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The big data paradigm presents a number of challenges for university curricula 
on big data or data science related topics. On the one hand, new research, tools 
and technologies are currently being developed to harness the increasingly large 
quantities of data being generated within our society. On the other, big data 
curricula at universities are still based on the computer science knowledge systems 
established in the 1960s and 70s. The gap between the theories and applications is 
becoming larger, as a result of which current education programs cannot meet the 
industry’s demands for big data talents. 

This series aims to refresh and complement the theory and knowledge framework 
for data management and analytics, reflect the latest research and applications 
in big data, and highlight key computational tools and techniques currently in 
development. Its goal is to publish a broad range of textbooks, research monographs, 
and edited volumes that will: 

– Present a systematic and comprehensive knowledge structure for big data and 
data science research and education 

– Supply lectures on big data and data science education with timely and practical 
reference materials to be used in courses 

– Provide introductory and advanced instructional and reference material for 
students and professionals in computational science and big data 

– Familiarize researchers with the latest discoveries and resources they need to 
advance the field 

– Offer assistance to interdisciplinary researchers and practitioners seeking to 
learn more about big data 

The scope of the series includes, but is not limited to, titles in the areas of 
database management, data mining, data analytics, search engines, data integration, 
NLP, knowledge graphs, information retrieval, social networks, etc. Other relevant 
topics will also be considered.
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Preface 

Background 

Knowledge fusion is an important stage of knowledge management, which connects, 
combines and updates the knowledge from different resources. With the advent 
of the era of big data, knowledge graph (KG), as an effective means to extract 
structured knowledge from massive unstructured data and stocked structured data, 
becomes an essential part of knowledge management. KGs that are constructed by 
data-driven techniques usually come from different sources and have low coverage. 
Hence, it calls for establishing the connections among these individually constructed 
KGs using knowledge fusion techniques, which can thus achieve the augmentation 
and update of KGs. During the aforementioned process, entity alignment (EA) 
plays a crucial role. It aims to detect the equivalent entities in different KGs 
and connect heterogeneous KGs using these entities as anchors, which lays the 
foundation for the subsequent knowledge unification and update process. Currently, 
with the advancement of deep learning techniques, representation learning-based 
EA methods have become the mainstream approach. 

Recent years have witnessed a rapid increase in the number of entity alignment 
frameworks, while the relationships among them remain unclear. This book aims 
to fill that gap by elaborating the concept and categorization of entity align-
ment, reviewing recent advances in entity alignment approaches, and introducing 
novel scenarios and corresponding solutions. Specifically, the book includes com-
prehensive evaluations and detailed analyses of state-of-the-art entity alignment 
approaches and strives to provide a clear picture of the strengths and weaknesses 
of the currently available solutions, so as to inspire follow-up research. In addition, 
it identifies novel entity alignment scenarios and explores the issues of large-
scale data, long-tail knowledge, scarce supervision signals, lack of labeled data, 
and multimodal knowledge, offering potential directions for future research. The 
book offers a valuable reference guide for junior researchers, covering the latest 
advances in entity alignment, and a valuable asset for senior researchers, sharing 
novel entity alignment scenarios and their solutions. Accordingly, it will appeal to

v
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a broad audience in the fields of knowledge bases, database management, artificial 
intelligence, and big data. 

Content Organization 

The book consists of nine chapters, which can be divided into three parts. 
Part I presents the background and overview of entity alignment and then dis-

cusses the state-of-the-art entity alignment solutions. Specifically, Chap. 1 presents 
a brief introduction to the entity alignment task. Besides, it also introduces some 
works that are closely related to entity alignment, as well as frequently used datasets. 
Chapter 2 conducts a comprehensive evaluation and detailed analysis of state-of-the-
art EA approaches. 

Part II introduces recent advances of entity alignment approaches, including 
progresses on representation learning (cf. Chap. 3) and alignment inference (cf. 
Chap. 4). 

Part III introduces novel scenarios of entity alignment and corresponding solu-
tions, including large-scale data, long-tail knowledge, scarce supervision signals, 
lack of labeled data, and multimodal knowledge, offering potential directions for 
future research. 

Chapter 5 targets at entity alignment at scale, and puts forward a novel solution 
that can manage large-scale KG pairs and meanwhile achieve promising alignment 
performance. 

Chapter 6 identifies the deficiency of existing EA methods in aligning long-tail 
entities, and approaches the limit by introducing a complementary signal from entity 
names in the form of concatenated power mean word embeddings and conceiving an 
effective way via degree-aware co-attention mechanism to dynamically fuse name 
and structural signals. 

Chapter 7 tackles EA with scarce supervision. It puts forward a reinforced active 
entity alignment framework to select the entities to be manually labeled with the 
aim of enhancing alignment performance with minimal labeling efforts. 

Chapter 8 identifies the deficiencies of existing EA methods, i.e., requiring 
labeled data and working under the closed-domain setting, and introduces an 
unsupervised EA framework to deal with unmatchable entities. 

Chapter 9 introduces a novel multi-modal entity alignment strategy, i.e., hyper-
bolic multi-modal entity alignment, which extends the Euclidean representation to 
hyperboloid manifold. 

Changsha, China Xiang Zhao 
May 2023 Weixin Zeng 

Jiuyang Tang
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Concept and Categorization



Chapter 1 
Introduction to Entity Alignment 

Abstract In this section, we provide a concise overview of the entity alignment task 
and also discuss other related tasks that have a close connection to entity alignment. 

1.1 Background 

In the past few years, there has been a significant increase in the use and 
development of KGs and their various applications. These KGs are designed to store 
world knowledge, represented as triples (i.e., . <entity, relation, entity. >) consisting 
of entities, relations, and other entities, with each entity referring to a distinct real-
world object, and each relation representing a connection between those objects. 
Since these entities serve as the foundation for the triples in a KG, the triples 
are inherently interconnected, creating a large and complex graph of knowledge. 
Currently, we have a large number of general KGs (e.g., DBpedia [1], YAGO [52], 
Google’s Knowledge Vault [14]) and domain-specific KGs (e.g., medical [48] and 
scientific KGs [56]). KGs have been utilized to improve a wide range of downstream 
applications, including but not limited to keyword search [64], fact-checking [30], 
and question answering [12, 28]. 

A knowledge graph, denoted as .G = (E,R, T ), is a graph that consists of three 
main components: a set of entities E, a set of relations R, and a set of triples T , 
where .T ⊆ E×R×E represents the directed edges in the graph. In the set of triples 
T , a single triple .(h, r, t) represents a relationship between a head entity h and a tail 
entity t through a specific relation r . Each entity in the graph is identified by a 
unique identifier, such as http://dbpedia.org/resource/Spain in the case of DBpedia. 

In practice, KGs are typically constructed from a single data source, making it 
difficult to achieve comprehensive coverage of a given domain [46]. To improve the 
completeness of a KG, one popular strategy is to integrate information from other 
KGs that may contain supplementary or complementary data. For instance, a general 
KG may only include basic information about a scientist, while scientific domain-
specific KGs may have additional details like biographies and lists of publications. 
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Fig. 1.1 An example of EA. The entity identifiers are placed in the square brackets. The prefixes 
of entity identifiers and the full relation identifiers are omitted for clarity; seed entity pairs are 
connected by dashed lines 

To combine knowledge across multiple KGs, a crucial step is to align equivalent 
entities in different KGs, which is known as entity alignment (EA) [7, 25].1 

Given a source KG .G1 = (E1, R1, T1), a target KG .G2 = (E2, R2, T2), and seed 
entity pairs (training set), i.e., .S = {(u, v) | u ∈ E1, v ∈ E2, u ↔ v}, where . ↔
represents equivalence (i.e., u and v refer to the same real-world object), the task of 
EA can be defined as discovering the equivalent entity pairs in the test set. 

Example Figure 1.1 shows a partial English KG (KG. EN) and a partial Spanish 
KG (KG. ES) concerning the director Alfonso Cuarón. Note that each entity 
in the KG has a unique identifier. For example, the movie “Roma” in the 
source KG is uniquely identified by Roma(film).2 Given the seed entity 
pair, i.e., Mexico from KG. EN and Mexico from KG. ES, EA aims to find 
the equivalent entity pairs in the test set, e.g., returning Roma(ciudad) in 
KG. ES as the corresponding target entity to the source entity Roma(city) in 
KG. EN. 

Broadly speaking, current entity alignment (EA) methods typically address the 
problem by assuming that equivalent entities in different KGs share similar local 
structures and applying representation learning techniques to embed entities as data 
points in a low-dimensional feature space. With effective entity embedding, the

1 As where we are standing, EA can be deemed as a special case of entity resolution (ER), which 
recalls a pile of literature (to be discussed in Sect. 1.2). Thus, some ER methods (with minor 
adaptation to handle EA) are also involved in this book. 
2The identifiers in some KGs are human-readable, e.g., those in Fig. 1.1, while some are 
incomprehensible, e.g., Freebase MIDs like /m/012rkqx. 
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pairwise dissimilarity of entities can be calculated as the distance between data 
points, allowing us to evaluate whether two entities are a match or not.3 

1.2 Related Works 

While the problem of EA was introduced a few years ago, the more generic 
version of the problem –identifying entity records referring to the same real-world 
entity from different data sources– has been investigated from various angles by 
different communities, under the names of entity resolution (ER) [15, 18, 45], entity 
matching [13, 42], record linkage [8, 34], deduplication [16], instance/ontology 
matching [20, 35, 49–51], link discovery [43, 44], and entity linking/entity disam-
biguation [11, 29]. Next, we describe the related work and the scope of this book. 

1.2.1 Entity Linking 

The process of entity linking (EL) or entity disambiguation is the act of recognizing 
entity mentions in natural language text and linking them to the corresponding 
entities in a given reference catalog, which is usually a knowledge graph. This 
process involves identifying which entity a particular mention in the text refers to. 
For example, if given the word “Rome,” the task would be to determine if it refers 
to the city in Italy, a movie, or another entity and then link it to the right entity in the 
reference catalog. Prior studies in EL [21, 22, 29, 36, 68] have used various sources 
of information to disambiguate entity mentions, including surrounding words, prior 
probabilities of certain target entities, already disambiguated entity mentions, and 
background knowledge from sources such as Wikipedia. However, much of this 
information is not available in scenarios where aligning KGs is required, such 
as entity embeddings or the prior distribution of entity linking given a mention. 
Moreover, EL is concerned with mapping natural language text to a KG, while this 
research investigates the mapping of entities between two KGs. 

1.2.2 Entity Resolution 

Entity resolution, which is also referred to as entity matching, deduplication, or 
record linkage, assumes that the input is relational data, and each data object usually 
has a large amount of textual information described in multiple attributes. Therefore,

3 Throughout the rest of this article, we may use the terms “align” and “match” interchangeably 
with the same meaning. 
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various similarity or distance functions are used in entity resolution to measure 
the similarity between two objects. These functions include Jaro-Winkler distance 
for comparing names and numerical distance for comparing dates. Based on the 
similarity measure, both rule-based and machine learning-based methods can be 
employed to classify two objects as either matching or non-matching [9]. 

To clarify further, in ER tasks, the attributes of data objects are first aligned, 
which can be done manually or automatically. Then, the similarity or distance 
functions are used to calculate the similarities between corresponding attribute 
values of the two objects. Finally, the similarity scores between the aligned attributes 
are combined or aggregated to determine the overall similarity between the two 
objects. This process allows rule-based or machine learning-based methods to 
classify pairs of objects as either matching or non-matching, based on the computed 
similarity scores [32, 45]. 

1.2.3 Entity Resolution on KGs 

Certain methods for ER are created with the purpose of managing KGs and 
focus solely on binary connections, or data shaped like a graph. These methods 
are sometimes called instance/ontology matching approaches [49, 50]. The graph-
shaped data comes with its own challenges: (1) Entities in graph-shaped data often 
lack detailed textual descriptions and may only be represented by their name, with 
a minimal amount of accompanying information. (2) Unlike classical databases, 
which assume that all fields of a record are present, KGs are built on the Open World 
Assumption, where the absence of certain attributes of an entity in the KG does not 
necessarily mean that they do not exist in reality. This fundamental difference sets 
KGs apart from traditional databases. (3) KGs have their own set of predefined 
semantics. At a basic level, these can take the form of a taxonomy of classes. In 
more complex cases, KGs can be endowed with an ontology of logical axioms. 

In the past 20 years, various techniques have been developed to address the 
specific challenges of KGs, particularly in the context of the Semantic Web and the 
Linked Open Data cloud [26]. These techniques can be categorized along several 
different dimensions: 

• Scope. Several techniques have been developed for aligning KGs along different 
dimensions. For example, some approaches aim to align the entities in two 
different KGs, while others focus on aligning the relationship names, or schema, 
between KGs. Additionally, some methods aim to align the class taxonomies of 
two KGs, and a few techniques achieve all three tasks at once. In this particular 
book, however, the focus is on the first task, which is aligning entities in KGs.
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• Background knowledge. Certain techniques rely on an ontology (T-box) as 
background information, particularly those that participate in the Ontology 
Alignment Evaluation Initiative (OAEI).4 However, in this specific book, the 
focus is on techniques that do not require such prior knowledge and can operate 
without an ontology. 

• Training. Some techniques for aligning knowledge graphs are unsupervised and 
operate directly on input data without any need for training data or a training 
phase. Examples of such methods include PARIS [51] and SiGMa [35]. On the 
other hand, other approaches involve learning mappings between entities based 
on predefined seeds. This particular book, however, focuses on the latter class of 
approaches. 

Most of the supervised or semi-supervised approaches for entity alignment utilize 
recent advances in deep learning [23]. These approaches primarily rely on graph 
representation learning techniques to model the structure of knowledge graphs 
and generate entity embeddings for alignment. To refer to the supervised or semi-
supervised approaches, we use the term “entity alignment (EA) approaches,” which 
is also the main focus of this study. However, in the next chapter, we include 
PARIS [51] for comparison as a representative of the unsupervised approaches. We 
also include AgreementMakerLight (AML) [17] as a representative of unsupervised 
systems that use background knowledge. For the other systems, we refer the reader 
to other surveys [9, 33, 41, 43]. 

In addition, since EA pursues the same goal as ER, it can be deemed a special 
but nontrivial case of ER. In this light, general ER approaches can be adapted to the 
problem of EA, and we include representative ER methods for comparison (to be 
detailed in Chap. 2). 

Existing Benchmarks Several synthetic datasets, such as DBP15K and DWY100K, 
were created using the inter-language and reference links already present in 
DBpedia to assess the effectiveness of EA methods. Chapter 2 contains more 
extensive statistical information about these datasets. 

Notably, the Ontology Alignment Evaluation Initiative (OAEI) promoted the 
knowledge graph track.5 Existing benchmarks for EA only provide instance-level 
information, while the KGs in these datasets include both schema and instance 
information. This can create an unfair evaluation of current EA approaches that do 
not consider the availability of ontology information. Hence, they are not presented 
in this book.

4 http://oaei.ontologymatching.org/. 
5 http://oaei.ontologymatching.org/2019/knowledgegraph. 

http://oaei.ontologymatching.org/
http://oaei.ontologymatching.org/
http://oaei.ontologymatching.org/
http://oaei.ontologymatching.org/
http://oaei.ontologymatching.org/2019/knowledgegraph
http://oaei.ontologymatching.org/2019/knowledgegraph
http://oaei.ontologymatching.org/2019/knowledgegraph
http://oaei.ontologymatching.org/2019/knowledgegraph
http://oaei.ontologymatching.org/2019/knowledgegraph
http://oaei.ontologymatching.org/2019/knowledgegraph
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1.3 Evaluation Settings 

This section provides an introduction to the evaluation settings that are commonly 
used for the EA task. 

Datasets Three datasets are commonly used and are representative, including the 
following: 

• DBP15K [53]. This particular dataset comprises three pairs of multilingual 
KGs that were extracted from DBpedia. These pairs include English to Chinese 
(DBP15KZH-EN), English to Japanese (DBP15KJA-EN), and English to French 
(DBP15KFR-EN). Each of these KG pairs is made up of 15,000 inter-language 
links, which serve as gold standards. 

• DWY100K [54]. The dataset consists of two pairs of mono-lingual knowledge 
graphs, namely, DWY100KDBP-WD and DWY100KDBP-YG. These pairs were 
extracted from DBpedia, Wikidata, and YAGO 3, and each one contains 
100,000 pairs of entities. The extraction process is similar to that of DBP15K, 
except that the inter-language links have been replaced with reference links that 
connect these knowledge graphs. 

• SRPRS. According to Guo et al. [24], the KGs in previous EA datasets, such 
as DBP15K and DWY100K, are overly dense and do not accurately reflect the 
degree distributions observed in real-life KGs. In response to this issue, Guo et 
al. [24] developed a new EA benchmark that uses reference links in DBpedia 
to establish KGs with degree distributions that better reflect real-life situations. 
The resulting evaluation benchmark includes both cross-lingual (SRPRSEN-FR, 
SRPRSEN-DE) and mono-lingual KG pairs (SRPRSDBP-WD, SRPRSDBP-YG), 
where EN, FR, DE, DBP, WD, and YG represent DBpedia (English), DBpedia 
(French), DBpedia (German), DBpedia, Wikidata, and YAGO 3, respectively. 
Each KG pair is comprised of 15,000 pairs of entities. 

Table 1.1 provides a summary of the datasets used in this study. Each KG pair 
includes relational triples, cross-KG entity pairs (30% of which are seed entity pairs 
and used for training), and attribute triples. The cross-KG entity pairs serve as gold 
standards. 

Degree Distribution Figure 1.2 presents the degree distributions of entities in 
the datasets, which provides insights into the characteristics of these datasets. The 
degree of an entity is defined as the number of triples in which the entity is involved. 
Entities with higher degrees tend to have richer neighboring structures. The degree 
distributions of the different KG pairs in each dataset are very similar. Thus, for 
brevity, we present only one KG pair’s degree distribution in Fig. 1.2. 

The sub-figures in series (a) correspond to the DBP15K dataset. As shown, 
entities with a degree of 1 comprise the largest proportion, while the number of 
entities generally decreases with increasing degree values, with some fluctuations.
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Table 1.1 Statistics of EA benchmarks and our constructed dataset 

Name KG pair #Triples #Entities #Relations #Align. 

DBP15KZH-EN DBpedia(Chinese) 70,414 19,388 1,701 15,000 

DBpedia (English) 95,142 19,572 1,323 

DBP15KJA-EN DBpedia(Japanese) 77,214 19,814 1,299 15,000 

DBpedia (English) 93,484 19,780 1,153 

DBP15KFR-EN DBpedia(French) 105,998 19,661 903 15,000 

DBpedia (English) 115,722 19,993 1,208 

SRPRSEN-FR DBpedia(English) 36,508 15,000 221 15,000 

DBpedia (French) 33,532 15,000 177 

SRPRSEN-DE DBpedia(English) 38,281 15,000 222 15,000 

DBpedia (German) 37,069 15,000 120 

SRPRSDBP-WD DBpedia 38,421 15,000 253 15,000 

Wikidata 40,159 15,000 144 

SRPRSDBP-YG DBpedia 33,571 15,000 223 15,000 

YAGO3 34,660 15,000 30 

DWY100KDBP-WD DBpedia 463,294 100,000 330 100,000 

Wikidata 448,774 100,000 220 

DWY100KDBP-YG DBpedia 428,952 100,000 302 100,000 

YAGO3 502,563 100,000 31 

It is worth noting that the coverage curve approximates a straight line, as the number 
of entities changes only slightly when the degree increases from 2 to 10. 

The (b) set of figures is related to DWY100K. This dataset has a distinct structure 
from (a), as there are no entities with a degree of 1 or 2. Additionally, the number of 
entities reaches its highest point at degree 4 and then decreases as the entity degree 
increases. 

The (c) set of figures is related to SRPRS. It is clear that the degree distribution 
of entities in this dataset is more realistic, with entities of lower degrees making 
up a larger proportion. This is due to its well-thought-out sampling approach. 
Additionally, the (d) set of figures corresponds to the dataset we created, which 
will be discussed in Chap. 2. 

Evaluation Metrics Most existing EA solutions use Hits@k (.k = 1, 10) and mean 
reciprocal rank (MRR) as their evaluation metrics. The target entities are arranged in 
order of increasing distance scores from the source entity when making a prediction. 
The Hits@k metric shows the proportion of correctly aligned entities among the k 
nearest target entities. Hits@1 is the most significant measure of the accuracy of the 
alignment results. 

MRR denotes the average of the reciprocal ranks of the ground truths. Note that 
higher Hits@k and MRR indicate better performance. Unless otherwise specified, 
the results of Hits@k are represented in percentages.
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Fig. 1.2 Degree distributions on different datasets. The X-axis denotes entity degree. The left Y-
axis represents the number of entities (corresponding to bars), while the right Y-axis represents the 
percentage of entities with a degree lower than a given x value (corresponding to lines) 
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Chapter 2 
State-of-the-Art Approaches 

Abstract This chapter performs a thorough assessment and meticulous exami-
nation of the most advanced EA techniques. Initially, we introduce a broad EA 
framework that covers all current methods and classify these methods into three 
main groups. Then, we carefully appraise these solutions on various scenarios, 
taking into account their efficacy, efficiency, and scalability. Lastly, we create a 
novel EA dataset that reflects the actual difficulties encountered in alignment, 
which prior literature mostly ignored. This chapter aims to offer a comprehensive 
understanding of the advantages and drawbacks of current EA methods, in order to 
encourage further high-quality research. 

2.1 Introduction 

In this chapter, we conduct an empirical evaluation of state-of-the-art EA 
approaches, which possesses the following characteristics: 

Fair Comparison Within and Across Categories Most recent studies have 
limited themselves to comparing only a subset of methods [4, 11, 15, 23, 27– 
30, 33]. Moreover, different approaches follow different protocols: some use only 
the KG structure for alignment, while others incorporate additional information; 
some perform one-pass alignment of KGs, while others use an iterative (re-)training 
strategy. While the literature presents a direct comparison of these methods, which 
highlights their overall effectiveness, a more desirable and equitable approach would 
be to classify these methods into categories and then compare the outcomes within 
and across categories. 

In this chapter, we incorporate most of the state-of-the-art methods to facilitate a 
comprehensive comparison, including the very recent approaches that have not been 
evaluated against other methods previously. We divide them into three groups and 
conduct a thorough analysis of both intra- and inter-group evaluations, enabling us 
to better position these methods and evaluate their effectiveness. 

© The Author(s) 2023 
X. Zhao et al., Entity Alignment, Big Data Management, 
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Comprehensive Evaluation on Representative Datasets To assess the perfor-
mance of EA systems, various datasets have been developed, which can be 
broadly classified into two categories: cross-lingual benchmarks, exemplified by 
DBP15K [21], and mono-lingual benchmarks, exemplified by DWY100K [22]. 
A recent study [11] highlights that the KGs in prior datasets are much denser 
than those in real-world scenarios, which led them to create the SRPRS dataset 
with entity degrees that follow a normal distribution. Despite the availability of 
multiple datasets, previous studies only report their results on one or two specific 
datasets, making it challenging to evaluate their efficacy across a wide range of 
potential scenarios, such as cross-lingual/mono-lingual, dense/normal, and large-
scale/medium-scale KGs. 

In light of this observation, this chapter performs a thorough experimental evalua-
tion on all the prominent datasets, namely, DBP15K, DWY100K, and SRPRS, which 
together consist of nine pairs of knowledge graphs. The evaluation is conducted 
across various dimensions, including effectiveness, efficiency, and robustness. 

New Dataset for Real-Life Challenges It has been noted that current EA datasets 
assume that each entity in the source KG has exactly one corresponding entity in 
the target KG, which is an unrealistic assumption. In reality, there are entities in one 
KG that may not have a corresponding entity in the other KG. For example, when 
aligning YAGO 4 and IMDB, only a small percentage (1%) of entities in YAGO 4 
are related to movies, while the remaining 99% of entities in YAGO 4 do not have 
any corresponding entities in IMDB. These unmatchable entities would make the 
EA task more challenging. 

Furthermore, we notice that the mono-lingual datasets currently available for 
EA evaluation assume that the entities in the different KGs share the same 
naming convention. Therefore, the baseline method that relies on comparing the 
string similarity between entity names can achieve perfect accuracy. However, this 
assumption is often not valid in real-life scenarios, where equivalent entities in 
different KGs may have dissimilar names, such as “America” and “USA” for the 
same entity. In addition, another challenge that is often overlooked in EA is that 
different entities in a KG might have the same name. This can make it difficult to 
determine whether an entity with the name “Paris” in the source KG refers to the 
same entity as one with the same name in the target KG, as they could potentially 
refer to different entities, such as the city in France and the city in Texas. 

For these reasons, we believe that the current EA datasets do not fully capture 
the realistic challenges posed by unmatchable entities and ambiguous entity names. 
To address this issue, we introduce a new dataset that more closely mirrors these 
practical difficulties. 

The main contributions of this chapter are the following: 

• This chapter provides a comprehensive evaluation of state-of-the-art EA 
approaches. The evaluation includes: (1) Identifying the main components of 
existing EA approaches and proposing a general EA framework (2) Categorizing 
state-of-the-art approaches into three groups and conducting detailed intra- and
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inter-group evaluations to better understand their strengths and weaknesses (3) 
Examining these approaches in various scenarios, including cross-/mono-lingual 
alignment and alignment on dense/normal, large-/medium-scale data, to evaluate 
their effectiveness, efficiency, and robustness. The empirical results provide 
insights into the performance of each approach. This evaluation aims to provide 
a more systematic and comprehensive understanding of the current state of EA 
research. 

• Through our study, we gained valuable experience and insights that allow us to 
identify the shortcomings of current EA datasets. To address these issues, we have 
created a new mono-lingual dataset that accurately reflects the real-life challenges 
of unmatchable entities and ambiguous entity names. We anticipate that this new 
dataset will provide a more effective benchmark for evaluating EA systems. 

2.2 A General EA Framework 

This section presents a general EA framework that is designed to include state-of-
the-art EA approaches. Through a thorough analysis of current EA approaches, we 
identify four primary components, as shown in Fig. 2.1: 

• Embedding learning module. This component is designed to train embeddings 
for entities, which can be broadly classified into two groups: KG representation-
based models such as TransE [3] and graph neural network (GNN)-based models 
such as the graph convolutional network (GCN) [13]. 

• Alignment module. This component focuses on aligning the entity embeddings 
learned in the previous module across different KGs. The goal is to map these 
embeddings into a unified space. Margin-based loss is a common approach used 
in this module to ensure that the seed entity embeddings from different KGs are 
close to each other. Another approach used frequently is corpus fusion, which 
aligns KGs at the corpus level and directly embeds entities in different KGs into 
the same vector space. 

• Prediction module. Once the unified embedding space is established, the next 
step is to predict the corresponding target entity for each source entity in the 
test set. One common approach is to use distance-based similarity measures such 
as cosine similarity, Manhattan distance, or Euclidean distance between entity 

Fig. 2.1 A general EA framework
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embeddings to calculate the similarity between entities. The target entity with the 
highest similarity (or lowest distance) is then selected as the counterpart. 

• Extra information module. In addition to the basic modules, some EA 
approaches use additional information to improve their performance. One 
approach is bootstrapping, where confident alignment results are used as training 
data for subsequent alignment iterations. Another approach is to use multi-type 
literal information such as attributes, entity descriptions, and entity names to 
complement the KG structure. These additional sources of information are shown 
in Fig. 2.1 as blue dashed lines. 

Example Further to the example in Chap. 1, we explain these modules. The 
embedding learning module generates embeddings for entities in KG. EN
and KG. ES, respectively. Then the alignment module projects the entity 
embeddings into the same vector space, where the entity embeddings in KG. EN
and KG. ES are directly comparable. Finally, using the unified embeddings, the 
prediction module aims to predict the equivalent target entity in KG. ES for 
each source entity in KG. EN. The  extra information module leverages several 
techniques to improve the EA performance. Concretely, the bootstrapping 
strategy aims to include the confident EA pairs detected from a previous 
round, e.g., (Spain, España), into the training set for learning in the 
next round. Another approach is to use additional textual information to 
complement the entity embeddings for alignment. 

We organize the state-of-the-art approaches based on each module of the EA 
framework and present them in Table 2.1. For a more detailed view of the 
approaches, readers can refer to the Appendix. Now, we will explain how each of 
these modules is implemented in various state-of-the-art approaches. 

2.2.1 Embedding Learning Module 

In this section, we will explain the techniques used in the embedding learning 
module, which utilize the KG structure to create embeddings for each entity. 

Table 2.1 shows that the most commonly used models for this module are 
TransE [3] and GCN [13]. We will provide a brief overview of these fundamental 
models. 

TransE The TransE model views relationships as translations that act on the lower-
dimensional representations of entities. To clarify, when presented with a relational 
triple .(h, r, t), TransE proposes that the embedded representation of the tail entity 
t should be similar to the embedded representation of the head entity h plus the
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Table 2.1 A summary of the EA approaches involved in this study 

Method Embedding Alignment Extra info. Prediction C-L. a M-L Group 

MTransE [6] TransE. �.b Transition ✗ Euclidean 
distance 

✓ ✗ I 

RSNs [11] RSNs Corpus fusion ✗ Cosine 
similarity 

✓ ✓ I 

MuGNN [4] GNN Margin-based ✗ Cosine 
similarity 

✓ ✓ I 

KECG [15] GAT+TransE Margin-based ✗ Euclidean 
distance 

✓ ✓ I 

ITransE [34] TransE Transition Bootstrapping Manhattan 
distance 

✗ ✓ II 

BootEA [22] TransE.� Corpus fusion Bootstrapping Cosine 
similarity 

✓ ✓ II 

NAEA [35] TransE.� Corpus fusion Bootstrapping Cosine 
similarity 

✓ ✓ II 

TransEdge 
[23] 

TransEdge Corpus fusion Bootstrapping Cosine 
similarity 

✓ ✓ II 

JAPE [21] TransE.� Attribute-refined Attribute Cosine 
similarity 

✓ ✗ III 

GCN-
Align [26] 

GCN Margin-based Attribute Manhattan 
distance 

✓ ✗ III 

AttrE [24] TransE Attribute-refined Attribute Cosine 
similarity 

✗ ✓ III 

KDCoE [5] TransE Transition Entity 
description 

Euclidean 
distance 

✓ ✗ III 

HMAN [30] GCN Margin-based Description, 
attribute 

Manhattan 
distance 

✓ ✗ III 

GM-
Align [29] 

GCN Graph matching Entity name Matching 
probability 

✓ ✗ III 

RDGCN [27] DPGCNN Margin-based Entity name Manhattan 
distance 

✓ ✗ III 

HGCN [28] GCN Margin-based Entity name Manhattan 
distance 

✓ ✗ III 

M-
Greedy [33] 

TransE.� Corpus fusion Entity name, 
attribute 

Cosine 
similarity 

✗ ✓ III 

CEA [31] GCN Margin-based Entity name Cosine 
similarity 

✓ ✓ III 

a C-L stands for cross-lingual evaluation and M-L stands for mono-lingual evaluation 
b TransE. � represents variants of the TransE model 

embedded representation of the relationship r , or  .h + r ≈ t. By doing so, the 
model is able to maintain the structural information of the entities and produce close 
representations for entities that share similar neighbors in the embedding space. 

GCN A type of convolutional network that processes graph-based data directly 
is known as the graph convolutional network (GCN). It creates embeddings for
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individual nodes by encoding information about the neighborhoods of those nodes. 
GCN takes as input feature vectors for each node in the KG, as well as a 
representative graph structure description in matrix form, such as an adjacency 
matrix. The output of the GCN is a new feature matrix. A typical GCN model consists 
of multiple stacked GCN layers, which allows it to capture a partial KG structure that 
extends several hops away from the entity being processed. 

On top of these basic models, some methods make modifications. Regarding 
the TransE-based models, MTransE removes the negative triples during training, 
BootEA and NAEA replace the original margin-based loss function with a limit-based 
objective function, MuGNN uses the logistic loss to substitute for the margin-based 
loss, and JAPE designs a new loss function. 

Concerning the GCN-based models, it has been observed that the GCN does not 
take into account the relations present in KGs. Therefore, as a solution, RDGCN 
employs the dual-primal graph convolutional neural network (DPGCNN) [17]. 
In contrast, MuGNN leverages an attention-based GNN model to assign varying 
weights to neighboring nodes. Additionally, KECG merges graph attention network 
(GAT) [25] and TransE to capture both the inner-graph structure and the inter-graph 
alignment information. 

Several approaches have introduced new embedding models. For example, in 
RSNs, the authors contend that triple-level learning is inadequate for capturing long-
term relational dependencies between entities and is insufficient for propagating 
semantic information among entities. Therefore, they propose using recurrent neural 
networks (RNNs) with residual learning to learn the long-term relational paths 
between entities. 

Similarly, TransEdge devises a new energy function to measure the error of edge 
translation between entity embeddings for KG embedding learning. This method 
models edge embeddings using context compression and projection. 

2.2.2 Alignment Module 

In this subsection, we introduce the methods used for the alignment module, which 
aims to unify separated KG embeddings. 

The prevailing approach in KG embedding learning is to use a margin-based loss 
function on top of the embedding learning module. This loss function requires that 
the distance between entities in positive pairs should be small, while the distance 
between entities in negative pairs should be large, with a margin between the 
distances of positive and negative pairs. The positive pairs refer to seed entity 
pairs, while negative pairs are generated by corrupting the positive pairs. This 
approach helps to merge the two separate KG embedding spaces into one vector 
space. Table 2.1 indicates that the majority of methods that use GNNs rely on 
a margin-based alignment model to merge the two KG embedding spaces. In
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contrast, in GM-Align, a matching framework is employed to maximize the matching 
probabilities of seed entity pairs, which achieves the alignment process. 

Corpus fusion is another common approach, which involves using the seed entity 
pairs to connect the training corpora of two KGs. Some methods, such as BootEA and 
NAEA, generate new triples by swapping the entities in the seed entity pairs to align 
the embeddings in a unified space. Concretely, given an entity pair .(u, v), the newly 
generated triples for . G1 are . T new

1 = {(v, r, t)|(u, r, t) ∈ T1} ∪ {(h, r, v)|(h, r, u) ∈
T1} and for . G2 are .T new

2 = {(u, r, t)|(v, r, t) ∈ T2} ∪ {(h, r, u)|(h, r, v) ∈ T2}. To  
clarify, the overlay graph is built by connecting the entities in seed entity pairs with 
edges, and the rest of the entities are connected with edges based on their similarity 
or co-occurrence in the training corpus. Entity embeddings are then learned using 
the adjacency matrix of the overlay graph and the training corpus. 

Some earlier works proposed transition functions to map the embedding vectors 
from one KG to another, while others utilized additional information such as entity 
attributes to align the entity embeddings into a unified space. 

2.2.3 Prediction Module 

This module typically involves computing similarity scores between source and 
target entity embeddings and selecting the target entity with the highest score as 
the alignment. 

To align entities, the most common method is to generate a ranked list of target 
entities for each source entity based on a specific distance measure between their 
embeddings. The distance measures commonly used include Euclidean distance, 
Manhattan distance, and cosine similarity. The top-ranked entity in the list is then 
considered a match for the source entity. It is worth noting that the similarity score 
can be converted into the distance score by subtracting it from 1 and vice versa.1 

In contrast, in GM-Align, the entity with the highest matching probability is aligned 
with the source entity. 

Additionally, a recent method called CEA observes that there is a correlation 
between different entity alignment decisions, meaning that if a target entity is 
already matched to a source entity with high confidence, it is less likely to be 
matched to another source entity. To capture this correlation, CEA models it as a 
stable matching problem, and addresses the problem based on the distance measure, 
which decreases the number of mismatches and improves the accuracy of entity 
alignment.

1 In this work, we use the distance between entity embeddings and the similarity between entity 
embeddings interchangeably. 
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2.2.4 Extra Information Module 

In this subsection, we discuss the methods used in the extra information module. 
One approach to improve the EA framework is through bootstrapping strategy, 

also known as iterative training or self-learning strategy. This approach involves 
iteratively labeling highly probable EA pairs as the training set for the next round, 
leading to the gradual enhancement of alignment results. There are several methods 
based on this approach, with variations in the selection of confident EA pairs. 
The approach ITransE identifies the most similar nonaligned target entity for each 
nonaligned source entity, and if the similarity score between them exceeds a certain 
threshold, they are regarded as a confident pair. BootEA, NAEA, and TransEdge follow 
a similar approach where they calculate the probability of each source entity being 
aligned with every target entity. They only consider pairs with probability scores 
above a certain threshold and use a maximum likelihood matching algorithm with a 
1-to-1 mapping constraint to generate a set of confident EA pairs. 

Several methods utilize multi-type literal information to improve alignment by 
providing a more comprehensive view. Commonly used types of information are 
the attributes associated with entities. Some methods, such as JAPE, GCN-Align, 
and HMAN, only consider the statistical characteristics of the attribute names. Other 
methods, such as AttrE and M-Greedy, generate attribute embeddings by encoding 
the characters of attribute values. AttrE uses attribute embeddings to unify entity 
embeddings into the same space, while M-Greedy uses them to complement the 
entity embeddings. 

There is a growing tendency toward the use of “entity names”.2 Several methods 
are using “entity names” as input features to learn entity embeddings or exploit the 
semantic and string-level aspects of entity names as individual features. Specifically, 
GM-Align, RDGCN, and HGCN utilize entity names as input features to learn entity 
embeddings. On the other hand, CEA leverages both semantic and string-level 
aspects of entity names as individual features for alignment. Furthermore, KDCoE 
and the description-enhanced version of HMAN encode entity descriptions into 
vector representations and treat them as new features for alignment. 

The availability of multi-type information is not always guaranteed in knowledge 
graph alignment. Some types of information like entity names are commonly 
available in most scenarios, while others like entity descriptions are often missing in 
many knowledge graphs. Additionally, due to the graph-based nature of knowledge 
graph alignment, most existing alignment datasets have limited textual information, 
which makes some approaches like KDCoE, M-Greedy, and AttrE less applicable.

2 To obtain the names of entities, for DBpedia and YAGO, current approaches directly adopt the 
names in the identifiers, while for Wikidata, they use the entity identifier to retrieve the name of the 
corresponding Wikipedia page. Notably, these names from different KGs share the same naming 
convention. 
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2.3 Experiments and Analysis 

This section presents an in-depth empirical study.3 

2.3.1 Categorization 

According to the main components, we can broadly categorize current methods into 
three groups: Group I, which merely utilizes the KG structure for alignment, Group 
II, which harnesses the iterative training strategy to improve alignment results, and 
Group III, which utilizes information in addition to the KG structure. We introduce 
and compare these three categories using the example in Chap. 1. 

Group I This category of methods solely relies on the structure of the knowledge 
graph to align entities. Consider again the example in Chap. 1. In KG. EN, the entity 
Alfonso Cuarón is connected to the entity Mexico and three other entities, 
while Spain is connected to Mexico and one more entity. The same structural 
information can be observed in KG. ES. Since we already know that Mexico in 
KG. EN is aligned to Mexico in KG. ES, by using the KG structure, it is easy to 
conclude that the equivalent target entity for Spain is España, and the equivalent 
target entity for Alfonso Cuarón is Alfonso Cuarón. 

Group II This category of approaches is known as iterative or self-learning 
strategies, where likely entity alignment pairs are labeled iteratively as the training 
set for the next round, leading to a progressive improvement in the alignment results. 
They can also be categorized into Group I or III, depending on whether they merely 
use the KG structure or not. Nevertheless, they are all characterized by the use of 
the bootstrapping strategy. 

We still use the example in Chap. 1 to illustrate the bootstrapping mechanism. 
As shown in Fig. 1.1, by utilizing the KG structure, it is straightforward to identify 
that the source entity Spain is aligned with the target entity España, and the 
source entity Alfonso Cuarón is aligned with the target entity Alfonso 
Cuarón. The source entity Madrid does not have a clear target entity, as 
both Roma(ciudad) and Madrid in the target KG have the same structural 
information as the source entity. This is because they are both two hops away from 
the seed entity and have a degree of 1. To address this problem, bootstrapping-
based approaches perform multiple rounds of alignment, using the confident entity 
pairs from the previous round as seed pairs for the next round. More specifically, 
they consider the entity pairs detected from the first round, i.e., (Spain, España) 
and (Alfonso Cuarón, Alfonso Cuarón), as the seed pairs in the following 
rounds. Consequently, in the second round, for the source entity Madrid, only

3 The relevant materials are available at https://github.com/DexterZeng/EAE. 

https://github.com/DexterZeng/EAE
https://github.com/DexterZeng/EAE
https://github.com/DexterZeng/EAE
https://github.com/DexterZeng/EAE
https://github.com/DexterZeng/EAE
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the target entity Madrid shares the same structural information with it—two hops 
away from the seed entity pair (Mexico, Mexico) and one hop away from the seed 
entity pair (Spain, España). 

Group III Utilizing the KG structure for alignment when presented with graph-
formatted input data sources is a natural choice; however, KGs also contain a wealth 
of semantic information that can be used to supplement structural data. These 
methods stand out by taking advantage of additional information beyond the KG 
structure. 

As seen in Chap. 1, even with the KG structure and bootstrapping strategy, it is 
still difficult to identify the target entity for the source entity Gravity(film), 
since its structural information (connected to the entity Alfonso Cuarón and 
with degree 2) is shared by two target entities Gravity(película) and 
Roma(película). However, by combining the KG structure with the names 
in the identifiers, it is easy to differentiate between the two entities and correctly 
identify Gravity(película) as the target entity for Gravity(film). 

2.3.2 Experimental Settings 

The datasets and metrics utilized for assessment were previously introduced in 
Chap. 1. In the following section, we will elaborate on the techniques and parameter 
configurations used for comparison. 

Methods to Compare We will compare the previously mentioned methods, with 
the exception of KDCoE and MultiKE, due to the absence of entity descriptions in 
the evaluation benchmarks. Additionally, we will exclude AttrE since it is only 
functional in the mono-lingual context. Furthermore, we will provide the outcomes 
of the structure-only versions of JAPE and GCN-Align, specifically JAPE-Stru and 
GCN-Align(SE). 

As previously stated in Chap. 1, to showcase the ability of ER methods in 
addressing EA, we will also compare with various name-based heuristics. These 
approaches are commonly used in related tasks [8, 18, 19], as they heavily depend 
on the resemblance between object names to identify equivalences. Concretely, we 
use the following: 

• Lev aligns entities through the utilization of Levenshtein distance [14], which 
is a string-based measurement tool for computing the dissimilarity between two 
sequences. 

• Embed aligns entities based on the cosine similarity between the averaged word 
embeddings, or name embeddings, of two entities. In accordance with [31], 
we utilize the pre-trained fastText embeddings [1] as word embeddings. For 
multilingual KG pairs, we use the MUSE word embeddings [7].
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Implementation Details The experiments were performed using a personal com-
puter equipped with an Intel Core i7-4790 CPU, an NVIDIA GeForce GTX TITAN 
X GPU, and 128 GB of memory. All programs were implemented in Python. 

To ensure reproducibility, we employ the source codes provided by the authors 
and utilize the parameter settings specified in their original papers to execute the 
models.4 For datasets not included in the original papers, we use the same parameter 
settings as those employed in the original experiments to ensure consistency. 

All of the evaluated methods provide results on the DBP15K dataset in their origi-
nal papers, with the exception ofMTransE and ITransE. We compare our implemented 
results with the reported results from the original papers. If the difference between 
our results and the reported results falls outside of a reasonable range, which we 
define as .±5% of the original results, we mark the methods with an asterisk . ∗. It  
is worth noting that there should not be a significant difference theoretically since 
we use the same source codes and parameter settings for implementation. For the 
SRPRS dataset, only RSNs reports results in its original paper [11]. We conduct 
experiments on all methods for SRPRS and present the results in Table 2.3. For  the  
DWY100K dataset, we run all approaches and compare the performance of BootEA, 
MuGNN, NAEA, KECG, and TransEdge with the results provided in their original 
papers. We mark methods with notable differences with an asterisk . ∗. 

On each dataset, we highlight the best results within each group by denoting 
them in bold. We also mark the best Hits@1 performance among all approaches 
with . � since this metric is the most crucial and can best reflect the effectiveness of 
EA methods. 

2.3.3 Results and Analyses on DBP15K 

We then compare the performance within each category and across categories. The 
experiment results on the cross-lingual dataset DBP15K can be found in Table 2.2. 
Note that the Hits@10 and MRR results of CEA are missing in this table since it 
directly generates aligned entity pairs instead of returning a list of ranked entities.5 

We then compare the performance both within each category and across categories. 

Group I Out of the methods that only utilize the KG structure, RSNs consistently 
obtains superior outcomes in Hits@1 and MRR metrics. This success can be 
attributed to its ability to capture long-term relational paths, which offer more 
structural indications for alignment. The performance of MuGNN and KECG is 
equivalent, which can be partly attributed to their shared goal of completing KGs

4 In the interest of space, we put the detailed parameter settings in Appendix B. 
5 The Hits@10 and MRR results of CEA are also missing in Table 2.3 and Table 2.4 for the same 
reason. 
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and reconciling structural disparities. While MuGNN utilizes AMIE+ [10] to induce 
rules for completion, KECG harnesses TransE to implicitly achieve this aim. 

The remaining three techniques achieve comparatively lower outcomes. MTransE 
and JAPE-Stru leverage TransE to capture the KG structure, but JAPE-Stru outper-
forms MTransE because the latter models KG structures in different vector spaces, 
resulting in information loss when translating between them [21]. On the other hand, 
GCN-Align(SE) attains relatively superior results than MTransE and JAPE-Stru. 

Group II Among these methods, ITransE obtains notably poorer outcomes, which 
can be attributed to the information loss during embedding space translation and 
its simpler bootstrapping strategy as described in Sect. 2.2.4. BootEA, NAEA, and 
TransEdge all utilize the same bootstrapping strategy. BootEA achieves slightly 
inferior performance compared to reported outcomes, while NAEA performs signifi-
cantly worse. In theory, NAEA should outperform BootEA as it employs an attention 
mechanism to capture neighbor-level information. On the other hand, TransEdge 
employs an edge-centric embedding model to capture structural information, result-
ing in more accurate entity embeddings and hence better alignment outcomes. 

Group III Both JAPE and GCN-Align utilize attributes to enhance entity embed-
dings, and their outcomes surpass those of their structure-only counterparts, demon-
strating the utility of attribute information. Additionally, HMAN, which incorporates 
relation types as input, outperforms JAPE and GCN-Align by also utilizing attributes. 

The remaining four methods utilize entity names instead of attributes for 
alignment and achieve superior outcomes. Among them, RDGCN and HGCN attain 
similar results, surpassing GM-Align. This can be attributed to their use of relations to 
optimize entity embedding learning, which was mostly overlooked in prior GNN-
based EA models. However, CEA achieves the best performance in this group by 
effectively utilizing and merging available features. 

Name-Based Heuristics Regarding KG pairs with closely related languages, Lev 
achieves encouraging results, but it is ineffective on distantly related language 
pairs such as DBP15KZH-EN and DBP15KJA-EN. On the other hand, Embed attains 
consistent performance on all KG pairs. 

Intra-Category Comparison Across all datasets, CEA obtains the best Hits@1 
performance, while TransEdge, RDGCN, and HGCN achieve the top results for other 
metrics. This confirms the effectiveness of incorporating additional information 
such as the bootstrapping strategy and textual information. 

The performance of name-based heuristics, such as Embed, is highly competitive, 
surpassing most methods that do not utilize entity name information in terms of 
Hits@1. This indicates that conventional ER solutions can still be effective for the 
EA task. However, Embed still lags behind most EA methods that integrate entity 
name information, such as RDGCN, HGCN, and CEA. 

We can also observe that methods from the first two groups, such as TransEdge, 
achieve consistent results across all three KG pairs. In contrast, methods that utilize
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entity name information, such as HGCN, achieve much better results on KG pairs 
with closely related languages (DBP15KFR-EN) than those with distantly related 
languages (DBP15KZH-EN). This indicates that language barriers can hinder the use 
of textual information, which can, in turn, undermine the overall effectiveness of the 
method. 

2.3.4 Results and Analyses on SRPRS 

The results on SRPRS are presented in Table 2.3. Similar observations can be made 
as in the case of DBP15K, which we will not elaborate on. However, we can focus 
on the differences from DBP15K as well as the patterns specific to this dataset. 

Group I The results show that the performance of the methods on the relatively 
sparse KGs in SRPRS is lower compared to DBP15K. However, RSNs outperforms 
the other methods, closely followed by KECG. It is important to note that while 
MuGNN achieves decent results on DBP15K, it performs much worse on SRPRS 
because there are no aligned relations on SRPRS, which results in the failure of rule 
transferring. Additionally, the sparser KG structure leads to a smaller number of 
detected rules. 

Group II Among these solutions, TransEdge still yields consistently superior 
results. 

Group III In contrast to GCN-Align(SE) and JAPE-Stru, incorporating attributes into 
GCN-Align leads to better results, but it does not contribute to the performance 
of JAPE. This is likely because the dataset has a relatively smaller number of 
attributes. On the other hand, using entity names significantly improves the results. 
It is worth noting that CEA achieves ground-truth performance on SRPRSDBP-WD 

and SRPRSDBP-YG. 

Name-Based Heuristics For mono-lingual EA datasets like DBpedia, Wikidata, 
and YAGO, Lev and Embed are able to achieve ground-truth performance since 
the equivalent entities in different KGs have identical names based on their entity 
identifiers, making it easy to achieve accurate results through a simple comparison 
of these names. Additionally, Lev shows promising results on cross-lingual KG pairs 
with closely related language pairs. 

Intra-Category Comparison In contrast to DBP15K, methods that incorporate 
entity names (Group III) perform much better on SRPRS. This is likely due to two 
reasons: (1) the KG structure is less effective on this dataset, which is much sparser 
compared to DBP15K, and (2) the entity name information plays a significant role 
on both mono-lingual and cross-lingual datasets with closely related language pairs, 
where the names of equivalent entities are very similar.
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Table 2.4 Experimental results on DWY100K and DBP-FB 

DWY100KDBP-WD DWY100KDBP-YG DBP-FB 

Method Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR 

MTransE 23.8 50.7 0.33 22.7 41.4 0.29 8.5 23.0 0.14 

JAPE-Stru 27.3 52.2 0.36 21.6 45.8 0.30 4.7 16.1 0.09 

GCN-Align(SE) 49.4 75.6 0.59 59.8 82.9 0.68 17.8 42.3 0.26 

RSNs 49.7 77.0 0.59 61.0 85.7 0.69 25.3 49.7 0.34 
MuGNN 60.4 89.4 0.70 73.9 93.7 0.81 21.3 51.8 0.31 

KECG 63.1 88.8 0.72 71.9 90.4 0.79 23.1 50.8 0.32 

ITransE 17.1 36.4 0.24 15.9 36.1 0.23 3.0 10.0 0.06 

BootEA.∗ 69.9 86.1 0.76 61.1 77.5 0.69 21.2 42.5 0.29 

TransEdge.∗ 68.4 90.0 0.79 83.4 95.3 0.89 30.4 56.9 0.39 

JAPE 33.9 60.9 0.43 21.6 45.7 0.30 6.5 20.4 0.12 

GCN-Align 51.3 77.7 0.61 59.6 83.7 0.68 17.8 42.3 0.26 

HMAN 65.5 89.7 0.74 77.6 93.8 0.83 25.9 54.2 0.36 

GM-Align 86.3 92.2 0.89 78.3 82.3 0.80 72.1 85.5 0.77 

RDGCN – – – – – – 67.5 84.1 0.73 

HGCN 98.4 99.2 0.99 99.2 99.9 0.99 77.9 92.3 0.83 
CEA 100.0. � – – 100.0. � – – 96.3.� – – 

Embed 100.0. � 100.0 1.00 100.0. � 100.0 1.00 58.3 79.4 0.65 
Lev 100.0. � 100.0 1.00 100.0. � 100.0 1.00 57.8 78.9 0.64 

2.3.5 Results and Analyses on DWY100K 

Table 2.4 shows the results on the large-scale mono-lingual dataset DWY100K. 
However, we were unable to obtain the results of RDGCN and NAEA due to their 
requirement for an extremely large amount of memory space in our experimental 
environment. 

The methods in the first group perform significantly better on this dataset, 
which can be attributed to the relatively richer KG structure (as shown in Fig. 1.2 
in Chap. 1). Among them, MuGNN and KECG achieve over 60% Hits@1 on 
DWY100KDBP-WD and over 70% on DWY100KDBP-YG, due to the rich structure 
that facilitates the process of KG completion, ultimately leading to improved EA 
performance. 

The approaches in the second group achieve further improvement in results with 
the aid of the iterative training strategy. However, the reported results of BootEA and 
TransEdge are slightly higher than the values we obtained. Among the methods in 
Group III, CEA achieves ground-truth performance. Similar to SRPRS, the name-
based heuristics Lev and Embed also achieve ground-truth results.
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Table 2.5 Averaged time cost on each dataset (in seconds) 

Method DBP15K SRPRS DWY100K DBP-FB 

MTransE 6,467 3,355 70,085 9,147 

JAPE-Stru 298 405 6,636 767 

GCN-Align(SE) 49 42 1,446 103 
RSNs 7,539 2,602 28,516 7,172 

MuGNN 3,156 2,215 47,735 9,049 

KECG 3,724 1,800 125,386 51,280 

ITransE 494 175 9,021 517 
BootEA 4,661 2,659 64,471 4,345 

NAEA 19,115 11,746 – – 

TransEdge 3,629 1,210 20,839 3,711 

JAPE 5,578 586 21,129 1,201 

GCN-Align 103 87 3,212 227 
HMAN 5,455 4,424 31,895 8,878 

GM-Align 26,328 13,032 459,715 53,332 

RDGCN 6,711 886 – 3,627 

HGCN 11,275 2,504 60,005 4,983 

CEA 128 101 17,412 345 

2.3.6 Efficiency Analysis 

In order to provide a comprehensive evaluation, we report the average running 
time of each method on each dataset in Table 2.5, which allows us to compare 
the efficiency of different state-of-the-art solutions and provides insights into their 
scalability. We acknowledge that different parameter settings, such as the learning 
rate and number of epochs, may influence the final time cost. However, we aim 
to provide a general understanding of the efficiency of these methods by adopting 
the parameters reported in their original papers. As previously mentioned, we 
were unable to obtain the results of RDGCN and NAEA on DWY100K due to their 
requirement for an extremely large amount of memory space in our experimental 
environment. 

