plenary Invited Sessions. The Conference
program also includes Thematic Tracks on specific areas, as well as free contributed
sessions in different topics (both oral communications and posters).

v
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The Conference Scientific Program Committee is co-chaired by Paula Brito, José G.
Dias, Berthold Lausen, and Angela Montanari, and includes representatives of the
IFCS member societies: Adalbert Wilhelm – GfKl, Ahmed Moussa – MCS, Arthur
White – IPRCS, Brian Franczak – CS, Eva Boj del Val – SEIO, Fionn Murtagh –
BCS, Francesco Mola – CLADAG, Hyunjoong Kim – KCS, Javier Trejos Zelaya –
SoCCCAD, Koji Kurihara – JCS, Krzysztof Jajuga – SKAD, Mark de Rooij – VOC,
Mohamed Nadif – SFC, Niel le Roux – MDAG, Simona Korenjak Černe – SSS,
Theodore Chadjipadelis – GSDA, who were responsible for the Conference Scien-
tific Program, and whom the organisers wish to thank for their precious cooperation.
Special thanks are also due to the chairs of the Thematic Tracks, for their invaluable
collaboration.

The papers included in this volume present new developments in relevant topics
of Data Science and Classification, constituting a valuable collection of method-
ological and applied papers that represent the current research in highly developing
areas. Combining new methodological advances with a wide variety of real appli-
cations, this volume is certainly of great value for Data Science researchers and
practitioners alike.

First of all, the organisers of the Conference and the editors would like to thank
all authors, for their cooperation and commitment. We are specially grateful to all
colleagues who served as reviewers, and whose work was decisive to the scientific
quality of these proceedings. We also thank all those who have contributed to the de-
sign and production of this Book of Proceedings at Springer, in particular Veronika
Rosteck, for her help concerning all aspects of publication.

The organisers would like to express their gratitude to the Portuguese Association
for Classification and Data Analysis, CLAD, as well as to the Faculty of Economics
of the University of Porto (FEP–UP), who enthusiastically supported the Conference
from the very start, and contributed to its success. We cordially thank all members
of the Local Organising Committee – Adelaide Figueiredo, Carlos Ferreira, Carlos
Marcelo, Conceição Rocha, Fernanda Figueiredo, Fernanda Sousa, Jorge Pereira,
M. Eduarda Silva, Paulo Teles, Pedro Campos, Pedro Duarte Silva, and Sónia Dias
– and all people at FEP–UP who worked actively for the conference organisation,
and whose work is much appreciated. We are very grateful to all our sponsors, for
their generous support. Finally, we thank all authors and participants, who made the
conference possible.

Porto, Paula Brito
July 2022 José G. Dias

Berthold Lausen
Angela Montanari
Rebecca Nugent
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A Topological Clustering of Individuals

Rafik Abdesselam

Abstract The clustering of objects-individuals is one of the most widely used ap-
proaches to exploringmultidimensional data. The two common unsupervised cluster-
ing strategies areHierarchical AscendingClustering (HAC) and k-means partitioning
used to identify groups of similar objects in a dataset to divide it into homogeneous
groups. The proposed Topological Clustering of Individuals, or TCI, studies a homo-
geneous set of individual rows of a data table, based on the notion of neighborhood
graphs; the columns-variables are more-or-less correlated or linked according to
whether the variable is of a quantitative or qualitative type. It enables topological
analysis of the clustering of individual variables which can be quantitative, qualita-
tive or a mixture of the two. It first analyzes the correlations or associations observed
between the variables in a topological context of principal component analysis (PCA)
or multiple correspondence analysis (MCA), depending on the type of variable, then
classifies individuals into homogeneous group, relative to the structure of the vari-
ables considered. The proposed TCI method is presented and illustrated here using
a real dataset with quantitative variables, but it can also be applied with qualitative
or mixed variables.

Keywords: hierarchical clustering, proximity measure, neighborhood graph, adja-
cency matrix, multivariate data analysis

1 Introduction

The objective of this article is to propose a topological method of data analysis in the
context of clustering. The proposed approach, Topological Clustering of Individuals

Rafik Abdesselam (�)
University of Lyon, Lyon 2, ERIC - COACTIS Laboratories
Department of Economics and Management, 69365 Lyon, France,
e-mail: rafik.abdesselam@univ-lyon2.fr

1© The Author(s) 2023
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Studies in Classification, Data Analysis, and Knowledge Organization,
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2 R. Abdesselam

(TCI) is different from those that already exist and with which it is compared. There
are approaches specifically devoted to the clustering of individuals, for example, the
Cluster procedure implemented in SAS software, but as far as we know, none of
these approaches has been proposed in a topological context.

Proximitymeasures play an important role inmany areas of data analysis [16, 5, 9].
The results of any operation involving structuring, clustering or classifying objects
are strongly dependent on the proximity measure chosen.

This study proposes a method for the topological clustering of individuals what-
ever type of variable is being considered: quantitative, qualitative or a mixture of
both. The eventual associations or correlations between the variables partly depends
on the database being used and the results can change according to the selected prox-
imity measure. A proximity measure is a function which measures the similarity or
dissimilarity between two objects or variables within a set.

Several topological data analysis studies have been proposed both in the context
of factorial analyses (discriminant analysis [4], simple and multiple correspondence
analyses [3], principal component analysis [2]) and in the context of clustering of
variables [1], clustering of individuals [10] and this proposed TCI approach.

This paper is organized as follows. In Section 2, we briefly recall the basic
notion of neighborhood graphs, we define and show how to construct an adjacency
matrix associated with a proximity measure within the framework of the analysis
of the correlation structure of a set of quantitative variables, and we present the
principles of TCI according to continuous data. This is illustrated in Section 3 using
an example based on real data. The TCI results are compared with those of the well-
known classical clustering of individuals. Finally, Section 4 presents the concluding
remarks on this work.

2 Topological Context

Topological data analysis is an approach based on the concept of the neighborhood
graph. The basic idea is actually quite simple: for a given proximity measure for
continuous or binary data and for a chosen topological structure, we can match a
topological graph induced on the set of objects.

In the case of continuous data, we consider � = {G1, · · · , G 9 , · · · , G?}, a set of ?
quantitative variables. We can see in [1] cases of qualitative or even mixed variables.

We can, by means of a proximity measure D, define a neighborhood relationship,
+D , to be a binary relationship based on � × � . There are many possibilities for
building this neighborhood binary relationship.

Thus, for a given proximity measure u, we can build a neighborhood graph on � ,
where the vertices are the variables and the edges are defined by a property of the
neighborhood relationship.

Many definitions are possible to build this binary neighborhood relationship. One
can choose the Minimal Spanning Tree (MST) [7], the Gabriel Graph (GG) [11] or,
as is the case here, the Relative Neighborhood Graph (RNG) [14].
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For any given proximity measure D, we can construct the associated adjacency
binary symmetric matrix +D of order ?, where, all pairs of neighboring variables in
� satisfy the following RNG property:

+D (G: , G;) =


1 if D(G: , G;) ≤ max[D(G: , GC ), D(GC , G;)] ;
∀G: , G; , GC ∈ �, GC ≠ G: 0=3 GC ≠ G;

0 otherwise.

Fig. 1 Data - RNG structure - Euclidean distance - Associated adjacency matrix.

Figure 1 shows a simple illustrative example inR2 of a set of quantitative variables
that verify the structure of the RNG graph with Euclidean distance as proximity
measure: D(G: , G;) =

√∑2
9=1 (G:9 − G;9 )2.

This generates a topological structure based on the objects in � which are com-
pletely described by the adjacency binary matrix +D .

2.1 Reference Adjacency Matrices

Three topological factorial approaches are described in [1] according to the type of
variables considered: quantitative, qualitative or a mixture of both. We consider here
the case of a set of quantitative variables.

We assume that we have at our disposal a set � = {G 9 ; 9 = 1, · · · , ?} of ?
quantitative variables and = individuals-objects. The objective here is to analyze in
a topological way, the structure of the correlations of the variables considered [2],
from which the clustering of individuals will then be established.

We construct the reference adjacency matrix named +D★ from the correlation
matrix. Expressions of suitable adjacency reference matrices for cases involving
qualitative variables or mixed variables are given in [1].

To examine the correlation structure between the variables, we look at the sig-
nificance of their linear correlation. The reference adjacency matrix +D★ associated
with reference measure D★, can be written using the Student’s t-test of the linear
correlation coefficient d of Bravais-Pearson:
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Definition 1 For quantitative variables, +D★ is defined as:

+D★ (G: , G;) =
{

1 if ?-value = % [ | )=−2 | > t-value ] ≤ U ; ∀:, ; = 1, ?
0 otherwise.

where the ?-value is the significance test of the linear correlation coefficient for
the two-sided test of the null and alternative hypotheses, �0 : d(G: , G;) = 0 vs.
�1 : d(G: , G;) ≠ 0.

Let )=−2 be a t-distributed random variable of Student with a = = − 2 degrees of
freedom. In this case, the null hypothesis is rejected if the ?-value is less than or equal
to a chosen U significance level, for example, U = 5%. Using a linear correlation
test, if the ?-value is very small, it means that there is a very low likelihood that the
null hypothesis is correct, and consequently we can reject it.

2.2 Topological Analysis - Selective Review

Whatever the type of variable set being considered, the built reference adjacency
matrix +D★ is associated with an unknown reference proximity measure D★.

The robustness depends on the U error risk chosen for the null hypothesis: no
linear correlation in the case of quantitative variables, or positive deviation from
independence in the case of qualitative variables, can be studied by setting aminimum
threshold in order to analyze the sensitivity of the results. Certainly the numerical
results will change, but probably not their interpretation.

We assume that we have at our disposal {G: ; : = 1, .., ?} a set of ? homogeneous
quantitative variablesmeasured on = individuals.Wewill use the following notations:

- -(=,?) is the data matrix with = rows-individuals and ? columns-variables,
- +D★ is the symmetric adjacency matrix of order ?, associated with the reference

measure D★ which best structures the correlations of the variables,
- -̂(=,?) = -+D★ is the projected data matrix with = individuals and ? variables,
- "? is the matrix of distances of order ? in the space of individuals,
- �= = 1

=
�= is the diagonal matrix of weights of order = in the space of variables.

We first analyze, in a topological way, the correlation structure of the variables
using a Topological PCA, which consists of carrying out the standardized PCA [6, 8]
triplet ( -̂ , "? , �= ) of the projected data matrix -̂ = -+D★ and, for comparison,
the duality diagram of the Classical standardized PCA triplet ( - , "? , �= ) of the
initial data matrix - . We then proceed with a clustering of individuals based on the
significant principal components of the previous topological PCA.

Definition 2 TCI consist of performing a HAC, based on the Ward criterion1 [15],
on the significant factors of the standardized PCA of the triplet ( -̂, "? , �=).

1 Aggregation based on the criterion of the loss of minimal inertia.
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3 Illustrative Example

The data used [13] to illustrate the TCI approach describe the renewable electricity
(RE) of the 13 French regions in 2017, described by 7 quantitative variables relating
to RE. The growth of renewable energy in France is significant. Some French regions
have expertise in this area; however, the regions’ profiles appear to differ.

The objective is to specify regional disparities in terms of RE by applying topo-
logical clustering to the French regions in order to identify which were the country’s
greenest regions in 2017. Statistics relating to the variables are displayed in Table 1.

Table 1 Summary statistics of renewable energy variables.
Standard Coefficient of

Variable Frequency Mean Deviation (N) variation (%) Min Max
Total RE production (TWH) 13 6.84 6.58 96.19 0.59 2.34
Total RE consumption (TWH) 13 3.70 1.87 50.67 2.18 7.06
Coverage RE consumption (%) 13 0.18 0.11 59.01 0.02 0.36
Hydroelectricity (%) 13 0.34 0.30 87.47 0.01 0.89
Solar electricity (%) 13 0.13 0.09 72.57 0.02 0.31
Wind electricity (%) 13 0.39 0.29 76.12 0.01 0.86
Biomass electricity (%) 13 0.15 0.19 130.54 0.01 0.79

Table 2 Correlation matrix (?-value) - Reference adjacency matrix +D★ .
Production 1.000

Consumption 0.575 1.000
(0.040)

Coverage 0.798 0.090 1.000
(0.001) (0.771)

Hydroelectricity 0.720 0.138 0.872 1.000
(0.006) (0.653) (0.000)

Solar -0.272 -0.477 0.105 0.168 1.000
(0.369) (0.099) (0.734) (0.582)

Wind -0.408 -0.305 -0.524 -0.772 -0.395 1.000
(0.167) (0.311) (0.066) (0.002) (0.181)

Biomass -0.365 0.489 -0.609 -0.459 -0.149 -0.135 1.000
(0.220) (0.090) (0.027) (0.114) (0.627) (0.660)

+D★ =

©­­­­­­­«

1 1 1 1 0 0 0
1 1 0 0 0 0 0
1 0 1 1 0 0 −1
1 0 1 1 0 −1 0
0 0 0 0 1 0 0
0 0 0 −1 0 1 0
0 0 −1 0 0 0 1

ª®®®®®®®¬
Significance level: p−value ≤ U = 5%

The adjacency matrix +D★ , associated with the proximity measure D★, adapted
to the data considered, is built from the correlations matrix Table 2 according to
Definition 1. Note that in this case, which uses quantitative variables, it is considered
that two positively correlated variables are related and that two negatively correlated
variables are related but remote. We will therefore take into account any sign of
correlation between variables in the adjacency matrix.

We first carry out a Topological PCA to identify the correlation structure of the
variables. A HAC, according to Ward’s criterion, is then applied to the significant
principal components of the PCA of the projected data. We then compare the results
of a topological and a classical PCA.

Figure 2 presents, for comparison on the first factorial plane, the correlations
between principal components-factors and the original variables.
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We can see that these correlations are slightly different, as are the percentages of
the inertias explained on the first principal planes of Topological and Classic PCA.

Fig. 2 Topological & Classical PCA of RE of the French regions.

The two first factors of the Topological PCA explain 57.89% and 26.11%, re-
spectively, accounting for 83.99% of the total variation in the data set; however, the
two first factors of the Classical PCA add up to 75.20%. Thus, the first two factors
provide an adequate synthesis of the data, that is, of RE in the French regions. We
restrict the comparison to the first significant factorial axes.

For comparison, Figure 3 shows dendrograms of the Topological and Classical
clustering of the French regions according to their RE. Note that the partitions chosen
in 5 clusters are appreciably different, asmuch by composition as by characterization.
The percentage variance produced by the TCI approach, '2 = 86.42%, is higher than
that of the classic approach, '2 = 84.15%, indicating that the clusters produced via
the TCI approach are more homogeneous than those generated by the Classical one.

Based on the TCI analysis, the Corse region alone constitutes the fourth cluster,
and the Nouvelle-Acquitaine region is found in the second cluster with the Grand-
Est, Occitanie and Provence-Alpes-Côte-d’Azur (PACA) regions; however, in the
Classical clustering, these two regions - Corse and Nouvelle-Aquitaine - together
constitute the third cluster.

Figure 4 summarizes the significant profiles (+) and anti-profiles (-) of the two
typologies; with a risk of error less than or equal to 5%, they are quite different.

The first cluster produced via the TCI approach, consisting of a single region,
Auvergne-Rhônes-Alpes (AURA), is characterized by high share of hydroelectricity,
a high level of coverage of regional consumption, and high RE production and con-
sumption. The second cluster - which groups together the four regions of Grand-Est,
Occitanie, Provence-Alpes-Côte-d’Azur (PACA) andNouvelle-Aquitaine - is consid-
ered a homogeneous cluster, which means that none of the seven RE characteristics
differ significantly from the average of these characteristics across all regions. This
cluster can therefore be considered to reflect the typical picture of RE in France.
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Fig. 3 Topological and Classical dendrograms of the French regions.

Fig. 4 Typologies - Characterization of TCI & Classical clusters

Cluster 3, which consists of six regions, is characterized by a high degree of wind
energy, a low degree of hydroelectricity, low coverage of regional consumption, and
low production and consumption of RE compared to the national average. Cluster
4, represented by the Corse region, is characterized by a high share of solar energy
and low production and consumption of RE. The last class, represented by the Ile-
de-France region, is characterized by a high share of biomass energy. Regarding the
other types of RE, their share is close to the national average.
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4 Conclusion

This paper proposes a new topological approach to the clustering of individualswhich
can enrich classical data analysis methods within the framework of the clustering of
objects. The results of the topological clustering approach, based on the notion of a
neighborhood graph, are as good - or even better, according to the R-squared results
- than the existing classical method. The TCI approach is be easily programmable
from the PCA and HAC procedures of SAS, SPAD or R software. Future work will
involve extending this topological approach to other methods of data analysis, in
particular in the context of evolutionary data analysis.
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Model Based Clustering of Functional Data with
Mild Outliers

Cristina Anton and Iain Smith

AbstractWe propose a procedure, called CFunHDDC, for clustering functional data
with mild outliers which combines two existing clustering methods: the functional
high dimensional data clustering (FunHDDC) [1] and the contaminated normal mix-
ture (CNmixt) [3] method for multivariate data. We adapt the FunHDDC approach
to data with mild outliers by considering a mixture of multivariate contaminated nor-
mal distributions. To fit the functional data in group-specific functional subspaces
we extend the parsimonious models considered in FunHDDC, and we estimate the
model parameters using an expectation-conditional maximization algorithm (ECM).
The performance of the proposed method is illustrated for simulated and real-world
functional data, and CFunHDDC outperforms FunHDDCwhen applied to functional
data with outliers.

Keywords: functional data, model-based clustering, contaminated normal distribu-
tion, EM algorithm

1 Introduction

Recently, model-based clustering for functional data has received a lot of attention.
Real data are often contaminated by outliers that affect the estimations of the model
parameters. Here we propose a method for clustering functional data with mild
outliers. Mild outliers are usually sampled from a population different from the
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assumed model, so we need to choose a model flexible enough to accommodate
them.

Functional data live in an infinite dimensional space and model-based methods
for clustering are not directly available because the notion of probability density
function generally does not exist for such data. A first approach is to use a two-
step method and first do a discretization or a decomposition of the functional data
in a basis of functions (such as Fourier series, B-splines, etc.), and then directly
apply multivariate clustering methods to the discretization or the basis coefficients.
A second approach, which allows the interaction between the discretization and the
clustering steps, is based on a probabilistic model for the basis coefficients [1, 2].

We follow the second approach, and we propose a method, called CFunHDDC,
which extends the functional high dimensional data clustering (FunHDDC) [1] to
clustering functional data with mild outliers. There are several methods to detect
outliers of functional data and a robust clustering methodology based on trimming
is presented in [4]. Our approach does not involve trimming the outliers and it is
inspired by themethodCNmixt [3] for clusteringmultivariate data withmild outliers.
We propose a model for the basis coefficients based on a mixture of contaminated
multivariate normal distributions. A multivariate contaminated normal distribution
is a two-component normal mixture in which the bad observations (outliers) are
represented by a component with a small prior probability and an inflated covariance
matrix.

In the next section we present the model and its parsimonious variants. Parameter
estimation is included in Section 3. In Section 4 we present applications to simulated
and real-world data. The last section includes the conclusions.

2 The Model

We suppose that we observe = curves {G1, . . . , G=} and we want to cluster them
in  homogeneous groups. For each curve G8 we have access to a finite set of
values G8 9 = G8 (C8 9 ), where 0 ≤ C81 < C82 < . . . < C8<8 ≤ ) . We assume that the
observed curves are independent realizations of a !2− continuous stochastic process
- = {- (C)}C ∈[0,) ] for which the sample paths are in !2 [0, )]. To reconstruct the
functional form of the data we assume that the curves belong to a finite dimensional
space spanned by a basis of functions {b1, . . . , b?}, so we have the expansion for
each curve

G8 (C) =
?∑
9=1
W8 9b 9 (C).

Here we assume that the dimension ? is fixed and known.We consider a model based
on a mixture of multivariate contaminated normal distributions for the coefficients
vectors {W1, . . . , W=} ⊂ R? , W8 = (W81, . . . , W8 ?)> ∈ R? , 8 = 1, . . . , =.

We suppose that there exists two unobserved random variables / = (/1, . . . , / ),
Υ = (Υ1, . . . ,Υ ) ∈ {0, 1} where / indicates the cluster membership and Υ

12
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whether an observation is good or bad (outlier). /: = 1 if - ∈ :th cluster and /: = 0
otherwise, and Υ: = 1 if - ∈ :th cluster and it is a good observation, and Υ: = 0
otherwise. For clustering we need to predict the value I8 = (I81, . . . , I8 ) of / , and
to determine the bad observations we need to predict the value a8 = (a81, . . . , a8 )
of Υ for each observed curve G8 , 8 = 1, . . . , =.

We consider a set of =: observed curves of the :th cluster with the coefficients
{W1, . . . , W=: } ⊂ R? . We assume that {W1, . . . , W=: } are independent realizations
of a random vector Γ ∈ R? , and that the stochastic process associated with the
:th cluster can be described in a lower dimensional subspace E: [0, )] ⊂ !2 [0, )]
with dimension 3: ≤ ? and spanned by the first 3: elements of a group specific
basis of functions {q: 9 } 9=1,...,3: that can be obtained from {b 9 } 9=1,..., ? by a linear
transformation

q: 9 =

?∑
;=1

@:, 9;b; ,

with an ? × ? orthogonal matrix &: = (@:, 9;). In [1] for FunHDDC the assumption
is that the distribution of Γ for the :th cluster is Γ ∼ # (`: , Σ: ), Σ: = &:Δ :&>: ,
where

Δ : =

©­­­­­­­­­«

0:1 0
. . .

0 0:3:

0

0
1: 0

. . .

0 1:

ª®®®®®®®®®¬


?

with 0:8 > 1: , 8 = 1, . . . , 3: . We can say that the variance of the actual data in the
:th cluster is modeled by 0:1, . . . , 0:3: and the parameter 1: models the variance
of the noise [1].

We follow the approach in [3] and we assume that Γ for the :th cluster has the
multivariate contaminated normal distribution with density

5 (W8; \: ) = U:q(W8; `: , Σ: ) + (1 − U: )q(W8; `: , [:Σ: ), (1)

where U: ∈ (0.5, 1), [: > 1, \: = {U: , `: , Σ: , [: }, and q(W8; `: , Σ: ) is the density
for the ?−variate normal distribution # (`: , Σ: ):

q(W8; `: , Σ: ) = (2c)−?/2 |Σ: |−1/2 exp
(
−1

2
(W8 − `: )>Σ−1

: (W8 − `: )
)

(2)

Here U: defines the proportion of uncontaminated data in the :the cluster and [:
represents the degree of contamination. We can see [: as an inflation parameter that
measures the increase in variability due to the bad observations.

Each curve G8 has a basis expansion with coefficient W8 such that W8 is a random
vector whose distributions is a mixture of contaminated Gaussians with density

13
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?(W; \) =
 ∑
:=1

c: 5 (W; \: ) (3)

where c: = %(/: = 1) is the prior probability of the :th the cluster and
\ =

⋃:
:=1 (\:∪{c: }) is the set formed by all the parameters.We refer to this model as

FCLM[0: 9 , 1: , &: , 3: ] (functional contaminated latent mixture). As in [1] we con-
sider the parsimonious sub-models: FCLM[0: 9 , 1, &: , 3: ], FCLM[0: , 1: , &: , 3: ],
FCLM[0, 1: , &: , 3: ], FCLM[0: , 1, &: , 3: ], FCLM[0, 1, &: , 3: ].

