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Foreword

Time is central to life. We are aware of time slipping away, being used well or
poorly, or having a great time. Thinking about time causes us to reflect on the
biological evolution over millennia, our cultural heritage, and the biographies of
great personalities. It also causes us to think personally about our early life or the
business of the past week. But thinking about time is also a call to action since
inevitably we must think about the future — the small decisions about daily meetings,
our plans for the next year, or our aspirations for the next decades.

Reflections on time for an individual can be facilitated by visual representations
such as medical histories, vacation plans for a summer trip, or plans for five years
of university study to obtain an advanced degree. These personal reflections are
enough justification for research on temporal visualizations, but the history and
plans of organizations, communities, and nations are also dramatically facilitated
by powerful temporal visual tools that enable exploration and presentation. Even
more complex problems emerge when researchers attempt to understand biological
evolution, geological change, and cosmic scale events.

For the past 500 years, circular clock faces have been the prime representation for
time data. These emphasize the twelve or 24-hour cycles of days, but some clocks
include week-day, month or year indicators as well. For longer time periods, timelines
are the most widely used by historians as well as geologists and cosmologists.

The rise of computer display screens opened up new opportunities for time
displays, challenging but not displacing the elegant circular clock face. Digital time
displays are neatly discrete, clear, and compact, but make time intervals harder to
understand and compare. Increased use of linear time displays on computers has come
with new opportunities for showing multiple time points, intervals, and future events.
However, a big benefit of using computer displays is that multiple temporal variables
can be shown above or below, or on the same timeline. These kinds of overviews
pack far more information in a compact space than was previously possible while
affording interactive exploration by zooming and filtering. Users can then see if the
variables move in the same or opposite directions, or if one movement consistently
precedes the other, suggesting causality.

vii



viii Foreword

These rich possibilities have payoffs in many domains including medical histories,
financial or economic trends, and scientific analyses of many kinds. However, the
design of interfaces to present and manipulate these increasingly complex and large
temporal datasets has a dramatic impact on the users’ efficacy in making discoveries,
confirming hypotheses, and presenting results to others.

This book on Visualization of Time-Oriented Data by Aigner, Miksch, Schumann,
and Tominski represents an important contribution for researchers, practitioners,
designers, and developers of temporal interfaces as it focuses attention on this topic,
drawing together results from many sources, describing inspirational prototypes,
and providing thoughtful insights about existing designs. While I was charmed by
the historical review, especially the inclusion of Duchamp and Picasso’s work, the
numerous examples throughout the book showed the range of possibilities that have
been tried — successes as well as failures. The analysis of the user tasks and interaction
widgets made for valuable reading, provoking many thoughts about the work that
remains to be done.

In summary, this second edition extends the coverage and thoughtfulness of the first
edition. It continues to be not only about the extensive work that has been done, but
it is also a call to action, to build better systems, to help decision makers, and to
make a better world.

University of Maryland, Ben Shneiderman
September 2022



Preface

Preface to the Second Edition

The importance of time and time-oriented data remains unbroken. It even increased
in recent years. And with this increase, we also see an increased need for effective
techniques and tools for understanding temporal phenomena and gaining insight into
time-oriented data.

In 2011, the first edition of this book was published, and it was well received
by the research community. About a thousand times has the book been cited since
then, and more than 10 years later, it is still collecting numerous citations each
year. Many colleagues expressed their interest in the book on social media and on
research platforms. The success of the first edition motivated us to think about a
second edition. At VIS 2019 in Vancouver, we decided to start working on it with
the goal to have the second edition ready in 2021, ten years after the first edition.
However, as we all know, the world suddenly changed in 2020 and so we did get
behind schedule. Today, we are glad that we made it in 2022 and we are excited about
the revised and extended second edition.

So, what is new for the second edition? First of all, the book is now published
under an open-access license. For the first edition, we received many messages asking
us to provide the book’s full text, which, unfortunately, we had to deny. Given the
great reception in the community, we decided to publish the second edition as an
open-access book so that it can be read by anyone interested in the visualization
of time and time-oriented data. We gratefully acknowledge the financial support
provided by our universities in this regard.

For the second edition, the entire content has been revised and extended. The
most obvious change is that we moved the big survey chapter with originally 101
visualization techniques to Appendix A, which now provides more than 150 de-
scriptions and illustrations of classic and contemporary visualization approaches
for time and time-oriented data. Also, the chapter on interaction support has been
expanded substantially, now including advanced methods for interacting with visual
representations of data in Section 5.4, among other new content. Moreover, the book
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now covers the topics of data quality (see Section 3.4 and Appendix B) as well
as segmentation and labeling (see Section 6.3). The completely new Chapter 7 de-
scribes how the structured view developed in this book can be used for the guided
selection of suitable visualization techniques. Throughout the book, we made further
changes to make the content up to date, including clean up, restructuring, and adding
state-of-the-art knowledge.

For the second edition, we also revised our TimeViz Browser, the digital pendant
to the survey of visualization techniques in Appendix A. It includes the same set of
techniques as the book, but comes with additional filter and search facilities allowing
scientists and practitioners to find exactly the solutions they are interested in. The
TimeViz Browser is available at https://browser.timeviz.net.

We hope you are as excited as we are about the second edition with all its extensions.
Happy reading!

St. Polten University of Applied Sciences, Wolfgang Aigner
TU Wien, Silvia Miksch
University of Rostock, Heidrun Schumann
September 2022 Christian Tominski

Preface to the First Edition

Time is an exceptional dimension. We recognize this every day: when we are waiting
for a train, time seems to run at a snail’s pace, but the hours we spend in a bar
with good friends pass by so quickly. There are times when one can wait endlessly
for something to happen, and there are times when one is overwhelmed by events
occurring in quick succession. Or it can happen that the weather forecast has predicted
a nice and sunny summer day, but our barbecue has to be canceled due to a sudden
heavy thunderstorm. Our perception of the world around us and our understanding
of relations and models that drive our everyday life are profoundly dependent on the
notion of time.

As visualization researchers, we are intrigued by the question of how this im-
portant dimension can be represented visually in order to help people understand
the temporal trends, correlations, and patterns that lie hidden in data. Most data
are related to a temporal context; time is often inherent in the space in which the
data have been collected or in the model with which the data have been generated.
Seen from the data perspective, the importance of time is reflected in established
self-contained research fields around temporal databases or temporal data mining.
However, there is no such sub-field in visualization, although generating expressive
visual representations of time-oriented data is hardly possible without appropriately
accounting for the dimension of time.
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Preface xi

When we first met, we all had already collected experience in visualizing time
and time-oriented data, be it from participating in corresponding research projects
or from developing visualization techniques and software tools. And the literature
had already included a number of research papers on this topic at that time. Yet
despite our experience and the many papers written, we recognized quite early in our
collaboration that neither we nor the literature spoke a common (scientific) language.
So there was a need for a systematic and structured view of this important aspect of
visualization.

We present such a view in this book — for scientists conducting related research as
well as for practitioners seeking information on how their time-oriented data can be
visualized in order to achieve the bigger goal of understanding the data and gaining
valuable insights. We arrived at the systematic view upon which this book is based
in the course of many discussions, and we admit that agreeing on it was not an easy
process. Naturally, there is still room for arguments to be made and for extensions
of the view to be proposed. Nonetheless, we think that we have managed to lay the
structural foundation of this area.

The practitioner will hopefully find the many examples that we give throughout
the book useful. On top of this, the book offers a substantial survey of visualization
techniques for time and time-oriented data. Our goal was to provide a review of
existing work structured along the lines of our systematic view for easy visual
reference. Each technique in the survey is accompanied by a short description,
a visual impression of the technique, and corresponding categorization tags. But
visual representations of time and time-oriented data are not an invention of the
computer age. In fact, they have ancient roots, which will also be showcased in
this book. A discussion of the closely related aspects of user interaction with visual
representations and analytical methods for time-oriented data rounds off the book.

We now invite you to join us on a journey through time — or more specifically on a
journey into the visual world of time and time-oriented data.

TU Wien & Wolfgang Aigner
University of Rostock, Silvia Miksch
February 2011 Heidrun Schumann

Christian Tominski
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Chapter 1
Introduction

Computers should also help us warp time, but the challenge here is
even greater. Normal experience doesn’t allow us to roam freely in
the fourth dimension as we do in the first three. So we’ve always
relied on technology to aid our perception of time.

Udell (2004, p. 32)

Space and time are two outstanding dimensions because, in conjunction, they repre-
sent the four-dimensional space or simply the world we are living in. Basically, every
piece of data we measure is related and often only meaningful within the context of
space and time. Consider, for example, the price of a barrel of oil. The data value
of $129 alone is not very useful. Only if assessed in the context of where (space)
and when (time) is the oil price valid and only then it is possible to meaningfully
interpret the cost of $129.

Space and time differ fundamentally in terms of how we can navigate and perceive
them. Space can, in principle, be navigated arbitrarily in all three spatial dimensions,
and we can go back to where we came from. Humans have senses for perceiving
space, in particular, the senses of sight, touch, and hearing. Time is different; it does
not allow for active navigation. We are constrained to the unidirectional character
of constantly proceeding time. We cannot go back to the past and we have to wait
patiently for the future to become present. And above all else, humans do not have
senses for perceiving time directly. This fact makes it particularly challenging to
visualize time — making the invisible visible.

Time is an important data dimension with distinct characteristics. Time is com-
mon across many application domains, for example, medical records, business,
science, biographies, history, planning, or project management. In contrast to other
quantitative data dimensions, which are usually “flat”, time has an inherent semantic
structure, which increases time’s complexity substantially. The hierarchical structure
of granularities in time, for example, minutes, hours, days, weeks, and months, is un-
like that of most other quantitative dimensions. Specifically, time comprises different
forms of divisions (e.g., 60 minutes correspond to one hour, while 24 hours make up
one day), and granularities are combined to form calendar systems (e.g., Gregorian,
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2 1 Introduction

Julian, business, or academic calendars). Moreover, time contains natural cycles and
re-occurrences, for example, seasons, but also social (often irregular) cycles, like
holidays or school breaks. Therefore, time-oriented data, i.e., data that are inherently
linked to time, need to be treated differently than other kinds of data and require
appropriate visual, interactive, and computational methods to explore and analyze
them.

The human perceptual system is highly sophisticated and specifically suited to
spot visual patterns. Visualization strives to exploit these capabilities and to aid in
seeing and understanding otherwise abstract and arcane data. Early visual depictions
of time series date back as far as the 11th century (see Chapter 2). Today, a variety of
visualization methods exist and visualization is applied widely to present, explore,
and analyze data. However, many visualization techniques treat time just as a numeric
parameter among other quantitative dimensions and neglect time’s special character.
In order to create visual representations that succeed in assisting people in reasoning
about time and time-oriented data, visualization methods have to account for the
special characteristics of time. This is also demanded by Shneiderman (1996) in his
well-known task by data type taxonomy, where he identifies temporal data as one of
seven basic data types most relevant in data analysis scenarios.

Creating good visualizations usually requires good data structures. However,
commonly only simple sequences of time-value-pairs {(to, vg), (t1,01), ..., (tn,n))
are used as the basis for analysis and visualization. Accounting for the special char-
acteristics of time can be beneficial from a data modeling point of view. One can
use different calendars that define meaningful systems of granularities for differ-
ent application domains (e.g., fiscal quarters or academic semesters). Data can be
modeled and integrated at different levels of granularity (e.g., months, days, hours,
and seconds), enabling, for example, value aggregation along granularities. Besides
this, data might be given for time intervals rather than for time points, for example,
in project plans, medical treatments, or working shift schedules. Related to this di-
versity of aspects is the problem that most of the available methods and tools are
strongly focused on special domains or application contexts. Silva and Catarci (2000)
conclude:

Itis now recognized that the initial approaches, just considering the time as an ordinal dimen-
sion in a 2D or 3D visualizations [sic], are inadequate to capture the many characteristics of
time-dependent information. More sophisticated and effective proposals have been recently
presented. However, none of them aims at providing the user with a complete framework for
visually managing time-related information.

Silva and Catarci (2000, p. 9)

The aim of this book is to present and discuss the multitude of aspects that are
relevant from the perspective of visualization. We will characterize the dimension
of time as well as time-oriented data, and describe tasks that users seek to accom-
plish using visualization methods. While time and associated data form a part of
what is being visualized, user tasks are related to the question why something is
visualized. How these characteristics and tasks influence the visualization design
will be explained by several examples. These investigations will lead to a system-
atic categorization of visualization approaches. Because interaction techniques and



1.1 Introduction to Visualization 3

computational analysis methods play an important role in the exploration of and
the reasoning with time-oriented data, these topics will be discussed in dedicated
chapters. A large part of this book is devoted to a survey of existing techniques for
visualizing time and time-oriented data. This survey presents self-contained descrip-
tions of techniques accompanied by an illustration and corresponding references on
a per-page basis.

Before going into detail on visualizing time-oriented data, let us first take a look
at the basics and examine general concepts of visualizing data.

1.1 Introduction to Visualization

Visualization is a widely used term. Spence (2007) refers to a dictionary definition
of the term: visualize — to form a mental model or mental image of something.
Visual representations have a long and venerable history in communicating facts and
information. But only in 1987, visualization became an independent self-contained
research field. In that year, the notion of visualization in scientific computing was
introduced by McCormick et al. (1987). They defined the term visualization as
follows:

Visualization is a method of computing. It transforms the symbolic into the geometric,
enabling researchers to observe their simulations and computations. Visualization offers a
method for seeing the unseen. It enriches the process of scientific discovery and fosters
profound and unexpected insights.

McCormick et al. (1987, p. 3)

The goal of this new field of research has been to integrate the outstanding
capabilities of human visual perception and the enormous processing power of
computers to support users in analyzing, understanding, and communicating their
data, models, and concepts. In order to achieve this goal, three major criteria have to
be satisfied (see Tominski and Schumann, 2020):

° expressiveness,
o effectiveness, and
« efficiency.

Expressiveness refers to the requirement of showing exactly the information con-
tained in the data; nothing more and nothing less must be visualized. Effectiveness
primarily considers the degree to which users can achieve their analysis goals. An
effective visualization addresses the cognitive capabilities of the human visual sys-
tem, the analysis task at hand, the application background, and other context-related
information to obtain intuitively recognizable and interpretable visual representa-
tions. Finally, efficiency involves a cost-value ratio in order to assess the benefit of
using a visualization to accomplish some analysis tasks. While the value of a visual
representation is not so easy to determine (see van Wijk, 2006), costs are typically
related to the resources required for computation, the display space needed to show
the data, and the human effort spent during the data analysis.
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Expressiveness, effectiveness, and efficiency are criteria that any visualization
should aim to fulfill. To this end, the visualization process, above all else, has to
account for two aspects: the data and the task at hand. In other words, we have to
answer the two questions: “What has to be presented?” and “Why does it have to be
presented?”’. We will next discuss both questions in more detail.

What? - Specification of the Data

In recent years, different approaches have been developed to characterize data — the
central element of visualization. In their overview article, Wong and Bergeron (1997)
established the notion of multidimensional multivariate data as multivariate data that
are given in a multidimensional domain. This definition leads to a distinction between
independent and dependent variables. Independent variables define an n-dimensional
domain. In this domain, the values of k dependent variables are measured, simulated,
or computed; they define a k-variate dataset. If at least one dimension of the domain
is associated with the dimension of time, we call the data time-oriented data.

Another useful concept for modeling data along cognitive principles is the pyra-
mid framework by Mennis et al. (2000). At the level of data, this framework is based
on three perspectives (also see Figure 3.29 on p. 70): where (location), when (time),
and what (theme). The perspectives where and when characterize the data domain,
i.e., the independent variables as described above. The perspective what describes
what has been measured, observed, or computed in the data domain, i.e., the depen-
dent variables as described above. At the level of knowledge, the what includes not
only simple data values, but also objects and their relationships, where objects and
relations may have arbitrary data attributes associated with them.

From the visualization point of view, all three aspects need to be taken into
account. The where aspect is relevant for representing the spatial frame of reference
and associating data values to locations. The when aspect is required to show the
characteristics of the temporal frame of reference and to associate data values to the
time domain. Finally, the what aspect takes care of representing individual values
or abstractions of a multivariate dataset. As our interest is in time and time-oriented
data, this book places special emphasis on the when aspect. We will specify the
key properties of time and associated data in Chapter 3 and discuss the specific
implications for visualization in Chapter 4.

Why? - Specification of the Task

Similar to specifying the data, one also needs to know why the data are visualized
and what tasks the user seeks to accomplish with the help of the visualization. On
a very abstract level, the following three basic goals can be distinguished (see Ward
etal., 2015):
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e exploratory analysis,
e confirmatory analysis, and
e presentation of analysis results.

Exploratory analysis can be understood as an undirected search, where no a-
priori hypotheses about the data are given. The goal is to get insight into the data,
begin extracting relevant information, and come up with hypotheses. In a phase of
confirmatory analysis, visualization is used to prove or reject hypotheses, which
can originate from data exploration or from models associated with the data. In this
sense, confirmatory analysis is a form of directed search. When facts about the data
have eventually been ascertained, it can be the goal of a presentation to communicate
and disseminate analysis results.

These three basic visualization goals call for quite different visual representations.
This becomes clear when taking a look at two established visualization concepts:
filtering and accentuation. The aim of filtering is to visualize only relevant data
and to omit less relevant information, and the goal of accentuation is to highlight
important information. During an exploratory analysis, both concepts help users
to focus on selected parts or aspects of the data. But filtering and accentuation
must be applied carefully because it is usually not known upfront which data are
relevant or important. Omitting or highlighting information indiscriminately can lead
to misinterpretation of the visual representation and to incorrect findings. During
a confirmatory analysis, filtering can be applied more easily because we already
know which data are relevant and contribute to the hypotheses to be evaluated.
Accentuation and de-accentuation are common means to enhance expressiveness
and effectiveness, and to fine-tune visual presentations in order to communicate
results and insight yielded by an exploratory or confirmatory analysis process.

Although the presentation of results is very important, this book is more about
visual analysis and interactive exploration of time-oriented data. Therefore, we will
take a closer look at common analysis and exploration tasks. As Bertin (1983)
describes, human visual perception has the ability to focus (1) on a particular element
of an image, (2) on groups of elements, or (3) on an image as a whole. Based on
these capabilities, three fundamental categories of interpretation aims have been
introduced by Robertson (1991): point, local, and global. They indicate which values
are of interest: (1) values at a given point of the domain, (2) values in a local region,
or (3) all values of the whole domain. These basic tasks can be subdivided into
more specific, concrete tasks, which are usually given as a list of verbal descriptions.
Wehrend and Lewis (1990) define several such low-level tasks: identify or locate
data values, distinguish regions with different values or cluster similar data, relate,
compare, rank, or associate data, and find correlations and distributions. The task
by data type taxonomy by Shneiderman (1996) lists seven high-level tasks that also
include the notion of interaction with the data in addition to purely visual tasks:

e Overview: gain an overview of the entire dataset

e Zoom: zoom in on data of interest

* Filter: filter out uninteresting information

* Details-on-demand: select data of interest and get details when needed
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* Relate: view relationships among data items
 History: keep a history of actions to support undo and redo
» Extract: allow extraction of data and of query parameters

Yi et al. (2007) further refine the aspect of interaction in information visualization
and derive a number of categories of interaction tasks. These categories are organized
around the user’s intentions to interactively adjust visual representations to the tasks
and data at hand. Consequently, a show me prefaces six categories:

¢ show me something else (explore)

* show me a different arrangement (reconfigure)
* show me a different representation (encode)

¢ show me more or less detail (abstract/elaborate)
¢ show me something conditionally (filter)

¢ show me related items (connect)

The show me tasks allow for switching between different subsets of the analyzed
data (explore), different arrangements of visual primitives (reconfigure), and different
visual representations (encode). They also address the navigation of different levels of
detail (abstract/elaborate), the definition of data of interest (filter), and the exploration
of relationships (connect).

In addition to the show me categories, Yi et al. (2007) introduce three further
interaction tasks:

* mark something as interesting (select)
 let me go to where I have already been (undo/redo)
¢ let me adjust the interface (change configuration)

Mark something as interesting (select) subsumes all kinds of selection tasks,
including picking out individual data values as well as selecting entire subsets of
the data. Supporting users in going back to interesting data or views (undo/redo) is
essential during interactive data exploration. Adaptability (change configuration) is
relevant when a visualization system is applied by a wide range of users for a variety
of tasks and data types.

In summary, the purpose of visualization, that is, the task to be accomplished
with visualization, can be defined in different ways. Schulz et al. (2013a) provide a
deeper discussion on this topic. The above mentioned visualization and interaction
tasks serve as a basic guideline to assist visualization designers in developing rep-
resentations that effectively support users in conducting visual data exploration and
analysis. In Chapter 4 we will come back to this issue and refine tasks with regard
to the analysis of time-oriented data. The aspect of interaction will be taken up in
Chapter 5.

More than that, the aforementioned tasks are essentially carried out by human
users. This makes it necessary to have an understanding of the users who perform
these tasks as well as the environment in which they are being conducted. Visu-
alization aims to amplify cognition, but simply producing images is no guarantee
that complex visualizations will be understood and are useful for gaining insights.
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Therefore, a user-centered approach is essential, i.e., understanding your users with
their goals and tasks is a prerequisite for being able to answer the question of how
to best visualize the data. Several user-centered design methods do exist for that
matter, with the nested model for visualization design and evaluation (see Munzner,
2009; Munzner, 2014) being a widely used one. This model is well applicable for
designing visualizations of time-oriented data and we encourage our readers to pick
up the corresponding details from the available literature.

How? — The Visualization Pipeline

In order to generate effective visual representations, raw data have to be transformed
into image data in a data-, user-, and task-specific manner. Conceptually, raw data
have to be mapped to geometry and corresponding visual attributes such as color,
position, size, or shape, also called visual variables (see Bertin, 1983; Mackinlay,
1986). Thanks to the capabilities of our visual system, the perception of visual stimuli
is mostly spontaneous. As indicated earlier, Bertin (1983) distinguishes three levels
of cognition that can be addressed when encoding information to visual variables.
On the first level, elementary information is directly mapped to visual variables.
This means that every piece of elementary information is associated with exactly
one specific value of a visual variable. The second level involves abstractions of
elementary information, rather than individual data values. By mapping the abstrac-
tions to visual variables, general characteristics of the data can be communicated.
The third level combines the two previous levels and adds representations of further
analysis steps and metadata to convey the information contained in a dataset in its
entirety.

To facilitate the generation of visual output at all three levels, a flexible mapping
procedure is required. This procedure is commonly called the visualization pipeline,
first introduced by Haber and McNabb (1990). The visualization pipeline consists
of three steps (see Figure 1.1a):

1. filtering,
2. mapping, and
3. rendering.

The filtering step prepares the raw input data for processing through the remaining
steps of the pipeline. This is done with respect to the given analysis task and includes
not only the selection of relevant data, but also operations for data enrichment or
data reduction, interpolation, data cleansing, grouping, dimension reduction, and
others. The mapping step literally maps the prepared data to suitable graphical
marks and visual variables. This is the most crucial step as it largely influences the
expressiveness and effectiveness of the resulting visual representation. Finally, based
on the output of the mapping step, the rendering step generates actual image data.
This general pipeline model is the basis for many visualization systems.
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Fig. 1.1: The visualization pipeline.

The basic pipeline model has been refined by dos Santos and Brodlie (2004) in or-
der to better address the requirements of higher dimensional visualization problems.
The original filtering has been split up into two separate steps: data analysis and
filtering (see Figure 1.1b). The data analysis carries out automatic computations like
interpolations, clustering, or pattern recognition. The filtering step then extracts only
those pieces of data that are of interest and need to be presented. In the case of large
high-dimensional datasets, the filtering step is highly relevant because displaying all
information will most likely lead to complex and overloaded visual representations
that are hard to interpret. Because interests may vary across users, tasks, and data,
the filtering step has to support the interactive refinement of filter conditions. Fur-
ther input like the specific analysis task or hypothesis as well as application-specific
details can be used to steer the data extraction process.

In an effort to formally model the visualization process, Chi (2000) built upon
the classic pipeline model and derived the data state reference model. This model
reflects the step-wise transformation of abstract data into image data through several
stages by using operators. While transformation operators transform data from one
level of abstraction to another, within stage operators process the data only within the
same level of abstraction (see Figure 1.2). This model broadens the capabilities of
the visualization process and allows the generation of visual output at all of Bertin’s
levels. Different operator configurations lead to different views on the data, and
thus, to comprehensive insight into the analyzed data. It is obvious that the selection
and configuration of appropriate operators to steer the visualization process is a
complex problem that depends mainly on the given visualization goal, which in turn
is determined by the characteristics of the data and the analysis objectives.

The previous paragraphs may suggest that the image or view eventually generated
by a visualization pipeline is an end product. But this is not true. In fact, the user
controls the visualization pipeline and interacts with the visualization process in
various ways. Views and images are created and adjusted until the user finds them
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Fig. 1.2: The data state reference model. @@ The authors. Adapted from Chi (2000).
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Fig. 1.3: The information visualization reference model. @@® The authors. Adapted from Card
etal. (1999).

suitable for the task at hand. Therefore, Card et al. (1999) integrate the user in their
information visualization reference model (see Figure 1.3).

So far, we have mainly touched upon a more abstract perspective of visualization
methods and the visualization process itself. For a concrete visualization problem,
the how aspect not only depends on the what and why questions discussed earlier, but
also on the target device(s) available for a certain environment. Particularly, recent
developments in mobile devices such as smartphones, tablets, or smartwatches as
well as immersive technologies, for example, head mounted displays for augmented
or virtual reality call for adequate visualization methods that make use of the specifics
of these display technologies. Apart from the display technologies these devices
exhibit, the aspects of available input modalities and computational resources also
need to be taken into account. As these questions are to be addressed on a more
general level, independent from the context of time-oriented data, we refer the
interested reader to Tominski and Schumann (2020) for a more in-depth discussion
of these aspects.

Having introduced the very basics of interactive visualization, we now move on
to an application example. The goal is to illustrate a concrete visual representation
and to demonstrate possible benefits for data exploration and analysis.
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1.2 Application Example: Health Record Visualization

A considerable share of physicians’ daily work time is devoted to searching and gath-
ering patient-related information to form a basis for adequate medical treatment and
decision-making. The amount of information is enormous, often disorganized, and
physicians might be overwhelmed by the information provided to them. Electronic
health records comprise multiple variables of different data types that are sampled ir-
regularly and independently from each other, as for example quantitative parameters
(e.g., blood pressure or body temperature) and qualitative parameters (e.g., events
like a heart attack) as well as instantaneous data (e.g., blood sugar measurement at a
certain point in time) and interval data (e.g., insulin therapy from January to May).
Moreover, the data commonly originate from heterogeneous sources like digital lab
systems, hospital information systems, or patient data sheets that are not well inte-
grated. Exploring such heterogeneous time-oriented datasets to get an overview of
the current health status and its history for individual patients or a group of patients
is a challenging task (Rind et al., 2013b; Rind et al., 2017).

Interactive visualization is an approach to representing a coherent view of such
medical data and to catering for easy data exploration. In our example, an interactive
discourse of the physician with the visual representation is of major importance
because a single static representation typically cannot satisfy task-dependent infor-
mation needs. In addition to visualizing information intuitively, aiding clinicians in
gaining new medical insights about patients’ current health status, state changes,
trends, or patterns over time is an important aspect.

VisuExplore (— p. 339) is an interactive visualization tool for exploring a hetero-
geneous set of medical parameters over time (see Rind et al. (2011b)). VisuExplore
uses multiple views along a common horizontal time axis to convey the different

document browser - suspicion of nephropathy
(progress notes) _ initially high blood sugar
line plots with
semantic zoom ™~ i
(blood sugar) . blood sugar has improved
timelines ~

(insulin therapy) ._—~combined insulin therapy started

event chart
(oral antidiabetic drugs)

bar graph
(blood pressure)

line plots - initially low BMI

(BMI, blood lipids) .~ Initially high blood lipids
blood lipids have normalized

Fig. 1.4: Visualization of medical parameters of a diabetes patient. @@ The authors.
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medical parameters involved. It is based on several visualization methods, including
line plots (= p. 233), bar graphs (< p. 234), event charts, and timelines (= p. 258),
that are combined and integrated.

Figure 1.4 consists of eight stacked visualization views showing data of a diabetes
patient over a period of two years and three months between November 2016 and
March 2019. The document browser at the top shows icons for medical documents,
like for example diagnostic findings or x-ray images. In the figure, the document
browser contains progress notes from the very beginning of treatment, when the
physicians suspected renal failure. Below the document browser, a line plot with
semantic zoom (see p. 137) shows blood glucose values. Colored areas below the
line provide qualitative information about normal (green), elevated (yellow), and high
(red) value ranges, which makes this semantic information easy to read. Below that,
another line plot shows HbAlc, an indicator of a patient’s blood glucose condition.
In this case, more vertical space is devoted to the chart, thus allowing more exact
readings of the values. Still, semantic information is added as color annotation of
the y-axis, using small ticks to indicate when the HbAlc value crosses qualitative
range boundaries (e.g., from critically high to elevated as indicated by the horizontal
red/yellow line). Below the line plots, there are two timeline charts showing the
insulin therapy and oral anti-diabetic drugs. Insulin is categorized into rapid-acting
insulin (ALT), intermediate-acting insulin (VZI), and a mixture of these (Misch).
Details about the brand name or dosage in the free text are shown as labels that
are located below the respective timeline. Oral anti-diabetic drugs are shown via an
event chart below. There are also free text details about oral diabetes medication. The
sixth view is a bar graph with adjacent bars for systolic and diastolic blood pressure.
The bottom two views are line plots related to the body mass index (BMI) and blood
lipids with two lines showing triglyceride and cholesterol values.

This arrangement has been chosen because it places views of medical tests directly
above views of the related medical interventions. The height of some views has been
reduced to fit on a single screen. This is possible because all information that is
relevant for the physician’s current task can still be recognized in this state.

The shown diabetes case is a 57-year-old patient with initially very high blood
sugar values. From the interactive visual representations, several facts about the
patient can be inferred as illustrated by the following insights that were gained by a
physician using the VisuExplore system. The initially high blood sugar values were
examined in detail via tooltips and showed exact values of 428 mg/dl glucose and
14.8% HbA 1c. In addition, it can be seen in the bottom panel that blood lipid values
are also high (256 mg/dl cholesterol, 276 mg/dl triglyceride). At the same time, the
body mass index shown above is rather low (20.1). From the progress notes in the
document browser, it can be seen that the physician had a suspicion of nephropathy.
But these elevated values are also signs of latent autoimmune diabetes in adults,
a special form of type 1 diabetes. After one month, blood sugar has improved
(168 mg/dl glucose) and blood lipids have normalized. The patient switched to
insulin therapy in a combination of rapid-acting insulin (ALT) and intermediate-
acting insulin (VZI). Since April 2017, the insulin dosage has remained stable and
concomitant medication is no longer needed. The patient’s overall condition has
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improved through blood sugar management. Furthermore, the physician involved in
the case study wondered about the very high HbAlc value of 11.9% in November
2016 and why diabetes treatment had only started four months later.

VisuExplore’s interactive features allow physicians to get an overview of multiple
medical parameters and focus on interesting parts of the data. Physicians can add
views for additional variables and may resize and rearrange them as necessary.
Further, it is possible to navigate and zoom across the time dimension by dragging
the mouse, using dedicated buttons, or selecting predefined views (e.g., last year).
Moreover, the software allows the selection and highlighting of data elements. Other
time-based visualization and interaction techniques can extend the system to support
special purposes. For example, a document browser shows medical documents (e.g.,
discharge letters or treatment reports) as document icons (e.g., PDF, Word) that
physicians can click to open a document. VisuExplore integrates with the hospital
information systems and accesses the medical data stored there.

This example demonstrated that visual representations are capable of providing
a coherent view of otherwise heterogeneous and possibly distributed data. The
integrative character also supports interactive exploration and task-specific focusing
on relevant information.

1.3 Book Outline

With the basics of visualization and an application example, we have set the stage for
the next chapters. Before going into detail about the contemporary visualization of
time and time-oriented data, some inspiring and thought-provoking historical depic-
tions and images from the arts are given attention in Chapter 2. The characteristics
of time and data for modern interactive visualization on computers are the focus of
Chapter 3. The actual visualization process, that is, the transformation of abstract
data to visual representations, will be discussed in Chapter 4, taking into account
the key question words what, why, and how to visualize. In Chapters 5 and 6, we
go beyond pure visualization methods and discuss cornerstones of interaction and
computational analysis methods to support exploration and visual analysis. Chapter 7
addresses the question of how to select visualization techniques that are appropriate
for an application problem at hand. A final summary along with a discussion of open
challenges can be found in Chapter 8.

A large part of this book is devoted to a survey of existing visualization techniques
for time and time-oriented data in Appendix A. Throughout the book we use the
— symbol followed by a page number to refer the reader to a particular technique
in the survey. The second Appendix B provides a list of concrete examples for all
categories of data quality problems introduced in Chapter 3. Figure 1.5 provides a
visual overview of the contents of the book.

Please refer to the companion website of the book for updates and additional
resources including links to related material, visualization prototypes, and technique
descriptions: https://www.timeviz.net.
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Chapter 2
Historical Background

There is a magic in graphs. The profile of a curve reveals in a flash a
whole situation — the life history of an epidemic, a panic, or an era of
prosperity. The curve informs the mind, awakens the imagination,
convinces.

Henry D. Hubbard in Brinton (1939, Preface)

Long before computers even appeared, visualization was used to represent time-
oriented data. Probably the oldest time-series representation to be found in literature
is the illustration of planetary orbits created in the 10th or possibly 11th century
(see Figure 2.1). The illustration is part of a text from a monastery school and shows
inclinations of the planetary orbits as a function of time.
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Fig. 2.1: Time-series plot depicting planetary orbits (10th/11th century). The illustration is part of
a text from a monastery school and shows the inclinations of the planetary orbits over time. © /936
University of Chicago Press. Reprinted, with permission, from Funkhouser (1936, p. 261).
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In human history, keeping track of the passage of time, the seasons of the year,
and planning ahead for them has been one of the most important tasks of even the
earliest human civilizations. Being essential for central elements of life, for example,
for agriculture or religious acts, a variety of tools such as bone engravings as well
as visual representations of calendars can be found throughout history. Figure 2.2
shows an example of a perpetual calendar from 1594 designed by Ortensio Toro that
shows the Gregorian calendar for a 400-year cycle. It allowed date calculations far
into the future.

An example of a particularly interesting artifact by Native American people is
the Time Ball shown in Figure 2.3. Unlike calendars that are valid for larger parts
of people, the time ball is a mnemonic device, i.e., a tangible, personal record
of developments and life events over the course of its owner’s life. It acted as a
memory aid usually kept by women where simple knots recorded individual days
and meaningful occasions, such as births, deaths, marriages, or days of bounty,
hardship, and even conflicts were highlighted using special markers. These included
glass beads, shells, cloth fragments, or human hair.

To broaden the view beyond computer-aided visualization and provide back-
ground information on the history of visualization methods, we present historical
and application-specific representations. They mostly consist of historical techniques
of the pre-computer age, such as the works of William Playfair, Etienne-Jules Marey,
or Charles Joseph Minard.

Furthermore, we will take the reader on a journey through the arts. Throughout
history, artists have been concerned with the question of how to incorporate the
dynamics of time and motion in their artworks. We present a few outstanding art
movements and art forms that are characterized by a strong focus on representing
temporal concepts. We believe that art can be a valuable source of inspiration;
concepts or methods developed by artists might even be applicable to information
visualization, possibly improving existing techniques or creating entirely new ones.

2.1 Classic Ways of Graphing Time

Representing business data graphically is a broad application field with a long
tradition. William Playfair (1759—1823) can be seen as the protagonist and founding
father of modern statistical graphs. He published the first known time-series depicting
economic data in his Commercial and Political Atlas of 1786 (Playfair and Corry,
1786). His works contain basically all of the widely-known standard representation
techniques (see Figure 2.4, 2.5, 2.6, and 2.7) such as the pie chart, the silhouette
graph (< p. 281) , the bar graph (= p. 234), and the line plot (< p. 233).
Playfair’s work widely popularized new graphic forms and many other economists
and statisticians built upon this to develop them further. One example from 1874
can be seen in Figure 2.8. It shows a fiscal chart of the United States by Francis
Amasa Walker (1840-1897) that uses a symmetric layout to contrast state revenues
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Fig. 2.2: Perpetual calendar (1594). Gregorian calendar designed for a 400-year cycle. @ Ortensio
Toro (Italian, active 16th century). Retrieved from Cooper Hewitt, Smithsonian Design Museum.


https://collection.cooperhewitt.org/objects/18450959/
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Fig. 2.3 Time Ball
(mnemonic device) of the Na-
tive American Tribe Yakama
by Vivian Harrison (1945).
© Courtesy of the National
Museum of the American In-
dian, Smithsonian Institution
(26/9725), from NMAI Photo
Services.

with state expenditures over a period from 17891870 in absolute (center) as well as
relative terms (stacked bars left and right).

In Figure 2.7 multiple heterogeneous time-oriented variables are integrated within
a single view: the weekly wages of a good mechanic as a line plot, the price of a
quarter of wheat as a bar graph, as well as historical context utilizing timelines (<
p- 258). Playfair himself credits the usage of timelines to Joseph Priestley (1733—
1804) who created a graphical representation of the life spans of famous historical

Fig. 2.4: Bar graph from the Commercial and Political Atlas by Playfair and Corry (1786) repre-
senting exports and imports of Scotland during one year. ® 786 Playfair and Corry. Retrieved
from Wikimedia Commons.


https://americanindian.si.edu/collections-search/objects/NMAI_411165
https://americanindian.si.edu/collections-search/objects/NMAI_411165
https://commons.wikimedia.org/wiki/File:1786_Playfair_-_Exports_and_Imports_of_Scotland_to_and_from_different_parts_for_one_Year_from_Christmas_1780_to_Christmas_1781.jpg

2.1 Classic Ways of Graphing Time 21

Fig. 2.5: Line plot from the Commercial and Political Atlas by Playfair and Corry (1786) repre-
senting imports and exports of England from 1700 to 1782. The yellow line on the bottom shows
imports into England and the red line at the top exports from England. Color shading is added
between the lines to indicate positive (light blue) and negative (red; around 1781) overall balances.
® 1786 Playfair and Corry. Retrieved from Wikimedia Commons.