On DBP15K and SRPRS, GCN-Align(SE) is the most efficient method with 
consistent alignment performance, followed closely by JAPE-Stru and ITransE. Most  
of the other methods have similar time costs (ranging from 1,000 to 10,000 seconds), 
except for NAEA and GM-Align, which require significantly longer running times. 

The larger size of the DWY100K dataset leads to a significant increase in the 
time costs of all methods. MuGNN, KECG, and HMAN cannot run on GPUs due to 
memory limitations, and the authors of the original papers suggest running them on 
CPUs, which results in longer running times. Only three methods can complete the 
alignment process within 10,000s, while most of the other approaches take between 
10,000s and 100,000s. In particular, GM-Align requires 5 days to generate the results, 
indicating that current state-of-the-art EA methods still have low efficiency when
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dealing with very large-scale data. Some methods, such as NAEA, RDGCN, and GM-
Align, have poor scalability. 

2.3.7 Comparison with Unsupervised Approaches 

There exist some unsupervised methods aimed at aligning KGs that do not employ 
representation learning methodologies. To ensure the study’s comprehensiveness, 
we compare with a typical system, namely, PARIS [20]. PARIS relies on the 
comparison of similarities between literals and employs a probabilistic algorithm 
to align entities jointly in an unsupervised manner. Additionally, we also evaluate 
PARIS alongside AgreementMakerLight (AML) [9], an unsupervised system for 
ontology alignment that leverages KGs’ background knowledge.6 

The F1 score is employed as the evaluation metric since PARIS and AML do 
not produce a target entity for every source entity, thereby addressing cases where 
certain entities do not have a corresponding match in the other KG. The F1 score 
is calculated as the harmonic mean between precision (i.e., the number of correctly 
aligned entity pairs divided by the number of source entities for which an approach 
returns a target entity) and recall (i.e., the number of source entities for which an 
approach returns a target entity divided by the total number of source entities). 

Figure 2.2 illustrates that the overall performance of PARIS and AML is marginally 
lower than that of CEA. Despite CEA exhibiting more robust performance, it 
depends on training data (seed entity pairs) that may not be present in actual KGs. 
In contrast, unsupervised systems do not necessitate any training data and can 
still produce highly favorable outcomes. Furthermore, the results from PARIS and 
AML demonstrate that ontology information does, in fact, enhance the alignment 
outcomes. 

2.3.8 Module-Level Evaluation 

To obtain a better understanding of the techniques employed in various modules, we 
conduct an evaluation at the module level and present the associated experimental 
outcomes. More specifically, we select the representative methods from each module 
and create feasible combinations. By comparing the performance of different 
combinations, we can obtain a more precise assessment of the efficacy of various 
methods in these modules.

6 AML requires ontology information, which does not exist in current EA datasets. Therefore, we 
mine the ontology information for these KGs. However, we can only successfully run AML on 
SRPRSEN-FR and SRPRSEN-DE. 
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Fig. 2.2 F1 scores of PARIS, AML, and  CEA on EA datasets 

Regarding the embedding learning module, we use GCN and TransE. As for  the  
alignment module, we adopt the margin-based loss function (Mgn) and the corpus 
fusion strategy (Cps). Following current approaches, we combine GCN with Mgn, 
and TransE with Cps, where the parameters are tuned in accordance with GCN-Align 
and JAPE, respectively. In the prediction module, we use the Euclidean distance 
(Euc), the Manhattan distance (Manh), and the cosine similarity (Cos). With regard 
to the extra information module, we denote the use of the bootstrapping strategy as 
B by implementing the iterative method in [32]. The use of multi-type information 
is represented as Mul, and we adopt the semantic and string-level features of entity 
names as in CEA. 

The Hits@1 results of 24 combinations are shown in Table 2.6.7 It is evident that 
the addition of the bootstrapping strategy and/or textual information does, in fact, 
improve the overall performance. Regarding the embedding model, the GCN+Mgn 
model appears to have more robust and superior performance than TransE+Cps. 
Furthermore, the selection of distance measures also has an impact on the outcomes. 
Compared with Manh and Euc, Cos leads to better performance on TransE-based 
models, while it brings worse results on GCN-based models. Despite this, the 
integration of entity name embeddings results in consistently superior performance 
when using the Cos distance measure. 

Significantly, GCN+Mgn+Cos+Mul+B (referred to as Comb.) attains the most 
exceptional performance, indicating that a basic amalgamation of techniques from 
existing modules can lead to highly favorable alignment outcomes.

7 The results on other datasets exhibit similar trends and hence are omitted in the interest of space. 
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Table 2.6 Hits@1 results of module-level evaluation 

Method DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN SRPRSDBP-YG 

GCN+Mgn+Manh 39.9 39.8 37.8 32.7 

GCN+Mgn+Manh+Mul 62.9 70.3 86.6 96.5 

GCN+Mgn+Manh+B 47.0 47.4 45.7 37.0 

GCN+Mgn+Manh+Mul+B 64.2 71.9 87.8 97.8 

GCN+Mgn+Euc 40.0 39.5 36.9 32.6 

GCN+Mgn+Euc+Mul 62.9 70.8 88.3 99.9 

GCN+Mgn+Euc+B 46.2 47.2 44.5 37.1 

GCN+Mgn+Euc+Mul+B 64.3 72.5 89.1 100.0 

GCN+Mgn+Cos 37.8 38.8 35.7 29.6 

GCN+Mgn+Cos+Mul 72.1 78.6 92.9 99.9 

GCN+Mgn+Cos+B 44.2 47.2 44.7 33.6 

GCN+Mgn+Cos+Mul+B 74.6 81.3 93.5 100.0 
TransE+Cps+Manh 41.0 36.0 30.3 18.1 

TransE+Cps+Manh+Mul 65.0 72.1 86.6 94.9 

TransE+Cps+Manh+B 46.4 40.9 35.7 18.8 

TransE+Cps+Manh+Mul+B 66.3 73.3 87.7 95.1 

TransE+Cps+Euc 41.5 36.4 30.6 18.0 

TransE+Cps+Euc+Mul 64.8 71.8 87.9 99.9 

TransE+Cps+Euc+B 46.3 41.2 35.7 18.2 

TransE+Cps+Euc+Mul+B 65.7 72.7 88.6 100.0 

TransE+Cps+Cos 41.5 36.4 30.6 18.2 

TransE+Cps+Cos+Mul 71.6 77.4 92.1 99.9 

TransE+Cps+Cos+B 46.5 41.4 36.0 19.1 

TransE+Cps+Cos+Mul+B 73.4 78.4 92.9 100.0 

2.3.9 Summary 

We summarize the major findings from the experimental results. 

EA vs. ER EA is distinctive from other related tasks since it operates on graph-
structured data. As a result, all current EA solutions utilize the KG structure to 
create entity embeddings for aligning entities, which can produce favorable results 
on DBP15K and DWY100K. Nonetheless, depending solely on the KG structure has 
certain limitations, as there are long-tail entities with minimal structural information 
or entities that have similar neighboring entities but do not refer to the same real-
world object. To address this issue, recent studies propose incorporating textual 
information, leading to better performance. However, this prompts a question 
regarding whether ER approaches can handle the EA task, given that the texts linked 
to entities are often used by conventional ER solutions.
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Fig. 2.3 The box plot of Hits@1 of all methods on different datasets 

We answer this question by involving the name-based heuristics that have been 
used in most typical ER methods for comparison, and the experimental results 
reveal that: (1) ER solutions can indeed function on EA, but their performance is 
heavily reliant on the textual similarity between entities (2) While ER solutions 
can surpass the majority of structure-based EA methods, they are still surpassed 
by EA techniques that use name information to supplement entity embeddings 
(3) Incorporating the primary concepts in ER, specifically utilizing literal similarity 
to identify the equivalence between entities, into EA methods, is a promising 
direction that is worth exploring (as demonstrated by CEA) 

Influence of Datasets Figure 2.3 illustrates that the performance of EA methods 
varies significantly across different datasets. In general, dense datasets such as 
DBP15K and DWY100K tend to yield relatively better results than sparse ones. 
Moreover, mono-lingual KGs perform better than cross-lingual ones (DWY100K 
vs. DBP15K). Notably, on all mono-lingual datasets, the most performant method 
CEA, as well as the name-based heuristics Lev and Embed, achieves 100% accuracy. 
This is because these datasets are sourced from DBpedia, Wikidata, and YAGO, 
where equivalent entities in different KGs have identical names based on their 
entity identifiers, making it possible to obtain ground-truth results through a simple 
comparison of these names. However, these datasets do not reflect the real-life 
challenge of ambiguous entity names. To address this, we introduce a new mono-
lingual benchmark, which will be discussed in the following section. 

2.3.10 Guidelines and Suggestions 

In this subsection, we provide guidelines and suggestions for potential users of EA 
approaches.
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Guidelines for Practitioners There are several considerations that may impact the 
selection of EA models. We have identified four of the most prevalent factors and 
provide the following recommendations: 

• Input information. If the input data only includes structured information from a 
knowledge graph, one may need to decide between using methods from Group I 
or Group II. On the other hand, if there is a lot of additional information available, 
one may prefer to use methods from Group III to make the most of these features 
and generate more trustworthy signals for alignment. 

• The scale of data. As explained in Sect. 2.3.6, certain cutting-edge techniques 
may not be scalable enough. Thus, it is important to consider the scale of the 
data before deciding on an alignment approach. For very large datasets, it may be 
wise to utilize simpler yet effective models, like GCN-Align, in order to minimize 
computational burden. 

• The objective of alignment. When the primary focus is on aligning entities, it 
may be preferable to employ models based on GNNs because they tend to be more 
resilient and adaptable. However, if there are other tasks involved, such as aligning 
relations, it might be more appropriate to use KG representation-based methods as 
they inherently learn both entity and relation representations. Additionally, recent 
research studies [23, 27] indicate that relations can aid in aligning entities. 

• The trade-off in bootstrapping. The bootstrapping process is a useful technique 
that can enhance the training set gradually and lead to improved alignment results. 
However, it can be susceptible to the problem of error propagation, which may 
introduce incorrectly matched entity pairs and amplify their negative effects in 
subsequent rounds. Additionally, it can be time-consuming. Therefore, when 
deciding whether to utilize the bootstrapping strategy, it is important to assess 
the difficulty of the datasets. If the datasets are relatively straightforward, with 
ample literal information and dense KG structures, utilizing the bootstrapping 
strategy may be a more suitable option. Otherwise, one should exercise caution 
when using this approach. 

Suggestions for Future Research We also discuss some open problems that are 
worthy of exploration in the future: 

• EA for long-tail entities. In actual knowledge graphs, most entities have few 
connections to other entities, while only a small number of entities have many 
connections. Aligning these less common entities is important for achieving 
good overall alignment performance, but current research on entity alignment has 
largely ignored them. A recent study [32] addresses this issue by using additional 
information to help align these less common entities and reducing their number 
through a KG completion process integrated into iterative self-training. However, 
there is still a lot of potential for further improvement in this area. 

• Multi-modal EA. Entities can be linked to information in various forms, 
including texts, images, and even videos. Therefore, it is necessary to explore 
multi-modal entity alignment, which involves aligning entities that have multiple 
modalities of associated information. This topic is worth further research [16].
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• EA in the open world. Most existing EA methods [12] operate under a 
closed-domain assumption, meaning that every entity in the source KG has a 
corresponding entity in the target KG. However, in real-world scenarios, there 
are always entities that cannot be matched. Moreover, labeled data, which is often 
necessary for state-of-the-art approaches, may not be accessible. Therefore, it is 
important to investigate EA in open-world settings, where unmatchable entities 
and limited labeled data are taken into account. 

2.4 New Dataset and Further Experiments 

As mentioned earlier, in current mono-lingual datasets, entities that have equivalent 
counterparts in different knowledge graphs have the same names based on their 
entity identifiers, which allows for reasonably accurate results through simple name 
comparison (with 100% precision on SRPRSDBP-YG). However, in real-life KGs, 
entity identifiers are often not human-readable, and instead, they are linked to one 
or more human-readable names. For instance, Freebase identifies the capital of 
France as /m/05qtj, which is linked to names like “Paris” or “The City of Light.” 
Retrieving these names and matching entities that share the same name can still 
yield a precision of 100% on datasets such as DWY100KDBP-WD and SRPRSDBP-WD. 
However, in actual knowledge graphs, different entities can have the same name, 
even if they have different identifiers. For instance, the Freebase entities /m/05qtj 
(the capital of France) and /m/0h0_x (the king of Troy) share the name “Paris,” as 
do 20 cities in the USA. This means that using just the entity name to match entities 
will not work in real-life knowledge graphs. This presents a significant challenge 
for EA because it is not always certain that an entity with the name “Paris” in the 
source knowledge graph is the same as an entity with the same name in the target 
knowledge graph. The reason is that one might refer to the city in France, while the 
other might refer to the king of Troy. This is a significant complication in real-life 
knowledge graphs, as illustrated by the fact that in YAGO 3, about 34% of entities 
share a name with one or more other entities. This problem is not fully reflected in 
the commonly used mono-lingual datasets for EA. 

A second issue with EA datasets is that they assume that for each entity in 
the source KG, there is exactly one corresponding entity in the target KG. This 
means that an EA approach can map each source entity to the most similar target 
entity. However, this is not a realistic scenario since KGs in real life may contain 
entities that are not present in other KGs. For instance, when aligning YAGO 3 and 
DBpedia, some entities may appear in YAGO 3 but not in DBpedia and vice versa. 
This problem is even more severe for KGs that draw data from various sources, 
such as YAGO 4 and IMDB. In YAGO 4, only 1% of entities are related to movies, 
while the remaining 99% are unrelated to IMDB entities, such as universities and 
smartphone brands. As a result, these entities have no matches in IMDB, and this 
problem is not addressed in current EA datasets.
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We thus observe that the existing datasets for EA are an oversimplification of 
the real-life problem. Our solution is to create a fresh dataset that mimics these 
challenges. We anticipate that this dataset will result in improved EA models that 
can handle even more demanding problem scenarios and provide a clearer research 
direction for the community. In this section, we describe the development of the new 
dataset and present our experimental findings on it. 

2.4.1 Dataset Construction 

To reflect the difficulty of using entity names, we choose Freebase [2] as our target 
knowledge graph because it represents entities using indecipherable identifiers (i.e., 
Freebase MIDs), and different entities may have the same name. As to the source 
knowledge graph, we utilize DBpedia, which contains external links to Freebase 
that can be regarded as gold standards. The detailed process of constructing the new 
dataset is explained below: 

Determining the Source Entity Set We utilize the disambiguation information 
available in DBpedia to gather entities that have the same disambiguation term and 
create the entity set for the source knowledge graph. For example, for the ambiguous 
term Apple, the disambiguation records consist of entities such as Apple Inc. 
and Apple(fruit), both of which are included in the source entity set. 

Determining Links and the Target Entity Set Next, we utilize the external links 
between DBpedia and Freebase to obtain the entities in Freebase that correspond to 
the source entities and create the entity set for the target knowledge graph. These 
external links are considered as the gold standards. It should be noted that the entities 
in the target knowledge graph are identified using Freebase MIDs and multiple 
entities may have the same name, such as Apple. To retrieve the name for each 
entity, we use the label triples. 

Retrieving Triples Once the entity sets for the source and target knowledge graphs 
are determined, we extract the relational and attributive triples involving these 
entities from their respective knowledge graphs. 

Refining Links and Entity Sets Following the approach in previous work [21, 
22], we retain only the links whose source and target entities are involved in at 
least one triple in their respective knowledge graphs, resulting in a total of 25,542 
links. The entity sets are adjusted accordingly, including entities that participate in 
triples but not in links. Ultimately, there are 29,861 entities in the source knowledge 
graph, of which 4,319 cannot be matched, and 25,542 matchable entities in the 
target knowledge graph. Consistent with existing datasets, 30% of the links and 
unmatchable entities are utilized as the training set. For additional statistics on the 
dataset, please refer to Chap. 1.
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2.4.2 Experimental Results on DBP-FB 

In accordance with the current evaluation paradigm, we first analyze the perfor-
mance of EA methods without considering unmatchable entities. As shown in 
Table 2.4, the overall performance of the methods in the first two groups is lower 
than that on SRPRS. This can be attributed to the greater structural heterogeneity 
of DBP-FB, which can be observed from sub-figures (d) in Fig. 1.2. In contrast to 
the KG pairs in sub-figures (a), (b), or (c), the entity distributions in these KGs are 
highly dissimilar, which makes it challenging to effectively leverage the structural 
information. 

Methods that utilize entity names continue to produce the best results, although 
their performance is lower than that on previous mono-lingual datasets. Further-
more, on DBP-FB, Embed and Lev achieve only Hits@1 values of 58.3% and 
57.8%, respectively, while they attain 100% on SRPRSDBP-YG, SRPRSDBP-WD, 
DWY100KDBP-YG, and DWY100KDBP-WD. This confirms that DBP-FB is a more 
suitable mono-lingual dataset for addressing the challenge of entity name ambiguity 
compared to existing datasets. Thus, DBP-FB can be considered a preferable mono-
lingual dataset. 

2.4.3 Unmatchable Entities 

In addition, DBP-FB also contains unmatchable entities, which presents another 
real-life challenge for EA. We therefore evaluate the performance of Comb. (from 
Sect. 2.3.8) on  DBP-FB, taking into account these unmatchable entities. Consistent 
with Sect. 2.3.7, we utilize the precision, recall, and F1 score as evaluation metrics, 
with the exception that we define recall as the number of matchable source entities 
for which an approach returns a target entity, divided by the total number of 
matchable source entities. 

The information presented in Table 2.7 shows that Comb. exhibits a high level of 
recall, but its precision is relatively low. This is because it creates a target entity for 
each source entity, including those that cannot be matched. This pattern reflects the 
current performance of entity alignment solutions when dealing with unmatchable 
source entities. Nonetheless, this problem is not addressed in the current entity 
alignment datasets. 

In order to address this issue, we suggest a straightforward approach to handle 
unmatchable entities in DBP-FB, in addition to the current entity alignment 
solutions. Specifically, we propose setting a NIL threshold, denoted as . θ , to  
predict unmatchable entities. As discussed in Sect. 2.2.3, entity alignment solutions 
typically employ a distance measure to find the corresponding target entity. If the 
distance value between a source entity and its nearest target entity is greater than . θ , 
we consider the source entity to be unmatchable and exclude it from the alignment 
results. The value of the threshold . θ can be determined from the training data.
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Table 2.7 EA performance 
on DBP-FB after considering 
unmatchable entities 

Method Precision Recall F1 

Comb. 0.667 1.000 0.800 

Comb. +TH 0.790 0.908 0.845 

As  shown in Table  2.7, the threshold-enhanced solution Comb. +TH achieves a 
better F1 score. We hope this preliminary study can inspire follow-up research on 
this issue. 

2.5 Conclusion 

Entity alignment plays a crucial role in integrating KGs to enhance knowledge 
coverage and quality. Despite the numerous proposed solutions, there has been 
limited comprehensive evaluation and detailed analysis of their performance. To 
address this gap, this chapter presents an empirical assessment of state-of-the-art 
approaches in terms of effectiveness and efficiency on representative datasets. We 
also conduct a thorough analysis of their performance and provide evidence-based 
discussions. Furthermore, we introduce a new dataset that more accurately reflects 
real-world challenges, which can serve as a benchmark for future research in this 
field. 

Appendix A 

Methods in Group I of Table 2.1 

MTransE The MTransE model [6] is a translation-based approach for learning 
multilingual KG embeddings to support EA. Initially, it utilizes TransE (without 
negative triples) to project each KG into separate embedding spaces. Next, MTransE 
applies three distinct transition strategies: distance-based axis calibration, trans-
lation vectors, and linear transformation, to map the embedding vectors to their 
cross-lingual counterparts. During the prediction stage, a KNN search is conducted 
on the cross-lingual transition point of a target entity to obtain its corresponding 
counterpart. 

RSNs In this study [11], RNNs are combined with residual learning to effectively 
capture the long-term relational dependencies among KGs and generate more 
comprehensive KG structural embeddings for EA. 

The paper [11] argues that triple-level learning is inadequate for capturing 
the long-term relational dependencies of entities and for propagating semantic 
information among entities. To address this limitation, recurrent skipping networks
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(RSNs) are proposed to learn the long-term relational paths between entities. To 
obtain the desired paths, biased random walks are used to efficiently sample paths 
from the KGs, with elements in two KGs connected by seed alignments. During the 
prediction phase, cosine similarity is utilized to predict the results. 

MuGNN The paper [4] proposes a multichannel GNN for learning KG embeddings 
that are oriented toward entity alignment. 

The MuGNN approach first conducts relation weighting to generate a weight 
matrix for each KG using KG self-attention and cross-KG attention schemes, which 
correspond to different GNN channels. Next, it applies the GNN encoder (and the 
corresponding weight matrix) for each channel to model the KG structure. The 
outputs of the different channels are combined using the pooling operation. Finally, 
a margin-based alignment model is utilized to embed the two KGs into a unified 
embedding space. 

In addition, MuGNN also proposes a method to address structural differences 
between KGs by completing missing relations. This is accomplished by using 
AMIE+ to induce rules and transferring rules between KGs through aligned 
relations. However, it is important to note that not all datasets have aligned relations, 
which may cause the rule transferring approach to fail. 

KECG The paper [15] proposes a method for jointly learning a knowledge embed-
ding model that encodes inner-graph relationships and a cross-graph model that 
enhances entity embeddings with their neighbors’ information. 

The main concept behind KECG involves employing a cross-graph model, which 
is an enhanced version of a graph attention network (GAT), to convert entities into 
a single vector space by incorporating both intra-graph and inter-graph alignment 
information. The resulting embeddings are then utilized as input for TransE, which 
models intra-graph connections and enforces relational constraints between entities 
to promote consistency across different KGs. During inference, equivalent entities 
are identified based on the L2 distance between entities in terms of the unified 
embeddings. 

Methods in Group II of Table 2.1 

ITransE This study [34] extends the use of TransE to learn the structure of 
knowledge graphs. It develops three models, including translation-based, lin-
ear transformation-based, and parameter sharing-based models, to generate joint 
embeddings for various knowledge graphs. The study proceeds to iteratively align 
entities and update the joint knowledge embeddings, progressively considering 
highly confident aligned entities identified by the model. During the prediction 
stage, the model retrieves the closest entity from the target knowledge graph as 
the corresponding entity for each source entity.
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BootEA This work [22] suggests a technique called bootstrapping for EA that 
involves the iterative labeling of probable EA pairs as training data to teach 
alignment-oriented KG embeddings. 

In terms of the KG structure encoder, BootEA employs TransE, but substitutes 
the margin-based loss function with a limit-based objective function. The approach 
involves learning alignment-oriented KG embeddings by swapping aligned entities 
between triples from different KGs. Additionally, the authors develop a bootstrap-
ping strategy to refine alignment-oriented embeddings, which involves iteratively 
labeling probable alignments and adding them to the training data. BootEA further 
models EA as a classification problem and aims to maximize alignment likelihood 
across all labeled and unlabeled entities based on KG embeddings. During the 
prediction stage, cosine similarity is used to identify latent aligned entities. 

NAEA This paper [35] introduces a technique called neighborhood-aware atten-
tional representation to enhance the effectiveness of EA, which is built on the 
fundamental framework of BootEA. 

NAEA comprises two components: a knowledge embedding (KE) component 
and an entity alignment (EA) component. KE employs an attention mechanism to 
obtain neighbor-level representations of entities by combining their neighbors with 
weighted attention, and subsequently utilizes TransE to model both neighbor-level 
and relation-level representations. In contrast, BootEA only encodes relation-level 
representations. 

Like BootEA, NAEA also treats the alignment task as a classification problem 
in its EA component. However, in NAEA, alignment probability calculation also 
incorporates neighbor-level knowledge information. During the prediction stage, 
the approach employs cosine similarity to identify aligned entity pairs based on 
integrated representations of entities. 

TransEdge This work [23] introduces a new edge-centric embedding model for 
EA, which contextualizes relation representations with respect to particular head-
tail entity pairs. 

The proposed method, TransEdge, defines a novel energy function to evaluate 
the accuracy of edge translation between entity embeddings for KG embedding 
learning. To model edge embeddings, two methods are employed: context com-
pression and context projection. The limit-based loss function of TransEdge is used 
to optimize entity embeddings for EA, and the distance between seed entities is 
minimized to reconcile two KGs. During the prediction phase, the model ranks 
entities in another KG based on the cosine similarity of their entity embeddings 
in descending order for a given entity to be aligned. The intended match is expected 
to have the highest rank.
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Methods in Group III of Table 2.1 

JAPE This work [21] presents a joint attribute-preserving embedding model for 
EA, which generates embeddings that incorporate both KG relations and attributes. 

The proposed JAPE approach first employs TransE to encode the structure of each 
KG, but adapts the loss function. In addition to the large margin between scores of 
positive and negative triples, JAPE aims to assign lower scores to positive triples and 
higher scores to negative triples. The seed EA pairs are used to construct an overlay 
relationship graph in the corpus, which can align separate KG embeddings into a 
unified one. 

Additionally, JAPE observes that latent aligned entities tend to have similar 
attribute values, and therefore abstracts attribute values to their range types and 
generate attribute embeddings to capture attribute correlations. Finally, attribute 
similarity constraints are combined with structural embeddings to refine entity 
representations by clustering entities with high attribute correlations. During the 
search for latent aligned entities, the model uses cosine similarity between entity 
embeddings. 

GCN-Align This work [26] utilizes GCN as the KG structure encoder for aligning 
entities. 

To elaborate further, GCN-Align leverages GCN to capture the structure infor-
mation of KGs, which generates neighborhood-aware embeddings of entities. 
Additionally, it embeds the attribute names of entities to provide a complementary 
view. The model uses a margin-based ranking loss function to unify embeddings 
from different KGs. The structural and attributive embeddings are then combined 
to predict aligned entity pairs based on the Manhattan distance score. Finally, the 
model predicts latent entity alignments based on the distance measure between 
entities from the two KGs. 

AttrE This work [24] proposes to learn attribute embeddings of entities, which shift 
the entity embeddings of two KGs into the same vector space. 

First, AttrE creates a module for matching the predicates of two KGs, renaming 
them into a shared naming system to make sure the relation embeddings are 
compatible. Subsequently, TransE is used to learn the structural embeddings and 
attributes are encoded as attribute character embeddings. Transitivity rule is used to 
enrich the attribute triples. Finally, the attribute character embeddings are used to 
project the structural embeddings of entities into the same vector space and cosine 
similarity is used to make the prediction. 

KDCoE This work [5] develops a semi-supervised cross-lingual method to align 
multilingual KGs with minimal supervision. 

The KDCoE approach uses TransE as the structure encoder and combines it with 
a linear transformation-based network to bring together different knowledge graph 
embeddings. Additionally, it uses an attentive gated recurrent unit encoder (AGRU)



44 2 State-of-the-Art Approaches

to create representations of entity descriptions. The KDCoE approach trains both 
modules simultaneously, with both models suggesting a set of the most confident 
entity alignment pairs during each iteration to improve cross-lingual learning 
accuracy over time. Similarly to MTransE, the prediction is made through a KNN 
search from the cross-lingual conversion point of a target entity. 

HMAN The HMAN [30] method utilizes GCN to merge multiple types of information 
in order to generate entity embeddings. Additionally, it proposes a modified model 
that incorporates the textual descriptions of entities, which are encoded using a pre-
trained multilingual BERT model. 

In detail, the HMAN approach employs GCN to model the structural connections 
and uses feedforward neural networks to generate embeddings for attributes and 
relations, as using GCN to learn attribute and relation embeddings inherently 
considers the neighboring entities’ attributes and relations, which could lead to 
noise. The approach then concatenates these representations to form a hybrid multi-
aspect entity embedding. Finally, the method utilizes a margin-based ranking loss 
function to align the entities. 

Furthermore, the HMAN method introduces two additional techniques, pointwise-
BERT and pairwise-BERT, for utilizing multilingual BERT on entity descriptions 
to aid in the entity alignment process. To integrate entity descriptions with the 
hybrid multi-aspect entity embeddings, two strategies, reranking and weighted 
concatenation, are proposed. For prediction, the method leverages the L1 distance 
between entity embeddings. 

GM-Align The work described in reference [29] approaches the entity alignment 
problem as a graph matching challenge that can be addressed through both entity-
level and graph-level matching techniques. 

The GM-Align method initially generates a topic entity graph to depict the 
connections between a given entity (the “topic entity”) and its neighboring entities. 
This graph is then used to apply GCN to encode the structural information and 
generate matching scores. The method employs a word-based LSTM to embed the 
entity names as an initial feature matrix for GCN. The matching framework learns 
alignment information between the two knowledge graphs. During prediction, the 
method ranks all entities in the other knowledge graph in descending order of their 
matching probabilities, with the top-ranked entity considered as the result. 

RDGCN The authors of reference [27] propose a relation-aware dual-graph convo-
lutional network to include relation information by employing attentive interactions 
between a knowledge graph and its dual relation counterpart, so as to achieve an 
effective entity alignment process. 

The RDGCN method acknowledges that GCN-based models often disregard the 
relation information present in knowledge graphs. To address this, the authors 
employ the dual-primal graph CNN (DPGCNN) method to incorporate relation 
information. To adapt DPGCNN to the entity alignment task, the RDGCN method
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proposes a weighted model and explores the head/tail representations, which are 
initialized with entity names, as a way to capture the relation information. 

The RDGCN method permits multiple rounds of interactions between the primal 
entity graph and its dual relation graph, thus allowing the model to integrate more 
complex relation information into entity representations effectively. The method 
employs GCN with highway gates to incorporate neighboring structural information. 
The authors devise a margin-based scoring function to align embeddings from 
different knowledge graphs. During prediction, the method uses the Manhattan 
distance between entity embeddings. 

HGCN The authors of reference [28] suggest jointly learning entity and relation 
representations for the entity alignment task. 

The HGCN method first uses highway-GCNs that employ highway gates to 
control noise propagation in GCN to embed entities from various knowledge graphs. 
Next, the entity embeddings are utilized to approximate relation representations, 
which are then used to align relations across knowledge graphs. Finally, HGCN 
incorporates the relation representations into the entity embeddings to obtain joint 
entity representations and continues to use GCN to iteratively integrate neighboring 
structural information to improve the entity and relation representations further. 
Similar to RDGCN, a margin-based scoring function is used to align embeddings 
from different knowledge graphs, and the entity name is used as the initial feature 
matrix for GCN. During prediction, the method employs the Manhattan distance 
between entity embeddings. 

MultiKE The MultiKE method proposes a new framework that integrates entity 
names, relations, and attributes to learn embeddings for alignment [33]. 

The MultiKE method defines three different perspectives for EA, namely, entity 
name, relation, and attribute, and employs specific models to learn embeddings for 
each perspective. The TransE model is used to encode KG structure, with logistic 
loss replacing the margin-based loss. Two cross-KG identity inference strategies 
are proposed to capture and propagate alignment information between KGs. The 
view-specific entity embeddings are then combined, which are used for prediction 
through nearest-neighbor search. It should be noted that this method is currently 
only applicable to mono-lingual EA. 

CEA The authors of [31] create a unified EA framework that takes into account how 
different EA decisions are interconnected. 

CEA uses three types of features (structural, semantic, and string signals) to 
capture different aspects of entities in heterogeneous knowledge graphs. The authors 
then model the problem of making collective EA decisions by framing it as a stable 
matching problem, which is solved using the deferred acceptance algorithm.
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Appendix B 

Parameter Setting 

The definitions of the parameters can be found in their original papers. 

• MTransE: .λ = 0.01, .α = 5, .k = 75, and .epoch = 1000. 
• JAPE-Stru, JAPE: .d = 75, .α = 0.1, .β = 0.05, and .δ = 0.05. For SE, learning 
rate is set to 0.01 and early stopping. For AE, learning rate is set to 0.1 and 
epochs are set to 100. 

• GCN-Align(SE), GCN-Align: .ds = 300, .da = 100, .γs = 3, .γa = 3, and .β = 0.9. 
• RSNs: .α = 0.9 and .β = 0.9; learning rate is set to 0.003, embedding size set to 
256, batch size set to 512, and length set to 15. 

• MuGNN: .γ1 = 1.0, .γ2 = 1.0, and .γr = 0.12; embedding size is set to 128, 
learning rate set to 0.001, L2 set to 0.01, dropout set to 0.2, and epoch set to 
500. 

• KECG: .K1 = 25, .K2 = 2, .λ = 0.005, .γ1 = 3.0, .γ2 = 3.0, dimension set to 
128, and epoch set to 1,000. 

• ITransE: .n = 50, .γ = 1.0, .k = 1.0, .λ = 0.001, and .epoch = 3000. 
• BootEA: .γ1 = 0.01, .γ2 = 2.0, .γ3 = 0.7, .μ1 = 0.2, .μ2 = 0.1. For  DBP15K and 
SRPRS, .ε = 0.9; for  DWY100K, .ε = 0.98. Learning rate is set to 0.01, epoch 
set to 50, and dimension set to 75. 

• NAEA: .m = 75, .β = 0.8, .λ = 1, .μ1 = 1, .μ2 = 0.1, .γ = 2, .K = 4, .η = 0.01, 
and .epoch = 50. 

• TransEdge: .γ1 = 0.2, .γ2 = 2.0, .α = 0.8, .s = 0.7, .d = 75; learning rate is set to 
0.01 and early stopping. 

• HMAN: .F = 1, 000, .β = 3, .τ = 0.8, .epoch = 50, 000. For  DBP15K and 
SRPRS, topological, relation, and attribute embeddings are set to 200, 100, 
and 100, respectively; for DWY100K, dimensions are set to 100, 50, and 50, 
respectively. 

• GM-Align: .K1 = 2, and .K2 = 3; learning rate is set to 0.001 and batch size set 
to 32. 

• RDGCN: .β1 = 0.1, .β2 = 0.3, .γ = 1.0, .d = 300, .d ′ = 600, .d̃ = 300, and 
.κ = 125; learning rate is set to 0.001. 

• HGCN: .γ = 1, .β = 20, and .κ = 125; learning rate is set to 0.001. 
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Part II 
Recent Advances



Chapter 3 
Recent Advance of Representation 
Learning Stage 

Abstract Over the last few years, there are a pile of research devoted to learning 
better KG representations to facilitate entity alignment. Thus, in this chapter, we 
summarize recent progress in the representation learning stage of EA and also 
provide a detailed empirical evaluation to reveal the strengths and weaknesses of 
current solutions. 

3.1 Overview 

To better understand current advanced representation learning methods, we propose 
a general framework to describe these methods, which includes six modules, 
i.e., pre-processing, messaging, attention, aggregation, post-processing, and loss 
function. In pre-processing, the initial entity and relation representations are gener-
ated. Then, KG representations are obtained via a representation learning network, 
which usually consists of three steps, i.e., messaging, attention, and aggregation. 
Among them, messaging aims to extract the features of the neighboring elements, 
attention aims to estimate the weight of each neighbor, and aggregation integrates 
the neighboring information with attention weights. Through the post-processing 
operation, the final representations are obtained. The whole model is then optimized 
by the loss function in the training stage. 

More specifically, we summarize ten representative methods in terms of these 
modules in Table 3.1. 

• In the pre-processing module, there are mainly two ways to obtain the initial 
representations, some methods utilize pre-trained model to embed names or 
descriptions into initial representations, while some methods generate the initial 
structural representations through GNN-based networks. 

• In the messaging module, linear transformation is the most frequently used 
strategy, which makes use of a learnable matrix to transform neighboring features. 
Other methods include extracting neighboring features by concatenating multi-
head messages, directly utilizing neighboring representations, etc. 

• In the attention module, the main focus is the computation of similarity. Most 
of the methods concatenate the representations and multiply a learnable attention 
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vector to calculate attention weights. Besides, some use inner product of entity 
representations to compute similarity. 

• In the aggregation module, almost all methods aggregate 1-hop neighboring 
entity or relation information, while a few works propose to combine multi-hop 
neighboring information. Some use a set of randomly chosen entities, i.e., anchor 
set, to obtain position-aware representations. 

• In the post-processing module, most of the methods enhance final representations 
by concatenating the outputs of all layers of GNN. Besides, some methods 
propose to combine the features adaptively via strategies such as the gate 
mechanism [10]. 

• In terms of the loss function, the majority of methods utilize the margin-based loss 
during training. Some additionally add the TransE [1] loss, while some improve 
the margin loss using LogSumExp and normalization operation, or utilizing the 
Sinkhorn [3] algorithm to calculate the loss. 

3.2 Models 

We use Eq. (3.1) to characterize the core procedure of representation learning: 

.el
i = Aggregation∀j∈N(i)(Attention(i, j) · Messaging(i, j)) , (3.1) 

where .Messaging aims to extract the features of neighboring elements, . Attention
aims to estimate the weight of each neighbor, and .Aggregation integrates the 
neighborhood information with attention weights. 

Next, we briefly introduce recent advance of representation learning for EA in 
terms of the modules mentioned in Table 3.1. 

3.2.1 ALiNet 

It aims to aggregate multi-hop structural information for learning entity representa-
tions [12]. 

Aggregation This work devises a multi-hop aggregation strategy. For 2-hop 
aggregation, Aggregate is denoted as: 

.hl
i,2 = σ

⎛
⎝ ∑

j∈N2∪i

Attention(i, j) · Messaging(i, j)

⎞
⎠ , (3.2) 

where . N2 denotes the 2-hop neighbors.
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Then, it aggregates the multi-hop aggregation results to generate the entity 
representation. Aggregating 1-hop and 2-hop information is denoted as: 

.hi = g
(
hl

i,2

)
· hl

i,1 +
(
1 − g(hl

i,2)
)

· hl
i,2 , (3.3) 

where .g(hl
i,2) = σ(Mhl

i,2 + b), which is the gate to control the influences of 
different hops. . M and . b are learnable parameters. 

Attention Regarding the attention weight, it assumes that not all distant entities 
contribute positively to the characterization of the target entity representation, and 
the softmax function is used to produce the attention weights: 

.Attention(i, j) = αl
ij = sof tmax

(
cl
ij

)
=

exp
(
cl
ij

)
∑

n∈N2(i)∪i exp
(
cl
in

) , (3.4) 

where .cl
ij = LeakyReLU((M l

1h
l
i )

T M l
2h

l
j ), and .M1,M2 are two learnable 

matrices. 

Messaging The extraction of the features of neighboring entities is implemented 
as a simple linear transformation: .Messaging(i, j) = W l

qhl−1
j , where .W q denotes 

the weight matrix for the q-hop aggregation. 

Post-processing The representations of all layers are concatenated to produce the 
final entity representation: 

.hi = ⊕L
l=1norm

(
hl

i

)
. (3.5) 

Loss Function The loss function is formulated as: 

.L =
∑

(i,j)∈A+
||hi − hj || +

∑

(i′,j ′)∈A−
α1[γ − ||hi′ − hj ′ ||]+ , (3.6) 

where .A− is the set of negative samples, obtained through random sampling. . || · ||
denotes the L2 norm. .[·]+ = max(0, ·). 

3.2.2 MRAEA 

It proposes to utilize the relation information to facilitate the entity representation 
learning process [8]. 

Pre-processing Specifically, it first creates an inverse relation for each relation, 
resulting in the extended relation set . R. Then, it generates the initial features for
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entities by averaging and concatenating the embeddings of neighboring entities and 
relations: 

.hin
ei

=
⎡
⎣ 1

|Ne
i | + 1

∑
ej ∈Ne

i ∪ei

hej
|| 1

|Nr
i |

∑
rk∈Nr

i

hrk

⎤
⎦ , (3.7) 

where the embeddings of entities and relations are randomly initialized. 

Aggregation The aggregation is a simple combination of the extracted features and 
the weights: 

.hout
ei

= σ

⎛
⎝ ∑

ej ∈Ne
i

Attention(i, j) · Messaging(i, j)

⎞
⎠ , (3.8) 

where . σ is implemented as ReLU . 

Attention It augments the common self-attention mechanism to include relation 
features: 

. Attention(i, j) = sof tmax

×
⎛
⎝LeakyReLU

⎛
⎝vT

⎡
⎣hin

ei
||hin

ej
|| 1

|Mi,j |
∑

rk∈Mi,j

hrk

⎤
⎦
⎞
⎠
⎞
⎠ ,

(3.9) 

where .Mi,j represents the set of linked relations that connect . ei to . ej . Noteworthily, 
it also adopts the multi-head attention mechanism to obtain the representation. 

Messaging The features of neighboring entities are the corresponding features 
from the pre-processing stage. 

Post-processing Finally, the outputs from different layers are concatenated to 
produce the final entity representations: 

.ĥ
out

ei
=

[
hout (0)

ei
|| . . . ||hout (l)

ei

]
. (3.10) 

Loss Function The loss function is formulated as: 

. L =
∑

(ei ,ej )∈P
ReLU(dis(ei, ej ) − dis(e′

i , ej ) + λ) + ReLU(dis(ei, ej )

− dis(ei, e
′
j ) + λ) , (3.11)
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where .dis(·, ·)is the Manhattan distance between two entity representations. . e′
i and 

. e′
j represent the negative instances. 

3.2.3 RREA 

It proposes to use relational reflection transformation to aggregate features for 
learning entity representations [9]. 

Aggregation The entity representations are denoted as: 

.hl+1
ei

= ReLU

⎛
⎜⎝

∑
ej ∈Ne

ei

∑
rk∈Rij

Attention(i, j, k) · Messaging(i, j, k)

⎞
⎟⎠ , (3.12) 

where .Ne
ei
and . Rij represent the neighboring entity and relation sets, respectively. 

Attention .Attention(i, j, k) denotes the weight coefficient computed by: 

.Attention(i, j, k) =
exp

(
βl

ijk

)

∑
ej ∈Ne

ei

∑
rk∈Rij

exp
(
βl

ijk

) , (3.13) 

where .βl
ijk = vT [hl

ei
||Mrkh

l
ej

||hrk ]. . v is a trainable vector. .Mrk is the relational 
reflection matrix of . rk . We leave out the details of relational reflection matrix in the 
interest of space, which can be found in the original paper. 

Messaging The features of neighboring entities are the corresponding features 
from the pre-processing stage: 

.Messaging(i, j, k) = Mrkh
l
ej

, (3.14) 

where .Mrk is the relational reflection matrix of . rk . 

Post-processing Then, the outputs from different layers are concatenated to pro-
duce the output vector: 

.hout
ei

=
[
h0

ei
|| . . . ||hl

ei

]
. (3.15)
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Finally, it concatenates the entity representation with its neighboring relation 
embeddings to obtain the final entity representation: 

.hMul
ei

=
⎡
⎢⎣hout

ei
|| 1

|Nr
ei
|

∑
rj ∈Nr

ei

hrj

⎤
⎥⎦ . (3.16) 

Loss Function The loss function is formulated as: 

.L =
∑

(ei ,ej )∈P
max(dis(ei, ej ) − dis

(
e′
i , e

′
j

)
+ λ, 0) , (3.17) 

where .dis(·, ·)is the Manhattan distance between two entity representations. . e′
i and 

. e′
j represent the negative instances generated by nearest neighbor sampling. 

3.2.4 RPR-RHGT 

This work introduces a meta path-based similarity framework for EA [2]. It 
considers the paths that frequently appear in the neighborhoods of pre-aligned 
entities to be reliable. We omit the generation of these reliable paths in the interest 
of space, which can be found in Sect. 3.3 of the original paper. 

Pre-processing Specifically, it first generates relation embeddings by aggregating 
the representations of neighboring entities: 

.Rl(r) = σ

⎡
⎣ 1

|Hr |
∑

ei∈Hr

bhe
l−1
i || 1

|Tr |
∑

ej ∈Tr

bte
l−1
j

⎤
⎦ , (3.18) 

where . Hr and . Tr denote the set of head entities and tail entities that are connected 
with relation r . 

Aggregation The entity representation is obtained by averaging the messages from 
neighborhood entities with the attention weights: 

.ẽl
h = ⊕∀(r,t)∈RN(h)HAttention(h, r, t) · HMessage(h, r, t), (3.19) 

where . ⊕ denotes the overlay operation. 

Attention The multi-head attention is computed as: 

. 

HAttention(h, r, t) = ||i∈[1,hn]sof tmax∀(r,t)∈RN(h)(HAT T headi (h, r, t)),

HAT T headi (h, r, t) = aT ([Ki(h)||Qi(t)]Rl(r))/
√

d/hn,

(3.20)
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where .Ki(h) = K_Lineari(el−1
h ), .Qi(t) = Q_Lineari(el−1

t ), .RN(h) represents 
the neighborhood entities of h, . a denotes the learnable attention vector, . hn is the 
number of attention heads, and .d/hn is the dimension per head. 

Messaging The multi-head message passing is computed as: 

.

HMessage(h, r, t) = ||i∈[1,hn](HMSGheadi (h, r, t)),

HMSGheadi (h, r, t) = [V _Lineari(el−1
t )||Rl(r)],

(3.21) 

where .V _Lineari is a linear projection of the tail entity, which is then concatenated 
with the relation representation. 

Post-processing This work also combines the structural representations with name 
features using the residual connection: 

.el
h = ωβA_Linear

(
ẽl
h

)
+ (1 − ωβ)N_Linear

(
el−1
h

)
, (3.22) 

where .A_Linear and .N_Linear are linear projections. Correspondingly, based on 
the relation structure .Trel and path structure .Tpath, it generates the relation-based 
embeddings .Erel and the path-based embeddings .Epath. 

Loss Function Finally, the margin-based ranking loss function is used to formulate 
the overall loss function: 

.

L =
∑

(p,q)∈L,(p′,q ′)∈L′
rel

[drel(p, q) − drel(p
′, q ′) + λ1]+

+θ

⎛
⎜⎝

∑

(p,q)∈L,(p′,q ′)∈L′
path

[dpath(p, q) − dpath(p
′, q ′) + λ2]+

⎞
⎟⎠ ,

(3.23) 

where the distance is measured by the Manhattan distance and . θ is the hyper-
parameter that controls the weights of relation loss and path loss. 

3.2.5 RAGA 

It proposes to adopt the self-attention mechanism to spread entity information to the 
relations and then aggregate relation information back to entities, which can further 
enhance the quality of entity representations [17]. 

Pre-processing In the pre-processing module, the pre-trained vectors are used as 
input and then forwarded to a two-layer GCN with highway network to encode 
structure information. We leave out the implementation details in the interest of 
space, which can be found in Sect. 4.2 in the original paper.
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Aggregation In RAGA, there are three main GNN networks. Denote the initial 
representation of entity i as . hi , which is generated in pre-processing module. The 
first GNN network obtains relation representation by aggregating all of its connected 
head entities and tail entities. For relation k, the aggregation of its connected head 
entities is computed as follows: 

.rh
k = σ

⎛
⎝ ∑

ei∈Hrk

∑
ej ∈Tei rk

Attention1(i, j, k) · Messaging1(i)

⎞
⎠ , (3.24) 

where . σ is the ReLU activation function, .Hrk is the set of head entities for relation 
. rk , and .Tei rk is the set of tail entities for head entity . ei and relation . rk . The  
aggregation of all tail entities . r t

k can be computed through a similar process, and 
the relation representation is obtained as .rk = rh

k + r t
k . 

Then, the second GNN network generates relation-aware entity representation 
through aggregating relation information back to entities. For entity i, the aggrega-
tion of all its outward relation embeddings is computed as follows: 

.hh
i = σ

⎛
⎜⎝

∑
ej ∈Tei

∑
rk∈Rei ej

Attention2(i, k) · rk

⎞
⎟⎠ , (3.25) 

where .Tei
is the set of tail entities for head entity . ei and .Reiej

is the set of 
relations between head entity . ei and tail entity . ej . The aggregation of inward relation 
embeddings . ht

i is computed through a similar process. Then the relation-aware 
entity representations .hrel

i can be obtained by concatenation: .hrel
i = [

hi‖hh
i ‖ht

i

]
. 

Finally, the third GNN takes as input the relation-aware entity representations 
and makes aggregation to produce the final entity representations: 

.hout
i = σ

⎛
⎝∑

j∈Ni

Attention3(i, j) · hrel
k

⎞
⎠ , (3.26) 

Attention Corresponding to three GNN networks, there are three attention compu-
tations in RAGA. In the first GNN, to compute the attention weights, representations 
of head entity and tail entity are linearly transformed, respectively, and then 
concatenated: 

. Attention1(i, j, k)= exp
(
LeakReLU

(
aT
1

[
Whhi‖W thj

]))
∑

ei′ ∈Hrk

∑
ej ′ ∈Tei rk

exp
(
LeakReLU

(
aT
1

[
Whhi′ ‖W thj ′

])) ,

(3.27) 

where . a1 is the learnable attention vector.
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In the second GNN, representations of entity and its neighboring relations are 
directly concatenated: 

.Attention2(i, k) = exp
(
LeakReLU(aT

2 [hi‖rk])
)

∑
ej ∈Tei

∑
rk′ ∈Rei ej

exp
(
LeakReLU(aT

2 [hi‖rk′ ])
) , (3.28) 

where . a2 is the learnable attention vector. 
The computation of attention in the third GNN, i.e., .Attention3, is similar to 

Eq. (3.28), which concatenates entity and its neighboring entity instead of relation. 

Messaging Only the first GNN utilizes linear transformation as the messaging 
approach: 

.Messaging1(i) = Whi , (3.29) 

where . W can refer to .Wh or .W t depending on the aggregation of head or tail 
entities. 

Post-processing The final enhanced entity representation is the concatenation of 
outputs of the second and the third GNNs: 

.h
f inal
i =

[
hrel

i ‖hout
i

]
. (3.30) 

Loss Function The loss function is formulated as: 

.L =
∑

(ei ,ej )∈T

∑

(e′
i ,e

′
j )∈T ′

ei ,ej

max(dis(ei, ej ) − dis(e′
i , e

′
j ) + λ, 0) , (3.31) 

where .T ′
ei ,ej

is the set of negative sample for . ei and . ej , . λ is the margin, and .dis() is 
defined as the Manhattan distance. 

3.2.6 Dual-AMN 

Dual-AMN proposes to utilize both intra-graph and cross-graph information for 
learning entity representations [7]. It constructs a set of virtual nodes, i.e., proxy vec-
tors, through which the messaging and aggregation between graphs are conducted. 

Aggregation Dual-AMN uses two GNN networks to learn intra-graph and cross-
graph information, respectively. Firstly, it utilizes relation projection operation in 
RREA to obtain intra-graph embeddings: 

.hl
ei

= σ

⎛
⎝ ∑

ej ∈Nei

∑
rk∈Rij

Attention1(i, j, k) · Messaging1(j, k)

⎞
⎠ , (3.32)
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where . σ is the tanh activation function and . hl
ei
represents the output of l-th layer. 

Then the multi-hop embeddings are obtained by concatenation: 

.hmulti
ei

=
[
h0

ei
‖h1

ei
‖ . . . ‖hl

ei

]
. (3.33) 

Secondly, it constructs a set of virtual nodes .Sp = {q1, q2, . . . , qn}, namely, 
the proxy vectors, which are randomly initialized. The cross-graph aggregation is 
computed as: 

.h
p
ei

=
∑
j∈Sp

Attention2(i, j) · Messaging2(i, j) . (3.34) 

Attention For intra-graph information learning, the attention weights are calcu-
lated as: 

.Attention1(i, j, k) = exp(vT hrk )∑
ej ′ ∈Nei

∑
rk′ ∈Rij ′ exp(v

T hrk′ )
, (3.35) 

where . vT is a learnable attention vector and . hrk is the representation of relation . rk , 
which is randomly initialized by He_initializer [4]. 

For cross-graph information learning, the attention weights are computed by the 
similarity between entity and proxy vectors: 

.Attention2(i, j) = exp(cos(hmulti
ei

, qj ))∑
k∈Sp

exp(cos(hei
, qk))

. (3.36) 

Messaging For the first GNN, the messaging is the same as RREA, which utilizes 
a relational reflection matrix to transform neighbor embeddings. 

For the second GNN, the features of neighboring entities are represented as the 
difference between entity and proxy vectors: 

.Messaging2(i, j) = hmulti
ei

− qj . (3.37) 

Post-processing For the final entity embeddings, the gate mechanism is used to 
combine intra-graph and cross-graph representations: 

.

ηei
= σ(Mh

p
ei

+ b),

h
f inal
ei

= ηei
· h

p
ei

+ (1 − ηei
) · hmulti

ei
,

(3.38) 

where . M and . b are the gate weight matrix and gate bias vector.
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Loss Function Firstly, it calculates the original margin loss as follows: 

.lo(ei, ej , e
′
j ) = γ + ‖hf inal

ei
− h

f inal
ej

‖22 − ‖hf inal
ei

− h
f inal

e′
j

‖22 . (3.39) 

Inspired by batch normalization [5] which reduces the internal covariate shift, 
it proposes to use a normalization step that fixes the mean and variance of sample 
losses from .lo(ei, ej , e

′
j ) to .ln(ei, ej , e

′
j ) and reduces the dependence on the scale 

of the hyper-parameter. Finally, the overall loss function is defined as follows: 

.

L =
∑

(ei ,ej )∈P

log

⎡
⎢⎣1 +

∑

e′
j ∈E2

exp(ln(ei, ej , e
′
j ))

⎤
⎥⎦

+
∑

(ei ,ej )∈P

log

⎡
⎣1 +

∑

e′
i∈E1

exp(ln(ej , ei, e
′
i ))

⎤
⎦ ,

(3.40) 

where P is the set of positive samples and . E1 and . E2 are the sets of entities in two 
knowledge graphs, respectively. 

3.2.7 ERMC 

This work proposes to jointly model and align entities and relations and meanwhile 
retain their semantic independence [14]. 