3 Model Inference

To fit the models we use the ECM algorithm [3], which is a variant of the EM
algorithm. In the ECM algorithm we replace the M-step in the EM algorithm by two
simpler CM-steps given by the partition of the set with the parameters \ = {Ψ1,Ψ2},
where Ψ1 = {c: , U: , `: , 0: 9 , 1: , @: 9 , : = 1, . . . ,  , 9 = 1, . . . , 3: }, Ψ2 = {[: , : =
1, . . . ,  }, and @: 9 is the 9 th column of &: .

We have two sources of missing data: the clusters’ labels and the type of observa-
tion (good or bad). Thus the complete data are given by ( = {W8 , I8 , a8}8=1,...,=, and
the complete-data likelihood is

!2 (\; () =
#∏
8=1

 ∏
:=1

{
c: [U:q(W8; `: , Σ: )]a8: [(1 − U: )q(W8; `: , [:Σ: )]1−a8:

}I8:
We denote the complete-data log-likelihood by ;2 (\; () = log(!2 (\; ()).

Next we present the ECM algorithm for the model FCLM[0: 9 , 1: , &: , 3: ]. At
the @ iteration of the ECM algorithm in the E-step we calculate � [;2 (\ (@−1) ; () |W1,

. . . , W=, \
(@−1) ], given the current values of the parameters \ (@−1) . This reduces to

the calculation of I (@)
8:

:= � [/8: |W8 , \ (@−1) ], a (@)
8:

:= � [Υ8: |W8 , I8 , \ (@−1) ].
In the first CM step in the @ iteration of the ECM algorithm we calculate Ψ (@)1 as

the value of Ψ1 that maximize ; (@−1)
2 with Ψ2 fixed at Ψ (@−1)

2 . We obtain

c
(@)
:

=

∑=
8=1 I

(@)
8:

=
, U

(@)
:

=

∑=
8=1 I

(@)
8:
a
(@)
8:∑=

8=1 I
(@)
8:

, `
(@)
:

=

∑=
8=1 I

(@)
8:

(
a
(@)
8:
+ 1−a (@)

8:

[
(@−1)
:

)
W8∑=

8=1 I
(@)
8:

(
a
(@)
8:
+ 1−a (@)

8:

[
(@−1)
:

) (4)

Σ
(@)
:

=
1∑=

8=1 I
(@)
8:

=∑
8=1
I
(@)
8:

(
a
(@)
8:
+

1 − a (@)
8:

[
(@−1)
:

)
(W8 − ` (@): ) (W8 − `

(@)
:
)> (5)

We introduce a value U∗ and we constrain U: ∈ (U∗, 1). If the estimation U (@)
:

in
(4) is less than U∗, we use the optimize() function in the stats package in R to do a
numerical search for U (@)

:
.
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As in [1] we get the updated values 0 (@)
: 9
, 1
(@)
:
, @
(@)
: 9
, : = 1, . . . ,  , 9 = 1, . . . , 3:

from the sample covariance matrix Σ (@)
:

of cluster : , using also the matrix of
inner products between the basis functions , = (| 9;)1≤ 9 ,;≤? , where | 9; =∫ )

0 b 9 (C)b; (C)3C.
In the second CM step in the @ iteration of the ECM algorithm we calculate [ (@)

:

as the value that maximize ; (@−1)
2 with Ψ1 fixed at Ψ (@)1 .

At the end of the ECM algorithm, we do a two-step classification to provide the
expected clustering. If @ 5 is the last iteration of the algorithm before convergence,
an observation W8 ∈ R? is assigned to the cluster :0 ∈ {1, . . . ,  } with the largest
I
(@ 5 )
8:

. Next, an observation W8 that was assigned to the cluster :0 is considered good
if a (@ 5 )

8:0
> 0.5, and it is considered bad otherwise. After the classification step we

can eliminate the bad observations and run FunHDDC to re-cluster the remaining
observations.

The class specific dimension 3: is selected through the scree-test of Cattell by
comparison of the difference between eigenvalues with a given threshold [1]. The
number of clusters  as well as the parsimonious model are selected using the BIC
criterion.

4 Applications
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Fig. 1 Smooth data simulated without oultiers (a), according to scenario A (b), scenarion B (c),
and scenario C (d), coloured by group for one simulation.

We simulate 1000 curves based on themodel FCLM[0: , 1: , &: , 3: ]. The number
of clusters is fixed to = 3 and themixing proportions are equal c1 = c2 = c3 = 1/3.
We consider the following values of the parameters

Group 1: 3 = 5, 0 = 150, 1 = 5, ` = (1, 0, 50, 100, 0, . . . , 0)
Group 2: 3 = 20, 0 = 15, 1 = 8, ` = (0, 0, 80, 0, 40, 2, 0, . . . , 0)
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Group 3: 3 = 10, 0 = 30, 1 = 10, ` = (0, . . . , 0, 20, 0, 80, 0, 0, 100),

where 3 is the intrinsic dimension of the subgroups, ` is the mean vector of size 70,
0 is the value of the 3-first diagonal elements of Δ , and 1 the value of the 70− 3- last
ones. Curves are smoothed using 35 Fourier basis functions.We repeat the simulation
100 times. A sample of theses data is plotted in Figure 1 a. We consider the following
contamination schemes where the scores are simulated from contaminated normal
distributions with the previous parameters and

A: U8 = 0.9, 8 = 1, . . . , 3, and [1 = 7, [2 = 10, [3 = 17.
B: U8 = 0.9, 8 = 1, . . . , 3, and [1 = 5, [2 = 50, [3 = 15.
C: U8 = 0.9, 8 = 1, . . . , 3, and [1 = 100, [2 = 70, [3 = 170.

Samples for data generated according to scenarios A, B, C are plotted in Figure 1
b, c, d, respectively. We notice that there is more overlapping between the 3 groups
when we increase the values of [.

Table 1 Mean (and standard deviation) of ARI for BIC best model on 100 simulations. Bold values
indicates the highest value for each method.

Scenario Method U∗ n ARI ARI Outliers

A FunHDDC - 0.05 0.519 (0.11) -
A FunHDDC - 0.1 0.499(0.05) -
A FunHDDC - 0.2 0.494 (0.01) -
A CFunHDDC 0.75 0.05 0.769 (0.23) 0.959(0.04)
A CFunHDDC 0.75 0.1 0.986(0.08) 0.998(0.01)
A CFunHDDC 0.75 0.2 0.9995 (0.001) 1 (0)
B FunHDDC - 0.05 0.861 (0.23) -
B FunHDDC - 0.1 0.754(0.25) -
B FunHDDC - 0.2 0.52 (0.09) -
B CFunHDDC 0.75 0.05 0.807 (0.22) 0.961(0.05)
B CFunHDDC 0.75 0.1 0.948 (0.14) 0.99(0.03)
B CFunHDDC 0.75 0.2 0.990 (0.062) 0.971 (0.149)
C FunHDDC - 0.05 0.490 (0.02) -
C FunHDDC - 0.1 0.491(0.02) -
C FunHDDC - 0.2 0.494 (0.01) -
C CFunHDDC 0.75 0.05 0.736 (0.23) 0.928(0.10)
C CFunHDDC 0.75 0.1 0.911 (0.18) 0.958(0.15)
C CFunHDDC 0.75 0.2 0.965 (0.11) 0.994 (0.03)

The quality of the estimated partitions obtained using FunHDDC and CFunHDDC
is evaluated using the Adjusted Rand Index (ARI) [3], and the results are included in
Table 1. For FunHDDC we use the library funHDDC in R. We run both algorithms
for  = 3 with all 6 sub-models and the best solution in terms of the highest BIC
value for all those submodels is returned. The initialization is done with the :-means
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Table 2 Correct classification rates for each method.

Method n CCR Method U∗ n CCR Method U∗ CCR

FunHDDC 0.01 0.68 CFunHDDC 0.85 0.01 0.67 CNmixt 0.5 0.67
FunHDDC 0.05 0.64 CFunHDDC 0.85 0.05 0.70 CNmixt 0.75 0.66
FunHDDC 0.1 0.59 CFunHDDC 0.85 0.1 0.70 CNmixt 0.85 0.67
FunHDDC 0.2 0.57 CFunHDDC 0.85 0.2 0.6 CNmixt 0.9 0.66

strategy with 50 repetitions, and the maximum number of iterations is 200 for the
stopping criterion. We use n ∈ {0.05, 0.1, 0.2} in the Cattell test.

We notice that CFunHDDC outperforms FunHDDC, and it gives excellent results
even in Scenario C. For CFunHDDC the best results are obtained for n = 0.2 in the
Catell test, and the values of the ARI are close to 1.

Next, we consider the NOx data available in the fda.usc library in R and repre-
senting daily curves of Nitrogen Oxides (NOx) emissions in the neighborhood of
the industrial area of Poblenou, Barcelona (Spain). The measurements of NOx (in
`g/m3) were taken hourly resulting in 76 curves for “working days” and 39 curves
for “non-working days” (see Figure 2 a). Since NOx is a contaminant agent, the
detection of outlying emission is useful for environmental protection. This data set
has been used for testing methods for the detection of outliers and to illustrate robust
clustering based on trimming for functional data [4].

We apply CFunHDDC, FunHDDC, and CNmixt to the NOx data. Curves are
smoothed using a basis of 8 Fourier functions, and we run the algorithms for  = 2
clusters. For CFunHDDC, FunHDDC we use n ∈ {0.001, 0.05, 0.1, 0.2} in the
Cattell test and the rest of the settings are the same as in the simulation study. We
run CNmixt for all 14 models from the ContaminatedMixt R library, based on the
coefficients in the Fourier basis, with 1000 iterations for the stopping criteria, and
initialization done with the :-means method. The correct classification rates (CCR)
are reported in Table 2.

The CCR for CFunHDDC are slightly better than the ones for FunHDDC and
CNmixt, and are comparable with the ones reported in Table 1 in [4] for Funclust,
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Fig. 2 a.DailyNOx curves for 115 days; b. c. Clustering obtainedwith CFunHDDC, n = 0, 05,U∗ =
0.85; Non-working days (blue), working days (red), outliers (green).
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RFC, and TrimK. In Figure 2 b, c we present the clusters and the detected outliers
for n = 0.05 and U∗ = 0.85. The curves that are detected as outliers (green lines)
exhibit different patterns from the rest of the curves.

One of the advantages of extending the FunHDDC to CFunHDDC is the outlier
detection. For U∗ = 0.85 and n = 0.05, CFunHDDC detects 16 outliers, which are the
same with the outliers mentioned in [4]. For the data without outliers, CFunHDDC
becomes equivalent to FunHDDC, and for the trimmed data the CCR increases to
0.79.

5 Conclusion

We propose a newmethod, CFunHDDC, that extends the FunHDDC functional clus-
tering method to data with mild outliers. Unlike other robust functional clustering
algorithms, CFunHDDC does not involve trimming the data. CFunHDDC is based
on a model formed by a mixture of contaminated multivariate normal distributions,
which makes parameter estimation more difficult than for FunHDDC, so we use an
ECM instead of an EM algorithm. The clustering and outlier detection performance
of CFunHDDC is tested for simulated data and the NOx data and it always out-
performs FunHDDC. Moreover, CFunHDDC has a comparable performance with
robust functional clustering methods based on trimming, such as RFC and TrimK,
and it has similar or better performance when compared to a two-step method based
on CNmixt. Although there are several model-based methods for multivariate data
with outliers that can be used to construct two-step methods for functional data, as
observed in [1], these two-step methods always suffers from the difficulty to choose
the best discretization. CFunHDDC can be extended to multivariate functional data,
and recently, independently of our work, a similar approach was followed in [5], but
without considering the parsimonious models and the value U∗.
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A Trivariate Geometric Classification of
Decision Boundaries for Mixtures of Regressions

Filippo Antonazzo and Salvatore Ingrassia

AbstractMixtures of regressions play a prominent role in regression analysis when
it is known the population of interest is divided into homogeneous and disjoint
groups. This typically consists in partitioning the observational space into several
regions through particular hypersurfaces called decision boundaries. A geometrical
analysis of these surfaces allows to highlight properties of the used classifier. In
particular, a geometrical classification of decision boundaries for the three most
used mixtures of regressions (with fixed covariates, with concomitant variables and
random covariates) was provided in case of one and two covariates, under Gaussian
assumptions and in presence of only one real response variable. This work aims to
extend these results to a more complex setting where three independent variables are
considered.

Keywords: mixtures of regressions, decision boundaries, hyperquadrics, model-
based clustering

1 Introduction

Linear regression is commonly employed to model the relationship between a 3-
dimensional real vector of covariatesX and a real response variable. . It is well suited
if we can assume that regression coefficients are fixed over all possible realizations
(x, H) ∈ R3+1 of the couple (X, . ). This assumption falls if it is a-priori known
that realizations come from a population Ω which can be partitioned into � disjoint
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homogeneous groups Ω6, 6 = 1, . . . , �. In this case, a mixture of linear regressions
(or clusterwise regression) is a more appropriate statistical tool. According to their
degree of flexibility and generality, we can distinguish three types of mixtures of
regressions: mixtures of regressions with fixed covariates (MRFC) [3]; mixtures of
regressions with concomitant variables (MRCV) [6] and mixtures of regressions
with random covariates (MRRC), also referred to in literature as cluster-weighted
models [3, 4].

Mixtures of regressions can also be employed from a classification point of view
to identify the group membership of each observation. In this case, the generated
classifier divides the real space into � regions through particular R3+1 surfaces
called decision boundaries. In [5], the decision boundaries generated by each type
of mixture are analyzed from a geometrical point of view, especially in those cases
where 3 = 1, 2 and � = 2. The aim of the present work is to extend the results
presented in the aforementioned paper to a higher dimensional case where 3 = 3,
giving more insight into the properties of these classifiers. The rest of the paper is
organized as follows. In Section 2 we summarize the main ideas about mixtures of
regressions. In Section 3 decision boundaries will be defined, finally proposing a
geometrical classification in Section 4 when 3 = 3 and � = 2. In Section 5, we
will conclude investigating with practical example the shape of three-dimensional
decision boundaries in presence of variables following heavy-tailed C-distributions.

2 Mixtures of Regressions

Below we briefly define three types of mixtures of regressions, ordered according to
their generality and flexibility, given by an increasing number of parameters.

MRFC.Mixtures of regressions with fixed covariates have the following density:

?(H |x;k) =
�∑
6=1

c6 5 (H |x; \6). (1)

The density 5 (H |x; \6) is indexed by a parameter vector \6 belonging to an Euclidean
parametric space Θ6. Moreover, every c6 is positive and

∑�
6=1 c6 = 1. The vector

k = (c1, . . . , c� , \1, . . . , \�) denotes the set of all the parameters of the model.

MRCV. The density of a mixture of regressions with concomitant variables is:

?(H |x;k) =
�∑
6=1

5 (H |x; \6)?(Ω6 |x;U), (2)

where the vector k = (\1, . . . , \� , U) contains all parameters indexing the model.
More specifically, ?(Ω6 |x;U) is a function depending on x according to a vector
of real parameters U. Typically, the probability ?(Ω6 |x;U) is a multinomial logistic
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density with U = (UC1, . . . , U
C
�
)C and U6 = (U60, U

C
61)

C ∈ R3+1, i.e.:

?(Ω6 |x;U) =
exp(U60 + UC61x)∑�
6=1 exp(U60 + UC61x)

.

Due to identifiability reasons, it is necessary to add the constraint U1 = 0, see [2].

MRRC. Mixtures of regressions with random covariates propose the following
decomposition for the conjoint density ?(x, H;k):

?(x, H;k) =
�∑
6=1

5 (H |x, \6)?(x; b6)c6, (3)

where c6 > 0 and
∑�
6=1 c6 = 1. Furthermore, the model is totally parametrized

by the vector k = (c1, . . . , c� , \1, . . . , \� , b1, . . . , b�), where each \6 indexes the
conditional density 5 (H |x, \6), while each b6 refers to the density of X in the group
Ω6, denoted with ?(x; b6).

In particular, under Gaussian assumptions it results. |x,Ω6 ∼ # (V60+ VC61x, f2
6),

where each V6 = (V60, V61) is a vector of real parameters. Only forMRRCmodel, we
will further assume X|
6 ∼ # (`6, Σ6) for all 6 = 1, . . . , �, where `6 denotes the
mean of the Gaussian distribution, while Σ6 is its covariance matrix. Denoting with
q(·) the Gaussian density function, equations (1)-(3) can be, respectively, rewritten
as

?(H |x;k) =
�∑
6=1

q(H; V60 + VC61x;f2
6)c6, (4)

?(H |x;k) =
�∑
6=1

q(H; V60 + VC61x;f2
6)?(Ω6 |x;U), (5)

?(x, H;k) =
�∑
6=1

q(H, V60 + VC61x;f2
6)q(x; `6, Σ6)c6 . (6)

Maximum likelihood estimate for k are usually obtained with the Expectation-
Maximization (EM) algorithm. Then, the final estimate is used to build classifiers
which group observations into � disjoint classes.

3 Decision Boundaries: Generality

There are different ways to build classifiers. One of the best known is the method of
discriminant functions. The aimof this procedure is to define� functions�6 (x, H;k)
and a decision rule to divide the real space R3+1 into � decision regions, named
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R1, . . . ,R� . The decision regions have a one-to-one relationship with the subgroups
Ω6, i.e., if an observation (x, H) ∈ R3+1 is assigned to R6, it is classified as part
of Ω6. Among all possible decision rules, the most used one consists in assigning
(x, H) to R6 if:

�6 (x, H;k) > � 9 (x, H;k) ∀ 9 ≠ 6. (7)

Then, decision boundaries are defined as the surfaces in R3+1 separating the de-
cision regions R6, where observations cannot be uniquely classified. Formally,
each decision boundary is a hypersurface represented by the mathematical equa-
tion � 9 (x, H;k) − �: (x, H;k) = 0, 9 ≠ : .

Different choices for discriminant functions are possible: under Gaussian assump-
tions it is convenient to define �6 (·) as the logarithm of the 6-th component mixture
density, as it conveys useful computational simplification [5]. So, we can define, for
all the three models, these discriminant functions:

"'�� : �6 (x, H;k) = ln[q(H; V60 + VC61x, f2
6)c6] (8)

"'�+ : �6 (x, H;k) = ln[q(H; V60 + VC61x, f2
6) exp(U60 + UC61x)] (9)

"''� : �6 (x, H;k) = ln[q(H; V60 + VC61x, f2
6)q(x; `6, Σ6)c6] (10)

3.1 The Case with M = 2

In the case of interest where � = 2, there is a single decision boundary defined by
the equation � (x, H;k) = �2 (x, H;k) − �1 (x, H;k) = 0. Thus, the assignment rule
for every point (x, H) ∈ R3+1 is based on the sign of � (x, H;k). It assigns (x, H) to
Ω2 if � (x, H;k) > 0; to Ω1, otherwise.

In [5] the geometrical properties of the hypersurfaces, defined by the equation
� (x, H;k) = 0, have been investigated up to dimension 3 = 2, providing the follow-
ing propositions for quadrics.

Proposition 1 (MRFC quadrics) The decision boundary between Ω1 and Ω2 is
always a degenarate quadric.

Proposition 2 (MRCV quadrics) If UC (V21 − V11) ≠ 0, then the decision boundary
between Ω1 and Ω2 is a paraboloid; otherwise it is a degenarate quadric.

Proposition 3 (MRRCquadrics)Under convenient conditions, the decision bound-
ary between Ω1 and Ω2 can be a degenerate quadric but it can be also assume any
of the general quadric forms.

These results show that models with more flexibility, i.e. with more parameters,
can generate more varieties of decision boundaries. In the following section, we will
extend these statements to dimension 3 = 3.
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4 Geometrical Classification of Decision Boundaries with M = 2
and J = 3

In this section we extend previous results for mixtures of regression in presence of
two classes and 3 = 3, where decision boundaries reveal to be hyperquadrics in
R4. Mathematical proofs of results for MRFC and MRCV models are based on an
algebraic analysis of the matrices representing these hyperquadrics.

MRFC. Mixtures of regressions with fixed covariates are characterized by a low
degree of flexibility. Indeed, all decision boundaries are degenerate hyperquadrics
as the following result shows.

Proposition 4 (MRFC hyperquadrics) The decision boundary betweenΩ1 andΩ2
is a degenerate hyperquadric of rank at most equal to 3. The rank is less than 3 if
V11 = V21 or 1−c1

c1
=
f2
f1
.

MRCV. AMRCV allows more degrees of freedom than a MRFC. A consequence is
that the obtained decision boundaries are higher rank hyperquadrics, as the following
result states.

Proposition 5 (MRCV hyperquadrics) The decision boundary betweenΩ1 andΩ2
is a degenerate hyperquadric with rank at most equal to 4. In particular, rank is
equal to 4 if UC (V21 − V11) ≠ 0. In addition, if UC (V21 − V11) = 0 and f2

1 = f
2
2 ; the

matrix has rank at most equal to 2, therefore the hyperquadric is reducible.

MRRC. Proposition 3 shows MRRC exhibit a high number of possible types of
conics and quadrics [5]. This fact is confirmed in dimension 3 = 3, even if a strong
theoretical result is difficult to obtain with simple algebra due to the mathemati-
cal complexity of the MRRC hyperquadric matrix. Indeed, it is possible to show
such flexibility by building several practical examples (not displayed here), where
hyperquadrics of various shapes arise.

Analyzing the provided results, we can note that they perfectly match the hierar-
chy established in dimension 3 = 2. Indeed, a MRFC can generate only degenerate
hyperquadrics of rank 3; the surfaces generated by a MRCV, which has more param-
eters, are still degenerate, but with a higher rank (equal to 4) depending on the same
mathematical condition of Proposition 2; finally a MRRC, the most flexible model in
terms of number of parameters, can give rise to various hyperquadrics, as in 3 = 2.

5 Beyond Gaussian Assumptions: t-distribution in d = 2

In [5], Gaussian assumptions were crossed by illustrating the case of a simple linear
regression (� = 2 and 3 = 1) where more general C-distributions were required
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for robustness reasons. It is shown that the generated decision boundaries are more
flexible than their Gaussian counterparts, as they can assume more various shapes,
although these surfaces can be calculated only numerically. In this section, we
continue the exploration of the C-distribution case adding one more variable, thus
3 = 2. Under these more general assumptions, discriminant functions (8) − (10)
become:

"'��-C : �6 (x, H;k) = ln[@(H; V60 + VC61x, f2
6 , [6)c6], (11)

"'�+-C : �6 (x, H;k) = ln[@(H; V60 + VC61x, f2
6 , [6) exp(U60 + UC61x)], (12)

"''�-C : �6 (x, H;k) = ln[@(H; V60 + VC61x, f2
6 , [6)@(x; `6,�6, a6)c6], (13)

where @(H; V60+VC61x, f2
6 , [6) denotes a generalized C-distribution density, with non-

centrality parameter equal to V60 + VC61x, scaling parameter equal to f2
6 and degrees

of freedom given by [6. Similarly, @(x; `6,�6, a6) is a multivariate generalized
C-distribution density, where `6 is the non-centrality parameter, �6 denotes the
scaling and a6 represents the degrees of freedom. Figure 1-2 display the decision
boundaries for the three considered models whose parameters are presented in Table
1: they clearly show the gain in flexibility given by the more general distributional
assumptions. Moreover, C-boundaries with [1 = [2 = 10 (Figure 2; red curves) seem
to be closer to Gaussian ones (blue curves) than those with [1 = [2 = 3 (Figure 1;
orange curves): this is coherent with standard probabilistic theory.