Fig. 2.6: Silhouette graph used by William Playfair (1805) to represent the rise and fall of nations
over a period of more than 3000 years. A horizontal time scale is shown at the bottom that
uses a compressed scale for the years before Christ on the left. Important events are indicated
textually above the time scale. Countries are grouped vertically into Ancient Seats of Wealth &
Commerce (bottom), Places that have Flourished in Modern Times (center), and America (top).
® 1805 Playfair. Retrieved from Wikimedia Commons.


https://commons.wikimedia.org/wiki/File:1786_Playfair_-_1_Chart_of_all_the_import_and_exports_to_and_from_England_from_the_year_1700_to_1782.jpg
https://commons.wikimedia.org/wiki/File:Chart_of_Universal_Commercial_History.jpg
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Fig. 2.7: Information rich chart of William Playfair (1821) that depicts the weekly wages of a good
mechanic (line plot at the bottom), the price of a quarter of wheat (bar graph in the center), as well as
historical context (timeline at the top) over a time period of more than 250 years. & /821 Playfair.
Retrieved from Wikimedia Commons.

Fig. 2.8: Fiscal chart of the United States showing the the development of public debt for the years
1789 to 1870 together with the proportions of receipts and expenditures. @®@© 1874 Walker.
Retrieved from David Rumsey Map Collection, David Rumsey Map Center, Stanford Libraries.


https://commons.wikimedia.org/wiki/File:Chart_Showing_at_One_View_the_Price_of_the_Quarter_of_Wheat,_and_Wages_of_Labour_by_the_Week,_from_1565_to_1821.png
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~29191~1130251:Fiscal-chart-US-
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Fig. 2.9: Chart of biography by Joseph Priestley (1765) that portrays the life spans of famous
historical persons using timelines. @ 1765 Priestley. Retrieved from Wikimedia Commons.

persons divided into two groups of Statesmen and Men of Learning (see Figure 2.9).
The usage of a horizontal line to represent an interval of time might seem obvious to
us nowadays, but in Priestley’s days this was certainly not the case. This is reflected in
the fact that he devoted four pages of text to describe and justify his technique to his
readers. A remarkable detail of Priestley’s graphical method is that he acknowledged
the importance of representing temporal uncertainties and provided a solution to deal
with them using dots. Even different levels of uncertainty were taken into account,
ranging from dots below lines to lines and dotted lines.

Even earlier than both Priestley and Playfair, Jacques Barbeu-Dubourg (1709-
1779) created the earliest known modern timeline. His carte chronographique
(Barbeu-Dubourg, 1753) consisted of multiple sheets of paper that were glued to-
gether and add up to a total length of 16.5 meters (see Figure 2.10). A rare version
of the chart is available at Princeton University Library where the paper is mounted
on two rollers in a foldable case that can be scrolled via two handles (see Ferguson
(1991) for a detailed description).

Another prominent example of a graphical representation of historical informa-
tion via annotated timelines is Deacon’s synchronological chart of universal history
which was originally published in 1890 and was drawn by Edmund Hull (see Fig-
ure 2.11). Various reprints and books extending the original historic facts to the
present and adaptations for specialized areas like for example inventions and explo-
rations can be found in the literature (e.g., Third Millennium Press, 2001). A slightly
different layout approach for depicting historical data is Willard’s Chronographer
of American History (see Figure 2.12). In contrast to the example before, Emma
Willard uses a botanical tree metaphor to structure historical periods combined with
a round time scale on the outside.

Apart from calendars, maps have also been an essential tool in human history for
thousands of years. Combining time-oriented data with cartographic maps allows for


https://commons.wikimedia.org/wiki/File:PriestleyChart.gif
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Fig. 2.10: Carte chronographique by Jacques Barbeu-Dubourg (1753) that shows the known history
from the beginning of time up to 1760. Multiple sheets of paper were glued together and mounted in
the chronology machine which allows to manually scroll back and forth in time using two handles.
© Courtesy of Rare Book Division, Department of Rare Books and Special Collections, Princeton
University Library, from Princeton University Library Catalog.


https://catalog.princeton.edu/catalog/995508013506421
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Fig. 2.11: Parts of Deacon’s synchronological chart of universal history. © 2001 Third Millennium
Press Ltd. Reprinted, with permission, from Third Millennium Press (2001).

Fig. 2.12: Chronographer of American History by Emma Willard (1845). Wall map for representing
important events in American history. @®®®@ 1845 Willard. Retrieved from David Rumsey Map
Collection, David Rumsey Map Center, Stanford Libraries.


https://www.davidrumsey.com/luna/servlet/s/5sl7ph
https://www.davidrumsey.com/luna/servlet/s/5sl7ph
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Fig. 2.13: Map of Vesuvius by John Auldjo (1833). It shows the direction of the streams of lava
in the eruptions from 1631 to 1831. @®@®@ 1833 Auldjo. Retrieved from David Rumsey Map
Collection, David Rumsey Map Center, Stanford Libraries.

depicting both, spatial relationships as well as temporal developments. A remarkable
approach for depicting time-orented data on maps is the map of Vesuvius created by
John Auldjo (1805-1886) in 1833 (see Figure 2.13). In his map, he uses different
color hues to represent time, i.e., the years of eruptions over a period of 200 years,
resulting in an ordinal time scale.

Charles Joseph Minard (1781-1870) created a masterpiece of the visualization of
historical information in 1869. His graphical representation of Napoleon’s Russian
campaign of 1812 is extraordinarily rich in information, conveying no less than six
different variables in two dimensions (see Figure 2.14). Tufte (1983) comments on
this representation as follows:

It may well be the best statistical graphic ever drawn.
Tufte (1983, p. 40)

The basis of the representation is a 2-dimensional map on which a band sym-
bolizing Napoleon’s army is drawn. The width of the band is proportional to the
army’s size; the direction of movement (advance or retreat) is encoded by color.


https://www.davidrumsey.com/luna/servlet/s/t01k31
https://www.davidrumsey.com/luna/servlet/s/t01k31
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Fig. 2.14: Napoleon’s Russian campaign of 1812 by Charles Joseph Minard (1869). A band visually
traces the army’s location during the campaign, whereby the width of the band indicates the size of
the army and the color encodes advance and retreat. Labels and a parallel temperature chart provide
additional information. @@® The authors. Adapted from Minard (1869) via Wikimedia Commons.


https://commons.wikimedia.org/wiki/File:Minard.png
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Fig. 2.15: Movement of the population of France between 1801 and 1881 by Emile Cheysson
(1883). @®S® 1883 Cheysson. Retrieved from David Rumsey Map Collection, David Rumsey
Map Center, Stanford Libraries.

Furthermore, various important dates are plotted and a parallel line graph shows the
temperature over the course of time.

An early example of combining statistical graphics that use a cyclic time axis
with maps is shown in Figure 2.15. The representation of Emile Cheysson created in
1883 shows the movement of the population for each department of France between
1801 and 1881. To make different absolute population values better comparable, the
data shown is indexed at the time midpoint 1841 and shown relative to that. Different
color hues are used to fill the circular silhouette graph (— p. 281) depending on
whether the population is below (red) or above (gray) the value of the indexing point.
This map is part of a series of graphs created for the French Ministry of Public Works
and was inspired by the earlier work of Charles Joseph Minard.


https://www.davidrumsey.com/luna/servlet/s/94r93k
https://www.davidrumsey.com/luna/servlet/s/94r93k
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Also in the 19th century, the prominent historic figure Florence Nightingale used a
statistical graph to show numbers and causes of deaths over time during the Crimean
War. When Nightingale was sent to run a hospital near the Crimean battlefields to care
for British casualties of war, she made a devastating discovery: many more men were
dying from infectious diseases they had caught in the filthy hospitals of the military
than from wounds. By introducing new standards of hygiene and diet, and most
importantly, by ensuring proper water treatment, deaths due to infectious diseases
fell by 99% within a year. Florence Nightingale tediously recorded mortality data
for two years and created a novel diagram to communicate her findings. Figure 2.16
shows two of these rose charts. This representation is also called polar area graph
and consists of circularly arranged wedges that convey quantitative data. Unlike pie
charts, all the segments of rose charts have the same angle. Bringing the data in this
form clearly revealed the horrible fact that many more soldiers were dying because
of preventable diseases they had caught in the hospitals than from wounds sustained
in battle. Not only this fact was communicated, but also how this situation could
be improved by the right measures; these can be seen from the left rose chart in
Figure 2.16. Through this diagram, which was more a call to action than merely
a presentation of data, she persuaded the government and the Queen to introduce
wide-reaching reforms, thus bringing about a revolution in nursing, health care, and
hygiene in hospitals worldwide.

Fig. 2.16: Rose charts showing number of casualties and causes of death in the Crimean War
by Florence Nightingale (1858). Red shows deaths from wounds, black represents deaths from
accidents and other causes, and blue shows deaths from preventable infectious diseases soldiers
caught in hospitals. The chart on the right shows the first year of the war and the chart on the left
shows the second year after measures of increased hygiene, diet, and water treatment had been
introduced. @ 1858 Nightingale. Retrieved from Wikimedia Commons.


https://commons.wikimedia.org/wiki/File:Nightingale-mortality.jpg
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A quite different approach to representing historical information is the illustra-
tion of the Cuban missile crisis during the Cold War by Bertin (1983). The diagram
shows decisions, possible decisions, and the outcomes thereof over time (see Fig-
ure 2.17). This representation is similar to the decision chart (— p. 237). Chapple
and Garofalo (1977) provided an illustration of Rock’n’Roll history shown in Fig-
ure 2.18 that depicts protagonists and developments in the area as curved lines that
are stacked according to the artists’ percentage of annual record sales. The The-
meRiver ™ technique (< p. 293) can be seen as a further more formal development

of this idea.
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Fig. 2.18: Rock’n’Roll history by Chapple and Garofalo (1977) that depicts protagonists and
developments in the area as curved lines that are stacked according to the artists’ percentage of
annual record sales. © Courtesy of Reebee Garofalo.
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With the advance of industrialization in the late 19th and early 20th century,
optimizing resources and preparing time schedules became essential requirements
for improving productivity. One of the main protagonists of the study and optimiza-
tion of work processes was Frederick Winslow Taylor (1856—1915). His associate
Henry Laurence Gantt (1861-1919) studied the order of steps in work processes
and developed a family of timeline-based charts as an intuitive visual representation
to illustrate and record time-oriented processes (see Figures 2.19 and 2.20). Widely
known as Gantt charts (— p. 253), these representations are such powerful analytical
instruments that they are used nearly unchanged in modern project management.

Other interesting representations of work-related data can be seen in Figures 2.21
and 2.22. A record of hours worked per day by an employee is shown in Figure 2.21.
It is interesting to note that both axes are used for representing different granularities

Fig. 2.19: Progress schedule based on the graphical method of Henry L. Gantt (see Brinton, 1939,
p- 259). Different work packages are depicted as horizontal lines. Black lines indicate the planned
timings; the actual quantity of work done is shown below inred. & 1917 Engineering News-Record.
Retrieved from Internet Archive.


https://archive.org/details/graphicpresentat00brinrich/page/259/mode/1up
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Fig. 2.20: Record of work carried out in one room of a Worsted Mill by Henry L. Gantt (see Brinton,
1914, p. 52). Each row represents one worker and gives information about whether a bonus was
earned and if the worker was present. @ 1914 Gantt. Retrieved from Internet Archive.

Fig. 2.21 Exact hours and
days worked in 1929 by an
employee at the Oregon ports
(see Brinton, 1939, p. 250).
Days are mapped on the hor-
izontal axis and hours per
day worked are represented
as bars on the vertical axis.
The representation shows ex-
treme irregularities in working
hours. @ 1934 Foisie. Re-
trieved from Internet Archive.

of time, i.e., days on the horizontal axis and hours per day on the vertical axis.
Figure 2.22 employs a radial layout of the time and allows a reading on multiple
levels: the outer ring shows days without work and the inner rings show hours worked
during the day, whereas the green areas indicate night hours.


https://archive.org/details/graphicmethodsfo00brinrich/page/52/mode/1up
https://archive.org/details/graphicpresentat00brinrich/page/250/mode/1up
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Fig. 2.22 An analysis of
working time and leisure
time in 1932 (see Brinton,
1939, p. 251). Uses a radial
layout of time and allows a
reading on multiple levels: the
outer ring shows days without
work and the inner rings
show hours worked during
the day, whereas the green
areas indicate night hours.
® 1934 Foisie. Retrieved from
Internet Archive.

Fig. 2.23 Phillips curve. Un-
employment rate (horizontal
axis) is plotted against infla-
tion rate (vertical axis). Each
point in the plot corresponds
to one year and is labeled
accordingly. The markers of
subsequent years are linked to
create a visual trace of time.
©@Q@® The authors. Adapted,
with permission of Graphics
Press, from Tufte (1997, p. 60)
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Fig. 2.24: Rank of states and territories in population at each census from 1790 to 1890 by Henry
Gannett (1898). @@®@O /898 Gannett. Retrieved from David Rumsey Map Collection, David
Rumsey Map Center, Stanford Libraries.

A quite unique representation of economic data is the so-called Phillips curve —
a 2D plot based on an economic theory that shows unemployment vs. inflation in
a Cartesian coordinate system. In this representation, time is neither mapped to the
horizontal nor the vertical axis, but is rather shown textually as labeled data points
on the curve. This way, the dimension of time is slightly de-emphasized in favor of
showing the relationship of two time-dependent variables (see Figure 2.23). Each
year’s combination of the two variables unemployment rate and inflation rate leads
to a data point in 2D space that is marked by the digits of the corresponding year.
The markers of subsequent years are connected by a line resulting in a path over the
course of time.

For representing positional changes within a set of elements, rank charts were
already introduced in early statistical publications, for example, by Henry Gannett
(1846-1914) or Willard Brinton (1880-1957) (see Figures 2.24 and 2.25). Elements
are ordered according to their ranking and displayed next to each other in columns for
different points in time. The positional change of individual elements is emphasized
by connecting lines. This way, the degree of rank change is represented by the angles
of the connecting lines, thus making big changes in rank stand out visually by the
use of very steep lines. Note that the two examples differ in the direction of their time
axes. While the chart of Henry Gannett (Figure 2.24) uses a time axis from right
to left, the example of Willard Brinton (Figures 2.25) employs the more frequently
used order from left to right.


https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~31947~1151328:2--Rank%2C-states-1790-1890-
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~31947~1151328:2--Rank%2C-states-1790-1890-
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Fig. 2.25: Rank of states and territories in population at different census years from 1860 to 1900
by Willard Brinton (1914, p. 65). @® 1914 Brinton. Retrieved from Internet Archive.

A remarkable representation of time-oriented information was created by Etienne-
Jules Marey (1830—-1904) in the 1880s (see Figure 2.26). It shows the train schedule
for the track Paris to Lyon graphically. Basically, a 2D diagram is used which places
the individual train stops according to their distance in a list on the vertical axis,
while time is represented on the horizontal axis. Thus, horizontal lines are used
to identify the individual stops and a vertical raster is used for timing information.
The individual trains are represented by diagonal lines running from top-left to
bottom-right (Paris—Lyon) and bottom-left to top-right (Lyon—Paris), respectively.
The slope of the line gives information about the speed of the train — the steeper the
line, the faster the respective train is traveling. Moreover, horizontal sections of the
trains’ lines indicate if the train stops at the respective station at all and how long
the train stops. On top of that, the density of the lines provides information about
the frequency of trains over time. This leads to a clear and powerful representation
showing complex information at a glance while allowing for in-depth analysis of


https://archive.org/details/graphicmethodsfo00brinrich/page/65/mode/1up
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Fig. 2.26: Train schedule by Etienne-Jules Marey (1875, p. 260). Individual train stops are placed
according to their distance in a list on the vertical axis, while time is represented on the horizontal
axis (figure above is rotated by 90°). The individual trains are represented by diagonal lines running
from top-left to bottom-right (Paris—Lyon) and bottom-left to top-right (Lyon—Paris) respectively.
® 1875 Marey. Retrieved from Internet Archive.


https://archive.org/details/physiologieexp01mare/page/260/mode/1up
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Fig. 2.27 A person walking.
Studies of movement by
Etienne-Jules Marey (1894, p.
61). ® 1894 Marey. Retrieved
from Internet Archive.

Fig.2.28 Chronophotography.
A photo of flying pelican
taken by Etienne-Jules Marey
around 1882. @ 1882 Marey.
Retrieved from Wikimedia
Commons.

Fig. 2.29 Horse gaits. Studies
of movement by Etienne-
Jules Marey (1875, p. 147).
® 1875 Marey. Retrieved
Jfrom Wikimedia Commons.


https://archive.org/details/b20411583/page/34/mode/1up
https://commons.wikimedia.org/wiki/File:Marey_-_birds.jpg
https://commons.wikimedia.org/wiki/File:Marey_-_birds.jpg
https://archive.org/details/b20411583/page/n146/mode/1up
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the data. Similar representations have also been used for the Japanese Shinkansen
train line and the Javanese Soerabaja-Djokjakarta train line where the track’s terrain
profile is additionally shown. The basic idea of this representation even stood the test
of time and interactive versions are still used today in modern software systems of
railway companies to support train scheduling or in ViDX (< p. 364) to visualize
automated assembly lines.

Etienne-Jules Marey not only created the fabulous train schedule, but was also
very interested in exploring all kinds of movement. Born in 1830 in France, he was
a trained physician and physiologist. His interest in internal and external movements
in humans and animals, such as blood circulation, human walking, horse gaits, or
dragonfly flight, led to the decomposition of these movements via novel photography
and representation methods (see Figures 2.27, 2.28, and 2.29). This photography
method, which is called chronophotography, paved the way for the birth of modern
film-making at the end of the nineteenth century.

Today, Marey is still a valuable source of inspiration. Reason enough to speak
highly of him and his work:

Tirelessly, this brilliant visionary stopped the passage of time, accelerated it, slowed it down
to “see the invisible,” and recreated life through images and machines.
La maison du cinema and Cinematheque Francaise (2000)

In medicine, large amounts of information are generated which mostly have to be
processed by humans. Graphical representations which help to make this myriad of
information comprehensible play a crucial role in the workflow of healthcare per-
sonnel. These representations range from the fever curves of the nineteenth century
(see Figure 2.30) and EEG time-series plots (see Figure 2.31) to information-rich pa-
tient status overviews (see Figure 2.32). Especially the graphical summary of patient
status by Powsner and Tufte (1994) makes use of concepts such as small multiples
(= p. 359), focus+context (see p. 137), or the integration of textual and graphical
information. It manages to display information on a single page that would otherwise
fill up entire file folders and would require serious effort to summarize.

(a) Fever chart. (b) Details of Fieberfrost.

Fig. 2.30: Fever charts created by Carl August Wunderlich (1870, p. 161, 167). ® 1870 Wunderlich.
Retrieved from Internet Archive.


https://archive.org/details/dasverhaltender00wundgoog/page/n174/mode/1up
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Fig. 2.31 EEG time-series
plot. @®® 2005 Der Lange.
Retrieved from Wikimedia
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Fig. 2.32: Graphical summary of patient status by Powsner and Tufte (1994). Concise summary of
patient information. Uses small multiples, focus+context, and integrates textual as well as graphical
information. © 1997 Graphics Press. Reprinted, with permission, from Tufte (1997, pp. 110-111).
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Weather in 1980
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Fig. 2.33: Weather statistics for 1980. Aggregated values are displayed along with detailed infor-
mation on temperature, humidity, and precipitation. Similar illustrations have been printed annually
by the New York Times for more than 30 years. €@@® The authors. Generated with Protovis.

Weather and climate are further well-known application areas dealing with time-
oriented data. Here, developments over time are of greater interest than single snap-
shots. Figure 2.33 shows the adaptation of an extremely information-rich illustration
provided by the New York Times for more than 30 years to show New York City’s
weather developments for a whole year. Monthly and yearly aggregates are displayed
along with more detailed information on temperature, humidity, and precipitation.
All in all, more than 2500 numbers are shown in this representation in a very com-
pact and readable form. An even earlier example of a visual representation of the
weather data of New York City is shown in Figure 2.34. Here, temperatures, wind
velocity, relative humidity, wind direction, and the weather conditions of a single
month (December, 1912) are displayed.

Considering the long history of visualizing time-oriented data, two main metaphors
for representing time can be identified: arrow/line and river. First, a vast majority
of visualization techniques uses lines or arrows to depict time (see Davis, 2012).
Commonly, a left-to-right direction is applied where later points in time are shown
toward the right. Second, the metaphor of a river was frequently used already in
historic depictions (see Rendgen, 2019). This metaphor is also used in contemporary
visualization techniques, less often though, for example in ThemeRiver (<— p. 293)
and stream graphs (— p. 286).
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Fig. 2.34: Record of the Weather in New York City for December, 1912 (see Brinton, 1914, p. 93).
The bold line indicates temperature in degrees Fahrenheit. The light solid line shows wind velocity
in miles per hour. The dotted line depicts relative humidity in percentage from readings taken at 8
a.m. and 8 p.m. Arrows portray the prevailing direction of the wind. Initials at the base of the chart
show the weather conditions as follows: S, clear; PC, partly cloudy; C, cloudy; R, rain; Sn, snow.
® 1914 Brinton. Retrieved from Internet Archive.

2.2 Time in Visual Storytelling & Arts

Two disciplines that are seldomly connected to time-oriented information are visual
explanations and visual storytelling. Although ubiquitously used in various forms
in daily life, they are rarely considered for visualizing abstract information. Visual
explanations are often used in manuals for home electronics, furniture assembly, car
repair, and many more (see Figures 2.36 and 2.37). Often, they are used to illustrate

IN LEARNING TC READ COMICS
WE ALL LEARNED TO PERCEIVE
TIME SPRAF/ALLY, FOR N THE WORLD
CF COMICS, 77A%E ANE SPACE

ARE OVE AND THE SAME,

OI. ! |2||I|3| L

Fig. 2.35: In comics, time and space are one and the same. © 1993, 1994 HarperCollins Publishers.
Reprinted, with permission, from McCloud (1994, p. 100).


https://archive.org/details/graphicmethodsfo00brinrich/page/93/mode/1up
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1. Rip off the 2. Remove 3. Cheer for
wrist band along protective foil your favorite!
the perforation. and fix around

your wrist.

Fig. 2.36: Visual explanation to illustrate a stepwise process as used in Tomitsch et al. (2007).
@@ The authors.

Fig. 2.37: Life Cycle of the Japanese Beetle (Newman, 1965, p. 104—105). © 1990 Graphics Press.
Reprinted, with permission, from Tufte (1990, p. 43).

stepwise processes visually to an international audience to support the often poorly
translated textual instructions. The stepwise nature conveys a temporal aspect and
might also be applied to represent abstract information. Even older than everything
we presented previously is the craft of storytelling, especially visual storytelling,
starting from caveman paintings and Egyptian hieroglyphs to picture books and
comic strips (see Figure 2.35). Time is the central thread that ties everything together
in visual storytelling. Many interesting techniques and paradigms exist that might be
applicable to visualization in general (see for example Gershon and Page, 2001) as
well as to the representation of time-oriented information in particular.

Comics The art of comics is often dubbed as visual storytelling over time or se-
quential art (a term used by Will Eisner) because temporal flows are represented in
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(a) Classical comic layout representing an ordered sequence of scenes in juxtaposed panels. © Courtesy of Greg Dean,

from RealLife Comics.
I CANT.

COME EXPLORE
THE FUTURE
WITH ME!

(b) Exploration of the duality of space and time in comic panels. @®& “Future” by Randall Munroe. Retrieved from
xked.com.

Fig. 2.38: Comics where temporal flows are represented in juxtaposed canvases on a page.


https://www.reallifecomics.com/comic.php?comic=title-22
https://xkcd.com/338/
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OH, KEVEY.S WELL. IF
AAGH! PUT THAT CAMERA QL HENRY 15
Wflf THAT FLASH ANEAy Wikt GONNA HAVE BMUCH
15 BEINEMG, vou? MIORE FUN, WE .
y UNCLE MAY HAFTA
- HENZYY LOCK LP THE -
- WINVE CELLAR.
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Fig. 2.39: A single comic panel contains more than a frozen moment in time. © /993, 1994
HarperCollins Publishers. Reprinted, with permission, from McCloud (1994, p. 95).

juxtaposed canvases on a page (see Figure 2.38). These descriptions already sug-
gest that comics incorporate many concepts of time, while still retaining a static,
2-dimensional form. McCloud (1994) analyzed many of the methods and paradigms
of comics, concluding that powerful means of representing time, dynamics, and
movement are applied which differ from those applied in painting or photography.
Comics allow for the seamless representation of many temporal concepts that may
be also applicable to visualization. Basically, the course of time is represented in
comics via juxtaposition of panels. But the individual panels portray more than single
frozen moments in time and are more than photos placed side by side. Rather, single
panels contain whole scenes whose temporal extent may span from milliseconds to
arbitrary lengths (see Figure 2.39). Not only the content of a panel sheds light on the
length of its duration but also the shape of the panel itself can affect our perception
of time. Even more freedom in a temporal sense is given by the transition from one
panel to the next or by the space between panels, respectively (see Figure 2.40). Here,
time might be compressed, expanded, and rewound; deja vu’s might be incorporated
and much more. This also implies that comics are not just simply linearly told sto-
ries. Comics are very versatile and much more powerful in incorporating time in
comparison to paintings, photographs, and even film. Besides the purely temporal
aspect, motion is another important topic in comics. Several visual techniques, such
as motion lines or action lines with additional effects like multiple images, streaking
effects, or blurring are applied (see Figure 2.41). In part, these techniques are bor-
rowed from photography. Research work on generating these comic-like effects from
motion pictures has been conducted, for example, in Markovic and Gelautz (2006).

Music & dance Music notes are a notation almost everybody is aware of, but it is one
which is rarely seen in conjunction with time-oriented information (see Figure 2.42).
Nevertheless, music notes are clearly a visual representation of temporal information
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Fig. 2.40: Transitions between pan- Fig. 2.41: Techniques to represent movement in

els might span intervals of arbitrary comics (motion lines, streaking, multiple images,

length. © 1993, 1994 HarperCollins background streaking). © 1993, 1994 Harper-

Publishers. Reprinted, with permission, Collins Publishers. Reprinted, with permission,

from McCloud (1994, p. 100). from McCloud (1994, p. 114).
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Fig. 2.42: Music notation of “Amazing Grace”. A rich set of symbols, lines, and text visualizes
beat, rhythm, pitch, note length, pausing, instrument tuning, and parallelism. @& 2007 HenryLi.
Retrieved from Wikimedia Commons.

— even more than that. A rich set of different symbols, lines, and text constitute a
very powerful visual language. Beat, rhythm, pitch, note length, pausing, instrument
tuning, and parallelism are the most important visualized parameters. In fact, it is
hard to imagine any other way of representing musical compositions than via music
notes. Related to that, special notations are used for recording dance performances
statically on paper (see Figure 2.43).

Movies One art form that is only touched upon briefly here, but which might also
offer interesting ideas for visualization, is film. We will present movies that exemplify


https://commons.wikimedia.org/wiki/File:AmazingGraceFamiliarStyle.png
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Fig. 2.43: Dance notation. Used for recording dance performances statically on paper. © /990
Graphics Press. Reprinted, with permission, from Tufte (1990, p. 117).

how moviemakers are able to transport highly non-linear stories in the temporally
linear medium of film. These examples pertain to the plot of a film, and not to filming
or cutting techniques.

Run Lola Run' is a movie that presents several possible successions of events
sequentially throughout the film (compare branching time in Section 3.1.1). The
individual episodes begin at the same point in time and show different possible
strands of events.

The movie Pulp Fiction? comprises an even more complicated and challenging
plot. It is a collection of different episodes that are semantically as well as temporally
linked. Moreover, the movie ends by continuing the very first scene in the movie,
thus closing the loop.

A further example of the use of interesting temporal constellations in film is
the movie Memento.3 The main character of the movie is a man who suffers from
short-term memory loss, and who uses notes and tattoos to hunt for his wife’s killer.
What makes the storytelling so challenging is the fact that time flows backward from
scene to scene (i.e., the end is shown at the beginning and the story progresses to the
beginning from there).

Music videos are also often used as an innovation playground where directors
can experiment with unconventional temporal flows such as the reverse narrative as
used in Coldplay’s The Scientist.*

Paintings A very interesting approach to overcoming the limitations of time can
be found in Renaissance paintings. Here, sequences of different temporal episodes
are shown in a single composition. Figure 2.44 for example shows a painting by

! Run Lola Run (Lola rennt), written and directed by Tom Twyker, 1998.

2 Pulp Fiction, written by Quentin Tarantino et al., directed by Quentin Tarantino, 1994.
3 Memento, written by J. and C. Nolan, directed by Christopher Nolan, 2000.

4 The Scientist, recorded by Coldplay, music video directed by Jamie Thraves, 2001.
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Fig. 2.44: Masolino da Panicale, Curing the Crippled and the Resurrection of Tabitha (Brancacci
Chapel, S. Maria del Carmine, Florence, Italy), 1420s. Different stages or episodes of a single person
are shown within a unifying scenery. ® 1424 Masolino da Panicale. Retrieved from Wikimedia
Commons.

Masolino da Panicale that presents two scenes in the life of St. Peter within a single
scenery. While this method of showing different stages or episodes within a unifying
scenery was well understood by the people at that time (the Middle Ages), it might
not be as easily understood by a modern viewer. In his article, Jones (2020) provides
an overview of how paintings depict time and mentions that:

Paint is usually thought to be a static medium, capable of depicting only frozen instants of
time. Yet with a little inventiveness, it’s possible for paint to represent the passage of time
too.

Jones (2020)

The beginning of the 20th century was characterized by new findings and break-
throughs in the natural sciences, especially in mathematics and physics, such as
Einstein’s theory of relativity. But not only the world of science was shaken by
these developments; artists also addressed these topics in their own way. Foremost
among these were the protagonists of the art movement of Cubism, who focused on
incorporating time in their artworks. They coined the term Four-dimensional Art. In
his book, Miller (2001) gives an overview of the history of this movement.

As already mentioned, the concept of the n-dimensional space in mathematics and
physics inspired artists to think about 4D space. Figure 2.45 shows Marcel Duchamp’s
painting Nude Descending a Staircase which incorporates the dimension of time in a
very interesting way by overlaying different stages of a person’s movement. Another
example is Pablo Picasso’s Portrait of Ambroise Vollard (see Figure 2.46), where
many different observations are composed and partly overlaid to form a single picture.
The artists wanted to put emphasis on the process of looking and recording over time
(in contrast to taking a photo). These new ways of bringing the fourth dimension
into the static domain of pictures are still a challenge to viewers today.


https://commons.wikimedia.org/wiki/File:Cappella_brancacci,_Guarigione_dello_storpio_e_resurrezione_di_Tabita_(restaurato),_Masolino.jpg
https://commons.wikimedia.org/wiki/File:Cappella_brancacci,_Guarigione_dello_storpio_e_resurrezione_di_Tabita_(restaurato),_Masolino.jpg
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Fig. 2.45 Marcel Duchamp,
Nude Descending a Staircase
(No. 2), 1912. The dimen-
sion time is incorporated by
overlaying different stages
of a person’s movement.

© 2010 VBK, Vienna.

Fig. 2.46 Pablo Picasso, Por-
trait of Ambroise Vollard,
1910. Many different ob-
servations are composed and
partly overlaid to form a single
picture. © 2010 Succession
Picasso/VBK, Vienna.

49
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2.3 Summary

We have provided a brief review of relevant historical and application-specific visu-
alization techniques and representations of time in the visual arts. Our aim was to
provide historical context for developments in this area and to present some ideas
from related fields that might act as a further source of inspiration for designing
visualizations. Furthermore, this chapter has demonstrated the enormous breadth of
the topic which we are only able to cover in part.

Readers interested in more information about historical representations of time-
oriented data and historical representations in general are referred to the wonderful
books of Tufte (1983), Tufte (1990), Tufte (1997), Tufte (2006), Wainer (2005),
Rosenberg and Grafton (2010), Davis (2017), Rendgen (2019), and Dick (2020).
Michael Friendly’s great work on the history of data visualization can be studied in
numerous articles such as (Friendly, 2008) as well as online in his Data Visualization
Gallery® and the Milestones Project.® Additionally, interesting historic facts related
to time representations are discussed on the Chronographics Weblog” of Stephen
Boyd Davis.

Now, after setting the stage and considering various concepts and ideas from
related disciplines, we will narrow our focus and present a systematic view of the
visualization of time-oriented data. In this sense, we will first discuss important
aspects that make the handling of time and time-oriented data possible. Following
that, the visualization problem itself will be systematically explained and discussed.
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Chapter 3
Time & Time-Oriented Data

‘What, then, is time?
If no one asks me, I know what it is.
If I wish to explain it to him who asks, I do not know.

Saint Augustine (AD 354-430, The Confessions)

The fundamental phenomenon of time has always been of interest to mankind.
Many different theories for characterizing the physical dimension of time have been
developed and discussed over literally thousands of years in philosophy, mathematics,
physics, astronomy, biology, and many other disciplines. As reported by Whitrow
et al. (2003), a 1981 literature survey by J. T. Fraser found that the total number of
entries judged to be potentially relevant to the systematic study of time reached about
65,000. This illustrates the breadth of the topic and the restless endeavor of man to
uncover its secrets. What can be extracted as the bottom line across many theories is
that time is unidirectional (arrow of time) and that time gives order to events.

The most influential theories for the natural sciences are probably Newton’s
concepts of absolute vs. relative time and Einstein’s four-dimensional spacetime.
Newton assumed an absolute, true, mathematical time that exists in itself and is not
dependent on anything else. Together with space, it resembles a container for all
processes in nature. This image of an absolute and independent dimension prevailed
until the beginning of the 20th century. Then, Einstein’s relativity theory made clear
that time in physics depends on the observer. Thus, Einstein introduced the notion of
spacetime, where space and time are inherently connected and cannot be separated.
That is, each event in the universe takes place in four-dimensional space at a location
that is defined by three spatial coordinates at a certain time as the fourth coordinate
(see Lenz, 2005). Both Newton’s notion of absolute time and Einstein’s spacetime
are concepts that describe time as a fundamental characteristic of the universe. In
contrast to that, the way humans deal with time in terms of deriving it essentially
from astronomical movements of celestial bodies or phenomena in nature is what
Newton called relative time.

The first signs of the systematic use of tools for dealing with time have been
found in the form of bone engravings that resembled simple calendars based on the
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cycle of the moon. In this regard, the most fundamental natural rhythm perceived
by humans is the day. Consequently, it is the basis of most calendars and was used
to structure the simple life of our ancestors who lived in close contact with nature
(see Lenz, 2005). More complex calendars evolved when man moved away from the
life of hunter-gatherers and settled into communities to live from agriculture. Until
very late in human history, time was kept only very roughly. Industrialization and
urban civilization brought about the need for more precise, regular, and synchronized
overall timekeeping.

Today, the most commonly used calendric system is the Gregorian calendar.
It was introduced by Pope Gregory XII in 1582, primarily to correct the drift of
the previously used Julian calendar, which was slightly too long in relation to the
astronomical year and the seasons.! Apart from this calendric system, many other
systems are in use around the world, such as the Islamic, the Chinese, or the Jewish
calendars, or calendars for special purposes, like academic (semester, trimester, etc.)
or financial calendars (quarter, fiscal year, etc.).

In this book, we will not look at the physical dimension of time itself and its
philosophical background, how time is related to natural phenomena, or how clocks
have been developed and used. We focus on how the physical dimension of time
and associated data can be modeled in a way that facilitates interactive visualization
using computer systems. As a next step, we are now going to examine the design
aspects for modeling time.

3.1 Modeling Time

First of all, it is important to make a clear distinction between the physical dimension
of time and a model of time in information systems. When modeling time in infor-
mation systems, the goal is not to perfectly imitate the physical dimension time, but
to provide a model that is best suited to reflect the phenomena under consideration
and support the analysis tasks at hand. Moreover, as Frank (1998) states, there is
nothing like a single correct model or taxonomy of time — there are many ways
to model time in information systems and time is modeled differently for different
applications depending on the particular problem. Extensive research has been con-
ducted in order to formulate the notion of time in many areas of computer science,
including artificial intelligence, data mining, simulation, modeling, databases, and
more. A theoretical overview which includes many references to fundamental pub-
lications is provided by Hajnicz (1996). However, as she points out, the terminology
is not consistent across the different fields, and hence, does not integrate well with
visualization. Moreover, as Goralwalla et al. (1998) note, most research focuses on
the development of specialized models with different features for particular domains.
But apart from the many time models created for specific purposes and applications,
attempts have been made to capture the major design aspects underlying all specific

! Interestingly, much more precise calendars were known hundreds of years earlier in other cultures,
such as those developed by the Mayas and the Chinese.
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instances, as for example by Frank (1998), Goralwalla et al. (1998), Peuquet (1994),
Peuquet (2002), Furia et al. (2010), and Furia et al. (2012).

In the context of our book, we want to present the overall design aspects of
modeling time, and not a particular model. To do this, we will describe a number
of major design aspects and their features which are particularly important when
visualizing time. Application-specific models can be derived from these as particular
configurations.

3.1.1 Design Aspects

To define the design aspects relevant to time, we adapted the works of Frank (1998)
and Goralwalla et al. (1998), where principal orthogonal aspects are presented to
characterize different types of time. Next, the aspects of scale, scope, arrangement,
and viewpoint will be described in detail.

Scale: ordinal vs. discrete vs. continuous Let us first consider the scale along
which elements of time are given. In an ordinal time domain, only relative order
relations are present (e.g., before, after). For example, statements like “Valentina
went to sleep before Arvid arrived” and “Valentina woke up after a few minutes
of sleep” can be modeled using an ordinal scale. Note that only relative statements
are given and we cannot discern from the given example whether Valentina woke
up before or after Arvid arrived (see Figure 3.1). This might be sufficient if only
qualitative temporal relationships are of interest or no quantitative information is
available.

In discrete time domains, it is possible to consider temporal distances. Time
values can be mapped to a set of integers which enables quantitative modeling of
time values (e.g., quantifiable temporal distances). Discrete time domains are based
on a smallest possible unit (e.g., seconds or milliseconds as in UNIX time) and they
are the most commonly used time models in information systems (see Figure 3.2).
Continuous time models are characterized by a possible mapping to real numbers,
i.e., between any two points in time, another point in time exists (also known as
dense time, see Figure 3.3).

Examples of visualization techniques capable of representing the three types of
scale are the point and figure chart (see Figure 3.4) for an ordinal scale, tile maps
(see Figure 3.5 and — p. 269) for a discrete scale, and the circular silhouette graph
(see Figure 3.6 and < p. 281) for a continuous time scale.

Scope: point-based vs. interval-based Secondly, we consider the scope of the basic
elements that constitute the structure of the time domain. Point-based time domains
can be seen in analogy to discrete Euclidean points in space, i.e., having a temporal
extent equal to zero. Thus, no information is given about the region between two
points in time. In contrast to that, interval-based time domains relate to subsections
of time having a temporal extent greater than zero. This aspect is also closely related
to the notion of granularity, which will be discussed in Section 3.1.2. For example,
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Fig. 3.1 Ordinal scale. Only
relative order relations are
present. At this level, it is not
possible to discern whether
Valentina woke up before or
after Arvid arrived. @@ The
authors.