Pre-processing For pre-processing, it obtains names or descriptions of entities and 
relations as the inputs for BERT [6] and adds an MLP layer to construct initial 
representations, which are denoted as .xe(0) and .xr(0) for each entity and relation, 
respectively. 

Aggregation Given an entity e, the model first aggregates the embeddings of 
entities that point to e: 

.h
e(l+1)
Ne

i
= σ

⎛
⎜⎝ 1

|Ne(e)
i |

∑

ei∈Ne(e)
i

Messaging(i)

⎞
⎟⎠ , (3.41) 

where .σ(·) contains normalization, dropout, and activation operations. Similarly, 
the model aggregates the embeddings of entities that e points to, the embeddings 
of relations that point to e, and the embeddings of relations that e points to, 
producing .h

e(l+1)
Nr

i
, .he(l+1)
Ne

o
, and .h

e(l+1)
Nr

o
, respectively. The model also aggregates the
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embeddings of entities that point to a relation r or r points to, so as to produce the 
relation embeddings .h

r(l+1)
Ne

i
and .h

r(l+1)
Ne

o
, respectively. 

Messaging Given an entity e, the messaging process of the entities that point to e is 
implemented as a simple linear transformation: .Messaging(i) = W

e(l)
ei

xei (l), where 

.xei (l) is the node representation in the last layer and .W e(l)
ei

is a learnable weight 
matrix that aggregates the inward entity features. The messaging process of other 
operations is implemented similarly. 

Post-processing The final representation of entity e is formulated as follows: 

.

he(l+1) =
[
h

e(l+1)
Ne

i
‖he(l+1)
Nr

i
‖he(l+1)
Ne

o
‖he(l+1)
Nr

o

]
,

xe(l+1) = MLP
([

he(l+1)‖xe(l)
])

.

(3.42) 

And the final representation of relation r is formulated similarly: 

.

hr(l+1) =
[
h

r(l+1)
Ne

i
‖hr(l+1)
Ne

o

]
,

xr(l+1) = MLP
([

hr(l+1)‖xr(l)
])

.

(3.43) 

The graph embedding .H ∈ R
(|E|+|R|)×d is the concatenation of all entities and 

relations’ representations. 

Loss Function Denote .H s and . H t as the representations of two graphs, respec-
tively. The similarity matrix is computed as: 

.S = sinkhorn(H s ,H
T
t ) , (3.44) 

where .si,j ∈ S is a real number that denotes the correlation between entity . ei
s (from 

source graph) and . ej
t (from target graph), or the correlation between relation . ri

s

(from source graph) and . rj
t (from target graph). The other elements are set to . −∞

to mask the correlation between entity and relation across different graphs. The final 
loss function is formulated as follows: 

.L = −
∑

(
ei
s ,e

j
t

)
∈Qe

log
(
si,j

) − λ
∑

(
ri
s ,r

j
t

)
∈Qr

log
(
si,j

)
, (3.45) 

where .(ei
s , e

j
t ) and .(ri

s , r
j
t ) are pre-aligned entity and relation pairs and .λ ∈ [0, 1] is 

a hyper-parameter.
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3.2.8 KE-GCN 

It combines GCNs and advanced KGE methods to learn the representations, where 
a novel framework is put forward to realize the messaging and aggregation modules 
in representation learning [15]. 

Aggregation Denoting . hl
v as the embedding of entity v at layer l, the entity 

updating rules are: 

. 

ml+1
v =

∑
(u,r)∈Nin(v)

Messaging(u, r, v) +
∑

(u,r)∈Nout(v)

Messaging(u, r, v),

hl+1
v = σ(ml+1

v + W l
0h

l
v) ,

(3.46) 

where .Nin(v) = {(u, r)|u r→ v} is the set of inward entity-relation neighbors of 

entity v, while .Nout(v) = {(u, r)|u r← v} is the set of outward neighbors of v. . W l
0

is a linear transformation matrix. .σ(·) denotes the activation function for the update. 
The embedding of relation is updated through a similar process. 

Messaging It considers GCN as an optimization process, where the messaging 
process is implemented as a partial derivative: 

.Messaging(u, r, v) = W l
r

∂f (hl
u,h

l
r ,h

l
v)

∂hl
v

, (3.47) 

where . hl
r represents the embedding of relation r at layer l and .W l

r is a relation-
specific linear transformation matrix. .f (hl

u,h
l
r ,h

l
v) is the scoring function that 

measures the plausibility of triple .(u, r, v). Thus, .ml+1
v + W l

0h
l
v in Eq. (3.46) 

can be regarded as the gradient ascent to maximize the sum of scoring function. 
For example, if .f (hl

u,h
l
r ,h

l
v) = (hl

u)
T hl

v , Eq. (3.47) becomes equivalent to the 
common linear transformation .W l

rh
l
u. 

Loss Function Denote the training set as .S = {(u, v)}; this model utilizes margin-
based ranking loss for optimization: 

.L =
∑

(u,v)∈S

∑

(u′,v′)∈S′
(u,v)

max(‖hu − hv‖1 + γ − ‖hu′ − hv′ ‖1, 0) , (3.48) 

where .S′
(u,v) denotes the set of negative entity alignments constructed by corrupting 

.(u, v), i.e., replacing u or v with a randomly chosen entity in graph. . γ represents 
the margin hyper-parameter separating positive and negative entity alignments.
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3.2.9 RePS 

It encodes position and relation information for aligning entities [13]. 

Aggregation Firstly, to encode position information, k subsets of nodes (referred to 
as anchor sets) are randomly sampled. An . ith anchor set is a collection of . li number 
of nodes (anchors). Then for entity v, the aggregation process is formulated as: 

.hl
vp

= g

(
1

k + 1

(
k∑

i=1

Messaging1(v, ψi) + hl−1
v

))
, (3.49) 

where . hl
v represents the embedding of entity v from layer l, . ψi is the . ith anchor set, 

and .g(X) = σ(W 1X + b1), where .W 1 and . b1 are trainable parameters and . σ is the 
activation function. 

To encode relation information, a simple relation-specific GNN is used: 

.hl
vr

= f

⎛
⎝(1 + cv) · hl−1

v +
∑
i∈Nv

Messaging2(i)

⎞
⎠ , (3.50) 

where . cv is the learnable coefficient for entity v and . Nv is the set of neighboring 
entities of v. .f (X) = W 2X + b2, where .W 2 and . b2 are learnable parameters. 

Messaging To ensure similar entities in two graphs have similar representations, 
the relation-enriched distance function is defined as follows: 

.pd(u, v) = min
q

⎛
⎝ ∑

r∈Pq(u,v)

f (r,KGi )

⎞
⎠ , (3.51) 

where .f (r,KGi ) is the frequency of relation r in .KGi and .Pq(u, v) is the list 
of relations in the .qth path between u and v. Thus, .pd(u, v) aims to find the 
shortest path between u and v, where the relations appear less frequently. Then 
the messaging function is formulated as follows: 

.Messaging1(v, ψi) = min

({
pd(v, φi,j ) · hl−1

ψi,j

}li

j=1

)
, (3.52) 

where .ψi,j is the j th entity in ith anchor set.
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For relation-aware embedding, it sums up the neighboring representations with 
relation-specific weights: 

.Messaging2(i) = hl−1
i

1 + crv,i

, (3.53) 

where .crv,i
is the learnable coefficient for relation r connecting v and i. 

Post-processing The final representation of v is computed as: 

.hl
v = g

(
hl

vp

)
· hl

vp
+

(
1 − g

(
hl

vp

))
· hl

vr
, (3.54) 

where .g(hl
vp

) = σ(W 3h
l
vp

+ b3) learns the relative importance. .W 3 and . b3 are 
trainable parameters and . σ is the activation function. 

Loss Function It introduces a novel knowledge-aware negative sampling (KANS) 
technique to generate hard negative samples. For each tuple .(v, v′) in S, the negative 
instances for v are sampled from set . �v , where . �v is the set of entities which share 
at least one (relation, tail) pair or (relation, head) pair with . v′. The model is trained 
by minimizing the following loss: 

.L =
∑

(p,p′)∈S

‖p − p′‖ + β
∑

(p,q)∈S′
[γ − ‖p − q‖]+ , (3.55) 

where . β is a weighing parameter and . γ is the margin. 

3.2.10 SDEA 

SDEA utilizes BiGRU to capture correlations among neighbors and generate entity 
representations [16]. 

Pre-processing It devises an attribute embedding module to capture entity associ-
ations via entity attributes. Specifically, given an entity . ei , it concatenates the names 
and descriptions of its attributes, denoted as .S(ei). Then .S(ei) is fed into BERT 
model to generate attribute embedding .H a(ei). The details of implementation can 
be found in Section III of the original paper, which is omitted in the interest of space. 

Aggregation It aggregates the neighboring information utilizing attention mecha-
nism: 

.H r (ei) =
n∑

t=1

Attention(t) · Messaging(t) . (3.56)
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Since SDEA treats neighborhood as a sequence, t actually represents t-th 
neighboring entity of . ei , and .Messaging() is computed through a BiGRU. 

Attention SDEA computes attention via simple inner product: 

.Attention(t) =
exp

(
hT

t · ĥ
)

∑n
i=1 exp

(
hT

i · ĥ
) , (3.57) 

where . ̂h is the global attention representation, which is obtained after feeding the 
output of the last unit of the BiGRU, denoted as . hn, into an MLP layer. 

Messaging Different from other models, SDEA captures correlation between 
neighbors in messaging module, and all neighbors of entity . ei are regarded as 
an input sequence of the BiGRU model. Given entity . ei , let  . xt denote the t-th 
input embedding (i.e., the attribute embedding of . ei’s t-th neighbor, as described 
in pre-processing module) and . ht denote the output t-th hidden unit. The process of 
BiGRU is formulated as follows: 

.

r t = σ(W rxt + U rht−1 + br )

h̃t = φ(Wxt ) + U(r t � ht−1 + bh)

zt = σ(W zxt + U zht−1 + bz)

ht = (1 − zt ) � ht−1 + zt � h̃t ,

(3.58) 

where . r t is the reset gate that drops the unimportant information and . zt is the update 
gate that combines the important information. .W ,U , b are learnable parameters. . ̃ht

is the hidden state. . σ is the sigmoid function and . φ is the hyperbolic tangent. . � is 
the Hadamard product. 

For BiGRU, there are outputs of two directions . 
←−
ht and . 

−→
ht , and the final output 

of BiGRU, namely, the output of messaging module, is the sum of two directions: 

.Messaging(i) = ←−
ht + −→

ht . 

Post-processing After obtaining the attribute embedding .H a(ei) and the relational 
embedding .H r (ei), they are concatenated and forwarded to another MLP layer, 
resulting in .Hm(ei) = MLP([H a(ei)‖H r (ei)]). Finally, .H a(ei), .H r (ei), and 
.Hm(ei) are concatenated to produce .H ent (ei) = [H r (ei)‖H a(ei)‖Hm(ei)], which 
is used in alignment stage. 

Loss Function The model uses the following margin-based ranking loss as the loss 
function to train attribute embedding module: 

. L =
∑

ei ,e
′
i ,e

′′
i ∈D

max
{
0, ‖H a(ei) − H ′

a(e
′
i )‖2 − ‖H a(ei) − H ′

a(e
′′
i )‖2 + β

}
,

(3.59)
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where D is the training set; .H a and .H ′
a are attribute embeddings of source graph 

and target graph, respectively; and .β > 0 is the margin hyper-parameter used for 
separating positive and negative pairs. 

The training of relation embedding module uses a margin-based ranking loss 
similar to Eq. (3.59), where the embedding .H a(ei) is replaced by .[H r (ei)‖Hm(ei)]. 

3.3 Experiments 

In this section, we first conduct overall comparison experiment to reveal the 
effectiveness of state-of-the-art representation learning methods. Then we conduct 
further experiments in terms of the six modules of representation learning, so as to 
examine the effectiveness of various strategies. 

3.3.1 Experimental Setting 

Dataset We use the most frequently used DBP15K dataset [11] for evaluation. 

Baselines For overall comparison, we select seven models, including AliNet [12], 
MRAEA [8], RREA [9], RAGA [17], SDEA [16], Dual-AMN [7], and RPR-
RHGT [2]. We collect their source codes and reproduce the results in the same 
setting. Specifically, to make a fair comparison, we modify and unify the alignment 
part of these models, forcing them to utilize L1 distance and greedy algorithm for 
alignment inference. We omit the comparison with the remaining models, as they do 
not provide the source codes and our implementations cannot reproduce the results. 
For ablation and further experiments, we choose RAGA as the base model. 

Parameters and Metrics Since there are various kinds of hyper-parameters for 
different models, we just unify the common parameters, such as the margin λ = 3 in  
margin loss function, and number of negative samples k = 5. For other parameters, 
we keep the default settings in the original papers. 

Following existing studies, we use Hits@k (k = 1, 10) and mean reciprocal 
rank (MRR) as the evaluation metrics. The higher the Hits@k and MRR, the 
better the performance. In experiments, we report the average performance of three 
independent runs as the final result. 

3.3.2 Overall Results and Analysis 

Firstly, we compare the overall performance of seven advanced models in Table 3.2, 
where the best results are highlighted in bold, and the second best results are 
underlined.
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Table 3.2 Comparison of representation learning models on DBP15K 

ZH-EN JA-EN FR-EN 

Model Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR 

AliNet 51.7 80.9 0.616 52.1 80.3 0.619 52.1 83.5 0.628 

MRAEA 64.2 89.8 0.733 65.4 89.7 0.743 67.6 92.3 0.767 

RREA 56.8 87.3 0.672 57.0 87.6 0.675 59.3 90.0 0.700 

RAGA 77.8 92.3 0.831 81.8 94.6 0.866 91.0 98.1 0.937 

SDEA 84.3 95.0 0.883 79.2 90.7 0.833 94.8 98.7 0.964 
Dual-AMN 79.6 92.7 0.843 79.0 93.1 0.842 82.1 95.0 0.870 

RPR-RHGT 65.0 84.9 0.720 87.3 95.1 0.902 86.1 95.5 0.895 

From the results, it can be observed that: 

• No model achieves state-of-the-art performance over all three KG pairs. This 
indicates that current advanced models have advantages and disadvantages in 
different situations. 

• SDEA achieves the best performance on ZH-EN and FR-EN, and RPR-RHGT 
leads on JA-EN. Considering that both of the two models leverage pre-trained 
model to obtain initial embeddings and devise novel approaches to extract 
neighboring features, we may draw primary conclusion that utilizing pre-trained 
model benefits the representation learning process, and effective messaging 
approach is important to the overall results. 

• RAGA achieves the second best performance on JA-EN and FR-EN, and Dual-
AMN attains the second best result on ZH-EN. Notably, RAGA also leverages the 
pre-trained model, which further validates the effectiveness of using pre-trained 
model for initialization. Dual-AMN uses proxy vectors that can help capture 
cross-graph information and hence improve representation learning. 

• AliNet performs the worst over three datasets. As AliNet is the only model that 
aggregates 2-hop neighboring entities, it may indicate directly incorporating 2-
hop neighboring information benefits little, which can also be observed in the 
further experiments on aggregation module. 

3.3.3 Further Experiments 

To compare various strategies in each module of representation learning, we conduct 
further experiments using the RAGA model. 

3.3.3.1 Pre-processing Module 

RAGA takes pre-trained embeddings as input, which are forwarded to a two-layer 
GCN with highway network to generate initial representations. To examine the



70 3 Recent Advance of Representation Learning Stage

Table 3.3 Analysis of the pre-processing module using RAGA 

ZH-EN JA-EN FR-EN 

Model Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR 

RAGA 77.7 92.3 0.831 81.8 94.6 0.866 91.0 98.1 0.937 
RAGA w/o 
Pre-trained 

34.6 58.4 0.430 34.9 58.4 0.433 33.9 59.0 0.427 

RAGA w/o 
GNN 

72.4 85.5 0.772 77.8 88.8 0.818 89.9 96.1 0.923 

RAGA w/o 
Both 

19.8 34.5 0.250 20.3 36.3 0.260 20.1 36.7 0.259 

effectiveness of pre-trained embeddings and structural embeddings, we remove 
them, respectively, and then make comparison. Table 3.3 shows the results, where 
“w/o Pre-trained” represents removing pre-trained embeddings, “w/o GNN” repre-
sents removing GCN, and “w/o Both” represents removing the whole pre-processing 
module. 

The results show that removing the structural features and the pre-trained 
embeddings significantly degrades the performance, and the model that completely 
removes the pre-processing module achieves the worst result. Hence, it is important 
to extract useful features to initialize the embeddings. Additionally, we can also 
observe that the semantic features in the pre-trained model are more useful than the 
structural vectors, which verifies the effectiveness of the prior knowledge contained 
in the pre-trained embeddings. Using structural embeddings for initialization is less 
effective, as the subsequent steps in representation learning also aim to extract the 
structural features to produce meaningful representations. 

3.3.3.2 Messaging Module 

For the messaging module, linear transformation is the most widely used approach. 
RAGA only utilizes linear transformation in its first GNN and does not use transfor-
mation in the other two GNNs. Thus, we design two variants: one that eliminates the 
linear transformation in the first GNN (“-Linear Transform”), resulting in a model 
without linear transformation at all, and the other one that adds linear transformation 
in the other two GNNs (“. +Linear Transform”), resulting in a model that is fully 
equipped with linear transformation. 

The results are presented in Table 3.4. Besides, we also report their convergence 
rates in Fig. 3.1. 

It is evident that adding linear transformation in the rest of the GNNs improves 
the performance of RAGA, especially on JA-EN and FR-EN datasets, where Hits@1 
improves by 1.1% and 1.2%, respectively. Additionally, when removing linear 
transformation, the performance drops significantly. Furthermore, Fig. 3.1 shows 
that linear transformation can also boost the convergence of model, possibly due 
to the introduction of extra parameters.
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Table 3.4 Analysis of the messaging module using RAGA 

ZH-EN JA-EN FR-EN 

Model Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR 

RAGA 77.7 92.3 0.831 81.8 94.6 0.866 91.0 98.1 0.937 

RAGA 
. +Linear 
Transform 

78.3 92.3 0.834 82.9 95.0 0.873 92.2 98.5 0.946 

RAGA 
. −Linear 
Transform 

68.3 85.1 0.744 70.8 86.2 0.763 81.6 92.3 0.855 

Fig. 3.1 Comparison of convergences 

3.3.3.3 Attention Module 

For attention module, there are two popular implementations, i.e., inner product 
and concatenation. To compare the two approaches, we replace the concatenation 
computation of RAGA with inner product computation (i.e., “-Inner product,” 
by changing .vT [ei‖ej ] to .(M1ei )

T (M2ej ), where .M1,M2 are learnable trans-
formation matrices), and remove the attention mechanism, (i.e., “w/o Attention,” 
where we do not compute attention coefficient and just take average operation), 
respectively, and then report the results. 

As it is shown in Table 3.5, the two variant models perform almost the same as the 
original model. Considering the influence of the initial representation generated in 
the pre-processing module, we remove the pre-trained vectors of the pre-processing 
module and then conduct the same comparison. As shown in Table 3.6, removing  
the attention mechanism drops the performance, so we may draw a preliminary 
conclusion that the attention mechanism can play a better role in the absence of 
prior knowledge. As for the two strategies of attention computation, inner product
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Table 3.5 Analysis of the attention module using RAGA 

ZH-EN JA-EN FR-EN 

Model Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR 

RAGA 77.7 92.3 0.831 81.8 94.6 0.866 91.0 98.1 0.937 

RAGA-Inner 
product 

77.8 92.2 0.831 81.8 94.6 0.866 91.0 98.1 0.937 

RAGA w/o 
Attention 

77.7 92.3 0.831 81.8 94.6 0.865 91.0 98.1 0.937 

Table 3.6 Analysis of the attention module using RAGA after removing pre-trained embeddings 

ZH-EN JA-EN FR-EN 

Model Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR 

RAGA 34.6 58.4 0.430 34.9 58.4 0.433 33.9 59.0 0.427 
RAGA-Inner 
product 

35.1 59.0 0.435 34.6 58.2 0.430 33.4 58.5 0.422 

RAGA w/o 
Attention 

34.5 58.3 0.430 33.9 57.4 0.422 33.0 58.1 0.418 

Table 3.7 Analysis of the aggregation module using RAGA 

ZH-EN JA-EN FR-EN 

Model Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR 

RAGA 77.7 92.3 0.831 81.8 94.6 0.866 91.0 98.1 0.937 
RAGA-2hop 77.3 92.2 0.827 81.5 94.5 0.862 91.0 98.1 0.937 

RAGA w/o rel. 50.0 77.0 0.597 52.5 78.6 0.619 54.2 79.4 0.631 

performs better than concatenation on ZH-EN dataset but worse on JA-EN and FR-
EN datasets, which indicates these two approaches make different contributions on 
different datasets. 

3.3.3.4 Aggregation Module 

For the aggregation module, as RAGA incorporates both 1-hop neighbors and 
relation information to update entity representations, we examine two variants, 
i.e., adding two hop neighboring information (“-2hop”) and removing relation 
representation (“w/o rel.”). The results are shown in Table 3.7. 

We can observe that the performance of the model decreases significantly after 
removing the relation representation learning. This shows that the integration of 
relation representations can indeed enhance the learning ability of the model. 
Besides, the performance of the model decreases slightly after adding the informa-
tion of 2-hop neighboring entities, which might indicate that the 2-hop neighboring 
information can bring some noises, as not all entities are useful for aligning the 
target entity.
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Table 3.8 Analysis of the post-processing module using RAGA 

ZH-EN JA-EN FR-EN 

Model Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR 

RAGA 77.7 92.3 0.831 81.8 94.6 0.866 91.0 98.1 0.937 

RAGA-
highway 

77.6 92.7 0.832 81.2 94.2 0.861 91.1 98.3 0.939 

RAGA w/o 
post-
processing 

52.7 81.7 0.629 52.4 81.8 0.628 55.9 85.0 0.661 

Table 3.9 Analysis of the loss function module using RAGA 

ZH-EN JA-EN FR-EN 

Model Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR 

RAGA 77.7 92.3 0.831 81.8 94.6 0.866 91.0 98.1 0.937 
RAGA-TransE 50.5 68.5 0.569 53.1 74.8 0.605 71.9 85.1 0.766 

RAGA w/ 
TransE 

73.1 89.0 0.789 77.8 92.1 0.831 88.3 96.5 0.915 

3.3.3.5 Post-processing Module 

RAGA concatenates the relation-aware entity representation and the 1-hop aggre-
gation results to produce the final representation. We examine two variants, i.e., 
“-highway’ ’that replaces concatenation with highway network [10], and “w/o post-
processing” that removes the relation-aware entity representation (Table 3.8). 

From the experimental results, it can be seen that removing post-processing 
module decreases the performance, which indicates that the relation-aware repre-
sentations can indeed enhance the final representations and improve the alignment 
performance. After replacing the concatenation operation with highway network, 
the performance decreases on JA-EN dataset and increases on FR-EN dataset, which 
indicates that the two post-processing strategies do not have absolute advantages and 
disadvantages. 

3.3.3.6 Loss Function Module 

For the loss function, RAGA employs margin-based loss in training. We consider 
two other popular choices, i.e., TransE-based loss and margin-based + TransE loss. 
Specifically, TransE-based loss is formulated as .lE = 1

k

∑
k ‖hk + rk − tk‖1, where 

.(hk, rk, tk) is randomly sampled. 
From the results in Table 3.9, it can be seen that the model performance decreases 

after using or adding the TransE loss. This is mainly because the TransE assumption 
is not universal. For example, in the RAGA model used in this experiment, the 
representation of the relation is actually obtained by adding the head entity and the 
tail entity, which is in conflict with the TransE assumption.



74 3 Recent Advance of Representation Learning Stage

3.4 Conclusion 

In this chapter, we survey recent advance in the representation learning stage of EA. 
We propose a general framework of GNN-based representation learning models, 
which consists of six modules, and summarize ten recent works in terms of these 
modules. Extensive experiments are conducted to show the overall performance of 
each method and also reveal the effectiveness of the strategies in each module. 
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Chapter 4 
Recent Advance of Alignment 
Inference Stage 

Abstract In this chapter, we introduce recent progress of the alignment inference 
stage. 

4.1 Introduction 

Matching data instances that refer to the same real-world entity is a long-standing 
problem. It establishes the connections among multiple data sources and is critical 
to data integration and cleaning [33]. Therefore, the task has been actively studied; 
for instance, in the database community, various entity matching (EM) (and entity 
resolution (ER)) strategies are proposed to train a (supervised) classifier to predict 
whether a pair of data records match [9, 33]. 

Recently, due to the emergence and proliferation of knowledge graphs (KGs), 
matching entities in KGs draws much attention from both academia and industries. 
Distinct from traditional data matching, it brings its own challenges. In particular, 
it underlines the use of KGs’ structures for matching and manifests unique 
characteristics of data, e.g., imbalanced class distribution, and few attributive textual 
information, etc. As a consequence, although viable, following the traditional EM 
pipeline, it is difficult to train an effective classifier that can infer the equivalence 
between KGs’ entities. Hence, much effort has been dedicated to specifically 
addressing the matching of entities in KGs, which is also referred to as entity 
alignment (EA). 

Nevertheless, early solutions to EA are mainly unsupervised [22, 42], i.e., no 
labeled data is assumed. They utilize discriminative features of entities (e.g., entity 
descriptions and relational structures) to infer the equivalent entity pair, which are, 
however, embarrassed by the heterogeneity of independently constructed KGs [44]. 

To mitigate this issue, recent solutions to EA employ a few labeled pairs as 
seeds to guide the learning and prediction [8, 14, 27, 37, 47]. In short, they embed 
the symbolic representations of KGs as low-dimensional vectors in a way such 
that the semantic relatedness of entities is captured by the geometrical structures 
of embedding spaces [4], where the seed pairs are leveraged to produce unified 
entity representations. In the testing stage, they match entities based on the unified 

© The Author(s) 2023 
X. Zhao et al., Entity Alignment, Big Data Management, 
https://doi.org/10.1007/978-981-99-4250-3_4

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4250-3protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-981-99-4250-3_4
https://doi.org/10.1007/978-981-99-4250-3_4
https://doi.org/10.1007/978-981-99-4250-3_4
https://doi.org/10.1007/978-981-99-4250-3_4
https://doi.org/10.1007/978-981-99-4250-3_4
https://doi.org/10.1007/978-981-99-4250-3_4
https://doi.org/10.1007/978-981-99-4250-3_4
https://doi.org/10.1007/978-981-99-4250-3_4
https://doi.org/10.1007/978-981-99-4250-3_4
https://doi.org/10.1007/978-981-99-4250-3_4
https://doi.org/10.1007/978-981-99-4250-3_4


78 4 Recent Advance of Alignment Inference Stage

entity embeddings. They are coined as embedding-based EA methods, which have 
exhibited state-of-the-art performance on existing benchmarks. 

To be more specific, the embedding-based EA1 pipeline can be roughly divided 
into two major stages, i.e., representation learning and matching KGs in entity 
embedding spaces (or embedding matching for short). While the former encodes the 
KG structures into low-dimensional vectors and establishes connections between 
independent KGs via the calibration or transformation of (seed) entity embed-
dings [44], the latter computes pairwise scores between source and target entities 
based on such embeddings and then makes alignment decisions according to the 
pairwise scores. Although this field has been actively explored, existing efforts are 
mainly devoted to the representation learning stage [24, 26, 61], while embedding 
matching has not raised many attentions until very recently [29, 53]. The majority 
of existing EA solutions adopt a simple algorithm to realize this stage, i.e., 
DInf, which first leverages common similarity metrics such as cosine similarity 
to calculate the pairwise similarity scores between entity embeddings and then 
matches a source entity to its most similar target entity according to the pairwise 
scores [47]. Nevertheless, it is evident that such an intuitive strategy can merely 
reach local optimums for individual entities and completely overlooks the (global) 
interdependence among the matching decisions for different entities [55]. 

To address the shortcomings of DInf, advanced strategies are devised [12, 44, 49, 
53, 55, 56]. While some of them inject the modeling of global interdependence into 
the computation of pairwise scores [12, 44, 53], some directly improve the alignment 
decision-making process by imposing collective matching constraints [49, 55, 56]. 
These efforts demonstrate the significance of matching KGs in entity embedding 
spaces from at least three major aspects: (1) It is an indispensable step of EA, 
which takes as input the entity embeddings (generated by the representation learning 
stage), and outputs matched entity pairs. (2) Its performance is crucial to the overall 
EA results, e.g., an effective algorithm can improve the alignment results by up 
to 88% [53]. (3) It empowers EA with explainability, as it unveils the decision-
making process of alignment. We use the following example to further illustrate the 
significance of the embedding matching process. 

Example Figure 4.1 presents three representative cases of EA. The KG pairs 
to be aligned are first encoded into embeddings via the representation learning 
models. Next, the embedding matching algorithms produce the matched entity 
pairs based on the embeddings. In the most ideal case where two KGs 
are identical, e.g., case (a), with an ideal representation learning model, 
equivalent entities would be embedded into exactly the same place in the 

(continued)

1 In the rest of the paper, we use EA to refer to embedding-based EA solutions and conventional 
EA for the early solutions. 
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low-dimensional space, and using the simple DInf algorithm would attain 
perfect results. Nevertheless, in the majority of practical scenarios, e.g., case 
(b) and (c), the two KGs have high structure heterogeneity. As thus, even an 
ideal representation learning model might generate different embeddings for 
equivalent entities. In this case, adopting the simple DInf strategy is likely to 
produce false entity pairs, such as .(u5, v3) in case (b). 

Worse still, as pointed out in previous works [44, 59], existing representa-
tion learning methods for EA cannot fully capture the structural information 
(possibly due to their inner design mechanisms, or their incapability of dealing 
with scarce supervision signals). Under these settings, e.g., case (c), the 
distribution of entity embeddings in the low-dimensional space would become 
irregular, where the simple embedding matching algorithm DInf would fall 
short, i.e., producing incorrect entity pairs .(u3, v1) and . (u5, v1). As thus, in  
these practical cases, an effective embedding matching algorithm is crucial 
to inferring the correct matches. For instance, by exploiting the collective 
embedding matching algorithm that imposes the 1-to-1 alignment constraint, 
the correct matches, i.e., .(u3, v3) and .(u5, v5), are likely to be restored. 

While the study on matching KGs in entity embedding spaces is rapidly 
progressing, there is no systematic survey or comparison of these solutions [44]. 
We do notice that there are several survey papers covering embedding-based EA 
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Fig. 4.1 Three cases of EA. Dashed lines between KGs denote the seed entity pairs. Entities with 
the same subscripts are equivalent. In the embedding space, the circles with two colors represent 
that the corresponding entities in the two KGs have the same embeddings
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frameworks [44, 52, 57–59], whereas they all briefly introduce the embedding 
matching module (mostly only mentioning the DInf algorithm). In this chapter, we 
aim to fill in this gap by surveying current solutions for matching KGs in entity 
embedding spaces and providing a comprehensive empirical evaluation of these 
methods with the following features: 

(1) Systematic Survey and Fair Comparison Albeit essential to the alignment 
performance, existing embedding matching strategies have yet not been compared 
directly. Instead, they are integrated with representation learning models and then 
evaluated and compared with each other (as a whole). This, however, cannot provide 
a fair comparison of the embedding matching strategies themselves, since the 
difference among them can be offset by other influential factors, such as the choices 
of representation learning models or input features. Therefore, in this chapter, 
we exclude irrelevant factors and provide a fair comparison of current matching 
algorithms for KGs in entity embedding spaces at both theoretical and empirical 
levels. 

(2) Comprehensive Evaluation and Detailed Discussion To fully appreciate the 
effectiveness of embedding matching strategies, we conduct extensive experiments 
on a wide range of EA settings, i.e., with different representation learning models, 
with various input features, and on datasets at different scales. We also analyze the 
complexity of these algorithms and evaluate their efficiency/scalability under each 
experimental setting. Based on the empirical results, we discuss to reveal strengths 
and weaknesses. 

(3) New Experimental Settings and Insights Through empirical evaluation and 
analysis, we discover that the current mainstream evaluation setting, i.e., 1-to-
1 constrained EA, oversimplifies the real-life alignment scenarios. As thus, we 
identify two experimental settings that better reflect the challenges in practice, 
i.e., alignment with unmatchable entities, as well as a new setting of non-1-
to-1 alignment. We compare the embedding matching algorithms under these 
challenging settings to provide further insights. 

Contributions We make the following contributions: 

• We systematically and comprehensively survey and compare state-of-the-art 
algorithms for matching KGs in entity embedding spaces (Sect. 4.3). 

• We evaluate and compare the state-of-the-art embedding matching algorithms 
on a wide range of EA datasets and settings, as well as reveal their strengths 
and weaknesses. The codes of these algorithms are organized and integrated into 
an open-source library, EntMatcher, publicly available at https://github.com/ 
DexterZeng/EntMatcher (Sect. 4.4). 

• We identify experimental settings that better mirror real-life challenges and 
construct a new benchmark dataset, where deeper insights into the algorithms 
are obtained via empirical evaluations (Sect. 4.5).

https://github.com/DexterZeng/EntMatcher
https://github.com/DexterZeng/EntMatcher
https://github.com/DexterZeng/EntMatcher
https://github.com/DexterZeng/EntMatcher
https://github.com/DexterZeng/EntMatcher
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• Based on our evaluation and analysis, we provide useful insights into the design 
trade-offs of existing works and suggest promising directions for the future 
development of matching KGs in entity embedding spaces (Sect. 4.6). 

4.2 Preliminaries 

In this section, we first present the task formulation of EA and its general framework. 
Next, we introduce the studies related to alignment inference and clarify the scope 
of this chapter. Finally, we present the key assumptions of embedding-based EA. 

4.2.1 Task Formulation and Framework 

Task Formulation A KG . G is composed of triples .{(s, p, o)}, where . s, o ∈ E
represent entities and .p ∈ P denotes the predicate (relation). Given a source KG 
. Gs , a target KG . Gt , the task of EA is formulated as discovering new (equivalent) 
entity pairs .M = {(u, v)|u ∈ Es , v ∈ Et , u ⇔ v} by using pre-annotated (seed) 
entity pairs . S as anchors, where . ⇔ represents the equivalence between entities and 
. Es and . Et denote the entity sets in . Gs and . Gt , respectively. 

General Framework The pipeline of state-of-the-art embedding-based EA solu-
tions can be divided into two stages, i.e., representation learning and embedding 
matching, as shown in Fig. 4.2. The general algorithm can be found in Algorithm 1. 

The majority of studies on EA are devoted to the representation learning stage. 
They first utilize KG embedding techniques such as TransE [4] and GCN [20] to  
capture the KG structure information and generate entity structural representations. 
Next, based on the assumption that equivalent entities from different KGs possess 
similar neighboring KG structures (and in turn similar embeddings), they leverage 
the seed entity pairs as anchors and progressively project individual KG embeddings 

Embedding Matching 

Representation 

Learning 

Pairwise Scores 

Matching 

Embedding Space Matched Entity Pairs 

Fig. 4.2 The pipeline of embedding-based EA. Dashed lines denote the pre-annotated alignment 
links
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Algorithm 1: General algorithm of embedding-based EA 
Input : Source and target KGs: Gs , Gt ; Seed pairs: S 
Output : Aligned entity pairs: M 

1 E ←Representation_Learning(Gs , Gt , S); 
2 M←Embedding_Matching(Es , Et , E); 
3 returnM; 

into a unified space through training, resulting in the unified entity representations 
E.2 There have already been several survey papers concentrating on representation 
learning approaches for EA, and we refer the interested readers to these works [2, 
44, 57, 59]. 

Next, we introduce the embedding matching process –the focus of this chapter– 
as well as its related works. 

4.2.2 Related Work and Scope 

Matching KGs in Entity Embedding Spaces After obtaining the unified entity 
representations . E where equivalent entities from different KGs are assumed to 
have similar embeddings, the embedding matching stage (also frequently referred 
to as alignment inference stage [44]) produces alignment results by comparing 
the embeddings of entities from different KGs. Concretely, it first calculates 
the pairwise scores between source and target entity embeddings according to 
a specific metric.3 The pairwise scores are then organized into matrix form as 
. S. Next, according to the pairwise scores, various matching algorithms are put 
forward to align entities. The most common algorithm is Greedy, described in 
Algorithm 2. It directly matches a source entity to the target entity that possesses 
the highest pairwise score according to . S. Over the last few years, advanced 
solutions [12, 15, 28, 29, 44, 49, 53, 55, 56, 60] are devised to improve the embedding 
matching performance, and in this work, we focus on surveying and comparing these 
algorithms for matching KGs in entity embedding spaces. 

Matching KGs in Symbolic Spaces Before the emergence of embedding-based 
EA, there have already been many conventional frameworks that match KGs in 
symbolic spaces [17, 41, 42]. While some are based on equivalence reasoning man-

2 Indeed there are a few exceptions, which instead learn a mapping function between individual 
embedding spaces [44]. However, the subsequent steps still require mapping between spaces and 
operate on a “unified” one, e.g., target entity embeddings. 
3 Under certain metrics such as cosine similarity (resp., Euclidean distance), the larger (resp., 
smaller) the pairwise scores, the higher the probability that two entities are equivalent. In this work, 
w.l.o.g., we adopt the former expression and consider that higher pairwise scores are preferred. 
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Algorithm 2: Greedy(Es ,Et , S) 
Input : Source and target entity sets: Es , Et ; The similarity matrix of pairwise scores: S 
Output : Matched entity pairs: M 

1 for  u ∈ Es do 
2 v∗ = arg maxv∈Et S(u, v); 
3 M←M ∪ {(u, v∗)}; 
4 return  M; 

dated by OWL semantics [17], some leverage similarity computation to compare the 
symbolic features of entities [42]. However, these solutions are not comparable to 
algorithms for matching KGs in entity embedding spaces, as (1) they cover both 
the representation learning and embedding matching stages in embedding-based 
EA and (2) the required inputs are different from those of embedding matching 
algorithms. Thus, we do not include them in our experimental evaluation, while they 
have already been compared in the survey papers covering the overall embedding-
based EA frameworks [44, 59]. 

The matching of relations (or ontology) between KGs has also been studied 
by prior symbolic works [41, 42]. Nevertheless, compared with entities, they are 
usually in smaller amounts, of various granularities [36], and under-explored in 
embedding-based approaches [51]. Hence, in this work, we exclude relevant studies 
on this topic and focus on the matching of entities. 

The task of entity resolution (ER) [9, 16, 35], also known as entity matching, 
deduplication, or record linkage, can be regarded as the general case of EA [59]. 
It assumes that the input is relational data, and each data object usually has a 
large amount of textual information described in multiple attributes. Nevertheless, 
in this article, we focus on EA approaches, which strive to align KGs and mainly 
rely on graph representation learning techniques to model the KG structure and 
generate entity structural embeddings for alignment. Therefore, the discussion and 
comparison with ER solutions is beyond the scope of this work. 

Matching Data Instances via Deep Learning Entity matching (EM) between 
databases has also been greatly advanced by utilizing pre-trained language models 
for expressive contextualization of database records [10, 33]. These deep learning 
(DL)-based EM solutions devise end-to-end neural models to learn to classify an 
entity pair into matching or non-matching and then feed the test entity pairs into 
the trained models to obtain classification results [5, 25, 33]. Nevertheless, this 
procedure is different from the focus of our study, as both of its training and testing 
stage involve representation learning and matching. Besides, these solutions are 
not suitable for matching KGs in entity embedding space, since (1) they require 
adequate labeled data to train the neural classification models, but the training data 
in EA is much less than the testing ones, which could result in the overfitting issue; 
(2) they would suffer from severe class imbalance in EA, where an entity and all of 
its nonequivalent entities in another KG would constitute many negative samples,
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while there is usually one positive sample for this entity; and (3) they depend on the 
attributive text information between data records for training, while EA underlines 
the use of KG structure, which could provide much less useful features for model 
training. In the experiment, we adapt DL-based EM models to tackle EA, and the 
results are not promising. This will be further discussed in Sect. 4.4.3. 

Existing Surveys on EA There are several survey papers covering EA frame-
works [44, 52, 57–59]. Some articles provide high-level discussion of embedding-
based EA frameworks, experimentally evaluate and compare these works, and offer 
guidelines for potential practitioners [44, 58, 59]. Specifically, Zhao et al. propose a 
general EA framework to encompass existing works and then evaluate them under 
a wide range of settings. Nevertheless, they only briefly mention DInf and SMat in 
the embedding matching stage [59]. Sun et al. survey EA approaches and develop 
an open-source library to evaluate existing works. However, they merely introduce 
DInf, SMat, and Hun. and overlook the comparison among these algorithms. Besides, 
they point out that current approaches put in their main efforts in learning expressive 
embeddings to capture entity features but ignore the alignment inference (i.e., 
embedding matching) stage [44]. Zhang et al. empirically evaluate state-of-the-art 
embedding-based EA methods in an industrial context and particularly investigate 
the influence of the sizes and biases in seed mappings. They evaluate each method 
as a whole and do not mention the embedding matching process [58]. 

Two recent survey papers include the latest efforts on embedding-based EA 
and give more self-contained explanation on each technique. Zhang et al. provide 
a tutorial-type survey, while for embedding matching, they merely introduce the 
nearest neighbor search strategy, i.e., DInf [57]. Zeng et al. mainly introduce 
representation learning methods and their applications on EA, but they neglect the 
embedding matching stage [52]. 

In all, existing EA survey articles focus on the representation learning process 
and briefly introduce the embedding matching module (mostly only mentioning 
the DInf algorithm), while in this work, we systematically survey and empirically 
evaluate the algorithms designed for the embedding matching process in KG 
alignment and present comprehensive results and insightful discussions. 

Scope of This Work This study aims to survey and empirically compare the algo-
rithms for matching KGs in entity embedding spaces, i.e., various implementations 
of Embedding_Matching( ) in Algorithm 1, on a wide range of EA experimental 
settings. 

4.2.3 Key Assumptions 

Notably, existing embedding-based EA solutions have a fundamental assumption; 
that is, the equivalent entities in different KGs possess similar (ideally, isomorphic) 
neighboring structures. Under such an assumption, effective representation learning



4.3 Alignment Inference Algorithms 85

models would transform the structures of equivalent entities into similar entity 
embeddings. As thus, based on the entity embeddings, the embedding matching 
stage would assign higher (resp., lower) pairwise similarity scores to the equivalent 
(resp., nonequivalent) entity pairs and finally make accurate alignment decisions via 
the coordination according to pairwise scores. 

Besides, current EA evaluation settings assume that the entities in different KGs 
conform to the 1-to-1 constraint. That is, each .u ∈ Es has one and only one 
equivalent entity .v ∈ Et and vice versa. However, we contend that this assumption is 
in fact impractical and provides detailed experiments and discussions in Sect. 4.5.2. 

4.3 Alignment Inference Algorithms 

In this section, we introduce the algorithms for alignment inference, i.e., Embed-
ding_Matching( ) in Algorithm 1. 

4.3.1 Overview 

We first provide the overview and comparison of matching algorithms for KGs 
in entity embedding spaces in Table 4.1. As mentioned in Sect. 4.2, embedding 
matching comprises two stages—pairwise score computation and matching. The  
baseline approach DInf adopts existing similarity metrics to calculate the similarity 
between entity embeddings and generate the pairwise scores in the first stage, and 
then it leverages Greedy for matching. In pursuit of better alignment performance, 
more advanced embedding matching strategies are put forward. While some (i.e., 
CSLS, RInf, and Sink.) optimize the pairwise score computation process and produce 
more accurate pairwise scores, some (i.e., Hun., SMat, and RL) take into account the 
global alignment dynamics, rather than greedily pursue the local optimum for each 
entity, during the matching process, where more correct matches could be generated 
according to the coordination under the global constraint. 

We further identify two notable characteristics of matching KGs in entity 
embedding spaces, i.e., whether the matching leverages the 1-to-1 constraint, and 
the direction of the matching. Regarding the former, Hun. and SMat explicitly exert 
the 1-to-1 constraint on the matching process. RL relaxes the strict 1-to-1 constraint 
by allowing non-1-to-1 matches. The greedy strategies, however, normally do not 
take into consideration this constraint, except for Sink., which implicitly implements 
the 1-to-1 constraint in a progressive manner when calculating the pairwise scores. 
As for the direction of matching, Greedy only considers a single direction at a 
time and overlooks the influence from the reverse direction. As thus, the resultant 
source-to-target alignment results are not necessarily equal to the target-to-source 
ones. By improving the pairwise score computation, CSLS, RInf, and Sink. are 
actually modeling and integrating the bidirectional alignments, whereas they still
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adopt Greedy to produce final results. For non-greedy methods, Hun. and SMat 
fully consider the bidirectional alignments and produce a matching agreed by both 
directions, while RL is unidirectional. 

Next, we describe these methods in detail.4 

4.3.2 Simple Embedding Matching 

DInf is the most common implementation of Embedding_Matching( ), described in 
Algorithm 3. Assume both KGs contain n entities. The time and space complexity 
of DInf is .O(n2). 

Algorithm 3: . DInf(Es ,Et ,E)

Input : Source and target entity sets: . Es , . Et ; Unified entity embeddings: . E
Output : Matched entity pairs: . M

1 Derive similarity matrix . S based on . E; 
2 .M← Greedy.(Es ,Et ,S); 
3 return . M; 

4.3.3 CSLS Algorithm 

The cross-domain similarity local scaling (CSLS) algorithm [23] is introduced to 
mitigate the hubness and isolation issues of entity embeddings in EA [44]. The 
hubness issue refers to the phenomenon where some entities (known as hubs) 
frequently appear as the top one most similar entities of other entities in the vector 
space, while the isolation issue means that there exist some outliers isolated from 
any point clusters. As thus, CSLS increases the similarity associated with isolated 
entity embeddings and conversely decreases the ones of vectors lying in dense 
areas [23]. Formally, the CSLS pairwise score between source entity u and target 
entity v is: 

.CSLS(u, v) = 2S(u, v) − φ(u) − φ(v)�, (4.1) 

where . S is the similarity matrix derived from . E using similarity metrics, . φ(u) =
1
k

∑
v′∈Nu

S(u, v′) is the mean similarity score between the source entity u and 
its top-k most similar entities .Nu in the target KG, and .φ(v) is defined similarly. 
The mean similarity scores of all source and target entities are denoted in vector

4 We omit the algorithmic description of the classical algorithms (e.g., Hungarian [21] and Gale-
Shapley [40]) and the neural model (i.e., RL [32]) in the interest of space. 
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form as . φs and . φt , respectively. To generate the matched entity pairs, it further 
applies Greedy on the CSLS matrix (i.e., .SCSLS). Algorithm 4 describes the detailed 
procedure of CSLS. 

Algorithm 4: CSLS. (Es ,Et ,E, k)

Input : Source and target entity sets: . Es , . Et ; Unified entity embeddings: . E; 
Hyper-parameter: k 

Output : Matched entity pairs: . M
1 Derive similarity matrix . S based on . E; 
2 Calculate the mean values of top-k similarity scores of entities in . Es and . Et , resulting in . φs

and . φt , respectively; 
3 .SCSLS = 2S − φs − φ�

t ; 
4 .M← Greedy.(Es ,Et ,SCSLS); 
5 return . M; 

Complexity The time and space complexity is .O(n2). Practically, it requires more 
time and space than DInf, as it needs to generate the additional CSLS matrix. 

4.3.4 Reciprocal Embedding Matching 

Zeng et al. [53] formulate EA task as the reciprocal recommendation process [38] 
and offer a reciprocal embedding matching strategy RInf to model and integrate the 
bidirectional preferences of entities when inferring the matching results. Formally, 
it defines the pairwise score of source entity u toward target entity v as: 

.pu,v = S(u, v) − max
u′∈Es

S(v, u′) + 1, (4.2) 

where . S is the similarity matrix derived from . E, .0 ≤ pu,v ≤ 1, and a larger 
.pu,v denotes a higher degree of preference. As such, the matrix forms of the 
source-to-target and target-to-source preference scores are denoted as .P s,t and .P t,s , 
respectively. Next, it converts the preference matrix . P into the ranking matrix . R and 
then averages the two ranking matrices, resulting in the reciprocal preference matrix 
.P s↔t that encodes the bidirectional alignment information. Finally, it adopts Greedy 
to generate the matched entity pairs. 

Complexity Algorithm 5 describes the detailed procedure of RInf. The time com-
plexity is .O(n2 lg n) [53]. The space complexity is .O(n2). Practically, it requires 
more space than DInf and CSLS, due to the computation of similarity, preference, 
and ranking matrices. Noteworthily, two variant methods, i.e., RInf-wr and RInf-pb, 
are proposed to reduce the memory and time consumption brought by the reciprocal 
modeling. More details can be found in [53].



4.3 Alignment Inference Algorithms 89

Algorithm 5: . RInf(Es ,Et ,E)

Input : Source and target entity sets: . Es , . Et ; Unified entity embeddings: . E
Output : Matched entity pairs: . M

1 Derive similarity matrix . S based on . E; 
2 for .u ∈ Es do 
3 for .v ∈ Et do 
4 Calculate .pu,v and .pv,u (cf. Eq. (4.2)); 

5 Collect the preference scores, resulting in .P s,t and .P t,s ; 
6 Convert .P s,t and .P t,s into .Rs,t and .Rt,s , respectively; 
7 .P s↔t = (Rs,t + R�

t,s )/2; 
8 .M← Greedy.(Es ,Et ,−P s↔t ); 
9 return . M; 

4.3.5 Embedding Matching as Assignment 

Some very recent studies [29, 49] propose to model the embedding matching 
process as the linear assignment problem. They first use similarity metrics to 
calculate pairwise similarity scores based on . E. Then they adopt the Hungarian 
algorithm [21] to solve the task of assigning source entities to target entities 
according to the pairwise scores. The objective is to maximize the sum of the 
pairwise similarity scores of the final matched entity pairs while observing the 1-to-1 
assignment constraint. In this work, we use the Hungarian algorithm implemented 
by Jonker and Volgenant [18] and denote it as Hun..(Es ,Et ,E). 

Besides, the Sinkhorn operation [31] (or Sink. for short) is also adopted to 
solve the assignment problem [12, 15, 29], which converts the similarity matrix 
. S into a doubly stochastic matrix .Ssinkhorn that encodes the entity correspondence 
information. Specifically, 

.

Sinkhornl(S) = �c(�r(Sinkhornl−1(S)));
Ssinkhorn = lim

l→∞ Sinkhornl(S),
(4.3) 

where .Sinkhorn0(S) = exp(S) and . �c and . �r refer to the column and row-wise 
normalization operators of a matrix. Since the number of iterations l is limited, the 
Sinkhorn operation can only obtain an approximate 1-to-1 assignment solution in 
practice [29]. Then .Ssinkhorn is forwarded to Greedy to obtain the alignment results. 

Complexity For Hun., the time complexity is .O(n3), and the space complexity is 
.O(n2). Algorithm 5 describes the procedure of Sink.. The time complexity of Sink. is 
.O(ln2) [29], and the space complexity is .O(n2). In practice, both algorithms require 
more space than DInf, since they need to store the intermediate results.
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Algorithm 6: Sink.. (Es ,Et ,E, l)

Input : Source and target entity sets: . Es , . Et ; Unified entity embeddings: . E; 
Hyper-parameter: l 

Output : Matched entity pairs: . M
1 Derive similarity matrix . S based on . E; 
2 .Ssinkhorn = Sinkhornl(S) (cf. Eq. (4.3)); 
3 .M← Greedy.(Es ,Et ,Ssinkhorn); 
4 return . M; 

4.3.6 Stable Embedding Matching 

In order to consider the interdependence among alignment decisions, the embedding 
matching process is formulated as the stable matching problem [13] by Zeng et 
al. [55] and Zhu et al. [60]. It is proved that for any two sets of members with the 
same size, each of whom provides a ranking of the members in the opposing set, 
there exists a bijection of the two sets such that no pair of two members from the 
opposite side would prefer to be matched to each other rather than their assigned 
partners [11]. Specifically, these works first produce the similarity matrix . S based 
on . E using similarity metrics. Next, they generate the rankings of members in the 
opposing set according to the pairwise similarity scores. Finally, they use the Gale-
Shapley algorithm [40] to solve the stable matching problem. This procedure is 
denoted as SMat.(Es ,Et ,E). 

Complexity SMat has time complexity of .O(n2 lg n) (since for each entity, the 
ranking of entities in the opposite side needs to be computed) and space complexity 
of .O(n2). 

4.3.7 RL-Based Embedding Matching 

The embedding matching process is cast to the classic sequence decision problem 
by [56]. Given a sequence of source entities (and their embeddings), the goal of 
the sequence decision problem is to decide to which target entity each source 
entity aligns. It devises a reinforcement learning (RL)-based framework to learn 
to optimize the decision-making for all entities, rather than optimize every single 
decision separately. More details can be found in the original paper [56], and we use 
RL.(Es ,Et ,E) to denote it. 

Complexity Note that it is difficult to deduce the time complexity for this neural 
RL model. Instead, we provide the empirical time costs in the experiments. The 
space complexity is .O(n2).
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4.4 Main Experiments 

In this section, we compare the algorithms for matching KGs in entity embedding 
spaces on the mainstream EA evaluation setting (1-to-1 alignment). 

4.4.1 EntMatcher: An Open-Source Library 

To ensure comparability, we re-implemented all compared algorithms using Python 
under a unified framework and established an open-source library, EntMatcher.5 

The architecture of EntMatcher library is presented in the blue block of Fig. 4.3, 
which takes as input unified entity embeddings . E and produces the matched entity 
pairs. It has the following three major features: 

Loosely Coupled Design There are three independent modules in EntMatcher, 
and we have implemented the representative methods in each module. Users are 
free to combine the techniques in each module to develop new approaches, or to 
implement their new designs by following the templates in modules. 

Reproduction of Existing Approaches To support our experimental study, we 
tried our best to re-implement all existing algorithms by using EntMatcher. For  
instance, the combination of cosine similarity, CSLS, and Greedy reproduces the 
CSLS algorithm in Sect. 4.3.3; and the combination of cosine similarity, None, 
and Hun. reproduces the Hun. algorithm in Sect. 4.3.5. The specific hyper-parameter 
settings are elaborated in Sect. 4.4.2. 