Table 1 Parameters used in Figure 1-2. MRRC: covariance matrices �1 and �2 are equal to the
identity matrix I2.

Model Group c6 V60 V61 f2
6 U60 U61 `6 a6

MRFC 1 0.3 1 (2,-3) 0.5
2 0.7 1 (-4,3) 0.5

MRCV 1 0.3 1 (2,-3) 0.5
2 0.7 1 (-4,3) 0.5 1 (-1,0.5)

MRRC 1 0.3 1 (2,-3) 0.5 (1,2) 5
2 0.7 1 (-4,3) 0.5 1 (-1,0.5) (-1,-2) 5

6 Conclusions

This work has provided a trivariate multivariate geometrical classification for the
decision boundaries generated by mixtures of regressions in presence of two classes.
Under Gaussian assumptions, our results confirmed the same hierarchy that was
shown in 3 = 2, asMRRC turns out to exhibits a huge variety of decision boundaries,
while other models generate only degenerate surfaces. This is coherent with its high
degree of flexibility given by its very general parametrization. The provided results
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Fig. 1 Decision boundaries under assumptions of Gaussian (in blue) and C-distributed variables
with [1 = [2 = 3 (in orange) for the three considered mixtures of regressions.

Fig. 2 Decision boundaries under assumptions of Gaussian (in blue) and C-distributed variables
with [1 = [2 = 10 (in red) for the three considered mixtures of regressions.

could help to select the right model depending on the shape of data. For example,
if in a descriptive analysis data turn out to be approximately separated by a simple
degenerate hyperquadric, it will be better to estimate a MRFC or a MRCV instead
of a complex MRRC. On the contrary, if the separation surface seems to be non-
degenerate, then it will be preferable to fit a general MRRC. Moreover, this work
also showed that the degree of flexibility (thus, the variety of possible decision
boundaries) can be enhanced by go further Gaussianity, assuming, for example,
C-distributed variables. This encourage additional extensions where more general
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distributions can be included, allowing a better comprehension of mixtures and
possible applications to generalized linear models where categorical variables are
considered.
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Generalized Spatio-temporal Regression with
PDE Penalization
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Abstract We develop a novel generalised linear model for the analysis of data dis-
tributed over space and time. The model involves a nonparametric term 5 , a smooth
function over space and time. The estimation is carried out by the minimization of an
appropriate penalized negative log-likelihood functional, with a roughness penalty
on 5 that involves space and time differential operators, in a separable fashion, or
an evolution partial differential equation. The model can include covariate informa-
tion in a semi-parametric setting. The functional is discretized by means of finite
elements in space, and B-splines or finite differences in time. Thanks to the use of
finite elements, the proposed method is able to efficiently model data sampled over
irregularly shaped spatial domains, with complicated boundaries. To illustrate the
proposed model we present an application to study the criminality in the city of
Portland, from 2015 to 2020.
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with roughness penalty
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1 Introduction

In this work we develop a novel generalised linear model for the analysis of data
distributed over space and time. Let . be a real-valued variable of interest, and W a
vector of @ covariates, observed in = spatio-temporal locations {p8 , C8}8=1,...,= ∈ Ω×) ,
where Ω ⊂ R2 is a bounded spatial domain, and ) ⊂ R a temporal interval. We
assume that the expected value of . , conditional on the covariates and the location
of observation, can be modeled as:

6(E[. |,, p, C]) = W># + 5 (p, C)

where 6 is a known monotone link function, chosen on the basis of the stochastic
nature of. , # ∈ R@ is an unknown vector of regression coefficients, and 5 : Ω×) →
R is an unknown deterministic function, which captures the spatio-temporal variation
of the phenomenon under study. Starting from the values {H8 ,w8}8=1,...,=, of the
observed response variable and covariates, we estimates # and 5 in a semiparametric
fashion. In particular, following the approach in [9], that consider a similar problem
for data scattered over space only, we minimize the functional

ℓ

(
{H8 ,w8 , p8 , C8}8=1,...,=; #, 5

)
+ P( 5 )

where ℓ is the appropriate negative log-likelihood, andP( 5 ) is a penalty that enforces
5 to be a regular function.

Similarly to the regression methods in [1, 2, 3, 4, 5, 7, 8], the roughness penalty
on 5 , P( 5 ), involves some partial differential operators. In particular, our aim is
to extend the Spatial-Temporal regression with partial differential equations regu-
larization (ST-PDE), developed in [2, 3, 4], to generalized linear model settings,
further broadening the class of regression models with PDE regularization reviewed
in [6]. Hence, likewise ST-PDE, the proposed generalized linear model has a rough-
ness penalty that involves a second order linear differential operator ! applied to 5 .
Specifically, as in [4], we may consider the penalty

P( 5 ) = _)
∫
Ω

∫ )

0

(
m2 5

mC2

)2

+ _(
∫
Ω

∫ )

0
(! 5 )2 ,

where the first term accounts for the regularity of the function in time, while the
second accounts for the regularity of the function in space; the importance of each
term is controlled by two smoothing parameters _) and _( . Alternatively, as in
[2], we may consider a single penalty which accounts for the spatial and temporal
regularity:

P( 5 ) = _
∫
Ω

∫ )

0

(
m 5

mC
+ ! 5 − D

)2
.

Differently from the models in [2, 3, 4], the estimation functional to be minimized
is not quadratic. This poses increased difficulties from the computational point
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of view. The minimization is performed via a functional version of the penalized
iterative reweighted least square algorithm.

The estimation problem is appropriately discretized. In particular, in time, the
discretization involves either cubic B-splines, for the two-penalties case, or finite
differences, when the single penalty is employed. The discretization in space is
performed via finite elements, on a triangulation of the spatial domain of interest.
This enables to appropriately considered spatial domains with complicated bound-
aries, such as the one considered in the following section, concerning the study of
criminality data over the city of Portland.

2 Application to Criminality Data

This section describes the Portland criminality data, that will be used to illustrate
the proposed methodology. We will present a Poisson model to count the crimes in
the city, and study their evolution from April 2015 to November 2020. In addition,
we shall consider as a covariate the population of the city neighborhoods. The crime
data are publicly available on the website of the Police Bureau of the city1.

The crimes counts are aggregated by trimesters and at a neighborhoods level.
Figure 1 shows the city neighborhoods, each neighborhood colored according to its
total population. The bottom part of the same figure shows the temporal evolution
of the crimes in each neighborhood. Each curve corresponds to a neighborhood
and is colored according to the neighborhood population. In both panels, the three
neighborhoods with the highest number of crimes are indicated by numbers 1, 2
and 3. The figure highlights the presence of some correlation between neighborhood
population and the number of crimes. However, criminality is not fully explained by
population. For instance, neighborhoods 1 and 3 present an high number of crimes
with a moderate population. This raises the interest towards a semiparametric
generalized linear model, as the one introduced in Section 1, with a nonparametric
term accounting for the spatio-temporal variability in the phenomenon, that cannot
be explained by population or other census quantities. Figure 2 shows the same data
for four different trimesters on the Portland map. As already pointed out, the three
area with the highest number of crimes are in the city center, and in the Hazelwood
neighborhood, in the east part of the city.

From Figures 1 and 2 we can see that the shape of the domain is complicated; the
city is indeed crossed by a river, with few bridges connecting the two parts, most of
them placed downtown. Therefore, neighborhoods at opposite side of the river and
far from the center, where most bridges are located, are close in euclidean distance,
but far apart in reality. This particular morphology influences the phenomenon under
study, for example, in the north of the city, the east side of the river is characterized by
an higher number of crimes with respect to the west part. Due to this characteristics
of the data and the domain, is is of crucial importance to take into account the shape

1 Police Bureau crime data: https://www.portlandoregon.gov/police/71978
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Fig. 1 Top: the city of Portland divided into neighborhoods, each neighborhood colored according
to the total population. Bottom: the total crimes over time for each neighborhood; each curve
corresponds to a neighborhood and is colored according to the neighborhood’s population. The
three neighborhoods with the highest number of crimes are indicated by numbers 1, 2 and 3.
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Fig. 2 Total crime counts per neighborhood per trimester; green indicates lower number of crimes,
red indicates a higher number of crimes.

of the domain during the estimation process. For this reason, estimation based on
classical semiparametric models, such as those based on thin-plate splines, would
give poor results, while the proposed method is particularly well suited, being able
to complying the nontrivial form of the domain.
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A New Regression Model for the Analysis of
Microbiome Data

Roberto Ascari and Sonia Migliorati

Abstract Human microbiome data are becoming extremely common in biomed-
ical research due to the relevant connections with different types of diseases.
A widespread discrete distribution to analyze this kind of data is the Dirichlet-
multinomial. Despite its popularity, this distribution often fails in modeling micro-
biome data due to the strict parameterization imposed on its covariance matrix. The
aim of this work is to propose a new distribution for analyzing microbiome data
and to define a regression model based on it. The new distribution can be expressed
as a structured finite mixture model with Dirichlet-multinomial components. We
illustrate how this mixture structure can improve a microbiome data analysis to
cluster patients into "enterotypes", which are a classification based on the bacterio-
logical composition of gut microbiota. The comparison between the two models is
performed through an application to a real gut microbiome dataset.

Keywords: count data, Bayesian inference, mixture model, multivariate regression

1 Introduction

The human microbiome is defined as the set of genes associated with the micro-
biota, i.e. the microbial community living in the human body, including bacteria,
viruses and some unicellular eukaryotes [1, 8]. The mutualistic relationship be-
tween microbiota and human beings is often beneficial, though it can sometimes
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become detrimental for several health outcomes. For example, changes in the gut
microbiome composition can be associated with diabetes, cardiovascular disesase,
obesity, autoimmune disease, anxiety and many other factors impacting on human
health [1, 5, 12, 14]. Moreover, the development of next-generation sequencing
technologies allows nowadays to survey the microbiome composition using direct
DNA sequencing of either marker genes or the whole metagenomics, without the
need for isolation and culturing. These are the two main reasons for the recent ex-
plosion of research on microbiome, and highlight the importance of understanding
the association between microbiome composition and biological and environmental
covariates.

A widespread distribution for handling microbiome data is the Dirichlet-
multinomial (DM) (e.g., see [4, 16]), a generalization of the multinomial distribution
obtained by assuming that, instead of being fixed, the underlying taxa proportions
come from a Dirichlet distribution. This allows to model overdispersed data counts,
that is data showing a variance much larger than that predicted by the multinomial
model. Despite its popularity, the DM distribution is often inadequate to model
real microbiome datasets due to the strict covariance structure imposed by its pa-
rameterization, which hinders the description of co-occurrence and co-exclusion
relationships between microbial taxa.

The aim of this work is to propose a new distribution that generalizes the DM,
namely the flexible Dirichlet-multinomial (FDM), and a regression model based on
it. The new model provides a better fit to real microbiome data, still preserving a
clear interpretation of its parameters. Moreover, being a finite mixture with DM
components, it enables to account for the data latent group structure, and thus to
identify clusters sharing similar biota compositions.

2 Statistical Models for Microbiome Data

In this section, we define a new distribution for multivariate counts and a regression
model based on it, that allows to link microbiome abundances with covariates. Note
that, once the DNA sequence reads have been aligned to the reference microbial
genomes, the abundances of microbial taxa can be quantified. Thus, microbiome data
represent the count composition of � bacterial taxa in a specific biological sample,
and a microbiome dataset is a sequence of �-dimensional vectors Y1,Y2, . . . ,Y# ,
where .8A counts the number of occurrences of taxon A in the 8-th sample (8 =
1, . . . , # and A = 1, . . . , �). Since the 8-th sample contains a number =8 of bacteria,
microbiome observations are subject to a fixed-sum constraint, that is

∑�
A=1.8A = =8 .
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2.1 Count Distributions

Following a compound approach, we assume that Y|� = 0 ∼ Multinomial(=, 0),
and we consider suitable distributions for the vector of probabilities � ∈ S� . The
set S� = {0 = (c1, . . . , c�)ᵀ : cA > 0,

∑�
A=1 cA = 1} is the �-part simplex and

it is the proper support of continuous compositional vectors. A distribution for Y is
obtained by marginalizing the joint distribution of (Y,�)ᵀ. A common choice for
this distribution is the mean-precision parameterized Dirichlet, whose probability
density function (p.d.f.) is

5Dir (0; -, U+) = Γ(U+)∏�
A=1 Γ(U+`A )

�∏
A=1

c
(U+`A )−1
A ,

where - = E[�] ∈ S� , and U+ > 0 is a precision parameter. Compounding the
multinomial distribution with the Dirichlet one leads to the DM distribution, widely
used in microbiome data analysis, whose probability mass function (p.m.f.) is

5DM (y; =, -, U+) = =!Γ(U+)
Γ(U+ + =)

�∏
A=1

Γ(U+`A + HA )
(HA !)Γ(U+`A )

.

The mean vector of a DM distribution is E[Y] = =-, so that the parameter - =

E[Y]/= can be thought of as a scaled mean vector. Moreover, its covariance matrix
is

V [Y] = =M
[
1 + = − 1

U+ + 1

]
, (1)

whereM = (Diag(-) − --ᵀ). Equation (1) highlights how the additional parameter
U+ allows to increase flexibility in the variability structurewith respect to the standard
multinomial distribution.

We propose to take advantage of an alternative sound distribution defined on S� ,
namely the flexible Dirichlet (FD) [7, 9]. The latter is a structured finite mixture with
Dirichlet components, entailing some constraints among the components’ parameters
to ensure model identifiability. Thanks to its mixture structure, the p.d.f. of a FD-
distributed random vector can be expressed as

5FD (0; -, U+, |, p) =
�∑
9=1

? 9 5Dir

(
0; , 9 ,

U+

1 − |

)
, (2)

where
, 9 = - − |p + |e 9 (3)

is the mean vector of the 9-th component, - = E [�] ∈ S� , U+ > 0, p ∈ S� ,
0 < | < min

{
1,minA ∈{1,...,� }

{
`A
?A

}}
, and e 9 is a vector with all elements equal to

zero except for the 9-th which is equal to one.
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Equation (2) points that the Dirichlet components have different mean vectors
and a common precision parameter, the latter being determined by U+ and |. In
particular, inspecting Equation (3), it is easy to observe that any two vectors ,A and
,ℎ , A ≠ ℎ, coincide in all the elements except for the A-th and the ℎ-th.

If� is supposed to be FD distributed, a new discrete distribution for count vectors
can be defined (we shall call flexible Dirichlet-multinomial (FDM)). The p.m.f. of
the FDM can be expressed as

5FDM (y; =, -, U+, p, |) =
�∑
9=1

? 9 5DM

(
y; =, , 9 ,

U+

1 − |

)
(4)

=

�∑
9=1

? 9
=!Γ( U+1−| )
Γ( U+1−| + =)

�∏
A=1

Γ( U+1−|_ 9A + HA )
(HA !)Γ( U+1−|_ 9A )

,

where , 9 is defined in Equation (3). Interestingly, it is possible to recognize the
flexible beta-binomial (FBB) [3] distribution as a special case of the FDM. The
FBB is a generalization of the binomial distribution successful in dealing with
overdispersion. Moreover, note that when p = - and | = 1/(U+ + 1) the DM
distribution is recovered.

Equation (4) shows that the FDM is a finite mixture with DM components
displaying a common precision parameter and different scaled mean vectors , 9 ,
9 = 1, . . . , �. The overall mean vector and the covariance matrix of the FDM can
be expressed as

E [Y] = =-,

V [Y] = =M
[
1 + = − 1

q + 1

]
+ = (= − 1)q|2

q + 1
P, (5)

where M = (Diag(-) − --ᵀ), P = (Diag(p) − ppᵀ), and q = U+/(1 − |) is
the common precision parameter of the DM components. A comparison between
Equations (5) and (1) points out that the covariance matrix of the FDM distribution
is a very easily interpretable extension of the DM’s covariance matrix. Indeed, it is
composed of two terms, the first one coinciding with the DM’s covariance matrix,
whereas the second one depends on the mixture structure of the FDM model. In
particular, the FDM covariance matrix has � additional parameters with respect to
the DM, namely � − 1 distinct elements in the vector of mixing weights p, and the
parameter | which controls the distance among the components’ barycenters [7].
This is the key element explaining the better ability of the FDM in modeling a wide
range of scenarios.
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2.2 Regression Models

With the aim of performing a regression analysis, let Y = (Y1, . . . ,Y# )ᵀ be a set of
independent multivariate responses collected on a sample of # subjects/units. For
the 8-th subject,Y8 counts the number of times that each of � possible taxa occurred
among =8 trials, and x8 is a ( + 1)-dimensional vector of covariates.

A parameterization of the FDM useful in a regression perspective is the one based
on -, p, U+, and |̃, where

|̃ =
|

min
{
1,minA

{
`A
?A

}} ∈ (0, 1). (6)

We can define the FDM regression (FDMReg) and the DM regression (DMReg)
models assuming that Y8 follows an FDM(=8 , -8 , U+, p, |̃) or a DM(=8 , -8 , U+) dis-
tribution, respectively. Even if the FDM and DM distributions do not belong to the
dispersion-exponential family, we can follow a GLM-type approach, [6] by linking
the parameter -8 to the linear predictor through a proper link function such as the
multinomial logit link function, that is

6(`8A ) = log
(
`8A

`8�

)
= xᵀ

8
#A , A = 1, . . . , � − 1, (7)

where #A = (VA0, VA1, . . . , VA )ᵀ is a vector of regression coefficients for the A-th
element of -8 . Note that the last category has been conventionally chosen as baseline
category, thus #� = 0.

The parameterization of the FDMReg based on -, p, U+, and |̃ defines a variation
independent parameter space,meaning that no constraints exist among parameters. In
a Bayesian framework, this allows to assume prior independence, and, consequently,
we can specify a prior distribution for each parameter separately. In order to induce
minimum impact on the posterior distribution, we select weakly-informative priors:
(i) #A ∼ # +1 (0, Σ), where 0 is the ( + 1)-vector with zero elements, and Σ is
a diagonal matrix with ‘large’ variance values, (ii) U+ ∼ �0<<0(61, 62) for small
values of 61 and 62, (iii) |̃ ∼ *=8 5 (0, 1), and (iv) a uniform prior on the simplex for
p.

Inferential issues are dealt with by a Bayesian approach through a Hamilto-
nian Monte Carlo (HMC) algorithm [10], which is a popular generalization of the
Metropolis-Hastings algorithm. The Stanmodeling language [13] allows implement-
ing an HMC method to obtain a simulated sample from the posterior distribution.

To compare the fit of the models we use the Watanabe-Akaike information crite-
rion (WAIC) [15, 17], a fully Bayesian criterion that balances between goodness-of-
fit and complexity of a model: lower values of WAIC indicate a better fit.
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3 A Gut Microbiome Application

In this section, we fit theDMand the FDM regressionmodels to amicrobiome dataset
analyzed by Xia et al. [19] and previously proposed byWu et al. [18]. They collected
gut microbiome data on 98 healthy volunteers. In particular, the counts of three
bacteria genera were recorded, namely Bacteroides, Prevotella, and Ruminococcus.
Arumugam et al. [2] used these three bacteria to define three groups they called
enterotypes. These enterotypes provide information about the human’s body ability
to produce vitamins.

Wu et al. analyzed the same dataset conducting a cluster analysis via the ‘par-
titioning around medoids’ (PAM) approach. They detected only two of the three
enterotypes defined in the work by Arumugam et al. Moreover, these two clusters
are characterized by different frequencies: 86 out of the 98 samples were allocated
to the first enterotype, whereas only 12 samples were clustered into enterotype 2.
This is due to the small number of subjects with a high abundance of Prevotella (i.e.,
only 36 samples showed a Prevotella count greater than 0).

Besides the bacterial data, we consider also  = 9 covariates, representing in-
formation on micro-nutrients in the habitual long-term diet collected using a food
frequency questionnaire. These 9 additional variables have been selected by Xia et
al. using a ;1 penalized regression approach.

Table 1 shows the posterior mean and 95% credible set (CS) of each parameter
involved in the DMReg and the FDMReg models. Though the significant covariates
are the same across the models, the FDMReg shows a lower WAIC, thus being the
best model in terms of fit. This is due to the additional set of parameters involved in
the mixture structure that help in providing information on this dataset.

The mixture structure of the FDMReg model can be exploited to cluster ob-
servations into groups through a model-based approach. More specifically, each
observation can be allocated to the mixture component that most likely generated it.
Indeed, note that the mixing weights estimates (0.637, 0.357 and 0.006, from Table
1) confirm the presence of two out of the three enterotypes defined by Arumugam
et al. [2]. To further illustrate the benefits of the FDReg model in a microbiome
data analysis, we compare the clustering profile obtained by the FDMReg model and
the one obtained with the PAM approach used by Wu et al. In particular, Table 2
summarizes this comparison in a confusion matrix. Despite the clustering generated
by the FDMReg being based on some distributional assumptions (i.e., the response
is FDM distributed), it highly agrees with the one obtained by the PAM algorithm for
84% of the observations. This percentage is obtained using the covariates selected
by Xia et al. in a logistic normal multinomial regression model context. Clearly,
the results could be improved by developing an ad hoc variable selection procedure
for the FDMReg model. The main advantage to considering the FDMReg (that is a
model-based clustering approach) is that, besides the clustering of the data points,
it provides also some information on the detected clusters (e.g., their size and a
measure of their distance) and the relationship between the response and the set of
covariates. This additional information may increase the insight we can gain from
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Table 1 Posterior mean and 95% CS for the parameters of the DMReg and FDMReg models.
Regression coefficients in bold are related to 95% CS’s not containing the zero value.