Fig. 3.2 Discrete scale.
Smallest possible unit is
minutes. Although Arvid ar-
rived and Valentina woke up
within the same minute, it is
not possible to model the ex-
act order of events. @@ The
authors.

Fig. 3.3 Continuous scale.
Between any two points in
time, another point in time
exists. Here, it is possible

to model that Arvid arrived
shortly before Valentina woke
up. @@® The authors.

Fig. 3.4 Point and figure
chart. Visualization technique
tracking price and price
direction changes. Uses an
ordinal time scale. o...positive
price change of a certain
amount, X...negative price
change of a certain amount,
m...begin/end of a trading
period. @@® The authors.
Adapted from Harris (1999).

Price

Valentina

went to sleep

300

298

296

294

292

290

288

286

284

282

280

loooo

Jan

X X X
[e]{e){e]

before O

o

3 Time & Time-Oriented Data

Arvid
arrived

f
‘mo Valentina

Valentina

went to sleep

Valentina

went to sleep

woke up

Arvid Valentina
arrived woke up

D>
oS

Arvid Valentina
arrived woke up

')

q/‘

[o){e]{e)[o){e]

X[ X[ X[ X

ocoojjoocoooo0
XXX X X X X

Feb

O (X
S
(7/.(1/.
X
X 0
X 0
xol
X X 0Xo
X0 X0 o
X 0 X o
X [ X/0X o
o X 0 X0 0 X
Ol XoXx 0o X
0O X0XO0X o X
0O X0XO0X o X
O O0XOo o
o X
(o)
Mar Apr



3.1 Modeling Time 57

Krems Ozone

2006 Jan May Jun Jul Nov
Monday b | ol | B | |
Tuesday | B [ | H B
Wednesday
Thursday
Friday
Saturday

Sunday .-

2007 Jan
Monday .-

Tuesday|
Wednesday.
Thursday [l

Friday
Saturday .
sunday Il

2008 Jan Feb
Monday .

Tuesday Il
Wednesday .
| ]

[]

[ ]

|

Thursday

Saturday
Sunday

000-006PPM  [Mo0s-012PPM  [Mo.12-0.18PPM  [l0.18-0.24 PPM

Fig. 3.5: Tile maps showing average daily ozone measurements (scale: discrete, scope: interval-
based) for three years. ©@@® The authors. Adapted from Mintz et al. (1997).
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graph. Enables the repre- Oct
sentation of time along a
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tation emphasizes the visual
impression by filling the area
below the plotted line in order
to create a distinct silhouette.
This eases comparison when
placed side by side. @@® The
authors. Adapted from Harris Jul Jun
(1999).
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the time value October 23, 2012 might relate to the single instant October 23, 2012
00:00:00 in a point-based domain, whereas the same value might refer to the interval
[October 23, 2012 00:00:00, August 23, 2012 23:59:59] in an interval-based domain
(see Figures 3.7 and 3.8).

Examples of visualization techniques capable of representing the two types of
scope are the TimeWheel (see Figure 3.9 and < p. 298) for a point-based domain
and tile maps (see Figure 3.5 and < p. 269) for an interval-based time domain.
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Fig. 3.7 Time value “October
23, 2012” for the birthday
of Emilia in a point-based
domain. No information is
given in between two time
points. @@ The authors.

Fig. 3.8 Time value “October
23, 2012” for the birthday of
Emilia in an interval-based
domain. Each element covers a
subsection of the time domain
greater than zero. @@® The
authors.

Fig. 3.9 TimeWheel. Axes
of time-dependent variables
are arranged around a central
horizontal time axis. Lines
connect the time points on the
time axis with the correspond-
ing data values on the variable
axes. Colors indicate different
variables. @@® The authors.
Adapted from Tominski et al.
(2004).
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Arrangement: linear vs. cyclic As the third design aspect, we look at the arrange-
ment of the time domain. Corresponding to our natural perception of time, we mostly
consider time as proceeding linearly from the past to the future, i.e., each time value
has a unique predecessor and successor (see Figure 3.10). However, periodicity is
very common in all kinds of data, for example, seasonal variations, monthly aver-
ages, and many more. In a cyclic organization of time, the domain is composed of a
set of recurring time values (e.g., the seasons of the year, see Figure 3.11). Hence,
any time value A is preceded and succeeded at the same time by any other time value
B (e.g., winter comes before summer, but winter also succeeds summer). In order to
enable meaningful temporal relationships in cyclic time, Frank (1998) suggests the
use of the relations immediately before and immediately after. Strictly cyclic data,
where the linear progression of time from past to future is neglected, is very rare
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. . . . >
Fig. 3.10 Linear time. Time N
proceeds linearly from past to Q,QQ/ q/q/q/ q/qub Qq/b‘ q§f/0 Q/QQ/Q) Q/Qri\
future. @@ The authors.
/y Spring \
Winter Summer

Fig. 3.11 Cyclic time. Set of
recurring time values such
Fall

as the seasons of the year.
©@@® The authors.

(e.g., records for the day of the week not considering month or year). The combi-
nation of periodic and linear progression denoted by the term serial periodic data
(e.g., monthly temperature averages over a couple of years) is much more common.
Periodic time-oriented data in this sense includes both strictly cyclic data and serial
periodic data.

Examples of visualization techniques capable of representing the two types of
arrangement are the TimeWheel (see Figure 3.9 and — p. 298) for linear time and
the circular silhouette graph (see Figure 3.6 and < p. 281) for cyclic time.

Viewpoint: ordered vs. branching vs. multiple perspectives The fourth subdivi-
sion is concerned with the views of time that are modeled. Ordered time domains
consider things that happen one after the other. On a more detailed level, we might
also distinguish between totally ordered and partially ordered domains. In a totally
ordered domain, only one thing can happen at a time. In contrast to this, simultaneous
or overlapping events are allowed in partially ordered domains, i.e., multiple time
primitives at a single point or overlapping in time. A more complex form of time do-
main organization is the so-called branching time (see Figure 3.12). Here, multiple
strands of time branch out and allow the description and comparison of alternative
scenarios (e.g., in project planning). This type of time supports decision-making
processes where only one of the alternatives will actually happen. Note that branch-
ing is not only useful for future scenarios but can also be applied for investigating the
past, e.g., for modeling possible causes of a given decision. In contrast to branching
time where only one path through time will actually happen, multiple perspectives
facilitate simultaneous (even contrary) views of time, which are necessary, for in-
stance, to structure eyewitness reports. A further example of multiple perspectives is
stochastic multi-run simulations. For a single experiment, there might be completely
different output data progressions depending on the respective initialization.
Temporal databases usually take a multi-perspective viewpoint as well. They
consider the two perspectives of valid time and transaction time (see Figure 3.13). The
valid time perspective of a fact is the time when the fact is true in the modeled reality
(e.g., “Vincent was born on August 8, 2006”). In contrast to that, the transaction
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Fig. 3.12: Branching time. Alternative scenarios for moving to a different place. @@ The authors.

Birth of

Vincent
Fig. 3.13 Multiple perspec. valid t/mt? %ansact/on time
tives. Vincent was born on
August 8, 2006 (valid time) | I
and this fact was stored in ,QCO §\ QQ’ QQ’ \0 ;\\ ;\q/
the register of residents two ,ch /0% p‘b' ,ch 'Q‘b' ,Q(b ,Q‘b
days later on August 10, 2006 FFFSFFEESE
(transaction time). @@ The vor e v P v 9
authors.

time perspective of a fact denotes when it was stored in the database (e.g., the birth
of Vincent is stored in the register of residents after filling out a form two days after
his birth). In practice, it is often necessary to condense multiple perspectives into a
single consistent view of time (see for example Wolter et al., 2009).

Both branching time and multiple perspectives introduce the need to deal with
probability (or uncertainty), to convey, for example, which path through time will
most likely be taken, or which evidence is believable. The decision chart (see Fig-
ure 3.14 and — p. 237) is an example of a visualization technique capable of
representing branching time.

3.1.2 Granularities & Time Primitives

The previous section introduced design aspects to adequately model the time do-
main’s scale, scope, and arrangement as well as possible viewpoints onto the time
domain. Besides these general aspects, the hierarchical organization of time as well
as the definition of concrete time elements used to relate data to time need to be
specified. In the following, we will discuss this facet in more detail.
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Fig. 3.14: Decision chart. Example of a visualization technique capable of representing branching
time. Future decisions and potential alternative outcomes along with their probabilities can be
depicted over time. @@ The authors. Adapted from Harris (1999).

Granularity and calendars: none vs. single vs. multiple To tame the complexity
of time, it is practical to consider different levels of granularity. Basically, granu-
larities can be thought of as human-made abstractions of time (e.g., minutes, hours,
days, weeks, months). More generally, granularities describe mappings from time
values to larger or smaller conceptual units (see Figure 3.15 for an example of time
granularities and their relationships). A comprehensive overview and formalization
of time granularity concepts is given by Bettini et al. (2000).

Most information systems that deal with time-oriented data are based on a discrete
time model that uses a fixed smallest granularity also known as bottom granular-
ity (e.g., Java’s java.time package uses nanoseconds as the smallest granular-
ity). Consequently, the underlying time domain corresponds to a sequence of non-
decomposable, consecutive time intervals of identical duration, so-called chronons
(see Jensen et al., 1998). A point in time can then be specified simply as the number
of chronons relative to a reference point (e.g., milliseconds since January 1, 1970
00:00:00 GMT as for Unix time).

Chronons may be grouped into larger segments, termed granules. That said, a
granularity is basically a non-overlapping mapping of granules to subsets of the
time domain (see Dyreson et al., 2000). Granularities are related in the sense that
the granules in one granularity may be further aggregated to form larger granules
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Fig. 3.15: Example of a discrete time domain with multiple granularities. The smallest possible
unit (chronon) is one day. Based on this, the granularity weeks contains granules that are defined
as being a set of seven consecutive days. Moreover, the granularity fortnights consists of granules
that are a set of two consecutive weeks. @@ The authors.
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Fig. 3.16 Annotated granu-
larity lattice of the Gregorian t760 o | tdiv60
calendar that contains regular seconds
and irregular mappings (leap )
seconds are not considered e lT tav1
in the granularity lattice). L (chronon)
©@@® The authors.

belonging to a coarser granularity. For example, 60 consecutive seconds are mapped
to one minute.

A system of multiple granularities in lattice structures is referred to as a calendar
(see Figure 3.16 for the granularity lattice of the Gregorian calendar). More precisely,
it is a mapping between human-meaningful time values and an underlying time
domain. Thus, a calendar consists of a set of granularities including mappings
between pairs of granularities that can be represented as a graph (see Dyreson et al.,
2000). Calendars most often include cyclic elements, allowing human-meaningful
time values to be expressed succinctly. For example, dates in the common Gregorian
calendar may be expressed in the form <day, month, year> where each of the
fields day, month, and year circle as time passes (see Jensen et al., 1998). To help
users in grasping the complexities of a calendar, a visual notation based on icons
and glyphs has been developed by Dudek and Blaise (2013) for comparing different
calendars to each other.
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Moreover, mappings between granularities might be regular or irregular. A regular
mapping exists for example between seconds and minutes where one minute always
maps to 60 seconds.? In contrast to that, the mapping of days to months is irregular
because a month might be composed of 28, 29, 30, or 31 days depending on the
context (particular year and month).

To work effortlessly with granularities and calendars, an appropriate infrastruc-
ture of data models and operators is required. This includes not only the definition of
granularities and calendars, but also methods for converting from one granularity to
another or for combining calendars. Particularly, conversion operations can be quite
complex due to the irregularities in granularities, for example when converting from
days to months. Many programming languages and their corresponding standard li-
braries implement the described functionalities for the Gregorian calendar following
the ISO 8601 standard (e.g., java. time). More sophisticated implementations with
support for alternative calendars (e.g., java.time.chrono) and multiple (user-
defined) granularities are becoming increasingly important in a globalized world
(see Dyreson et al., 2000; Lee et al., 1998).

Finally, it is worth mentioning that granularities influence equality relationships.
Take for example two events A and B that happened on December 31, 2020 and
January 2, 2021 (see Figure 3.17). At the granularity of days, the two events are
on different days. Yet, at the granularity of weeks, both events are within the same
granule. At the still coarser granularity of years, A and B are again different. Note
that this is contradictory to the naive assumption that when an equality relationship
holds true on a fine granularity it also holds true on a coarser one.

Relationship of A and B:

s o . TN TR ... AnotequlsB

weoks ... T P ...  AcaulsB

dws ... oo AnotequaisB
A B

Fig. 3.17: Granularities influence equality relationships. The times of A and B are not equal on the
granularity of days, but are equal on the granularity of weeks, and then again are not equal on the
coarser granularity of years. @@® The authors.

The concepts of chronon, granule, granularity, and calendar help us organize the
time domain. If a visualization makes use of granularities or calendar systems, it
is categorized as supporting multiple granularities. Besides this complex variant,
a visualization’s time model might support only a single granularity (e.g., every
time value is given in terms of milliseconds) or none at all (e.g., abstract ticks). An
example of a visualization technique that uses time granularities is the cycle plot
(see Figure 3.18 and < p. 268).

2 We are not considering the exception of leap seconds here.
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Fig. 3.18: Cycle plot. Visualization technique that utilizes two time granularities to represent cycles
and trends. The example shows trends of measurements of weekdays over quarters. For example,
on Mondays, the values show an increasing trend over the year while on Tuesdays the trend is
decreasing. Furthermore, the general shape of a week’s cycle is visible. @@ The authors. Adapted
from Cleveland (1993).

Time primitives: instant vs. interval vs. span Next, we present a set of basic
elements used to relate data to time, so-called time primitives: instant, interval,
and span. These time primitives can be seen as an intermediary layer between
data elements and the time domain. Basically, time primitives can be divided into
anchored (absolute) and unanchored (relative) primitives. Instant and interval are
primitives that belong to the first group, i.e., they are located at a fixed position in the
time domain. In contrast to that, a span is a relative primitive, i.e., it has no absolute
position in time.

An instant® is a single point in time, e.g., May 23, 1977. Depending on the
scope, i.e., whether a point-based or interval-based time model is used (see previous
section), an instant might also have a duration (see Figure 3.19 and Figure 3.20).
Time primitives can be defined at all levels of granularity representing chronons,
granules, or sets of both. Examples of instants are the date of birth “May 23, 1977”
and the beginning of a presentation on “January 10, 2023 at 2 p.m.” whereas the first
instant (date of birth) is given at a granularity of days and the second (beginning of
presentation) at a granularity of hours.

An interval is a portion of the time domain that can be represented by two instants,
one denoting the beginning of the interval and the other its end. Intervals being
defined in this way usually correspond to closed intervals that include the beginning
and the end instant (e.g., [August 7, 2022; August 10, 2022] as in Figure 3.21).
Alternatively, intervals can be specified via a beginning instant plus a duration
(positive span), or via a duration (positive span) plus an end instant.

3 Oftentimes also referred to as time point.
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Fig. 3.19 Instant in a point- A A7 MAY AT AT A
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instants have no duration.

©@@® The authors.

Fig. 3.20 Instant in an Q:\ q/"?/ Q"b q’b( Q, Q’ Q:\
interval-based time model, A’

where instants have a dura- o_,/\
tion that depends on their

granularity. @@ The authors.
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Fig. 3.21 Interval [August QQ;’Q Q,Q <b° ‘bQ ‘b\ Q‘b'\ Q‘b'
7, 2022; August 10, 2022] Q Q,Q q,° q,o q,o VY
in a point-based time model. Q/Qq’ Q'Qq’ Q'Qq' Q'Qq' ‘-19"b Q/Qq" Q/QQ’
©@® The authors.

The span is the only unanchored primitive. A time span is defined as a directed,
unanchored primitive that represents a directed amount of time in terms of a number
of granules in a given granularity. Examples of spans are the length of a vacation
of “10 days” and the duration of a lecture of “150 minutes”. Figure 3.22 illustrates
this graphically by showing an example span of “four days” which is a count of four
granules of the granularity of days. A span is either positive, denoting the forward
motion of time, or negative, denoting the backward motion of time (see Jensen et al.,
1998). In the case of irregular granularities, the exact length of a span is not known
precisely. Consider for example the granularity of months, where a span of “two
months” might be 59, 60, 61, or 62 days depending on the particular time context.
This implies that the exact length of spans within irregular granularities can only be
determined exactly if the spans are related absolutely to the time domain (anchored).
Otherwise, as a last resort, mean values might be used for calculations (e.g., mean
month and mean year).
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Fig. 3.22 Span. Example of

the span “four days” which 4 days

is formed by four granules of

the granularity days. @@® The days [ [
authors.

In terms of visualizing time primitives, most of the previously given visualization
examples are suited for time instants. The Gantt chart (— p. 253) is an example
of a visualization technique that is designed particularly to show time intervals (see
Figure 3.23).

Construction Plan p ) |

Earthworks .-.

Structural Work py ) |

Foundation

Walls and Ceilings ......L
Windows / Doors ....
Roof L]

Roofing ceremony 4"

Screed 4’...

Fig. 3.23: Gantt chart. Example of a visualization technique capable of representing intervals. The
tasks of a project plan are displayed as a list in the left part of the diagram. For each task, a horizontal
bar (timeline) displays the extent of the task in time. @@® The authors.

Relations between time primitives Between individual time primitives, relations
might exist. Temporal relations are important concepts, especially when reasoning
about time (see Peuquet, 1994). Depending on the involved types of primitives,
different relations make sense.

Between two instants x and y, three relationships are possible (see Figure 3.24):

e x before y
* X aftery
* x equals 'y

Similarly, for time spans, which are amounts of time, there are three possible
relations. Given two time spans s and ¢, one of the following relations can hold: s
shorter than t, s longer than t, or s as long as t.

For relations between time intervals A and B, things get more complex. Allen
(1983) defined a set of thirteen basic relations that are very common in time modeling
(see Figure 3.25):
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Fig. 3.24 Instant relations.
Instants can be related in
three different ways. @@ The

authors.

Fig. 3.25 Interval relations.
Intervals can be related in thir-
teen different ways. @@ The

authors.

Fig. 3.26 Instant+interval re-
lations. Instants and intervals
can be related in eight different

ways. @@ The authors.
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A before B
B after A

A equals B

A before B
B after A

A meets B
B met-by A

A overlaps B
B overlapped-by A

A starts B
B started-by A

A during B
B contains A

A finishes B
B finished-by A

A equals B

A before B
B after A

A starts B
B started-by A

A during B
B contains A

A finishes B
B finished-by A
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* A before B (or B after A): Interval A ends before interval B starts.

* A meets B (or B met-by A): Interval A ends right when interval B starts.

e Aoverlaps B (or B overlapped-by A): Intervals A and B overlap whereas interval
A ends during interval B.

* A starts B (or B started-by A): Intervals A and B start at the same time but
interval A ends earlier.

e A during B (or B contains A): Interval A starts later than interval B and ends

before interval B ends.

A finishes B (or B finished-by A): Interval A and B end at the same time but

interval A starts later.

* A equals B: Intervals A and B start and end at the same time.

When looking at relations between an instant x and an interval A, eight options
exist (see Figure 3.26):

e x before A (or A after x): Instant x is before the start of interval A.

e x starts A (or A started-by x): Instant x and the start of interval A are the same.

* x during A (or A contains x): Instant x is after the start and before the end of
interval A.

* x finishes A (or A finished-by x): Instant x and the end of interval A are the same.

Determinacy: determinate vs. indeterminate In addition to the set of possible
relations, further design aspects are relevant in the context of time-oriented data.
Uncertainty is one such aspect. If there is no complete or exact information about
time specifications or if time primitives are converted from one granularity to another,
uncertainties are introduced and have to be dealt with. Therefore, the determinacy
of the given time specification needs to be considered.

A determinate specification is present when there is complete knowledge of all
temporal aspects. Prerequisites for determinate specification are either a continuous
time domain or only a single granularity within a discrete time domain. Information
that is temporally indeterminate can be characterized as don’t know when informa-
tion, or more precisely, don’t know exactly when information (see Jensen et al., 1998).
Examples of this are inexact knowledge (e.g., “time when the earth was formed”),
future planning data (e.g., “it will take 2-3 weeks”), or imprecise event times (e.g.,
“one or two days ago”).

Notice that temporal indeterminacy as well as the relativity of references to
time are mainly qualifications of statements rather than of the events they denote.
Indeterminacy might be introduced by explicit specification (e.g., earliest beginning
and latest beginning of an interval) or is implicitly present in the case of multiple
granularities. Consider for example the statement “Activity A started on July 25,
2022 and ended on July 31, 2022” — this statement can be modeled by the beginning
instant “July 25, 2022” and the end instant “July 31, 2022” both at the granularity of
days. If we look at this interval from a granularity of hours, the interval might begin
and end at any point in time between 0 a.m. and 12 p.m. of the specified day (see
Figure 3.27).
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Fig. 3.27: Indeterminacy. Implicit indeterminacy when representing the interval [July 25, 2022;
July 31, 2022] that is given at a granularity of days on the finer granularity of hours. ©@® The
authors.
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Fig. 3.28: PlanningLines allow the depiction of temporal indeterminacy via a glyph consisting of
two encapsulated bars representing minimum and maximum duration. The bars are bounded by
two caps that represent the start and end intervals. @@ The authors. Adapted from Aigner et al.
(2005).
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Examples of time models that consider temporal indeterminacy are HMAP# by
Combi and Pozzi (2001) and the time model underlying the time annotations used in
the medical treatment plan specification language Asbru by Shahar et al. (1998). A
visualization technique capable of depicting temporal indeterminacy is for example
PlanningLines (see Figure 3.28 and < p. 260).

3.2 Characterizing Data

After discussing the question of modeling the time domain itself, we now move on to
the question of characterizing time-oriented data. When we speak of time-oriented
data, we basically mean data that are somehow connected to time. More precisely,
we consider data values that are associated with time primitives.

The available modeling approaches are manifold and range from considering
continuous to discrete data models (see Tory and Moller, 2004). In the former case,
time is seen as an observational space and data values are given relative to it (e.g.,
a time series in form of time-value pairs (z,v)). For the latter, data are modeled
as objects or entities which have attributes that are related to time (e.g., calendar
events with attributes beginning and end). Moreover, certain analytic situations even
demand domain transformations, such as a transformation from the time domain into
the frequency domain (Fourier transformation).

A useful concept for modeling time-oriented data along cognitive principles
is the pyramid framework (see Figure 3.29) by Mennis et al. (2000), which has
already been mentioned briefly in Section 1.1. The model is based on the three

Taxonomy Partonomy
w2 Object

Knowledge

Component
Fig. 3.29 Pyramid frame- ,M,/,ZZ:S;:; Data
work. Data are conceptualized Component
along the three perspectives
of location, time, and theme. where when
Derived interpretations form s it? is it?
objects on the cognitively Location Time
higher level of knowledge. —r

@ tt2 3

©@@® The authors. Adapted
from Mennis et al. (2000).

X

4 The word HMAP is not an abbreviation, but it is the transliteration of the ancient Greek poetical
word day.
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perspectives location (where is it?), time (when is it?), and theme (what is it made
of?) at the level of data. Derived interpretations of these data aspects form objects
(what is it?) on the cognitively higher level of knowledge, along with their taxonomy
(classification; super-/subordinate relationships) and partonomy (interrelationships;
part-whole relationships).

Depending on the phenomena under consideration and the purpose of the analysis,
different points of view can be taken. An example of this would be considering
distinct conceptual entities that are related to time (objects) vs. the observation of
a continuous phenomenon, like temperature over time (values). There cannot be a
single model that is ideal for all kinds of applications. However, certain fundamental
design alternatives can be identified to characterize time-oriented data. In the context
of this book, we focus on the data component, i.e., the lower part of the pyramid
framework as depicted in Figure 3.29.

Scale: quantitative vs. qualitative In terms of data scale, we distinguish between
quantitative and qualitative variables. Quantitative variables are based on a metric
(discrete or continuous) range that allows numeric comparisons. In contrast, the scale
of qualitative variables includes an unordered (nominal) or ordered (ordinal) set of
data values. It is of fundamental importance to consider the characteristics of the
data scale to design appropriate visual representations.

Frame of reference: abstract vs. spatial It further makes sense to distinguish
abstract and spatial data. By abstract data we mean a data model that does not include
the where aspect with regard to the pyramid framework, i.e., abstract data are not
connected per se to some spatial location. In contrast to this, spatial data contain an
inherent spatial layout, i.e., the underlying data model includes the where aspect. The
distinction between abstract and spatial data reflects the way in which time-oriented
data should be visualized. For spatial data, the inherent spatial information can be
exploited to find a suitable mapping of data to screen. The when aspect has to be
incorporated into that mapping, where it is not always easy to achieve an emphasis
on the time domain. For abstract data, no a-priori spatial mapping is given. Thus,
first and foremost an expressive spatial layout has to be found. This spatial layout
should be defined such that the time domain is exposed.

Kind of data: events vs. states This criterion refers to the question of whether
events or states are dealt with. Events can be seen as markers of state changes,
like for example the departure of a plane. States can be characterized as phases of
continuity between events (e.g., plane is in the air). As one can see, states and events
are two sides of the same coin. However, it should be clearly communicated whether
states or events, or even a combination of both, are visualized.

Number of variables: single vs. multiple This criterion concerns the number of
time-dependent variables. In principle, it makes a difference if we have to represent
data where each time primitive is associated with only one single data value (i.e.,
univariate data) or if multiple data values (i.e., multivariate data) must be represented.
Compared to univariate data, for which many methods have been developed, the range
of methods applicable for multivariate data is substantially smaller.
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3.3 Relating Data & Time

Aspects regarding time dependency of data have been extensively examined in the
field of temporal databases (see Liu and Ozsu, 2018). Here, we adapt the notions
and definitions developed in that area. According to Steiner (1998), any dataset is
related to two temporal domains:

e internal time I; and
e external time T ..

Internal time is considered to be the temporal dimension inherent in the data
model. Internal time describes when the information contained in the data is valid.
Conversely, external time is considered to be extrinsic to the data model. The external
time is necessary to describe how a dataset evolves over time. Depending on the
number of time primitives in internal and external time, time-related datasets can be
classified as shown in Figure 3.30.
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(1998).

Static non-temporal data If both internal and external time are each comprised
of only a single time primitive, the data are completely independent of time. A fact
sheet containing data about the products offered by a company is an example of static
non-temporal data. This kind of data is not addressed in this book.

Static temporal data If the internal time contains more than one time primitive,
while the external time contains only one, then the data can be considered dependent
on time. Since the values stored in the data depend on the internal time, static
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temporal data can be understood as a historical view of how the real world or some
model developed over time. Common time series are a prominent example of static
temporal data. Most of today’s visualization approaches that explicitly consider
time as a special data dimension address static temporal data, for instance, the
TimeSearcher (see Hochheiser and Shneiderman (2004) and < p. 290).

Dynamic non-temporal data If the internal time contains only one, but the external
time is composed of multiple time primitives, then the data depend on the external
time. To put it simply, the data themselves change over time, i.e., they are dynamic.
Dynamic data that change at high rate are often referred to as streaming data. Since
the internal time is not considered, only the current state of the data is preserved; no
historical view is maintained. There are fewer visualization techniques available that
explicitly focus on dynamic non-temporal data. These techniques are mostly applied
in monitoring scenarios, for instance, to visualize process data (see Matkovi¢ et al.
(2002) and < p. 331). However, since internal time and external time can usually
be mapped from one to the other, some of the known visualization techniques for
static temporal data can be applied for dynamic non-temporal data as well.

Dynamic temporal data If both internal and external time are comprised of mul-
tiple time primitives, then the data are considered to be bi-temporally dependent. In
other words, the data contain variables depending on (internal) time, and the actual
state of the data changes over (external) time. Usually, in this case, internal and ex-
ternal time are strongly coupled and can be mapped from one to the other. Examples
of such data could be health data or climate data that contain measures depending
on time (e.g., daily number of cases of influenza or daily average temperature), and
that are updated every 24 hours with new data records of the passed day. An explicit
distinction between internal and external time is usually not made by current visual-
ization approaches, because considering both temporal dimensions for visualization
is challenging. Therefore, dynamic temporal data are beyond the scope of this book.

3.4 Considering Data Quality

When talking about data, it is also important to consider aspects of data quality (see
Rahm and Do, 2000). The variability and dynamic changes inherent in time-oriented
data make them particularly prone to various types of errors and failures. Data
suffering from data quality issues, often called ’dirty data’ (see Kim et al., 2003),
can lead to all sorts of problems such as wrong results, misleading statistics, or
inapplicability of visualization and analysis methods. It is often the case that severe
data quality problems are only discovered as soon as one tries to visualize the data.
Steele and Iliinsky (2010) point out the famous 80:20 rule, according to which
oftentimes as much as 80% of the effort needs to go into dealing with data quality
issues, whereas only 20% actually goes into the core visualization. In the following,
we briefly consider typical data quality problems with time-oriented data and outline
procedures to tackle them appropriately.
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Taxonomy of dirty time-oriented data A first step for getting to grips with dirty
time-oriented data is to understand the potential problems. Gschwandtner et al.
(2012) provide a systematic overview of various quality problems with time-oriented
data. An adapted version of their taxonomy is depicted in Figure 3.31. With this
structured view, developers and users of visual analysis methods for time-oriented
data are able to systematically check and mitigate possible data quality issues.

Data quality problems

Single-source problems Multi-source problems
Missing data Outdated data Heterogeneous syntaxes
Duplicate data Wrong data Heterogeneous semantics
Implausible data Ambiguous data References

Fig. 3.31: Classification of data quality problems. @@® The authors. Adapted from Gschwandtner
et al. (2012).

On the top level, the taxonomy distinguishes data quality problems related to a
single source and problems arising from multiple sources of data. For single-source
problems, one can differentiate the following possible problem types: missing data,
duplicate data, implausible data, outdated data, wrong data, and ambiguous data.
Missing data can be individual values or entire data tuples. Sometimes missing data
are marked by special values (e.g., null or —999). If this is not the case, missing data
can easily go unnoticed, such as a missing February 29 in leap years. Duplicates can
cause inconsistencies when, for example, for the same date, two different values are
present in the data. Implausible data are data that are outside of the expected value
range or indicative of unexpected behavior. For example, many subsequent repetitions
of one and the same value in sensor data might hint at a broken sensor. Outdated data
are literally not up-to-date and might not reflect the current situation. Wrong data
are plainly incorrect, for example, when a time interval’s start is after its end. For
ambiguous data, there are several valid, but potentially conflicting interpretations
of a given datum, and it is unclear which interpretation to use. For example, the
date value ‘06-03-05" may be March 5, 2006 or March 6, 2005. Without additional
information, we cannot tell.

In contrast to single-source problems, multi-source problems occur when multiple
data sources have to be integrated, and the different sources use inconsistent formats
or have overlapping and contradicting data. For multi-source problems, the taxonomy
distinguishes the problem types of heterogeneous syntaxes, heterogeneous semantics,
as well as references. Heterogeneous syntaxes are a problem caused by the use of
different data formats. For example, data tables might have different structures where
one table contains date and time in two separate columns, while another table stores
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date and time together in a single column. Heterogeneous semantics stem from
inconsistent interpretations of time values. While in one data table, the duration
of intervals is given as whole hours only, another table might store durations as
the number of minutes. Finally, reference may cause trouble when their referential
integrity is violated, for example, when the time instance being referred to does not
exist.

In Appendix B, we provide more details on the individual problem types as well
as more concrete examples. With this information, we have a kind of checklist that
can be used for scrutinizing time-oriented data before engaging in any visual data
analysis activities. Steps that are helpful for cleaning the data are described next.

Data cleansing Data cleansing (also called data cleaning, data scrubbing, or data
wrangling) is the process of detecting and correcting dirty data, which is typically
a prerequisite for interactive visualization. Miiller and Freytag (2003) describe data
cleansing as a four-step process:

1. Data auditing

2. Workflow specification
3. Workflow execution

4. Post-processing/control

The first step of data auditing is concerned with detecting different types of
anomalies contained in the data. The taxonomy of dirty time-oriented data can
be harnessed to carry out this step systematically. For the actual data cleansing, a
workflow of data correction operations is specified based on the identified quality
issues. To actually rectify the anomalies contained in the data, the workflow is
executed. Finally, the corrected data need to be verified one more time to verify their
correctness after carrying out the specified operations.

Another important task of the data cleansing is the transformation of a given
data source into a table structure that is suited for subsequent processing steps, such
as splitting/merging of columns (e.g., for time and date), removing additional rows
(e.g., summary rows and comments), or the aggregation of temporal tuples into
consistent uniform intervals. To aid these transformations, a number of software
products are available, such as Tableau Prep (Tableau Software, 2021), Trifacta
Wrangler (Trifacta, 2021), or OpenRefine (Huynh, 2021).

However, the majority of dirty data problem types require intervention by a
domain expert to be cleansed. Thus, it is advisable to combine automated data
transformation steps operating on the whole data with interactive visual interfaces
and semi-automatic data correction steps during which domain expertise is employed
to solve specific problems in particular parts of the data. In fact, data cleansing is not
only a prerequisite for interactive visualization of time-oriented data, but vice versa,
interactive visualization can also be employed as a tool to facilitate data cleansing.
Examples for such approaches are described by Bernard et al. (2012), Gschwandtner
et al. (2014), and Arbesser et al. (2017).
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3.5 Summary

In this chapter, we structured and specified the characteristics of time and time-
oriented data. We considered four perspectives: the dimension of time, the char-
acteristics of data, the relation of time and data, and the quality of time-oriented
data. Figures 3.32 and 3.33 summarize these perspectives and their corresponding
aspects.

The first perspective mainly addressed time and the complexity of modeling time.
We clarified the concepts of scale, scope, arrangement, and viewpoints of time and
then discussed granularity and calendars, time primitives, temporal relations, and
temporal determinacy. Building upon this understanding of time and its models, the
second perspective focused on relevant aspects of the data variables. Specifically,
we discussed the data scale, the frame of reference, the kind of data, and the number
of variables. The third perspective showed us how time and data are related. We
presented basic options of how data variables can be linked to internal and external
time. Finally, we looked at time-oriented data from a quality perspective. Here, we
considered a taxonomy of single-source and multi-source data quality problems and
briefly outlined the process of data cleaning.
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Fig. 3.32: Design aspects of the dimension of time. ©@® The authors.



3.5 Summary

coconut

3.14
3.27 banana
Data scale 488 apple
quantitative qualitative
frame of v @
reference .
abstract spatial
kind of data Il — —
events states
number of A A
variables ; '
single multiple
Data & Time  internal time ® ®
inherent in the data
o non-temporal temporal
external time
extrinsic to the data Q “
e static dynamic
° [
. 2 O
Data Quality 0© (/
single-source missing data duplicate data implausible data
problems 1505
©)
outdated data wrong data ambiguous data
multi-source 03-05 +— 05-03 13:05:52 <— 13:06 -
problems heterogeneous heterogeneous
syntaxes semantics references

Fig. 3.33: Design aspects of time-oriented data. €©® The authors.

77

The key take-home message of this chapter is that all of these perspectives need

to be considered when visualizing and analyzing data that are related to time. We
took the rather hard road through the data jungle, which required the reader to
digest a number of models, characterizations, and quality concerns, because we are
convinced that developing visualization methods specifically for time-oriented data
requires a clear understanding of the specifics of such data. A data modeling concept
and reference implementation to support these special characteristics is TimeBench
by Rind et al. (2013a). It provides foundational data structures and algorithms for
time-oriented data in visual analytics.

Given this book’s focus on time aspects, we did not discuss other issues regarding
data structures and the relationships between different data variables that are not
strictly related to time. We are aware that the relationships between data variables
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are of importance as well. These aspects have been widely discussed in database
and data modeling theories. Also, many useful modeling alternatives and reference
models have been developed and can be adopted, such as continuous models using
scalars, vectors, or tensors, etc. (see Wright, 2007) or discrete models using structures
like trees, graphs, etc. (see Shneiderman, 1996).

While this chapter was concerned with the data to be visualized, the next chapter,
we will discuss how time and time-oriented data can actually be represented visually.
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Chapter 4
Crafting Visualizations of Time-Oriented Data

The graphical method has considerable superiority for the exposition
of statistical facts over the tabular. A heavy bank of figures is
grievously wearisome to the eye, and the popular mind is as capable
of drawing any useful lessons from it as of extracting sunbeams from
cucumbers.

Farquhar and Farquhar (1891, p. 55)

Many different types of data are related to time. Meteorological data, financial data,
census data, medical data, simulation data, news articles, photo collections, or project
plans, to name only a few examples, all contain temporal information. In theory, be-
cause all these data are time-oriented, they should be representable with one and the
same visualization approach. In practice, however, the data exhibit specific charac-
teristics and hence each of the above examples requires a dedicated visualization. For
instance, stock exchange data can be visualized with flocking boids (see Vande Moere
(2004) and < p. 333), census data can be represented with Bubbles (see Gapminder
Foundation (2021) and < p. 330), and simulation data can be visualized efficiently
using MOSAN (see Unger and Schumann (2009) and < p. 316). News articles (or
keywords therein) can be analyzed with ThemeRiver (see Havre et al. (2002) and
< p. 293) and project plans can be made comprehensible with PlanningLines (see
Aigner et al. (2005) and < p. 260). Finally, meteorological data are visualized for us
in the daily weather show. Apparently, this list of visualizations is not exhaustive. The
aforementioned approaches are just examples from a substantial body of techniques
that recognize the special role of the dimension of time in visualization contexts.
A more complete list is provided in the rich survey of visualization techniques in
Appendix A.

Besides these dedicated techniques, time-oriented data can also be visualized
using generic approaches. Since time is mostly seen as a quantitative dimension or
at least can be mapped to a quantitative domain (natural or real numbers), general
visualization frameworks such as Tableau (see Loth, 2019) or Power BI (see Knight
et al., 2018) as well as standard diagrams and charts, as surveyed by Harris (1999),
are applicable for visualizing time-oriented data. For simple data and basic analysis
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tasks, these approaches outperform specialized techniques, because they are easy
to learn and understand (e.g., common line plot). However, in many cases, time
is treated just as one quantitative variable among many others, not more, not less.
Therefore, generic approaches usually do not support establishing a direct visual
connection between multiple variables and the time axis, they do not communicate
the specific aspects of time (e.g., the different levels of temporal granularity), and they
are limited in terms of direct interactive exploration and browsing of time-oriented
data, which are essential for a successful visual analysis.