Flexible Integration with Other Modules in EA EntMatcher is highly flex-
ible, which can be directly called during the development of standalone EA 
approaches. Besides, users may also use EntMatcher as the backbone and call 
other modules. For instance, to conduct the experimental evaluations in this work, 
we implemented the representation learning and auxiliary information modules 
to generate the unified entity embeddings . E, as shown in the white blocks of 
Fig. 4.3. More details are elaborated in the next subsection. Finally, EntMatcher 
is also compatible with existing open-source EA libraries (that mainly focus on 
representation learning) such as OpenEA6 and EAkit.7 

5 The codes are publicly available at https://github.com/DexterZeng/EntMatcher. 
6 https://github.com/nju-websoft/OpenEA. 
7 https://github.com/THU-KEG/EAkit.

https://github.com/DexterZeng/EntMatcher
https://github.com/DexterZeng/EntMatcher
https://github.com/DexterZeng/EntMatcher
https://github.com/DexterZeng/EntMatcher
https://github.com/DexterZeng/EntMatcher
https://github.com/nju-websoft/OpenEA
https://github.com/nju-websoft/OpenEA
https://github.com/nju-websoft/OpenEA
https://github.com/nju-websoft/OpenEA
https://github.com/nju-websoft/OpenEA
https://github.com/nju-websoft/OpenEA
https://github.com/THU-KEG/EAkit
https://github.com/THU-KEG/EAkit
https://github.com/THU-KEG/EAkit
https://github.com/THU-KEG/EAkit
https://github.com/THU-KEG/EAkit
https://github.com/THU-KEG/EAkit
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Fig. 4.3 Architecture of the 
EntMatcher library and 
additional modules required 
by the experimental 
evaluation 

EntMatcher 

CSLS RInf Sinkhorn 

Cosine Euclidean Manhattan 

Greedy SMat Hun. RL 

None 

Similarity Metric 

Score Optimization 

Matching Constraint 

Representation Learning 
GCN RREA 

Auxiliary Information 
Name DescriptionNone None 

4.4.2 Experimental Settings 

Current EA evaluation setting assumes that the entities in source and target KGs are 
1-to-1 matched (cf. Sect. 4.2.3). Although this assumption simplifies the real-word 
scenarios where some entities are unmatchable or some might be aligned to multiple 
entities on the other side, it indeed reflects the core challenge of EA. Therefore, fol-
lowing existing literature, we mainly compare the embedding matching algorithms 
under this setting and postpone the evaluation on the challenging real-life scenarios 
to Sect. 4.5. 

Datasets We used popular EA benchmarks for evaluation: (1) DBP15K , which 
comprises three multilingual KG pairs extracted from DBpedia [1], English to 
Chinese (DBP15KZH-EN), English to Japanese (DBP15KJA-EN), and English to 
French (DBP15KFR-EN); (2) SRPRS , which is a sparser dataset that follows real-life 
entity distribution, including two multilingual KG pairs extracted from DBpedia, 
English to French (SRPRSEN-FR) and English to German (SRPRSEN-DE), and two 
mono-lingual KG pairs, DBpedia to Wikidata [46] (SRPRSDBP-WD) and DBpedia to 
YAGO [43] (SRPRSDBP-YG); and (3) DWY100K , which is a larger dataset consisting 
of two mono-lingual KG pairs: DBpedia to Wikidata (D-W) and DBpedia to YAGO 
(D-Y). The detailed statistics can be found in Table 4.2, where the numbers of 
entities, relations, triples, gold links, and the average entity degree are reported. 
Regarding the gold alignment links, we adopted 70% as test set, 20% for training, 
and 10% for validation. 

Hardware Configuration and Hyper-Parameter Setting Our experiments were 
performed on a Linux server that is equipped with an Intel Core i7-4790 CPU 
running at 3.6GHz, NVIDIA GeForce GTX TITAN X GPU, and 128 GB RAM. 
We followed the configurations presented in the original papers of these algorithms 
and tuned the hyper-parameters on the validation set. Specifically, for CSLS, we set  
k to 1, except on the non-1-to-1 setting where we set it to 5. Similarly, regarding 
RInf, we changed the maximum operation in Eq. (4.2) to top-k average operation 
on the non-1-to-1 setting, where k is set to 5. As to Sink., we set  l to 100. For RL, 
we found the hyper-parameters in the original paper could already produce the best 
results and directly adopted them. The rest of the approaches, i.e., DInf, Hun., and 
SMat, do not contain hyper-parameters.
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Evaluation Metric We utilized F1 score as the evaluation metric, which is the 
harmonic mean between precision and recall, where the precision value is computed 
as the number of correct matches divided by the number of matches found by a 
method, and the recall value is computed as the number of correct matches found 
by a method divided by the number of gold matches. Note that recall is equivalent 
to the Hits@1 metric used in some previous works. 

Representation Learning Models Since representation learning is not the focus of 
this work, we adopted two frequently used models, i.e., RREA [30] and GCN [47]. 
Concretely, GCN is one of the simplest models, which uses graph convolutional 
networks to learn the structural embeddings, while RREA is one of the best-
performing solutions, which leverages relational reflection transformation to obtain 
relation-specific entity embeddings. 

Auxiliary Information for Alignment Some works leverage the auxiliary infor-
mation in KGs (e.g., entity attributes, descriptions, and pictures) to complement the 
KG structure. Specifically, these auxiliary information are first encoded into low-
dimensional vectors and then fused with structural embeddings to provide more 
accurate entity representations for the subsequent embedding matching stage [44]. 
Although EA underlines the use of graph structure for alignment [59], for a more 
comprehensive evaluation, we examined the influence of auxiliary information on 
the matching results by following previous works and using entity name embeddings 
to facilitate alignment [34, 59]. We also combined these two channels of information 
with equal weights to generate the fused similarity matrix for matching.8 

Similarity Metric After obtaining the unified entity representations . E, a similarity 
metric is required to produce pairwise scores and generate the similarity matrix . S. 
Frequent choices include the cosine similarity [6, 30, 45], the Euclidean distance [7, 
24], and the Manhattan distance [48, 50]. In this work, we followed mainstream 
works and adopted the cosine similarity. 

4.4.3 Main Results and Comparison 

We first evaluate with only structural information and report the results in Table 4.3, 
where R- and G- refer to using RREA and GCN to generate the structural embed-
dings, respectively, and DBP and SRP denote DBP15K and SRPRS, respectively. 
Next, we supplement with name embeddings and report the results in Table 4.4, 
where N- and NR- refer to only using the name embeddings and fusing name 
embeddings with RREA structural representations, respectively. Note that, on

8 Note that we only reported the results of fusing entity name embeddings with RREA structural 
embeddings. The results of combining entity name embeddings with GCN embeddings exhibited 
similar patterns and were omitted in the interest of space. 
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existing datasets, all the entities in the test set can be matched, and all the algorithms 
are devised to find a target entity for each test source entity. Hence, the number of 
matches found by a method equals to the number of gold matches, and consequently 
the precision value is equal to the recall value and the F1 score [56]. 

Overall Performance First, we do not delve into the embedding matching algo-
rithms and directly analyze the general results. Specifically, using RREA to learn 
structural representations can bring better performance compared with using GCN, 
showcasing that representation learning strategies are crucial to the overall align-
ment performance. When introducing the entity name information, it observes that 
this auxiliary signal alone can already provide very accurate signal for alignment. 
This is because the equivalent entities in different KGs of current datasets share very 
similar or even identical names. After fusing the semantic and structural informa-
tion, the alignment performance is further lifted, with most of the approaches hitting 
over 0.9 in terms of the F1 score. 

Effectiveness Comparison of Embedding Matching Algorithms From the 
tables, it is evident that: (1) Overall, Hun. and Sink. attain much better results than 
the other strategies. Specifically, Hun. takes full account of the global matching 
constraints and strives to reach a globally optimal matching given the objective of 
maximizing the sum of pairwise similarity scores. Moreover, the 1-to-1 constraint it 
exerts aligns with present evaluation setting where the source and target entities are 
1-to-1 matched. Sink., on the other hand, implicitly implements the 1-to-1 constraint 
during pairwise score computation and still adopts Greedy to produce final results, 
where there might exist non-1-to-1 matches; (2) DInf attains the worst performance. 
This is because it directly adopts the similarity scores that suffer from the hubness 
and isolation issues [44]. Besides, it leverages Greedy, which merely reaches the 
local optimum for each entity. (3) The performance of RInf, CSLS, SMat, and RL are 
well matched. RInf and CSLS improve upon DInf by mitigating the hubness issue and 
enhancing the quality of pairwise scores. SMat and RL, on the other hand, improve 
upon DInf by modeling the interactions among matching decisions for different 
entities. 

Furthermore, we conduct a deeper analysis of these approaches and identify the 
following patterns: 
Pattern 1. If for source entities, their highest pairwise similarity scores are close, 
RInf and CSLS (resp., SMat and RL) would attain relatively better (resp., worse) 
performance. Specifically, in Table 4.3 where RInf consistently (CSLS sometimes) 
attains superior results than SMat and RL, the average standard deviation (STD) 
values of the top five pairwise similarity scores of source entities (cf. Fig. 4.4) are  
very small, unveiling that the top scores are close and difficult to differentiate. 
In contrast, in Table 4.4 where SMat and RL outperform RInf and CSLS, the  
corresponding STD values are relatively large. This is because RInf and CSLS aim 
to make the scores more distinguishable, and hence they are more effective in cases 
where the top similarity scores are very close (i.e., low STD values). On the contrary, 
when the top similarity scores are already discriminating (e.g., Table 4.4), RInf and
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Fig. 4.4 The statistic of 
pairwise similarity scores 
(i.e., top five STD) 

CSLS become less useful, while SMat and RL can still make improvements by using 
the global constraints to enforce the deviation from local optimums. 
Pattern 2. On sparser datasets, the superiority of Sink. and Hun. over the 
rest of the methods becomes less significant. This is based on the observation 
that on SRPRS, other matching algorithms (RInf in particular) attain much closer 
performance to Sink. and Hun.. Such a pattern could be attributed to the fact that, 
on sparser datasets, entities normally have fewer connections with others, i.e., lower 
average entity degree (in Table 4.2), where representation learning strategies might 
fail to fully capture the structural signals for alignment and the resultant pairwise 
scores become less accurate. These inaccurate scores could mislead the matching 
process and hence limit the effectiveness of the top-performing methods, i.e., Sink. 
and Hun.. In other words, sparser KG structures are more likely to (partially) break 
the fundamental assumption on KG structure similarity (cf. Sect. 4.2.3). 

Efficiency Analysis We compare the time and space efficiency of these methods 
on the medium-sized datasets in Fig. 4.5. Since the costs on KG pairs from the same 
dataset are very similar, we report the average time and space costs under each 
setting in the interest of space. 

Specifically, it observes that: (1) The simple algorithm DInf is the most efficient 
approach. (2) Among the advanced approaches, CSLS is the most efficient one, 
closely following DInf. (3)  The efficiency of RInf and Hun. are equally matched. 
While Hun. consumes relatively less memory space than RInf, its time efficiency 
is less stable and tends to run slower on datasets with less accurate pairwise scores. 
(4) The space efficiency of Sink. is close to RInf and Hun., whereas it has much higher 
time costs, which largely depends on the value of l. (5) RL is the least time-efficient 
approach, while SMat is the least space-efficient algorithm. RL requires more time 
on datasets with less accurate pairwise scores where its pre-processing module fails 
to produce promising results [56]. The memory space consumption of SMat is high, 
as it needs to store a large amount of intermediate matching results. In all, we can 
conclude that generally, advanced embedding matching algorithms require more 
time and memory space, among which the methods incorporating global matching 
constraints tend to be less efficient. 

Comparison with DL-Based EM Approaches We utilize the deepmatcher 
Python package [33], which provides built-in neural networks and utilities that
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Fig. 4.5 Efficiency 
comparison. Shapes in blue 
denote methods that improve 
pairwise scores, while shapes 
in black denote those exerting 
global constraints (except for 
DInf). (a) Time cost (in  
seconds). (b) Memory space 
cost (in GB) 

(a) 

can train and apply state-of-the-art deep learning models for entity matching, to 
address EA. Specifically, we use the structural and name embeddings to replace 
the attributive text inputs in deepmatcher, respectively, and then train the neural 
model with labeled data. For each positive entity pair, we randomly sample ten 
negative ones. In the testing stage, for each source entity, we feed the entity pairs 
constituting it and all the target entities into the trained classifier and regard the 
entity pair with the highest predicted score as the result. 

In the final results, only several entities are correctly aligned, showing that DL-
based EM approaches cannot handle EA, which can be ascribed to the insufficient 
labeled data, imbalanced class distribution, and the lack of attributive text informa-
tion, as discussed in Sect. 4.2.2. 

4.4.4 Results on Large-Scale Datasets 

Next, we provide the results on the relatively larger dataset, i.e., DWY100K, which 
can also reflect the scalability of these algorithms. The results are presented in
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Table 4.5 The F1 scores on 
DWY100K using GCN 

Table 4.5.9 The general pattern is similar to that on G-DBP (i.e., using GCN on 
DBP15K), where Sink. and Hun. obtain the best results, followed by RInf. The  
performance of CSLS and RL is close, outperforming DInf by over 20%. 

We compare the efficiency of these algorithms in Table 4.5, where . T̄ refers to 
the average time cost and Mem. denotes whether the memory space required by the 
model can be covered by our experimental environment.10 It observes that, given 
larger datasets, most of the performant algorithms have poor efficiency and scala-
bility (e.g., RInf, Sink., and Hun.). Note that in [53], two variants of RInf, i.e., RInf-wr 
and RInf-pb, are proposed to improve its scalability at the cost of a small performance 
drop, which is empirically validated in Table 4.5. This also reveals that more scal-
able matching algorithms for KGs in entity embedding spaces should be devised. 

4.4.5 Analysis and Insights 

We provide further experiments and discussions in this subsection. 

On Efficiency and Scalability The simple algorithm DInf is the most efficient 
and scalable one, as it merely involves the most basic computation and matching 
operations. CSLS is slightly less efficient than DInf due to the update of pairwise 
similarity scores. It also has good scalability. Although RInf adopts a similar idea 
to CSLS, it involves an additional ranking process, which brings much more time 
and memory consumption, making it less scalable. Sink. repeatedly conducts the 
normalization operation, and thus its time efficiency is mainly up to the l value. Its 
scalability is also limited by the memory space consumption since it needs to store 
intermediate results, as revealed in Table 4.5. 

9 We cannot provide the results of SMat, as it requires extremely large memory space and cannot 
work under our experimental environment. 
10 Note that for algorithms with memory space costs exceeding our experimental environment 
(except for SMat), there is additional swap area in the hard drive for them to finish the program 
(which usually takes much longer time). 
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Regarding the methods that exert global constraints, Hun. is efficient on medium-
sized datasets, while it is not scalable due to the high time complexity and memory 
space consumption. SMat is space-inefficient even on the medium-sized datasets, 
making it not scalable. In comparison, RL has more stable time and space costs 
and can scale to large datasets, and the main influencing factor is the accuracy 
of pairwise scores. This is because RL has a pre-processing step that filters out 
confident matched entity pairs and excludes them from the time-consuming RL 
learning process [56]. More confident matched entity pairs would be filtered out 
if the pairwise scores are more accurate. 

On Effectiveness of Improving Pairwise Score Computation We compare and 
discuss the strategies for improving the pairwise score computation, i.e., CSLS, RInf, 
and Sink. 

Both CSLS and RInf aim to mitigate the hubness and isolation issues in the raw 
pairwise scores (from different starting points). Particularly, we observe that, by 
setting k (in Eq. (4.1)) of CSLS to 1, the difference between RInf and CSLS is 
reduced to the extra ranking process of RInf, and the results in Table 4.3 and 4.4 
validate that this ranking process can consistently bring better performance. This  
is because the ranking operation can amplify the difference among the scores and 
prevent such information from being lost after the bidirectional aggregation [53]. 
However, it is noteworthy that the ranking process brings much more time and 
memory consumption, as can be observed from the empirical results. 

Then we analyze the influence of k value in CSLS. As shown in Fig. 4.6, a  
larger k leads to worse performance. This is because a larger k implies a smaller 
. φ value in Eq. (4.1) (where the top-k highest scores are considered and averaged), 
and the resultant pairwise scores become less distinctive. This also validates the 
effectiveness of the design in RInf (cf. Eq. (4.2)), where only the maximum value is 
considered to compute the preference score. Nevertheless, in Sect. 4.5.2, we reveal 
that setting k to 1 is only useful in the 1-to-1 alignment setting. 

As for Sink., it adopts an extreme approach to optimize the pairwise scores, which 
encourages each source (resp., target) entity to have only one positive pairwise 
score with a target (resp., source) entity and 0’s with the rest of the target (resp., 
source) entities. Thus, it is in fact progressively and implicitly implementing the 
1-to-1 alignment constraint during the pairwise score computation process with 

Fig. 4.6 F1 scores of CSLS with varying k value. (a) On R-DBP. (b) On  G-SRP 
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Fig. 4.7 F1 scores of Sink. with varying l value. (a) On R-DBP. (b) On  G-SRP 

the increase of l and is particularly useful in present 1-to-1 evaluation settings of 
EA. In Fig. 4.7, we further examine the influence of l in Eq. (4.3) on the alignment 
results of Sink., which meets our expectation that the larger the l value, the better 
the distribution of the resultant pairwise scores fits the 1-to-1 constraint, and thus 
the higher the alignment performance. Nevertheless, a larger l also implies longer 
processing time. Therefore, by tuning on the validation set, we set l to 100 to reach 
the balance between effectiveness and efficiency. 

On Effectiveness of Exerting Global Constraints Next, we compare and discuss 
the methods that exert global constraints on the embedding matching process, i.e., 
Hun., SMat, and RL. 

It is evident that Hun. is the most performant approach, as it fits well with the 
present EA setting and can secure an optimal solution toward maximizing the sum 
of pairwise scores. Specifically, the current EA setting has two notable assumptions 
(cf. Sect. 4.2.3). With these two assumptions, EA can be transformed into the linear 
assignment problem, which aims to maximize the sum of pairwise scores under 
the 1-to-1 constraint [29]. As thus, the algorithms for solving the linear assignment 
problem, e.g., Hun., can attain remarkably high performance on EA. However, these 
two assumptions do not necessarily hold on all occasions, which could influence 
the effectiveness of Hun.. For instance, as revealed in Pattern 2, on sparse datasets 
(e.g., SRPRS), the neighboring structures of some equivalent entities are likely to be 
different, where the effectiveness of Hun. is limited. In addition, the 1-to-1 alignment 
constraint is not necessarily true in practice, which will be discussed in Sect. 4.5. 

In comparison, SMat merely aims to attain a stable matching, where the resultant 
entity pairing could be sub-optimal under present evaluation setting. RL, on the  
other hand, relaxes the 1-to-1 constraint and only deviates slightly from the greedy 
matching, and hence the results are not very promising. 

Overall Comparison and Conclusion Finally, we compare the algorithms all 
together and draw the following conclusions under the 1-to-1 alignment setting: 
(1) The best performing methods are Hun. and Sink.. Nevertheless, they have low 
scalability. (2) CSLS and RInf achieve the best balance between effectiveness and 
efficiency. While CSLS is more efficient, RInf is more effective. (3) SMat and RL 
tend to attain better results when the accuracy of the pairwise scores is high. 
Nevertheless, they require relatively more time. 
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Table 4.6 F1 scores of 
combined embedding 
matching algorithms 

Combining Embedding Matching Algorithms As described above, CSLS, RInf, 
and Sink. mainly improve the computation of pairwise scores, while Hun., SMat, 
and RL exert the global constraints during the matching process. Thus, by using 
the EntMatcher library, we aim to investigate whether the combination of these 
strategies would lead to better matching performance. 

The results are reported in Table 4.6, where we can observe that: (1) Hun. 
is already effective given the raw pairwise scores, and using CSLS or RInf to 
improve the pairwise scores would not change and even bring down the performance 
(2) For SMat and RL, using CSLS or RInf to improve the raw pairwise scores would 
consistently lead to better results (3) Looking from the other side, while applying 
Hun., SMat, and RL upon CSLS improves its performance, such additional operations 
bring down the results of RInf This is because, by modeling entity preference and 
converting to rankings, RInf has already lost the information contained in the original 
pairwise scores, and exerting global constraints upon the reciprocal preference 
scores is no longer beneficial. 

Hence, we can conclude that, generally speaking, combining the algorithms 
(designed for different embedding matching stages) would lead to better alignment 
results, except for the combination with RInf and Hun.. 

Alignment Results Analysis We further analyze the sets of matched entity pairs 
produced by the compared algorithms. Specifically, we examine the difference of 
the correct results found by different methods and report the pairwise difference 
ratios in the heat map of Fig. 4.8. The difference ratio is defined as the .|C−R|/|C|, 
where . C and . R denote the correct aligned entity pairs produced by the corresponding 
algorithms in the column and row, respectively. 

From Fig. 4.8a, we can observe that: (1) The elements in the matrix (except those 
in secondary diagonal) are above 0, showing that these matching algorithms produce 
complementary correct matches (2) The results of Hun. and Sink., CSLS and RInf, and 
SMat and RL are similar; that is, the algorithms in each pair produce very similar 
correct matches (i.e., with low difference ratios and light colors) (3) The columns of 
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Fig. 4.8 Alignment results 
analysis on DBP15KZH-EN of 
R-DBP. (a) Heat map of the 
difference ratios of correct 
matching results. (b) 
Proportions of correct results 
found by RInf, Hun., and  
SMat 

(a) 

RInf 
1.8% 

Hun. SMat 

61% 

19.1% 

4% 2.3% 

6.4% 

3.4% 

1.9% 

Hun., Sink., and RInf have relatively darker colors, revealing that they tend to discover 
the matches that other methods fail to detect 

We further select three representative methods, i.e., RInf, Hun., and SMat, and 
provide a more detailed analysis in Fig. 4.8b. It is obvious that these approaches 
do produce complementary results, and it calls for an ensemble framework that 
integrates the alignment results produced by different matching algorithms. 

4.5 New Evaluation Settings 

In this section, we conduct experiments on settings that can better reflect real-life 
challenges. 
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4.5.1 Unmatchable Entities 

Current EA literature largely overlooks the unmatchable issue, where a KG contains 
entities that the other KG does not contain. For instance, when aligning YAGO 4 and 
IMDB, only 1% of entities in YAGO 4 are film-related and possibly have equivalent 
entities in IMDB, while the other 99% of entities in YAGO 4 necessarily have no 
match in IMDB [59]. Hence, we aim to evaluate the embedding matching algorithms 
in terms of dealing with unmatchable entities. 

Datasets and Evaluation Settings Following [54], we adapt the KG pairs in 
DBP15K to include unmatchable entities, resulting in DBP15K+. More specific 
construction procedure can be found in [54]. 

As for the evaluation metric, we follow the main experimental setting and adopt 
the F1 score. Unlike 1-to-1 alignment, there exist unmatchable entities in this 
adapted dataset, and the precision and recall values are not necessarily equivalent, 
since some methods would also align unmatchable entities. 

Noteworthily, the original setting of SMat and Hun. requires that the numbers 
of entities on the two sides are equal. Thus, we add the dummy nodes on the side 
with fewer entities to restore such a setting and then apply SMat and Hun.. The  
corresponding results are reported in Table 4.7. 

Alignment Results It reads that Hun. attains the best results, followed by SMat. 
The superior results are partially due to the addition of dummy nodes, which could 
mitigate the unmatchable issue to a certain degree. The results RInf and Sink. are 
close, outperforming CSLS and RL. DInf still achieves the worst performance. 

Besides, by comparing the results on DBP15K+ and those on the original dataset 
DBP15K (cf. Table 4.3), we observe that: (1) After including the unmatchable 
entities, for all methods, the F1 scores drop. This is because most of current 
embedding matching algorithms are greedy, i.e., retrieving a target entity for each 
source entity (including the unmatchable ones), which leads to a very low precision. 
For the rest of the methods, e.g., Hun. and SMat, the unmatchable entities also 
mislead the matching process and thus affect the final results. (2) Unlike on DBP15K 
where the performance of Sink. and Hun. is close, on DBP15K+, Hun. largely 
outperforms Sink., as Hun. does not necessarily align a target entity to each source 
entity and has a higher precision. (3) Overall, existing algorithms for matching KGs 
in entity embedding spaces lack the capability of dealing with unmatchable entities. 

4.5.2 Non-1-to-1 Alignment 

Next, we study the setting where the source and target entities do not strictly 
conform to the 1-to-1 constraint, so as to better appreciate these matching algorithms 
for KGs in entity embedding spaces. Non-1-to-1 alignment is common in practice, 
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Table 4.8 The results on non-1-to-1 alignment dataset 

GCN RREA 
P R F1 T P R F1 T 

DInf 0.074 0.051 0.061 11 0.167 0.114 0.136 12 
CSLS 0.091 0.062 0.074 13 0.189 0.130 0.154 15 

RInf 0.093 0.064 0.076 35 0.190 0.130 0.155 35 

Sink. 0.083 0.057 0.068 286 0.180 0.124 0.147 278 

Hun. 0.079 0.054 0.064 44 0.176 0.121 0.143 44 

SMat 0.071 0.048 0.057 43 0.162 0.111 0.132 41 

RL 0.066 0.045 0.054 1710 0.150 0.103 0.122 1440 

especially when two KGs contain entities in different granularity, or one KG is noisy 
and involves duplicate entities. To the best of our knowledge, we are among the first 
attempts to identify and investigate this issue. 

Dataset Construction Present EA benchmarks are constructed according to the 
1-to-1 constraint. Thus, in this work, we establish a new dataset that involves non-
1-to-1 alignment relationships. Specifically, we obtain the pre-annotated links11 

between Freebase [3] and DBpedia [1] and preserve the entities that are involved 
in 1-to-many, many-to-1, and many-to-many alignment relationships. Then, we 
retrieve the relational triples that contain these entities from respective KGs, which 
also introduces new entities. 

Next, we detect the links among the newly added entities and add them into 
the alignment links. Finally, the resultant dataset, FB_DBP_MUL, contains 44,716 
entities, 164,882 triples, and 22,117 gold links, among which 20,353 are non-1-
to-1 links and 1,764 are 1-to-1 links.12 The specific statistics are also presented in 
Table 4.2. 

Evaluation Settings To keep the integrity of the links among entities, we sample 
the training, validation, and test sets from the gold links according to the principle 
that the links involving the same entity should not be distributed among different 
sets. The size of the final training, validation, and test sets is approximately 7:1:2. 
We compare the entity pairs produced by embedding matching algorithms against 
the gold test links and report the precision (P), recall (R), and F1 values. 

Alignment Results It is evident from Table 4.8 that, compared with 1-to-1 
alignment, the results change significantly on the new dataset. Specifically: (1) RInf 
and CSLS attain the best F1 scores, whereas the results are not very promising (e.g., 
with F1 score lower than 0.1 when using GCN). (2) Sink. and Hun. achieve much 
worse results compared with the performance on 1-to-1 alignment datasets. (3) The 

11 https://www.dbpedia.org/blog/dbpedia-is-now-interlinked-with-freebase-links-to-opencyc-
updated/. 
12 FB_DBP_MUL is publicly available at https://github.com/DexterZeng/EntMatcher. 
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Fig. 4.9 F1 scores with varying k value on FB_DBP_MUL. (a) With GCN. (b) With RREA 

results of SMat and RL are even inferior to those of the simple baseline DInf. The  
main reason accounting for these changes is that the non-1-to-1 alignment links 
pose great challenges to existing embedding matching algorithms. Specifically, for 
DInf, CSLS, RInf, Sink., and RL, they only align one target entity (that possesses 
the highest score) to a given source entity, but fail to discover other alignment 
links that also involve this source entity. For SMat and Hun., they impose the 1-
to-1 constraint during the matching process, which falls short on the non-1-to-1 
setting, thus leading to inferior results. Therefore, it calls for the study on embedding 
matching algorithms targeted at non-1-to-1 alignment. 

Discussion of the k Value in CSLS and RInf In Fig. 4.9, we report the performance 
of CSLS and RInf given varying k values on FB_DBP_MUL. It shows that, generally, 
a larger k leads to better results. This is because, on the non-1-to-1 setting, an 
entity is likely to be matched to several entities on the other side, where it is more 
appropriate to consider the top-k values, rather than the sole maximum value, when 
refining the pairwise scores. 

4.6 Summary and Future Direction 

In this section, we summarize the observations and insights made from our 
evaluation and provide possible future research directions. 

(1) The Investigation into Matching KGs in Embedding Spaces Has Not 
Yet Made Substantial Progress Although there are a few algorithms tailored 
for matching KGs in embedding spaces, e.g., CSLS, RInf, and RL, under the 
most popular EA evaluation setting (with 1-to-1 alignment constraint), they are 
outperformed by the classic general matching algorithms, i.e., Hun.. Hence, there 
is still much room for improving matching KGs in embedding spaces. 

(2) No Existing Embedding Matching Algorithm Prevails Under All Experi-
mental Settings The strategies designed to solve the linear assignment problem 
attain the best performance under the 1-to-1 setting, while they fall short on 
more practical and challenging scenarios since the new settings (e.g., non-1-to-1 
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alignment) no longer align with the conditions of these optimization algorithms. 
Similarly, although the methods for improving the computation of pairwise scores 
achieve superior results in the non-1-to-1 alignment scenario, they are outperformed 
by other solutions under the unmatchable setting. Therefore, each evaluation setting 
poses its own challenge to the embedding matching process, and currently there is 
no consistent winner. 

(3) The Adaptation from General Matching Algorithms Requires Careful 
Design Among the embedding matching algorithms, Hun. and SMat are general 
matching algorithms that have been applied to many other related tasks. Although 
directly adopting these general strategies to tackle EA is simple and effective, they 
might well fall short in some scenarios, as the alignment on KGs possesses its own 
challenges, e.g., the matching is not necessarily 1-to-1 constrained, or the pairwise 
scores are inaccurate. Thus, it is suggested to take full account of the characteristics 
of the alignment settings when adapting other general matching algorithms to cope 
with matching KGs in entity embedding spaces. 

(4) The Scalability and Efficiency Should Be Brought to the Attention Existing 
advanced embedding matching algorithms have poor scalability, due to the addi-
tional resource-consuming operations that contribute to the alignment performance, 
such as the ranking process in RInf and the 1-to-1 constraint exerted by Hun. and 
SMat. Besides, the space efficiency is also a critical issue. As shown in Sect. 4.4.4, 
most of the approaches have rather high memory costs given large-scale datasets. 
Therefore, considering that in practice there are much more entities, the scalability 
and efficiency issues should be considered during the algorithm design. 

(5) The Practical Evaluation Settings Are Worth Further Investigation Under 
the unmatchable and non-1-to-1 alignment settings, the performance of existing 
algorithms is not promising. A possible future direction is to introduce the notion 
of probability and leverage the probabilistic reasoning frameworks [19, 39], which 
have higher flexibility, to produce the alignment results. 

4.7 Conclusion 

This paper conducts a comprehensive survey and evaluation of matching algorithms 
for KGs in entity embedding spaces. We evaluate seven state-of-the-art strategies 
in terms of effectiveness and efficiency on a wide range of datasets, including 
two experimental settings that better mirror real-life challenges. We identify the 
strengths and weaknesses of these algorithms under different settings. We hope 
the experimental results would be valuable for researchers and practitioners to put 
forward more effective and scalable embedding matching algorithms. 
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Part III 
Novel Approaches



Chapter 5 
Large-Scale Entity Alignment 

Abstract In this chapter, we focus on the concept of entity alignment at scale and 
present a new method for addressing this task. The proposed solution is capable 
of handling vast amounts of knowledge graph pairs and delivering high-quality 
alignment outcomes. First, to manage large-scale KG pairs, we develop a set of 
seed-oriented graph partition strategies that divide them into smaller subgraph pairs. 
Next, within each subgraph pair, we employ existing methods to learn unified 
entity representations and introduce a novel reciprocal alignment inference strategy 
to model bidirectional alignment interactions, which can lead to more accurate 
outcomes. To further enhance the scalability of reciprocal alignment inference, we 
propose two variant strategies that can significantly reduce memory and time costs, 
albeit at the expense of slightly reduced effectiveness. Our solution is versatile and 
can be applied to existing representation learning-based EA models to enhance 
their ability to handle large-scale KG pairs. We also create a new EA dataset that 
comprises millions of entities and conduct comprehensive experiments to verify 
the efficiency of our proposed model. Furthermore, we compare our proposed 
model against state-of-the-art baselines on popular EA datasets, and our extensive 
experiments demonstrate its effectiveness and superiority. 

5.1 Introduction 

Figure 5.1 describes a toy example of EA. Typically, state-of-the-art EA solutions 
follow a two-stage working pipeline, which can be broadly divided into two 
main stages—representation learning and alignment inference. Most of the current 
works [4, 6, 33, 35] are dedicated to the former, which leverage various KG 
embedding models, e.g., TransE [2] and graph convolutional network (GCN) [15], 
for learning the representations of entities. By using seed entity pairs as reference 
points, the entity embeddings of different KGs are projected onto a common 
embedding space. This allows for the measurement of similarity or distance1 

1 In the rest of the paper, we may use “distance” and “similarity” with obvious adaptation. 
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Fig. 5.1 An example of EA. There is an English and a Spanish KG concerning the band The 
national in the figures. The aim of EA is to find equivalent entities in these KGs using the KG 
structure, e.g., [A. Dessner]en and [A. Dessner]es. The left denotes the alignment results generated 
by current EA solutions that perform direct alignment inference based on structural similarity, 
where both [A. Dessner]en and [B. Dessner]en are aligned to [A. Dessner]es. In comparison, 
the right denotes the results generated by our proposed reciprocal alignment inference, where 
[A. Dessner]en is aligned to [A. Dessner]es, while [B. Dessner]en is matched with [B. Dessner]es. 
(a) Results of direct alignment inference using structural similarity. (b) Results of reciprocal 
alignment inference using entity preference 

between entities from different KGs by assessing the similarity or distance between 
data points in the unified embedding space. Once the entities have been projected 
onto the unified embedding space, the alignment inference stage involves predicting 
the alignment results using these embeddings. When given an entity from the source 
KG, most state-of-the-art solutions adopt the direct alignment inference strategy. 
This strategy involves ranking the entities in the target KG based on a specific 
similarity measure between entity embeddings. The top-ranked target entity is then 
considered a match for the source entity.
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Despite the improvements made by current techniques in boosting the precision 
of EA, these sophisticated models typically involve a substantial number of 
parameters and demand significant computational resources. Therefore, scalability 
is compromised in achieving the improvement, and these approaches are not suitable 
for handling practical large KGs. For instance, it is reported in [50] that, on the 
DWY100K dataset with 200,000 entities [33], the time cost for most state-of-the-
art solutions is over 20,000 seconds, and some approaches [39, 52] even cannot 
produce the alignment results. Thus, the existence of real-life KGs that consist of 
tens of millions of entities creates a significant obstacle for current EA solutions, 
necessitating research on large-scale entity alignment. The investigation of large-
scale EA aligns with the current trend of responsible design, development, use, and 
oversight of automated decision systems in the data management community [29]. 

Drawing inspiration from traditional graph partitioning strategies [12, 14], a 
feasible technique is to divide large KG pairs into several smaller subgraph pairs 
and then perform entity alignment on them. However, partitioning KG pairs for 
alignment is a challenging task that must achieve two objectives: (1) preserving the 
original structure of the KG as much as possible and (2) ensuring that the partition 
results of the source and target KGs match, meaning that equivalent entities in the 
source and target KGs are placed in the same subgraph pair. Although the first 
objective can be accomplished by modifying classical graph partitioning techniques 
such as METIS [13], the second objective is specific to the alignment task. 

To achieve the second objective, we can use the seed entity pairs to guide the 
partition process. Seed entity pairs are pre-labeled entity pairs in which the entities 
are equivalent and are used to link two individual KGs. Ideally, if we can preserve 
the seed entity pairs during the partition and distribute them among the smaller 
subgraph pairs, the remaining (unknown) equivalent entities would have a greater 
likelihood of being placed in the same subgraph pair using these seed entity pairs 
as references, as equivalent entities usually have similar neighboring structures. 
Following this idea, there is a preliminary approach METIS-CPS (shortened as CPS) 
proposed by a concurrent work [10]. The proposed approach first partitions one KG 
into subgraphs. Then, based on the distribution of seed entities, it assigns appropriate 
weights to the edges in the other KG, and the partition is performed on this KG. 
However, it can be challenging for methods of this type (referred to as unidirectional 
partition strategies) to achieve the first objective because the partitioning of the 
second KG is limited by the requirement to maintain the seed links, which may 
compromise the structure of the KG to some extent. 

To address this issue, this chapter proposes the Seed-oriented Bidirectional graph 
Partition framework, SBP, which aims to satisfy both objectives by conducting 
bidirectional partitions and aggregating the partition results from the source-to-
target and target-to-source directions. The motivation behind this approach is that 
the subgraphs generated from partitioning the first KG tend to have more complete 
structures, while the subgraphs generated from partitioning the second KG mainly 
retain alignment signals. By performing bidirectional partitions and combining the 
subgraphs, the resulting subgraphs in each KG can have both complete structures 
and larger numbers of seed entities pointing to the subgraphs in the opposite KG,
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which can lead to more precise alignment results. Note that SBP can be used with 
various unidirectional partitioning strategies. Additionally, an iterative variant of 
SBP, I-SBP, is proposed to improve partition performance by incorporating confident 
alignment results from previous rounds into the seed entity pairs. 

During the partition process, the accuracy of alignment results may be compro-
mised because equivalent entities could be placed in different subgraph pairs, and 
the original KG structure information may also be lost to some extent. To improve 
alignment performance, we propose to enhance the alignment inference stage, which 
has received little attention in previous work. Specifically, we introduce a reciprocal 
alignment inference strategy. The idea of reciprocal modeling of the alignment 
process is motivated by the fact that the commonly used direct alignment inference 
approach (1) considers an entity’s preference toward entities on the other side via 
a similarity score, but neglects other influential factors, and (2) fails to integrate 
bidirectional preference scores or capture the mutual preferences of entities when 
making alignment decisions. Such an alignment inference strategy tends to produce 
many inaccurate results, as illustrated in the following example. 

Example As shown in Fig. 5.1a, using the structural information, the 
direct alignment inference strategy would align both .[A. Dessner]en and 
.[B. Dessner]en to .[A. Dessner]es, since .[A. Dessner]es is the entity that has 
the most similar structural information with them (connected to three entities, 
including .[The national]en/es). 

However, this direct inference approach overlooks the fact that entities’ 
preferences are not solely determined by the similarity score but also by the 
impact of alignment in the reverse direction. For instance, it is evident that 
.[A. Dessner]es has higher similarity with .[A. Dessner]en than . [B. Dessner]en
since it shares more neighboring information with .[A. Dessner]en. Under this 
circumstance, .[B. Dessner]en will lower its preference toward .[A. Dessner]es, 
since in its view, although .[A. Dessner]es is its most preferred candidate in 
terms of similarity, they are less likely to form a match because . [A. Dessner]es
has a higher similarity with .[A. Dessner]en. 

Therefore, by modeling and aggregating the bidirectional preferences 
as depicted in Fig. 5.1b, we could avoid matching .[B. Dessner]en with 
.[A. Dessner]es and possibly help identify its correct equivalent entity 
.[B. Dessner]es. 

Specifically, we propose to model the entity alignment task as a reciprocal 
recommendation process [18, 27], which takes effect at two levels: (1) Entity 
preference modeling. It first incorporates the influence of the alignment in the 
reverse direction into an entity’s preference, so as to generate more accurate 
preference scores. (2) Bidirectional preference integration. It integrates bidirectional 
preferences to generate a reciprocal preference matrix that encodes the mutual
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preferences of entities on both sides. Experimental results have shown that the two-
level reciprocal modeling approach achieves superior results compared to direct 
inference (to be detailed in Sect. 5.7). 

We further notice that while the reciprocal inference approach achieves superior 
alignment performance, it also consumes more memory space and time compared 
to direct alignment inference. Therefore, to improve the efficiency, we propose two 
variants: no-ranking aggregation and progressive blocking, which approximate the 
reciprocal alignment inference. While the former removes the time- and resource-
consuming ranking process during the preference aggregation process, the latter 
divides the entities into multiple blocks and performs alignment within each 
block. These variant strategies can significantly reduce the memory and time costs 
associated with the reciprocal alignment inference, albeit at the cost of a slight 
decrease in effectiveness. 

The proposed techniques form a novel and scalable solution for Large-scale 
entIty alignMEnt, namely, LIME. Notably, LIME is model-agnostic and can be used 
with any entity representation learning models. In this work, we evaluate using the 
commonly used GCN model [15] and the state-of-the-art RREA model [22] in this  
work for empirical evaluation. To validate the effectiveness of LIME, we create a 
large EA dataset FB_DBP_2M with millions of entities and tens of millions of facts. 
Experimental results demonstrate that LIME can effectively handle EA at scale while 
remaining reasonably effective and efficient. We also compare LIME against state-
of-the-art solutions on three mainstream datasets, showing that LIME can achieve 
promising results even on small-scale datasets. 

Contributions The main contributions of this chapter are the following: 

• We identify the scalability issue in state-of-the-art EA approaches and propose an 
EA framework LIME to deal with large-scale entity alignment. 

• We propose seed-oriented bidirectional graph partition strategies to partition 
large-scale KG pairs into smaller ones, where the alignment process is then 
conducted. 

• We propose a reciprocal alignment inference strategy that models and integrates 
the bidirectional preferences of entities when inferring alignment results. 

• We introduce two variants of reciprocal alignment inference that increase its 
scalability while incurring a small decrease in performance. 

• Our proposed model, LIME, is generic and can be applied to existing EA models 
to enhance their ability to handle large-scale entity alignment. 

• We demonstrate the effectiveness of our proposed model through a comprehensive 
experimental evaluation on popular entity alignment benchmarks and a newly 
constructed dataset with tens of millions of facts. 

Organization In Sect. 5.2, we present the outline of LIME. In Sect. 5.3, we intro-
duce the partition strategies. In Sect. 5.4, we introduce the reciprocal alignment 
inference strategy. In Sect. 5.5, we introduce the variants of reciprocal alignment 
inference. In Sects. 5.6 and 5.7, we introduce the experimental settings and results, 
respectively. In Sect. 5.8, we introduce related work, followed by conclusion in 
Sect. 5.9.
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5.2 Framework 

We present the overall framework of our proposal, LIME, in Fig. 5.2. 

• To handle large-scale KGs, we begin by performing seed-oriented bidirectional 
partition (SBP) to partition the source and target KGs into multiple subgraph pairs 
with the aid of seed entity pairs. 

• Subsequently, for each subgraph pair, we employ a KG structural learning model2 

to generate unified entity embeddings, enabling direct comparisons between 
entities from different KGs. 

• Afterward, using the unified entity representations, we apply a reciprocal align-
ment inference strategy to model entity preferences on both sides and aggregate 
bidirectional preference information to generate alignment results. We also 
recognize that although reciprocal modeling achieves superior performance, it is 
computationally expensive in terms of time and memory. Therefore, we propose 
two alternative strategies to reduce the memory and time consumption at a slight 
cost of effectiveness: no-ranking aggregation and progressive blocking. 

• Moreover, we introduce an iterative version of LIME to enhance the partition per-
formance by incorporating confident alignment results from the previous round 
with the seed entity pairs. This iterative process leads to gradual improvements in 
both partitioning and alignment results. 
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Fig. 5.2 The framework of our proposal. The entities in gray represent the seed entities. The 
corresponding seed entities are connected by dotted lines in the left of the figure

2 Notice that LIME is agnostic to the choice of structural learning models. 
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5.3 Partition Strategies for Entity Alignment 

To handle large-scale input KGs, a common approach is to partition the KGs and 
parallelize the computation across a distributed cluster of machines [3]. In this work, 
we adopt this approach and propose to partition KGs into smaller subgraphs, align 
entities in each subgraph pair, and aggregate the alignment results in each partition 
to produce the final aligned entity pairs. 

We leverage the commonly used graph partition tool, METIS [13], as the 
basic partition strategy. The algorithms in METIS are based on multilevel graph 
partitioning [12, 14], which reduces the graph size by collapsing vertices and edges, 
partitioning the smaller graph, and then uncoarsening it to construct a partition for 
the original graph. The aim is to create a balanced vertex partition that equitably 
divides the set of vertices into multiple partitions while minimizing the number of 
edges spanning the partitions. However, in the case of EA, there are two separate 
graphs at scale and a small number of seed entity pairs connecting them. The two 
graphs are interlinked by the seed entity pairs and can be considered as one and 
forwarded to METIS for partitioning. Indeed, this approach is likely to generate 
subgraphs that only contain source or target entities, which is contrary to the goal of 
EA that aims to identify equivalent entities between KGs. Therefore, we use seed-
oriented graph partition strategies in this work. 

In this section, we first introduce the seed-oriented unidirectional graph partition 
strategy as the baseline model. Then, we describe our proposed bidirectional 
partition framework and its iterative variants. 

5.3.1 Seed-Oriented Unidirectional Graph Partition 

Unidirectional graph partition strategies for EA conduct only one-way partition 
(e.g., source-to-target) of KG pairs using the seed entity pairs. Formally, they 
partition the source KG .KGs and target KG .KGt into k subgraph pairs . � =
{C1,C2, . . . ,Ck}, where each subgraph pair .Ci = {KGi

s ,KGi
t ,Si} contains a pair 

of source subgraph .KGi
s and target subgraph .KGi

t , as well as a number of seed entity 
pairs . Si connecting the subgraphs. Specifically, in this work, we adopt a state-of-
the-art unidirectional partition strategy CPS [10] as the baseline model. 

CPS first directly partitions the source KG into k subgraphs . �s =
{KG1

s , . . . ,KGk
s } using METIS. Each source subgraph .KGi

s contains . εi source 
entities .Si

s = {ui
1, . . . , u

i
εi
} from the seed entity pairs . S. To partition the target 

KG (.KGt ), we still use METIS, but with some modifications: (1) we assign higher 
weights to edges among seed target entities whose corresponding source entities 
are in the same subgraph. This encourages METIS to place these seed target 
entities in the same subgraph while retaining the overall KG structure; and (2) 
we assign edges among seed target entities whose corresponding source entities 
are from different subgraphs, say .Si

s and . Sj
s , with weight 0. This discourages
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Fig. 5.3 Illustration of the partition process. In each box, the solid line separates different 
subgraph pairs, while the dotted line differentiates the source subgraphs from the target ones 

placing these seed target entities in the same subgraph as their corresponding seed 
source entities are not in the same subgraph. Partitioning the target KG also results 
in k subgraphs .�t = {KG1

t , . . . ,KGk
t }. Then, for each source subgraph .KGi

s , 
it retrieves the target subgraph .KG∗

t that possesses the largest number of target 
entities . S∗

t corresponding to seed source entities . Si
s in .KGi

s and considers them as 
a subgraph pair .Ci = {KGi

s ,KG∗
t ,S∗}, where . S∗ refers to the links connecting . S∗

t

and . Si
s . We illustrate this process using the following example. 

Example As shown in Fig. 5.3, there are two KGs to be aligned (i.e., . KGs

and .KGt ), where the colored lines denote the links in seed entity pairs, and the 
seed entities are also represented in gray. The entities with the same subscripts 
are equivalent. 

The proposed CPS conducts a one-off source-to-target partition. It first 
partitions .KGs , resulting in two source subgraphs shown in the left part of 
the box. These subgraphs consist of .{u1, u2, u3, u4} and .{u5, u6, u7, u8, u9}, 

(continued)
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respectively. Next, when partitioning .KGt , it increases the weight of the edge 
between . v1 and . v4 (resp., . v6 and . v7) since the seed source entities . u1 and . u4
(resp., . u6 and . u7) are in the same subgraph. Additionally, it sets the weight of 
the edge between . v4 and . v7 to 0. .KGt is thus partitioned into two subgraphs 
shown in the right part of the box, which consist of .{v1, v2, v3, v4, v5} and 
.{v6, v7, v8, v9}, respectively. Finally, using the seed entity pairs as anchors, it 
generates two subgraph pairs, i.e., . C1 and . C2. 

5.3.2 Bidirectional Graph Partition 

It is observed that in unidirectional partition strategies like CPS, the partition of 
the source KG can preserve its original structure well. However, the partition of 
the target KG is limited by the goal of retaining the seed entity pairs, which may 
lead to the destruction of the KG structure to some extent. As a solution, we 
propose a seed-oriented bidirectional graph partition framework, called SBP. The  
SBP framework first conducts the source-to-target partition using any unidirectional 
strategy, resulting in a set of source subgraphs (. �0

s ) and a set of target subgraphs 
(. �0

t ). Then, it conducts the partition process reversely, obtaining another set of 
source subgraphs (. �1

s ) and target subgraphs (. �1
t ). Next, it identifies and combines 

corresponding source subgraphs in .�0
s and . �1

s , resulting in the aggregated set 
of source subgraphs (. �s). Similarly, it generates the aggregated set of target 
subgraphs (. �t ). Finally, for each source subgraph (.KGi

s ∈ �s), it retrieves the 
target subgraph (.KG∗

t ∈ �t ) that possesses the largest number of seed target entities 
(. S∗

t ) corresponding to seed source entities in .KGi
s . It considers them as a subgraph 

pair (.Ci = {KGi
s ,KG∗

t ,S∗}) for alignment. The detailed process is presented in 
Algorithm 1 and the following example. 

Example Continuing with the previous example, the SBP framework con-
ducts the target-to-source partition, resulting in two target subgraphs compris-
ing .{v1, v2, v3, v4, v7} and .{v5, v6, v8, v9} and two source subgraphs compris-
ing .{u1, u2, u3, u4, u5, u7} and .{u6, u8, u9}. Next, it identifies and combines 
corresponding source and target subgraphs generated by the source-to-target 
and target-to-source partition. For instance, based on the number of overlap-
ping source seed entities, it identifies that the source subgraph comprising 
.{u1, u2, u3, u4} (resp., .{u5, u6, u7, u8, u9}) generated by the source-to-target 
partition and the source subgraph comprising .{u1, u2, u3, u4, u5, u7} (resp., 
.{u6, u8, u9}) generated by the target-to-source partition are corresponding. It 

(continued)
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Algorithm 1: Bidirectional graph partition (SBP) 
Input : KGs : source KG; KGt : target KG; S:seed pairs. 
Output : � = {C1, . . . ,Ck}: k subgraph pairs. 

1 Conduct source-to-target partition using any unidirectional partition strategy (e.g., CPS). 
Obtain �0 

s and �0 
t ; 

2 Conduct target-to-source partition using any unidirectional partition strategy (e.g., CPS). 
Obtain �1 

s and �1 
t ; 

3 �s ← ∅; 
4 foreach KGi 

s ∈ �0 
s do 

5 Identify the source subgraph KG∗
s ∈ �1 

s that has the largest number of overlapping seed 
entities with KGi 

s ; 
6 �s ← �s ∪ {KGi 

s ∪KG∗
s }; 

7 �t ← ∅; 
8 foreach KGi 

t ∈ �0 
t do 

9 Identify the target subgraph KG∗
t ∈ �1 

t that has the largest number of overlapping seed 
entities with KGi 

t ; 
10 �t ← �t ∪ {KGi 

t ∪KG∗
t }; 

11 � ← ∅; 
12 foreach KGi 

s ∈ �s do 
13 Retrieve the target subgraph KG∗

t ∈ �t that possesses the largest number of target seed 
entities S∗

t corresponding to the seed source entities Si 
s ⊂ KGi 

s ; 
14 Ci ← {KGi 

s ,KG∗
t ,S∗}; 

15 � ← � ∪ {Ci}; 
16 return �. 

combines them to generate the aggregated subgraph . {u1, u2, u3, u4, u5, u7}
(resp., .{u5, u6, u7, u8, u9}). The target subgraphs are aggregated in the same 
way. Finally, using the seed entity pairs as anchors, it generates two subgraph 
pairs, as shown in the rightmost box. 

As shown in Fig. 5.3, in the partition results of CPS, equivalent entities 
may be placed in different subgraph pairs, such as . u5 and . v5. The SBP 
framework can effectively mitigate this issue by conducting bidirectional 
partitions and aggregating the results. Hence, while the partition results of the 
SBP framework may include redundant entities that exist in multiple subgraph 
pairs, it can still effectively decrease the instances where equivalent entities 
are allocated to different subgraph pairs. 

Merits of Bidirectional Partitioning Noteworthily, .�0
s (resp., . �1

t ) is generated 
with the aim of preserving the original KG structure, while .�1

s (resp., . �0
t ) is  

generated with the aim of both retaining the links and preserving the original KG 
structure. Consequently, the integration of subgraphs in .�0

s (and . �1
t ) with .�1

s (and
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. �0
t ) results in aggregated subgraphs in . �s and . �t that have a more comprehensive 

structure and a greater number of seed entities pointing to the subgraphs in the 
opposite side. This can ultimately lead to more precise alignment outcomes. 

Moreover, unlike . �0
s , . �1

s , . �0
t , or . �1

t , where the subgraphs do not have common 
entities, the subgraphs in .�s and .�t overlap. This is comparable to the concept 
of redundancy-based methods in traditional entity resolution (ER) blocking tech-
niques, where an entity can be assigned to multiple blocks [26]. This is because 
the partitioning process may unavoidably assign equivalent entities to different 
subgraph pairs, which limits the upper bound of the alignment performance (as the 
alignment is only performed within each subgraph pair). However, this upper bound 
can be raised through bidirectional partitioning, which assigns an entity to multiple 
subgraph pairs. This is empirically validated in Sect. 5.7.3. 

Integration of Subgraph-Wise Alignment Results As previously mentioned, the 
partition results produced by unidirectional strategies do not have redundancies, and 
therefore, the alignment outcomes can be obtained by directly merging subgraph-
wise alignment results. However, since the subgraph pairs generated by SBP may 
contain overlapping entities, an additional result aggregation module is necessary 
to resolve any potential conflicts in the alignment outcomes. To address this, we 
adopt a straightforward voting strategy. Specifically, for the source entity aligned 
to multiple target entities generated by different subgraph pairs, we choose the 
target entity with the highest number of “votes” from the subgraph pairs as the 
final alignment outcome. If multiple target entities have the same highest vote, we 
select the one with the lowest mutual preference rank (explained in Sect. 5.4.3) as  
the match. 