DM FDM
Post. Mean 95% CS Post. Mean 95% CS

B
ac
te
ro
id
es

Intercept 2.197 (1.844, 2.546) 2.642 (2.215, 3.034)
Proline -0.039 (-0.344, 0.273) -0.036 (-0.325, 0.261)
Sucrose -0.257 (-0.555, 0.039) -0.208 (-0.471, 0.064)

Vitamin E, food fortification -0.016 (-0.351, 0.336) -0.043 (-0.351, 0.299)
Beta cryptoxanthin -0.073 (-0.357, 0.237) -0.059 (-0.334, 0.214)

Added germa from wheats -0.147 (-0.477, 0.196) -0.042 (-0.411, 0.271)
Vitamin C 0.300 (-0.031, 0.771) 0.267 (-0.035, 0.673)
Maltose -0.031 (-0.311, 0.260) 0.034 (-0.237, 0.302)

Palmitelaidic trans fatty acid 0.019 (-0.292, 0.328) -0.044 (-0.336, 0.251)
Acrylamide 0.133 (-0.167, 0.455) 0.184 (-0.094, 0.474)

Pr
ev
ot
el
la

Intercept -1.196 (-1.715, -0.699) -0.402 (-1.094, 0.245)
Proline -0.053 (-0.571, 0.443) -0.018 (-0.663, 0.546)
Sucrose 0.029 (-0.437, 0.476) 0.126 (-0.335, 0.591)

Vitamin E, food fortification 0.109 (-0.355, 0.548) 0.113 (-0.473, 0.574)
Beta cryptoxanthin 0.263 (-0.230, 0.762) 0.349 (-0.386, 0.812)

Added germa from wheats 0.280 (-0.137, 0.701) 0.121 (-0.298, 0.604)
Vitamin C -0.169 (-1.196, 0.623) -0.021 (-1.131, 0.738)
Maltose 0.640 (0.164, 1.126) 0.877 (0.260, 1.400)

Palmitelaidic trans fatty acid -0.530 (-1.008, -0.043) -0.716 (-1.209, -0.140)
Acrylamide 0.780 (0.362, 1.206) 0.800 (0.382, 1.231)

U+ 1.541 (1.104, 2.040) 2.275 (1.489, 3.208)
?1 — — 0.637 (0.420, 0.797)
?2 — — 0.357 (0.197, 0.570)
?3 — — 0.006 (0.000, 0.027)
|̃ — — 0.914 (0.791, 0.991)

WAIC 1686.2 1662.3

data. Further improvements could be obtained considering an even more flexible
distribution for �, that is the extended flexible Dirichlet [11].

Table 2 Confusion matrix for clustering based on the FDMReg model compared to the PAM
algorithm.

FDMReg
1 2

PA
M 1 70 16

2 0 12
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Stability of Mixed-type Cluster Partitions for
Determination of the Number of Clusters

Rabea Aschenbruck, Gero Szepannek, and Adalbert F. X. Wilhelm

Abstract For partitioning clustering methods, the number of clusters has to be
determined in advance. One approach to deal with this issue are stability indices.
In this paper several stability-based validation methods are investigated with regard
to the :-prototypes algorithm for mixed-type data. The stability-based approaches
are compared to common validation indices in a comprehensive simulation study in
order to analyze preferability as a function of the underlying data generating process.

Keywords: cluster stability, cluster validation, mixed-type data

1 Introduction

In cluster analysis practice, it is common to work with mixed-type data (i.e. nu-
merical and categorical variables), while in theoretical development the research is
traditionally often restricted to numerical data. A comprehensive overview on cluster
analysis based on mixed-type data is given in [1]. To cluster these mixed-type data, a
popular approach is the :-prototypes algorithm, an extension of the popular :-means
algorithm, as proposed in [2] and implemented in [3].

As for all partitioning clustering methods, the number of clusters has to be spec-
ified in advance. In the past, several validation methods have been identified for the
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:-prototypes algorithm to enable the rating of clusters and to determine the index
optimal number of clusters. A brief overview is given in Section 2, followed by an
examination of the investigated stability indices to improve clustering mixed-type
data1. In Section 3, a simulation study has been conducted in order to compare the
performance of stability indices as well as a new proposed adjustment, and addi-
tionally to rate the performance with respect to internal validation indices. Finally, a
summary, which does not state a superiority of the stability-based approaches over
internal validation indices in general, and an outlook are given in Section 4.

2 Stability of Cluster Partitions

The assessment of cluster quality can be used for the comparison of clusters resulting
from different methods or from the same method but with different input parameters,
e.g., with a different number of clusters. Especially the latter has already been an
important issue in partitioning clustering many decades ago [5]. Since then, some
work has been done on this subject. Hennig [6] points out, that nowadays some liter-
ature uses the term cluster validation exclusively for methods that decide about the
optimal number of clusters, in the following named internal validation. An overview
of internal validation indices is given, e.g., in [7] or [8]. In [9], a set of internal cluster
validation indices for mixed-type data to determine the number of clusters for the
:-prototypes algorithm was derived and analyzed. In the following, stability indices
are presented, before they are compared to each other and additionally to internal
validation indices in Section 3. Since cluster stability is a model agnostic method,
the indices are applicable to any clustering algorithm and not limited to numerical
data [10].

A partition ( splits data . = {H1, . . . , H=} into  groups (1, . . . , ( ⊆ . . The
focus of this paper is on the evaluation and rating of cluster partitions with so-
called stability indices. To calculate these, as discussed by Dolnicar and Leisch
[11] or mentioned by Fang and Wang [12], 1 ∈ {1, . . . , �} bootstrap samples .1
(with replacement, see e.g. [13]) from the original data set . are drawn. For every
bootstrap sample .1 , a cluster partition (1 = {(11 , . . . , (

1
!1
} is determined. For the

validation of the different results of these bootstrap samples, the set of points from
the original data set that are also part of the 1-th bootstrap sample -1 = . ∩ .1 is
used, where =1 is the size of -1 . Furthermore �1 = {(: ∩ -1 |: = 1, . . . ,  } and
�1 = {(1

;
∩ -1 |; = 1, . . . , !1}, with �★� being the number of bootstrap samples for

which �1 ≠ ∅, and =(: , =�1
:
, =(1

;
, and =�1

;
with : ∈ {1, . . . ,  }, ; ∈ {1, . . . , !1}

are the numbers of objects in cluster group (: , �1: , (
1
;
and �1

;
, respectively.

In 2002, Ben-Hur et al. [14] presented stability-based methods, which can be used
to define the optimal number of clusters. In their work, the basis for the calculation
of the stability indices is a binary matrix %�1 , which represents the cluster partition
�1 in the following way

1 The mentioned and analyzed stability indices will extend the R package clustMixType [4].
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%�
1

8 9 =

{
1, if objects G1

8
, G1
9
∈ -1 are in the same cluster and 8 ≠ 9 ,

0, otherwise.
(1)

With %�1 defined analogously, the dot product of the two cluster partitions �1 and
�1 is defined as � (%�1 , %�1 ) = ∑

8, 9 %
�1

8 9
%�

1

8 9
. This leads to a Jaccard coefficient

based index of two cluster partitions �1 and �1

(C01J (%�
1

, %�
1 ) = � (%�1 , %�1 )

� (%�1 , %�1 ) + � (%�1 , %�1 ) − � (%�1 , %�1 )
. (2)

Hennig proposed a so-called local stability measure for every cluster group in a
cluster partition based on the Jaccard coefficient as well [15]. To obtain one stability
value (C01J;cw for the whole partition, the weighted mean of the cluster-wise values
with respect to the size of the cluster groups is determined. Another stability-based
index presented by Ben-Hur et al., based on the simple matching coefficient, is called
Rand index [16] and defined as

(C01R (%�
1

, %�
1 ) = 1 − 1

=2 ‖%
�1 − %�1 ‖2. (3)

Additionally, they present the stability index based on a similarity measure, which
was originally mentioned by Fowlkes and Mallows [17],

(C01FM (%�
1

, %�
1 ) = � (%�1 , %�1 )√

� (%�1 , %�1 )� (%�1 , %�1 )
. (4)

For determination of the number of clusters, Ben-Hur et al. proposed the analysis of
the distribution of index values calculated between pairs of clustered sub-samples,
where high pairwise similarities indicate a stable partition. The authors’ suggested
aim is examining the transition from a stable to an unstable clustering state. In
the simulation study, this qualitative criterion was numerically approximated by
the differences in the areas under these curves. Furthermore, von Luxburg [18]
published an approach to obtain the cluster partition stability based on the minimal
matching distance, where the minimum is taken over all permutations of the  labels
of clusters. Straightforward, the distances are summarized by their mean to obtain
�=BC01L (%�

1

, %�
1 ) respectively (C01L (%�

1

, %�
1 ) = 1 − �=BC01L (%�

1

, %�
1 ).

3 Simulation Study

In order to compare the stability indices of the cluster partition and afterwards with
respect to the internal validation indices, a simulation study was conducted. In the
following, the setup and execution of this simulation study starting with the data
generation is briefly presented, and subsequently the results are evaluated.
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3.1 Data Generation and Execution of Simulation Study

The simulation study is based on artificial data, which are generated for different
scenarios. In Table 1, the features that define the data scenarios and their corre-
sponding parameter values are listed. Since a full factorial design is used, there are
120 different data settings in the conducted simulation study.2 The selection of the
considered features follow the characteristics of the simulation study in [19] and
were extended with respect to the ratio of the variable types as in [20].

Table 1 Features and the associated feature specifications used to generate the data scenarios.

data parameter feature specification short

number of clusters 2, 4, 8 nC
clusters of equal size (FALSE: randomly drawn sizes) TRUE, FALSE symm
number of variables 2, 4, 8 nV
ratio of factor to numerical variables 0.25, 0.5, 0.75 fac_prop
overlap between cluster groups 0, 0.05, 0.1 overlap

The clusters of the 200 observations are defined by the the feature settings. Each
variable can either be active or inactive. For the numerical variables, active means
drawing values from the normal distribution -1 ∼ N(`1, 1), with random `1 ∈
{0, ..., 20}, and inactivemeans drawing from -0 ∼ N(`0, 1) with `0 = 2 ·@1− {2 −`1,
where @U is the U-quantile ofN(`1, 1) and { ∈ {0.05, 0.1}. This results in an overlap
of { for the two normal distributions. To achieve an overlap of { = 0, the inactive
variable is drawn from N(`1 − 10, 1). Furthermore, each factor variable has two
levels, ;0 and ;1. The probability for drawing ;0 for an active variable is { and (1− {)
for level ;1. For an inactive variable, the probability for ;0 is (1 − {) and { for ;1.

Below, the code structure of the simulation study is presented. For each of the 120
data scenarios, a repetition of # = 10 runs was performed. This should mitigate the
influence of the random initialization of the :-prototypes algorithm. For the range of
two up to nine cluster groups, the stability indices are determined based on bootstrap
samples as suggested in [21]. In order to rank the performance of the stability-based
indices, the internal validation indices were also determined on the same data.

Pseudo-Code Simulation Study
for(every data situation){
for(i in 1:N){ # 10 iterations to mitigate/soften random influences
data <- create.data(data situation)
for(q in 2:9){
output <- kproto(data, k = q, nstarts = 20)
# stability-based indices determined with the usage of 100 bootstrap samples
stab_val_method <- stab_kproto(output, B = 100, method)
int_val_method <- validation_kproto(output, method) # internal validation

}
# determine optimal cluster size for every method
cs_method <- max/min(int_val_method or stab_val_method)

}
}

2 There is no data scenario with two variables and eight cluster groups. Additionally, if there are
two variables, obviously only the 0.5 ratio between factor and numerical variables is possible.
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Fig. 1 The evaluations of the four stability-based cluster indices are presented. There are ten
repetitions of rating the data situation for : clusters in the range of two to nine and the index-
optimal number of clusters is highlighted. The parameters of the underlying data structure are nV
= 8, fac_prop = 0.5, overlap = 0.1 and symm = FALSE. The number of clusters nC in the
data structure varies row-wise.

3.2 Analysis of the Results

Figure 1 shows exemplary results of the simulation study for three different data
scenarios over the 10 repetitions. Each row of the figure shows a different data
scenario and each column shows one of the four stability-based indices. The first row
is related to a data scenario with two clusters (marked by a vertical green line). Each
plot shows the examined number of clusters and the determined index value for the 10
repetitions. The maximum index value for each repetition is highlighted with a larger
dot and marks the index-optimal number of clusters of this repetition. It can be seen
that all of the four different indices detected the two clusters in the underlying data
structure. Rows two and three show the evaluations of data with cluster partitions
of four and eight clusters, respectively. It can be seen that the generated number of
clusters is not always rated as index optimal (for example, with four clusters, two or
three clusters were often also evaluated as optimal). Since the results shown here are
representative for all scenarios, the four cluster indices and their interpretation were
examined in more detail.

In the left part of Figure 2, different transformations of the index values are pre-
sented. Besides the standard index values (green line), the numerical approximation
of the approach of Ben-Hur et al. mentioned above is also shown (red line). For
the Jaccard-based evaluation, the proposed cluster-wise stability determination by
Hennig is presented in orange. Additionally, we propose an adjustment of the index
values (hereinafter referred to as new adjust), similar to [22], to take into account not
only the magnitude of the index but also the local slope: The index value scaled with
the geometric mean of the changes to the neighbor values is presented in dark green.
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Fig. 2 Left: Example of the variations of the index values at an iteration of the data scenario with
the parameters nC = 4, nV = 8, fac_prop = 0.5, overlap = 0.1 and symm = FALSE. Right:
Proportion of correct determinations, partitioned according to the different number of clusters in
the underlying data structure.

Again, for each variation of the indices, the index optimal value is highlighted. The
numerically determined index values according to the approach of Ben-Hur et al.
gain no benefit, thus it can be concluded that the quantification is not appropriate
for the purpose and that further research is required. The cluster-wise stability de-
termination of the Jaccard index also does not seem to improve the determination of
the number of clusters to a large extent. Obviously, the local slope in the example
in Figure 2 is strengthened for four evaluated cluster groups by the new adjustment
that leads to a determination of four cluster groups (which is the generated number
of clusters). Since only one iteration of one data scenario is shown on the left, the
sum of correct determined number of clusters with respect to the generated number
of clusters is shown on the right hand side of Figure 2. These sums for two, four
and eight clusters in the underlying data structure point out the improvement of the
proposed adjustment of the index values. Especially for more than two clusters, the
rate of correctly determined numbers of clusters can be increased.

Finally, the internal validation indices were comparatively examined. For analyz-
ing the outcome of the simulation study, the determined index optimal numbers of
clusters are shown in Table 2. While the comparison for two clusters in the underly-
ing data shows a slight advantage for the stability-based indices, especially for eight
clusters the preference is in favor of the internal validation indices. To gain a better
understanding of the mean success rate of determining the correct number of clusters
for each data scenario, Figure 3 further shows the results of a linear regression on
the various data parameters. It can be seen that in most cases there is not too much
difference between the considered methods. The stability-based indices do a better
job of determining the number of clusters for data with equally large cluster groups.
Obviously, a larger number of variables causes a better determination of the number
of clusters. The largest variation in the influence on the proportion of correct deter-
mination can be seen for the parameter number of clusters. The more cluster groups
are available in the underlying data structure, the worse the determination becomes
(especially for the stability-based indices and the indices Ptbiserial and Tau).
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Table 2 Determined number of clusters for all data scenarios with nC ∈ {2, 4, 8}, summarized by
the stability-based as well as internal validation indices and the evaluated number of clusters.

clusters 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
Jnewadj 403 17 0 0 0 0 0 0 47 74 298 1 0 0 0 0 90 70 27 16 16 26 104 11
Rnewadj 391 18 5 0 1 1 1 3 56 99 258 3 2 0 0 2 38 68 22 17 16 32 133 34

FMnewadj 402 17 1 0 0 0 0 0 50 80 289 1 0 0 0 0 88 71 26 16 15 26 106 12
Lnewadj 394 21 5 0 0 0 0 0 53 83 282 2 0 0 0 0 100 97 31 20 16 16 76 4
CIndex 313 13 2 2 1 4 18 67 7 27 344 13 3 2 5 19 2 0 2 4 22 28 211 91
Dunn 386 24 4 2 0 1 1 2 39 56 307 8 7 3 0 0 19 9 17 7 37 53 190 28

Gamma 343 9 1 0 1 2 14 50 9 16 356 15 3 1 5 15 2 1 4 4 16 16 198 119
GPlus 319 8 1 0 0 0 9 83 6 10 319 12 5 2 15 51 2 1 1 4 14 12 175 151

McClain 71 3 1 1 5 12 57 270 0 0 17 4 4 13 87 295 0 0 0 0 0 9 34 317
Ptbiserial 400 11 6 0 3 0 0 0 72 120 225 3 0 0 0 0 31 62 79 65 55 39 26 3
Silhouette 388 3 1 4 4 5 8 7 14 37 348 7 0 0 8 6 6 0 3 1 12 46 220 72

Tau 391 16 9 0 4 0 0 0 68 144 205 3 0 0 0 0 33 82 119 68 40 14 3 1

Fig. 3 Linear regression coefficients for the parameters of the five data set features, where coeffi-
cients whose confidence intervals contain 0 are displayed in transparent.

4 Conclusion

The aim of this study was to investigate the determination of the optimal number of
clusters based on stability indices. Several variations of analysis methods of stability-
based index values were presented and comparatively analyzed in a simulation study.
The proposed adjustment of the index values with respect not only to their magnitude
but also to the local slopewas able to improve the standard stability indices, especially
for a smaller number of clusters. The simulation study did not show any general
superiority of stability-based approaches over internal validation indices.

In the future, the various methods of analyzing the stability-based index values
should be examined in more detail, e.g., taking into account the Adjusted Rand
Index. For this purpose, further research may address the characteristics of the
evaluated curves more precisely, or further extend the approach of Ben-Hur et al. as
a quantitative determination method, which has not been done yet.
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A Review on Official Survey Item Classification
for Mixed-Mode Effects Adjustment

Afshin Ashofteh and Pedro Campos

Abstract The COVID-19 pandemic has had a direct impact on the development, pro-
duction, and dissemination of official statistics. This situation led National Statistics
Institutes (NSIs) to make methodological and practical choices for survey collection
without the need for the direct contact of interviewing staff (i.e. remote survey data
collection). Mixing telephone interviews (CATI) and computer-assisted web inter-
viewing (CAWI) with direct contact of interviewing constitute a new way for data
collection at the time COVID-19 crisis. This paper presents a literature review to
summarize the role of statistical classification and design weights to control cover-
age errors and non-response bias in mixed-mode questionnaire design. We identified
289 research articles with a computerized search over two databases, Scopus and
Web of Science. It was found that, although employing mixed-mode surveys could
be considered as a substitution of traditional face-to-face interviews (CAPI), proper
statistical classification of survey items and responders is important to control the
nonresponse rates and coverage error risk.
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1 Introduction

This paper provides a summary of a systematic literature review of the role of
classification variables andweightingmethods ofmixed-mode surveys inminimizing
the measurement error, coverage error, and nonresponse bias.

Before the COVID-19 pandemic, the statistical adjustment of mode-specific mea-
surement effects was studied by many scholars. However, after the pandemic, survey
methodologists made a strong effort to meet the challenges of new restrictions for
collecting data with proper quality [1]. Data collection with mixing different modes
by considering their contribution to the overall published statistics was considered
as a solution by NSIs. The methodologists have been trying to use technology, data
science, and mixed-device surveys to decrease the expected coverage error and non-
response bias with new target populations at the time of pandemic rather than the
traditional interviewer-assisted and paper survey modes [2]. This coverage error is
caused by the changes of the target population from the general population to the
general population accessible with technological devices. Te Braak et. al. [3] high-
lighted how the representativeness of self-administered online surveys is expected
to be impacted by decreased response rates. Their research demonstrates that a huge
group of respondents dropout selectively and that this selectivity varies depending
on the dropout moment and demographic categorical information.

According to the studies in Statistics Portugal, using classification methods by
categorical variables and applying the repeated weighting techniques seem to be
fruitful to estimate and adjust for mode and device effects. Fortunately, many authors
discussed the use of weights in statistical analysis [4]. It is important to improve
inference in cases where mixed-mode effects are combined with measurement errors
caused by primary data collection on categorical variables and socio-demographic
information. On one side that the categorical variables are collected with the help
of responders (primary data), the survey mode has a strong impact on answering
behaviors and answering conditions. Respondents might evaluate some of the new
categorical variables as sensitive information or privacy intrusive. They may not be
willing to share these personal data by telephone or technological devices, which
are necessary for statistical classification. Additionally, for NSIs, also the new data
collection channels are costly and redesign of the survey estimation methodology
is time consuming. On the other side, the categorical variables should be available
in sampling frames (secondary data) and the coverage error is the main concern.
For instance, in CATI surveys of Statistics Portugal after COVID-19, the population
was considered as belonging to the following categories: (i) households with a listed
landline telephone, (ii) households that do not have a telephone but use only a mobile
telephone, and (iii) households that do not have a telephone at all (or whose number
is unknown). We could expect these households with very different socioeconomic
characteristics, and new methods of classification or clustering as helpful methods
for measurement error adjustment at the time of the pandemic. However, if they
are different in the important categorical variables of our survey, then a weighting
solution could amplify a part of the sample, which does not represent the population.
As a result, statistical classification would be another source of bias instead of
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solving the problem. Therefore, we could expect two approaches. First, we could
ignore classification, simply because we consider the groups are homogeneous and
theweighting could be recommended to adjust for COVID-19 pandemic situation and
non-observation errors. Second, the groups or responders are different and we need
categorical variables. In this case, the non-observation errors of CATI and CAWI
could not be covered by changing only the weights and we have to recommend CAPI
to collect categorical information and apply both clustering and weighting together
to have a reasonable coverage by mixed modes.

This study undergoes a systematic literature review on this topic guided by the
following question. What is the best methodology or modified estimation strategy
to mitigate the mode-effects problems based on design weighting and classification?
To answer this question, we performed a systematic review analysis limited to the
following databases: Web of Science, Scopus, and working papers from NSIs. We
only considered papers written in English. This article is organized as follows:
Section 2 presents the methodology of research that maps keyword identification
search, databases, and bibliometric analysis. In Section 3, we present the results,
identifying the PRISMA flow diagram, characteristics of the articles, author co-
authorship analysis, as well as the Keywords occurrence over the years. In Section 4,
we discuss the content analysis. Section 5 is about the main conclusions and finally,
in Section 6, the main research gaps and future works are outlined.

2 Methods

To accomplish the research, the preferred reporting items for systematic reviews and
meta-analysis methodology were adopted. The algorithm of the paper selection from
databases (Scopus and WOS) was based on screening started by search keywords
((mixed-mode* OR "Mode effect*") AND (weighting OR weight* OR classifica-
tion) AND ("Measurement error*" OR "Non-response bias" OR "Data quality" OR
"response rate*" ) AND ( capi OR "Computer Assisted Personal Interview*" OR
cawi OR "Assisted Web Interview*" OR cati OR "Computer Assisted Telephone In-
terview*" OR "web survey*" OR "mail survey*" OR "telephone survey*" )) and then
the result was filtered by “official statistics”. The results of the two databases were
merged, and then duplication was removed. For bibliometric analysis, the Mendeley
open-source tool was used to extract metadata and eliminate duplicates. For network
analysis, the VOSviewer open-source tool has been applied to visualize the extracted
information from the data set and obtain the quantitative and qualitative outcomes.
After assessing the eligibility, books and review papers were omitted from results
and relevant articles picked up from databases. The final dataset was selected ac-
cording to the visual abstract in Figure 2, which shows detailed information about
this systematic literature review.
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Fig. 1 Literature review flow diagram. (Source: Author’s preparation).

Fig. 2 Density visualization analysis of the 22 leader authors who have at least 3 papers.