The bottom line is that time must be specifically considered to support the visual
analysis (also see Wills, 2012). Different types of time-oriented data need to be
visualized with dedicated methods. As the previous examples suggest, a variety of
concepts for analyzing time-oriented data are known in the literature (see for example
the work by Silva and Catarci, 2000; Miiller and Schumann, 2003; Daassi et al., 2005;
Aigneretal., 2008; Bach etal., 2017; Fang et al., 2020). This variety makes it difficult
for researchers to assess the current state of the art, and for practitioners to choose
visualization approaches most appropriate to their data and tasks.

What is required is a systematic and comprehensive view on the diverse options
of visualizing time-oriented data (see Aigner et al., 2007). In this chapter, we will
develop such a view. The different design options derived from the systematic view
will be discussed and illustrated by a number of visualization examples.

4.1 Characterization of the Visualization Problem

In the first place, we need a structure to organize our systematic view. But instead
of using formal or theoretical constructs, we decided to present a structure that is
geared to three practical questions that are sufficiently specific for researchers and at
the same time easy to understand for practitioners:

1. What is presented? — Time & data
2. Why is it presented? — User tasks
3. How is it presented? — Visual representation

Because any visualization originates from some data, the first question addresses
the structure of time and the data that have been collected over time. The motivation
for generating a visualization is reflected by the second question. It relates to the aim
of the visualization and examines the tasks carried out by the users. How the data
are represented is covered by the third question. The following sections will provide
more detailed explanations and refinements for each of these questions.
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4.1.1 What? — Time & Data

It goes without saying that the temporal dimension itself is a crucial aspect that any
visualization approach for representing time and time-oriented data has to consider. It
is virtually impossible to design expressive visual representations without knowledge
about the characteristics of the given data and time domain. The characteristics of
time and data as well as corresponding design aspects have already been explained
in detail in Sections 3.1 and 3.2. Here, we will only briefly summarize these aspects.

Characteristics of time The following list briefly reiterates the key criteria of the
dimension of time that are relevant for visualization:

e Scale — ordinal vs. discrete vs. continuous: In an ordinal time model, only relative
order relations are present (e.g., before, during, after). In discrete and continuous
domains, temporal distances can also be considered. In discrete models, time
values can be mapped to a set of integers based on a smallest possible unit
(e.g., seconds). In continuous models, time values can be mapped to the set of
real numbers, and hence, between any two points in time, another point can be
inserted.

e Scope — point-based vs. interval-based: Point-based time domains have basic
elements with a temporal extent equal to zero. Thus, no information is given
about the region between two points in time. Interval-based time domains relate
to subsections of time having a temporal extent greater than zero.

e Arrangement — linear vs. cyclic: Linear time corresponds to an ordered model
of time, i.e., time proceeds from the past to the future. Cyclic time domains
are composed of a finite set of recurring time elements (e.g., the seasons of the
year).

e Viewpoint — ordered vs. branching vs. multiple perspectives: Ordered time do-
mains consider things that happen one after the other. In branching time domains,
multiple strands of time branch out and allow for description and comparison
of alternative scenarios, but only one path through time will actually happen
(e.g., in planning applications). Multiple perspectives facilitate simultaneous
(even contrary) views of time (as for instance required to structure eyewitness
reports).

In addition to these criteria, which describe the dimension of time, aspects re-
garding the presence or absence of different levels of granularity, the time primitives
used to relate data to time, and the determinacy of time elements are relevant (see
Section 3.1 in the previous chapter).

Characteristics of time-oriented data Like the time domain, the data have a
major impact on the design of visualization approaches. Let us briefly reiterate the
key criteria for data that are related to time:

e Scale — quantitative vs. qualitative: Quantitative data are based on a metric scale
(discrete or continuous). Qualitative data describe either unordered (nominal)
or ordered (ordinal) sets of data elements.
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e Frame of reference — abstract vs. spatial: Abstract data (e.g., a bank account)
have been collected in a non-spatial context and are not per se connected to some
spatial layout. Spatial data (e.g., census data) contain an inherent spatial layout,
e.g., geographical positions.

* Kind of data — events vs. states: Events, on the one hand, can be seen as markers
of state changes, whereas states, on the other hand, characterize the phases of
continuity between events.

e Number of variables — single vs. multiple: Univariate data contain only a single
data value per temporal primitive, whereas in the case of multivariate data each
temporal primitive holds multiple data values.

We see that time-oriented data can differ significantly in their structure and basic
properties. The visualization design must take these properties into account in order
to provide appropriate visual representations. The defined primary categories capture
the key aspects to be considered when answering the what question of our systematic
view. We will demonstrate this in more detail in Section 4.2.1.

Yet, having characterized what has to be visualized is just a first step. The subse-
quent step is to focus on the why question.

4.1.2 Why? — User Tasks

Itis commonly accepted that software development has to start with an analysis of the
problem domain users work in (see Hackos and Redish, 1998; Courage and Baxter,
2005). To specify the problem domain, so-called task models are widely used in the
related field of human-computer interaction (see Constantine, 2003). A prominent
example of such task models is the ConcurTaskTree (CTT) by Paterno et al. (1997).
It describes a hierarchical decomposition of a goal into tasks and subtasks. Four
specific types of tasks are supported in the CTT notation: abstract tasks, interaction
tasks, user tasks, and application tasks. Abstract tasks can be further decomposed
into subtasks (including abstract subtasks). Leaf nodes are always interaction tasks,
user tasks, or application tasks. They have to be carried out either by the user,
by the application system, or by the interaction between the user and the system.
The CTT notation is enriched with a set of temporal operators that define temporal
relationships among tasks and subtasks (e.g., independent concurrency, concurrency
with information exchange, disabling, and enabling).

The development of solutions for visual data analysis, and thus the design of
visualizations for time-oriented data also starts with the analysis of the application,
the given data, and the tasks to be accomplished. Munzner’s nested model reflects
this strategy (see Munzner, 2009). The model consists of four nested levels, which
describe the path from problem specification to implementation. The first two levels
address the visualization problem. The first level refers to the characterization of
the application domain, while the second level refers to the abstraction of data and
tasks. We already examined the specification of data in the previous section. Now
we take a closer look at the description of the tasks. To do this, we will refer to the
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task abstraction by Tominski and Schumann (2020), which characterizes tasks by
four key aspects: goals, analytic questions, targets, and means.

Goals describe the overarching intent with which the analysis tasks are performed.
Possible goals are to explore, describe, explain, confirm, or present the data. By
exploring the data, we want to make observations, such as identifying trends or
outliers. The goal of description is to characterize the discovered observations,
while explanation means to identify all contributing data and detect the main
reasons for the observations, which allows us to establish hypotheses. Confirma-
tion is about verifying the hypotheses, and with presentation, we communicate
confirmed results.

Analytical questions specify what is actually to be investigated in a particular step
of the analysis. According to Andrienko and Andrienko (2006), we can distin-
guish between two fundamental categories: elementary and synoptic questions.
Elementary questions refer to one or more data elements, which are examined
individually. Elementary questions can be for example the following: Identify:
What is the value? Locate: Where is the value? Compare: Is it less or more?
Synoptic questions refer to groups of data in order to characterize sets of data
elements. Identify, locate, and compare also apply to sets of data values. Ad-
ditionally, we can ask more specific synoptic questions as follows: Group: Do
data values belong together? Correlate: Are there any dependencies? Trends: Do
groups of values develop systematically? Outliers: Are some data values special
with respect to the rest?

Targets tells us where in the data a task should be performed. The notion of targets
allows us to narrow down which specific data we need to look at in order to
complete the task. Targets can be specific time-dependent variables or particular
time primitives of interest.

Means describe how a task is performed. We distinguish between visual, interactive,
and computational means. Visual means subsume all types of visual inspection,
while interactive means refer to interactive information retrieval. In both cases,
the tasks are performed by human users. In contrast, computational means stand
for calculations, which are performed by the machine.

While goals, targets, and means are more or less generic, the particular analytic
questions to be answered depend on the characteristics of the data to be investigated.
An accepted formulation of analytic questions addressing time-oriented data has been
introduced by MacEachren (1995). He describes the following types of questions:

o Existence of data element
Question: Does a data element exist at a specific time?
Starting point: time point or time interval
Search for: data element at that time
Example: “Was a measurement made in June, 1960?”
e Temporal location
Question: When does a data element exist in time?
Starting point: data element



88 4 Crafting Visualizations of Time-Oriented Data

Search for: time point or time interval
Example: “When did the Olympic Games in Vancouver start?”
o Time interval
Question: How long is the time span from beginning to end of the data element?
Starting Point: data element
Search for: duration, i.e., length of time of a data element from its beginning to
its end
Example: “How long was the processing time for dataset A?”
e Temporal pattern
Question: How often does a data element occur?
Starting point: interval in time
Search for: frequency of data elements within a certain portion of time and based
on this the detection of a pattern
Example: “How often was Jane sick last year?”
* Rate of change
Question: How fast is a data element changing or how much difference is there
from data element to data element over time?
Starting point: data element
Search for: magnitude of change over time
Example: “How did the price of gasoline vary in the last year?”
e Sequence
Question: In what order do data elements occur?
Starting point: data elements
Search for: temporal order of different data elements
Example: “Did the explosion happen before or after the car accident?”
e Synchronization
Question: Do data elements exist together?
Starting point: data elements
Search for: occurrence at the same point or interval in time
Example: “Is Jill’s birthday on Easter Monday this year?”

This list of tasks covers two basic scenarios. First, given one or more time primi-
tives, the user seeks to discern the data values associated with them. Second, given
one or more data values, the user is searching for time primitives that exhibit these
values. Both cases reflect the well-established distinction between identification tasks
(i.e., identify data values) and location tasks (i.e., locate when and where data values
occur in time and space).

From a practical perspective, the verbal descriptions of analytical questions by
MacEachren (1995) are very helpful because they are easy to understand. They can
serve as a guideline when designing visual representations of time and time-oriented
data. However, in order to automate the design process, a more abstract descrip-
tion would be desirable. For this purpose, we introduced three levels of analytical
questions based on Andrienko and Andrienko (2006). The first level deals with
the fundamental categories. It is about whether individual data values (elementary
questions) or data subsets (synoptic questions) are to be answered. The second level
distinguishes whether we aim to determine the values of data (lookup) or to compare



4.1 Characterization of the Visualization Problem 89

them (comparison). Finally, the third level considers whether we want to identify
or locate data values. In the next section, we will apply this categorization in order
to examine the influence of user tasks on the visualization design. But before, we
want to complete the description of visualization aspects by focusing on the how
perspective.

4.1.3 How? — Visual Representation

The answers to the questions of what the data input is and why the data are analyzed
very much determine the answer to the last remaining question: How can time-
oriented data be represented visually? More precisely, the question is how time and
associated data are to be represented. Appendix A shows that a large variety of
visual approaches provide very different answers to this question. To abstract from
the subtle details of this variety, we concentrate on two fundamental criteria: the
mapping of time and the dimensionality of the presentation space.

Mapping of Time

Like any data variable that is to be visualized, the dimension of time has to pass
the mapping step of the visualization pipeline. Usually, abstract data are made
visually comprehensible by mapping them to some geometry (e.g., two-dimensional
shapes) as marks and corresponding visual attributes (e.g., color) as channels in the
presentation space. On top of this, human perception has an intrinsic understanding
of time that emphasizes the progression of time, and visualization can make use of
this fact by mapping the dimension of time to the dynamics of a visual representation.

So practically, there are two options for mapping time: the mapping of time to
space and the mapping of time to time. When speaking of a mapping from time
to space, we mean that time and data are represented in a single coherent visual
representation using a spatial substrate. This representation does not automatically
change over time, which is why we call such visualizations of time-oriented data
static. In contrast to that, dynamic representations utilize the physical dimension of
time as a temporal substrate to convey the time dependency of the data, that is, time
is mapped to time. This results in visualizations that change over time automatically
(e.g., slide shows or animations). Note that the presence or absence of interaction
facilities to navigate in time has no influence on whether a visualization approach is
categorized as static or dynamic.

Static representations For static representations, the time axis is embedded into the
visual representation. The visual encoding of the time axis needs to be designed in
such a way that the temporal relation to other data variables can be easily recognized.
There are various ways of mapping time to visual variables (see Bertin (1983) and
Figure 4.1). Most visualization approaches that implement a time-to-space mapping
use one display dimension to represent the time axis. Classic examples are charts
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where time is often mapped to the horizontal x-axis and time-dependent variables are
mapped to the vertical y-axis (see Figure 4.2). More complex mappings are possible
when two or more display dimensions are used for representing time. For example,
Perin et al. (2018) performed a study to assess the graphical perception of mapping
time and speed to 2D trajectories. They compared nine different combinations of line
width, brightness, as well as tick mark mappings to encode the two variables time and
speed. For encoding speed, using brightness and for encoding time, segment length
between ticks are recommended. When both speed and time should be encoded,
the authors advise to use segment length whenever possible. Besides, mappings
that generate two-dimensional spirals or three-dimensional helices are examples that
emphasize the cyclic character of time. The different granularities of time are often
illustrated by a hierarchical subdivision of the time axis.

The actual data can then be visualized in manifold ways. It is practical to use a
data mapping that is orthogonal to the mapping of time. For example, point plots
(= p. 232), line plots (< p. 233), or bar graphs (— p. 234) map data values to
position or size relative to the time axis. Time dependency is immediately perceived
and can be recognized easily, which facilitates the interpretation of the temporal
character of the data. In fact, for quantitative variables (discrete or continuous time
and data), using position or length is more effective than using color or other visual
variables such as texture, shape, or orientation (see Mackinlay, 1986). For categorical
variables, color-coding is a good alternative. Each point or interval on the time axis
can be visualized using a unique hue from a color scale. However, care must be
taken when using color for the visualization of ordinal data (see Silva et al., 2007).
It is absolutely mandatory that the applied color scale be capable of communicating
order!. Only then are users able to interpret the visualization and to relate data items
to their temporal context easily. It is also possible to enhance the visual representation
of the time-dependent data by using a composite visual encoding (see Jabbari et al.,
2018) where the same data variable is mapped to two or more visual variables (e.g.,
length plus color).

Because time is often considered to be absolute, position or length encodings are
predominant, and only rarely is time mapped to other visual variables. When time is
interpreted relatively rather than absolutely, for instance, when considering the age
of a data item or the duration between two occurrences of a data item, then visual
variables such as transparency, color, and others gain importance. An example of
encoding duration to color is given in Figure 4.3.

Instead of encoding data to basic graphical primitives such as points, lines, or
bars that are aligned with the time axis, one can also create fully fledged visual
representations and align multiple thumbnails of them along the time axis —a concept
that Tufte (1983) refers to as small multiples (— p. 359). The advantage is that a
single thumbnail may contain much more visual information than basic graphical
primitives. But this comes at the price that the number of time primitives (i.e., the
number of thumbnails) that can be shown on screen simultaneously is limited. This

! Borland and Taylor (2007) warn that this is not the case for the most commonly used rainbow
color scale. The ColorBrewer tool by Harrower and Brewer (2003) is a good source of useful color
scales.



4.1 Characterization of the Visualization Problem

o o
[ [ [ [ |
09:00 10:00 11:00 12:00
(a) Position.
N
y A
t
i
X
(d) Line width.
y A
£
piy H
]
]
&

[7]2009[]2010[]2011 x

(g) Texture.
A
y
2011
]
2010
[ ]
2009
2008
[ ]

(j) Text, label.

13:00

91
|
[
t
[ [ [ [ |
00:00 10:00 20:00 30:00 40:00
(b) Length.
t, t,
(c¢) Angle and slope.
yA
t
t VY
“a
X X
(e) Brightness. (f) Connection.
y A
A °
| ¢
42009 A 2010 [l 2011 x 2000 @ 2010 @) 2011 x
(h) Symbol. (i) Size.
y A
X

(k) Containment.

Fig. 4.1: Examples of static visual mappings of time. @@ The authors.
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Fig. 4.2: Mapping time to position. The horizontal axis of the chart encodes the positions of points
in time, whereas the vertical axis encodes data values. ©@® The authors.

Fig. 4.3: Mapping time to color. Color encodes the time it takes to travel from a location on our
planet to the nearest major city. ©@® Weiss et al. (2018b), also see Weiss et al. (2018a).

reflects the general need to find a good trade-oft between the complexity of the visual
encoding of time and that of the data. Appendix A makes apparent that a variety of
suitable solutions exist, each with an individually determined trade-off depending
on the addressed data and tasks.

Dynamic representations In cases where much screen space is required to convey
characteristics and relationships of data items (e.g., geographical maps, multivariate
data visualization, and visualization of graph structures), it is difficult to embed
the time axis into the display space as well. As an alternative, physical time can
be utilized to encode time. To this end, several visualizations (also called frames)
are rendered successively for the time steps in the data. In theory, a one-to-one
mapping between time steps and frames can be implemented, which means that
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the dynamic visualization represents time authentically. In practice, however, this is
only rarely possible. More often, dynamic visualizations perform interpolation to
compute intermediate results in cases where only a few time steps are present, or
perform aggregation or sampling to compress the length of an animation in cases
where large numbers of time steps have to be visualized (see Wolter et al., 2009).

Self-evidently, dynamic approaches have to take human perception into account
when representing a series of successively generated visualization frames. Depend-
ing on the number of images shown per second, dynamic visualizations are either
perceived as animations or as slide shows. Animations usually show between 15
and 25 frames per second, while slide shows usually show a new frame every 2 to
4 seconds. On the one hand, data that contain only a few snapshots of the underly-
ing phenomenon should preferably be represented as slide shows to avoid creating
false impressions of dynamics. On the other hand, large numbers of observations
of highly dynamic processes are best represented using animations, because they
communicate quite well the underlying dynamics in the data. Animations provide us
with a qualitative overview on the data. However, quantitative statements are hardly
possible. For example, we cannot easily capture the concrete data values for a specific
point in time. For this reason, it is important that the user can control the animation
flow. Figure 4.4 gives an example of a typical VCR-like widget for controlling the
mapping of time to time in an animation.

c
Fig. 4.4 A typical animation 2016 2017 2018 2019 2020 2021
widget to control the mapping
of time to time. @@® The M << o > @
authors.

When to use static or dynamic representations The distinction between the map-
ping of time to space and that of time to time is crucial because different visualization
tasks and goals are supported by these mappings. Dynamic representations are well
suited to convey the general development and the major trends in the analyzed data.
However, there are also critical assessments of animations used for the purpose
of visualization (see Tversky et al., 2002; Simons and Rensink, 2005; Thompson
et al., 2020). Especially when larger multivariate time series have to be visualized,
animation-based approaches reach their limits. In such cases, users are often unable
to follow all of the changes in the visual representation, or the animations simply
take too long and users face an indigestible flood of information. This problem be-
comes aggravated when using animations in multiple views. On the other hand, if
animations are designed well and if they can be steered interactively by the user
(e.g., slow motion or fast forward), mapping the dimension of time to the physical
time can be beneficial (see Robertson et al., 2008). This is not only the case from
the point of view of perception, but it is also because using physical time for visual
mapping implies that the spatial dimensions of the presentation space can be used
exclusively to visualize the time-dependent data.
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This is not the case, however, for static representations. In contrast to animations,
static representations require screen real estate to represent the time axis itself and the
data in an integrated fashion. On the one hand, the fact that static representations show
all of the information on one screen is advantageous because one can fully concentrate
on the dependency of time and data. Especially visual comparison of different parts
of the time axis can be accomplished easily using static representations. On the other
hand, the integration of time and data in one single view tends to lead to overcrowded
representations that are hard to interpret. In the face of larger time-oriented datasets,
interaction and analytical methods (see Chapters 5 and 6) are mandatory to avoid
visual clutter.

Finally, it is worth mentioning that any (non-temporal) data visualization can be
extended to a visualization for time-oriented data simply by repetition. Repetition
in time leads to dynamic representations, where each frame shows a snapshot of
the data. Repetition in space leads to static multiple-view representations (or Tufte’s
small multiples, — p. 359), where each view shows an individual part of the time
axis. While static representations always have to deal with the issue of finding
a good layout for the views, dynamic representations encode time linearly in a
straightforward manner. Perhaps this is the reason why many visualization solutions
resort to simple animations, even though these might not be the best option for the
data and tasks at hand.

Dimensionality of the Presentation Space

The presentation space of a visualization can be either two-dimensional or three-
dimensional, or 2D or 3D for short. Two-dimensional visualizations address the
spatial dimensions of computer displays, that is, the x-axis and the y-axis. All graph-
ical elements are described with respect to x- and y-coordinates. Dots, lines, circles,
or arcs are examples of 2D geometry. The semantics of the data usually determine the
layout of the geometry on screen. 3D visualizations use a third dimension, the z-axis,
for describing geometry. This allows the visualization of more complex and volumet-
ric structures. As human perception is naturally tuned to the three-dimensional world
around us, 3D representations potentially communicate such structures better than
2D approaches. This is especially true if the output device used supports immersive
analytics and 3D representations such as stereoscopic displays or augmented-reality
headsets. However, on a 2D computer display, the z-axis does not physically exist,
so projection is required before rendering 3D visualizations. The projection is com-
monly realized by standard computer graphics methods that do not require additional
effort. Hence, it is usually not transparent to the user.

In Figure 4.1, various 2D presentations of time-oriented data were shown. Vi-
sualization approaches using such a 2D presentation typically map the time axis to
a visual axis on the display (provided that the approach is not dynamic). In many
cases, the time axis is aligned with either coordinate axis of the display. However,
this is not necessarily always the case. In particular, time axes representing a cyclic
time domain are usually depicted by a radial visualization (see Draper et al., 2009).
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Fig. 4.5 Mapping to 2D.
Data are visualized as height-
varying bars along a spiral
time axis. @® The authors.

Radial time axes (e.g., the spiral in Figure 4.5) use polar coordinates, which actually
can be mapped to Cartesian coordinates and vice versa. It is also possible to apply
affine transformations to the time axis.

Because one dimension of the display space is usually occupied for the represen-
tation of the dimension of time, the possibilities of encoding the data depending on
time are restricted. One data variable can be encoded to the remaining spatial dimen-
sion of the presentation space, as for instance in a bar graph, where the x-axis encodes
time and the y-axis, more precisely the height of bars, encodes a time-dependent
variable. In order to visualize multiple variables, further graphical attributes like
shape, texture, or color can be used.

Multidimensional data, that is, data with more independent variables than just
the dimension of time, are hard to visualize in 2D without introducing overlap and
visual clutter. In this case, it is therefore often useful to use a 3D representation.
Particularly, data with a spatial frame of reference can benefit from the additional
dimension. This allows us to apply the so-called space-time cube concept (see Kraak
(2003) and < p. 377), according to which the z-axis encodes time and the x- and
y-axes represent two independent variables (e.g., longitude and latitude). Further
variables, dependent or independent, are then encoded to color, size, shape, or other
visual attributes (see Figure 4.6 and < p. 389).

The question of whether or not it makes sense to exploit three dimensions for
visualization has been discussed at length by the research community (see Card
et al., 1999; Diibel et al., 2014; Munzner, 2014). One camp of researchers argues
that two dimensions are sufficient for effective visual data analysis and that the
third dimension introduces unnecessary difficulties (e.g., information hidden on back
faces, information lost due to occlusion, or information distorted through perspective
projection) that are much less or not at all relevant for 2D representations. But having
justtwo dimensions for the visual mapping might not be enough for large and complex
datasets.
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Fig. 4.6: Mapping to 3D. Three-dimensional helices represent time axes for individual regions of
a map and associated data are encoded by color. @® The authors.

This is where the other camp of researchers makes their arguments. They see the
third dimension as an additional possibility to naturally encode further information.
Undoubtedly, certain types of data (e.g., geo-spatial data) might even require the
third dimension for expressive data visualization, because there exists a one-to-one
mapping between the data dimensions and the dimensions of the presentation space.
Moreover, human perception is by nature adapted to the three-dimensional character
of our physical world.

We do not argue for either position in general. The question of whether to use 2D
or 3D is rather a question of which data have to be visualized and what are the analytic
goals to be achieved. The application background and user preferences also influence
the decision for 2D or 3D. But definitely, when developing 3D visualizations, the
previously mentioned disadvantages of a three-dimensional presentation space have
to be addressed, for example, by providing ways to cope with occlusion as suggested
by Elmqvist and Tsigas (2007) or Rohlig et al. (2017). Moreover, intuitive interaction
techniques are mandatory and additional visual cues are usually highly beneficial.
The field of immersive analytics studies the advantages and potential issues of
interactive immersive 3D visual representations of data in detail (see Marriott et al.,
2018; Kraus et al., 2021).

In this section, we discussed different options for the visual mapping of time and
questions related to the dimensionality of the representation space. While our focus
was on representing time and time-oriented data, further aspects can also play a role
and are worth mentioning. For example, Section 3.4 of Chapter 3 listed uncertainty
as an aspect of data quality that might also be relevant to communicate visually, for
which dedicated solutions exist (see Gschwandtner et al., 2016; Bors et al., 2020).
Overall, we can conclude that visually mapping the data and deciding how to present
them on the screen are the most important steps when creating visualizations.
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So far, we have outlined the basic aspects (what, why, and how) that need to be
considered when visualizing time and time-oriented data. In the next section, we will
return to each of these aspects and show in more detail and by means of examples
how the visualization design is influenced by them.

4.2 Visualization Design Examples

We introduced three basic questions that have to be taken into account when designing
visual representations for time and time-oriented data:

1. Data level: What is presented?
2. Task level: Why is it presented?
3. Presentation level: How is it presented?

We will now demonstrate the close interrelation of the three levels. By means of
examples, we will illustrate the necessity and importance of finding answers to each
of these questions in order to arrive at visual representations that allow viewers to
gain insight into the analyzed data.

4.2.1 Data Level

In the first place, the characteristics of time-oriented data strongly influence the de-
sign of appropriate visual representations. Two examples will be used to demonstrate
this: one is related to the time axis itself, and the other will deal with the data. First,
we point out how significantly different the expressiveness of a visual representation
can be depending on whether the time domain is linear or cyclic. Secondly, we will
illustrate that spatial time-oriented data? require a visualization design that is quite
different from that of abstract time-oriented data, and that is usually more complex
and involves making well-balanced design decisions.

Time Characteristics: Linear vs. Cyclic Representation of Time

Figure 4.7 shows three different visual representations of the same time-oriented
dataset, which contains the daily number of cases of influenza that occurred in the
northern part of Germany during a period of three years. The data exhibit a strong
cyclic pattern. The leftmost image of Figure 4.7 uses a simple line plot (< p. 233)
to visualize the data. Although peaks in time can be recognized easily in the plot, the
cyclic behavior of the data, however, can only be guessed and it is hard to discern
which cyclic temporal patterns in fact do exist. In contrast, the right part of Figure 4.7

2 Commonly referred to as spatio-temporal data.
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Fig. 4.7: Different insights can be gained from visual representations depending on whether the
linear or cyclic character of the data is emphasized. ©@® The authors.

shows radial representations that emphasize cyclic characteristics of time-oriented
data by using spiral-shaped time axes (see Weber et al. (2001) and < p. 284). For
the left spiral, the cyclic pattern is not visible. This is due to the fact that the cycle
length has been set to 24 days, which does not match the pattern in the data. The
right spiral in Figure 4.7 is adequately parametrized with a cycle length of 28 days,
which immediately reveals the periodic pattern present in the data. The significant
difference in the number of cases of influenza reported on Sundays and Mondays,
respectively, is quite obvious. We would also see this weekly pattern if we set the
cycle length to 7 or 14 days, or any (low) multiple of 7.

The example illustrates that in addition to using the right kind of representation
of time (linear vs. cyclic), it is also necessary to find an appropriate parametrization
of the visual representation. Interaction (see Chapter 5) usually enables users to re-
parametrize the visualization, but the difficulty is to find parameter settings suitable
to discover patterns in unknown datasets. Automatically animating through possible
parameter values — for the spiral’s cycle length in our example — is one option to
assist users in finding such patterns. During the course of the animation, visual
patterns emerge as the spiral’s cycle length is approaching cycles in the data that
match in length. Upon the emergence of such patterns, the user stops the animation
and can fine-tune the display as necessary. Analytical methods (see Chapter 6) can
help in narrowing down the search space, which in our example means finding
promising candidates with adequate cycle length (see Yang et al., 2000). Combining
interactive exploration and analytical methods is helpful for guiding users to less
sharp or uncommon patterns, which are hard to distill using either approach alone
(see Ceneda et al., 2018).

In summary, we see that it is very important to take the specifics time into account.
This applies not only to the question of whether the time axis is linear or cyclic, but to
other properties of the time axis as well. However, it is difficult to consider the entire
breadth of properties of the time domain, so most visualization approaches focus on
only a few important ones. Consequently, we do the same and focus our overview on
visualization techniques in Appendix A on two key characteristics: the arrangement
of the time axis (linear vs. cyclic) and additionally the type of time primitives (points
vs. intervals). Differentiating points and intervals makes sense because it reflects the
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distinction between states and events. Point-based data express events. In contrast,
interval-based data describe states, in which the data remain stable. The visualization
design needs to consider this.

Data Characteristics: Aabstract Data vs. Spatial Data

We used linear vs. cyclic time to demonstrate the impact of the characteristics of
time on the visualization design. Let us now do likewise with abstract vs. spatial data
to illustrate the impact of data characteristics.

Abstract data are not associated per se with a spatial visual mapping. Therefore,
when designing a visual representation of such data, one can fully concentrate on
aspects related to the characteristics of the dimension of time. Figure 4.8 shows
the ThemeRiver technique (— p. 293) by Havre et al. (2000) as an example of an
approach for which the focus is on the time aspect. The dimension of time is mapped
to the horizontal display axis and multiple time-dependent variables are mapped to
the thickness of individually colored currents, which form an overall visual stream
of data values along the time axis. Because time is the only dimension of reference
in abstract time-oriented data, the visual representation can make the best of the
available screen space to convey the variables’ dependency on time. The full-screen
design, where the ThemeRiver occupies the entire screen, even makes it possible to
display additional information, such as a time scale below the ThemeRiver, labels in
the individual currents, or extra annotations for important events in the data.
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Fig. 4.8: The ThemeRiver technique is fully focused on communicating the temporal evolution of
abstract time-oriented data. ©) 2002 IEEE. Reprinted, with permission, from Havre et al. (2002).
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When considering time-oriented data with spatial references, the visualization
design has to address an additional requirement: Not only the temporal character of
the data needs to be communicated, but also the spatial dependencies in the data
must be revealed. Of course, this implies a conflict in which the communication of
temporal aspects competes with the visualization of the spatial frame of reference
for visual resources, such as screen space, visual encodings, and so forth. Providing
too many resources to the visualization of aspects of time will most likely lead to
a poorly represented spatial context — and vice versa. The goal is to find a well-
balanced compromise. An example of such a compromise is given in Figure 4.9,
where the data are visualized using ThemeRiver thumbnails superimposed on a two-
dimensional map display (— p. 379). The position of a ThemeRiver thumbnail on
the map is the visual anchor for the spatial context of the data. The ThemeRiver
thumbnail itself encodes the temporal context of the data. The compromise that
has been made implies that the map display is rather basic and avoids showing any
geographic detail; just the borders of regions are visible. On the other hand, the
ThemeRiver representation has to get along with much less screen space (compared
to the full-screen counterpart). This is the reason why labels or annotations are no
longer visible constantly, but instead are displayed only on demand.

On top of the compromises made, all visualization approaches that embed (time-
representing) thumbnails (or glyphs or icons) into a map share two common prob-

Fig. 4.9: Embedding ThemeRiver thumbnails on a map allows for communicating both temporal
and spatial dependencies of spatial time-oriented data. @@ The authors.
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lems: finding a good glyph design and finding a good layout for the embedding.
The performance of glyphs for time-oriented data depends on tasks and data density
(see Fuchs et al., 2013). In other words, a good glyph design is heavily application-
dependent. The same applies to the layout, that is, a good glyph layout also depends
on the application context. There is consensus that having an overlap-free layout
is generally a good starting point. However, minimizing (i) occlusion between
thumbnails and (ii) overlap between thumbnails and geographic features is a difficult
problem. In fact, the problem is related to the general map labeling problem, which
is NP-hard. Pursuing a globally optimized solution is computationally complex (see
Petzold, 2003; Been et al., 2006), whereas locally optimizing approaches usually
perform less expensive iterative adjustments that lead to suitable, but not necessarily
optimal layouts (see Fuchs and Schumann, 2004a; Luboschik et al., 2008). We will
not go into any details of possible solutions, but instead refer the interested reader
to a more recent publication by McNabb and Laramee (2019), who introduce an
algorithm for a guided glyph placement.

We have seen that the distinction between abstract and spatial data is essential to
create meaningful visualizations. This was demonstrated by two examples. In terms
of abstract data, we considered time series. In this case, the data values were given
in a linear order with respect to a linear time axis. In addition to such a temporal
dependence, there may exist further relations in the time-oriented data, for example,
semantic relationships between data items. Just like the data itself, such additional
relations might also change over time. These changes can be described by a dy-
namic graph. The visualization of dynamic graphs requires customized visualization
strategies.

In terms of spatial data, we considered a 2-dimensional geo-spatial frame of
reference. However, data values might also be embedded into a 3-dimensional spatial
context that is not geo-related. Typical examples of such data are MRI data or other
medical imaging data, which are often given on regular 3D grids. Such data are
referred to as volume data, and they can be time-dependent as well.

Visualizing dynamic graphs and dynamic volume data are research topics on their
own and will not be discussed in this book. For more details on these topics, we refer
to works by Beck et al. (2017) on dynamic graphs as well as Reinders et al. (2001)
and Bai et al. (2020) on dynamic volumes.

To conclude, the properties of time-oriented data strongly influence the design of
visual representations. However, it is difficult to observe all properties in the same
way. Therefore, common visualization techniques consider only some of them. Also
in our overview of visualization techniques in Appendix A, we will not address
every data aspect. Instead, we will focus there on the two key characteristics of
time-oriented data: the frame of reference (abstract vs. spatial) and additionally the
number of variables (single vs. multiple). It makes an essential difference if one
time primitive is associated with only one single data value (univariate) or with
multiple data values (multivariate). The visualization of multivariate data is much
more complex. Thus, it requires sophisticated visualization methods.
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4.2.2 Task Level

We introduced the user task as a second important visualization aspect. Incorpo-
rating the users’ tasks into the visualization design process on a general level is a
challenging endeavor. To illustrate what this means in practice, we introduce two
concrete examples of how visualization design choices are driven by user tasks.

In the first example, we present a pragmatic solution for the specific case of
color-coding. Earlier in this chapter, we indicated that in addition to the positional
encoding of data values along a time axis, color-coding plays an important role when
visualizing multiple time-dependent data variables. The design of the color scale
employed for the visual encoding substantially influences the overall expressiveness
of the visual representation. To obtain expressive visual results, flexible color-coding
schemes are needed that can be adapted to the data as well as to the task at hand. In
the following, we will explain how color scales can be generated in a task-dependent
manner, and how they can be applied to visualize time-oriented data.

In the second example, we show how to choose axes scales to better support cer-
tain user tasks for visualizing multivariate developments over time for line plots (—
p. 233). Depending on the choices of tasks, one might choose from different combi-
nations of superimposition, i.e., arranging plots on top of each other, juxtaposition,
i.e., arranging plots next to each other, or indexing, i.e., plotting values relative to a
selected point in time.

Color-Coding

The general goal of color-coding is to find an expressive mapping of data to color.
This can be modeled as a color-mapping function f : D — C that maps values of
a dataset D to colors from a color scale C. A fundamental requirement for effective
color-coding is that the color-mapping function f be injective, that is, every data
value (or every well-defined group of data values) is associated with a unique color.
This, in turn, allows users to mentally associate that unique color with a distinct data
value (or group of values). On top of that, the color-mapping function f needs to be
designed in such a way that different values will be mapped to different colors and
similar colors will imply similar values. In this way, two quite different data values
result in two colors that are easy to discern visually, and visually similar colors infer
that they represent data values that are similar. Figure 4.10 demonstrates a basic
mapping strategy where a data value between [min, max] is normalized to ¢ on a
[0, 1] range and then mapped to a color on a light-green to dark-green color scale.
Besides these fundamental requirements, color-coding depends on further factors
(see Telea, 2014). In particular, the characteristics of data and tasks must be taken into
account. Interms of the data characteristics, first and foremost the statistical features
of the data and the time scale should be considered such as extreme values, the overall
distribution of data values as well as data variation speeds and domain sampling
frequencies. For example, using a linear color-mapping function on a skewed dataset
will result in the majority of data values being compressed to a narrow range of colors,
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Fig. 4.10: Simple strategy for mapping data to color. @@® The authors.

which is usually not desirable. With regard to the characteristics of the tasks, a main
distinction is whether the task requires the comparison of exact quantitative values
or the assessment of qualitative differences. Furthermore, certain tasks may lead to
specific regions of interest in the data domain. These regions should be accentuated,
for instance by using bright, warm, and fully saturated colors. In general, we can say
that different tasks require different color-coding schemes.

On top of these two fundamental influencing factors, an effective color-coding
also depends on the characteristics of the user and the characteristics of the output
device. In terms of the user, the cultural and professional background, conventions of
the application domain as well as individual color perception have to be considered.
In terms of the output devices, we need to take into account different systems to
define and display colors. A color-coding scheme that is appropriate for displaying
data on a computer display might be inappropriate when showing the same data on
other media.

We see that a variety of factors influence the encoding of data via colors. Effective
color scales therefore must be designed with care. Comprehensive overviews on the
topic of color scales are available in the literature (see Silva et al., 2011; Mittelstadt
et al., 2015; Bernard et al., 2015; Zhou and Hansen, 2016; Nardini et al., 2021). In
the following, we will discuss the design of color scales depending on the tasks at
hand in more detail.

Task-Dependent Color-Coding

In order to define color scales in a task-specific manner, an adequate specification
of tasks is required. In Section 4.1.2, we distinguished between elementary analytic
questions, which refer to data elements individually, and synoptic analytic questions,
which address groups of data elements. Color-coding individual data values requires
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unsegmented color scales. Unsegmented color scales associate unique colors with
all individual data values, that is, every color of the color scale represents exactly
one data value. In contrast to that, segmented color scales should be used to encode
sets of data values. Each color of a segmented color scale stands for a data subset,
usually a range of data values.

In Section 4.1.2, we also distinguished between the two basic analytic questions
identify (what are the data?) and locate (where are the data?), which can be applied
to both elementary and synoptic tasks. In order to facilitate identification tasks, it
should be made easy for the user to mentally map a perceived color to a concrete data
value or a set of data values. Moreover, perceived color distances should correspond
to distances in the data, which requires color scales that take the capabilities of
human perception into account. For example, Mittelstddt et al. (2014) optimizes color
scales to reduce physiological color contrasts, which can considerably improve the
identification of data values. To support location tasks, on the other hand, color scales
should be designed so that data of interest can be located quickly and easily, ideally
pre-attentively (see Healey and Enns, 2012). This can be achieved, for example, by
accentuation and de-accentuation for which various options are possible, including
highlighting with color (see Hall et al., 2014; Waldner et al., 2017; Mairena et al.,
2022).