5.3.3 Iterative Bidirectional Graph Partition 

It is clear that the one-off partitioning approach tends to generate inaccurate partition 
results, where equivalent entities may be placed in different subgraph pairs, and 
the original KG structure information could also be partially lost. To address 
this issue, we propose an iterative framework called I-SBP, which performs the 
partitioning process for . γ rounds based on the signals provided by the previous 
round. Specifically, in each iteration, we partition the KG into k subgraph pairs using 
SBP and perform entity alignment within each subgraph pair (detailed in the next 
section). We then aggregate the subgraph-wise alignment results to generate the final 
aligned entity pairs. Since the final alignment results include confident entity pairs, 
which can be considered as pseudo seeds according to previous studies [33, 45], we 
select these entity pairs using the bidirectional nearest neighbor search in [45] and 
add them to the seed entity pairs . S to aid the partition in the next round. The process 
is detailed in Algorithm 2.
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Algorithm 2: Iterative SBP (I-SBP) 
Input : KGs : source KG; KGt : target KG; S:seed pairs. 
Output : � = {C1,C2, . . . ,Ck}: k subgraph pairs. 

1 r ← 0; 
2 while  r <  γ  do 
3 Obtain the � = {C1, C2, . . . ,Ck} via Algorithm 1; 
4 Perform alignment in each subgraph pair and generate results; 
5 Select confident alignment results and add them to S; 
6 r ← r + 1; 

7 return �. 

5.3.4 Complexity Analysis 

The time complexity of SBP is roughly double that of the unidirectional partition 
strategy it employs, while the time complexity of I-SBP is approximately . γ times 
that of SBP. We use CPS as the unidirectional partition strategy in this study, and its 

time complexity is .O(|S| + (2k−1)|S|2
k2 + |Es | + |Et | + |Ts | + |Tt | + k log(k)) [10], 

where .|Es | (and .|Et |) and .|Ts | (and . |Tt |) represent the number of entities and triples 
in the source (and target) KG, respectively, .|S| refers to the number of seed entity 
pairs, and k denotes the number of subgraph pairs. 

Regarding space complexity, most unidirectional partition strategies need to store 
two knowledge graphs (KGs) simultaneously. However, for the SBP algorithm, 
bidirectional partitions are required, which necessitates the storage of four KGs. The 
space complexity of I-SBP is similar to that of SBP. In general, the space complexity 
of the partition process is determined by the size of the knowledge graphs involved. 

5.3.5 Discussion 

It is important to note that partition strategies are used to divide large-scale 
knowledge graph pairs into smaller ones so that state-of-the-art deep learning-based 
methods can be used to identify equivalent entities. However, the partition process 
can reduce the alignment performance as equivalent entities can be placed into 
different subgraph pairs. While this issue can be mitigated by improving partition 
strategies, it cannot be entirely avoided. Therefore, when dealing with small- or 
medium-sized datasets such as current entity alignment benchmarks, it may not 
be worthwhile to use partition strategies since partitioning would not significantly 
reduce computational costs while compromising alignment accuracy. This is also 
supported by empirical evidence from experiments conducted on the DWY100K 
dataset. Whether to use partition strategies ultimately depends on the alignment 
goal, i.e., efficiency or effectiveness. In this work, we follow previous works and 
do not employ partition strategies when dealing with small- or medium-sized EA 
datasets, except for the analysis of partition strategies.
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5.4 Reciprocal Alignment Inference 

After partitioning large-scale knowledge graph pairs into smaller ones, we perform 
alignment on each subgraph pair and combine the alignment results. In this 
subsection, we provide a brief overview of the representation learning process. 
Additionally, we propose a reciprocal inference strategy (illustrated in Fig. 5.4) 
that takes into account the mutual interactions between bidirectional alignments 
to enhance the alignment inference process. This strategy allows us to capture 
reciprocal interactions and improve alignment inference. 

5.4.1 Entity Structural Representation Learning 

The entity structural representation learning phase aims to model the structural 
characteristics of entities and project them from different knowledge graphs into 
a unified embedding space. In this space, the similarity between entities can be 
directly inferred by comparing their structural embeddings. Most state-of-the-art 
EA solutions focus on improving this phase by designing advanced structural 
representation learning models. However, our focus in this work is to enhance 
the alignment inference process and the capability of EA models to handle large-
scale datasets. As such, our proposed model, LIME, is agnostic to the choice of 
structural learning models. We adopt a state-of-the-art embedding learning model 

Fig. 5.4 An example of the preference modeling and aggregation. (a) similarity matrix, (b) 
preference matrix, (c) ranking matrix (d) reciprocal matrix
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for EA, RREA [22], which reflects entity representations along different relational 
hyperplanes to construct relation-specific entity embeddings for alignment. More 
model and implementation details can be found in the original paper. Besides, 
to demonstrate that LIME is generic and can be applied to existing representation 
learning models, we also adopt the most commonly used model in the EA literature, 
GCN [15, 38], as the baseline model. Relevant experimental evaluations can be found 
in Sect. 5.7. 

5.4.2 Preference Modeling 

Once we have obtained the unified entity representations, we can infer the alignment 
results based on entity preferences. Specifically, for each source entity, we predict 
its most preferred target entity as its equivalent entity. 

Direct Alignment Inference Previous studies only considered the similarity 
between entity representations to model entity preferences. We refer to this as 
direct alignment inference. Given an entity pair .(u, v), u ∈ Es , v ∈ Et , their 
similarity score is denoted as .sim(u, v),3 where . u and . v are the entity embeddings 
of u and v, respectively. The corresponding similarity matrix is denoted as . S. For  
direct alignment inference, the preference score of u toward v is defined as: 

.pu,v = sim(u, v). (5.1) 

According to this definition, the preference score of u toward v is the same as the 
preference score of v toward u. Therefore, we have .pu,v = pv,u, since similarity 
measures are usually symmetric and do not differentiate between the two input 
elements. 

Reciprocal Preference Modeling We believe that to accurately model entity 
preferences, an entity’s preference score toward another entity should also consider 
the likelihood of a match between them. For instance, as can be observed from 
Fig. 5.1, for .[B. Dessner]en, despite the high similarity score, it might have a low 
preference toward .[A. Dessner]es, since in its view, they are less likely to form a 
match (considering that .[A. Dessner]es has a higher similarity with .[A. Dessner]en). 
Theoretically, a source (target) entity would prefer the target (source) entities that 
have high similarities with it and meanwhile low similarities with other source 
(target) entities. In this connection, we define the preference score of u toward v 
as: 

.pu,v = sim(u, v) − max{sim(v,u′), u′ ∈ Es} + 1, (5.2)

3 The similarity measure sim is usually chosen from cosine similarity [32–34], Euclidean 
distance [6, 44, 51], or Manhattan distance [38–40]. 
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where .0 ≤ pu,v ≤ 1, and a larger .pu,v denotes a higher degree of preference. The 
preference score of v toward u is defined similarly. 

Our definition of the preference score for an entity toward another entity is 
composed of three elements. The first element represents the similarity score 
between the two entities, while the second element represents the highest similarity 
score that the target entity has with all the source entities. Intuitively, u would prefer 
v more if their similarity score .sim(u, v) is close (ideally, equal) to the highest 
similarity score that v has, i.e., .max{sim(v,u′), u′ ∈ Es}. Hence, we subtract the 
first element from the second element. If the difference is close to 0, it shows that u 
is satisfied with v. To make the preference value positive, we add the third element, 
i.e., 1. 

Our definition of the preference score takes into account the alignment in the 
reverse direction (i.e., the preference of the target entity toward the source entity), 
which is naturally incorporated into an entity’s preference modeling. Moreover, . pu,v

is not necessarily equal to .pv,u, since the preference score encodes the alignment 
information at the entity level (rather than the pairwise level as in Eq. (5.1)). We 
denote the matrix forms of the source-to-target and target-to-source preference 
scores as .P s,t and .P t,s , respectively, and in general .P s,t 
= P �

t,s , where .P �
t,s is 

the transpose of .P t,s . 

5.4.3 Preference Aggregation 

The preference scores only reflect the preferences in one direction, and an optimal 
alignment result should consider the preference scores in both directions. Hence, 
we propose to aggregate the unidirectional preferences. More specifically, we first 
convert the preference matrix . P into the ranking matrix . R. The elements in each 
row of .P s,t and .P t,s are ranked descendingly according to their values, resulting in 
.Rs,t and .Rt,s , respectively.4 Each element in the ranking matrix . R represents the 
rank of the corresponding preference score, where a lower rank indicates a higher 
preference value. As thus, the ranking matrices can also encode the preference 
information. 

The primary objective of transforming scores into ranks is to magnify the 
disparities between the scores. As we combine the source-to-target and target-to-
source matrices to capture shared preferences, the small differences in scores on 
one side may be easily overlooked after the aggregation with information on the 
other side. Transforming scores into ranks allows us to preserve and integrate such 
differences into the ultimate mutual preference.

4 For tied elements, we follow the common practice and denote their ranks as the average of the 
ranks that would have been assigned to them. 
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Afterward, we combine the two ranking matrices to capture the mutual prefer-
ences of entities and create the corresponding preference matrix: 

.P s↔t = φ
(
Rs,t ,R

�
t,s

)
, (5.3) 

where . φ is an aggregation function, which can be chosen from any mean operators, 
cross-ratio uniform [43], or other viable methods [25]. For this study, we use the 
arithmetic mean, which remains impartial and presents both entities’ preferences 
toward each other precisely, without showing any inclination toward a higher or 
lower rank [23, 25]. The reciprocal matrix contains elements denoted by .pu↔v , 
which indicates the degree of mutual preference between a pair of entities (u and 
v). The lower the value of .pu↔v , the higher the level of preference between the two 
entities. 

Algorithm 3: reciprocal_inference. (Es ,Et ,S)

Input : Es and Et : the entity sets in the two KGs; S: the similarity matrix; 
Output : M: the set of aligned entity pairs. 

1 for  u ∈ Es do 
2 for  v ∈ Et do 
3 Calculate pu,v and pv,u (cf. Eq. (5.2)); 

4 Aggregate and collect the preference scores in P s,t and P t,s ; 
5 foreach row in P s,t and P t,s do 
6 Rank the elements in each row descendingly; 
7 if  the values of the elements are the same then 
8 Denote their ranks as the average of the ranks that would have been assigned to 

them; 

9 Aggregate the ranking matrices Rs,t and Rt,s to produce reciprocal preference matrix P s↔t 
(cf. Eq. (5.3)); 

10 for u ∈ Es do 
11 if pu↔v∗ ≤ pu↔v′ ,∀v′ ∈ Et then 
12 M←M ∪ {(u, v∗)}; 
13 returnM; 

Algorithm 3 provides the details of the reciprocal alignment inference process. 
We also use Example 1 to further illustrate the process. 

Example 1 As shown in Fig. 5.4, there are a total of four source entities 
(.u1, u2, u3, u4) and four target entities (.v1, v2, v3, v4). In . S, .P s,t , .Rs,t , and .P s↔t , 
the rows correspond to the source entities and the columns correspond to the target 
entities, while in .P t,s and .Rt,s , the rows correspond to the target entities and the 
columns correspond to the source entities. The entities with the same subscripts are 
equivalent. 

(a): The similarity scores in matrix . S are computed by using cosine similarity 
with entity embeddings. If we consider these similarity scores as the entity
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preferences and align each source entity to its most preferred target entity, the 
results, such as .(u1, v2), .(u2, v2), .(u3, v2), and .(u4, v2), will only contain one 
correct match in this example. 

(b): Using Eq. (5.2), we calculate the preference scores and obtain the preference 
matrices .P s,t and .P t,s . Based on the preference scores, if we align each source 
entity to its most preferred target entity, the results .(u1, v1), .(u2, v2), and 
.(u3, v3) are correct. However, for . u4, both . v3 and . v4 are likely to be the correct 
match. Additionally, if we align each target entity to its most preferred source 
entity, it is difficult to determine the result for . v2. 

(c): We convert the preference matrices .P s,t and .P t,s into the ranking matrices 
.Rs,t and .Rt,s , respectively. 

(d): We can aggregate the two ranking matrices using the arithmetic mean. Based 
on the reciprocal preference matrix .P s↔t , if we align each source (target) 
entity to its most preferred source (target) entity, all the results will be correct.

��
Discussion Some might reckon that Eq. (5.2) is similar to the definition of cross-
domain similarity local scaling (CSLS) [16], a metric that is proposed to mitigate 
the hubness issue during the nearest neighbor search. However, CSLS subtracts the 
average of the top-n highest similarity scores of both source and target entities 
from the pairwise similarity, resulting in a score that is still at the pairwise 
level and cannot fully characterize the preference of each entity. On the other 
hand, our proposed entity-level preference measure can better reflect the individual 
preferences of entities, and the integrated reciprocal preference matrix leads to more 
accurate alignment results, as demonstrated in Sect. 5.7.4. 

5.4.4 Correctness Analysis 

The optimal solution for alignment inference is to correctly identify all entity pairs. 
For example, in Fig. 5.4, where there are four source entities (.u1, u2, u3, u4), four 
target entities (.v1, v2, v3, v4), and the similarity matrix . S, the optimal solution is 
.M = {(u1, v1), (u2, v2), (u3, v3), (u4, v4)}. 

Nevertheless, the ability of Algorithm 3 to attain a correct or optimal solution 
depends on the input similarity matrix . S, which is generated by the deep learning-
based representation learning process that captures the relatedness among entities. 
In the worst-case scenario, where the representation learning process fails to learn 
anything useful and the similarity matrix is composed of 0s, Algorithm 3 or any 
alignment inference strategy, such as direct alignment inference, would produce 
results that are full of wrongly aligned entity pairs. However, if the similarity matrix 
is accurate (i.e., for each ground-truth entity pair .(u, v), u has a higher similarity 
score with v than the rest of the source entities, and likewise, v has a higher 
similarity score with u than the rest of the target entities), Algorithm 3 can find 
the correct solution, as proven in Proof.
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Proof We prove that, given an accurate similarity matrix where for each ground-
truth entity pair .(u, v): 

. 
u = arg max{sim(v,u′), u′ ∈ Es};
v = arg max{sim(u, v′), v′ ∈ Et },

the reciprocal inference algorithm could accurately identify these entity pairs. 
Without loss of generality, we consider the ground-truth entity pair . (u, v). The  

following proof also applies to the rest of the ground-truth entity pairs. 
First, we can derive that .pu,v = 1 and .pv,u = 1 according to Eq. (5.2). Further, 

we can derive that: 

. pu,v = max{pu,v′, v′ ∈ Et }; pv,u = max{pv,u′ , u′ ∈ Es}.

After converting the scores into ranks, we have: 

. ru,v = min{ru,v′, v′ ∈ Et }; rv,u = min{rv,u′, u′ ∈ Es},

where r denotes the rank value. Next, after aggregating with arithmetic mean using 
Eq. (5.3), we can derive that: 

. pu↔v = min{pu↔v′, v′ ∈ Et }; pv↔u = min{pv↔u′ , u′ ∈ Es}.

Finally, according to Line 10 to Line 12 in Algorithm 3, u and v would be aligned 
by reciprocal alignment inference. ��

Therefore, the main challenge lies in obtaining an accurate similarity matrix. 
However, in most cases, the similarity matrix is likely to be inaccurate, as 
the representation learning process cannot guarantee to learn high-quality entity 
representations for generating an accurate similarity matrix. Thus, we categorize 
the similarity scores of the ground-truth entity pairs into four cases and discuss the 
performance of our proposed reciprocal alignment inference and the direct inference 
(baseline model) under these circumstances in the appendix. Empirically, reciprocal 
alignment inference achieves much better results than direct inference. 

5.4.5 Complexity Analysis 

Regarding the worst time complexity of Algorithm 3, the preference modeling 
process (Lines 1–3) requires .O(n2) + O(2n2) + O(2n2) as we can calculate the 
highest similarity scores outside of the loops, the ranking process (Lines 5–8) 
requires .O(2n × n lg n), the aggregation process (Line 9) requires .O(n2), and the 
matching process (Lines 10–12) requires .O(n2), where n denotes the number of 
entities in a KG. Overall, the time complexity of Algorithm 3 is .O(n2 lg n). Notably,



5.5 Variants of Reciprocal Alignment Inference 133

the time complexity of the direct alignment inference strategy is . O(n2). Our  
proposed reciprocal alignment inference has a higher time complexity than direct 
inference as it includes an additional ranking process that converts the preference 
scores into ranks. However, the process of ranking is crucial for enhancing the 
alignment performance and will be confirmed through experimentation. 

The primary factor contributing to the space complexity of LIME is the reciprocal 
alignment inference stage, specifically the computation of the similarity, preference, 
and ranking matrices. In contrast, the direct alignment inference approach only 
requires computing the similarity matrix with a size of .n×n, where n represents the 
number of entities. In our reciprocal modeling strategy, we remove the matrices 
once they are no longer necessary to decrease memory usage, and only up to 
three matrices are present at any given time. Thus, our model’s maximum memory 
consumption is three times that of the direct alignment inference. 

5.5 Variants of Reciprocal Alignment Inference 

As discussed in Sect. 5.4.5, incorporating the reciprocal preferences of entities into 
the model requires a greater amount of memory and time compared to the direct 
alignment strategy, as a result of computing the preference and ranking matrices. 
Consequently, in this section, we propose two alternative methods to minimize the 
memory and time usage associated with the reciprocal modeling. 

5.5.1 No-Ranking Aggregation 

The complexity analysis in Sect. 5.4.5 has identified that the increased time com-
plexity is primarily due to the calculation of preference score rankings. Therefore, 
we propose a no-ranking aggregation strategy in order to approximate reciprocal 
alignment inference, which eliminates the ranking process and instead directly 
aggregates .P s,t and .P t,s to produce the reciprocal preference matrix .P s↔t . 

5.5.2 Progressive Blocking 

To further reduce the time and space requirements of reciprocal alignment inference, 
we propose a method to decrease the value of n. We introduce a progressive blocking 
method that partitions the entities into smaller blocks and infers the alignment 
results at the block level. The algorithm for this method is presented in Algorithm 4 
and the process is illustrated in Fig. 5.5.
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Fig. 5.5 An example of the progressive blocking process. The shape in gray denotes a block. For 
instance, there are five blocks in (b), i.e., .{u2, v2, u4, v4}, .{u1}, .{v1}, . {u3}, and . {v3}. (a) The unified 
graph and the reciprocal matrix, (b) first round of blocking, (c) second round of blocking, (d) third  
found of blocking 

Difference from the Graph Partition Strategies It is important to note that the 
progressive blocking process and the graph partition strategies presented in Sect. 5.3 
are distinct, despite both being methods for dividing large graphs into smaller ones. 
The input to the graph partition strategies is a KG, and the goal is to partition it 
into smaller subgraphs while preserving the original KG structure. In contrast, the 
input to the progressive blocking method is a bipartite graph with nodes representing 
source and target entities to be aligned and edges representing pairwise connections 
between them. The aim is to divide the bipartite graph into smaller blocks, where 
alignment can be inferred within a smaller search space. Consequently, when 
aligning large KG pairs, we first conduct graph partitioning to divide the KGs into 
smaller subgraphs. For each small KG pair, we learn entity structural representations 
and reciprocally infer the alignment results, where the progressive blocking method 
can be used to reduce the time and memory costs of reciprocal inference. 

One-Off Blocking To provide more detail, the inputs to the progressive blocking 
process include the unified graph . G, which contains entities from both source and 
target KGs and their pairwise connections; the similarity matrix . S, which encodes 
the pairwise similarities between source and target entities; and . �, which is the 
set of given thresholds (hyper-parameters). First, the blocking process begins by 
removing the connections between a source entity u and a target entity v if the 
similarity score between them .sim(u, v) is lower than a predefined threshold .θ ∈ �. 
This division creates different blocks of source and target entities, as illustrated in 
Fig. 5.5b. After obtaining the blocks, we perform reciprocal entity alignment on the
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entities within each block and aggregate the results from different blocks to obtain 
the overall alignment performance. 

It is important to note that setting a small value for . θ will result in most 
connections remaining, and most entities remaining in the same block. Therefore, 
the threshold is typically set to a relatively large value to ensure that the entities 
are effectively divided into appropriate blocks. However, this blocking process may 
still produce isolated blocks containing only a single entity, as depicted in Fig. 5.5b. 
We have found that these isolated blocks can represent a significant portion of the 
overall entities. One intuitive approach to handling these isolated entities is to gather 
them together and place them in the same block. However, this block would likely 
be large in size, and reciprocally aligning the entities within it would still require a 
significant amount of memory (as empirically validated in Sect. 5.7.5). 

Algorithm 4: progressive_blocking. (G,S,�)

Input : G: the unified graph containing entities from the two KGs and their pair-wise 
connections; S: the similarity matrix; �: the set of given thresholds; 

Output : B: a set of blocks. 
1 foreach θ ∈ � do 
2 Remove from G the connections with similarity scores lower than θ ; 
3 C← compute the connected components of G; 
4 G← ∅; 
5 foreach c ∈ C do 
6 if |c| > 1 then 
7 B← B ∪ {c}; 
8 else  
9 G← G ∪ {c}; 

10 Restore the edges associated with G ; /* previously removed in Line 2 

*/ 

11 return B; 

Progressive Blocking To address this issue, we propose a progressive blocking 
strategy. The strategy begins by removing connections between source and target 
entities in . G with similarity scores lower than the threshold . θ and computing the 
connected components of . G. Each connected component is considered as a block 
(Lines 2–3 in Algorithm 4). For each block in the block sets, if it contains more 
than one entity, it is added to the final set of blocks (Lines 6–7). We gather up the 
isolated entities (blocks) and place them into one block and restore the connections 
among the entities in this block, which forms the new unified graph . G (Lines 9–10). 
Then, we choose the next . θ (smaller than the previous one) from . � and block . G
using the same strategy, i.e., removing connections with similarity scores lower than 
. θ . As the threshold is lower than the previous one, some of the connections among 
these entities would remain, and these entities would be placed into different blocks. 
Similarly, there may still be isolated entities, and we can repeat the progressive
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blocking strategy to generate more non-isolated blocks by gathering up the isolated 
entities and adjusting the threshold. Finally, we obtain the final set of blocks (Line 
11). We perform reciprocal entity alignment within each block and aggregate the 
individual results to attain the final alignment performance. A running example can 
be found in the following example. 

The Benefits and Limitations of Progressive Blocking By applying the progres-
sive blocking method, the memory and time costs of reciprocal alignment inference 
are significantly reduced, as the number of entities in each block is much smaller 
than in the original graph. This reduction is empirically validated in Table 5.2 in 
Sect. 5.7.1. However, the blocking process may partition equivalent entities into 
different blocks, which can negatively impact the alignment accuracy. This issue 
is further discussed and analyzed in Sect. 5.7. 

Example Continuing with the previous example, we now explain the progres-
sive blocking process, which is also illustrated in Fig. 5.5. 

(a) The inputs include the unified graph . G and the similarity matrix . S. 
(b) We set the initial threshold . θ0 to 0.75 and remove the pairwise connections 

in . G with similarity scores lower than . θ0. This results in five blocks, 
i.e., .{u2, v2, u4, v4}, .{u1}, .{v1}, .{u3}, and .{v3}, among which the latter 
four blocks contain only one entity. We gather these entities and restore 
connections among them, resulting in . G0. 

(c) We lower the threshold and set it to .θ1 = 0.7. We then remove the 
connections in . G0 with similarity scores lower than . θ1, which generates 
three blocks, .{u3, v3}, .{u1}, and .{v1}. The latter two blocks are isolated, 
and we aggregate them to generate . G0. 

(d) Again, we lower the threshold to .θ2 = 0.6. The similarity score 
between .u1 and .v1 is higher than this threshold and they form 
a block. Finally, we obtain three blocks, . B = {b1, b2, b3} =
{{u2, v2, u4, v4}, {u3, v3}, {u1, v1}}. 

5.6 Experimental Settings 

In this section, we introduce the experimental settings. 

5.6.1 Dataset 

Following previous works, we adopt three popular EA datasets for evaluation:
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• DBP15K [32], which includes three cross-lingual KG pairs extracted from 
DBpedia [1], i.e., DBP15KZH-EN (Chinese to English), DBP15KJA-EN (Japanese 
to English), and DBP15KFR-EN (French to English). Each KG pair comprises 
15,000 aligned entity pairs and approximately 200,000 relational triples. 

• SRPRS [11], which involves two cross-lingual KG pairs that are extracted from 
DBpedia, i.e., SRPRSEN-FR (English to French) and SRPRSEN-DE (English to 
German), and two mono-lingual datasets, i.e., SRPRSDBP-WD (DBpedia to Wiki-
data [37]) and SRPRSDBP-YG (DBpedia to YAGO [30]). Compared with DBP15K, 
the entity degree distribution in SRPRS is closer to the real-life distribution. 
Each KG pair comprises 15,000 aligned entity pairs and approximately 70,000 
relational triples. 

• DWY100K [33], which involves two mono-lingual KG pairs, i.e., DWY100K 
DBP-WD (DBpedia to Wikidata) and DWY100KDBP-YG (DBpedia to YAGO). Each 
KG pair comprises 100,000 aligned entity pairs and approximately 900,000 
relational triples. Compared with DBP15K and SRPRS, the scale of DWY100K 
is much larger. 

Table 5.1 presents a summary of the statistics of these datasets. We use 30% of the 
aligned pairs for training and 10% for validation. 

Table 5.1 Statistics of the datasets used for evaluation 

Dataset KG pairs #Triples #Entities #Relations #Align. 

DBP15KZH-EN DBpedia(Chinese) 70,414 19,388 1,701 15,000 

DBpedia(English) 95,142 19,572 1,323 

DBP15KJA-EN DBpedia(Japanese) 77,214 19,814 1,299 15,000 

DBpedia(English) 93,484 19,780 1,153 

DBP15KFR-EN DBpedia(French) 105,998 19,661 903 15,000 

DBpedia(English) 115,722 19,993 1,208 

SRPRSEN-FR DBpedia(English) 36,508 15,000 221 15,000 

DBpedia(French) 33,532 15,000 177 

SRPRSEN-DE DBpedia(English) 38,363 15,000 222 15,000 

DBpedia(German) 37,377 15,000 120 

SRPRSDBP-WD DBpedia 38,421 15,000 253 15,000 

Wikidata 40,159 15,000 144 

SRPRSDBP-YG DBpedia 33,748 15,000 223 15,000 

YAGO3 36,569 15,000 30 

DWY100KDBP-WD DBpedia 463,294 100,000 330 100,000 

Wikidata 448,774 100,000 220 

DWY100KDBP-YG DBpedia 428,952 100,000 302 100,000 

YAGO3 502,563 100,000 31 

FB_DBP_2M Freebase 13,502,306 2,349,253 4,901 2,349,253 

DBpedia 11,207,773 2,349,253 612
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5.6.2 Construction of a Large-Scale Dataset 

To evaluate the scalability of EA, we created a new dataset with millions of entities 
by using DBpedia and Freebase as the source and target KGs, respectively. We 
obtain the gold standards, i.e., aligned entity pairs, from the external links between 
DBpedia and Freebase.5 We extract the relational triples involving the entities in 
the external links from the respective KGs. We then extract the relational triples 
involving these entities from their respective KGs. To ensure the quality of the 
extracted triples, we follow the method proposed in a previous work [50]. We keep 
only the links whose source and target entities are involved in at least one triple in 
their respective KGs, and the entity sets are adjusted accordingly. As a result of this 
process, each KG contains over two million entities and tens of millions of triples. 
Table 5.1 presents the statistics of the newly constructed dataset. 

5.6.3 Implementation Details 

For the graph partition, we set the number of subgraph pairs k to 75 for FB_DBP_2M 
and 5 for DWY100K. For CPS, we adopt the same settings as the original paper. The 
number of rounds . γ of I-SBP is set to 3. For the representation learning models RREA 
and GCN, we adopt the same settings as the original papers [22, 38]. We use cosine 
similarity to measure the similarity between entity embeddings. The reciprocal 
alignment inference stage does not require any additional parameters. Regarding 
the progressive blocking process, we conduct three rounds and set the thresholds 
. � (hyper-parameters) to the 50th percentile (median), 25th percentile (the first 
quartile), and 1st percentile of the set of the largest similarity score of each source 
entity, respectively, which could be directly obtained given the similarity matrix. 
The main intuition behind this is that such settings can guarantee the thresholds are 
decreasing, and meanwhile the threshold values would not be too small as they are 
obtained from the set of the largest similarity scores of all source entities. 

To compare with the approaches that leverage extra information, we incorporate 
entity names into our proposal. We directly adopt the strategies proposed in [46] to  
generate useful features from entity names for alignment. We do acknowledge that 
some methods [36, 44] use entity descriptions to improve the alignment performance 
significantly. However, we leave the integration of such information and comparison 
with these methods to future work, as it is outside the scope of this study. The source 
codes of LIME are publicly available at https://github.com/DexterZeng/LIME.

5 https://www.dbpedia.org/blog/dbpedia-is-now-interlinked-with-freebase-links-to-opencyc-
updated/. 
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5.6.4 Evaluation Metrics 

As per convention [6], we adopt Hits@1 as the performance measure, which 
indicates the proportion of correct alignments. Unless otherwise specified, Hits@1 
is represented in percentage. We omit the frequently used Hits@10 and mean 
reciprocal rank (MRR) metrics since (1) they are less important indicators as pointed 
out in previous works [6, 50] and (2) they show similar trends to Hits@1. 

In addition, we assess the alignment methods based on their memory usage (in 
GB) and time consumption (in seconds). 

5.6.5 Competing Methods 

Our model is compared against 24 methods, which are categorized into two 
groups. The first category consists of methods that employ various embedding 
learning models to acquire valuable entity representations for alignment, such as 
the following: 

• MTransE (2017) [6]: This work uses TransE to learn entity embeddings. 
• RSNs (2019) [11]: This work integrates recurrent neural networks with residual 

learning to capture the long-term relational dependencies within and between 
KGs. 

• MuGNN (2019) [4]: This work proposes a new multichannel graph neural network 
model that aims to learn alignment-focused embeddings for knowledge graphs by 
effectively encoding two KGs through multiple channels. 

• KECG (2019) [17]: The aim of this research paper is to suggest a method for 
learning a knowledge embedding model and a cross-graph model together. The 
knowledge embedding model is responsible for encoding inner-graph relation-
ships, while the cross-graph model improves entity embeddings by incorporating 
information from their neighbors. 

• TransEdge (2019) [34]: It introduces a new embedding model that is focused on 
the edge or relation between entities. This model contextualizes the representation 
of relations by considering the specific pair of head and tail entities involved. 

• MMEA (2019) [28]: This paper proposes to model the multi-mapping relations in 
KG for EA. 

• AliNet (2020) [35]: It suggests an EA network that utilizes attention and gating 
mechanism to aggregate information from both direct and distant neighborhoods. 

• MRAEA (2020) [21]: This work involves creating a model that generates cross-
lingual entity embeddings by focusing on the node’s incoming and outgoing 
neighbors, as well as the meta semantics of the relations it is connected to. 

• SSP (2020) [24]: This work proposes to combine the global structure of the 
knowledge graph with relational triples specific to each entity for alignment.
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• LDSD (2020) [5]: This paper proposes to capture both short-term variations and 
long-term interdependencies within knowledge graphs, with the goal of achieving 
better alignment. 

• HyperKA (2020) [31]: This work puts forward a hyperbolic relational graph neural 
network to embed knowledge graphs, utilizing a hyperbolic transformation to 
capture associations between pieces of knowledge. 

• RREA (2020) [22]: This work involves reflecting entity embeddings across various 
relational hyperplanes, in order to create relation-specific entity embeddings that 
can be utilized for alignment. 

The second group of techniques makes use of data beyond the KG structure. This 
comprises the following: 

• JAPE (2017) [32]: This work uses the attributes of entities to refine the structural 
information. 

• GCN-Align (2018) [38]: This work utilizes GCN to produce entity embeddings, 
which are then merged with attribute embeddings to align entities present in 
separate KGs. 

• RDGCN (2019) [39]: The proposed approach involves a dual-graph convolutional 
network that is capable of incorporating relation information through attentive 
interactions between a knowledge graph and its dual relation counterpart. 

• HGCN (2019) [40]: This work proposes to learn entity and relation representations 
for EA jointly. 

• GM-EHD-JEA (2020) [42]: This work presents two coordinated reasoning tech-
niques that can effectively address the many-to-one problem encountered during 
the inference process of entity alignment. 

• NMN (2020) [41]: This work proposes a neighborhood matching network that 
can handle the structural variability between KGs. The network utilizes similarity 
estimation between entities to capture both the topological structure and the 
difference in neighborhoods. 

• CEA (2020) [46]: This work introduces a collective framework for formulating 
entity alignment (EA) as a standard stable matching problem. This framework is 
solved using the deferred acceptance algorithm. 

• DAT (2020) [48]: This work proposes a degree-aware co-attention network that 
integrates semantic and structural features to enhance the performance of long-
tail entities. 

• DGMC (2020) [8]: This work introduces a two-stage neural architecture for 
acquiring and refining structural correspondences between graphs. 

• AttrGNN (2020) [19]: Besides structural features, this research suggests utilizing 
an attributed value encoder and dividing the knowledge graph (KG) into sub-
graphs to model diverse types of attribute triples for alignment. 

• RNM (2021) [53]: This work puts forward a relation-aware neighborhood match-
ing model for entity alignment. 

• CEAFF (2021) [47]: As an extension to CEA, this research suggests an adaptive 
feature fusion strategy to incorporate various features and a reinforcement 
learning-based model for conducting collective alignment.
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We choose these baselines since they are the most recent and also the best 
performant approaches. Indeed, the majority of the baselines are embedding-
based methods since most of the EA approaches merely focus on the embedding 
learning stage. There are only a limited number of methods that focus on the 
alignment inference stage, such as CEA, GM-EHD-JEA, and CEAFF. To ensure a 
fair comparison, we executed the source codes of the baseline methods in our 
experimental setup and presented the results obtained in comparison with the 
corresponding results reported in the original papers, despite the possibility of 
differences between the two. We have highlighted the top-performing results in each 
table by marking them in bold. 

5.7 Results 

We aim to answer the following research questions by conducting relevant experi-
ments: 

1. Can LIME effectively cope with large-scale datasets? (Sect. 5.7.1) 
2. Can LIME outperform state-of-the-art solutions on datasets in normal scales? 

(Sect. 5.7.2) 
3. What influence does the partition strategies have on the alignment process? 

(Sect. 5.7.3) 
4. Is reciprocal alignment inference more effective than the frequently used CSLS 

metric? Could more insights into the reciprocal modeling process be provided? 
(Sect. 5.7.4) 

5. Is the progressive blocking process sensitive to the hyper-parameters? How to 
set the hyper-parameters? (Sect. 5.7.5) 

5.7.1 Evaluation on Large-Scale Dataset 

Settings To address RQ1, we experimented on FB_DBP_2M. All of the state-of-
the-art approaches cannot be directly implemented on this dataset due to the huge 
computation cost. Hence, we utilized the SBP algorithm to partition KGs and used 
CPS and I-SBP for comparison. We used GCN and RREA as the entity representation 
learning models. Regarding the alignment inference stage, we compared our 
proposed reciprocal alignment inference strategy RInf and its variant methods RInf-
wr, RInf-pb, with the direct alignment strategy DInf. For the comprehensiveness 
of evaluation, we also conducted the experiments on the medium-sized dataset 
DWY100K. The results are presented in Table 5.2. 

Overall Results According to Table 5.2, the best alignment performance on 
FB_DBP_2M and DWY100KDBP-WD is achieved by the combination of I-SBP, RREA,
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and RInf-pb. However, replacing RInf-pb with RInf in this combination leads to 
the highest Hits@1 on DWY100KDBP-WD. In terms of efficiency, the combination 
of CPS, GCN, and DInf is the fastest across all three KG pairs. Additionally, the 
alignment results on DWY100K are much higher, while the memory and time costs 
are lower than those on FB_DBP_2M, demonstrating that our newly constructed 
large-scale EA dataset presents a significant challenge to EA solutions. 

Partition Strategies In terms of partition strategies, it is clear that I-SBP consis-
tently achieves the best alignment results, regardless of the choice of embedding and 
inference models. Moreover, using SBP results in better alignment performance than 
using CPS, highlighting the effectiveness of leveraging bidirectional information 
for KG partitioning. However, SBP is more time- and memory-intensive than CPS 
as it requires bidirectional partitions. I-SBP further increases the time cost to a 
significantly higher level, at least three times that of SBP. This excessive time cost 
is due to the iterative re-partitioning process. Additionally, I-SBP consumes more 
memory space than other partition strategies. 

Alignment Inference Strategies Initially, we compare our proposed alignment 
inference strategies with the direct alignment inference approach. The results 
presented in Table 5.2 indicate that our proposed reciprocal inference strategy RInf 
outperforms the commonly used direct alignment inference DInf by a significant 
margin on DWY100K. On the  FB_DBP_2M dataset, although RInf cannot work due 
to the high memory cost, its approximation strategies still attain better results than 
DInf. Particularly, compared to DInf, RInf-pb only requires more time and memory 
space within a reasonable range while consistently achieving superior alignment 
results across all datasets under different combinations of partition and embedding 
learning models. It is especially effective in the iterative partition setting. On the 
other hand, RInf-wr incurs slightly higher time and memory costs than DInf and 
achieves better results than DInf when using CPS while performing worse than DInf 
under bidirectional partitioning on DWY100KDBP-YG and FB_DBP_2M. This can be 
attributed to the fact that directly aggregating the preference scores can result in the 
loss of information, as the preference scores are typically very close. This is also 
discussed in Sect. 5.4.3. 

In the next step, we compare RInf with its variants. On DWY100K, applying 
the blocking strategy reduces the Hits@1 performance of RInf by 2–5%, with the 
exception of cases where I-SBP is used. This is because the blocking process cannot 
guarantee that equivalent entities are placed in the same block. Nonetheless, RInf-pb 
reduces the memory cost by over 90% and the time cost by over 70%. This validates 
that our progressive blocking strategy can significantly increase the efficiency of 
the reciprocal modeling process at the cost of a slight performance drop. Although 
applying the blocking strategy reduces the Hits@1 performance of LIME, the results 
are still significantly higher than DInf. When using the iterative partition strategy, 
it can be observed that using RInf-pb achieves comparable or even better Hits@1 
performance than using RInf. This is because the progressive blocking process 
reduces the search space and can generate more confident pairs, which could lead to 
increasingly better partition and alignment results.
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Regarding the no-ranking variant RInf-wr, even though its time and memory costs 
are small (close to DInf), its alignment performance is significantly lower than RInf 
across all settings. This confirms that the ranking process is crucial in the preference 
aggregation process, as discussed in Sect. 5.4.3. 

Representation Learning Models Regarding the entity structural embedding 
learning methods, the more advanced model RREA achieves better results than the 
baseline model GCN with various partition and inference strategies, demonstrating 
the importance of modeling KG structure information for overall alignment per-
formance. This also confirms that our proposal is independent of the embedding 
learning model and can consistently improve alignment results. 

For further details on the design of each component and more experiments and 
discussions, please refer to the following subsections. 

5.7.2 Comparison with State-of-the-Art Methods 

In this subsection, we answer RQ2. 

Settings In the previous section, we demonstrated that LIME can effectively handle 
large-scale EA datasets. However, since state-of-the-art methods cannot handle the 
FB_DBP_2M dataset, we conducted further experiments on popular medium-sized 
and small datasets to validate the effectiveness of our proposal. Given that these 
datasets are relatively smaller, we did not use our proposed partition strategies in 
LIME, as discussed in Sect. 5.3.5. Therefore, we evaluated the effectiveness of our 
proposed reciprocal alignment inference strategy and its variants, using the RREA 
model as the representation learning module in LIME. We denoted using the no-
ranking and progressive blocking variants as LIME-wr and LIME-pb, respectively. 

We presented the results of methods that only utilize KG structure to learn entity 
embeddings for alignment in Table 5.3 and the results of methods that use additional 
information in Table 5.4. Additionally, we demonstrated that LIME can be applied to 
other representation learning models, and the results are reported in Table 5.5. We  
also provided a comparison of efficiency in Fig. 5.6. 

Comparison of Alignment Performance We can observe from Tables 5.3 and 5.4 
that LIME achieves the best alignment performance in both categories, and the 
performance of LIME-wr and LIME-pb also surpasses that of the baseline models, 
validating the effectiveness of the reciprocal inference strategy and its variant 
strategies. Notably, LIME adopts RREA as the representation learning component, 
which has already attained the highest Hits@1 among existing methods. In order 
to further validate that LIME is a generic framework that can be used to improve 
the alignment performance of any representation learning-based EA method, we 
removed the RREA model and applied LIME to other models. We reported the cor-
responding results in Table 5.5. Specifically, we selected a representative approach 
from each group, namely, RSNs and RDGCN, and reported the results on DBP15K
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Table 5.5 Hits@1 results of 
applying LIME to other 
methods on DBP15K and 
SRPRS 

DBP15K SRPRS 

Methods ZH-EN JA-EN FR-EN EN-FR EN-DE 

RSNs 58.0 57.4 61.2 35.0 48.4 

+LIME 63.6 62.7 68.4 38.8 53.0 
RDGCN 69.7 76.3 87.3 67.2 77.9 

+LIME 77.0 82.8 92.3 71.8 83.2 

and SRPRS in Table 5.5. Results on other datasets are omitted due to space 
limitations. The results in Table 5.5 verify that applying LIME leads to much better 
alignment performance than the direct alignment inference strategy, regardless 
of the approaches or datasets. This further demonstrates the effectiveness and 
generality of the LIME framework. 

Additionally, we can observe several trends from the tables: (1) the results 
on DWY100K are higher than those on DBP15K and SRPRS, since the KGs in 
DWY100K are denser, which can provide more structural information for alignment. 
In comparison, the results on SRPRS are the worst among the three as its KG 
structure is the sparsest. This reveals that the density of the KG structure is crucial 
to the alignment of entities; and (2) overall, compared with methods that only 
use structural information, the methods that incorporate additional features achieve 
much better alignment performance. On the mono-lingual datasets, some solutions 
even achieve ground-truth results, showcasing the benefits of incorporating other 
useful features. 

Usage of Partition Strategies In Sect. 5.3.5, we discussed that when dealing with 
small- or medium-sized datasets, it may not be worth using the partition strategy 
since partitioning may not significantly reduce computational costs, while it may 
decrease the alignment accuracy. We empirically validate this point by comparing 
the results of LIME in Table 5.3 with the results in Table 5.2. Specifically, we can 
see from Table 5.2 that the Hits@1 of SBP +RREA +RInf6 on DWY100KDBP-WD is 
76.9%, while this figure is 81.6% for LIME (equivalent to RREA +RInf) in Table 5.3, 
demonstrating that the partition process indeed harms the alignment accuracy. 
Furthermore, in terms of time cost, they are of the same order of magnitude 
(thousands of seconds), despite the fact that using the partition strategy would be 
faster. 

Comparison of the Efficiency We compare LIME with state-of-the-art approaches 
in terms of the efficiency and show the results in Fig. 5.6.7 The study demonstrates

6 Note that we do not compare with I-SBP, since it selects confident EA pairs to augment training 
data, which improves both the partition and the representation learning process. It corresponds to 
the semi-supervised setting in previous EA works [22, 34], which is usually not compared with the 
methods without the semi-supervised setting (e.g., LIME in this work) for fairness. 
7 We do not include an evaluation of the efficiency of methods that use extra information because 
processing this information is complex and it is challenging to provide an unbiased evaluation. 
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Fig. 5.6 Running time comparison of methods merely using structural information. (a) On  
DBP15K. (b) On DWY100K. (c) On SRPRS
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that LIME is effective on all datasets, primarily because the representation learning 
model RREA is highly efficient. However, LIME does require slightly more running 
time to significantly enhance the alignment performance of RREA. It is also worth  
noting that the time cost is generally higher on larger datasets (such as DWY100K 
compared to DBP15K) and on denser datasets (such as DBP15K compared to 
SRPRS). 

5.7.3 Experiments and Analyses on Partitioning 

In this section, we seek to answer RQ3. By examining Table 5.2, we can conclude 
that I-SBP and SBP outperform CPS in generating precise alignment outcomes, 
albeit at the expense of greater time and memory usage. This section presents 
additional experiments aimed at assessing the efficacy of these partition methods. 

Influence of Partition Strategies on Alignment Links Our initial goal is to eval-
uate the percentage of preserved alignment links following the partitioning process. 
This is a critical aspect, as the optimal partition strategy should place equivalent 
entity pairs in the same subgraph pair, thereby enabling accurate alignment in 
subsequent stages. The ability of the partition strategy to group equivalent entity 
pairs together determines the maximum achievable alignment accuracy, as discussed 
in Sect. 5.3.2. As a result, we present the percentage of preserved gold alignment 
links following partitioning in Table 5.6. 

It reads from Table 5.6 that CPS destroys over 10% of the links on DWY100K 
and more than half of the links on FB_DBP_2M. This indicates that the partition 
process itself significantly reduces the maximum achievable alignment accuracy, 
which is undesirable. In comparison, adopting SBP can retain 67.5% of the links 
on FB_DBP_2M, which increases the result of CPS by over 50%. Moreover, I-SBP 
produces a remarkable improvement, preserving 80% of the links in FB_DBP_2M 
and almost all links in DWY100K. This demonstrates that iterative partitioning can 
effectively optimize the partition process and prevent equivalent entities from being 
placed into different subgraph pairs. Nevertheless, as shown in Table 5.2, the time 

Table 5.6 The percentage of 
gold alignment links 
preserved after partitioning 

Dataset Strategy Overall Train Test 

DWY100KDBP-WD CPS 89.5% 92.7% 88.1% 

SBP 97.6% 99.0% 97.0% 

I-SBP 99.6% 100.0% 99.4% 

DWY100KDBP-YG CPS 89.3% 92.7% 87.9% 

SBP 96.6% 98.0% 96.1% 

I-SBP 99.8% 100.0% 99.7% 

FB_DBP_2M CPS 43.7% 57.1% 38.0% 

SBP 67.5% 81.6% 61.4% 

I-SBP 81.0% 93.5% 75.6%



150 5 Large-Scale Entity Alignment

Table 5.7 The percentage of 
preserved links, the time cost, 
and the number of entities in 
the largest subgraph pair of 
CPS and SBP given 
different k on FB_DBP_2M 

Strategy k Presv. Links Time #Ents 

CPS 50 45.2% 3,051 96,357 

75 43.7% 3,976 64,237 

100 38.1% 4,812 48,185 

SBP 50 68.4% 5,834 181,205 

75 67.5% 7,335 120,367 

100 59.2% 9,016 92,935 

cost of SBP is almost double that of CPS, while I-SBP requires significantly more 
time depending on the number of iterations. 

Influence of the Number of Subgraph Pairs k Our next step is to analyze the 
impact of the number of subgraph pairs k on the partition process. To be specific, 
Table 5.7 presents the percentage of preserved links, time cost, and the number of 
entities in the largest subgraph pair for CPS and SBP, with k set to 50, 75, and 
100. Indeed, Table 5.7 indicates that as the number of subgraph pairs increases, 
the percentage of preserved links decreases, and the partition time cost increases 
for both CPS and SBP. However, increasing the number of subgraph pairs results 
in smaller subgraphs, which can be beneficial for structural representation learning 
strategies due to their scalability limitations. 

5.7.4 Experiments and Analyses on Reciprocal Inference 

In this subsection, we address RQ4. 

Comparison with the CSLS Metric In Sect. 5.4, we mentioned the CSLS metric, 
which was introduced to address the hubness problem in nearest neighbor search 
and may have a similar effect as the reciprocal alignment inference strategy. We 
thus replaced the reciprocal inference approach in LIME with the CSLS metric (with 
a hyper-parameter n set to 1, 5, or 10) and evaluated the corresponding Hits@1 
results, which are presented in Fig. 5.7. It is worth noting that all other settings were 
kept the same. 

The results presented in Fig. 5.7 demonstrate that LIME consistently outperforms 
the CSLS metric on all datasets. This confirms that our reciprocal alignment 
inference strategy can more effectively model and integrate entity preferences, 
leading to more accurate alignment results compared to the CSLS metric (as 
discussed in Sect. 5.4). Additionally, we observe that the performance of the CSLS 
metric deteriorates as the hyper-parameter n increases. 

Deeper Insights into the Preference Modeling and Aggregation It is worth 
noting that in cases where the entity representation learning model has poor 
performance on EA (i.e., the model outputs a homogeneous probability distribution
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Fig. 5.7 Comparison of the reciprocal inference in LIME and the CSLS metric. DBP-WD. ∗ and 
DBP-YG. ∗ refer to the KG pairs in DWY100K. The results on FB_DBP_2M are omitted due to the 
excessive time and memory costs required by reciprocal inference in LIME and the CSLS metric 

of entity embeddings), the preference matrix can have many ties, which may impede 
the effectiveness of the reciprocal modeling approach. Therefore, we aim to (1) 
analyze the likelihood of ties occurring in the preference matrix and (2) empirically 
demonstrate that our proposed inference strategy can still improve the performance 
of a low-performing entity representation learning model even in the presence of 
ties. 

Take SRPRSEN-FR, for example. We conducted an analysis of the preference 
matrices for RREA and a low-performing model RSNs, which have dimensions of 
10,500*10,500. On average, ties occur 8.72 times in each row or column of the 
RREA preference matrix, which is not a frequent occurrence. For the low-performing 
RSNs model, this figure increases to 12.82. This suggests that the quality of entity 
representations can influence the frequency of ties during preference aggregation, 
but the effect is not significant. Furthermore, despite the presence of ties in the 
ranking matrices, applying our reciprocal inference strategy improves the Hits@1 
of RSNs by 10.9% as shown in Table 5.5. This demonstrates that the reciprocal 
modeling approach can still benefit a low-performing entity representation learning 
method. 

5.7.5 Experiments and Analyses on Progressive Blocking 

In this subsection, we proceed to answer RQ5. First, we analyze the impact of the 
hyper-parameter . θ on the alignment performance and efficiency. Next, we discuss 
the parameter settings of the progressive blocking process. 

Analysis of . θ As mentioned in Sect. 5.5.2, setting . θ to a small value will retain 
the majority of connections, resulting in most entities being placed in the same 
block. On the other hand, setting . θ to a large value will remove many connections 
and separate entities into different isolated blocks. To empirically verify this claim, 
we conducted an experiment on the DBP15KZH-EN dataset, varying the value of 
. θ . We reported the total number of blocks (#Total), the size of the largest block
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Table 5.8 Analysis of the hyper-parameter . θ in progressive blocking on DBP15KZH-EN 

.θ #Total #MaxSize #Iso Perc. H@1 H@1* 

0.75 11,447 81 8,225 71.9% 48.1 67.9 

0.70 9,345 161 6,331 67.7% 53.9 67.8 

0.65 7,245 521 4,757 65.7% 58.1 67.5 

0.60 5,034 1,917 3,463 68.8% 60.9 66.4 

0.55 3,128 14,054 2,424 77.5% 62.7 66.0 

0.50 1,825 17,910 1,569 86.0% 63.7 65.3 

0.45 949 19,699 847 89.3% 64.6 65.2 

0.40 437 20,421 407 93.1% 65.0 65.1 

(#MaxSize), the number of blocks that only contain one entity (which we refer to 
as isolated blocks, #Iso), the percentage of isolated blocks (Perc.), the aggregated 
Hits@1 results of performing the alignment within each block (H@1), and the 
aggregated Hits@1 results of performing the alignment within each block and the 
aggregated isolated blocks (H@1*), in Table 5.8. 

The results in Table 5.8 show that setting . θ to a large value, specifically 0.75, 
results in the removal of most pairwise connections, leading to over 10,000 blocks, 
of which 71.9% were isolated blocks. Also, the Hits@1 result is very low (at 48.1%). 
Aggregating the 8,225 isolated blocks and considering the alignment performance 
within this aggregated block, the Hits@1 result increased to 67.9%. However, this 
aggregated block contains over 8,000 entities and still requires significant memory 
space. In contrast, setting . θ to a small value, specifically 0.4, results in the majority 
of entities (over 20,000) being placed in the same block, which does not achieve the 
objective of reducing memory space. 

Therefore, in a progressive blocking setting, the value of . θ in the first round 
is typically set to a larger value. Although this may result in a larger size of the 
aggregated isolated block, the subsequent rounds with lower . θ values further process 
the aggregated block. 

Analysis of the Progressive Blocking In this work, we conduct three rounds 
of progressive blocking and directly set . � to the 50th percentile (median), 25th 
percentile (the first quartile), and 1st percentile of the set of the largest similarity 
scores of all source entities, respectively. In this study, our goal is to investigate the 
impact of the values of . θ and the number of rounds of progressive blocking on the 
alignment performance and memory consumption. To be more specific, we keep 
two threshold values constant and vary the value of the other threshold. Then, we 
report the Hits@1 and memory size in Fig. 5.8a, b, and c. Moreover, we perform 
progressive blocking for 0 to 4 rounds and present the Hits@1 and memory size in 
Fig. 5.8d. 

As shown in Fig. 5.8a, the value of the initial threshold has an impact on the final 
Hits@1 result and memory cost. Setting the initial threshold to a relatively small 
value may produce more accurate alignment results, but it also comes with a high
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Fig. 5.8 Analysis of the progressive blocking. (a) Threshold in the first round. On DBP15KZH-EN. 
(b) Threshold in the second round. On DBP15KZH-EN. (c) Threshold in the third round. On 
DBP15KZH-EN. (d) Rounds of progressive blocking. On DBP15KZH-EN 

memory cost since most entities are still connected and placed in the same block. 
On the other hand, a larger threshold can reduce the memory cost, but it also leads 
to a lower alignment performance. 