3 Results

The 28 leader authors who had at least 4 papers are presented in Figure 2. Author
occurrence analysis was performed by applying the VOSviewer research tool for
network analysis. The top three leader authors were Mick P. Couper with 14 articles,
Barry Schouten with 14 articles, and Roger Tourangeau with 11 articles. With the
help of VOSviewer, keywords’ analysis was accomplished. We analyzed the co-
occurrence of author keywords with the full counting method. In the first step,
we select one for the minimum occurrence of a keyword and the result was 711
keywords. We could see the application of keywords over years (Figure 3). Some of
the keywords were not exactly the same, but their use and meaning were the same.
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Fig. 3 Application of keywords over years.

We decided to match similar words to make the output clearer. Choosing the full
counting method resulted in a total of 592 authors meeting the threshold.

4 Content Analysis

The studies emphasize the dramatic change in mixed-mode strategies in the last
decades based on design-based and model-assisted survey sampling, time series
methods, small area estimation [6], and high expectation to undergo further changes
especially after the magnificent experience of NSIs, trying newmodes after COVID-
19 pandemic [7].

The problem is about mixed-mode effects and calibration, and briefly, we could
follow several approaches such as design weighting to find sampling weights, non-
response weighting adjustment, and calibration. The design weight of a unit may be
interpreted as the number of units from population represented by a specific sample
unit. Most surveys, if not all, suffer from nonresponse in item or unit. Auxiliary
information could be used to improve the quality of design-weighted estimates. An
auxiliary variable must have at least two characteristics to be considered in calibra-
tion: (i) It must be available for all sample units; and (ii) Its population total must be
known.

The categorical variables from the demographic information of nonrespondents
such as education level, age, income, location, language, and marital status could
help the survey methodologists to categorize the target population and recognize
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the best sequence of the modes [8]. Van Berkel et al. [9] considered nine strata in
their classification tree by using age, ethnicity, urbanization, and income as explana-
tory variables. Re-interview design and inverse regression estimator (IREG) are
among the best approaches to improve measurement bias by using related auxiliary
information [10].

The focus of this approach is on the weights of estimators rather than the bias
from the measurements. For an estimator, we could consider H8,< the measurement
obtained from unit 8 through mode <. The H8,< consists of D8 as the observed value
for respondent 8, an additive mode-dependent measurement bias 1<, and a mode-
dependentmeasurement variance Y8,< with an expected value equal to zero. Equation
(1) shows the measurement error model.

H8,< = D8 + 1< + Y8,< (1)

If we consider two different modes < and ¤<, then the differential measurement
error between these two modes is given by

H8,< − H8, ¤< = (1< − 1 ¤<) +
(
Y8,< − Y8, ¤<

)
(2)

The expected value of (1< − 1 ¤<) is the differential measurement bias. If we
consider ĈH as an estimation of the total of variable H according to its observations
in different modes H8,<, then

ĈH =

=∑
8=1

l8H8,< (3)

where l8 is a survey weight assigned to unit 8 with = the number of respondents.
From a combination of equations (2) and (3), and taking the expectation over the
measurement error model (1), we would have

�
(
ĈH

)
= �

(
=∑
8=1

l8H8,<

)
=

=∑
8=1

l8D8,< +
=∑
8=1

1<l8m8,< +
=∑
8=1

l8m8,<�
(
Y8,<

)
(4)

with m8,< = 1 if unit 8 responded through mode <, and zero otherwise. Since
�

(
Y8,<

)
= 0

�
(
ĈH

)
= �

(
=∑
8=1

l8H8,<

)
=

=∑
8=1

l8D8,< +
=∑
8=1

l8m8,<1< (5)

stating that the expected total of the survey estimate for . consists of the estimated
true total of *, plus true total of 1< from data collected through mode <. Since
1< is an unobserved mode-dependent measurement bias,

∑=
8=1 l8m8,<1< in equation

(5) indicates the existence of an unknown mode-dependent bias for estimation of
CH . According to Equation (5), there is an unknown measurement bias in sequential
mixed-mode designs that might be adjusted by different estimators. Data obtained
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via a re-interview design or a sub-set of respondents to the first stage of a sequential
mixed-mode survey provides necessary auxiliary information to adjust measurement
bias in sequential mixed-mode surveys. Klausch et al [10] propose six different
estimators and show that an inverse version of regression estimator (IREG) performs
well under all considered scenarios. The idea of IREG is to use re-interview data to
estimate the inverse slope of ordinary or generalized least squares linear regression
of benchmark measurements H<1 on H< 9 as follows [11]

H
< 9

8
= V̂0 + V̂1H

<1
8

(6)

and estimate the measurement of target variable by applying the inverse of V̂1 in the
following estimator, so-called inverse regression estimator

Ĥ
8A46
A<< =

1(
#̂<1 + #̂<2

) (=<1∑
8=1

38H
<1
8
+
< 9∑
8=1
38

(
Ĥ<1A4 −

1
V̂1

(
Ĥ
< 9

A4 − H
< 9

8

)))
1, 9 = 1, 2; 1 ≠ 9 (7)

where Ĥ< 9A4 and Ĥ<1A4 are the respondentsmeans of focal and benchmarkmode outcome
in the re-interview and 38 denotes the design weight of the sample design. For
a detailed presentation and discussion of the methods see Chapter 8.5 in [12].
However, for longitudinal studies with different modes at different time points, the
effect of time on the respondents would make it difficult to estimate the pure mixed-
mode effect especially for volatile classification variables such as the address for
immigrants. The solution could be conducting the survey on parallel or separate
samples to evaluate the time effect and mode effect separately.

In practice, Statistics Portugal has been using the available information of a
sampling frame as a part of FNA (the dwellings national register database) at the
time of COVID-19. The situation was considered as telephone numbers are linked
to a sample drawn from a population register in FNA for the samples for CATI
rotation-scheme surveys such as Labor Force Survey. In 2020, the Labour Force
Survey (LFS) in Portugal as a mandatory survey for the member states within the EU
was adjusted for undercover of the percentage of households with a listed landline
telephone. As a result, the comparison of these surveys after and before COVID-19
shows the usefulness of the discussed methodologies. In 2021, the successful CAWI
mode census by Statistics Portugal shows respondents tend to favor the web-based
questionnaire to avoid the risk of COVID-19 infection with a face-to-face interview.
It shows the potential change in the mode tendency by responders.

5 Conclusions

COVID-19 crisis led to new solutions on item classification for mixed-mode effects
adjustment, such as applying mode calibration to population subgroups by cate-
gorical variables such as gender, regions, age groups, etc. Studies offer sequential
mixed-mode design started with CAWI as the cheapest mode supported by an initial
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postal mail or telephone contact and possible cash incentive. With a lag, follow up
the non-respondents with giving them a choice between CAPI and CATI according
to their specific classification group and demographic information, such as education
level, age, income, location, language, and marital status. It is fruitful to reduce the
cost and increase the accuracy simultaneously.

This study showed that sample frames might need updates for necessary categor-
ical information, which are based on choices made several years ago. Additionally,
more research studies seem necessary for ethics concerns, privacy regulations, and
standards for using categorical variables and classification information in social
mixed-mode surveys and official statistics.
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Clustering and Blockmodeling Temporal
Networks – Two Indirect Approaches

Vladimir Batagelj

Abstract Two approaches to clustering and blockmodeling of temporal networks
are presented: the first is based on an adaptation of the clustering of symbolic data
described by modal values and the second is based on clustering with relational
constraints. Different options for describing a temporal block model are discussed.

Keywords: social networks, network analysis, blockmodeling, symbolic data anal-
ysis, clustering with relational constraints

1 Temporal Networks

Temporal networks described by temporal quantities (TQs) were introduced in the
paper [2]. We get a temporal network NT = (V,L,T ,P,W) by attaching the time
T to an ordinary network, where V is the set of nodes, L is the set of links, P is
the set of node properties,W is the set of link weights, and T = [)<8=, )<0G) is a
linearly ordered set of time points C ∈ T which are usually integers or reals.

In a temporal network nodes/links activity/presence, nodes properties, and links
weights can change through time. These changes are described with TQs. A TQ
is described by a sequence 0 = [(BA , 5A , {A ) : A = 1, 2, . . . , :] where [BA , 5A )
determines a time interval and {A is the value of the TQ 0 on this interval. The set
)0 =

⋃
A [BA , 5A ) is called the activity set of 0. For C ∉ )0 its value is undefined,

0(C) = .
Assuming that for every G ∈ R ∪ { } : G + = + G = G and G · = · G =

we can extend the addition and multiplication to TQs
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(0 + 1) (C) = 0(C) + 1(C) and )0+1 = )0 ∪ )1
(0 · 1) (C) = 0(C) · 1(C) and )0 ·1 = )0 ∩ )1

Let )+ ({) ⊆ T , )+ ∈ P, be the activity set for a node { ∈ V and )! (ℓ) ⊆ T ,
)! ∈ W, the activity set for a link ℓ ∈ L. The following consistency condition
must be fulfilled for activity sets: If a link ℓ(D, {) is active at the time point C then its
end-nodes D and { should be active at the time point C :)! (ℓ(D, {)) ⊆ )+ (D) ∩)+ ({).

In the following we will need

1. Total: total(0) = ∑
8 ( 58 − B8) · {8

2. Average: average(0) = total(0)
|)0 |

where |)0 | =
∑
8 ( 58 − B8)

3. Maximum: max(0) = max8 {8
To support the computations with TQs we developed in Python the libraries TQ

and Nets, see https://github.com/bavla/TQ .

2 Traditional (Generalized) Blockmodeling Scheme

A blockmodel (BM) [11] consists of structures
obtained by identifying all units from the same
cluster of the clustering / partition C = {�8},
c({) = 8 ⇔ { ∈ �8 . Each pair of clusters
(�8 , � 9 ) determines a block consisting of links
linking �8 to � 9 . For an exact definition of a
blockmodel we have to be precise also about
which blocks produce an arc in the reduced
graph on classes and which do not, what is the
weight of this arc, and in the case of general-
ized BM, of what type. The reduced graph can
be represented by relational matrix, called also
image matrix.

u
vuv

Fig. 1 Blockmodel.

To develop a BM method we specify a criterion function %(`) measuring the
"error" of the BM `. We can introduce additional knowledge by constraining the
partitions to a set Φ of feasible partitions. We are searching for a partition c∗ ∈ Φ
such that the corresponding BM `∗ minimizes the criterion function %(`).

3 BM of Temporal Networks

For an early attempt of temporal network BM see [2, 5]. To the traditional BM
scheme we add the time dimension. We assume that the network is described using
temporal quantities [2] for nodes/links activity/presence, and some nodes properties
and links weights. Then also the BM partition c is described for each node { with a
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temporal quantity c({, C): c({, C) = 8 means that in time C node { belongs to cluster
8. The structure and activity of clusters �8 (C) = {{ : c({, C) = 8} can change through
time, but they preserve their identity.

For the BM ` the clusters are mapped into BM nodes ` : �8 → [8]. To determine
the BM we still have to specify how the links from �8 to � 9 are represented in the
BM – in general, for the model arc ( [8], [ 9]), we have to specify two TQs: its weight
08 9 and, in the case of generalized BM, its type g8 9 . The weight can be an object of a
different type than the weights of the block links in the original temporal network.

We assume that in a temporal networkN = (V,L,T ,P,W) the links weight is
described by a TQ | ∈ W. In the following years we intend to develop BMmethods
case by case.

1. constant partition – nodes stay in the same cluster all the time:

a. indirect approach based on clustering of TQs: ?({) = ∑
D∈# ({) |({, D),

hierarchical clustering and leaders;
b. indirect approach by conversion to the clustering with relation constraint

(CRC);
c. direct approach by (local) optimization of the criterion function % over Φ

2. dynamic partition – nodes can move between clusters through time. The details
are still to be elaborated.

In this paper, we present approaches for cases 1.a and 1.b.
In the literature there exist other approaches to BM of temporal networks. A

recent overview is available in the book [12].

3.1 Adapted Symbolic Clustering Methods

In [8] we adapted traditional leaders [13, 10] and agglomerative hierarchical [14, 1]
clusteringmethods for clustering of modal-valued symbolic data. They can be almost
directly applied for clustering units described by variables that have for their values
temporal quantities.

For a unit -8 , each variable+ 9 is described with a size ℎ8 9 and a temporal quantity
x8 9 , -8 9 = (ℎ8 9 , x8 9 ). In our algorithms we use normalized values of temporal
variables + ′ = (ℎ, p) where

p = [(BA , 5A , ?A ) : A = 1, 2, . . . , :] and ?A =
{A

ℎ

In the case, when ℎ = total(x), the normalized TQ p is essentially a probability
distribution.

Both methods create cluster representatives that are represented in the same way.
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3.2 Clustering of Temporal Network and CRC

To use the CRC in the construction of a nodes partition we have to define a dissim-
ilarity measure 3 (D, {) (or a similarity B(D, {)) between nodes. An obvious solution
is B(D, {) = 5 (|(D, {)), for example

1. Total activity: B1 (D, {) = total(|(D, {))
2. Average activity: B2 (D, {) = average(|(D, {))
3. Maximal activity: B3 (D, {) = max(|(D, {))

We can transform a similarity B(D, {) into a dissimilarity by 3 (D, {) = 1
B (D,{) or

3 (D, {) = ( − B(D, {) where ( > maxD,{ B(D, {). In this way, we transformed the
temporal network partitioning problem into a clustering with relational constraints
problem [6, 360–369]. It can be efficiently solved also for large sparse networks.

3.3 Block Model

Having the partition c, to produce a BM we have to specify the values on its links.
There are different options for model links weights 0(( [8], [ 9])).

1. Temporal quantities: 0(( [8], [ 9])) = activity(�8 , � 9 ) =
∑
D∈�8 ,{∈� 9 |(D, {), for

8 ≠ 9 , and 0(( [8], [8])) = 1
2activity(�8 , �8).

2. Total intensities: 0C (( [8], [ 9])) = total(0(( [8], [ 9]))) .
3. Geometric average intensities: 06 (( [8], [ 9])) =

0C (( [8], [ 9]))√
|�8 | · |� 9 |

.

4 Example: September 11th Reuters Terror News

The Reuters Terror News network was obtained from the CRA (Centering Resonance
Analysis) networks produced by Steve Corman and Kevin Dooley at Arizona State
University. The network is based on all the stories released during 66 consecutive
days by the news agency Reuters concerning the September 11 attack on the U.S.,
beginning at 9:00 AM EST 9/11/01.

The nodes, = = 13332, of this network are important words (terms). For a given
day, there is an edge between two words iff they appear in the same utterance (for
details see the paper [9]). The network has < = 243447 edges. The weight of an
edge is its daily frequency. There are no loops in the network. The network Terror
News is undirected – so will be also its BM.

The Reuters Terror News network was used as a case network for the Viszards
visualization session on the Sunbelt XXII International Sunbelt Social Network
Conference, New Orleans, USA, 13-17. February 2002. It is available at http:
//vlado.fmf.uni-lj.si/pub/networks/data/CRA/terror.htm .
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We transformed the Pajek version of the network into NetsJSON format used in
libraries TQ and Nets. For a temporal description of each node/word for clustering
we took its activity (sum of all TQs on edges adjacent to a given node {)

act({) =
∑

D∈# ({)
|({ : D).

Our leaders’ and hierarchical clustering methods are compatible – they are based
on the same clustering error criterion function. Usually, the leaders’ method is used
to reduce a large clustering problem to up to some hundred units. With hierarchical
clustering of the leaders of the obtained clusters, we afterward determine the "right"
number of clusters and their representatives.

Fig. 2 Hierarchical clustering of 100 leaders in Terror News.

To cluster all 13332 words (nodes) in Terror News we used the adapted leaders’
method searching for 100 clusters. We continued with the hierarchical clustering of
the obtained 100 leaders. The result is presented in the dendrogram in Figure 2.
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Fig. 3 Word clouds for clusters �58 and �81.
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To get an insight into the content of a selected cluster we draw the corresponding
word cloud based on the cluster’s leader. In Figure 3 the word clouds for clusters
�58 and �81 (|�58| = 1396, |�81| = 2226 ) are presented.

We can also compare the activities of pairs of clusters by considering the overlap
of p-components (probability distributions) of their leaders. In Figure 4, we com-
pare cluster �58 with cluster �81, and cluster !96 with cluster �66. In the right
diagram some values are outside the display area: !96[15] = 0.3524, �66[4] =
0.1961, �66[5] = 0.2917.
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Fig. 4 Comparing activities of clusters (blue – first cluster, red – second cluster, violet – overlap).

We decided to consider in the BM the clustering of Terror News into 5 clusters
C = {�94, �88, �95, !43, !74}. The split of cluster C95 gives clusters of sizes 325
and 629 (for sizes, see the right side of Figure 5). Both clusters C94 and C88 have a
chaining pattern at their top levels.

Because of large differences in the cluster sizes, it is difficult to interpret the total
intensities image matrix. An overall insight into the BM structure we get from the
geometric average intensities image matrix (right side) and the corresponding BM
network (cut level 0.3), left side of Figure 5.

8 cluster 1 2 3 4 5
1 �94 23.85 12.23 2.26 1.57 1.42
2 �88 3.58 0.33 0.22 0.19
3 �95 0.56 0.07 0.07
4 !43 0.38 0.08
5 !74 0.39

size 6018 5109 954 535 716

Fig. 5 Block model and image matrix.
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A more detailed BM is presented by the activities (?-components) image matrix
in Figure 6.
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Fig. 6 BM represented as ?-components of temporal activities of links between pairs of clusters.

A more compact representation of a temporal BM is a heatmap display of this
matrix in Figure 7. Because of some relatively very large values, it turns out that the
display of the matrix with logarithmic values provides much more information.

Terror news / log2
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Fig. 7 BM heatmap with log2 values.

To the Terror News network, we applied also the clustering with relational con-
straints approach. Because of the limited space available for each paper, we can not
present it here. A description of the analysis with the corresponding code is available
at https://github.com/bavla/TQ/wiki/BMRC .
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5 Conclusions

The presented research is a work in progress. It only deals with the two simplest
cases of temporal blockmodeling. We provided some answers to the problem of
normalization of model weights TQs when comparing them and some ways to
present/display the temporal BMs.

We used different tools (R, Python, and Pajek) to obtain the results. We intend to
provide the software support in a single tool – probably in Julia. We also intend to
create a collection of interesting and well-documented temporal networks for testing
and demonstrating the developed software.
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Latent Block Regression Model

Rafika Boutalbi, Lazhar Labiod, and Mohamed Nadif

Abstract When dealing with high dimensional sparse data, such as in recommender
systems, co-clustering turns out to be more beneficial than one-sided clustering, even
if one is interested in clustering along one dimension only. Thereby, co-clusterwise is
a natural extension of clusterwise. Unfortunately, all of the existing approaches do not
consider covariates on both dimensions of a data matrix. In this paper, we propose
a Latent Block Regression Model (LBRM) overcoming this limit. For inference,
we propose an algorithm performing simultaneously co-clustering and regression
where a linear regression model characterizes each block. Placing the estimate of the
model parameters under the maximum likelihood approach, we derive a Variational
Expectation-Maximization (VEM) algorithm for estimating the model’s parameters.
The finality of the proposed VEM-LBRM is illustrated through simulated datasets.

Keywords: co-clustering, clusterwise, tensor, data mining

1 Introduction

The cluster-wise linear regression algorithm CLR (or Latent Regression Model) is
a finite mixture of regressions and one of the most commonly used methods for
simultaneous learning and clustering [14, 5]. It aims to find clusters of entities to
minimize the overall sum of squared errors from regressions performed over these
clusters. Specifically, X = [G8 9 ] ∈ R=×{ is the covariate matrix and Y ∈ R=×1 the
response vector. The cluster-wise method aims to find 6 clusters �1, . . . , �6 and
regression coefficients # (:) ∈ R3×1 by minimizing the following objective function∑6

:=1
∑
8∈�: (H8 −

∑{
9=1 V

(:)
9
G8 9 + 1: )2 where:

• H8 is the value of the dependent variable for subject/observation 8 defined by
x8 = (G81, . . . , G83),

• G8 9 is the value of the 9-th independent variable for subject/observation 8,
• V

(:)
9

is the 9-th multiple regression coefficient and 1: is the intercept.
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Various adjustments have been made to this model to improve its performance in
terms of clustering and prediction. In our contribution, we propose to embed the
co-clustering in the model.

Co-clustering is a simultaneous clustering of both dimensions of a data matrix
that has proven to be more beneficial than traditional one-sided clustering, especially
when dealing with sparse data. When dealing with high dimensional data sparse or
not, co-clustering turns out to be more valuable than one-sided clustering [1, 13],
even if one is interested in clustering along one dimension only. In [4] the authors
proposed the SCOAL approach (Simultaneous Co-clustering and Learning model),
leading to co-clustering and prediction for binary data; they generalized the model
to continuous data. However, this model does not take into account the sparsity
of data in the sense that it does not lead to homogeneous blocks. The obtained
results in terms ofMean Square Error (MSE) are good, but in terms of co-clustering
(homogeneity of co-clusters), no analysis has been presented. This model is also
related to the soft PDLF (Predictive Discrete Latent Factor) model [2], where the
value of response H8 9 ’s in each co-cluster is modeled as a sum V) G8 9 + X:ℓ where
V is a global regression model. In contrast, X:ℓ is a co-cluster specific offset. More
recently, in [17] the authors proposed an algorithm taking into account only row
covariates information to realize co-clustering and regression simultaneously. To
this end, the authors are based on the latent block models [8]. In our contribution,
we propose to rely also on this model but considering row and column covariates.

The proposed Latent Block Regression Model (LBRM) is an extension of fi-
nite mixtures of regression models where the co-clustering is embedded. It allows
us to deal with co-clustering and regression simultaneously while taking into ac-
count covariates. To estimate the parameters we rely on a Variational Expectation-
Maximization algorithm [7] referred to as VEM-LBRM.

2 From Clusterwise Regression to Co-clusterwise Regression

2.1 Latent Block Model (LBM)

Given an = × 3 data matrix X = (G8 9 , 8 ∈ � = {1, . . . , =}; 9 ∈ � = {1, . . . , 3}). It is
assumed that there exists a partition on � and a partition on �. A partition of �× � into
6 × < blocks will be represented by a pair of partitions (z,w). The :-th row cluster
corresponds to the set of rows 8 such that I8: = 1 and I8:′ = 0 ∀: ′ ≠ : . Thereby, the
partition represented by z can be also represented by a matrix of elements in {0, 1}6
satisfying

∑6

:=1 I8: = 1. Similarly, the ℓ-th column cluster corresponds to the set of
columns 9 and the partition w can be represented by a matrix of elements in {0, 1}<
satisfying

∑<
ℓ=1 | 9ℓ = 1.