The specification of color scales for elementary and synoptic identification and
location tasks is a well-investigated problem (see Bergman et al., 1995; Harrower
and Brewer, 2003; Silva et al., 2007; Silva et al., 2011; Mittelstadt et al., 2015).
Figure 4.11 shows examples of such color scales. The segmented color scale for
identification represents five different colors, and thus allows us to identify five
different sets of values. The unsegmented version can be used to identify individual
values. The segmented color scale for location supports users in making a binary
decision: Yellow encodes a match of some selection criteria; otherwise, there is
no match. The unsegmented color scale represents a smooth interpretation of the
selection criteria.

Identification Location

v nsegmented _
Segmented ’i -:-

Fig. 4.11: Examples of unsegmented and segmented color scales for identification and location of
data values in a visual representation. @@ The authors.

Figure 4.12 illustrates the difference between color scales for identification and
location for the case of time-oriented data. The figure shows daily temperature values
for about three and a half years mapped to a color-coded spiral display (< p. 274).
While the color scale in Figure 4.12a supports identification, that is, one can easily
associate a color with a particular range of values, the color scale in Figure 4.12b
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(a) Color scale for identifying values. (b) Color scale for locating extrema.

Fig. 4.12: Daily temperature values visualized along a spiral time axis using different color scales
for different tasks. @@ The authors.

is most suited to locate specific data values in time. In our example, the highest and
lowest values are accentuated using saturated red and blue, respectively. All other
values are encoded to shades of gray, effectively attenuating these parts of the data.
This way, it is easy to locate where in time high and low values occur.

Identification and location tasks have in common that they involve a form of
lookup, either of particular values or of certain references in time and space. In the
literature, lookup tasks are differentiated from comparison tasks (see Andrienko and
Andrienko, 2006). Comparison tasks are concerned with relationships in the data. For
example, we may ask is one value higher than another value (elementary task) or do
values develop systematically to form a trend (synoptic task). The distinction between
lookup and comparison tasks deserves a more detailed investigation. Supporting the
lookup task basically requires color scales that allow for precise association of
particular colors with concrete data values. In order to facilitate comparison tasks,
all variables involved in the comparison must be represented by a common unified
color scale, which can be problematic when variables exhibit quite different value
ranges. The next paragraphs will provide more details on how efficient color scales
for lookup and comparison tasks can be designed.

Color-coding for the lookup task As mentioned before, there are two kinds of
lookup tasks: identification and location. Location tasks are basically a search for
certain references in time and space that exhibit specific data characteristics. For
this purpose, relevant data values (or subsets) are known beforehand and hence can
be easily accentuated using a highlighting color. On the other hand, the design of
color scales for identification is intricate because the whole range of data values
is potentially relevant and must be easily identifiable. One way to facilitate lookup
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(a) Value range expansion. (b) Control point adjustment.

Fig. 4.13: Value range expansion and control point adjustment help to make color legends more
readable and to better adapt the color-coding to the underlying data distribution, which is depicted
as a box-whisker plot. @@® The authors.

tasks is to extract statistical metadata from the underlying dataset and utilize them
to adjust predefined color scales (see Schulze-Wollgast et al., 2005; Tominski et al.,
2008). Let us take a look at three possible ways of adaptation.

Expansion of the value range The labels displayed in a color scale legend are the
key to an easy and correct interpretation of a color-coded visualization. Commonly
a legend shows labels at uniformly sampled points between the data’s minimum and
maximum. As the left color scale in Figure 4.13a illustrates, this usually results in
odd and difficult-to-interpret labels. Even if the user has a clear picture of the color,
it takes considerable effort to mentally compute the corresponding value, or even the
range of plausible values. The trick of value range expansion is to extend the data
range that is mapped to the color scale. This is done in such a way so as to arrive
at a color-mapping that is easier to interpret. The right color scale in Figure 4.13a
demonstrates this positive effect.

Adjustment of control points A color-map is defined by several control points, each
of which is associated with a specific color. Appropriate interpolation schemes are
used to derive intermediate colors in between two control points. The left color scale
in Figure 4.13b shows an example where control points are uniformly distributed
(interpolation is not applied for this segmented color scale). While this is gener-
ally a good starting point, more information can be communicated when using an
adapted control point distribution. This is demonstrated in the right color scale of
Figure 4.13b, where control points have been shifted in accordance with the data
distribution. The advantage is that users can easily associate colors with certain
ranges of the data distribution.3

3 The box-whisker plot or box plot used in the figures depict minimum, 1st quartile, median, 3rd
quartile, and maximum value (horizontal ticks from bottom to top).
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(a) Histogram equalization. (b) Box-whisker equalization.

Fig. 4.14: Equalization schemas for adapting a color scale to the data distribution, which is depicted
as box-whisker plots. @@® The authors.

Skewing of the color-mapping function Uneven value distributions can be problem-
atic because they lead to situations where the majority of data values are represented
by only a narrow range of colors. This is unfavorable for the identification of indi-
vidual data values. Logarithmic or exponential color-mapping functions are useful
when visualizing data with skewed value distributions. In cases where the underlying
data distribution cannot be described by an analytical function, equalization can be
applied to generate adapted color scales. The net effect of equalization is that the
scale of colors is in accord with the data’s value distribution. Histogram equalization
and box-whisker equalization are examples of this kind of adaptation:

» Histogram equalization works as follows. First, one subdivides the value range
into n uniform bins and counts the number of data values falling into the bins.
Secondly, the color scale is sampled at n + 1 points, where the points’ locations
are determined by the cumulative frequencies of the bins. Finally, the colors at
these sample points are used to construct an adapted color scale as illustrated in
Figure 4.14a. As a result, more colors are provided there where larger numbers
of data values are located, making values in high-density regions easier to
distinguish.

* Box-whisker equalization works similarly. Here, colors are sampled at points
determined by quartiles. Quartiles partition the original data into four parts,
each of which contains one-fourth of the data. The second quartile is defined as
the median of the entire set of data (one half of the data lies below the second
quartile, and the other half lies above it). The first and the third quartile are the
medians of the lower and upper half of the data, respectively. The adapted color
scale is constructed from the colors sampled at the quartiles (see Figure 4.14b).
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(a) Color-coding without equalization.

(b) Histogram equalization. (c) Box-whisker equalization.

Fig. 4.15: Color scale equalization applied to the visualization of spatio-temporal health data.
©@@® The authors.

How equalization affects the visualization of spatio-temporal data compared to
using unadapted color scales is shown in Figure 4.15. It can be seen that colors
are hard to distinguish in dense parts of the data unless histogram or box-whisker
equalization is applied, which improves discriminability.

Color-coding for the comparison task The comparison of two or more time-
dependent variables requires a global color scale that comprises the value ranges of all
variables participating in the comparison. Particularly problematic are comparisons
where the individual value ranges are quite different. For example, a variable with
a small value range would be represented by only a small fraction of the global
color scale, which makes it hard for viewers to differentiate colors in that range. An
approach to alleviating this problem is to derive distinct intervals from the union
of all value ranges and to create a separate encoding for each interval. To this end,
a unique constant hue is assigned to each interval, while varying only brightness
and saturation to encode data values. Finally, the separately specified color scales
for the intervals are integrated into one global comparison color scale. To avoid
discontinuities at the tieing points of two intervals, the brightness and saturation
values of one interval have to correspond with the respective values of the adjacent
interval. In other words, within one interval, the hue is constant while brightness
and saturation vary, whereas at the boundary from one interval to the next, the hue
is modified while brightness and saturation are kept constant. This way, even small
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Fig. 4.16: Different color scales for visual comparison of three time-dependent variables. @@ The
authors.

value ranges will be represented by their own brightness-varying subscale of the
global color scale and the differentiation of data values is improved.

Figure 4.16 shows how different color-coding schemes influence the task of
comparing three time-dependent variables. Figure 4.16a uses individual color scales
for each variable. A visual comparison is hardly possible because one and the same
color stands for three different data values (one in each value range). A global color
scale as shown in Figure 4.16b allows visual comparison, but data values of the
first and third variables are no longer distinguishable because their value ranges are
rather small compared to the one of the second variable. Figure 4.16c¢ illustrates that
adapting the color scale to the global value distribution is beneficial. Figure 4.16d
shows the visualization outcome when applying the color scale construction as
described above: the recognition of values has been improved significantly. However,
these results cannot be guaranteed for all cases, in particular, then when the merging
process generates too many or too few distinct value ranges.

After reflecting on different options to support lookup and comparison tasks
for color-coding, we will now discuss task-dependent considerations for line plots.
While color-coding is mainly applied for representing data values in the context
of time-oriented data, line plots employ positional encoding for both data and time
values. This opens a number of options for parametrization and transformation based
on the tasks at hand.
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Line Plots

Line plots connect successive data points with lines in order to emphasize the overall
change over time. They are very well suited for visually representing time series.
However, several difficulties arise with lookup and comparison tasks, particularly
when it comes to multivariate time-oriented data. For example, if the developments
of time series of different units or value ranges need to be compared, a straightforward
overlay could be visually misleading. Yet, by using different options of arrangement
and scaling, different user tasks can be supported more appropriately.

Task-Based Line Plots

In the following paragraphs, we describe particular challenges of line plots in the
context of lookup and comparison tasks and how they can be mitigated. For the
lookup task, the effectiveness with which data and time elements are identifiable
can for example be influenced by the appropriate scaling of the plot’s axes. For
the comparison task, largely different value domains, the comparison of percent
changes, as well as heterogeneous data, i.e., data measured in different units, pose
problems that can be addressed by specific arrangements, dedicated axes scaling,
and indexing.

Line plots for the lookup task The design of line plots for the lookup task must
ensure that the whole range of data values is easily identifiable. One way to facilitate
this is to extract statistical metadata from the underlying dataset and to scale the
time axis accordingly. An example of this is a method called banking to 45 degrees
which was originally introduced by Cleveland et al. (1988) and refined by Heer and
Agrawala (2006) as well as Talbot et al. (2012). It is an optimization technique for
computing the aspect ratio of a line plot such that the average orientation of line
segments equals 45 degrees (see Figure 4.17).

Line Plots for the comparison task When considering comparison tasks, several
difficulties may arise for multivariate time-oriented data. One main challenge in this
regard is largely different value domains. In the following, we discuss methods that
help us to solve such problems.

Arrangement The simplest case is to superimpose the different variables within a
single coordinate system. This employs the major advantage that the individual lines
are laid out close to each other and thus allow for an easy direct comparison. How-
ever, the superimposition approach stated above might be problematic if variables
with largely different value domains are involved. Figure 4.18a illustrates this with
superimposed line plots of the closing prices of the two stocks of Amazon (AMZN)
and Twitter (TWTR) over the time range of January 3, 2022 to July 27, 2022. For this
time interval, AMZN has a value domain in the range of 100-180 whereas TWTR
has a value domain of 30-60. These largely different value domains lead to an
under-representation of the dynamics of the smaller value domain and make relative
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Fig. 4.17: Example of different width-to-height ratios for supporting lookup tasks. @@ The authors.

comparisons prone to errors. A possible solution to this is a different arrangement of
the data display. One option is juxtaposition, which displays the different plots next
to each other while adjusting the scale dynamically to make relative changes and the
overall shape of variable development better comparable. Figure 4.18b shows the
same data as Figure 4.18a by presenting the second variable underneath the first one
on a synchronized time scale. In doing so, the dynamics of the smaller value range
are much better perceivable. Other layout arrangements are also possible, and in its
generalized form, this approach is related to small multiples (< p. 359).

Axes scaling Not only largely different value domains pose a challenge to line
plots, but also the representation and comparison of percent changes, i.e., looking
at changes relative to the absolute data value. On linear scales, constant percentual
changes are displayed as exponentially increasing lines. Furthermore, the same per-
centual changes are represented via lines of different slopes. For example, an increase
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(b) Juxtaposition on linear scale.

Fig. 4.18: Different layout configurations for multivariate time-series comparison of the closing
prices of Amazon (AMZN, orange) and Twitter (TWTR, blue) on linear scales. @@ The authors.

of 100% from a value of 10 to a value of 20 is represented by the same slope as an
increase of only 10% from a value of 100 to a value of 110. A possible solution to
mitigate this problem is to scale the axes of the line plot with respect to the distri-
bution of the data, e.g., using logarithmic scales instead of linear ones. In this case,
equal percentual changes are represented by equal slopes. This approach is shown in
Figure 4.19a where percentage changes of AMZN and TWTR stock prices can be
compared visually directly and also the largely different value domains problem can
be overcome by using log scales.



4.2 Visualization Design Examples 113

AMZN

Close

40 WTR

sn7  Janz2  Febe  Feb21  Mar8  Mar23  Apr7  Apr22  May7  May22  Jn6  Jn2l  Jus 2l Augs
Day of Date

(a) Superimposition on log scale.

% Difference in Close
K

AMZN

san22  Feos  Feb2l  Mars  Mar23 A7 Apr2z  May7  May22 6 in2i W6 W2l Augs
Day of Date

(b) Indexing.

Fig. 4.19: Different configurations for multivariate time-series comparison of the closing prices
of Amazon (AMZN, orange) and Twitter (TWTR, blue) using log scales and indexing. @@ The
authors.

Indexing So far, we have focused on multivariate homogeneous data. In contrast to
that, heterogeneous time series involve different kinds of data or units. The simplest
solution is again to use juxtaposition as described earlier. A further, frequently applied
approach is to use superimposition combined with multiple y-axes. However, this also
introduces two main problems. First, it is limited to only very few heterogeneous
variables (mostly not more than two). Secondly, and most important, the visual
appearance and interrelationship of different variables are largely dependent on the
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selection of the scales for the individual y-axes. Thus, these relationships (especially
line crossings and vertical position in relation to each other) are mostly arbitrary.
Bertin (1983) also dealt with this problem several decades ago and introduced
indexing as a possible solution. The indexing method avoids the problems mentioned
before by using a simple transformation of the original values for each time series. The
result is a set of new values of a percent unit (see Figure 4.19b). The heterogeneous
time series are converted into homogeneous data, which can easily be compared by
superimposition. Bertin defines the indexing method with the following formula:

index-valuey = Uv—k x100 [%] :0< k <n
ip

The new indexed value is calculated for every element in the original time series.
The point ip refers to the indexing point. This is a special point in time of the
time series. It is the base point for all percent calculations. The index value for the
point k is thus calculated via the formula described above. v;), is the value of the
indexing point and represents 100%. vy is the original value of the time series. By
using this method, all displayed time-series values use the same percent dimension,
which makes heterogeneous time series far easier to compare. For example, the time
series can be drawn in superimposition without any arbitrary choice of scales and
ranges of the different axes dimensions. One of the two main benefits of indexing
is the ability to superimpose any data by the transformation of values into a percent
dimension. The other benefit is the user-defined setting of an indexing point. This
makes comparisons more effective and precise. A study by Aigner et al. (2011)
gathered empirical evidence showing that using indexing in general yields a higher
correctness rate than the two other visualization types linear scale with juxtaposition
and log scale with superimposition. With regard to task completion times, the results
are less clear and only slight advantages for indexing were found.

Summary

In the previous paragraphs, we discussed the influence of the task at hand on the
visualization of time-oriented data. The examples of color-coding, plot arrangement,
axes scaling, and indexing served to demonstrate how the task can be taken into ac-
count in the visualization process. The figures in this section showed that visualizing
the same data using different mapping strategies leads to visual representations that
are quite different from each other. Hence, it is important to consider the tasks of
users in the visualization design to come up with effective visual tools for supporting
them. As we have seen, visualization results can be improved when distinguishing
between the following major task categories:

¢ Elementary vs. synoptic analytic questions,
* Identification vs. location, and
* Lookup vs. comparison.
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However, still more research is required to investigate new methods of task-
orientation, especially with regard to the wide range of visualization options. An
example of such work with a particular focus on time-series visualization is the
research of Albers et al. (2014), where different color and positional encodings have
been compared. In their study, the authors confirm that different designs support
different tasks. In particular, they show that positional encodings are better suited
for elementary location tasks (i.e., locating minima, maxima, and ranges) while
color encodings are better suited for synoptic location tasks (i.e., involving visual
aggregations such as average, spread, and outliers).

4.2.3 Presentation Level

Finally, there are design issues at the level of the visual representation. Communi-
cating the time-dependence of data primarily requires a well-considered placement
of the time axis. This will make it easier for users to associate data with a particular
time, and vice versa. In Section 4.1.3, we have differentiated between 2D and 3D
presentations of time-oriented data. Let us take up this distinction as an example of
a design decision to be made at the level of the visual representation. Visualization
approaches that use a 2D presentation space have to ensure that the time axis is
emphasized because time and data dimensions often have to share the two available
display dimensions. In the case of 3D representations, a third display dimension is
allocatable. In fact, many techniques utilize it as a dedicated dimension for the time
axis, clearly separating time from other (data) dimensions. In the following, we will
illustrate the 2D and the 3D approach with two examples.

2D Presentation of Time-Oriented Data

We discuss the presentation of time-oriented data in 2D by the example of axes-
based visualizations. Axes-based visualization techniques are a widely used approach
to represent multidimensional datasets in 2D (see Claessen and van Wijk, 2011).
The basic idea is to construct a visual axis for each variable of the n-variate data
space and to scale the axes with respect to the corresponding value range. Then, a
suitable layout of the visual axes on the display has to be found. Finally, the data
representation is realized by placing additional visual objects along the visual axes
and in accord with the data. In this way, a lossless projection of the n-variate data
space onto the 2-dimensional screen space can be accomplished. Parallel coordinates
by Inselberg and Dimsdale (1990) are a well-known example of this approach.
As shown in Figure 4.20, parallel coordinates use equidistant and parallel axes to
represent multiple variables, and each data tuple is represented by a polygonal line
linking the corresponding variable values. In the case of time-oriented data, however,
this means that the axis encoding time is considered as one of many, not taking into
account the outstanding importance of this axis.
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Fig. 4.20: In parallel coordinates, the time axis (leftmost) is just one of many axes. The importance
of time is not particularly emphasized. @@ The authors.

In contrast, Tominski et al. (2004) describe an axes-based visualization called
TimeWheel, which focuses on one specific axis of interest, in our case the time axis
(= p. 298). The basic idea of the TimeWheel technique is to distinguish between one
independent variable, in our case time, and multiple dependent variables representing
the time-oriented data. Figure 4.21 illustrates the design. The dimension of time is
presented by the reference time axis in the center of the display and time-dependent

Fig. 4.21: The TimeWheel shows the reference time axis in a prominent central position and
arranges data axes representing time-dependent variables around the time axis. Data are visualized
by drawing lines between points at the time axis and values at the data axes. @@ The authors.
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variables are shown as data axes that are circularly arranged around the time axis,
where each dependent variable has a specific color hue associated with it. For each
time value on the time axis, colored lines are drawn that connect the time value
with the corresponding data value at each of the data axes, effectively establishing
a visual link between time and multivariate data. By doing so, the time dependency
of all variables can be visualized. Note that the interrelation of time values and data
values of a variable can be explored most efficiently when a data axis is parallel to
the time axis. Interactive rotation of the TimeWheel can be used to move data axes
of interest into such a parallel position.

Two additional visual cues support data interpretation and guide the viewer’s
attention: color fading and length adjustment. Color fading is applied to attenuate
lines drawn from the time axis to axes that are almost perpendicular to the time axis.
During rotation, lines gradually fade out and eventually become invisible when the
associated data axis approaches an upright orientation. To provide more display space
for the data variables of interest, the length of the data axes is adjusted according to
their angle to the time axis. When the TimeWheel is rotated, data axes that are going
to become parallel to the time axis are stretched to make them longer and data axes
that head for an upright orientation are shrunk to make them shorter. Figure 4.21
shows a TimeWheel that visualizes eight time-dependent variables, where color
fading and length adjustment have been applied to focus on the orange and the green
data axes.

The TimeWheel is an example of a 2D visualization technique that acknowledges
the important role of the time axis. The time axis’ central position emphasizes the
temporal character of the data and additional visual cues support interactive analysis
and exploration of multiple time-dependent data variables.

3D Presentation of Time-Oriented Data

3D presentation spaces provide a third display dimension. This opens the door
to additional possibilities of encoding time and time-oriented data. Particularly,
the visualization of data that have further independent variables in addition to the
dimension of time can benefit from the additional dimension of the display space.

Spatio-temporal data are an example where data variables do not only depend
on time, but also on space (e.g., on points given by longitude and latitude or on
geographic regions). When visualizing such data, the temporal frame of reference as
well as the spatial frame of reference have to be represented. For this purpose, the
space-time cube design (see Kraak (2003) and < p. 377) can be applied: The z-axis
of the display space exclusively encodes time, while the x- and y-axes represent
spatial dimensions. Spatio-temporal data are then encoded by embedding visual
objects into the space-time cube (e.g., visual markers or icons) and by mapping
data to visual attributes (e.g., color or texture). Kristensson et al. (2009) provide
evidence that space-time cube representations can facilitate intuitive recognition and
interpretation of data in their spatio-temporal context.
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(a) Pencil icons for linear time. (b) Helix icons for cyclic time.

Fig. 4.22: 3D visualization of spatio-temporal data using color-coded icons embedded into a map
display. @@ The authors.

Figure 4.22 shows two examples of this approach as described by Tominski et
al. (2005b). Figure 4.22a represents multiple time-dependent variables by so-called
pencil icons (— p. 386). The linear time axis is encoded along the pencil’s faces
starting from the tip. Each face of the pencil is associated with a specific data variable
and a specific color hue and represents the corresponding data values by varying color
saturation. Figure 4.22b uses so-called helix icons (— p. 389). Here, we assume a
cyclic character of time and thus, a ribbon is constructed along a spiral helix. For
each time step, the ribbon extends in angle and height, depending on the number of
time elements per helix cycle and the number of cyclic passes. Again color-coding is
used to encode the data values. To represent more than one data variable, the ribbon
can be subdivided into narrower sub-ribbons.

The embedded 3D icons are suited for visualizing data that are anchored at
certain points in space. When the goal is to understand spatio-temporal data along
paths, one can use a different visualization. The great wall of space-time (— p. 369)
by Tominski and Schulz (2012) provides a dedicated path-oriented 3D representation.
An example is shown in Figure 4.23. The construction of the wall is based on (1)
defining a topological path through the neighborhood graph of the map, (2) deriving
a geometric path based on the map geometry, (3) extruding the geometric path
to create a 3D wall above the map, and (4) projecting a visualization of the data
associated with the defined path onto the wall. In the figure, the wall shows a color-
coded matrix, where rows correspond to time steps and columns correspond to the
different map areas along the path.

The 3D display space used in the previous examples is advantageous in terms
of the prominent encoding of time, but it also exhibits two problems that need to
be addressed: perspective distortions and occlusion (see Section 4.1.3). Perspec-
tive distortions are problematic because they could impair the interpretation of the
visualized data. Therefore, the visual mapping should avoid or reduce the use of
geometric visual attributes that are subject to perspective projections (e.g., shape,
size, or orientation). This is the reason why the given examples apply color-coding
instead of geometric encoding. The occlusion aspect has to be addressed by addi-
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Fig. 4.23: The great wall of space-time visualizes spatio-temporal data along a path through the
map. The color-coded matrix projected onto the wall represents health data. @@ The authors.

tional mechanisms. For example, users should be allowed to rotate the icons or the
whole map in order to make back faces visible. Another option is to incorporate
additional 2D views that do not suffer from occlusion. Such views are shown for a
user-selected region of interest in the bottom-left corner of Figures 4.22a and 4.22b.
Similar 2D views could be generated from the matrix-based wall representation in
Figure 4.23. Again this approach is a compromise. On the one hand, the 2D views
are occlusion-free, but on the other hand, one can show only a limited number of
additional views, and moreover, one unlinks the data from their spatial point or path
of reference.

Irrespective of whether one uses a 2D or 3D representation, the visualization
design for time-oriented data requires a special handling of the time axis to effectively
communicate the time-dependence of the data. Both approaches have to take care to
emphasize the dimension of time among other data dimensions.

4.3 Summary

Solving the visualization problem primarily requires answering the three questions:
(1) What is visualized? (2) Why is it visualized? (3) How is it visualized? The
answers to the first two questions determine the answer to the third question.

In the case of visualizing time-oriented data, answering the what-question re-
quires both specifying the characteristics of the time domain as well as specifying
the characteristics of the data associated with time. In Chapter 3, we have shown
that many different aspects characterize time and time-oriented data. It is virtually
impossible to simultaneously cover all of them within a single visualization process.
On top of this, there exists no visualization technique that is capable of handling all
of the different aspects simultaneously and presenting all of them in an appropriate
way. Here, the answer to “why are we visualizing the data?”’ comes into play. Those
aspects of the data that are of specific interest with regard to the tasks at hand have
to be communicated by the visual representation, while others can be diminished or
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scale, scope, arrangement, viewpoint

Wh a‘t’? time granularity & calendars, time primitives,
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see Chapter 3
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Fig. 4.24: Three key questions of the visualization problem.

even omitted. However, this is an intricate problem, since most visualization systems
do not support the process of generating suitable task-specific visual representations.
Thus, our primary aim can only be to communicate the problem, and also to demon-
strate the necessity and potential of considering the interrelation between the what,
why, and how aspects by example, as we have done in Section 4.2.

Figure 4.24 again summarizes the key characteristics of the three aspects. The
what aspect addresses characteristics of time and data as detailed in Chapter 3. For
describing the why aspect, we considered typical analytical questions as described
in Section 4.1.2. The how aspect is mainly categorized by the differentiation of static
and dynamic as well as 2D and 3D representations (see Section 4.1.3).

We will see that there are a variety of techniques for handling and accounting
for these key characteristics. Accordingly, many different visual representations of
time-oriented data can be generated. Appendix A attests to this statement.



References 121

References

Aigner, W., C. Kainz, R. Ma, and S. Miksch (2011). “Bertin Was Right: An Empirical
Evaluation of Indexing to Compare Multivariate Time-Series Data Using Line
Plots”. In: Computer Graphics Forum30.1,pp.215-228.por: 10.1111/j.1467-
8659.2010.01845.x.

Aigner, W., S. Miksch, W. Miiller, H. Schumann, and C. Tominski (2007). “Visu-
alizing Time-Oriented Data — A Systematic View”. In: Computers & Graphics
31.3, pp. 401-409. por: 10.1016/j.cag.2007.01.030.

Aigner, W., S. Miksch, W. Miiller, H. Schumann, and C. Tominski (2008). “Visual
Methods for Analyzing Time-Oriented Data”. In: IEEE Transactions on Visualiza-
tion and Computer Graphics 14.1, pp. 47-60. por: 10.1109/TVCG.2007.70415.

Aigner, W., S. Miksch, B. Thurnher, and S. Biffl (2005). “PlanningLines: Novel
Glyphs for Representing Temporal Uncertainties and Their Evaluation”. In: Pro-
ceedings of the International Conference Information Visualisation (IV). IEEE
Computer Society, pp. 457-463. por: 10.1109/IV.2005.97.

Albers, D., M. Correll, and M. Gleicher (2014). “Task-Driven Evaluation of Aggre-
gation in Time Series Visualization”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI). ACM Press, pp. 551-560. por:
10.1145/2556288.2557200.

Andrienko, N. and G. Andrienko (2006). Exploratory Analysis of Spatial and Tem-
poral Data. Springer. por: 10.1007/3-540-31190-4.

Bach, B., P. Dragicevic, D. W. Archambault, C. Hurter, and S. Carpendale (2017). “A
Descriptive Framework for Temporal Data Visualizations Based on Generalized
Space-Time Cubes”. In: Computer Graphics Forum 36.6, pp. 36-61. por: 10.
1111/cgf.12804.

Bai, Z., Y. Tao, and H. Lin (2020). “Time-varying Volume Visualization: A Survey”.
In: Journal of Visualization 23.5, pp. 745-761. por: 10. 1007 /s12650-020-
00654-x.

Beck, F., M. Burch, S. Diehl, and D. Weikopf (2017). “A Taxonomy and Survey
of Dynamic Graph Visualization”. In: Computer Graphics Forum 36.1, pp. 133—
159. por: 10.1111/cgf.12791.

Been, K., E. Daiches, and C.-K. Yap (2006). “Dynamic Map Labeling”. In: IEEE
Transactions on Visualization and Computer Graphics 12.5, pp. 773-780. por:
10.1109/TVCG.2006.136.

Bergman, L., B. E. Rogowitz, and L. A. Treinish (1995). “A Rule-based Tool for
Assisting Colormap Selection”. In: Proceedings of the IEEE Visualization Con-

ference (Vis). IEEE Computer Society, pp. 118-125. por: 10.1109/VISUAL.
1995.480803.

Bernard, J., M. Steiger, S. Mittelstadt, S. Thum, D. A. Keim, and J. Kohlhammer
(2015). “A Survey and Task-based Quality Assessment of Static 2D Colormaps”.
In: Proceedings of the Conference on Visualization and Data Analysis (VDA).
Vol. 9397. SPIE Proceedings. SPIE. por: 10.1117/12.2079841.

Bertin, J. (1983). Semiology of Graphics: Diagrams, Networks, Maps. Translated by
William J. Berg. University of Wisconsin Press.


https://doi.org/10.1111/j.1467-8659.2010.01845.x
https://doi.org/10.1111/j.1467-8659.2010.01845.x
https://doi.org/10.1016/j.cag.2007.01.030
https://doi.org/10.1109/TVCG.2007.70415
https://doi.org/10.1109/IV.2005.97
https://doi.org/10.1145/2556288.2557200
https://doi.org/10.1007/3-540-31190-4
https://doi.org/10.1111/cgf.12804
https://doi.org/10.1111/cgf.12804
https://doi.org/10.1007/s12650-020-00654-x
https://doi.org/10.1007/s12650-020-00654-x
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1109/TVCG.2006.136
https://doi.org/10.1109/VISUAL.1995.480803
https://doi.org/10.1109/VISUAL.1995.480803
https://doi.org/10.1117/12.2079841

122 4 Crafting Visualizations of Time-Oriented Data

Borland, D. and R. M. Taylor (2007). “Rainbow Color Map (Still) Considered
Harmful”. In: IEEE Computer Graphics and Applications 27.2, pp. 14-17. por:
10.1109/mcg.2007.323435.

Bors, C., C. Eichner, S. Miksch, C. Tominski, H. Schumann, and T. Gschwandt-
ner (2020). “Exploring Time Series Segmentations Using Uncertainty and Fo-
cus+Context Techniques”. In: Proceedings of the Eurographics/IEEE Conference
on Visualization (EuroVis) - Short Papers. Eurographics Association, pp. 7-11.
por: 10.2312/evs.20201040.

Card, S., J. Mackinlay, and B. Shneiderman (1999). Readings in Information Visu-
alization: Using Vision to Think. Morgan Kaufmann Publishers.

Ceneda, D., T. Gschwandtner, S. Miksch, and C. Tominski (2018). “Guided Visual
Exploration of Cyclical Patterns in Time-series”. In: Proceedings of the IEEE
Symposium on Visualization in Data Science (VDS). IEEE Computer Society.

Claessen, J. H. T. and J. J. van Wijk (2011). “Flexible Linked Axes for Multivari-
ate Data Visualization”. In: IEEE Transactions on Visualization and Computer
Graphics 17.12, pp. 2310-2316. por: 10.1109/TVCG.2011.201.

Cleveland, W. S., M. E. McGill, and R. McGill (1988). “The Shape Parameter of a
Two-Variable Graph”. In: Journal of the American Statistical Association 83.402,
pp- 289-300. por: 10.1080,/01621459.1988.10478598.

Constantine, L. L. (2003). “Canonical Abstract Prototypes for Abstract Visual and In-
teraction Design”. In: Interactive Systems: Design, Specification, and Verification.
Edited by Jorge, J., Nunes, N. J., and e Cunha, J. F. Vol. 2844. Lecture Notes in
Computer Science. Springer, pp. 1-15. por: 10.1007/978-3-540-39929-2_1.

Courage, C. and K. Baxter (2005). Understanding Your Users. Morgan Kaufmann.
por: 10.1016/B978-1-55860-935-8.X5029-5.

Daassi, C., L. Nigay, and M.-C. Fauvet (2005). “A Taxonomy of Temporal Data
Visualization Techniques”. In: Interaction Information Intelligence 5.2, pp. 41—
63. urRL: https://www.irit. fr/journal - i3 /volume®5 /numero0®2 /
revue_i3_05_02_02.pdf.

Draper, G. M., Y. Livnat, and R. F. Riesenfeld (2009). “A Survey of Radial Meth-
ods for Information Visualization”. In: IEEE Transactions on Visualization and
Computer Graphics 15.5, pp. 759-776. por: 10.1109/TVCG.2009.23.

Diibel, S., M. Rohlig, H. Schumann, and M. Trapp (2014). “2D and 3D Presentation
of Spatial Data: A Systematic Review”. In: Proceedings of the International
Workshop on 3DVis (3DVis@IEEE VIS). IEEE Computer Society, pp. 11-18.
por: 10.1109/3DVis.2014.7160094.

Elmgqvist, N. and P. Tsigas (2007). “A Taxonomy of 3D Occlusion Management
Techniques”. In: Proceedings of the IEEE Conference on Virtual Reality (VR).
IEEE Computer Society, pp. 51-58. por: 10.1109/vr.2007.352463.

Fang, Y., H. Xu, and J. Jiang (2020). “A Survey of Time Series Data Visualization
Research”. In: IOP Conference Series: Materials Science and Engineering 782.
por: 10.1088/1757-899x/782/2/022013.

Farquhar, A. B. and H. Farquhar (1891). Economic and Industrial Solutions. New
York, NY: G. B. Putnam’s Sons.


https://doi.org/10.1109/mcg.2007.323435
https://doi.org/10.2312/evs.20201040
https://doi.org/10.1109/TVCG.2011.201
https://doi.org/10.1080/01621459.1988.10478598
https://doi.org/10.1007/978-3-540-39929-2_1
https://doi.org/10.1016/B978-1-55860-935-8.X5029-5
https://www.irit.fr/journal-i3/volume05/numero02/revue_i3_05_02_02.pdf
https://www.irit.fr/journal-i3/volume05/numero02/revue_i3_05_02_02.pdf
https://doi.org/10.1109/TVCG.2009.23
https://doi.org/10.1109/3DVis.2014.7160094
https://doi.org/10.1109/vr.2007.352463
https://doi.org/10.1088/1757-899x/782/2/022013

References 123

Fuchs, G. and H. Schumann (2004a). “Intelligent Icon Positioning for Interactive
Map-Based Information Systems”. In: Proceedings of the International Con-
ference of the Information Resources Management Association (IRMA). Idea
Group Inc., pp. 261-264. urL: https://www.irma-international.org/
proceeding - paper /intelligent - icon- positioning- interactive -
map/32349/.

Fuchs, J., F. Fischer, F. Mansmann, E. Bertini, and P. Isenberg (2013). “Evaluation of
Alternative Glyph Designs for Time Series Data in a Small Multiple Setting”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI). ACM Press, pp. 3237-3246. por: 10.1145/2470654.2466443.

Gapminder Foundation (2021). Gapminder Tools. urL: https: //www.gapminder.
org/tools.

Gschwandtner, T., M. Bogl, P. Federico, and S. Miksch (2016). “Visual Encodings
of Temporal Uncertainty: A Comparative User Study”. In: I[EEE Transactions on
Visualization and Computer Graphics 22.1, pp. 539-548. por: 10.1109/TVCG.
2015.2467752.

Hackos, J. T. and J. C. Redish (1998). User and Task Analysis for Interface Design.
John Wiley & Sons, Inc.

Hall, K. W., C. Perin, P. G. Kusalik, C. Gutwin, and S. Carpendale (2014). “For-
malizing Emphasis in Information Visualization”. In: Computer Graphics Forum
35.3, pp. 717-737. por: 10.1111/cgf.12936.

Harris, R. L. (1999). Information Graphics: A Comprehensive Illustrated Refer-
ence. Oxford University Press. urL: https://global.oup.com/academic/
product/information-graphics-9780195135329.

Harrower, M. A. and C. A. Brewer (2003). “ColorBrewer.org: An Online Tool for
Selecting Color Schemes for Maps”. In: The Cartographic Journal 40.1, pp. 27—
37.por: 10.4324/9781351191234-18.

Havre, S., E. Hetzler, and L. Nowell (2000). “ThemeRiver: Visualizing Theme
Changes Over Time”. In: Proceedings of the IEEE Symposium Information Vi-
sualization (InfoVis). IEEE Computer Society, pp. 115-124. por: 10. 1109/
INFVIS.2000.885098.

Havre, S., E. Hetzler, P. Whitney, and L. Nowell (2002). “ThemeRiver: Visualizing
Thematic Changes in Large Document Collections”. In: IEEE Transactions on
Visualization and Computer Graphics 8.1, pp. 9-20. por: 10 . 1109 /2945 .
981848.

Healey, C. G. and J. T. Enns (2012). “Attention and Visual Memory in Visualization
and Computer Graphics”. In: IEEE Transactions on Visualization and Computer
Graphics 18.7, pp. 1170-1188. por: 10.1109/TVCG.2011.127.

Heer, J. and M. Agrawala (2006). “Multi-Scale Banking to 45 Degrees”. In: IEEE
Transactions on Visualization and Computer Graphics 12.5, pp. 701-708. por:
10.1109/TVCG.2006.163.

Inselberg, A. and B. Dimsdale (1990). “Parallel Coordinates: A Tool for Visualizing
Multi-Dimensional Geometry”. In: Proceedings of the IEEE Visualization Con-
ference (Vis). IEEE Computer Society, pp. 361-378. por: 10.1109/VISUAL.
1990.146402.


https://www.irma-international.org/proceeding-paper/intelligent-icon-positioning-interactive-map/32349/
https://www.irma-international.org/proceeding-paper/intelligent-icon-positioning-interactive-map/32349/
https://www.irma-international.org/proceeding-paper/intelligent-icon-positioning-interactive-map/32349/
https://doi.org/10.1145/2470654.2466443
https://www.gapminder.org/tools
https://www.gapminder.org/tools
https://doi.org/10.1109/TVCG.2015.2467752
https://doi.org/10.1109/TVCG.2015.2467752
https://doi.org/10.1111/cgf.12936
https://global.oup.com/academic/product/information-graphics-9780195135329
https://global.oup.com/academic/product/information-graphics-9780195135329
https://doi.org/10.4324/9781351191234-18
https://doi.org/10.1109/INFVIS.2000.885098
https://doi.org/10.1109/INFVIS.2000.885098
https://doi.org/10.1109/2945.981848
https://doi.org/10.1109/2945.981848
https://doi.org/10.1109/TVCG.2011.127
https://doi.org/10.1109/TVCG.2006.163
https://doi.org/10.1109/VISUAL.1990.146402
https://doi.org/10.1109/VISUAL.1990.146402

124 4 Crafting Visualizations of Time-Oriented Data

Jabbari, A., R. Blanch, and S. Dupuy-Chessa (2018). “Composite Visual Mapping
for Time Series Visualization”. In: Proceedings of the IEEE Pacific Visualization
Symposium (PacificVis). IEEE, pp. 116—-124. por: 10.1109/PacificVis.2018.
00023.