Figures 5.8b and c demonstrate that the values of the thresholds in the second 
and third round do not have a significant impact on the memory cost, while they 
only have a small influence on the alignment performance. Furthermore, Fig. 5.8d 
indicates that the Hits@1 performance and memory cost drop in the first few rounds 
and remain relatively stable with more rounds of blocking. Therefore, conducting 
progressive blocking for a few rounds is sufficient. 

Threshold Setting in Practice Based on the analysis, we can identify two crucial 
factors when setting the threshold schedule: (1) the threshold values should be 
gradually decreased; and (2) the initial threshold value should be selected carefully, 
possibly with the guidance of statistical information regarding the similarity scores. 
Therefore, our proposed strategy for scheduling the threshold is a feasible option in 
practice, and it can be adjusted based on the statistical information available.
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5.8 Related Work 

We will provide a brief overview of the studies that have addressed the scalability 
problem in EA. The experimental paper on EA [50] indicates that even the state-
of-the-art EA methods still suffer from poor scalability. While simpler models 
such as GCN-Align [38] and ITransE [51] are faster, they tend to have poorer 
effectiveness [50]. In contrast, more effective models typically have complex 
architectures and are inefficient. 

There have been several studies on relevant tasks that propose strategies for 
handling large-scale data. For instance, Flamino et al. [9] approach the alignment of 
entities in large-scale networks by clustering nodes using network-specific features. 
However, these features are not present in KGs, and the structure of KGs is more 
intricate than networks. Zhuang et al. [54] suggest partitioning entities from various 
knowledge bases into smaller blocks using predicates in the triples. Nonetheless, 
aligning predicates in different knowledge bases is already a challenging task, and 
the source codes of these methods are not available. Therefore, their implemented 
programs cannot be applied to the EA task. Zhang et al. [49] address the problem 
of linking large-scale heterogeneous entity graphs. However, the entity graph only 
includes entities in a few types, such as paper, author, and venue, and the relation 
types are also limited, which is very different from KGs. Thus, their proposed 
method, which depends on the characteristics of entity graphs, cannot be used for 
EA. 

Several recent works have focused on addressing the efficiency issue in EA. Mao 
et al. [20] identify over-complex graph encoders and inefficient negative sampling 
strategies as the primary causes of poor efficiency in EA. They propose a novel KG 
encoder, Dual Attention Matching Network, to reduce computational complexity. 
However, their work focuses only on the representation learning stage and is 
evaluated on a medium-sized dataset, DWY100K. GM-EHD-JEA [42] formulates 
EA as a task assignment problem and proposes to solve it using the Hungarian 
algorithm. However, the Hungarian algorithm cannot be directly applied to EA 
due to its extra-large computation time. Therefore, they propose a space separation 
strategy to reduce the search space so that the Hungarian algorithm can work 
properly. This method is similar to our blocking strategy without the progressive 
procedure. However, we improve the performance by aggregating isolated blocks, 
and our progressive blocking process can further enhance efficiency. 

Another recent work proposes a unidirectional strategy, CPS, to partition large-
scale KGs and uses name information to improve alignment performance [10]. 
However, in general, the scalability issue in EA remains a critical and underexplored 
problem. It is worth noting that ER can be regarded as the general version of the EA 
task [50]. There have been several studies on improving the efficiency and scalability 
of ER, and we refer readers to the survey paper [7]. Our blocking strategy is inspired 
by these relevant works on ER.
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5.9 Conclusion 

In this chapter, we have highlighted the scalability issue in state-of-the-art EA 
approaches and proposed an effective solution, LIME, to address EA at scale. The 
LIME approach initially uses graph partition strategies that focus on seeds to divide 
large-scale KGs into smaller pairs. Then, LIME employs a novel reciprocal alignment 
inference strategy within each subgraph pair to generate alignment results based 
on the entity representations learned by existing embedding learning models. To 
enhance the scalability of reciprocal alignment inference, LIME suggests two variant 
strategies that can reduce computational costs, albeit with a slight decrease in 
performance. The experimental evaluations conducted on a novel large-scale EA 
dataset reveal that LIME can successfully address EA on a large scale. Besides, the 
empirical results on the popular EA datasets also validate the superiority of LIME 
and show that it can be applied to existing methods to improve their performance. 

Appendix 

Correctness Analysis 

In Sect. 5.4.4, we examine the performance of reciprocal alignment inference and 
the baseline model (direct inference) under various conditions. 

Case 1 For the ground-truth entity pair .(u, v): 

. 
u = arg max{sim(v,u′), u′ ∈ Es};
v = arg max{sim(u, v′), v′ ∈ Et },

As previously discussed in Sect. 5.4.4, when an accurate similarity signal is provided 
by the representation learning process, both reciprocal alignment inference and 
direct alignment inference can produce the correct alignment. 

Case 2 For the ground-truth entity pair .(u, v): 

. 
u = arg max{sim(v,u′), u′ ∈ Es};
v∗ = arg max{sim(u, v′), v′ ∈ Et }, v∗ 
= v,

In this case, the direct alignment inference cannot generate the correct answer, 
since it only considers u’s preference and would generate .(u, v∗) as the answer. In 
comparison, reciprocal alignment inference does not necessarily generate the correct 
answer. This is because we only know .pu,v = 1, pv,u < 1. Given any target entity 
. v′, we can derive .pu,v′ ≤ 1, pv′,u ≤ 1. Thus, .ru,v ≤ ru,v′ , while we cannot compare



156 5 Large-Scale Entity Alignment

.rv,u and .rv′,u. Therefore, we also cannot compare .pu↔v = (ru,v + rv,u)/2 with 

.pu↔v′ = (ru,v′ + rv′,u)/2 as the exact values are unknown. 

Case 3 For the ground-truth entity pair .(u, v): 

. 
u∗ = arg max{sim(v,u′), u′ ∈ Es}, u∗ 
= u;
v = arg max{sim(u, v′), v′ ∈ Et },

In this case, the direct alignment inference can generate the correct answer since it 
only considers u’s preference. In comparison, reciprocal alignment inference does 
not necessarily generate the correct answer. This is because we only know . pu,v <

1, pv,u = 1. Given any target entity . v′, we can derive .pu,v′ ≤ 1, pv′,u < 1. Thus, 
.rv,u < rv′,u, while we cannot compare .ru,v and .ru,v′ . Therefore, we also cannot 
compare .pu↔v = (ru,v + rv,u)/2 with .pu↔v′ = (ru,v′ + rv′,u)/2 as the exact values 
are unknown. 

Case 4 For the ground-truth entity pair .(u, v): 

. 
u∗ = arg max{sim(v,u′), u′ ∈ Es}, u∗ 
= u;
v∗ = arg max{sim(u, v′), v′ ∈ Et }, v∗ 
= v,

In this case, the direct alignment inference cannot generate the correct answer, 
since it only considers u’s preference and would generate .(u, v∗) as the answer. In 
comparison, reciprocal alignment inference does not necessarily generate the correct 
answer. This is because we only know .pu,v < 1, pv,u < 1. Given any target entity 
. v′, we can derive .pu,v′ ≤ 1, pv′,u ≤ 1. However, we cannot compare .rv,u and 
. rv′,u, or .ru,v and .ru,v′ . Therefore, we cannot compare .pu↔v = (ru,v + rv,u)/2 with 
.pu↔v′ = (ru,v′ + rv′,u)/2 as the exact values are unknown. 

To summarize, the direct alignment inference method can only provide correct 
results in Case 1 and Case 3, while our proposed reciprocal alignment inference 
strategy can generate correct answers in Case 1 and has the potential to produce 
correct results in other cases as well. Since the input similarity matrix is often 
not very accurate, as representation learning models may not fully capture the 
relatedness between entities, our proposed method is expected to perform better 
than direct alignment inference, as empirically demonstrated in our experiments. 
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Chapter 6 
Long-Tail Entity Alignment 

Abstract Most entity alignment solutions currently rely on structural information, 
specifically KG embedding, to align entities. However, in real-life KGs, the majority 
of entities have a sparse neighborhood structure, while only a few entities are 
densely connected to others. These less-connected entities are referred to as long-tail 
entities, and this phenomenon limits the effectiveness of using structural information 
for entity alignment. 

To address this issue, we propose an approach that incorporates entity name 
information, which is often overlooked but readily available. We amplify the weak 
structural information of long-tail entities with concatenated power mean word 
embeddings of their names during pre-alignment. To align entities, we introduce a 
novel complementary framework that combines both structural and name signals. It 
uses the entity’s degree as a guide to fuse the two sources of information effectively 
and proposes a degree-aware co-attention network that dynamically adjusts the 
significance of features in a degree-aware manner. Finally, we propose using 
confident entity alignment results as anchors to complement original KGs with facts 
from their counterparts via iterative training during post-alignment. Experimental 
evaluations show the effectiveness of the proposed techniques. 

6.1 Introduction 

Many current approaches to entity alignment (EA) in knowledge graphs (KGs) 
heavily rely on the graph structure of KGs [4, 7, 10, 15, 18]. These approaches 
assume that equivalent entities have similar neighborhood structures. While these 
methods have achieved state-of-the-art performance on synthetic datasets extracted 
from large-scale KGs, as mentioned in [2, 15, 24], recent studies have shown that 
these synthetic datasets are much denser than real-life KGs. Furthermore, existing 
EA methods are not capable of yielding satisfactory results on datasets with real-life 
distributions, as discussed in [7]. 

A recent study, referenced as [7], has shown that nearly half of the entities 
in actual knowledge graphs have connections to less than three other entities, 
which are called long-tail entities. This results in the KG being a relatively sparse 
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Fig. 6.1 An example of EA. Nodes in gray (resp. white) are long-tail (resp. popular) entities 
(relation names and other entities are omitted in the interest of space) 

graph. This matches our perception that only a few entities in real-life KGs are 
frequently accessed and have rich connections and detailed attributes, while the 
majority remain under-explored and provide little structural information. This leads 
to existing EA methods that rely solely on structural information struggling to 
accurately align these entities, as demonstrated in the following example. 

Example In Fig. 6.1 is a partial English KG (KG. EN) and a partial Spanish 
KG (KG. ES) concerning the film Summer 1993. Note that the entities The 
Bookshop and La Librería in gray describe the original novel, while 
those in white depict the film. 

During aligning entities of high degrees, e,g., Spain and España, 
structural information is of great help; however, as to long-tail entities, 
e.g., Carla Simón in KG. EN, structural information may suggest Laia 
Artigas in KG. ES as its match, since they have a single link to Summer 
1993 and Verano 1993, respectively. 

The example unveils the shortcoming of solely relying on structural information 
for EA, which renders existing EA methods sup-optimal, even infeasible for long-
tail entities. Hence, we are motivated to revisit the key phases of EA pipeline and 
address the challenge of EA when structural information is insufficient. 

In the pre-alignment phase, we are searching for extra signals that can improve 
EA, and we find that entity names can provide a source of valuable information. 
This type of information is commonly present in real-life entities, but previous 
research has not given it sufficient attention. For example, if we consider the long-
tail entity Carla Simón in KG. EN, incorporating entity name information would 
be beneficial in finding the correct mapping, which is Carla Simón in KG. ES.
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This shows that entity name information can provide a supplementary perspective 
to the commonly used structural information in EA. 

Previous studies [19–21] have already used name embeddings, specifically aver-
aged word embeddings, to populate initial feature matrices for learning structural 
representation. However, our approach is different in that we use entity names as an 
additional source of signal, in addition to structural information. We achieve this by 
encoding the names through concatenated power mean word embeddings [22]. 

During the alignment phase, we carefully merge the two signals mentioned ear-
lier by considering the fact that the significance of structural and name information 
differs for entities with varying degrees. In the example above, aligning the long-
tail entity Carla Simón in KG. EN relies more on entity name information than 
its limited neighboring structure. Conversely, for mapping popular entities such as 
the film La Librería, where ambiguous entity names are present (i.e., both 
the film La Librería and the novel La Librería share the same name), 
structure plays a more significant role. Generally speaking, we can assume that the 
importance of the entity name signal is higher (resp. lower) for entities with lower 
(resp. higher) degrees, while the opposite is true for the signal from neighboring 
structure. In order to accurately represent the nonlinear dynamics between the two 
signals, we develop a co-attention network that uses entity degrees as a guide to 
determine the weights of various signals. It is important to note that [10] introduced 
degrees as a way to address the bias in structural embedding methods, which tend 
to place entities with similar degrees in close proximity. However, our motivation 
is different in that we use degrees to calculate pairwise similarities instead of 
individual embeddings. 

During the post-alignment phase, our proposal is to significantly improve the 
structural information of knowledge graphs by recursively examining and cross-
referencing each other. While long-tail entities may lack structural information in 
their original knowledge graph (referred to as the “source KG”), the knowledge 
graph being aligned with (the “target KG”) may have this information in a 
complementary manner. As an illustration, let’s consider the entity Carla Simón. 
In KG. EN, there may be missing information such as the fact that Carla Simón is 
from España, which is present in KG. ES. By pairing the surrounding entities and 
leveraging information from the target KG, the source KG can potentially acquire 
this missing information and improve the alignment. Inspired by the beneficial 
impact of using rules to complete knowledge graphs [2], we propose an iterative 
training procedure that includes knowledge graph completion. In each round, we 
use confident entity alignment results as anchors to identify and add any missing 
relations, thereby enhancing the current knowledge graphs. As a result, these 
knowledge graphs become enriched, which in turn allows for the learning of better 
structural embeddings. Additionally, the matching signal can propagate to long-
tail entities, which were previously difficult to align in a single shot but may now 
become easier to align as a result of this iterative process.
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Contribution In short, the contribution of this chapter can be summarized as 
follows: 

• We have observed a shortcoming in current EA methods regarding the alignment 
of long-tail entities, primarily because they heavily rely on structure. To overcome 
this limitation, we propose two solutions: (1) incorporating an additional signal 
from entity names through concatenated power mean word embeddings and 
(2) devising an efficient degree-aware co-attention mechanism to dynamically 
integrate the name and structural signals. 

• Our proposal aims to decrease the number of long-tail entities by enhancing 
relational structure through KG completion, integrated into an iterative self-
training approach. This is achieved by utilizing confident EA outcomes as 
anchors and using other KGs as references. Our strategy not only improves the 
performance of EA but also enhances the coverage of KGs. 

• The techniques presented form a new framework called DAT. We conduct 
empirical evaluations of the implementation of DAT on both mono-lingual and 
cross-lingual EA tasks, comparing it to state-of-the-art methods. The results of 
our comparison and ablation analysis demonstrate the superiority of DAT. 

Organization Section 6.2 overviews related work. In Sect. 6.3, we analyze the 
long-tail phenomenon in EA. DAT and its components are elaborated in Sect. 6.4. 
Section 6.5 introduces experimental settings, evaluation results, and detailed analy-
sis, followed by conclusion in Sect. 6.6. 

6.2 Related Work 

Conventional EA Framework The advancements made by state-of-the-art meth-
ods can be analyzed based on a phased pipeline. Firstly, for the pre-alignment 
phase, KG representation methods such as TransE [3, 4, 23] and GCN [18] are  
utilized to encode structural information and embed KGs into low-dimensional 
spaces individually. Subsequently, for the alignment phase, the embedding spaces 
are evaluated and compared to derive alignment results under the supervision of seed 
entity pairs. Certain techniques [7, 14, 15] employ a method of combining training 
data to create a unified embedding space. This allows for the direct projection of 
entities from various KGs into the same space. Equivalence across KGs can then be 
identified by measuring the distance between entities in the unified embedding space 
during alignment. In order to enhance supervision signals by utilizing the outcomes 
of the alignment stage, post-alignment iterative techniques are utilized as described 
in [15, 23]. This approach involves updating structural embeddings and performing 
alignment recursively until a stopping condition is met. These techniques can be 
roughly summarized into a framework, depicted by Fig. 6.2. 

Recent Advancement on EA Recent endeavors have been directed toward 
addressing structural heterogeneity by developing sophisticated structural learning
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Fig. 6.2 Conventional framework of EA 

models such as topic graph matching [21] and multichannel graph neural 
network [2]. These approaches are intended to overcome the challenges associated 
with structural heterogeneity. A recent work enhances structural embedding through 
adversarial training that takes into account degree difference [10]. However, this 
approach may not be effective when aligning entities in knowledge graphs that are 
both in a low-frequency range. Furthermore, in this study, degree information is 
used to improve the learning of structural embeddings, whereas in our approach, 
degree information is used to combine two different alignment signals: structural 
and name information. 

While iterative strategies can be effective in improving entity alignment (EA), 
previous research has shown that they can also have drawbacks. For example, they 
can be biased toward one knowledge graph (KG) and time-consuming [15], or they 
may introduce many false-positive instances [23], which is not ideal for real-life 
applications. In order to balance precision and computational efficiency, we propose 
a novel iterative training approach that incorporates a KG completion module. This 
module updates the structure of the KG in each round based on confident anchoring 
entity pairs. Our strategy is lightweight and limits the inclusion of incorrect pairs, 
reducing the likelihood of introducing false positives. 

It is apparent that the majority of the aforementioned embeddings rely on 
structural information for learning, which can be inadequate for long-tail entities 
in some cases. To address this issue, some researchers have suggested incorporating 
attributes into embeddings in order to potentially compensate for the shortcomings 
of relying solely on structural information [14, 17, 18, 22]. However, a significant 
percentage (between 69 and 99%) of instances in popular KGs are lacking at least 
one attribute that other entities in the same class possess [6]. The use of entity 
descriptions [3] has been proposed as a way to provide additional information 
that is often missing in many KGs. While these efforts can improve overall 
performance, they may not effectively align entities in the long tail. Previous 
approaches have explored using entity names either as initial features for learning 
structural representation [19–21] or in combination with other information for rep-
resentation learning [22]. In contrast, our proposed approach consolidates features 
from separate similarity matrices learned from structure and name information, with 
different strategies evaluated in Sect. 6.5.2.
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6.3 Impact of Long-Tail Phenomenon 

Task Definition Given a source KG .G1 = (E1, R1, T1) and a target KG . G2 =
(E2, R2, T2), where . E1 (resp. . E2) represents source (resp. target) entities, R denotes 
relations and .T ⊆ E × R × E represents triples. Denote the seed entity pairs as 
.S = {(ei

1, e
i
2)|ei

1 = ei
2, e

i
1 ∈ E1, e

i
2 ∈ E2}, .i ∈ [1, |S|], where .| · | denote the 

cardinality of a set. EA task is to find new EA pairs based on S and return the 
eventual results .S

′ = {(ei
1, e

i
2)|ei

1 = ei
2, e

i
1 ∈ E1, e

i
2 ∈ E2}, .i ∈ [1,min{|E1|, |E2|}], 

where . = expresses that two entities are the same physical one. 
A recently published study [7] identified that previous entity alignment datasets 

had knowledge graphs that were too densely connected and had degree distributions 
that differed significantly from real-life knowledge graphs. To address this issue, 
they created a new entity alignment benchmark that better reflects real-life distri-
butions. The benchmark includes both cross-lingual datasets such as SRPRSEN-FR, 
SRPRSEN-DE, and mono-lingual datasets such as SRPRSDBP-WD and SRPRSDBP-YG. 
The degree of an entity is defined as the number of relational triples it participates 
in. The study reports the degree distributions of entities in the test sets in Table 6.1. 
The researchers also evaluated the performance of RSNs, which was found to be 
the best solution in [7]. The evaluation included measuring the number of correctly 
aligned entities in different degrees. 

The results presented in Table 6.1 indicate that in the SRPRSEN-FR and 
SRPRSDBP-YG datasets, over 50% of the entities’ degrees are less than three, and in 
the SRPRSEN-DE and SRPRSDBP-WD datasets, almost half of the entities’ degree are 
only 1 or 2. This confirms that the majority of entities in the knowledge graph have 
very few connections to others and are considered long-tail entities. The results 
also demonstrate that the accuracy of long-tail entities is much lower than that of 
higher-degree entities, even though RSNs is the leading method in the benchmark. 
This suggests that current methods are not effective in handling long-tail entities, 
which limits overall performance. Therefore, it is crucial to re-evaluate the entity 
alignment pipeline, with a particular focus on addressing the challenges posed by 
long-tail entities. 

6.4 Methodology 

To provide an overview, we have summarized the main components of the DAT 
(degree-aware entity alignment in tail) framework in Fig. 6.3, highlighting the new 
designs in purple blue. In pre-alignment, structural representation learning module 
and name representation learning module are put forward to learn useful features 
of entities, i.e., name representation and structural representation; in alignment, 
these features are forwarded to degree-aware fusion module for effective fusion and 
alignment under the guide of degree information. In post-alignment, KG completion
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Fig. 6.3 The framework of DAT 

module aims to complete KGs with confident EA pairs in the results, and the 
augmented KGs are then again utilized in the next round iteratively. 

Since structural representation learning module has been extensively studied, 
we adopt the state-of-the-art model RSNs [7] for this purpose. Given a structural 
embedding matrix .Z ∈ R

n×ds , two entities .e1 ∈ G1 and .e2 ∈ G2, their structural 
similarity .Sims(e1, e2) is the cosine similarity between .Z(e1) and .Z(e2), where n 
denotes the number of all entities in two KGs, . ds is the dimension of structural 
embeddings, and .Z(e) denotes the embedding vector for entity e (i.e., .Z(e) = Ze, 
where . e is the one-hot encoding of entity e). From the perspective of structure, the 
target entity with the highest similarity to a source entity is returned as its alignment 
result. 

6.4.1 Name Representation Learning 

Remembering that using structural information to align long-tail entities has limited 
effectiveness, we are taking a different approach from previous attempts that focus 
on utilizing structures. Instead, we are searching for a signal that is generally 
accessible to long-tail entities and can provide benefits for alignment. 

In order to achieve this goal, we suggest including the textual names of entities, 
which has largely been ignored by current embedding-based EA methods. This 
approach is particularly attractive for several reasons, including: (1) the name of an 
entity is typically sufficient to identify it, and when given two entities, comparing 
their names is often the most straightforward way to determine if they are equivalent 
and (2) the majority of real-life entities have a name, and the proportion of entities 
with names is much greater than the proportion with other textual information, 
such as descriptions and attributes. This is particularly relevant for long-tail entities, 
which tend to lack such additional information. 

Despite that there are many classic approaches for measuring the string similarity 
between entity names, we go for semantic similarity since it can still work when the 
vocabularies of KGs differ, especially for the cross-lingual scenario. Specifically, 
we choose a general form of power mean embeddings [11], which encompasses
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many well-known means such as the arithmetic mean, the geometric mean, and 
the harmonic mean. Given a sequence of word embeddings, .w1, . . . ,wl ∈ R

d , the  
power mean operation is formalized as: 

.

(
w

p

1i + · · · + w
p
li

l

)1/p

, ∀i = 1, . . . , d, p ∈ R ∪ ±∞, (6.1) 

where l is the number of words and d denotes the dimension of embeddings. It can 
be seen that setting p to 1 results in the arithmetic mean, to 0 the geometric mean, to 
. −1 the harmonic mean, to .+∞ the maximum operation, and to .−∞ the minimum 
operation [12]. 

Given a word embedding space . Ei , the embeddings of the words in the name 
of entity s can be represented as .Wi = [wi

1, . . . ,w
i
l ] ∈ R

l×di
. Correspondingly, 

.Hp(Wi ) ∈ R
di
denotes the power mean embedding vector after feeding . wi

1, . . . ,w
i
l

to Eq. (6.1). To obtain summary statistics of entity s, we compute K power means 
of s and concatenate them to get the entity name representation .si ∈ R

di ·K , i.e., 

.si = Hp1(W
i ) ⊕ · · · ⊕ HpK

(Wi ), (6.2) 

where . ⊕ represents concatenation along rows and .p1, . . . , pK are K different power 
mean values [12]. 

To get further representational power from different word embeddings, we 
generate the final entity name representation . ns by concatenating . si obtained from 
different embedding spaces . Ei : 

.ns =
⊕

i

si . (6.3) 

Note that the dimensionality of this representation is .dn = ∑
i di · K . The name 

embeddings of all entities can be denoted in matrix form as .N ∈ R
n×dn . 

The representation space will group together entity names that are semantically 
related, similar to how word embeddings work. When considering the textual names 
of two entities, denoted as . e1 in group . G1 and . e2 in group . G2, their similarity 
.Simt (e1, e2) is calculated as the cosine similarity between the vector representation 
of . e1 and the vector representation of . e2, denoted as .N(e1) and .N(e2), respectively. 
The alignment result for a source entity is the target entity with the highest similarity 
score. 

Discussion The combined power mean word embedding, as presented in the article 
by Rücklé et al. [12], provides a superior alternative to averaged word embedding 
when it comes to representing entity names. This is because it is better equipped
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to capture and synthesize the relevant information conveyed by an entity name.1 

Averaging word embeddings results in a significant loss of information because it 
fails to account for the semantic variation that can exist within different names. On 
the other hand, using concatenated power means produces a more accurate summary 
by reducing ambiguity and uncertainty in the representation of an entity name. This 
is supported by the empirical evidence presented in Sect. 6.5.3. 

It should be noted that in the context of cross-lingual entity alignment, we rely on 
pre-trained multilingual word embeddings, as described in [5]. These embeddings 
have already aligned words from different languages into a shared semantic space. 
As a result, entity names frommultiple languages can exist within the same semantic 
space, obviating the need to design a separate mapping function for aligning 
multilingual embeddings. 

The method described above can be extended to accommodate other textual 
information, such as attributes, without sacrificing its generality. One simple 
approach is to concatenate the attributes and entity name to form a “sentence” that 
provides a more comprehensive description of the entity. This combined sentence 
can then be encoded using concatenated power mean word embeddings. However, 
the integration of additional information and more complex adaptations is not within 
the scope of this chapter. 

6.4.2 Degree-Aware Co-attention Feature Fusion 

Entity identities can be characterized by various types of features from different 
perspectives. Therefore, it is important to have a feature fusion module that 
effectively combines these different signals. Some researchers have proposed to 
integrate different embeddings into a unified representation space [22], but this 
approach necessitates additional training to align irrelevant features. A more 
desirable strategy involves first computing the similarity matrix within each feature-
specific space and then combining the similarity scores for each feature-specific 
space [9, 18]. However, the contributions of different features vary for entities 
with different degrees. For long-tail entities that lack structural information, entity 
name representation should be given more weight, whereas for popular entities, 
the structural representation is relatively more informative than the entity name 
information. To address this dynamic shift, we draw inspiration from the bi-attention 
mechanism proposed in [13] and design a degree-aware co-attention network, 
depicted in Fig. 6.4. 

Formally, we are given the structural embedding matrix . Z and the name 
embedding matrix . N. For each entity pair .(e1, e2), where .e1 ∈ G1 and .e2 ∈ G2, 
we calculate a similarity score between . e1 and . e2. This similarity score is then

1 For possible out-of-vocabulary (OOV) words, we skip them and use the embeddings of the rest 
to produce entity name embeddings. 
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Fig. 6.4 Degree-aware co-attention feature fusion 

used to determine the alignment result. To compute the overall similarity between 
entity pairs, we first calculate the feature-specific similarity scores, . Sims(e1, e2)

and .Simt (e1, e2), between . e1 and . e2, as explained in the previous subsections. 
Our degree-aware co-attention network is designed to determine the weights for 
.Sims(e1, e2) and .Simt (e1, e2) by incorporating degree information. This network 
consists of three stages: feature matrix construction, co-attention similarity matrix 
calculation, and weight assignment. 

Feature Matrix Construction Apart from entity name and structural information, 
we also include entity degree information to construct a feature matrix for each 
entity. To be precise, we represent entity degrees as one-hot vectors of all possible 
degree values and pass them through a fully connected layer to obtain a continuous 
degree vector. As an example, the degree vector of . e1 can be represented as . ge1 =
M · he1 ∈ R

dg , where .he1 is the one-hot representation of its degree, . M is the 
weight matrix in the fully-connected layer, and . dg denotes the dimension of the 
degree vector. This continuous degree vector, along with structural and entity name 
representations, is stacked to form an entity’s feature matrix. For entity . e1: 

.Fe1 = [N(e1);Z(e1); ge1] ∈ R
3×dm, (6.4) 

where . ; denotes the concatenation along columns, .dm = max{dn, ds, dg}, and we 
pad the missing values with 0s. 

Co-attention Similarity Matrix Calculation To model the interaction between 
. Fe1 and . Fe2 , as well as highlight important features, we build a co-attention matrix
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.S ∈ R
3×3, where the similarity between the i-th feature of . e1 and the j -th feature of 

. e2 is computed by: 

.Sij = α(Fi:
e1

,Fj :
e2) ∈ R, (6.5) 

where .Fi:
e1

is the i-th row vector and .Fj :
e2 is the j -th row vector, . i = 1, 2, 3; j =

1, 2, 3. .α(u, v) = w	(u⊕ v⊕ (u ◦ v)) is a trainable scalar function that encodes the 
similarity, where .w ∈ R

3dm is a trainable weight vector and . ◦ is the element-wise 
multiplication. Note that the implicit multiplication is a matrix multiplication. 

Weight Assignment The co-attention similarity matrix, denoted by . S, is used to  
generate attention vectors, which are .att1 and . att2, in both directions. The attention 
vector .att1 indicates the feature vectors in . e1 that are most important or relevant to 
the feature vectors in . e2. Similarly, .att2 indicates the feature vectors in . e2 that are 
most important or relevant to the feature vectors in . e1. To achieve this, we pass 
the co-attention similarity matrix . S through a softmax layer. Next, the resulting 
matrix from the softmax layer is compressed using an average layer to create the 
attention vectors. It is worth noting that when performing column-wise operations 
in the softmax layer and row-wise operations in the average layer, we get . att1. 
Conversely, when conducting row-wise operations in the softmax layer and column-
wise operations in the average layer, we obtain . att2. 

Eventually, we multiply the feature-specific similarity scores with the attention 
values to obtain the final similarity score: 

.Sim(e1, e2) = Sims(e1, e2) · att1s + Simt (e1, e2) · att1t , (6.6) 

where .att1s and .att1t are the corresponding weight values for structural and name 
similarity scores, respectively. Note that .Sim(e1, e2) �= Sim(e2, e1) as they may 
have different attention weight vectors. 

The model that combines co-attention and feature fusion has a relatively simple 
structure with only two parameters, . M and . w. Furthermore, it is straightforward to 
modify this model to include additional features. 

Training The training objective is to maximize the similarity scores of the training 
entity pairs, which can be converted to minimizing the following loss function: 

.L =
∑

(e1,e2)∈S

[ −Sim(e1, e2) + γ ]+ + [ −Sim(e2, e1) + γ ]+, (6.7) 

where .[x]+ = max{0, x} and and . γ is a constant number. 

Discussion Alternative methods of implementing degree-aware weighting are 
possible, such as applying sigmoid.(W · [N(e),Z(e), ge]) where . W represents 
the parameter. In this study, we utilize a co-attention mechanism to combine 
various signal channels with degree-aware weights, which highlights the benefits of
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incorporating degrees for effective EA in the tail. However, a more comprehensive 
comparison with other implementations is a subject for future research. 

6.4.3 Iterative KG Completion 

The concept of iterative self-training has been shown to be effective and warrants 
further investigation, as demonstrated in previous studies [15, 23]. However, current 
research has failed to consider the potential for enriching structural information 
during the iterative process. Our findings suggest that, while long-tail entities in 
the source KG may lack structural information, this information can be found in the 
target KG in a complementary manner. By mining confident EA results and using 
them as pseudo matching pairs to anchor subgraphs, we can replenish the original 
KG with facts from its counterpart, thereby mitigating the KGs’ structural sparsity. 
This can significantly improve KG coverage and reduce the number of long-tail 
entities. As the structural learning model generates increasingly better structural 
embeddings from the amplified KGs, the accuracy of EA results in subsequent 
rounds also improves naturally in an iterative fashion. 

To start, we will describe how we incorporate EA pairs that have a high level 
of confidence. Our focus is on preventing the inclusion of any incorrect pairs that 
could potentially harm the model. To achieve this, we have developed a unique 
approach for choosing EA pairs. For every given entity .e1 ∈ E1 − S1 (in . G1
but not in the training set), suppose its most similar entity in . G2 is . e2, its second 
most similar entity is . e′

2 and the difference between the similarity scores is . �1 �
Sim(e1, e2) − Sim(e1, e

′
2), if for  . e2, its most similar entity in . G1 is exactly . e1, 

its second most similar entity is . e′
1, the difference between the similarity scores is 

.�2 � Sim(e2, e1) − Sim(e2, e
′
1), and . �1, . �2 are both above a given threshold . θ , 

.(e1, e2) would be considered as a correct pair. This is a relatively strong constraint, 
as it requires that (1) the similarity between the two entities is the highest from both 
sides, respectively, and (2) there is a margin between the top two candidates. 

Once we have integrated the EA results with high confidence to the initial set 
of entity pairs, we proceed to use these entities (. Sa) to connect two KGs and 
supplement them with new facts from each other. For example, if a triple . t1 ∈ T1
has both its head and tail entities matching entries in . Sa , we replace the entities in 
. t1 with the corresponding entities in . E2 and add the new triple to . T2. While this 
may seem like a simple and straightforward approach, it effectively increases the 
overall coverage of the KGs. Finally, we leverage the augmented KGs to improve 
the quality of the structural representations, which in turn contributes to enhancing 
the EA performance. This iterative completion process is repeated for . ζ rounds. 

Discussion Certain EA methods also use bootstrapping or iterative training tech-
niques, but their primary goal is to expand the training signals for updating the 
embeddings, without modifying the underlying structure of the KGs. In comparison 
to other approaches of selecting EA pairs which can be slow and may generate
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inaccurate results [15, 23], we improve this process by prioritizing two entities if 
they give each other priority. This is empirically validated in Sect. 6.5.5. 

6.5 Experiments 

This section reports the experiments with in-depth analysis.2 

6.5.1 Experimental Setting 

Dataset We use SRPRS [7] due to the KG pairs having a distribution similar to 
the real world. It was created with inter-language links and references in DBpedia, 
and each entity has an equivalent counterpart in the other KG. The relevant details 
are listed in Table 6.2, and 30% of entity pairs are utilized for training. 

Parameter Settings For the structural representation learning module, we follow 
the settings in [7], except for assigning ds to 300. Regarding name representation 
learning module, we set  p = [p1, . . . , pK ] to [1, min,max]. For mono-lingual 
datasets, we merely use the fastText embeddings [1] as the word embedding (i.e., 
only one embedding space in Eq. (6.3)). For cross-lingual datasets, the multilingual 
word embeddings are obtained from MUSE.3 Two word embedding spaces (from 
two languages) are used in Eq. (6.3). As for  degree-aware fusion module, we set  dg 
to 300, γ to 0.8, and batch size to 32. Stochastic gradient descent is harnessed to 
minimize the loss function, with learning rate set to 0.1, and we use early stopping 
to prevent over-fitting. In KG completion module, θ is set to 0.05 and ζ is set to 3. 

Evaluation Metric We use Hits@k (k = 1, 10) and the mean reciprocal rank 
(MRR) as evaluation metrics. For each source entity, entities in the other KG are 

Table 6.2 Statistics of 
SRPRS 

Dataset KGs #Triples #Entities 

SRPRSEN-FR DBpedia (English) 36,508 15,000 

DBpedia (French) 33,532 15,000 

SRPRSEN-DE DBpedia (English) 38,281 15,000 

DBpedia (German) 37,069 15,000 

SRPRSDBP-WD DBpedia 38,421 15,000 

Wikidata 40,159 15,000 

SRPRSDBP-YG DBpedia 33,571 15,000 

YAGO3 34,660 15,000

2 The source code is available at https://github.com/DexterZeng/DAT. 
3 https://github.com/facebookresearch/MUSE. 

https://github.com/DexterZeng/DAT
https://github.com/DexterZeng/DAT
https://github.com/DexterZeng/DAT
https://github.com/DexterZeng/DAT
https://github.com/DexterZeng/DAT
https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE
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ranked according to their similarity scores Sim with the source entity in descending 
order. Hits@k measures the proportion of correctly aligned entities among the top-k 
similar entities to the source entity. In particular, Hit@1 indicates the accuracy of 
the alignment results. MRR, on the other hand, is the average of the reciprocal ranks 
of the ground-truth results. A higher Hits@k and MRR indicate better performance. 
Unless stated otherwise, the results of Hits@k are represented as percentages. The 
best results are displayed in bold in the tables. 

Competitors Overall 13 state-of-the-art methods are involved in comparison. 
The group that solely utilizes structural feature includes (1) MTransE [4], which 
proposes to utilize TransE for EA; (2) IPTransE [23], which uses an iterative 
training process to improve the alignment results; (3) BootEA [15], which devises 
an alignment-oriented KG embedding framework and a bootstrapping strategy; 
(4) RSNs [7], which integrates recurrent neural networks with residual learning; 
(5) MuGNN [2], which puts forward a multichannel graph neural network to learn 
alignment-oriented KG embeddings; (6) KECG [8], which proposes to jointly learn 
knowledge embeddings that encode inner-graph relationships, and a cross-graph 
model that enhances entity embeddings with their neighbors’ information; and 
(7) TransEdge [16], which presents a novel edge-centric embedding model that 
contextualizes relation representations in terms of specific head-tail entity pairs. 

Various methods have been proposed to incorporate other types of information 
in EA. JAPE [14] utilizes attributes of entities to refine structural information. 
GCN [18] generates entity embeddings and attribute embeddings to align entities 
in different KGs. GM-Align [21] builds a local subgraph of an entity to represent it 
and utilizes entity name information to initialize the framework. MultiKE [22] offers  
a novel framework that unifies the views of entity names, relations, and attributes at 
representation-level for mono-lingual EA. RDGCN [19] proposes a relation-aware 
dual-graph convolutional network to incorporate relation information via attentive 
interactions between KG and its dual relation counterpart. HGCN [20] is a learning 
framework that jointly learns entity and relation representations for EA. 

6.5.2 Results 

Table 6.3 presents the results. The first group of approaches only use structural 
information for alignment. BootEA and KECG outperform MTransE and IPTransE 
because of their alignment-oriented KG embedding framework and attention-based 
graph embedding model, respectively. RSNs further improves the results by taking 
into account long-term relational dependencies between entities, which can capture 
more structural signals for alignment. TransEdge achieves the best performance 
due to its edge-centric KG embedding and bootstrapping strategy. MuGNN fails to 
produce effective results as there are no aligned relations on SRPRS, which prevents 
the rule transferring from taking place and limits the number of detected rules. It 
is noteworthy that Hits@1 values on most datasets are below 50%, demonstrating
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the inadequacy of solely relying on KG structure, especially when long-tail entities 
make up the majority. 

Regarding the second group, both GCN and JAPE exploit attribute information 
to complement structural signals. However, they fail to outperform the leading 
method in the first group, which can be attributed to the limited effect of attributive 
information. The other four methods make use of the publicly available entity name 
data. The substantial improvement in results compared to those of the first group 
confirms the value of this feature. Our framework, DAT, demonstrates its superiority 
over GM-Align, RDGCN, and HGCN with a 10% improvement in Hits@1 over all 
datasets, validating the effectiveness of exploiting entity name information. The 
fundamental explanation for this is that the fusion of features on the representation 
level by GM-Align, RDGCN, and HGCN may lead to information loss since the 
resulting merged feature representation may not retain the distinguishing features of 
the original ones. On the other hand, DAT adopts a co-attention network to compute 
feature weights and fuse features at the output level, which is based on feature-
specific similarity scores. 

Evaluation by Degree We present the outcomes of DAT in terms of degree to 
illustrate its ability to align long-tail entities, as shown in Table 6.4. It is worth  
noting that the degree pertains to the original degree distribution since the entity 
degree may be changed by the completion process. 

Table 6.4 indicates that for entities with a degree of 1, the Hits@1 scores of 
DAT are two or three times higher than those of RSNs, confirming the capability 
of DAT in handling the long-tail problem. While there is also an improvement in 
the performance of DAT for popular entities, the gap between DAT and RSNs is 
much smaller than that observed in the case of long-tail entities. Furthermore, DAT 
outperforms RDGCN in all degree categories across four datasets, despite both using 
entity name information as an external signal for EA. 

Comparison with MultiKE on Dense Datasets The reason for not providing the 
results of MultiKE on SRPRS is because it can only handle datasets in a single 
language and requires prior knowledge of the relations’ semantics. However, in 
order to better understand DAT, we present the experimental results of DAT on the 
dense datasets that were previously evaluated with MultiKE. Specifically, the dense 
datasets, DWY100KDBP-WD and DWY100KDBP-YG, are similar to SRPRSDBP-WD and 
SRPRSDBP-YG, but have a larger scale (100K entities on each side) and higher 
density [15]. 

When evaluated on dense datasets, DAT produces superior results with Hits values 
exceeding 90% and MRR surpassing 0.95, as presented in Table 6.5. This indicates 
that DAT effectively utilizes name information, which can be credited to the degree-
aware feature fusion module and the approach of first computing scores within each 
view rather than learning a merged representation that may result in the loss of 
information.
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Table 6.5 Experimental results on dense datasets 

DWY100KDBP-WD DWY100KDBP-YG 
Methods Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR 

MultiKE 91.9 96.3 0.94 88.0 95.3 0.91 

DAT 97.4 99.6 0.98 94.3 98.6 0.96 

Table 6.6 Experimental 
results of ablation 

SRPRSEN-FR 
Methods Hits@1 Hits@10 MRR 

DAT 75.8 89.9 0.81 
DAT w/o IKGC 72.1 85.4 0.77 

DAT w/o KGC 73.9 88.6 0.79 

DAT w/o ATT 73.1 88.5 0.79 

DAT w/o CPM 75.3 89.7 0.80 

Fig. 6.5 Distribution of 
entity degree in SRPRSEN-FR 

6.5.3 Ablation Study 

We report an ablation study on SRPRSEN-FR dataset in Table 6.6. 

Iterative KG Completion If we remove the entire module, the performance of 
EA drops by 3.7% on Hits@1 (comparing DAT with DAT w/o IKGC). However, if 
we eliminate only the KG completion module while keeping the iterative process 
(similar to [23]), Hits@1 decreases by 1.9% (DAT vs. DAT w/o KGC). This validates 
the significance of KG completion. We also present the dynamic change of the 
degree distribution after each round (original, R1, R2, R3) in Fig. 6.5, which 
suggests that the embedded KG completion improves KG coverage and reduces 
the number of long-tail entities. 

Degree-Aware Co-attention Feature Fusion In Table 6.6, it can be observed that 
if the fixed equal weights are used instead of the degree-aware fusion module, 
the Hits@1 decreases by 2.7% (DAT vs. DAT w/o ATT). This result confirms that 
adjusting the weights of features dynamically based on their degree leads to better 
integration of features and, as a result, more accurate alignment results. In Fig. 6.6, 
we present the weight of the structural representation generated by our degree-aware
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Fig. 6.6 Weight distribution of structural representation 

fusion model across different degrees (in the first round). This figure demonstrates 
that, in general, the importance of structural information increases with the degree 
of entities, which is in line with our expectations. 

Concatenated Power Mean Word Embeddings We compared concatenated 
power mean word embeddings and averaged word embeddings in terms of aligning 
entities, denoting as DAT and DAT w/o CPM, respectively. The findings indicate that 
combining multiple power mean embeddings effectively captures more alignment 
features. 

6.5.4 Error Analysis 

We conduct an error analysis on SRPRSEN-FR dataset to investigate the contribution 
of each module and cases where DAT falls short. Using only structural information 
leads to a high error rate of 65.5% on Hits@1. The dataset contains 67.0% 
long-tail(i.e., with degree . ≤3) entities, with a majority (65.1%) being misaligned. 
However, incorporating entity name information and dynamically fusing it with 
structural information significantly reduces the overall Hits@1 error rate to 27.9%, 
with a corresponding reduction in long-tail entity error rate to 33.2%. Furthermore, 
we employ iterative KG completion to replenish structure and propagate signals, 
which further decrease the overall Hits@1 error rate to 24.2%. This approach
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also reduces the percentage of long-tail entities to 49.7%, with only 8.3% being 
misaligned. Overall, our results indicate that long-tail entities initially account for 
the most errors, but employing the proposed techniques reduces not only the error 
rate but also the contribution of long-tail entities to the overall error. 

For cases that DAT cannot solve, we provide an analysis that focuses on 
the information related to entity names. Out of the incorrect cases (24.2% in 
SRPRSEN-FR), 41% don’t have an appropriate entity name embedding because all 
the words in the name are out-of-vocabularies (OOVs), and 31% have partial OOVs. 
Additionally, 15% could have been correct by solely utilizing the name information, 
but they were misled by structural signals, while 13% fail to align because of either 
the inadequacy of the entity name representation method or the fact that the entities 
with the same name refer to different physical objects. 

6.5.5 Further Experiment 

We substantiate the efficacy of our iterative training approach by performing the 
following experiments. 

Our iterative approach differs from current methods not only in the embedded 
KG completion procedure but also in the choice of confident pairs. To showcase 
its advantage, we remove the KG completion module from DAT and obtain DAT-I 
to compare its selection methods with those of [15, 23]. In [23], the authors use 
a threshold-based method (TH) to find pairs. For each nonaligned source entity, 
it identifies the most comparable nonaligned target entity, and if the similarity 
between the two entities exceeds a specified threshold, they are deemed confident 
pairs. In [15], the authors use a maximum weight graph matching (MWGM) method 
to find confident entity alignment pairs. For each source entity, it calculates the 
alignment likelihood to every target entity, and only those with likelihood above a 
given threshold are considered in a maximum likelihood matching process under a 
1-to-1 mapping constraint, which generates a solution that contains confident EA 
pairs. We implement the methods within our framework and adjust the parameters 
based on the original papers. To evaluate the effectiveness of various iterative 
training techniques, we use the number of chosen confident EA pairs, the accuracy 
of these pairs, and the duration of each round as primary metrics. 

To ensure fairness in the comparison, we present the outcomes of the initial 
three rounds in Fig. 6.7. The findings indicate that DAT-I outperforms the other 
two methods regarding the quantity and quality of chosen pairs in a relatively 
shorter time. AsMWGM necessitates solving a global optimization problem, it takes 
considerably more time. Nonetheless, compared to TH, it performs better in terms 
of the accuracy of selected pairs.
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Fig. 6.7 Comparison results 
of iterative training strategies. 
(a) Number of pairs selected. 
(b) Accuracy of pairs 
selected. (c) Running time 
consumption (s) 
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6.6 Conclusion 

In this chapter, we present an improved framework called DAT for entity alignment, 
which specifically focuses on handling long-tail entities. Recognizing the limita-
tions of relying solely on structural information, we propose to incorporate entity 
name information in the pre-alignment phase through concatenated power mean 
embedding. For alignment, we introduce a co-attention feature fusion network that 
dynamically adjusts the weights of different features guided by degree to consolidate
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various signals. In the post-alignment phase, we enhance the performance by 
iteratively completing the KG with confident EA results as anchors, thereby 
amplifying the structural information. We evaluate DAT on cross-lingual and mono-
lingual EA benchmarks and achieve superior results. 
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Chapter 7 
Weakly Supervised Entity Alignment 

Abstract The majority of state-of-the-art entity alignment solutions heavily rely 
on the labeled data, which are difficult to obtain in practice. Therefore, it calls for 
the study of EA with scarce supervision. To resolve this issue, we put forward a 
reinforced active entity alignment framework to select the entities to be manually 
labeled with the aim of enhancing alignment performance with minimal labeling 
efforts. Under this framework, we further devise an unsupervised contrastive 
loss to contrast different views of entity representations and augment the limited 
supervision signals by exploiting the vast unlabeled data. We empirically evaluate 
our proposal on eight popular KG pairs, and the results demonstrate that our 
proposed model and its components consistently boost the alignment performance 
under scarce supervision. 

7.1 Introduction 

The entity alignment performance heavily relies on the amount of labeled data (i.e., 
aligned entity pairs). It has been empirically verified that the alignment accuracy 
drops sharply when decreasing the number of seed entity pairs [23]. This is also 
illustrated in Fig. 7.1, where we summarize the alignment performance of the 
most performant EA solutions given varying sizes of training data.1 Although this 
problem is prominent, it has been largely neglected by existing literature, since they 
directly extract the supervision signals from the inter-language links in DBpedia [1] 
or reference links among DBpedia, YAGO [22], Freebase [3], and Wikidata [28]. 
In practice though, these prior alignments might not exist among KGs constructed 
from different sources. In this case, it requires manual annotation to produce such 
labeled data, which is a nontrivial task since the annotator needs to retrieve the entity 

1 Note that in this chapter, we confine the main discussion to EA solutions that only use the KG 
structure and exclude those using auxiliary information such as entity descriptions, since some 
KGs might have little or even no auxiliary information [35], and the former can be regarded as a 
more general case of EA. Nevertheless, we will show that our proposed method can also be applied 
to the latter in the experiment. 
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Fig. 7.1 The Hits@1 
alignment results of 
state-of-the-art methods 
(RREA [17], MRAEA [16], 
SSP [19], TransEdge [24], 
and AliNet [25]) on 
DBP15KZH-EN [23] given  
decreasing amount of labeled 
data. Label rate denotes the 
percentage of labeled data in 
the whole dataset 
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equivalent to a given entity from a vast pool of candidates. As thus, to reduce the 
manual labeling cost and also the reliance on labeled data, it is of great significance 
to study EA with scarce supervision. 

In this chapter, we propose to approach EA with limited supervision by address-
ing two key research questions: (Q1) Given a fixed labeling budget, how to select 
the entities for manual annotation so that the labeled data can provide more useful 
guidance for the alignment? This can also be interpreted as, to reach a certain target 
of alignment performance, how to optimize the selection of entities for labeling 
so that we could label as few entities as possible? (Q2) Given a limited number of 
labeled data, how can we leverage the rich unlabeled data to facilitate the alignment? 

In response to Q1, we exploit active learning (AL) to overcome the labeling 
bottleneck by asking queries in the form of unlabeled entities to be labeled by 
an oracle (e.g., a human annotator) [9, 21]. Through designing effective query 
strategies, the active learner can achieve satisfying performance using as few labeled 
instances as possible, thereby reducing the cost of obtaining labeled data [21]. In this 
chapter, we develop several query strategies to characterize the informativeness of 
entities from different angles and offer a reinforced AL framework to blend these 
query strategies adaptively with the aim of selecting the most valuable entities to be 
labeled. 

To answer Q2, inspired by the recent advance in contrastive learning (CL) [12, 
27], we devise an unsupervised contrastive loss to exploit the abundant unlabeled 
data for augmenting supervision signals. CL aims to generate data representations 
by learning to encode the similarities or dissimilarities among a set of unlabeled 
examples. The underlying intuition is that the rich unlabeled data themselves can 
be used as supervision to help guide the model training [29]. In this chapter, we 
employ two graph encoders to model different views of the structural information of 
entities and design a contrastive objective to distinguish the embeddings of the same 
entity in these two views from the embeddings of other entities. By incorporating 
the unsupervised contrastive loss into the semi-supervised alignment objective, the
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scarce supervision signals are amplified, which can further ameliorate the alignment 
performance. 

The reinforced AL and the contrastive representation learning constitute RAC, 
an EA framework developed specifically to deal with scarce supervision. We 
empirically evaluate RAC on eight popular KG pairs against active and non-active 
baseline models. The results demonstrate that RAC achieves superior performance 
under scarce supervision and can be applied on existing EA models. 

Contribution The main contribution of this chapter can be summarized as follows: 
(1) we put forward RAC, an EA framework that aims to solve the scarce supervision 
issue, which can be employed on top of existing EA solutions to improve their 
capability of tackling limited labeled data; (2) we devise a reinforced active learning 
approach to blend query heuristics adaptively and select valuable entities for 
labeling, which benefits the subsequent alignment process; and (3) we are among 
the first attempts to exploit contrastive learning for EA, where the underlying 
supervision signals in the abundant unlabeled entities are leveraged to facilitate 
alignment. 

7.2 Preliminaries 

7.2.1 Problem Formulation 

A KG is denoted as .G = {(s, r, o)} ⊂ E × R × E, where . E is the entity set, . R is 
the relation set, and a triple .(s, r, o) represents a subject entity .s ∈ E and an object 
entity .o ∈ E are connected by a relation .r ∈ R. The inputs to entity alignment 
include two KGs to be aligned (i.e., the source KG . Gs and the target KG . Gt ), a 
set of labeled entity pairs .S = {(u∗, v∗)|u∗ ∈ Es , v

∗ ∈ Et , u
∗ ⇔ v∗}, where . ⇔

represents equivalence, . Es and . Et refer to the entity sets in the source and target 
KGs, respectively. The objective is to detect equivalent entity pairs in the rest of the 
entities. 

The focus of this chapter is to study entity alignment with scarce supervision, 
which is decomposed into two problems, i.e., selecting entities for labeling and 
entity alignment under such limited supervision signals. The former is defined as, 
given a pool of unlabeled entities . U, a labeling budget B and an oracle to label the 
entities, selecting B entities from . U for annotation so that the labeled data could 
provide more useful guidance for the subsequent alignment. 

7.2.2 Model Overview 

We provide the overview of our proposed model RAC in Fig. 7.2. RAC can be 
decomposed into multiple iterations. In each iteration, we first conduct reinforced
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Fig. 7.2 The framework of our proposal RAC 

active learning, where we use query strategies to measure the informativeness 
of entities and exploit the multi-armed bandit (MAB) mechanism to blend these 
strategies adaptively, so as to produce the entities to be labeled by the oracle. Next, 
the labeled entity pairs are added to the training set and forwarded to the contrastive 
entity representation learning module. In this module, using the labeled entity 
pairs as connections, we project individual KGs to a unified embedding space, where 
the entities from different KGs become comparable and the equivalence between 
entities can thus be inferred. Specifically, we design a semi-supervised alignment 
loss function to enforce the embeddings of the entities in each labeled entity 
pair to be close, such that the supervision signals can be propagated to unlabeled 
entities and their embeddings are updated to be comparable across KGs. Then we 
supplement with the unsupervised contrastive loss to contrast the structural entity 
representations learned by different graph encoders, which can leverage the rich 
unlabeled information for learning more expressive entity representations. Finally, 
the learned unified entity representations are used to conduct alignment inference 
to produce the results and also to help improve query strategies. 