Considering the Latent Block Model (LBM) [6], it is assumed that each ele-
ment G8 9 of the :ℓth block is generated according to a parameterized probabil-
ity density function (pdf) 5 (G8 9 ;U:ℓ). Furthermore, in the LBM the univariate
random variables G8 9 are assumed to be conditionally independent given (z,w).
Thereby, the conditional pdf of X can be expressed as %(I8: = 1, | 9ℓ = 1|X) =
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%(I8: = 1|X)%(| 9ℓ = 1|X). From this hypothesis, we then consider the latent
block model where the two sets � and � are considered as random samples and the
row, and column labels become latent variables. Therefore, the parameter of the
latent block model is � = (0, 1,"), with 0 = (c1, . . . , c6) and 1 = (d1, . . . , d<)
where (c: = %(I8: = 1), : = 1, . . . , 6), (dℓ = %(| 9ℓ = 1), ℓ = 1, . . . , <) are
the mixing proportions and " = (U:ℓ ; : = 1, . . . 6, ℓ = 1, . . . , <) where U:ℓ
is the parameter of the distribution of block :ℓ. Considering that the complete
data are the vector (X, z,w), i.e, we assume that the latent variable z and w
are known, the resulting complete data log-likelihood of the latent block model
!� (X, z,w,�) = log 5 (X, z,w;�) can be written as follows

6∑
:=1

I: log c: +
<∑
ℓ=1

|ℓ log dℓ +
=∑
8=1

3∑
9=1

6∑
:=1

<∑
ℓ=1

I8:| 9ℓ log 5:ℓ (G8 9 ;":ℓ).

where the c: ’s and dℓ’s denote the proportions of row and columns clusters re-
spectively; see for instance [8]. Note that the complete-data log-likelihood breaks
into three terms: the first one depends on proportions of row clusters, the second on
proportions of column clusters and the third on the pdf of each block or co-cluster.
The objective is then to maximize the function !� (z,w,�).

2.2 Latent Block Regression Model (LBRM)

For co-clustering of continuous data, theGaussian latent blockmodel can be used. For
instance, note that it is easy to show that theminimization of the well-known criterion
of | |X − z-w) | |2 = ∑6

:=1
∑<
ℓ=1

∑
8 |I8:=1

∑
9 ||9ℓ=1 (G8 9 − `:ℓ)2 where z ∈ {0, 1}=×6,

w ∈ {0, 1}3×< and - ∈ R6×< is associated to Latent block Gaussian model whith
":ℓ = (`:ℓ , f2

:ℓ
), the proportions of row clusters and column clusters are equal and

in addition the variances of blocks are identical [9]. Note that 1) the characteristic
of the latent block model is that the rows and the columns are treated symmetrically
2) the estimation of the parameters requires a variational approximation [7, 17]. In
the sequel, we see how can we integrate a regression model. Hereafter, we propose a
novel Latent Block Regression model for co-clustering and learning simultaneously.
The model considers the response matrix Y = [H8 9 ] ∈ R=×3 and the covariate tensor
X = [1, x8 9 ] ∈ R=×3×{ where = is the number of rows, 3 the number of columns, and
{ the number of covariates. Figure 1 presents data structure for the proposed model
LBRM.

In the following we propose the integration of mixture of regression [5] per block
in the Latent Block model (LBM) considering the distribution Φ(H8 9 |x8 9 ;_:ℓ).We
assume in the following the normality of Φ,

Φ(H8 9 |x8 9 ;_:ℓ) = ?(H8, 9 |x8 9 , #:ℓ , f:ℓ) = (2cf2
:ℓ)
−0.5 exp

{
− 1

2f2
:ℓ

(H8 9 − #>:ℓx8 9 )
2

}
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Fig. 1 Data representation for proposed model.

With the LBRMmodel, the parameter
 is composed of row and column proportions
0, 1 respectively, # = {#11, . . . , V6<} with #>:ℓ = (V0

:ℓ
, V1
:ℓ
, . . . , V{

:ℓ
) where V0

:ℓ

represents the intercept of regression and 2 = {f11, . . . , f6<}. The classification
log-likelihood can be written:∑

8,:

I8: log c: +
∑
9,ℓ

|9ℓ log dℓ −
1
2

∑
:,ℓ

I.:|.ℓ log(f2
:ℓ ) −

1
2f2

:ℓ

∑
8, 9,:,ℓ

I8:|9ℓ (H8 9 − #>:ℓx8 9 )
2

with I.: =
∑
8 I8: et |.ℓ =

∑
9 | 9ℓ .

3 Variational EM Algorithm

To estimate 
, the EM algorithm [3] is a candidate for this task. It maximizes
the log-likelihood 5 (X,
) w.r. to 
 iteratively by maximizing the conditional
expectation of the complete data log-likelihood !� (z,w;
) w.r. to 
, given a
previous current estimate 
(2) and the observed data x. Unfortunately, difficulties
arise owing to the dependence structure among the variables G8 9 of themodel. To solve
this problem an approximation using the [12] interpretation of the EM algorithm can
be proposed; see, e.g., [7, 8]. Hence, the aim is tomaximize the following lower bound
of the log-likelihood criterion: �� (z̃, w̃;
) = !� (z̃, w̃,
) + � (z̃) + � (w̃) where
� (z̃) = −∑

8,: Ĩ8: log Ĩ8: with Ĩ8: = %(I8: = 1|X), � (w̃) = −∑
9 ,ℓ |̃ 9ℓ log |̃ 9ℓ with

|̃ 9ℓ = %(| 9ℓ = 1|X), and !� (z̃, w̃; 
̃) is the fuzzy complete data log-likelihood (up
to a constant). !� (z̃, w̃;
) is given by

!� (z,w,
) =
∑
8,:

Ĩ8: log c: +
∑
9 ,ℓ

|̃ 9ℓ log dℓ −
1
2

∑
:,ℓ

Ĩ.: |̃.ℓ log(f2
:ℓ)

− 1
2f2

:ℓ

∑
8, 9 ,:,ℓ

Ĩ8: |̃ 9ℓ (H8 9 − #>:ℓx8 9 )
2

The maximization of �� (z̃, w̃,
) can be reached by realizing the three following
optimization: update z̃ by argmaxz̃�� (z̃, w̃,
), update w̃ by argmaxw̃�� (z̃, w̃,
),
and update 
 by argmax
�� (z̃, w̃,
). In what follows, we detail the Expectation
(E) and Maximization (M) step of the Variational EM algorithm for tensor data.
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E-step. It consists in computing, for all 8, :, 9 , ℓ the posterior probabilities Ĩ8:
and |̃ 9ℓ maximizing �� (z̃, w̃,
) given the estimated parameters 
:ℓ . It is easy
to show that, the posterior probability Ĩ8: maximizing �� (z̃, w̃,
) is given by:
Ĩ8: ∝ c: exp

(∑
9 ,ℓ |̃ 9ℓ log

(
?(H8 9 |x8 9 , #:ℓ , f:ℓ)

) )
. In the same manner, the poste-

rior probability |̃ 9ℓ is given by: |̃ 9ℓ ∝ dℓ exp
(∑

8,: Ĩ8: log
(
?(H8 9 |x8 9 , #:ℓ , f:ℓ)

) )
M-step. Given the previously computed posterior probabilities z̃ and w̃, the M-step
consists in updating , ∀:, ℓ, the parameters of the model c: , dℓ , -:ℓ and ,:ℓ maxi-
mizing �� (z̃, w̃,
). Using the computed quantities from step E, the maximization
step (M-step) involves the following closed-form updates.

• Taking into account the constraints
∑
: c: = 1 and

∑
ℓ dℓ = 1, it is easy to show

that c: =
∑
8 Ĩ8:
=

=
Ĩ.:
=

and dℓ =
∑
9 |̃9ℓ

3
=
|̃.ℓ
3
.

• The update of _:ℓ which is formed by (#:ℓ , f:ℓ) where can be given by simple
derivates of �� ( Ĩ, |̃,
) with respect to #:ℓ and f:ℓ respectively. This leads to

#:ℓ =

(∑
8, 9

Ĩ8: |̃9ℓ H8 9x8 9

) (∑
8, 9

Ĩ8: |̃9ℓx8 9x>8 9

)−1

, f2
:ℓ =

∑
8, 9 Ĩ8: |̃9ℓ (H8 9 − #>

:ℓ
x8 9 )2∑

8, 9 Ĩ8: |̃9ℓ
.

The proposed algorithm for tensor data referred to as VEM-LBRM alternates the two
previously described steps Expectation-Maximization. At the convergence, a hard
co-clustering is deduced from the posterior probabilities.

4 Experimental Results

First, we evaluate the proposed VEM-LBRM on three synthetic datasets in terms of co-
clustering and regression. We compare VEM-LBRM with some clustering and regres-
sion methods namely Global model which is a single multiple linear regression
model performed on all observations, K-means, Clusterwise, Co-clustering
and SCOAL. We retain two widely used measures to assess the quality of clustering,
namely the Normalized Mutual Information (NMI) [16] and the Adjusted Rand In-
dex (ARI) [15]. Intuitively, NMI quantifies how much the estimated clustering is
informative about the true clustering. The ARI metric is related to the clustering
accuracy and measures the degree of agreement between an estimated clustering and
a reference clustering. Both NMI and ARI are equal to 1 if the resulting clustering
is identical to the true one. On the other hand, we use RMSE (Root MSE) and MAE
(Mean Absolute Error) metrics to evaluate the precision of prediction while RMSE
is a loss function which is suitable for Gaussian noises when MAE uses the absolute
value which is less sensitive to extreme values.

We generated tensor data X with size 200 × 200 × 2 according to Gaussian
model per block. In the simulation study, we considered three scenarios by varying
the regression parameters — the examples have blocks with different regression
collinearity and different co-clusters structure complexity. The parameters for each
example are reported in Tables 1. In Figures 2 and 3 are depicted the true regression
planes and the true simulated response matrix Y.
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Parameters generation for examples.

Dataset Example 1 Example 2 Example 3
0 = [0.35, 0.35, 0.3] , 1 = [0.55, 0.45]

f f = 5 f = 7 f = 7

� � =

[
1 0
0 1

]
� =

[
2 0.3

0.3 2

]
� =

[
1 2
2 1

]
Co-clusters #:ℓ -:ℓ #:ℓ -:ℓ #:ℓ -:ℓ
Cluster (1,1) [1, -10, 1] [5,20] [1, -10, 1] [5,20] [1, -10, 1] [5,20]
Cluster (1,2) [10, 4, 13] [5,10] [1, -10, 1] [5,10] [1, -10, 1] [5,10]
Cluster (2,1) [3, 20, -2] [10,20] [1, -10, 1] [10,20] [1, -10, 1] [5,30]
Cluster (2,2) [-5, -2, -6] [10,10] [7, 5, -10] [10,10] [7, 5, -10] [20,10]
Cluster (3,1) [-10, 20, 10] [20,20] [7, 5, -10] [20,20] [7, 5, -10] [20,20]
Cluster (3,2) [7, 5, -10] [20,10] [7, 5, -10] [20,10] [7, 5, -10] [20,30]

Fig. 2 Synthetic data: True regression plans according to the chosen parameters.

Fig. 3 Synthetic data: True co-clustering according to the chosen parameters.

In our illustrations, we consider co-clustering and regression challenges. All
metrics concerning rows and columns are computed by averaging on ten random
training, and testing data split using an 80% vs. 20% of training and validation data.
Thereby, we compare VEM-LBRM with Global model (which is a multiple linear
regression), K-means, Clusterwise by reshaping the tensor to matrix with size
# × { where # = = × 3. On the other hand, the VEM algorithm for co-clustering is
applied on response matrix Y. Furthermore, for clustering algorithms, the RMSE,
MAE, and R-squared are computed by applying linear regression on each obtained
co-cluster. In Table, 2 are reported the performances for all algorithms. The missing
values represent measures that cannot be computed by the corresponding models.
From these comparisons, we observe that whether the block structure is easy to
identify or not, the ability of VEM-LBRM to outperform other algorithms.

To go further, note that in [11], the authors reformulated the clusterwise and
introduced the linear cluster-weighted model (CWM) in a statistical setting and
showed that it is a general and flexible family of mixture models. They included in
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Table 2 (co)-clustering and prediction: mean and sd in parentheses.

Examples
Regression Clustering

Algorithms RMSE MAE Rsquare ARI NMI
Training Test Training Test Avg. Row Col Row Col

Ex
am

pl
e1

Global model 164.38 164.05 145.29 145.05 0.46 - - - -
( 0.03 ) (0.49 ) ( 0.08 ) ( 0.71 ) ( 0.0 ) - - - -

K-means 49.62 49.51 34.86 34.91 0.8 0.61 - 0.49 -
( 60.2 ) (67.48 ) ( 33.56 ) ( 35.79 ) ( 0.02 ) 0.02 - 0.03 -

Clusterwise 154.57 154.47 127.77 127.93 0.52 0.07 - 0.01 -
(6 = 3) ( 0.01 ) (0.36 ) ( 0.03 ) ( 0.45 ) ( 0.0 ) 0.0 - 0.0 -

Co-clustering 10.86 10.83 7.29 7.29 0.88 0.84 1.0 0.71 1.0
(6 = 3) ( 14.76 ) (14.36 ) ( 4.67 ) ( 4.59 ) ( 0.0 ) 0.01 0.0 0.04 0.0
SCOAL 14.99 14.92 10.45 10.41 0.99 0.91 1.0 0.84 1.0

(6 = 3, <= 2) ( 207.56 ) (208.91 ) ( 89.48 ) ( 90.55 ) ( 0.0 ) 0.01 0.0 0.04 0.0
VEM-LBRM 7.1 7.06 5.29 5.26 0.99 0.95 1.0 0.92 1.0

(6 = 3, <= 2) ( 17.71 ) (16.86 ) ( 6.8 ) ( 6.32 ) ( 0.0 ) (0.01) (0.0) (0.03) (0.0)

Ex
am

pl
e2

Global model 29.15 29.21 24.64 24.68 0.34 - - - -
( 0.04 ) (0.15 ) ( 0.04 ) ( 0.12 ) ( 0.0 ) - - - -

K-means 10.43 10.49 7.73 7.77 0.71 0.56 - 0.45 -
( 0.25 ) (0.24 ) ( 0.17 ) ( 0.16 ) ( 0.01 ) 0.0 - 0.0 -

Clusterwise 18.54 18.62 11.33 11.38 0.73 0.15 - 0.16 -
(6 = 3) ( 0.09 ) (0.27 ) ( 0.06 ) ( 0.14 ) ( 0.0 ) 0.0 - 0.0 -

Co-clustering 7.5 7.49 5.89 5.9 0.8 0.95 1.0 0.94 1.0
(6 = 3) ( 1.35 ) (1.38 ) ( 0.82 ) ( 0.86 ) ( 0.07 ) 0.14 0.0 0.17 0.0
SCOAL 12.63 12.69 8.75 8.81 0.81 0.97 1.0 0.94 1.0

(6 = 3, <= 2) ( 12.57 ) (12.81 ) ( 7.38 ) ( 7.58 ) ( 0.35 ) 0.1 0.0 0.17 0.0
VEM-LBRM 6.99 6.99 5.57 5.57 0.96 1.0 1.0 1.0 1.0

(6 = 3, <= 2) ( 0.01 ) (0.04 ) ( 0.01 ) ( 0.02 ) ( 0.0 ) (0.0) (0.0) (0.0) (0.0)

Ex
am

pl
e3

Global model 45.38 45.24 38.33 38.21 0.49 - - - -
( 0.06 ) (0.24 ) ( 0.07 ) ( 0.26 ) ( 0.0 ) - - - -

K-means 10.47 10.41 7.44 7.42 0.83 0.54 - 0.45 -
( 1.73 ) (1.74 ) ( 1.08 ) ( 1.08 ) ( 0.08 ) 0.01 - 0.01 -

Clusterwise 23.09 23.18 12.09 12.15 0.87 0.09 - 0.09 -
(6 = 3) ( 1.84 ) (2.02 ) ( 1.23 ) ( 1.29 ) ( 0.02 ) 0.0 - 0.0 -

Co-clustering 9.48 9.39 6.98 6.93 0.73 0.74 1.0 0.7 1.0
(6 = 3) ( 0.16 ) (0.22 ) ( 0.01 ) ( 0.02 ) ( 0.02 ) 0.04 0.0 0.08 0.0
SCOAL 27.32 27.14 16.82 16.73 0.57 0.98 1.0 0.96 1.0

(6 = 3, <= 2) ( 41.97 ) (41.83 ) ( 24.13 ) ( 24.16 ) ( 0.93 ) 0.07 0.0 0.12 0.0
VEM-LBRM 7.21 7.21 5.71 5.71 0.99 0.98 1.0 0.96 1.0

(6 = 3, <= 2) ( 0.68 ) (0.7 ) ( 0.42 ) ( 0.42 ) ( 0.0 ) (0.07) (0.0) (0.12) (0.0)

the classical model of clusterwise the probabilityΦ′(x8 |
: ) to model the covariates,
whereas the classical cluster-wise model the output only using Φ(H8 |x8;_: ). They
prove that sufficient conditions for model identifiability are provided under a suitable
assumption of Gaussian covariates [10]. We can include in LBRM a joint probability
Φ′(x8 9 |
:ℓ) where 
:ℓ = [-:ℓ ,�:ℓ] to evaluate its impact in terms of clustering
and regression. Figure 4 presents the graphical model of LBRM and its extension.
The first experiments on real datasets give encouraging results.

Fig. 4 Graphical model of LBRM (left) and its extension (right).
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5 Conclusion

Inspired by the flexibility of the latent block model (LBM), we proposed extending it
to tensor data aiming at both tasks: co-clustering and prediction. Thismodel (LBRM)
gives rise to a variational EM algorithm for co-clustering and prediction referred to
as VEM-LBRM. This algorithm which can be viewed as the co-clusterwise algorithm
can easily deal with sparse data. Empirical results on synthetic data showed that
VEM-LBRM does give more encouraging results for clustering and regression than
some algorithms that are devoted to one or both tasks simultaneously. For future
work, we plan to develop the extension of LBRM and apply the proposed models for
the recommender system task.
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Using Clustering and Machine Learning
Methods to Provide Intelligent Grocery
Shopping Recommendations

Nail Chabane, Mohamed Achraf Bouaoune, Reda Amir Sofiane Tighilt, Bogdan
Mazoure, Nadia Tahiri, and Vladimir Makarenkov

Abstract Nowadays, grocery lists make part of shopping habits of many customers.
With the popularity of e-commerce and plethora of products and promotions avail-
able on online stores, it can become increasingly difficult for customers to identify
products that both satisfy their needs and represent the best deals overall. In this
paper, we present a grocery recommender system based on the use of traditional
machine learning methods aiming at assisting customers with creation of their gro-
cery lists on the MyGroceryTour platform which displays weekly grocery deals in
Canada. Our recommender system relies on the individual user purchase histories,
as well as the available products’ and stores’ features, to constitute intelligent weekly
grocery lists. The use of clustering prior to supervised machine learning methods
allowed us to identify customers profiles and reduce the choice of potential products
of interest for each customer, thus improving the prediction results. The highest
average F-score of 0.499 for the considered dataset of 826 Canadian customers was
obtained using the Random Forest prediction model which was compared to the
Decision Tree, Gradient Boosting Tree, XGBoost, Logistic Regression, Catboost,
Support Vector Machine and Naive Bayes models in our study.

Keywords: clustering, dimensionality reduction, grocery shopping recommenda-
tion, intelligent shopping list, machine learning, recommender systems
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1 Introduction

Grocery shopping is a common activity that involves different factors such as budget
and impulse purchasing pressure [1]. Customers typically rely on a mental or digital
list to facilitate their grocery trips. Many of them show a favorable interest towards
tools and applications that help them manage their grocery lists, while keeping
them updated with special offers, coupons and promotions [2, 3]. Major retailers
throughout the world typically offer discounts on different products every week in
order to improve sales and attract new customers. This very common practice leads
to the fact that thousands of items go on special simultaneously across different
retailers at a given week. The resulting information overload often makes it difficult
for customers to quickly identify the deals that best suit their needs,which can become
a source of frustration [4]. To address this problem, many grocery stores have taken
advantage of the popularity of e-commerce to set up their own websites featuring
various functionalities, including Recommender Systems, to assist customers during
the shopping process.

Recommender Systems (RSs) [5] are tools and techniques that offer personalized
suggestions to users based on several parameters (e.g. their past behavior). RSs have
recently become a field of interest for researchers and retailers as many e-commerces,
online book stores and streaming platforms have started to offer this service on their
websites (e.g. Amazon, Netflix and Spotify). Here, we recall some recent works in
this field. Faggioli et al. [6] used the popular Collaborative Filtering (CF) approach
to predict the customer’s next basket in a context of grocery shopping, taking into
account the recency parameter. When comparing their model with the CF baseline
models, Faggioli et al. observed a consistent improvement of their prediction results.
Che et al. [7] used attention-based recurrent neural networks to capture both inter-
and intra-basket relationships, thus modelling users’ long-term preferences dynamic
short-term decisions.

Content-based recommendation has also proven efficient in the literature, as
demonstrated by Xia et al. [8] who proposed a tree-based model for coupons recom-
mendation. By processing their data with undersampling methods, the authors were
able to increase the estimated click rate from 1.20% to 7.80% as well as to improve
significantly the F-score results using Random Forest Classifier and the recall results
using XGBoost. Dou [9] presented a statistical model to predict whether a user will
buy or not buy an item using Yandex’s CatBoost method [10]. Dou relied on contex-
tual and temporal features as well as on some session features, such as the time of
visit of specific web pages, to demonstrate the efficiency of CatBoost in this context.
Finally, Tahiri et al. [11] used recurrent and feedforward neural networks (RNNs and
FFNs) in combination with non-negative matrix factorization and gradient boosting
trees to create intelligent weekly grocery baskets to be recommended to the users
of MyGroceryTour. Tahiri et al. considered different (from our study) features char-
acterizing the users of MyGroceryTour to provide their predictions, with the best
F-score results of 0.37 obtained from the augmented dataset.
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2 Materials and Methods

2.1 Data Considered

In this section we describe the dataset obtained from MyGroceryTour website used
in our research. MyGroceryTour [11] is a Canadian grocery shopping website and
database available in both English and French languages. The main purpose of the
website is to present weekly specials offered by themajor grocery retailers in Canada.
It allows users to display grocery products available in their living area, compare
their products over different stores as well as to build their grocery shopping baskets
based on the provided insights. MyGroceryTour users can easily archive and manage
their grocery lists and access them at any given time.

In this study, we considered 826 MyGroceryTour users with varying numbers of
grocery baskets (between 3 and 100 baskets were available per user). The grocery
baskets contained different products added by users when they were creating their
weekly shopping lists. In our recommender system (i.e current basket prediction
experiment), we have considered the following features:

• user_id : unique user identifier (numerical)
• basket_id : unique basket identifier (numerical)
• product_id : unique product identifier (numerical)
• category : category of the product (categorical)
• price : price of the product (numerical)
• special : discount on the product (in %) compared to regular price (numerical)
• distance_min : minimal distance between user’s home and the closest store where

the product was available (numerical)
• distance_mean : mean distance between user’s home and all stores where the

product was available (numerical)
• availability : availability of the product at different stores (binary)

In addition, we engineered the total_bought feature which represents, for each
product, the total number of times it has been bought over all users.