Knight, D., B. Knight, M. Pearson, and M. Quintana (2018). Microsoft Power BI
Quick Start Guide: Build Dashboards and Visualizations to Make Your Data
Come to Life. 1st edition. Packt Publishing. urL: https://www.packtpub.com/
product/microsoft-power-bi-quick-start-guide/9781789138221.

Kraak, M.-J. (2003). “The Space-Time Cube Revisited from a Geovisualization
Perspective”. In: Proceedings of the 21st International Cartographic Conference
(ICC). The International Cartographic Association (ICA), pp. 1988—1996. urL:
https://icaci.org/files/documents/ICC_proceedings/ICC2003/
Papers/255.pdf.

Kraus, M., K. Klein, J. Fuchs, D. A. Keim, F. Schreiber, M. Sedlmair, and T.-M.
Rhyne (2021). “The Value of Immersive Visualization”. In: IEEE Computer
Graphics and Applications 41.4, pp. 125-132. por: 10 . 1109 /MCG . 2021 .
3075258.

Kristensson, P. O., N. Dahlback, D. Anundi, M. Bjornstad, H. Gillberg, J. Haralds-
son, I. Martensson, M. Nordvall, and J. Stahl (2009). “An Evaluation of Space
Time Cube Representation of Spatiotemporal Patterns”. In: IEEE Transactions on
Visualization and Computer Graphics 15.4, pp. 696-702. por: 10.1109/TVCG.
2008.194.

Loth, A. (2019). Visual Analytics with Tableau. Wiley. por: 10.1002/9781119561996.

Luboschik, M., H. Schumann, and H. Cords (2008). “Particle-Based Labeling:
Fast Point-feature Labeling Without Obscuring Other Visual Features”. In: IEEE
Transactions on Visualization and Computer Graphics 14.6, pp. 1237-1244. por:
10.1109/tvcg.2008.152.

MacEachren, A. M. (1995). How Maps Work: Representation, Visualization, and
Design. Guilford Press.

Mackinlay, J. (1986). “Automating the Design of Graphical Presentations of Rela-
tional Information”. In: ACM Transactions on Graphics 5.2, pp. 110-141. por:
10.1145/22949.22950.

Mairena, A., C. Gutwin, and A. Cockburn (2022). “Which Emphasis Technique to
Use? Perception of Emphasis Techniques with Varying Distractors, Backgrounds,
and Visualization Types”. In: Information Visualization 21.2, pp. 95-129. por:
10.1177/14738716211045354.

Marriott, K., F. Schreiber, T. Dwyer, K. Klein, N. H. Riche, T. Itoh, W. Stuerzlinger,
and B. H. Thomas, eds. (2018). Immersive Analytics. Vol. 11190. Lecture Notes
in Computer Science. Springer. por: 10.1007/978-3-030-01388-2.

McNabb, L. and R. S. Laramee (2019). “Multivariate Maps — A Glyph-Placement
Algorithm to Support Multivariate Geospatial Visualization”. In: Information
10.10. por: 10.3390/info10100302.

Mittelstadt, S., D. Jackle, F. Stoffel, and D. A. Keim (2015). “ColorCAT: Guided
Design of Colormaps for Combined Analysis Tasks”. In: Proceedings of the Eu-


https://doi.org/10.1109/PacificVis.2018.00023
https://doi.org/10.1109/PacificVis.2018.00023
https://www.packtpub.com/product/microsoft-power-bi-quick-start-guide/9781789138221
https://www.packtpub.com/product/microsoft-power-bi-quick-start-guide/9781789138221
https://icaci.org/files/documents/ICC_proceedings/ICC2003/Papers/255.pdf
https://icaci.org/files/documents/ICC_proceedings/ICC2003/Papers/255.pdf
https://doi.org/10.1109/MCG.2021.3075258
https://doi.org/10.1109/MCG.2021.3075258
https://doi.org/10.1109/TVCG.2008.194
https://doi.org/10.1109/TVCG.2008.194
https://doi.org/10.1002/9781119561996
https://doi.org/10.1109/tvcg.2008.152
https://doi.org/10.1145/22949.22950
https://doi.org/10.1177/14738716211045354
https://doi.org/10.1007/978-3-030-01388-2
https://doi.org/10.3390/info10100302

References 125

rographics / IEEE Conference on Visualization (EuroVis) - Short Papers. Euro-
graphics Association, pp. 115-119. por: 10.2312/eurovisshort.20151135.

Mittelstadt, S., A. Stoffel, and D. A. Keim (2014). “Methods for Compensating
Contrast Effects in Information Visualization”. In: Computer Graphics Forum
33.3, pp. 231-240. por: 10.1111/cgf.12379.

Miiller, W. and H. Schumann (2003). “Visualization Methods for Time-Dependent
Data - An Overview”. In: Proceedings of Winter Simulation Conference (WSC).
IEEE Computer Society, pp. 737-745. por: 10.1109/WSC.2003.1261490.

Munzner, T. (2009). “A Nested Process Model for Visualization Design and Val-
idation”. In: IEEE Transactions on Visualization and Computer Graphics 15.6,
pp- 921-928. por: 10.1109/TVCG.2009.111.

Munzner, T. (2014). Visualization Analysis and Design. A K Peters/CRC Press. por:
160.1201/b17511.

Nardini, P., M. Chen, F. Samsel, R. Bujack, M. Béttinger, and G. Scheuermann
(2021). “The Making of Continuous Colormaps”. In: IEEE Transactions on Vi-
sualization and Computer Graphics 27.6, pp. 3048-3063. por: 10.1109/TVCG.
2019.2961674.

Paterno, F., C. Mancini, and S. Meniconi (1997). “ConcurTaskTrees: A Diagram-
matic Notation for Specifying Task Models”. In: Proceedings of IFIP TC13 In-
ternational Conference on Human-Computer Interaction (INTERACT). Springer,
pp. 362-369. por: 10.1007/978-0-387-35175-9_58.

Perin, C., T. Wun, R. Pusch, and S. Carpendale (2018). “Assessing the Graphical
Perception of Time and Speed on 2D+Time Trajectories”. In: IEEE Transactions
on Visualization and Computer Graphics 24.1, pp. 698-708. por: 10 . 1109/
TVCG.2017.2743918.

Petzold, 1. (2003). “Beschriftung von Bildschirmkarten in Echtzeit”. PhD thesis.
Rheinische Friedrich-Wilhelms-Universitiat Bonn. urL: https://hdl.handle.
net/20.500.11811/1870.

Reinders, F., F. H. Post, and H. J. W. Spoelder (2001). “Visualization of Time-
Dependent Data with Feature Tracking and Event Detection”. In: The Visual
Computer 17.1, pp. 55-71. por: 10.1007/p100013399.

Robertson, G., R. Fernandez, D. Fisher, B. Lee, and J. Stasko (2008). “Effectiveness
of Animation in Trend Visualization”. In: IEEE Transactions on Visualization
and Computer Graphics 14.6, pp. 1325-1332. por: 10.1109/TVCG.2008.125.

Rohlig, M., M. Luboschik, and H. Schumann (2017). “Visibility Widgets for Unveil-
ing Occluded Data in 3D Terrain Visualization”. In: Journal of Visual Languages
& Computing 42, pp. 86-98. por: 10.1016/3j.jv1c.2017.08.008.

Schulze-Wollgast, P., C. Tominski, and H. Schumann (2005). “Enhancing Visual
Exploration by Appropriate Color Coding”. In: Proceedings of the International
Conference in Central Europe on Computer Graphics, Visualization and Com-
puter Vision (WSCG). University of West Bohemia, pp. 203-210.

Silva, S., J. Madeira, and B. S. Santos (2007). “There is More to Color Scales than
Meets the Eye: A Review on the Use of Color in Visualization”. In: Proceedings
of the International Conference Information Visualisation (IV). IEEE Computer
Society, pp. 943-950. por: 10.1109/iv.2007.113.


https://doi.org/10.2312/eurovisshort.20151135
https://doi.org/10.1111/cgf.12379
https://doi.org/10.1109/WSC.2003.1261490
https://doi.org/10.1109/TVCG.2009.111
https://doi.org/10.1201/b17511
https://doi.org/10.1109/TVCG.2019.2961674
https://doi.org/10.1109/TVCG.2019.2961674
https://doi.org/10.1007/978-0-387-35175-9_58
https://doi.org/10.1109/TVCG.2017.2743918
https://doi.org/10.1109/TVCG.2017.2743918
https://hdl.handle.net/20.500.11811/1870
https://hdl.handle.net/20.500.11811/1870
https://doi.org/10.1007/pl00013399
https://doi.org/10.1109/TVCG.2008.125
https://doi.org/10.1016/j.jvlc.2017.08.008
https://doi.org/10.1109/iv.2007.113

126 4 Crafting Visualizations of Time-Oriented Data

Silva, S., B. S. Santos, and J. Madeira (2011). “Using Color in Visualization: A
Survey”. In: Computers & Graphics 35.2, pp. 320-333. por: 10.1016/j.cag.
2010.11.015.

Silva, S. F. and T. Catarci (2000). “Visualization of Linear Time-Oriented Data: A
Survey”. In: Proceedings of the International Conference on Web Information
Systems Engineering (WISE). IEEE Computer Society, pp. 310-319. por: 10.
1109/WISE.2000.882407.

Simons, D. J. and R. A. Rensink (2005). “Change Blindness: Past, Present, and
Future”. In: Trends in Cognitive Sciences 9.1, pp. 16-20. por: 10. 1016/ .
tics.2004.11.006.

Talbot, J., J. Gerth, and P. Hanrahan (2012). “An Empirical Model of Slope Ratio
Comparisons”. In: IEEE Transactions on Visualization and Computer Graphics
18.12, pp. 2613-2620. por: 10.1109/TVCG.2012.196.

Telea, A. C. (2014). Data Visualization: Principles and Practice. 2nd edition. A K
Peters/CRC Press. por: 10.1201/b17217.

Thompson, J. R., Z. Liu, W. Li, and J. Stasko (2020). “Understanding the Design
Space and Authoring Paradigms for Animated Data Graphics”. In: Computer
Graphics Forum 39.3, pp. 207-218. por: 10.1111/cgf.13974.

Tominski, C., J. Abello, and H. Schumann (2004). “Axes-Based Visualizations with
Radial Layouts”. In: Proceedings of the ACM Symposium on Applied Computing
(SAC). ACM Press, pp. 1242—-1247. por: 10.1145/967900.968153.

Tominski, C., G. Fuchs, and H. Schumann (2008). “Task-Driven Color Coding”.
In: Proceedings of the International Conference Information Visualisation (IV).
IEEE Computer Society, pp. 373-380. por: 10.1109/IV.2008. 24.

Tominski, C. and H.-J. Schulz (2012). “The Great Wall of Space-Time”. In: Proceed-
ings of the Workshop on Vision, Modeling & Visualization (VMV). Eurographics
Association, pp. 199-206. por: 10.2312/PE/VMV/VMV12/199-206.

Tominski, C., P. Schulze-Wollgast, and H. Schumann (2005b). “3D Information
Visualization for Time Dependent Data on Maps”. In: Proceedings of the In-
ternational Conference Information Visualisation (IV). IEEE Computer Society,
pp. 175-181. por: 10.1109/1IV.2005.3.

Tominski, C. and H. Schumann (2020). Interactive Visual Data Analysis. AK Peters
Visualization Series. CRC Press. por: 10.1201/9781315152707.

Tufte, E. R. (1983). The Visual Display of Quantitative Information. Graphics Press.
URL: https://www.edwardtufte.com/tufte/books_vdqi.

Tversky, B., J. B. Morrison, and M. Betrancourt (2002). “Animation: Can It Facili-
tate?” In: International Journal of Human-Computer Studies 57.4, pp. 247-262.
por: 10.1006/1ijhc.2002.1017.

Unger, A. and H. Schumann (2009). “Visual Support for the Understanding of Sim-
ulation Processes”. In: Proceedings of the IEEE Pacific Visualization Symposium
(PacificVis). IEEE Computer Society, pp. 57-64. por: 10.1109/PACIFICVIS.
2009.4906838.

Vande Moere, A. (2004). “Time-Varying Data Visualization Using Information
Flocking Boids”. In: Proceedings of the IEEE Symposium Information Visual-


https://doi.org/10.1016/j.cag.2010.11.015
https://doi.org/10.1016/j.cag.2010.11.015
https://doi.org/10.1109/WISE.2000.882407
https://doi.org/10.1109/WISE.2000.882407
https://doi.org/10.1016/j.tics.2004.11.006
https://doi.org/10.1016/j.tics.2004.11.006
https://doi.org/10.1109/TVCG.2012.196
https://doi.org/10.1201/b17217
https://doi.org/10.1111/cgf.13974
https://doi.org/10.1145/967900.968153
https://doi.org/10.1109/IV.2008.24
https://doi.org/10.2312/PE/VMV/VMV12/199-206
https://doi.org/10.1109/IV.2005.3
https://doi.org/10.1201/9781315152707
https://www.edwardtufte.com/tufte/books_vdqi
https://doi.org/10.1006/ijhc.2002.1017
https://doi.org/10.1109/PACIFICVIS.2009.4906838
https://doi.org/10.1109/PACIFICVIS.2009.4906838

References 127

ization (InfoVis). IEEE Computer Society, pp. 97-104. por: 10.1109/INFVIS.
2004.65.

Waldner, M., A. Karimov, and M. E. Groller (2017). “Exploring Visual Prominence
of Multi-channel Highlighting in Visualizations”. In: Proceedings of the Spring
Conference on Computer Graphics (SCCG). ACM Press, 8:1-8:10. por: 10 .
1145/3154353.3154369.

Weber, M., M. Alexa, and W. Miiller (2001). “Visualizing Time-Series on Spirals”.
In: Proceedings of the IEEE Symposium Information Visualization (InfoVis).
IEEE Computer Society, pp. 7-14. por: 10.1109/INFVIS.2001.963273.

Weiss, D. J., A. Nelson, H. S. Gibson, W. Temperley, S. Peedell, A. Lieber, M.
Hancher, E. Poyart, S. Belchior, N. Fullman, B. Mappin, U. Dalrymple, J. Rozier,
T. C.D. Lucas, R. E. Howes, L. S. Tusting, S. Y. Kang, E. Cameron, D. Bisanzio,
K. E. Battle, S. Bhatt, and P. W. Gething (2018a). “A Global Map of Travel Time
to Cities to Assess Inequalities in Accessibility in 2015”. In: Nature 553.7688,
pp- 333-336. por: 10.1038/nature25181.

Weiss, D., H. Gibson, U. Dalrymple, J. Rozier, T. Lucas, R. Howes, L. Tust-
ing, S. Kang, E. Cameron, K. Battle, S. Bhatt, and P. Gething (2018b). Ac-
cessibility to Cities. https://malariaatlas . org/research-project/
accessibility-to-cities/. UrRL: https://malariaatlas.org/wp-
content /uploads /2017 /12 /MAP_Accessibility_To_Cities_Press_
Release.zip.

Wills, G. (2012). Visualizing Time - Designing Graphical Representations for Sta-
tistical Data. Springer. por: 10.1007/978-0-387-77907-2.

Wolter, M., I. Assenmacher, B. Hentschel, M. Schirski, and T. Kuhlen (2009). “A
Time Model for Time-Varying Visualization”. In: Computer Graphics Forum
28.6, pp. 1561-1571. por: 10.1111/j.1467-8659.2008.01314.x.

Yang, J., W. Wang, and P. S. Yu (2000). “Mining Asynchronous Periodic Patterns
in Time Series Data”. In: Proceedings of the ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD). ACM Press, pp. 275—
279. por: 10.1145/347090.347150.

Zhou, L. and C. D. Hansen (2016). “A Survey of Colormaps in Visualization”. In:
IEEE Transactions on Visualization and Computer Graphics 22.8, pp. 2051-
2069. por: 10.1109/TVCG.2015.2489649.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


https://doi.org/10.1109/INFVIS.2004.65
https://doi.org/10.1109/INFVIS.2004.65
https://doi.org/10.1145/3154353.3154369
https://doi.org/10.1145/3154353.3154369
https://doi.org/10.1109/INFVIS.2001.963273
https://doi.org/10.1038/nature25181
https://malariaatlas.org/research-project/accessibility-to-cities/
https://malariaatlas.org/research-project/accessibility-to-cities/
https://malariaatlas.org/wp-content/uploads/2017/12/MAP_Accessibility_To_Cities_Press_Release.zip
https://malariaatlas.org/wp-content/uploads/2017/12/MAP_Accessibility_To_Cities_Press_Release.zip
https://malariaatlas.org/wp-content/uploads/2017/12/MAP_Accessibility_To_Cities_Press_Release.zip
https://doi.org/10.1007/978-0-387-77907-2
https://doi.org/10.1111/j.1467-8659.2008.01314.x
https://doi.org/10.1145/347090.347150
https://doi.org/10.1109/TVCG.2015.2489649
http://creativecommons.org/licenses/by/4.0/

®

Check for
updates

Chapter 5
Involving the Human via Interaction

A graphic is not “drawn” once and for all; it is “constructed” and
reconstructed until it reveals all the relationships constituted by the
interplay of the data. The best graphic operations are those carried
out by the decision-maker himself.

Bertin (1981, p. 16)

The previous chapter discussed diverse options for designing visual representations
that help people understand time and time-oriented data. ’Seeing’ trends, correla-
tions, and patterns in a visual representation is indeed a powerful way for people to
extract knowledge from data. Yet, ’seeing’ alone is not sufficient, or as Thomas and
Cook (2005) put it:

Visual representations alone cannot satisfy analytical needs. Interaction techniques are re-
quired to support the dialogue between the analyst and the data.
Thomas and Cook (2005, p. 30)

From the previous chapter, we know that various aspects are involved when
creating a visual representation: the characteristics of time and data, the user tasks,
as well as the choice and the parametrization of visualization techniques. As a
consequence, a generated visual representation might not yield the desired outcome,
particularly when feeding unknown data into a visualization method. A related
problem is that we sometimes do not know exactly what to expect from a visual
representation or whether it is effective with regard to the task to be accomplished.
One way to deal with this problem is to include the human user into the loop. So,
visual exploration and analysis is not a one-way street where data are transformed
into images, but it is in fact a human-in-the-loop process controlled and manipulated
by one or more users.

Having said that, it becomes clear that in addition to visual methods, a high degree
of interactivity and advanced interaction techniques for working with time-oriented
data are important. Interaction helps users not only see the data but also understand
them. By interacting, users can comprehend the visual mapping, realize the effect
of visualization parameters, carve out hidden patterns, and become confident about
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the visualization and its underlying data. Users want and many times need to get
their hands on their data — which is particularly true when engaging in exploratory
data analyses. The importance of interaction is nicely summarized in the following
statement:

While visual representations may provoke curiosity,
interaction provides the means to satisfy it.
Tominski and Schumann (2020, p. 132)

While visualization research is naturally more focused on the visual output, the
interactive operations involved in carrying out data analyses must also be considered.
This chapter provides an overview of how interactivity can support the exploration of
time and time-oriented data. For a deeper discussion of interaction for visualization
in general, the interested reader is referred to Tominski (2015).

5.1 Motivation & User Intents

The constantly increasing size and complexity of today’s datasets are major chal-
lenges for interactive visualization. Large datasets cannot simply be loaded to limited
computer memory and then be mapped to an even smaller display. Users are only
able to digest a fraction of the available information at a time. Complex data contain
many different aspects and may stem from heterogeneous sources. As complexity
increases, so does the number of questions that one might ask about the data and to
which visual representations should help us find answers.

In our particular case, we need to account for the specific aspects of time and
time-oriented data in the context of what, why, and how they are visualized (see
Chapters 3 and 4). Any attempt to indiscriminately encode all facets of a complex
time-oriented dataset into a single visual representation is condemned to failure, as
this would lead to a confusing and overloaded display that users can hardly interpret.

Instead, the big problem has to be split into smaller pieces by focusing on relevant
data aspects and particular tasks per visual representation. Several benefits can be
gained: computational costs are reduced in a kind of divide-and-conquer way, the
visual representations become more effective because they are tailored to emphasize
a particular point, and users find it easier to explore and analyze the data since they
can concentrate on important and task-relevant questions.

Dividing the visualization problem and separating different aspects into individual
views raise the question of how users can visually access and mentally combine these.
The answer is interaction. In an iterative process, the user will focus on different
parts of the data, look at them from alternative perspectives, and actively construct
answers to diverse questions. Typically, this process follows the visual information
seeking mantra:

“Overview first,
zoom and filter,
then details-on-demand.”
Shneiderman (1996, p. 2)
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Starting with an overview, the user will first identify interesting parts of the time
domain to focus on for a more detailed examination. From there, it might make sense
to move on to data that are related or similar, or it might be better to return to the
overview and investigate the data from a different point of view, or with regard to
a different question. In other words, the user forms a mental model of the data by
interactively navigating from one focus to the next, where the focus may be any part
of the time domain, a certain data aspect, or a specific analysis task. While exploring
data in this way, users develop understanding and insight.

The general motivation for interaction is clear now. But what specifically moti-
vates a user to interact? An answer to this question is given in a study by Yi et al.
(2007), who worked toward a deeper understanding of interaction in visualization.
As already briefly mentioned in Section 1.1, they identified several user intents for
interaction and introduced a list of categories that describe on a high level why users
want to or need to interact. In the following, we make use of these categories and
adapt them to the case of interacting with time and time-oriented data:

Select — Mark something as interesting When users spot something interesting
in the visual representation, they want to mark and visually highlight it as such, be
it to temporarily tag an intriguing finding or to permanently memorize important
analysis results. The pieces to be marked can be manifold: interesting points in time,
an entire time-dependent variable, a particular temporal pattern, or certain identified
events.

Explore — Show me something else Time-oriented data are often large and can
be visualized only partially. That is, only a subset of time and a subset of the time-
dependent variables are visible at a time. To arrive at a full view of the data, users
have to explore different subsets of the data. This includes interactively navigating
the time domain to bring different parts of it to the display, and also constructing
different subsets of variables to uncover multivariate temporal dependencies.

Reconfigure — Show me a different arrangement Different arrangements of time
and associated data can communicate completely different aspects, a fact which
becomes obvious when recalling the distinction between linear and cyclic represen-
tations of time. As users want to look at time from different angles, they need to
be provided with facilities that allow them to interactively generate different spatial
arrangements of time-oriented data.

Encode — Show me a different representation Similarly to what was said about the
spatial arrangement, the visual encoding of data values has a major impact on what
can be derived from a visual representation. Because data and tasks are versatile,
users need to be able to adapt the visual encoding to suit their needs, be it to carry out
location or comparison tasks, or to confirm a hypothesis generated from one visual
encoding by checking it against an alternative one.

Abstract/Elaborate — Show me more or less detail During a visual analysis,
users need to look at certain things in detail, while for other things schematic
representations are sufficient. The hierarchically structured levels of granularity of
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time are a natural match to drive such an interactive information drill-down into time-
oriented data. Higher levels contain abstractions and provide aggregated overviews,
whereas lower levels hold the increasingly elaborate details.

Filter — Show me something conditionally When users search for particular in-
formation in the data or evaluate a certain hypothesis about the data, it makes sense
to restrict the visualization to show only those data items that match the conditions
imposed by the search criteria or the hypothesis’ constraints. Interactively filtering
out or attenuating irrelevant data items clears the view for users to focus on those
parts of the data being relevant to the task at hand.

Connect — Show me related items When users make a potentially interesting
finding for one part of the data, they usually ask whether similar or related discoveries
can be made in other parts of the data as well. So, users intend to interactively
find, compare, and evaluate such similarities or relations. For example, for a trend
discovered in one season of a certain year, it could be interesting to investigate if the
trend is repeated at the same time in subsequent years.

These seven intents apply to interactive visualization, and we linked them specif-
ically to interacting with time-oriented data. On top of that, Yi et al. (2007) mention
two general interaction intents that are also relevant when exploring time.

Undo/Redo — Let me go to where I have already been Users have to navigate in
time and study it at different levels of granularity, they have to try different arrange-
ments and visual encodings, and they have to experiment with filtering conditions
and similarity thresholds. A history mechanism for undoing and redoing interactions
enables users to try out new views on the data and to return effortlessly to a previous
visual representation if new ones did not work out as expected.

Change configuration — Let me adjust the interface In addition to adapting the
visual representation to the data and the tasks at hand, it is also often necessary to
configure the overall system that provides the visualization. This includes configuring
not only the user interface (e.g., the arrangement of windows or the items in toolbars),
but also the general management of system resources (e.g., the amount of memory
to be used for undo and redo).

Taken together, the discussed intents represent on a high conceptual level what
interactions a visualization system for time-oriented data should provide. For specific
types of time-oriented data, additional interactions may be worth considering, such
as faceting and warping for multivariate longitudinal data (see Cheng et al., 2016).

Many of the visualization approaches we describe in Appendix A support inter-
action of one kind or another. While marking (or selecting) interesting data items
and navigation in time are quasi-mandatory, facilities for other intents are often
rudimentary or not considered at all. This is often due to the extra effort one has to
expend for designing and implementing effective interaction techniques. But in fact,
all of the outlined user intents are equally important and corresponding techniques
should be provided in order to take full advantage of the synergy of the human’s
skills in creative problem-solving and the machine’s computational capabilities.
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5.2 Interaction Fundamentals

Now that we know about the general motivation and the specific user intents behind
interaction, we can move on and take a look at how interaction is actually performed.
We will next describe fundamental aspects of interaction, which naturally are more
general and less specific to interacting with time-oriented data.

5.2.1 Conceptual Background

Let us first look at aspects that concern interaction on a conceptual level, including
how interaction can be modeled as a loop, what costs are involved when interacting,
how interaction can be performed in a discrete or continues manner, and what the
role of interaction latency is.

The interaction loop When users interact they express their intent to change what
they see on the display, and they expect the visual representation to reflect the
intended change. Consequently, Norman (2013) models interaction as a loop of two
phases: an execution phase and an evaluation phase. The first phase subsumes steps
that are related to the execution of interaction, including the intention to interact, the
mental construction of an interaction plan, and the physical actions (e.g., pressing
a button) to actually execute the plan. The second phase is related to understanding
the system-generated visual feedback and involves perceiving and interpreting the
feedback as well as evaluating the success of the interaction. Figure 5.1 illustrates
Norman’s conceptual model.

Evaluation phase

Interpret

Change in

world

Execution phase

Fig. 5.1: Norman’s model of interaction comprised of the execution and the evaluation phases.
©@Q@ The authors. Adapted from Norman (2013).
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Interaction costs The individual steps of both phases of the loop incur costs (see
Lam, 2008). These costs can be physical or mental. Physical costs relate to flexing
one’s muscles, for example, when moving the hands to press a button or when moving
the eyes to perceive the system response. Mental costs pertain to brain activities when
thinking about how to achieve a goal or when interpreting the visual feedback. In
a sense, the costs are associated with building bridges between the human and the
system. Therefore, Norman (2013) calls the loop’s phases the gulf of execution and
the gulf of evaluation.

A primary goal of interaction design should be to narrow the gulfs by keeping the
interaction costs low. On the execution side, this involves, for example, making in-
teractions easy to discover and avoiding longer pointer movements through cascades
of settings. On the evaluation side, it is important to let the visual response stand out
clearly so that users can understand the effects of their actions easily.

Modes of interaction Technically, Jankun-Kelly et al. (2007) model the loop of user
interaction as adjustments of visualization parameters, where concrete parameters
can be manifold, e.g., the rotation angle of a 3D helix glyph, the focus point of a
fisheye-transformed time axis, thresholds of a filter operation, or parameters that
control a clustering algorithm.

Different modes of interaction can be identified depending on how parameter
changes are performed. Spence (2007) distinguishes two modes of active user inter-
action:

* stepped interaction and
e continuous interaction.

For stepped interaction, a parameter change is executed in a discrete fashion. That
is, the user performs one interaction step and evaluates the visual feedback. Much
later, the user might perform another step of interaction. As an example, one can
imagine a user looking at a visualization of the data at the granularity of years. If
more details are required, the user might take an interaction step to switch to a finer
granularity of months.

The term continuous interaction is used to describe interaction for which a visual-
ization parameter is changed at a higher frequency. The user continuously performs
an action and evaluates the generated feedback for a sustained period of time. This
enables the user to quickly scan a larger range of parameter values and their cor-
responding visual representations. As such, continuous interaction is particularly
useful in the context of exploratory *what if” analyses of time-oriented data.

An example would be the adjustment of the cycle length for a spiral visualization
in order to find out if and if so, which cyclic patterns exist in the data. For stepped
interaction, the user has to explicitly specify different cycle lengths in a successive
manner (e.g., by entering a numeric value). The stepped approach is quite time-
consuming already when exploring only a moderate number of possible parameter
values. Moreover, the discrete stepping does not allow cyclic patterns to emerge
naturally as different cycle lengths are tried out. With continuous interaction (e.g., by
dragging a slider), the user can explore any parameter range at any speed with a single
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continuous action. The risk of missing interesting patterns is reduced because cyclic
patterns would crystallize gradually as suitable parameter values are approached. An
important requirement though is to keep the interaction latency low.

Interaction latency For smooth and efficient interaction, the ensemble of visual
and interaction methods has to generate feedback in a timely manner (within 50 - 100
ms according to Shneiderman (1994) and Spence (2007)). However, time-oriented
data tend to be large and can pose considerable computational challenges. On the
one hand, mapping and rendering the visual representation takes time, particularly if
complex visual abstractions have to be displayed. On the other hand, computational
methods (see Chapter 6) involved in the visualization process consume processing
time before generating results. The adverse implication for interaction is that visual
feedback might lag, disrupting the interaction loop (see Liu and Heer, 2014).

Another aspect adds to the time costs for presenting visual feedback. As inter-
action involves change, we want users to understand what is happening. However,
abrupt changes in the visual display will hurt the mental model that users are devel-
oping while exploring unknown data. Pulo (2007) and Heer and Robertson (2007)
provide evidence that smoothly interpolating the parameter change and applying
animation to present the visual feedback can be a better solution. However, ani-
mation consumes time as well, not to mention the possibly costly calculations for
interpolating parameter changes.

Thus, there are two conflicting requirements. On the one hand, interaction needs
synchronicity. An interactive system has to be responsive at all times and should
provide visual feedback immediately. From the interaction perspective, a system
that is blocked and unresponsive while computing is the worst scenario. On the
other hand, interaction needs asynchronicity — for both generating the feedback
(i.e., computation) and presenting the feedback (i.e., animation). The difficulty is to
integrate synchronicity and asynchronicity. One option to address this difficulty is
to take a progressive approach.

Progressive visualization The goal of progressive visualization is to facilitate a
smooth interaction cycle by generating visual feedback as quickly as possible (see
Stolper et al., 2014; Angelini et al., 2018). This is achieved by a divide & conquer
approach: Long-running computations are subdivided into smaller steps, and these
operate on smaller data chunks rather than the whole dataset. For time-oriented
data, data chunks can be obtained simply by sampling with respect to the dimension
of time, by considering the semantics of time (e.g., workdays vs. weekends or
day vs. night), or based on the increasingly detailed granularities of time (e.g.,
yearly, monthly, or daily data). The subdivision of computations into smaller steps
depends very much on the concrete algorithms involved in the analytical and visual
transformation of the data.

Working in smaller steps and on smaller data, progressive visualization generates
a series of preliminary or partial results of increasing quality until a complete final
image of the entire data is rendered. The quick and incremental generation of partial
results has several advantages. First of all, the system is responsive at all times, and the
interaction loop can run smoothly, even if there are still some computations running in
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the background. Second, users can observe the system computing the visualization.
This makes otherwise hidden calculations more transparent and understandable.
Third, as partial results arrive, users can early on develop an idea of the data and, if
necessary, can steer the running computations to more fruitful results. For example,
if partial results do not show the expected outcome, the computations can be canceled
early to stop wasting time. If partial results already show promising features in the
data, these parts can be prioritized to further crystallize interesting patterns early on.

Overall, we can see that interaction is a human-in-the-loop process during which
adiverse set of user intents have to be satisfied. For the user, costs should be kept low,
which requires interactions that are easy to carry out and visual feedback that is easy
to understand. From a technical perspective, the execution and evaluation phases
of the interaction loop must run smoothly, which can be supported by progressive
visualization. What ultimately counts is that both user concerns and technical aspects
are addressed under the umbrella of an effective and cost-efficient user interface.

5.2.2 User Interface

The user interface is the channel through which a human and a machine exchange
information (i.e., interaction input and visual feedback). This interface is the linch-
pin of interactive visual exploration and analysis of time-oriented data. Any visual
representation is useless if the user interface fails to present it to the user in an
appropriate way, and the diversity of available visualization techniques lies idle if
the user interface fails to provide interactive access to them. In order to succeed, the
user interface has to bridge the gap between the technical aspects of a visualization
approach and the users’ mental models of the problems to be solved. In this regard,
Cooper et al. state:

[...] user interfaces that are consistent with users’ mental models are vastly superior to those
that are merely reflections of the implementation model.
Cooper et al. (2007, p. 30)

The user interface is responsible for numerous tasks. It has to provide visual
access to time-oriented data and to information about the visualization process itself
at different levels of graphical and semantic detail. Appropriate controls need to
be integrated to allow users to steer exploration and analysis with regard to the
interaction intents mentioned before, including marking interesting points in time,
navigating in time at different levels of granularity, rearranging data items and
elements of the visual representation, or filtering for relevant conditions. Moreover,
the user interface has to support bookkeeping in terms of the annotation of findings,
storage of results, and management of the working history (undo/redo).

In general, the user interface has to offer facilities to present information to the
user and to accept interaction input from the user. This separation is reflected in the
model-view-controller (MVC) architecture by Krasner and Pope (1988), where views
provide visual representations of some model (in our case time, time-oriented data,
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and visualization parameters) and controllers serve for interactive (or automatic)
manipulation of the model. Next, we look at visualization views and interaction
controls in more detail.

Visualization views Especially the different temporal granularities make it nec-
essary to present the data at different levels of graphical and semantic detail.
Overview+detail, focus+context, and multiple coordinated views are key strategies
to address this demand.

Overview+detail methods present overview and detail separately. The separation
can be either spatial or temporal. Spatial separation means that separate views show
detail and overview. For example, on the bottom of Figure 5.2, an overview shows
the entire time domain at a high level of abstraction. On top of the overview, there
is a separate detail view, which shows the data in full detail (i.e., detailed planning
information), but only for a narrow time interval. Temporal separation means a view
is capable of showing any level of detail, but only one at a time. This is usually
referred to as zooming, where the user can interactively zoom into details or return
to an overview. Geometric zooming operates solely in the presentation space to
scale a visual representation, whereas semantic zooming denotes zooming that can
go beyond purely geometrical scaling and may involve recoding the data in the
presentation space as well as in the data space depending on the zoom level.

Contrary to overview+detail, focus+context methods smoothly integrate detail
and overview. For the user-chosen focus, full detail is presented, and the focus is
embedded into a less-detailed display of the context. Figure 5.3 shows the perspective
wall technique (= p. 256) as a prominent example of the focus+context approach.
Cockburn et al. (2009) provide a comprehensive survey of overview+detail, zooming,
and focus+context and discuss the advantages and disadvantages of these concepts.

Fig. 5.2: Overview+detail. The detail view at the top shows individual steps of the construction
phase of a renovation plan. In the overview at the bottom, the entire project is shown, including the
design, pre-renovation, renovation, and construction phases. @@® The authors.
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Fig. 5.3: Focus+context. The center of the perspective wall shows the focus in full detail. The
focus is flanked on both sides by context regions. Due to perspective distortion, the context regions
intentionally decrease in size and show less detail. © Inxight Federal Systems. Used with permission.

When visualizing time-oriented data, it is also often helpful to provide multiple
coordinated views,! each of which is dedicated to particular aspects of time, certain
data subsets, or specific visualization tasks. When there are multiple views, the
user interface obviously needs a strategy for arranging them. One option is to use
a fixed arrangement that has been designed by an expert and has proved to be
efficient. It is also possible to provide users with the full flexibility of windowing
systems, allowing them to move and resize views arbitrarily. Both options have
their advantages and disadvantages and both are actually applied. An interesting
third alternative is to maintain the flexibility of user-controlled arrangements, but to
impose certain constraints in terms of what arrangements are possible (e.g., disallow
partially overlapping views or enforce adjacency of related views). Irrespective of
the strategy applied, the visualization should be responsive in the sense that it
automatically adjusts itself to match the size and the aspect ratio of views (see
Hoftswell et al., 2020).

In addition to arranging multiple views, coordinating the views plays an important
role. Views are coordinated to help develop and maintain a consistent overall image
of the visualized data. This means that an interaction which is initiated in one view is
automatically propagated to all coordinated views, which in turn update themselves
to reflect the change visually. A practical example is browsing in time. When the
user navigates to a particular range of the time axis in one view, all other views
(that are coordinated) follow the navigation automatically, which otherwise would
be a cumbersome task to be manually accomplished by the user on a per-view

! Baldonado et al. (2000) provide general guidelines for when to use multiple coordinated views.



5.2 Interaction Fundamentals 139

Fig. 5.4: Multiple coordinated views. Analysts can look at the data from different perspectives.
The views are coordinated, which means selecting objects in one view will automatically highlight
them in all other views as well. @@® The authors. Generated with the VIS-STAMP system by Guo
et al. (20006).

basis. Figure 5.4 shows an example where multiple coordinated views are applied to
visualize spatio-temporal data in the VIS-STAMP system (<— p. 380).

Interaction controls In addition to one or several visualization views, the user
interface also consists of various interaction controls to enable users to tune the
visualization process to the data and task at hand. Figure 5.5 shows a simple example
with a single spiral view to its left (see Tominski and Schumann (2008) and —
p- 274). Already this single view depends on a number of parameters for which
a corresponding number of controls must be provided in the control panel to the
right. The control panel contains sliders for continuous adjustments of parameters
such as segments per cycle, spiral width, and center offset. Buttons, drop boxes,
and custom controls are provided for selecting different modes of encoding (e.g.,
adjusting individual colors or choosing different color scales).