7.3 Reinforced Active Learning 

To cope with EA with scarce supervision, we first address the entity selection 
(for annotation) problem. Concretely, we adopt active learning (AL) to select the 
entities to be manually labeled with the aim of maximizing model performance 
with minimal effort. The AL process normally consists of multiple iterations. Given 
the labeling budget B, in each iteration, guided by the query strategies, we select 
.b(b < B) entities with the highest informativeness for labeling and add the 
annotated entity pairs into the labeled data for training the EA framework. The 
iteration continues until the labeling budget is exhausted. Next, we introduce the
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query strategies in detail and then elaborate the reinforced active entity selection 
framework. 

7.3.1 Query Strategies 

We leverage three query strategies, i.e., degree centrality, PageRank centrality, 
and information density, to characterize the informativeness (more specifically, the 
representativeness) of entities.2 

Degree and PageRank Centrality Since the entities in KGs are not i.i.d., we 
consider nodes with higher centrality contain more useful information and are of 
greater values. Hence, we adopt the commonly used centrality metric, i.e., the degree 
centrality .φdeg(e), which is defined as the number of edges directly connected with 
entity e. Besides, we also leverage the PageRank centrality [18] .φpr(ei;�p) to 
characterize the representativeness of entities: 

.φpr(ei;�p) = ρ
∑

j

Aij

φpr(ej ;�p)∑
k Ajk

+ 1 − ρ

n
, (7.1) 

where . A is the adjacency matrix, n is the number of entities in the KG, . ρ is the 
damping parameter, and . �p denotes the parameter set. 

Information Density In addition to the topological structure, the representative-
ness of an entity can also be measured from the embedding level. Concretely, 
we apply K-means on the embeddings of unlabeled entities. We consider the 
entities placed at or close to the centers of clusters are of greater values. Thus, 
we calculate the Euclidean distance .d(e, ce) between each entity e and the center 
entity . ce of the cluster it belongs to and define the information density of entity e 
as .φi(e;�i) = 1

1+d(e,ce)
, where . �i denotes the parameter set. A larger . φi(e;�i)

indicates that entity e locates in the denser area of the embedding space and is more 
representative. 

Considering that the query strategy scores are on incomparable scales, we convert 
them into percentiles as in [34]. Denote .Pφ(e,U) as the percentile of the score 
of e among the unlabeled data . U in terms of query strategy . φ. Accordingly, 
the converted percentile scores of degree centrality, PageRank centrality, and 
information density are denoted as .Pdeg , . Ppr , and . Pi , respectively.

2 We do not employ the uncertainty-based query strategies that are frequently used in the 
classification problems [7, 9], since it is complicated to characterize the uncertainty in the ranking-
based problem setting [20]. We will investigate it in the future. 
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7.3.2 Reinforced Active Entity Selection via MAB 

We leverage aforementioned query strategies to select the most informative entities 
for labeling. Considering that the significance of query strategies might vary 
in different iterations and no single query strategy can satisfy the need of all 
datasets, we propose to adaptively blend these strategies by adopting the multi-
armed bandit (MAB) mechanism [26]. The MAB problems are some of the simplest 
reinforcement learning (RL) problems to solve, where we are given a slot machine 
with n arms (bandits) and each arm has its own probability distribution of success. 
Pulling any one of the arms yields a stochastic reward and the objective is to pull the 
arms such that the total reward collected in the long run can be maximized. Based 
on MAB, we treat each query strategy as an arm and approximate the importance of 
each strategy by estimating the expected reward (i.e., utility) of the corresponding 
arm. In this chapter, we adopt an extended framework of MAB, i.e., combinatorial 
MAB (CMAB) [6], which allows to play multiple arms in each iteration. Next, we 
elaborate the implementation details with regard to the alignment task. 

Let . � be the set of arms. In each iteration t , based on the percentile scores, each 
arm .φ ∈ � suggests its own set of entities to be labeled .Qt (φ), while the actual 
set of queried entities . Qt are chosen based on the utility score . ε assigned to each 
unlabeled entity .e ∈ U, which is defined as: 

.εt (e) =
�∑

φ

εt (φ)Pφ(e), (7.2) 

where .εt (φ) is the utility score of arm . φ in iteration t and .Pφ(e) is the percentile 
score of entity e in terms of query strategy . φ. Then, the top b entities from the 
unlabeled entity set with the highest .εt (e) are selected as . Qt for querying the oracle 
in iteration t . 

We estimate the utility of arm .ε(φ) by taking into account the exploitation-
exploration trade-off dilemma in MAB [6]. That is, we consider both the exploita-
tion of the arm that has the highest expected payoff and the exploration to get more 
information about the expected payoffs of the other arms. Regarding the former, we 
define the expected reward of choosing arm . φ in iteration t as the averaged reward 
it received from previous rounds: 

.ε̄t (φ) = 1

t − 1

t−1∑

i=1

ε̂i (φ), (7.3) 

where .ε̂i (φ) is the reward received by arm . φ in round i, which is defined as the 
change of alignment result on validation set: 

.ε̂i (φ) = (F (Li ∪Li (φ)) − F(Li )) + |Li (φ)|
b

(F (Li ∪ Qi ) − F(Li )), (7.4)
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where .F(·) denotes the value of a specific alignment measure (e.g., Hits@1, to be 
detailed in Sect. 7.5.1) on the validation set, which is generated by using the labeled 
data in the bracket. . Li represents the already labeled entities in iteration i. . Li (φ) =
Qi (φ) ∩ Qi , denoting the set of labeled entities suggested by query strategy . φ in 
iteration i. The difference between .F(Li ∪ Li (φ)) and .F(Li ) represents the direct 
change of alignment performance brought by arm . φ. Besides, we reckon that the 
performance change caused by adding all the labeled entities . Qi can also be used to 
measure the utility of each arm. Hence, we use . |Li (φ)|

b
to denote the contribution of 

arm . φ and multiply it with the overall performance change to produce the implicit 
change of alignment performance brought by arm . φ. 

Next, we move on to exploration. Following [6], to encourage leveraging the 
under-explored arms, we obtain the utility score of arm . φ in iteration t by adjusting 
.ε̄t (φ): 

.εt (φ) = ε̄t (φ) +
√
3 ln t

2nφ

, (7.5) 

where . nφ represents the total number of labeled entities suggested by arm . φ until 
iteration t . As thus, the utility .ε(φ) of arm . φ is estimated by considering both 
the exploitation and exploration, which can provide more accurate signals for 
suggesting the entities to be labeled. Note that t starts from 1, and when .t = 1, 
we omit the calculations of Eqs. (7.3)–(7.5) and set .ε1(φ) to 1 for all arms. 

7.4 Contrastive Embedding Learning 

Given the scarce labeled data generated by reinforced AL, in this section, we 
introduce contrastive entity representation learning that further mitigates the scarce 
supervision issue by mining supervision signals from the unlabeled data. We first 
introduce the semi-supervised alignment loss, the core of EA models. Then we 
introduce the graph encoders. Finally, we elaborate the unsupervised contrastive 
loss, as well as the training and inference processes. 

7.4.1 Semi-supervised Alignment Loss 

Since the entities (nodes) from different KGs cannot be compared directly, following 
current EA solutions, we first learn the entity structural embeddings of source and 
target KGs independently, i.e., .Os and . O t , and then devise a semi-supervised 
loss function to enforce the distance between the embeddings of the entities in 
the labeled entity pairs to be small and meanwhile the negative samples (i.e.,
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nonequivalent entity pairs) to be large. Formally: 

.Ls =
∑

(u,v)∈S

∑

(u′,v′)∈S′
(u,v)

[dis(u, v) + γ − dis(u′, v′)]+, (7.6) 

where .[·]+ = max{0, ·}, .(u, v) is a labeled entity pair from the training data and 
.S′

(u,v) represents the set of negative entity pairs obtained by corrupting .(u, v) using 
nearest neighbor sampling [15]. . u and . v represent the embeddings of source and 
target entities retrieved from .Os and . O t , respectively. .dis(·, ·) is the distance 
function that measures the distance between two embeddings. . γ is a hyper-
parameter separating positive samples from negative ones. 

In this chapter, the entity representation is obtained by aggregating the embed-
dings generated by two graph encoders: .Oω = agg(Z

ψ1
ω ,Z

ψ2
ω ), where agg 

is the aggregation function, which can be implemented as weighted average, 
concatenation, etc. .Zψ1

ω and .Zψ2
ω represent the embeddings generated from two 

different views. .ω ∈ {s, t} denotes the source and target KG, respectively. 
Note that we devise two graph encoders since (1) they can capture different 

views of the structural information and the integrated embeddings could be more 
expressive and (2) by devising a contrastive objective to enforce the embeddings of 
each entity in the two different views to agree with each other and meanwhile to be 
distinguished from the embeddings of other entities, the rich unlabeled data can be 
leveraged as supervision signals to learn discriminative entity representations and 
benefit the alignment. 

7.4.2 Graph Encoders 

In this chapter, we use two basic models, graph convolutional network (GCN) [13] 
and approximate personalized propagation of neural predictions [14], to capture the 
close and distant structural information of entities and generate different views of 
KG embeddings.3 

The GCN model has been leveraged to generate entity embeddings by many 
previous works [30, 33]. It is a simple message passing algorithm. The inputs 
include the feature matrix of nodes . X and the adjacency matrix of graph . A. In  
the case of two message passing layers, the equation of GCN can be formulated as: 

.Zψ1 = ReLU
(
Â ReLU

(
ÂXW 0

)
W 1

)
, (7.7)

3 Note that it is feasible to use other graph encoders here, e.g., the RREA embedding learning 
model (to be detailed in Sect. 7.5.2). We use two simple models to give prominence to the effects 
of reinforced AL and unsupervised CL strategies on EA. 
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where .Zψ1 is the output entity embedding matrix. . Â is the symmetrically normal-
ized adjacency matrix with self-loops. ReLU is the activation function, and .W 0 and 
.W 1 are the weight matrices. 

While many approaches adopt GCN to learn entity representations, it is pointed 
out in [17] that when increasing the number of GCN layers, the alignment perfor-
mance actually drops due to the oversmoothing issue. Therefore, we exploit the 
approximate personalized propagation [14] to generate the entity embeddings: 

. Z(i) = (1 − α)ÂZ(i−1) + αX, i = 1, 2, . . . , k, (7.8) 

where . α is the teleport probability and k denotes the round of iterations. .Z(0) = X, 
and the initial feature matrix . X acts as both the starting vector and the teleport 
set. .Zψ2 is the output entity embedding matrix. Note that we remove the neural 
prediction network . fθ in the original model since it is not required in EA. We denote 
the resultant model as APP. By removing the weight matrices and nonlinearity in 
GCN, APP can capture distant structural information while retaining the quality of 
entity embeddings [14]. 

7.4.3 Unsupervised Contrastive Loss 

Inspired by the successful application of contrastive learning (CL) on unsupervised 
graph representation learning [27, 36], in this chapter, we also devise a contrastive 
objective to distinguish the embeddings of the same entity under the two views 
from the embeddings of other entities, so as to leverage the supervision signals in 
the unlabeled data. Given an entity . xi , we denote its embedding generated by the 
first view as .Zψ1

ω (i), and the embedding generated by the second view as .Zψ2
ω (i), 

where .ω ∈ {s, t} refers to the source and target KGs. These two embeddings form 
a positive sample. We consider the pairs of embeddings that contain .Zψ1

ω (i) (or 
.Z

ψ2
ω (i)) and the embedding of another entity as the negative samples. Then, the 

contrastive object of the entity in the first view is defined as: 

.�ψ1
ω (xi) = − log

e
θ
(
Z

ψ1
ω (i),Z

ψ2
ω (i)

)

e
θ
(
Z

ψ1
ω (i),Z

ψ2
ω (i)

)
+Ncross +Nintra

, (7.9) 

.Ncross =
nω∑

k=1

1[k 	=i]eθ
(
Z

ψ1
ω (i),Z

ψ2
ω (k)

)
(7.10) 

.Nintra =
nω∑

k=1

1[k 	=i]eθ
(
Z

ψ1
ω (i),Z

ψ1
ω (k)

)
(7.11)
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Fig. 7.3 Illustration of the losses 

where .θ(·, ·) is a score function that calculates the similarity between two embed-
dings, which is implemented as .θ(·, ·) = f (g(·), g(·)), where .g(·) is a multilayer 
perceptron (MLP) with nonlinear activation functions for transforming the embed-
dings, and .f (·, ·) is a similarity metric capturing the similarity between embeddings. 
. 1[·] is an indicator function which equals to 1 if the argument inside the bracket 
holds, and 0 otherwise. . nω is the number of entities in the KG. In the denominator, 
the first term is the positive sample, the second term .Ncross corresponds to 
the cross-view negative samples, and the third term .Nintra corresponds to the 
intra-view negative samples. Detailed illustrations can be found in Fig. 7.3. The  
contrastive object of the second view .�ψ2

ω (xi) is defined similarly. As thus, the 
overall unsupervised loss is defined as: 

.Lu = 1

2ns

ns∑

i=1

[
�ψ1
s (ei) + �ψ2

s (ei)
] + 1

2nt

nt∑

i=1

[
�
ψ1
t (ei) + �

ψ2
t (ei)

]
, (7.12) 

where . ns and . nt denote the number of entities in the source and target KGs, 
respectively. 

Model Training Finally, we combine the semi-supervised alignment loss and the 
unsupervised contrastive loss, resulting in the loss function of our proposed model: 

.L = Ls + λuLu, (7.13) 

where .λu > 0 is the hyper-parameter balancing the two objectives.
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7.4.4 Alignment Inference 

After obtaining the learned unified embeddings, the alignment results can thus be 
inferred. For each source entity, we calculate its distance with all target entities 
according to a specific distance metric and consider the entity with the smallest 
distance as the match. We describe the overall procedure of RAC in Algorithm 1. 

Algorithm 1: Reinforced active entity alignment 
Input : Gs and Gt : source and target KGs; S: labeled data; B: labeling budget; An oracle 

to label entities. 
Output : A: the set of aligned entity pairs. 

1 S′ ← S; 
2 while |S′| − |S| < B  do 
3 Generate query strategies (using entity representations); 
4 Use MAB to select b entities for the oracle to label and obtain the labeled entity set Sb; 
5 S′ ← S′ ∪ Sb; 
6 Generate entity representations using graph encoders; 
7 Calculate Ls using S′ via Eq. (7.6); 
8 Calculate Lu using Eqs. (7.9) and  (7.12); 
9 Calculate L for training unified entity representations; 

10 Infer the results A using the learned representations; 
11 returnA; 

7.5 Experiment 

In this section, we empirically evaluate our proposed model4 by answering the 
following questions: 

• RQ1: Does RAC outperform baseline alignment models on EA with limited 
supervision? Are the contrastive learning and reinforced AL modules useful? 

• RQ2: Where does the performance gain brought by CL come from? Is the 
combination of embeddings from different views effective enough? Is it sensitive 
to hyper-parameters? 

• RQ3: Can the reinforced AL strategy be applied on baseline models? Is it 
better than using the query strategies separately or blending strategies with equal 
weights?

4 The source code is available at https://github.com/DexterZeng/RAC. 

https://github.com/DexterZeng/RAC
https://github.com/DexterZeng/RAC
https://github.com/DexterZeng/RAC
https://github.com/DexterZeng/RAC
https://github.com/DexterZeng/RAC
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Table 7.1 Statistics of the datasets used for evaluation 

Dataset KG pairs #Triples #Ents #Rels #Aligns 

DBP15KZH-EN DBpedia (ZH. &EN) 165,556 38,960 3,024 15,000 

DBP15KJA-EN DBpedia (JA. &EN) 170,698 39,594 2,452 15,000 

DBP15KFR-EN DBpedia (FR. &EN) 221,720 39,654 2,111 15,000 

SRPRSEN-FR DBpedia (EN. &FR) 70,040 30,000 398 15,000 

SRPRSEN-DE DBpedia (EN. &DE) 75,740 30,000 342 15,000 

SRPRSDBP-WD DBpedia . &Wikidata 78,580 30,000 397 15,000 

SRPRSDBP-YG DBpedia . & YAGO 70,317 30,000 253 15,000 

DBP-FB DBpedia . & Freebase 208,388 55,403 1,289 25,542 

EN, ZH, JA, FR, and DE refer to the English, Chinese, Japanese, French, and German version of 
DBpedia, respectively #Triples, #Ents, #Rels, and #Aligns denote the number of triples, entities, 
relations, and gold alignment data in each dataset, respectively 

7.5.1 Experimental Settings 

Datasets Following previous works, we adopt three popular EA datasets for 
evaluation: (1) DBP15K [23], which includes three cross-lingual KG pairs extracted 
from DBpedia; (2) SRPRS [11], which comprises two cross-lingual and two 
mono-lingual KG pairs extracted from DBpedia, Wikidata, and YAGO; and (3) 
DBP-FB [35], which is a mono-lingual KG pair extracted from DBpedia and 
Freebase. In each KG pair, 70%, 10%, and 20% of the gold standards are used 
for testing, validation, and training, respectively. Since we study EA with limited 
supervision, we only keep 500 seed entity pairs as the initial training set. Then, 
according to the labeling budget, we select the entities from the rest of the training 
data for annotation and add the labeled entity pairs into the initial training set. The 
details of datasets can be found in Table 7.1. 

Implementation Details Regarding the query strategies, we set the damping 
parameter in Eq. (7.1) to the default value 0.85. We set b, the number of 
entities selected in each iteration, to 50. As to the semi-supervised alignment 
loss in Eq. (7.6), we adopt the Euclidean distance as dis(·, ·) and select γ 
among [1, 3, 5, 10]. We implement the embedding aggregation function as: 
agg(Z ψ1 

ω , Z ψ2 
ω ) = λeZ ψ1 

ω + (1 − λe)Z ψ2 
ω , where λe ∈ (0, 1) is the hyper-

parameter that balances the weights of the two views, and we select it among 
[0.2, 0.4, 0.6, 0.8]. As  for  the  graph encoders, we follow previous works [30, 33] by  
adopting two two-layer GCNs. We follow the original work of APP [14] and directly 
set the teleport probability α in Eq. (7.8) to 0.2, and the round of propagations k to 5. 
The dimensionality of entity embeddings is set to 100. Concerning the unsupervised 
contrastive loss in Eq. (7.9), we implement g(·) as two-layer MLP with a nonlinear 
activation elu and adopt the cosine similarity as f (·, ·). We select λu in Eq. (7.13) 
among [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35] and adopt Adam optimizer to minimize 
the training objective. The distance function in the alignment inference process is 
set to the Euclidean distance.
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By tuning the hyper-parameters on the validation set, we set γ to 1, λe to 0.2, and 
λu to 0.2. The experiments are conducted on a personal computer with the Ubuntu 
system, an Intel Core i7-4790 CPU, an NVIDIA GeForce GTX TITAN X GPU, and 
a 32 GB memory. We conduct the experiments for five independent runs and report 
the averaged performance (and the standard deviation) on each dataset. 

Evaluation Metrics Following the convention [5], for each source entity in the test 
set, we rank the target entities ascendingly according to the embedding distance as 
in Sect. 7.4.4 and adopt Hits@1 as the evaluation metric, which is defined as the 
percentage of source entities whose ground-truth target entity is ranked first. Note 
that the Hits@1 results are represented in percentages, and the bold figures in the 
tables represent the best results. 

Competing Methods The majority of state-of-the-art EA methods focus on 
designing advanced representation learning models to capture more useful structural 
information for alignment. In comparison, our proposed framework RAC aims to 
improve the alignment performance under limited supervision by using reinforced 
AL and CL, which are agnostic to the choices of these embedding learning models. 
RAC can be applied on these methods to improve their capability of dealing with 
scare supervision signals. Hence, the main goal of this chapter is not to compare with 
these state-of-the-art models, but with the methods that improve EA performance 
under scarce supervision. In this light, we compare RAC with a very recent work [2], 
ALEA, which harnessed AL for EA. Specifically, we adopt the most performant 
variants of ALEA, i.e., ALEA-D and ALEA-B, as the baseline models, which leverage 
the degree and betweenness centrality as the query strategies, respectively. 

Noteworthily, to demonstrate the wide applicability of RAC, we employ it on the  
most performant embedding learning model RREA [17], as well as a state-of-the-art 
EA model that leverages auxiliary information, CEA [33], in Sect. 7.5.2. 

7.5.2 Main Results (RQ1) 

We report the alignment results in Table 7.2 by setting the labeling budget B to 
500 and 1500, respectively. It can be observed that RAC significantly outperforms 
the embedding learning-based baseline models GCN and APP across all datasets 
(over 40% on DBP-FB), showcasing the effectiveness of our proposal when 
the supervision signals are limited. Particularly, RAC (.B = 500) even achieves 
comparable results to GCN (.B = 1500) on  SRPRSEN-FR and DBP-FB, which 
validates that, to reach a certain performance target, adopting RAC significantly 
reduces manual labeling effort. Besides, it is notable that the improvement is more 
prominent when there are fewer labeled data. For instance, RAC outperforms APP 
by over 15% on most datasets when .B = 500, while the improvement is less than 
15% on most datasets when .B = 1500.
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Fig. 7.4 Hits@1 results of ablation study. The shaded area denotes the standard deviation 

Then, by comparing the results of RAC with ALEA-D and ALEA-B, it is obvious  
that our proposed model is more effective and robust than existing AL-based EA 
models given scarce labeled data. The superior performance can be attributed to the 
reinforced AL strategy and the contrastive representation learning, which we will 
analyze in detail in the following. 

Ablation Results To examine the usefulness of the two key components—the 
unsupervised contrastive loss and the reinforced AL strategy—in RAC, we conduct 
ablation study. As shown in Fig. 7.4, we select the labeling budget B among . [250, 
500, 750, 1000, 1250, 1500, 1750, 2000. ] and obtain the corresponding alignment 
results of RAC -Active, RAC -Rand., RAC w/o CL -Active, and RAC w/o CL -Rand., where
-Active denotes using our proposed reinforced AL strategy, -Rand. denotes selecting 
the entities randomly, and w/o CL denotes removing the unsupervised contrastive 
loss. Note that, in the interest of space, we only select representative KG pairs from 
each dataset and report their results, among which DBP15KZH-EN and SRPRSEN-FR 
are cross-lingual datasets, while SRPRSDBP-WD and DBP-FB are mono-lingual ones. 

It reads from Fig. 7.4 that the reinforced AL and CL strategies both contribute 
positively to the overall performance. More concretely, with the increase of labeling 
budget, the effectiveness of the AL strategy becomes less significant, while the 
unsupervised contrastive learning loss begins to play a more important role. This 
could be ascribed to the fact that: (1) the quality of the entities selected by AL drops 
with the increase of budget since the valuable entities have already been chosen 
in the early stages and (2) the effectiveness of CL relies on the quality of entity 
representations, which is improved when there are more labeled data. 

Applying RAC on Embedding Learning-Based EA Model We apply RAC on 
RREA, the most performant EA method so far, to see whether RAC would improve 
its capability of dealing with limited supervision. Specifically, we follow the 
implementation details in the original paper [17] and contrast the entity embeddings 
learned by it with the embeddings generated byGCN and then conduct the reinforced 
AL. The results are provided in Table 7.3, which validate that RAC can be applied 
on existing EA models to improve their performance under limited supervision, and 
the improvement is more notable when there are fewer labeled data (.B = 500 vs. 
.B = 1500).
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Table 7.3 Hits@1 results of applying RAC on RREA and CEA 

B Method DBP15KZH-EN SRPRSEN-FR SRPRSDBP-WD DBP-FB 

500 RREA 48.42 . ± 0.38 32.07 . ± 0.41 35.14 . ± 0.29 17.11 . ± 0.25 

+RAC 51.84 . ± 0.18 35.58 . ± 0.41 38.04 . ± 0.22 21.84 . ± 0.26 
1500 RREA 57.63 . ± 0.32 37.29 . ± 0.36 41.74 . ± 0.11 22.65 . ± 0.20 

+RAC 59.74 . ± 0.36 39.82 . ± 0.29 43.66 . ± 0.20 27.24 . ± 0.21 
B Method DBP15KZH-EN SRPRSEN-FR DBP15KJA-EN SRPRSEN-DE 
500 CEA 64.19 . ± 0.12 90.08 . ± 0.22 71.57 . ± 0.43 91.09 . ± 0.52 

+RAC 68.18 . ± 0.27 90.84 . ± 0.45 73.60 . ± 0.34 91.70 . ± 0.91 
1500 CEA 68.37 . ± 0.15 91.86 . ± 0.27 75.58 . ± 0.42 92.28 . ± 0.51 

+RAC 71.25 . ± 0.25 92.03 . ± 0.21 76.98 . ± 0.27 93.18 . ± 0.24 

Applying RAC on EA Model that Uses Auxiliary Information We apply RAC 
on CEA [33], an EA model leveraging the entity name information to complement 
KG structural information for alignment. The results are provided in Table 7.3, 
which demonstrate that our proposal is also effective on EA models harnessing 
auxiliary information. We notice that the improvements on SRPRSEN-FR and 
SRPRSEN-DE are not significant. This is because the entity name information in 
SRPRS can already provide very accurate alignment signals, e.g., solely comparing 
the entity names can lead to ground-truth performance on SRPRSDBP-YG and 
SRPRSDBP-WD [35] (and thus we omit their results in Table 7.3). This unveils 
that it is more beneficial to study EA with scarce supervision when the auxiliary 
information is not available or of low quality (as is often the case) [35]. 

7.5.3 Experiments on Contrastive Learning (RQ2) 

In this subsection, we carefully examine the effectiveness of unsupervised CL. We 
first empirically validate that the main performance enhancement brought by CL 
comes from the unsupervised contrastive loss itself rather than the combination of 
embeddings. Then we conduct parameter analysis to show its robustness. 

Comparison with mere Combination of Embeddings Since different represen-
tation learning models capture different structural information in KGs, one might 
wonder whether the effectiveness of unsupervised CL mainly comes from the com-
bination of embeddings. To investigate this issue, we remove the effect of AL and 
report the results of GCN, APP, the combination of these two embeddings (denoted 
as Comb.), and the combination of these two embeddings with unsupervised CL 
loss (denoted as Comb.+CL) in Table 7.4. It shows that, compared with utilizing 
the representation learning models separately, Comb. only slightly improves the 
alignment performance in some cases and even brings down the results under 
a few settings, e.g., .B = 500. After adding the unsupervised contrastive loss,
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Table 7.4 Hits@1 results of variants of CL on DBP15KZH-EN after removing the influence of AL 

Method .B = 500 .B = 1000 .B = 1500 . B = 2000

GCN 22.53 . ± 0.41 27.65 . ± 0.49 31.48 . ± 0.40 34.93 . ± 0.44 

APP 24.65 . ± 0.27 29.66 . ± 0.22 33.08 . ± 0.42 36.22 . ± 0.11 

Comb. 24.17 . ± 0.34 29.61 . ± 0.10 33.56 . ± 0.41 36.79 . ± 0.19 

Comb.+CL 25.71 . ± 0.26 31.23 . ± 0.42 35.07 . ± 0.45 38.45 . ± 0.21 
.λu = 0.05 25.56 . ± 0.31 30.60 . ± 0.20 34.57 . ± 0.50 37.59 . ± 0.29 

.λu = 0.10 25.81 . ± 0.21 31.12 . ± 0.19 35.09 . ± 0.62 38.13 . ± 0.31 

.λu = 0.15 25.70 . ± 0.25 31.24 . ± 0.35 35.24 . ± 0.69 38.39 . ± 0.28 

.λu = 0.25 25.58 . ± 0.38 31.11 . ± 0.50 35.15 . ± 0.63 38.27 . ± 0.23 

.λu = 0.30 25.54 . ± 0.29 31.03 . ± 0.48 35.01 . ± 0.57 38.23 . ± 0.10 

.λu = 0.35 25.46 . ± 0.30 30.89 . ± 0.59 34.90 . ± 0.59 38.08 . ± 0.17 

Note that Comb.+CL is equivalent to .λu = 0.2 in the bottom half of the table 

Comb.+CL achieves superior results than Comb. and APP across all settings. This 
demonstrates the significance of using CL to mine supervision signals from the 
abundant unlabeled data. Furthermore, by comparing RAC with RAC w/o CL (which 
combines the two representations) in Fig. 7.4, we can conclude that the contrastive 
loss is effective with or without AL. 

Sensitivity Analysis We conduct sensitivity analysis on a critical hyper-parameter 
in the contrastive entity representation learning, . λu, which determines the contribu-
tions of semi-supervised alignment loss . Ls and unsupervised contrastive loss . Lu to 
the overall training objective, to show the stability of the model under perturbation 
of the hyper-parameter. Since it is intuitive that . Ls can provide more accurate signals 
for alignment compared with . Lu, we vary . λu from 0.05 to 0.35 and report the results 
in Table 7.4. From the table, it can be observed that the alignment performance is 
relatively stable when . λu is not too large. We thus conclude that, overall, our model 
is robust to the perturbation of . λu. 

7.5.4 Experiments on Reinforced AL (RQ3) 

In this subsection, we aim to examine the usefulness of the reinforced AL compo-
nent. We first demonstrate that the reinforced AL strategy can be applied on the 
baseline models to improve their performance given scarce labeled data. Next, we 
empirically verify that using our proposed reinforced AL to blend query strategies 
can lead to better results than using these strategies individually or combining the 
query strategies with equal weights. 

Effectiveness of Reinforced AL on Baseline Models We apply our proposed 
reinforced AL on the baseline models and report the results in Fig. 7.5. It shows that
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Fig. 7.5 Hits@1 results of applying AL on baseline models. The shaded area denotes the standard 
deviation 

the performance of both APP and GCN is enhanced after applying the reinforced AL 
strategy, and the improvement is more prominent when the budget is smaller. 

Comparison with Using Query Strategies Individually To verify that blending 
the query strategies with MAB is more effective than using these strategies 
individually, we replace reinforced AL in RAC with degree centrality, PageRank 
centrality, and information density, resulting in RAC-Deg, RAC-Pr, and RAC-Emb, 
respectively, and report the results in Table 7.5. It shows that, overall speaking, the 
reinforced active entity selection strategy can lead to better alignment results than 
using query strategies individually. 

Comparison with Combination with Equal Weights To demonstrate that rein-
forced AL can adaptively integrate query strategies and lead to better alignment 
performance, we compare it with blending query strategies with equal weights 
(RAC-Avg) and provide the results in Table 7.5. It can be observed that RAC is more 
effective than RAC-Avg, especially when the budget value is small, showcasing the 
importance of combining query strategies adaptively. 

7.6 Related Work 

Entity Alignment The task of EA has been intensively studied over the last 
few years [35]. The majority of existing EA literature [4, 5, 10, 23, 30] are  
devoted to learning better entity representations using the KG embedding techniques 
such as TransE and GCN. Specifically, some propose to capture the neighboring 
information [11, 25] for learning expressive entity representations, while some 
propose to model the relations to help guide the alignment of entities [24, 31]. All 
of these approaches require seed entity pairs to project entity embeddings from 
different KGs into a unified space, where the entities can be directly compared 
across KGs. Nevertheless, such labeled data are hard to obtain in real-life settings. 
To reduce the reliance on labeled data, some efforts are devoted to aligning entities 
in unsupervised settings [32]. They leverage the auxiliary (side information) of KGs, 
such as attributes and entity names, to produce the pseudo-labeled data, which are 
then used to learn the unified structural embeddings. Nevertheless, the effectiveness
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of these approaches is largely restrained by the quality of side information. In 
practice, the auxiliary information could be unavailable or unevenly distributed [35]. 

EA with Limited Supervision The most similar work to ours is [2], which 
examines the effectiveness of various heuristics from AL in terms of improving 
EA performance under limited supervision. Our work differs from [2] in that (1) we 
devise a reinforced AL framework to adaptively blend query strategy heuristics and 
(2) we exploit the idea of CL to help further improve the EA performance. We also 
empirically validate the superiority of our proposal over [2]. 

Reinforced Active Learning Reinforced AL approaches have been developed also 
for other related problems, where RL is used to take the role of traditional query 
strategy heuristics [7–9]. To tackle cross-lingual named entity recognition task, 
Fang et al. design a deep Q-network to select data for annotation in a streaming 
setting [8]. In [7, 9], different multi-armed bandit models [6] are used to learn active 
discriminative network representations for the node classification task. Note that 
the MAB mechanism implemented in RAC differs from theirs and is developed 
specifically for the alignment task. 

Contrastive Learning on Graphs Recently, contrastive learning (CL) has 
emerged as a successful method for unsupervised graph representation 
learning [27, 36]. CL is an active field of self-supervised learning, which can 
generate data representations by learning to encode the similarities or dissimilarities 
among a set of unlabeled examples [12]. The intuition behind is that the rich 
unlabeled data themselves can be used as supervision signals to help guide model 
training. In this chapter, we also exploit this idea and leverage the abundant 
unlabeled entities to facilitate the alignment. 

7.7 Conclusion 

State-of-the-art EA approaches are overly dependent on labeled data, which are 
difficult to obtain in practical settings. In response, we propose a reinforced active 
framework RAC to tackle EA with scarce supervision. In each labeling iteration, 
RAC selects the valuable entities to be labeled according to the multi-armed 
bandit mechanism that blends different query strategies. Then, given the limited 
labeled data, it mines useful supervision signals from the rich unlabeled data to 
help generate more accurate entity representations (and the alignment results). We 
evaluate RAC on popular EA benchmarks, and the empirical results validate that 
RAC is effective at coping with limited labeled data. Besides, we also demonstrate 
that RAC is a general framework to tackle EA with scarce supervision and can be 
employed on top of existing EA solutions.
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Chapter 8 
Unsupervised Entity Alignment 

Abstract State-of-the-art entity alignment solutions tend to rely on labeled data 
for model training. Additionally, they work under the closed-domain setting and 
cannot deal with entities that are unmatchable. To address these deficiencies, we 
offer an unsupervised framework that performs entity alignment in the open world. 
Specifically, we first mine useful features from the side information of KGs. Then, 
we devise an unmatchable entity prediction module to filter out unmatchable entities 
and produce preliminary alignment results. These preliminary results are regarded 
as the pseudo-labeled data and forwarded to the progressive learning framework to 
generate structural representations, which are integrated with the side information to 
provide a more comprehensive view for alignment. Finally, the progressive learning 
framework gradually improves the quality of structural embeddings and enhances 
the alignment performance by enriching the pseudo-labeled data with alignment 
results from the previous round. Our solution does not require labeled data and can 
effectively filter out unmatchable entities. Comprehensive experimental evaluations 
validate its superiority. 

8.1 Introduction 

State-of-the-art EA solutions [2–5] assume that equivalent entities usually possess 
similar neighboring information. Consequently, they utilize KG embedding models, 
e.g., TransE [6], or graph neural network (GNN) models, e.g., GCN [7], to generate 
structural embeddings of entities in individual KGs. Then, these separated embed-
dings are projected into a unified embedding space by using the seed entity pairs as 
connections, so that the entities from different KGs are directly comparable. Finally, 
to determine the alignment results, the majority of current works [1, 8–10] formalize 
the alignment process as a ranking problem; that is, for each entity in the source KG, 
they rank all the entities in the target KG according to some distance metric, and the 
closest entity is considered as the equivalent target entity. 
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Fig. 8.1 An example of EA 

Example In Fig. 8.1 are a partial English KG and a partial Spanish KG 
concerning the director Hirokazu Koreeda, where the dashed lines 
indicate known alignments (i.e., seeds). The task of EA aims to identify 
equivalent entity pairs between two KGs, e.g., (Shoplifters, Manbiki 
Kazoku). 

Nevertheless, we still observe several issues from current EA works: 

• Reliance on labeled data. Most of the approaches rely on pre-aligned seed entity 
pairs to connect two KGs and use the unified KG structural embeddings to align 
entities. These labeled data, however, might not exist in real-life settings. For 
instance, in the example, the equivalence between Hirokazu Koreeda in 
.KGEN and Hirokazu Koreeda in .KGES might not be known in advance. 
In this case, state-of-the-art methods that solely rely on the structural information 
would fall short, as there are no seeds to connect these individual KGs. 

• Closed-domain setting. All of current EA solutions work under the closed-
domain setting [11]; that is, they assume every entity in the source KG has an 
equivalent entity in the target KG. Nevertheless, in practical settings, there always 
exist unmatchable entities. For instance, in the example, for the source entity 
Ryo Kase, there is no equivalent entity in the target KG. Therefore, an ideal 
EA system should be capable of predicting the unmatchable entities. 

In response to these issues, we put forward an unsupervised EA solution UEA 
that is capable of addressing the unmatchable problem. Specifically, to mitigate the 
reliance on labeled data, we mine useful features from the KG side information and 
use them to produce preliminary pseudo-labeled data. These preliminary seeds are 
forwarded to our devised progressive learning framework to generate unified KG 
structural representations, which are integrated with the side information to provide 
a more comprehensive view for alignment. This framework also progressively
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augments the training data and improves the alignment results in a self-training 
fashion. Besides, to tackle the unmatchable issue, we design an unmatchable entity 
prediction module, which leverages thresholded bidirectional nearest neighbor 
search (TBNNS) to filter out the unmatchable entities and excludes them from 
the alignment results. We embed the unmatchable entity prediction module into 
the progressive learning framework to control the pace of progressive learning by 
dynamically adjusting the thresholds in TBNNS. 

Furthermore, considering that the pseudo-labeled data generated during the 
progressive learning process might be of different qualities, we introduce the 
concept of confidence to measure the probability of an entity pair of being correct. 
We further incorporate such confidence scores into KG representation learning 
with the aim of producing more accurate structural embeddings. Through empirical 
studies, we demonstrate that the confidence-based framework, CUEA, has a more 
stable performance than UEA regardless of the quality of input side information and 
is particularly more useful when the side information is low-grade. 

Contribution The main contributions of the chapter can be summarized as follows: 

• We identify the deficiencies of existing EA methods, i.e., requiring labeled data 
and working under the closed-domain setting, and propose an unsupervised 
EA framework UEA, as well as a confidence-based extension CUEA, that are 
able to deal with unmatchable entities. This is done by: (1) exploiting the side 
information of KGs to generate preliminary pseudo-labeled data; and (2) devising 
an unmatchable entity prediction module that leverages the (confidence-based) 
thresholded bi-directional nearest neighbor search strategy to produce alignment 
results, which can effectively exclude unmatchable entities; and (3) offering a 
progressive learning algorithm to improve the quality of KG embeddings and 
enhance the alignment performance. 

• We empirically evaluate our proposals against state-of-the-art methods, and the 
comparative results demonstrate their superiority. 

Organization In Sect. 8.2, we formally define the task of EA and introduce related 
work. Section 8.3 elaborates the framework. In Sect. 8.4, we introduce experimental 
results and conduct detailed analysis. Section 8.5 concludes this chapter. 

8.2 Task Definition and Related Work 

In this section, we formally define the task of EA and then introduce the related 
work. 

Task Definition The inputs to EA are a source KG . G1 and a target KG . G2. The  
task of EA is defined as finding the equivalent entities between the KGs, i.e., . � =
{(u, v)|u ∈ E1, v ∈ E2, u ↔ v}, where . E1 and . E2 refer to the entity sets in . G1 and
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. G2, respectively, and .u ↔ v represents that the source entity u and the target entity 
v are equivalent, i.e., u and v refer to the same real-world object. 

Most of current EA solutions assume that there exist a set of seed entity pairs 
.�s = {(us, vs)|us ∈ E1, vs ∈ E2, us ↔ vs}. Nevertheless, in this chapter, we focus 
on unsupervised EA and do not assume the availability of such labeled data. 

Unsupervised Entity Alignment A few methods have investigated the alignment 
without labeled data. Qu et al. [20] propose an unsupervised approach toward 
knowledge graph alignment with the adversarial training framework. Nevertheless, 
the experimental results are extremely poor. He et al. [21] utilize the shared 
attributes between heterogeneous KGs to generate aligned entity pairs, which 
are used to detect more equivalent attributes. They perform entity alignment and 
attribute alignment alternately, leading to more high-quality aligned entity pairs, 
which are used to train a relation embedding model. Finally, they combine the 
alignment results generated by attribute and relation triples using a bivariate 
regression model. The overall procedure of this work might seem similar to our 
proposed model. However, there are many notable differences; for instance, the KG 
embeddings in our work are updated progressively, which can lead to more accurate 
alignment results, and our model can deal with unmatchable entities. We empirically 
demonstrate the superiority of our model in Sect. 8.4. 

We notice that there are some entity resolution (ER) approaches established in a 
setting similar to EA, represented by PARIS [22]. They adopt collective alignment 
algorithms such as similarity propagation so as to model the relations among 
entities. We include them in the experimental study for the comprehensiveness of 
the chapter. 

8.3 Methodology 

In this section, we first introduce the outline of our proposal. Then, we elaborate the 
processing of side information to produce preliminary alignment seeds. 

8.3.1 Model Outline 

As shown in Fig. 8.2, given two KGs, CUEA first mines useful features from the 
side information. These features are forwarded to the unmatchable entity prediction 
module to generate initial alignment results with confidence scores, which are 
regarded as pseudo-labeled data. Then, the progressive learning framework uses 
these pseudo seeds, along with the probability scores, to connect two KGs and learn 
unified entity structural embeddings. It further combines the alignment signals from 
the side information and structural information to provide a more comprehensive 
view for alignment. Finally, it progressively improves the quality of structural
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Fig. 8.2 Outline of CUEA. Arrows in blue represent the progressive learning process. By setting 
the confidence to 1, the UEA model can be restored 

embeddings and augments the alignment results by iteratively updating the pseudo-
labeled data with results from the previous round, which also leads to increasingly 
better alignment. Note that by assigning the confidence score of 1 to all entity pairs, 
CUEA turns into the UEA model. 

8.3.2 Side Information 

There is abundant side information in KGs, such as the attributes, descriptions, and 
classes. In this chapter, we use a particular form of the attributes—the entity name, 
as it exists in the majority of KGs. To make the most of the entity name information, 
inspired by Zeng et al. [5], we exploit it from the semantic level and string level and 
generate the textual distance matrix between entities in two KGs. 

More specifically, we use the averaged word embeddings to represent the 
semantic meanings of entity names. Given the semantic embeddings of a source 
and a target entity, we obtain the semantic distance score by subtracting their cosine 
similarity score from 1. We denote the semantic distance matrix between the entities 
in two KGs as . Mn, where rows represent source entities, columns denote target 
entities, and each element in the matrix denotes the distance score between a pair of 
source and target entities. As for the string-level feature, we adopt the Levenshtein 
distance [23] to measure the difference between two sequences. We denote the string 
distance matrix as . Ml. 

To obtain a more comprehensive view for alignment, we combine these two 
distance matrices and generate the textual distance matrix as . Mt = αMn + (1 −
α)Ml, where . α is a hyper-parameter that balances the weights. Then, we forward the 
textual distance matrix . Mt into the unmatchable entity module to produce alignment
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results, which are considered as the pseudo-labeled data for training KG structural 
embeddings. The details are introduced in the next subsection. 

Remark The goal of this step is to exploit available side information to generate 
useful features for alignment. Other types of side information, e.g., attributes and 
entity descriptions, can also be leveraged. Besides, more advanced textual encoders, 
such as misspelling oblivious word embeddings [24] and convolutional embedding 
for edit distance [25], can be utilized. We will investigate them in the future. 

8.3.3 Unmatchable Entity Prediction 

State-of-the-art EA solutions generate for each source entity a corresponding 
target entity and fail to consider the potential unmatchable issue. Nevertheless, 
as mentioned in [12], in real-life settings, KGs contain entities that other KGs do 
not contain. For instance, when aligning YAGO 4 and IMDB, only 1% of entities 
in YAGO 4 are related to movies, while the other 99% of entities in YAGO 4 
necessarily have no match in IMDB. These unmatchable entities would increase 
the difficulty of EA. Therefore, in this chapter, we devise an unmatchable entity 
prediction module to predict the unmatchable entities and filter them out from the 
alignment results. 

8.3.3.1 Thresholded Bidirectional Nearest Neighbor Search 

More specifically, we put forward a novel strategy, i.e., thresholded bidirectional 
nearest neighbor search (TBNNS), to generate the alignment results, and the 
resulting unaligned entities are predicted to be unmatchable. As can be observed 
from Algorithm 1, given a source entity u and a target entity v, if  u and v are 
the nearest neighbor of each other, and the distance between them is below a 
given threshold . θ , we consider .(u, v) as an aligned entity pair. Note that . M(u, v)

represents the element in the u-th row and v-th column of the distance matrix . M. 

Algorithm 1: TBNNS in the unmatchable entity prediction module 
Input : G1 and G2: the two KGs to be aligned; E1 and E2: the entity sets in G1 and G2; 

θ : a given threshold; M: a distance matrix. 
Output : S: Alignment results. 

1 foreach u ∈ E1 do 
2 v ← argmin 

v̂∈E2 

M(u, v̂); 

3 if  argmin 
û∈E1 

M(v, û) = u and M(u, v) < θ then 

4 S ← S + {(u, v)} 
5 return  S. 
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The TBNNS strategy exerts strong constraints on alignment, since it requires 
that the matched entities should both prefer each other the most, and the distance 
between their embeddings should be below a certain value. Therefore, it can 
effectively predict unmatchable entities and prevent them from being aligned. 
Notably, the threshold . θ plays a significant role in this strategy. A larger threshold 
would lead to more matches, whereas it would also increase the risk of including 
erroneous matches or unmatchable entities. In contrast, a small threshold would 
only lead to a few aligned entity pairs, and almost all of them would be correct. This 
is further discussed and verified in Sect. 8.4.4. Therefore, our progressive learning 
framework dynamically adjusts the threshold value to produce more accurate 
alignment results (to be discussed in the next subsection). 

8.3.3.2 Confidence-Based TBNNS 

Considering that the aligned entity pairs generated by TBNNS are of different 
qualities (i.e., some are true, while some are not), we further put forward confidence-
based TBNNS, C-TBNNS, to measure the confidence of an entity pair (of being true). 
Specifically, we define the confidence score . � of an entity pair .(u, v) as: 

.�(u, v) = M(u, v′) − M(u, v) + M(v, u′) − M(v, u), (8.1) 

where .�1 = M(u, v′)−M(u, v) denotes the gap between the distance scores of the 
top two closest entities (i.e., v and . v′) to entity u, while . �2 = M(v, u′) − M(v, u)

denotes the gap between the distance scores of the top two closest entities (i.e., 
u and . u′) to entity v. This is based on the intuition that, for an entity pair .(u, v), 
if the distance between them is the smallest from both sides and there are larger 
margins between the distances of the top two candidates, it would be more confident 
to consider them as a correct entity pair. We further restrict the confidence scores to 
a certain range: 

.�(S) = (1 − λ)
�(S) − min{�(S)}

max{�(S)} − min{�(S)} + λ (8.2) 

where .�(S) represents the confidence scores of the entity pairs in . S. The core 
of Eq. (8.2) is the min-max normalization, which converts the confidence scores 
to .[0, 1]. We add a hyper-parameter .λ ∈ [0, 1] to further restrict the range of the 
confidence scores to .[λ, 1]. As thus, by setting . λ to 1, all entity pairs would have the 
same confidence score of 1, and C-TBNNS can be restored to TBNNS. Hence, C-
TBNNS can be regarded as a general case of TBNNS, which introduces the concept 
of confidence (probability) into the alignment result generation process.
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8.3.4 The Progressive Learning Framework 

To exploit the rich structural patterns in KGs that could provide useful signals for 
alignment, we design a progressive learning framework to combine structural and 
textual features for alignment and improve the quality of both structural embeddings 
and alignment results in a self-training fashion. 

8.3.4.1 Knowledge Graph Representation Learning 

As mentioned above, we forward the textual distance matrix . Mt generated by using 
the side information to the unmatchable entity prediction module to produce the 
preliminary alignment results, which are considered as pseudo-labeled data for 
learning unified KG embeddings. Concretely, following [18], we adopt GCN1 to 
capture the neighboring information of entities. We leave out the implementation 
details since this is not the focus of this paper, which can be found in [18]. 

Alignment Objective Since the representations of source and target KGs are 
learned individually, they need to be projected into a unified embedding space, 
where the entities across KGs could be compared directly. To this end, we use the 
semi-supervised loss function to enforce the distance between the embeddings of the 
entities in the labeled entity pairs to be small and meanwhile the negative samples 
(i.e., nonequivalent entity pairs) to be large. Formally: 

.L =
∑

(u,v)∈S

∑

(u′,v′)∈S′
(u,v)

[d(u, v) + γ − d(u′, v′)]+, (8.3) 

where .[·]+ = max{0, ·}, .(u, v) is a labeled entity pair from the training data and 
.S′

(u,v) represents the set of negative entity pairs obtained by corrupting .(u, v) using 
nearest neighbor sampling [1]. . u and . v represent the embeddings of source and 
target entities learned by GCN, respectively. .d(·, ·) is the distance function that 
measures the distance between two embeddings. . γ is a hyper-parameter separating 
positive samples from negative ones. 

Confidence-Based Objective Considering that the pseudo-labeled entity pairs 
have different confidences of being true, we incorporate such probabilities into the

1 More advanced structural learning models, such as recurrent skipping networks [13], could also 
be used here. We will explore these alternative options in the future. 
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alignment objective to learn more accurate structural embeddings: 

.Lc =
∑

(u,v)∈S

∑

(u′,v′)∈S′
(u,v)

�(u, v) ∗ [d(u, v) + γ − d(u′, v′)]+, (8.4) 

where .�(u, v) is the confidence score attached to each entity pair. As thus, the 
more confident entity pairs would play a more important role during the training 
process, while the less confident pseudo entity pairs would have a smaller effect on 
the training, such that the impact from the false positives could be mitigated. 

Feature Fusion Given the learned structural embedding matrix . Z, we calculate 
the structural distance score between a source and a target entity by subtracting the 
cosine similarity score between their embeddings from 1. We denote the resultant 
structural distance matrix as . Ms. Then, we combine the textual and structural 
information to generate more accurate signals for alignment: .M = βMt+(1−β)Ms, 
where . β is a hyper-parameter that balances the weights. The fused distance matrix 
. M can be used to generate more accurate matches. 

8.3.4.2 The Progressive Learning Algorithm 

The amount of training data has an impact on the quality of the unified KG 
embeddings, which in turn affects the alignment performance [3, 26]. As thus, we 
devise an algorithm (Algorithm 2) to progressively augment the pseudo training 
data, so as to improve the quality of KG embeddings and enhance the alignment 
performance. The algorithm starts with learning unified structural embeddings and 
generating the fused distance matrix . M by using the preliminary pseudo-labeled 
data . S0 (Lines 1–2). Then, the fused distance matrix is used to produce the new 
alignment results .�S using C-TBNNS (line 4). These newly generated entity pairs 
.�S are added to the alignment results, which are used for generating the fused 
distance matrix in the next round (Lines 6–7). The entities in . S are removed from 
the entity sets (Lines 9–10). In order to progressively improve the quality of KG 
embeddings and detect more alignment results, we perform the aforementioned 
process recursively until the number of newly generated entity pairs is below a 
given threshold . μ. Finally, we consider the entity pairs in . S as the final alignment 
results . �. 

Notably, in the learning process, once a pair of entities is considered as a 
match, the entities will be removed from the entity sets (Lines 5–6 and Lines 
12–13). This could gradually reduce the alignment search space and lower the 
difficulty for aligning the rest of the entities. Obviously, this strategy suffers from 
the error propagation issue, which, however, could be effectively mitigated by the 
progressive learning process that dynamically adjusts the threshold. We will verify 
the effectiveness of this setting in Sect. 8.4.3.



216 8 Unsupervised Entity Alignment

Algorithm 2: Progressive learning 
Input : G1 and G2: KGs to be aligned; E1 and E2: the entity sets; Mt: textual distance 

matrix; S0: preliminary labeled data; θ0: the initial threshold. 
Output : �: Alignment results. 

1 S← S0; 
2 Use S to learn structural embeddings and generate M; 
3 θ ← θ0; 
4 �S, U←C-TBNNS (G1, G2, E1, E2, θ , M); 
5 while  |�S| ≥  μ do 
6 S← S+ �S; 
7 Use S to learn structural embeddings and generate M; 
8 θ ← θ + η; 
9 E1 ← {e|e ∈ E1, e  /∈ S}; 
10 E2 ← {e|e ∈ E2, e  /∈ S}; 
11 �S,U←C-TBNNS (G1, G2, E1, E2, θ , M); 

12 � ← S; 
13 return �. 

8.3.4.3 Dynamic Threshold Adjustment 

It can be observed from Algorithm 2 that the matches generated by the unmatchable 
entity prediction module are part of not only the eventual alignment results but also 
the pseudo training data for learning subsequent structural embeddings. Therefore, 
to enhance the overall alignment performance, the alignment results generated in 
each round should, ideally, have both large quantity and high quality. Unfortunately, 
these two goals cannot be achieved at the same time. This is because, as stated in 
Sect. 8.3.3, a larger threshold in TBNNS can generate more alignment results (large 
quantity), whereas some of them might be erroneous (low quality). These wrongly 
aligned entity pairs can cause the error propagation problem and result in more 
erroneous matches in the following rounds. In contrast, a smaller threshold leads to 
fewer alignment results (small quantity), while almost all of them are correct (high 
quality). 

To address this issue, we aim to balance between the quantity and the quality of 
the matches generated in each round. An intuitive idea is to set the threshold to a 
moderate value. However, this fails to take into account the characteristics of the 
progressive learning process. That is, in the beginning, the quality of the matches 
should be prioritized, as these alignment results will have a long-term impact on the 
subsequent rounds. In comparison, in the later stages where most of the entities have 
been aligned, the quantity is more important, as we need to include more possible 
matches that might not have a small distance score. In this connection, we set the 
initial threshold . θ0 to a very small value so as to reduce potential errors. Then, 
in the following rounds, we gradually increase the threshold by . η, so that more 
possible matches could be detected. We will empirically validate the superiority of 
this strategy over the fixed weight in Sect. 8.4.3.
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Noteworthily, our proposed confidence-based framework CUEA can further help 
mitigate the low-quality issue, as we calculate and assign a confidence score to each 
entity pair, where the wrongly aligned entity pairs would presumably have lower 
confidence scores and thus exert smaller influence on the subsequent alignment 
process. 