2.2 Data Normalization

Data normalization is an important data preprocessing step in both unsupervised and
supervised machine learning [12] as well as in data mining [13]. Prior to feeding the
data to our models we rescaled the available features using z-score standardization.
Thus, all rescaled features had the mean of 0 and the standard deviation of 1:

I(G 5 ) =
G 5 − ` 5
f 5

, (1)

where G 5 is the original value of the observation at feature 5 , ` 5 is the mean and
f 5 is the standard deviation of 5 .
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2.3 Further Data Preprocessing Steps

In order to determine which weekly products could be recommended to a given
user we propose to classify them using both clustering (unsupervised learning)
and traditional supervised machine learning methods. The final recommendation is
obtained based on the availability of the products, the data on the products’ regular
prices and available discounts, as well as on the user’s shopping history. In our
context, the baskets contain only the products bought by the users. The information
about the other available products (not selected by the user at the moment he/she
organized his/her shopping basket) is also available on MyGroceryTour. It has been
used to create a large class of available items that were not bought by the user.

While we considered the items bought by a given user as positive feedback, we
regarded the items that were available to this user at the time of the order, but not
acquired by him/her, as a negative feedback. For an order of size %, if ) is the total
amount of items available to the user at the time of the order, the negative feedback
# for that order is # = ) − %. In this context, # usually represents thousands of
products, while % is typically inferior to 50. This difference in size between positive
and negative feedback can lead to a situation of imbalanced training data and could
result in an important loss in performance. Similarly to Xia et al. [8], we applied an
undersampling method to balance our data instead of considering all of the available
disregarded items as the negative feedback.

To identify customer profiles and perform a preselection of products that are
susceptible to be of interest to a given user, we first carried out the clustering of the
normalized original dataset (the  -means [14] and DBSCAN [15] data partitioning
algorithmswere used). Then,we limited the choice of the items offered to a given user
to the products purchased by themembers of his/her cluster. By doing so,wemanaged
to reduce the amount of products which could be recommended to the user and thus
minimize eventual classifications mistakes. The clustering phase is detailed in the
Subsection 2.4. Then traditional machine learning methods were used to provide
the final weekly recommendation. The size ( of the weekly basket recommended
to a given user was equal to the mean size of his/her previous shopping baskets.
As the number of items to be recommended by the machine learning methods
was often greater than (, we retained as final recommendation the top ( items,
ranked according to the confidence score (i.e. the probability estimate for a given
observation, computed using the predict_proba function from the scikit-learn [16]
library).

2.4 Data Clustering

In this section, we present the steps we carried out to obtain the clusters of users. As
explanatory features used to generate clusters, we considered the mean prices and
mean specials of the products purchased by the user as well as a new feature, called
here the fidelity ratio �'D , which is meant to give insight on whether a given user D
has a favorite store where he/she makes most of his/her grocery purchases. �'D is
defined as follows:
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�'D =
-<0G,D − 1

(=−1)
∑=
8=2 -8,D

-C>C0;,D
, (2)

where -<0G,D is the total number of products bought by user D at the store where
he/shemademost of his/her purchases, = (=>1) is the total number of stores visited by
user D, and -C>C0;,D (-C>C0;,D = -<0G,D +

∑=
8=2 -8,D) is the total number of products

purchased by user D over all stores he/she visited. A high fidelity ratio means that
user D buys most of his/her products at the same store, whereas a low fidelity ratio
indicates that user D buys his/her products at different stores. When user D purchases
all of his/her products at the same store (-<0G,D = -C>C0;,D and = = 1), the fidelity
ratio equals 1. It equals 0 when he/she purchases the same number of products at
different stores.

The -means [14] andDBSCAN [15] algorithmswere used to perform clustering.
Here we present the results of DBSCAN, as the clusters provided by DBSACAN
had less entity overlap than those provided by  -means. The main advantage of
DBSCAN is that this density-based algorithm is able to capture clusters of any
shape.

Fig. 1 Davies-Bouldin cluster validity index variation with respect to the number of clusters.

We used the Davies-Bouldin (DB) [17] cluster validity index to determine the
number of clusters in our dataset. The Davies-Bouldin index is the average similarity
between each cluster �8 for 8 = 1, ..., : and its most similar counterpart � 9 . It is
calculated as follows:

�� =
1
:

:∑
8=1

<0G
8≠ 9

'8 9 , (3)
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where '8 9 is the similarity measure between clusters calculated as (38 + 3 9 )/X8 9 ,
where 38 (3 9 ) is the the mean distance between objects of cluster �8 (� 9 ) and the
cluster centroid and X8 9 is the distance between the centroids of clusters �8 and � 9 .

Figure 1 illustrates the variation of the Davies-Bouldin cluster validity index
whose lowest (i.e. best) value was reached for our dataset with 6 clusters. The
resulting clusters are represented in Figure 2. After performing the data clustering,
we applied the t-SNE [18] dimensionality reduction method for data visualisation
purposes. Since t-SNE is known to preserve the local structure of the data but not
the global one, we used the PCA initialization parameter to mitigate this issue.

Fig. 2 Clustering results : Clustering obtained with DBSCAN with the best number of clusters
according to the Davies-Bouldin index. Data reduction was performed using t-SNE. The 6 clusters
of customers found by DBSCAN are represented by different symbols.

We have noticed that the users in Cluster 1 (see Fig. 2) are fairly sensitive to
specials and have a high fidelity score, the users in Cluster 2 mostly purchase
products on special in different stores, the users in Cluster 3 seem to be sensitive
to the total price of their shopping baskets, Cluster 4 includes the users who are
sensitive to specials but have a low fidelity score, Cluster 5 includes the users who
are not very attracted by specials but are rather loyal to their favorite store(s), and
the users in Cluster 6 tend to buy products on special and have high fidelity scores.

3 Application of Supervised Machine Learning Methods

To predict the products to be recommended for the current weekly basket, we used
the following supervised machine learning methods: Decision Tree, Random Forest,
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Gradient Boosting Tree, XGBoost, Logistic Regression, Catboost, Support Vector
Machine and Naive Bayes. These methods were used through their scikit-learn
implementations [16]. Due to the lack of large datasets we did not use deep learning
models in our study. We decided to use these classical machine learning methods
because they are usually recommended to work with smaller datasets contrary to
their deep leaning counterparts. Also, deep leaning algorithms usually don’t handle
properly mixed types of features present in our data. Most of the methods we used
are the ensemble methods, i.e. they use multiple replicates to reduce the variance.
The F-score results provided by each method without (using all products available)
and with clustering (using only the products purchased by the cluster members) are
presented in Table 1.

As shown in Table 1, Random Forest outperformed the other competing methods
without and with data clustering, providing the average F-scores of 0.494 and 0.499
(obtained over all users), respectively. Tree-based models relying on gradient boost-
ing performed relatively well and could possibly give better results with a different
data processing. We can also notice that all the methods, except CatBoost, benefited
from the data clustering process.

Table 1 F-scores provided by ML methods without and with clustering of MyGroceryTour users.

Machine learning methods Results without clustering Results with clustering

CatBoost 0.438 0.438
Decision Tree 0.463 0.468
Gradient Boosting Tree 0.488 0.495
Logistic Regression 0.474 0.478
Naive Bayes 0.433 0. 436
Random Forest 0.494 0.499
SVM-RBF 0.392 0.397
XGBoost 0.476 0.481

4 Conclusion

In this paper, we presented a novel recommender system that is intended to predict
the content of the customer’s weekly basket depending on his/her purchase history.
Our system is also able to predict the store(s) where the purchase(s) will take place.
The clustering step allowed us to identify customer profiles and to improve the F-
score result for every tested machine learning model, except CatBoost. Using our
methodology and the new data available onMyGroceryTour, wewere able to improve
the F-score performance by the margin of 0.129, compared to the results obtained
by Tahiri et al. [11]. Our model is able to predict products that will be purchased
again or acquired for the first time by a given user, but it is not yet able to predict the
optimal quantity for each product to be bought. Another important issue is how to
provide plausible recommendations for customers without shopping history (i.e. the
cold start problem). We will tackle these important issues in our future work.
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COVID-19 Pandemic: a Methodological Model
for the Analysis of Government’s Preventing
Measures and Health Data Records

Theodore Chadjipadelis and Sofia Magopoulou

Abstract The study aims to investigate the associations between the government’s
response measures during the COVID-19 pandemic and weekly incidence data (pos-
itivity rate, mortality rate and testing rate) in Greece. The study focuses on the
period from the detection of the first case in the country (26th February 2020) to the
first week of 2022 (08th January 2022). Data analysis was based on Correspondence
Analysis on a fuzzy-coded contingency table, followed by Hierarchical Cluster Anal-
ysis (HCA) on the factor scores. Results revealed distinct time periods during which
interesting interactions took place between control measures and incidence data.

Keywords: hierarchical cluster analysis, correspondence analysis, COVID-19,
evidence-based policy making

1 Introduction

The present study focuses on the period of the COVID-19 pandemic in Greece, from
the detection of the first case of COVID-19 to the first week of 2022. This period
can be divided into five distinct phases. The first phase extends from the beginning
of 2020 until the first lockdown, i.e., from the first case reported in Greece until
the end of the first quarantine period in May 2020. The second phase concerns the
interim period from June to October 2020, when the pandemic indices improved,
and policies were loosened for the opening of tourism. The third phase concerns the
second lockdown and the evolution of the pandemic in the country from November
2020 to April 2021, when the first vaccination period of the adult population took
place. The fourth phase includes the interim period from May 2021 to October
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2021, where a general stabilization of the number of cases occurred, while the last
period refers to a significant increase in the number of cases from November 2021
to January 2022.

Overall, fromMarch 2020 to January 2022, a total of 1,79million cases ofCOVID-
19 were recorded in Greece (Figure 1) and a total of 22,635 deaths. Vaccination
coverage is as of January 2022 over 65% of country’s population, i.e., 7,241,468
fully vaccinated citizens.

Fig. 1 Record of cases of COVID-19 in Greece (March 2020-January 2022).

In this study, a combination of multivariate data analysis methods was employed
to analyze COVID-19-related data so as to assess the quality of decision-making
outputs during the crisis and improve evidence-based decision-making processes.
Section 2 presents the methodology and describes the data sources and the data
analysis workflow. Section 3 presents the study results and Section 4 discusses the
results and proposes methodological tools and presents the paper conclusions.

2 Methodology

2.1 Data

For the study purposes, data were obtained from the Oxford Covid-19 Government
Response Tracker (OxCGRT) and were combined with self-collected Covid-19 data
for Greece [3] daily updated in Greek. The Oxford Covid-19 Government Response
Tracker (OxCGRT) collects publicly available information reflecting government re-
sponse from 180 countries since 1 January 2020 [4]. The tracker is based on data for
23 indicators. In this study, two groups of indicators were considered: Containment&
Closure and Health Systems in the case of Greece. The first group of indicators refers
to “collective” level policies and measures, such as school closures and restriction in
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mobility, while the second refers to “individual” level policies and measures, such as
testing and vaccination. Specifically, the collective level indicators refer to policies
taken by the governments’ and reflect on a collective level on the society: school
closing, workplace closing, cancelation of public events, restrictions on gathering,
closure of public transport, stay at home requirements, internal movement restric-
tions and international travel controls. The health system policies primarily touch
upon the individual level and specifically refer to: public information campaigns,
testing, contact tracing, healthcare facilities, vaccines’ investments, facial coverings,
vaccination and protection of the elderly people. All collective-level indicators (C1 to
C8) were summed to yield a total score (ranging from 0 to 16). Similarly, individual-
level indicators (H1 to H3 and H6 to H8) were summed to compute a total score
(ranging from to 12).

The self-collected data refer to positive cases, number of Covid-19-related deaths,
number of tests and total number of vaccinations administered. These data have been
recorded daily since March 2020 from public announcements by official and verified
sources. A total of 94 time points were considered in the present study, corresponding
to weekly data (Monday was used as a reference). Three quantitative indicators were
derived, a positivity index (#cases / #tests), a mortality index (#deaths / #cases) and a
testing index (#tests / #people). The number of vaccinations is not used in the present
study because the vaccination process began in January 2021 and the administration
of the booster dose began in September 2021. The final data set consisted of five
indicators: two ordinal total scores, and three quantitative indices.

2.2 Data Analysis

A four-step data analysis strategy was adopted. In the first step, the three quantitative
variables (positivity rate, mortality rate and testing rate) were transformed into
ordinal variables, via a method used in [7] (see Step 1) transformation of continuous
variables into ordinal categorical variables, with minimum information loss. Three
ordinal variables were derived. In the second step, the five ordinal variables (i.e., the
three recoded variables and the two ordinal total scores), were fuzzy-coded into three
categories each, using the barycentric coding scheme proposed in [7]. This scheme
has been recently evaluated in the context of hierarchical clustering in [7] and was
applied with the DIAS Excel add-in [6]. Barycentric coding allows us to convert an
m-point ordinal variable into an n-point fuzzy-coded variable [6, 7]. In other words,
the transformation of the three quantitative variables into ordinal variables resulted
in a generalized 0-1 matrix (fuzzy-coded matrix), where for each variable we obtain
the estimated probability for each category. A drawback of the proposed approach is
that the ordinal information in the 5 ordinal variables is lost.

The third step involved the application of Correspondence Analysis (CA) on
the fuzzy-coded table with the 94 weeks as rows and the fifteen fuzzy categories
as columns (see [1] for a similar approach). The number of significant axes was
determined based on percentage of inertia explained and the significant points on each
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axis were determined based on the values of two statistics that accompany standard
CA output; quality of representation (COR) greater than 200 and contribution (CTR)
greater than 1000/(n + 1), where n is the total number of categories (i.e., 15 in our
case). In the final step, Hierarchical Cluster Analysis (HCA) using Benzecri’s chi-
squared distance and Ward’s linkage criterion [2, 8] was employed to cluster the
94 points (weeks) on the CA axes obtained from the previous step. The number of
clusters was determined upon the empirical criterion of the change in the ratio of
between-cluster inertia to total inertia, when moving from a partition with r clusters
to a partition with r – 1 cluster [8]. Lastly, we interpret the clusters after determining
the contribution of each indicator to each cluster. All analyses were conducted with
the M.A.D. [Méthodes de l’Analyse des Données] software [5].

3 Results

Correspondance Analysis resulted in four significant axes, which explain 74.91% of
the total inertia (Figure 2). For each axis, we describe the main contrast between
groups of categories based on their coordinates, COR and CTR values (Figure 3).
“Low and moderate mortality rates” and “high factor testing rates” define a pole on
the 1st axis, which is opposed to “average and high levels of “individual” measures”.
On the second axis, “low positivity rate” and “average levels of collective measures”
define a pole, while “average and high positivity rate” and “high levels of collective
measures” define the opposite pole. The third axis is characterized by “moderate
and high mortality rate”, “high levels of collective measures” and “average levels
of individual measures” that are opposed to “average levels of collective measures”.
On the fourth axis, “average levels of collective measures” are opposed to “average
testing rate” and “high levels of collective measures”.

Fig. 2 Explained inertia by axis.
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Fig. 3 Category coordinates on the four CA axes (#G), quality of representation (COR) and
contribution (CTR). COR values greater than 200 and CTR values greater than 1000 / 16 = 62.5
are shown in yellow. Positive coordinates are shown in green and negative in pink.

Hierarchical Cluster Analysis on the factor scores resulted in seven clusters using
the empirical criterion for cluster determination (see Section 2.2). The corresponding
dendrogram is shown in Figure 4. The seven nodes in the figure that correspond to
the seven clusters are 182, 181, 175, 177, 171, 181, 133 and 179. Cluster content
reflects the different periods (phases) presented in the introductory section.

Fig. 4 Dendrogram of the HCA.
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The first cluster (182) combines data points from March 2020, the onset of the
pandemic with data points from a period following the summer of 2020 (October
and November). This cluster is characterized by high positivity rate, low testing
rate, high levels of “collective” measures (containment & closure) and low levels of
“individual” measures (health system). The second cluster (181) contains data points
from April and May 2020 and is characterized by low positivity rate, average to high
mortality rate, low testing rate, high levels of “collective” measures (containment &
closure) and average levels of “individual” measures (health system). The third clus-
ter (175) combines summer months of 2020 and 2021. This cluster is characterized
by low positivity rate, low testing rate and average levels of “collective” measures
(containment & closure). The fourth cluster (177) marks the period of December
2020 and the period of spring of 2021, with average positivity rate and high levels of
“collective” measures (containment & closure). The fifth cluster (171) refers to the
period from December 2020 to February 2021, but also includes August 2021, with
high levels of “collective” measures (containment & closure). The sixth cluster (133)
refers to the period following the summer of 2021 (September and October 2021).
In this cluster, average positivity rates were observed but also strict containment and
closure measures.

Lastly, the seventh cluster (179) refers toNovember andDecember 2021, including
also January 2022, with high positivity and high testing rates, while high levels of
containment and closure and health system measures were observed. Figure 5 shows
the contributions of each indicator in each cluster.

Fig. 5 Cluster description (contribution values of the indicators in each cluster - node).

4 Discussion

Based on the study results, we can argue that, when it comes to measures and
real time data following a situation such as the pandemic, “the chicken and egg”
dilemma arises. The question is whether “collective” and “individual” measures
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affect daily incidence data or the inverse (i.e., that the daily data lead to measures).
We conclude that in fact the two should be perceived as working in conjunction
and not independently from one another. The analysis showed that lower positivity
rate is accompanied by average levels of measures from the government at both
the “individual” and the “collective” level. Furthermore, higher positivity rate is
accompanied by higher levels of measures, as a response. With regard to mortality
rate, we observed that highermortality invokes higher levels of “collective”measures
and average levels of “individual” measures, whereas average levels of “collective”
measures are associated with higher mortality rate.

It is therefore evident that when it comes to decision making in crisis situations, a
systematic collection, analysis and use of data is linked to more effective government
response overall. Therefore, evidence-based policy making should be linked to crisis
management. This paper presents a first attempt to capture an ongoing phenomenon
and therefore it is crucial that the collection and analysis of datawill be complemented
until the end of the phenomenon.
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pcTVI: Parallel MDP Solver Using a
Decomposition into Independent Chains

Jaël Champagne Gareau, Éric Beaudry, and Vladimir Makarenkov

Abstract Markov Decision Processes (MDPs) are useful to solve real-world proba-
bilistic planning problems. However, finding an optimal solution in anMDP can take
an unreasonable amount of time when the number of states in the MDP is large. In
this paper, we present a way to decompose an MDP into Strongly Connected Com-
ponents (SCCs) and to find dependency chains for these SCCs. We then propose a
variant of the Topological Value Iteration (TVI) algorithm, called parallel chained
TVI (pcTVI), which is able to solve independent chains of SCCs in parallel lever-
aging modern multicore computer architectures. The performance of our algorithm
was measured by comparing it to the baseline TVI algorithm on a new probabilistic
planning domain introduced in this study. Our pcTVI algorithm led to a speedup
factor of 20, compared to traditional TVI (on a computer having 32 cores).

Keywords: Markov decision process, automated planning, strongly connected com-
ponents, dependancy chains, parallel computing

1 Introduction

Automated planning is a branch of Artificial Intelligence (AI) aiming at finding
optimal plans to achieve goals. One example of problems studied in automated
planning is the electric vehicle path-planning problem [1]. Planning problems with
non-deterministic actions are known to be much harder to solve. Markov Decision
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Processes (MDPs) are generally used to solve such problems leading to probabilistic
models of applicable actions [2].

In probabilistic planning, a solution is generally a policy, i.e., amapping specifying
which action should be executed in each observed state to achieve an objective.
Usually, dynamic programming algorithms such as Value Iteration (VI) are used to
find an optimal policy [3]. Since VI is time-expensive, many improvements have
been proposed to find an optimal policy faster, using for example the Topological
Value Iteration (TVI) algorithm [4]. However, very large domains often remain out
of reach. One unexplored way to reduce the computation time of TVI is by taking
advantage of the parallel architecture of modern computers and by decomposing an
MDP into independent parts which could be solved concurrently.

In this paper, we show that state-of-the-art MDP planners such as TVI can run
an order of magnitude faster when considering task-level parallelism of modern
computers. Our main contributions are as follows:

• An improved version of the TVI algorithm, parallel-chained TVI (pcTVI), which
decomposes MDPs into independent chains of strongly connected components
and solves them concurrently.

• A new parametric planning domain, chained-MDP, and an evaluation of pcTVI’s
performance on many instances of this domain compared to the VI, LRTDP [5]
and TVI algorithms.

2 Related Work

Many MDP solvers are based on the Value Iteration (VI) algorithm [3], or more
precisely on asynchronous variants of VI. In asynchronous VI, MDP states can be
backed up in any order and do not need to be considered the same number of times.
One way to take advantage of this is by assigning a priority to every state and by
considering them in priority order.

Several state-of-the-artMDP algorithms have been proposed to increase the speed
of computation. Many of them are able to focus on the most promising parts of MDP
through heuristic search algorithms such as LRTDP [5] or LAO* [6]. Some other
MDP algorithms use partitioning methods to decompose the state-space in smaller
parts. For example, the P3VI (Partitioned, Prioritized, Parallel Value Iteration) al-
gorithm partitions the state-space, uses a priority metric to order the partitions in an
approximate best solving order, and solves them in parallel [7]. The biggest disad-
vantage of P3VI is that the partitioning is done on a case-by-case basis depending on
the planning domain, i.e., P3VI does not include a general state-space decomposition
method. The inter-process communication between the solving threads also incurs
an overhead on the computation time. The more recent TVI (Topological Value Iter-
ation) algorithm [4] also decomposes the state-space, but does it by considering the
topological structure of the underlying graph of the MDP, making it more general
than P3VI. Unfortunately, to the best of our knowledge, no parallel version of TVI
has been proposed in the literature.
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3 Problem Definition

There exist different types of MDP, including Finite-Horizon MDP, Infinite-Horizon
MDP and Stochastic Shortest Path MDP (SSP-MDP) [2]. The first two of them can
be viewed as special cases of SSP-MDP [8]. In this work, we focus on SSP-MDPs,
which we describe formally in Definition 1 below.

Definition 1 A Stochastic Shortest Path MDP (SSP-MDP) is given by a tuple
((, �, ), �, �), where:

• ( is a finite set of states;
• � is a finite set of actions;
• ) : ( × �× ( → [0, 1] is a transition function, where ) (B, 0, B′) is the probability

of reaching state B′ when applying action 0 while in state B;
• � : ( × � → R+ is a cost function, where � (B, 0) gives the cost of applying the

action 0 while in state B;
• � ⊆ ( is the set of goal states (which can be assumed to be sink states).

We generally search for a policy c : ( → � that tells us which action should be
executed at each state, such that an execution following the actions given by c until
a goal is reached has a minimal expected cost. This expected cost is given by a value
function + c : ( → R. The Bellman Optimality Equations are a system of equations
satisfied by any optimal policy.

Definition 2 The Bellman Optimality Equations are the following:

+ (B) =


0, if B ∈ �,
min
0∈�

[
� (B, 0) + ∑

B′∈(
) (B, 0, B′)+ (B)

]
, otherwise.

The expression between square brackets is called the Q-value of a state-action pair:

&(B, 0) = � (B, 0) +
∑
B′∈(

) (B, 0, B′)+ (B).