In this example, user input (e.g., pressing a button or dragging a slider) is imme-
diately committed to the system, which is a requirement for continuous interaction.
However, this puts high demands on the system in terms of generating visual feed-
back quickly at interactive rates (see Piringer et al., 2009). Therefore, a commonly
applied alternative is to allow users to perform a number of adjustments and to com-
mit the adjustments as a single transaction only when the user presses an “Apply”
button, which corresponds to stepped interaction.
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Fig. 5.5: User interface for a spiral visualization. The interface consists of one spiral view and
one control panel, which in turn consists of various controls to adjust visualization parameters.

©@@® The authors.

Certainly, there are visualization parameters that are adjusted more often than
others during interactive visual exploration. Resources should preferably be spent
on facilitating continuous interaction for important parameters. Moreover, Gajos
et al. (2006) provide evidence that duplicating important functionality from an all-
encompassing control panel to an exposed position is a useful way to drive adaptable
user interfaces. For example, toolbars allow for interaction that is most frequently
used, whereas rarely applied tools have to be selected from an otherwise collapsed
menu structure.

5.3 Basic Interaction with Time-Oriented Data

It is clear now that we need visualization views on the one hand, and interaction
controls on the other hand. Views are usually equipped with visual data represen-
tations, of which we described many examples for time and time-oriented data in
the previous chapters. Let us now take a closer look at interactive means of con-
trolling the visualization beyond standard graphical user interface controls. To this
end, we briefly describe navigation in time, direct manipulation, brushing & linking,
and dynamic queries as key methods for the interactive exploration and analysis of
time-oriented data.
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5.3.1 Navigation in Time

Time-oriented data typically contain very many time primitives, often too many to
be displayed in a single visual representation. As a consequence, usually only a part
of the time axis is visible at a time, and users have to navigate in time in order
to develop a comprehensive understanding of the data. This navigation in time is
essential.

Interactive sliders are control elements commonly found in user interfaces facili-
tating the exploration of data. For the case of time-oriented data, standard sliders are
usually not enough for two reasons. First, standard sliders only have one handle to
set a single value. For navigating in time, however, often two handles are required for
defining the time interval to be visualized. One handle is for adjusting the interval’s
start, and the other handle sets the interval’s end. Second, a standard slider can-
not provide precise access to the time domain when the number of time primitives
exceeds the interaction resolution. What is needed is a slider that can operate on
different scales to facilitate quick and still precise access to all parts of time.

Figure 5.6 illustrates how such a slider may work for a time axis that extends
from January 1, 2000 to December 31, 2010. In Figure 5.6b, the right handle has
already been set to October 8, 2010. The figure further shows how the user can easily
and accurately adjust the left handle to August 8, 2006. The interaction starts by
horizontally dragging the handle roughly toward the desired date. Then the cursor
is dragged in a downward movement to trigger the dynamic appearance of a higher-
resolution on-demand slider. The interaction continues there horizontally, and thanks
to the higher precision, the desired start date can be set exactly, which would not
have been possible with the main slider alone.

Navigation in time via dedicated sliders is a widely applied approach. In the
following, we will learn that interaction can also be performed directly on the visual
representation of the data.

(a) Two-handle slider for navigating time.

(b) Interaction gesture for dual-scale interval adjustment.

Fig. 5.6: Navigation in time with a two-handle slider. (a) The slider’s handles define the start and
end of the time interval to be visualized. (b) Using a continuous interaction gesture, the interval start
is adjusted coarsely on the main slider and fine-tuned precisely on a higher-resolution on-demand
slider. @@® The authors. Adapted from Tominski and Schumann (2020).
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5.3.2 Direct Manipulation

Graphical controls in user interfaces often have the advantage of being standardized
components (e.g., buttons, single-handle sliders, and value spinners), which are easy
to integrate and use. However, a disadvantage is that visual feedback usually does
not appear where the interaction is performed. Recall the example from Figure 5.5
where the interaction takes place in the control panel to the right, whereas visual
feedback is displayed in the visualization view to the left. Direct manipulation as
introduced by Shneiderman (1983) is the classic means to address this disadvantage.

The goal is to enable users to manipulate the visual representation directly without
a detour. To this end, a visualization view or its graphical elements are implemented
so as to be responsive to user input. A visualization may for instance allow zooming
into details under the mouse cursor simply by rotating the mouse wheel, or visiting
different parts of the visual representation simply by dragging the view. Such func-
tionality is often present in zoomable user interfaces (see Cockburn et al., 2009).
Virtual trackballs (see Henriksen et al., 2004) are more object-centric in that they
allow users to grab and rotate virtual objects to view them from different angles.

In terms of interacting with visual representations of time-oriented data, we just
learned that navigating time is of particular importance. To support navigation, many
tools rely on standard slider or calendar controls in the user interface. However, for
direct manipulation, the interaction has to be tightly coupled with the display of the
data. We explain what this means by two examples.

First, we take a look at DimpVis (<— p. 305), which facilitates navigation to
points in time (see Kondo and Collins, 2014). Figure 5.7 shows DimpVis in action
on a basic point plot. The interaction works as follows. When the user grabs a dot,
a path shows up indicating the selected data item’s trajectory through time. In order
to navigate, the user can now drag the dot along the path, where intermediate labels
help the user find the desired moment in time. In a sense, DimpVis works like a
slider, only the sliding operates on a curved path, rather than a straight line.

Fig. 5.7: Navigation in time via dragging a data item along its trajectory through time. @@ The
authors. Generated with the DimpVis software by Kondo and Collins (2014).
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(a) Simple axis. (b) Overview+detail axis.

(¢) Focus+context axis. (d) Hierarchical axis.

Fig. 5.8: The TimeWheel’s mapping of time along the time axis can be manipulated directly in
different ways. The simple axis uses a fixed linear mapping of time. The overview+detail axis allows
users to select any particular range of the time domain to be mapped linearly to the time axis. The
focus+context axis can be used to untangle dense parts of the time domain by applying a non-linear
mapping. The hierarchical axis represents time at different levels of granularity, where individual
axis segments can be expanded and collapsed. @@ The authors.

For a second example of direct manipulation, we refer to the TimeWheel (—
p. 298), in particular to its interactive axes (see Tominski et al., 2004). As Fig-
ure 5.8 illustrates, the TimeWheel provides (a) a simple non-interactive axis and
three types of interactive axes: (b) overview+detail axis, (c¢) focus+context axis, and
(d) hierarchical axis. Each of the axes displays time and the interactive ones offer
different options for direct manipulation. The overview+detail axis basically extends
the simple axis with three interactive handles to control the position and extent of
the time interval to be displayed in the TimeWheel, effectively allowing users to
zoom and scroll into any particular part of the data. The focus+context axis applies a
non-linear distortion to the time axis in order to provide more drawing space for the
user’s focus and less space for the context. This allows users to untangle dense parts
of the data. Finally, for the hierarchical axis, the display is hierarchically subdivided
into segments according to the different granularities of time (e.g., years, quarters,
months, and days). Users can expand or collapse these segments interactively to view
the data at different levels of abstraction.
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The advantage of directly manipulating the visual representation is, as indicated,
that interaction and visual feedback take place at the very same location. However,
direct manipulation always involves some learning and training of the interaction
facilities provided (see Schwab et al., 2019a). This is necessary because most of the
time the interaction is not standardized but custom-made to fit the visual mapping.

5.3.3 Brushing & Linking

Brushing & linking is a classic interaction concept that takes up the idea of direct
manipulation. Becker and Cleveland (1987) describe brushing as a technique that
enables users to select interesting data items directly from a data display. There
are various options for selecting data items. We will often find brushing being
implemented as point and click interaction to select individual data items. Rubber-
band and lasso interaction serve the purpose of brushing subranges in the data or
multiple data items at once. Hauser et al. (2002) introduce brushing based on angles
between data items, and Doleisch and Hauser (2002) go beyond binary selection to
allow for smooth brushing (i.e., data items can be partially selected).

After brushing, selected data items are highlighted in order to make them stand
out against the rest of the data. The key benefit of the linking part of brushing &
linking is that data brushed in one view are automatically highlighted in all other
views. In this sense, brushing & linking is a form of coordination among multiple
views. This is especially useful when visualizing the variables of a multivariate
time-oriented dataset individually in separate views: Brushing a temporal interval of
interest in one view will highlight the same interval and corresponding data values
in all views. This makes it easy for users to compare how the individual variables
develop during the brushed time period.

For complex data, using a single brush is often unsatisfactory. Instead, users need
to perform multiple brushes on different time-dependent variables or in different
views. Compound brushing as explained by Chen (2004) allows users to combine
individual brushes into composite brushes by using various operators, including
logical, analytical, data-centric, and visual operations. With such facilities, brushing
is much like a visual query mechanism.

5.3.4 Dynamic Queries

Shneiderman (1994) describes dynamic queries as a concept for visual information
seeking. It is strongly related to brushing & linking in that the goal is to focus on
data of interest, which in the case of dynamic queries is often realized by filtering
out irrelevant data. Because time-oriented data are often large, dynamically omitting
data with respect to task-specific conditions can be very helpful.
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Fig. 5.9: Several filters can be adjusted in order to dynamically restrict the scatter plot visualization
to data items that conform with the formulated conditions. €©(® The authors.

Depending on the view characteristics and visualization tasks, two alternatives
can be applied to display filtering results: filtered objects can be displayed in less
detail or they can be made invisible. Reducing detail is useful in views that maintain
an overview, where all information needs to be displayed at all times, but filtered
objects need only to be indicated. Making objects invisible is useful in views that
notoriously suffer from cluttering.

Filter conditions are usually specified using dedicated mechanisms. Threshold
or range sliders are effective for filtering time or any particular numerical variable;
textual filters are useful for extracting objects with specific labels (e.g., data tagged
by season). Similar to what has been said for brushing & linking, the next logical step
is to combine filters to provide some form of multidimensional data reduction. For
instance, a logical AND combination generates a filter that can be passed only if an
object obeys all filter conditions; an object can pass a logical Or filter if it satisfies
any of the involved filter conditions. Figure 5.9 shows an example of a dynamic
query interface.

While some systems offer only fixed filter combinations or require users to enter
syntactic constructs of some filter language, others implement a visual interface
where the user can interactively specify filter conditions. Examples of querying
time-oriented data that are visualized as line plot (— p. 233) are timeboxes and
relaxed selection techniques.

Timeboxes (— p. 290) by Hochheiser and Shneiderman (2004) are used to filter
out variables of a multivariate line plot. To this end, the user marks regions in the
visual display by creating one or more elastic rectangles that specify particular value
ranges and time intervals. The system then filters out all variables whose plots do not
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Fig. 5.10: Three timeboxes are used to dynamically query stock data. Only those stocks are displayed
that are high at the beginning, but low in the middle, and again high at the end of the year. @® The
authors. Generated with the TimeSearcher software by Hochheiser and Shneiderman (2004).

overlap with the rectangles, effectively performing multiple AND-combined range
queries on the data. Figure 5.10 depicts a query that combines three timeboxes to
restrict the display to stocks that performed well in the first and the last weeks of the
year, but had a bad performance in the middle of the year.

The relaxed selection techniques by Holz and Feiner (2009) are useful for finding
specific patterns in the data. For that purpose, the user specifies a query pattern by
sketching it directly on the display. When the user is performing the sketching, either
the distance of the sketch to the line plot or the user’s sketching speed is taken into
consideration in order to locally relax the query pattern. This relaxation is necessary
to allow for a certain tolerance when matching the pattern in the data. An interactive
display of the query sketch can be used to fine-tune the query pattern. Once the
query pattern is specified, the system computes corresponding pattern matches and
displays them in the line plot as depicted in Figure 5.11.

We should acknowledge that carrying out interactions directly on the visual
representation as illustrated in this section is definitely useful, but the user can mark
only those things that are already in the data and are actually displayed. Formulating
queries with regard to potential but not yet existing patterns in the data beyond some
tolerance requires additional formal query languages, and their utility hinges on the
interface exposed to the user (see Monroe et al., 2013a).

Overall, navigating in time, direct manipulation, brushing & linking, and dynamic
queries form an interaction vocabulary that any visualization of time-oriented data
should support. Despite the advantages of being able to dynamically focus on data
that are relevant to the task at hand, this vocabulary has still not yet become standard.
While virtually all visualization tools for time-oriented data offer navigation in time,
many do so using only rudimentary means that require users to take discrete steps
rather than allowing them to browse the data in a continuous manner. Brushing the
data directly in the visual representation and constructing more complex dynamic
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Fig. 5.11: The user can sketch a query pattern directly in the line plot and optionally refine it locally
in a dedicated query view. The line plot then shows where in time the query matches with a certain
tolerance. © Courtesy of Christian Holz.

queries are typically reserved for professional visualization systems. Again one can
find a reason for that in the higher development costs for designing and implementing
efficient interaction methods, particularly when direct manipulation and sketching
are involved (see Mannino and Abouzied, 2018). Moreover, because visualization
and interaction must be coupled tightly, it is typically difficult to develop interaction
components that can be interchanged among the different visualization techniques
for time-oriented data. One rare exception is the EazyPZ library (see Schwab et al.,
2019b) whose zoom and pan functionality can be used as a basis for flexible naviga-
tion in time. Finding generally applicable solutions to other interaction problems is
an open research question.

5.4 Advanced Interaction Methods

The previous section was concerned with basic interaction methods. In this section,
we shed some light on advanced ways of interacting with time-oriented data. We
start with interactive lenses as versatile tools for data exploration. When interesting
data portions have been spotted, it is often necessary to compare them. This sec-
tion will illustrate how visual comparison can be supported with naturally inspired
interaction techniques. In order to help users make analytical progress, further ad-
vanced support can be offered in the form of guidance or by integrating automatic
event-based methods. Finally, this section will consider advanced interaction using
modern interaction modalities beyond mouse and keyboard interaction.
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5.4.1 Interactive Lenses

Interactive lenses, originally introduced as magic lenses by Bier et al. (1993), are
related to the focus+context concept discussed on p. 137. Tominski et al. (2017) define
interactive lenses as lightweight tools that provide alternative visual representations
for selected parts of the data on demand. Once activated, working with a lens is as
easy as moving it across the visualization to specify where the lens is to take effect.
The lens effect is automatically computed and merged with the base visualization
to generate a locally enhanced visual representation. When the lens is no longer
needed, it can simply be dismissed and the original visualization is restored.

As such, interactive lenses support scrutinizing the visualized data similar to
using a magnifying glass. The difference though is that an interactive lens is not
limited to enlarging selected parts of the visual representation. Conceptually, the
effect generated by an interactive lens can include (i) the alternation of existing
visualization content (e.g., change the coloring of selected time points), (ii) the
omission of content (e.g., filter out less relevant data), or (iii) the addition of new
content (e.g., add textual labels for clarification).

According to Tominski et al. (2017), more than 50 lens techniques for different
data analysis scenarios are known in the literature, and eight of them are suited for
time-oriented data. An additional example is the regression lens by Shao et al. (2017)
shown in Figure 5.12. It is particularly useful for analyzing temporal trends. The lens’
primary purpose is to enhance point plots (— p. 232) by adding locally computed
regression curves for the data points within the perimeter of the lens. Our example
shows two regression curves calculated by different algorithms. Additionally, the left
and top borders of the lens are enhanced with histograms of the selected data. By

Histogram _
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| Regression curves

Selected data

Unselected data._ Regression lens

Fig. 5.12: The regression lens computes regression curves of its underlying data points and shows
them as line plots on top of the base visualization. Additional histograms indicate the data distri-
bution at the lens borders. @@ The authors. Adapted from Shao et al. (2017).
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moving and resizing the lens, the user can quickly explore the regression in local
parts of the data without changing the original visualization globally.

While our example of the regression lens is focused on time-oriented data, inter-
active lenses are highly versatile tools in general. The swiftness and naturalness with
which lenses can be operated are their key advantages. How natural interaction can
also benefit the comparison of time-oriented data will be discussed next.

5.4.2 Interactive Visual Comparison

Comparing data is a ubiquitous data analysis activity (see Gleicher et al., 2011;
Gleicher, 2018; LYi et al., 2021). It is particularly relevant in the context of time-
oriented data. For example, the detection of temporal trends requires the comparison
of individual data values along the time axis in the first place. Once promising trends
have been identified, it is usually also of interest to compare them with each other:
Which trend has the steeper slope or which trend peaks at the global maximum?

Without dedicated support, visual comparison can be a demanding task. In Chap-
ter 4, we already discussed visual color-coding specifically to support visual compar-
ison tasks. But still it may be necessary to move the eyes back and forth between the
data to be compared, which is costly and error-prone. In the following, we discuss
interaction techniques that allow users to dynamically re-arrange parts of a visual
representation to facilitate visual comparison.

The interaction techniques to be presented are inspired by natural human behavior
(see Tominski et al., 2012a). When people compare information printed on paper
they usually carry out three steps:

1. Select comparison candidates
2. Arrange candidates for comparison
3. Carry out the actual comparison

In the first step, people specify what they want to compare. The comparison
candidates can be individual data values or data items at different points in time or
sub-ranges of the time axis showing interesting behavior such as trends or recurring
patterns. In the second step, the comparison candidates are arranged so as to enable
or ease their comparison. Finally, the actual comparison is conducted to figure out
what relationships might exist between the compared data. Two requirements should
be fulfilled in this regard. First, the properties of the individual data being compared
should be clearly visible. Second, the similarities and differences between the data
need to be communicated as well. The degree to which both requirements are met
depends largely on the arrangement generated in step two, so let us look at this aspect
in more detail.

Assume two comparison candidates A and B have been selected. When A and
B are printed on paper, people would naturally arrange them as juxtaposition or
superposition. For juxtaposition, A and B are arranged side by side. This allows
us to see the individual data properties of A and B clearly, but in order to detect
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(a) Side-by-side. (b) Shine-through. (¢) Folding.

Fig. 5.13: Natural comparison behavior when comparing information printed on paper. €©® Tomin-
ski and Schumann (2020).

similarities or differences, the eyes have to switch between both sides frequently. For
superposition, A and B are stacked on top of each other. As A and B are now co-
located, similarities and differences are potentially easier to see, but either A occludes
B or the other way around, which hinders the comparison and also deteriorates the
visibility of either A or B. For real-world comparison on paper, the occlusion can
be resolved in two ways. Either the stacked A and B are held against the light to let
the occluded information shine through and generate a merged representation of A
and B. Or the occlusion is resolved by folding the occluding piece of paper back
and forth to reveal A and B in quick succession. Figure 5.13 illustrates these natural
comparison behaviors: side-by-side, shine-through, and folding.

On the computer, this natural comparison between A and B can be replicated via
advanced interaction techniques, as schematically depicted in Figure 5.14. Via simple
drag gestures, side-by-side and overlapping arrangements can be created. For resolv-
ing occlusions, shine-through comparison can be implemented via alpha-blending,
where the occluding view is made partially transparent. The folding technique makes
it possible to peel off the occluding view very much like for real paper. To keep the
interaction costs low, the folding can simply be triggered by clicking at the location
where the occlusion between the views is to be resolved. Based on a heuristic, a
natural fold is calculated and presented via a smooth animation.

Letus take a closer look at Figure 5.14 to understand the advantages and drawbacks
of the different interactions. In the side-by-side variant, the user drags comparison
candidate B next to A. This shows both subsets of the data clearly, however, deter-
mining which trend is steeper might not be so easy to figure out. The shine-through
technique makes the direct comparison of the trends easier by superimposing A and
B and allowing the user to manipulate the degree of occlusion via a vertical drag
gesture or slider. Yet it is no longer clear which line plot belongs to which subset.
The folding variant is a compromise. It clearly separates the superimposed line plots,
and by quickly folding back and forth, the peaks can be compared reasonably well.
Yet, the collateral occlusion caused by the folding need to be dealt with.
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Fig. 5.14: Side-by-side, shine-through, and folding interaction. @@® The authors.

In summary, this section illustrated different interaction techniques for supporting
visual comparison tasks, which are so common when analyzing time-oriented data.
The naturalness of the interactions makes them easy to learn and carry out. Moreover,
the outlined techniques are not limited to comparing line plots, but are generally
applicable to any visual representation.

5.4.3 Guiding the User

The interaction techniques described in this chapter so far provide many degrees of
freedom to enable users to study time-oriented data from different perspectives and
to develop a comprehensive understanding. However, the many degrees of freedom
can also be a challenge. During the data exploration, many questions arise: Where
should I move the lens to identify a local cluster? Which partial trends should I
select for comparison? Where should I navigate to find interesting patterns? These
questions become problematic when there are too many of them and when the user
has too many difficulties answering them. If this is the case, the analytical progress
stalls and the interactive exploration comes to a halt.

To ensure steady progress and to keep the data exploration going, it makes sense
to provide users with guidance. Guidance has been defined as a means to help users
resolve problems they may encounter during interactive data exploration (see Schulz
et al., 2013b; Ceneda et al., 2017; Collins et al., 2018). The important aspect here is
that guidance is there to help and to assist. It is not a means to provide answers to
analytic questions, but to enable and support users to arrive at answers on their own,
that is, the human remains in the loop.
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Fig. 5.15: Overview plot of a time series with 3.6 million time points (top) and color-coded
difference bands (center: slope sign difference; bottom: absolute value difference) indicating where
potentially interesting observations could be made. @® Martin Luboschik. Also see Luboschik
etal (2012).

In the following, we will demonstrate how large time-oriented data can be explored
at multiple scales with the help of an appropriate guidance strategy. The starting point
is a large time series with millions of data points from a simulation of the cell division
cycle in fission yeast (see Luboschik et al., 2012). We are going to visualize these
data as a classic line plot (< p. 233). The problem though is that about 3.6 million
time points usually do not fit in a line plot. Therefore, the time series has been
aggregated at several levels of granularity, leading to a multi-scale representation of
the data. Such a representation lends itself to being explored via zooming. When the
zoom level changes, the visualization shows the level of granularity that matches the
resolution of the display.

An overview of the whole time series is depicted at the top of Figure 5.15. At
this level of granularity, one can easily see three peaks. But what we are seeing is
only a coarse representation, in fact, the coarsest of our multi-scale time series. We
do not know what is going on at the finer scales on the slopes or at the top of the
peaks. Zooming and panning will allow us to access the details we seek. However,
where in time and at what temporal scale can we make interesting observations?
The guidance approach we are about to demonstrate uses the data themselves as an
input to compute visual cues that provide users with orientation to narrow down their
search on promising parts of the data.

The assumption is that differences between adjacent scales might serve as an
indication for users to look more closely into particular parts of the data. Various
measures can be employed to calculate the differences. Luboschik et al. (2012)
consider absolute value differences and slope sign differences. These measures are
calculated for all pairs of adjacent scales. Aggregating the measures and color-coding
them leads to so-called difference bands that can be attached below our line plot on
demand as shown in Figure 5.15.
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Fig. 5.16: Zoomed view of the tip of the second peak from Figure 5.15. The difference bands are
magnified by means of a focus+context distortion. @@® Martin Luboschik. Also see Luboschik et al.
(2012).

Interestingly, in the bluish bands for slope sign difference (center), we can see
three notches exactly where the three peaks are in the line plot. There are also
three greenish spikes in the absolute value difference bands (bottom). So, both
bands guide the user to the peaks for more detailed inspection. And in fact, some
interesting behavior can be observed. Looking at the notches for slope sign difference
in Figure 5.15 more closely, one can see thin spikes.

To understand what is going on, we study the second notch in more detail. We
magnify the second notch and the tip of its associated peak as shown in Figure 5.16.
From the magnified difference bands, we can see that greater differences, indicated
by darker colors, exist between the temporal scales of finer granularity. The zoomed
line plot confirms that the tip of the peak is not a smooth curve as we might have
thought. There is in fact a rather rough up and down of the curve.

This example of multi-scale exploration of time-oriented data illustrates the ben-
efit of providing guidance. The additional difference bands provide on-demand sup-
port to help users decide which parts of the data are promising to study in detail.
Other examples of guidance exist, where the focus is less on navigation, but on guid-
ing the configuration of visualization techniques, for example, to suggest suitable
cycle lengths of spiral representations (— p. 274) to help users find cyclic patterns
in time-oriented data (see Ceneda et al., 2018). For a broader view on guidance
and more examples, the interested reader is referred to the survey by Ceneda et al.
(2019).
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5.4.4 Integrating Interaction and Automation via Events

With the increasing complexity of data and visualization methods alike, it is not
always easy for users to set visualization parameters appropriately for the analy-
sis task at hand. Particularly if parameters are not self-explanatory, they are not
easily set manually. Guidance can provide a form of support to assist users in the
parametrization process.

Another possible solution is to employ the concept of event-based visualization,
which combines visualization with event methodology (see Reinders et al., 2001;
Tominski, 2011). In diverse application fields, including active databases, software
engineering, and modeling and simulation, events are considered happenings of
interest that trigger some automatic actions. In the context of visualization, such an
event-action-scheme is useful for complementing manual interaction with automatic
parametrization of visual representations.

The basic idea of event-based visualization is (1) to let users specify their interests,
(2) to detect if and where these interests match in the data, and (3) to consider detected
matches when generating the visual representation. This general procedure requires
three main components: (1) event specification, (2) event detection, and (3) event
representation. Figure 5.17 illustrates how they are attached to the visualization
pipeline. Next, we will look at each of these components in more detail.
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Fig. 5.17: The main ingredients of event-based visualization — event specification, event detection,
and event representation — attached to the visualization pipeline. @@ The authors.

Describing User Interests

The event specification is an interactive step where users describe their interests as
event types. To be able to find actual matches of user interests in the data, the event
specification must be based on formal descriptions. Tominski (2011) uses elements
of predicate logic to create well-defined event formulas that express interests with
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respect to relational datasets (e.g., data records whose values exceed a threshold
or attribute with the highest average value). For an analysis of time-oriented data,
sequence-related notations (for instance as introduced by Sadri et al. (2004)) enable
users to specify conditions of interest regarding temporally ordered sequences (e.g.,
sequence of days with rising stock prices). A combination of event types to composite
event types is possible via set operators.

As a simple example, we formulate our interest in “Three successive days where
the number of people diagnosed with influenza increases by more than 15% each
day” as the following event type:

{(x,y,2aate | z-flu >y flu- 115 Ay.flu > x.flu-1.15}

The first part of the formula defines three variables (x, y, 7)4qre that are sequenced
by date. To express the condition of interest, these three variables are set into relation
using predicates, functions, and logical connectors.

Certainly, casual users may find it difficult to describe their interests via event for-
mulas. Therefore, sufficient specification support should consider dedicated means
for experts, regular users, and visualization novices. In this regard, one can think of
three levels of specification: (i) direct specification, (ii) specification by parametriza-
tion, and (iii) specification by selection. All levels are based on the aforementioned
formalism, but the complete functionality is available only to expert users at the level
of direct specification. The second level works with parametrizable templates that
hide the complexity of event formulas from the user. Non-expert users can adjust
the templates via easy-to-set parameters, but otherwise do not need to fiddle with
the internals of event formulas. For example, exposing the increase rate (15% in our
previous example) as a template parameter would be reasonable. At the third level,
users simply select from a predefined collection of event types that are particularly
tailored to the application context.

Finding Relevant Data Portions

The event detection is an automatic step that determines whether the interests defined
interactively are present in the data. The outcome of the event detection is a set of
event instances. They describe where in the data interesting information is located.
That is, entities that match user interests are marked as event instances. For event
detection, the variables used in event formulas are substituted with concrete data
entities. In the second step, predicates, functions, and logical connections are eval-
uated, so that the event formula as a whole can be evaluated as either true or false.
Because this procedure can be quite costly in terms of computation time, efficient
methods must be utilized for the event detection. A combination of the capabilities of
relational database management systems and efficient algorithms (e.g., the OPS al-
gorithm by Sadri et al. (2004)) is useful for static data. When dynamic data (i.e., data
that change over time, see Section 3.3) have to be considered, detection efficiency
becomes even more crucial. Here, incremental detection methods can help. Such
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methods operate on a differential dataset, rather than on the whole data. However,
incremental methods also impose restrictions on possible event types, because they
do not have access to the entire dataset.

Considering User Interests in Visual Representations

The last important step of event-based visualization is the event representation.
The goal of this step is to incorporate detected event instances, which reflect the
interests of the user, into visual representations. The three requirements that have to
be considered are as follows:

1. Communicate the fact that something interesting has been found.
2. Emphasize interesting data among the rest of the data.
3. Convey what makes the data interesting.

Most importantly, the visual representation must clearly express that something
interesting is contained in the data. To meet this requirement, easy-to-perceive visual
cues (e.g., a red frame around the visual representation, exclamation marks, or
annotations) can be used. Alpha-blending can be applied to fade out past events. The
second requirement aims at emphasizing those parts of the visual representation that
are of interest. Additionally, the visualization should communicate what makes the
highlighted parts interesting (i.e., what the particular event type is). However, when
facing arbitrarily definable event formulas, this last requirement is difficult to fulfill.

We can distinguish two basic options for representing events: explicit and implicit
event representation. For the explicit case, the focus is set exclusively on event in-
stances, neglecting the raw data. Since the number of events is usually smaller than
the number of data items, explicit event representation can grant insight even into
very large datasets. For implicit event representation, the goal is to automatically
adjust visualization parameters so as to highlight the points of interest detected in
the data. Assuming that user interests relate to user tasks and vice versa, implicit
event representation can help us obtain better-targeted visual representations. The
big challenge though is to meet the aforesaid requirements solely by adapting visual-
ization parameters. Apparently, the availability of adequate visualization parameters
is a prerequisite for implicit event representation.

Let us illustrate the potential of event-based visualization with an example. As-
sume a user has to analyze multivariate time-dependent human health data for
uncommonly high numbers of cases of influenza. The task at hand is to find out if
and where in time these situations have occurred. A possible way to accomplish this
task is to use the TimeWheel technique (— p. 298).

Figure 5.18a shows a TimeWheel that uses the standard parametrization, where
time is encoded along the central axis and multiple diagnoses are mapped to the
axes surrounding the time axis. In particular, influenza happens to be the diagnosis
that is mapped to the upper right axis (light green). Alpha-blending is applied by
default to reduce visual clutter. Looking at this TimeWheel, the user can only guess
from the labels of the axis showing influenza that there are higher numbers of cases
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(a) Default parametrization. (b) Targeted parametrization.

Fig. 5.18: Default vs. targeted parametrization of a TimeWheel. (a) TimeWheel representing a
time-dependent health dataset using the default configuration, which aims at showing main trends,
but does not consider the interests of the user. (b) TimeWheel representing the same data, but
matches with the user’s interests have been detected and corresponding data are emphasized via
highlighted lines and automatic rotation and stretching; the presentation is better targeted to the
user’s task at hand. @@ The authors.

because the alpha-blending made the particular lines almost invisible (see question
mark). Several interaction steps are necessary to re-parametrize the TimeWheel to
accomplish the task at hand.

In contrast to this, in an event-based visualization environment, the user can
specify the interest in “Days with a high number of cases of influenza” as the
event type ({x | x.flu > 300}). If the event detection step confirms the existence of
such events in the data, visualization parameters are altered automatically so as to
provide an individually adjusted TimeWheel that reflects the special situation. In our
particular example in Figure 5.18b, we change the color and transparency of line
segments representing event instances: Days with high numbers of influenza cases
are excluded from alpha-blending and are drawn in white (see exclamation mark).
Additionally, rotation and stretching are applied such that the axis representing
influenza is moved gradually to an exposed position and is provided with more
display space. The application of a gradual process is important in this case to
support users in maintaining their mental map of the visual representation. In this
automatically adjusted TimeWheel, the identification of days with higher numbers
of influenza infections is easy.
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5.4.5 Interaction Beyond Mouse and Keyboard

Most of the interaction techniques discussed in this chapter, and also most of the
techniques described in the literature, are designed for the classic desktop computer
workplace where the mouse and keyboard are the dominant input devices. Yet,
technological advances have brought us to a point where new interaction modalities
are becoming more and more commonplace. Interaction beyond mouse and keyboard
brings new possibilities for exploring and analyzing data in various ways (see Lee
et al., 2012; Keefe and Isenberg, 2013). In this section, we briefly look at what
is possible in terms of modern interaction for time-oriented data. In particular, we
consider touch interaction for exploring time-oriented data visualized as stacked
graphs and tangible interaction for exploring space-time cube visualizations.

Touching Stacked Graphs

Touch interaction has become the primary input modality for mobile devices. It can
also be found on laptop computers and larger display surfaces (see Voida et al.,
2009). Touch interaction has the advantage that the action takes place directly on
the display, exactly where the operation is to take effect. Yet, a difficulty with touch
is that the input devices, our fingers, are rather imprecise making it harder to point
at fine details in a visualization. Using the fingers for interaction can also cause the
hand to occlude relevant information on the display. Nonetheless, the directness and
intuitiveness of touch interaction are the key motivation for using it in the context of
visualization.

The example we are looking at here is TouchWave by Baur et al. (2012). Touch-
Wave is specifically designed for direct and fluid interaction with time-oriented
data visualized as stacked graphs (< p. 286). For improving the legibility, com-
parability, and scalability of stacked graphs, several concrete touch interactions and
corresponding visual feedback are offered. Legibility can be improved by touching
the visualization background, which triggers the display of an on-demand vertical
ruler showing the exact value distribution for the time point corresponding to the
finger position. By using more than one finger, which is called multi-touch interac-
tion, additional rulers can be activated to facilitate the visual comparison of several
points in time.

As the order of individual streams in a stacked graph is important, reordering the
streams is an essential operation. By long-pressing the stacked graph, its streams can
be sorted so that the stream with the highest value for the time point being touched
is at the top. Double tapping a stream will make it the baseline stream on top of
which all other streams are stacked. Moreover, individual streams can be pulled out
of the stacked graph via simple drag gestures. These interactive rearrangements are
particularly useful for comparison, as we have already seen in Section 5.4.2.

To support multi-scale data exploration, the TouchWave utilizes pinch gestures.
Pinching horizontally will create a focus+context distortion of the time line revealing
details in the focus, while compressing the context. Vertical pinching can be used to
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Fig. 5.19: Using a pinch gesture for scaling a stacked graph visualization vertically. © Courtesy of
Dominikus Baur. https://do.minik.us/projects/touchwave

perform a hierarchical zoom with respect to the streams in a stacked graph. Such a
vertical pinch gesture is illustrated in Figure 5.19.

TouchWave is designed particularly for stacked graphs. Yet, touch-based interac-
tion also works for other visualizations of time-oriented data. For example, Riehmann
et al. (2018) describe dedicated touch interactions for multiple time series depicted
as horizon graphs (= p. 277). What all touch techniques have in common is that
they facilitate the direct interaction on the display. Next, we will see how tangible
interaction can support interaction with the display.

Exploring Space-Time Cubes with Tangible Interaction

Tangible interaction is a style of interaction where users interact by manipulating
physical objects, so-called tangibles (see Shaer and Hornecker, 2009). This requires
appropriate tracking equipment so that the system knows where the tangibles are
located and how they are oriented in space. The spatial awareness can be utilized
to define whole new interaction vocabularies. Basic interactions include horizontal
and vertical translation and rotation, which in turn can be combined to gestures such
as tilting, flipping, or shaking a tangible. These interactions can then be utilized to
design new data exploration experiences.

In the context of exploring time-oriented data, tangible interaction opens up new
possibilities for navigating the time axis and also for adjusting the visual representa-
tion depending on the user’s tasks. To illustrate the usefulness of tangible interaction,
we present two examples: tangible views and the Uplift system. In both cases, spatio-
temporal data are visualized as a space-time cube (< p. 377) on a horizontal tabletop
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display. The cube’s base plane resides in the horizontal x-y plane of the tabletop and
the dimension of time extends from the base plane along the vertical z-axis. It is
important to realize that the space-time cube is a virtual one, meaning that the space
above the horizontal tabletop defines the space-time cube, but its content is not yet
visible. Initially, there is only a map on the tabletop, but via tangible interaction, one
can access the space-time cube and make different parts of time and space visible.

Tangible views The two terms tangible and views already hint at a duality between
display and interaction: The views serve to show the visualization, and at the same
time, the views are tangible and serve as an input device for interacting with the
visualization. Conceptually, tangible views are spatially-aware lightweight displays.
Spindler et al. (2010) describe an implementation where tangible views are made of
cardboard onto which visual representations can be projected.

(a) Flipping the color-coding. (b) Side-by-side comparison.

Fig. 5.20: Using tangible views for exploring spatio-temporal data in a virtual space-time cube.
@@ The authors.

In order to interactively explore a virtual space-time cube and adjust its visual-
ization, one or more tangible views can be held in the space above the base map as
illustrated in Figure 5.20. Different parts of the map can be accessed by moving a
tangible view horizontally (i.e., navigation in space). The tangible view’s partial map
is then updated according to the horizontal position above the base map. Similarly,
by raising and lowering the tangible view along the vertical axis, one can select
particular time points to be displayed (i.e., navigation in time). By flipping the tan-
gible view, it is possible to switch between two different color-coding strategies, for
example, for identification and location tasks as described in Section 4.2.2. Tangible
views can also facilitate visual comparison. To this end, two tangible views are used
in combination. First, each view is moved individually to select two map regions and
two time points to be compared. Then a lock operation is performed, which makes
both tangible views insensitive to further motion. This in turn allows the user to bring
the two tangible views together forming a side-by-side arrangement for comparison.
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Uplift Our second example of tangible interaction with a space-time cube visual-
ization is the Uplift system by Ens et al. (2021). In this example, the space-time
cube is also located in the space above a tabletop display, but it is displayed virtually
as an augmented-reality representation. This allows several persons to look at the
data simultaneously as shown in Figure 5.21. Several tangibles are used in concert
to interact with the system in various ways. Particularly interesting is the navigation
through time and the unfolding of the space-time cube. By placing a tangible token
on the tabletop, slider widgets with different temporal granularity can be activated.
A physical slider widget can then be used to select a particular point in time. By
using a hinge of the physical widget, the space-time cube can be unfolded to show
several data layers for comparing multiple time steps.

(a) (b) (©)

Fig. 5.21: Uplift: tangible and immersive tabletop system. (a) Collaborative exploration around a
tabletop display using tangible objects. (b) Physical widget for navigating in time. (c) Unfolded
space-time cube visualization above the tabletop surface. ©) 2021 IEEE. Reprinted, with permission,
from Ens et al. (2021).

What we can learn from tangible views, physical widgets, and TouchWave before
is that there is more to interaction than just mouse and keyboard. Touch and tangible
interaction are but two examples of modern ways of interacting with data. Further
examples are gaze-based interaction (see Duchowski, 2018), where the eyes perform
actions, and proxemic interaction (see Jakobsen et al., 2013), where the distance of
the user to the display is considered. Natural language is another channel to be utilized
for interaction, where combining language with other input modalities seems to be
a quite promising approach (see Srinivasan and Stasko, 2018). Yet, further research
needs to be conducted to take full advantage of these new interaction modalities
and their combination for the particular case of visually exploring and analyzing
time-oriented data.