Remark As mentioned in the related work, there are some existing EA approaches 
that exploit the iterative learning (bootstrapping) strategy to improve EA per-
formance. Particularly, BootEA calculates for each source entity the alignment 
likelihood to every target entity and includes those with likelihood above a given 
threshold in a maximum likelihood matching process under the 1-to-1 mapping 
constraint, producing a solution containing confident EA pairs [15]. This strategy is 
also adopted by [8, 16]. Zhu et al. use a threshold to select the entity pairs with very 
close distances as the pseudo-labeled data [14]. DAT employs a bidirectional margin-
based constraint to select the confident EA pairs as labels [17]. Our progressive 
learning strategy differs from these existing solutions in three aspects: (1) we 
exclude the entities in the confident EA pairs from the test sets; (2) we use the 
dynamic threshold adjustment strategy to control the pace of learning process; (3) 
our strategy can deal with unmatchable entities; and (4) we attach a confidence score 
to each selected entity pair, which can mitigate the negative influence of the false 
positives on the KG representation learning process as well as the alignment results. 
The superiority of our strategy is validated in Sect. 8.4.3. 

8.4 Experiment 

This section reports the experimental results with in-depth analysis. The source code 
is available at https://github.com/DexterZeng/UEA. 

8.4.1 Experimental Settings 

Datasets Following existing works, we adopt the DBP15K dataset [3] for evalua-
tion. This dataset consists of three multilingual KG pairs extracted from DBpedia. 
Each KG pair contains 15,000 inter-language links as gold standards. The statistics 
can be found in Table 8.1. We note that state-of-the-art studies merely consider the 
labeled entities and divide them into training and testing sets. Nevertheless, as can be 
observed from Table 8.1, there exist unlabeled entities, e.g., 4,388 and 4,572 entities 
in the Chinese and English KG of DBP15KZH-EN, respectively. In this connection, 
we adapt the dataset by including the unmatchable entities. Specifically, for each 
KG pair, we keep 30% of the labeled entity pairs as the training set (for training the 
supervised or semi-supervised methods). Then, to construct the test set, we include 
the rest of the entities in the first KG and the rest of the labeled entities in the second

https://github.com/DexterZeng/UEA
https://github.com/DexterZeng/UEA
https://github.com/DexterZeng/UEA
https://github.com/DexterZeng/UEA
https://github.com/DexterZeng/UEA
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Table 8.1 The statistics of the evaluation benchmarks 

Dataset KG pairs #Triples #Entities #Labeled Ents #Relations #Test set 

DBP15KZH-EN DBpedia(Chinese) 70,414 19,388 15,000 1,701 14,888 

DBpedia(English) 95,142 19,572 15,000 1,323 10,500 

DBP15KJA-EN DBpedia(Japanese) 77,214 19,814 15,000 1,299 15,314 

DBpedia(English) 93,484 19,780 15,000 1,153 10,500 

DBP15KFR-EN DBpedia(French) 105,998 19,661 15,000 903 15,161 

DBpedia(English) 115,722 19,993 15,000 1,208 10,500 

KG, so that the unlabeled entities in the first KG become unmatchable. The statistics 
of the test sets can be found in the test set column in Table 8.1. 

Parameter Settings For the side information module, we utilize the fastText 
embeddings [27] as word embeddings. To deal with cross-lingual KG pairs, 
following [19], we use Google Translate to translate the entity names from one 
language to another, i.e., translating Chinese, Japanese, and French to English. α is 
set to 0.5. For the structural information learning, we set  β to 0.5. Following [18], 
we set γ in the alignment objectives to 3 and adopt Manhattan distance as d(·, ·). 
Regarding C-TBNNS, we set  λ to 0.4. For progressive learning, we set the initial 
threshold θ0 to 0.05, the incremental parameter η to 0.1, and the termination 
threshold γ to 30. Note that if the threshold θ is over 0.45, we reset it to 0.45. 
These hyper-parameters are default values since there is no extra validation set for 
hyper-parameter tuning. 

Evaluation Metrics We use precision (P), recall (R), and F1 score as evaluation 
metrics. The precision is computed as the number of correct matches divided by the 
number of matches found by a method. The recall is computed as the number of 
correct matches found by a method divided by the number of gold matches. The F1 
score is the harmonic mean between precision and recall. The bold figures in the 
tables represent the best results. 

Competitors We select the most performant state-of-the-art solutions for com-
parison. Within the group that solely utilizes structural information, we compare 
with BootEA [15], TransEdge [8], MRAEA [26], and SSP [28]. Among the methods 
incorporating other sources of information, we compare with GCN-Align [18], 
HMAN [9], HGCN [4], RE-GCN [29], DAT [17], and RREA [30]. We also include 
the unsupervised approaches, i.e., IMUSE [21] and PARIS [22]. To make a fair 
comparison, we only use entity name labels as the side information.
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8.4.2 Results 

Table 8.2 reports the alignment results, which shows that state-of-the-art supervised 
or semi-supervised methods have rather low precision values. This is because these 
approaches cannot predict the unmatchable source entities and generate a target 
entity for each source entity (including the unmatchable ones). Particularly, methods 
incorporating additional information attain relatively better performance than the 
methods in the first group, demonstrating the benefit of leveraging such additional 
information. 

Regarding the unsupervised methods, although IMUSE cannot deal with the 
unmatchable entities and achieves a low precision score, it outperforms most of 
the supervised or semi-supervised methods in terms of recall and F1 score. This 
indicates that, for the EA task, the KG side information is useful for mitigating 
the reliance on labeled data. In contrast to the abovementioned methods, PARIS 
attains very high precision, since it only generates matches that it believes to 
be highly possible, which can effectively filter out the unmatchable entities. It 
also achieves the second best F1 score among all approaches, showcasing its 
effectiveness when the unmatchable entities are involved. Our proposals, UEA 
and CUEA, attain the best balance between precision and recall and obtain the 
best F1 scores, outperforming the second best by a large margin, validating their 
effectiveness. Notably, although our proposed models do not require labeled data, 
they achieve even better performance than the most performant supervised methods 
HMAN and DAT. 

Furthermore, it can be seen that, by integrating the notion of confidence into UEA, 
CUEA achieves comparable results to UEA. At first sight, it seems that assigning 
confidence scores to entity pairs does not have a large influence on the representation 
learning and the alignment results, which, however, could be ascribed to the fact 
that the side information is too effective on these datasets (solely using the string 
information can achieve an F1 score of 0.814, to be shown in Table 8.4), and hence 
rendering the structural information (largely affected by the confidence scores) less 
contributive to the overall results. Next, we will show that the confidence-based 
framework would be much more useful on datasets with side information in low 
quality. 

8.4.2.1 Results Using Low-Quality Side Information 

We compare the unsupervised approaches under a practical scenario where the side 
information is in low quality. Specifically, we assume that the pre-trained word 
embeddings as well as the machine translation tools are not available. Under this 
circumstance, to use the entity name information, a viable solution is to compare the 
name strings directly. However, the direct string comparison would be ineffective 
for cross-lingual datasets such as DBP15KZH-EN and DBP15KJA-EN, where the 
languages in the source and target KGs are disparate. Hence, we aim to examine
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Table 8.3 Alignment results 
given low-grade side 
information 

DBP15KZH-EN DBP15KJA-EN 
P R F1 P R F1 

IMUSE 0.056 0.080 0.066 0.053 0.077 0.063 

PARIS 0.921 0.066 0.123 0.911 0.060 0.113 

UEA 0.654 0.088 0.155 0.617 0.084 0.148 

CUEA 0.682 0.093 0.164 0.690 0.090 0.159 

the effectiveness of these unsupervised approaches when the side information is in 
low quality and cannot provide many useful signals for alignment. 

We report the results on DBP15KZH-EN and DBP15KJA-EN in Table 8.3, where 
the direct comparison between entity name strings serves as the side information. It 
can be observed that the F1 scores of all methods are very low (compared with those 
in Table 8.2), revealing that the quality of side information does affect the overall 
alignment results. Besides, given the low-quality side information, our proposed 
models UEA and CUEA still outperform the baselines IMUSE and PARIS in terms of 
the F1 score, demonstrating the effectiveness of the progressive learning framework 
and the unmatchable entity prediction module. Moreover, it is notable that CUEA 
achieves better results than UEA in terms of all metrics. This could be attributed to 
the confidence-based alignment result generation process, which could enable the 
entity pairs of higher confidence (higher probability of being correct, presumably) 
to have a larger impact on the representation learning and alignment process. 

Table 8.4 Ablation results 

DBP15KZH-EN DBP15KJA-EN DBP15KFR-EN 
P R F1 P R F1 P R F1 

UEA 0.913 0.902 0.907 0.940 0.932 0.936 0.953 0.950 0.951 
w/o Unm 0.553 0.784 0.648 0.578 0.843 0.686 0.603 0.871 0.713 

w/o Prg 0.942 0.674 0.786 0.966 0.764 0.853 0.972 0.804 0.880 

w/o Adj 0.889 0.873 0.881 0.927 0.915 0.921 0.941 0.936 0.939 

w/o Excl 0.974 0.799 0.878 0.982 0.862 0.918 0.985 0.887 0.933 

MWGM 0.930 0.789 0.853 0.954 0.858 0.903 0.959 0.909 0.934 

TH 0.743 0.914 0.820 0.795 0.942 0.862 0.807 0.953 0.874 

DAT-I 0.974 0.805 0.881 0.985 0.866 0.922 0.988 0.875 0.928 

UEA-Ml 0.908 0.902 0.905 0.926 0.924 0.925 0.937 0.931 0.934 

Ml 0.935 0.721 0.814 0.960 0.803 0.875 0.948 0.750 0.838 

UEA-Mn 0.758 0.727 0.742 0.840 0.807 0.823 0.906 0.899 0.903 

Mn 0.891 0.497 0.638 0.918 0.562 0.697 0.959 0.752 0.843
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8.4.3 Ablation Study 

In this subsection, we examine the usefulness of proposed modules by conducting 
the ablation study. More specifically, in Table 8.4, we report the results of UEA 
w/o Unm, which excludes the unmatchable entity prediction module, and UEA w/o 
Prg, which excludes the progressive learning process. It shows that removing the 
unmatchable entity prediction module (UEA w/o Unm) brings down the performance 
on all metrics and datasets, validating its effectiveness of detecting the unmatchable 
entities and enhancing the overall alignment performance. Besides, without the 
progressive learning (UEA w/o Prg), the precision increases, while the recall and F1 
score values drop significantly. This shows that the progressive learning framework 
can discover more correct aligned entity pairs and is crucial to the alignment 
progress. 

To provide insights into the progressive learning framework, we report the results 
of UEA w/o Adj, which does not adjust the threshold, and UEA w/o Excl, which does 
not exclude the entities in the alignment results from the entity sets during the 
progressive learning. Table 8.4 shows that setting the threshold to a fixed value (UEA 
w/o Adj) leads to worse F1 results, verifying that the progressive learning process 
depends on the choice of the threshold and the quality of the alignment results. We 
will further discuss the setting of the threshold in the next subsection. Besides, the 
performance also decreases if we do not exclude the matched entities from the entity 
sets (UEA w/o Excl), validating that this strategy indeed can reduce the difficulty of 
aligning entities. 

Moreover, we replace our progressive learning framework with other state-of-
the-art iterative learning strategies (i.e., MWGM [15], TH [14], and DAT-I [17]) 
and report the results in Table 8.4. It shows that using our progressive learning 
framework (UEA) can attain the best F1 score, verifying its superiority. 

8.4.4 Quantitative Analysis 

In this subsection, we perform quantitative analysis of the modules in UEA and 
CUEA. 

The Threshold . θ in TBNNS We discuss the setting of . θ to reveal the trade-off 
between the risk and gain from generating the alignment results in the progressive 
learning. Identifying a match leads to the integration of additional structural 
information, which benefits the subsequent learning. However, for the same reason, 
the identification of a false positive, i.e., an incorrect match, potentially leads to 
mistakenly modifying the connections between KGs, with the risk of amplifying the 
error in successive rounds. As shown in Fig. 8.3, a smaller . θ (e.g., 0.05) brings low 
risk and low gain; that is, it merely generates a small number of matches, among 
which almost all are correct. In contrast, a higher . θ (e.g., 0.45) increases the risk 
and brings relatively higher gain; that is, it results in much more aligned entity
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Fig. 8.3 Alignment results given different threshold values. Correct-. θ refers to the number of 
correct matches generated by the progressive learning framework at each round given the threshold 
value . θ . Wrong refers to the number of erroneous matches generated in each round 

pairs, while a certain portion of them are erroneous. Additionally, using a higher 
threshold leads to increasingly more alignment results, while for a lower threshold, 
the progressive learning process barely increases the number of matches. This is in 
consistency with our theoretical analysis in Sect. 8.3.3. 

Unmatchable Entity Prediction Zhao et al. [12] propose an intuitive strategy 
(U-TH) to predict the unmatchable entities. They set an NIL threshold, and if 
the distance value between a source entity and its closest target entity is above 
this threshold, they consider the source entity to be unmatchable. We compare 
our unmatchable entity prediction strategy with it in terms of the percentage of 
unmatchable entities that are included in the final alignment results and the F1 score. 
On DBP15KZH-EN, replacing our unmatchable entity prediction strategy with U-TH 
attains the F1 score at 0.837, which is 8.4% lower than that of UEA. Besides, in 
the alignment results generated by using U-TH, 18.9% are unmatchable entities, 
while this figure for UEA is merely 3.9%. This demonstrates the superiority of our 
unmatchable entity prediction strategy. 

Influence of Parameters As mentioned in Sect. 8.4.1, we set  . α and . β to 0.5 since 
there are no training/validation data. Here, we aim to prove that different values of 
the parameters do not have a large influence on the final results. More specifically, 
we keep . α at 0.5 and choose . β from [0.3, 0.4, 0.5, 0.6, 0.7]; then we keep . β at 0.5 
and choose . α from [0.3, 0.4, 0.5, 0.6, 0.7]. It can be observed from Fig. 8.4 that, 
although smaller . α and . β lead to better results, the performance does not change 
significantly. 

The Hyper-Parameter . λ in CUEA We then analyze the influence of . λ in Eq. (8.2), 
which determines the range of the confidence scores, on the final alignment results. 
To highlight its influence on the structural representation learning, we follow the 
settings in Sect. 8.4.2.1 and report the results in Table 8.5. 

It reads from Table 8.5 that the alignment performance is relatively stable when 
. λ is not too large. Nevertheless, when setting . λ to a large value (e.g., 1, to restore
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Fig. 8.4 The F1 scores by setting . α and . β to different values 

Table 8.5 The influence of . λ
on the alignment results 

DBP15KZH-EN DBP15KJA-EN 
P R F1 P R F1 

CUEA 0.682 0.093 0.164 0.690 0.090 0.159 
.λ = 0.0 0.685 0.093 0.164 0.680 0.090 0.159 
.λ = 0.1 0.687 0.092 0.162 0.683 0.090 0.159 
.λ = 0.2 0.689 0.093 0.163 0.680 0.090 0.159 
.λ = 0.3 0.678 0.092 0.162 0.679 0.089 0.158 

.λ = 0.5 0.661 0.091 0.160 0.672 0.090 0.159 

.λ = 0.6 0.670 0.090 0.159 0.648 0.088 0.155 

.λ = 0.7 0.666 0.089 0.158 0.631 0.085 0.150 

.λ = 0.8 0.647 0.088 0.156 0.640 0.088 0.155 

.λ = 0.9 0.649 0.088 0.155 0.586 0.081 0.142 

.λ = 1.0 0.654 0.088 0.155 0.617 0.084 0.148 

UEA), the results drop sharply. This reveals that assigning probability scores to the 
entity pairs according to their confidence of being true can facilitate the alignment. 
Besides, generally speaking, CUEA is robust to the perturbation of . λ (as long as it is 
not too large). 

Influence of Input Side Information We adopt different side information as input 
to examine the performance of UEA. More specifically, we report the results of UEA-
Ml, which merely uses the string-level feature of entity names as input, UEA-Mn, 
which only uses the semantic embeddings of entity names as input. We also provide 
the results of Ml and Mn, which use the string-level and semantic information to 
directly generate alignment results (without progressive learning), respectively. 

As shown in Table 8.3, the performance of solely using the input side information 
is not very promising (Ml and Mn). Nevertheless, by forwarding the side informa-
tion into our model, the results of UEA-Ml and UEA-Mn become much better. This 
unveils that UEA can work with different types of side information and consistently
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improve the alignment results. Additionally, by comparing UEA-Ml with UEA-Mn, it  
is evident that the input side information does affect the final results, and the quality 
of the side information is of significance to the overall alignment performance. 

Pseudo-Labeled Data We further examine the usefulness of the preliminary 
alignment results generated by the side information, i.e., the pseudo-labeled data. 
Concretely, we replace the training data in HGCN with these pseudo-labeled data, 
resulting in HGCN-U, and then compare its alignment results with the original perfor-
mance. Regarding the F1 score, HGCN-U is 4% lower than HGCN on DBP15KZH-EN, 
2.9% lower on DBP15KJA-EN, and 2.8% lower on DBP15KFR-EN. The minor 
difference validates the effectiveness of the pseudo-labeled data generated by the 
side information. It also demonstrates that this strategy can be applied to other 
supervised or semi-supervised frameworks to reduce their reliance on labeled data. 

8.5 Conclusion 

In this chapter, we propose an unsupervised EA solution that is capable of dealing 
with unmatchable entities. We first exploit the side information of KGs to generate 
preliminary alignment results, which are considered as pseudo-labeled data and 
forwarded to the progressive learning framework to produce better KG embeddings 
and alignment results in a self-training fashion. We also devise an unmatchable 
entity prediction module to detect the unmatchable entities. The experimental results 
validate the usefulness of our proposed model and its superiority over state-of-the-
art approaches. 
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Chapter 9 
Multimodal Entity Alignment 

Abstract In various tasks related to artificial intelligence, data is often present 
in multiple forms or modalities. Recently, it has become a popular approach to 
combine these different forms of information into a knowledge graph, creating a 
multi-modal knowledge graph (MMKG). However, multi-modal knowledge graphs 
(MMKGs) often face issues of insufficient data coverage and incompleteness. In 
order to address this issue, a possible strategy is to incorporate supplemental 
information from other multi-modal knowledge graphs (MMKGs). To achieve 
this goal, current methods for aligning entities could be utilized; however, these 
approaches work within the Euclidean space, and the resulting entity representations 
can distort the hierarchical structure of the knowledge graph. Additionally, the 
potential benefits of visual information have not been fully utilized. 

To address these concerns, we present a new approach for aligning entities 
across multiple modalities, which we call hyperbolic multi-modal entity alignment 
(HMEA). This method expands upon the conventional Euclidean representation 
by incorporating a hyperboloid manifold. Initially, we utilize hyperbolic graph 
convolutional networks(HGCN) to acquire structural representations of entities. In 
terms of visual data, we create image embeddings using the densenet model and 
subsequently map them into the hyperbolic space utilizing HGCN. Lastly, we merge 
the structural and visual representations within the hyperbolic space and utilize the 
combined embeddings to forecast potential entity alignment outcomes. Through a 
series of thorough experiments and ablation studies, we validate the efficacy of our 
proposed model and its individual components. 

9.1 Introduction 

In recent times, there has been a noticeable trend of integrating multimedia 
data into knowledge graphs (KGs) to facilitate cross-modal activities that involve 
the interplay of information across multiple modalities, e.g., image and video 
retrieval [27], video summaries [19], visual entity disambiguation [17], visual ques-
tion answering [32], etc. To this end, several multi-modal KGs (MMKGs) [16, 28] 
have been constructed very recently. An example of MMKG can be found in 

© The Author(s) 2023 
X. Zhao et al., Entity Alignment, Big Data Management, 
https://doi.org/10.1007/978-981-99-4250-3_9

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-4250-3protect T1	extunderscore 9&domain=pdf
https://doi.org/10.1007/978-981-99-4250-3_9
https://doi.org/10.1007/978-981-99-4250-3_9
https://doi.org/10.1007/978-981-99-4250-3_9
https://doi.org/10.1007/978-981-99-4250-3_9
https://doi.org/10.1007/978-981-99-4250-3_9
https://doi.org/10.1007/978-981-99-4250-3_9
https://doi.org/10.1007/978-981-99-4250-3_9
https://doi.org/10.1007/978-981-99-4250-3_9
https://doi.org/10.1007/978-981-99-4250-3_9
https://doi.org/10.1007/978-981-99-4250-3_9
https://doi.org/10.1007/978-981-99-4250-3_9


230 9 Multimodal Entity Alignment

Fig. 9.1 An example of MMKG 

Fig. 9.1. For this study, we focus on MMKGs that consist of two modalities, namely, 
the KG structural details and visual information, while retaining a generalizable 
approach. 

Example Figure 9.1 shows a partial MMKG, which consists of entities, image 
sets, and the links between them. To elaborate, the KG structural data entails 
the relationships between the different entities, whereas the visual data is 
sourced from the sets of images. For the entity The Prestige, its image 
set may contain scenes, actors, posters, etc. 

However, many of the current MMKGs have been sourced from restricted data 
sources, causing them to have inadequate domain coverage [22]. To broaden the 
scope of these MMKGs, one potential solution is to incorporate valuable knowledge 
from other MMKGs. An essential step in consolidating knowledge across MMKGs 
is to identify matching entities in different KGs, given that entities serve as the links 
that connect the diverse KGs. This technique is also referred to as multi-modal entity 
alignment (MMEA). 

MMEA is a complex undertaking that necessitates the modeling and amalgama-
tion of information from multiple modalities. For the KG structural information, 
existing entity alignment (EA) approaches [3, 9, 25, 33] can be directly adopted to 
generate entity structural embeddings for MMEA. These methods usually utilize 
TransE-based or graph convolutional network(GCN)-based models [1, 12] to learn 
entity representations of individual KGs, which are then unified using the seed 
entity pairs. Despite this, all of these techniques generate entity representations in 
the Euclidean space, which can result in significant distortion when embedding real-
world graphs that possess scale-free or hierarchical structures [4, 23]. Concerning
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the visual information, the  VGG16 model has been utilized to create embeddings for 
images linked to entities and subsequently employed for alignment. However, the 
VGG16 model is not adept at extracting valuable features from images, which limits 
the efficacy of the alignment process. Lastly, the integration of information from 
both modalities must be executed meticulously to enhance overall effectiveness. 

To tackle the problems mentioned above, we introduce a multi-modal entity 
alignment technique that works in hyperbolic space (HMEA). More specifically, 
we expand the Euclidean representation to the hyperboloid manifold and utilize 
the hyperbolic graph convolutional networks (HGCN) to develop structural rep-
resentations of entities. With regard to visual data, we create image embeddings 
using the densenet model and also map them into the hyperbolic space with HGCN. 
Ultimately, we combine the structural embeddings and image embeddings in the 
hyperbolic space to forecast potential alignments. 

To sum up, the key contributions of our technique can be outlined as follows: 

• We propose a novel MMEA approach, HMEA, which models and integrates multi-
modal information in the hyperbolic space. 

• We apply the hyperbolic graph convolutional networks (HGCNs) to develop 
structural representations of entities and showcase the benefits of the hyperbolic 
space for knowledge graph representations. 

• We use a superior image embedding model to acquire improved visual represen-
tations for alignment. 

• We perform thorough experimental evaluations to confirm the efficacy of our 
proposed model. 

Organization Section 9.2 overviews related work, and the preliminaries are 
introduced in Sect. 9.3. Section 9.4 describes our proposed approach. Section 9.5 
presents experimental results, followed by conclusion in Sect. 9.6. 

9.2 Related Work 

In this section, we introduce some efforts that are relevant to this work. 

9.2.1 Multi-Modal Knowledge Graph 

Many knowledge graph construction studies concentrate on organizing and dis-
covering textual data in a structured format, neglecting other resources available 
on the Web [28]. Nevertheless, real-world applications require cross-modal data, 
such as image and video retrieval, visual question answering, video summaries, 
visual commonsense reasoning, and so on. Consequently, multi-modal knowledge 
graphs (MMKGs) have been introduced, which comprise diverse information (e.g., 
image, text, KG) and cross-modal relationships. However, building MMKGs poses
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several challenges. Collecting substantial multi-modal data from search engines 
is a time-consuming and laborious task. Additionally, MMKGs often have low 
domain coverage and are incomplete. Integrating multi-modal knowledge from 
other MMKGs is an effective way to enhance their completeness. Currently, there 
are few studies about merging different MMKGs. Liu et al. [16] built two pairs 
of MMKGs and extracted relational, latent, numerical, and visual features for 
predicting the SameAs link between entities. And some approaches of multi-
modal knowledge representation involve visual features from entity images for 
knowledge representation learning; IKRL [31] integrates image representations into 
an aggregated image-based representation via an attention-based method. 

9.2.2 Representation Learning in Hyperbolic Space 

Essentially, most of the existing GCN models are designed for graphs in Euclidean 
spaces [2]. However, research has found that graph data exhibits a non-Euclidean 
structure [18], and embedding real-world graphs with a scale-free or hierarchical 
structure results in significant distortion [4, 23]. Moreover, recent studies in network 
science have shown that hyperbolic geometry is ideal for modeling complex 
networks, as the hyperbolic space can naturally reflect some graph properties [14]. 
One of the key features of hyperbolic spaces is that they expand more rapidly than 
Euclidean spaces, which expands exponentially rather than polynomially. Due to 
the advantages of hyperbolic space in representing graph structure data, there has 
been growing interest in representation learning in hyperbolic spaces, particularly 
in learning the hierarchical representation of a graph [20]. Furthermore, Nickel 
et al. [21] have demonstrated that the Lorentz model of hyperbolic geometry has 
favorable properties for stochastic optimization and leads to substantially enhanced 
embeddings, particularly in low dimensions. Additionally, some researchers have 
begun to extend deep learning methods to hyperbolic space, achieving state-of-the-
art performance on link prediction and node classification tasks [7, 8, 26]. 

9.3 Preliminaries 

In this section, we start by providing a formal definition of the MMEA task. 
Then, we provide a brief overview of the GCN model. Lastly, we introduce the 
fundamental principles of hyperbolic geometry, which serve as the foundation for 
our proposed model.
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Fig. 9.2 An example of MMEA. Seed entity pairs are connected by dashed lines. For clarity, we 
only choose an image to represent the set of images of an entity 

9.3.1 Task Formulation 

The goal of MMEA is to align entities in two MMKGs. An MMKG typically 
encompasses information in several modalities. In this study, we concentrate on the 
KG structural information and visual information, without any loss of generality. 
Formally, we represent MMKGs as .MG = (E,R, T , I ), where E, R, T , and I 
denote the sets of entities, relations, triples, and images, respectively. A relational 
triple .t ∈ T can be represented as .(e1, r, e2), where .e1, e2 ∈ E and .r ∈ R. An entity 
e is associated with multiple images .Ie = {i0e , i1e , . . . , ine }. 

Given two MMKGs, .MG1 = (E1, R1, T1, I1), .MG2 = (E2, R2, T2, I2), and 
seed entity pairs (pre-aligned entity pairs for training) . S = {(e1s , e2s )|e1s ↔ e2s , e

1
s ∈

E1, e
2
s ∈ E2}, where . ↔ represents equivalence, the task of MMEA can be defined 

as discovering more aligned entity pairs .{(e1, e2)|e1 ∈ E1, e
2 ∈ E2}. We use  the  

following example to further illustrate this task. 

Example Figure 9.2 shows two partial MMKGs. The equivalence between 
The Dark Knight in .MG1 and The Dark Knight in .MG2 is known 
in advance. EA aims to detect potential equivalent entity pairs, e.g., Nolan 
in .MG1 and Nolan in .MG2, using the known alignments. ��

9.3.2 Graph Convolutional Neural Networks 

GCNs [10, 13] are a neural network type that works directly with graph data. A 
GCN model comprises several stacked GCN layers. The inputs to the l-th layer of 
the GCN model are node feature vectors and the graph’s structure. . H (l) ∈ Rn×dl

is a vertex feature representation, where n is the number of vertices and . dl is the
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dimensionality of feature matrix. .Â = D− 1
2 (A + I )D− 1

2 represents the symmetric 
normalized adjacency matrix. The identity matrix . I is added to the adjacency matrix 
. A to obtain self-loops for each node, and the degree matrix .D = ∑

j (Aij +I ij ). The  

output of the l-th layer is a new feature matrix .H (l+1) by the following convolutional 
computation: 

.H (l+1) = σ(ÂH (l)W (l)). (9.1) 

9.3.3 Hyperboloid Manifold 

We provide a brief overview of the critical concepts in hyperbolic geometry. For 
a more comprehensive description, please refer to [6]. Hyperbolic geometry refers 
to a non-Euclidean geometry that features a constant negative curvature used to 
measure how a geometric object differs from a flat plane. In this work, we use the d-
dimensional Poincare ball model with negative curvature .−c .(c > 0): . P (d,c) = {x ∈
Rd : ‖x‖2 < 1

c
}, where .‖ · ‖ is the . L2 norm. For each point .x ∈ P (d,c), the tangent 

space . T c
x is a d-dimensional vector space at point x, which contains all possible 

directions of paths in .P (d,c) leaving from x. Next, we present several fundamental 
actions in the hyperbolic space, which play a critical role in our proposed model. 

Exponential and Logarithmic Maps Specifically, let . v be the feature vector in the 
tangent space . T c

o ; . o is a point in the hyperbolic space .P (d,c), which is also used as a 
reference point. Let . o be the origin, .o = 0. The tangent space . T c

o can be mapped to 
.P (d,c) via the exponential map: 

. expc
o(v) = tanh(

√
c‖v‖) v√

c‖v‖ . (9.2) 

And conversely, the logarithmic map which maps .P (d,c) to . T c
o is defined as: 

. logc
o(y) = arctanh(

√
c‖y‖) y√

c‖y‖ . (9.3) 

Möbius Addition Vector addition does not have a well-defined meaning in the 
hyperbolic space. Adding the vectors of two points directly, as in Euclidean space, 
in the Poincare ball could yield a point outside the ball. In this case, the Möbius 
addition [7] provides an analogue to the Euclidean addition in the hyperbolic space. 
Here, . ⊕c represents the Möbius addition as: 

.hi ⊕c hj =
(
1 + 2c

〈
hi ,hj

〉 + c
∥
∥hj

∥
∥2

)
hi +

(
1 − c ‖hi‖2

)
hj

1 + 2c
〈
hi ,hj

〉 + c2 ‖hi‖2
∥
∥hj

∥
∥2

. (9.4)
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Fig. 9.3 The framework of our proposed method 

9.4 Methodology 

In this section, we present our proposed approach HMEA, which operates in the 
hyperbolic space. The framework is shown in Fig. 9.3. We first adopt HGCN to obtain 
the structural embeddings of entities. Subsequently, we transform the corresponding 
entity images into visual embeddings employing the densenet model, which are 
further projected into the hyperbolic space. In the end, we join these embeddings in 
the hyperbolic space and predict the alignment outcomes utilizing a pre-determined 
hyperbolic distance. We use the following example to illustrate our proposed model. 

Example Further to the previous example, by using structural information, 
it is easy to detect that Nolan in .MG1 is equivalent to Nolan in .MG2. 
However, solely relying on structural data is insufficient and might result in an 
incorrect alignment of Michael Caine in .MG1 with Christian Bale 
in .MG2. In this scenario, the utilization of visual information would be highly 
beneficial as the images of Michael Caine in .MG1 and Christian 
Bale in .MG2 are significantly dissimilar. Consequently, we consider both 
structural and visual information for alignment. ��

In the following, we elaborate on the various components of our proposal. 

9.4.1 Structural Representation Learning 

We acquire the structural representation of MMKGs by employing hyperbolic 
graph convolutional neural networks, which extends convolutional computation to 
manifold space and leverages the effectiveness of both graph neural networks and
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hyperbolic embeddings. Initially, we transform the input Euclidean features to the 
hyperboloid manifold. Then, through feature transformation, message passing, and 
nonlinear activation in the hyperbolic space, we can get the hyperbolic structural 
representations. 

Mapping Input Features to Hyperboloid Manifold In general, the input node 
features are produced by pre-trained Euclidean neural networks, and hence, they 
exist in the Euclidean space. We begin by establishing a conversion from Euclidean 
features to the hyperbolic space. 

Here, we assume that the input Euclidean features .xE ∈ ToHc, where . ToHc

represent the tangent space referring to . o, and .o ∈ Hc denotes the north pole 
(origin) in hyperbolic space. We obtain the hyperbolic feature matrix .xH via: 
.xH = expc

o(x
E), where .expc

o(·) is defined in Eq. (9.2). 
Feature Transformation and Propagation The core operations in hyperbolic 
structural learning, similar to GCN, are feature transformation and message passing. 
While these operations are well-established in the Euclidean space, they are 
considerably more complex in the hyperboloid manifold. One possible solution is 
to perform these functions with trainable parameters in the tangent space of a point 
within the hyperboloid manifold, as the tangent space is Euclidean. To this end, we 
utilize the .exp(·) map and .log(·) map to convert between the hyperboloid manifold 
and the tangent space. This enables us to make use of the tangent space .ToHd

c for 
executing Euclidean operations. 

The initial step involves using the logarithmic map to map the hyperbolic 
representation .xH

v ∈ R1×d of node v to the tangent space .ToHd
c . Next, in .ToH

d
c , 

we compute the feature transformation and propagation rule for node v as: 

.xT
v = Â logc

o

(
xH

v

)
W , (9.5) 

where .xT
v ∈ R1×d ′

denotes the feature representation in the tangent space and . Â
represents the symmetric normalized adjacency matrix; . W is a .d ′ × d trainable 
weight matrix. 

Nonlinear Activation with Different Curvatures Once the features have been 
transformed in the tangent space, a nonlinear activation function .σ⊗cl ,cl+1 is applied 
to learn nonlinear transformations. Specifically, in the tangent space .ToHd

cl
of layer 

l, Euclidean nonlinear activation is performed before mapping the features to the 
manifold of the next layer: 

.σ⊗cl ,cl+1
(
xT

v

)
= expcl+1

o

(
σ

(
logcl

o

(
xT

v

)))
, (9.6) 

where the hyperbolic curvatures at layer l and .l + 1 are denoted as .−1/cl and 
.−1/cl+1, respectively. The activation function . σ used is the .ReLU(·) function. This 
step is critical in enabling us to vary the curvature smoothly at each layer, which is
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necessary for achieving good performance due to limitations in machine precision 
and normalization. 

Based on the hyperboloid feature transformation and nonlinear activation, the 
convolutional computation in the hyperbolic space is redefined as: 

. H l+1 = expcl+1
o

(
σ

(
Â logcl

o

(
H l

)
W

))
, (9.7) 

where the convolutional computation in hyperbolic space involves using learned 
node embeddings in the hyperbolic space at layer .l + 1 and layer l, represented 
respectively as .H l+1 ∈ Rn×dl+1

and .H l ∈ Rn×dl
. The initial embeddings 

are represented as .H 0 = xH . The symmetric normalized adjacency matrix is 
represented by . Â, and the trainable weight matrix is represented by . W , which has 
dimensions .dl × dl+1. 

9.4.2 Visual Representation Learning 

The densenet model [11] is used to learn image embeddings, which has been pre-
trained on the ImageNet dataset [5]. The softmax layer in densenet is removed and 
1920-dimensional embeddings are obtained for all images in the MMKGs. These 
embeddings are then projected into the hyperbolic space using HGCN to enhance 
their expressive power. 

9.4.3 Multi-Modal Information Fusion 

As both visual and structural information can impact the alignment results. To 
combine these two types of information, we propose a novel method that merges the 
structural information and visual information of MMKGs. Specifically, we obtain 
the merged representation of entity . ei in the hyperbolic space using the following 
approach: 

.hi = (
β · H i

s

) ⊕c

(
(1 − β) · H i

v

)
, (9.8) 

where . H s and . H v are structural and visual embeddings learned from HGCN model, 
respectively; the hyper-parameter . β is used to adjust the relative weight of the 
structure and visual features in the final merged representation. The Möbius addition 
operator . ⊕c is used to combine the structural and visual embeddings. However, the 
dimensions of the structural and visual representations should be identical.
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9.4.4 Alignment Prediction 

To predict the alignment results, we compute the distance between the entity 
representations from two MMKGs. The Euclidean distance and Manhattan distance 
are popular distance measures used in the Euclidean space [15, 30]. However, in 
the hyperbolic space, we must use the hyperbolic distance between nodes as the 
distance measure. For entities . ei in .MG1 and . ej in .MG2, the distance is defined as: 

.dc

(
hi ,hj

) = ||(−hi ) ⊕c hj ||, (9.9) 

where . hi and . hj denote the merged embeddings of . ei and . ej in the hyperbolic space, 
respectively; .‖ · ‖ is the . L1 norm; the operator . ⊕c is the Möbius addition. 

We expect the distance to be small for equivalent entities and large for nonequiva-
lent ones. To align a specific entity . ei in .MG1, our approach calculates the distances 
between . ei and all entities in .MG2 and presents a ranked list of entities as candidate 
alignments. 

9.4.5 Model Training 

To embed equivalent entities as closely as possible in the vector space, we utilize 
a set of established entity alignments (known as seed entities) S as training data to 
train the model. Specifically, we minimize the margin-based ranking loss function 
during model training: 

.
L =

∑

(e,v)∈S

∑

(e′,v′)∈S′
(e,v)

[dc (he,hv) + γ − dc (he′,hv′)]+ , (9.10) 

where .[x]+ = max{0, x}; .(e, v) represents a seed entity pair and S is the set of entity 
pairs; .S′

(e,v) represents the set of negative instances created by altering .(e, v), i.e., by 
substituting e or v with a randomly selected entity from either .MG1 or .MG2; . γ > 0
denotes the margin hyper-parameter that separates positive and negative instances. 
The margin-based loss function stipulates that the distance between entities in 
positive pairs should be small, and the distance between entities in negative pairs 
should be large.
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9.5 Experiment 

9.5.1 Dataset and Evaluation Metric 

In this study, we utilized datasets sourced from FreeBase, DBpedia, and YAGO, 
which were created by Liu et al. [16]. These datasets were developed by starting 
with FB15K to establish multi-modal knowledge graphs, which were then aligned 
with entities from other knowledge graphs such as DB15K and YAGO15K through 
reference links. Our experiments focused on two pairs of multi-modal knowledge 
graphs: FB15K-DB15K and FB15K-YAGO15K. 

Due to the absence of original images in the datasets, we acquired the corre-
sponding images for each entity using the URIs provided in [17]. To achieve this, we 
developed a Web crawler that can extract query results from image search engines, 
i.e., Google Images,1 Bing Images,2 and Yahoo Image Search.3 Following this, we 
allocated the images obtained from various search engines to different MMKGs, 
thereby showcasing the dissimilarity among different MMKGs. 

The detailed information on the datasets is provided in Table 9.1. Each dataset 
comprises approximately 15,000 entities and over 11,000 sets of entity images. The 
Images column represents the number of entities that possess the image sets. These 
alignments are given by the SameAs predicates that have been previously found. In 
the experiments, the known equivalent entity pairs are used for model training and 
testing. 

Evaluation Metric We utilize .Hits@k as the evaluation metric to gauge the 
efficacy of all the approaches. This metric determines the percentage of correctly 
aligned entities that are ranked among the top-k candidates. 

9.5.2 Experimental Setting and Competing Approaches 

Experimental Setting To analyze the effectiveness of the methods across various 
percentages of the provided alignments . P(%. ), we evaluate the methods with low 

Table 9.1 Statistic of the MMKG datasets 

Datasets Entities Relations Rel.Triples Images SameAs 

FB15K 14,951 1,345 592,213 13,444 

DB15K 14,777 279 99,028 12,841 12,846 

YAGO15K 15,404 32 122,886 11,194 11,199

1 https://www.google.com/imghp?hl=EN. 
2 https://www.bing.com/image. 
3 https://images.search.yahoo.com/. 

https://www.google.com/imghp?hl=EN
https://www.google.com/imghp?hl=EN
https://www.google.com/imghp?hl=EN
https://www.google.com/imghp?hl=EN
https://www.google.com/imghp?hl=EN
https://www.google.com/imghp?hl=EN
https://www.google.com/imghp?hl=EN
https://www.bing.com/image
https://www.bing.com/image
https://www.bing.com/image
https://www.bing.com/image
https://www.bing.com/image
https://images.search.yahoo.com/
https://images.search.yahoo.com/
https://images.search.yahoo.com/
https://images.search.yahoo.com/
https://images.search.yahoo.com/
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(.20%), medium (.50%), and high percentage (.80%) of the given seed entity pairs. 
The remaining sameAs triples are used for test. To ensure fairness, we have 
maintained the same number of dimensions (i.e., 400) for both GCN-Align and 
HMEA. The other parameters of GCN-Align follow [29]. For the parameters of our 
approach HMEA, we have created six negative samples for each positive sample. 
The margin hyper-parameters used in the loss function are .γHMEA−s = 0.5 and 
.γHMEA−v = 1.5, respectively. We optimized HMEA using the Adam optimizer. 

Competing Approaches To showcase the effectiveness of our proposed model, we 
have selected three state-of-the-art approaches as competitors: 

• GCN-Align [29] utilizes GCN to encode the structural information of entities and 
then combines relation and image embeddings for the purpose of entity alignment. 

• PoE [16] is based on the product of expert model. It computes the scores of 
facts under each modality and learns the entity embeddings for entity alignment. 
PoE combines information from two modalities. Additionally, we compare our 
approach with the PoE-s variant, which solely utilizes the structural information. 

• IKRL [31] integrates image representations into an aggregated image-based 
representation via an attention-based method. The method was initially proposed 
in the domain of knowledge representation, and we adapted it to address the 
MMEA problem. 

In order to showcase the advantages of hyperbolic geometry, particularly in the 
learning of structural features, we have conducted preliminary experiments which 
solely utilize the structural information for EA, resulting in HMEA-s, GCN-Align-
s, and PoE-s. In addition, to evaluate the contribution of visual information, we  
compare PoE, GCN-Align, and HMEA with just visual information, namely, PoE-v, 
GCN-Align-v, and HMEA-v. 

9.5.3 Results 

Table 9.2 displays the results, indicating that HMEA exhibits the most superior 
performance in all scenarios. Notably, in the case of FB15K-YAGO15K with 80% 
seed entity pairs, HMEA outperforms PoE and GCN-Align by almost 15% in terms of 
.Hits@1. With 20% seed entity pairs, our approach also shows better results and 
the improvement of .Hits@1 is around 2% and .Hits@10 is up to 20%. Based on 
the results obtained from PoE, it is evident that there is only a slight improvement in 
performance from .Hits@1 to .Hits@10, with the range being between 4 and 9%. 
In contrast, the enhancements in performance from .Hits@1 to .Hits@10 observed 
for HMEA are at least 20% across all scenarios. Moreover, it is worth noting that 
HMEA achieves significantly better results than IKRL. 

Table 9.3 demonstrates that even when utilizing solely structural information, 
HMEA-s still achieves superior results compared to the other two methods. Specif-
ically, our proposed approach outperforms GCN-Align-s by almost 5% in terms of
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Table 9.2 Alignment prediction on both datasets for different percentages of P 

20% 50% 80% 

FB15K-DB15K .Hits@1 .Hits@10 .Hits@1 .Hits@10 .Hits@1 . Hits@10

PoE 11.1 17.8 23.5 33.0 34.4 40.6 

GCN-Align 5.35 17.11 13.85 34.31 22.18 48.95 

IKRL 1.01 2.40 2.77 5.79 5.41 11.09 

HMEA 12.65 36.86 26.23 58.08 41.68 78.55 
20% 50% 80% 

FB15K-YAGO15K .Hits@1 .Hits@10 .Hits@1 .Hits@10 .Hits@1 . Hits@10

PoE 8.7 13.3 18.5 24.7 28.9 34.3 

GCN-Align 6.76 17.99 16.47 35.85 28.75 53.05 

IKRL 0.86 1.75 1.95 3.73 3.57 7.14 

HMEA 10.51 31.27 26.50 58.08 43.30 80.11 

The bold figures in the tables represent the best result

Table 9.3 Results of three methods with structural information 

20% 50% 80% 

FB15K-DB15K .Hits@1 .Hits@10 .Hits@1 .Hits@10 .Hits@1 . Hits@10

PoE-s 10.7 16.5 22.9 31.7 33.6 38.6 

GCN-Align-s 5.35 17.11 13.85 34.31 22.18 48.95 

HMEA-s 11.73 33.56 24.84 56.69 40.87 76.77 
20% 50% 80% 

FB15K-YAGO15K .Hits@1 .Hits@10 .Hits@1 .Hits@10 .Hits@1 . Hits@10

PoE-s 8.4 12.3 18.0 23.1 28.1 31.9 

GCN-Align-s 6.76 17.99 16.47 35.85 28.75 53.05 

HMEA-s 9.66 28.96 25.37 56.60 42.63 78.42 

The bold figures in the tables represent the best result

.Hits@1 on FB15K-DB15K and by 3% on FB15K-YAGO15K with 20% seed 
alignments. When using 50 and 80% seed entity pairs, HMEA-s shows significant 
improvements in performance. The improvements range from 10 to 18% regarding 
.Hits@1 and from 20 to 30% in terms of .Hits@10. These results suggest that our 
approach excels in capturing precise hierarchical structural representations. 

Table 9.4 presents the results when incorporating visual information into the 
model. We compare the performance of three variants: PoE-v, GCN-Align-v, and 
HMEA-v. The results indicate that GCN-Align-v does not produce valuable visual 
representations for MMEA. However, even when utilizing only structural infor-
mation, HMEA-v still achieves better results than PoE-v. Specifically, our proposed 
approach outperforms PoE-v slightly in both datasets for .Hits@1, by less than 
1% with 20% seed alignments. On FB15K-DB15K dataset, when using 80% 
seeds, our proposed approach HMEA-v demonstrates significant improvements in 
performance. The improvements are around 7% regarding .Hits@1 and 18% in 
terms of .Hits@10. These results indicate that our proposed method is effective
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Table 9.4 Comparison of three methods with visual information 

.20% 50% 80% 

FB15K-DB15K .Hits@1 .Hits@10 .Hits@1 .Hits@10 .Hits@1 . Hits@10

PoE-v 0.8 2.7 1.3 3.8 1.7 5.9 

GCN-Align-v 0.0 0.0 0.0 0.0 0.0 0.0 

HMEA-v 1.77 8.08 3.33 12.65 9.05 24.20 
.20% 50% 80% 

FB15K-YAGO15K .Hits@1 .Hits@10 .Hits@1 .Hits@10 .Hits@1 . Hits@10

PoE-v 0.7 2.4 1.1 3.2 1.7 5.5 

GCN-Align-v 0.0 0.0 0.0 0.0 0.0 0.0 

HMEA-v 1.35 5.43 2.71 11.15 5.79 18.07 

The bold figures in the tables represent the best result

in learning visual features and incorporating them into the model to improve the 
overall performance. 

9.5.4 Ablation Experiment 

In this work, we consider multiple modalities of information in MMKGs. Specif-
ically, we take into account the structural and visual aspects of the information. 
To further confirm the usefulness of multi-modal knowledge for MMEA, we carry 
out an ablation experiment. In addition, upon comparing HMEA and HMEA-s in 
Tables 9.2 and 9.3, we observe that incorporating visual information in our approach 
results in slightly better performance. The improvements are approximately 1% 
in terms of .Hits@1. Moreover, by comparing HMEA and HMEA-v in Tables 9.2 
and 9.4, we can also conclude that the structural information plays a significant 
role. From the ablation study, we can conclude that MMEA primarily relies on 
the structural information, but  the  visual information still plays a useful role. 
Furthermore, the study also highlights that the combination of these two types of 
information leads to even better results. 

9.5.5 Case Study 

A key property of hyperbolic spaces is their exponential expansion, which means 
that they expand much faster than Euclidean spaces that expand polynomially. This 
property can be advantageous for distinguishing between similar entities since the 
neighbor nodes of a central node can be distributed in a larger space, resulting in 
greater distances between them.
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To demonstrate the effectiveness of hyperbolic embeddings, we conducted a case 
study using Michael Caine as the root node. We visualized the embeddings 
of 1-hop film-related entities learned from both GCN-Align and HMEA separately, 
in the PCA-projected spaces shown in Fig. 9.4. We observed that for entities of 
the same type or with similar structural information, such as entity Alfie and 
B-o-B, their Euclidean embeddings (generated via GCN-Align) are placed closely 
together. In contrast, the distances between such entities in hyperbolic space are 
relatively farther apart, with only a few exceptions. This validates that the hyperbolic 
structural representation can help distinguish between similar entities. Furthermore, 
by placing similar entities (in the same KG) far apart, the hyperbolic representation 
can facilitate the alignment process across KGs. 

An example can be seen in Fig. 9.4a, where entity Alfie in FB15K is closest 
to entity B-o-B, which is incorrect. However, in Fig. 9.4b, entity B-o-B is placed 
far away from Alfie, and the closest entity to Alfie is its equivalent entity in 

Fig. 9.4 The embeddings of 
1-hop film-related neighbor 
entities of Michael Caine 
generated from GCN-Align 
and HMEA separately in the 
PCA-projected space. The 
green points represent entities 
in FB15K; red points 
represent entities in DB15K. 
For simplicity, we annotate 
part of entities. B-o-B is the 
abbreviation of Battle of 
Britain. (a) Embedding 
generated from GCN-Align. 
(b) Embedding generated 
from HMEA
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Table 9.5 Details of the cross-lingual datasets 

Datasets Entities Relations Attributes Rel.triples Attr.triples 

DBP15KZH-EN Chinese 66,469 2,830 8,113 153,929 379,684 

English 98,125 2,137 7,173 237,674 567,755 

DBP15KJA-EN Japanese 65,744 2,043 5,882 164,373 354,619 

English 95,680 2,096 6,066 233,319 497,230 

DBP15KFR-EN French 66,858 1,379 4,547 192,191 528,665 

English 105,889 2,209 6,422 278,590 576,543 

DB15K. By using hyperbolic projections, similar entities in the same KG are well 
distinguished and placed far apart, reducing the likelihood of alignment mistakes. 

9.5.6 Additional Experiment 

The cross-lingual EA datasets are the most commonly used datasets for evaluating 
EA methods. We included experiments on these datasets to demonstrate that our 
proposed approach is effective for popular datasets, including the cross-lingual EA 
task. Note that diverse languages are not taken as multiple modalities, and the 
cross-lingual EA is in essence single-modal EA. We use the DBP15K datasets in 
the experiments, which were built by Sun et al. [24]. As shown in Table 9.5, the  
datasets were generated from DBpedia, which contains rich inter-language links 
between different language versions of Wikipedia. Each dataset contains data in 
different languages and 15,000 known inter-language links connecting equivalent 
entities in two KGs, which are used for model training and testing. Following the 
setting in [29], we use .30% of inter-language links for training, and .70% of them 
for testing. .Hits@k is used as the evaluation measure. 

The dimensions of both structural and attribute embeddings were set to 300 
dimensions for GCN-Align. GCN-Align-s and HMEA-s represent adopting structural 
information; GCN-Align-a and HMEA-a represent adopting attribute information; 
and GCN-Align and HMEA combine both the structural information and attribute 
information. 

Table 9.6 shows that in all datasets, HMEA-s outperforms GCN-Align-s, with 
improvements of around 7% in terms of .Hits@1 and more than 10% in terms of 
.Hits@10. These results demonstrate that HMEA benefits from hyperbolic geometry 
and is able to capture better structural features. Furthermore, our proposed approach 
achieves better results compared to GCN-Align as it combines both structural and 
attributive information, resulting in an approximately 10% increase in .Hits@1. 
Regarding attribute information, it is worth noting that our approach, HMEA-
a, outperforms GCN-Align-a by a significant margin. Specifically, our approach 
achieves an approximately 15% improvement in .Hits@1 across all datasets.
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Table 9.6 Result in cross-lingual datasets 

ZH-EN EN-ZH 

DBP15KZH-EN .Hits@1 .Hits@10 .Hits@1 . Hits@10

GCN-Align-s 39.42 71.34 33.60 65.23 

HMEA-s 46.23 82.36 44.53 81.95 
GCN-Align-a 13.44 40.94 12.54 38.78 

HMEA-a 33.99 71.15 32.80 69.79 
GCN-Align 43.08 75.92 36.25 69.17 

HMEA 54.04 87.88 51.88 86.57 
JA-EN EN-JA 

DBP15KJA-EN .Hits@1 .Hits@10 .Hits@1 . Hits@10

GCN-Align-s 39.95 72.72 36.09 67.43 

HMEA-s 47.63 83.96 47.24 83.96 
GCN-Align-a 9.27 31.85 8.78 31.89 

HMEA-a 28.36 63.99 27.73 63.97 
GCN-Align 42.51 75.74 38.31 70.49 

HMEA 53.06 87.47 52.65 87.41 
FR-EN EN-FR 

DBP15KFR-EN .Hits@1 .Hits@10 .Hits@1 . Hits@10

GCN-Align-s 38.38 74.45 37.37 71.65 

HMEA-s 44.27 83.15 43.81 83.14 
GCN-Align-a 2.65 13.50 3.02 14.51 

HMEA-a 12.40 48.70 15.44 52.12 
GCN-Align 39.48 76.05 38.44 73.33 

HMEA 48.40 86.49 48.15 86.18 

9.6 Conclusion 

This chapter introduces our proposed approach, HMEA, which is a multi-modal 
EA approach designed to efficiently integrate multi-modal information for EA 
in MMKGs. To achieve this, our approach extends the Euclidean representation 
to a hyperboloid manifold and employs HGCN to learn structural embeddings of 
entities. Additionally, we leverage a more advanced model, densenet, to learn 
more accurate visual embeddings. These structural and visual embeddings are then 
aggregated in the hyperbolic space to predict potential alignments. We validate 
the effectiveness of our proposed approach through comprehensive experimental 
evaluations. Additionally, we conduct further experiments that confirm the superior 
performance of HGCN in learning structural features of knowledge graphs in the 
hyperbolic space.
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