When an optimal value function +★ has been computed, an optimal policy c★
can be found greedily:

c★(B) = argmin0∈�&
★(B, 0).

Most MDP solvers are based on dynamic programming algorithms like Value
Iteration (VI), which update iteratively an arbitrarily initialized value function until
convergence with a given precision n . In the worst case, VI needs to do |( | sweeps of
the state space, where one sweep consists in updating the value estimate of every state
using the Bellman Optimality Equations. Hence, the number of state updates (called
a backup) is O(|( |2). When the MDP is acyclic, most of these backups are wasteful,
since the MDP can in this situation be solved using only |( | backups (ordered in
reverse topological order), thus allowing one to find an optimal policy in O(|( |) [8].
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4 Parallel-chained TVI

In this section, we describe an improvement to the TVI algorithm, named pcTVI
(Parallel-Chained Topological Value Iteration), which is able to solve an MDP in
parallel (as P3VI). pcTVI uses the decomposition proposed by TVI, known to give
good performance on many planning domains. We start by summarizing how the
original TVI algorithm works.

First, TVI uses Kosaraju’s graph algorithm on a given MDP to find the strongly
connected components (SCCs) of its graphical structure (the graph corresponding
to its all-outcomes determinization).The SCCs are found by Kosaraju’s algorithm
in reverse topological order, which means that for every 8 < 9 , there is no path
from a state in the 8th SCC to a state in the 9 th SCC. This property ensures that
every SCC can be solved separately by VI sweeps if previous SCCs (according to
the reverse topological order) have already been solved. The second step of TVI is
thus to solve every SCC one by one in that order. Since TVI divides the MDP in
multiple subparts, it maximizes the usefulness of every state backup by ensuring
that only useful information (i.e., converged state values) is propagated through the
state-space.

Unfortunately, TVI can only solve one SCC at a time. Since modern computers
havemany computing units (cores) which canwork in parallel, we could theoretically
solve many SCCs in parallel to greatly reduce computation time. Instead of choosing
SCCs to solve in parallel arbitrarily or using a priority metric (as in P3VI), which
incur a computational overhead to propagate the values between the threads, we
want to consider their topological order (as in TVI) to minimize redundant or useless
computations.Oneway to share thework between the processes is to find independent
chains of SCCs which can be solved in parallel. The advantage of independent chains
is that no coordination and communication is needed between the SCCs, which both
removes some running-time overhead and simplifies the implementation.

The Parallel-Chained TVI algorithm we propose (Algorithm 1) works as follows.
First, we find the graph � corresponding to the graphical structure of the MDP,
decompose it into SCCs, and find the reverse topological order of the SCCs (as in
TVI, but we use Tarjan’s algorithm instead of Kosaraju’s algorithm since it is about
twice as fast). We then build the condensation of the graph �, i.e., the graph �2
whose vertices are SCCs of �, where an edge is present between two vertices B221
and B222 if there exists an edge in � between a state B1 ∈ B221 and a state B2 ∈ B222.
We also store the reversed edges in�2 and a counter 2B22 on every vertex B22 which
indicates how many incoming neighbors have not yet been computed. We use this
(usually small) graph�2 to detect which SCCs are ready to be considered (the SCCs
whose incoming neighbors have all been determined with precision n , i.e., the SCCs
whose associated counter 2B22 is 0). When a new SCC is ready, it is inserted into a
work queue from which the waiting threads acquire their next task.
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Algorithm 1 Parallel-Chained Topological Value Iteration
1: procedure pcTVI(" : MDP, C: Number of threads)
2: ⊲ Find the SCCs of "
3: � ← Graph(" ) ⊲ � implicitly shares the same data structures as "
4: (��B ← Tarjan(�) ⊲ SCCs are found in reverse topological order
5:
6: ⊲ Build the graph of SCCs of �
7: �2 ← GraphCondensation(�, (��B)
8:
9: ⊲ Solve in parallel independent SCCs
10: %>>; ← CreateThreadPool(C) ⊲ Create C threads
11: + ← NewValueFunction() ⊲ Arbitrarily initialized; Shared by all threads
12: & ← CreateQueue() ⊲ Shared by all threads
13: Insert(&,Head((��B)) ⊲ The goal SCC is inserted in the queue
14: while NotEmpty(&) do ⊲ Only one thread runs this loop
15: B22 ← ExtractNextItem(&)
16: for all =486ℎ1>A ∈ Neighbors(B22) do
17: Decrement NumIncomingNeighbors(=486ℎ1>A )
18: if NumIncomingNeighbors(=486ℎ1>A ) = 0 then
19: AssignTaskToAvailableThread(%>>;, PartialVI(", + , B22))
20: Push(&, B22) ⊲ Neighbors of B22 are ready to be considered next
21: end if
22: end for
23: end while
24:
25: ⊲ Compute and return an optimal policy using the computed value function
26: Π ← GreedyPolicy(+ )
27: return Π
28: end procedure

5 Empirical Evaluation

In this section, we evaluate empirically the performance of pcTVI, comparing it to the
three following algorithms: (1) VI – the standard dynamic programming algorithm
(here we use its asynchronous round-robin variant), (2) LRTDP – a well-known
heuristic search algorithm, and (3) TVI – the Topological Value Iteration algorithm
described in Section 4. In the case of LRTDP, we carried out the admissible and
domain-independent ℎmin heuristic, first described in the original paper introducing
LRTDP [5]:

ℎmin (B) =


0, if B ∈ �.
min
0∈�B

[
� (B, 0) + min

B′∈BD220 (B)
+ (B′)

]
, otherwise,

where �B denotes the set of applicable actions in state B and BD220 (B) is the set of
successors when applying action 0 at state B. The four competing algorithms (VI,
TVI, LRTDP and pcTVI) were implemented in C++ by the authors of this paper and
compiled using the GNU g++ compiler (version 11.2). All tests were performed on a
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computer equippedwith four Intel Xeon E5-2620V4 processors (each of them having
8 cores at 2.1 GHz, for a total of 32 cores). For every test domain, we measured
the running time of the four compared algorithms carried out until convergence to
an n-optimal value function (we used n = 10−6). Every domain was tested 15 times
with randomly generated MDP instances. To minimize random factors, we report
the median values obtained over these 15 MDP instances.

Since there is no standard MDP domain in the scientific literature suitable to
benchmark a parallel MDP solver, we propose a new general parametric MDP
domain that we use to evaluate the algorithms. This domain, which we call chained-
MDP, uses 5 parameters: (1) : , the number of independent chains {21, 22, . . . , 2: } in
the MDP; (2) =B22 , the number of SCCs {B228,1, B228,2, . . . , B228,=B22 } in every chain
28; (3) =B?B , the number of states per SCC; (4) =0 the number of applicable actions
per state, and (5) =4 the number of probabilistic effects per action. The possible
successors BD22(B) of a state B in B228, 9 are states in B228, 9 and either the states
in B228, 9+1 if it exists, or the goal state otherwise. When generating the transition
function of a state-action pair (B, 0), we sampled =4 states uniformly from BD22(B)
with random probabilities. In each of our tests, we used =B22 = 2, =0 = 5 and =4 = 5.
A representation of a Chained-MDP instance is shown in Figure 1.

S A

c1

scc1,1 scc1,2 scc1,3 scc1,4

c2

scc2,1 scc2,2 scc2,3 scc2,4

c3

scc3,1 scc3,2 scc3,3 scc3,4

Fig. 1 A chained-MDP instance where =2 = 3 and =B22 = 4. Each ellipse represents a strongly
connected component.

Figure 2 presents the obtained results for the Chained-MDP domain when varying
the number of states and fixing the number of chains (32). We can observe that when
the number of states is small, pcTVI does not provide an important advantage over
the existing algorithms since the overhead of creating and managing the threads is
taking most of the possible gains. However, as the number of states increases, the gap
in the running time between pcTVI and the three other algorithms increases. This
indicates that pcTVI is particularly useful on very large MDPs, which are usually
needed when considering real-world domains.

Figure 3 presents the obtained results for the same Chained-MDP domain when
varying the number of chains and fixing the number of states (1M). When the
number of chains increases, the total number of SCCs implicitly increases (which
also implies the number of states per SCC decreases). This explains why each tested
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Fig. 2 Average running times (in s) for the Chained-MDP domain with varying number of states
and fixed number of chains (32).
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Fig. 3 Average running times (in s) for the Chained-MDP domain with varying number of chains
and fixed number of states (1M).

algorithms becomes faster (TVI becomes faster by design, since it solves SCCs
one-by-one without doing useless state backups, and VI and LRTDP become faster
due to an increased locality of the considered states in memory, which improves
cache performance). The performance of pcTVI increases as the number of chains
increases (for the same reason as the others algorithms, but also due to increased
parallelization opportunities). We can also observe that for domains with 4 chains
only, pcTVI still clearly outperforms the other methods. This means that pcTVI does
not need a highly parallel server CPU and can be used on standard 4-core computer.
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6 Conclusion

The main contributions of this paper are two-fold. First, we presented a new algo-
rithm, pcTVI, which is, to the best of our knowledge, the first MDP solver that takes
into account both the topological structure of the MDP (as in TVI) and the parallel
capacities of modern computers (as in P3VI). Second, we introduced a new para-
metric planning domain, Chained-MDP, which models any situation where different
strategies (corresponding to a chain) can reach a goal, but where, once committed
to a strategy, it is not possible to switch to a different one. This domain is ideal to
evaluate the parallel performance of an MDP solver. Our experiments indicate that
pcTVI outperforms the other competing methods (VI, LRTDP, and TVI) on every
tested instance of the Chained-MDP domain. Moreover, pcTVI is particularly effec-
tive when the considered MDP has many SCC chains (for increased parallelization
opportunities) of large size (for decreased overhead of assigning small tasks to the
threads). As future work, we plan to investigate ways of pruning provably subopti-
mal actions, which would allow more SCCs to be found. While this paper focuses
on the automated planning side of MDPs, the proposed optimization and parallel
computing approaches could also be applied when using MDPs with Reinforcement
Learning and other ML algorithms.
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Three-way Spectral Clustering

Cinzia Di Nuzzo and Salvatore Ingrassia

Abstract In this paper, we present a spectral clustering approach for clustering
three-way data. Three-way data concern data characterized by three modes: = units,
? variables, and C different occasions. In other words, three-way data contain a C × ?
observedmatrix for each statistical observation. The units generated by simultaneous
observation of variables in different contexts are usually structured as three-way data,
so each unit is basically represented as a matrix. In order to cluster the = units in  
groups, the spectral clustering application to three-way data can be a powerful tool
for unsupervised classification. Here, one example on real three-way data have been
presented showing that spectral clustering method is a competitive method to cluster
this type of data.

Keywords: spectral clustering, kernel function, three-way data

1 Introduction

Spectral clustering methods are based on the graph theory, where the units are
represented by the vertices of an undirected graph and the edges are weighted by
the pairwise similarities coming from a suitable kernel function, so the clustering
problem is reformulated as a graph partition problem, see e.g. [16, 6]. The spectral
clustering algorithm is a very powerful method for finding non-convex clusters of
data, moreover, it is a handy approach for handling high-dimensional data since it
works on a transformation of the raw data having a smaller dimension than the space
of the original data.
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Three-way data derives from the observation of various attributes measured on a
set of units in different situations; some examples are longitudinal data on multiple
response variables and multivariate spatial data. Three-way data can also derive
from temporal measurements of a feature vector, thus having the dataset composed
of three modes: = units (matrices), ? variables (columns), and C times (rows). Clus-
tering of three-way data has attracted a growing interest in literature, see e.g. [14],
[1]; model-based clustering of three-way data has been introduced by [15] in the
framework of matrix-variate normal mixtures; recent papers include [9] handle on
parsimonious models for modeling matrix data; [11] introduce two matrix-variate
distributions, both the elliptical heavy-tailed generalization of the matrix-variate
normal distribution; [12] deal with three-way data clustering using matrix-variate
cluster-weighted models (MV-CWM); and, [13] consider an application to educa-
tional data via mixtures of parsimonious matrix-normal distribution.

In this paper, we present a spectral clustering approach for clustering three-way
data and a suitable kernel function between matrices is introduced. As a matter of
fact, the data matrices represent the vertices of the graph, consequently, the edges
must be weighted by a single value.

The rest of the paper is organized as follows: in Section 2 the spectral clustering
method is summarized; in Section 3 a method to select the parameters in the spectral
clustering algorithm is described; in Section 4 the three-way spectral clustering with
a new kernel function are introduced; in Section 5 an application based on real
three-way data is presented. Finally, in Section 5 we provide concluding remarks.

2 Spectral Clustering

Spectral clustering algorithm for two-way data has been described in [8, 16, 6]. Here,
we summarize the main step of this algorithm.

Let + = {x1, x2, . . . , x=} be a set of points in X ⊆ R? . In order to group the data
+ in  cluster, the first step concerns the definition of a symmetric and continuous
function ^ : X × X → [0,∞) called the kernel function. Afterwards, a similarity
matrix , = (|8 9 ) can be assigned by setting |8 9 = ^(x8 , x 9 ) ≥ 0, for x8 , x 9 ∈ X.
and finally the normalized graph Laplacian matrix !sym ∈ R=×= is introduced

!sym = � − �−1/2,�−1/2, (1)

where � = diag(31, 32, . . . , 3=) is the degree matrix and 38 is the degree of the
vertex x8 defined as 38 =

∑
9≠8 |8 9 and � denotes the = × = identity matrix. The

Laplacian matrix !sym is positive semi-definite with = non-negative eigenvalues. For
a fixed  � =, let {$1, . . . , $ } be the eigenvectors corresponding to the smallest  
eigenvalues of !sym. Then, the normalized Laplacian embedding in the  principal
subspace is defined as the map Φ� : {x1, . . . , x=} → R given by

Φ� (x8) = (W18 , . . . , W 8), 8 = 1, . . . , =,
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where W18 , . . . , W 8 are the 8-th components of $1, . . . , $ , respectively. In other
words, the function Φ� (·) maps the data from the input space X to a feature space
defined by the  principal subspace of !sym. Afterwards, let_ = (y′1, . . . , y

′
=) be the

=× matrix given by the embedded data in the feature space, where y8 = Φ� (x8) for
8 = 1, . . . , =. Finally, the embedded data_ are clustered according to some clustering
procedure; usually, the :-means algorithm is taken into account in literature. How-
ever, to this end Gaussian mixtures have been proposed because they yield elliptical
cluster shapes, i.e. more flexible cluster shapes with respect to the :-means, see [2].
Finally, we point out that the performances of other mixture models based on non-
Gaussian component densities have been analyzed, but Gaussian mixture models
can be considered as a good trade-off between model simplicity and effectiveness,
see [3] for details.

3 A Graphical Approach for Parameter Selection

According to spectral clustering algorithm introduced in Section 2, the spectral
approach requires to set: i) the number of clusters  , ii) the kernel function ^ (with
the corresponding parameter). In order to select these quantities, in the following we
summarize the method proposed in [4].

To begin with, we point out that the choice of the kernel function affects the entire
data structure in the graph, and consequently, the structure of the Laplacian matrix
and its eigenvectors. An optimal kernel function should lead to a similarity matrix
, having (as much as possible) diagonal blocks: in this case, we get well-separated
groups and we are also able to understand the number of groups in that data set
by counting the number of blocks. For the sake of simplicity, we consider here the
self-tuning kernel introduced by [17]

^(x8 , x 9 ) = exp

(
−
‖x8 − x 9 ‖2

n8n 9

)
(2)

with n8 = ‖x8 − xℎ ‖, where xℎ is the ℎ-th neighbor of point x8 (similarly for n 9 ).
This function allow to get a similarity matrix that does not depend on any parameter
so that the algorithm of spectral clustering will be based on the pairwise proximity
between units. On the contrary, we need to select the ℎ-th neighbor of the unit in (2).

The main novelty of the joint-graphical approach concerns the analysis of some
graphic features of the Laplacian matrix including the shape of the embedded space.
Indeed, the embedded data provide useful information for the clustering, in particular
the main results in [10] and [5] allow to deduce that if the embedded data assume a
cones structure, then the number of clusters is equal to the number of the cones/spikes
in the feature space; furthermore, a clearer clustering structure emerges when the
spikes are narrower and well separated.

The idea behind the graphical approach is to select the number of groups and the
parameter ℎ in the kernel function from a joint analysis of three main characteristics:
the plot of the Laplacian matrix; the maxima values of the eigengaps between two
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consecutive eigenvalues; the scatter plot of the mapped data in the feature space and
in particular the number of spikes counted in the embedded data space.

We remark that we cannot analyze all possible values of ℎ ∈ {1, 2, . . . , =−1} and
hence we choose a suitable subset H ⊂ {1, 2, . . . , = − 1}, in particular we choose
H = {1%, 2%, 5%, 10%, 15%, 20%} × = ⊂ {1, 2, . . . , = − 1}, and select ℎ ∈ H , see
the following procedure for details.

Parameter selection ( and ℎ)

Input: data set + , kernel function ^,H .

1. For each ℎ inH , compute the matrix "B and analyze the block structure in the
greyscale plot of "B .

2. For each ℎ in H , plot the embedded data in the feature space and analyze the
shape of the cone structure.

3. If the number of blocks in Step 1 is equal to the number of spikes in Step 2, then
set  equal to the number of blocks. Go to Step 5.

4. Otherwise, analyze the eigengap plot.

a. If this plot shows a unique maximum eigengap for each ℎ ∈ H , then set  
according to this maximum. Go to Step 5.

b. If this plot shows multiple maxima for different ℎ ∈ H , select the number
of clusters  not to be smaller than the number of tight spikes in the
corresponding plot of the embedded data.

5. Select ℎ ∈ H such that the clearest orthogonal data structure emerges from the
plot of the embedded data.

6. Stop.

Output:  , ℎ.

4 Three-way Spectral Clustering

In this section, we propose a spectral approach for clustering three-way data. Three-
way data consists of a data set referring to the same sets of units and variables,
observed in different situations, i.e., a set of multivariate matrices, that can be
organized in three modes: = units, ? variables, and C situations. Therefore, given
= matrices that represent the vertices of the graph, each matrix is composed by ?
columns that represent our variables and C rows that represent the time or another
feature. So we have a tensor of dimension =× C× ?, thus the dataset is a tensor {^}8B:
for 8 = 1, . . . , =, B = 1, . . . , C, : = 1, . . . , ?.

We define a distance function X" between two matrices �, � ∈ R?×C such that
X" : 'C×? × 'C×? → [0, +∞) is defined as
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X" (�, �) := ‖� − �‖� =

√√√ C∑
B=1

?∑
:=1
|0B: − 1B: |2 (3)

where ‖ · ‖� is Frobenius norm1. Thus the distance between two units in the matrix
data ^ is equal to

X" (-81B: , -82B: ) =

√√√ C∑
B=1

?∑
:=1
|-81B: − -82B: |2, for 81, 82 = 1, . . . , =. (4)

For simplicity, in the following, we denote X" (-81B: , -82B: ) by X" (81, 82). Moreover,
we define the three-way self-tuning kernel function as

^( : ^ × ^ → [0, +∞), ^( (81, 82) = exp
(
−X" (81, 82)

n81n82

)
(5)

where n81 and n82 need to be selected like in the kernel defined in (2).
Afterwards, we compute the similarity matrix, given by |8182 = ^(81, 82), so that

we can apply the spectral clustering algorithm.
Finally, we point out that, differently from approaches based on mixtures of

matrix-variate data, the number of variables of the data set is not a critical issue
because the spectral clustering algorithm is based on distance measures.

5 A Real Data Application

We apply the three-way spectral clustering to the analysis of the Insurance data set,
available in the splm R package. This dataset was initially introduced by [7] and
has recently been analyzed by [12]. The goal is to study the consumption of non-life
insurance during the years 1998-2002 in the 103 Italian provinces, so C = 5 and
= = 103. As regards the number of variables, we consider all the variables contained
in the data set, so ? = 11. Thus, we have 103 matrices of dimensions 5 × 11.

The 103 Italian provinces are divided into north-west (24 provinces), north-
east (22 provinces), center (21 provinces), south (23 provinces), and islands (13
provinces).

As regard the choice of  and ℎ, we consider the graphical approach introduced
in Section 3. In Figure 1 the geometric features of spectral clustering are plotted
as ℎ varies. From the number of blocks of the Laplacian matrix (Figure 1-0)), the
first maximum eigengap (Figure 1-1)) and the number of spikes in the feature space
(Figure 1-2)), we deduce that the number of clusters is  = 2. For the selection of

1 In general, given a matrix � ∈ R=×<, with � = (08 9 ) for 8 = 1, . . . , = and 9 = 1, . . . , <. The
Frobenius norm is defined by

‖�‖� :=

√√√ <∑
9=1

=∑
8=1
|08 9 |2.
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Fig. 1 Insurance data. Spectral clustering features: 0) plot of Laplacian matrix in greyscale; 1)
plot of the first eight eigengap values; 2) scatterplot of the embedded data along with directions
($1,$2) .
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Table 1 Insurance data. Table of spectral clustering result.

Cluster 1
NORTHWEST (24 provinces)
NORTH EAST (22 provinces)

CENTRE (15 provinces)

Cluster 2
CENTRE (6 provinces)
SOUTH (23 provinces)
ISLANDS (13 provinces)

ℎ we choose indifferently ℎ = 15 and ℎ = 21 because in these cases the maximum
eigengap highlights the maximum values corresponding to  = 2. In Table 1 the
clustering results are presented. This table shows that only 6 center provinces are
classified together with the southern provinces. But to be sure that these provinces
are neighboring the south provinces, let us analyze spectral clustering results on the
map of Italy. Figure 2-0) illustrates the partition deriving from spectral clustering
in the political map of Italy, where Italian regions are described by the yellow lines,
while the provinces are by the black lines. The result shows a clear separation
between center-north Italy and south-insular Italy, in fact, the center-north has a
level of insurance penetration close to the European averages, while the South is
less developed economically. However, the Massa-Carrara province should belong
to the centre-north group. Moreover, we remark that the Rome province, being the
capital of Italy, has one socio-economic development comparable to that of north
Italy justifying belonging to the centre-north group.

Furthermore, in Figure 2-1) we also represented the partition produced by MN-
CWM proposed in [12], we note that the two clustering results are very similar to
each other and differ only for one province of central Italy (precisely for the province
of Terni). It should also be emphasized that the dataset analyzed by [12] is different
from the one analyzed here, since, to avoid excessive parameterization of the models,
the authors select only ? = 5 variables in the data set.

0) 1)

Fig. 2 Insurance data. 0) Three-way spectral clustering; 1) Method proposed by [12].
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6 Conclusion

In this paper, a spectral approach to cluster three-way data has been proposed. So
the data are organized in a tensor and the vertices in the graph are represented by
the matrices of dimension C × ?. In order to weigh the matrices in the graph, a
kernel function based on the Frobenius norm between the matrix difference has been
introduced. The performance of the spectral clustering algorithm has been shown in
one real three-way data set. Ourmethod is competitivewith respect to other clustering
methods proposed in the literature to performmatrix-data clustering. Finally, in order
to provide suggestions for future research, other kernel functions can be introduced
considering different distances with respect to the Frobenius norm.
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