5.5 Summary

The focus of this chapter was on interaction. We started with a brief overview of
intents that motivate users to interact with the visualization. The most notable intent
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in the context of time-oriented data is the intent to navigate in time in order to visit
different parts of the data. Users also need to view time-oriented data at different
levels of detail, because the data are often given at multiple granularities. Further
intents are related to interactively adjusting the visual mapping according to data
and tasks at hand, and to managing the exploration process.

We explained that interactive visualization is an iterative loop where the user
plans and carries out an interaction, and the computer generates feedback in order
to visually reflect the change that resulted from the user’s actions. This human-in-
the-loop process brings together the computational power of the machine and the
intellectual power of human beings. In order to take full advantage of this synergy, we
need an efficient user interface that bridges the gap between the algorithmic structures
being used for visualizing time and time-oriented data, and the mental models and
analytic workflows of users. This also includes tackling technical challenges to
guarantee the smooth execution of the interaction loop.

This chapter also presented basic interaction concepts, including temporal naviga-
tion, direct manipulation, brushing & linking, and dynamic queries. These concepts
are vital for data exploration tasks where the user performs an undirected search for
potentially interesting data features. Going beyond basic interaction, we considered
interactive lenses, natural visual comparison, guidance, event-based visualization,
and interaction beyond mouse and keyboard. These advanced concepts can further
enhance the visual exploration of time-oriented data. But still, the potential of ad-
vanced interaction methods has not been fully exploited by current visualization
techniques. There is room for future work to better adapt existing interaction meth-
ods or to develop new ones according to the specific needs of time-oriented data.
Moreover, the examples of guidance and event-based visualization indicate that a
combination of visual, interactive, and automatic methods can be quite useful. In
the next chapter, we will take a closer look at computational analysis methods for
supporting the visual analysis of time-oriented data.
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Chapter 6
Computational Analysis Support

It is useful to think of the human and the computer together as a
single cognitive entity, with the computer functioning as a kind of
cognitive coprocessor to the human brain. [...] Each part of the
system is doing what it does best. The computer can pre-process vast
amounts of information. The human can do rapid pattern analysis
and flexible decision making.

Ware (2008, p. 175)

Visualization and interaction as described in the previous Chapters 4 and 5 help
users to visually analyze time-oriented data. Following Shneiderman’s information
seeking mantra (see p. 130), analysts can look at the data, explore them, and in
this way understand them. This is possible thanks to human visual perception and
the fact that humans are quite good at recognizing patterns, finding interesting
and unexpected solutions, combining knowledge from different sources, and being
creative in general.! Purely interactive and visual data analysis works well unless
the problem to be solved exceeds a certain size. With massive, heterogeneous,
dynamic, and ambiguous data, it becomes increasingly difficult to create overview
visualizations without losing interesting patterns, and human observers have a hard
time interpreting and understanding the data. Therefore, Keim et al. (2006a) revised
and expanded Shneiderman’s mantra in order to indicate that it is not sufficient to
just retrieve and display the data using a visual and interactive approach. In fact,
it is necessary to computationally analyze the data according to aspects of interest,
to show the most relevant features of the data, and at the same time to provide
interaction methods that allow the user to get details of the data on demand:

Analyze First -
Show the Important -
Zoom, Filter and Analyse Further -
Details on Demand.
Keim et al. (2006a, p. 6)

1 Wegner (1997) makes some interesting statements about why interaction is better than algorithms.
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Following this mantra, we can utilize the proficiency of computing systems to
assist the knowledge crystallization from time-oriented data. Apparently, if the prob-
lem size is sufficiently large, computers are better (i.e., faster and more accurate)
than humans at numeric and symbolic calculations, logical deduction, and search-
ing. In general, data mining and knowledge discovery are commonly defined as the
application of algorithms to extract useful structures from large volumes of data,
where knowledge discovery explicitly demands that knowledge be the end product
of the analytical calculations (see Fayyad et al., 1996; Fayyad et al., 2001; Han et al.,
2012). A variety of concepts and methods are involved in achieving this goal, includ-
ing databases, statistics, artificial intelligence, neural networks, machine learning,
information retrieval, pattern recognition, data visualization, and high-performance
computing.

This chapter will illustrate how automatic analytical calculations can be utilized
to facilitate the exploration and analysis of larger and more complex time-oriented
data. To this end, we will give a brief overview of typical temporal analysis tasks
and ground these methods as temporal data abstraction. For selected tasks, we will
present examples that demonstrate how visualization can benefit from considering
analytical support. Our descriptions will intentionally be kept at a basic level. For
details on the sometimes quite complex matter of temporal data analysis, we refer
interested readers to the relevant literature.

6.1 Temporal Analysis Tasks

Temporal analysis and temporal data mining are concerned with extracting useful
information from time-oriented data (see Brockwell and Davis, 1991; Antunes and
Oliveira, 2001; Mitsa, 2010; Ali et al., 2019). More specifically, Laxman and Sastry
(2006) characterize the following categories of temporal data analysis tasks:

Classification Given a predefined set of classes, the goal of classification is to deter-
mine which class a dataset, sequence, or subsequence belongs to. As a specific
instance of classification, segmentation and labeling applies algorithms to di-
vide multivariate time-oriented data into smaller segments and to assign to these
segments class labels accordingly. Applications such as speech recognition and
gesture recognition apply classification to identify spoken words or performed
interactions. The analysis of sensor data or spatio-temporal movement data often
requires segmentation and labeling to make the enormous volumes of data to be
handled manageable.

Clustering Clustering is concerned with grouping data into clusters based on simi-
larity, where the similarity measure used is a key aspect of the clustering process.
In the context of time-oriented data, it makes sense to cluster similar time series
or subsequences of them. For example, in the analysis of financial data, one
may be interested in stocks that exhibit similar behavior over time. In contrast to
classification, where the classes are known beforehand, clusters are not defined
upfront but crystallize during the computational analysis.
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Search & retrieval This task encompasses searching for a-priori specified queries
in possibly large volumes of data. This is often referred to as query-by-example.
Search & retrieval can be applied to locate exact matches for an example query
or approximate matches. In the latter case, similarity measures are needed that
define the degree of exactness or fuzziness of the search (e.g., to find customers
whose spending patterns over time are similar but not necessarily equal to a
given spending profile).

Pattern discovery While search & retrieval requires a predefined query, pattern
discovery is concerned with automatically discovering interesting patterns in
the data (without any a-priori assumptions). The term pattern? usually covers
a variety of meanings, including sequential pattern and periodic pattern, but
also temporal association rules. In a sense, a pattern can be understood as a
local structure in the data or combinations thereof. Often, frequently occurring
patterns are of interest, for example when analyzing whether a TV commercial
actually leads to an increase in sales. But patterns that occur very rarely can also
be interesting because they might indicate failures or malicious behavior.

Prediction An important task in analyzing time-oriented data is the prediction
of likely future behavior. The goal is to infer from data collected in the past
and present how the data will evolve in the future. To achieve this goal, one
has to build a predictive model for the data first. Examples of such models
are autoregressive models, non-stationary and stationary models, or rule-based
models.
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2 Andrienko et al. (2021) provide a deeper theoretical discussion of patterns.
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The five fundamental temporal data analysis tasks are summarized in Figure 6.1.
A variety of methods have to play in concert in order to accomplish these tasks.
Statistical aggregation operators (e.g., sum, average, minimum, and maximum),
methods from time-series analysis, and dedicated temporal data mining techniques
are needed. For more details on the involved models and algorithms, the interested
reader is referred to Laxman and Sastry (2006).

In the context of visualizing time-oriented data, these tasks share the common
goal of temporal data abstraction in order to reduce the workload when computing
visual representations and to keep the perceptual efforts required to interpret them
low. For classification and clustering, we abstract from the raw data and work with
classes and clusters. For search & retrieval and pattern discovery, we are primarily
interested in relevant patterns and de-emphasize irrelevant data. For prediction, we
focus on the future. In the following, we clarify the idea of temporal data abstraction
and give a couple of examples afterward.

6.2 Principles of Temporal Data Abstraction

In practice, time-oriented datasets are often large and complex and originate from
heterogeneous sources. The challenging question is how huge volumes of possibly
continuously measured data can be analyzed to support decision-making. On the
one hand, the data are too large to be interpreted all at once. On the other hand, the
data are more erroneous than usually expected and some data are missing as well,
a problem that we discussed in the context of data quality in Section 3.4. What is
needed is a way to abstract the data in order to make them eligible for subsequent
visualization.

The term data abstraction was originally introduced by Clancey (1985) in his
classic proposal on heuristic classification (as the paper calls it). In the context of
visual data analysis, Thomas and Cook (2005) describe what data abstraction is
about:

The objective is “to create an abstraction that conveys key ideas while suppressing irrelevant
details.”

Thomas and Cook (2005, p. 86) using, in quotation

marks, the words of Foley (2000, p. 67)

The basic idea is to use qualitative values, classes, or concepts, rather than raw
data, for further analysis or visualization processes (see Lin et al., 2007; Combi
et al., 2010). This helps in coping with data size and data complexity. To arrive
at suitable data abstractions, several tasks must be conducted, including selecting
relevant information, filtering out unneeded information, performing calculations,
sorting, and grouping.

Let us now illustrate the concept of temporal data abstraction in medical con-
texts with a simple example. Figure 6.2 shows time-oriented data as generated when
monitoring newborn infants that have to be ventilated artificially. The figure visual-
izes three variables plotted as points against a horizontal time axis: S,0, (arterial
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oxygen saturation), P;.CO; (transcutaneous partial pressure of carbon dioxide), and
P,CO; (arterial partial pressure of carbon dioxide). S,0; and P;.CO; are measured
continuously at a regular rate, but with different frequencies. New values for P,CO,
arrive irregularly and some values for P;.CO, are missing.
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Fig. 6.2: Temporal data abstraction in the context of artificial ventilation. Vertical temporal ab-
stractions are illustrated as V[1] and V[2] and horizontal temporal abstractions are illustrated as
H[1]-H[5]. The context is given as “artificial ventilation” and its sub-context “controlled ventila-
tion”. @@ The authors.

The aim of temporal data abstraction is to arrive at qualitative values or patterns
over time intervals. Vertical temporal abstraction (illustrated in V[1] and V[2]) con-
siders multiple variables over a particular time point and combines them into a qual-
itative value or pattern. Horizontal temporal abstraction (illustrated as H[1]-H[5])
infers a qualitative value or pattern from one or more variables and a corresponding
time interval. Usually, the abstraction process is context-dependent. In Figure 6.2,
the abstraction is done in the context of artificial ventilation and in the sub-context
of controlled ventilation.

In medical applications, there are different types of abstraction methods, ranging
from rather simple to quite complicated ones. However, as pointed out by Combi
et al. (2010), no exhaustive schema exists to categorize the available methods. Nev-
ertheless, the common understanding is that even in very simple cases the process is
knowledge-driven. The use of knowledge is the main characteristic that distinguishes
data abstraction from statistical data analysis (e.g., trend detection using time-series
analysis).

Simple methods involve single data values and usually do not need to consider time
specifically. They generate vertical abstractions. The knowledge used are concept
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associations or concept taxonomies. Combi et al. (2010) distinguish three types of
simple methods:

* Qualitative abstraction means converting numeric expressions to qualitative
expressions. For example, the numeric value of 34.8°C of body temperature can
be abstracted to the qualitative value “hypothermia”.

e Generalization abstraction involves a mapping of instances into groups. For
example, “hand-bagging is administered” is abstracted to “manual intervention
is administered”, where “hand-bagging” is an instance of the concept group
“manual intervention”.

* Definitional abstraction is a mapping across different concept categories. The
movement here is not within the same concept taxonomy, as for the generalization
abstraction, but across two different concept taxonomies.

More complex methods consider one or more variables jointly and specifically
integrate the dimension of time in a kind of temporal reasoning. These methods
generate horizontal temporal abstractions. According to Combi et al. (2010), four
types of complex methods exist:

* Merge (or state) abstraction is the process of deriving maximal time intervals
for which some constraints of interest hold. For example, several consecutive
days with high fever and increased blood values can be mapped to “bed-ridden”.

 Persistence abstraction means applying persistence rules to project maximal
intervals for some property, both backward and forward in time. For example,
“headache in the morning” can be abstracted to “headache in the evening before”
or “headache in the afternoon afterward”.

e Trend (or gradient or rate) abstraction is concerned with deriving significant
changes and rates of change in the progression of some variable. For example,
P,;.CO, has decreased from 130 to 90 in the last 20 minutes would result in
“P;-CO3 is decreasing too fast”.

 Periodic abstraction aims to derive repetitive occurrence, with some regularity
in the pattern of repetition. For example, “headache every morning, but not
during the day” would result in “repetitive headache in the morning”.

In what follows, we demonstrate the applicability of temporal data abstraction
methods for the analysis of time-oriented data using three examples: classification,
clustering, and principal component analysis. Classification reduces data complexity
by deriving qualitative statements, which are much easier to understand. Clustering
decreases the number of data items to be represented and supports discerning simi-
larities and unexpected behavior. Principal component analysis decreases the number
of time-dependent variables by switching the focus to major trends in the data.
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6.3 Classification via Segmentation and Labeling

Given a set of classes, segmentation and labeling splits long time series into segments
(segmentation) and assigns to each segment a class (labeling). By doing so, the
complexity of time-oriented data can be reduced substantially. The segmented and
labeled data correspond to qualitative abstractions, which are simpler than the raw
data, can be visualized more compactly, and hence, are easier to comprehend.

Segmentation algorithms can be distinguished by the type of data they process
into algorithms for discrete domains (e.g., Cohen et al., 2002) and algorithms for
continuous domains (e.g., Lin et al., 2002). Labeling algorithms can be divided
into supervised methods, which use already labeled training data, and unsupervised
methods, which seek hidden structures in unlabeled data autonomously. Supervised
methods apply a model to partially or completely labeled segments (see Xing et
al., 2010). Unsupervised methods calculate a grouping that can be used for further
aggregation and analysis (see Warren Liao, 2005).

Segmentation and labeling as outlined above can be applied in various ways.
In the following, we will describe several examples illustrating the wide range of
involved methods and visual representations.

6.3.1 Data Classification in Medical Contexts

A specific area in medicine where time-oriented data play a crucial role is in monitor-
ing the health of patients based on sensor data. In particular, the health of artificially
ventilated infants is of great concern to medical personnel and parents alike. Address-
ing this challenging application domain, Miksch et al. (1996) developed VIE-VENT
as an open-loop knowledge-based monitoring and therapy planning system.

In order to derive qualitative abstractions for different kinds of temporal trends
(i.e., very-short, short, medium, and long-term trends) from continuously arriving
quantitative data, the system utilizes context-sensitive and expectation-guided meth-
ods and incorporates background knowledge about data points, data intervals, and
expected qualitative trend patterns. Smoothing and adjustment mechanisms help to
keep qualitative abstractions stable in case of shifting contexts or data oscillating
near thresholds. Context-aware schemata for data point transformation and curve
fitting are used to express the dynamics of and the reaction to different data abnor-
malities. For example, during intermittent positive pressure ventilation (ippv), the
transformation of the quantitative value P;,.CO, = 56mmHg results in the qual-
itative abstraction “P,;.CO>, substantially above target range”. During intermittent
mandatory ventilation (imv) however, 56mmH g represents the “target value”. Qual-
itative abstractions and schemata of curve fitting are subsequently used to decide if
the value progression happens too fast, at a normal rate, or too slow.

Figure 6.3 shows the user interface of VIE-VENT. In the top-left corner, the
system displays exact values of the quantitative blood gas measurements CO,, O,
Sa0,. Arrows depict trends and qualitative abstractions are indicated by different
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Fig. 6.3: VIE-VENT displays measured quantitative values as line plots. Qualitative abstractions
and trends are represented by different colors and arrows in the top three boxes on the left. © /996
Elsevier. Reprinted, with permission, from Miksch et al. (1996).

colors (e.g., deep pink represents “extremely above target range”). The left panel
further shows current and recommended ventilator settings in blue and red boxes,
respectively. The right-hand side shows line plots of the most important variables
for the last four hours.

In the context of medical data, strongly oscillating sensor signals pose a partic-
ular challenge for segmentation and labeling. The problem is that the derived data
abstractions could change too quickly as to be interpretable by the observer. There-
fore, Miksch et al. (1999) developed the Spread approach, a method for deriving
steady qualitative abstractions from oscillating high-frequency data. It performs the
following steps to classify the data:

1. Eliminate data errors. Sometimes up to 40% of the input data are obviously
erroneous, i.e., exceed the limits of plausible values.

2. Clarify the curve. Transform the still noisy data into the spread, which is a steady
curve with some additional information about the distribution of the data along
that curve.

3. Qualify the curve. Abstract from quantitative values to qualitative values (i.e.,
the classes) like “normal” or “high”. Concatenate contiguous segments labeled
with the same class.

Figure 6.4 illustrates how the Spread approach can enhance the visual analysis.
The Spread (in red) smooths out the strongly oscillating raw data (black line plot).
Even the increased oscillation in the center of the display is dealt with gracefully:
it leads to an increased width of the spread, but not to a change of the qualitative
abstraction (in blue). With these abilities, the Spread can support physicians in
making better qualitative assessments of otherwise difficult-to-interpret data.
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Fig. 6.4: The thin line shows the raw data. The red area depicts the spread and the blue rectangles
represent the derived temporal intervals of steady qualitative values. The lower part of the figure
shows the parameter settings. @@ The authors. Adapted from Miksch et al. (1999).

The above examples can only indicate the possible benefits that temporal data
abstraction methods and their integration with the visualization can have in medical
applications. We know of quite positive feedback from medical experts who found
it easy to capture the health conditions of their patients. Moreover, these qualita-
tive abstractions can be used for further reasoning or in guideline-based care for a
simplified representation of treatment plans. For more medical examples, we refer
to the survey of segmentation and labeling in clinical data analysis by Stacey and
McGregor (2007).

6.3.2 Segmentation and Labeling of Multivariate Time Series

Segmenting and labeling multivariate time-oriented data is a problem that is difficult
to solve automatically. Therefore, it makes sense to involve human expertise in the
process. To this end, Bernard et al. (2018) propose a pipeline that consists of several
steps operating on several data artifacts (see Figure 6.5). The key idea of this pipeline
is to combine the different algorithms (A), their adequate parametrization (B), and
the visual exploration of the parametrizations, the results, and their uncertainty (C).

While these concerns are usually handled separately, the pipeline-based approach
tightly interconnects them to generate better results and also to support humans
to develop a better understanding of the data and the data abstraction process. In
particular, the explicit consideration of parametrizations and uncertainty makes the
process transparent in terms of how segmentation results are generated and how
(un)certain they are. Moreover, the pipeline is general and can be applied to various
use cases and application domains, which might require the definition of dedicated
algorithmic routines for specific time-oriented data.

By instantiating the pipeline, one can build upon the great variety of available
segmentation and labeling algorithms to derive meaningful abstractions from multi-
variate time series. To make this possible, the unifiable characteristics of the involved
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Fig. 6.5: Pipeline for the segmentation of multivariate time series. Data processing routines and
segmentation algorithms process the multivariate time series (A), which requires setting several
parameters (B). The segmentation results and information about involved uncertainties, which
is collected throughout the pipeline, can be explored visually (C). @@® The authors. Adapted
from Bernard et al. (2018).

algorithms need to be combined into an appropriate software interface. Based on
that, visual interfaces can be built for steering the algorithms, running them with
different parametrizations, and visualizing parameters, results, and uncertainties.
The benefit for the users is that they can experiment with different algorithms and
their parametrizations to find the ones that yield the most meaningful results for a
particular dataset or application problem.

Figure 6.6 shows an example interface from the VISSECT project (see Bernard
et al., 2018) for a radiation observation dataset. On the left side (A), we can see
the main steps of the general segmentation workflow. It starts with the selection of
the data source and moves on to the parameter visualization and uncertainty analy-
sis, all the way to the user feedback module. The screenshot shows three different

Fig. 6.6: Segmentation and labeling of radiation observations. (A) General segmentation workflow.
(B) Data perspective including raw data, characteristics of individual variables, and dimensionality-
reduced plot for patterns. (C) Overview and details of the multivariate time series and the segmen-
tation results. @@ Courtesy of Jiirgen Bernard.
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visualizations of multivariate time series, highlighting different characteristics (B).
On the right side (C), we see the multivariate time series as line plots (top) and the
juxtaposed segmentation results for different parametrizations for the selected algo-
rithms (center). The user can also look at the details of one particular segmentation
(bottom).

Eichner et al. (2020) provide a detailed discussion of how the combined visu-
alization of parametrizations and segmentation results can facilitate understanding
the influence of different algorithmic configurations on the segmentation and la-
beling pipeline. The different kinds of uncertainty (e.g., value uncertainty, result
uncertainty, aggregation uncertainty, and cause & effect uncertainty) that stem from
the selection of algorithms, parameters, and the calculation of multiple competing
results are discussed by Bors et al. (2019). In VISSECT, uncertainty is consequently
considered along all steps of the segmentation process. Through adequate visual
representations of the uncertainty information (see Gschwandtner et al., 2016), users
can better quantify and evaluate the various sources of uncertainty and so better
understand the quality of the data abstraction obtained.

6.3.3 Linking Temporal and Visual Abstraction

The previous examples indicate that dedicated visual representations are applied to
convey data abstractions derived from classification procedures. It is worth men-
tioning that in interactive environments, the visualization of time-oriented data and
abstractions thereof can change dynamically due to user interaction, typically during
navigation and zooming (see Chapter 5).

Fig. 6.7 Different steps of
semantic zooming of a time-
series visualization from a
broad overview with qualita-
tive values (top) to a detailed
view with fine structures and
quantitative details (bottom).
Gray areas indicate missing
data. @@ The authors.
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In such scenarios, the visualization must be able to capture as much temporal
information as possible without losing overview and details, even if the available
display space is very limited. Figure 6.7 demonstrates that this is possible by means
of semantic zooming, which was introduced in Section 5.2.2. The idea is to combine
temporal data abstractions with an appropriate set of visual abstractions for different
levels of detail. For this purpose, Bade et al. (2004) propose reducing the graphical
details in the visual representation when the available display space becomes smaller
(= p. 340). Instead of showing a full-detail line plot, only colored segments are
represented when reaching the highest level of visual abstraction.

Depending on the available display space (or the current zoom level), a suit-
able temporal abstraction is selected automatically and its corresponding visual
abstraction is displayed. The advantage of this procedure is that it relieves the user
of managing the levels of abstraction by hand. Moreover, the semantic zoom corre-
sponds much better with the interactive nature of flexible and dynamic visual analysis
scenarios.

In summary, the classification of time-oriented data via segmentation and la-
beling involves various algorithms and benefits from visualizations of parameter
dependencies and uncertainty, allowing users to interactively steer the analysis to-
ward promising and meaningful results. In the next section, we discuss clustering,
which, in contrast to using predefined classes, aims to abstract time-oriented data
into groups based on similarity.

6.4 Clustering Time Series

In general, grouping data into clusters and concentrating on the clusters rather than on
individual data values makes it possible to analyze much larger datasets. Appropriate
distance or similarity measures lay the groundwork for clustering. Distance and
similarity measures are profoundly application-dependent and range from average
geometric distance to measures based on longest common subsequences and to
measures based on probabilistic models. Based on computed distances, clustering
methods create groups of data, where the number of available techniques is large,
including hierarchical clustering, partitional clustering, and sequential clustering.

Due to the diversity of methods, selecting appropriate algorithms is typically
difficult. Careful adjustment of parameters and regular validation of the results are
therefore essential steps in the process of clustering. More details on clustering
methods and distance measures can be found in the work by Jain et al. (1999), Gan
et al. (2007), and Xu and Wunsch II (2009).
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Clustering and calendar-based visualization

A prominent example of how clustering can assist the visualization of time-oriented
data is the work by van Wijk and van Selow (1999). The goal is to identify common
and uncommon behavior in data with very many time series and to understand their
distribution over time. The problem is that simply drawing line plots for all time
series is not a satisfactory solution due to the overwhelmingly large number of time
points and line plots. In order to tackle this problem, clustering methods and a
calendar-based visualization are used.

In particular, the approach by van Wijk and van Selow (1999) works as follows.
As the starting point, k daily time series describe some observed variable over the
course of a day. The clustering process starts with the k daily series as the initial
clusters. Figure 6.8 shows them at the bottom for an example with k = 7. The next
step is to compute the differences between all pairs of clusters and to merge the two
most similar clusters into a new cluster (i.e., an aggregated representative of the two
clusters). This step runs repeatedly and results in a clustering hierarchy with 2k — 1
clusters, where the root of the hierarchy represents the entire dataset as an aggregated
abstraction.

Given the clustering hierarchy, we may now engage in two analysis tasks: (1)
assess similarities among daily behavior and (2) locate common and uncommon
days in time. A corresponding visualization of the clustered daily time series can

cluster 13

cluster 11 cluster 12

cluster 9 cluster 10

AN

cluster 1 cluster2  cluster3  cluster4 cluster5 cluster6 cluster?7

cluster 8

day 1 day 2 day 3 day 4 day 5 day 6 day 7

Fig. 6.8: By repeatedly merging the two most similar time series into new clusters, a clustering
hierarchy is generated. The root cluster is an aggregated representative time series of the entire
dataset. @@ The authors.
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Fig. 6.9: Visual analysis of the number of employees at work. Day patterns for selected days and
clusters are visualized as line plots (right). Individual days in a calendar display (left) are colored
according to cluster affiliation. © 1999 IEEE. Reprinted, with permission, from van Wijk and van
Selow (1999).

then use two different views to support the two different tasks as shown in Figure 6.9.
The first task is facilitated by a basic line plot (< p. 233) that shows a selected
number of clusters, where each plot uses a unique color. To accomplish the second
task, a calendar display is used where individual days are color-coded according to
cluster affiliation. This way, analysts can see the daily behavior and at the same time
understand when during a year this behavior occurs. Various interaction methods
allow adjustments of the visual representation and data exploration. In terms of
assessing similarities, the user can select a day from the calendar, and with the help
of the clustering hierarchy, similar days (and clusters) can be retrieved automatically.

Figure 6.9 shows an example where the data contain the number of employees
at work over the course of a day for all days in 1997. The line plot currently shows
the concrete number of employees of two days (5/12/1997 and 31/12/1997) and the
aggregated number of employees of five clusters (710, 718, 719, 721, and 722).
van Wijk and van Selow (1999) demonstrate that several conclusions can be drawn
from the visual representation. To give only a few examples:

* Employees follow office hours quite strictly and work between 8:30 am and 5:00
pm in most cases.

» Fewer people work on Fridays during summer (cluster 718).

* During weekends and holidays only very few people are at work (cluster 710).

e It is common practice to take a day off after a holiday (cluster 721).
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These and similar statements were more difficult or even impossible to derive
without the integration of clustering. For the visual analysis of time-oriented data,
van Wijk and van Selow (1999) most convincingly demonstrate the advantages of
clustering. While here the benefit lies in the abstraction from raw data to aggregated
clusters, we will see in the next section that other kinds of analytical methods are
needed if the number of variables gets larger.

6.5 Principal Component Analysis for Time-Oriented Data

Time-oriented data are often multivariate, that is, they contain several time-dependent
variables. Visualizing very many variables can be prohibitively challenging. This
challenge can be tackled by applying principal component analysis (PCA), which
offers an excellent basis for data abstraction (see Jolliffe, 2002; Jackson, 2003; Jeong
et al., 2009).

In the following, we will take a brief look at the basics of principal component
analysis and illustrate by means of examples the benefit that this analytical concept
has for the visual analysis of time-oriented data.

6.5.1 Basic Method

The key principle of PCA is a transformation of the original data space into the
principal component space (see Figure 6.10). In the principal component space, the
first coordinate, that is, the first principal component represents most of the original
dataset’s variance; the second principal component, which is orthogonal to the first
one, represents most of the remaining variance; and so on. Visualizing the data in
the new principal component space shows us how closely individual data records
are related to the major trends, and thus PCA helps us to reveal the internal structure
of the data. Moreover, since principal components are ordered by their significance,
we can focus on fewer principal components than we have variables in our data.

The principal component space with its corresponding principal components can
be computed as follows. Assume that we have modeled our multivariate dataset as a
matrix:

X110 Xi,m
X2,1 " X2m
X = (XiX2- - Xm) =
Xn,1 °" " Xnm
where the columns of X correspond to the m variables Xy, Xz, . . . , Xy, of the dataset,

and the rows represent n records of data (e.g., m sensor values measured n times).
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Fig. 6.10: Principal component analysis transforms multivariate data (with variables x; and x;
in this case) into a new space, the so-called principal component space, which is spanned by the
principal components (here PC1 and PC2). @@ The authors.

For the case of time-oriented data, we would usually assume that one of the x; is the
dimension of time. However, it is important to mention that PCA does not distinguish
between independent and dependent variables. In particular, the dimension of time
would be processed indiscriminately from time-dependent variables, which would
sacrifice the temporal dependencies in the data. Therefore, it is often preferable to
exclude time from the analysis and to rejoin time and computed principal components
afterward to restore the temporal context.

Moreover, depending on the application it can make sense to prepare the data
such that they are mean-centered and normalized (by subtracting off the mean of
each variable and scaling each variable according to its variance). Now our goal is
to transform the data into the principal component space that is spanned by » < m
principal components.

For the purpose of explanation, we resort to singular value decomposition (SVD)
according to which any matrix X can be decomposed as:

X=W-.x.cCT

where W is an n X r matrix, X is an r X r diagonal matrix, and CT is an r X m matrix:

wy, o W
.. C11Cla - ¢C

w21 war | oy e O L1 €12 Lm

€2,1 €22 Com
X =
0 .« e o'r

Cr,1 C22 " Crm

Wnp,1 " Wnr

The matrix CT has in its rows the transposed eigenvectors cal,...,¢;T of the

matrix X7 X, which corresponds to the covariance matrix of the original dataset.
The ¢; form the orthonormal basis of the principal component space; they are the
principal components. Each ¢; is the result of a linear combination of the original
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variables where the factors (or loadings) of the linear combination determine how
much the original variables contribute to a principal component. The first principal
component ¢y is chosen so as to be the one that captures most of the original
data’s variance, the second principal component most of the remaining variance,

and so forth. The significance values o7, . . ., 0, in X are determined by the likewise
ranked square roots of the eigenvalues VA1, ..., VA, of the eigenvectors (i.e., the
principal components) ¢y, ..., ¢,. Finally, the ith row of the matrix W contains

the coordinates of the ith data record in the new principal component space. The
individual coordinates are often referred to as the scores.

This brief formal explanation provides a number of key take-aways. Let us sum-
marize the ones that are most relevant for visualization:

e the significance values determine the ranking of principal components,

e the ranking is the basis for data abstraction, where principal components that
bear little information can be omitted,

e the loadings describe the relationship of the original data variables and the
principal components, and

e the scores describe the location of the original data records in the principal
component space.

We will next demonstrate how PCA can be applied to enhance the visual analysis
of time-oriented data. Our general goal is to uncover structure in the data and to reduce
the analysis complexity by focusing on significant trends. In the first example, we
will see that even a single principal component can bear sufficient information for
discerning the main trends in the data. A second example will illustrate how one can
determine the principal components to be retained for the visualization as well as
the ones that can be omitted due to their low significance.

6.5.2 Gaining Insight into Climate Data with PCA

We consider the visual analysis of a climate dataset that contains daily meteorological
observations of temperature (7,,in, Tavg, and Ty,qx) for a period of 105 years, which
amounts to approximately 38,000 data records (see Nocke et al., 2004). We are only
interested in the yearly summer season conditions. Therefore, the daily raw data are
first aggregated into yearly data, for which five new variables are calculated for each
year:

e total heat (p1): the sum of the maximum temperatures for days with 7,,,, > 20°C
e summer days (p2): the number of days with 7, > 25°C

* hot days (p3): the number of days with 7,,,,, > 30°C

* mean of average (p4): the mean of the daily average temperatures 7,g

e mean of extreme (p5): the mean of the daily maximum temperatures 7}, x

Apparently, these five quantitative variables are strongly correlated. The generated
year-based dataset can be visualized as a centered layer area graph (— p. 289), as
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Fig. 6.11: Summer conditions (p/-p5) visualized as a centered layer area graph. © Courtesy of
Thomas Nocke.

illustrated in Figure 6.11. This visual representation is quite useful to get an overview
of the data. We can clearly distinguish valleys and peaks in the graph, which indicate
particularly cold and hot summers, respectively. The general trend in the data is
communicated quite well.

As we will see next, we can confirm our previous findings and gain further insight
with the help of PCA and a simple bar graph (< p. 234). But instead of visualizing
all five newly computed variables, our visual analysis will be based on just a single
principal component. So, we apply PCA to the five variables derived from the raw
data, where the dimension of time is excluded from the PCA, as indicated before.
The computed PCA space is then fed to the visualization. In order to restore the
temporal context, the bar graph in Figure 6.12 shows time along the horizontal axis,
and the first principal component (PC1), to which all variables contribute because
of their strong correlation, at the vertical axis. For each year, a bar is constructed

1910 1930 1950 1970 1990
I I I

PC1

rare

frequent I

I Year

| | | | |
1900 1920 1940 1960 1980

Fig. 6.12: The bar graph encodes years along the horizontal axis and the scores of the first principal
component (PC1) along the vertical axis. Color indicates the frequency of score values. @@ The
authors.
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that connects the baseline with the year’s PC1 coordinate (i.e., the year’s score in
principal component space). This effectively means upward bars encode a positive
deviation from the major trend, that is, they stand for warmer summers, where
long bars indicate summers with extreme conditions. In contrast, downward bars
represent colder-than-normal summers. As an additional visual cue, frequencies of
score values are mapped onto color to further distinguish typical (saturated green)
and outlier (bright yellowish green) years. This visual representation allows us to
discern the following interesting facts:

e The first third of the time axis is dominated by moderately warm summers mixed
with the coldest summers.

e The hot summers in the 1910s and 1920s are immediately followed by cold
summers.

e There were relatively nice summer seasons between 1930 and 1950.

 In general, outlier summers with extreme conditions accumulate at the end of
the time axis.

Although the visualization in Figure 6.12 shows only the first principal compo-
nent, rather than the five derived variables, it depicts corresponding trends very well.
Nonetheless, one should recall that our data represent a special case where all five
variables are strongly correlated. This correlation is the reason why PC1 separates
warm and cold summers so well. When analyzing arbitrary time-oriented datasets,
further principal components might be required to capture major structural relation-
ships. The following example will illustrate how users can be assisted in making
informed decisions about which principal component’s scores to display.

6.5.3 Determining Relevant Components in Census Data

We now deal with a census dataset with multiple variables, including population,
gross domestic product, literacy, and life expectancy. As before, the independent
dimensions (i.e., time and space) are excluded to maintain the data’s frame of ref-
erence, leaving ten variables to be processed analytically by the PCA. Accordingly,
the analysis yields ten principal components, which correspond to the major trends
in the data. The principal components’ significance-weighted loadings indicate how
individual variables contribute to these trends.

The significance-weighted loadings of our example are depicted in Figure 6.13,
where longer bars stand for stronger contribution, and blue and yellow colors are
used for positive and negative contribution, respectively. By definition, the principal
components are ranked according to their significance from left to right. The figure
indicates that the data’s major trends (PC1-PC4) are largely influenced by the eight
variables from literacy to life expectancy. But we can also see that if we look only at
these first four principal components, we certainly lose reference to the two variables
of population and population density, which do not contribute to the top four trends.
Therefore, at least the principal components up to PCS5, which is proportional to
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Fig. 6.13: The bars in the table cells visualize the loadings of principal components weighted
by their significance, which clearly shows the left-to-right ranking of the principal components.
©@Q@® The authors.
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Fig. 6.14: The bars in the table cells visualize the unweighted loadings of principal components,
that is, they indicate how much the individual variables contribute to any particular principal
component. @@ The authors.

population, and PC6, which is indirectly proportional to population density, should
be retained. In turn, if we are interested in the main trends only, we can safely omit
the remaining principal components (PC7-PC10).

If we are interested in outlier trends as well, we should be less generous with
dropping principal components. This can be illustrated by a visualization of the plain
(i.e., unweighted) loadings of the principal components as shown in Figure 6.14. The
figure clearly reveals contradictory contributions of the variables to the lower-ranked
trends. In particular, we can see a contradiction between life expectancy of females
and males in the ninth principal component (PC9).

The visualization of the loadings helped us in identifying the top-ranked principal
components and those that might bear potentially interesting outlier information. The
knowledge that we derived about the principal components can also be interpreted
in terms of the variables of the original data space. A number of findings can be
gained, including the following:

 All the positive loadings in the main trend (PC1) indicate a direct proportional
relationship for the literacy, infant mortality, gross domestic product, birth rate,
death rate, and life expectancy.

e The second trend (PC2) is constituted by the gross domestic product, life ex-
pectancy as well as infant mortality, birth rate, and death rate, where the latter
three variables are indirectly proportional to this trend.
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e The major trends in the data (PC1-PC3) are largely independent of population
and population density.

* An outlier trend is present in PC9, where the contradictory loadings of life
expectancy of females and males might hint at an interesting aspect.

In summary, we have seen in this section that PCA is a useful tool for crystallizing
major structural relationships in the data and for identifying possible candidates for
data abstraction.

6.6 Summary

In this chapter, we provided a brief overview of how computational analysis methods
can support the visual analysis of time-oriented data. We gave a list of typical tempo-
ral analysis tasks and illustrated the utility of analysis methods with three examples:
segmentation and labeling (as a specific instance of classification), clustering, and
principal component analysis. All of these examples perform a particular kind of
temporal data abstraction. While our examples were simple, we still believe that they
demonstrate the benefits of analytical methods quite well.

In fact, when confronted with really large datasets, a single analytical method
alone will most certainly not suffice. Instead, a number of computational methods
must play in concert to cope with the size and complexity of time-oriented data.
Moreover, analytical methods are not solely a preprocessing step to support the
visualization of data. The full potential of analytical methods unfolds only if they
are considered at all stages of interactive exploration and visual analysis processes
in an integrated fashion depending on the data, users, and tasks.

We will pick up this issue in the last chapter of this book, where we outline some
ideas to arrive at an intertwined integration of visual, interactive, and analytical
methods for the bigger goal of gaining insight into large and complex time-oriented
data. Next in Chapter 7, we will return to visualization-related topics and discuss
how data analysis practitioners can be supported in selecting visualization techniques
appropriate for their needs.
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